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Abstract — Early warning against natural disasters to save lives and decrease damages
has drawn increasing interest to develop systems that observe, monitor, and assess the changes
in the environment. Over the last years, numerous environmental monitoring systems and
Earth Observation (EO) programs were implemented. Nevertheless, these systems generate a
large amount of EO data while using different vocabularies and different conceptual schemas.
Accordingly, data resides in many siloed systems and are mainly untapped for integrated
operations, insights, and decision making situations. To overcome the insufficient exploita-
tion of EO data, a data integration system is crucial to break down data silos and create a
common information space where data will be semantically linked. Within this context, we
propose a semantic data integration and querying approach, which aims to semantically inte-
grate EO data and provide an enhanced query processing in terms of accuracy, completeness,
and semantic richness of response. To do so, we defined three main objectives. The first
objective is to capture the knowledge of the environmental monitoring domain. To do so,
we propose MEMOn, a domain ontology that provides a common vocabulary of the environ-
mental monitoring domain in order to support the semantic interoperability of heterogeneous
EO data. While creating MEMOn, we adopted a development methodology, including three
fundamental principles. First, we used a modularization approach. The idea is to create sep-
arate modules, one for each context of the environment domain in order to ensure the clarity
of the global ontology’s structure and guarantee the reusability of each module separately.
Second, we used the upper-level ontology Basic Formal Ontology and the mid-level ontolo-
gies, the Common Core ontologies, to facilitate the integration of the ontological modules in
order to build the global one. Third, we reused existing domain ontologies such as ENVO
and SSN, to avoid creating the ontology from scratch, and this can improve its quality since
the reused components have already been evaluated. MEMOn is then evaluated using real
use case studies, according to the Sahara and Sahel Observatory experts’ requirements. The
second objective of this work is to break down the data silos and provide a common envi-
ronmental information space. Accordingly, we propose a knowledge hypergraph-based data
integration approach to provide experts and software agents with a virtual integrated and
linked view of data. This approach generates RML mappings between the developed ontol-
ogy and metadata and then creates a knowledge hypergraph that semantically links these
mappings to identify more complex relationships across data sources. One of the strengths of
the proposed approach is it goes beyond the process of combining data retrieved from multiple
and independent sources and allows the virtual data integration in a highly semantic and ex-
pressive way, using hypergraphs. The third objective of this thesis concerns the enhancement
of query processing in terms of accuracy, completeness, and semantic richness of response
in order to adapt the returned results and make them more relevant and richer in terms of
relationships. Accordingly, we propose a knowledge-hypergraph based query processing that
improves the selection of sources contributing to the final result of an input query. Indeed,
the proposed approach moves beyond the discovery of simple one-to-one equivalence matches
and relies on the identification of more complex relationships across data sources by referring
to the knowledge hypergraph. This enhancement significantly showcases the increasing of
answer completeness and semantic richness. The proposed approach was implemented in an
open-source tool and has proved its effectiveness through a real use case in the environmental
monitoring domain.






Résumé — Les dégats humains et matériels engendrés par les catastrophes naturelles,
avaient suscité un intérét grandissant pour le développement des systemes d’observation et
de surveillance de I'environnement, sans pour autant mettre en exergue, la collaboration et
I’échange comme principal point d’une efficace prévention des catastrophes. De tels systemes
génerent des données hétérogenes et cloisonnées dans des silos. A défaut d’une vision globale
des données disponibles, les experts éprouvent des difficultés a accéder, manipuler et com-
prendre ces données multi-source. Afin de remédier a cette insuffisance d’exploitation, un
systeme d’intégration de données est essentiel pour briser les silos de données et créer un
espace commun d’information ou les données seront liées sémantiquement. C’est dans cet
ordre d’idées que nous proposons une approche sémantique d’intégration et d’interrogation
des données multi-sources. Pour ce faire, nous avons défini trois principaux objectifs. Le
premier objectif est de formaliser les connaissances liées au domaine de ’environnement afin
d’assurer une interopérabilité sémantique entre les données multi-source. Ainsi, nous avons
proposé MEMOn, une ontologie de domaine qui fournit un vocabulaire commun couvrant
le domaine de l’environnement. Nous avons adopté une méthodologie agile basée sur la
modularisation, ’alignement avec une ontologie de haut niveau et la réutilisation des ontolo-
gies existantes. La modularisation consiste a développer des modules ontologiques séparés.
Chaque module présente un contexte spécifique du domaine de ’environnement et ce dans
le but d’assurer la clarté de la structure de 'ontologie globale. De plus, nous avons utilisé
I’ontologie de haut niveau Basic Formal Ontology et les ontologies intermédiaires Common
Core Ontologies afin de faciliter 'intégration des modules ontologiques développés pour créer
MEMOn. Aussi, nous avons aussi réutilisé des ontologies de domaine existantes telles que
ENVO et SSN afin d’éviter de créer notre ontologie & partir de zéro. MEMOn est ensuite
évaluée a l'aide de cas d’utilisation réelles et conformément aux exigences des experts. Le
deuxieme objectif de ce travail est de briser les silos de données et de fournir un espace
commun d’information sur I’environnement ou les données pourraient étre liées sémantique-
ment. En conséquence, nous proposons une approche sémantique d’intégration virtuelle des
données basée sur 'hypergraphe afin de fournir aux experts une vue intégrée et liée des don-
nées. L’approche consisite a génrer des mappings RML entre 'ontologie et les métadonnées
et a créer ensuite un hypergraphe de connaissances qui relie sémantiquement ces mappings
afin d’identifier des relations plus complexes entre les données. Un des atouts de I’approche
proposée est qu’elle va au-dela du processus de combinaison de données extraites de sources in-
dépendantes pour assurer une intégration de données hautement sémantique et expressive. Le
troisieme objectif de cette thése concerne 'amélioration du traitement des requétes en termes
de précision et de complétude des résultats afin d’adapter les résultats renvoyés et les rendre
plus pertinents et plus riches termes de relations. En conséquence, nous avons développé une
approche de traitement des requétes basée sur I’hypergraphe de connaissances qui améliore
la tdche de sélection des sources contribuant au résultat final d’une requéte SPARQL saisie.
En effet, approche proposée transcende la simple découverte de correspondances entre la
requéte et les schémas de sources et assure 'identification de correspondances plus complexes
avec les sources de données en se référant a I’hypergraphe de connaissances. Sur la base
de ces résultats, d’autres étapes du traitement de la requéte, y compris la réécriture de la
requéte et ’évaluation de la requéte, sont effectuées. Notre approche est concrétisée par le
développement d’un outil dont I'efficacité a été prouvée moyennant 1’évaluation d’un cas réel.
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Introduction

Context and motivations

In recent years, the Earth has undergone rapid climate change and natural activities, which
are believed to increase the number of natural disasters, such as storms, floods, earthquakes,
and hurricanes. These disasters have dramatically influenced not only the natural environ-
ment but also human life. Consequently, research communities have given great importance
to the development and implementation of Earth Observation (EO) systems (such as sen-
sors and satellite platforms (Sentinel, 2000)) and environmental monitoring programs (such
as Copernicus (Copernicus, 2014) and SERVIR Global (SERVIR, 2005)). Along with the
increased number of monitoring solutions, a multitude of heterogeneous EO data is gener-
ated. However, these data are often hidden in isolated silos, maintained in legacy systems
and sometimes are not digitally available, or agreement to specific laws and regulations is
required to access them. Issues of managing data in terms of copyright and licensing, pricing,
and data rights, though changing fast, are commonly difficult and still limit open access to
EO data.

Accordingly, the exploitation of EO data is limited, and experts’ involvement is still re-
quired to scout for data that are needed for integrated studies. Undeniably, we have not
reached a level where data are interoperable and linked so that experts can reuse them
soundly. We are still far away from the vision of common environmental information space
(Athanasiadis, 2015). Several environmental events serve as examples of how the absence of
linked observed data hinders the anticipation and the understanding of natural phenomena.
One of the most known disasters’ examples is Hurricane Irma, which occurred across the
Caribbean in 2017 (IRMA, 2017). Indeed, the lack of a common environmental information
space between the national hurricane center of NOAA (NOAA, 2014), that monitors the
Atlantic basin and NASA (Emmons et al., 2007) that observes the African Sahara Desert
has hampered the prediction of this devastating disaster power and consequently delayed the
governments’ alerting so that they could have taken more preventive actions.

Our purpose is to break down the data silos to provide what we call a global information
view, where different EO systems will have not only unhampered and uniform access to the
available data but also be able to interpret and use them. This global information view allows
the data sources to speak the same language and to link information so that domain experts
could transform them into actionable knowledge. We refer here to a knowledge graph (KG)
(Ehrlinger and W68, 2016). A KG is defined as a multi-relational graph composed of entities
and relationships between them. With this KG, experts can look at all of this data and try
to find meaning out of its correlations to understand natural phenomena and make the right
decisions about disasters’ risk preventions.

A global information view is further challenged by semantic data integration. Semantic
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data integration goes beyond the data integration process of combining data retrieved from
independent sources to provide an integrated and interoperable structure (Lenzerini, 2002).
Indeed, semantic data integration is the process of combining and consolidating disparate data
into meaningful and valuable information by creating links between them in order to create
a richer global view (Cheatham and Pesquita, 2017). Unfortunately, several challenges are
confronted by semantic data integration. One of the most obvious is data heterogeneity, which
can appear at different levels. In fact, EO data are generated in different formats (databases,
CSV files, Raster images, etc.). Besides, each data source has its own and different data
model or schema. Furthermore, data is semantically heterogeneous (synonymy, polysemy,
etc.). Each source offers data or semantic models encoding domain knowledge that resides in
the experts’ minds. Thus, EO experts or data analysts need to establish contact with original
data sources and model producers to understand and use them properly. For example, the
Observatory of Sahara and Sahel (OSS) (OSS, 2010) may use the word “rainfall” for the same
real-world feature that usually refers to “precipitation” in other sources, including NOAA.
This heterogeneity of terms complicates the work of EO experts and software agents who
should be familiar with the vocabulary used in each source to understand data. Accordingly,
with this extensive heterogeneity of EO data, it is becoming increasingly difficult for domain
experts to understand natural phenomena and reduce the adverse effects of climate change.

Another fundamental challenge appears when developing an integration system and which
is the processing and answering of users’ queries. Several systems were developed to improve
and optimize query processing in terms of accuracy and runtime. These works focused on
generating methods to enhance the execution of the different query processing steps: source se-
lection, query planning, query evaluation, etc. However, devising source selection approaches
has not received much attention, despite the importance of this task in the query processing.
Source selection enables to identify the relevant data sources to an input user’s query. This
latter typically represents an exact expression of the user’s needs. However, because of the
dynamic nature of the data integration context and the abundance of data sources, users may
not know the data sources they questioned, nor their content. Due to the non-transparency
of sources’ contents, it can be possible that a relevant source does not contribute to the result
of a query. Accordingly, the queries reflect no more a need that must be satisfied but an
intention that must be extended according to data sources. Consequently, a user, with the
intention of satisfying an information need, may have to reformulate the query several times
and sift through many results until a satisfactory one. For instance, a traditional query pro-
cessing engine running a query that asks for atmospheric temperature in a specific country,
represented by its name, will only extract data from sources representing countries by the
name. Data sources that describe the requested country by its geographic coordinates will
not contribute to the result, although they contain relevant data. Clearly, query processing
needs to reach every possible source to obtain all possible answers. Thus, the need to move
beyond the discovery of simple one-to-one equivalence matches to the identification of more
complex relationships across datasets.

Accordingly, new challenges arise to enhance the processing of queries in terms of com-
pleteness and establish an appropriate method for enriching the returned results to a query
and make them more precise and more relevant. Representing the relationships between earth
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observations in the global information view so as to highlight the relationships between data
sources allows the query processing to return more focused, relevant, and hopefully optimal
answers. Therefore, enhancing the query processing in terms of response completeness re-
quires finding solutions to two interdependent issues: improving the modeling of the global
information view, and improving the selection of relevant data sources against the user’s

query.

Thesis objectives

In this thesis, we tackle the challenges of enabling semantic data integration and querying
over heterogeneous EO data sources. The aim is to improve the semantic integration and
linking among the multi-source data and to ensure an enhanced information extraction in
terms of accuracy, completeness, and relationships richness. According to those challenges,
the main objectives of this thesis are summarized in the following;:

e To have a better overview and mutual understanding of the environmental monitoring
domain and to ensure information exchange among experts and software agents by
representing and enriching the knowledge existing in EO data sources.

e To semantically link data so as to build a huge knowledge graph that, covering the
environmental monitoring domain, provides a global information view that takes full
advantage of heterogeneous data.

e To propose an enhanced query processing approach that allows to transparently query
distributed data sources and cover a broadening spectrum of user queries’ answers while
taking into account the results accuracy, completeness, and semantic richness challenges.

