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Abstract

Magnetic flux which is continuous quantity in the classical world, becomes quantized

when confined at the center of a superconducting loop. A quantum of flux can penetrate

in/out of the loop under certain conditions via thermal activation or macroscopic quantum

tunneling. Josephson junction, a key building block of the superconducting quantum

devices, provides a straightforward implementation of this event where the transfer of a

Cooper pair between the two superconducting reservoirs is visualized as the transverse

tunneling of the magnetic flux quantum.

By bringing these concepts together in a superconducting quantum interference device

(SQUID), it becomes possible to generate a so-called phase slip where a flux quantum

enters/leaves the loop and the superconducting phase winds by 2π in a deterministic

manner. This event is of dissipative nature when the SQUID operates in the strongly

screening (hysteretic) regime therefore can be detected via calorimetry methods.

In this thesis, we demonstrate the real time detection of a phase slip which is manifested

as the abrupt increase and the subsequent relaxation of the electronic temperature of the

Normal island placed in the SQUID loop as a weak link. The system is embedded in a

microwave resonator. The phase slips are generated by nanosecond pulses sent on an on-

chip flux line, and the temperature excursion is read via the variation of the transmitted

power by exploiting the proximity effect as a secondary thermometer.

By addressing the observation of an elementary dissipative event, this work provides an

insight on the role of dissipation ubiquitous in superconducting devices and showcases the

potential use of the fast nano-calorimeters in the field of quantum sensors.
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Resumé

Le flux magnétique qui est une quantité continue dans le monde classique, devient quantifié

lorsqu’il est confiné au centre d’une boucle supraconductrice. Un quantum de flux peut

pénétrer ou quitter la boucle sous certaines conditions via une activation thermique ou

un effet tunnel quantique macroscopique. La jonction Josephson, un élément clé des dis-

positifs quantiques supraconducteurs, fournit une mise en œuvre simple de cet événement

lors duquel le transfert d’une paire de Cooper entre les deux réservoirs supraconducteurs

est visualisé comme le tunneling transversal du quantum de flux magnétique.

En réunissant ces concepts dans un dispositif d’interférence quantique supraconducteur

(SQUID), il devient possible de générer un saut de phase où un quantum de flux pénètre ou

quitte la boucle et la phase du supraconducteur s’enroule de 2π de manière déterministe.

Cet événement est de nature dissipative lorsque le SQUID fonctionne dans le régime

hystéretique et peut donc être détecté par des méthodes de calorimétrie. Dans cette

thèse, nous démontrons la détection en temps réel d’un saut de phase qui se manifeste

par l’augmentation abrupte et la relaxation subséquente de la température électronique

du métal normal qui sert de lien faible du SQUID. Notre système est intégré dans un

résonateur micro-onde. Les sauts de phase sont générés par des impulsions nanosecondes

envoyées sur un ligne de flux ’on-chip’, et l’excursion de température est lue via la vari-

ation de la puissance transmise par exploitant l’effet de proximité comme thermomètre

secondaire.

En abordant l’observation d’un événement dissipatif élémentaire, cette thèse souligne

le rôle de la dissipation omniprésente dans les dispositifs supraconducteurs et met en

valeur l’utilisation potentielle des nano-calorimètres rapides dans le domaine des capteurs

quantiques.
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Outline

Superconductivity is a fascinating property of metals where the conduction electrons

condensate into a common ground state and the entire system acts as a charged superfluid.

The story of superconductivity began in the early 1900s with the technical advances on

the liquefaction of helium and progressively matured into a vibrant branch of physics over

the course of the 20th century.

One of the various counter-intuitive features that superconductors harbour is the quan-

tization of the magnetic flux. When confined at the center of a superconducting loop,

the magnetic flux which is a continuous quantity in the classical world, admits only the

integer multiples of a universal constant (Φ0 = h/2e ≈ 2.068× 10−15Wb) denoted as the

magnetic flux quantum. This intriguing phenomenon stems from the condition that the

wavefunction Ψ = |Ψ|ejϕ which represents the superconductor must be a single-valued

function of position and therefore can only accumulate integer multiples (n) of ϕ = 2π

upon a complete tour around the loop. Despite being confined at the center of the su-

perconducting loop, under certain conditions, a magnetic flux quantum can tunnel in/out

of the loop which corresponds to a momentary collapse and revival of the wavefunction

where the phase winds by 2π. This event is shortly called as a phase slip.

Within the framework of Josephson junctions, another fascinating sprout of the supercon-

ductivity where two superconducting reservoirs are separated by a weak link, the transfer

of Cooper pairs from one reservoir to the other provides an equivalent picture for Φ0

tunneling as a Josephson vortex in the transverse axis of the current flow (Fig. 1a).

In this thesis, we deal with the real-time detection of a single phase slip in a Josephson

junction by measuring its thermal signature with a fast calorimetry method. Our work

builds upon the previous reports on the proximity thermometer [1–3], superconducting

quantum interference device with an SNS Josephson junction [4] and the pertaining fast

readout methods [5, 6]. Our main ingredients are

1. Superconducting quantum interference device (SQUID) which brings together the con-

cepts of flux quantization and the Josephson effect. When engineered to operate in the

hysteretic regime (strong screening), the SQUID becomes a reliable tool for generating

phase slips in a deterministic way. When driven beyond a threshold bias, the so-called

phase particle representing the system state falls into the next potential minimum and

the difference in the internal energy is simply dissipated in the form of Joule heat (Fig.

1b, c).

6
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2. SNS Josephson junction formed by two superconducting electrodes (S) and a normal

metal (N) in the middle. The importance of this hybrid structure for our experiment

cannot be stressed enough. It features Josephson effect and operates intrinsically in the

overdamped regime. Therefore, when used in a SQUID, the SNS junction provides the

suitable mode of operation for generating single phase slips rather than switching to the

running state. Moreover, thanks to the poor thermal conduction of superconductors, the

N island is thermally isolated on both ends and the heat transport occurs dominantly

through phonons. Given the weak electron-phonon scattering rates at sub-K tempera-

tures, we can therefore use N as a calorimeter which absorbs the heat generated by a

phase slip.

Phase drop φ

∆U

Energy

Φ0

Applied 
flux

Phase drop φ

b

c
2π

∼ π

a

φ = 0

φ → π
2

φ
π
20

Is

Φ0

Figure 1: a. Schematic description of the phase slip mechanism in a Josephson junction. A

quantum of flux tunnels perpendicular to the Josephson junction, releasing heat. b. The applied

flux vs. phase drop curve for a hysteretic SQUID. The applied flux versus the phase drop across

the Josephson junction in a hysteretic SQUID. The phase slips are marked in blue arrows. c.

The potential landscape of the system. The external flux tilts the potential in one direction an

causes the so-called phase particle to stabilize in the neighboring local minimum. The difference

in the internal energy (∆U) is dissipated in the form of Joule heat.

3. N’IS thermometer: As mentioned previously, the dissipation followed by a phase slip

is of ohmic nature. Therefore, it is absorbed by the electron population of N. To probe

the electronic temperature of the absorber, we add a third superconducting electrode sep-

arated from the island by an oxide layer. When probed at zero bias voltage, the tunneling

conductance of the hybrid system made of a proximitized metal (N’), the isolating layer
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(I) and the superconducting electrode (S) provides a sensitive secondary thermometer.

4. Fast readout scheme: probing the tunneling conductance of the NI ′S junction with

conventional lock-in methods suffers from a reduced bandwidth (∼ kHz) due to the par-

asitic capacitive couplings. To circumvent this issue, we embed our device in a reso-

nant RLC circuit with a large bandwidth (∼ 10MHz), probe the system at resonance

(∼ 575MHz) and read the temperature of N via changes on the S21 parameter.

5. Rapid flux line Macroscopic coils used to generate phase slips in the SQUID proves

slow. Therefore, we converge to an on-chip coupling solution where a monolithically

fabricated flux line carries the fast flux pulses. We will see that the mutual coupling

between the rapid flux line and the SQUID, therefore the device geometry and the material

choice have to be engineered carefully.

The organisation of this manuscript is as the following: we begin by discussing the theoret-

ical background of the building blocks of this project in Chapter 1. The superconductivity

and the Josephson effect are explained with a somewhat historical perspective. Next, we

delve into the fundamental relations of the Josephson effect, discuss the resistively shunted

capacitive junction (RSCJ) model and elaborate on the SNS type Josephson junctions. We

detail the principles of the coherent transport in SNS junctions together with the different

transport regimes at several limit conditions. Then, we make our way to the phase slips

in a SQUID by discussing the Meissner effect, the flux quantization in a superconducting

ring and the fundamentals of RF-SQUID in the given order.

In Chapter 2, we quickly review the fundamental concepts of thermodynamics at the

basic level and the primary/secondary thermometer types. We elaborate on the working

principles of the superconducting hybrid junctions including NIS, SNS and N’IS as ther-

mometers. The following two sections discuss the bolometers and the calorimeters and

details the thermal model of our system.

Chapter 3 opens with a discussion on resonance, driven damped systems and the quality

factor. We move on to the discussion of microwave concept of S parameters, the readout

schemes and I-Q mixing. Next, we discuss the design of our resonator which is realized

as a stand-alone superconducting chip. We compare the lumped element values and

the resonance with the previous reports from the literature. Finally, we explain and

discuss the results of our experiment on capturing in real time the switching between

dissipative and coherent states in an SNS junction, which served as the first field test for

our fast proximity thermometer. In Chapter 4, the experiment on the real-time detection

of single phase slips is discussed in detail. We begin by elucidating the role of the normal

metal and the impact of the drive signal on the thermal model. Next, the conditions for

obtaining a SQUID device in the hysteretic regime are explained. In what follows, we

adopt a chronological narrative to highlight the evolution of our sample design and the

engineering challenges on achieving a sufficient mutual inductive coupling between the

flux line and the SQUID. We discuss the measurement protocol of the real time detection

and finally discuss the results.
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Chapter 1

Theoretical Background

1.1 Josephson Effect

1.1.1 Superconductivity

Superconductivity refers to a particular phase of metals where direct consequences of

quantum mechanics become visible at macroscopic scale and electrodynamic/thermal

properties differ drastically from the normal metallic phase. Below a critical temper-

ature (Tc), conduction of electrons becomes resistance-free. Magnetic field is expelled

from the bulk and a gap opens in the excitation spectrum of quasiparticles. Specific heat

presents a discontinuity at T = Tc and is dominated by an exponential dependence on

temperature for T < Tc. The family of elements, compounds and alloys featuring such a

transition are simply called superconductors.

The study of superconductivity was initiated by the discovery of the perfect DC con-

ductance by Heike Kamerlingh Onnes in 1911 upon cooling mercury (Hg) below 4.2 K

[7]. Later on, Meissner and Ochsenfeld [8] observed the expulsion of the magnetic field

from the superconducting bulk for the first time in 1933. On the theoretical aspect, Lon-

don brothers proposed the first model [9] in 1935, shortly after the discovery of Meissner-

Ochsenfeld effect. London equations brought a successful explanation on the experimental

observations however the model was unable to elucidate the origin of superconductivity.

It was not before 1950’s that a full microscopic picture was developed.

Within the framework of Ginzburg - Landau theory [10] proposed in 1950, a complex

order parameter, Ψ, is associated with the superconducting state such that

Ψ(r) =

0 T > Tc

|Ψ(r)|ejϕ(r) T < Tc

Bardeen, Cooper, and Schrieffer (BCS) [11] completed the microscopic picture with three

key ingredients (i) attractive electron - electron interaction which leads to the formation

of electron (Cooper) pairs [12] (ii) the instability of Fermi sea against the formation

of Cooper pairs, hence a new ground state (iii) a many-body wavefunction representing

10
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the coherent ground state of the superconductor. Later on, Gor’kov [13, 14] linked

the two models by demonstrating that GL order parameter Ψ corresponds to the BCS

wavefunction such that the density of Cooper pairs, ρ, in a superconductor is related to

the order parameter amplitude as ρ = |Ψ|2.

1.1.2 Fundamental relations

Next, we focus on the case where two superconductors are brought in close proximity.

In the late 1950’s, tunneling of single electrons through an insulating barrier was already

demonstrated in semiconductors [15]. Later on, experiments done by Giaever showed that

the same phenomenon was apparent in superconductor-insulator-superconductor struc-

tures which eventually led to the demonstration of the existence of a gap in SC density

of states [16]. In his experiments, Giaever had also observed a finite DC current at zero

voltage bias which he falsely attributed to the pinholes in the oxide layer. On the the-

oretical aspect, the possibility of a Cooper pair tunneling through an insulating barrier,

necessary mechanism for tunneling supercurrent, was studied by Pippard [17]. At that

time, common understanding was that such event would require simultaneous tunneling

of two incoherent electrons which would make the observation unlikely.

In 1962, Josephson predicted that Cooper pair tunneling was a coherent event and the

resultant supercurrent was in the same order of magnitude as the quasiparticle current

[18]. He further showed that the tunneling supercurrent was given by the equation:

Is(φ) = Ic sinφ (1.1)

where Ic is the the critical current and φ corresponds to the gauge-invariant phase dif-

ference across the barrier. A finite voltage drop (V) across the junction leads to time

evolution of φ as

dφ

dt
=

2e

ℏ
V (1.2)

hence yielding an AC current

Is(φ) = Ic sin

(
φ0 +

2e

ℏ
V t

)
(1.3)

with ω = 2e
ℏ V , Josephson junction acts as a voltage-controlled oscillator. Eq. (1.1) and

Eq. (1.2) form the essence of Josephson’s findings and are called DC and AC Josephson

effect respectively. Josephson’s prediction was followed by the experimental proof in 1963

[19] and Josephson junction became the generic name for the systems of weakly coupled

superconductors.

Josephson’s theoretical work considered an SIS junction. Obviously, the choice was in-

spired by the tunneling experiments of the time. With the improvements in fabrication
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Figure 1.1: a. Schematic representation of a current-biased Josephson junction. Superconduc-

tors S1,2 (blue) are represented by the wavefunctions Ψ1,2. In a typical measurement setup, bias

current Ib is swept and the voltage across (V+ − V−) is measured. b. supercurrent (Is) in units

of critical current (Ic) and the stored energy (Ej) normalized to Josephson energy Ej0 plotted as

a function the Josephson phase (φ) c. V-I measurement of a Josephson junction (red). Junc-

tion is in coherent state for Ib ≤ Ic . Time evolution of V at resistive state is shown in inset.

Oscillation frequency increases with bias current I.
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methods and ever-growing interest in the field since then, a plethora of device configu-

rations were shown to display Josephson effect [20–22]. To mention a few, microbridges

where the weak link is formed by a constriction of the same superconducting material were

investigated as early as 1964 [23]. Initial works on Pb - Cu - Pb sandwiches [24, 25] set

the stage for superconductor (S) - normal (N) - superconductor (S) junctions by showing

that a coherent current over N was possible thanks to the proximity effect, a phenomenon

predicted by de Gennes [26]. Later on, ferromagnet (F) interlayers were introduced which

led to the observation of π-state in SFS junctions [27, 28]. Hybrid structures such as

graphene [29–31], and topological insulator (TI) [32, 33] based Josephson junctions have

been also studied. Definitive observation of Majorana bound states in S-TI combined

structures is an active field of research [34–37].

1.1.3 Coherent vs Resistive States

Experimentally, DC Josephson effect can be observed by imposing an external bias current

(Ib) through the junction and measuring the voltage across (Fig. 1.1a). The coherent

nature of the Cooper pair tunnelling leads to a current flow with zero-voltage drop across

the junction between −Ic ≤ Ib ≤ Ic. In return, the applied current sets the phase bias

between −π/2 ≤ φ ≤ π/2 in a steady-state manner. We name this regime the coherent

state.

Josephson Energy. Although the junction is in coherent state, one sees that time

evolution of the phase 0 → π/2 requires a finite voltage as Eq. (1.2) shows. This seem-

ingly paradoxical situation is resolved when we consider the energy stored in a Josephson

junction. Setting up a supercurrent through Josephson junction requires energy. In this

framework, the temporary emergence of the finite voltage provides the power (IbV ) de-

livered to the system to accelerate the Cooper pairs. Considering a time window t0 for

ramping up the Ib, we can calculate the work done on Josephson junction by the external

source as

Ej =

∫ t0

0

IsV dt (1.4)

Inserting Eq. (1.1) and Eq. (1.2) in Eq. (1.4)

Ej =

∫ φ

0

Ic sin φ̃
ℏ
2e
dφ̃ (1.5)

and evaluating the integral, we reach

Ej = Ej0(1− cosφ), Ej0 =
ℏIc
2e

(1.6)

where Ej0 is called the Josephson energy. Fig. 1.1b shows the phase dependence of Ic

and the energy stored in a Josephson junction.

Resistive state. What happens when we drive the junction at Ib > Ic ? As the

supercurrent obeys the condition −Ic ≤ Is ≤ Ic, the excess current needs to be ensured
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Figure 1.2: a. Resistively and capacitively shunted junction model of a Josephson junction b.

Motion of the so-called phase particle in a tilted washboard potential. The system oscillates at

ω = ωp at Ib = 0. Increasing Ib tilts the potential downwards. The phase particle rolls downhill

for Ib ≥ Ic c. Calculated voltage (V) for different βc values, in units of IcRN as a function of

Ib normalized to Ic. RN is the normal-state resistance. βc is the Stewart-McCumber parameter.

[38, 39] Ic,b is the critical (bias) current. d. Retrapping current IR in units of Ic plotted versus

Stewart-McCumber parameter. The Josephson junction is overdamped (underdamped) for βc < 1

(βc > 1).
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by other transport mechanisms. For T > 0, superconducting leads have non-vanishing

quasiparticle density due to the thermal break up. Moreover, accelerating the superfluid

transfers energy to the Cooper pairs such that they break up when the gap energy 2∆

is overcome. Hence, a resistive transport channel (RN) opens up for Ib > Ic, resulting

in a tunneling current of quasiparticles (IN) and a finite voltage (V = INRN) across the

junction (Fig. 1.1c). Consequently, this regime is called the resistive or normal state.

Displacement current. In the presence of finite voltage (V), the phase evolves in

time according to Eq. (1.49) and generates an oscillating supercurrent. The fact that

the total current is fixed by Ib causes IN to oscillate as well. In return, oscillating IN

yields dV
dt

̸= 0. For the case dV
dt

̸= 0, the capacitive aspect of the Josephson junction

becomes important. Thus, we can talk about a third transport mechanism which carries

the displacement current, given as ID = C dV
dt
.

1.1.4 Resistively Shunted Capacitive Junction Model

So far, we elaborated on different current-carrying mechanisms in a Josephson junc-

tion. The interplay between these channels will lead to a rich electrodynamic behaviour

which we can encapsulate in a lumped circuit model called resistively and capacitively

shunted junction model (RCSJ) (Fig. 1.2a). Including a noise term, IF , we can write

the total current via Kirchoff’s rule as

Ib = IS + IN + ID + IF (1.7)

inserting Eq. (1.1) in Eq. (1.7), we obtain

Ib = Ic sinφ+
V

RN

+ C
dV

dt
+ IF (1.8)

Let us rewrite Eq. (1.8) in terms of φ

Ib = Ic sinφ+
1

RN

Φ0

2π

dφ

dt
+ C

Φ0

2ϕ

dφ2

dt2
+ IF (1.9)

Hence, we reach the equation of motion for the phase. Eq. (1.9) can be reformulated as

[40]

(
ℏ
2e

)2

C
d2φ

dt2
+

(
ℏ
2e

)2
1

RN

dφ

dt
+

d

dφ

(
Ej0

[
1− cosφ− Ib

Ic
φ+

IF
Ic
φ
])

= 0 (1.10)

to make an analogy with the motion of a particle having a mass, m, in a viscous liquid

with damping η, in a potential U:

m
dx2

dt2
+ η

dx

dt
+∇U = 0 (1.11)
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The motion of the so-called phase particle in potential U = Ej0[1− cosφ− Ib
Ic
φ+ IF

Ic
φ] is

shown in Fig. 1.2b. For Ib ≤ Ic, the particle is trapped in one of the valleys and oscillates

around the potential minimum at frequency

ω = ωp

(
1− I2b

I2c

)0.25
(1.12)

where ωp is the plasma frequency. As the average phase is constant (⟨φ̇⟩ = 0), the

I − φ relation is static, agreeing with the coherent state. Increasing Ib tilts the potential

landscape such that for Ib > Ic the potential barrier is removed and the particle slides

continuously, leading to a finite voltage across the junction.

Underdamped vs. Overdamped. Starting from the resistive state (Ib > Ic) and

sweeping Ib in the negative direction, the phase particle is retrapped at Ib ≤ Ic. The

current value at which the transition occurs is called the retrapping current, IR, which

depends on the junction parameters. IR defines two distinct regimes which we can un-

derstand with the help of the analogy we previously established. The junction with large

capacitance (big mass) and high resistance (low damping) continues rolling down the po-

tential despite the existing local minima thanks to its sufficient kinetic energy. For this

reason, the potential landscape has to be tilted upwards further for retrapping (IR < Ic).

