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présentée par

Davide STEFANI

Representations up to homotopy and perfect

complexes over differentiable stacks

dirigée par Grégory Ginot

Soutenue le 19 Juin 2019 devant le jury composé par:
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M. Camille LAURENT-GENGOUX Université de Lorraine examinateur
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mathématiques de Paris centre.
Bote courrier 290
4 place Jussieu
75 252 Paris Cedex 05



To change the world you must:
1. change yourself;
2. AND change the world.
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pour le courage de ses choix et pour avoir vu en direct son passage de physicien
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bordel. J’ espère que vous allez prendre soin de ce coin de bien Être que vous avez
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Abstract

This thesis is concerned with the geometry of stacks in the differential geometry
context using homotopical and higher categorical techniques. These techniques be-
comes necessary to deal with simple stack generalizations of crucial objects such as
tangent and cotangent bundles, forms on a stack, their automorphisms and more
generally perfect complexes, which are one of the main object of study of this work.

In the first part of this thesis we give an overview of higher and differentiable stacks,
their homotopy theory and cohomology theories. In the second part we study one
representation up to homotopy of Lie groupoids and rely them with a theory of
perfect complex over differentiable stacks. Among our results, we show that a repre-
sentation up to homotopy on a Lie groupoid is the same as a cohesive module on its
dg-algebra of smooth functions and that the correspondent dg-categories are Morita
invariant. This allows us to give a definition of dg-category of perfect complexes on
a differentiable stack. We moreover construct a Lie 2-groupoid of automorphisms
of 2-terms complexes of vector bundles, which is a higher analogue of the classify-
ing stack BGLn. We conclude by giving a definition of the differentiable 2-stack of
perfect complexes of amplitude [0, 1] by means of a Lie 2-groupoid presenting it.

We start by an overview of the motivations behind geometric (higher) stacks, and
of the homotopical notions which are crucial in a rather general context. Then we
focus in more details on the context of this thesis and the results we obtained.

Key words

Lie groupoids, differentiable stacks, perfect complexes, representations up to homo-
topy, 2-categories, smooth nerve.
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Introduction

A homotopy theory for stacks

A modern point of view on algebraic geometry is to consider varieties and schemes
as contravariant functors from the category of rings to the category of sets. More
precisely, a scheme X is uniquely determined by its functor of points

Schop → Sets
T 7→ Hom(T,X)

(1)

The local models for schemes are spectra of rings. Since the functor Spec :
Ringop → Sch is fully faithfull, we can treat the opposite category of rings as a
subcategory of the category of scheme, and we call it the subcategory of affine
schemes, denoted by Aff . This terminology is due to the fact that affines are the
local model for general schemes. Now, the functor Hom(·, X) of eq. (1) is uniquely
determined by its value on affine schemes

Schop // Sets

Affop
� ?

OO ::

In few words, a scheme X is the same as the functor

Affop → Sets
R 7→ Hom(Spec(R), X)

Whenever a functor is naturally equivalent to the functor of point of an affine scheme,
we will call it representable.

Now the question is how to go the other way round: given a functor F : Affop →
Sets can we always find a scheme X such that

F (R) = Hom(Spec(R), X)?

To answer this question we need the notion of sheaves on categories.
It is well known that a presheaf on a topological space X is nothing more than a

11
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contravariant functor from the category Ouv(X) of open subests of X with inclusions
as morphisms (i.e. HomOuv(X)(U, V ) is the singleton if U ⊂ V and empty otherwise).
Then a presheaf is a sheaf if and only if it satisfies a descent condition expressing
that objects and morphisms can be constructed locally (see Def. 1.1.4).
The idea is to put a richer structure on the category Aff , that of a Grothendieck
site, which is essentially the data of a topology on the category. In the algebraic
case, we will need to choose an appropriate topology which is finer than the Zarisky,
for example the étale, the fpqc or the fppf (cf. [61]).
Then a contravariant functor F : Affop → Sets is a presheaf for this topology, and
schemes turn out to be exactly those presheaves which:

1. satisfy a descent condition for this topology, i.e. they are sheaves over the
category Aff ;

2. they admit an algebraic (or geometric) atlas, i.e. there are affines {Ri},
and a morphism

∐
Ri → F which is geometric, in the sense that for any affine

S and morphism S → F , the pullback
∐
Ri ×F S is again representable.

We put the previous ideas in the following definition:

Definition. A scheme (or algebraic space) is a presheaf over the category Aff =
Ringop such that:

1. It is a sheaf for any of the étale/fpqc/fppf topology;

2. it admits an algebraic atlas.

This functorial point of view gave a new insight in the definition of stack. Stacks
are geometric spaces whose local models are not affines anymore, but quotients
of group actions on affines. They were introduced because of a lack of existence of
moduli spaces, in particular for those moduli problem where points admit non-trivial
automorphisms.

Example. Let Diff be the category of differentiable manifolds, and let

V ectn : Diffop → Set

be the functor which sends a differentiable manifold M to the set of isomorphism
classes of rank n vector bundles on M . A moduli space for V ectn is a space X
such that for any manifold U , we have V ectn(M) = HomDiff (M,X).

Since a morphism between manifolds is determined by its value on the neighborhood
of each point, a representable functor in Diff is a sheaf (we say that the topology
on Diff is subcanonical). Clearly this is not the case for V ectn. In fact, for all
manifolds M , if {Ui → M} is a trivializing family for M , then V ectn(Ui) = ∗, the
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one-point set, so for V ectn to be a sheaf would mean that every manifold admits
only one isomorphism class of vector bundles of a fixed rank. The problem is that
all vector bundles are locally isomorphic, but thanks to those isomorphisms one can
”twist” a trivial vector bundle to obtain a non trivial one. So there is no fine moduli
space for V ectn in the category of smooth manifolds Diff . We will see in prop.
3.1.5 that the right notion of moduli space in this case is the differentiable stack
BGLn. This kind of example was one of the main motivations for studying stacks
and their geometry.

Stacks were originally defined as fibered categories satisfying some descent conditions
(see def. 1.1.4), meaning that objects and morphisms can be constructed locally and
glued together whenever some cocycle conditions were respected (cf. [61]). Roughly
speaking, a fibered category p : X → C is a functor between categories X and C,
such that the fiber p−1(U) over any object U ∈ C is a groupoid. If we switch to the
functorial viewpoint that we described above, we can think of a fibered category as a
lax presheaf of groupoids over the category C. Then the Grothendieck construction
(see thm. 1.2.1) allows to strictify those lax presheaves to actual presheaves of
groupoids.

