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information (e.g., high heritability). If the model uses an incorrect heritability or a hidden trend exists in the data, it is still possible to estimate the direction and existence of bias and slope but not always their magnitudes.
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Dans la troisième étude, nous avons analysé l'évolution de la variance génétique chez Manech Tête Rousse pour les mâles élite et pour toutes les femelles (plus représentatives de la population) nées chaque année entre 1981 et 2014. Nous avons distingué la perte de variance génétique due à la dérive (augmentation de la parenté) et à la sélection (principalement due à l'effet Bulmer). Dans les deux groupes, la variance génétique a diminué depuis le milieu des années 90 jusqu'à une stabilisation vers 2005. Cependant, en raison des changements dans les objectifs de sélection, il est impossible de conclure sur la cause réelle de la stabilisation observée. L'effet Bulmer a eu un impact sur la perte de variance génétique d'environ 10 %, tandis que l'accumulation de la parenté était d'environ 3 %.

Abstract

Performing genetic evaluations yields estimated breeding values (EBV) of individuals. So, the potential genetic gain achieved with selection is based on the capacity of the evaluation model to estimate unbiased EBVs. The most frequently used genetic model is the Best Linear Unbiased Prediction (BLUP) framework, whose unbiasedness is theoretically guaranteed if the required information is available. However, since the 1980s, there are reports of bias in genetic evaluations, which indicate that the BLUP model may generate biased predictions in real scenarios. Because it relies less on well-proven animals, genomic selection increased the need to have empirically unbiased methods. Therefore, the study of bias, and the development of tools to measure bias, have been common subjects in the scientific literature. The more extended concept of bias is based on the linear relationship of true breeding values (TBV) and EBV. Bias is the average difference Δ = 𝑇 𝐵𝑉 -𝐸𝐵𝑉 , whereas dispersion is the slope 𝑏 1 of the linear regression 𝑇 𝐵𝑉 = 𝑏 0 + 𝑏 1 × 𝐸𝐵𝑉 . In unbiased evaluations Δ should be 0 and 𝑏 1 should be 1. Negative values of bias Δ indicate an over-estimation of the genetic trend or gain, while positive values indicate an under-estimation. For slope 𝑏 1 , values higher than 1 indicate under-dispersion, and values lower than 1 indicate over-dispersion of EBVs. Having biased evaluations may hamper the genetic progress. Another aspect to take into account is the accuracy, i.e. the correlation 𝑟(𝑇 𝐵𝑉 , 𝐸𝐵𝑉 ), which is directly related to genetic gain. Knowing the values of these parameters is important for selection schemes, because bias and over/under-dispersion of EBVs may hamper genetic progress and accuracies are essential to predict genetic progress. Bias is perceived to come from selection but also from incorrect modelling of the trait.

Dairy sheep is an important industry in France. The production is concentrated in the Central Massif, where breeding is based on the Lacaune breed, in Corsica, based on the Corsica breed, and in the Western Pyrenees, based on Manech Tête Rousse, Manech Tête Noire, and Basco-Bearnaise breeds. All breeds have active selection schemes, and almost all of them have started genomic selection over the past decade. The selection schemes have a pyramidal structure with an elite nucleus in which the genetic progress is done. Dairy sheep breeding schemes have some peculiarities. Classical progeny testing of Artificial Insemination rams is based on around 30 or 40 daughters per ram. Also, missing pedigree exists and there is a need to model it. Some studies have found bias in dairy sheep. Nevertheless, all of them have used tests that compare EBVs with daughter yield deviations (DYD) of the rams to compute the estimators. DYDs are not very accurate when the number of daughters per ram is low, which is the dairy sheep case. For this reason, and also because the dairy industry needs to ascertain that genomic prediction works correctly, it is relevant to extensively re-analyze the bias in these populations with a methodology that does not need DYD.

In 2018 a new method called LR method was described to estimate bias in genetic evaluations. The method is based on comparing successive EBVs of a group of individuals, incrementing the information each time. It has estimators for bias, slope, and accuracies.

The objective of this thesis were to evaluate bias in French dairy sheep evaluations, considering the effect of selection, using the LR method.

Our first study was to check the capability of LR method to detect bias under simulated scenarios. We simulated a dairy species breeding scheme for low (0.10) and moderate (0.30) heritabilities. In both cases, we checked behavior of LR method for 3 scenarios: genetic evaluations ( 1) with a correct model, ( 2) when the evaluation model uses an incorrect heritability, and (3) when the data includes an environmental trend. For scenarios in which the evaluation model was correct, the LR method was capable of correctly estimating bias, slope, and accuracies.

In cases of incorrect heritabilities in the evaluation model, the bias was correctly estimated in direction but not in magnitude. Similarly, the magnitudes of bias and slope were correctly estimated in scenarios with environmental trends in data, except for cases in which the model was unable to correctly estimate this environmental trend. In general, accuracies were well estimated in all scenarios.

In this first study, we demonstrated that the LR method could estimate bias and accuracy in all cases if the evaluation model is correct or robust.

The second study was to check the bias over real data. We used the genetic evaluation of milk yield in Manech Tête Rousse. We compared BLUP and singlestep genomic BLUP (SSGBLUP) models. To account for missing pedigree, we used unknown parent groups (UPG), UPG with QP transformation in the H matrix (EUPG), and metafounders (MF) to manage the missing pedigree. We applied the LR method using the (G)EBVs of rams born in 2005 until 2014, with their (G)EBVs of the subsequent genetic evaluations. So, we obtained multiple estimators for the same model. We also compared across models: using EBVs of the first evaluation with BLUP and the subsequent GEBVs from SSGBLUP and comparing EBVs at birth with and without genomic information. Within models, in general, bias and over-dispersion were small (bias: 0.20 to 0.40 genetic standard deviations; slope: 0.95 to 0.99). The estimates of accuracies confirmed that the addition of genomic information increases the accuracy of EBV in young rams. When we estimated dispersion by comparing a model with no markers to models with markers, SSGBLUP-MF showed a value close to 1. In contrast, SSGBLUP-EUPG and SSGBLUP-UPG showed a significant under-dispersion. Another important observation was the heterogeneous behavior of the estimates over time, which suggests that a single check could be insufficient to make a good analysis of genetic/genomic evaluations.

In the third study, we analyzed the evolution of the genetic variance in Manech Tête Rousse for elite males and for all females (more representative of the population) born in each year from 1981 to 2014. We distinguished the loss of genetic variance due to drift (build-up of coancestry) and selection (mainly due to Bulmer effect). In both groups, the genetic variance decreased from the middle '90s until it reaches a stabilization around 2005. However, due to changes in the breeding objectives, it is impossible to conclude about the real cause of the observed stabilization. The Bulmer effect impacted the loss of genetic variance of about 10%, while the build up of coancestry was about 3%.

Bias in genetic evaluations

Models are, in most cases, mathematical expressions to explain reality. To predict an observation in a given particular scenario, we estimate the effects of different factors included in the model. Therefore, an estimator is a function of observations that attempts to indicate the true value of an unknown parameter.

In the case of genetic evaluations, our interest is to predict the breeding value (EBV) of selection candidates in a population, so it is desirable that predictors are as close as possible to the true breeding value (TBV). But, as models are simplifications of reality, it is possible to obtain unexpected results.

The method "par excellence" for predicting the genetic value of an individual is the Best Unbiased Linear Predictor (BLUP) presented by Henderson (1975). After the presentation of the method, Henderson himself (1982) from a frequentist point of view, and later Sorensen et al. (Sorensen et al., 2001) from a Bayesian point of view, demonstrated that the method is unbiased for populations under selection.

However, to avoid bias, many conditions should be met. We have to use the correct evaluation model; for example, the correct heritabilities and effects. Also, we work under the assumption of multivariate normality, and the data have to describe the selection process. Therefore, a genetic evaluation can be biased for many reasons like collinearity of contemporary groups and genetic trends, the existence of genetic groups, the use of wrong heritability, selection decisions not present on data, etc. (Legarra and Reverter, 2017). Below we present several studies and reports of bias in genetic evaluations.

In the 1990s, some reports of bias were published in dairy cattle's international EBV comparisons. Bonaiti et al. (1993) found an important difference between dairy cattle genetic trend in the United States and France. For a sample of bulls, they compared the expected genetic trend (estimated in the United States) with the realized trend in France for milk, fat, and protein yield. The expected trends were 165%, 83%, and 164% higher than the realized trend for milk, fat, and protein yields, respectively. Consequently, conversion factors to be used for France, Italy, the Netherlands, and Canada were updated to account for the differences (Powell and Wiggans, 1994).

Recently, the problem of bias has become more evident with genomic predictions. The adoption of genomic evaluations by selection schemes has significant advantages in terms of genetic gain, mainly due to improved accuracy of early EBV and shortened generation interval as predicted by simulations [START_REF] Meuwissen | Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps[END_REF][START_REF] Schaeffer | Strategy for applying genome-wide selection in dairy cattle[END_REF] and observed in practice (Hayes et al., 2009a;[START_REF] García-Ruiz | Changes in genetic selection differentials and generation intervals in US Holstein dairy cattle as a result of genomic selection[END_REF]. However, the techniques for including genomic information in BLUP models combined with the strong genomic pre-selection pressure may cause a major problem of bias.

One of the first livestock industries to adopt genomic selection was the dairy cattle industry and, therefore, most of the studies and reports of bias arise from this industry (Spelman et al., 2010;Patry and Ducrocq, 2011;Sargolzaei et al., 2012;Tyrisevä et al., 2018).

For example, the exploration for bias in the Canadian Holstein genetic evaluation re-sulted in an average bias of 339 points in Lifetime Profit Index for 2,159 bulls genomicevaluated in 2008 and later progeny-tested in 2012 (Sargolzaei et al., 2012). As an example of the economic impact of bias in breeding schemes, we can mention the Livestock Improvement Corporation (New Zealand) experience. This company started to commercialize genomic-proven bulls in 2008 with a NZ$ 5 premium over the progeny tested bulls. A posterior progeny test demonstrated an over-estimation of 15-30 Breeding Worth of the early genomic enhanced breeding values (GEBV). Hence, the company decided to credited the NZ$ 5 premium that the farmers paid for the genomic-proven bulls as a gesture of appreciation to the early adopters of the genomic evaluations (Spelman et al., 2010).

Pre-selection is an important issue in genomic selection. The BLUP theory assumes that Mendelian sampling expectation is zero. However, in genomic pre-selection, young individuals with the highest GEBV and higher Mendelian sampling are selected, violating the BLUP assumption and causing bias. Studying the genomic pre-selection in dairy cattle schemes, Patry and Ducrocq (2011) found differences between TBV and EBV between -0.146 genetic standard deviations (𝜎 𝑔 ) and -0.227𝜎 𝑔 and from -0.214𝜎 𝑔 to -0.338𝜎 𝑔 , respectively for traits of medium (ℎ 2 = 0.36) and low heritability (ℎ 2 = 0.14). Similar results were obtained by Tyrisevä et al. (2018), who found an under-estimation of bull's EBV with an over-estimation of the parent's EBVs after the start of genomic pre-selection.

Although most of the bias studies are related to the dairy cattle industry, it has also been studied in other species. In beef cattle, Saatchi et al. (2011Saatchi et al. ( , 2013) ) observed important over or under EBV's dispersion in Angus and Hereford. The dispersion of EBVs is the slope of the TBV regression on the EBV; values less than 1 indicate over-dispersion, while values greater than 1 indicate under-dispersion. For example, the slope of the regression of pseudo-TBV on EBV for yearling weight in Angus was 0.624 and 0.790, for two different cross-validation methodologies, while for fat thickness was 1.113 and 1.211. In Hereford, the slope values for the same traits ranged from 0.56 to 1.24 for yearling weight and 0.39 to 1.14 for fat thickness. Working with tick resistance in Braford, Cardoso et al. (2015), using different models and cross-validation methods, observed a tendency to over-dispersion in genomic evaluations. Except for one model, which results in a slope value of 0.99, the remaining ones presented slope values from 0.44 to 0.96. For daily gain in pigs, the slope was around 0.92, while for feed conversion rate was around 0.84 under univariate evaluations and close to 1 with bivariate evaluations (Christensen et al., 2012). In dairy goats, evaluating 11 traits, Carillier et al. (2013) observed significant over-dispersion, for example, for fore udder (0.726) and slight over-dispersion for fat content (0.962).

Evaluating meat production traits in turkeys, Abdala et al. ( 2019) estimated slopes from over to under-dispersion, ranged from 0.75 for walking score to 1.38 for breast meat yield.

Therefore, the bias in genomic evaluations is still an open discussion, and their causes are not well known.

What we understand by "bias" and why is it important?

From a statistical point of view, there is a precise definition of bias. Suppose an unknown parameter 𝜃 and its estimator θ , bias is a property of the estimator and is defined as 𝐵[ θ ] = 𝐸[ θ ] -𝜃, the difference between the expected value of the estimate (over conceptual repetition sampling) and the true value of the parameter. An estimator is unbiased if 𝐵[ θ ] = 0.

In the context of genetic evaluations, the properties of an unbiased predictor were first proposed by [START_REF] Henderson | Sire evaluation and genetic trends[END_REF]. In the absence of selection, over conceptual repeated samples of a single breeding value, he defined the Best Linear Unbiased Predictor properties. The most relevant for our purpose are:

-

𝐸( û ) = 𝐸(𝑢). A prediction is unbiased if 𝐸( û ) -𝐸(𝑢) = 0 -𝑉 𝑎𝑟( û ) = 𝐶𝑜𝑣( û , 𝑢)
, therefore, in absence of bias 𝐶𝑜𝑣( û ,𝑢) 𝑉 𝑎𝑟( û ) = 1 -The BLUP maximizes the correlation between the predictor and the predictand.

Nowadays, the most extended concept of bias comes from tests to validate genomic evaluations for Interbull (Mäntysaari et al., 2010). They are based on the comparison of EBVs before and after progeny testing.

Based on the equation

𝑇 𝐵𝑉 = 𝑏 0 + 𝑏 1 × 𝐸𝐵𝑉
where TBV are the True Breeding Values for a group of sires, approximated, for example, by their Daughter Yield Deviations (DYDs), EBV the estimated breeding values for the same group of sires, and the coefficients 𝑏 0 and 𝑏 1 are the intercept and the slope of the linear regression with expected values of 0 and 1, respectively. If either coefficient does not meet the expectations, we conclude that the genetic values were biased. In a general point of view, when authors talk about bias in genetic evaluations, they usually refer to 𝑏 1 ≠ 1.

These concepts and their impact on the selection process are expanded below.

Bias

The bias is related to the mean of TBV (u) and EBV ( û ):

𝐵𝑖𝑎𝑠 = ū -̄û . Note that 𝑏 0 = 𝐵𝑖𝑎𝑠 = ū -̄û in the equation 𝑇 𝐵𝑉 = 𝑏 0 + 𝑏 1 × 𝐸𝐵𝑉 only if 𝑏 1 = 1.
If 𝐵𝑖𝑎𝑠 > 0, there is an under-estimation of the genetic mean, and if 𝐵𝑖𝑎𝑠 < 0, then the mean of EBVs is over-estimated, and there will be consequences on the selection process, as shown in the following example (Figure 1). we should, and we would expect a higher genetic gain than the true genetic gain. In the example, the dotted black line represents the selection rule. Since the EBVs (red circles) are over-estimated, almost all young individuals will be selected. Consequently, we also will be over-estimating the genetic gain. However, if we could select using the TBVs (blue triangles), an important part of the young candidates should be discarded as the new generation's sires.

The problems reported by Spelman et al. (2010) and Sargolzaei et al. (2012), described above, illustrate well an over-estimation of EBVs.

Over or under-dispersion

The dispersion of EBVs is related to the slope of the regression 𝑇 𝐵𝑉 = 𝑏 0 + 𝑏 1 × 𝐸𝐵𝑉 :

𝑏 1 = 𝐶𝑜𝑣(u, û ) 𝑉 𝑎𝑟( û ) .
A value of 𝑏 1 > 1 means that the EBVs are under-dispersed and if 𝑏 1 < 1 then the EBVs are over-dispersed.

Similarly to what happens with bias, the over or under-dispersion has consequences over our expectations of the selection process, as presented in the following example of over-dispersion of young candidates' EBVs (Figure 2). Again, suppose a genetic evaluation with old well proven bulls and young candidates.

Even when the TBV and EBV of young candidates have the same mean (or in the absence of bias), the over-dispersion of the EBVs could affect the expected genetic gain. It does not means that we will choose more young individuals than we should, but as we obtain more extreme EBVs (red circles) than they really are, the genetic mean after selection will be over-estimated.

In order to the true mean of the selected individuals and their estimation match, the bias must be 0, and the slope must be 1.

Accuracies

The accuracy (𝑎𝑐𝑐), can be defined as the correlation between TBV and EBV

𝑎𝑐𝑐 = 𝐶𝑜𝑣(u, û ) √𝑉 𝑎𝑟(u)𝑉 𝑎𝑟( û )
of a group of individuals, also called population accuracy, directly affects the genetic gain Δ𝐺 = 𝑖 𝑎𝑐𝑐 𝜎 𝑢 (Falconer and Mackay, 1996). Therefore, it reflects the potential gain of a selection scheme.

On the other hand, we can see the accuracy as a measure of the risk that the EBV of a candidate change in the next evaluations (𝑟); the accuracies that we obtain from the mixed model equations (MME) or individual accuracy

𝑟 = √1 - 𝑃 𝐸𝑉 𝑖 (1 + 𝐹 𝑖 ) 𝜎 2 𝑢
where 𝑃 𝐸𝑉 is the prediction error variance, 𝐹 𝑖 is the inbreeding for individual 𝑖 and 𝜎 2 𝑢 is the genetic variance (Henderson, 1975). In principle the two accuracies, population and individual, refers to the same thing, because the individual accuracy is the correlation of the TBV and the EBV of an individual, on repeated sampling. However, the selection reduces the genetic variance (Dekkers, 1992;Bijma, 2012), but the common techniques to estimate the accuracies of EBVs in genetic evaluations ignore this reduction [START_REF] Misztal | Approximation of Prediction Error Variance in Large-Scale Animal Models[END_REF][START_REF] Meyer | Approximate accuracy of genetic evaluation under an animal model[END_REF][START_REF] Vanraden | Derivation, Calculation, and Use of National Animal Model Information[END_REF]. In consequence, the population accuracy and the accuracies from MME are equal only in the base population or in absence of selection. After selection, the population accuracy will be lower than the MME accuracy. Dairy sheep is an important agricultural activity in France. For the period 2018-2019, dairy sheep milk and cheese production was 286.7 million liters (≈ 1.3% among all species) and 59,975 tons (≈ 4.5% among all species), respectively (FranceAgriMer, 2020).

There are three main regions of dairy sheep production in France (Figure 3):

-Central Massif (44% of the flocks). It is the region where Roquefort cheese is produced based on Lacaune (LAC) milk. -Western Pyrenees (40% of the flocks). The region of Manech Tête Rousse (MTR), Manech Tête Noir (MTN) and Basco-Béarnaise (BB) breeds. -Corsica (8% of the flocks). The production is based on Corsica (COR) breed. This industry has strongly developed since the 1960s (Figure 4). The implementation of mechanical milking, improvement of nutrition schemes, the adoption of artificial insemination (AI), and selection schemes with genetic evaluations incremented the size of flocks as well as the milk production by ewe [START_REF] Lagriffoul | Panorama de la production de lait de brebis en France et son évolution depuis 50 ans[END_REF]. The selection scheme is based on public-private cooperatives in a pyramidal structure.

A nucleus of around 20% of the ewes is under official performance recording, and every year a group of rams enters to progeny test (the number varies between breeds). LAC and MTR are the two most significant populations and test 440 and 150 rams per year, respectively ( Except for COR, where the selection is only on milk yield (MY), the breeding objectives for the rest of the breeds also include fat (FC) and protein (PC) content and somatic cell score (SCS). Selection for udder morphology trait (Teat Angle, TA, Udder Clef, UC, Udder Depth, UD) is made only for LAC. In all cases the genetic progress is between 0.15 𝜎 𝑔 and 0.20 𝜎 𝑔 per year.

Bias in dairy sheep.

Several studies explored bias in dairy sheep populations (Duchemin et al., 2012;Astruc et al., 2014;Baloche et al., 2014;Legarra et al., 2014a;[START_REF] Granado-Tajada | Exploring the inclusion of genomic information and metafounders in Latxa dairy sheep genetic evaluations[END_REF].

In Table 2, we present values of bias and slope for milk yield described in the literature.

For the Pyrenean breeds and MY, Legarra et al. (2014a) found the most important bias for BLUP evaluation in Manech Tête Rousse (16.98 L) and the lowest one for an SSGBLUP evaluation in Basco-Béarnaise (0.08 L). In Lacaune, comparing the genetic trends for MY from the conventional BLUP evaluations with those obtained from SSGBLUP evaluations using or not unknown parent groups, Astruc et al. (2014) found that ignoring unknown parent groups lead to an under-estimation of the genetic trend.

Out of France and for MY, [START_REF] Granado-Tajada | Exploring the inclusion of genomic information and metafounders in Latxa dairy sheep genetic evaluations[END_REF] found bias values that range between 1.41 L for Latxa Cara Negra from Euskadi and 11.74 L for Latxa Cara Rubia.

Early works did not found strong over-dispersion in Lacaune, being 0.85, the lower value of slope using SSGBLUP model (Duchemin et al., 2012), but in general, the values were over 0.90. These results contrast with later ones for the same breed that range, for different models, between 0.55 to 0.75 (Astruc et al., 2014;Baloche et al., 2014), which implies an important over-dispersion of EBVs. For other traits in Lacaune, Baloche et al. (2014) However, the works presented for French dairy sheep populations have used DYDs, either as a phenotype for predictions or as pseudo-TBV in regression of TBV on EBV.

Particularly for dairy sheep, the use of DYDs for the estimation of bias is not appropriate. As described before, the number of daughters per ram in the first crop of daughters is relatively small, about 30 or 40, and we can not expect a very accurate estimation of the DYDs under these conditions [START_REF] Szyda | Practical application of daughter yield deviations in dairy cattle breeding[END_REF].

In addition, the selection schemes already switched (e.g., for Lacaune and Manech Tête Rousse) or are switching to genomic selection. Hence they have to change from a very well-known BLUP with UPG model to models that account for the genomic information like SSGBLUP.

Therefore, it is relevant to explore bias with tools that do not use DYDs and testing different models to combine pedigree and genomic data.

Models in French dairy sheep evaluations

BLUP and SSGBLUP

As genetic evaluations began to include genomic information, the model used to evaluate individuals should change. Therefore, in our study we tested models that include the matrix of additive genetic relationship A (the traditional BLUP) (Henderson, 1975) and models that use a matrix H that combines pedigree and genomic information (Legarra et al., 2009(Legarra et al., , 2014b;;Christensen and Lund, 2010) as below:

H -1 = A -1 + ( 0 0 0 G -1 -A -1 22 )
where G is the matrix of genomic relationship, and A 22 is the additive relationship matrix for genotyped individuals.

Missing pedigree in dairy sheep

Missing pedigree may be an important issue in dairy sheep. Usually, a single parent (sire) is unknown. For example, in MTR and LAC, there are ~25% and ~9% of missing pedigree, respectively. The evolution of missing pedigree for both breeds is shown in Figure 5. If we ignore the missing pedigree, we assume that all missing parents have the same genetic mean, which is not true in a population under selection. Under selection, the new generations have a better genetic mean than the older ones. Therefore it is important to apply methods to manage this trend.