Junctions featuring such behaviour are called ”underdamped”. Conversely, having a small

capacitance (small mass) and low resistance (high damping), phase particle is retrapped

as soon as Ib = Ic, hence yielding IR = Ic (Fig. 1.2c,d). The junctions in this regime are

”overdamped”.

Characteristic frequencies. RCSJ model allows us to think of Josephson junction as

a parallel RLC resonator where L represents the Josephson inductance given as Lj =
ϕ0

2πIc
. Hence, the plasma frequency

(
wp = 1√

LjC

)
mentioned above corresponds to the

resonant frequency when Ib = 0. We can define two more characteristic frequencies (1) the

decay time (τc) of supercurrent IS over the normal channel (RN) yields the characteristic

frequency wc = 1
τc

= RN

LJ
(2) the discharge of the junction capacitance over RN gives

ωRC = 1
τRC

= 1
RNC

. It is now straightforward to understand the under/over damped

regimes in terms of the resonator’s quality factor:

Q =
√
βc =

ωp

ωRC

=
ωc

ωp

(1.13)

where βc is the Stewart [38]-McCumber [39] parameter. High Q (βc > 1) and low Q

(βc < 1) correspond to underdamped and overdamped regimes respectively.

1.1.5 SNS Junction

Proximity Effect

What happens when we bring a superconductor where a macroscopic wavefunction rep-

resents the highly correlated electrons in contact with a normal metal where these cor-

relations cannot exist naturally ? It turns out that pair correlations leak into N and
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Figure 1.3: Proximity effect. Spatial dependence of the density of pairs |Ψ(x)|2 near the

interface between a superconductor (x < 0) and a normal metal (x > 0). (adapted from [41])

travel a finite distance before decohering in the absence of attractive electron-electron

interactions. This process, known as the proximity effect, diminishes the density of pair

correlations near the boundary in S and leads to an evanescent tail on the N side (Fig.

1.3). The spectral properties of normal metal undergoes certain modifications with the

proximity effect. A minigap opens in quasiparticle density of state [42, 43], energy ex-

change between electrons and phonons weakens [44], and specific heat deviates from the

normal case and becomes phase tunable [45].

Bogoliubov-de Gennes formalism [46] provides the theoretical framework of the prox-

imity effect. In this method, electron-like and hole-like excitations inside the supercon-

ducting bulk are represented by a two-component wavefunction Ψ = (Ψe,Ψh) which is

the solution of a coupled set of Schrödinger equations:(
Ĥ ∆ejϕ

∆e−jϕ −Ĥ∗

)(
Ψe

Ψh

)
= E

(
Ψe

Ψh

)
(1.14)

At low temperatures, only the excitation near Fermi energy are relevant ( E,∆ ≪ EF ).

Therefore, BdG equation can be simplified to a system of first-order differential equations

with a plane wave solution Ψe,h(x) ∝ Ψ̃e,h(x)e
jkF x(

−jℏvF d
dx

∆ejϕ

∆e−jϕ jℏvF d
dx

)(
Ψ̃e

Ψ̃h

)
= E

(
Ψ̃e

Ψ̃h

)
(1.15)

which is known as the Andreev approximation [47, 48] (Fig. 1.4a). In the following

section, we will provide a qualitative description of the Andreev reflection.

Andreev Reflection

Andreev reflection is the microscopic mechanism which allows the transfer of quasiparticles

with excitation energy ϵ < ∆ through NS interface [51]. In this counter-intuitive process,

an electron (e1) with a momentum ℏke1 = ℏkF + ϵ/vF and spin ↑ hitting the boundary

from N side reflects as a hole (h1) with ℏkh = ℏkF − ϵ/vF and spin ↑. The process can
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Figure 1.4: a. Andreev approximation: for E << EF , a slow varying envelope wavefunction

Ψ̃e,h(x) (black) which ignores the fast oscillations at kF (gray) is used (adapted from [49]) b.

Andreev reflection: an electron (e) with momentum ℏke and spin ↑ impinges on NS boundary

and reflects as a hole with momentum ℏkh and spin ↑. Net charge of 2e is transferred to S

(adapted from [48]) c. Spectrum of Andreev bound states as a function of Josephson phase φ

at different contact transparency T ∈ [0, 1] d. The product of spectral supercurrent Im(Iϵ) and

RN as a function of energy in units of ETh for different values of Josephson phase φ. RN is

the normal state resistance, ETh is the Thouless energy (adapted from [50])
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also be pictured as the pairing of e1 with e2 with momentum ℏe2 = −kF + ϵ/vF and spin

↓. Therefore, a net charge of 2e is transferred to S as a Cooper pair. Note that h1 has

a negative group velocity
(
vg =

dE
dk

)
although kh1 ≈ ke1. Therefore, Andreev reflection is

quasi perfect retro-reflection .

By solving Eq. (1.15) in N (x > 0, ∆ = 0) it can be shown that the reflected hole

gains a phase shift with respect to impinging electron as :

φh = φe + φS − arccos(ϵ/∆) (1.16)

which depends both on the excitation energy ϵ and the phase of the superconducting

condensate, φS. If we now make an SNS sandwich, then Andreev reflections take place

at both NS interfaces. The Andreev pairs inside N carry the phase information of both

interfaces and lead to the formation of Andreev bound states [52, 53] below ∆ whenever

round-trip reflection accumulates a phase shift of 2πn. These discrete sub-gap states act as

phase dependant channels carrying the coherent current through SNS junction (Fig. 1.4c).

Diffusive transport. Transport mechanism with discrete sub-gap states applies par-

ticularly to the ballistic regime where the weak link length is shorter than the elastic mean

free path (L < le) [52]. At a broader scale, the transport properties of SNS systems,

hence the possible regimes, are determined by a competition among several characteristic

lengths shown in Fig. 1.5a. For the case L > le, a quasiparticle pair entering N with ex-

citation energy ±ϵ is subject to multiple elastic collisions and dephases in time by e−i2ϵt/ℏ

and covers a distance Lϵ =
√

ℏD/ϵ before completely decohering. D = 1
3
vF le is the

diffusion constant [54]. Therefore, the transport in this regime is called ”diffusive”. In

the diffusive regime, quasiparticle trajectories obtain a statistical distribution of the net

traveled distance due to a high concentration of scatterers which leads to the broadening

of Andreev bound states. As a consequence, the spectral composition of the super current

becomes a continuous function of energy unlike the ballistic case (Fig. 1.4d). In the low

energy limit (ϵ→ 0), Lϵ is limited by (Lφ) where Lφ is the characteristic distance related

to the dephasing caused by inelastic reflections and spin-flip scatterings.

Quasiclassical theory of diffusive transport. BdG formalism is frequently em-

ployed for the theoretical treatment of various ballistic systems [56–58]. However, it

proves impractical for diffusive regime as the disorder concentration makes the scatter-

ing matrix intractable. A more suitable approach is provided by Green Functions (GF)

in quasiclassical limit [59, 60]. Within the context of superconductivity, GFs turn into

two-point correlators which carry the information on coherence. They are the solution

of Eilenberger equation [61], analogous of Boltzmann transport equation [48] endowed

with coherence. In the dirty limit (L ≫ le), Eilenberger equation is further simplified

by disregarding the anisotropic term of GF (angular averaging). Hence, we reach Usadel

equation which is the coherent counterpart of the drift-diffusion equation [62]. In 1-D, it
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Figure 1.5: a. Diagram showing the different transport regimes of a Josephson junction. Trans-

port is ballistic (diffusive) when L < le (L > le). Diffusive regime is divided into short (∆ < ETh)

and long (∆ ≫ ETh) limits. At low T (kBT < ETh), all Matsubara frequencies contribute to the

supercurrent. Therefore, full Usadel equation has to be solved. For high T (kBT > ETh), Usadel

equation can be linearized. ETh is the Thouless energy b. Calculated dependence of eRNIc

product in units of ∆ as a function of the ratio ETh/D. Ic is the Josephson critical current, RN

the normal-state resistance. The Josephson junction is in the short (long) regime for ETh/∆ > 1

(ETh/∆ < 1) The horizontal dashed line marks the limit given by Kulik-Omel’yanchuk formula

[52] (adapted from [55]) c. Calculated temperature dependence of the eRNIc product. The

different curves correspond to various values of the ratio ∆/ETh in the long-juction regime. The

curve for ∆/ETh → ∞ is universal in the sense that it does not depend on ∆. (taken from [55])
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is written as:

ℏD
2

∂2θ

∂x2
+iE sin θ−

(
ℏ
τsf

+
ℏD
2

(
∂φ

∂x
+

2e

ℏ
A(x)

)2
)
cos θ sin θ︸ ︷︷ ︸

pair breaking
τsf : spin-flip scattering time constant
A(x): magnetic vector potential

+ ∆(x) cos θ︸ ︷︷ ︸
pairing interaction

= 0 (1.17)

∂

∂x

[(
∂φ

∂x
+

2e

ℏ
A(x)

)
sin2 θ

]
= 0 (1.18)

where Eq. (1.17) describes the position dependence of the complex quantity called the

pairing angle θ(x,E) and Eq. (1.18) represents the current conservation [63]. The pairing

angle, θ, is the product of angular paramaterization of GFs. It encapsulates the properties

of a proximity system at equilibrium. For instance, the spectral current density, js, can

be written as

js(x,E, φ) = Im

[
− ∂φ

∂x
sinh2 θ(x,E)

]
(1.19)

Then, the supercurrent at equilibrium is given by the integral

IS =
e

2
n0D

∫ +∞

−∞
dE(1− 2f(E))Im[− sinh2 θ(x,E)] (1.20)

which is basically the spectral current density weighted by the distribution function, f(E).

Short vs. long junctions. A particularly important energy scale related to the

quasiparticle time of flight inside N is called Thouless energy [64]:

ETh =
ℏD
L2

(1.21)

The comparison between ETh and the superconducting energy gap ∆ divides the junctions

in the diffusive regime into two categories (Fig. 1.5b):

1. Short-junction limit (∆ < ETh): The critical current (Ic) is dictated by the super-

conducting energy gap ∆. At T=0, it is given as [52]

Ic(T = 0) = 1.32
π

2

1

eRN

∆T=0 (1.22)

and the current-phase relation peaks at φ ≈ 1.25π
2
.

2. Long-junction limit (∆ ≫ ETh): The Thouless energy takes over ∆ and becomes

the relevant energy scale as the high energy quasiparticles (E ≫ ETh) dephase at a

distance Lϵ < L. At T=0, IC is given as [55]

Ic(T = 0) = 10.82
1

eRN

ETh (1.23)

(Fig. 1.5c) and the max (IS) occurs at φ ≈ 1.27π
2
.
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Low temperature vs. high temperature limit. In thermal equilibrium at

T ̸= 0, the supercurrent integral can be reformulated as a sum over fermionic Matsubara

frequencies ωn = (2n+ 1)πkBT [65–67].

1. High temperature limit (kBT ≫ ETh): The pair amplitude, F = sin(θn), inside N

is weakened (Fig. 1.6a). Hence, two S reservoirs can be considered as decoupled which

allows the linearization of the Usadel equation. In this regime, the analytical expression

of Ic is given as [55]

eRNIc(T ) = 64πkbT
∞∑
n=0

L

Lωn

∆2e−L/Lωn(
ωn + Ωn +

√
2(Ω2

n + ωnΩn)
)2 (1.24)

where Ωn =
√

∆2 + ω2
n and Lωn =

√
ℏD/2ωn. The major contribution to Ic comes from

ω0. In the long junction limit (∆ ≫ ETh), Ic is simplified to

eRNIc(T ) =
32

3 + 2
√
2
ETh

(
2πkBT

ETh

)1.5

e
−
√

2πkBT

ETh (1.25)

2. Low temperature limit (kBT ≪ ETh): Contribution of higher Matsubara frequencies to

the critical current is not negligible (Fig. 1.6b). Therefore, the full Usadel equation needs

to be solved numerically. In the long junction limit (∆ ≫ ETh), an empirical expression

which fits well the Usadel solution is given as [68]

eRNIc(T )

ETh

= b(1− 1.3e
− bETh

3.2kBT ) (1.26)

where b =

(
eRN Ic
ETh

)
T=0

.

Minigap. Proximity effect induces a gap in the density of states (DoS) of N (Fig.

1.7a) which is given by n(x,E) = n0Re[cos θ(x,E)] where n0 is the normal DoS, within

the quasiclassical GF formalism. The phenomenon is called the minigap. It has been the

subject of both theoretical [69–71], and experimental [42, 72, 73] studies over the past

years. The minigap is dependent on the junction phase (φ) and disappears completely at

φ = π. (Fig. 1.7b) Its magnitude (∆g) depends on [74]:

1. Transparency of the SN contact: characterised by the ratio r = GN/GB where GN is

the normal metal conductance and GB is the barrier conductance (Fig. 1.7c). GB can be

expressed as GB = NG0τ which is basically the conductance quantum (G0) multiplied by

the number of channels (N) and the transmission coefficient τ ∈ [0, 1].

2. Concentration of magnetic impurities: given by the spin-flip scattering rate Γsf which

represents the main pair breaking mechanism (Fig. 1.7d).

Considering the ideal case (r = 0 ,Γsf = 0), it was shown by Ref. [74] that ∆g ∼ 3.1ETh

in the long junction limit (∆ ≫ ETh).
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Figure 1.6: Spatial dependence of the pair amplitude sin θn inside N, calculated at a. kbT = 5ETh

b. kbT = 0.1ETh for the first ten Matsubara frequencies by numerically solving 1-D Usadel

equation. The dimensions of N are taken as (500 nm, 220 nm, 35 nm) and the diffusion

constant is D = 75 cm2/s, yielding ETh ≈ 20µeV . An ideal case with zero spin-flip scattering

rate (Γsf = 0) and fully transparent contact is considered.

1.2 Meissner-Ochsenfeld Effect

One of the hallmarks of superconductivity is the expulsion of magnetic field (B⃗) from the

superconducting bulk as the material transitions from normal (N) to superconducting (S)

state. The expulsion is made possible by the emerging supercurrent which circulates near

superconductor surface and generates the exact opposite flux, leading to the cancellation

of B⃗ inside the bulk. Intuitively, one can expect a non-zero E⃗ field as dΦ
dt

̸= 0 during

transition. The momentary presence of E⃗ should then be enough to set the condensate

in motion, leading to the circulating currents with zero resistance. The current density

near superconductor surface is given as:

J⃗ = ρ
ℏ
m

(
∇θ − q

ℏ
A⃗
)

(1.27)

where ρ, θ and A⃗ represent the Cooper pair density, phase of the wavefunction ψ(r) =
√
ρejθ(r) and magnetic vector potential (defined as B⃗ = ∇⃗×A⃗) respectively.

London penetration depth (λL): Although superconductors are known to display

perfect diamagnetism, the presence of such persistent currents near surface hints at a

thin layer into which B⃗ can penetrate. This characteristic length scale is called London

penetration depth (λL). Derivation of λL from J⃗ is straightforward.

In Eq. (1.27), applying curl operator (∇×) on both sides and using the vector identity

∇×∇θ = 0, we obtain

∇× J⃗ = − ρ

m
(∇× A⃗) = − ρ

m
B⃗ (1.28)
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Figure 1.7: a. Local DoS in a 1D SNS structure. ∆ is the superconductor gap. ∆g is the minigap

(dashed red) (adapted from [43]). b. ∆g in units of ETh as a function of the Josephson phase

φ (red). ∆g closes completely at φ = π. The analytical curve ∆g/ETh = 3.15| cos(φ/2)| is given
in dashed blue. ETh is the Thouless energy. (adapted from [75]) c. ∆g as a function of ∆ in

units of ETh at different values of contact transparency, r. Note that in the long junction limit

(∆ ≫ ETh) ∆g ∼ 3.1ETh for r = 0. (adapted from [74]) d. DoS in the long junction limit

(∆/ETh = 10) with ideal contacts r = 0, as a function of energy normalised to ETh at different

values of spin-flip scattering rate, Γsf . (adapted from [74])

Figure 1.8: Exponential decay of a. the magnetic field B (blue) b. the supercurrent density

Js (red) with distance x into a bulk superconductor (taken from [40]).
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We can now manipulate Ampère’s Law

∇× (∇× B⃗) = µ0(∇× J⃗) (1.29)

Using vector identity ∇ × (∇ × B⃗) = −∇2B⃗ and inserting Eq. (1.28) in Eq. (1.29), we

reach

∇2B⃗ = k2B⃗

(
k2 =

µ0nq
2

m
, ρ = nq

)
(1.30)

Eq. (1.30) represents the time independent form of a wave equation and yields two eigen-

functions. Opting for the decaying (Be−kx) solution, we find λL as:

λL =
1

k
=

√
m

µ0nq2
(1.31)

The penetration of B⃗ in the superconducting bulk and the resultant surface current is

shown in Fig. 1.8.

1.3 Flux Quantization

Trapped flux. We consider a superconducting ring with thickness t > λL and ignore

its width. As sketched in Fig. 1.9, we first let the transition N → S take place in

presence of B⃗ by cooling the system below Tc. Then, we turn off B⃗. What can we

say about the behaviour of our device in such experiment? We can guess that some

magnetic flux (Φ) crossing the bulk will be deviated to the center of the loop as the

ring becomes superconductor. Next, let us consider a closed path deep inside the ring

bulk, any magnetic flux leaving this loop would generate emf according to Faraday’s law of

induction
∮
E⃗.dr⃗ = −dΦ

dt
. However, as mentioned in the previous section, superconducting

bulk is field-free (B⃗ = 0, E⃗ = 0). Therefore, dΦ
dt

= 0 and Φ inside the ring is trapped.

Quantization. The topological change from simply connected (slab) to multiply con-

nected (ring) shape brings an additional feature to the trapped flux: quantization [77, 78].

In the presence of a magnetic vector potential A such that B = ∇×A, Aharonov-Bohm

effect [79] describes the phase accumulation (∆θ) by the wavefunction, Ψ of a charged

particle (q = 2e) upon displacement from point a to b via certain path P in the region

where B = 0 and A ̸= 0 as

∆θ = θb − θa =
2e

ℏ

∫
P

A · dr (1.32)

As Ψ(x) must be a single-valued function of position, ∆θ over a complete cycle around

the ring can only accept multiples of 2π as value:

2e

ℏ

∮
P

A · dr = 2πn (1.33)
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Figure 1.9: A ring in the magnetic field B⃗ a. in the normal state b. in the superconducting

state c. after the external field is removed. (adapted from [76])

Using Stokes theorem, we can rewrite Eq. (1.33) as

2e

ℏ

∮
P

A · dr = 2e

ℏ

∫∫
∇×A · ds = 2πn (1.34)

Noting that ∇×A = B ,
2e

ℏ

∫∫
B · ds = 2πn (1.35)

The surface integral on the LHS corresponds to the Φ threading the closed path we have

taken inside superconductor. Therefore,

2e

ℏ
Φ = 2πn (1.36)

Let us reformulate Eq. (1.36). In the final form,

Φ = nΦ0, Φ0 =
ℏ
2e

≈ 2.0678× 10−15 Wb (1.37)

Eq. (1.37) reveals the striking nature of the Φ trapped inside the ring. Flux can only

accept integer multiples (n) of Φ0 and is therefore quantized. Consequently, Φ0 is called

the magnetic flux quantum.

1.4 Phase Slip

The quantized nature of the flux inside the ring is better appreciated within the Ginzburg-

Landau model. In cylindrical coordinates (r⃗, ϕ⃗, z⃗), assuming a vector potential A⃗ = Φ
2πr
ϕ⃗,

the free energy of the system can be written as

Fs = F 0
s + V

(
ℏ2

2m∗

∣∣∣∣inr − 2eiΦ

2πℏr

∣∣∣∣2|Φ|2
)

+
1

2µ0

∫
B3d3r (1.38)
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Figure 1.10: Flux quantization in a superconducting ring. Free energy is plotted as a function

of the flux (Φ) in units of Φ0. Metastable energy minima exist when Φ ≈ nΦ0. The overall

background increase with Φ stems from the self-inductance of the ring, making the zero flux

state (Φ = 0) the global energy minimum. Φ0 is the magnetic flux quantum. (adapted from

[80])

where F 0
s represents the system’s energy in the absence of circulating current and external

B⃗. V is the loop volume. The second and the third terms of the right hand side correspond

to the energy associated with wavefunction (Ψ) and the loop inductance (L), respectively.

Focusing on the Φ-dependent terms, we can rewrite Eq. (1.38) as

Fs(Φ) = Fs(0) + const.(Φ− nΦ0)
2 + const.

Φ2

2L
(1.39)

The energy diagram of the system (Fs(Φ)−Fs(0)) with respect to Φ/Φ0 is traced in Fig.