Research questions

To achieve the aforementioned objectives, this thesis will address the following main research
questions:

e RQ1: How to formalize the knowledge related to the environmental monitoring domain?

e RQ2: How to break down the data silos and deal with interoperability issues? This
research question is divided into several sub-questions:

— RQ2a: How to address the semantic, syntactic, and schematic heterogeneity issues
that hamper information exchange/interoperability among EO data sources?

— RQ2b: How to allow highly semantic expressive linked data in the context of
spatiotemporal data?

— RQ2c: How to ensure a semantic global view of information?
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e RQ3: How to improve the query engine performance in terms of results accuracy,
completeness, and relationship richness?

Contributions

Our work consists of four main contributions. First, we propose and develop an ontology
that formalizes the environmental monitoring domain. It gives an overview of the different
components/contexts which contribute to an environmental monitoring system, including en-
vironmental conditions (e.g., environmental phenomena), observing conditions (e.g., sensors
and measurements), infrastructure, and spatiotemporal context. The ontology also describes
relationships between the four components. Thus, while conceptualizing the ontology, we
adopt the principle of modularization. The idea is to create separate modules, one for each
context of the environment domain in order to ensure the clarity of the ontology’s structure
and guarantee ontology’s evolution and maintenance. Furthermore, we reuse an upper-level,
mid-level, and domain ontologies to promote the semantic interoperability among the pro-
posed ontological modules and existing ontologies in the same domain. The proposed ontology
aims to provide a common knowledge representation for the environmental monitoring do-
main and to facilitate semantic linking of data from different sources through a knowledge
graph.

Second, we exploit the proposed ontology to integrate the multi-source and heterogeneous
earth observations in order to provide experts and software agents with an integrated and
linked view of data. Accordingly, we propose a semantic data integration approach that vir-
tually integrates EO data by maintaining it in their sources and generates mappings between
data and the ontology in order to build a global information view. In addition, to highlight
the relationships between earth observations, we propose to use hypergraphs to model the
global information view. Hypergraphs are able to describe complex relationships between
earth observations because of their better expressive capabilities. Accordingly, the output of
the data integration approach is a knowledge hypergraph.

Then, we exploit the generated knowledge hypergraph to retrieve and adapt the returned
results to a user query and make them more relevant and semantically richer. Therefore, we
propose an enhanced query processing approach to consolidate relevant data from relevant
sources in order to enhance information extraction in terms of accuracy, completeness, and
semantic richness. Specifically, the source selection task of the query processing is enhanced
to identify relevant sources that possibly contribute to the final result.

Finally, we propose an open-source prototype implementation of the semantic data inte-
gration and querying approach, that we evaluate in a real-world use case. Figure 1 illustrates
the mind map of the research methodology.
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Thesis outlines

Chapter 1 is devoted to providing an overview of topics related to this thesis. First, we
introduce the semantic web and the basic concepts related to it. Then, we present the
general principles of data integration followed by the description of the two main categories
of data integration approaches; the materialized and the virtual approaches and point out
their implications on the query answering process. Afterward, we remind the fundamentals
of hypergraphs.

Chapter 2 is divided into two parts. The first part gives an overview of the project
PREDICAT, scope of this work, by defining the context and the motivations of the project.
Then, the architecture of PREDICAT platform is presented to specify the context of this thesis
and better understand its positioning and its orientations. In the second part, we present
the state of the art. First, we give a research overview of the existing ontologies in the earth
observation and environmental monitoring domains. Then, we discuss different semantic data
integration and query processing approaches and based on the identified research gaps, we
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underline the challenges that should be considered in this work.

In chapter 3, we present the proposed domain ontology that semantically captures the
knowledge related to the environmental monitoring domain. The ontology’s development ap-
proach is detailed, following the different steps of the adopted agile ontology building method-
ology. Specifically, we describe how the environmental monitoring domain is conceptualized
and formalized. Then, we demonstrate how the implemented ontology is evaluated through
a verification step against the ontology requirements initially identified and a validation step
using a real use case study.

Chapter 4 depicts the proposed semantic data integration and querying approach that
promotes semantic linking of the multi-source data and improves the query processing in terms
of accuracy, completeness, and semantic richness. The two-phases architecture of the proposed
approach is presented. The first phase presents the hypergraph-based data integration, and
the second phase presents the enhanced query processing. The mechanisms of the two phases
are explained in detail.

Chapter 5 reports the experimental results to assess the performance of the proposed data
integration and querying approach. First, we present Onto-KIT, the tool that implements the
proposed approach. Then, we present the performed experiments and their relative results,
and we discuss the impact of our approach regarding several challenges, namely schema
matching accuracy, query results completeness, and semantic richness.

Finally, in chapter 6, we provide concluding remarks, the limitations of our work and
suggest potential future directions.
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1.1 Introduction

This chapter is intended to provide the reader with an overview of the scientific and techno-
logical context of this thesis. For a general standpoint, this work is mainly influenced by two
areas of research that are frequently considered in relation to each other, namely, ontology
engineering and data integration. Therefore, in this chapter, we will introduce the basic con-
cepts of these research areas. We first describe the semantic web and its related concepts.
Specifically, we remind the principles of ontologies. Then, we present the fundamentals of data
integration, followed by the description of two categories of data integration approaches (ma-
terialized and virtual) and explain their implications on the query answering process. Finally,
we synthesize the fundamentals of hypergraphs, which are used in the approach proposed in
this work.
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1.2 Semantic Web and ontologies

“The Semantic Web (SW) is an extension of the current web in which information is given well-
defined meaning, better-enabling computers, and people to work in cooperation” (Berners-
Lee et al., 2001). The term “Semantic Web” has been disseminated by Berners-Lee et al.
as referring to a vision of an intelligent web and refers to the Worldwide Web Consortium
(W3C)’s vision of the Web of linked data. The term most closely related to the development
of the SW is “ontology”. This is because ontologies, which provide a formal vocabulary of
concepts and the axioms relating them, are used to annotate and describe the “semantics”
of the data in a way meaningful for machine interpretation. Thus, in the following sections,
concepts relevant to SW and ontologies are outlined.

1.2.1 Semantic Web

The Semantic Web, according to Tim Berners-Lee, is a web of data, in some way, like a global
database. The SW “will bring structure to the meaningful content of Web pages, creating an
environment where software agents roaming from page to page can readily carry out sophisti-
cated tasks for users” (Berners-Lee et al., 2002). In addition to the classic Web of documents,
W3C is helping to build a technology stack to support a Web of data. The goal of SW is
to make Internet data machine-readable. To allow the encoding of semantics with the data,
and enable web agents to understand these data, technologies such as Resource Description
Framework (RDF) and Web Ontology Language (OWL) are used. SW technologies allow
people to create data stores on the Web, build vocabularies, and write rules for handling
data.

It has been widely accepted that the architecture of the SW will be based on a hierarchy
of languages, each of which both exploits the features and extends the capabilities of the
layers below. This has been illustrated in Tim Berners-Lee’s famous “Semantic Web Stack,”
presented in Figure 1.1 It shows how technologies that are standardized for SW are organized
to make the SW possible. It also shows how SW is an extension (not replacement) of the clas-
sical hypertext web. The stack is still evolving as the layers are concretized. The technologies
from the bottom of the stack up to OWL are currently standardized and accepted to build
SW applications. As one of the building blocks of Semantic Technologies, ontologies are part
of the W3C standards stack for the SW. They provide users with the necessary structure to
link one piece of information to other pieces of information on the Web of Linked Data.

1.2.2 Ontologies

The term “ontology” has different meanings in different contexts. In philosophy, it is a branch
of metaphysics and is the study of the kinds of things that exist (Hofweber, 2014). However,
in computer science, an ontology is typically defined as follows: “An ontology is an explicit
specification of a conceptualization” (Gruber, 1995).
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Figure 1.1: Tim Berners-Lee’s Semantic Web Stack (Berners-Lee et al., 2001).

Ontologies have been widely used for knowledge representation as they provide a shared
vocabulary for modeling a specific domain by capturing knowledge in a structured and formal
way. According to (Maedche and Staab, 2001), an ontology is formally defined as follows:

Definition 1.2.1. An ontology O is defined as a 3-tuple: O = <C,R,A>, where:

(i) Cis a set of elements called classes,

(i) R € C x C is the set of relations between classes and contains the existing inherent
hierarchical structure among the classes in C (hierarchical taxonomy),

(iii) A is the set of axioms in O.

Several classifications were presented in the literature to differentiate ontology categories.
Figure 1.2 illustrates a classification based on domain scope as given in (Falquet et al., 2011).

e Foundational, upper, or top-level ontologies are generic ontologies that can be
viewed as meta ontologies describing the high-level concepts or universals used to define
other ontologies. They guarantee interoperability between domain ontologies sharing
the same upper-level ontology (Noy, 2004) and facilitate the integration and knowledge
reuse. The most well-known foundational ontologies are the Suggested Upper Merged
Ontology (SUMO) (Pease et al., 2006), the Descriptive Ontology for Linguistic and
Cognitive Engineering (DOLCE) (Masolo et al., 2002) and the Basic Formal Ontology
(BFO) (Arp et al., 2015).

e Mid-level ontologies provide more concrete representations of abstract entities de-
fined in the upper-level ontology. They serve as a bridge between abstract entities
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defined in the upper-level ontology and low-level domain specified in the domain ontol-
ogy.

e In contrast, domain ontologies are only applicable to a domain with a particular point
of view. They describe the vocabulary related to a specific area of knowledge (such as
medicine, environment, etc.), specializing terms introduced in the upper-level ontology.

e Finally, application ontologies are specializations of domain ontologies. They de-
scribe the concepts based on a particular context of the domain.

Top Level or Foundational Ontology

specializes

Mid level Ontology

specializes

Domain Ontology

specializes

Application or Local Ontology

Figure 1.2: Ontology classification based on domain scope (Falquet et al., 2011).

The construction of an ontology is a task that requires knowledge from experts in the field
of knowledge to be described, as well as engineering skills from the ontologists themselves.
Ontology engineering is the discipline that investigates the principles, methodologies, tools,
and languages for initiating, developing, and maintaining ontologies (Sure et al., 2009). To
assist domain experts in building ontologies, a methodology that guides the development pro-
cess is required. In fact, an ontology development methodology comprises a set of established
principles, processes, practices, methods, and activities used to design, construct, evaluate,
and deploy ontologies (Gasevic et al., 2009). Accordingly, different ontology development
methodologies have emerged e.g. METHONTOLOGY (Ferndndez-Lépez et al., 1997), NeOn
(Networked Ontologies) (Sudrez-Figueroa et al., 2012), AOM (Agile methodology for develop-
ing Ontology Modules) (Gobin, 2013) and OntoClean (Guarino and Welty, 2004). A synthesis
of these different methodologies is presented in (Karray et al., 2012).

1.2.3 SW technologies and languages

Middle layers of the SW stack contain technologies standardized by W3C to enable building
semantic web applications. In this section, we provide a brief description of some SW related
technologies and languages used further in this thesis.
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1.2.3.1 Resource Description Framework (RDF)

The Resource Description Framework (RDF) is a family of W3C specifications originally de-
signed as a metadata data model (RDF, 2014). It is used as a general method for conceptual
description or modeling of information, which is implemented in web resources, using a va-
riety of syntax notations and data serialization formats. RDF is a standard model for data
interchange on the Web. It has features that facilitate data merging even if the underlying
schemas differ. It specifically supports the evolution of schemas over time without requiring
all the data consumers to be changed. RDF extends the linking structure of the Web by using
URIs (Berners-Lee, 2002) to name the relationships between things as well as the two ends
of the link. This is usually referred to as a “triple”. Each triple (s,p,0) consists of a subject
s, a predicate p, and an object o. The predicate denotes the relationship between subject
and object. Using this simple model, RDF allows structured and semi-structured data to
be mixed, exposed, and shared across different applications. This linking structure forms a
directed, labeled graph, where the edges represent the named link between two resources,
represented by the graph nodes. This graph view is the easiest possible mental model for
RDF and is often used in easy-to-understand visual explanations. Formally, an RDF triple is
defined as follows:

Definition 1.2.2. RDF triple Assume there are pairwise disjoint infinite sets I, B, and L
(IRIs, Blank nodes, and literals). A triple (s, p,0) € (IUB) x I x (IU B U L) is called an
RDF triple, where s is the subject, p the predicate, and o the object.

http://example.org/Book

http://example.org/hasTitle

Semantic Web for the Working
Ontologist

Figure 1.3: Graph representation of an RDF triple.