In our work, we modeled the missing pedigree with unknown parent groups (UPG) and metafounders (MF). Genetic group theory was developed to consider differences in the genetic level of different groups of individuals of different origins [START_REF] Thompson | Sire Evaluation[END_REF]Quaas, 1988;Westell et al., 1988), and it is a common strategy to model missing pedigree in BLUP models, and it is possible to apply it in an SSGBLUP model (Misztal et al., 2013).

However, UPG is considered as a fixed effect, without relationships between different UPG, in genetic evaluations. To consider the relationship between the different UPG and the reduction of variance due to drift, the metafounders theory was developed (Legarra et al., 2015). The relationship between MF can be estimated from the genomic information (Garcia-Baccino et al., 2017). The estimated matrix of relationships between MF (matrix Γ) can be applied in BLUP models.

A more detailed explanation of the models is shown in the different chapters.

Methodologies to explore bias in genetic evaluations

Since the first problems of bias were detected in genetic evaluations, many methodologies to estimate it were proposed. In the 1990s, two works (Reverter et al., 1994;Boichard et al., 1995) approached the subject from different perspectives, and more recently, after the adoption of genomic selection in dairy cattle, Mäntysaari et al. (2010) proposed a test to be applied in the genomic evaluations of countries before they send the GEBV to Interbull. Finally, VanRaden and O'Connell (2018), presented a method to validate genomic reliabilities from the addition of phenotypes. Boichard et al. (1995), working in a dairy cattle framework, presented three methods to validate the estimation of the genetic trend:

Boichard et al. (1995)

1. Comparison of evaluations using all lactational data available with those using first lactation only.

2. Within-bull variation of daughter yield deviation (DYD).

3. The analysis of variations in bull EBV's with time.

Comparison of evaluations from data of all lactations vs first lactation

Under a repeated measures model to evaluate milk yield, there are three sources of information that contribute to the estimation of the genetic trend: the genetic mean of the selected animals, the difference in the performance of contemporary daughters born from parents of different age, and the difference between animals in the same environment but different ages.

If we use only the first lactation, the last source does not affect the genetic trend estimation, and, as we avoid effects related to successive lactation, we simplify the model.

The test is based on comparing the estimations of a first lactation model and a repeated measures model. Since the first lactation model is the simplest one, if there is a major difference between the genetic trends, it is more likely that the biased model is the model that includes all lactations.

Within-bull variation of daughter yield deviation (DYD).

Daughter yield deviations are the average performances of daughters from a bull, corrected for mother genetic value, and the model's effects. Therefore, the DYDs depend only on the bull, and a comparison between DYDs of daughters of different years could be a measure of the bias in an evaluation system.

The model proposed to analyze the individual deviation was:

𝑑 𝑖𝑗𝑘 = 𝑠 𝑖 + 𝑡 𝑚 + 𝑒 𝑖𝑗𝑘
where 𝑑 𝑖𝑗𝑘 is the deviation of daughter 𝑘 of sire 𝑖, obtained in year 𝑗, 𝑠 𝑖 is the fixed effect of sire 𝑖, 𝑡 𝑚 is effect of year 𝑚 of use of bull 𝑖, and 𝑒 𝑖𝑗𝑘 is the error.

If the year effect differs significantly from 0, then the estimated genetic trend is biased.

The analysis of variations of bull evaluations with time.

This third method presents the advantage that access to raw data is not needed to estimate the bias. The first two methods could be performed only if you have access to the lactational data and pedigrees. This last method requires only successive official EBVs of sires and could be applied by anyone.

The method assumes that the EBVs of the same individuals in successive genetic evaluations should be similar and we can explore bias in the estimated genetic trend by comparing the EBVs from the same bulls obtained in different moments. If we observed an important change in the EBVs of the individuals, it means that new information causes bias in the evaluation system.

The authors illustrate the method by comparing two groups of bulls, those eliminated and the ones selected after progeny testing. The EBVs of the eliminated group after the first crop of daughters remain stable as there will be no addition of information.

On the opposite, selected individuals will receive the information of the next crops of daughters. If the contrast between both groups does not remain constant, it means that the addition of information causes bias.

Reverter et al. (1994)

Reverter et al. (1994) presented theoretical expectations for three statistics that can be applied to check bias in prediction. They presented three statistics:

1. The linear regression of recent predictions on previous ones.

2. The linear correlation between subsequent predictions.

3. The variance of the difference between the recent minus previous genetic predictions.

To develop the expectations, they demonstrate that

𝐶𝑜𝑣( û 𝑖𝑗 , û 𝑖𝑗 ′ ) = 𝑉 𝑎𝑟( û 𝑖𝑗 )
where û 𝑖𝑗 and û 𝑖𝑗 ′ are estimations of the true breeding value 𝑢 𝑖 in the analysis 𝑗 and 𝑗 ′ (being 𝑗 the oldest analysis) for the animal 𝑖, and

𝐶𝑜𝑣(𝑒 𝑖𝑗 , 𝑒 𝑖𝑗 ′ ) = 𝑉 𝑎𝑟(𝑒 𝑖𝑗 ′ )
where 𝑒 𝑖𝑗 and 𝑒 𝑖𝑗 ′ are the prediction errors (i.e. 𝑒 𝑖 = 𝑢 𝑖 -û 𝑖 ) for 𝑗 and 𝑗 ′ .

The expectations of the three proposed statistics are briefly presented below.

The regression of recent on early estimates (𝑅 𝑗 ′ 𝑗 ).

The expectation of the regression is

𝐸[𝑏 𝑖𝑗 ′ ,𝑖𝑗 ] = 𝐶𝑜𝑣( û 𝑖𝑗 , û 𝑖𝑗 ′ ) 𝑉 𝑎𝑟( û 𝑖𝑗 ) = 𝑉 𝑎𝑟( û 𝑖𝑗 ) 𝑉 𝑎𝑟( û 𝑖𝑗 ) = 1
as equal as the expectation of the estimator

𝐸[𝑅 𝑗 ′ 𝑗 ] = ∑ 𝑛 𝑖=1 𝑉 𝑎𝑟( û 𝑖𝑗 ) ∑ 𝑛 𝑖=1 𝑉 𝑎𝑟( û 𝑖𝑗 ) = 1
where 𝑛 is the number of individuals in the analysis.

If the 𝑅 𝑗 ′ 𝑗 is different than 1, it means that 𝐶𝑜𝑣( û 𝑖𝑗 , û 𝑖𝑗 ′ ) ≠ 𝑉 𝑎𝑟( û 𝑖𝑗 ). One cause of such deviation may be the use of inadequate heritability.

Correlation between subsequent estimates (𝜌 𝑗𝑗 ′ ).

The expectation of the correlation is

𝐸[𝑟 𝑖𝑗 ′ ,𝑖𝑗 ] = 𝐶𝑜𝑣( û 𝑖𝑗 ′ , û 𝑖𝑗 ) √𝑉 𝑎𝑟( û 𝑖𝑗 ′ )𝑉 𝑎𝑟( û 𝑖𝑗 ) = √ 𝑉 𝑎𝑟( û 𝑖𝑗 ) 𝑉 𝑎𝑟( û 𝑖𝑗 ′ )
and the expectation of the estimator is

𝐸[𝜌 𝑗 ′ 𝑗 ] = √ √ ⎷ ∑ 𝑛 𝑖=1 𝑉 𝑎𝑟( û 𝑖𝑗 ) ∑ 𝑛 𝑖=1 𝑉 𝑎𝑟( û 𝑖𝑗 ′ )
The last expression may be expressed as a function of accuracies (𝑎𝑐𝑐), being 𝑎𝑐𝑐 the correlation between the true breeding value and its estimation.

𝐸[𝜌 𝑗

′ 𝑗 ] = √ 𝜇 𝑎𝑐𝑐 2 𝑗 𝜇 𝑎𝑐𝑐 2 𝑗 ′
The 𝜌 𝑗𝑗 ′ is a better estimator to detect bias.

Variance of the genetic prediction difference (∑

𝑖 ( û 𝑖𝑗 ′ -û 𝑖𝑗 ) 2 ).
This estimator provides a simple test of significance for the detection of bias.

The expected value of

∑ 𝑖 ( û 𝑖𝑗 ′ -û 𝑖𝑗 ) 2 is 𝐸 [( û 𝑖𝑗 ′ -û 𝑖𝑗 ) 2 ] = 𝐸 [(𝑒 𝑖𝑗 -𝑒 𝑖𝑗 ′ ) 2 ] = 𝑉 𝑎𝑟(𝛿 𝑖 ) = 𝜎 2 𝑒 𝑖𝑗 -𝜎 2 𝑒 𝑖𝑗 ′

Mäntysaari et al. (2010)

In the context of a genomic across country multi-trait evaluation (GMACE) [START_REF] Sullivan | Development of Genomic GMACE[END_REF], Mäntysaari et al. (2010) proposed a test to validate genomic evaluations in each country. The test follows the principles of the third method of Boichard et al. (1995). In the context of genomic evaluations, the first estimation of breeding values is genomically enhanced breeding value estimates (GEBV) or direct genomic values (DGV) before the bulls get their own daughters. The test is based on comparing these first estimations with the DYD of the progeny of sires. To analyze the existence of bias they use the follow regression model:

𝑌 = 𝑏 0 + 𝑏 1 * 𝐺𝐸𝐵𝑉 𝑟 + 𝑒
where 𝑌 contains the DYD or deregressed proof (DRP) of the tested bulls. Under this model the expectations are 𝑏 0 = 0 and 𝑏 1 = 1.

The validation of the test could be estimated as 𝑅 2 / w , where w is the average accuracy of DYDs. The accuracy of DYDs can be estimated as 𝑤 𝑖 = 𝐸𝐷𝐶 𝑖 / (𝐸𝐷𝐶 𝑖 + 𝑘), where 𝐸𝐷𝐶 is the effective daughter contribution and 𝑘 = (4 -ℎ 2 )/ℎ 2 .

Finally, it is possible to estimate the improvement obtained when we use GEBV instead of pedigree-based estimated breeding values (EBV) by comparing the 𝑅 2 from the regression model using GEBVs with the 𝑅 2 of the model using EBVs:

𝑌 = 𝑏 0 + 𝑏 1 * 𝐸𝐵𝑉 𝑟 + 𝑒
A significantly higher value of the 𝑅 2 is expected using GEBVs than EBVs.

VanRaden and O'Connell (2018)

The test presented by Mäntysaari et al. (2010) checks for bias in GEBVs but it does not test if the reliabilities are accurate. VanRaden and O'Connell (2018) proposed a method based on the difference between earlier and later published reliabilities and how this difference matches the observed variance of EBVs. They proposed a simple test to validate the earlier reliabilities with later ones that can be assumed to be correct.

𝑅𝐸𝐿 1 = 𝑅𝐸𝐿 2 - 𝑉 𝑎𝑟(𝐸𝐵𝑉 2 -𝐸𝐵𝑉 1 ) 𝑉 𝑎𝑟(𝐵𝑉 )
where 𝑅𝐸𝐿 1 and 𝑅𝐸𝐿 2 are the reliabilities of earlier 𝐸𝐵𝑉 1 and later 𝐸𝐵𝑉 2 and 𝑉 𝑎𝑟(𝐵𝑉 ) is the genetic variance.

With the validation test it is possible to know if there was an over or under-estimation of the reliabilities of the earlier EBVs. They performed validation for U.S. Holstein and U.S. Jersey that showed for a group of traits an average over-estimation of 2% for Holstein reliabilities and an average under-estimation of 3% for Jersey reliabilities.

The method Linear Regression

In general, the methods presented before, except method 3 of Boichard et al. (1995) and the work of Reverter et al. (1994), need access to the raw data, the computation of DYD, or well proven EBVs. In many cases, these requirements are not possible or challenging to obtain. Also, many of the tests could not be applied over indirect predictions as maternal effects.

Following the idea of comparing subsequent EBVs for the same individuals and based on the work of Reverter et al. (1994), Legarra and Reverter (2018) presented the method called Linear Regression, hereafter LR method. The LR method is an extension of the theory presented by Reverter et al. (1994) from the individual to groups of individuals.

As the LR method estimate bias, dispersion, and accuracies based on the changes in EBVs estimated with less and more information, it is a simple tool that avoids the problems of other methodologies:

-it is not necessary to access the raw data, and it is possible to apply by anyone based on public EBVs. -we do not need very accurate (G)EBVs, pre-corrected phenotypes, deregressed proofs, or DYDs. -it can be applied to traits with low heritability -it is adequate for indirectly observed traits (as maternal effects) -it can be used with small size of progeny test groups Figure 6 shows a diagram of the LR method application. As shown in Figure 6, the LR method is based on the comparison of EBVs of a group of individuals, or focal individuals, obtained in two different moments, old EBVs estimated with less information or with a partial data set (𝐸𝐵𝑉 𝑝 or û 𝑝 ) and recent EBVs estimated with more information or with a whole data set (𝐸𝐵𝑉 𝑤 or û 𝑤 ). The focal individuals are, in general, but not necessarily, sires without phenotype or progeny with phenotype at the moment of 𝐸𝐵𝑉 𝑝 and with phenotypes, or progeny with phenotypes at the moment of 𝐸𝐵𝑉 𝑤 (Legarra and Reverter, 2018).

With these two subsets of EBVs it is possible to estimate differences in the genetic mean, dispersion, and accuracies, as shown below.

To give an example, in Table 3 we present milk yield EBV values of 6 Holstein individuals for years 2011 and 2015. The EBVs in 2011 and 2015 represent the 𝐸𝐵𝑉 𝑝 and the 𝐸𝐵𝑉 𝑤 , respectively, for a focal group of bulls. We will use this data set as example to compute the estimators in the next sections.

Estimators of the LR method

Legarra and Reverter (2018) presented 5 estimators, one for bias, one for dispersion, and three for accuracy. However, in our work, we proposed modifications and new estimators for accuracy [START_REF] Macedo | Behavior of the Linear Regression method to estimate bias and accuracies with correct and incorrect genetic evaluation models[END_REF](Macedo et al., , 2020), that will be described later in detail.

All the estimators are summarized below using the notation presented in Chapter III.

Estimation of bias ( Δ𝑝 )

An estimation of the bias is obtained by the simple difference between the averages of old and recent EBVs.

Δ𝑝 = ̄û 𝑝 -̄û 𝑤

where ̄û 𝑝 and ̄û 𝑤 are the average of 𝐸𝐵𝑉 𝑝 and 𝐸𝐵𝑉 𝑤 values, respectively. We do not expect changes in EBV's means with addition of information, therefore, if the estimation is not biased, the expected value of Δ𝑝 is 0.

Using the data of Table 3; Δ𝑝 = ̄û 𝑝 -̄û 𝑤 = 346 -361 = -15L. If we assume, for example, a genetic standard deviation (𝜎 𝑢 ) of 100L it means a bias in the genetic evaluation of -0.16 𝜎 𝑢 .

Estimation of dispersion ( b 𝑝 )

An estimation of the dispersion is obtained from the slope of the regression of the EBVs estimated with more information on the EBVs estimated with less information.

b 𝑝 = 𝐶𝑜𝑣( û 𝑝 , û 𝑤 ) 𝑉 𝑎𝑟( û 𝑝 )
The expectation for this estimator is a value of 1. The EBVs are under-dispersed if b 𝑝 > 1 and over-dispersed if b 𝑝 < 1.

The slope computation for the subset of EBVs in the example is b 𝑝 = 𝐶𝑜𝑣( û 𝑝 , û 𝑤 ) 𝑉 𝑎𝑟( û 𝑝 ) = 4639.417 4897.583 = 0.95; which means that the 𝐸𝐵𝑉 𝑝 are slightly over-dispersed.

Estimation of accuracies

We need estimators for accuracy to know their real value, taking into account the effect of selection (Bijma, 2012). Below, we present three estimators for population accuracy ( ρ𝑤,𝑝 , ρ 2 𝑝,𝑤 and â𝑐𝑐 2 𝑝 ) that affect the genetic gain, and one for individual accuracy ( r𝑒𝑙 𝑝 ), equivalent to the accuracies of genetic evaluations.

Relative estimators of accuracies

Ratio of accuracies ( ρ𝑤,𝑝 )

The estimator of the ratio of accuracies is the correlation between EBVs obtained with partial and whole information.

ρ𝑤,𝑝 = 𝐶𝑜𝑣( û 𝑝 , û 𝑤 ) √𝑉 𝑎𝑟( û 𝑝 )𝑉 𝑎𝑟( û 𝑤 )
The expected value of ρ𝑤,𝑝 is

𝑎𝑐𝑐 𝑝 𝑎𝑐𝑐 𝑤
, the ratio of the accuracy of EBVs with less information (𝑎𝑐𝑐 𝑝 ) over the accuracy of EBVs with more information (𝑎𝑐𝑐 𝑤 ). Values close to 1 indicate that the addition of information almost does not affect the accuracy. On the opposite, values close to 0 indicate a significant increase in accuracy due to the new information. The relative gain in accuracy from a partial data set to a whole one could be obtained by

1 ρ𝑤,𝑝 -1 = 𝑎𝑐𝑐 𝑤 -𝑎𝑐𝑐 𝑝 𝑎𝑐𝑐 𝑝
(Matias Bermann, University of Georgia, personal communication).

Following the example, ρ𝑤,𝑝 = 𝐶𝑜𝑣( û 𝑝 , û 𝑤 )

√𝑉 𝑎𝑟( û 𝑝 )𝑉 𝑎𝑟( û 𝑤 )

= 4652.6 70.2×109.3 = 0.61 and the relative gain in accuracy 1 0.61 -1 = 0.65. Hence, the addition of information increased the accuracy in 65% from 2011 to 2015.

Ratio of reliabilities ( ρ 2 𝑝,𝑤 )

Similar as the last estimator, with ρ 2 𝑝,𝑤 we obtain an estimation of the ratio of reliabilities

( 𝑎𝑐𝑐 2 𝑝 𝑎𝑐𝑐 2 𝑤 ). ρ 2 𝑝,𝑤 = 𝐶𝑜𝑣( û 𝑝 , û 𝑤 ) 𝑉 𝑎𝑟( û 𝑤 )
Even when the square of ρ𝑤,𝑝 and ρ 2 𝑝,𝑤 seem to be equivalent, this is not necessarily true. The estimator ρ 2 𝑝,𝑤 is influenced by the dispersion of EBVs in the partial data set, so if under or over-dispersion exists, it will be not equivalent to ρ𝑤,𝑝 (Legarra and Reverter, 2018;[START_REF] Macedo | Behavior of the Linear Regression method to estimate bias and accuracies with correct and incorrect genetic evaluation models[END_REF].

In our example, ρ 2 𝑝,𝑤 = 𝐶𝑜𝑣( û 𝑝 , û 𝑤 ) 𝑉 𝑎𝑟( û 𝑤 ) = 4652.6 11951.1 = 0.39 or, in other words, the reliability improved significantly from the old EBVs to the new ones.

Direct estimators of accuracies

Selected reliability of 𝐸𝐵𝑉 𝑝 (â𝑐𝑐

𝑝 )

Originally presented in Legarra and Reverter (2018) as

â𝑐𝑐 2 𝑝 = 𝐶𝑜𝑣( û 𝑝 , û 𝑤 ) (1 + F -2 f)𝜎 2 𝑢,∞
where F is the average inbreeding, f is the average coancestry and 𝜎 2 𝑢,∞ is the genetic variance at equilibrium in populations under selection. This is an estimator of the reliability of a population under selection and is used when the focal individuals represent the entire last generation of the population. However, to consider specific sets of individuals, in Chapter III of this thesis, we proposed a more general expression

â𝑐𝑐 2 𝑝 = 𝐶𝑜𝑣( û 𝑝 , û 𝑤 ) 𝜎 2 𝑢 *
where 𝜎 2 𝑢 * is the genetic variance of the focal individuals. This last parameter is possible to obtain following the methodology presented by Sorensen et al. (2001), as shown in Macedo et al. (2020).

â𝑐𝑐 2
𝑝 is an estimator of the reliability of 𝐸𝐵𝑉 𝑝 under selection, and it should be lower than the reliability obtained from the MME (Bijma, 2012).

In order to continue the example we assume that 𝜎 2 𝑢 * = 8000𝐿 2 ; therefore, the estimation of the reliability for 𝐸𝐵𝑉 𝑝 is â𝑐𝑐 

Unselected reliability of 𝐸𝐵𝑉 𝑝 ( r𝑒𝑙 𝑝 )

As an estimator that resembles the theoretical accuracies obtained from the MME, we proposed a new estimator (Macedo et al., 2020)

r𝑒𝑙 𝑝 = 1 - 𝜎 2 𝑢 * 𝜎 2 𝑢 (1 -â𝑐𝑐 2 𝑝 )
where 𝜎 2 𝑔 * is the genetic variance of the focal individuals, and 𝜎 2 𝑔 is the genetic variance of the base population. This estimator reflects the reliabilities of EBVs of individuals not under selection; in other words, the reliability that we used to see in sire summaries.

Finally, to conclude the example, we will assume that 𝜎 2 𝑢 = 10000𝐿 2 and; hence,

r𝑒𝑙 𝑝 = 1 -𝜎 2 𝑢 * 𝜎 2 𝑢 (1 -â𝑐𝑐 2 𝑝 ) = 1 -8000
10000 (1 -0.58) = 0.66.

Evolution of genetic variance

The study of the genetic variance in dairy sheep was not part of the thesis's original objectives. As we need its estimation for the focal individuals, and it is a relevant information, we decided to include it in this work.

The genetic variance is one of the bases for the selection process. Changes in the genetic variance will affect the genetic gain (Dekkers, 1992;Bijma, 2012). There are two causes of the genetic variance decrease in time: drift and selection.

The drift is a consequence of the limited size of the population. Under finite populations, the relationship between individuals causes random changes in the allele frequencies (Falconer and Mackay, 1996;Walsh and Lynch, 2018), and we can measure the drift by the build-up of coancestry (Falconer and Mackay, 1996;Sorensen et al., 2001;Legarra, 2016).

On the other hand, selection changes allele frequencies but not randomly; favorable alleles will increase their frequency in the population. Also, selection leads to negative linkage disequilibrium between genes, the called Bulmer effect (Bulmer, 1971). Even when the Bulmer effect is not constant and tends to the stability after 3 or 4 generations, in the short term, it has a significant impact on the genetic variance (Bijma, 2012).

In the literature, there are few examples of the Bulmer effect using real data (Allier et al., 2019;Hidalgo et al., 2020), and none of them distinguishes between the drift and Bulmer effects.

In our work, we estimated the loss of genetic variance for milk yield in Manech Tête Rousse, and we separated the portion due to drift and Bulmer effects. The results are presented in the third paper.

Robustness of the LR method

The LR method was recently presented by Legarra and Reverter (2018). The authors derived the expectations of bias, slope, and accuracies by comparing EBV of successive genetic evaluations for a focal group of individuals based on a set of assumptions.

General assumptions are presented below.

Let û 𝑝 and û 𝑤 vectors of EBVs estimated with old and old+recent information, respectively, of the individuals in the focal group:

-𝑉 𝑎𝑟( û 𝑝 ) = 𝐶𝑜𝑣( û 𝑝 , û 𝑤 ), -𝐸( û 𝑝 ) = 𝐸( û 𝑤 ) = 𝐸(u) -𝐶𝑜𝑣(u -û 𝑝 , û 𝑝 ) = 𝐶𝑜𝑣(u -û 𝑤 , û 𝑤 ) = 0
Related to the focal group, they assume that the group is adequately large and diverse to represent the population, e.g., a group composed of several families and not only one. Also, they assume that individuals included in the group are comparable, i.e., they have the same average genetic level under repeated sampling.