1.10. It demonstrates that the free energy has local minima in where Φ ≃ Φ0. Hence,

as the transition N → S occurs, the system settles in one of those metastable points

depending on the external B⃗. Turning off B⃗ then induces a persistent current circulating

around the ring as the system must sustain the same Φ in the center. This phenomenon

is known as the persistent current [81].

Under certain conditions, the energy barrier (U0) which keeps the system in a given

metastable point can be overcome. Such a scenario corresponds to a momentary suppres-

sion of the wavefunction in a localized region during which the phase goes through 2π cycle

and the system falls into the next metastable minima, causing dissipation. Such event is

called a phase slip. Phase slips are intimately related to the fluctuations in superconduc-

tors. They proliferate in reduced dimensions and alter significantly the superconductor

properties with respect to the bulk [82–85]. Based on the nature of fluctuations, we can

talk about two phase slip mechanisms:

1. Thermal activation (kbT ∼ U0): At T ̸= 0, thermal fluctuations raise the system’s

free energy by ∼ kbT , thus leading to a finite probability for thermal hopping over the

energy barrier, U0, whenever kbT ∼ U0 (Fig. 1.11a). Thermally activated phase slips
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Figure 1.11: a. Thermally activated phase slip. The phase particle surmounts U0 with a rate

γTAPS when kbT ∼ U0 b. Quantum phase slip. The wavefunction Ψ representing the flux

tunnels through the potential barrier. U0 is the barrier height.

(TAPS), were shown to be the underlying mechanism of the finite resistivities observed

in narrow superconducting channels near Tc [86, 87]. The theory of TAPS was developed

by Langer &Ambegaokar [88] and McCumber & Halperin [39]. The so-called LAMH

model associates the finite resistance below Tc with an escape rate given by the activation

function:

γTAPS = Ωe−U0/kbT (1.40)

where U0 represents the potential barrier and the prefactor Ω sets the timescale of thermal

fluctuations.

2. Quantum tunneling (kbT ≪ U0): Thermally activated phase slips are exponentially

suppressed as T is lowered. Hence, below a crossover temperature Tcr [89], quantum

fluctuations become the primary cause of phase slips. A quantum phase slip (QPS) cor-

responds to the tunneling of the wavefunction through the energy barrier of height U0

(Fig.1.11b). In superconducting nanowires (∅ < 10 nm), the destruction of superconduc-

tivity due to QPS has been predicted theoretically [85]. A large body of experiments

have been dedicated to the observation of incoherent [90–93] and coherent QPS [94–96]

in superconducting nanowires as well as in Josephson junction chains [97–100].

1.5 RF-SQUID

In the previous section, we investigated the properties of a superconducting loop and

elaborated on the resultant flux quantization. Next, we incorporate a single Josephson

junction into the loop (Fig. 1.12). The family of devices including a superconducting loop

interrupted by a single or more than one Josephson junctions is called Superconducting

Quantum Interference Device (SQUID) [101, 102]. The particular configuration having

a single Josephson junction is called Radio Frequency SQUID due to its operation mode

and it was proposed for the first time in the early 1970s [103–106]. It is the core element
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Figure 1.12: A representative sketch of an RF-SQUID. The superconducting ring (blue) is inter-

rupted by a weak link.(dark red) θ21 is the phase drop of the wavefunction in the superconducting

part (dashed). θ12 corresponds to the phase drop over the normal part.

of our experiments. For this reason, we are going to detail its working principles.

Fundamentals. As it was the case for the SC loop, the macroscopic wavefunction (Ψ)

has 2π periodicity over a closed cycle which we represent as:∮
C

∇θ · dl = θ21 + θ12 = 2πn (1.41)

where θ21 corresponds to the phase drop over the weak link which we write in terms of

gauge invariant phase difference (φ) as

θ12 = φ+
2π

Φ0

∫ 2

1

A⃗ · d⃗l (1.42)

and θ12 is the accumulated phase throughout the SC part.

θ21 =
2π

Φ0

∫ 1

2

λLJ⃗ · d⃗l + 2π

Φ0

∫ 1

2

A⃗ · d⃗l (1.43)

Summing Eq. (1.42) and Eq. (1.43) (θ21 + θ12 = 0),

φ+
2π

Φ0

(∫ 2

1

A⃗ · d⃗l +
∫ 1

2

A⃗ · d⃗l︸ ︷︷ ︸∮
C A⃗·d⃗l

)
+

2π

Φ0

∫ 1

2

λLJ⃗ · d⃗l︸ ︷︷ ︸
0

= 0 (1.44)

We take the integral contour inside the bulk such that J⃗ = 0. Thus, Eq. (1.44) becomes

φ =
2π

Φ0

∮
C

A⃗ · d⃗l (1.45)

Noting that the integral on RHS corresponds to Φ threading the loop we arrive at

φ =
2π

Φ0

Φ (1.46)

Eq. (1.46) shows the fundamental property of RF-SQUID. The Josephson phase (φ) is

directly controlled by the external Φ. Hence, the circulating supercurrent Is = Ic sinφ is

a periodic function of Φ with the period Φ0.
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Figure 1.13: Total flux (Φ) threading RF-SQUID as a function of the external flux (Φx) in units

of Φ0 at three different values of β. Φ(Φx) is multi-valued at β = 6 which is manifested as

hysteretic behaviour in practice. β is the screening parameter. Φ0 is the magnetic flux quantum.

Screening parameter. Is induces a flux (LIs) via the loop inductance (L) which

partly screens the external flux, Φx. Therefore, it needs to be included in the total flux

as:

Φ = Φx − LIs (1.47)

Inserting Eq. (1.47) in Eq. (1.46)

φ = −2π

Φ0

(Φx − LIs) (1.48)

and noting that Is = Ic sin(φ), we reach

Φ

Φ0

=
Φx

Φ0

− β

2π
sin

(
2π

Φ

Φ0

)
(1.49)

where β = 2πLIc
Φ0

is called the screening parameter. Eq. (1.49) captures the non-trivial

relation between Φ and Φe. We identify two distinct regimes depending on the value of

β:

1. Weak Screening (β < 1): An equivalent interpretation of β becomes visible when we

reformulate it as β = L
LJ

where LJ = Φ0

2πIc
denotes the Josephson inductance. Therefore,

β < 1 corresponds to the case where the phase drop occurs mostly on the Josephson

junction. The flux induced by the loop (LIs) is smaller than Φ0, hence the screening is
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Figure 1.14: The ratio of the flux jump magnitude over Φ0 in RF-SQUID as a function of the

screening parameter β. Note that Φ → Φ0 as β grows.

negligible. This leads to a single-valued Φ(Φx) and Φ follows Φx almost linearly (Fig.

1.13).

2. Hysteretic Mode (β > 1): SQUID screening of Φx is effective and (LIs) becomes the

dominant term in Eq. (1.49), to such an extent that Φ(Φx) is no longer single-valued. In

practice, the multi-valued nature of the Φ(Φx) translates into hysteretic behaviour. As

Φx is increased, Φ follows less rapidly but in a continuous manner up to Φ ∼ Φ0/4. At

this point, Josephson junction has φ ≃ π/2 and max(Is) is reached. Therefore further

screening is not possible. Increasing Φx further, SQUID momentarily switches to the

voltage state and Φ0 penetrates in the loop, increasing the winding number n = n + 1.

Sweeping Φx in the negative direction this time, circulating Is builds up in the opposite

way and the transition n+ 1 → n takes places when φ ∼ −π/2 is reached.

Phase slip in SQUID. The mechanism for Φ0 entering/leaving the SQUID bears a

great resemblance to the phase slips in fully superconducting rings, however, with two

distinctions: (1) 2π periodicity of flux quantization becomes fractional due to the presence

of the weak link and converges to Φ ≈ nΦ0 only for β ≫ 1 (Fig. 1.14). Thus, the hysteretic

SQUID can be seen as a permeable superconducting loop with a limited screening capacity

where some Φ already leaks into the loop prior to a slip. (2) Unlike the stochastic nature of

TAPS and QPS, the above-mentioned phase slips in hysteretic SQUIDs are deterministic.

They are generated experimentally by sweeping Φx. The unfolding of a such deterministic

phase slip is better appreciated with the help of an energy landscape.

Potential landscape The potential energy, U(Φ), of a SQUID consists of the magnetic

energy stored in the JJ (Ej(1− cosφ)) and in the loop inductance
(
Φ2

2L

)
:

U(Φ) = Ej(1− cosφ) +
Φ2

2L
(1.50)

Let us reformulate Eq. (1.50) so that the β and (φx = 2πΦx

Φ0
) dependence becomes visible:
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Figure 1.15: a. The potential energy (U) landscape of RF-SQUID normalised to Ej as a function

of the total flux (Φ) in units of Φ0 at different values of β. Metastable points are marked in dark

blue cross. Φ = 0 corresponds to the global minimum. β is the screening parameter. Ej is the

Josephson energy. Φ0 is the magnetic flux quantum b. Number of stable points in a RF-SQUID

as a function of β.

U(φ) = Ej

(
1− cosφ+

(φ− φx)
2

2β

)
(1.51)

Fig. 1.15 displays U(Φ) at Φx = 0 for various β. Note the increasing number of metastable

equilibrium points as β grows, such that a potential landscape similar to that of fully SC

ring is obtained for β ≫ 1. Applying Φx modifies U(Φ) and a phase slip arises upon the

removal of the metastable point in which the system was initially settled. The system

evolves into the neighbouring local minimum, simultaneously admitting a fraction of Φ0

into the loop. The difference in internal energy (δU) is dissipated (Fig. 1.16). The

dissipation can also be justified from thermodynamics point of view. Until φ ≈ π/2,

the initial state can be restored without any thermodynamic change. Therefore, the

evolution of U(Φ) is a reversible process up to this point. Beyond, the phase slip introduces

irreversibility which is necessarily accompanied by dissipation.



CHAPTER 1. THEORETICAL BACKGROUND 33

Figure 1.16: The evolution of the a. stable Φ values as a function of the external flux Φx plotted

in Φ−Φx plane for β = 10. Both axes are normalised to Φ0. The current state of the system is

marked in red circle (filled). Other stable points are marked in red square. The unstable regions

are dashed blue. b. Potential energy landscape (U) with respect to Φx in a moving frame of

reference Φ−Φx/Φ0. At Φx > 0.85Φ0, the current state becomes unstable and the system settles

in the next stable point. The difference in the free energy (∆U) is dissipated. Φ0 is the magnetic

flux quantum.



Chapter 2

Thermometry, Bolometry,

Calorimetry

2.1 Introduction

This chapter aims to serve as a brief reminder on the fundamental concepts of ther-

modynamics and explains the operating principles of the thermometers, bolometers and

calorimeters. We begin by deriving the temperature from the entropy maximum pos-

tulate of thermodynamics. Next, the concept of thermometer is discussed and various

thermometer types are given. Here, the emphasis is on the superconducting hybrid junc-

tions including the normal metal - insulator - superconducting (NIS), superconducting -

normal - superconducting (SNS) and proximity induced normal metal - insulator - su-

perconducting (N′IS) types as the thermometer employed in this project is a member of

this category. The following sections are dedicated to the bolometery and the calorime-

try where we skim through the examples of both detection concepts at the micro/nano

scale. As a side note, we briefly discuss the experimental work realized on the absorber

layer of a microbolometer prototype in the context of a collaboration with CEA-LETI.

Recently, bolometer and calorimeter devices at nano scale have witnessed an increasing

interest thanks to the flourishing fields such as quantum thermodynamics and quantum

computing. Within this scope, new devices for studying quantum thermodynamics have

been proposed [107, 108].

2.2 Temperature

Let us consider a composite system which consists of two macroscopic bodies separated

from each other by a fixed and adiabatic piston (Fig. 2.2). The subsystems are completely

characterized by their extensive parameters (U, V,N) which correspond to the internal

energy, volume and the mole number, respectively [109]. The system is closed with

34
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respect to the outer world which we express as

U1 + U2 = constant (2.1)

Next, let us remove one of the internal constraints, namely the adiabaticity of the piston

such that the heat transfer between the subsystems is now allowed. ”What is going to

be the new equilibrium state ?” is the fundamental question answered by the entropy

maximum postulate of thermodynamics.

Figure 2.1: The closed, composite system. A fixed adiabatic piston separates the subsystems

from each other.

Among a myriad of configurations, the system evolves into the final state which maximizes

the entropy function [110]

S(U, V,N) = S1(U1, V1, N1) + S2(U2, V2, N2) (2.2)

We can write the maximum entropy (equilibrium) condition as

dS

dU
=
dS1

dU1

+
dS2

dU2

dU2

dU1

= 0 (2.3)

Given the fact that the total energy is conserved (dU1 = −dU2), Eq. 2.3 can be written

as
dS1

dU1

− dS2

dU2

= 0 ⇒ dS1

dU1

=
dS2

dU2

(2.4)

Therefore, the bodies which are in the state of thermodynamic equilibrium share a con-

stant dS/dU . The reciprocal of this thermodynamic handshaking point is defined as

temperature

T =
dU

dS
⇒ 1

T1
=

1

T2
⇒ T1 = T2 (2.5)

It should be noted that temperature is a statistical quantity which is only valid for entities

with many degrees of freedom such as macroscopic objects made of very large number of

particles.
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2.3 Thermometer

The zeroth law of thermodynamics [111] states that ”if two systems are separately in

thermal equilibrium with a third, then they are in thermal equilibrium with each other.”

Such an equivalence relation makes sure that there exists a scale of temperature which is

the same for systems in thermal equilibrium, therefore serves as the basis for measuring

temperature. Thermometer describes all sorts of devices which serve to measure temper-

ature. A typical thermometer consists of (1) a sensor which responds to the temperature

(2) a means to convert the sensor response into a numerical value. Depending on the need

for calibration, we can classify the thermometers into two categories:

Figure 2.2: a. The bodies A and B are each in thermal equilibrium with C. b. Exchanging

the position of the insulator and the conductor slabs, no change is observed which proves that

A and B are in thermal equilibrium with each other. The system C serves as the thermometer.

(adapted from [112])

1. Primary thermometer: The systems whose fundamental equation is well known such

that the absolute temperature can be obtained directly from the measurements without

calibration are called primary thermometers. To mention a few examples, the gas ther-

mometer exploits the relation PV = nRT of the ideal gas where R ≈ 8.314 Jmol−1K−1

is the universal gas constant and n is the number of moles. Temperature is obtained by

measuring the pressure (P ) in constant volume (V ) configuration or vice versa [113]. The

Coulomb blockade thermometry (CBT) uses the I − V relation of an array of single elec-

tron tunneling (SET) devices in the partial Coulomb blockade regime [114–116]. The full

width at half maximum of conductance dip has the value V1/2 ≈ 5.439NkBT which yields

T without any calibration [117]. In noise thermometers, the noise voltage variance on a

resistance R is measured which gives T via Johnson-Nyquist theorem ⟨v2n⟩ = 4kBT∆fR

where ∆f is the measurement bandwidth [118].

2. Secondary thermometer: The family of thermometers which require a calibration

against a primary thermometer at least at one temperature is called secondary ther-

mometers. Unlike the primary thermometers which are difficult to operate and thus

mostly employed in metrology, the secondary thermometers are usually easy to operate
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and therefore have a widespread use in various fields. In low temperature experiments, re-

sistance thermometry is the most commonly used method which exploits the temperature

dependence of the electrical resistance of a particular material (Fig. 2.3). The operating

temperature range, sensitivity, response time, ease of calibration, self-heating and sensi-

tivity to environmental changes are among the major criteria which determine the choice

of material. Pure metals such as platinum are used as resistance thermometers (Pt100)

from Troom down to ∼ 20K thanks to their linear R(T) curve in this range [119]. Iron

doped rhodium (RhFe) [120] provides approximately linear R(T) between 0.1 K < T < 1

K. Among semiconductors, highly doped germanium is preferred for its stability over ther-

mal cycles [113]. Other materials such as sintered carbon grains [121] and metal-ceramic

composites including RuO2 [122] are frequently used in millikelvin range.

Figure 2.3: Temperature dependence of various materials used as a thermometer. RhFe stands

for iron-doped rhodium. Speer and Allen-Bradley refer to the carbon resistors from two different

manufacturers. Ge 100 and Ge 1000 are commerical germanium thermometers. CG stands for

a carbon-glass thermometer. (Taken from [123])

2.3.1 Superconducting Hybrid Junctions

NIS Thermometer

The hybrid structure made of a normal metal (N) seperated from the superconductor (S)

via an isolating layer (I) is called an NIS junction. For a typical NIS junction at thermal

equilibrium (Fig. 2.4), the net tunneling current (INIS) of the quasiparticles writes [124]

INIS = −e
∫ +∞

−∞
dE(ΓN→S − ΓS→N) (2.6)
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where the tunneling rate of quasiparticles ΓN→S is proportional to the tunneling proba-

bility: PN→S(E), the number of available states in N: NN(E − eV ) × fN(E − eV ) and

the number of unoccupied states in S: NS(E) × (1 − fS(E)) and vice versa. Note that

fN,S represents the Fermi distribution of quasiparticles in N,S and NN,S represents the

quasiparticle density of states. In a simplified version, Eq. (2.6) can be written as

INIS(V ) =
1

2eRT

∫ +∞

−∞
NS(E)[fN(E − eV )− fN(E + eV )]dE (2.7)

where RT is the tunnel resistance. INIS shows only an indirect dependence on Ts via

Figure 2.4: a. Energy diagram of a NIS junction. An applied voltage V shifts the N-DOS by

eV with respect to the Fermi level (EF ). Superconductor features a gap of 2∆ in the excitation

spectrum. The occupied states are coloured with dark red (blue) in N (S). b. The calculcated

I(V) curve of the NIS junction at two temperatures: T/Tc = 0.05 (blue) and T/Tc = 0.5 (red).

The voltage axis is normalized to ∆ and the current axis is expressed via eRT /∆ where RT is

the tunneling resistance.

NS(E) = NN(E)
(
|E|/

√
E2 −∆(T )2

)
where ∆(Ts) ≈ 1.74

√
1− T/Tc and ∆(T ) ∼ ∆(0)

for T < 0.3Tc. At eV < ∆ and for kBT ≪ ∆, the slope of the normalized conductance

gives a direct access to the electronic temperature (Te) of N:

ln
dINS(V )

dV
∝ eV

kBTe
+

1

2
ln

(
∆π

2R2
TkBTe

)
− ∆

kBTe
(2.8)

Therefore, it can be used as a thermometer to probe the electronic temperature of N.

In most of the practical cases, the NIS thermometer is rather employed as a secondary

thermometer where the NIS junction is current biased and the voltage output is read.

The V(T) curve is calibrated to the bath temperature.

SNS Thermometer

In Chapter 1, we elaborated on the physics of SNS junctions in the diffusive regime and

showed the evolution of the critical current (Ic) with temperature. The temperature
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dependence of Ic can be used as a secondary thermometer calibrated against the bath

temperature. The operating temperature range is determined by the Thouless energy

(Eth): at kBT ≫ ETh, the voltage V = RNIc becomes hard to detect against the noise

voltage
√

⟨v2n⟩ whereas in the lower limit (kBT < ETh) the thermometer suffers from

saturating Ic(T ) curve. A typical SNS thermometer is operational within the temperature

window 30 mK < T < 600 mK unless limited by self-heating or electronic noise at

the lower limit. One straight-forward method to obtain Ic(T ) is to ramp the current

bias through the SNS junction and measure the voltage across in a four-probe setup.

While incrementing the temperature, the switching current Isw vs temperature curve

then provides the thermometer (Fig. 2.5). The stochastic nature of the switching N → S

calls for a statistics treatment. Therefore, a rigorous approach is to extract the transition

statistics and designate the most frequent Isw as the critical current. This method has

been demonstrated in [125] where a triangular AC signal at f = 300 Hz is applied on the

current bias and the switching current counts are recorded with the oscilloscope trigger

(Fig. 2.6).

Figure 2.5: a. V(I) curve of an SNS Junction. The forward (reverse) sweep is marked in blue

(red). b. Isw and IR as a function of the bath temperature obtained from a. The hysteresis

visible in both subfigures is of thermal origin. Namely, whenever the system switches to the

resistive state, Normal island sees an increase in temperature due to the steady-state ohmic

heating. As a consequence, the critical current (Ic) of the junction decreases to Isteady−state
c

such that sweeping Ibias in the negative direction, the transition N → S now occurs when at

Ibias = IR = Isteady−state
c

Proximity Thermometer

So far, we covered the NIS and SNS junction thermometers. As explained above, NIS

thermometer exploits the temperature dependence of the sub-gap conductance which

is proportional to the quasiparticle density of states whereas a SNS thermometer uses
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Figure 2.6: Switching current histograms at various bath temperature ( Tbath). Each histogram

is fitted with a Gaussian function. The broadening of the histograms at higher Tbath originates

from the increased thermal noise (taken from [125]).

the switching threshold of the coherent supercurrent. Despite having different working

principles, both concepts require biasing. NIS thermometer is voltage biased below the

gap edge and the SNS thermometer is current biased both in DC and AC configurations.