The example in Figure 1.3 shows a representation of an RDF triple; the statement S
“The book has the title Semantic Web for the Working Ontologist” is modeled as a triple
with “book” as the subject, “has title” as the predicate, and “Semantic Web for the Working
Ontologist” as the object. Both the subject and the predicate are identified by a URI, while
the object can be a URI or a literal value (i.e., a string or a number).

RDF triples can be written in different syntaxes such as RDF/XML, Turtle, N-triples,
and JSON-LD. The graph in Figure 1.3 can be represented in Turtle as:

Oprefix ns: <http://example.org/>.
ns:Book ns:hasTitle "Semantic Web for the Working Ontologist".
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Listing 1.1: A statement expressed in Turtle format.

The same statement S written in RDF /XML format:

<rdf :RDF =xmlns:ns="http://example.org/">
<rdf:Description rdf:about="http://example.org/Book">
<ns:hasTitle
rdf :datatype="http://www.w3.0rg/2001/XMLSchema#string">
Semantic Web for the Working Ontologist </mns:hasTitle>
</rdf :Description>
</rdf :RDF>

Listing 1.2: A statement expressed in RDF /XML format.

S written in N-Triples format:

<http://www.w3.o0org/2001/sw/RDFCore/ntriples/> <http://example.org/Book
"> <http://example.org/hasTitle"> "Semantic Web for the Working
Ontologist".

Listing 1.3: A statement expressed in N-Triples format.

N-Quads format extends N-Triples with an optional context value in the fourth position.
This new value can be added to describe the context of the triple, which is called the <con-
text>, and that becomes RDF quads instead of triples (Katib et al., 2017). The following
listing illustrates the quad model corresponding to statement S with BookContext represent-
ing the context.

<http://example.org/Book"> <http://example.org/hasTitle"> "Semantic
Web for the Working Ontologist". <http://example.org/BookContext>

Listing 1.4: A statement expressed in N-Quads format.

An RDF graph is a set of RDF triples (Klyne et al., 2009). An RDF graph is typically
loaded into an RDF triple store. The RDF Triple Stores or RDF databases are specifically
designed to store collections of RDF triples, to support the standard SPARQL query language,
and possibly to allow some kind of inference via semantic rules. Examples of RDF databases
are Jena (McBride, 2002), OpenLink Virtuoso (Erling and Mikhailov, 2009), and RDF4J
(formerly OpenRDF Sesame) (RDF4J, n.d.).

1.2.3.2 Web Ontology Language (OWL)

In order to extend the limited expressiveness of RDF Schema, a more expressive Web Ontology
Language (OWL) has been defined by the W3C (Antoniou and Van Harmelen, 2004). OWL
is part of the W3C’s Semantic Web technology stack, layered on top of RDF, and can be
used to describe the set of facts for authoring ontologies which builds on RDF. OWL uses
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RDF namespaces to integrate the many different and incompatible ontologies that exist. The
primary goal of OWL is to be able to describe concepts and relationships as unrestricted as
possible, but also allow computers to infer and reason about them.

OWL can be divided into a family of three languages; Full, DL, and Lite. OWL Full is
the complete language, while the others are subsets or restrictions of it. OWL-DL, supports
Description Logics, a logic family applying carefully selected restrictions on what can be
expressed. OWL Lite has more limitations in order to make the creation of an ontology
easier. It is used for taxonomies and simple constraints. OWL 2 is an extension and revision
of OWL developed by the W3C Web Ontology Working Group and published in 2004. The
RDF-based semantics can be applied to any OWL 2 Ontology, without restrictions, as any
OWL 2 Ontology can be mapped to RDF.

1.2.3.3 SPARQL

SPARQL Protocol And RDF Query Language (SPARQL) is an RDF query language, that is,
a semantic query language for databases, able to retrieve and manipulate data stored in RDF
format (Prud’Hommeaux et al., 2007). SPARQL can be used to express queries across diverse
data sources, whether the data is stored natively as RDF or viewed as RDF via middleware.
SPARQL contains capabilities for querying required and optional graph patterns along with
their conjunctions and disjunctions. This language also supports extensible value testing and
constraining queries by source RDF graph. The results of SPARQL queries can be results
sets or RDF graphs. A SPARQL query is formally defined as:

Definition 1.2.3. A SPARQL query is a 4-tuple <GP, DS, SM, R>, where:
(i) GP is a graph pattern. Several forms of GP exist. The most used one is the basic graph

pattern (BGP), which combines the triples patterns of a query. The graph pattern of a
query is also called a query pattern.

(ii) DS is an RDF Dataset,

(iii) SM is a set of solution modifiers. A solution sequence modifier is one of (Order, Pro-
jection, Distinct, Offset, and Limit modifiers)

(iv) R is a result form. SPARQL provides four different forms of query: SELECT, CON-
STRUCT, DESCRIBE, ASK. Among these forms, SELECT query is the most frequently
used query form (Yu, 2011).

A SPARQL select query has the following general form:

e PREFIX (Namespaces prefixes).
e SELECT (Result Set).
e FROM (Data Set) the link to the URI where dataset(rdf/ttl) file resides.
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e WHERE (Query Triple Pattern).

e Modifiers, example: ORDER BY.

Listing 1.5 illustrates an example of a SPARQL select query.

\textcolor{blue} {# prefix declarations}
PREFIX flight: <http://www.example.com#>
# result clause

SELECT DISTINCT 7?destination

# dataset defimnition

FROM <http://www.w3.org/Flights/>

# query pattern

WHERE

{ 7f flight:DestinationCity ?destination.
?f flight:hasAirline 7airline.

7airline flight:hasName "AA"; }

# query modifiers

ORDER BY(?7destination)

Listing 1.5: An example of a SPARQL select query.

1.2.3.4 SWRL

The Semantic Web Rule Language (SWRL) was designed to be the standard rule language of
the Semantic Web (Horrocks et al., 2004). It allows users to write rules expressed in terms of
OWTL concepts to reason with OWL individuals. The rules can be used to infer new knowledge
from existing OWL knowledge bases.

To overcome the expressiveness limits of OWL2, we use the SWRL language. An SWRL
rule includes two parts and is described as “antecedent” — “consequent.” This signifies that
if all the conditions in the antecedent are held, then all atoms in consequent must also be
held. Atom is the basic component that appears in a SWRL rule. In SWRL, properties
and individuals defined in the OWL are applied in the atom clause as the attribute and the
parameter of the atom, respectively. There are many sorts of atoms, but in our work, two
common atoms in SWRL syntax are used in the reasoning phase of problem-solving;:

e C(7x): If x is an instance of the class C or the value of its data property, then C(7x)
holds.

e P(7x, 7y): If x is related to y via property P, then P(7x, ?y) holds. Here P is the
property defined in the existing ontology, x and y can be variables, individuals, or the
data value.

It’s to note that there are also built-in functions in the SWRL syntax that are capable of de-
scribing the logical comparison relationship, including swrib:lessThan and swrlb:greaterThan.
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1.2.3.5 Ontology programming tools

Several methods and tools have been proposed for the development, the edition, the main-
tenance, or the evaluation of ontologies. Ontology Editors are open-source and commercial
tools that assist in the development of ontologies, including the Protégé editor (Protégé,
2014). They can be applied to several stages of the ontology life cycle, including the creation,
the implementation, and maintenance of the ontologies. A comparative study of ontology
editors is presented in (Kapoor and Sharma, 2010).

For the evaluation of the ontologies, different tools are available, i.e., HermiT (Glimm
et al., 2014) and Pellet (Parsia and Sirin, 2004) reasoners. These tools are applied to ensure
the consistency of the ontology as well as its overall quality. They can also be used to infer
additional knowledge explicitly included in an OWL ontology (e.g., class equivalence checks).
That is why they are usually called semantic reasoners or reasoning engines.

OWL ontology is mainly used as a knowledge base for the building of more sophisticated
software that is not going to be based on the usage of ontology editors and reasoners. Accord-
ingly, several semantic frameworks have emerged to facilitate the building of semantic-based
applications such as OWL API (Horridge and Bechhofer, 2011), OWLReady (Lamy, 2017),
Jena, RDF4J, etc. OWL API is mainly used for building and managing OWL ontologies.
It provides objects and functions for manipulating the elements that compose an ontology
(i.e., classes, individuals, properties, annotations, restrictions, etc.). Jena and RDF4J are the
frequently RDF-based frameworks used to extract data from and write to RDF graphs.

1.2.4 Modular ontology

An ontology module may be defined as: “a reusable component of a larger or more complex
ontology, which is self-contained but bears a definite relationship to other ontology modules”
(Stuckenschmidt et al., 2009). Based on the definition 1.1, we formally define an ontological
module as follows:

Definition 1.2.4. An ontological module denoted Mo is a 4-tuple: Mo=<CP 70, Caso, Rasos
Ayio>€ O
Where,

(i) CPuro € Cho: is the pivotal class of the module,

(ii) Caro C C: represents the set of classes of the module,

(iii) Raro € Caro x Care: is the set of relationships among ontological module classes,

(iv) Apo C A: is the set of axioms that refer to assertions and rules in a logical form.
Ontology modularization or modular ontology is an interesting approach that deals with

ontology re-usability. It is the process of defining a module, which is a subset of the main
ontology. The modularity of the ontology aims at:
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e Improving the ontology development process by reducing the complexity of designing,
maintaining, enriching and replacing modules,

e Maintaining the clarity and the coherence of the ontology by presenting ontology mod-
ules with needed knowledge, and

e Promoting the reuse of each module separately.

1.3 Data integration

Data integration is the process of combining data retrieved from multiple and independent
sources to provide the user with an integrated and unified view of data, called global schema
(Lenzerini, 2002). Data integration has been the subject of research since the early eighties
(Smith et al., 1981) (Dayal and Hwang, 1984). Since then, theoretical and applied research
in this area has been very important.

Data integration grew out of Extract, Transform, and Load (ETL) tools in order to
automate efforts. ETL tools extract data from various and heterogeneous sources, then
transformed it into a consistent and unified format and finally loaded it into a data warehouse.
This process is commonly referred to as the materialized (or warehouse) approach.

However, along with the heterogeneity of data formats and schema, ETL solutions be-
come inappropriate for a flexible and dynamically data management system. New integration
approaches are required to handle the massive amount and the variety of the generated data.
This limitation has drawn the interest of many researchers to NoSQL data management
systems, as these systems should provide data management features for a high amount of
schema-less data. Some of them have already gained recognition due to adoption by large
projects. Among them: Hadoop/HBase, Cassandra, SimpleDB, MongoDB, and CouchDB.

Nevertheless, NoSQL systems did not solve the heterogeneity problem. They just added
new choices for data management (new data models, new query languages, etc.) Therefore,
the need for integrated access to all data in organizations is more prominent than before.
As an answer to this situation, Data Lake systems have emerged. “A data lake is a set of
centralized repositories containing vast amounts of raw data (either structured or unstruc-
tured), described by metadata and organized into identifiable data sets” (Chessell et al.,
2014). The proliferation of data lakes enabled the switch from ETL to ELT (Extract, Load,
and Transform) approach.

However, data is useful only if they can be used to make right and timely decisions.
Spending a lot of time in finding data in a data lake reduces the efficiency of data management
systems. Accordingly, data lake systems cannot handle the scale and complexity of huge data.
Additionally, they do not provide real-time analysis and situational awareness that operators
and engineers need to make critical operational decisions at the moment. Experts and software
agents need a more flexible approach to integrate data (of the Data Lake, 2019). Therefore,
the field of data virtualization began to develop. Data virtualization enabled a more agile
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approach to data integration.

1.3.1 Data integration architectures

Integration can either be done physically or virtually. Regardless of the approach category,
in general, an integration system is composed of three main layers, as shown in Figure 1.4:

e Data layer: It contains all the data sources to be integrated.

e Warehouse or mediator layer: It contains the necessary elements to query the
different sources through a global schema. This latter can be virtual or materialized in
a data warehouse.

e Wrapper or Charger Layer: This layer provides access to data sources, extracting
data from them, and representing the data in the global schema. It is also the means
by which the source can interact with the other components of the architecture.