To hold the assumptions, the genetic evaluation model should be correct. For instance, the assumption 𝑉 𝑎𝑟( û 𝑝 ) = 𝐶𝑜𝑣( û 𝑝 , û 𝑤 ) holds if the genetic evaluation correctly accounts for the decrease of genetic variance due to selection (Henderson, 1975[START_REF] Henderson | Best linear unbiased prediction in populations that have undergone selection[END_REF]. Also, the model should include the appropriate effects (i.e., contemporary groups, age, etc.)

However, in real evaluations, we might not work with perfect models. For example, the re-estimation of (co)variances is not a common practice in selection schemes; the models can be over-simplified or over-complicated, etc.

Therefore, we proposed to evaluate the estimators of the LR method using correct and slightly or very wrong genetic evaluation models under several simulated scenarios.

Objectives

General objective of the thesis

The thesis general objective was to analyze the existence and explore the possible causes of bias in French dairy sheep genetic evaluations.

Specific objectives

In order to achieve the general objective, we had to:

1. validate the LR method. As a new methodology, it is important to check its efficiency to estimate bias. 2. test models that include genomic information. The selection schemes had switched to genomic selection, so it is necessary to explore bias in genomic evaluations. 3. test different strategies to model missing pedigree. In dairy sheep, there is a significant percentage of missing pedigree. Therefore it is necessary to investigate which methodology is most appropriate to avoid bias. 4. study changes in genetic variation along the selection process.

Plan of the thesis and papers

The thesis is organized as follows: a. Validation of the LR method. b. Exploring bias in single trait genetic evaluation: the Manech Tête Rousse case. c. The evolution of the genetic variance of milk yield in Manech Tête Rousse.

Each step is expanded in the following chapters with the respective papers.

Chapter II. First paper: Validation of the LR method

The LR method was formally presented in 2018 (Legarra and Reverter, 2018) from a theoretical point of view and with an example of its application in Brahman cattle. However, as a new methodology, it needs to be validated and extensively tested to confirm its potential as a tool to be used in genetic evaluations. Thus, the first part of my Ph.D. thesis was dedicated to analyzing the LR method results under different scenarios.
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ABSTRACT

Bias in genetic evaluations has been a constant concern in animal genetics. The interest in this topic has increased in the last years, since many studies have detected overestimation (bias) in estimated breeding values (EBV). Detecting the existence of bias, and the realized accuracy of predictions, is therefore of importance, yet this is difficult when studying small data sets or breeds. In this study, we tested by simulation the recently presented method Linear Regression (LR) for estimation of bias, slope, and accuracy of pedigree EBV. The LR method computes statistics by comparing EBV from a data set containing old, partial information with EBV from a data set containing all information (old and new, a whole data set) for the same individuals. The method proposes an estimator for bias for low (0.10) and moderate (0.30) heritabilities. In both cases, we checked the behavior of the estimators for 3 scenarios: (1) when the evaluation model is the same as the model used to simulate the data; ( 2) when the evaluation model uses an incorrect heritability; and

(3) when the data includes an environmental trend. For scenarios in which the evaluation model was correct, the LR method was capable of correctly estimating bias, slope, and accuracies, with better performance for higher heritability [i.e., corr b b p p , ( ) was 0.45 for h2 = 0.10 and 0.59 for h 2 = 0.30]. In cases of the use of incorrect heritabilities in the evaluation model, the bias was correctly estimated in direction but not in magnitude.

In the same way, the magnitudes of bias and of slope were underestimated in scenarios with environmental trends in data, except for cases in which contemporary groups were random and greatly shrunken. In general, accuracies were well estimated in all scenarios. The LR method is capable of checking bias and accuracy in all cases, if the evaluation model is reasonably correct or robust, and its estimations are more precise with more

INTRODUCTION

The study of bias has become more relevant in the last years, as several works have shown differences between the estimated genetic value of top young bulls at genomic prediction and after progeny results (Spelman et al., 2010;Sargolzaei et al., 2012) Values of b 0 < 0 underestimate and b 0 > 0 overestimate TBV. Similarly, values of b 1 < 1 represent an overestimation of selected animals. Both biases produce variation in the expected genetic gain, with implications at the moment of selection (Boichard et al., 1995;Mäntysaari et al., 2010).

Studies in Lacaune sheep have shown overestimation of genetic gain (b 0 > 0) as well as overdispersion (b 1 < 1) of the genomic estimated breeding values (GEBV), with more effect in those traits under important selection pressure (Astruc et al., 2014;Baloche et al., 2014). The origin of these biases is unknown, and they should Behavior of the Linear Regression method to estimate bias and accuracies with correct and incorrect genetic evaluation models F. L. Macedo,1,2 * A. Reverter,3 and A. Legarra 1 not occur under standard assumptions of animal breeding [START_REF] Henderson | Applications of Linear Models in Animal Breeding[END_REF]. In pedigree-based predictions, several situations can produce bias, such as the use of incorrect heritability (h 2 ) in genetic evaluations, selective reporting, incorrect modeling of the age effect, an ill-defined contemporary group (CG) effect, or the use of genetic groups in pedigrees. In genomic predictions, incorrect models can also generate bias.

Currently, the most widely used tool in animal breeding to benchmark genetic models and detect bias is time truncation of data and prediction of future records or averages of records (e.g., daughter yield deviations, DYD). However, this is difficult to do in certain contexts-for instance, in selection programs with small numbers of sires and small numbers of daughters each, or for traits with low heritability (Legarra and Reverter, 2017). In the case of Pyrenean dairy sheep breeds, one of the problems for forward prediction is the existence of few sires, each with small progeny groups [START_REF] Barillet | Objectifs de sélection et stratégie raisonnée de mise en oeuvre à l'échelle des populations de brebis laitières françaises[END_REF].

In 2018, Legarra and Reverter presented the Linear Regression (LR) method, based on the comparison of EBV obtained from old records (partial data sets) with a data set containing both old and new records (a whole data set). The LR method does not require accurate EBV or precorrected phenotypes and can be used for any kind of traits (e.g., maternal effects on offspring). At the same time, VanRaden and O'Connell (2018) also proposed the use of changes in GEBV to validate published genomic reliabilities, although they did not address the existence of bias per se.

The LR method was formally presented and applied to an example data set (Legarra and Reverter, 2018), but it was not verified in depth. In particular, it assumes that the heritability and the evaluation model are the correct ones, but these assumptions are not always true. In fact, it is of most interest to know whether the LR method can detect an incorrect model. In this work, we used simulations to analyze the potential of method LR to estimate the bias, the slope, and the accuracies of different scenarios: first when the evaluation model is correct, second when the heritability used for genetic evaluations is not correct, and finally when there is an environmental trend in the data that is not explicitly accounted for by the model. These cases may not be the most urgent of topics at present-for instance, bias due to ignoring genomic preselection in BLUP evaluations may be more urgent (Patry and Ducrocq, 2011)-but the aim of this study was to gain a general view of the capabilities of the LR method, especially when the model is reasonable. Only pedigree-based evaluations were considered, given the complexity of genomic predictions for the simulated data.

MATERIALS AND METHODS

Simulations

We simulated a dairy cattle breeding scheme with partially overlapping generations, progeny testing, and selection. Only females were phenotyped, with only 1 record each, because of limitations of the simulation software. Two heritabilities (h 2 = 0.10 and 0.30) were simulated. We used the QMSim v. 1.10 software program [START_REF] Sargolzaei | QMSim: A large-scale genome simulator for livestock[END_REF], and the main parameters of the simulation are shown in Table 1 and the parameter file in Appendix 1. In each generation, 8% of born males and 45% of born females were selected to join the pool of reproducers, provided their EBV was high enough. Accordingly, animals with the lowest EBV in the pool were discarded. The pool of reproducers contains, potentially, animals of all previous generations, and therefore parents of a given generation may came from any of the preceding generations. For instance, in Figure 1, we show an example of the generation of origin of parents of individuals in generation 7. It can be observed that, of 45,000 animals born in generation 7, 1,800 sires were born in generation 6, 1,192 were born in generation 5, and so on. All born females have a single performance. The mating system seeks to minimize inbreeding (mating design = minf in QMSim parameter file; [START_REF] Sonesson | Mating schemes for optimum contribution selection with constrained rates of inbreeding[END_REF], achieving an average inbreeding, for all generations, close to zero. Instead of using QMSim internal BLUP evaluations, genetic evaluations were performed at the end of each generation, using as external software blupf90 [START_REF] Misztal | BLUPF90 and related programs (BGF90)[END_REF]. Then QMSim selects individuals with higher external EBV to be parents for the next generation. This scheme allowed us the flexibility required to explore competing scenarios.

We considered 3 different strategies to evaluate the individuals in the population: (1) using the same model as the one used in simulation, (2) using a different h 2 for evaluation, or (3) adding an environmental trend. In total, 11 scenarios were obtained: 2 using the correct model to evaluate, 4 using an incorrect h 2 , and 5 using an environmental trend effect. In all cases, TBV were simulated as the sum of QTL effects, sampled from a gamma distribution. All simulations used a genetic variance of 1, which implies that units (e.g., of bias) are in genetic standard deviations. Correct Genetic Model. Phenotypes were simulated, adding an overall mean and a residual deviate to TBV with 2 heritabilities: h 2 of 0.10 (scenario T10) or 0.30 (scenario T30). These heritabilities mimic, respectively, health traits with low heritability, such as subclinical mastitis, and moderately heritable production traits. The population was evaluated assuming the infinitesimal model (whereas the simulation uses a finite genome)

y = 1μ + Zu + e, where u A ~, , N u 0 2 σ (
) y is the vector of observations, μ is the overall mean, Z is the incidence matrix that relates the records to animals, e is the residual, A is the relationship matrix, and σ u 2 is the genetic variance; and assuming the variance components used in simulations.

Incorrect Heritability. Phenotypes were simulated as above, with the same 2 heritabilities. However, the models used for genetic evaluation used wrong heritabilities. For simulations performed with an h 2 of 0.1, we used h 2 of 0.05 (scenario W05) and 0.15 (scenario W15) in the evaluation models, and for data simulated with an h 2 of 0.3, the models for evaluation used h 2 of 0.25 (scenario W25) and 0.35 (scenario W35).

Environmental Trends. Phenotypes were simulated as the sum of TBV, residual, and environmental trends, as follows. At each generation, an environmental trend was added of the form t × k, where t is the generation number and k is equal to half the genetic progress per generation. An example of phenotypic, genetic, and environmental trend is shown in Figure 2. Then, at each generation, 9 CG with no effect were simulated, and the individuals were assigned randomly to each one. To guarantee genetic connections, CG included 5,000 individuals. The reason for this is that the number of daughters per male is low (approx. 11) and little overlap across generations occurs. Hence, to ensure connectedness, large groups are needed. Previous experimentation with 500 individuals provided very low connectivity, but results were qualitatively similar (data not shown). A sensible model (the "correct" one) for genetic evaluations for these conditions would be a regression on time to account for environmental trend, plus CG:

y ij = t × k + CG i + u j + e ij .
We tried 2 approaches to perform the genetic evaluation: CG as fixed effect or as random effect. In the first approach, CG was included as a fixed effect, y ij = CG i + u j + e ij . We expected that CG would capture the environmental trend. We simulated 2 heritabilities, 0.10 (scenario FCG10) and 0.30 (scenario FCG30). In the second approach, CG was included as a random effect in the evaluation model, so that CG estimates would be reduced and may not fully capture the environmental trend. This second approach may therefore yield biased evaluations. We tried this approach using different variances of 0.0001 (scenario RCG0001), 0.001 (scenario RCG001), and 0.01 (scenario RCG01). For this second approach, we performed simulations only for a heritability of 0.30.

Data Analysis

For each scenario, 20 replicates were obtained with 10 generations each, and the LR method was applied starting in generation 5. After each generation we ran a BLUP genetic evaluation using blupf90 [START_REF] Misztal | BLUPF90 and related programs (BGF90)[END_REF]. Thus, for each replicate there are 10 BLUP genetic evaluations. The LR method proceeds by comparing, only for individuals of interest (focal individuals), EBV with little information (partial) at genetic evaluation n and EBV with more information (whole) at genetic evaluation n + 1. Individuals of interest were males (approx. 1,800 in each generation), with parent average information during genetic evaluation n, and performance from daughters during genetic evaluation n + 1. Then the EBV of these individuals in the partial and whole evaluations are compared. Thus we proceed by comparing EBV across pairs of partial and whole evaluations. These individuals are selected by QMSim based on parent average, which has consequences for the estimated accuracy, as will be discussed later. In this manner, we have 5 comparisons per replicate (5 with 6, 6 with 7, and so on until 9 with 10). We estimated the bias, slope, and accuracies using the formulas shown below, and we compared these with true bias, slope, and accuracies. The true values of bias, slope and accuracy were obtained by comparing the EBV in genetic evaluation n with TBV.

Estimators

The LR method proposes estimators of bias ˆ,

∆ p ( ) slope ˆ, b p ( ) ratios of accuracies ˆ, , ρ w p ( ) reliability acc p 2           ,
and ratios of reliabilities ρ 2 w p , .

          Accuracies and reliabilities are "selected" ones, in the spirit of Dekkers (1992) and Bijma (2012); in other words, they are lower if the animals of interest are selected. For a deeper description of the statistics, see Legarra and Reverter (2018). All the estimators can be used in multiple trait evaluations as well.

To check the capability of the estimators of bias, slope, and accuracy, we report (a) means and standard deviation of true and estimated values and (b) correlations between true and estimated values. The purpose of reporting the means is to verify whether the LR method is a consistent estimator. For instance, if true slope is 0.9, we want find an average of approximately 0.9, not of 0.7 or 1.1. The purpose of reporting the correlations is to verify the precision of the LR method. For instance, if the true ratio of accuracies is 0.5, we want the estimator to cluster near this value.

Bias. The formula we used for bias was ˆˆˆ,

∆ p p w u u =
where û p are EBV based on partial data sets and û w are EBV based on whole data sets. This statistic estimates the true bias (Δ p ) between EBV and TBV-that is, ˆ, u u p -where u represents TBV. In the absence of true bias, the expected value of ∆p is zero. A metric of possible interest is the intercept of the regression of û w on tysaari et al., 2010). However, we prefer not to consider this metric for our work, first because it does not check the property of BLUP that E(û) = E(u), regardless of selection; second because when making selection decisions, as on preselected candidates for selection, it is ûp and not the intercept that is implicitly used to compare younger versus older generations. In our study, we considered a specific group of animals for which selection proceeds identically, by parent average. In more complex settings (for instance, when the focal group consists of a mixture of animals selected in different ways), it is unclear how selection across several pathways affects differences among average EBV. The standard intercept of the regression may be helpful in such a case, as a perhaps more robust indicator of bias across several groups of individuals selected in heterogeneous manners.

û p , which is different from ∆p if cov u u var u w p p ˆ, ( ) ( ) ≠ 1 (Män-
Slope. This is the formula for the slope of the regression of EBV with whole data set (EBV w ) on estimated breeding values with partial data set (EBV p ): , where acc p is the true ("selected") accuracy in the partial data set and acc w is the true accuracy in the whole data set. Thus,

1 ˆ, ρ p w
is the relative increase of accuracy from partial to whole information.

For instance, if ˆ, ρ p w is equal to 0.5, the addition of information doubled the accuracy.

Accuracy of EBV from the Partial Data Set. The formula for accuracy in the partial data set is

acc cov u u p w p g i 2 2 = ( ) ˆ, , , σ where σ g i , 2
is the genetic variance of the individuals of interest. The original Legarra and Reverter (2018) paper suggests the formula

acc cov u u F f p w p g 2 2 1 2 = ( ) + - ( ) ˆ, , , σ ∞
where F is the average inbreeding coefficient, 2f is the average relationship between individuals, and σ ∞ g,

2
is the genetic variance at equilibrium in a population under selection. However, this formula applies if animals of interest are representative samples of their generation-in other words, they are not yet selected. The formula that we present here is more general. This statistic estimates the "selected" reliability (square of the accuracy) on a partial data set, although it does not estimate model-based accuracy (Dekkers, 1992;Bijma, 2012). We verified that true acc p 2 agreed with its expected value. The expected value was obtained considering the selection intensities used in the simulation; the model-based accuracies were obtained from the inverse of the Mixed-Model Equations in the BLUP evaluations and using the expressions described in Bijma (2012), as shown in Appendix 2.

To estimate σ g i , 2 in our case (with true values known from simulation), we simply used

σ g i j j n u n u , , 2 2 2 1 1 = ∑ -∑           
which already considers the fact that animals may be related (although in our case, they were very little related). In real data sets, σ g i , 2 can be estimated for any subset of individuals by Gibbs sampling (Sorensen et al., 2001;[START_REF] Lehermeier | Genomic variance estimates: With or without disequilibrium covariances?[END_REF]. If there is no selection, the following formula may be used:

σ σ σ g i g g F f F f , , , 2 2 2 1 2 1 2 = + - ( ) = + - ( ) ∞
as no Bulmer effect occurs, only drift. Thus, this estimator is of easy use for unselected individuals or traits.

Ratio of Reliabilities.

We used the following formula to calculate the ratio of reliabilities:

ρ p w p w w cov u u var u , ˆ, . 2 = ( ) ( )
This is a measure of the inverse increase in ("selected") reliabilities from partial to whole, with an expected value

. , E acc acc p w p w ρ 2 2 2           =

RESULTS

Scenario 1: Correct Genetic Model

Figure 3 shows, across all replicates, true and estimated biases. Because the model used in the genetic evaluation was the same as that used to simulate the data, no bias is expected. Nevertheless, a small true bias was generated due to chance. For the 2 heritabilities, the estimator was able to indicate the true value of bias: corr p ∆ ∆ , .

p ( ) = 0 59 for T10 (Table 2 and Figure 3, left-hand panel). The best estimation was in the higherheritability scenario: corr p ∆ ∆ , .

p ( ) = 0 61 for T30 (Table 2 and Figure 3, right-hand panel). In Figure 3, points of the same color belong to the same replicate, and it is clear that they do not cluster together. In other words, comparisons within replicates can be seen as independent. Similar results were observed (Figure 4 and Table 2) ( ) = 0 59 for T30. Thus, the true slope was more precisely estimated when heritability was high (h 2 = 0.30). 

for
ρ ρ 2 0 91             =
for both heritabilities, 0.10 and 0.30.

Scenario 2: Incorrect Heritability in Evaluation Model

When we used the wrong h2 in the model for evaluation, the largest differences could be seen in the estimation of bias (Figure 6 and Table 3). The use of an incorrect heritability generates a strong true bias. Similarly to the detection of bias, the estimator was able to indicate the bias in the correct direction, but the magnitude was underestimated. For instance, the real bias of scenario W05 is approximately 0.10, but the estimated bias is approximately 0.05. These differences are more pronounced for lower h 2 .

In the case of the estimation of slope, Table 3 and Figure 7 show that the use of incorrectly high heritabil-ity results in true values of slope b p less than 1, as indicated by Reverter et al. (1994a), with the effect more important for the scenario with a simulated heritability of 0.10 (mean b p of 0.83 in scenario W15 and 0.97 in scenario W35). In addition, it is possible to observe that there is no important difference among means of the estimators of slopes across heritabilities, but differences do exist with respect to the variation of the estimators, with the estimators of W05 and W15 being more variable than those of W25 and W35. Nevertheless, in all scenarios the slope could be estimated, albeit with low precision (Figure 7 and Table 3):

corr b b p p , (
) for scenario W05 = 0.53, W15 = 0.44, W25 = 0.46, and W35 = 0.46. We observe that for scenario W05, true b p was close to 1, whereas it should be higher; we have no explanation for this. Table 4 shows the results of the estimations of accuracies. In general, it is possible to estimate both the ratio of accuracies because these animals have very little information when selected as candidates for selection: a phenotyped dam and possibly a few phenotyped half-sibs. It is possible to observe a particular behavior in scenario W05. For instance, this scenario estimates incorrect values of ˆ, ρ w p and of ρ p w , .
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A possible explanation could be the use of excessively low heritability, where sires' EBV have a very small contribution from daughters' phenotypes, and the EBV in successive genetic evaluations tend to strongly resemble parent average EBV.

Scenario 3: Not Fitting Environmental Trend

When we used CG as a fixed effect, because the CG are large enough, they correctly capture the effect of the environmental trend, and there is almost no bias in the evaluations, only relatively small biases due to chance (approx. 0.05 genetic standard deviation). Figure 8 shows that this bias cannot be very well estimated:

corr p p ∆ ∆ , ˆ ( 
) is 0.46 for scenario FCG30 and 0.41 for scenario FCG10. Additionally, its estimated magnitude is too small. The estimator of the slope (Figure 9 and Table 5), whose direction is well estimated-

corr b b p p , (
) equal to 0.52 for FCG10 and 0.60 for FCG30-but whose magnitude is underestimated. Accuracies are in general well estimated (Table 6).

When CG are used as random effect, at each generation the true bias increases, because the genetic trend captures the environmental trend (Figure 10). It is possible to observe that the confusion decreases as the variance used for the CG increases and the CG esti-mates are less reduced, but in no case is it possible to estimate the true bias. Regarding the remaining , bp performed more poorly when CG were fit as random effects than when CG were used as fixed effects:

corr b b p p , (
) were 0.43, 0.45, and 0.49 for RCG0001, RCG001, and RCG01, respectively. Meanwhile, the estimators of accuracies presented similar values to those of the fixed CG scenarios but with less correlation between estimator and estimated (Table 6).

DISCUSSION

Several reports have showed some concern about the bias of the genomic predictions of young bulls with genomic predictions (Spelman et al., 2010;Sargolzaei et al., 2012;[START_REF] Mikshowsky | Can you really trust dairy genomics? The Bullvine[END_REF]. Using different methodologies, several studies have detected bias [START_REF] Liu | Accuracy and bias of genomic prediction for second-generation candidates[END_REF][START_REF] Mikshowsky | Assessing genomic prediction accuracy for Holstein sires using bootstrap aggregation sampling and leave-one-out cross validation[END_REF]. In addition, bias is a problem that continues to motivate studies of dairy sheep. In Pyrenees dairy sheep breed selection schemes, some bias was found, ranging from 4.92 (Basco-Béarnaise) to 16.98 L of milk (Manech Tête Rousse) with pedigree evaluations and slopes of 0.44 (Manech Tête Noire) to 0.95 (Basco-Béarnaise; Legarra et al., 2014). This demonstrates that bias may be present in the genetic evaluations of some dairy sheep breeds. However, these studies relied on the use of precorrected data, and we were interested in the possibility of using official genetic evaluations to quantify biases and accuracies.