Homotopy theory provided a good framework to understand this construction, and
for the development of stack theory and higher stacks. The work of Hollander (cf.
[36],[23]) completed the passage to the homotopical word, by stating the descent
condition in terms of homotopy theory:

Definition ([36] Def. 1.3). Let C be a Grothendieck site. A presheaf of groupoids
F on C, is a stack if for every cover {Ui → X} in C, there is an equivalence of
categories

F (X)
∼−→ holim

(∐
F (Ui)⇒

∐
F (Uij)⇒

∐
F (Uijk) . . .

)
(2)

The right hand side of the equation is the homotopical limit of the simplicial diagram
induced by applying F to the Čech nerve of the covering {Ui}, which is the more
appropriate functorial approximation to the limit for diagrams of groupoids. It is
easy to imagine that groupoids are organised in a sort of 2-category, with morphisms
the functors between groupoids and 2-morphisms the natural transformations. In
this world commutativity of diagrams makes no longer sense and must be replaced
by commutativity up to a natural isomorphism. That’s why the homotopical limit
is required.

(1-)stacks are informally called sheaves of homotopy 1-types. The idea is that from a
groupoid G we can construct a topological space by taking a 0-cell (a point) for each
object in G, a 1-cell (a path) for each morphism and a 2-cell for each composition.
Of course this assignement is well defined only up to homotopy, and equivalent
groupoids turn out to give homotopy equivalent topological spaces: indeed groupoids
are a model for homotopy 1-types (cf. [28]).
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The next step is to ask ourselves what is a sheaf of homotopy n-types, or more
generally topological spaces (modulo homotopy equivalences). The homotopy hy-
pothesis is the assertion that∞-groupoids are equivalent to topological spaces and
that n-groupoids are equivalent to homotopy n-types.

Example (Homotopy hypothesis for 1-types). The (strict) 2-category of groupoids,
functors, and natural transformations is equivalent to the (strict) 2-category of ho-
motopy 1-types, continuous maps, and homotopy classes of homotopies.

Note that the homotopy hypothesis becomes a theorem or a tautology, depending
on which definition of ∞ (resp. n)-groupoid one chooses.
Those questions were fruitfully adressed with the language of simplicial presheaves:
they represent the best framework to study higher stacks, because they overcome
the technical difficulties of the theory of n-groupoids (we will see some of them in
chapter 4 for the case n = 2) and they bring model category in the setting of higher
category theory (we can think at model categories as one of the incarnations of the
abstract idea of ∞-categories, with the addictional choice of a fibrant replacement).
In this framework ∞-groupoid are defined as Kan complexes, i.e. simplicial sets
such that any k-horn can be filled by a k-simplex for any k. This property is usually
called k-horn filling condition, and the ambiguity we find in the ∞-categorical word
is that the filling, which represents the k-th dimensional composition, is not unique.

Example. In the case k = 2, this means that in the diagram below

x1
f12

!!
x0

f01
==

f02
//

⇑H

x2

if we have two of the three morphism fij , then we can find a third morphism com-
pleting the triangle, and a homotopy H : f02 ⇒ f12 ◦ f01. In this example the
existence of f02 just say that a composition exists, the existence of f01 and f12 says
that we can invert morphisms. Those are the conditions defining a (lax) groupoid.

Homotopy n-types are Kan complexes K which are n-truncated, in the sense that
for any k > n there is an isomorphism between k-simplexes and k-horns in K (see
[42] for a bible of ∞-category theory, [62] and [64] for more down to the ground
definitions of n-groupoids using Kan complexes). In this case, (1-)groupoids are
1-truncated simplicial sets with horn filling conditions in any dimension.

In order to extend the definition of stacks to higher dimensions, we need to put
a model structure on the category of simplicial sets and consequently on that of
simplicial presheaves. In fact, the homotopy limit (2) must be computed on a
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diagram of fibrant objects, and not all simplicial sets are fibrant. There is a model
category structure on simplicial sets for which fibrant objects are Kan complexes;
this induces a projective model structure on simplicial presheaves, where fibrations
and weak equivalences are defined objectwise (see Appendix A.1 for more details).
This machinery was not necessary for groupoids because they are organized in a
model category were all objects are fibrant and cofibrant.
Once one is convinced that groupoids are a special case of simplicial sets, and that
Kan complexes are a good model for topological spaces, it is easy to generalize the
concept of stack (in the viewpoint of [36]) to higher dimensions:

Definition. A simplicial presheaf F : C → sSet is a stack if any hypercover U• → X
induces a homotopy equivalence

F ′(X)
∼−→ holim

(∐
F ′(U0)⇒

∐
F ′(U1)⇒

∐
F ′(U2) . . .

)
where F ′ is a fibrant replacement of F .

In the definition, hypercovers must be thought as a generalization of Čech covers to
higher dimensions.
Finally, one can localize the projective model structure on simplicial presheaves
at hypercovers, to obtain a new model structure whose fibrant objects are exactly
stacks (see Thm. 1.3.6).

Differentiable stacks and Lie groupoids

The interest in stacks is mostly due to the geometric structure one can put on it.
In the previous section we never used the fact that we are working in the cate-
gory of commutative rings, and all the results we exposed would be true for any
Grothendieck site Aff , and simplicial presheaves on it. All the geometry of the
stacks sits inside the category of affines: instead of Ringop one could choose k−Mod
(k-modules), sk −Mod (simplicial k-modules), DGA (dg-algebras), Diff (smooth
manifolds) and so on. The geometric stacks on those categories are modeled on the
geometry of affines, and on the maps that one allows for pasting them together. A
stack is geometric if it admits a geometric atlas, which is a sort of ”open cover by
affines”.
The general theory of higher geometric stacks has been extensively developped in
[57] and [42]. In this work, we consider Aff to be the category of smooth manifolds
with smooth morphisms, geometric stacks will be called differentiable stacks and
we especially focus on the case of differentiable 1-stacks.
The choice of a geometric (in this case differentiable) atlas X0 → X for a stack
X, is equivalent to a geometric (in this case Lie) groupoid structure X1 ⇒ X0,
where X1 = X0 ×XX0 is, by definition of atlas, a representable sheaf (in this case a
manifold).
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The correspondence{
Differentiable stacks X

+ smooth atlas X0 → X

}

 { Lie groupoids X1 ⇒ X0}

is the starting point of our work and we state it as a 2-categorical equivalence in
theorem 1.7.5.