Application

]
| |
: |
] |
i Warehouse !
i .
! or mediator !
] |
| i
| |
!

Wrapper Wrapper Wrapper
or charger or charger or charger

Data Data Data
source 1 source 2 source 3

Figure 1.4: Data integration system.

Conventionally, a data integration system is defined as follows:

Definition 1.3.1. A data integration system I = (G, S, M), where:

e G is the global schema used to represent the unified view,
e S is the set of data sources that are represented by the set of local schemas S1, ..., Sn,

e M represents the mappings that specify correspondences between concepts of the local
schemas and concepts of the global schema.
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In the materialized approach, the data sources are physically integrated, and the global
schema is fully materialized (see Figure 1.5). Indeed, it is necessary that a new base, i.e., a
warehouse, be developed via a DBMS with a reproduction of all source data corresponding
to the global schema. In this case, requests to the global schema of the warehouse are based
on traditional interrogation techniques in the field databases. As a result, the user interacts
with the warehouse through direct data query requests.

Data integration is then based on the overall warehouse schema providing an integrated
view of sources. Since the integration is performed by ETL tools, which perform a multi-phase
process, the data integration process is divided into four main steps (Hacid and Reynaud,
2004) that correspond to those of the ETL (Extract, Transform and Load) approach below.

1. Data extraction from sources.
2. Data transformation at the structural and semantic levels.
3. Data integration.

4. Storage of data integrated into the target system.

The main advantages of materialized approaches are reactivity and the performance of the
system. Since the data is gathered into a single source similar to that of a simple database,
query processing is centralized, fast, and efficient. Furthermore, system performance is no
longer dependent on the performance of each source or communication delays. Nevertheless,
materialized approaches are expensive in maintenance and implementation, and ET processing
is time-consuming (Chen et al., 2004). Besides, there is no guarantee that the data loaded
into the data warehouse is up-to-date. In virtual approaches, the global schema is entirely
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source 1 source 2 source 3

Figure 1.5: Materialized data integration system.

virtual and thus not materialized. In this case, all data remains in local sources and is
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accessed through an intermediate infrastructure, usually called a mediator that contains the
global schema. The objective of this approach is to give the user the illusion of querying
a homogeneous and centralized system, while the sources are distributed and autonomous.
In virtual approaches, we distinguish between mediator-wrapper architecture and federated
architecture (Hose et al., 2011).

The mediator-wrapper architecture was proposed by Wiederhold to integrate data from a
selection of independent sources (Wiederhold, 1992). It is composed of three layers (Figure
1.6): mediator, wrappers, and sources. The mediator provides a common interface to the
user that is used to formulate queries. Specifically, At the mediator level, the global schema
provides a vocabulary for expressing requests and describing sources through a set of abstract
views on them. As a model of the field of application, ontology can be used as a global
schema. Indeed, it provides a structured vocabulary to support the expression of requests.
Besides, the mediator establishes a connection between the accessible sources by describing
their content in a consistent and uniform manner, in a global catalog.

Wrappers are tools that allow mediators to access the content of the sources in a uniform
language. They decompose or reformulate (rewrite) a request in a specific query language
accepted by each source. Wrappers also take care of transforming the data that the sources
produce as answers to the query into the mediator’s global schema. The second variant of
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source 3
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Figure 1.6: Mediator-wrapper-based data integration system.

virtual integration approaches is federated approaches. A federation is “a consolidation of
multiple sources providing a common interface” and, therefore, very similar to the mediator-
wrapper-based approach. The main difference to mediator-wrapper-based approaches is that
sources support the global schema and the query language that the federation agreed upon.
However, from the user’s point-of-view, there is no difference between the two architectures
as both allow transparent access to data. Similarly, the Semantic Web community does not
distinguish between these two architectures, so both approaches are mainly called federated
systems, virtual integration, or federated query processing (Hose et al., 2011).
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In this context, different types of SPARQL query federation can be defined that differ on
the access mechanism at the sources. They are divided into three main categories: Query
federation over multiple SPARQL endpoints, Query federation over Linked Data, and Query
federation on top of Distributed Hash Tables (Saleem et al., 2016).

e Query federation over multiple SPARQL endpoints: In this type of approach,
RDF data is made available via SPARQL endpoints. The federation engine makes use
of endpoint URLs to federate sub-queries and collect results back for integration. This
type of approach is the most popular used one.

e Query federation over Linked Data: This type of approaches relies on the Linked
Data principles for query execution. The set of data sources that can contribute to
extract results is determined by using URI lookups during the query execution without
any data knowledge. Accordingly, this type of approach cannot guarantee to find all
results because the relevant data sources change according to the starting point.

e Query federation on top of Distributed Hash Tables: This kind of federated
approach stores RDF data on top of Distributed Hash Tables (DHTSs). However, many
of the LOD datasets are not stored on top of DHTs.

Following these explanations, we turn our attention to the SPARQL endpoints federation
systems. Figure 1.7 illustrates the architecture of a SPARQL endpoint federation system.
This latter is composed of three layers: federator, SPARQL endpoints, and data sources
(Rakhmawati et al., 2013). In this type of system, data sources are RDF stores, and they
are available via SPARQL endpoints. A SPARQL endpoint is a query processing service
based on the SPARQL HTTP protocol, which enables to query remote data sources for both
machines and humans. The federator (also called federation engine) makes use of endpoint
URLs to federate sub-queries and collect results back for integration. Despite the differences
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Figure 1.7: SPARQL endpoint federation system.
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in architecture, virtual data integration approaches have the advantage of avoiding the cost
of materialization. Furthermore, the integrated data is always up-to-date.

1.3.2 Semantic data integration with ontologies

In recent years, the focus has been on data integration, relying on SW technologies. Specifi-
cally, an ontology can be used as a global schema. An ontology allows interoperability between
various heterogeneous data sources by providing a structured vocabulary that describes their
content in a homogeneous and uniform manner.

Some of the best-known semantic data integration approaches include approaches based on
the Ontology-based data Access/integration (OBDA/OBDI). OBDI approaches are classified
as virtual data integration approaches and refer to the use of ontologies that capture implicit
knowledge across heterogeneous relational databases to achieve semantic interoperability be-
tween these sources (Wache et al., 2001). In an OBDI, a domain ontology is connected to
the data sources through an explicit representation given in terms of mappings that relate
symbols in the ontology (classes and properties) to views over the data expressed by means
of SQL queries. In the particular case where the organization manages a single data source,
the term ontology-based data access (OBDA) system is used. Formally, we define an OBDA
specification and an OBDA system, as stated in definition 1.3.2.

Definition 1.3.2. An OBDA specification J is a triple <O, S, M>, where:

e O is an ontology,
e S is the schema of the data source,

e M is the mapping between O and S. Specifically, M consists of a set of mapping asser-
tions, each one relating a query over the source schema to a query over the ontology.

An OBDA system <J,D> is obtained by adding to J an extensional level, which is given
in terms of a database D, representing the data at the source, structured according to the
schema S (Calvanese et al., 2017).

The ontology and the mappings together expose the data in the form of a virtual RDF
graph, which is not materialized. These virtual RDF graphs can be materialized, generating
RDF triples stored in RDF triple stores; alternatively, they can be kept virtual and queried
using SPARQL queries. These queries are translated, making use of the mappings into queries
over the data sources (SQL queries for the relational databases, for example). In this setting,
users simply query the ontology and no longer need an understanding of the data sources.
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1.3.3 Data integration techniques
1.3.3.1 Schema matching

Schema matching is the problem of finding potential associations between elements (most
often attributes) of two schemas. Given two schemas S1 and S2, a solution to the schema
matching problem called a schema matching (or more often a matching), is a set of matches.
Matchings can be used as input to schema mapping algorithms, which discover the semantic
relationship between two schemas (Liu and Ozsu, 2009). Specifically, in order to resolve
semantic conflicts, it is possible to discover semantic correspondences among the elements of
different schemas by correctly identifying the meaning of schema labels (Hossain et al., 2014).
This process is called semantic schema matching. Ontologies can be viewed as schemas for
knowledge bases. Therefore, techniques developed for semantic schema matching in most
of the cases use ontologies as domain knowledge for a semantic annotation (i.e., finding the
meanings of a schema label in the ontology).

1.3.3.2 Schema mapping

Schema mapping is the process of establishing semantic connections between schemas. Given
a source schema S and a target schema T, a schema mapping M is a specification of a relation
between instances of S and instances of T (Liu and Ozsu, 2009). Many different mechanisms
and algorithms for schema mapping have been proposed. They fall into four categories: Global
As View, Local As View, Global and Local As View, and Both As View.

a) Global As View (GAV): In GAV, the global schema is described in terms of local
schemas (Chawathe et al., 1994). The main advantage of this method is the facility of trans-
lating a query on the global schema into queries on local schemas. However, GAV has several
drawbacks. First, since the global schema is expressed in terms of the sources, global relations
cannot model any information not present in at least one source. Second, GAV-based systems
do not facilitate adding a source to the system independently of other sources. Instead, when
adding a new source to the system or changing a local source schema, the corresponding
mappings must be recreated.

b) Local As View (LAV): To overcome the shortcomings of GAV, researchers came up
with the Local As View (LAV) approach (Duschka et al., 2000). LAV follows the opposite
direction where each local schema is expressed in terms of the global schema. The main
advantage of LAV is the simplicity of adding a new source to the system while preserving
the global schema since each data source is described independently of the others. However,
LAV suffers from the symmetric drawbacks of GAV. In particular, it cannot model sources
that have information not present in the global schema, and each modification in the global
schema needs to change all of the source correspondences.



1.3. Data integration 23

c) Global and Local As View (GLAV): To combine the advantages of both GAV and
LAV based solutions, (Friedman et al., 1999) proposed a new category of mapping languages,
called Global and Local As View (GLAV). This hybrid solution is a generalization of the GAV
and LAV approaches. In GLAV, both assertion types can be used to define the mapping
between the source schema and the global schema. GLAV-based systems are also called
mediated systems because they usually use an additional mediation layer between the global
schema and the data sources.

d) Both As View (BAV): Another hybrid schema mapping approach was proposed by
(McBrien and Poulovassilis, 2003) and called Both-As-View (BAV). BAV is based on the use
of reversible schema transformations and provides the possibility to derive both GAV and
LAV views of the system. The main advantage of this solution is the ability of the evolution
of both the global schema and also data sources. Moreover, the benefits of GAV and LAV
approaches can be exploited.

e) Mapping languages Several mapping languages have been proposed to represent schema
mappings. Here, we focus on semantic-driven mapping languages. D2RQ (Cyganiak et al.,
2012) is a mapping language that describes mapping rules between the relational database
schema and target ontologies or RDF'S vocabularies in order to publish semantic data in RDF
format. R2RML (RDB to RDF Mapping Language) is another mapping language, which is a
W3C recommendation for expressing customized mappings from relational databases to RDF
datasets (Das et al., 2012). RML (RDF mapping Language) (Dimou et al., 2014) extends
R2RML by including mappings of various data formats (XML, JSON, CSV) other than rela-
tional databases. An RML mapping defines a mapping from any data to RDF. It consists of
one or more triples maps. Figure 1.8 presents an overview of RML.

A triples map (tp) is composed of exactly one logical source (property rml:logicalSource),
one subject map (property rr:subjectMap) and any number of predicate-object maps (property
rr:predicateObjectMap). RML logical source extends the R2RML logical table and points to
the data source (property rml:source); this may be a file on the local file system or data
returned from a Web service, for instance. Naming the data source within the mapping
makes it possible to map several related data sources simultaneously. A reference formulation
(property rml:reference Formulation) names the syntax used to reference data elements within
the logical source. As of today, possible values are ql: JSONPath, gl: XPath, ql:CSS3, and
rr: SQL2008. Listing 1.6 shows an example of a logical source.

<#PrecipitationMapping>
rml:logicalSource [
rml:source "precipitation. json";
rml: referenceFormulation ql:JSONPath;
rml:iterator "$.[*].Precipitation" 1].

Listing 1.6: RML logical source.

The subject map (rr:subjectMap) includes how to define the subject of each triple and its
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Figure 1.8: RML overview.

optional type of URI. A predicate-object map consists of predicate maps (property rr:predicateMap)
and object maps (property rr:objectMap). Listing 1.7 shows an example of a subject map and
a predicate-object map.

<#PrecipitationMapping>
rr:subjectMap [
rr:template "http://example.com/{valuel}";
rr:class ex:Precipitation J];
rr:predicateObjectMap [
rr:predicate ex:observed_in;
rr:objectMap [ rml:reference "date"] 1].