Studies searching for methods to analyze bias in genetic evaluations are not new. In 1994 Reverter et al. (1994b) accuracy, and genetic gain, obtained from subsets of EBV of successive evaluations. The following year, Boichard et al. (1995) presented 3 methods to check bias in genetic evaluations; for the first 2 methods, work with raw data is needed, but the last method is based on statistics obtained from EBV obtained from different data sets. Following the same principles, Mäntysaari et al. (2010) developed the Interbull validation test for genomic evaluations, using GEBV from a reduced data set and DYD from a full data set. However, this requires access to the raw data sets, and DYD are not always computable or reliable, as we have seen among sheep and swine. In addition, for traits that have been genomically preselected, the estimated genetic trends and DYD using pedigree information only are possibly biased [START_REF] Sullivan | Mendelian sampling variance tests with genomic preselection[END_REF]. Yet these pedigree evaluations pass the Interbull test, although they may not pass the Mendelian sampling variance test [START_REF] Sullivan | Mendelian sampling variance tests with genomic preselection[END_REF]Tyrisevä et al., 2018). Because the LR method does not use DYD, it should not be affected by biased DYD.

Comparing successive EBV is advantageous because there is no need to access the full data, and also because the procedure is very simple to execute. This is why comparing EBV was proposed by Reverter et al. (1994b) and Boichard et al. (1995). The genetic interpretation of this comparison, according to Thompson (2001), is, "Informally this statistic is asking the question does the recent data change the prediction of early animals. In a sense this is looking backwards." The LR method is an extension of the ideas of Reverter et al. (1994b). Using standard BLUP theory, Legarra and Reverter (2018) showed that, by comparing old and new EBV, it is possible to infer biases and also accuracies at the population level. However, the behavior of this method in practice is unknown. In particular, the LR method assumes that the model for genetic evaluation is perfect. In this work, we used simulation to verify that the LR method is robust to departures from the true model (generally speaking), which is very advantageous because analytical models are always compromises that do not perfectly reflect the state of nature.

One of our results is the correlation between true and estimated value, as of the estimated accuracy. This number reflects the ability to estimate, in a data set, the parameter of interest using the LR method, but the variation of the true parameter of interest is generally small, and therefore the correlation is not a good guide. In addition, the correlation between the estimator and the true value is not available for a single study with real data. A confidence interval around the estimated value would be more useful. For this, Legarra and Reverter (2018) suggested bootstrap. This deserves investigation.

When the model is wrong, clear indications might or might not be present. For instance, Table 3 points out that heritabilities fit in the model appear to be incorrect, and the model may be changed accordingly. However, the LR method cannot "see" (e.g., Figure 10) that the model for random CG is biased.

In several cases, we observed that the bias was correctly estimated in direction but not correctly estimated in magnitude: for example, when the wrong heritability was used in the evaluation model. This is because if estimated EBV are too greatly or too little regressed (as due to an incorrect model), the statistics used are, therefore, scaled, but the sign does not change. In our case, the difference between true and used heritability was not very large, which results in signals of bias that are not very strong (see Table 3). Still, method LR in this scenario generally pointed out that problems existed in the evaluation.

However, when an environmental trend was simulated and CG was used as a random effect (a very incorrect model of evaluation) the EBV captured an important part of the environmental trend, and consequently estimation of bias through the LR method became impossible. When the model for genetic evaluation was robust, no bias occurred, and the LR method reported correct results. Globally, these 2 scenarios (incorrect heritability and environmental trend) show that the LR method works reasonably well for detection of biases when the model is robust or close to the true one, and that it works well for estimation of accuracy even when the model is not good. This is because accuracies are correlations that are invariant to shift and scaling.

The most obvious use of statistics on bias is model selection. We suggest that a good model is one that is empirically (i.e., using the LR method or a similar one) unbiased (both in bias and slope) and that gives accurate predictions. For instance, it seems reasonable to choose, between 2 competing heritabilities, the one that would give less bias, as on Δ p . However, this seems to work only for minor changes in the model, given that Δ p is not estimable if the model is too far from reality or not robust, as in the environmental trend and random CG scenario. Also, the theory only works within the model; that is, the results of checking û p of model 1 against ûw of model 2 do not have theoretical support. Still, a model that is more coherent (empirically unbiased from run to run) always seems more attractive than one with erratic behavior, in which biases are observed.

We presented 3 estimators related to accuracies, 2 of them being ratios of accuracies ˆ, ρ w p and ρ 2 w p , , which try to indicate the changes in accuracies due to the increment of information. Because they are ratios of the accuracy and the reliability, they should be equivalent (they are expectations of the same true values), but as the results show, they are not. One of the reasons is that expectations do not yield true values, so 2 expectations constructed differently may give different values. Another, more relevant, reason for the difference is that ρ 2 w p , is influenced by the dispersion of EBV in the partial and whole data sets, whereas ˆ, ρ w p is not (Legarra and Reverter, 2018), so if the slope is not equal to 1, the estimators will differ. In that sense, ˆ, ρ w p is robust to slopes not being 1.

All accuracies and reliabilities in this study are "selected" ones, meaning that they refer to a selected set of individuals. Therefore, they are affected by selection and much lower than model-based accuracies and reliabilities, as shown in Appendix 2. Biases and slopes may both be affected by selection. For instance, if b p < 1 (inflation of EBV), prediction is unbiased, consider-ing averages of all animals in the first generation. However, selected animals will be overdispersed, and their estimated mean will be lower than the true mean. If selected animals are used for the LR method, then ∆p will be different from zero, showing that BLUP is not biased for this group of animals, which is the property of interest for breeders.

The ultimate aim of the LR method, and that of this study, is to reliably detect systematic biases in genetic evaluations that, if ignored, would hamper genetic progress-as the overdispersion of EBV results in choosing too many young animals and leads to slower genetic progress. Overestimating genetic progress for a trait may result in changes to selection objectives. This problem is not merely theoretical; for instance, Powell and Wiggans (1994) describe a bias in the US national evaluation that generated overprediction of breeding values of US bulls in France (Bonaiti and Barbat, 1993). Efron (2004) showed that parametric and nonparametric (cross-validation) prediction error estimates are related, and, when the model used for genetic evaluations is believable, estimation of error using parametric methods is more precise than the results of a nonparametric method. Therefore, as an ancillary property, the LR method can assist finding a believable model from which statistics of interest (biases and accuracies) can be obtained parametrically.

CONCLUSIONS

The LR method is capable of estimating bias and accuracies if the model is reasonably correct or robust, and its estimates of bias and accuracies improve as information increases (that is, when the heritability of the trait is high). For incorrect genetic models-in our case, if the heritability used in genetic evaluations was wrong, or if there were hidden trends in the data such as an environmental trend-it is still possible to estimate bias if the model is robust. The direction of the bias will be correctly pointed out but not its magnitude. However, if the model is seriously mis-specified (in our work, such that environmental trend could not be accommodated), the LR method cannot estimate the bias. However, the estimators of slope and accuracies generally performed well for all scenarios. Further research is warranted, using the LR method with real data. Henderson (1975) proved (implicit in the paper and not explicitly shown) that for selection assuming L′y and L′X = 0, the distribution of variances and covariances is as follows: 
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similar to Legarra and Reverter (2018) 
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are the equilibrium reliabilities of the selection criterion for each sex (m = males and f = females, parents of the focal individuals) and k m and k f are the proportional reductions in variance for males (m) and females (f) [START_REF] Robertson | The effect of selection on the estimation of genetic parameters[END_REF].

The terms 
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Application to Simulated Data

In the scenario with a correct genetic model, for both heritabilities, we calculated ρ ∞ PA, In both cases, the proportion of selected was of 0.08 for males and 0.45 for females, so k m = 0.84 and k f = 0.65. . , ∞ = 2 0 023 which represents the equilibrium parent average (PA) reliability for EBV on the partial data set and is the expected value of r* 2 (true value) and of acc p 2 (estimator), agreeing very well with both (Table 4). In addition, we obtained from the inverse of the MME the model-based (or unselected) reliability EBV using the partial data set (û p ). The mean reliability obtained from the MME was 0.16, which compares to the equilibrium PA reliability of 0.023. We can see an important deviation from ρ PA, , ∞ 2 respecting the reliability obtained from BLUP evaluation, but this is because they express 2 different reliabilities.

Case of h

Case of h 2 = 0.30 (T30)

Given ρ m SC , , . (Table 4), a value lower than but reasonably close to ρ ∞ PA, .

2

The reason for the difference is perhaps that the reality of selection is not well described by the expressions above. The mean of modelbased reliabilities from BLUP was 0.25.

It is necessary to highlight that here we showed examples taking focal males from the seventh generation and only 1 replicate for each heritability. The values of estimations presented in results are the mean across all the replicates, including 5 pairs of partial-whole data sets within each replicate.

Chapter III. Second paper: Bias in genetic evaluation of milk yield in Manech Tête Rousse

In order to check the capabilities of the LR method in real data, we applied it to a singletrait genetic evaluation. A previous study detected bias for milk yield evaluations in MTR (Legarra et al., 2014a), but it was performed by comparing early (G)EBV with DYDs. In the current study, we applied the LR method using BLUP and SSGBLUP models with different strategies to manage missing pedigree, (E)UPG and MF (BLUP-UPG, BLUP-MF, SSGBLUP-UPG, SSGBLUP-EUPG, and SSGBLUP-MF). We used the early (G)EBVs of elite rams born in 2005 until 2014 as (G)EBVs obtained with less information, and we compared each set with the (G)EBVs obtained with more information in the subsequent years until 2017. Therefore, we obtained multiple points of comparison for each set of early (G)EBVs.

As main results, we found that the use of MF to manage the missing pedigree reduces the bias while the use of (E)UPG in SSGBLUP presented a strong under-dispersion in an across model comparison. As the study showed an important variability in the estimations of bias at different years, it is also important to perform a comparison over several truncation points.

The study was published under the title Bias and accuracy of dairy sheep evaluations using BLUP and SSGBLUP with metafounders and unknown parent groups in Genetics Selection Evolution in 2020.

Background

Genetic progress in selection schemes depends on using correct models for genetic evaluation. Models are simplifications of reality and never completely perfect, which is why tools to analyze systematic errors are necessary.

There are three important aspects to check in genetic
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Page 2 of 10 Macedo et al. Genet Sel Evol (2020) 52:47 evaluations: bias, dispersion and accuracy. Bias b 0 = ū -ū is the difference between estimated breed- ing values (EBV) û and true breeding values (TBV) u and could lead to over-or under-estimation of genetic trend and to poor selection decisions (for example, selecting too many young individuals instead of keeping old ones).

In the same way, on the one hand, values of the slope of the regression of TBV on EBV less than 1 imply over-dispersion of the EBV and could lead to an overestimation of the genetic merit of pre-selected candidates. On the other hand, an unbiased estimate of accuracy (the correlation between TBV and EBV) is important to correctly predict the response to selection. Bias has been found in genetic evaluations of several species. The use of genomic information in dairy cattle selection is widespread and the existence of bias has been extensively studied (e.g. [START_REF] Spelman | Application of genomic selection in the New Zealand dairy cattle industry[END_REF][START_REF] Patry | Evidence of biases in genetic evaluations due to genomic preselection in dairy cattle[END_REF][START_REF] Sargolzaei | Assessing the bias in top GPA bulls[END_REF][START_REF] Tyrisevä | Detection of evaluation bias caused by genomic preselection[END_REF]). Bias has also been studied in other species, such as pigs [START_REF] Christensen | Single-step methods for genomic evaluation in pigs[END_REF], dairy goats [START_REF] Carillier | Comparison of joint versus purebred genomic evaluation in the French multi-breed dairy goat population[END_REF], turkeys [START_REF] Abdalla | Single-step methodology for genomic evaluation in Turkeys (Meleagris gallopavo)[END_REF] and beef cattle [START_REF] Saatchi | Accuracies of genomic breeding values in American Angus beef cattle using K-means clustering for cross-validation[END_REF][START_REF] Saatchi | Accuracies of direct genomic breeding values in Hereford beef cattle using national or international training populations[END_REF][10]. In general, biases decrease with more adequate models. However, all these studies rely on the use of pre-corrected data such as deregressed proofs or daughter yield deviations (DYD), which may give wrong estimates of biases if fixed effects are not well estimated [START_REF] Legarra | Semi-parametric estimates of population accuracy and bias of predictions of breeding values and future phenotypes using the LR method[END_REF].

Studies in France and Spain using DYD detected bias in genetic evaluations of dairy sheep breeds. For example, predictions in Lacaune showed bias and over-dispersion of EBV, with more impact for traits under strong selection [START_REF] Astruc | Genomic evaluation validation test proposed by Interbull is necessary but not sufficient because it does not check the correct genetic trend[END_REF][START_REF] Baloche | Assessment of accuracy of genomic prediction for French Lacaune dairy sheep[END_REF]. Similar results were obtained for milk yield of Pyrenean dairy sheep breeds [START_REF] Legarra | Within-and across-breed genomic predictions and genomic relationships for Western Pyrenees dairy sheep breeds Latxa, Manech, and Basco-Béarnaise[END_REF], although genomic evaluations decreased bias compared to pedigree evaluations. Manech Tête Rousse (MTR) is one of the major French Pyrenean dairy sheep breeds. For this breed, the selection scheme switched to genomic selection in 2018 and it is important to verify the bias, dispersion and accuracies, to avoid poor selection decisions. In particular, the bias detected in [START_REF] Legarra | Within-and across-breed genomic predictions and genomic relationships for Western Pyrenees dairy sheep breeds Latxa, Manech, and Basco-Béarnaise[END_REF] is not well understood. However, it is difficult to assess such biases with DYD in dairy sheep, since DYD from "first crops" of 20 to 40 daughters are not very accurate.

Legarra and Reverter [START_REF] Legarra | Semi-parametric estimates of population accuracy and bias of predictions of breeding values and future phenotypes using the LR method[END_REF] described the linear regression method (LR method) to detect bias in genetic evaluations. The advantage of this method is the simplicity of the application; it compares EBV of a group of individuals obtained in different evaluations, with less ("partial") and more ("whole") information. Comparing the two subsets of EBV, estimators of bias, dispersion and accuracies (relatives or directs) are easily computed. Therefore, it is easy to analyze a genetic evaluation comparing the results of two consecutive evaluations.

To perform genetic evaluation, it should be possible to include genomic information and also to model missing pedigrees if needed. In this work, we tested models using only pedigree information (best linear unbiased prediction (BLUP) model) or including genomic information (in a single-step genomic BLUP (SSGBLUP) model) and applying different strategies to deal with missing pedigree. Missing pedigree may be a problem in most species-in ruminants, parents may be unrecorded, whereas in monogastric species, new lines may be introduced. If we do not consider this missingness, we are assuming the same genetic mean for all missing parents in the pedigree. In dairy sheep, females born from natural mating usually do not have an assigned sire. However, these natural mating rams are offspring of highly selected artificial insemination (AI) rams and thus their breeding value increases over time. In addition, new flocks that entered the breeding scheme until (roughly) 1990 did not have pedigree data. Two strategies can be used to model the missing pedigree: unknown parent groups (UPG) [START_REF] Quaas | Additive genetic model with groups and relationships[END_REF][START_REF] Misztal | Unknown-parent groups in single-step genomic evaluation[END_REF] and metafounders (MF) [START_REF] Legarra | Ancestral relationships using metafounders: finite ancestral populations and across population relationships[END_REF]. There is some evidence that the use of MF improves the performance of genetic evaluation [START_REF] Bradford | Modeling missing pedigree in single-step genomic BLUP[END_REF], but it has not been systematically studied.

The aim of this work was to analyze bias, dispersion, and accuracies in the genetic evaluation of milk yield of MTR using the LR method with several evaluation models and performed over many truncation points of data. A second aim was to compare different strategies (UPG or MF) to manage missing pedigree in BLUP and SSG-BLUP contexts. In this manner, we assessed the genetic evaluation of MTR, addressed the best method to consider missing pedigrees in SSGBLUP, and explored the possibilities of the LR method to discriminate models for prediction.

Methods

Records and pedigree

Milk production is recorded by the breeding scheme according to the International Committee for Animal Recording rules. The data that we analyzed were collected between 1978 and 2017 and comprise 1,842,295 performance records and 540,999 individuals in the pedigree, with a generation interval of about 4 years. There are missing parentships, either "sire unknown and dam known" (~ 15% of all animals) or "both sire and dam unknown" (~ 15% of all animals). This situation is particularly important in our case, because if we ignore the missing pedigree, the unknown parents of the more recently improved animals will be assigned to the base population at the beginning of the selection program. As a result, these animals will be unfairly penalized and it will not be possible to correctly model the genetic progress. Thus, we defined 13 UPG (or MF; see later). We computed a crude "number of equivalent records" from the first "offspring" of UPG (disregarding later generations). For instance, an individual with n records contributes n to its ancestor UPG if both parents are unknown and n/2 if one parent is known. In all cases, the number of equivalent records was larger than 10,000.

Genomic information

We included genomic information on 3007 AI males (years of birth from 1999 until 2017), all of which have both parents known and are genotyped with the 50 k Illumina chip OvineSNP50. Only autosomal SNPs were considered. Quality control included individual and marker call rate, minor allele frequency (MAF) higher than 0.05, removal of Mendelian conflicts, deviation from Hardy-Weinberg equilibrium (number of heterozygotes deviating more than 15% from the expectation based on allele frequencies), and heritability of gene content (markers with an estimated heritability < 0.98 and significant p-values of the likelihood ratio test, p < 0.01, were discarded) [START_REF] Forneris | Quality control of genotypes using heritability estimates of gene content at the marker[END_REF]. After quality control, 37,168 effective SNPs were retained.

Focal individuals

It is possible to apply the LR method to any group of individuals of a population, provided that they represent a homogenous tier (i.e. they are similarly selected, and prediction at the time of selection is based on the same sources of information). In this work, we were interested in evaluating bias, dispersion and accuracy of males at the time of their selection, i.e. at birth before they have progeny with records. The reason we are interested in this group is that most of the genetic gain in dairy sheep is obtained via males. In total, 10 groups of focal individuals were analyzed; each group corresponding to selected rams born from 2005 to 2014. These males were selected based on parent average to be progeny-tested and thus their genetic variation is smaller than that of their contemporaries [START_REF] Bijma | Accuracies of estimated breeding values from ordinary genetic evaluations do not reflect the correlation between true and estimated breeding values in selected populations[END_REF].

Estimators of the LR method

In brief, the LR method estimates bias, dispersion and accuracies, based on the comparison of two subsets of EBV, estimated with less and more information, for the same group of individuals. In this paper, we will use the symbols ûp or EBV p to refer to the EVB estimated with less information (or "partial" dataset) and ûw or EBV w to refer to the EBV estimated with more information (or "whole" dataset). The LR method presents one estimator for the bias ( ˆ p ), one estimator for the dispersion ( bp ) and four estimators related to the accuracies ( ρ wp , acc 2 p , ρ 2 wp , rel p ). The estimators are summarized below; for a deeper overview and properties of the estimators see [START_REF] Legarra | Semi-parametric estimates of population accuracy and bias of predictions of breeding values and future phenotypes using the LR method[END_REF][START_REF] Macedo | Behavior of the Linear Regression method to estimate bias and accuracies with correct and incorrect genetic evaluation models[END_REF].

Bias ( ˆ p )

The estimator of the bias is obtained from the difference between the mean of EBV p and the mean of EBV w , ˆ p = ûp -ûw . In absence of bias, the expected value of this estimator is 0.

Dispersion ( bp )

The estimator of dispersion of EBV is the slope of the regression of EBV w on EBV p , bp = and the expected value is acc p acc w . A high value of this estimator means a small increase in accuracy, whereas a low value means a large increase in accuracy, when we add phenotypic information to genetic evaluations. For instance, a value of 0.7 means that the evaluation with the "partial" dataset is quite similar to the evaluation with the "whole" dataset, i.e. more phenotypes do not add much new information. This can be seen also as the relative increase in accuracy brought by phenotypes is 1 ρw,p -1 = acc w -acc p acc p (Matias Bermann, University of Georgia, personal communication). Thus, it is expected that genomic evaluations have higher ρw,p than pedigree-based evaluations.

Ratio of reliabilities ( ρ2 p,w )

This estimator is the slope of the regression of EBV p on EBV w , ρ2 p,w = cov( ûp , ûw) var( ûw)

and, similar to the ratio of accuracies, it represents the inverse of the gain in reliabilities from EBV p to EBV w . The expected value is In a general formulation, acc

2 p = cov( ûp , ûw) σ 2 g *
, where σ 2 g * is the genetic variance of the group of individuals of interest. We use this more general formulation as in [START_REF] Macedo | Behavior of the Linear Regression method to estimate bias and accuracies with correct and incorrect genetic evaluation models[END_REF] instead of the formulation used in [START_REF] Legarra | Semi-parametric estimates of population accuracy and bias of predictions of breeding values and future phenotypes using the LR method[END_REF], because the latter is adequate only for a group of animals that represent the whole population after selection. In this work, we analyzed EBV of sets of contemporary young rams of the population, in other words highly-selected individuals, which decreases reliability [START_REF] Bijma | Accuracies of estimated breeding values from ordinary genetic evaluations do not reflect the correlation between true and estimated breeding values in selected populations[END_REF][START_REF] Macedo | Behavior of the Linear Regression method to estimate bias and accuracies with correct and incorrect genetic evaluation models[END_REF]. A difficulty associated to this estimator is the necessity of an estimation of the genetic variance of a group of individuals. We estimated the genetic variance of each group of focal individuals following [START_REF] Sorensen | Inferring the trajectory of genetic variance in the course of artificial selection[END_REF] using the complete dataset. We used Gibbs sampling with the complete dataset with 150,000 iterations and a burn-in of 15,000 iterations. At each 150-th iteration, we took samples of the EBV of all AI males in the 10 focal groups and we computed, for each of these groups, the variance of these samples. This results in samples from the posterior distributions of the 10 genetic variances, one for each group of AI males.

Unselected reliability of EBVp ( rel p )

This estimator estimates the reliability as if there was no selection, rel p = 1 - [START_REF] Dekkers | Asymptotic response to selection on best linear unbiased predictors of breeding values[END_REF], where σ 2 g is the genetic variance of the base population and σ 2 g * is the genetic variance of the group of individuals of interest (see above). A short derivation of rel p follows from [START_REF] Macedo | Behavior of the Linear Regression method to estimate bias and accuracies with correct and incorrect genetic evaluation models[END_REF][START_REF] Henderson | Best linear unbiased estimation and prediction under a selection model[END_REF], Cov ûp , ûw = σ 2 g * -PEV , so PEV = σ 2 g * -Cov ûp , ûw . The reliability that is unaffected by selection is

σ 2 g * σ 2 g 1 -acc 2 p as in
r 2 = 1 -PEV σ 2 g leading to r 2 = 1 - σ 2 g * σ 2 g 1 -r 2 * [23],
where r 2 * is the selected reliability. The reliability rel p can be interpreted as if the focal individuals were not selected, or, in other words, as the average theoretical reliability of the focal individuals obtained from the mixed model equations (MME).

Data analysis

To apply the LR method, we have to obtain EBV from the partial dataset and the whole dataset. In this work, in order to obtain an empirical distribution of the statistics of the LR method, we performed several comparisons between EBV p and EBV w , taking EBV p from rams born in year y p (2005 to 2014) and EBV w from years y p + 2 until year 2017 (last year of records for this work). The year of the first set of EBV w was y p + 2 because the first daughters of the selected rams generally start to produce 2 years after birth. For example, if we take the EBV at birth of rams born in 2005 as EBV p , we have EBV w of these rams from years 2007 to 2017, thus we have 11 sets of estimators; and if we take EBV from rams born in year 2014 as EBV p , we only have EBV w from year 2016 to 2017, thus only two sets of estimators. In total, we performed 65 comparisons, e.g. 2005 vs 2007, 2005 vs 2008 ... 2005 vs 2017 … 2014 vs 2016 and 2014 vs 2017. Bias or accuracies are properties of the partial dataset only, and not of the whole dataset. Sampling several "partial" years allows to describe possible variations due to chance, i.e. properties of BLUP only hold on expectation. In addition, by considering multiple "whole" datasets, we tried to evaluate random deviations of the estimates of biases and accuracies. For instance, a ram may stop getting progeny performances after a few years, yet the estimates of contemporary groups may change. The theory of the LR method (actually, BLUP theory) shows that the estimators of the LR method are correct regardless of whether rams are selected (and having more and more offspring) or not.