Lie groupoids are widely studied in various areas of mathematics, physics (and more),
many results about stacks can give interesting counterpart in the Lie groupoids
world, and conversely. In this thesis we expose some original results, jumping from
one world to the other. In particular we obtain the following results:

1. We study representations up to homotopy and show that they are cohesive
modules over the dg-algebra of C∞-functions on the groupoid, which are nat-
urally organized in a dg-category. This allows us to prove the Morita invariance
of the dg-category of representations up to homotopy. As a corollary we exhibit
a Hodge to De Rham spectral sequence for stacks;

2. We construct the dg(or ∞)-category of perfect complexes over a differentiable
stack;

3. We study in detail the case of perfect complexes of perfect amplitude [0, 1].
We show that the nerve of a Lie 2-groupoid is a simplicial manifold: this allows
us to define the general linear 2-groupoid GL(V )• of automorphisms of a two-
terms complex of vector bundles V and to show that representations up to
homotopy of a Lie groupoid G on V are pseudo-functors G 99K GL(V )•. We
conclude with a construction of the 2-differentiable stack Perf[0,1].

For each of this result, we will use both techniques and results from the stacky world
and from the Lie one. We present now these results in detail.

Representations up to homotopy

A Lie group G can be thought of as a smooth collection of symmetries of an abstract
object. A linear representation Gy V is therefore a way to realize these symmetries
on a concrete vector space V , that we will assume to be finite dimensional and real.
Such a representation can be defined either as a smooth map ρ : G×V → V satisfying
ρhρg = ρhg and ρ1 = id, or as a Lie group morphism G → GL(V ) into the general
linear group. We can then study the group G by looking at its representations
Gy V , and this approach turns out to be very profitable.
Following the previous philosophy, a Lie groupoid G⇒ M should be thought of as
a smooth collection of symmetries of an abstract family parametrized by M . Lie
groupoids have received much attention lately, as they provide a unifying framework
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for classic geometries, and also serve as models for spaces with singularities such as
orbifolds and, more generally, differentiable stacks. The infinitesimal versions of
Lie groupoids are Lie algebroids, geometric objects intertwining Lie algebra bundles
and (singular) foliations. Differentiation and integration set up a fruitful interaction
between the two theories.

A linear representation (G ⇒ M) y (V → M) of a Lie groupoid over a vector

bundle associates to each arrow x
f→ y a linear isomorphism ρg : V x → V y between

the corresponding fibers, in a way compatible with identities and compositions. It
can be presented either as a partially defined map G× V → V or as a Lie groupoid
map G→ GL(V ) into the general linear groupoid [21]. For example for a Lie group
G ⇒ ∗ those are just Lie group representations on a vector space V → ∗ and for a
manifold M = M ⇒M those are just vector bundles V →M .

The problem with Lie groupoid representations is that they are rather scarce, they
impose strong conditions on V , and do not provide us with enough information on
G⇒M . This reflects in the lack of an adjoint representation, or in the limitations
when establishing a Tannaka duality result for Lie groupoids (cf. [60]).

A solution for these problems was proposed by C. Arias Abad and M. Crainic,
by introducing representations up to homotopy G y V of a Lie groupoid over a
graded vector bundle [4]. They can be easily defined as differentials on certain
bigraded algebra of sections, or alternatively, they can be regarded as a sequence
of tensors: the first one is a differential ∂ on V , the second one consists of chain
maps ρg : V x → V y between the fibers, the third one γh,g provide chain homotopies
relating ρhg and ρhρg, etc. Representation up to homotopy has proven to be a useful
concept, for instance, when dealing with cohomology theory [4], deformations [19]
and Morita equivalences [22].

However, the inconvenient is that Lie groupoids are naturally organized in a 2-
category, but no homotopy theory for representations up to homotopy nor results
about Morita invariance is present in the literature. This made it unclear whether
a representation up to homotopy on a Lie groupoid could define any object on the
corresponding quotient stack, and which kind of object.

In this work we will put a dg-categorical structure on representations up to homo-
topy, which allows us to show the Morita invariance and to switch to the stacky
world. For this we see that representations up to homotopy are the same as cohesive
modules over (curved) dg-algebras. The first advantage is that we control better
their homotopy theory, the second is that instead of the classical definition from
Abad and Crainic, which is modeled on Lie groupoids, our approach could be car-
ried on for n-Lie groupoids and simplicial manifolds, so it opens some possibilities
of future developpements and generalizations.
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Perfect complexes over differentiable stacks

In [58], Töen writes:

In my opinion the true origin of derived algebraic geometry can be found
in the combined works of several authors, around questions related to
deformation theory of rings and schemes. On the algebraic side, André
and Quillen introduced a homology theory for commutative rings, now
called André-Quillen homology ([2], [49]) (...) On the algebro-geometric
side, Grothendieck ([33])) and later Illusie ([38]) globalized the defini-
tion of André and Quillen and introduced the cotangent complex of a
morphisms of schemes.

In [3], M. Anel writes:

The easiest way to introduce Derived Geometry is probably the following
analogy. Recall that homological algebra can be read as the enhancement
of the theory of vector spaces into the theory of chain complexes, then
Derived Geometry is to geometry (ordinary topological spaces, manifolds,
schemes...) what chain complexes are to vector spaces.

Both authors stress the fact that the big innovation of derived stacks is that their
tangent spaces are chain complexes, and tangent spaces to classical geometric objects
(manifold, affines, schemes,...) corresponds to the 0-th level of such chain complexes,
just as sets can be thought as connected component of topological spaces.
Let us calculate as an example, the tangent complex to the quotient of a not-free
action of a Lie groupoid.

Example. Let G = S1, X = R2, x ∈ X be a point, and consider the standard
action of the circle on R2 by rotations. The infinitesimal action induces a linear map
g → TxX, i.e. R → R2 which is injective except for x = (0, 0). We call g → TxX,
with g and TxX in (homological) degrees 1 and 0 respectively, the tangent complex
of the stack [M/G] at the point x, and denote it by T[M/G],x. For x 6= (0, 0), the
quotient M/G has the structure of a smooth manifold, and its tangent space is just

TM/G,x ' R ' TxX/g = H0(T[M/G],x).

so the tangent space to the naive quotient is equivalent (quasi-isomorphic) to the
tangent space of the quotient stack. The quotient M/G is singular at the point
x = (0, 0) but the complex g → TxX give a correct definition of tangent space also
in this singular point, where there is no classical definition for it.