Overheating introduced by the finite bias, reported for both NIS [126, 127] and SNS

junctions [128], makes their use difficult below 100 mK. An alternative method is to

use the finite density of Cooper pairs inside a proximitised normal metal (N ′) which

constitutes a tunneling supercurrent when a hybrid N ′IS junction is formed (Fig. 2.7).

This phenomenon is known as the zero bias anomaly effect [2, 129, 130] owing to the

fact that the Cooper pairs reside at EF . The temperature dependence of the tunneling

supercurrent across a N ′IS junction can be exploited as a sensitive thermometer [1].

Compared to the previous thermometers, the above-mentioned method has the advantage

of being less invasive in terms of deposited heat thanks to the absence of finite bias and

having an increased sensitivity.

The critical supercurrent across the N ′IS is given by [2]

Ic =
2πkBT

eRT

∑
n≥0

FS(ωn)FN(ωn) (2.9)

where FS and FN represent the respective Cooper pair amplitudes inside the super-

conductor and the normal metal. The sum goes over the Matsubara frequencies ωn =

(2n + 1)πkBT . With the assumption of a linearized Usadel equation [62], I0c takes the

form

I0c (φ) =
2πkBT

eRT

αB cos(φ/2)
∑
n≥0

∆2qn

(ω2
n +∆2)

[
αBα

√
ωn

Ωn
sinh(qn/2) + cosh(qn/2)

] (2.10)

Here, qn =
√
2ωn/ETh and αB ∈ [0, 1] is the transparency parameter related to the quality

of the SN interfaces. α = σN/σS represents the ratio of the normal state conductances be-
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tween the normal and the superconducting electrodes. Finally, the tunneling supercurrent

(Is) across the N
′IS junction is expressed as

Is(V ) =
πeℏI0c

2

(2e)2
[P (2eV )− P (−2eV )] (2.11)

where P (E) is the probability for an electron to emit a photon of energy E into the

electromagnetic environment during the inelastic tunneling process. The latter function

depends on the impedance Z(ω) seen by the junction whose details can be found in [2].

In an I(V ) measurement across the N ′IS junction, the proximity effect manifests itself

as the anti-symmetric peaks around the origin (Fig. 2.7c). Probing the temperature

dependence of the differential conductance at Vbias = 0V therefore provides a secondary

thermometer calibrated against the bath temperature.

Figure 2.7: a. Energy diagram of a N′IS junction. Note the minigap ∆g present in the N′-

DOS. The so-called Andreev pairs tunneling between N′ and S are depicted with a green arrow.

b. Drawing illustrates the typical SN ′IS configuration. The clean SN contact induces the

proxmity in N whereas NIS junction serves as the thermometer (taken from [2]). c. I(V)

measurements taken at various temperatures between T = 41 mK and T = 243 mK ( taken from

[2] )
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2.4 Bolometer

A bolometer is a radiation detector. In the strict sense, the term designates the family

of sensors which detects the EM waves in the infrared and millimeter wavelength (f =

100 GHz−10 THz) via absorption of radiation. Given the spectrum of interest, bolometers

have a wide range of applications, for example in astrophysics [131–134], terahertz imaging

[135], military [136] and cQED [137]. A typical bolometer consists of an absorbing layer

thermally isolated from the heat bath via suspending structures. The absorbing layer is

in thermal contact with a temperature dependant resistor (thermistor) whose calibration

curve is known to the user (Fig. 2.8). Often, a reflector layer is placed at the bottom of the

membrane to enhance the absorption. In the presence of incident radiation, the absorbing

layer converts the radiation into heat which increases the temperature of the bolometer

body. As a consequence, the thermistor resistance is modifed. A read-out circuit then

converts the resistance value into temperature.

Figure 2.8: Thermal model of a resistive bolometer. η represents the absorption efficiency of

the cap layer. Cth is the heat capacity of the bolometer body. Gth corresponds to the thermal

conductance between the bolometer and the heat bath.

2.4.1 Heat Balance

The temperature excursion (∆T ) from the equilibrium state (T0), once the incident radi-

ation (Pin) is turned on, is given by the heat balance equation:

Cth
dT

dt
= ηPin −Gth(T − T0) (2.12)

where Cth is the heat capacity of the bolometer, Gth corresponds to the thermal conduc-

tance between the bolometer and the heat bath and η is the absorption rate. The solution

of Eq. (2.12) is given by

T (t) = T0 +
ηPin

Gth

(1− e−t/τth) (2.13)
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Here τth = Cth/Gth is the thermal time constant. The steady-state solution (t ≫ τth) is

then

T (t≫ τth)− T0 = ∆T =
ηPin

Gth

(2.14)

Note that for a given Pin, the thermal conductance (Gth) has to be minimized and the

absorption rate η maximized in order the increase the temperature excursion (∆T ).

2.4.2 Responsivity

The responsivity of a current-biased bolometer is given as the change on the output

voltage Vout with respect to the variation on the incident power (Pin). Writing the output

voltage (Vout) as

Vs = IbiasRcellα∆T (2.15)

Ibias is the bias current, Rcell corresponds to the bolometer resistance and α is the tem-

perature coefficient of resistance (TCR). Inserting Eq. (2.14) in Eq. (2.15) and ignoring

the self-heating due to biasing, the responsivity writes

R =
ηIbiasαRcell

Gth

(2.16)

2.4.3 Noise Equivalent Power

Noise performance is one of the important characteristics used for comparing different

bolometer designs. The corresponding figure of merit is called the noise equivalent power

(NEP) which is defined as the incident signal power (Pin) required to obtain a signal equal

to the total noise (PN) in a one Hz bandwidth (SNR = 1) [138]. It is given by

NEP 2 =
P 2
N

R2
[W2/Hz] (2.17)

where R is the bolometer responsivity. Generally, NEP can be broken down to

NEP 2 = (NEP )2photon + (4kBTR + 4kBT
2Gth/η

2)/R2 (2.18)

where the terms on the right hand side stem from the photon noise, the Johnson-Nyquist

noise and the fundamental temperature fluctuations, respectively [138].

2.4.4 Micro - nano bolometers

Microbolometers form a subgroup of bolometers designed for the field of infrared imaging.

A typical microbolometer consists of an array of thermal detector cells (pixels) which are

patterned to form air bridges on a single wafer (Fig. 2.9). On the material aspect, the

detecting material is selected based on the main parameters such as 1/f noise and the

temperature coefficient of resistance (TCR) which determines the bolometer responsivity.

The state of the art of uncooled microbolometers feature NEP ∼ 100 pW/
√
Hz. The
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most commonly used materials are amorphous/polycryistalline silicon [139] and vanadium

oxide (VOx) [140]. Despite having moderate TCR (2%− 4%) [141], both materials have

the advantage of being CMOS-compatible which allows the integration of the bolometers

with the read-out circuit, often via flip chip bonding. On the application side, a great

majority of microbolometers finds use in the civil/defense applications and operate at

ambient temperature whereas astronomy and space projects require cooling down to sub-

K temperature for an increased sensitivity.

Over the past decades, the desire for increased sensitivity in the fields such as microwave

photon detection [142] and the dark matter experiments [143] brought the bolometers

down to the nanoscale. Nanobolometers combine hybrid junctions and the cryogenic

temperatures to reach impressive noise levels as low as NEP ∼ 50 zW /
√
Hz. The state-

of-the-art nanobolometers reported in [137, 144], uses S-graphene-S and SNS junctions as

the absorber (Fig. 2.10). In a similar manner to the microbolometers where the absorbing

layer is thermally isolated from the heat sink by suspending legs, here the nanobolometers

use the weak thermal coupling between the electrons and phonons of a bulk metal and

graphene layer at sub-K temperatures for thermal isolation. The electrons absorb the

incident radiation whereas the phonons play the role of the heat sink.

Figure 2.9: SEM image of a. the Si-based microbolometer pixel operating at Troom [145] b.

The cooled Si-based microbolometer for sub-mm detection [146].

Figure 2.10: a. False-colour SEM image of the superconductor-graphene-superconductor

bolometer.The graphene patch is located below the gate insulator layer marked in red. [137]

b. Micrograph of the SNS boloeter. P,G and H stand for probe, gate and the heater electrodes,

respectively [144].
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2.4.5 Characterization of Ti/TiN absorber samples for a

sub-millimeter wave bolometer

Within the framework of a collaboration with Thermal and Terahertz Imagery Laboratory

(LI2T) of CEA-LETI, we realised the characterization of Ti/TiN absorber layers [147]

to be used in the pixels of a cooled Si microbolometer array designed to operate at the

350 µm wavelength [146, 148]. Here, the advantage of using a superconducting material

as the absorber is its reduced heat capacity. The work consisted of investigating the key

parameters of the absorbing layer samples for the absorption optimization. Namely, these

are 1) the critical temperature (Tc) of the deposited Ti/TiN layer (2) the effect of the

perpendicular magnetic field on Tc and (3) the residual resistivity ratio (RRR) which is

the ratio between the resistances at Troom and T ⪆ Tc. A batch of samples varying in

the relative thicknesses of Ti/TiN and the thermal treatment are connected in four-wire

scheme and measured between 1.8K < T < 300K. The results are shown in (Fig. 2.11)

Figure 2.11: a. The schematic and the top view photograph of the sensor prototype b. R(T)

measurement of the first sample between 1.8 K < T < 292 K. RRR is found ∼ 1.06 c. Deter-

mination of Tc under increasing perpendicular magnetic field for the second sample. At B = 0

Tesla, Tc ≈ 3.5 K
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2.5 Calorimeter

Calorimeters are very similar to the bolometers in terms of operating principle. An

incident signal is absorbed by the detector and converted to a change in temperature.

The difference is that instead of continuous radiation, a calorimeter captures a quantum

of energy in a time-resolved manner (Fig. 2.12). Recently, nanocalorimeter designs for

studying quantum thermodynamics have been proposed [107, 108]. Moreover, promising

devices for detecting single tunneling quasiparticles, [149] and microwave photons [3,

6, 150–152] have been proposed and demonstrated. Here, the ultimate goal is to use

nanocalorimeters for the single microwave photon detection of the qubit states where 1

GHz < f < 10 GHz corresponds to the typical frequency of readout transmons. A 10 GHz

photon has E ≈ 41 µeV. Reaching µeV level sensitivity stays as the next major milestone

for the field.

Figure 2.12: Thermal model of a calorimeter. The incident quantum of energy is absorbed at

time t0 by the electrons. Te sees a sudden rise, then relaxes back to the equilibrium state.

2.5.1 Thermal model of SNS calorimeters

In our experiments, we are going to make use of hybrid structures including SNS Josephson

junction and N′IS proximity thermometer. In the case of fast real time measurements, the

normal part (N) of these devices will serve as the calorimeter absorber. Here, we detail

the underlying thermal model of the SNS Junction which enables the absorber role for

the normal metal.

Specific heat: The electron gas and the lattice vibrations are the two degrees of freedom to

which energy can be transferred in an ordinary metal [153]. Therefore, the specific heat

(c = ∂E/∂T ) consists of a lattice (cL) and an electronic (ce) term. The lattice contribution

is given by the Debye model which associates a critical temperature (TD ≈ ℏωD/kB) with

the highest-energy phonon (ℏωD) in the lattice. For T ≪ TD, the lattice specific heat

takes the approximate form cL ≈ 2.4π4NkB(T/TD)
3 where N is the number of states

per unit volume. The electronic specific heat stems from the partially filled states of
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conduction electrons in the energy window ∼ kBT around the Fermi level (EF ). It is

given as ce = γT where γ = π2N(EF )k
2
B/3 is a material-dependent constant. Due to

the T 3 dependence, cl is greatly suppressed at T ≪ TD/10 and ce becomes the dominant

term. In our experiments, we use copper as the normal metal. The fact that TCu
D = 343

K and our devices are thermalised at Tbath = 50 mK, therefore allows us to ignore cl in

our calculations.

Electron - phonon coupling: An important characteristic of metals at sub-Kelvin tem-

peratures is the weak electron-phonon scattering rates. Due to this low interaction, the

normal metal can be considered as an ensemble of the electronic gas and the phonon sys-

tem coupled to each other, both having a well defined temperature (Te,ph) in the steady

state. The electron-phonon energy exchange rate in ordinary metals is given by [154]

Q̇e−ph = ΣV(T n
e − T n

ph) [W ] (2.19)

where Σ is the material dependent constant ( ΣCu ≈ 2×108 W/m3Kn=5) [116, 155] and V
is the metal volume. In Eq. (2.19), n = 5 is frequently used for ordinary metals whereas

in disordered systems, a weaker coupling (Q̇e−ph ∝ T 6) was predicted [156] and observed

in materials such as heavily doped Si [157] and thin films of Ti and Hf [158].

The role of proximity effect on the electron-phonon coupling In Chapter-1, we discussed

the role of the proximity effect on the transport properties of a normal metal in clean

contact with a superconductor. It turns out that the electron-phonon interaction is also

affected by the same phennomenon and become phase tunable. [44, 159]. In the long

regime with zero phase bias (φ = 0), the thermal power is given as

Q̇e−ph = Q̇N
e−phe

−T ∗/T (2.20)

where T ∗ = cEThKB and c is the scaling factor corresponding to the proximity variations

(c≈ 3.5) [44]. This effect becomes important at ETh ≫ kBT which in our case corresponds

to T ≪ Tbath = 50 mK. We therefore neglect the impact of the proximity effect on the

thermal properties of the N absorber in our experiments.

Thermal boundary resistance: Phonons obey Bose-Einstein statistics. At a given T, the

average phonon number ⟨n⟩ in the bulk features a thermal cutoff frequency (ωT = kBT
ℏ )

beyond which ⟨n⟩ becomes negligible. At very low temperatures (T ≪ TD), it suffices

to consider only the acoustic phonon branch and assume a linear dispersion relation

(ω = kv) where v is the material-dependent sound velocity. Reformulating the thermal

cutoff condition in terms of wavelength (λT = hv
kBT

), it is seen that only the phonons

with λ > λT are present in the bulk. For copper (v = 4.7 × 103 m/s) at 100 mK, λT

amounts to ∼ 2.25 µm which is much larger than the normal metal thickness (t ∼ 35

nm). The fact that phonons are not confined to N therefore allows us to assume N in

perfect thermal contact with the substrate (Tph = Tsubs). Under certain configurations

such as suspending nanowires [160, 161] and thin dielectric membranes [162, 163], the

above mentioned assumption does not hold. A thermal bottleneck emerges between the
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different phonon groups such that Tph can be driven to Tph > Tsubs or cooled down to

Tph < Tsubs via electrons [164, 165]. In such cases, the energy exchange between the two

phonon groups has to be taken into account. It is given by the Kapitza coupling [166] as

PK(Tph, Tsubs) = KA(T 4
ph − T 4

subs) [W ] (2.21)

where K is the material specific Kapitza constant and A is the interface area.

Thermal leakage via S-N interface Due to the gap (2∆) in the quasiparticle density of

states, superconductors are known to display poor thermal conductivity. For a given

metal, the ratio r between the superconducting and normal state thermal conductivities

(GS,N) writes [128]

r(T ) =
3

2π2

∫ +∞

∆/kBT

( x

cosh(x/2)

)2
dx (2.22)

At very low temperatures (kBT ≪ 2∆), cosh
(
1
2
x
)
≈ 1

2
e

1
2
x and Eq. (2.22) can be shown

to have the approximate form [167]

r(T ) ≈ 6

π2

(∆(T = 0)

kBT

)2
e
−∆(T=0)

kBT (2.23)

As shown in Ref. [128], we can therefore calculate the power flow through one supercon-

ducting leads as

P (Te) = L0G
sc
N

∫ Te

Tbath

r(T )TdT [W ] (2.24)

where L0 = 2.45× 10−8WΩ/K2 is the Lorentz number and Gsc
N is the normal state con-

ductance of the superconducting lead under consideration. Given the ∼ exp(−∆/kBT )

dependence of r(T), at kbT ≪ ∆ the superconductor becomes a very poor thermal con-

ductor which allows us to consider N island as thermally isolated from its environment.

2.5.2 Fundamental fluctuations

A body which is in thermal contact with a heat reservoir keeps exchanging energy with

the reservoir even at equilibrium. The entire thermodynamic system undergoes continual

random transitions among its microstates which causes its properties to deviate momen-

tarily from their mean values [109]. We can therefore attribute statistical properties to

the observables of the system. Likewise, the electron gas of the absorber permanently

exchanges energy with the phonons of the calorimeter absorber. Hence, the electronic

temperature (Te) are subject to fluctuations which is given by the fluctuation-dissipation

theorem as [149]

⟨δTe(t)δTe(t′)⟩ =
kBT

2
bath

C
e−|t−t′|/τ (2.25)

which sets the ultimate limit for sensitivity. A calorimeter has to fulfill the condition

δTe ≫
√
δTe(t) in order to have a meaningful readout (Fig. 2.13).
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Figure 2.13: a. Monte Carlo simulated time traces of a calorimeter response for a 200µeV

impinging energy with Tb = 5 mK (red) and Tb = 30 mK (black). [149] b. Schematic of

the proposed nanoscale injector-calorimeter setup: A normal metallic island (green) contains a

thermalized electron gas, with fluctuating temperature Te(t), constituting the absorber. The island

is well coupled to an electrically grounded superconductor (upper, blue) acting as a heat mirror.

It is further tunnel coupled to another superconductor (lower, blue), kept at a temperature Ts

and biased at a voltage V, serving as a particle source with tunable injection rate Γi(Ts, V ). A

thermometer, coupled to the island, is also shown (yellow). (taken from [149])



Chapter 3

Radio-frequency Thermometry

3.1 Introduction

This chapter is built around the concept of resonant electric circuits and how we exploit

the resonance for the purposes of fast thermometry. We begin our discussion by visiting

the fundamental LC tank circuit, the internal losses of an oscillator and how an oscillation

is sustained in the presence of an external drive. Then, we overview the key concepts of

quality factor and bandwidth. In section 4, we discuss the use of scattering parameters

for analyzing the circuits in the microwave domain, the readout schemes based on S21

and S11 parameters and the in-phase/quadrature mixing for power measurements. The

last two sections are dedicated to the details of our on-chip superconducting microwave

resonator and the related fast readout experiment where we measured the instability in

an SNS junction biased near Ic.

3.2 LC Oscillator

Let us begin our discussion with the circuit shown in Fig. 3.1a. We consider that at

a time t < t0, the switch S1 has been on for a long time such that the capacitor (C1)

is fully charged by the DC voltage source (V1). The switch S2 is off and therefore the

inductor (L1) is disconnected from the circuit. At time t = t0, we simultaneously reverse

the switches state (S1: off and S2: on) such that C1 and L1 now form a closed circuit and

V1 supply is cut off (Fig. 3.1b). What happens next is that C1 starts to discharge over

L1 which develops a counter electromotive force according to its fundamental relation

(V = L1dI/dt). Once the C1 is fully discharged, the voltage with the opposite sign

develops and leads to a reverse current which recharges the capacitor. Hence, the total

energy of the system constantly oscillates between the capacitor and the inductor. The

equation which governs the oscillatory behaviour of the system can be easily obtained by

applying Kirchoff’s law on the voltage loops or the current nodes. In the differential form,

50
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it is given by
d2I(t)

dt2
+

1

L1C1

I(t) = 0 (3.1)

proposing a complex exponential (I(t) = Ae−iω0t + Be+iω0t) as a solution. The system

oscillates with the frequency

f0 =
1

2π
√
L1C1

=
ω

2π
(3.2)

where f0 is called the natural frequency of the system.

Figure 3.1: The circuit diagram of the LC oscillator tank circuit corresponding to a. the initial

state where S1 is on and S2 is off. C1 is fully charged by V1 b. the final state where S1 is off

and S2 is on. V1 is disconnected from the LC tank.

3.2.1 Internal losses and damping

In the previous section, we saw that once the initial conditions are set, an ideal LC

tank circuit oscillates incessantly. However, in real world, even the most stringent circuit

elements feature some finite resistance which eventually brings the oscillation amplitude

down to zero (Fig. 3.2a). The losses in an oscillating system are taken into account by

the dimensionless parameter called the damping ratio (ζ). The damping ratio plays an

important role in the transient response of the system. Writing the characteristic equation

of an RLC oscillator

d2I(t)

dt2
+ 2ω0ζ

dI(t)

dt
+ ω2

0I(t) = 0 (3.3)

it can be shown that the system has three distinct transient response types based on the

value of ζ (Fig. 3.2b):

I(t) =


A1e

−ω0ζt cos
(
ω0

√
1− ζ2t

)
ζ < 1 (under− damped)

B1te
−ζω0t ζ = 1 (critically damped)

C1e
−ω0(ζ+

√
ζ2−1)t ζ > 1 (over− damped)

(3.4)

The damping factor ζ is related to the circuit parameters as ζ = R/2
√
C/L and ζ =

1/2R
√
L/C in the series and parallel RLC circuits, respectively.
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Figure 3.2: a. The circuit diagram of the LC oscillator tank circuit with the switch S2 repre-

sented by its internal resistance R2 b. The calculated transient responses corresponding to the

over-damped (blue), critically damped (orange) and the under-damped (black) cases.