We considered several models for the evaluations that are presented below. We applied the LR method within models, with both EBV p and EBV w obtained with the same model. We also applied this method across models: EBV p obtained with one model, for example regular BLUP with MF, and EBV w from another model, for example SSGBLUP with UPG. Finally, because the addition of genomic data to the evaluation can be seen as "more information", it is possible to see EBV obtained at the same time but without and with genomic information as EBV p and EBV w , respectively. Thus, we also compared the EBV of the rams at birth estimated with the BLUP and SSGBLUP models. For example, the EBV of rams at birth in 2005 were estimated with BLUP as EBV p and estimated with SSGBLUP as EBV w .

Although there is no theoretical support for using the LR method across models [START_REF] Macedo | Behavior of the Linear Regression method to estimate bias and accuracies with correct and incorrect genetic evaluation models[END_REF], our objective was to check the consistency of models with each other, in the sense that a refinement of the model should not introduce unexpected changes in the evaluations. Otherwise, one of the models could possibly be quite wrong. For instance, switching the genetic evaluation of milk yield from lactational measures to test-day models should not introduce big changes. Likewise, selection schemes that start adding genomic information to the genetic evaluations must change models without too large changes in the EBV. Viewed in this way, it is important to check the coherence (lack of strong changes) from one model to the other. We focused on the regression coefficient bp , with an expected value of 1.

To summarize the 65 comparisons, raw averages of estimators are not correct because some years are more represented that others, e.g. 2005 has 11 comparisons whereas 2014 has two comparisons. Thus, we used the pseudo-model es pw = Xy p + Zy w + ε , where es pw is a vector of the 65 values of the estimator ( ˆ p , bp , ρwp , acc 2 wp , ρ2 pw , rel p ) from the comparison of EBV p of the rams born in year p and of EBV w of same rams obtained in year w , y p contains values for years p (2005 to 2014) and y w contains values for years w ( y p + 2 until 2017), and we report an estimable function that yields es pw as if the design was balanced: es pw = 1 np 1 ′ ŷp + 1 nw 1 ′ ŷw where np and nw are the number of different years for the "partial" dataset [START_REF] Saatchi | Accuracies of genomic breeding values in American Angus beef cattle using K-means clustering for cross-validation[END_REF] and "whole" dataset [START_REF] Legarra | Semi-parametric estimates of population accuracy and bias of predictions of breeding values and future phenotypes using the LR method[END_REF]. The pseudo-model was fit by least squares (lm function in R), and the R package Gmodels version 2.18.1 was used to compute the contrasts. The code is given in "Appendix".
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Models

The genetic evaluations were performed using the regular linear model for genetic evaluation of MTR. This is a univariate model with repeated records for milk yield that accounts for heterogeneity of variances across contemporary groups [START_REF] Meuwissen | Joint estimation of breeding values and heterogeneous variances of large data files[END_REF]:

where is a diagonal matrix of scaling factors for heterogeneity of variances, y is a vector of milk yield records, y c is a vector of the observations corrected for heterogeneity of variances, b is a vector of the fixed effects: contempo- rary group, age and number of lactation, month of lambing and interval "from lambing to first milk recording", u is a vector of breeding values, p is a vector of permanent animal effects, e is a vector of residuals, and X , W p and W u are incidence matrices for fixed effects, permanent animal effects, and breeding values. Following [START_REF] Meuwissen | Joint estimation of breeding values and heterogeneous variances of large data files[END_REF], the ith diagonal element in is exp τ i 2 ; a scaling factor for fixed and random effects. The linear model for τ i = S i β , where β is the vector of unknown effects for year (fixed) and flock-year (random) and S i is the design vector. Her- itability was fixed at 0.30 (the value used in official evaluations; an estimate calculated with the complete dataset was equal to 0.28). In models with UPG, EBV cannot be estimated, and the genetic basis changes with the model used. Therefore, we referred all estimates of EBV to the average EBV of the females born in 2005. Using this animal model, different (sub) models were defined depending on: (1) the use or not of genomic information, and ( 2) the strategy to model missing pedigree.

We used BLUP models with the matrix of additive genetic relationships A [START_REF] Henderson | Best linear unbiased estimation and prediction under a selection model[END_REF] and models that include the genomic information in a single step (SSGBLUP). The SSGBLUP models replaces A with a matrix H . that combines pedigree and genomic relationships [START_REF] Legarra | Single step, a general approach for genomic selection[END_REF][START_REF] Christensen | Genomic prediction when some animals are not genotyped[END_REF][START_REF] Legarra | A relationship matrix including full pedigree and genomic information[END_REF].

To model the missing pedigree, we used three strategies, unknown parent groups for A (UPG) and for H (EUPG) and metafounders (MF). Unknown parents groups were developed to avoid bias due to differences in genetic means of groups of individuals with different origins [START_REF] Quaas | Additive genetic model with groups and relationships[END_REF][START_REF] Westell | Genetic groups in an animal model[END_REF]. The theory of UPG adapted to SSGBLUP models was reviewed by [START_REF] Misztal | Unknown-parent groups in single-step genomic evaluation[END_REF]. Later, Legarra et al. [17] conceived the theory of MF that represents base populations by related, inbred pseudo-individuals. The aim of MF was to provide a coherent theory, where UPG would account for the reduction in genetic variance due to drift and for relationships across base populations. Using genomic information, it is possible to estimate the relatedness between groups of y = y c = Xb + W u u + W p p + e, unknown parents ( Ŵ matrix) [START_REF] Legarra | Ancestral relationships using metafounders: finite ancestral populations and across population relationships[END_REF][START_REF] Garcia-Baccino | Metafounders are related to F st fixation indices and reduce bias in single-step genomic evaluations[END_REF], and this rela- tionship matrix across MF can be used also in purely pedigree-based BLUP models. We estimated matrix Ŵ from observed genotypes using the GLS method of [START_REF] Garcia-Baccino | Metafounders are related to F st fixation indices and reduce bias in single-step genomic evaluations[END_REF].

Let index 0 denote the base populations (either UPG or MF), index 1 "non-genotyped animals", and index 2 "genotyped animals". Denote A -1 = A 11 A 12 A 21 A 22 as the usual inverse of the relationship matrix and A -1

22 the inverse including only genotyped animals,

A * =   A 00 A 01 A 02 A 10 A 11 A 12 A 20 A 21 A 22  
as the generalized inverse (as it is not full rank) including UPG, and

A (Γ )-1 =   A (Γ )00 A (Γ )01 A (Γ )02 A (Γ )10 A (Γ )11 A (Γ )12 A (Γ )20 A (Γ )21 A (Γ )22
  as the inverse using MF. All three matrices are easily built using simple modifications of Henderson's algorithm [START_REF] Henderson | A simple method for computing the inverse of a numerator relationship matrix used in prediction of breeding values[END_REF].

The SSGBLUP model proceeds by modifying the conditional variances and covariances in the inverse matrices according to observed genomic information, by obtaining H -1 matrices from A -1 matrices. Corresponding matrices are, for SSGBLUP-UPG:

where G is the genomic relationship matrix that is built following the first method in [START_REF] Vanraden | Efficient methods to compute genomic predictions[END_REF], using observed allele frequencies, and made comparable to A 22 following [START_REF] Christensen | Single-step methods for genomic evaluation in pigs[END_REF].

It is well known that this matrix is, at best, an approximation [START_REF] Misztal | Unknown-parent groups in single-step genomic evaluation[END_REF] because the theory of matrix H was derived under the constraint that A is full rank, which is not the case for A * . The same authors in [START_REF] Misztal | Unknown-parent groups in single-step genomic evaluation[END_REF] proposed a full transforma- tion hereafter called "exact UPG" (EUPG) that can be written as:

where Q 2 is the matrix containing UPG compositions for genotyped animals.

Whereas in "regular" SSGBLUP the only changes concern genotyped animals, here there are extensive changes that make programming difficult. In addition, because G accounts correctly for the different origins and does

H * UPG =   A 00 A 01 A 02 A 10 A 11 A 12 A 20 A 21 A 22   +   0 0 0 0 0 0 0 0 G -1 -A -1 22   , H * EUPG =   A 00 A 01 A 02 A 10 A 11 A 12 A 20 A 21 A 22   +     Q ′ 2 � G -1 -A -1 22 � Q 2 0 -Q ′ 2 � G -1 -A -1 22 � 0 0 0 - � G -1 -A -1 22 � Q 2 0 G -1 -A -1 22     ,
Page 6 of 10 Macedo et al. Genet Sel Evol (2020) 52:47 not need pedigree completion, there is, depending on the pedigree structure, some sort of double-counting as observed by [START_REF] Bradford | Modeling missing pedigree in single-step genomic BLUP[END_REF]. These problems are solved by MF which proposes:

where G 05 is built with allele frequencies of 0.5 and there is no extra scaling to match

A (Γ )
22 , although there is blending as described below.

For all SSGBLUP models, the blending between G and A 22 or between G 05 and A (Γ ) 22 was done using 0.95 and 0.05, as respective weights [START_REF] Vanraden | Efficient methods to compute genomic predictions[END_REF][START_REF] Aguilar | Efficient computation of the genomic relationship matrix and other matrices used in single-step evaluation[END_REF][START_REF] Christensen | Correction: compatibility of pedigree-based and markerbased relationship matrices for single-step genetic evaluation[END_REF]. An analysis using MF also needs to consider that the population is more related by construction. We used the scaling of genetic variance in [START_REF] Legarra | Ancestral relationships using metafounders: finite ancestral populations and across population relationships[END_REF] such that if the genetic variance considering BLUP_UPG was σ 2 u , the genetic variance component attributed to

H * MF was σ 2 u /k for k = 1 + diag(Ŵ)

2

-Γ . Now we can describe the five models:

1. BLUP-UPG uses A * and is the reference method known to be robust. 2. BLUP-MF uses A (Γ )-1 . The main difference is that the latter assumes that MF are random effects and that they are correlated, whereas the former uses UPG that are fixed (unbounded a priori) effects.

SSGBLUP-UPG uses H *

UPG and is expected to be somewhat biased because it is an approximation.

H * MF =   A (Γ )00 A (Γ )01 A (Γ )02 A (Γ )10 A (Γ )11 A (Γ )12 A (Γ )20 A (Γ )21 A (Γ )22   +   0 0 0 0 0 0 0 0 G -1 05 -A (Γ )-1 22   ,
4. SSGBLUP-EUPG is supposed to be biased also because there is some double-counting. However the bias is not necessarily the same as in SSGBLUP-UPG. 5. SSGBLUP-MF is supposed to be the most accurate method.

All genetic evaluations were performed with heterf90 (not publicly released), which solves the outer model for heterogeneity of variances as in [START_REF] Meuwissen | Joint estimation of breeding values and heterogeneous variances of large data files[END_REF], whereas inner iterations used blup90iod2 [START_REF] Tsuruta | Use of the preconditioned conjugate gradient algorithm as a generic solver for mixed-model equations in animal breeding applications[END_REF]. To estimate the relationships across MF, we used gammaf90 (not publicly released), which uses the GLS method in [START_REF] Garcia-Baccino | Metafounders are related to F st fixation indices and reduce bias in single-step genomic evaluations[END_REF].

Results

The estimated value of Ŵ is presented below (each row/ column corresponds to MF separated by 3 years). We did not explore these values in depth since it was out of the scope of this paper, but, in general, values showed moderate relationships across MF, i.e. most correlations obtained as Ŵ (i,j) / Ŵ (i,i) Ŵ (j,j) ranged from 0.5 to 0.6.

The second and third MF present somewhat extreme values because they have few genotyped descendants. For instance, if the allele frequencies in the base generation were uniformly distributed, the expected value in the diagonal is 2/3 [START_REF] Van Grevenhof | Genomic prediction for crossbred performance using metafounders[END_REF]. Matrix Ŵ is estimated from estimates of allele frequencies in the base population with standard errors ranging from 0.15 to 0.33, which are the highest values for the second and third MF. These errors seem large but we take the estimate of Ŵ as a crude guess, i.e. just as breeding programs start with guessed heritabilities. As for the LR method, Table 1 shows the values of estimators within models, i.e. when the model to estimate EBV p and EBV w were the same. In this case, the smallest bias ( ˆ of 0.23 genetic standard deviations ( σ g ) and 0.25 σ g for SSGBLUP-MF and BLUP-MF, respectively) was obtained with MF. All models are slightly biased 

Ŵ =                     0.
                   
and overestimate the genetic trend (around 0.25 genetic standard deviations, equivalent to 1 year of selection).

For the estimator of dispersion ( bp ), for all mod- els, except for SSGBLUP-EUPG, the values were close to 1, meaning absence of over-or under-dispersion of EBV. However, SSGBLUP-EUPG model was biased ( bp = 0.88 ), which indicates inflation of EBV. This agrees with [START_REF] Bradford | Modeling missing pedigree in single-step genomic BLUP[END_REF] who found that SSGBLUP-EUPG was biased. In Fig. 1, we present the values of each estimate of bp for BLUP-MF (Fig. 1a), which has the average value of bp closest to 1, and for SSGBLUP-EUPG (Fig. 1b), which generates the most over-dispersion. The variability of the estimates of EBV p within and across years is similar for both models, but the estimates of dispersion with SSG-BLUP-EUPG are systematically the smallest. As Fig. 1 shows, the year of birth 2008 seems to yield biased estimators. This agrees with [START_REF] Legarra | Within-and across-breed genomic predictions and genomic relationships for Western Pyrenees dairy sheep breeds Latxa, Manech, and Basco-Béarnaise[END_REF] who found biases for predictions of rams born in this year. Figure 1 also illustrates that there is a large variability of estimates within and across years of the "partial" and "whole" datasets, with the implication that a single time-point is not sufficient to describe the behavior of the genetic evaluation.

Estimator ρwp represents the inverse of the relative gain in accuracy from EBV p to EBV w , thus high values of this estimator imply higher accuracy in the "partial" dataset, as expected for SSGBLUP. In agreement, values of this estimator were lower for the BLUP models (roughly 0.55) than for the SSGBLUP models (roughly 0.65). In other words, the EBV of the rams obtained without the records of theirs daughters were more accurate in SSGBLUP than in BLUP, which agrees with [START_REF] Legarra | Within-and across-breed genomic predictions and genomic relationships for Western Pyrenees dairy sheep breeds Latxa, Manech, and Basco-Béarnaise[END_REF]. Similar results were found for ρ2 pw , which estimates the ratio between reliabilities in EBV p and EBV w .

The direct estimators of accuracy ( acc 2 p and rel p ), both based on the covariance between EBV p and EBV w , presented extremely high values (in some cases, the variance of EBV w was larger than the genetic variance), for SSGBLUP-UPG and SSGBLUP-EUGP, and are therefore not reported. This may be an indirect indicator of the poor fit of UPG to SSGBLUP, whereas BLUP-UPG shows reasonable values that agree with the other estimates of accuracy. For BLUP models, acc 2 p values were lower than for SSGBLUP-MF (0.24 vs 0.32), which agrees with the information obtained from the other estimates of accuracy. Although these values are apparently small, this is expected because this is a sample of animals that are selected based on parent average [START_REF] Bijma | Accuracies of estimated breeding values from ordinary genetic evaluations do not reflect the correlation between true and estimated breeding values in selected populations[END_REF]. In contrast, the estimation of "unselected" reliabilities, rel p , results in values within the usual scale of individual model-based accuracies. Again, the SSGBLUP-MF model estimated higher reliabilities than the BLUP models (0.59 vs 0.54 and 0.53, respectively). The increase in accuracy is fairly consistent across all four estimators of accuracy.

In Table 2, we presented the values of the slope of the regression of EBV w on EBV p ( bp ) when EBV p was esti- mated with one model and EBV w with another model. This gives some sort of measure of the disagreement across models, i.e. we expect models to behave similarly in terms of biases. Cases that estimate in a "partial" dataset with SSGBLUP and in a "whole" dataset with BLUP are not considered, since they seem unnatural in practice; for instance the decision on which animals to genotype may be based on the information of the whole dataset. When we use pedigree-based models to estimate EBV p and EBV w , the dispersion is around 1 (0.93 and 1.01), regardless of whether UPG or MF are used.

When EBV p were estimated with the BLUP models and EBV w with SSGBLUP-UPG or SSGBLUP-EUPG (the case when genomic selection is implemented), we observed an important under-dispersion (around 1.25). However, SSGBLUP-MF yielded bp values close to 1. Similar results were obtained when we compared EBV of the rams at birth, estimated with the BLUP models as "partial" with those estimated with the SSGBLUP models as "whole" (Table 3). The models SSGBLUP-UPG and SSGBLUP-EUPG show important under-dispersion whereas SSGBLUP-MF results in values of bp close to 1. This indicates that if we want to change a pedigree-based genetic evaluation for one that includes genomic information, the use of MF is a better option. Moreover, SSGBLUP-EUPG is biased with itself as shown in Table 1, perhaps due to poor compatibility with the G matrices, because of double-counting, or both.

Discussion

This study provides a comprehensive analysis of bias, dispersion and accuracies in dairy sheep genetic evaluation with several truncation points of data and several models. Estimates of bias, dispersion and accuracy were obtained with evaluation models that used only pedigree or a combination of pedigree and genomic relationship matrices with different strategies to model missing pedigree and using the LR method. The properties of such types of models have recently been extensively investigated [START_REF] Bradford | Modeling missing pedigree in single-step genomic BLUP[END_REF][START_REF] Garcia-Baccino | Metafounders are related to F st fixation indices and reduce bias in single-step genomic evaluations[END_REF][START_REF] Van Grevenhof | Genomic prediction for crossbred performance using metafounders[END_REF][START_REF] Meyer | Estimates of genetic trend for single-step genomic evaluations[END_REF][START_REF] Xiang | Application of singlestep genomic evaluation for crossbred performance in pig[END_REF][START_REF] Xiang | Technical note: genomic evaluation for crossbred performance in a single-step approach with metafounders[END_REF][START_REF] Yoshida | Genomics Singlestep genomic evaluation improves accuracy of breeding value predictions for resistance to infectious pancreatic necrosis virus in rainbow trout[END_REF]. The current study adds further evidence that the metafounder approach should be the preferred one for genomic evaluation across species.

The values of accuracy estimators confirm that the inclusion of genomic information increases the accuracy of the EBV of individuals without daughter records, which is consistent with other studies [START_REF] Guarini | Use of a single-step approach for integrating foreign information into national genomic evaluation in Holstein cattle[END_REF][START_REF] Duchemin | Genomic selection in the French Lacaune dairy sheep breed[END_REF][START_REF] Carillier | A first step toward genomic selection in the multi-breed French dairy goat population[END_REF][START_REF] Wiggans | The genomic evaluation system in the United States: past, present, future[END_REF].

For acc 2 p , we found extremely high values for models SSGBLUP-UPG and SSGBLUP-EUPG, due to values out of the parametric space. For example, for SSGBLUP-UPG and the comparison 2010-2015, cov ûp , ûw = 235 , var ûp = 283 and var ûw = 580 , when the genetic variance in the base population is 565. This could indicate a difficulty for these models to manage correctly missing pedigree through UPG and the genomic information. Values within the expected range of reliabilities were found for the other models, and the SSGBLUP-MF model reached the highest average value. These results agree with the values of estimators of the ratio of accuracies ( ρwp and ρ2 p ), since the use of genomic tries to estimate the square of the correlation between EBV and TBV in the focal individuals, that are selected and with reduced variance, whereas rel p would be the squared correlation if they were unselected. These two estimators have different purposes in practice [START_REF] Bijma | Accuracies of estimated breeding values from ordinary genetic evaluations do not reflect the correlation between true and estimated breeding values in selected populations[END_REF]: the first, populational reliability acc 2 p , describes the possible genetic gain, whereas the second describes stability of EBV. In the current breeding scheme of the Manech Tête Rousse, more candidates are genotyped for selection, so that our estimate acc 2 p is possibly a lower bound. Concerning the bias ( ˆ p ), the lowest values were observed when MF were used to model the missing pedigree. As for the estimator of dispersion ( bp ), we did not observe impor- tant over-or under-dispersion, except for SSGBLUP-EUGP. The closest values to 1 of this estimator were obtained when we used BLUP-MF and SSGBLUP-MF. Similar results were obtained in a recent work [START_REF] Bradford | Modeling missing pedigree in single-step genomic BLUP[END_REF], which indicates that MF could be the best option to manage missing pedigree for SSGBLUP models. In the case of SSGBLUP-EUPG, an important inflation of EBV was observed. A possible cause for this behavior could be that EUPG ignores the covariance between genetic groups (average relationship across MF is 0.38) whereas this relationship is included in G . Similar results were reported by [START_REF] Bradford | Modeling missing pedigree in single-step genomic BLUP[END_REF] using simulated data to compare the same three strategies to model missing parents, and they found that MF generated the smallest bias in evaluations.

In general, when BLUP or SSGBLUP_MF were used, no bias was found, although Legarra et al. [14] found biases in these same breeds using DYD both as pseudo-phenotypes and for validation. However, as we already mentioned, the validation set in [START_REF] Legarra | Within-and across-breed genomic predictions and genomic relationships for Western Pyrenees dairy sheep breeds Latxa, Manech, and Basco-Béarnaise[END_REF] was composed of rams born in 2008-2009 with predictions that were also biased according to the LR method, which was due to a problem in collecting elite rams across flocks.

Finally, we consider important to highlight that a single cut-off point to estimate accuracy or bias is highly uncertain, as shown in Fig. 1. Breeding schemes should not rely on a single study based on a single point in time to define models for genetic evaluation.

Conclusions

The addition of genomic information increases the accuracy of the EBV of young rams in Manech Tête Rousse. In this population, that has missing pedigrees, the use of UPG and "exact UPG" in SSGBLUP produced bias, whereas MF yielded unbiased estimates and, thus we recommend its use. We also recommend assessing biases and accuracies using multiple truncation points, as these statistics are subject to random variation.

Chapter IV. Third paper: Study of the evolution of genetic variance of milk yield in Manech Tête Rousse

This work is a by-product of the estimation of bias in milk yield genetic evaluations of MTR.

To compute the estimator â𝑐𝑐 2 𝑝 of the LR method, we need the genetic variance of the focal individuals (𝜎 2 𝑢 * ). As we estimated the genetic variance for group of individuals born from 1981 until 2014, we obtained the evolution of the genetic variance for milk yield.

We distinguished the loss of genetic variance due to drift (build-up of coancestry) and selection (mainly due to Bulmer effect). In both groups, the genetic variance decreased from the middle '90s until it reached a stabilization around 2009. However, due to changes in the breeding objectives, it is not possible to conclude about the real cause of the observed stabilization. The Bulmer effect had an impact on the loss of genetic variance of about 10%, while the build up of coancestry resulted in a reduction of about 3%. Neither Bulmer nor drift resulted in a large reduction of variance.

Below we present the paper Selection and drift reduce genetic variation for milk yield in Manechq Tête Rousse dairy sheep., published online in JDS Communications in December of 2020. 