The construction of the cotangent complex can be done on affines and then globalized
by a gluing procedure. Let A be a commutative k-algebra. The cotangent complex
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of A is calculated as follows: we first find a simplicial resolution A• → A of A
by smooth algebras, and take the totalization of the simplicial modules of Kälher
differentials

LA := Tot(n 7→ Ω1
An)

of such simplicial algebras. One can show that LA does not depend on the choice of
the resolution up to quasi-isomorphism. This object controls the deformation theory
of the k-algebra A.

The issue to give a well defined notion of cotangent complex for a general scheme,
which is a gluing of affine schemes, i.e. commutative algebras, is that one should
glue together the various cotangent spaces, which are complexes of algebras. As
we pointed out above, it makes little sense to ask for isomorphisms of complexes,
just as it would for isomorphisms of categories. The gluing is then performed with
quasi-isomorphisms, but what does it means concretely?

Example. Let us take the example of a rank n vector bundle E → M over a
smooth manifold M . If we cover M by trivial open subsets {Ui}, the data of the
vector bundle E is the same as linear isomorphisms αi,j : E|Ui∩Uj → E|Uj∩Ui i.e.
αi,j : Ui ∩ Uj → GLn such that

αj,k ◦ αi,j = αi,k and αi,i(m) = idRn ∀m ∈ Ui.

An elegant way to reformulate what we just saw is that a vector bundle on M is the
same as a Lie groupoid morphism∐

Ui ∩ Uj //

�� ��

GLn

�� ��∐
Ui // ∗

(3)

From any such morphism we can recover a rank n vector bundle over M . Then we
will deduce the well-known fact that rank n vector bundles over M are represented
by the stack BGLn = [∗/GLn].

The same example can be repeated for a complex of vector bundles over M . Again,
we could ask for the αi,j to be isomorphisms of complexes over vector bundles
respecting the cocycle condition. However, we saw that chain complexes have a
rich homotopical structure, so it is more appropriate to ask for the αi,j to be quasi-
isomorphisms. Consequently it make no longer sense to ask for αj,k ◦ αi,j = αi,k,
and we would better ask for an homotopy Hi,j,k : αj,k ◦ αi,j ⇒ αi,k. Again, the
associativity, which was automatically satysfied, now becomes a data, and we will
ask, for any i, j, k, l to have a 2-homotopy Ti,j,k,l as follows:
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αk,l ◦ αj,k ◦ αi,j,
Hj,k,l◦idαi,j +3

idαk,l◦Hi,j,k

��

Ti,j,k,l

�,

αj,l ◦ αi,j

Hi,j,l

��
αk,l ◦ αi,k Hi,k,l

+3 αi,l

One can imagine that this process does not stop here, and that there will be higher
homotopies (possibly trivial) respecting higher coherences for any dimension. So the
more natural object constructed as a gluing of complexes of vector bundles over an
open cover is not a complex of vector bundle on the manifold M .

In this framework computations are quite involved and in higher dimensions it is
not possible to give explicitly all the coherences by hand: already in the case of
complexes of amplitude [0, 1], where all 2-homotopies (i.e. degree 2 maps of chain
complexes) are zero, they are quite hard. We perform some computations for this
case in chapter 4.

The problem of higher coherences was overcome with the language of model or ∞-
categories. The cotangent complex can be defined as a presheaf of simplicial sets or
chain complexes satisfying descent, meaning exactly that a huge list of coherences
is respected, without need for explicitating it.

This approach is very profitable, but has the inconvenient that there is not a general
procedure to compute the values of quasi-coherent or perfect complexes on atlases.
For example, we could know that the cotangent complex LX exists for a differentiable
1-stack X = [X1/X0], but we do not know what kind of object it is when we pull
it back on the manifold X0: the main purpose of this thesis is to answer to this
question and to study counterpart of perfect complexes in the Lie groupoids world.
In chapter 3 we study this problem for differentiable 1-stacks, and show that perfect
complexes correspond to representations up to homotopy on an atlas.

Let us go back to the example of the vector bundles E → M above . We saw
that E is the same as the Lie groupoid morphism (4). We can interpret it as a
stacks morphism M → [∗/GLn], which is (see section 1.7) a zig-zag of Lie groupoid
morphisms

M

�� ��

U1
oo //

�� ��

GLn

�� ��
M U0
oo // ∗

(4)
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where the left pointing one is Morita (note that the natural Lie groupoid morphism
from the Čech Lie groupoid of an open cover to the trivial Lie groupoid M is the
simpler example of Morita morphism).
Then we can say that a vector bundle on M is a stack morphism from the stack M
to the stack of automorphisms of rank n vector spaces, BGLn. For the general case
we should understand what the automorphisms of a chain complex of vector spaces
are. We study it for two-terms vector bundles, and we call it the General Linear
2-groupoid. This is the content of a paper (cf. [20]) written in collaboration with
Matias Del Hoyo which was accepted by the Pacific Journal of Mathematics.

The General Linear 2-groupoid

When V = V1⊕V0 is a 2-term graded vector bundle, a representation up to homotopy
Gy V leads to the notion of VB-groupoid, a double structure mixing Lie groupoids
and vector bundles, via a semi-direct product construction GnV → G. It turns out
that any VB-groupoid can be split as a semi-direct product, by choosing a horizontal
lift of arrows, as proven first in [29]. This yields a 1-1 correspondence between VB-
groupoids and 2-term representations up to homotopy, that can be extended to maps,
and respect equivalence classes (cf. [22]). Prominent examples of VB-groupoids are
the tangent and cotangent constructions. They encode the adjoint and coadjoint
representations, respectively.
A VB-groupoid is an instance of a fibration of groupoids, and according to classic
Grothendieck correspondence, after choosing a horizontal lift of arrows, a groupoid
fibration E → G is the same as a pseudo-functor G 99K {Groupoids} (cf. [31]). It
follows that 2-term representations up to homotopy should, in some sense, be the
same as pseudo-functors. The main purpose of chapter 4 is to make this precise.
We define a smooth nerve for Lie 2-categories, and prove in our first main theorem
4.5.3 that the nerve of a Lie 2-groupoid is a simplicial manifolds. Then we define
a Lie 2-groupoid of automorphisms of a 2-term graded vector bundle V (in order
to take care of the smooth and linear structures, we are led to fix V and restrict
our attention to pseudo-functors involving the several fibers of V ). In our second
main theorem 4.6.3 we prove that pseudo-functors G 99K GL(V )•, which are a
generalization of the classification maps G → GL(V )• for actual representations,
are in 1-1 correspondence with representations up to homotopy of G on V .