Listing 1.7: Subject and Predicate-Object Maps.

The last aspect of R2RML that was extended in RML is the referencing object map.
A referencing object map allows using the subjects of another triples map as the objects
generated by a predicate-object map. It is represented by the property rr:parentTriplesMap.
Listing 1.8 shows an example of a predicate-object map with a referencing object map.

<#PrecipitationMapping>
rr:predicateObjectMap [
rr:predicate ex:observed_in;
rr:objectMap [
rr:parentTriplesMap <#TriplesMap2>] 1].

Listing 1.8: A predicate-object map example with a referencing object map.

RML mappings definitions are expressed as RDF graphs. These RDF graphs can be kept
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virtual and queried online or can be materialized by generating RDF triples. Listing 1.9
illustrates a case of JSON document as input and Listing 1.10 the output in RDF form:

(Precipitation. json)

[ ... { "Precipitation" : [{ "Value" : "39 mm", "city": "Paris", "date
": "20181230"}, { "Value" : "30 mm", "city": "Paris", "date":
"20181229"}]...]

Listing 1.9: Inputting in JSON format.

(Output RDF representation)
"http://example.com/39 mm" a ex:Precipitation;
ex:observed_in "20181230".
"http://example.com/39 mm" a ex:Precipitation;
ex:observed_at "Paris".

"http://example.com/30 mm" a ex:Precipitation;
ex:observed_in "20181229".
"http://example.com/30 mm" a ex:Precipitation;
ex:observed_at "Paris".

Listing 1.10: Outputting in RDF format.

1.4 Query processing

Once a data integration system is established, end-users can express queries over the global
schema. However, query processing (also called query answering) differs according to the
integration approach category. In the materialized approach, a copy of all data which corre-
sponds to the global schema is saved in a global and single database. Thus, a query against
the global schema is answered by simply running the query over the materialized global
database. On the other hand, in virtual data integration, data are kept in the sources, and
thus, a query against the global schema has to be translated to corresponding queries against
the local schemas (Katsis and Papakonstantinou, 2009). Here, the query processing makes
use of mappings by decomposition and reformulation of the user query into sub-queries over
information sources and then re-composition of partial answers for a unified response for the
original query. Accordingly, the query processing method depends on the mapping approach
that the virtual data integration system chooses.

1.4.1 Query processing types

The query processing is undertaken in different ways depending on the schema mapping
category. In the GAV approach, the global schema is expressed in terms of the data sources
and each global relation is defined as a view over the local relations. However, since the local
schemas are autonomous, it may happen that tuples in a global relation do not exist in local
relations or that a tuple in a global relation appears in different local relations. Accordingly,
this lack of completeness may yield incomplete answers to queries.
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Unlike the GAV approach, the query processing in LAV offers query optimization, which
enables the system to select a minimal number of data sources relevant to a query. How-
ever, finding the correspondences between the terms used in the global schema, and those
used in the local schemas requires comparison with each local schema, thus making schema
comparison time-consuming.

The hybrid approaches (GLAV, BAV) express both a global schema and local schemas by
using LAV and GAV query rewriting processes to reduce the LAV complexity while ensuring
the global schema scalability.

1.4.2 Distributed query processing principles

Given the fact that data is distributed over various sources, a distributed query processing
strategy will decompose the original query into subqueries that are relevant for each data
source and later join local results. Distributed querying typically implies five main steps
(Ozsu and Valduriez, 1999): query parsing, source selection, query rewriting, query planning,
and query execution, as depicted in Figure 1.9.

e Query parsing is the first task performed in any query processing system. This task
alms to ensure that the query is correctly specified—that is, it’s well-formed according
to the query language syntax—and to convert the query into an internal pattern in order
to facilitate the manipulation of the query for later steps, particularly, query rewriting
and query planning. For instance, a SPARQL query could be transformed into a Basic
Graph Pattern (BGP) or an abstract syntax tree.

o Source selection (also called data localization) identifies the relevant data sources for
each triple pattern or set of triple patterns of a query. In fact, all data sources are not
necessarily containing data that are relevant for a given query. Thus, selecting relevant
sources prevents from sending useless queries. In the literature, we have identified two
main source selection methods: Ask query and Data catalog. ASK query returns a
boolean value that decides whether the query can be answered by the data source or
not. In the second method, by looking up data catalogs of sources, the mediator can
predict the relevant sources for an input query.

e The Query rewriting step decomposes the original query into a set of sub-queries that
will be distributed to the different data sources. It both ensures the preservation of the
original query semantics and takes into account the performance of the sub-queries to
be processed.

e The Query planning step sorts sub-queries in order to generate an optimal evaluation
plan that minimizes the overall query execution time. As a general rule, the most
selective queries should be processed first.

e Finally, the query execution (or query evaluation) step is intended for the execution of
the query plan and the collection of the results generated from all the sub-queries. To
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this end, several strategies can be executed, including nested loop join, bind join and
hash join (Rakhmawati et al., 2013).

An important aspect of query processing is query optimization. The goal of query opti-
mization is to choose the best execution strategy for a given query under the given resource
constraints (Ozsu and Valduriez, 1999). Hence, query optimization was developed as a sig-
nificant area of research for distributed query processing, and many related works primarily
address the problem of query performance. The optimization can be performed in the dif-
ferent query processing steps and is categorized as static and dynamic. Static optimization
refers to optimization processed before the query execution (source selection, query planning,
and query rewriting steps). Here, the optimization techniques aim at improving the accuracy
and completeness of the query response. On the other hand, dynamic optimization refers
to the optimization techniques done during the query execution phase in order to reduce
the processing time and the communication cost between the query engine and remote data
sources.
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Sub-queries

results/

Data )
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Figure 1.9: Distributed Query Processing steps.

Query optimization is said to be semantic if the transformation of the query relies on
semantic knowledge (Kermanshahani, 2009). Semantic query optimization is one of the most
efficient ways to perform query optimization in the context of data integration.



28 Chapter 1. Conceptual Background

1.5 Hypergraphs

Hypergraphs are able to describe complex systems as their descriptive power is fairly strong
because they are one of the most general graphs and mathematical structures for representing
relationships (Molnér, 2014).

A hypergraph is the generalization of an ordinary graph by introducing hyperedges, which
are non-empty subsets of the vertex set. Vertices of a hypergraph represent the entities to
be modeled, such as concepts. Hyperedges represent the high order relations between those
entities. In what follows, we provide a set of definitions presented by (Bretto, 2013).

Definition 1.5.1. Hypergraph A hypergraph H is a pair < V, E>, where

(i) V=wv1,...,v, is the set of vertices or nodes,

(ii) E = (ei)ier, (I is a finite set of indexes) is the set of non-empty subsets of V, called
hyperedges where each e; € E is a subset of V.

A definition of a sub-hypergraph can be given based on the hypergraph definition.

Definition 1.5.2. Sub-hypergraph A sub-hypergraph H(V’) of the hypergraph H is the pair
<V’ E’> where

(i) V’C V,

(ii) E” = (ej)jes such that for alle; € E: ¢j C V'and J C 1

The notion of hypergraphs may be generalized in a way that the hyperedges can be
represented in certain cases as vertices.

Definition 1.5.3. A Generalized hypergraph GH= <V, E> is an hypergraph where a hy-
peredge e; € E may consist of both vertices and hyperedges as well. The hyperedges that are
contained with the hyperedge e; should be different from e;.

Definition 1.5.4. A directed hyperedge (hyperarc) €; is an ordered pair :
e=(e" =(ef d)ie=(ie;),

where e;r C V is the set of vertices of ¢t and e; C V is the set of vertices of ¢;~. The

elements of €;1 (hyperedges and/or vertices) are called the tail of ¢; while elements of &;~ are

called the head of é;.

Figure 1.10 illustrates an example of generalized hypergraph where:
V = {vi; va; v3; v4; V5 }
E = {e1 = {vi, va}; e2 = {v3, e1}, e3= {(e1, v5), va}}.
e3 is a directed hyperedge consists of a tail e, v5 and a head vy4.

Hypergraphs have attracted increasing attention of researchers. They were applied in
several domains and applications such as social network systems, service-oriented applications,
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Figure 1.10: A generalized hypergraph example.

information systems, and even data integration (Theodoratos, 2002),(Saleem and Ngomo,
2014), and they have proved their efficiency. From our perspective, we think it might be
interesting to take advantage of hypergraphs’ benefits and use them in the semantic data
integration context.

1.6 Conclusion

According to a world economic forum report, around 70% of available data are not used due
to the lack of interoperability and linking of data that are in isolated silos (Report, 2019).
Undeniably, the integration of heterogeneous different data sources is a crucial necessity, and
this is an area, in particular, where semantic technologies shine. However, various challenges
exist to integrate, manage, and exploit this multi-source data in a semantically homogeneous
way.

In this chapter, we have described the fundamental challenges related to the semantic data
integration context. We also have discussed schema matching, schema mapping, and query
processing, which are three fundamental tasks when developing a data integration system.
In the following chapter, we will introduce the context of the PREDICAT project, scope of
this thesis, and we will provide a detailed state of the art of data integration approaches and
existing ontologies related to the environmental monitoring domain.
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2.1 Introduction

Driven by the need for natural disasters prevention, environmental monitoring has been the

subject of research and ongoing scientific investigation of several governments/organizations
such as the case of the Franco-Tunisian PREDICAT project, in which this thesis is elabo-
rated. In this chapter, we will start by defining the context and the challenges of the project,
followed by a brief description of the PREDICAT platform, as well as the focused challenges
of our research work (2.2. According to these challenges, we will drive an extensive litera-
ture review of existing works on ontologies related to the EO domain and those on semantic

data integration and query processing approaches. Initially, section 2.3 provides an analysis

of sensor ontologies, observation and measurement ontologies, and environmental monitoring

31
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ontologies. section 2.4 discusses existing materialized and virtual semantic data integration
approaches and gives an overview of existing SPARQL query federation systems with respect
to source selection type since this latter represents a fundamental task when developing a
data integration system. Based on the identified research gaps, we underline our orientation
in section 2.5.

2.2 Scope of this research

In this section, we present an overview of the thesis context from a scientific point of view. This
thesis is part of the Franco-Tunisian project PREDICAT. We will start by defining the context
and the motivations of the project, followed by an understanding of the project challenges.
Next, we will present the PREDICAT platform architecture and its main components. At
the end of this section, the focused challenges and the orientations of the thesis are presented.

2.2.1 Applicative context

Natural disasters such as hurricanes, floods, and earthquakes are the result of occurring
weather anomalies and hazardous events. Over the past 30 years, there has been a substantial
increase in all types of disaster situations. These latter have affected millions of people,
and thousands of people have died because of disasters every year (Saulnier et al., 2019).
The damages they have caused to human society were horrific. Driven by the need to cope
with disaster situations, several EO programs and organizations, including, the Copernicus
program, NOAA, and OSS, have emerged for sharing and monitoring EO data. EO programs
are used to observe, monitor, and assess the status of and changes in the environment. These
systems are becoming increasingly important so that a vast amount of EO data is daily
collected.

Indeed, the success of a disaster forecasting process is mostly dependent on better ex-
ploitation of EO data to understand environmental phenomena and analyze the influencing
factors or disaster chain information. However, despite the availability of large amounts of
data, the usage of EO data is still limited due to the lack of interoperability and data linking
(Athanasiadis, 2015). Several facts illustrated that the interoperability difficulties among EO
systems are a significant challenge. The Hurricane Irma, which occurred across the Caribbean
in 2017, serves as an example. In fact, the traditional conditions of hurricane development
(such as the sea level, the wind speed, and the atmospheric pressure) were monitored, as
usual, by the NOAA National Hurricane Center. Besides, the African Sahara Desert was
observed by NASA. However, there was no link between these observations. Indeed, the ab-
sence of the dry air resulting from the lack of Saharan dust across the Atlantic acted in favor
of high-altitude winds (IRMA, 2017). When these waves of air have enough moisture, lift,
and instability, they readily form clusters of thunderstorms. Thus, a tropical cyclone was
formed as the areas of disturbed weather moving westward across the Atlantic, resulting in
the creation of the hurricane Irma. If experts had the link beforehand and understood the
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phenomena better, they might have been able to predict the power of the disaster a little bit
before and alert the governments to set up more preventive actions.