Short Communication Genetics

Abstract: Decreases in genetic variance over generations reduce future genetic gain. We studied the evolution of genetic variance in the dairy sheep breed Manech Tête Rousse, which has been selected for increasingly complex objectives, including, in this order, milk yield, milk contents, scrapie resistance, and somatic cell score. We estimated base population genetic variance and genetic variance by sex and per year of birth from 1981 to 2014. The data consisted of 1,842,295 milk yield records (from 1978 to 2017) and a pedigree including 530,572 females (96% of them with records) and 3,798 artificial insemination males. As a measure of drift, we computed average relationships for each cohort from which we derived expected reduction of variance due to increased relationships. The difference between observed and expected reductions in genetic variances is the reduction in genetic variance due to selection. Average relationships increased steadily but slowly in both sexes. For females, genetic variance reduced with time until a plateau was reached at around 90% of the initial genetic variance. The reduction due to relationships (roughly 3% cumulated in 30 yr) was smaller than that due to selection (roughly 10% across the last years). A smaller loss due to selection was seen in recent years, possibly due to a change in selection objectives. These results agree well with theoretical expectations. The pattern of the evolution of genetic variance in males was similar to that for females but with a stronger reduction because of strong selection of AI males at birth. We conclude that the reductions in genetic variation due to selection and drift agree with expectations, and none of the reductions are very strong in this population because of control of inbreeding and smooth changes in selection objectives over time.

T here are 2 processes in the evolution of genetic variance under artificial selection. First, there is an effect of limited population size, by which the buildup of coancestry (half the relationship coefficient) reduces genetic variation as animals become increasingly related. This reduction is well known and can be understood as drift [START_REF] Sorensen | Estimation of genetic variances from unselected and selected populations[END_REF]Falconer and Mackay, 1996). It acts independently of selection; that is, it is only due to demographic factors and is the same for all traits. Second, selection causes directed changes in allele frequencies and negative linkage disequilibrium (LD) among QTL, also known as the Bulmer effect. In an infinitesimal model and in the short term, the reduction of genetic variance is due mostly to negative covariance between QTL, whereas directed changes in allele frequencies have a small impact (Bulmer, 1971;Walsh and Lynch, 2018, Chapters 11 and 16). However, the reduction of genetic variation due to LD is not constant, with a significant reduction until the third or fourth generation, when it becomes stable, as there is an equilibrium between recombination and LD (Dekkers, 1992;[START_REF] Villanueva | Prediction of asymptotic rates of response from selection on multiple traits using univariate and multivariate best linear unbiased predictors[END_REF]. Typical values of reduction of genetic variance due to the Bulmer effect, until its stability, range from 5 to 20%. Genetic variance of the unselected population is "genic" variance, whereas genetic variance of the population at hand for selection (eventually, after reduction due to selection) is "genetic" variance (Walsh and Lynch, 2018, Chapters 11 and 16).

Reduction of genetic variance affects genetic gain and its prediction. The genetic gain is often predicted based on base population parameters, without accounting for the Bulmer effect. The reduction in genetic variance also decreases heritability, thus affecting accuracy of selection (Bulmer, 1971;Dekkers, 1992;Bijma, 2012;[START_REF] Gorjanc | Reliability of pedigree-based and genomic evaluations in selected populations[END_REF]. The Bulmer effect is well understood in simplified contexts based on selection index theory (Dekkers, 1992;[START_REF] Villanueva | Prediction of asymptotic rates of response from selection on multiple traits using univariate and multivariate best linear unbiased predictors[END_REF]Rutten et al., 2002). [START_REF] Villanueva | Prediction of asymptotic rates of response from selection on multiple traits using univariate and multivariate best linear unbiased predictors[END_REF] quantified that between 8% and 26% of the reduction in the response of multivariate BLUP selection was due to the Bulmer effect.

Recent introduction of genomic selection has renewed interest in the Bulmer effect (van Grevenhof et al., 2012;[START_REF] Gorjanc | Reliability of pedigree-based and genomic evaluations in selected populations[END_REF]Allier et al., 2019;Hidalgo et al., 2020). [START_REF] Van Grevenhof | Response to genomic selection: The Bulmer effect and the potential of genomic selection when the number of phenotypic records is limiting[END_REF] showed by deterministic simulations that the decrease in genetic gain is the same for genomic selection and for traditional BLUP selection. However, there are very few estimates of the reduction of genetic variance in selected populations based on actual records. Allier et al. (2019) estimated that the Bulmer effect accounted for a 23% reduction in genetic variance. They compared the genetic variance in the existing selected population of maize, which is in LD, to the genetic variance in a hypothetical population in linkage equilibrium. However, in their study, there is no base population in a pedigree sense; that is an ancestral, unselected population. Hidalgo et al. (2020) reported substantial reductions of genetic variance in a pig population selected for growth and fitness traits. However, neither Allier et al. (2019) not Hidalgo et al. (2020) decomposed the reduction in genetic variance into the loss of genetic diversity due to drift (i.e., the buildup of coancestry among individuals) and the Bulmer effect (i.e., the buildup of LD across QTL). To prepare optimal strategies for long-term breeding, it would be of interest to disentangle these 2 phenomena; for Selection and drift reduce genetic variation for milk yield in Manech Tête Rousse dairy sheep Fernando L. Macedo, 1,2 * Ole F. Christensen, 3 and Andrés Legarra 1 instance, the Bulmer effect is smaller when the selection objective changes or when the next generation is produced by mating at random, whereas the loss due to coancestry could be handled by strategies such as optimal contribution selection (Woolliams et al., 2015).

Dairy sheep is an interesting species in which to study the Bulmer effect. In France, the cooperative schemes have strategies at the breed level to handle inbreeding. These schemes also have clearly defined and consensual selection objectives at each time period. This is opposite to dairy cattle where different AI studs may propose different portfolios of bulls, and breeding objectives and strategies may differ among actors. Also, in dairy sheep, the populations are large enough (tens of thousands of animals born yearly) for accurate inferences of the evolution of Bulmer effect. The objective of this work was to estimate the trajectory of genetic variance over years, and the reduction of genetic variance due to coancestry and Bulmer effect, for the trait yearly milk yield in Manech Tête Rousse (MTR) sheep, a breed that extensively uses AI (>70% of replacement females are born from AI).

We used all available milk yield records (from 1978 to 2017) and pedigree of MTR (roughly with the same time span as the milk records). A total of 1,842,295 records of milk yield and 540,999 individuals were included in the pedigree (530,572 females, of which 96% have records, and 3,798 AI males). The average generation interval was approximately 4 yr, so there are about 10 generations. There is no formal use of optimal contribution selection in this population, but matings among cousins are avoided, so recent inbreeding is avoided. Data were precorrected for heterogeneity of variances using the method of Meuwissen et al. (1996) to avoid scale effects. Breeding objectives in MTR are relevant for interpretation of the results. From the start of the breeding program in the 1980s until 2003, the only objective was milk yield per annual lactation. From 2003 until 2016, the breeding objective was fat and protein yields (genetically highly correlated with milk yield), which gradually changed to fat and protein contents, to prevent deterioration of cheese-making [START_REF] Barillet | Genetics of milk production[END_REF]. From 2016, SCS was added. From 2000 to 2005, there was also an emphasis in selecting scrapie-resistant rams [START_REF] Palhiere | Impact of strong selection for the PrP major gene on genetic variability of four French sheep breeds[END_REF], which partly diminished selection pressure on other traits.

Genetic evaluation was by pedigree BLUP animal model with permanent environment effect to account for repeated measurements. The linear model included contemporary group (flock, year, and lactation number), age, lactation number, month of lambing, and interval lambing to first milk recording. Random effects were animal and permanent environment. Because there are approximately 20% missing sires in the pedigree, the model included 13 unknown parent groups every 3 yr.

We followed the method presented in Sorensen et al. (2001). We focused on the evolution of male (AI rams) and female (commercial females at farms) genetic variances along time, although the method is very general and can be applied for any partition of animals of interest. We used Gibbs sampling with 150,000 iterations, a burn-in of 15,000, and saving samples each 150 iterations. We obtained the posterior distribution of the genetic variance at the base population, σ a 2 . Also, at each 150th iteration, we took samples ( )

The expected genetic variance as a function of average inbreeding F t ( ) and the average relationship ( A t , where A t is the cor- responding submatrix of additive relationships) of animals born at time t is (Sorensen et al., 2001;Legarra, 2016). This expression considers that animals at time t are inbred (which increases the variance) and related (which decreases the variance). The reasoning extends to separate sexes by computing separate averages F t and A t . Relationships and inbreeding were obtained using INBUPGF90 (Aguilar and [START_REF] Aguilar | Technical note: Recursive algorithm for inbreeding coefficients assuming nonzero inbreeding of unknown parents[END_REF].
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The difference between the observed genetic variance ˆ( ) σ a t 2 and expected genetic variance E a t σ 2( ) ( ) is considered to be the reduc- tion of genetic variance due to selection. This includes both the Bulmer effect and the preselection of animals at birth based on parent average. Preselection is strong in males but mild in females. We assumed that the genetic variance in females is representative of the population. The expected reduction due to increased rela- The genetic variance at equilibrium was calculated using the program SelAction 2.2 (Rutten et al., 2002), modeling a selection scheme similar to the actual one, based on progeny test for males, own phenotype for females, and parent average for young animals. We assumed 2 breeding objectives (milk yield alone or milk yield, composition, and SCS), corresponding to the change along the years of breeding objectives, and 3 heritabilities of 0.20, 0.25, and 0.30 around the estimated heritability of 0.28.

Macedo et al. | Genetic variation for milk yield in Manech Tête Rousse sheep

The estimated genetic variance at the base population for milk yield was (±SE, in liters squared, L 2 ) 499.2 ± 5.2, permanent environmental variance was 409.3 ± 3.6, and residual variance was 857.3 ± 1.2. The estimated heritability (h 2 ) was 0.28 ± 0.003. This h 2 value is very similar to a previous estimate (Legarra et al., 2014).

In Figure 1, we present the evolution of overall relationship coefficient (twice the coancestry). There was a rapid increase in coancestry for AI males at the beginning of the breeding scheme, followed by a steady trend of about 0.002 increase per year. There is a steady increase in female-female and female-AI males coancestries, and trends for inbreeding are similar. Thus, a small reduction in the genetic variance resulting from drift is expected.

In Figure 2 and Figure 3 we present, for females and AI males, respectively, the genetic variance trajectory and the reduction of genetic variance due to drift and selection (Bulmer effect plus preselection at birth for AI males). For females, the lowest value of genetic variance was 438.6 ± 5.6 L 2 in 2007 and, after 2011, the curve started to increase. For AI males, the genetic variance reached the lowest value (282.5 ± 19.9 L 2 ) in 2008 and increased in the following years, as for females. The reduction in genetic variance for AI males was stronger than that for females. As mentioned previously, the trend for males included not only reduction due to drift and Bulmer effect, but also (and importantly), reduction due to strong preselection of males at birth based on parent average EBV. In contrast, in the female population, there is very little preselection pressure at birth.

The increase in coancestry explains only a small proportion of the reduction of genetic variance in MTR, whereas the remaining was attributable to the Bulmer effect (in females) and to the Bulmer effect and selection at birth (in AI males). The reduction due to the Bulmer effect (and selection) seemed to stabilize in the last decade. However, it is not possible to say whether this plateau was due to stabilization of the Bulmer effect (as predicted by theory) or to changes in the breeding objective (as happens in this breeding scheme).

Finally, the results for the theoretical reduction in genetic variance computed with SelAction are as follows. A scheme selecting for milk yield (breeding objective at the beginning of the scheme) has, at equilibrium, a 15% reduction due to Bulmer effect, whereas a scheme selecting for milk yield, composition, and SCS has an 8% loss for milk yield. These numbers agree with our estimations of an approximate 10% loss due to the Bulmer effect in females. The cumulated loss due to increased coancestry was approximately 3% in both cases.

Our results have interest on their own. To our knowledge, there are few estimates of the reduction of genetic variance with real data (Allier et al., 2019;Hidalgo et al., 2020), and none of them disentangle the effect of drift from the effect of selection. What we observe is that the reduction due to drift is small, in spite of popular concerns regarding the increase of inbreeding. The reduction due to selection is larger, but it dissipates with the change in selection objectives. This suggests that a breeding scheme with mild control of effective population size, coupled with changes in breeding objectives, should be enough to avoid important loss of genetic variability.

In conclusion, for milk yield in MTR dairy sheep, there has been a steady reduction of genetic variance due to drift (roughly 3% in 30 yr) and reduction due to selection (roughly 10% in 30 yr). The loss due to selection reached an asymptotic value due either to the nature of the Bulmer effect or to the change of selection objectives. 

Chapter V. General discussion

During my Ph.D., we tested the estimators of the LR method under simulated scenarios. We applied them to estimate bias, slope, and accuracy in milk yield genetic/genomic evaluations of Manech Tête Rousse using different models. We used BLUP and SSG-BLUP and two different strategies to manage the missing pedigree, UPG, and MF. The BLUP models are well known, but recent models as SSGBLUP with MF are currently widely tested.

Below we discussed some topics that we consider are important to highlight or that were not discussed in the past Chapters.

The models and the bias

Our experience under simulated scenarios

In the first step of the thesis, we evaluated the LR method's estimators in several situations using a true or a wrong evaluation models. We generated 20 repetitions, each one with ten generations, of data for two traits of low and moderate heritabilities (true heritabilities of ℎ 2 = 0.10 and ℎ 2 = 0.30), with and without an environmental trend and random contemporary groups (CG).

For the data sets without environmental trend, we performed genetic evaluations using the "correct" model with the true heritabilities and wrong models using lower and higher heritabilities; 0.05 less and more, respectively, than the true heritabilities. With data generated with an environmental trend, we performed genetic evaluations with a model that does not account explicity for the environmental trend, but instead, fitting CG as fixed or as random effects.

The correct models

When the correct heritabilities were used to perform the genetic evaluations, a small bias was generated due to chance, which was well estimated by the LR method. The same was observed with the estimation of the slope and accuracies; the estimations presented very good precisions. The accuracies were well estimated in every scenario and will be discussed later in this Chapter. Regardless of the statistic, better performance was obtained for the trait with higher heritability, which indicates that the exploration of bias is more precise with more available information.

The use of wrong heritabilities

The use of wrong heritability to perform the estimations impacted the bias (Figure 6 of Chapter II). A higher heritability than the true one generated an over-estimation, while the use of a lower heritability generated an under-estimation of the 𝐸𝐵𝑉 𝑝 mean. The LR method was capable of indicating if there was an under or over-estimation of the genetic mean, but not the correct magnitude of the bias. For example, for a true bias of 0.10, the Δ𝑝 was ≈ 0.05.

A lower heritability in the model tends to cause an under-dispersion, while a higher one causes over-dispersion in the 𝐸𝐵𝑉 𝑝 , which is expected. Changes in the genetic variance can inflate or deflate the EBV in a genetic evaluation (Reverter et al., 1994).

Nevertheless, the estimation of the dispersion was satisfactory when wrong heritabilities were used.

Estimations with a very wrong model

The genetic evaluation fitting a CG model as a fixed effect generates a small true bias, which was not possible to estimate. The slope, in this case, was estimated but with low precision. On the other hand, when we fit CG as a random effect, the genetic evaluations generated a strong bias because the EBVs capture part of the environmental trend (Figure 10 of Chapter II). In this case, no bias could be estimated. The slope was estimated with less precision than for the model with CG as a fixed effect.

Analyzing all the scenarios, we can make a general observation. Less bias is generated, and the precision of estimations increases, as the model is closer to the true one. We can distinguish two different aspects; the bias generated using the wrong models and their estimation.

One of the functions of the methodologies to detect bias in genetic evaluation is the possibility of comparing competing models. Our observation about the improvement of the estimations as the model approximates the perfect one is not a particular property of the LR method. This behavior is expected, regardless of the method used to estimate bias. However, Efron (2004) demonstrated that when the model used for genetic evaluation is plausible, the estimation error using parametric methods was more precise than with nonparametric ones. In that sense, the LR method can be useful to find a good model from which biases can be obtained parametrically.

Impact of model on bias is more evident when we observe the evaluations in the scenario with an environmental trend. When models include the CG as a random effect, the higher the variance of the effect, the smaller impact on the bias. We can see this by analyzing the true bias (0.40 and 0.03 for the lowest and the higher variances, respectively) and slope values (0.88 and 0.97 for the lowest and the higher variances, respectively) generated by the different models.

The correct estimation of the variance of the CG effect was out of the scope of our study. However, the results suggest that a model with contemporary groups as a random effect would be a valid one for the scenario.

Modeling the CG as a random or fixed effect is an interesting topic that, unfortunately, we could not explore deeper in our work. The inclusion of CG as a fixed effect has its origin in the bias theory proposed by Henderson [START_REF] Schaeffer | Contemporary Groups Are Always Random[END_REF].

Since then, CG has been usually included as a fixed effect in the genetic evaluations without further consideration, even though it may be not appropriate in all situations. [START_REF] Schaeffer | Contemporary Groups Are Always Random[END_REF] argues that no studies have measured the impact of random CG effect on the bias, and this kind of model would be the choice for populations with a small number of observations by CG level [START_REF] Schaeffer | Contemporary Groups Are Always Random[END_REF].

Nevertheless, a recent study on small dairy cattle populations found that modeling CG as a random effect fit the data slightly worse than modeling the CG as a fixed effect, even when, in general, both models show similar characteristics [START_REF] Pereira | Contemporary group alternatives for genetic evaluation of milk yield in small populations of dairy cattle[END_REF].

The higher values of bias found by Legarra et al. (2014a) have two possible explanations. To explore the bias, they used the information of the rams born in 2008-2009. In 2008 a sanitary situation limited the possibility of collecting rams, which could affect the genetic evaluation. The description of this episode is expanded later in this Chapter (see Variability of estimators). On the other hand, they followed the test proposed by Interbull (Mäntysaari et al., 2010), which compares the (G)EBVs of the rams at birth with their posterior DYD. The first crop of daughters for candidates in Manech Tête Rousse is small (about 30 daughters), and it is not the best scenario to obtain accurate DYD (Legarra and Reverter, 2017).

Except for the model SSGBLUP-EUPG ( b 𝑝 = 0.88) we did not find strong overdispersion of the EBVs, while Legarra et al. (2014a) found values of 0.63 and 0.83 for BLUP and SSGBLUP, respectively. Except for Basco-Béarnaise, estimations on other French dairy sheep populations had shown over-dispersion of EBVs, from 0.44 for Manech Tête Noire to 0.75 in Lacaune (Astruc et al., 2014;Baloche et al., 2014;Legarra et al., 2014a).

The comparison within models and across models indicates better performance by models that manage the missing pedigree with MF.

The within model's comparison did not show any difference for bias and slope between BLUP-MF or SSGBLUP-MF models, but there was an improvement in the accuracy from BLUP-MF to SSGBLUP-MF. These results indicate that the addition of genomic information is favorable because it increments predictions accuracy without generating bias. This observation contrasts with results found by [START_REF] Granado-Tajada | Exploring the inclusion of genomic information and metafounders in Latxa dairy sheep genetic evaluations[END_REF], who found that SSGBLUP-MF increased the bias and inflation of EBVs for Latxa Cara Negra from Euskadi and Latxa Cara Rubia. The bias difference between SSGBLUP-MF and BLUP-MF was ≈ 0.2𝜎 𝑔 , and the decrease in the slope was about 0.12. The use of selective genotyped individuals could be one of the causes to explain the observation [START_REF] Vitezica | Bias in genomic predictions for populations under selection[END_REF]. However, as shown in our results and other works on dairy sheep and dairy cattle [START_REF] Vanraden | Invited review: Reliability of genomic predictions for North American Holstein bulls[END_REF]Baloche et al., 2014), males selected by genotype only do not lead to bias. In our work, only the genomic information of AI selected sires were included in the evaluation. Particularly for Laxta Cara Rubia, an alternative explanation can be the introduction of Manech Tête Rousse imported rams into the population. They can represent a selected population that is not correctly accounted for by the model.

Results from the across model comparison clearly indidate that, for Manech Tête Rousse population, the use of MF to manage the missing pedigree has better performance than UPG or EUPG. We did not find strong over or under-dispersion between the BLUP models nor between the BLUP and SSGBLUP-MF models, where the value of closest to 1 was for the comparison between BLUP-UPG and SSGBLUP-MF (0.98). However, a strong under-dispersion of EBVs was found when we moved from a BLUP model to SSGBLUP with UPG or EUPG with slope values around 1.25.

Compared with SSGBLUP-UPG and SSGBLUP-EUPG, the methodology of MF showed less bias and slope values close to 1. The Γ matrix included to the MF models allows the relationship between MF, which tends to explain the population's structure better than UPG (Legarra et al., 2015).

Nevertheless, the performance of the different models would be linked to the population under evaluation. A recent work comparing MF and UPG approaches to manage the missing pedigree did not find improvement by using MF [START_REF] Kudinov | Metafounder approach for single-step genomic evaluations of Red Dairy cattle[END_REF]. They compared alternative SSGBLUP models, using 236 UPG, 8 UPG, and 8 MF. The reduction from 236 to 8 UPG reduced the inflation of predictions and increased the validation accuracy. However, even when the use of MF greatly influenced the pedigree relationship matrix, it did not show substantial improvement in the predictions.

So, can we be sure that SSGBLUP-MF is a better model than SSGBLUP-EUPG in our case? The short answer is that we can not be sure. Even when a model is very far from the true model, the validation tests can indicate the absence of bias or inflation of EBVs. For instance, we can see our results under simulated scenarios. In Figure 8 of Chapter II, when the model considers CG as a fixed effect and for the case of ℎ 2 = 0.10, bias was estimated to be close to zero even when there was extreme true bias (true bias of -0.10 or 0.10).

However, the definition of the models is not an arbitrary decision. Several statistic tests to define and validate models would be applied to obtain a reasonable evaluation model (Thompson, 2001). Therefore, we can assume that the SSGBLUP-EUPG and SSGBLUP-MF models are plausible. Hence, as there is no really large difference between models that use MF or EUPG, they should have similar performance. If one of them presents better performance, it should be a better choice for the genetic evaluation system under analysis.

The definition of the genetic groups can be an explanation for the differences in the performance observed for models with UPG or MF. [START_REF] Tsuruta | Controlling bias in genomic breeding values for young genotyped bulls[END_REF] observed under simulated data that the omission of UPG in genomic evaluations causes inflation in GEBVs. However, the definition of UPGs plays an important role in genetic evaluations. For example, a small number of individuals in a UPG or UPG for young genotyped individuals with no progeny or phenotypes can lead to an inaccurate estimation of UPG and causes bias in the predictions [START_REF] Tsuruta | Controlling bias in genomic breeding values for young genotyped bulls[END_REF]. However, this is not the problem in Manech Tête Rousse because the UPGs are very well represented (Figure 5) and all genotyped rams have both parents recorded.

Accuracies

We can distinguish two concepts of accuracy: the population, and the individual accuracies.

The individual accuracy, refers to a single individual. It is the correlation between their TBV (𝑢) and EVB ( û ) 𝑟 = 𝑟( û , 𝑢) across conceptual repeated sampling [START_REF] Van Vleck | Variance of prediction error with mixed model equations when relationships are ignored[END_REF]. It represents the expected change in the EBV of an individual in successive genetic evaluations and can be obtained from Mixed Model Equations by

𝑟 𝑖 = √1 -𝑃 𝐸𝑉 𝑖 (1+𝐹 𝑖 )𝜎 2 𝑢
where 𝑃 𝐸𝑉 𝑖 is the prediction error variance for individual 𝑖, 𝐹 𝑖 is the inbreeding coefficient for individual 𝑖 and 𝜎 2 𝑢 is the genetic variance (Henderson, 1975).