3.3 Driven damped harmonic oscillator

When a sustained oscillation is desired in a lossy oscillator, an external drive has to feed

the system continuously to compensate for the losses. For an RLC circuit, this is achieved

by connecting an AC source to the circuit. The equation of motion for a a second order

system with a sinusoidal source (I0 sinωst) is given by

d2I(t)

dt2
+ 2ω0ζ

dI(t)

dt
+ ω2

0I(t) = ω2
0I0 sin(ωst) (3.5)

Taking the Laplace transform of Eq. (3.5), it can be shown that the frequency response

of the system writes

H(jw) =
ω2
0

(jω)2 + 2ζω0(jω) + ω2
0

(3.6)

In Fig. 3.3, we trace |H(jw)| for various damping ratios. It is seen from the figure that

the underdamped systems (ζ < 1), are in resonance when the system is driven at ω ≈ ω0.

The resonating frequency ωr is slightly detuned from the system’s natural frequency ω0

and obeys ωr = ω0

√
1− ζ2. Hence, at ζ ≪ 1, ωr converges to ω0.

The most commonly used arrangements among numerous RLC topologies are when the

three circuit elements are connected in 1) series and 2) parallel (Fig. 3.4). At resonance,

the series and the parallel RLC circuits behave in a conjugate manner. The fact that

RLC circuits contain reactive circuit elements gives frequency dependence to the total

impedance Z(ω) = R + iX(ω). In the series RLC configuration, the reactances XL(ω)

and XC(ω) cancel out at ω = ω0 and Z(ω) is reduced to min(Z(w)) = R . Hence, the

circuit is in phase with source and draws maximum power from it. The parallel RLC

is very similar to the series configuration in terms of resonant frequency. However, this

time, the imaginary part of the admittances (BC,L) cancel each other out such that only
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Figure 3.3: The calculated frequency response of a driven damped harmonic oscillator as a

function the damping ratio ζ

Y (w) = G is seen by the source. Therefore, LC branches act as an open circuit and

the total impedance is maximized. As a consequence, the parallel RLC circuit draws

minimum current from the source at resonance. In the following sections, we are going

to discuss how the parallel RLC configuration is used for a fast readout scheme of the

electronic temperature of the proximised normal metal (N’).

3.3.1 Quality factor and bandwidth

An important system parameter which measures the level of damping in a driven oscillator

is the quality factor (Q). Basically, it is the ratio of the energy stored by the resonator

over the dissipation per cycle

Q = 2π
energy stored

dissipation per cycle
(3.7)

Another interpretation is the ratio of the exponential decay constant τ over the oscillation

period T. The above-mentioned parameters and the system’s natural frequency are related

to each other as

Q =
1

2ζ
=
τω0

2
(3.8)

Therefore, high quality factor means longer sustain of the oscillatory behaviour in a tran-

sient regime. An alternative definition of the quality factor relates the resonance frequency

(fr) to the bandwidth. Hence, the quality factor is defined as

Q =
fr
∆f

(3.9)

where ∆f corresponds to the full width at half maximum.
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Figure 3.4: The most commonly used RLC circuit topologies a. series RLC b. parallel RLC.

The graphs below each circuit diagram demonstrates when the resonance condition is met.

3.4 Microwave concepts

The analysis of circuits operating at microwave frequencies ( 1 GHz - 1 THz) cannot be

done with the classical methods based on the mesh analysis. This stems from the fact

that in the microwave range, the signal wavelengths become comparable to the physical

dimensions of the circuit such that significant phase shifts may occur between nodes.

As the lumped element approach is no more valid, a set of analysis tools based on the

incident/reflected waves from an N-port network is used. In what follows, we present

a quick review of the scattering parameters and the main readout schemes used in the

mesoscopic experiments including microwave signals.

Figure 3.5: A two-port network depicted as a black box. The incident (reflected) voltage waves

are denoted as V +
i (V −

i ) where the subscript corresponds to the port number. The dashed lines

represent the reference planes.
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3.4.1 S parameters

For an N-port network, we can define an impedance (admittance) matrix relating the volt-

ages and the currents seen at the terminal planes which in principle suffices to completely

describe the network’s behaviour. However, from the experimental point of view, it is

more practical to work with the incident/reflected voltage waves from the network rather

than the voltages defined at the terminal planes (Fig. 3.5). This way, the experimental-

ist can connect a vector network analyzer to the system and characterize it in terms of

scattering parameters. The scattering matrix for a 2-port system is defined as[
V −
1

V −
2

]
=

[
S11 S12

S21 S22

][
V +
1

V +
2

]
(3.10)

To find the S-parameters at a specific port, the other ports have to terminated with a

matched load to prevent reflection. Hence, the reflection at port-1 can be found as

S11 =
V −
1

V +
1

∣∣∣∣∣
V +
2 =0

(3.11)

Similarly, the transmission from the port-1 to port-2 is written as

S21 =
V −
2

V +
1

∣∣∣∣∣
V +
2 =0

(3.12)

3.4.2 Readout schemes with S11 and S21

S11 and S21 parameters are frequently used in mesoscopic experiments to probe the prop-

erties of a given sample. A generic setup consists of a wave generator sending a sine

tone at the resonant frequency of the system, a low noise amplifier to amplify the re-

flected/transmitted signal, a network analyzer which receives the output signal (Fig. 3.6).

Depending on the configuration, a circulator (or a directional coupler) either redirects the

reflected power to the VNA port or in the transmitted case serves as an isolator to prevent

reflections from the output. Both configurations make use of the coupling capacitors as a

means to filter the low filter noise and to block DC.

Figure 3.6: The diagrams of typical measurement setups configured for a. reflectometry b.

transmittance measurements
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Figure 3.7: I-Q modulation and demodulation diagram used in a setup configured for measuring

S21

3.4.3 I-Q mixing and power measurement

The term I-Q stands for ’in-phase’ and ’quadrature’ signals which are out of phase by

Φ = π/2. The idea behind the I-Q modulation is simple. The sum of any pair of

quadrature signals of type I(t) cos(ωt) and Q(t) sin(ωt) allows both the amplitude and

the phase modulation. In case I(t) and Q(t) are fixed to the same amplitude (I(t) = Q(t)),

it can be shown via trigonometric identities that the sum yields

I(t) cos(ωt) +Q(t) sin(ωt) = I(t)(cos(ωt) + sin(ωt))

=
√
2I(t) cos(ωt− π/4)

(3.13)

Therefore, I(t) can be used to modulate the amplitude of the signal generated by the

local oscillator (LO). Similarly, it is possible to modulate the phase of the output signal

by setting different values on I(t) and Q(t). For example, a binary set of (I,Q) = {−1, 1}
results in an output signal with four possible phase bias Φ = {π/2,−π/2, 3π/4,−3π/4}
which is commonly used digital modulation technique [168].

Power measurement

So far, we explained the basic principles of I-Q signals and how amplitude and phase

modulation can be realized with them. In our experiments, we drive our system at the

resonant frequency and read the transmitted power (Fig. 3.7). Therefore, rather than the

modulation, we are interested in the generation and the detection of a sinusoidal tone

via I-Q signals. In a typical I-Q modulation and demodulation scheme, when the user

specifies a sine tone with a given amplitude and frequency (Vout sin(ω0t)), the hardware

does two things: 1) it sets the LO frequency accordingly 2) selects I - Q values such that

Vout =
√
I2 +Q2 corresponds to the specified signal amplitude (Fig. 3.8). The generated

signal then goes through various operations along the transmission line. A portion of it

gets transmitted (S21Vout cos(ω0t+ ϕ)) from the sample and reaches the receiver input.
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Figure 3.8: A test measurement where the AWG output is directly connected to the VNA input.

A sine tone with P = −40 dBm is played for 1 ms. In a. the measured signal is represented in

I-Q plane. The inset shows the spread of the datapoints. b. The I-Q components of the same

signal as a function of time c. The total power as a function of time

A typical demodulation sequence takes place as the following: 1) the input signal is split

into two and fed to the multiplication circuits on both branches. The multiplication of

V ′
out cos(ω0t+ ϕ) with cos(ω0t) yields

V ′
out cos(ω0t+ ϕ) cos(ω0t) =

1

2
V ′
out

(
cos(2ω0 + ϕ) + cos(ϕ)

)
(3.14)

Next, filtering the high frequency term, the in-phase component I ′(t) of the output signal

is obtained as

I ′(t) =
1

2
V ′
out cos(ϕ) (3.15)

Similarly, via multiplication with the quadrature term sin(ω0t), Q
′(t) is obtained as

Q′(t) =
1

2
V ′
out sin(ϕ) (3.16)

Once the in-phase (I ′(t)) and the quadrature (Q′(t)) terms are obtained, the signal am-

plitude is simply obtained via V ′(t) =
√
I ′(t)2 +Q′(t)2. In the microwave domain, the

signals are often represented in power unit with respect to 1 mW which is given as

P (dBm) = 10 log10

(
I2 +Q2

50Ω

/
1 mW

)
(3.17)
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3.5 On-chip superconducting microwave resonator

In our experiment, we embed an SINS junction in an RLC resonant circuit operating at the

microwave domain. In this configuration, the tunnel resistance of the SINS junction serves

as the resistor of the parallel RLC resonator and we read its temperature dependence via

S21 parameter of the microwave circuit (Fig. 3.9). This way, the bandwidth problem of

the ordinary dc lines which limits the fast temperature readout is overcome. The samples

hosting the SINS junction and the resonator are conceived as two stand-alone chips. The

resonator operates at fr = 575 MHz and has a large bandwidth (BW = 10 MHz) to

allow for a rapid detection of the transmitted amplitude (Fig. 3.11). The initial design

is based on the previous works demonstrated in Ref. [6, 169]. As mentioned previously,

our microwave setup is configured for transmittance (S21) measurements. Therefore, the

resonator is a two-port parallel RLC network hosting two coupling capacitors, C1 (∼ 0.03

pF) and C2 (∼ 0.185 pF), that we implement as interdigited microstrips. In this readout

scheme, the resonant frequency is fixed by the inductance, L1 (∼88 nH) and the total

capacitance (Ctot) to the ground (Fig. 3.9a). Ctot includes a parasitic term Cp (∼0.67 pF)

as well as the impact of the coupling capacitors C1,2 (Fig. 3.10). The contribution of the

coupling capacitors can be obtained from the Norton equivalent of the circuit. Following

the development in [170] :

C∗
1,2 =

C1,2

1 + C2
1,2Z

2
0w

2
0

(3.18)

For f0 = 575 MHz and Z0 = 50 Ω, we get C∗
i ≈ Ci. Therefore, the total capacitance

amounts to Ctot = C1 + C2 + Cp ≈ 0.86 pF. In Table 3.1, we present the reported values

of the circuit elements for the same readout topology. The total quality factor (Qtot) of

the resonator is determined by the internal and the external quality factor as

1

Qtot

=
1

Qint

+
1

Qext

(3.19)

where the internal quality factor (Qint) is given by

Qint =
Rs

ω0L
(3.20)

Here Rs corresponds to the resistance of the sample. In a similar fashion, the coupling

to the transmission line determines the external losses, hence the external quality factor

(Qext):

Qext =
Rext

ω0L
(3.21)

Here, Rext is the transformed impedance of the transmission line seen by the resonator

which is given as

Rext =
1

(C2
1 + C2

2)Z0ω2
(3.22)

The comparison between the internal and external losses of a resonator, in other words,

the comparison between Qint and Qext places the resonator in one of the three coupling

regimes. These are
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Ref. C1 (fF ) C2 (fF ) L1 (nH) f0 (MHz)

Bayan et al. [1, 3, 171] 10.3 59.3 100 620

Gasparinetti et al. [6] 100 200 80 625

Viisanen et al. [169] 20 400 - 479

Current experiment 30 185 88 575

Table 3.1: The comparison of the coupling capacitors C1,2, the spiral inductor L1 and the reso-

nant frequency f0 of the readout circuit with the previous reports.

1. under-coupled (Qint < Qext) (Rs < Rext )

2. critically coupled (Qint = Qext) (Rs = Rext )

3. over-coupled (Qint > Qext) (Rs > Rext )

In the under-coupled case, the internal losses of the resonator are dominant over the losses

to the environment. Typically, this regime is preferred whenever long photon lifetimes

in the cavity are desired [172]. On the other hand, the Q-factor tunability with the

coupling capacitors saturates in this regime [173] and for fast readout measurements, the

over-coupled regime is preferred [174, 175]. For the given C1,2 and ω0, we have Rext ≈ 40

kΩ whereas the N′IS junctions of proximity thermometer often presents a differential

resistance R ≈ 100 kΩ. Therefore, our resonator operates in the overcoupled regime. The

transmittance (S21) at resonance is given by [170]

S21 = − 2C1C2RsZ0

LCtot + (C2
1 + C2

2)RsZ0

= − αRs/Rext

1 +Rs/Rext

(3.23)

where α = 2C1C2

C2
1+C2

2
is the parameter on the capacitor symmetry.

We use a second inductance with L2 ∼149 nH and a ceramic capacitor on the sampleholder

C3 ≈ 100 pF to form a bias tee. The resistor R1 = 22Ω together with an R2 = 100 kΩ at

Troom form a voltage divider for dc biasing the tunnel junction. As the lumped-element

approach is valid at the operating frequency, the inductances are simply implemented as

on-chip spirals. We use Al wire micro-bondings between pads to complete the circuit. In

the experimental RF frequency range, their contribution to the resonator inductance is

not negligible but under control. The transmission spectrum
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Figure 3.9: a. Optical image of the resonator chip. We use a single step laser lithography and

100 nm Al deposition to fabricate the sample. The microstrip coupling capacitors and the spiral

inductors are labeled in yellow. b. The circuit diagram of the parallel RLC resonator. The

coupling capacitors C1,2 are marked in blue, the bias tee in red.

Figure 3.10: a. The readout circuit loaded with the characteristic impedance of the transmission

line b. The Norton equivalent of the same circuit which highlights the impedance transformation.

(adapted from [173])
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Figure 3.11: Transmission spectrum of the superconducting resonator chip taken at T = 50 mK

(orange) and T = 4.5 K (blue) The resonance centered at f0 ≈ 575 MHz with a bandwidth ∼ 10

MHz emerges below Tc of aluminium.
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3.6 Probing the switching between dissipative and

coherent states in an SNS junction current biased

near Ic

In Chapter 2, we saw that the switching current of an SNS Josephson junction obeys a

statistical distribution due to the noise present in the system. When biased at a fixed

current in the vicinity of Ic, the Josephson junction alternates between the coherent

and the resistive states, producing a timetrace similar to the random telegraph noise

[176]. To observe this instability near Ic, we come up with a composite device shown in

Fig. 3.12. On the right side, the nanofabricated normal island (Cu) is in clean contact

with two superconducting leads (Al), thus forming an SNS junction. The contact pads

are positioned at ∼ 500 nm from each other. On the left end, N extends further and

forms a SIN junction with the third superconducting electrode (Al) via grown oxide

layer. The sample is fabricated via physical vapor deposition with three angles where

we first deposit the angle (−20◦) corresponding the third electrode (25 nm Al). Next, a

brief oxidation step is introduced to form the insulating layer of the SINS thermometer.

Oxygen is introduced to the loadlock until the chamber pressure reaches 0.25 mbar. Next,

the sample is let to oxidize during 5 seconds and then the loadlock is repumped. Note

that, given the short oxidation time and the time it takes to repump the loadlock, the

given recipe is rather nominal. However, reproducible results were obtained in PLASSYS

HV Evaporator. The subsequent steps deposit Cu (45 nm) at 0◦ angle and finally the

Al layer (65 nm at +20◦) which constitutes the clean contacts of the SNS junction. The

logic behind such a configuration is that it allows the simultaneous current biasing of the

SNS junction and the monitoring of the temperature in N via SINS junction used as a

proximity thermometer.

As a preliminary step, we first conduct tunneling spectroscopy measurements of the SINS

junction between 100 mK and 600 mK. The results shown in Fig. 3.13 clearly demonstrate

the temperature dependence of the conductance peak at Vbias = 0, thereby validating the

use of SINS junction as the proximity thermometer.

Next, in a four wire setup, we characterize the temperature dependence of the switching

current (Isw) of the SNS junction (Fig. 3.14). The junction features Isw ≈ 4.6 µA and

Isw/IR ≈ 2.94 at T = 100mK where IR stands for the retrapping current. The Isw/IR

ratio gradually decreases as the temperature is increased and the hysteresis vanishes

around T ≈ 350 mK. Despite being intrinsically overdamped, SNS junctions were shown

to present thermal hysteresis which stems from the heating of N as the system switches to

the resistive state [128]. To probe the instability near Ic, the hysteretic regime must be

avoided. For the fast readout, we couple the sample with the superconducting microwave

resonator with a wirebond. In Fig. 3.15, we show several frequency spectra of our system

taken between 100 mK and 500 mK with three different input powers. Overall, we observe
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Figure 3.12: SEM image of the device augmented with the measurement setup schematics. The

superconducting (S) and the normal (N) electrodes are labeled in yellow

the resonance around f0 ≈ 560MHz with a bandwidth BW ≈ 17MHz. The frequency

response of the system follows the properties of a parallel RLC resonator, yielding a higher

quality factor at higher temperatures due to increasing tunneling resistance. Among the

tested input powers, Pin = −110 dBm provides the best responsivity R ≈ 0.057 dB/mK

between 100 mK and 200 mK whereas the thermometer response is limited by the noise

floor for Pin = −120 dBm and by the too coarse differential signal which goes beyond the

zero bias conductance for Pin = −100 dBm.
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Figure 3.13: a. Tunneling spectroscopy of the SINS Junction between T= 100 mK and T =

600 mK obtained via lock-in amplification. b. Zoom around Vbias = 0 of the same data. The

temperature dependence of the zero-bias conductance peak is visible.

Figure 3.14: a. V - Ibias curves of the SNS junction taken between T = 100 mK and T =

575 mK. The forward (reverse) sweeps are marked in the shades of blue (red). b. Ic (T) curve

extracted from the data shown in a.
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Figure 3.15: a. The transmission spectra of the system between T = 100 mK and T = 600 mK

for three different input powers: Pin = −100 dBm (green), -110 dBm (red) and -120 dBm (black)

sampled at fs = 10 kHz during 1 s. b. The calibration curves extracted from the transmission

spectra at the resonant frequency
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3.6.1 Real time measurement

Having obtained the fundamental properties of our system, we proceed to the experiment

where we seek to resolve in real time the switching instabilities. For this purpose, we first

set the temperature to T = 400mK where the hysteretic behaviour has completely van-

ished. At this temperature, the SNS junction features Isw ≈ 1.4 µA. Next, we fix the sam-

pling frequency to fs = 200 kHz and the input power to Pin = −100 dBm for an improved

SNR. In Fig. 3.16, we show the histograms of the coherent and the resistive states recast

from the time traces taken at Ibias ≪ Isw and Ibias ≫ Isw during 1 s, respectively. Both

histograms are fitted with Gaussian distributions whose centers are positioned ∼ 2.1 dB

apart which is greater than 3(σC +σR) where σC = 0.22 dB and σN = 0.18 dB correspond

to the standard deviation of the coherent and normal state, respectively. Therefore, under

given measurement conditions we have a clear distinction between two states.1

Figure 3.16: The histograms of the real time traces taken at Ibias ≪ Isw (blue) and Ibias ≫ Isw

(red). The mean values are ∼ 2.1 dB apart.