Finally, we see how to avoid to fix V , by constructing a general linear 2-groupoid
GL•, whose colimit is the stack Perf[0,1]. This allows us to prove the equivalence

Rep∞(G)[0,1] ' HomSt(X, P erf[0,1])

between representations up to homotopy on G concentrated in degrees 0 and 1 and
stack morphisms from the quotient stack X of G to Perf[0,1].
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Organization of the thesis

This thesis is organized as follows:

In chapter 1 we collect some results about differentiable 1-stacks, their 2-categorical
structure and homotopy theory. Those are essentially already existing/well known
in the literature, but we couldn’t find anywhere else organized in such a way. In
sections 1.1 - 1.3 we recall the classical definition of stacks in terms of fibered category
and show how to switch to the homotopical point of view. In sections 1.4 - 1.7 we
define torsors over Lie groupoids and we show (cf. Thm.1.4.10 and Thm. 1.5.9) that
the fibered category of smooth torsors on a Lie groupoid is a differentiable stack.
Then we state the theorems relating the 2-category of Lie groupoids and that of
differentiable stacks (cf. Thm. 1.7.5 and Cor. 1.7.6).

Chapter 2 is devoted to the study of cohomology theories for differentiable stacks and
Lie groupoids and to see how to relate corresponding notions in those two worlds.

In section 2.1 we give the definition of sheaf cohomology, hypercohomology, Čech
cohomology and De Rham cohomology for manifolds, and recall how they are related
to each other. In section 2.2 we extend those definitions and results to differentiable
1-stacks, essentially following [6] and [7]. In section 2.3 we study in detail the
example of equivariant cohomology for an action Lie groupoid G×M ⇒M . For a
compact G this is equivalent to the De Rham cohomology of the stacks. We state
this result in proposition 2.3.2 and we see it as a special case of the Hodge to De
Rham spectral sequence (also called Bott spectral sequence by some authors, e.g. in
[4]) of theorem 2.4.1.

In chapter 3 we study general representations up to homotopy, we show that they
are equivalent to cohesive modules over the algebra of smooth functions of a Lie
groupoid and we prove their Morita invariance (thm. 3.8.3), which allows us define
the dg-category of perfect complex over a differentiable stack (def. 3.8.5). In section
3.1 we study in detail vector bundles over differentiable 1-stacks and on their Lie
groupoid counterparts, precising some folk results: we explain what descent means
in this case and we show the equivalence of the following three definition of rank n
vector bundles over the differentiable stack X = [X0/X1]:

1. A sheaf on the big site Xbig such that the pullbacks on an atlas are rank n
vector bundles;

2. X1-equivariant rank n vector bundles on X0;

3. Stack morphisms X→ BGLn.

This is an interesting summary of all possible different points of view about vector
bundles over stacks, which we didn’t find in the literature and anticipates the ideas
we will use in our main theorems. In sections 3.3 - 3.5 we define the dg-category
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PA of cohesive modules over a dg-algebra A and we define the dg-algebra C•(G)
of smooth functions on (the nerve of) a Lie groupoid G ⇒ M . Then we define
representations up to homotopy of G ⇒ M and see that they are exactly cohesive
modules over the dg-algebra C•(G). In section 3.7 we use some invariance results
for the dg-categories PA to show the Morita invariance of representations up to
homotopy of a Lie groupoid G ⇒ M . This is one of our main original results, it is
stated in theorem 3.8.3, and extended in a more elegant and categorical language in
Claim 3.8.4. As applications:

1. We define the dg-category of perfect complexes on a differentiable stack as the
dg-category of representations up to homotopy on any Lie groupoid presenting
it

X = [M/G] then Perf(X) := Rep∞(G).

2. We define tangent and cotangent complexes as equivalence classes of the ad-
joint/coadjoint representations (cf. Def. 3.10.3);

3. We state the Hodge to De Rham spectral sequence in this new framework.
This establish a link between the notions of differentiable forms on a stack
(i.e. sections of the symmetric powers of the cotangent complex) and De Rham
forms on Lie groupoids (i.e. elements of the total complex Tot(Ωp(Gq)), see
Thm. 3.11.1).

In 4 we study the case of representations up to homotopy on a two-terms graded
vector bundle. We first do it in the framework of Lie groupoids, by constructing a
Lie 2-groupoid of symmetries of the graded vector bundle, and then in the stacky
framework, by constructing the (differentiable) 2-stack Perf[0,1].
Given V = V1 ⊕ V0 → M a graded vector bundle, we construct a General Linear
2-groupoid GL(V )•, consisting of differentials on the fibers, quasi-isomorphims be-
tween them, and chain homotopies. It is of course a generalization to the two terms
case of the General Linear groupoid of symmetries of a vector bundle. There are
several non-equivalent notions of Lie 2-groupoids in the literature, some of them too
strict and some other too lax for our purposes. We discuss some variants in section
4.1, and in 4.3 we introduce a notion of Lie 2-groupoid, and prove our theorem 4.4.5,
asserting that GL(V )• is indeed a Lie 2-groupoid. It is remarkable that even for a
2-term graded vector space V its general linear groupoid GL(V )• is not a group, for
it has more than one object, so groupoids arise naturally.

In the set-theoretic context there is a nerve for 2-categories that relates lax functors
with simplicial maps [9, 40], which we recall in 4.2. In 4.5 we develop the smooth
version of it, and our Theorem 4.5.3 shows that, even though NC is not always a
simplicial manifold, it is so when the Lie 2-category C has invertible 2-arrows, in
particular for a Lie 2-groupoid. This nerve construction relates our notion of Lie 2-
groupoids with the simplicial approach to Lie 2-groupoids, based on the horn-filling
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condition, that has received much attention lately. This can be seen as a piece of
evidence supporting our definitions for Lie 2-groupoids and smooth pseudo-functors.
We also compare our construction with that of [46].
Building on the previous results, that we believe are of interest in their own, we
finally establish our Theorem 4.6.3, setting a 1-1 correspondence between equiva-
lences classes of 2-term representations up to homotopy Gy V and pseudo-functors
G 99K GL(V )• commuting with basic projections. It seems natural to extend this
result for higher degrees, relating positively graded representations up to homotopy
and maps into a general linear ∞-groupoid.
We use our results to construct a differentiable 2-stack of perfect complexes of am-
plitude [0, 1] in section 4.7.



Chapter 1

Stacks

The classical definition of (1-)stack is given in terms of categories fibered in groupoids
[61]: a stack is a category fibered in groupoid X → C, where C is a Grothendieck
site, and the fibration satisfy a ”gluing property” with respect to the topology on
C. Roughly speaking:

• we can think at C as a manifold;

• X → C being a fibration of categories means that over each open subset of C
lies a groupoid: the fibration is then a sort of presheaf of groupoids, called
lax;

• the gluing condition means that this presheaf is actually a sheaf, i.e. that it
satisfies some nice descent conditions.