The floods occurred in the Aude in October 2018 presents another example that shows
the lack of an interoperable global view of environmental data (French-news, 2018). Indeed,
severe flooding caused devastation in parts of south-western France. Consequently, several
people develop a very rapid rise in water, especially in Trebes, where the water reached 7.68m
on the morning of Monday, October 15, causing the most violent flood since 1891 and left at
least 11 people dead. Soon, voices were cast to terminate a lack of prevention . "I think the
system does not respond to the problem because it is fragmented. We have meteorologists
on one side looking at the atmospheric sections, and hydrologists on the other side looking
at the river sections. We must have a multidisciplinary view of risk, why not create a global
center," suggests EFmma Haziza, a hydrologist and president of the Mayane research center on
flood risk management .

Accordingly, integrating this massive amount of heterogeneous data to provide what we
call a global information view, where different systems and programs will have unhampered
and uniform access to the available EO data, is becoming crucial. A common information
space regarding the surrounding environment allows the data sources to speak the same lan-
guage and to link and share information so that domain experts and software agents could
transform them into actionable knowledge. However, a global information view is further
challenged by semantic data integration. Data integration is the process of combining data
retrieved from multiple and independent sources to provide an integrated and interoperable
structure (Lenzerini, 2002). Semantic data integration is the process of combining and con-
solidating disparate data into meaningful and valuable information by creating links between
them in order to create a richer global view (Cheatham and Pesquita, 2017). The main is-
sue related to semantic data integration is the growth and the diversity of data in terms of
semantics, types, and formats, each one compliant to a different standard.

2.2.2 Data challenges

To address the problem of integrating independent EO systems and programs, several data
challenges arise, such as data large-scale and data heterogeneity. The term Big Data encom-
passes all these aspects. It refers to different volumes of data coming from multiple sources.
Doug Laney articulated the mainstream definition of big data as the three V’s: Volume,
Variety, and Velocity (Laney, 2001). Recently, three more V’s, that data scientist must be
concerned with, were added; Variability, Veracity, and Value of the data. These V’s are
explained as follows:

e The volume (Ist V) describes the massive amount of data that experts are currently
dealing with. It has required scientists to rethink storage and processing paradigms in
order to develop the tools needed to analyze it.

e The variety (2nd V) refers to the heterogeneity of data, which concerns differences in
the data model, the data manipulation language, the data manipulation mechanism,
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competition control, etc. Amit Sheth distinguishes between three types of data hetero-
geneity (Sheth, 2015):

— Syntactic heterogeneity is caused by differences between software platforms and
the type of syntax (for example, XML or spreadsheet syntax) they handle. Indeed,
data comes in all kinds of formats from structured data in traditional databases,
semi-structured data in CSV, XML, JSON formats to unstructured data such as
text, documents, video, and images.

— Structural (or schematic) heterogeneity occurs when equivalent concepts are rep-
resented differently in data sources. It is associated with the choice of names, data
types, attributes, or units to build the source diagram. In fact, each data source
adopts its own data model or schema that differs from one source to another.

— Semantic heterogeneity denotes the differences in modeling the same domain of
interest (e.g., Synonymy, polysemy, etc.). The problem of having gaps in under-
standing concerning the same information sometimes comes from the diversity of
the geographical and organizational aspects that use them. For example, in the
sentence “Maps of daily temperature and precipitation are produced”, an expert
would recognize that the observation is “temperature” but would not be able to
determine the details related to the temperature concept (atmospheric tempera-
ture, sea surface temperature, etc.). He needs to ask the data provider to get more
details. Semantic heterogeneity is mainly caused due to the use of different terms
for defining concepts or due to the use of totally different concepts. We can dis-
tinguish a difference between the conceptualization mismatch and the explication
mismatch. In the former, various terms may correspond to the same meaning.
For instance, OSS uses the word “rainfall” for the same real-world feature that
usually refers to “precipitation” in other sources. The variety of terms compli-
cates the work of emergency responders who should be familiar with the terms
used in each discipline. On the other hand, in different disciplines, the same term
may correspond to various meanings (the explication mismatch). For example, the
term “environment” is defined as “the biological and abiotic elements surrounding
an individual organism” in the biological domain. However, it refers to “all the
natural components of the Earth (air, water, oils, etc.)” in the EO domain (Sauvé
et al., 2016).

e The velocity (3rd V) represents data streams at a random speed and must be dealt with
in a timely manner.

e The veracity (4th V) deals with the uncertainty of data as they can change over time,
impacting on the quality and reliability of data.

e The evolving nature and variation of the data and how the system copes with such
changes refer to the variability (5th V).

e Finally, the value (6th V) represents a characteristic describing the main objective of
collecting such a huge amount of data, i.e., finding relationships that are explicitly or
hidden within the data in order to value it.
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Two other significant issues that EO experts and software agents can face while integrating
data: unforeseen costs and unauthorized access to data. Indeed, the problem of managing
data derived from EO programs, in terms of access, pricing, and data rights, is commonly
tricky. On the one hand, APIs and data access services are, in most cases, unavailable.
Experts should download each data source with which to work. On the other hand, data may
be extracted only after agreeing to specific laws and regulations. Access to data requires to
be user-friendly to reach common understanding and decision making for various prediction
Systems.

Currently, there are several ongoing projects such as EOPEN and beAWARE, that are
aiming to solve the integration problem (Gialampoukidis et al., 2017) (Karakostas et al., 2018).
These projects similarly aim to semantically integrate heterogeneous data coming from Big
data sources such as sentinel data, including data provided by citizens through social media.
However, data storage and management with traditional data management platforms will be
difficult (Siddiga et al., 2017). As the number of data sources and the type of data stores
augment, data access needs to be made easier for better real-time prediction.

2.2.3 Scope: PREDICAT project

In order to deal with the aforementioned challenges, the Franco-Tunisian project PREDICAT
(PREDIct natural CATastrophes) is launched in 2017. This project aims at providing a
semantic service-oriented platform for data interoperability and linking in EO and disaster
prediction. This three-year project is the outcome of a collaboration between the National
School of Engineering of Tarbes (ENIT), the National School of Computer Science of Manouba
(ENSI), the University of Lyon 3, and the Higher Institute of Informatics and Multimedia of
Sfax (ISIMS). It is funded by the "PHC Utique" program of the French Ministry of Foreign
Affairs, managed by Campus France, and the Tunisian Ministry of higher education and
scientific research, led by the CMCU (project number 17G1122/ CODE CF 37T03 NJ).

The vision of this project is to ensure a uniform service-based access and semantic data
integration of heterogeneous and multi-source EO data, aiming at user-friendly decision-
making during extreme weather crisis and disaster prediction, through a platform that is
designed to provide a flexible solution. In particular, the focus is on:

1. Formalizing the knowledge of the EO domain to ensure semantic interoperability be-
tween the multi-source EO data.

2. Offering to the EO experts a global view of data through semantic linking and integrat-
ing of EO data coming from several sources such as NOAA and OSS.

3. Providing a decision support solution to analyze in real-time all the useful data in order
to effectively prevent and/or react against natural disasters, through semantic linking
of information.

4. Providing reasoning mechanisms.
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5. Providing adequate services to access and extract data with any format or structure, in
real-time, in order to guarantee faster data management.

6. Producing warnings and real-time decisions to effectively prevent natural disasters.

7. Offering a user-friendly interface allowing to dialog with the PREDICAT platform.

Figure 2.1 presents the global architecture of the PREDICAT platform and its layers (Mas-
moudi et al., 2018). The layered architecture is composed of seven tiers, namely: (1) data
layer, (2) service layer, (3) data processing layer, (4) semantic layer, (5) data integration layer,

(6) decision support layer and (7) users’ interface layer. The different layers are described in
the sections below.
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Figure 2.1: PREDICAT architecture.

Data layer:  This layer encompasses different data sources relevant to EO and deals with
different data format types (i.e., CSV, RDB, ENVI, etc.). For instance, OSS uses satellite
imagery to create gridded rainfall time series, and data are downloadable via FTP links'.
Most of the data sources defined in this layer are pointing to the heterogeneity related to
their software applications and the used storage systems. Since data sources present various
data types at an unprecedented rate, they are stored in different dedicated storage systems.
Besides, the challenges of this layer relate to the access and the extraction of accurate EO
data among the numerous datasets, in real-time, knowing the high update frequency changes.

"http://chg.geog.ucsb.edu/data/chirps/
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Service layer:  This layer deals with the implementation of services, accessing EO data.
These services will be annotated with semantic descriptions about the services’ contents and
their related data in order to promote the interoperability between heterogeneous services.

Semantic layer: In this layer, a suite of ontologies is proposed, i.e., domain, source, and
service ontologies.

e Domain ontology: is the vocabulary that will provide a formal representation of the
environmental monitoring domain. Such a shared vocabulary will resolve terminology
inconsistencies and establish semantic interoperability among data sources. Moreover,
it will support the integration and linking of data together in order to build a global
interactive network that permits to better understand environmental dynamics and
natural phenomena.

e Source ontology: The vision of PREDICAT is to combine data generated from multiple
EO systems and monitoring programs. For reasons of data quality control and reliability,
it is necessary to keep track of the provenance of the data. Accordingly, a source ontology
will be proposed to represent additional information about data. The source ontology
will identify each source, describe its name, its features, and the products it provides. It
will also include information about authenticity or credibility measures and its relation
to other data sources, either they shared common products or not.

e Service ontology: The main purpose of a service ontology is to enable the semantic
representational knowledge inherent to services and their related relationships. The
service ontology will also consider the interoperability issue between data access services.
Typically, services are not compatible with each other, which makes interoperability as
a significant issue for a successful data access service composition.

Data processing layer:  The data processing layer deals with the process of the execution
of services. It tackles several issues, such as reducing time-consuming processes, optimizing
time-responses to fasten predictions, and reducing costly-consuming bandwidth for requests.
Based on the service ontology, the system will propose an orchestration schema for services
accessing data.

Data integration layer:  The data integration layer consists of combining a large amount
of data generated from heterogeneous sources into a single consistent and global view of data.
One of the main problems of data integration is data heterogeneity, discussed in section 2.2.2.
This heterogeneity is related to the schema, the format, and the vocabulary used to describe
the data. In general, each source has its specific characteristics. The integration is mainly
performed at the semantic level, to provide reasoning mechanisms and interoperable solutions,
through the semantic linking of information. Indeed, this layer uses the proposed domain
ontology related to the environmental monitoring domain to exploit data as an interoperable
global knowledge graph in order to have more in-depth analyzes of environmental phenomena.
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This layer will also support learning from existing data to enhance decision-making and predict
future events. Indeed, for machine learning to be effective, data from the widest possible
variety of sources must be used; and this is why data integration plays a key role.

Decision support layer: The decision support layer consists of two sub-layers, i.e.,
learning and prediction. The goal of the learning sub-layer is to execute predictive models
that learn from existing data to predict future trends, outcomes, and behaviors. It takes
the knowledge graph from the integration layer as input and then generates new relations
that help to deduce knowledge and improve the performance of awareness. The prediction
sub-layer handles the real-time data and takes into consideration the inferred knowledge from
the previous sub-layer to provide early warnings and decision support.

Users’ interface layer: This layer consists of a front-end interface allowing to dialog
with the PREDICAT platform. Users may have the possibility to query EO data through
this interface, and the queried data sources will be displaying their related resulted data to
end-users also through this interface. This latter also enables displaying warnings by the
decision support layer.

2 o 9 D

.
AERIS API EM-DAT NOAA

Q
@
)

‘1—

I
7
r
r
r

7

—
—

@& Knowledge \
v

Y

I

~
7

e B graph
e mm . ®
;] & e"e
! e o ®
! e _ e, ® -
% - ® [ o
¥
"\ Domain Ontology,” 1':]
- ol N Query | £i5
______ v \\\ \%

Figure 2.2: Focus of this thesis regarding PREDICAT.

2.2.4 Focus of this thesis

As mentioned before, this thesis is part of PREDICAT project. Specifically, the focus of our
work is illustrated in Figure 2.2 and consists in:
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1. The semantic layer, precisely, the domain ontology related to the environmental moni-
toring domain, proposed in order to ensure semantic interoperability among EO data.

2. The data integration layer with the purpose of semantically integrating EO data and
creating a common environmental information space.

3. The users’ interface layer to query and extract EO data.

Among the challenges defined in section 2.2.2, we will concentrate on the data heterogeneity
challenges. Nowadays, there are several approaches and solutions to solve the data volume
issue, described by Big Data technologies such as Hadoop and NoSQL databases. Nonetheless,
ensuring interoperability among data and understanding it is still challenging and a topical
issue.