Fig. 3.17a shows the results of a series of real time measurements where Ibias is incre-

mented from 1.35 µA to 1.45 µA. The gradual transition to the resistive state as Ibias

increases is clearly visible. At Ibias = 1.39 µA, the system resides in the resistive state

during 20% of the total measurement time. This percentage goes up to 66.5% already at

Ibias = 1.40 µA. At Ibias = 1.45 µA, the transition is pretty much complete with 99.99%

of relative time spent in the resistive state. Similar results were obtained in numerical

1The narrower spread of the data in the normal state (σN < σC) shown in Fig. 3.16 is the result of a

mathematical artifact. Namely, representing the signal amplitudes in dBm unit gives a geometric nature

to the mean and the standard deviation of the shown distributions. Keeping the arithmetic standard

deviation same, it can be shown that the geometric standard deviation scales inversely with the increasing

arithmetic mean which explains the narrower spread of the data corresponding to the normal state. We

verify this fact by replotting the figures in Watt unit where we observed σN = σC . The same phenomenon

explains the difference between the mean counts of the histograms . For the same bin size, the histogram

of the normal state becomes more densely populated around the mean and yields an increased count.
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simulations within the framework of phase diffusion in moderately damped (βc < 5 )

Josephson junctions [177]. In the overdamped case, the premature switching due to ther-

mal noise is known to be the cause of the finite ⟨V ⟩ at I < Ic, and is taken into account in

the Ambegaokar-Halperin model [178]. Next, we extract the switching frequencies as a

function of the Ibias from the time traces taken between Ibias = 1.35 µA to Ibias = 1.45 µA.
The statistical properties of the switching distributions are considered as the indicators

of the activation regime in which the Josephson junction operates. In the thermal acti-

vation regime, the width of the switching distribution ∆I = ⟨
√

(I − ⟨I⟩)2⟩ were shown

to scale as ∆I ∝ T
2
3 [179] whereas at kBT ≪ Ej, where the macroscopic quantum tun-

neling is the dominant switching mechanism, distribution width saturates [180]. In both

regimes, the escape rates scale with the Josephson plasma frequency ωp and the distribu-

tions feature negative skew (µ̃3 = µ/σ3). However, increasing the temperature causes the

switching and the retrapping dynamics to overlap which symmetrizes the distributions.

In Fig. 3.17b, we show the histogram of the switching rate distribution. The instability

is maximized around Ibias ≈ 1.396 µA with a switching rate of f ≈ 620 Hz and σ = 11.3

nA. The difficulty of the analysis for SNS junctions comes from the fact that ωp is not

a well defined quantity. Nevertheless, the detrimental role of the damping on the escape

rates were elucidated in Caldeira-Leggett model [181], where an attempt frequency (ωA)

defined as ωA/2π =
√
Bcωp determines the escape rates. Therefore, we fit the data by

assuming ωA = 620 Hz and using the generalized form of the thermal activation function

[182]

Γ(I, T ) =
ωA

2π
e−gdU/kBT (3.24)

where g=7 is a scaling factor which controls the spread and dU is the barrier height of

the potential energy given as [183]

dU(I) =
4
√
2

3
ET=400mK

J

(
1− I

IT=400mK
c

) 3
2

(3.25)

Note that the fit is not capable of capturing the slightly positive skew µ̃3 = 0.66 which

data presents. The origin of this positive skew is not understood and requires further

investigation at various temperatures. The combined exponent g/T in Eq. (3.25) can be

seen as the inverse of the modified temperature. In Ref. [0], g < 1 is used to take into

account the difference between the junction and the bath temperatures. In our case, g > 1

therefore corresponds to a reduced experimental temperature which results in a narrower

distribution. The discrepancy encountered here might in fact point to an experimental

limitation of our measurements. The fact that we sample the time traces at fs = 200

kHz might introduce a cut-off effect. Basically, we are not able to capture the switches

occurring at f > fs which narrows the spread of the switching distributions as the escapes

far from Ic present typically shorter lifetimes. It should also be noted that the temperature

dependence of the system parameters Ej and Ic as the system switches to running state

is ignored.
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Figure 3.17: The real time measurements taken with fs = 200 kHz and Pin = -100 dBm at a.

Ibias = 1.35 µA b. Ibias = 1.39 µA c. Ibias = 1.40 µA d. Ibias = 1.41 µA e. Ibias = 1.45 µA

f. The extracted switching rates from the real time measurements and the fit with the scaling

factor g = 7.



Chapter 4

Detecting Individual Phase Slips

4.1 Introduction

In this chapter, we introduce our device: the superconductor quantum interference prox-

imity transistor (SQUIPT) [4] and elaborate on the design requirements for detecting

in real time the thermal signature of the individual phase slips. Next, we present the

fabricated samples and the experiments we conducted on them. The engineering aspect

of the device design was a true challenge. We had to iterate over several designs based

on the measurement results. Therefore, we find it useful to explain the evolution of our

sample rather than jumping to the final design. The modifications comprise mainly the

device geometry, the material choice and the type of external B⃗ source and the coupling

to it. Hence, our journey begins with a hexagonal SQUIPT with a macroscopic coil as a

B⃗ source and ends with a seven times bigger device with an on-chip rapid flux line which

in the end allowed us to detect the phase slips.

4.2 Main Idea

We seek to demonstrate the real time detection of the thermal signature of a phase slip in

a SQUIPT. This event can be seen as the equivalent picture of a magnetic flux quantum

Φ0 tunneling to/from the loop (Fig. 4.1.a). The experiment consists in ramping the the

phase (φ) of a hysteretic SQUIPT operating in the overdamped regime via an external

flux source, up to the point where a phase slip occurs. The difference in the internal

energy of the system following this event is then absorbed by the electron population

of the normal metal (N) which acts as the weak link. Therefore, after a phase slip, the

electronic temperature (Te) of N undergoes a rapid increase and then relaxes back to

its equilibrium value mainly thanks to the electron-phonon coupling which evacuates the

excess of energy towards the subsequent phonon systems. At sub-K temperatures, the

weakened electron-phonon interaction sets this relaxation in the µs scale which is within

the experimental reach. Apart from the clean superconducting (S) contacts on N which

69
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forms a SNS Josephson junction, we add a third S contact separated from N via an oxide

layer and exploit the SIN junction as the proximity thermometer. Finally, the fast readout

is achieved by embedding the whole system in an resonant readout circuit with a large

bandwidth (∼ 10 MHz) as discussed in Chapter 3.

Figure 4.1: a. A sketch of the SQUIPT. The superconducting loop (blue) is interrupted by a

normal metal (red). SINS thermometer is formed by the addition of a third superconducting

electrode, the oxide layer and the NS lead (black line). A magnetic flux quantum penetrating

the loop during a phase slip is depicted with the pink arrows. b The equivalent circuit model

of the device. The superconducting loop is represented by its total inductance L. Whenever a

phase slips occurs, the difference in internal energy (∆U) is dissipated on the normal metal (red

arrow).

4.3 Device Configuration

In simple words, the SQUIPT is a variant of RF-SQUID where the weak link of the su-

perconducting loop is formed by a normal metal in clean contact on both ends with the

superconducting electrodes of the loop, thereby forming an SNS type Josephson junction

(Fig. 4.1.a). The mesoscopic scale (∼ 500 nm) of the N which is typically in the diffusive

transport regime allows the incorporation of a third superconducting electrode in tunnel

contact with N via an oxide layer. With such a configuration, it becomes possible to

exploit the phase dependence of the proximity effect via an external B⃗ source and simul-

taneously probe the DOS of the proximitized N via tunnel spectroscopy, which yields a

transistor-like behaviour [4]. Having already explored the fundamentals of Josephson

junctions, SQUID and the phase slips in a hysteretic SQUID, here we will focus on the

role of normal metal, the thermal model of our device and the engineering of a hysteretic

device.
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4.3.1 The role of the Normal metal

The normal metal inserted in the superconducting loop has three main roles:

1. Weak link: As discussed in Chapter 1, the normal metal allows the coherent transport

of Cooper pairs under the proximity effect hence forming the SNS junction of the loop.

This way, our device is governed by the operating principles of an RF-SQUID. The design

parameters and the suitable regime for observing individual phase slips are detailed in

the following section.

2. Absorber: Fig. 4.1b shows the circuit equivalent of our device. The difference in the

internal energy (∆U) which accompanies the phase slip is dissipated in the form of Joule

heating of the quasiparticles of the normal metal. The energy transfer takes place on the

sub-nanosecond timescale - dictated by τ ∼ L/RN where L (∼ 0.5 nH) is the total loop

inductance and the RN (∼ 1.3Ω) is the normal state resistance of the weak link - and

raises the electronic temperature (Te) of the normal island. From a detection perspective,

the normal part therefore acts as the calorimeter absorber and allows us to capture the

thermal signature of the individual phase slips.

3. Phase dynamics: In Chapter 1, we discussed the dynamic behaviour of the Josephson

phase and showed that the transitions between the coherent and the resistive states depend

on the device parameters. Unlike current-biased Josephson juctions, there is no running

finite voltage state in an RF-SQUID.Nevertheless, the system switches to the finite voltage

state during a phase slip between two metastable S states. The device characteristics,

hence the operating mode, determines the transient phase response and the number of

slips (∆n = |n1 − n2|) prior to the retrapping of the phase particle (Fig. 4.2).

3.1 Underdamped (βc > 1, ∆n > 1): In the underdamped regime, the so-called phase

particle may have enough kinetic energy to overcome several local minima before getting

retrapped. Two critical thresholds of the Stewart-McCumber parameter (β1,2) control

the transient behaviour; they are given as β1 ≈ 4(π/β)0.5 and β2 ≈ 0.25β. Note that

β = 2πLIc/Φ0 is the screening parameter [185] whereas β1,2 represent the threshold

values of the Stewart-McCumber parameter. In the case where the damping regime of

the system meets the condition β1 < βc < β2, the phase oscillations are attenuated in

τs ≈ L/RN and (∆n)max = N ≈ β/2π whereas βc > β2 corresponds to the very low

damping case: the transient response is highly oscillatory, the oscillation period τ > τs

and ∆n becomes arbitrary within 2N.

3.2 Overdamped (βc < 1, ∆n = 1): The overdamped regime is the suitable operation

mode for the detection of individual phase slips as explained in Chapter 1. In a SQUID,

whenever a phase slip is triggered, the phase particle is retrapped in the next metastable

point, admitting a single magnetic flux quantum in the loop. The time constant governing

the phase evolution is given by τS ≈ 3ω−1
c where ωc = RN/LJ represents the Josephson

characteristic frequency [185] related to the time τ = LJ/RN . Note that LJ = ℏ
2eIc

is the

Josephson inductance. Additionally, the initial motion near Φ = nΦ0 is determined by

the turn-on delay τd ≈ π
µ
ω−1
c where µ = (I−Ic)/Ic is the relative current overdrive beyond



CHAPTER 4. DETECTING INDIVIDUAL PHASE SLIPS 72

Ic. SNS junctions are intrinsically overdamped as they feature negligible capacitance and

very low normal resistance (RN ∼ Ω) in contrast to SIS junctions where RN ∼ kΩ.

Therefore, interrupting the superconducting loop with N naturally places the RF-SQUID

in the suitable regime for observing individual phase slips.

Figure 4.2: The transient dynamics of the phase slips in a largely hysteretic SQUIPT (β = 20)

for three different regimes: overdamped (black), underdamped (red) and strongly underdamped

(green) (adapted from [185])

4.3.2 The role of the EM environment on the thermal model

In Chapter 2, we discussed the thermal model of the normal metal in an SNS Junction

for the calorimetric detection of an energy quanta. Given the fact that our system is

embedded in a resonant microwave circuit and is driven by a sine tone with fs ∼ 575

MHz, in what follows, we discuss the impact of the EM environment on the thermal

model.

Radiative loss: The electron gas of the N island is coupled to the electromagnetic envi-

ronment (Fig. 4.3) via superconducting leads and exchanges energy with it according to

the fluctuation-dissipation theorem [149]. It is therefore necessary to take into account

the electromagnetic channel, through which N emits thermal photons (νth = kBT/h) once

the instantaneous heat from a phase slip is absorbed. The net power flow from the N to

the environment can be written as [186]

P = r

∫ +∞

0

hν[ne(hν)− nenv(hν)]dν [W ] (4.1)

where r = 4RNRenv/(RN + Renv)
2 is the coupling coefficient between the N and the

environment, n(ϵ) = [exp(ϵ/kBT ) − 1]−1 is the Bose-Einstein distribution of photons.

Considering a lossless coupling (Z(ω) = 0) and evaluating the integral, Eq. (4.1) can be

shown to have the form [187]
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Pν = r
πk2B
12ℏ

(T 2
eN

− T 2
eenv

) (4.2)

where TeN and Teenv represent the electronic temperature of the N island and the envi-

ronment respectively. Pν ∝ T 2 suggests that below a crossover temperature (Tcr), the

photonic cooling becomes the dominant relaxation mechanism over the electron-phonon

coupling (∝ T 5). For mesoscopic devices (Σ ∼ 1× 109 W/m3K5 and V ∼ 10−20m3 ), Tcr

could reach up to ∼ 150− 200 mK, which is well within the experimental reach. Indeed,

several demonstrations of quantum limited heat transport (GQ = πk2BT/6ℏ)) can be found

in thr literature [187–189]. It should be noted that the impedance matching between the

device and the environment plays a crucial role in such experiments. In our case, the con-

tact fingers (Cu) deposited on the same run with N island forms the environment (Renv)

seen by the device through a superconducting lead (Fig. 4.3b). No special attention was

given to the impedance matching. As a consequence, calculating the sheet resistances,

we find that Renv and RN are in the weakly coupled regime (r ∼ 0.03). Moreover, the

non-zero impedance (Z(ω) ̸= 0) of the superconducting lead should be taken into account

which further suppresses r < 0.03. Overall, we obtain Pν < 0.1 fW and Tcr < 55 mK. In

Ref. [3], the possible observation of a Tcr ≈ 30 mK was reported for a copper absorber

with a volume V = 1.0× 10−21 m3.

Figure 4.3: a. Thermal model of the normal absorber. The weakly coupled systems of electrons

and phonons are shown in red and blue, respectively. The absorber electrons also exchange

energy with the EM environment via spontaneous emission of photons. The dissipation caused

by the phase slip is absorbed by the electron population (yellow). b. The schematic view of the

sample. The superconducting loop (cyan) has an overlap with the normal part (red) due to the

angle deposition method employed. The overlapping electrodes are dashed. The left electrode is

in clean contact with the superconducting loop and is therefore considered as the environment.

The right electrode is seperated from the N island via an oxide layer and is excluded from the

calculations.

AC heat load: We probe our system with a sinusoidal tone at fr = 575 MHz and Pin =

−110 dBm. The incident power (Pin) is mostly transferred to the output (Pout) and read

at Troom. However, a fraction of Pin is lost to the system. Due to the presence of a



CHAPTER 4. DETECTING INDIVIDUAL PHASE SLIPS 74

tunneling resistance (RT ∼ 10 kΩ), the dissipation (PAC) corresponds to a steady-state

heating of N the island which drives Te > Tph. At low temperatures (T < 200 mK),

this overdrive can be significant and therefore needs to be taken into account in thermal

calculations. Considering that Q̇e−ph is the dominant relaxation mechanism, we can write

the thermal balance as

PAC = Q̇e−ph = ΣV(T 5
e − T 5

ph) (4.3)

Isolating Te, we obtain

Te =

(
PAC

ΣV
+ T 5

ph

) 1
5

(4.4)

Fig. 4.4 shows Te(Tph) for various Pin. We have taken ΣCu = 2.109 W/m3K5 which

is a standard value in literature and the N volume is V ∼ 0.008 µm3. It can be seen

that min(Te) ∼ 76 mK at Pin = −110 dBm which sets the lower temperature limit

in our experiments. One is tempted to further decrease Pin. However, we will see that

Pin < −110 dBm presents other challenges in terms of phase slip detection.

Figure 4.4: The heat load on the absorber caused by the input signal. The calculated electronic

temperature (Te) is plotted versus the phonon temperature Tph for various Pin. We consider

Tph thermalized with the setup (Tbath). ΣCu = 2.109 W/m3K5 is used calculations which is a

standard value from the literature. The volume of the normal island is V ∼ 0.008 µm3.

4.3.3 Hysteretic SQUIPT

As discussed in Chapter 1, the RF-SQUID has two distinct regimes based on the screening

parameter: weak screening (β < 1), and the hysteretic regime (β > 1) . The phase slips

occur solely in the latter where the Φ(Φx) function is multi-valued. Therefore, designing a

device in the hysteretic regime is the first condition for observing phase slips. Considering

the expression of β = LIc/Φ0, we see that the LIc product has to be made greater than
Φ0

2π
which provides two experimental parameters to adjust in this perspective:
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1. Self-inductance (Ltot): The total self-inductance of the device consists of a geometric,

and a kinetic term.

Ltot = Lgeo + Lk (4.5)

The geometric inductance stems from the loop shape. Several analytical expressions for

simple geometries can be found in the literature [190]. For the µm-scale mesoscopic

devices with a single turn, Lgeo < 200 pH is expected. In our design, we refer to the

electromagnetic simulations (”Sonnet Suites”) for a rigorous determination of Lgeo.

Kinetic inductance is related to the inertia of the charge carriers in superconductors. In

the dirty limit, where the mean free path l is smaller than the BCS coherence length

ξ0, the kinetic sheet inductance can be calculated as Lk□ = (ℏρn)/(π∆t), where ρn, ∆,

and t are the normal state resistivity, the superconducting gap, and the layer thickness,

respectively [191]. Note that ρn/t corresponds to the sheet resistance R□. Therefore,

Lk□ can be deduced from resistance measurements.

Kinetic inductance is inversely proportional to the thickness and becomes important in

thin superconducting films. Depending on the application, this can be a desired or an

unwanted feature. To name a few applications where high kinetic inductance is sought;

thin films of highly disordered superconductors such as TiN [192], NbxSi1−x [193], and

granular Al [194] were shown to have Lk□ ∼ 1 nH, and have potential uses in flux qubits

[195, 196]. Josephson junction arrays form superinductors [197] which provide a high

impedance environment with Zenv =
√

Larray

C
such that Zenv ∼ ZQ where ZQ = h

2e
≈ 6.5

kΩ and are used in parametric amplification [198]. In our case, the SQUID loop made

of Al which we deposit simply by physical vapor deposition yields Lk□ ∼ 1.1 pH which

corresponds to a typical value found in the literature.

2. SNS Josephson junction critical current (Ic): In the long diffusive limit (ETh ≪ ∆),

Ic(T = 0) scales with ETh/RN . Therefore, making the N lead as short and wide as possible

is the good design direction for obtaining hysteretic behaviour. However, two limiting

factors arise: (1) some finite length must be allocated to the tunneling contact (∼ 250

nm) and the clean NS overlaps (∼ 100 nm) which sets Lmin > 450 nm, and (2) given

the 3-step angle deposition method we employ to fabricate the device, the N island width

is limited by a possible overlap with the shadow deposited Al contacts which should be

avoided. Opting for the dimensions (L,W, t) = (700 nm, 250 nm, 35 nm) and considering

the typically reported [42, 63, 199, 200] diffusion coefficients of copper, DCu ∈ [70, 250]

cm2/s, we expect 2 ≲ Ic ≲ 10 µA. It should be noted that it is not possible to measure Ic

with our device. Figure 4.5 shows the dependence of β and the ∆U on the loop inductance

(L) and the critical current (Ic). Within the shown Ic range, any device with Ltot ≥ 100

pH fulfills the hysteresis condition.
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Figure 4.5: a. The 2D contour plot of the screening parameter β as a function of the inductance

(L) and the critical current Ic(T = 0). The hysteretic regime is shown in gradient blue. The weak

screening regime is marked in yellow. b. The 2D contour plot of the change in internal energy

∆U dissipated on N following a single phase slip with respect to Ic(T = 0) and inductance(L) .

4.4 Device Designs

4.4.1 A Preliminary Device

Geometry. Our first device is a hexagonal SQUIPT with ∼ 46µm2 of surface area (Fig.

4.6). It is mostly inspired by the design in [4]. The superconducting loop (Al), the normal

island (Cu) and the superconducting probe contact (Al) are all deposited in the same run

with the three angle shadow evaporation technique, having respective thicknesses of 60

nm, 35 nm, and 25 nm. The entire device sits on an intrinsic Si wafer. The T-shaped N

island is 500 nm long and has a volume of ∼ 0.006µm3. The N island is in clean contact

on both ends with Al leads where the overlap area is 125 nm x 210 nm (95 x 210 nm) due

to the slight misalignment. The oxide layer (AlOx) of the tunnel barrier, which separates

the N island from the probe contact was grown by the controlled oxidization (P = 0.25

mbar, t = 5 s). The overlapping area with the probe contact is 250 nm x 200 nm.

Measurement. We conduct transport measurements at Tbase = 50 mK. In a 2-wire

configuration, the NIS junction is voltage biased and the output current is read via a

trans-impedance amplifier at Troom. The I(V) curve is presented in Fig. 4.7b. The onset

of the quasiparticle current corresponds to a bias eV ≈ ∆ − ∆g ≈ 200µeV. The slope

yields RT ≈ 12.5 kΩ. The anti-symmetric bumps within ±40 µeV around the origin (Fig.

4.7c) stem from the tunneling supercurrent which confirms that N is under proximity

effect. The peak current (∼ 110 pA) occurs at V ∼ ±12µeV.
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Figure 4.6: SEM view of the first-generation SQUIPT. a. The angle evaporation method gener-

ates three replicates of the same pattern. The superconducting electrodes used to form the device

are marked in blue. The surface area is highlighted in yellow and the absorber normal metal is

in red. b. The zoomed view of the same device. The slight asymmetry of the clean contacts on

the T-shaped N island is visible.