In [36] the classical definition is translated in terms of homotopy theory. This is a
more natural setting, which places stacks into a larger homotopy theoretic context.
In the following chapter we briefly recall the classical definition of stack and then
switch to the homotopical point of view.

1.1 Categories fibered in groupoids

Let X
p→ C be a functor. We say that an object x in X (resp. a morphism x→ y)

is over U (resp. is over U → V ) if p(x) = U (resp. p(x→ y) = U → V ). If U ′ ∈ X
is sent to U = p(U ′) ∈ C, there is a natural functor between the overcategories

X/U ′
p∗−→ C/U.

Definition 1.1.1. We say that X is a category fibered in groupoid or fibered
category over C if for all such U,U ′:

(F1) p∗ is essentially surjective;

25
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(F2) p∗ is fully faithful.

Definition 1.1.2. We denote by FibCatC the category whose objects are categories
fibered in groupoids, and whose morphisms between X → C and Y → C are functors

X
F→ Y commuting with the projection to C.

Let X
p→ C be a category fibered in groupoids. We denote by XU the fiber of X over

U , i.e. the subcategory of X whose objects are mapped to U and whose morphisms
are mapped to idU . It follows from (F2) that this subcategory is a groupoid.

Remark 1.1.3. Let U
f→ V be a morphism in C. It follows from (F1) and (F2)

that there exists a pullback functor f∗ : XV → XU such that for all x ∈ XU there
is a morphism f∗(x) → x over f . Such a functor is unique up to unique natural

isomorphism. Moreover, if V
f→ U and W

g→ V are morphisms in C, there is a
unique natural isomorphism g∗ ◦ f∗ ' (f ◦ g)∗.

Definition 1.1.4. We say that a category fibered in groupoids is a stack if the
following conditions are satisfied:

(St1) For all U ∈ C, all x, y over U and all covering families {Ui
fi→ U} the following

is an equalizer diagram:

HomXU (x, y) //
∏
i HomXUi

(f∗i (x), f∗i (y))
a //

b
//
∏
i,j HomXUij

(f∗ij(x), f∗ij(y))

where

Uij = Ui ×U Uj
πij→i //

πij→j

��

fij=fji

&&

Ui

fi
��

Uj
fj

// U

a and b send (f∗i (x)
φi→ f∗i (y))i to (π∗ij→i(φi))i,j and (π∗ij→j(φj))i,j respectively.

(St2) For all {Ui
fi→ U} covering family, xi ∈ XUi and all π∗ij→i(xi)

φij−→ π∗ij→j(xj)
morphism over idUij such that

π∗ijk→jk(φjk) ◦ π∗ijk→ij(φij) = π∗ijk→ik(φik)

there exist a x ∈ XU , and isomorphisms f∗i (x)
τi→ xi over idUi such that the
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following diagrams

π∗ij→i(xi)

φij

��

f∗ij(x)

π∗ij→i(τi)
99

π∗ij→j(τj) %%
π∗ij→j(xj)

commute.

Note that in the diagram we hide the following canonical isomorphisms:

π∗ij→i(f
∗
i (x)) ' π∗ij→j(f∗j (x)) ' f∗ij(x).

We call {xi, φij} a descent datum, and we say that it is effective if the existence
condition in (St2) is satisfied.

Example 1.1.5. Let X → Ouv(T ) be a category fibered in groupoids, such that X
is a set, with the trivial category structure (only identity morphisms), and Ouv(T )
the category of open subsets of a topological space T with inclusion morphisms (for
any two open subsets U and V , HomC(U, V ) is the singleton if U ⊂ V and empty
elsewhere).

Let {Ui} be an open cover of an open set U , xi ∈ XUi and x ∈ XU . We can call the
pullbacks f∗i and f∗ij ”restrictions” of x to Ui and Uij respectively, and see X → C
as a presheaf over C, given by:

U 7→ XU

One can easily check that the condition (St1) is the usual descent condition for a
(classical) sheaf of sets over C.

1.2 Stacks in homotopy theory

In this section we briefly recall the results contained in [36]: we translate the def-
inition 1.1.4 to a descent condition for groupoid presheaves, and we establish a
homotopy theory for stacks.

We first remark that categories fibered in groupoid are lax presheaves of groupoids
which can be strictified by means of the Grothendieck construction (cf. Thm. 1.2.1).
Then theorem 1.2.3 gives a translation of the conditions (St1) and (St2) to a descent
condition for presheaves of groupoids.

We will use the notions of Grothendieck topology and presheaves on a category,
which are recalled in appendix A.4.
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Let Grpd be the category of groupoids and functors between them (for the moment
we do not care about the 2-categorical structure of Grpd), and Pr(C,Grpd) be the
category of groupoid presheaves on C, defined by

Pr(C,Grpd) := Fun(Cop, Grpd)

Theorem 1.2.1 (Grothendieck construction). There is an adjoint couple

p : Pr(C,Grpd)� FibCatC : Γ

where the unit map is an objectwise equivalence, and the counit map is a fiberwise
equivalence of groupoids.

See [39] for details.
The Grothendieck construction allows us to think at fibered categories as presheaves
of groupoids. The next step is to state the descent condition for stacks in an ho-
motopical context. In particular we will need to calculate the homotopy limit 2; for
this we put a model category structure on the category of groupoids:

Theorem 1.2.2 ([36], Thm. 2.1). There is a standard model structure on the
category Grpd of (small) groupoids and functors between them such that:

• weak equivalences are equivalences of groupoids;

• fibrations are isofibrations;

• cofibrations are injections on objects.

We recall now the main result of [36] which gives a definition of stack in a homotopical
framework:

Theorem 1.2.3 ([36], Thm. 3.9). A category fibered in groupoids X → C is a stack
if and only if for all covers {Ui → U} in C

Γ(X)(U)→ holimi(Γ(X)(Ui)) (1.1)

is a groupoid equivalence.

Remark 1.2.4. We can see an object of C as a groupoid presheaf on C by the
Yoneda embedding:

C → Pr(C,Grpd)
U 7→ Hom(·, U)

where for any V ∈ C, hom(V,U) is thought as a groupoid.