2.3 State of the art of ontologies related to EO

In this section, we aim at identifying ontologies that can be used to semantically model
sensors (Section 2.3.1) and the information available from such systems as a result of the
observation of the ambient environment (Section 2.3.2). Next, a review of some existing
environmental monitoring ontologies is presented in section 2.3.3. The review is based on a
comparison according to the aspects of the knowledge acquisition method, the domain, the
principle of reusing existing ontologies, and the building purpose. The current limitations of
these ontologies are discussed in section 2.3.4.

2.3.1 Sensor ontologies

The first initiatives for modeling sensor and sensor networks were driven by the Open Geospa-
tial Consortium (OGC) Sensor Web Enablement (SWE) (Botts and Robin, 2007). The OGC
provides a set of XML schemas and open standards that enable the discovery, access, and
processing of sensor observations. The OGC SensorML is one of these schemas. It describes
sensors, systems, and processes. It also provides the information needed for the discovery of
sensors and the location of sensor observations. SensorML was used to support the establish-
ment of the OGC’s Sensor Observation Service (SOS), providing access to observations from
sensors and sensor systems.

The widely used sensor ontology is the W3C Semantic Sensor Network (SSN) Ontol-
ogy (Compton et al., 2012). The SSN ontology has been recently updated by including a
lightweight core module called SOSA (Sensor, Observation, Sampler, and Actuator) (Haller
et al., 2018). This new version of SSN is a joint W3C and OGC standard specifying the se-
mantics of sensors, observations, observable properties, actuation, and sampling. It describes
sensors regarding measurement processes, observations, and deployments. However, it does
not include concepts about the geospatial, either temporal dimension.
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2.3.2 Observation and measurement ontologies

Research on observation and measurement context was driven by different organisms. The
Observations & Measurements (O&M) standard of the OGC-SWE, which describes a concep-
tual model and XML encoding for measurements and observations, is an example. Aligned
to the SensorML, the O&M establishes a high-level framework for representing observations,
measurements, procedures, and metadata of sensor systems. This standard is required by the
SOS, for the implementation of the SWE-enabled architectures.

The SemSOS O&M-OWL ontology is a semantic data model to manage sensor data based
on the O&M standard (Henson et al., 2009). The significant concepts modeled in the SemSOS
ontology are:

Observation: An act of observing a property or phenomenon, to produce an estimate
of the value of the property.

Feature: An abstraction of a real-world phenomenon

Property: associated with a feature that can be sensed or measured.

Process: the method, system, or algorithm used to generate the result (such as a sensor).

Result data: an estimate of the value of some property.

Location: the location of an observation event.

Time: The time when the phenomenon was measured in the real world.

The significant properties include feature of interest, observed property, sampling time, obser-
vation location, result, and procedure.

The Extensible Observation Ontology (OBOE) is a generic ontology dealing with obser-
vations data and measurement (Madin et al., 2007). While it’s a generic, the concepts of this
ontology should be extended to clarify the inherent meaning of scientific observations. The
core classes of the OBOE ontology include Observation, Measurement, Entity, Characteris-
tic, and Measurement Standard (e.g., physical units), and six properties labeled hasContext,
ofEntity, hasMeasurement, hasValue, hasPrecision, and usesStandard.

NASA’s Semantic Web for Earth and Environment Terminology (SWEET) is a mid-level
ontology for Earth system science (Raskin and Pan, 2005). It consists of nine upper-level
concepts (Representation, Realm, Phenomena, Process, Human Activities, Matter, Property,
State, and Relation) that can be used as a foundation for domain-specific ontologies that
extend these upper-level SWEET components.
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2.3.3 Environmental monitoring ontologies

Several works have attempted to build domain and application ontologies for environmental
monitoring. Law-and-Environment Ontology (LEO) is proposed by InforMEA to provide a
semantic standard for data, information, and knowledge in the field of environmental law
and governance (InforMEA, 2010). It is more a taxonomy since it gives an overview of
relationships between Multilateral Environmental Agreements (MEAs), as well as concepts,
definitions, and synonyms found in these conventions. However, it is not written in any
ontology format. It only contains the information displayed as maps, info-graphics, and text.
LEO terms are divided into different sections, such as air, climate, land, and water sections.

Zhang et al. proposed a Meteorological Disaster Ontology (MDO) to describe the com-
ponents and relationships between the different parts of the meteorological disaster system
(Zhang et al., 2016). MDO describes only meteorological disaster knowledge. It does not
include other disaster types (like hydrological and geophysical disasters). Also, MDO is not
published in a computable format.

Based on the Water Data Transfer Format (WDTF) schema, Shu et al. defined a WDTF
ontology using concepts and roles that describe water observation data (Shu et al., 2016).
WDTF documents were translated into ontology instances to build an application ontology

that presents a semantic solution for WDTF data validation. In that work, Shu focused only
on data encoded in WDTF.

Qui et al. proposed an ontology-based approach that links environmental models with
disaster-related data to support flood disaster management (Qiu et al., 2017). They defined a
model ontology and a data ontology by considering disaster-related semantics and described
the relationships of models and data with a multi-level semantic mapping method.

Oliva-Felipe et al. proposed the Waste Water ontology WaWo+ (Oliva-Felipe et al., 2017),
an evolution of the original WaWo Ontology. The WaWO ontology was an attempt to build a
model defining the meaning of each term/concept used in the wastewater domain. In addition
to WaWo vocabulary, the WaWO+ ontology covers the urban water cycle, social, and water
quality aspects. It aims to allow the inference of new knowledge from existing facts, allowing
agents to have more accurate information about their environment.

However, none of the ontologies mentioned above use a common upper-level ontology nor
reuse other domain or existing ontologies. They have been developed from scratch, each in
its ad hoc way in such wise that they create a lack of interoperability with other ontologies in
related domains. In contrast, the reuse of other domain ontologies was the subject of other
works.

Examples include Boughannam et al., who discussed the advantages of semantic tech-
nologies in implementing smarter industry solutions for monitoring analytics (Bou-Ghannam,
2013). They proposed an ontology for managing observations and measurements by reusing
various existing ontologies and standards, such as the Quantity-Unit-Dimension-Type (QUDT)
ontology (Hodgson et al., 2014), SSN, and the OGC GeoSPARQL standard (OGCI, 2010).
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The adopted solution illustrates how the concepts of these ontologies are implemented using
a real-world use case from the environment analytics domain. The environmental analytics
domain ontology proposed by the authors is dedicated to monitoring the environment around
their deployed platforms and assigned to a specific use case, which is the oil and gas moni-
toring. Nevertheless, the ontology does not use an upper-level ontology nor a modularization
approach.

Dahleh and Fox created an ontology for the representation of environmental indicators
(such as ozone concentration and noise pollution) (Dahleh and Fox, 2016). They built three
domain ontologies to represent pollution, sensor, and species information, based on the Global
City Indicators (GCI) Foundation ontology (Fox, 2013) and other reused ontologies such as
the SSN ontology. This global ontology is specific to environmental indicators representation,
and it does not represent additional monitoring information such as events and environmental
processes.

However, these works (Bou-Ghannam, 2013) and (Dahleh and Fox, 2016) do not use upper-
level ontology. This concern was adopted by other works in the domain of environmental
monitoring. SemsorGrid4Env is a project which uses ontology as support for sensor data
integration (Gray et al., 2009). Two ontologies based on real use cases were built in this
project. The first one is a fire risk monitoring ontology, and the second one is a coastal and
estuarine flood ontology. The two ontologies are mainly developed, reusing SSN to represent
sensor concepts and their observed information, and ontologies from the SWEET suite to
describe services and datasets. Geographic and administrative region data are covered by the
Ordnance Survey ontologies.

In the MONITOR project (Kollarits et al., 2009), Kollartis et al. defined an ontology that
formalizes the knowledge necessary for monitoring methods and environmental risk manage-
ment. MONITOR ontology describes the relations between social, natural, hazardous events,
and several risks, risk assessment, and risk management terms. It is based on the upper-level
ontology DOLCE. However, the ontology is not available in coded form, and its concepts
mainly intended for risk management systems.

Buttigieg et al., proposed the ENVironment Ontology (ENVO) which is aligned to BFO
(Buttigieg et al., 2016). It delineates the environment domain as a whole by including environ-
mental features, environmental materials, and environmental processes. ENVO also includes
other fields such as biomedicine, ecology, food, habitats, and socioeconomic development.
Unfortunately, it lacks the ability to implement various concepts and relations for sensor,
observation and measurement contexts.

Many studies have applied an ontology-based approach to their emergency management
applications. Llaves and Kuhn developed an Event ABStraction (EABS) ontology to model
events inferred from observations and an application ontology named flood monitoring ontol-
ogy (Llaves and Kuhn, 2014). EABS ontology is kept generic enough to be reused for other
applications. It is aligned to DOLCE, extends the SSN ontology, and allows only inferring
information from observed data. The ontology EABS does not perform reasoning on events
since the event patterns are keeping out of the ontology instead of including them as ontology
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rules.

Devaraju et al. developed a Sensing Geographic Occurrence Ontology (SEGO), which
represents relations between geographic events and sensor observations and an application
ontology for blizzard disaster (Devaraju et al., 2015). SEGO does not provide information
about the environmental domain, but instead, it is developed as a starting point for the
construction of application ontologies to infer geographic events from sensor observations.
SEGO is based on DOLCE foundational ontology and is centered around the sensing domain.
Therefore, Devaraju et al. distinguish stimulus from environmental processes to emphasize
the process that actuates a sensor to produce observations.

In Table 2.1, we present a comparison of the different studied approaches using ontologies
to solve semantic heterogeneity in the environmental monitoring domain. The comparison is
based on the principles of ontology development’s main criteria. We selected four comparison
criteria based on a literature review: building purposes, domains, methods for knowledge
acquisition, and links to other ontologies (Ferndndez-Lépez et al., 2019).
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2.3.4 Synthesis

During our literature review, we studied several ontologies developed in the field of earth ob-
servation and environmental monitoring. Despite these numerous works, several limitations
can be noted. First, many studies focused only on the knowledge expression of a specific type
of environmental observation (such as in-situ) or on specific requirements for a particular
organization. Second, some existing ontologies are dealing with specific aspects of the envi-
ronment. The environment is lying on multidisciplinary fields, such as meteorology, hydrol-
ogy, geology, geography, and so on. Existing ontologies do not cover all environmental fields
such as the ontology MDO neither the observation conditions/contexts such as the ontology
ENVO, which does not include the sensing nor the spatiotemporal contexts. Accordingly, the
coverage to annotate or link observed data will not be possible with these limited knowledge
ontologies. Third, little attention was paid to the semantic relationships between different
environmental components such as disasters, observations’ contexts in time and space, and
other correlated environmental conditions that can provide a comprehensive view to analyze
environmental factors. To address this issue, some ontologies were built from specific case
studies such as the Environment Analytics domain ontology and GCI environmental ontology.
However, this kind of ontology cannot model environmental data sources whose information
is not present in the specific case study. Finally, existing monitoring systems generally use a
specific reasoning method on specific data sources and formats to generate inferences, which
makes it difficult or even impossible to obtain inferences across heterogeneous data sets.

Our objective is to address the listed gaps by building a domain ontology for environ-
mental monitoring in order to link and integrate observed data from various sources. The
proposed ontology will aim at (1) ensuring semantic interoperability between heterogeneous
data sources, (2) supporting knowledge discovery and generation, (3) integrating and linking
data across various disciplines, and (4) providing a global information view.

2.4 State of the art of semantic data integration approaches

In the literature, various semantic data integration approaches have been proposed. These
latter generally fall into two primary categories, depending on the type of data access: mate-
rialized and virtual data integration approaches. In what follows, we scrutinize related works
and systems for each category.

2.4.1 Materialized approaches

The materialized data integration approaches consist of the static transformation of dis-
tributed data into a data warehouse or a single RDF store. In (Patroumpas et al., 2014),
Patroumpas et al. proposed an ETL Tool for transforming geospatial data into RDF Triples.
The so-called TripleGeo can extract and transform geospatial features from many input for-
mats. It is based on Geometry2RDF and uses the WGS84 vocabulary and several geometric
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types of GeoSPARQL. However, this tool requires a centralized data repository and significant
manual effort to define the ETL rules to set up this repository.