The population accuracy corresponds to the correlation between the TBV (u) and the EBV ( û ) in the candidates for selection 𝑎𝑐𝑐 = 𝑟( û , u) (Bijma, 2012). The selection affects the population accuracy and that, in general, is not taken into account in the estimaion of the genetic gain (Dekkers, 1992;Bijma, 2012).

In our work, we used four estimators of accuracies: estimators of ratios of population accuracies ( ρ𝑤,𝑝 ) and reliabilities ( ρ 2 𝑝,𝑤 ), which indicate the changes in the accuracy due to the increment of information, and direct estimators of the population (â𝑐𝑐 2 𝑝 ) and the individual ( r𝑒𝑙) reliabilities.

Estimation of accuracies on simulations

The results obtained from the study on simulated scenarios (Chapter II) showed that the accuracy was well estimated in all cases, when the evaluation used either a correct or a wrong model. Performance of accuracy statistics indicates robustness of the set of estimators. This is because the estimators of accuracies are less influenced by shift and scaling.

The estimators 𝜌 𝑤,𝑝 and 𝜌 2 𝑤,𝑝 indicate change in the accuracy due to the addition of information. As they express relative changes in the accuracies and reliabilities, we would expect an equivalence between them, as shown in our study (values around 0.35 for ρ𝑤,𝑝 and 0.12 for ρ 2 𝑝,𝑤 ). Nevertheless, note that ρ 2 𝑝,𝑤 is influenced by the dispersion of EBV in the partial or whole data sets, whereas, ρ𝑤,𝑝 is not (Legarra and Reverter, 2018). In that sense, ρ𝑤,𝑝 should be a better estimator of the change in the accuracies with the addition of information if over, or under-dispersion of EBVs exists.

The direct population accuracy â𝑐𝑐 2 𝑝 presented low values (≈ 0.02 for ℎ 2 = 0.10 and ≈ 0.03 for ℎ 2 = 0.30) in the simulated scenarios. As a population accuracy, it is affected by the reduction of the genetic variance due to selection (Bijma, 2012). Nevertheless, as shown in Appendix 2 of Chapter II, given the proportion of selected males and females, it is possible to "correct" the individual accuracy to take into account the Bulmer effect. For instance, a trait of ℎ 2 = 0.10 and individual reliabilities of 0.27 and 0.14 for sires and dams, respectively, gave a population accuracy of 0.023 that agrees with the estimated value.

Estimation of accuracies on real data

Working with milk yield genetic evaluations of Manech Tête Rousse (Chapter III), we estimate ratios of accuracies and reliabilities and the direct value of the population accuracy and individual accuracy of 𝐸𝐵𝑉 𝑝 . We tested BLUP and SSGBLUP models where the missing pedigree was accounted as UPG or MF.

Ratio of accuracies

The comparison of the estimation of the ratio of accuracies and reliabilities of BLUP and SSGBLUP models confirmed that the inclusion of genomic information improves the accuracies of GEBVs of rams at birth [START_REF] Meuwissen | Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps[END_REF].

For instance, BLUP evaluations reach values of ~0.55 for ρ𝑤,𝑝 and ~0.31 for ρ 2 𝑝,𝑤 , while for SSGBLUP range from 0.61 to 0.66 for ρ𝑤,𝑝 and from 0.42 to 0.45 to ρ 2 𝑝,𝑤 . Similar results have been obtained in previous studies on the same population. Legarra et al. (2014a) observed an increase of accuracy for milk yield of 0.16 from a BLUP to SSGBLUP model for Manech Tête Rousse. The same study found increments of accuracy in Manech Tête Noire and Basco-Béarnaise (0.11 and 0.06, respectively). An increment in the accuracy of 0.15 was obtained for Lacaune due to genomic information (Baloche et al., 2014).

Similar improvements in the accuracies from BLUP to (SS)GBLUP have been described in other species. Guarini et al. (2019) observed an increment of ≈ 0.1 and ≈ 0.2 for milking temperament and milking speed in Holstein dairy cattle. In dairy goats, the gain in accuracy using a GBLUP model ranged from 1% to 7% compared to the accuracy with BLUP (Carillier et al., 2013).

However, our results disagree with the ones of similar work on Spanish dairy sheep. [START_REF] Granado-Tajada | Exploring the inclusion of genomic information and metafounders in Latxa dairy sheep genetic evaluations[END_REF], applying the LR method, found values of 𝜌 𝑤,𝑝 of 0.55 and 0.56 for BLUP and SSGBLUP on Latxa Cara Negra from Euskadi and 0.50 and 0.51 for BLUP and SSGBLUP on Latxa Cara Rubia, which did not represent an improvement in the accuracies. The structure of the population can be an explanation for these results. The small size of sibships in these populations [START_REF] Patry | Evidence of biases in genetic evaluations due to genomic preselection in dairy cattle[END_REF][START_REF] Sargolzaei | Assessing the bias in top GPA bulls[END_REF] reported by the authors can be a limitation for improving the accuracy. The accuracy depends on the number of effective loci, the family relationship, and the number of phenotypes (Hayes et al., 2009b). For instance, for a trait with ℎ 2 = 0.10, the inclusion of 1000 genotyped and phenotyped full sibs improved the reliability by ≈ 0.13, while the inclusion of the same number of half-sibs produced a lower increase of ≈ 0.06 (Hayes et al., 2009b). Genomic information for Manech Tête Rousse comprises 3000 genotyped AI males, and on average ≈ 8 half-sibs per sire.

Direct accuracies

In our work, the estimation of â𝑐𝑐 2 𝑝 and r𝑒𝑙 𝑝 was not possible for SSGBLUP-UPG and SSGBLUP-EUPG. Both estimators require the calculation of 𝐶𝑜𝑣(𝐸𝐵𝑉 𝑝 , 𝐸𝐵𝑉 𝑤 ), that had values out of the parametric space; e.g., for SSGBLUP-UPG and the comparison 2010-2015, the 𝑣𝑎𝑟( û 𝑤 ) = 580𝐿 2 , when the genetic variance in the base population is 565𝐿 2 .

Conversely, for BLUP-UPG, BLUP-MF, and SSGBLUP-MF models, the (co)variances were in the parametric space, and the estimated accuracy had reasonable values (values of â𝑐𝑐 2 𝑝 of 0.23, 0.24 and 0.32 and values of r𝑒𝑙 𝑝 of 0.53, 0.54 and 0.59 for BLUP-MF, BLUP-UPG and SSGBLUP-MF, respectively).

These results indicate a difficulty for SSGBLUP to manage the genomic information and the missing pedigree correctly through UPG in this population.

When UPG are estimated as fixed effects, 𝑉 𝑎𝑟(u) may not be well defined. The relationship between the MF and then their estimation as a random effect can better manage this issue and can be the cause for a better performance of BLUP-MF and SSGBLUP-MF models.

The definition of the UPG affects their estimation [START_REF] Tsuruta | Controlling bias in genomic breeding values for young genotyped bulls[END_REF], but as mentioned before, this was not an issue in this population.

Nevertheless, the results obtained for the direct accuracies confirmed the estimation of relatives ones; genomic information increased the accuracy of the predictions at birth, without information on progeny.

Variability of estimators of bias

Most studies of bias, regardless of the tests that were used, use only one point in time to examine. For example, in the case of the works in French dairy sheep, Legarra et al. (2014a) 2020), analyzed bias with LR method for two different cases, using EBVs at birth, evaluated without of their own or relative's information, EBVs at 60 or 80 weeks (for a collective or individual cage, respectively) without progeny information. In both cases, only one estimation of bias was done. Analyzing several scenarios for feed efficiency traits in pigs, [START_REF] Aliakbari | The impact of training on data from genetically-related lines on the accuracy of genomic predictions for feed efficiency traits in pigs[END_REF] used only one data set to explore for bias in each scenario.

To explore bias in Manech Tête Rousse milk yield genetic evaluations, we used a different approach.

To investigate the estimator's behavior and, therefore, the bias in different years of genetic evaluations, we performed multiple comparisons. As focal individuals, we grouped rams born in each year from 2005 until 2014. We compared their (G)EBVs at birth with the (G)EBVs of subsequent years until 2017. Consequently, we obtained multiple estimators for each year of ram's birth.

We observed an important variation of the estimators across and within truncation points, as shown in Figure 1 of Chapter III. In the figure, we presented the values of the slope obtained using BLUP-MF and SSGBLUP-EUPG, but all estimators presented variation.

This original result has some implications.

When we check for bias, we are evaluating the genetic evaluation model's capacity to predict with maximum precision the TBV of the individuals. If we find a significant bias, we can, e.g., adjust the EBVs or make changes to the model. If we analyze only one truncation point, we can make mistakes. Suppose that an estimation of dispersion, based on just one truncation point, indicates a strong over-dispersion of EBVs, a slope value of 0.65. We can decide to change the model. However, if this particular genetic evaluation was an exception and did not represent the rest of the genetic evaluations, the change can cause bias in future evaluations.

We illustrate the situation by examining Figure 1 of Chapter III. Suppose that we perform a test to check bias over the rams born in 2005. In this scenario, we could conclude that there is no over or under-dispersion of the EVBs at birth of the focal individuals. Conversely, if we analyze the slope for rams born in 2008, we finally would conclude that exists a significant over-dispersion of the EBVs. However, when we see the entire picture, the year 2008 was an isolated case; in almost all years, the slope values were close to 1 for the BLUP-MF model and slightly lower for SSGBLUP-EUPG. So, from a general point of view, we can conclude that, while the BLUP-MF model is unbiased, SSGBLUP-EUPG causes over-dispersion of the EBVs. The slope's results for the same trait in the same population obtained by Legarra et al. (2014a) is a practical example of this situation. They used the rams born in 2008-2009 to check for bias in the genetic evaluation using BLUP and SSGBLUP models. For both models, they observed over-dispersion of EBVs, which agrees with our observation for the year 2008. If they had decided to change the model, e.g. by reducing heritability, subsequent evaluations would present an under-estimation of the EBVs.

The particular estimator's behavior in 2008 led us to investigate the possibles causes of the bias. We found that a sanitary situation that happened this year limited the possibility to collect rams across the flocks. This situation may be the cause of the strong bias observed in the genetic evaluation of 2008. Therefore, multiple truncation points can also help identify problems that may interfere with the selection process.

Milk yield genetic variance on Manech Tête Rousse

Genetic variance is an important parameter that affects genetic gain; hence, genetic variance loss will limit our possibilities to improve a population. There are two causes of loss of genetic variance: drift; due to the limited population size and related to the build-up of coancestry, and selection (Falconer and Mackay, 1996). Selection reduces the variability because it increases the frequency of favorable alleles and causes negative covariation between genes, the so called Bulmer effect (Bulmer, 1971).

To estimate the â𝑐𝑐 2 𝑝 , we need to estimate the focal group genetic variance (𝜎 2 𝑢 * ). In our work with Manech Tête Rousse, we work with groups of rams born along the years, so after estimating 𝜎 2 𝑢 * for each group, we obtained a curve of the evolution of the genetic variance. We also estimated the genetic variance for the females born in each year. As most born females are kept, they are representative of the entire population. The study comprises the period from 1981 to 2014, and we distinguished the loss due to the build-up of coancestry and Bulmer effect.

The genetic variation started to decrease after 1990, when the effective selection for milk yield started, and stabilized in the middle of the 2000s, with a loss of 13%; 3% attributable to the build-up of coancestry and 10% to Bulmer effect. Neither the loss due to the build-up of coancestry nor to the Bulmer effect were higher.

Loss due to drift

Using Optimal Contribution methods, it is possible to maximize the genetic gain and minimize the relationship among individuals in a population (Woolliams et al., 2015). The reproduction in Manech Tête Rouse is done based on Artificial Insemination with fresh semen, making it difficult to apply Optimal Contribution methods. However, there are some rules to minimize inbreeding. The AI center avoids matings between cousins, and it keeps a diversity of families by selecting males within grand-sire families.

These practices can explain the low values of relationship and inbreeding found in the population; coancestry rate (Δ𝑓) of ≈ 0.0045 and inbreeding rate (Δ𝐹 ) of ≈ 0.0032 per generation. Compared to other French dairy sheep, Manech Tête Rousse presents lower values of Δ𝐹 than Basco Béarnaise and Manech Tête Noire (0.0099 and 0.0094, respectively) but higher than Lacaune (≈ 0.0020) [START_REF] Rodríguez-Ramilo | Inbreeding and effective population size in French dairy sheep: Comparison between genomic and pedigree estimates[END_REF]. The values found in dairy sheep are, in general, slightly lower than the ones described for dairy cattle; e.g., Δ𝑓 of 0.0098 and 0.0073 per generation, and Δ𝐹 of 0.0075 and 0.0067 per generation for Holstein and Jersey, respectively [START_REF] Makanjuola | Effect of genomic selection on rate of inbreeding and coancestry and effective population size of Holstein and Jersey cattle populations[END_REF].

These results indicate that the control of inbreeding and coancestry by the simple rules is effective to control the decrease of the genetic variance due to drift.

Loss of genetic variance due to Bulmer effect

The Bulmer effect tends to stabilize after a few generations. We observed a stabilization after ≈ 4 generations. However, during the period of the data in our study, there were several changes in the breeding objectives. In the beginning the scheme selected for higher milk yield. Selection for milk composition started in 2003 and between 2000 and 2010, the scheme also selected for Scrapie resistance. We simulated with SelAction (Rutten et al., 2002) two scenarios: considering only milk yield as a breeding objective or combining milk yield, milk composition, and somatic cell score. For the first scenario, the loss of genetic variance at equilibrium was 15% and for the second scenario was 8%. Our estimation agrees with these theoretical values. The addition or change of breeding objectives can change the allele frequencies for milk yield as well as the covariances between loci, which can explain that the loss at equilibrium observed did not reach the 15% predicted for a scheme that selects only for milk yield.

There are not many works with real data that quantify the Bulmer effect. Some examples are the work of Allier et al. (2019) and Hidalgo et al. (2020). Allier et al. (2019) observed a loss of ≈ 40% in the genetic variance for grain yield in maize. Working with fitness and growth traits in pigs, Hidalgo et al. (2020) found a reduction in heritabilities that ranges from 7% to 50%. Considering these observations, the 10% loss of genetic variance observed in our study is among the lowest. However, neither Allier et al. (2019) nor Hidalgo et al. (2020) separated the reduction in genetic variance due to drift and due to Bulmer effect.

Contributions to the industry

We want to highlight four points that we consider are the most important to the dairy sheep industry in France.

1. We demonstrate that the LR method works well under several situations when the model is reasonable, even not perfect. The main advantages of the method are that it is easy to apply using public information and, as it is based on comparisons of EBVs, is relatively easy to be understood by every player in the industry. Everyone in the industry understands the concept of EBVs and has good knowledge of the genetic evaluation process. Therefore, exploration of bias based on changes of the EBVs due to the addition of information in successive genetic evaluations will be easier to understand than other approaches.

2. We found an important variation in the estimation of bias and slope across years. This observation suggests that our conclusion about the genetic model could be inaccurate when we analyze only one truncation point. The analysis of several points would be a good practice to obtain more representative information about the genetic evaluation system.

3. In the last years, the selection scheme has been shifting to genomic selection.

In that sense, for Manech Tête Rousse, we did not find important problems of bias or inflation of EBVs. At the same time, our results showed that the use of MF performed better than UPG to reduce bias and will be tested on other French breeds.

4. We showed that it is feasible to estimate changes in the genetic variance due to selection or drift. This tool provides relevant information to the selection scheme. The information about the evolution of the genetic variance "per se" is relevant to explore for possibles changes in the heritability that would affect the predictions of genetic evaluations. On the other hand, if some system is applied to control the build-up of inbreeding and coancestry, we can visualize their impact on the genetic variance and decide if changes are needed.

1. LR method is reliable, as shown in simulated scenarios, and relatively easy to apply. As observed in work over real data, even if the estimation is realized with other methodologies, we recommend using several truncation points to ensure a view over time of the estimators and avoid mistakes in the diagnostic. 2. We can conclude that there is not an important problem of bias for milk yield in Manech Tête Rousse in general. 3. The lowest bias was observed for the models that applied metafounders, while using SSGBLUP with UPG presented either over-dispersion or under-dispersion in different situations. 4. For the industry, SSGBLUP-MF is a good candidate model to perform future genomic evaluations in dairy sheep, although more studies are needed to estimate the relationship between the metafounders (the Γ matrix). 5. Genetic variance for milk yield in Manech Tête Rousse has not reduced much, neither from drift, nor from selection (Bulmer effect). The loss of genetic variance stabilizes at 13%. The simple rules used to mating individuals have controlled the increase of coancestry and have limited the loss of genetic variance at 3%, while the portion of loss due to the Bulmer effect was 10%. 6. The actual system to control inbreeding preserves well genetic variance for milk yield. The effect of genomic selection is unknown and hence, a periodical monitoring of the genetic variance is recommended.
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 1 Figure 1. Generation of birth of the parents of 45,000 individuals of the seventh generation. Example of the first replicate of the simulation scenario T10 (h 2 = 0.10).
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 2 Figure 2. Phenotypic, genetic, and environmental trends corresponding to the first replicate for the simulation scenario FCG30 (environmental trend, h 2 = 0.30).
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 3 Figure 3. Estimated versus true bias, simulation scenarios T10 (h 2 = 0.10) and T30 (h 2 = 0.30). Different colors are used for each replicate.
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 4 Figure 4. Estimated versus true slope, simulation scenarios T10 (h 2 = 0.10) and T30 (h 2 = 0.30).
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 5 Figure 5. Estimations of accuracies, simulation scenarios T10 (h 2 = 0.10) and T30 (h 2 = 0.30). (a) Estimations of the inverse of relative gain in accuracy from partial to whole data sets ˆ, , ρ w p( ) versus the ratio of the accuracy with partial data set to the accuracy with whole data set
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 6 Figure 6. Estimated versus true bias when the evaluation model used incorrect heritability: simulation performed with h 2 = 0.10, evaluation model used h 2 = 0.05 (W05) or h 2 = 0.15 (W15); simulation performed with h 2 = 0.30, evaluation model used h 2 = 0.25 (W25) or h 2 = 0.35 (W35). Simulation scenarios T10 and T30 (when heritability used in the evaluation model was correct, h 2 = 0.10 or 0.30, respectively) were included for comparison.
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 7 Figure 7. Estimated versus true slope when the evaluation model used an incorrect heritability: simulation performed with h 2 = 0.10, evaluation model used h 2 = 0.05 (W05) or h 2 = 0.15 (W15); simulation performed with h 2 = 0.30, evaluation model used h 2 = 0.25 (W25) or h 2 = 0.35 (W35). Simulation scenarios T10 and T30 (when heritability used in the evaluation model was correct, h 2 = 0.10 or 0.30, respectively) were included for comparison.

  of reliabilities. 2 Scenario T10: h 2 = 0.10; scenario T30: h 2 = 0.30; scenario W05: true h 2 = 0.10, used h 2 = 0.05; W15: true h 2 = 0.10, used h 2 = 0.15; W25: true h 2 = 0.30, used h 2 = 0.25; W35: true h 2 = 0.30, used h 2 = 0.35.

Figure 8 .

 8 Figure 8. Estimated versus true bias when an environment trend effect was simulated: scenarios FCG10 (h 2 = 0.10) and FCG30 (h 2 = 0.30).

Figure 9 .

 9 Figure 9. Estimated versus true slope when an environment trend effect was simulated and contemporary group (CG) is used as fixed effect in the model: scenarios FCG10 (h 2 = 0.10) and FCG30 (h 2 = 0.30).

Figure 10 .

 10 Figure 10. Estimated versus true bias when an environment trend effect was simulated and contemporary group (CG) is used as random effect in the model (RCG0001, RCG001, and RCG01 represent variances of 0.0001, 0.001, and 0.01, respectively). Different colors are used for different pairs of comparisons between partial and whole data sets.

  represents the selection process, H 0 represents the decrease in variance under selection, and C 22 represents the corresponding block of the inverse of the coefficient matrix for animal equations.In other words, in genetic variance due to selection, and then,

  1992)] of selection criterion of males and females, ignoring selection-or, in other words, the model-based reliability derived from the inverse of the MME.

2

  of the focal individu-als of generation 7 (males born in generation 7 and used as sires in next generations) from the first replicate, taking the average model-based reliability (from BLUP) of his sires and dams as ρ m SC

Fig. 1

 1 Fig. 1 Estimates of bp for models BLUP-MF (a) and SSGBLUP-EUPG (b) by year of EBV p evaluated
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2 .

 2 of EBV for groups of individuals formed by sex (males and females) and year of birth year t (1981 to 2014). We computed the variance of the samples of EBV for each of these 34 × 2 = 68 groups. These variances were, in turn, samples from the posterior distributions of genetic variances of males (m) at time t σ a Thus, at the end of the process, we had the posterior distribution (with 900 samples) of the genetic variance for each of the 34 groups of AI males ˆ,

  the observed genetic variance. Again, this reasoning extends easily to separate sexes. For example, if σ a Bulmer effect and preselection is 90 -75 = 15.

Figure 1 .

 1 Figure 1. Evolution of average relationship per year of birth for AI males, females, and AI males -females.

Figure 2 .