We put on Pr(C,Gprd) the projective model structure. Let S be the set of maps

S = {hocolimU• → X | {Ui → X} is a cover in C}

where Ui and X are intended as objects of Pr(C,Gprd) by the Yoneda embedding.
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Theorem 1.2.5 ([36] Thm 1.4). The left Bousfield localization (cf. [37]) Pr(C,Gprd)S
exists and the fibrant objects in this category are exactly those which satisfy the de-
scent condition (1.1), i.e. the stacks.

This is the model structure of 1-stacks on Pr(C,Gprd), in the next section we extend
these ideas to general simplicial presheaves.

1.3 Higher stacks and simplicial presheaves

We saw in the previous section that 1-stacks on C are the fibrant objects of a model
structure on the category of presheaves of groupoids on C. The fibrant condition is
a descent condition, which allow us to think at 1-stacks as sheaves of 1-homotopy
type.
The definition of higher stacks, or sheaves of homotopy types, follows naturally in
this context: we remark that model structure on presheaves of groupoids is just a
truncation of a model structure on the bigger category of presheaves of simplicial
sets. Higher stacks are just the fibrant objects in this larger model category.

1.3.1 Jardine model structure on simplicial presheaves

Let sPr(C) be the category of simplicial presheaves on C (see appendix A.1, A.2
and A.3 for basics on simplicial sets and simplicial presheaves). We now describe
the Jardine model structure on sPr(C), and expose briefly the results of [23], in
order to put the new definition of stack in a larger homotopy theoretic context. We
need the definition of sheaves of homotopy groups:

Definition 1.3.1.

Let F be a simplicial presheaf, X ∈ C and s ∈ F (X).Then:

• π0F is the presheaf of sets defined by (π0F )(X) := π0(F (X))

• for a ∈ F (X)0, πn(F, a) is the presheaf of groups on C/X defined by

πn(F, a)(Y
f→ X) = πn(F (Y ), f∗a).

We say that a map F
φ→ G in sPr(C) is an isomorphism of sheaves of ho-

motopy groups if the induced maps π0(φ) and πn(φ, a) on the sheafifications are
isomorphisms for all a ∈ F (X), and all X ∈ C.

Theorem 1.3.2 (Jardine model structure). There is a proper, cofibrantly generated,
simplicial model category on sPr(C) such that:

• cofibrations are objectwise cofibrations;
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• weak equivalences are maps which are isomorphisms on all sheaves of homotopy
groups

• fibrations are the maps with the right lifting property with respect to the trivial
cofibrations.

We denote by sPr(C)J or St(C) this model category and we will call it the model
category of stacks. We use this terminology because the fibrant objects in this
category are exactly those which satisfy an ”hyperdescent” property (cf. thm 1.3.6),
a generalization of the descent condition (1.1). Then the theory of 1-stacks arises as
the 2-truncation of the theory of stacks:

Theorem 1.3.3 (cf. [23]). The adjoint couples

(S2)−1sPr(C)J
//
sPr(C)Joo

N //
Pr(C,Grpd)Sπoid

oo

induce a Quillen equivalence between (S2)−1sPr(C)J and Pr(C,Grpd)S. In the
equation, the first adjonction is the localization of Joyal model category at the map
S2 → ∗.

This implies that 1-stacks on C are organized in a 2-category: the ∞-categorical
structure induced by the model structure on (S2)−1sPr(C)J is 3-truncated, so that
all n-morphisms are trivial for n ≥ 3.

1.3.2 Higher stacks

Let C be a Grothendieck site and Pr(C) be the category of presheaves on C. There
is an interesting way to define the category of sheaves on C, which enlightens the
definition of higher stacks we will give (see [59], Thm. 1.0.1). Let Wτ be the sub-
category of Pr(C) consisting of local isomorphisms (for the Grothendieck topology
τ on C). Let

Shτ (C) := W−1
τ Pr(C)

be the localization of Pr(C) at Wτ .

Theorem 1.3.4. The natural localization morphism s : Pr(C) → Shτ (C) is left
exact (i.e. commutes with finite limits) and has a fully faithful right adjoint j :
Shτ (C)→ Pr(C).

Remark 1.3.5. In this correspondence s is equivalent to the classical sheafification
functor and the essential image of j are exactly sheaves (i.e. presheaves having
descent).
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In this way we have defined the category of sheaves on C without even mentioning
what a sheaf is: instead of considering a new class of objects, we enlarged the class
of equivalences between the old ones, and we obtained a category equivalent to the
”classical” category of sheaves on C. We do exactly the same thing in the more
general setting of simplicial presheaves, the only difference being that the new class
of local isomorphisms (hypercovers) is more complicated.

The following theorem generalizes the result of 1.2.5:

Theorem 1.3.6 ([23],Thm 6.2, Thm 7.1). Let S be the set

S = {f : Y• → X | f is an hypercover and X ∈ C}.

Then the left Bousfield localization of the injective model structure on sPr(C) at
S is Quillen equivalent to the Jardine model category sPr(C)J . Moreover, the fi-
brant objects are exactly the simplicial presheaves which are objectwise fibrant (i.e.
presheaves of ∞-groupoids) and which satisfy descent for all hypercovers in S.

1.4 Quotient stacks

In this section we will study a class of stacks that arise from a group or a groupoid
action. The paradigmatic example is the action of a Lie group G over a manifold
M : the set of orbits [M/G] will not inherit any topological/differentiable structure
in general, but it is always a differentiable 1-stack.

We define the category of torsors on groupoids, and we prove in theorem 1.4.10 that
it is always a stacks. This is true for a general groupoid object X1 ⇒ X0 in C, and
we prove in proposition 1.5.6 that on a Lie groupoid all torsors are representable,
and the notion of torsor reduces to that of principal X1 ⇒ X0-bundle. We can
then define the quotient stack of a Lie groupoid X1 ⇒ X0 as the fibered category of
principal X1 ⇒ X0-bundles.

1.4.1 Groupoid objects

Definition 1.4.1. A groupoid object in C is the data of two objects X1 and X0

in C, together with five morphisms:

• s, t : X1 → X0, called respectively source and target;

• e : X0 → X1 called identity;

• m : X1 ×t,X0,s X1 → X1, called multiplication;

• i : X1 → X1, called inverse.

Such that
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1. s ◦ ι = t ◦ ι = idX0 , π1 ◦ s = m ◦ s, π2 ◦ t = m ◦ t where πi : X1×t,X0,sX1 → X1

are the projections;

2. m(m× idX1) = m(idX1 ×m) (associativity of the product);

3. m(ι ◦ s, idX1) = m(idX1 , ι ◦ t) = idX1 (unity);

4. ·−1 ◦ ·−1 = idX0 , s◦ ·−1 = t, t◦ ·−1 = s , m(idX1 , ·−1) = ι◦s and m(·−1, idX1) =
ι ◦ t (inverse).