I(B⃗) characterization

Next, we focus on the B⃗ dependence of the tunneling supercurrent. The sample is placed

at the center of a cylindrical coil (1 mA → 100 µT) thermalized at 4 K (Fig. 4.8a). First,

we repeat the I(V) measurements at various fixed B⃗.

Hypothesis. The external B⃗ imposes a phase bias (φ) between S1 and S2 and the

critical supercurrent across N ′IS presents a cos(φ/2) dependence. Therefore, we expect a

gradual attenuation of the I(V) peak due to the proximity effect as φ is swept from 0 → π

via external B⃗.

Fig. 4.8b presents the I(V) traces taken at various external B⃗. The decrease in the current

amplitude is in line with our expectation. Therefore, we conclude that the loop is intact

and our device responds to the B⃗ as expected. To further investigate the question, we fix

the Vbias at the positive current peak (Vbias = 12 µeV) and sweep B⃗ continuously from 0

µT to 300 µT and then we do the reverse sweep. The periodic modulation of the current

with respect to B⃗ is seen in Fig. 4.8c. Note that the attenuation of the supercurrent is

limited to min(I)/I(0) ≈ 0.6 and I(0) is restored with abrupt jumps. We interpret this

behaviour as the signature of the hysteretic regime where the phase jumps occur whenever

φ ≥ π/2. The product of the modulation period (∼ 40µT) and the surface area (∼ 46µm)

yields a flux threading the loop, Φ = 1.84 × 10−15 Wb which corresponds to ∼ 0.9Φ0.

The systematic 10% error encountered here might stem from the lack of precision on the

current to magnetic field strength conversion of the coil used in the experiment as well as

the marginal error on the surface area calculation.
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Figure 4.7: a. Schematics of the I(V) measurement. b. I(V) curve at T = 50 mK. c. Zoomed

in I(V= ±100µV ).

RF measurements

Having obtained the basic characteristics of our device via DC measurements, we move

on to the RF experiments where the device and the resonator chip are bonded together.

The system is excited with a sinusoidal tone (Pin = −110 dBm) at the resonant frequency

(fr = 575MHz). The output power is measured at a predefined sampling frequency and

duration.

Pout(V ) characterization The bias tee extension of our resonator circuit enables us to

apply Vbias on the N ′IS junction while measuring the tunneling resistance across it. We

therefore have the experimental capability to conduct tunneling spectroscopy measure-

ments on our sample.

Results: Figure 4.9 shows two Pout(Vbias) measurements at T = 50 mK and T = 300 mK.

The curves feature typical characteristics of a tunneling spectroscopy as well as some

important nuances specific to our device configuration. The coherence peak which occurs

at ±∆ for ordinary superconductors is now visible at ±(∆±∆g) due to the convolution

with ∆g of N ′. We find ∆ ≈ 220µeV and ∆g ≈ 20µeV. The flat plateau at low T

±(∆ −∆g) at T = 50 mK, corresponds to the forbidden states for quasiparticles. More

importantly, ZBA peaks are clearly visible at Vbias = 0 V. Increasing T from 50 mK to

300 mK causes the rounding of the sub-gap conductance due to the thermally populated
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Figure 4.8: a. The artistic sketch illustrating the experimental setup used for I(B⃗) measure-

ment. b. I(V = ±80µV ) curves taken at the coherent current peaks at various fixed B⃗.

Incrementing the phase bias φ → π
2 gradually decreases the proximity effect. c. The periodic

modulation (∼ 40µT ) of the coherent current peak at V = 12 µV. The abrupt phase jumps in the

forward (blue) and the backward (red) sweeps are the clear indication of the hysteretic behaviour.

states above the minigap and the supression of the ZBA conductance (∼ 14 dB) due to

the decreasing pair density in N ′. In the following sections, we will investigate in detail

the temperature dependence of the ZBA peak for thermometry purposes.

Pout(B⃗) characterization Similar to the I(B⃗) measurement, we expect the modulation

of the zero bias conductance with B⃗. However, this time we need to take into account

the transfer function (S21) of the resonator circuit in order to make sense of Pout(B⃗)

measurements. Tracking the role of the phase bias (φ):

φ→ Ic(φ) → EJ(φ) → G(φ) → S21(φ) (4.6)

we see that φ modulates the Josephson energy, EJ(φ) which in return alters the tunneling

conductance (G(φ)). We read the change in G(φ) with our resonant circuit via S21(φ).

The function S21(G(φ)) at resonance is given as [1]

S21 (φ)
∣∣∣
ω=ω0

= S0 − 20 log10 (1 +R0G (φ,T )) (4.7)

where S0 is the constant offset brought by the circuit elements [1] and R0 = (ω0RLC
2
2)

−1.
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Figure 4.9: a. The tunneling spectroscopy of the SQUIPT taken at T = 50 mK (blue) and T

= 300 mK (red). Vbias is swept between ±330 µV with the increments of 2.2 µV. At every Vbias,

Pout is sampled at fs = 50 kHz for t = 200 ms. Therefore, the data points represent the average

of 104 samples. b. Zoomed view of the tunneling spectroscopy at Vbias = ±100µV.

We see that S21(φ) is inversely proportional to log10G(φ, T ). The tunneling supercurrent

(hence G(φ)) is maximum at φ = 0 which marks the lowest value of S21(φ). Conversely,

max(S21) is reached in principle when φ = π(φ) where the proximity effect is cancelled.

Figure 4.10a shows the calculated Pout at Vbias = 0 with respect to Φ with β = 10. Note

the repeating spike pattern as Φ is swept. The phase jumps occur whenever φ ≥ π/2.

Results: Fig. 4.10b shows the Pout(B⃗) measurement at T = 50 mK. We probe the device

with a sine wave at f = 575 MHz and Pin = −110 dBm. B⃗ is swept 0 µT→ 300 µT. Pout is

sampled at fs = 1MHz and t = 50 ms (see Sec. 4.5). Therefore, each data point represents

the average over 50 × 103 samples. Overall, the data present good agreement with the

theoretical curve. We obtain the phase jump period ∼ 40µT as the DC measurements.

Determination of β: With respect to Φx = 0, the first phase jump always occurs at

Φ/Φ0 ≈ 1/4 in the ideal case. Inserting this in Eq. (4.8), it is seen that the ratio of Φx
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causing the first jump (called Φin in Fig. 4.10a) over Φ0 defines uniquely β as

β = 2π

(
Φin

Φ0

− 1

4

)
(4.8)

which allows us to extract β from Pout(B⃗) measurements. Hence, we find β ≈ 6.3 for this

last sample.

Final remarks: With the first series of measurements, we could obtain the DC and RF

properties of our device. The major results are

1. The presence of the proximity effect on N ′ was confirmed via both I(V) and Pout(V )

measurements.

2. ∆ and ∆g were obtained via tunneling spectroscopy and the ZBA peak at Vbias = 0

and its temperature dependence were observed.

3. The B⃗ dependence of the ZBA peak was obtained in both DC and RF configurations.

The RF response to B⃗ is well understood.

4. The hysteretic behaviour was confirmed via abrupt phase jumps present in both DC

and RF measurements of B⃗ sweep.

5. Overall, the sample looks promising for thermometry measurements.

At this stage, the logical step towards fast thermometry is to conduct real-time relaxation

measurements which necessitates a fast B⃗ source and a synchronous data acquisition.

However, given the high inductance of the coil we used, it was impossible to drive B⃗

faster than 10 Hz. Our fast thermometry trials with averaged measurements using the

coil failed (not shown). We concluded that our setup was insufficient for the type of fast

experiments we wanted to realize. To circumvent this issue, we converged towards an

on-chip flux-biasing solution where we can drive the flux-line with faster pulses in < µs

rise/fall time.
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Figure 4.10: a. The calculated Φ(Φx) curve for β = 10 combined with the expected thermometer

response: Pout(Φx). The red curve corresponds to a typical trajectory followed by Φ when Φx is

swept across several phase jumps. The corresponding behaviour is observed as the repeated spikes

at the thermometer output which allows the extraction of the screening parameter. b. Pout(B⃗)

measurement at T= 50 mK. We extract β ≈ 6.3 from Φin/Φ0.
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4.4.2 Device-2: On-chip Inductive Coupling

The inductive coupling is a specific type of coupling where two or more devices interact

with each other via shared magnetic flux. The on-chip coupling solutions are ubiquitous

and they serve for several purposes, especially in the quantum electrodynamics domain.

To name a few applications; inductive coupling provides the frequency tunability of trans-

mons as well as the coupling between them for two-qubit operations [201, 202]. In three

wave mixing process, the pump signal and the DC offset to adjust the ωpump are induc-

tively coupled to the SQUID [203].

Our motivation for employing an on-chip flux line is to replace the macroscopic coil with

a faster Φx source. When connected to a transmission line, the on-chip flux line can

carry nano-second range flux pulses to the SQUIPT, a step which is crucial for our fast

thermometry experiment. The condition for the correct operation of the rapid flux line is

that it must stay in the superconducting regime at all times. This means that the rapid

flux line current (IRFL) with sufficient amplitude to generate a phase slip must be smaller

than the critical current (Ic) of the flux line. To meet this condition experimentally,

we need two pieces of information (1) what is the Ic of the rapid flux line (2) What is

min(IRFL) that provokes a phase slip? In other words, what is the mutual coupling (M)

between the flux line and the SQUIPT? In the following sections, we present the new

device and address the above-mentioned questions.

Geometry. In our next device, we keep the SQUIPT design the same and include a flux

line which is positioned at ∼ 3 µm from the loop (Fig. 4.11). The flux line is made of Al

and has a thickness (width) of 100 nm (2 µm). It is fabricated prior to the SQUIPT via

laser lithography and physical vapor deposition.

Figure 4.11: SEM view of the SQUIPT (blue) and the rapid flux line (cyan). RFL is connected

to a current source at Troom and grounded at the sample holder level.
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Flux line critical current (Ic). In a four-wire setup, we current bias the rapid flux line

and measure the voltage appearing across it. The forward/backward sweeps are shown in

Fig. 4.12. We obtain Ic ≈ 740 µA at T= 50 mK. Having obtained the critical current of

Figure 4.12: V(I) curve of the rapid flux line. The forward sweep is marked in blue. The

reverse sweep (red) features a retrapping current IR ≈ 360 µA which originates from the thermal

hysteresis.

the rapid flux line, we move on to the mutual coupling measurements. In order to have

Φ = Φ0 induced by IRFL, we require M = Φ0/Ic(T = 50mK) ≈ 2.8 pH

Mutual coupling (M).

Pout(B⃗) characterization: We proceed with the RF measurements. As it was the case

with the previous sample, the idea is to sweep B⃗ by applying current IΦx=Φ0
RFL on the rapid

flux line and measure Pout simultaneously. The phase slips following the initial one occur

at a sweeping period Φx = Φ0. It is therefore possible to extract the mutual coupling as

M = Φ0/IRFL. In Fig. 4.13, we compare the Pout(B⃗, V ) responses between a B⃗ sweep

with (a) the coil and (b) the rapid flux line. The feature we would like to emphasize is the

gradual heating from IRFL ≈ 200 µA onward in the RFL measurement. The rounding of

the subgap conductance and the disappearing ZBA peak clearly demonstrate this effect.

We observe no phase slip on the vertical slice at Vbias = 0 V. At this stage, it is possible

to draw following conclusions from the experiment

1. Previously we had measured IRFL
c ≈ 740 µA. The onset of Joule heating at IRFL ≈

200 µA indicates that the cause lies somewhere else, most likely at the heating

of instruments. A steady-state current IRFL = 200 µA leads to ∼ 900 nW of

dissipation on the 20 dB attenuator residing at the mixing chamber stage. This

might eventually lead to the overheating of the sample chip above the Tbase via heat

current.

2. We could not observe the phase slips provoked by the flux line. Therefore, our
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method fails to obtain the mutual coupling.

Figure 4.13: 2-D color maps of the SQUIPT combining two measurements: Pout is measured

(color scale) while Vbias (horizontal) and the current on the flux source source (vertical) are

swept. The figure compares the responses of the a. coil and b. RFL driven measurements.

Black arrows point to the phase slip events.

2. Measurement combining the coil and the rapid flux line: We have both the coil and

the RFL operational. Therefore, we can come up with a combined measurement scheme

to obtain the mutual coupling (Fig. 4.14). Our strategy is as follows:

1. Sweep the coil up to φ ⪅ π/2

2. Hold the coil at φ ⪅ π/2 and let the measurement free run to make sure that the

phase bias is stable.

3. Send a µs range current pulse on the RFL.

4. Increase the pulse amplitude until a phase slip occurs.

5. Ramp the coil current down and up again to reset the SQUIPT.

As we have the information on the phase periodicity for the coil, we also know precisely

the phase bias φcoil we impose on the SQUIPT. We can therefore make the correspondence

between the additional Φ provided by RFL to complement the phase jump and the current

pulse amplitude to deduce the mutual coupling.

Result: We repeat the measurements at three phase bias points, φbias = (0.4, 0.3, 0.2)π.

Each time, a current pulse with the threshold value IRFL ≈ (80, 156, 230) µA systemati-

cally generates a phase slip. For example, in the case of IRFL = 80µA, the current pulse
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on the rapid flux line (IRFL) complements φ = 2πΦ/Φ0 = 0.1π from which we deduce

Φ ≈ 1.033× 10−16 Wb. Inserting Φ and IRFL in M = Φ
IRFL

, we obtain M≈ 1.3 pH.

Conclusion: Obtaining M ≈ 1.3 pH points out an important design flaw in our device.

The flux line needs to withstand I = Φ0/M = 1.6 mA for a phase quantum which is

largely beyond Ic = 740 µA. This clearly indicates that we need to change the design so

as to improve the mutual coupling. In the following section, we will address the question

on improving the coupling and introduce the new design.

Figure 4.14: Mutual coupling measurement combining the coil and the flux line. Using the coil,

the phase is swept up to a given φ. Next, we let the measurement free fun to check the stability

of the phase point. The slip is then provoked by the pulse of a fixed amplitude sent on RFL at a

time t highlighted by the vertical dashed red line.

4.4.3 Final design

Mutual coupling (M) estimation. In our previous design, the RFL was positioned

somewhat arbitrarily with respect to the SQUIPT loop inspired by the earlier work of

Claudon et al [204]. Eventually, we observed that our device suffered from the insuf-

ficient mutual coupling. To alleviate this problem, we adopt a more rigorous approach

for our next device. In a series of calculations based on the Biot-Savart law of classical

electromagnetism, we parameterize the device dimensions in order to obtain the desired

mutual coupling. The flux threading the loop is written as

Φ =

∫∫
B⃗ · d⃗s (4.9)

inserting Biot-Savart law for a straight wire (B = µ0I
2πR

)

Φ =

∫ x

0

∫ y

y0

µ0I

2πy′
dxdy′ (4.10)
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which yields

Φ =
µ0I

2π
x ln

(
y

y0

)
(4.11)

Finally, isolating the left hand side in mutual coupling, we obtain

M =
Φ

I
=
µ0x

2π
ln

(
y

y0

)
(4.12)

Figure 4.15 shows the 2D contour plot of the mutual coupling with respect to the device

dimensions. Taking into account the hexagonal shape of our loop, we estimate M ≈ 10.5

pH for the nominal values of x = 30 µm and y = 10 µm at a fixed distance y0 = 2 µm

from the RFL center line. Recalculating the IRFL for a phase slip, we find out that

M ≈ 10.5 yields I = Φ0/M ≈ 197 µA for a single phase slip which we consider safe for

the superconducting regime.

Figure 4.15: Mutual inductance estimations (a) drawing shows the x-y directions used in cal-

culations and y0 = 2 µm, fixed distance from RFL (b) Contour plot demonstrating the mutual

inductance as a function of loop dimensions. The estimation of M (red cross) takes into account

the hexagonal shape of the sample

Device geometry. Based on the mutual coupling calculations, the new SQUIPT be-

comes bigger especially in the direction of the RFL (Fig. 4.16). The main rectangle is

30µm× 10µm. Including the side lobes, the total surface area amounts to ∼ 330µm2.

The T-shaped normal island is 760 nm× 240 nm× 35 nm and has a ∼ 120 nm overlap with

the superconducting leads on both ends. The bottom extension which forms the tunnel

junction is ∼ 180 nm× 220 nm. The material choice and the thicknesses for the SQUIPT

loop are the same as the previous designs. The superconducting parts are made of Al

whereas the normal metal is of copper. We used niobium for the rapid flux line due to its

higher supercurrent density. The RFL is 500 nm wide and 100nm thick. Its central line

is 1.9µm away from the loop which leaves enough space for the shadow evaporations.
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Figure 4.16: The false coloured SEM view of the SQUIPT device. The superconducting electrodes

are marked in blue, the absorber normal metal in red and RFL in cyan. In b. and c. the shadow

depositions are clearly visible. d. The view of the single device on a sample chip. The contact

pads are 150µm× 150µm.
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Pout(B⃗) characterization

Mutual coupling. The operation of RFL as a reliable fast flux source hinges on a

sufficient mutual coupling with the SQUIPT loop. To test our estimation on M for the

new device geometry, we connect the RFL in a DC current source and measure Pout while

IRFL is being swept slowly. Figure 4.17a shows the traces of such a measurement at

Tbath = 50 mK, 200 mK and 400 mK within the sweeping range of 0 − 1 mA. From a

phase slip period in current IRFL ≈ 170±5 µA, we extractM ≈ 12.1±0.4 pH, that is, 15

% higher than estimated from the Biot-Savart calculation. We attribute this to a slightly

smaller distance between the SQUIPT and the RFL, of approximately 1.9 µm instead of

2 µm by design and to the fact that the IRFL has a finite distribution along the width

whereas the theoretical calculations consider an ideal line.

Figure 4.17: a. Pout(IRFL) measurement at T = 50 mK, 200 mK and 400 mK. The calculated

response at T = 50 mK is shown in dashed green. The divergence of the data from the theoretical

curve at high RFL currents points to a residual heating problem. b. β(T) measurement between

50 mK and 400 mK. The fit is computed by Usadel formalism which yields Ic(T ) and we fix L

= 0.6 nH, ETh/∆ = 0.12 and RN = 1.3Ω c. Pout(T ) measurements at φ = 0 and φ = π/2.

The shaded area corresponds to all possible temperature readouts for a given φ.
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β(T ) measurement Although we do not have direct access to Ic via measurements, we

can extract β at a given T from the ratio of Φin/Φ0 as Eq. (4.8) suggests. We repeat

the Pout(IRFL) sweeps at every 10 mK between 50 mK - 400 mK. We obtain β(T =

50mK) ≈ 10.8 which is ∼ 70 % greater than the β found in the previous design (Fig.

4.17b). This is somehow an expected result. The device perimeter now amounts to ∼ 74

µm compared to ∼ 19 µm in the previous design. Therefore, both the geometric (Lgeo) and

the kinetic (Lkin) inductances have higher values. The 3.9 fold increase in β is somewhat

counterbalanced by the longer N size (200%) which yields a smaller Ic. Overall, β(T )

follows a very similar trend to Ic(T ) of a typical SNS junction and decreases by ∼70% of

Ic(T = 50 mK) at T= 400 mK.

The Calibration curve Pout(T ) : Our thermometer probes G(T ) of the ZBA peak

and provides Pout(dBm) via S21(T ). To convert the power measurement to temperature

information, we extract Pout(φ = 0) and Pout(φ = π/2) from Pout(B⃗) curves at every T

and assume that sample is thermalized to Tbath. The Pout(T ) plot gives us a family of

isophase curves which we can use as the calibration curve (Fig. 4.17c). Hence, at φbias = 0,

our thermometer features R ≈ 0.01dB/mK of responsivity in the linear regime between

T = 100 mK and T = 280 mK. Below T = 100 mK, Pout starts to saturate due to the

heating and the input noise of the HEMT amplifier. The correct temperature read-out

from the power measurements is not straightforward. One needs to make sure that φbias

is fixed during the data acquisition. Moreover, the RF measurement properties such as

the sampling frequency have a direct impact on the calibration curve. We will investigate

the role of RF setup in the following sections.

Pout(V ) characterization As it was the case for the first sample, we run a spectroscopy

measurement on our device. Vbias is swept between ±330 µV with 1.1 µV of resolution.

This time we sample the data at fs = 2 MHz to be in line with the future fast measure-

ments. Figure 4.18 shows two measurements done at T = 50 mK and T= 400 mK. The

ZBA peak decrease by ∼ 2.25 dB between two temperatures. From the curves, we extract

∆ = 210 ± 5 µeV in the superconducting electrode at T= 400 mK. The minigap of the

proximitised N is found ∼ 29 µeV.