 2 Figure 2. Partitioning of the genetic variance along the years for the female population. Red = observed genetic variance; blue = loss of genetic variance due to drift; green = loss of genetic variance due to selection.

  used the (G)EBVs of the rams born in 2008-2009 to compare with their DYD, and Baloche et al. (2014) used rams born in 2005 as training population to validate rams born in 2007. The same is true in other species. Analyzing the impact on the bias of the omission of bulls without progeny in SSGBLUP, Koivula et al. (2018) used only one set of bulls, born between 2006 and 2009, and cows, born between 2009 and 2012 to test for bias. Even when the groups contain individuals from several years, only one estimation was obtained. Studying egg quality traits in layers Picard Druet et al. (
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  Example of over-estimation of genetic mean of young individuals . . . . 2 Example of over-dispersion of EBVs of young candidates . . . . . . . . 3 Distribution of flocks in France . . . . . . . . . . . . . . . . . . . . . . 4 Evolution of sheep milk production in France . . . . . . . . . . . . . . 5 Missing pedigree since 1995 for Lacaune and Manech Tête Rousse . . . 6 Diagram of the application of LR method . . . . . . . . . . . . . . . . Number of individuals in the selection scheme in 2014. . . . . . . . . . 2 Values of bias and slope for milk yield genetic evaluations in previous works. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Example: Milk yield û 𝑝 and û 𝑤 for focal individuals. . . . . . . . . . . La réalisation d'évaluations génétiques permet estimer des valeurs d'élevage, ou index, (EBV) des individus. Ainsi, le gain génétique potentiel obtenu avec la sélection est basé sur la capacité du modèle d'évaluation à générer des EBV non biaisées. Le modèle génétique le plus fréquemment utilisé est le cadre BLUP (Best Linear Unbiased Prediction), dont l'absence de biais est théoriquement garanti si les informations requises sont disponibles. Cependant, depuis les années 1980, des rapports font état d'existence de biais dans des évaluations génétiques, ce qui indique que le modèle BLUP peut générer des prédictions biaisées dans des scénarios réels. Parce qu'elle repose moins sur des animaux bien éprouvés, la sélection génomique a accru la nécessité de disposer de méthodes empiriquement non biasées. Par conséquent, l'étude des biais et le développement d'outils de mesure des biais ont été des sujets courants dans la littérature scientifique. Le concept plus étendu de biais est basé sur la relation linéaire entre les valeurs d'élevage réelles (TBV) et les valeurs d'élevage estimées (EBV). Le biais est la différence moyenne Δ = 𝑇 𝐵𝑉 -𝐸𝐵𝑉 , tandis que la dispersion est la pente 𝑏 1 de la régression linéaire 𝑇 𝐵𝑉 = 𝑏 0 + 𝑏 1 × 𝐸𝐵𝑉 . Dans les évaluations non biaisées, Toutes les races ont des programmes de sélection actifs, et presque toutes ont commencé la sélection génomique au cours de la dernière décennie. Les systèmes de sélection ont une structure pyramidale avec un noyau d'élite dans lequel se fait le progrès génétique. Les programmes d'élevage de brebis laitières présentent certaines particularités. Les tests classiques de descendance des béliers d'insémination artificielle sont basés sur environ 30 ou 40 filles par bélier. De plus, il manque des pedigrees et il est nécessaire de modéliser ce fait. Certaines études ont révélé des biais chez les brebis laitières. Néanmoins, elles ont toutes utilisé des tests qui comparent les EBV avec les écarts de rendement des filles (DYD) des béliers pour calculer les estimateurs. Les DYD ne sont pas très précis lorsque le nombre En 2018, une nouvelle méthode appelée méthode LR a été décrite pour estimer le biais dans les évaluations génétiques. Cette méthode est basée sur la comparaison des EBV successives d'un groupe d'individus, en augmentant l'information à chaque fois. Elle dispose d'estimateurs pour le biais, la pente et la précision. L'objectif de cette thèse était d'évaluer le biais dans les évaluations des brebis laitières françaises, en considérant l'effet de la sélection, en utilisant la méthode LR. Notre première étude a consisté à vérifier la capacité de la méthode LR à détecter le biais dans des scénarios simulés. Nous avons simulé un schéma d'amélioration génétique d'une espèce laitière pour des héritabilités faibles (0,10) et modérées (0,30). Dans les deux cas, nous avons vérifié le comportement de la méthode LR pour 3 scénarios : évaluations génétiques (1) avec un modèle correct, (2) lorsque le modèle d'évaluation utilise une héritabilité incorrecte, et (3) lorsque les données incluent une tendance environnementale. Pour les scénarios dans lesquels le modèle d'évaluation était correct, la méthode LR était capable d'estimer correctement le biais, la pente et les précisions. Dans les cas d'héritabilités incorrectes dans le modèle d'évaluation, le biais a été correctement estimé en direction mais pas en magnitude. De même, les amplitudes du biais et de la pente ont été correctement estimées dans les scénarios avec des tendances environnementales

	List of Tables	Résumé
	1	

Δ devrait être égal à 0 et 𝑏 1 devrait être égal à 1. Des valeurs négatives du biais Δ indiquent une surestimation du gain génétique, tandis que des valeurs positives indiquent une sous-estimation. Pour la pente 𝑏 1 , les valeurs supérieures à 1 indiquent une sous-dispersion, et les valeurs inférieures à 1 indiquent une surdispersion des EBV. Le fait d'avoir des évaluations biaisées peut entraver le progrès génétique. Un autre aspect à prendre en compte est la précision, c'est-àdire la corrélation 𝑟(𝑇 𝐵𝑉 , 𝐸𝐵𝑉 ), qui est directement liée au gain génétique. Il est important de connaître les valeurs de ces paramètres pour les programmes de sélection, car les biais et la sur/sous-dispersion des EBV peuvent entraver le progrès génétique et la précision est essentielle pour prédire le progrès génétique. Le biais est perçu comme provenant de la sélection mais aussi d'une modélisation incorrecte du caractère.

La production de lait de brebis est une industrie importante en France. La production est concentrée dans le Massif Central, où l'élevage est basé sur la race Lacaune, en Corse, sur la race Corse, et dans les Pyrénées Occidentales, sur les races Manech Tête Rousse, Manech Tête Noir et Basco-Bearnaise. de filles par bélier est faible, ce qui est le cas des brebis laitières. Pour cette raison, et aussi parce que l'industrie laitière a besoin de s'assurer que la prédiction génomique fonctionne correctement, il est pertinent de ré-analyser en profondeur le biais dans ces populations avec une méthodologie qui n'a pas besoin de DYD. dans les données, sauf dans les cas où le modèle n'était pas capable d'estimer correctement cette tendance environnementale. En général, les précisions ont été bien estimées dans tous les scénarios. Dans cette première étude, nous avons démontré que la méthode LR pouvait estimer le biais et la précision dans tous les cas si le modèle d'évaluation est correct ou robuste.

Table

  

Table 1 :

 1 The number of first lactation daughters per ram in the progeny test is between 30 to 40, and no more than 1,500 doses of semen are distributed annually, which contrasts sharply with dairy cattle. Therefore, AI centers play an important role in making selection and dispersing genetic improvement. Number of individuals in the selection scheme in 2014.

	Breed	Female population size	Female nucleus (%)	Tested rams per year	Rams at AI centers
	Lacaune	890,000	172,472 (19%)	440	1,400
	Corsica	83,000	15,944 (19%)	30	150
	Manech Tête Rousse	274,000	80,260 (29%)	150	600
	Manech Tête Noir	80,000	12,438 (16%)	30	175
	Basco-Béarnaise	80,000	24,386 (32%)	50	200
	Source: Institut de l'Elevage and Comité National Brebis Laitières.	

), although this is changing with genomic selection, which started in 2015 in LAC and in 2017 in MTR, MTN and BB. The progeny test and the genetic diffusion are done based on AI with fresh semen, which implies some limitations.

Table 2 :

 2 Values of bias and slope for milk yield genetic evaluations in previous works.

	obtained values of slope between 0.72 (UC) to 1.10 (FC) and Astruc et
	al. (2014) values close to 1 for FC and PC. The results of these more recent works
	indicate a significant over-dispersion in MY, a trait under intense selection pressure.
	Values of slope for MY in other French breeds range from 0.44, strong over-dispersion

Table 3 :

 3 Example: Milk yield û 𝑝 and û 𝑤 for focal individuals.

	EBVs in 2011 û 𝑝 (L) EBVs in 2015 or û 𝑤 (L)
	326	235
	360	305
	289	299
	340	322
	271	443
	487	563

Source: Argentinian Holstein Breeders Association http://www.acha.org.ar, accessed

December 3, 2020. 
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 1 Macedo et al.: ESTIMATING GENETIC PREDICTION BIAS AND ACCURACY Main parameters used to simulate populations in QMSim software program[START_REF] Sargolzaei | QMSim: A large-scale genome simulator for livestock[END_REF] 

	Parameter	Value
	Replicates	20
	Generations	10
	Sex ratio	0.5
	Total animals in populations	~450,000
	Phenotype	Only 1 measure in females
	Mating system	Inbreeding control
	Selection	Higher EBV (BLUP)
	Number of chromosomes	30
	Number of QTL per chromosome	333

Table 2 .

 2 Mean, SD, and correlation between estimated ∆p ( ) and true bias (Δ p ) and estimated bp ( ) and true slope (b p ) when the h 2 used in the evaluation model was the correct one

	Estimator	Scenario 1	Estimated value (SD)	True value (SD)	Correlation estimated-true
	∆p	T10 T30	-0.001 (0.005) -6.55e -05 (0.008)	-0.001 (0.010) -5.76e -04 (0.014)	0.59 0.61
	bp	T10	0.996 (0.067)	1.009 (0.167)	0.45
		T30	1.006 (0.069)	0.992 (0.141)	0.59

Table 3 .

 3 Mean, SD, and correlation between estimated ∆p ( ) and true bias (Δ p ) and between estimated bp ( )and true (b p ) slope when the h 2 used in the evaluation model was incorrect

	Estimator	Scenario 1	Estimated value (SD)	True value (SD)	Correlation estimated-true
	∆p	W05	-0.030 (0.006)	-0.111 (0.015)	0.77
		W15	0.035 (0.005)	0.091 (0.010)	0.36
		W25	-0.027 (0.007)	-0.054 (0.012)	0.55
		W35	0.032 (0.009)	0.050 (0.014)	0.63
	bp	W05	1.091 (0.077)	0.976 (0.235)	0.54
		W15	0.931 (0.083)	0.826 (0.135)	0.44
		W25	1.026 (0.065)	1.059 (0.138)	0.46
		W35	0.980 (0.071)	0.969 (0.109)	0.46

Table 4 .

 4 Mean, SD, and correlation between estimated ˆ, 

	      	acc acc w p	,	acc	p 2	, and	acc acc w p 2 2	, respectively	        	, p w ρ 2 , when h 2 used in the evaluation model was incorrect; values for scenarios ρ w p p acc , , and 2           and true values of accuracies
	T10 and T30 (when h 2 used in the evaluation model was correct) are included for comparison 1
	Estimator			Scenario 2		Estimated value (SD)	True value (SD)	Correlation estimated-true
	ˆ, ρ w p					T10 W05		0.381 (0.028) 0.587 (0.043)	0.385 (0.059) 0.366 (0.074)	0.54 0.41
							W15		0.305 (0.028)	0.360 (0.057)	0.43
							T30		0.344 (0.024)	0.336 (0.045)	0.62
							W25		0.371 (0.027)	0.340 (0.043)	0.50
							W35		0.319 (0.022)	0.349 (0.036)	0.45
	2 acc p					T10 W05		0.021 (0.003) 0.020 (0.004)	0.022 (0.007) 0.018 (0.008)	0.45 0.32
							W15		0.025 (0.003)	0.018 (0.006)	0.48
							T30		0.033 (0.004)	0.033 (0.009)	0.53
							W25		0.030 (0.004)	0.033 (0.009)	0.45
							W35		0.036 (0.003)	0.035 (0.008)	0.44
	2 ρ p w ,					T10 W05		0.146 (0.016) 0.319 (0.051)	0.152 (0.046) 0.139 (0.055)	0.50 0.28
							W15		0.100 (0.011)	0.133 (0.042)	0.40
							T30		0.118 (0.011)	0.115 (0.030)	0.57
							W25		0.135 (0.014)	0.118 (0.030)	0.43
							W35		0.104 (0.008)	0.123 (0.025)	0.48

1 ˆ, ρ w p = estimator of the ratio of accuracies; acc p 2 = estimator of the accuracy of EBV in partial data set; ρ p w

Table 5 .

 5 Macedo et al.: ESTIMATING GENETIC PREDICTION BIAS AND ACCURACY Mean, SD, and correlation between estimated ∆p ( ) and true bias (Δ p ) and between estimated bp ( )

	and true (b p ) slope when an environmental effect was simulated	
	Estimator	Scenario 1	Estimated value (SD)	True value (SD)	Correlation estimated-true
	∆p	FCG10	4.34e -04 (0.003)	0.001 (0.013)	0.41
			FCG30	0.001 (0.006)	-0.001 (0.013)	0.46
			RCG0001	-0.121 (0.008)	0.404 (0.121)	0.13
			RCG001	-0.074 (0.012)	0.189 (0.075)	-0.78
			RCG01	-0.013 (0.006)	0.030 (0.022)	-0.08
	bp	FCG10	0.995 (0.076)	0.984 (0.173)	0.52
			FCG30	0.993 (0.072)	1.003 (0.133)	0.60
			RCG0001	1.01 (0.056)	0.877 (0.112)	0.43
			RCG001	1.01 (0.064)	0.936 (0.122)	0.45
			RCG01	1.01 (0.064)	0.974 (0.137)	0.49
	1	Scenario FCG10: h 2 = 0.10; FCG30: h 2 = 0.30; RCG0001, RCG001, and RCG01: h 2 = 0.30, and variance of
	contemporary groups = 0.0001, 0.001, and 0.01, respectively.	

Table 6 .

 6 Mean, SD, and correlation between estimated ˆ,

	ρ w p     	,	acc	p 2	, and	, p w ρ 2	     and true values of accuracies

2

Scenario FCG10: h 2 = 0.10; FCG30: h 2 = 0.30; RCG0001, RCG001, and RCG01: h 2 = 0.30, and variance of contemporary groups = 0.0001, 0.001, and 0.01, respectively.

Agreement of Selected Accuracies Computed Using the LR Method and Expected Accuracies from BLUP

  

		across genome
		r_qpos_g; // Randomize QTL positions across
		genome
		end_genome;
		/*******************************
		** Output options **
		*******************************/
		begin_output;
		hp_stat;
		monitor_hp_homo /freq 1;
		allele_effect;
		end_output;
	*/	
	begin_pop = "p1"; begin_founder;	Appendix 2.
	male [n = 4500, pop = "hp"];	
	female [n = 45000, pop = "hp"];	
	end_founder;	
	ls = 1; //Litter size	
	pmp = 0.5; //Proportion of male progeny	
	ng = 10; //Number of generations	
	md = minf; //Mating design	
	sr = 0.4; //Replacement ratio for sires	
	dr = 0.2; //Replacement ratio for dams	
	sd = ebv /h; //Selection design	
	cd = ebv /l; //Culling design	
	ebv_est = external_bv "Sol.sh";	
	begin_popoutput;	
	data;	
	stat;	
	genotype /snp_code /gen 0 1 2 3 4 5 6 7 8 9	
	10;	
	end_popoutput;	
	end_pop;	
	/*******************************	
	** Genome **	
	*******************************/	
	begin_genome;	
	begin_chr = 30;	
	chrlen = 100; //Chromosome length cm	
	nmloci = 1500; //Number of markers	
	mpos = rnd; //Marker positions	
	nma = all 2; //Number of marker alleles	
	maf = eql; //Marker allele frequencies	
	nqloci = 333; //Number of QTL was 10000	
	qpos = rnd; //QTL positions	
	nqa = all 2; //Number of QTL alleles	
	qaf = eql; //QTL allele frequencies	
	qae = rndg 0.4; //QTL allele effects	
	end_chr;	
	mmutr = 2.5e-5 /recurrent; //Marker mutation	
	rate	
	qmutr = 0.01 /recurrent; //QTL mutation rate	
	r_mpos_g; // Randomize marker positions	

  This estimator estimates the inverse of the relative gain in accuracy from EBV p to EBV w . It is the correlation between EBV p and EBV w , ρw,p =

	cov( ûp , ûw) var( ûp) under-dispersion does not exists, the expected value of . If over-or the estimator is 1, values of bp < 1 indicate over-disper-sion whereas values of bp > 1 indicate under-dispersion.

Estimators related to accuracies Ratio of accuracies ( ρw,p ) cov( ûp , ûw) √ var( ûp) var( ûw)

Table 1 Average ˆ p (expressed as σ g ), bp , ρwp , ρ2 pw , acc 2 p and rel p within models

 1 

	Model	ˆ p	bp	ρwp	ρ2 pw	acc 2 p	rel p
	BLUP-MF	0.25	0.98	0.56	0.32	0.22	0.53
	BLUP-UPG	0.48	0.96	0.54	0.31	0.24	0.54
	SSGBLUP-MF	0.23	0.97	0.66	0.45	0.32	0.59
	SSGBLUP-UPG	0.32	0.94	0.64	0.43	NA	NA
	SSGBLUP-EUPG	0.48	0.88	0.61	0.42	NA	NA
	Standard errors for all values ≤ 0.01						

  53 0.24 0.37 0.38 0.39 0.39 0.41 0.41 0.41 0.42 0.44 0.43 0.40

	37
	0.68 0.38 0.37 0.38 0.39 0.39 0.40 0.38
	0.69 0.39 0.38 0.38 0.40 0.41 0.38
	0.61 0.39 0.39 0.40 0.40 0.38
	0.63 0.40 0.41 0.39 0.38
	0.59 0.42 0.41 0.39
	0.52 0.43 0.40
	0.83 0.41
	0.59

0.92 0.24 0.30 0.37 0.37 0.37 0.38 0.39 0.40 0.39 0.39 0.37 0.96 0.39 0.33 0.39 0.37 0.38 0.38 0.39 0.38 0.38 0.38 0.72 0.37 0.34 0.37 0.38 0.37 0.38 0.37 0.39 0.37 0.81 0.36 0.36 0.38 0.39 0.39 0.39 0.40 0.

Table 2 Average bp when EBV p was estimated with one model and EBV w with other model

 2 Standard errors for all estimations between 0.01 and 0.02. Diagonal include bp when both EBV p and EBV w were estimated with the same model

	EBV p	EBV w				
		BLUP-MF	BLUP-UPG	SSGBLUP-EUPG	SSGBLUP-MF	SSGBLUP-UPG
	BLUP-MF	0.98	1.01	1.29	0.98	1.32
	BLUP-UPG	0.93	0.96	1.23	0.92	1.25
	SSGBLUP-EUPG			0.88	0.61	0.84
	SSGBLUP-MF			1.28	0.97	1.31
	SSGBLUP-UPG			0.92	0.69	0.94

Table 3 Average (standard deviation) of bp when EBV p * was estimated with BLUP and EBV w * was estimated with SSGBLUP

 3 

	EBV p	EBV w		
		SSGBLUP-UPG	SSGBLUP-EUPG	SSGBLUP-MF
	BLUP-UPG	1.27 (0.06)	1.21 (0.07)	0.93 (0.05)
	BLUP-MF	1.34 (0.06)	1.27 (0.07)	0.98 (0.05)
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Scenario T10: h

= 0.10; scenario T30: h 2 = 0.30.

Scenario W05: true h

= 0.10, used h 2 = 0.05; W15: true h 2 = 0.10, used h 2 = 0.15; W25: true h 2 = 0.30, used h 2 = 0.25; W35: true h 2 = 0.30, used h 2 = 0.35.
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Practical implications

We estimated the milk yield genetic variance based on ≈ 500, 000 individuals in pedigree and almost 2,000,000 records using the method described by Sorensen et al. (2001). We demonstrated that it is possible and relatively simple to estimate the genetic variance's evolution and the loss due to drift and Bulmer effect. The information provided by this study was relevant because it revealed that there is not an important loss of genetic variability for milk yield and that the system used to control inbreeding works well. The method is perhaps not feasible for large populations, like Holstein, or Angus in the USA. However, it would be a practice to be routinely applied in selection schemes for regular-sized populations every few generations.
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Appendix

R code to obtain estimable functions of statistics in LR method

We used function estimable() from the R package Gmodels v. 

Graphical Abstract Summary

Genetic variance is one of the bases for selection. Drift and selection reduce genetic variance and therefore reduce the expected genetic gain. Few works with actual data have analyzed the effect of selection over the genetic variance. Moreover, these works do not distinguish between drift and selection effects. In our study, we analyzed the effect of drift and selection over the loss of genetic variance for milk yield for a period of 33 years in a population of French dairy sheep Manech Tete Rousse. We observed a stabilization at 13% of loss of genetic variance, with 3% due to drift and 10% due to selection. In conclusion, neither drift nor selection has an important effect on the loss of the genetic variance of milk yield in this population.

Highlights

• Genetic variance is important to estimate future genetic progress • Selection and drift reduce genetic variance • In Manech Tête Rousse, the loss of genetic variance was about 13% for females • Bulmer effect had a greater influence (10%) than drift (3%)

• Changes in breeding objectives affect the evolution of genetic variance

These results highlight that there is a need to check the evolution of genetic variability and that common strategies diversifying selection objectives and controlling inbreeding result in small losses of genetic variation. We are grateful to the Genotoul Bioinformatics Platform Toulouse Midi-Pyrenees (Bioinfo Genotoul; Toulouse, France) for providing computing and storage resources. We thank Jean-Michel Astruc (IDELE; Toulouse, France) for his help with the breeding objectives of the MTR and the use of SelAction and Francis Fidelle (CDEO; Ordiarp, France) for discussions on evolution of genetic variation in the breed. We also want to thank the Center of Quantitative Genetics and Genomics, Aarhus University (Tjele, Denmark) because part of this work was done during a visit by the first author to the center.

Notes

The authors have not stated any conflicts of interest. Further research is needed on this open subject.

The work on real data

We explored bias in Manech Tête Rousse milk yield genetic evaluations. In this work, we tested BLUP and SSGBLUP models and modeled the missing pedigree using unknown parent groups (UPG) and metafounders. In this population, the highest percentage of the missing pedigree corresponds to missing sires.

By ignoring the missing pedigree, we assume that all individuals without parents have the same mean as the base population, which is not true under selection. This situation can cause bias, as shown in Lacaune, where the inclusion of UPG in an SSGBLUP evaluation fixed the problem of bias (Astruc et al., 2014).

The theory for UPG was developed to account for the differences between groups of missing parents in BLUP on an additive relationship matrix A [START_REF] Thompson | Sire Evaluation[END_REF]Quaas, 1988).

The adaptation to SSGBLUP can be made considering the UPG only in A -1 (SSGBLUP-UPG) or considering the UPG on the matrix H -1 , which combine pedigree and genomic relationships (SSGBLUP-EUPG) (Misztal et al., 2013). The UPGs can be estimated as fixed or random effects, and models that include UPGs are very common in dairy cattle [START_REF] Matilainen | Managing Genetic Groups in Single-Step Genomic Evaluations Applied on Female Fertility Traits in Nordic Red Dairy Cattle[END_REF][START_REF] Tsuruta | Controlling bias in genomic breeding values for young genotyped bulls[END_REF][START_REF] Tsuruta | Bias in genomic predictions by mating practices for linear type traits in a large-scale genomic evaluation[END_REF][START_REF] Kudinov | Metafounder approach for single-step genomic evaluations of Red Dairy cattle[END_REF][START_REF] Lourenco | Single-Step Genomic Evaluations from Theory to Practice: Using SNP Chips and Sequence Data in BLUPF90[END_REF]. Later, Legarra et al. (2015) introduced the concept of MF. The MF theory establishes relationships between genetic groups by the inclusion of a matrix (Γ) containing the (co)variances among groups. The Γ matrix can be estimated from genomic information (Garcia-Baccino et al., 2017) and applied to BLUP models besides SSGBLUP.

Therefore, we tested five models BLUP-UPG, BLUP-MF, SSGBLUP-UPG, SSGBLUP-EUPG and SSGBLUP-MF.

We performed the across model comparison in two ways and focused on the estimator of the slope. The first approach was to obtain the 𝐸𝐵𝑉 𝑝 with one model and 𝐸𝐵𝑉 𝑤 with another one. A second approach was to compare the EBVs at birth with and without genomic data (BLUP vs. SSGBLUP models).

The comparison across models has no theoretical support (Legarra and Reverter, 2018), but the objective was to check consistency of the models with each other. Almost all French dairy sheep selection schemes have changed to genomic selection in recent years. We should not expect great changes in the EBVs with the model's refinement to account for genomic information. In that sense, the across model comparison can provide important information for decision making in selection schemes.

The comparisons within models showed a slight over-estimation of the genetic trend, with values ranging from 0.23𝜎 𝑢 for SSGBLUP-MF to 0.48𝜎 𝑢 for BLUP-UPG and SSGBLUP-EUPG.

A previous study on Manech Tête Rousse, applying a different method, found bias of ≈ 0.6𝜎 𝑢 and ≈ 0.3𝜎 𝑢 for BLUP and SSGBLUP models, respectively (Legarra et al., 2014a).

Chapter VI. Conclusions and perspectives