Kyzirakos et al. proposed the open-source tool GeoTriples for transforming geospatial
data from their original formats into RDF (Kyzirakos et al., 2018). This semi-automatic
system enables the transformation of geospatial data stored in raw files (shapefiles, CSV,
XML, etc.) and spatially-enabled RDBMS (PostGIS and MonetDB) into RDF graphs. This
tool is implemented as an extension to the D2RQ platform and uses well-known geospatial
vocabularies, e.g., the vocabulary of the OGC GeoSPARQL standard. It generates and pro-
cesses R2ZRML and RML mappings that transform geospatial data from many input formats
into RDF. The generated mappings may be revised, e.g., to utilize a different vocabulary.
However, this step can only be done manually.

The main limitation of these two tools is that they deal only with geospatial vocabularies,
including the OGC standard GeoSPARQL and does not allow users to select other semantic
vocabularies or ontologies.

Abbes et al. proposed an approach based on MongoDB, a NoSQL database, and mod-
ular ontologies for ontology-based Big Data integration (Abbes and Gargouri, 2018). This
approach follows three steps: 1) wrapping data sources to MongoDB databases, 2) generating
local ontologies by learning ontology from MongoDB, and 3) merging the local ontologies to
get a global one. To this end, they choose MongoDB, a document-oriented database ontology,
to address the variety dimension of Big Data. However, the step of wrapping each data source
in the MongoDB database is expensive in terms of time and storage. Moreover, this approach
requires several efforts to include an additional data source. Specifically, it is necessary to
define a local ontology for the new data source.

Bansal et al. introduced a semantic ETL framework that uses semantic technologies to
integrate and publish data from multiple sources (Bansal and Kagemann, 2015). The proposed
framework generates a semantic model to integrate heterogeneous datasets. Then it generates
semantic linked data in compliance with the data model. This generated semantic data is
made available on the web as linked data (RDF triples) available for querying and used in
analytics and data-driven innovative apps. The use of semantic technologies is introduced in
the transform phase of the ETL process to generate RDF triples, which will be stored in a
data mart or warehouse. However, this framework involves a manual process of analyzing the
data sets and their schema.

Aarnio et al. proposed an ELT system to support condition-based monitoring in automa-
tion systems (Aarnio et al., 2014). The approach consists of four-steps of transformation
process from local data to RDF. Firstly, an automatic transformation of source data from
local source formats to temporary RDF data is done. Then, the temporary RDF data is trans-
formed into instances of local ontologies, where the local ontologies should conform to shared
vocabularies. The third step links between data from local ontologies. Finally, rule sets are
developed and executed on top of local ontologies to infer new information. A case knowledge
base is then generated with an inference engine to support data access using SPARQL queries.
However, the initial development of this system involves considerable effort. Experts need to
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develop local ontologies for each data source based on a defined (or already available) shared
vocabulary. Then, it also needs efforts to generate a lot of mappings (alignments) between
local and global ontologies using semantic relations.

Knoblock et al. proposed the Karma Web system, a semi-automatic data modeling and
integration framework that can integrate data from a variety of sources, including relational
databases, spreadsheets, XML, JSON, and RDF files (Knoblock et al., 2012). Karma consists
of four steps: 1) Importing data from sources, 2) Cleaning and normalizing data, 3) Building a
model, which can be an ontology, for each source. Finally, 4) Integrating data using this model
and loaded it into an RDF store. The tool learns the model that has been used to publish
RDF data so that the semantic type need not be added every time. The model is set up by
the user by importing an ontology into the system. Rather than Karma quickly integrates
data by allowing automatic modeling by learning, the entire integration process needs a lot
of human intervention in cleaning and modeling while choosing classes and relations from
ontologies.

Rani et al., have proposed MOUNT, a multi-level annotation and integration framework
(Rani et al., 2019). This approach incorporates three phases, such as a coarse-grained anno-
tation, a fine-grained annotation, and query processing. In the coarse-grained, Yago ontology
and SESE, a keyword-based ontology search engine, are used for categorizing the domain in-
formation of the heterogeneous data sources. The fine-grained annotation handles the unified
data integration of structured and unstructured data. With the help of multi-level semantic
annotation, the MOUNT approach creates the global RDF ontology to ease the query pro-
cess. Despite the good experimental results, the loss of information related to the use of this
approach can have negative consequences for the decisions made. Also, this framework needs
to be improved in terms of response accuracy.

2.4.2 Virtual approaches

As described in Section 1.3, virtual data integration approaches do not copy the original data.
Instead, they virtually integrate the data in a way that preserves the sources’ autonomy, and
at the same time, allow for a distributed processing of queries. In the following, we analyzed
several systems based on virtual data integration approaches, while distinguishing between
mediator-wrapper-based systems and federated systems.

2.4.2.1 Mediator-wrapper-based systems

In the context of semantic virtual data integration, a mediator-wrapper-based system mainly
corresponds to the OBDA approach. The integrated schema is represented as an ontology,
and the data sources generally correspond to RDBMSs, but some research has also been
conducted to tackle XML, CSV, and NoSQL stores by choosing the appropriate wrappers.
Indeed, wrappers act as a bridge between client applications and heterogeneous data sources.
They receive user requests in the form of SPARQL queries, translate them into the query
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languages of the respective data sources, and return the results after query execution (Curé
and Blin, 2014).

Ontop is an open-source OBDA system that allows for querying relational data sources
(Calvanese et al., 2017). This system exposes relational databases as virtual RDF graphs by
linking the classes and the relationships in the ontology to the data sources through R2RML
or OBDA mappings. The virtual RDF graphs can then be queried using SPARQL. The core
of Ontop is the SPARQL engine Quest, which is in charge of rewriting SPARQL queries over
the virtual RDF graph and ontology into SQL queries. A drawback of the Ontop framework
is its limitation of accessing only a single relational database and does not support other data
formats. Additionally, this database has to be SQL compliant (Steindl and Kastner, 2019).

In (Bereta et al., 2018), the authors proposed an OBDA technique to deal with geospatial
data coming from different sources. It is implemented in the system Ontop-spatial, which
enables the integration of vector or raster data stored in geospatial relational databases using
ontologies and mappings. Nevertheless, this system only deals with geospatial vocabularies
and does not support data formats other than geospatial data stored in relational databases.

In (Kharlamov et al., 2017), the authors presented the Optique platform, an Ontology-
Based Stream-Static Data Integration (OBSSDI), a paradigm that extends classical OBDA
for direct end-user access to streaming, historical, and static data. The platform allows inte-
grating relational databases and data streams based on mappings created through imported
ontologies. It also supports the formulation of queries using STARQL, a specific query lan-
guage that natively supports OBSSDI hybrid queries. The queries produced by the STARQL
translator are processed and answered by Optique’s dedicated data stream management sys-
tem, ExaStream. ExaStream has been designed for efficiently processing on both static and
streaming information and the corresponding queries produced by the STARQL engine. How-
ever, this approach is developed on the basis of Siemens requirements to enable direct access
to data generating from service centers for power plants. Besides, data formats supported by
Optique are relational databases, streaming, and sensor data.

For the purpose of integrating heterogeneous data formats, other mediator-wrapper-based
systems designed several wrappers, where each one is used to access data of a specific format.
In (Adeyelu and Anyebe, 2018), the authors developed a mediator-wrapper approach to se-
mantically integrate heterogeneous databases based on the LAV paradigm of data integration.
The mediator provides a virtual database, i.e., a global schema, in the form of classes to the
applications and the wrappers. When an input query is posted to this global schema, the
mediator uses a global ontology to know which wrapper to call. The wrapper converts the
input query into a local query that its data source can understand. Afterward, it executes
the query and gets the result. The result that it receives is converted to a format understand-
able by the mediator. To do so, each wrapper uses a local ontology. Admittedly, the system
facilitated easy access to information from different databases of diverse platforms. However,
it is necessary to define a local ontology for each wrapper, in a sense, for each new data
source. Moreover, data sources that could be integrated into this system are only relational
databases. Furthermore, since this system adopts a LAV-based semantic mapping approach,
each modification in the global schema needs to change all of the local ontologies.
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The Semantic Web Integrator and Query Engine (SemWIQ) also uses an architecture
based on the mediator-wrapper approach (Langegger et al., 2008). It provides access to
distributed data sources using SW technology. The proposed system allows retrieving data
using SPARQL queries. It consists of a mediator which is accepting queries from clients and
then collects data translated by a number of wrappers attached to local data sources. The
mediator analyzes an input query and scans the catalog to identify relevant data sources.
SemWIQ uses VoID (Vocabulary of Interlinked Data sets) as a data catalog 2. The resulting
plan is executed by sending subqueries to the sources. Later on, the wrappers use mappings
to translate data from the underlying information systems into a common schema that can
be processed by the mediator. However, in such kind of systems, any data source must use a
SPARQL-capable wrapper to provide local data.

The authors in (Regueiro et al., 2017) proposed a framework for the semantic mediation
between environmental observation datasets through OGC SOS interfaces. The design of the
framework is based on mediator-wrapper architecture. Each wrapper is designed explicitly
for the characteristics of a data source, and it adapts its specific data model and data access
interface to O&M and SOS. As a basis for the specification of data integration knowledge, the
system uses SSN and SWEET ontologies. The Apache Jena SPARQL engine ARQ was used
to query the mediator. Unfortunately, this framework does not specify the query processing
either optimization, and its main drawback is the development of new wrappers for new
application domains with different data sources.

2.4.2.2 Federated systems

The second variant of virtual data integration approaches is federated systems. As described
in Section 1.3 and based on survey results (Oguz et al., 2015) (Saleem et al., 2016), we
focus on the most popular federated systems where the data is accessed through SPARQL
endpoints—this is the case for the FedX, Splendid, and DARQ systems. These systems differ
in the mechanisms used in the different steps of the distributed query processing (source
selection, query rewriting, query planning, and query evaluation). One of the most important
optimization steps in federated SPARQL query processing is the efficient selection of relevant
sources for a query. In the following, we give an overview of existing SPARQL query federation
systems with respect to source selection type.

FedX is a framework developed by FluidOps for transparent access to distributed sources
through a query federation and is available as open-source software (Schwarte et al., 2011).
FedX performs source selection without prior knowledge of sources. Only SPARQL ASK
queries are sent for each triple pattern to identify the relevant sources.

DARQ is another federated system that relies on service descriptions to identify relevant
sources (Quilitz and Leser, 2008). The service descriptions consist of information on predicate
capabilities and statistics on triples hosted in each source. They have to be declared in advance
before query processing to decide where a sub-query should go.

2VoID Vocabulary: https://www.w3.org/TR/void/
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Splendid is a SPARQL endpoint federation system that makes use of VoID descriptions as
a data catalog along with SPARQL ASK queries to perform the source selection step (Gorlitz
and Staab, 2011). VoID takes the form of an RDF schema that supports the description of
metadata about RDF data sets.

The Hibiscus system showed better results in terms of source selection and runtimes than
the aforementioned systems (Saleem and Ngomo, 2014). Its approach is based on modeling
SPARQL queries as directed-labeled hypergraphs. Based on this representation, algorithms
have been designed to discard sources that are not pertinent to the computation of the final
result based on the types of joins present in the query.

MULDER is another SPARQL query engine for federated access to SPARQL endpoints
(Endris et al., 2017). It describes data sources in terms of RDF molecule templates, i.e.,
abstract descriptions of entities belonging to the same RDF class. It mainly exploits those
descriptions to select the datasets that can increase the completeness of the answer.

2.4.3 Synthesis

Table 2.2 summarizes the comparison of the different semantic data integration approaches,
mentioned above in terms of seven criteria:

e Data acquisition: We identified five mainstream approaches for acquiring data from
local sources, namely ETL, ELT, OBDA, mediator, and federation.

e Data access: data integration approaches provide two ways to access data; direct
access to the centralized repository (generally in materialized approaches) and access
to the mediator/federator (or the shared vocabulary in the virtual approaches).

e Semantic vocabulary: to identify the ontology or the semantic model used to inte-
grate data.

e Data types: The primary focus of a data integration approach is on the data types,
including relational databases and geospatial.

e Mapping complexity: reflects the complexity of relations between data sources and
the semantic vocabulary (the ontology). This characteristic depends on the differences
in data integration approaches capabilities to represent mappings.

e Query processing type: The focus of most data integration systems is on querying
disparate data sources. This field identifies the type of the query processing mechanism
(centralized / distributed) if the data integration system includes one.

e Source selection: The among primary focuses of a query processing approach is the
identification of relevant data sources that are likely to contribute to the final result.
There are mainly two methods: metadata catalogs source selection and sampling query-
based source selection (SPARQL ASK queries).
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