4.5 Real Time Detection

At the current stage of our experiment, our achievements are (1) a SQUIPT device op-

erating in the hysteretic regime with β(T = 50mK) ≈ 10.83, (2) the ZBA peak which

features R ≈ 0.01 dB/mK of responsivity and (3) a rapid flux line which is inductively

coupled M ≈ 12.1 pH to the SQUIPT loop. Having obtained the necessary ingredients,

we now proceed to the real-time detection of phase slips.

Measurement Protocol for Detecting Phase Slips The real-time aspect of phase

slip detection requires strict control of the timing of events. For this reason, we use

a triggered measurement scheme in which the occurrence of a phase slip and the data
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Figure 4.18: a. The tunneling spectroscopy of the SQUIPT taken at T = 50 mK (blue) and T

= 400 mK (red) b. Zoomed view of the tunneling spectroscopy at Vbias ± 100µV

acquisition is orchestrated by an auxiliary pulse (Fig. 4.19). A pair of Aeroflex 3025

signal generator and Aeroflex3035c digitizer is used as a vector network analyzer. Both

modules are mounted on the same PXI rack. The pulse signal on the RFL is provided by

the second channel (CH2) of the Siglent6032 arbitrary wave generator. We use the first

channel (CH1) as a trigger. All devices share a 10 MHz reference clock for a synchronous

operation. A typical detection experiment takes place as follows:

1. The signal generator (Aeroflex 3025) generates a continuous sine wave at fixed fre-

quency and power.

2. The digitizer (Aeroflex 3035c) operates in stand-by mode, waiting for the trigger to

start measuring at a predefined sampling frequency and duration.

3. The arbitrary wave generator: at 2 kHz rate, Channel 2 (AWG:CH2), sends a trigger

pulse simultaneously to the digitizer and AWG:CH1.
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4. The digitizer starts recording data, typically at sampling frequency fs = 2 MHz and

during 500 µs.

5. 20 µs after the trigger signal, AWG:CH1 sends a 70 µs pulse to the rapid flux line,

which generates thus a flux pulse and induces a phase slip.

We repeat the above procedure and average over a large (∼ 105) number of individual

phase slips, to increase the signal-to-noise ratio.

Figure 4.19: a. The device setup and the cabling diagram. We have three RF lines dedicated

to the input signal (Pin), the readout signal (Pout) and RFL. Pin and Pout are referenced to the

sample. b. Timing diagram of a single repetition of the real-time measurement.



CHAPTER 4. DETECTING INDIVIDUAL PHASE SLIPS 93

F
ig
u
re

4
.2
0
:
E
xp
er
im

en
ta
l
m
ic
ro
w
a
ve

se
tu
p
d
ia
gr
a
m
,
in
cl
u
d
in
g
th
e
d
ra
w
in
g
o
f
th
e
eq
u
iv
a
le
n
t
el
ec
tr
ic
a
l
ci
rc
u
it

o
f
th
e
tu
n
n
el

ju
n
ct
io
n
co
u
p
le
d
to

th
e

re
so
n
a
to
r.

T
h
e
in
co
m
in
g
si
gn

a
l
is

a
tt
en

u
a
te
d
a
t
d
iff
er
en

t
te
m
pe
ra
tu
re

st
a
ge
s
a
n
d
lo
w

pa
ss

fi
lt
er
ed

(L
P
F
),

w
it
h
a
cu
to
ff

fr
eq
u
en

cy
f c

=
78

0
M
H
z.

T
h
e
ra
p
id

fl
u
x
p
u
ls
es

a
re

a
p
p
li
ed

th
ro
u
gh

a
n
o
th
er

co
a
xi
a
l
li
n
e,

w
it
h
a
to
ta
l
-4
0
d
B

a
tt
en

u
a
ti
o
n
.
T
w
o
ci
rc
u
la
to
rs

(s
h
o
w
n
a
s
gr
o
u
n
d
ed

ci
rc
le
s)

p
ro
vi
d
e

a
to
ta
l
4
0
d
B

is
o
la
ti
o
n
be
tw
ee
n
th
e
sa
m
p
le

a
n
d
th
e
lo
w

n
o
is
e
a
m
p
li
fi
er

(L
N
A
)
re
si
d
in
g
a
t
4
K

st
a
ge
.
T
h
e
lo
w

n
o
is
e
a
m
p
li
fi
er

(L
N
F
-L
N
C
0
.3

1
4
A
)

a
n
d
a
se
co
n
d
a
ry

a
m
p
li
fi
er

(M
in
i-
C
ir
cu
it
s
Z
X
6
0
-V

6
3
)
a
t
ro
o
m

te
m
pe
ra
tu
re

p
ro
vi
d
e
∼

60
d
B

o
f
ga
in
.



CHAPTER 4. DETECTING INDIVIDUAL PHASE SLIPS 94

Sampling frequency A real-world signal conveys information on the behaviour of a given

physical system. Therefore, it is of continuous nature in most of the cases. On the other

hand, the experimental tools used by an experimentalist for recording and treating these

signals live in the digital realm. Thus comes the question of how to represent a continuous

function f(t) by a sequence of sampled data f [n] without any loss of information. In the

domain of digital signal processing, the question is answered by the Nyquist-Shannon

sampling theorem [205] which states that a function f(t) with a bandwidth B can be fully

reconstructed with any sampling rate fs, fulfilling the condition fS ≥ 2B. Considering the

fact that we are aiming to resolve in real-time the thermal relaxation following a phase

slip, the above-mentioned theorem therefore sets the minimum fs for our experiment

(Fig. 4.21). The relaxation dynamics of the temperature in N is governed by the electron-

phonon coupling which is faster than exponential decay in the initial stage. However,

for the ease of calculations on fs it is safe to assume a decaying exponential f(t =)e−t/τ

with τ = 2µs. Applying Fourier transform F{f(t)}, the magnitude in the frequency

domain takes the form |F (ω)| = 1/(
√
ω2 + (1/τ)2). It should be noted that in principle

the Nyquist-Shannon theorem applies to the bandlimited signals. We therefore introduce

a cutoff condition as fc = 0.1max(|F (ω)|) which yields a one-sided bandwidth B =

395 kHz. So, it is sufficient to set 790 kHz to avoid aliasing. Overall, the Nyquist-

Shannon theorem elucidates the required sampling frequency and rather falls within the

framework of communication theory. However, from an experimentalist’s point of view,

more datapoint means more confidence on a given measurement. That is why we would

like to increase fs as much as possible. Next, we investigate what sets the upper limit for

fs .

Figure 4.21: The sampling theorem in a nutshell. Time and frequency domain equivalence of

the signals and the operations are shown in left and right columns, respectively.
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Trade-off between fs and R In the previous section, we assumed that fs was an

adjustable parameter defined by the user. In fact, this is an illusion because fs is physically

determined by the data acquisition hardware. The workaround to modify fs is that

whenever the user sets fs, the device software (1) introduces a downsampling factor M and

resamples the digitized sequence with a period M such that g[m] = f [nM ] (2) readjusts the

cutoff frequency of the anti-aliasing filter to the new fs. The combination of downsampling

and filtering is called decimation. Decimation allows the user to adapt the measurement

bandwidth to his/her needs. By reducing the measurement bandwidth, we limit the

noise power present in the data which increases the dynamic range (Fig. 4.22). This is

called the processing gain. In Fig. 4.23, we present several Pout(T ) curves with fs ranging

from 50 kHz to 4MHz. It is clear that as we increase fs, the noise floor (dynamic range)

increases (decreases) and the relative contribution of the noise power in the total measured

power increases. We are therefore faced with a trade-off between fs and R. In our

experiments, a maximum fs = 250MHz is set by the Aeroflex 3035c digitizer card which,

in the default settings, would result in a highly oversampled and noisy measurement.

Thus, we opt for fs = 2 MHz which we find to be the optimum compromise.

Figure 4.22: The power spectral density plot demonstrating the baseband signal together with the

bandlimited noise power in two cases: fs = 1 MHz (green) and fs = 2 MHz (red). The larger

sampling frequency leads admits more noise in the system.

Noise floor The real-world radio receivers measure noise which emanates from various

sources. The sum of all unwanted signal in the absence of the desired input corresponds

to a signal level denoted as the noise floor. At Troom = 290 K, the ultimate noise floor of

the receiver is determined by the thermal noise (Pnoise = kBTB) of the 50Ω termination

which yields NF = −174 dBm within 1 Hz. Including the measurement bandwidth, we

can formulate the noise floor as

NF = −174 + 10 log10(B[Hz]) (4.13)

Therefore, with fs = 2 MHz we obtain NF ≈ −111 dBm. In Fig. 4.24 we depict

the major noise sources in our transmission line and the corresponding noise floor with

respect to the measurement bandwidth. The dominant contribution comes from the low
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Figure 4.23: Pout(T ) curves at various sampling frequencies. The trade-off between fs and

R is remarkable. R(fs) extracted from the main figure together with the fit R = 0.09574 +

0.02525 log10
(

1
fs

)
is shown in the inset. The systematic flattening of the curves below T = 100

mK stems from the saturation due to the noise floor.

noise HEMT amplifier situated at 4K stage. We follow the procedure described in the

Methods section of Ref. [3] to extract the effective noise temperature of it. Basically, the

method consists of cancelling the noise emanating from the sample by slightly detuning

the probe signal frequency off resonance and applying a finite Vbias to position the probed

energy level oustide ZBA peak. Next, we measure the standard deviation of the input

noise which is dominated by the 4K amplifier as a function the input power. Fitting the

curve with a single independent variable, we extract the Tnoise ≈ 6.2 K.

Signal-to-Noise ratio (SNR): Having defined the noise floor, the signal-to-noise ratio

(SNR) is simply the ratio of the input signal to the noise floor. In our experiment, a

typical signal with Pin = −110 dBm, passing through the resonator circuit S21 and the

amplification chain (∼ 62 )dBm reaches the digitizer at P ≈ −61 dB. Compared to the
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NF(fs = 2MHz) = −54.1 dBm , we have a SNR < 1. We will therefore have to repeat the

measurement and do ensemble averaging which improves the SNR by
√
N where N is the

number of repetition.

Figure 4.24: a. The sketch showing the cascaded noise at the digitizer input. The major

contribution originates from the electronic noise of the 4K HEMT amplifier. b. Calculated

noise floor of the digitizer as a function of the sampling frequency. The error bars represent the

imprecision in the total amplification gain. c. Noise measurement as a function of Pin at BW

= 10 kHz yielding NET ≈ 6.2 K.

Threshold amplitude for a phase slip. The minimum pulse amplitude necessary for

generating a phase slip should be determined at every measurement temperature before

the real-time detection experiment. Because the on-chip flux line, which is connected

to the transmission line via wire bonds, is not impedance matched and the mismatch

loss is unknown, the pulse amplitude cannot be determined a priori. For this reason,

we employ an empirical approach in which we apply square-wave signals with increasing

amplitude, until a phase slip is observed. The square-wave width is set to 100 µs with

trise = tfall = 3 µs to facilitate the slip detection and Pout is measured during 200 µs.

Figure 4.25 demonstrates the realization of such a measurement. Up to a certain threshold
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value, Pout responds to the φbias imposed by the pulse amplitude (blue scale). Beyond, a

phase slip is generated and the following relaxation is of thermal origin.

Figure 4.25: Measuring the threshold pulse amplitude for the phase slips. The curves corre-

sponding to the pulse amplitudes below the threshold are marked in gradient of blue. The red

curve is the only measurement where the pulse provoked a phase slip.

The real time detection. In the empirical determination of the threshold amplitude,

we used long pulses (t = 100) µs with 3 µs rise/fall time to facilitate the measure-

ment. Once we obtained the threshold, we narrow the flux pulse duration down to 70

ns. As discussed in Section 4.3, the energy transfer to the quasiparticles after a phase

slip takes places in picosecond timescale whereas the following thermal relaxation is in

the µ-second range. We set the pulse duration below the sampling period (Ts = 500 ns)

so that the φ recovers its initial value and is fixed much before the obtention of the first

data on the relaxation. This way, we ensure that the calibration curve yields a correct

power/temperature conversion. In Fig. 4.26a, we show the real time measurements of the

absorber temperature. The fast flux pulse at t=0 generates two consecutive phase slips,

one during the forward sweeping branch and the other on the backward, which leads to

an abrupt increase of the electronic temperature. To give an example, at T = 75 mK, two

back to back phase slips caused by the flux pulse deposits ∆U ∼ 85meV of energy on the

absorber and increases the temperature by ∆T ≈ 160mK. We repeat the same measure-

ment with the increments of 25mK up to T = 275mK. Note that the thermal relaxation

dynamics accelerates as we increase the temperature thanks to the stronger electron-

phonon coupling. Beyond T = 200mK, we are unable to resolve the thermal relaxations

at fs = 2MHz. Figure 4.26b,c focus on the returning to the equilibrium of ∆T at various

Tbase. The nonlinear heat balance equation is solved numerically. Overall, we observe
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that the fast decaying initial stage is in good agreement with the relaxation dynamics

given by ∆Ṫ ∼ Q̇e−ph = ΣV(T n
e −T n

ph) where n = 4.85 and Σ = 2.825× 109 WK−4.85m−3

and V ≈ 8 × 10−21 m−3. In ordered metals, deviations of Q̇e−ph = ΣV(T n
e − T n

ph) from

n = 5 are possible in confined absorber geometries where dimensionality plays a role in

electron-phonon scattering [206]. In the long-term and only at love tempereatures, we

observe a slower relaxation (τ ≈ 140µs) which was already reported for nanoscale copper

absorbers [155].

Figure 4.27a plots the initial temperature increase ∆T0 after a back-and-forth phase slip.

∆T0 falls down by ∼ 72% between the starting temperatures of 75mK and 275mK. This

mainly stems from the increasing heat capacity (∼ T ) of the absorber and the weaker

dissipation ∆U(∼ IcΦ0) which simply follows Ic(T ). The calculation used for fitting the

data on ∆T0(T ) assumes a specific heat γ = 71Jm−3K−2 for the copper absorber [155].

As δT ∼ T goes beyond the linear regime, we integrate the relation dU = CdT . Hence,

Thigh following the phase slip is written as

Thigh =

√
2∆U

γV
+ T 2

0 (4.14)

In our calculations, we take into account the asymmetry between the dissipation caused by

the forward and backward swept phase slips. As the latter occurs at a higher temperature,

the heat release is less important (Fig. 4.27b).

Single shot detection A body which is in thermal contact with a heat reservoir keeps

exchanging energy with the reservoir event at equilibrium. The entire thermodynamic

system undergoes continual random transitions among its microstates which causes its

properties to deviate momentarily their mean values [109]. We can therefore attribute

statistical properties to the observables of the system. Likewise, the electron population of

the absorber permanently exchanges energy with the phonons in our thermometer. Hence,

the electronic temperature (Te) is subject to fluctuations which is given by the fluctuation-

dissipation theorem as kBT
2/C where C is the absorber heat capacity. In Fig. 4.28, we

compare the noise equivalent temperatures (NET ) of the relevant signals in our system

and we point out the suitable regime for single-shot detection of the individual phase

slips. The dashed black line represents the fundamental temperature fluctuations of the

absorber which is given as NET0 =
√

2kb
5ΣVT

−1. The red line corresponds to the required

noise equivalent temperature NETreq =
∆U
5σγ

T−5/2 for the observation of individual phase

slips. The signal-to-noise ratio is simply defined as NETreq/max(NET0, NETHEMT ),

where NETHEMT defined as NETHEMT =
√

⟨δT 2⟩/2∆f and ∆f is the measurement

bandwidth. In an ideal scenario, we would be able to detect the thermal signature of an

individual phase slip at T = 50 mK with SNR ≈ 22 dB. However, in reality the electronic

noise of the HEMT amplifier severely degrades the SNR. We convert the instrumental

noise to ⟨δT 2⟩ via ⟨δT 2⟩ = R−2⟨δP 2
out⟩. It is seen that the presence of HEMT noise lowers

the threshold temperature where SNR = 1 for a single phase slip down to ∼ 45mK

which is beyond reach in our experimental setup. A possible improvement would be
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Figure 4.26: a. Time-resolved electron temperature in the absorber, at different starting tem-

peratures set by the cryostat bath, following a 70-ns flux pulse at t = 0. b. Return to equilibrium

∆T (t) at 100 mK, following a flux pulse. Same data as the black curve in a., but in a semi-log-

scale representation and over a wider time window. The red line is a calculation based on the

model discussed in the text, with n = 4.85. The yellow line represent the exponential decay with

τ ≈ 140µs c. Comparison between the calculated relaxation curves with n = 4.85 (red) and n

= 5 (blue) on the return to equilibrium curves at T= 100 mK, 125 mK and 150 mK.

to place a Josephson parametric amplifier [207] as a pre-amplifying stage between the

sample and the HEMT amplifier. Although operating dominantly in the GHz regime,

a JPA tunable between 540 MHz - 640 MHz which provides ∼ 18 dB of gain has been

reported recently [208]. The incorporation of such an amplifier in our experiment would

significantly increase the detection sensitivity. In Fig. 4.28, it is seen that the threshold

temperature where SNR = 1 goes up to ∼ 238mK and SNRT=50mK ≈ 16 dB which

should enable the single-shot detection of individual phase slips in the future.
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Figure 4.27: a. The initial temperature increase ∆T0 after a back-and-forth phase slip. The

calculated ∆T0(T) is marked in black. b. The decomposition of ∆T0 into forward and backward

phase slips based on the numerical calculations. The obtaining of β(T ) allows the calculation

the heat deposited during the first phase slip, the temperature reached afterwards and the heat

deposited by the secondary phase slip. Backward phase slips deposit less heat as they occur at a

higher T0.

Figure 4.28: The comparison of relevant signals in terms of NET for the single shot detection.

The region shaded in light blue corresponds to the regime where a single shot detection is possible

with the 4K HEMT amplifier. Including JPA (green), improves the SNR and increases the single-

shot regime up to higher temperatures. (shaded pink).



Conclusion

Classical thermodynamics is concerned with the macroscopic consequences of the atomic

modes lost in the statistical averaging due to the coarseness of observations [109]. As

the quantum devices gain ground, a rethinking of the thermodynamics within the quan-

tum framework grows in parallel. Hence, the fundamental concepts of thermodynamics

such as work, dissipation and heat transport as well as the concepts related to the ma-

nipulation of information such as Maxwell’s demon and Landauer’s principle are being

reformulated at the quantum level [209–214]. In that regard, the development of the

nanoscale thermometers, calorimeters and the novel measurement techniques including

fast readout, cross-correlation measurements prove essential to foster the field.

In this thesis, we demonstrated the real-time detection of the tunneling of a magnetic

flux quantum (Φ0) in/out of a hysteretic SQUID. Here, the novelty does not lie in the

experimental proof of the flux quantization as it was proven decades ago [77, 78] nor it

is in the frontiers of the detection sensitivity as much more sensitive nano-calorimeters

already exist [137, 144]. Nevertheless, the real-time detection of the thermal signature

of an elementary process ubiquitous to superconducting devices can be considered as a

step forward for the field of fast nano-calorimeters. Our demonstration brings together

the previously reported concepts of proximity thermometer, fast readout and SQUIPT,

and has the potential for further improvement as well as for the alternative uses.

One straight-forward extension would be the study of the thermal properties of the prox-

imitized N used as the calorimeter absorber in our project. Several theoretical reports

pointed out the phase dependence of the e-ph scattering rates and the specific heat in N

under proximity effect [44, 45, 159]. In principle, it seems possible to investigate these

phenomena with our device configuration by generating phase slips and rapidly fixing the

phase bias imposed on the SNS junction. This way, one can investigate the time constant

which governs the relaxation of the electronic temperature of N as a function of the phase

bias on the SNS junction. An alternative experiment can be conceived in the frequency do-

main which exploits the dependence of the noise spectral density on the phase-dependent

thermal conductance. In our setup, we could not achieve the above-mentioned experi-

ments as the influence of the proximity effect on the thermal properties was too small

to observe at T = 50 mK. However, the suitable regime is within experimental reach by

fine-tuning the device properties and reaching a base temperature Tbase ≈ 30mK.

On the material side, copper was chosen mainly for its ease of fabrication and the com-

102
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patibility with the Al superconducting leads. The recent studies on the 2D Van der Waals

materials showcases the promising properties of these materials for calorimetry purposes

[215–219]. Incorporation of a such material together with the improvements on the am-

plification chain by introducing quantum limited amplifiers can significantly improve the

sensitivity of our device, thereby opening the way for the single shot measurements.

On the long run, the nano-calorimeters might be used for the readout of qubit states

[220]. In the standard dispersive readout method, long readout pulses (∼ µs) are used

to achieve an improved SNR. This approach creates a bottleneck for the error-correction

schemes where the pulses as short as possible are required to keep the error rates below

a certain threshold. Introducing fast-calorimeters capable of detecting single microwave

photons in the GHz range where most of the readout transmons operate might bring the

readout times to the nanosecond scale.
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