Those conditions can be expressed as the commutativity of some diagrams, so that
the definition makes sense in any category C.
We should think at X1 ⇒ X0 as a category with set of objects X0, set of morphisms
X1 source and target s and t, composition m, identity morphisms given by e and
where all morphisms are invertible, the inverse given by i. In the following we use
also the notation X• or X for a Lie groupoid X1 ⇒ X0.

Example 1.4.2. Here are some examples of groupoid objects:

1. Any morphism X → Y in C determines a groupoid object. For this, take
X1 = X ×Y X, with s and t the two projections, e the diagonal map, and i
the map switching the two factors. Identifying X1×X X1 with X ×Y X ×Y X,
the map m is the projection onto the first and third factors.

2. For G group acting on X ∈ C, we can define the action groupoid G×X ⇒ X,
a groupoid object in C with:

• X0 =: X and X1 := G×X;

• s : G×X → X is the projection and t : G×X → X is the action;

• e : X → G×X takes x to (eG, x);

• i takes (g, x) to (g−1, g · x);

• m((g, x), (h, g · x, )) = (hg, x)

3. If F ∈ Pr(C,Grpd), we can define a groupoid object X1 ⇒ X0 in Pr(C, Set):
for any W ∈ C,

• X0(W ) is the set of objects in F (W );

• X1(W ) is the set of morphisms in F (W );

• morphisms s, t, e, i,m are defined objectwise in the obvious way.

It is easy to check that X1 ⇒ X0 is a groupoid object in Pr(C, Set). Con-
versely, if X1 ⇒ X0 is a groupoid object in Pr(C, Set), then the presheaf
F which sends W ∈ C to the groupoid whose objects are X0(W ) and mor-
phisms X1(W ), with composition, inverse and identity induced respectively
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by mW , iW and eW , is a presheaf of groupoids. This gives an isomorphism
of categories between Pr(C,Grpd) and the category of groupoid objects in
Pr(C, Set); from now on we could use both F and X1 ⇒ X0 to denote a
presheaf of groupoids.

Remark 1.4.3. By the Yoneda lemma, any groupoid object X1 ⇒ X0 in C can be
seen as a groupoid object in Pr(C, Set) (or in Pr(C, sSet), the simplicial presheaves
over C). This is very important, beacause the category of presheaves of sets (or of
simplicial sets) over C is complete and cocomplete, i.e. all limits and colimits exist,
and are simply computed pointwise. Then all limits and colimits of diagrams in C
can be computed in Pr(C, Set). In the following we will often state our results for
presheaves over C.

Let us now look at the example 2: a priori the quotient of X by the action of G is
not defined in C or does not carry all the information about G and X. For example
think about:

1. an action of a topological group with non-trivial stabilizer on a topological
manifold;

2. the trivial action of a topological group on a point.

In general, in the first case the quotient will not be a manifold anymore, and in the
second it will always be a point, without any information about G. For this reason
we are interested in defining quotients stacks, which do not loose those informations.

1.4.2 Torsors on groupoids

There is a natural notion of groupoid action that generalize that of group action:

Definition 1.4.4. Let X1 ⇒ X0 be a groupoid object in Pr(C, Set) (or in C),
P ∈ Pr(C, Set) (or P ∈ C) endowed with a morphism τ : P → X0. A left action
of X1 ⇒ X0 on P is a morphisms

X1 ×t,X0,τ P → P
(f, p) 7→ f · p

such that
τ(f · p) = t(f), g · (f · p) = (g ◦ f) · p, idτ(p) · p = p

whenever these equalities make sense. A right action of X1 ⇒ X0 on P is a
left action of (X1 ⇒ X0)op (the opposite groupoid, with source and target maps
exchanged) on P .

Given a groupoid object in Pr(C, Set) , we have an explicit description of the stack-
ification of the associated presheaf in groupoids; by the Yoneda lemma this includes
the case of a groupoid object in C.



34 CHAPTER 1. STACKS

Definition 1.4.5. Let C be a site, and X1 ⇒ X0 be a groupoid object in Pr(C, Set).
Then [X0/X1] is the following category:

• The objects are principal (X1 ⇒ X0)-torsors, i.e. sheaves P on C equipped
with:

– An epimorphism of sheaves P
φ→ S for an S ∈ C;

– A morphism P
τ→ X0 and a left action X1 ×t,X0,τ P → P , such that the

diagram

X1 ×t,X0,τ P
//

pr1
��

P

φ
��

P
φ

// S

(1.2)

commutes and the induced morphism X1 ×t,X0,τ P → P ×S P is an

isomorphism of sheaves. We denote such a torsor by (P
φ→ S, P

τ→ X0).

• Morphisms between (P
φ→ S, P

τ→ X0) and (P ′
φ′→ S′, P ′

τ ′→ X0) are commuta-
tive squares

P

φ
��

g // P ′

φ′

��
S

f
// S′

(1.3)

such that τ ′ ◦ g = τ and

X1 ×t,X0,τ P
id×g //

ρ

��

X1 ×t,X0,τ ′ P
′

ρ′

��
P g

// P ′

(1.4)

commutes. Note that this last condition implies that the square (1.3) is a
cartesian square.

Example 1.4.6 (Trivial torsors). Let X1 ⇒ X0 be a groupoid object in Pr(C, Set).

For S ∈ C, S
φ→ X0 morphism of sheaves, there is a canonical X1 ⇒ X0-torsor, well

defined up to a unique isomorphism, that we call the trivial torsor over S induced
by φ; it is simply P = X1×t,X0,φS endowed with the projection on S, the left action

X1 ×t,X0,s (X1 ×t,X0,φ S)
ρ−→ X1 ×t,X0,φ S

(g, (f, x)) 7→ (g ◦ f, x)
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and the map

X1 ×t,X0,φ S
τ→ X0

(f, x) 7→ s(f)

For S = X0 ∈ C, φ = idX , we obtain the universal trivial (X1 ⇒ X0)-torsor ξ0,
which is just t : X1 → X0 with the action induced by precomposition. Then we can
think the trivial torsor induced by φ : S → X0 as the pullback φ∗(ξ0).

Proposition 1.4.7. Every (X1 ⇒ X0)-torsor is locally trivial.

Proof. Let (P
φ→ S, P

τ→ X) be such a torsor. If there is a section S
ψ→ P , then P is

isomorphic to the trivial torsor (τ ◦ ψ)∗(ξ0). So we only need to find local sections
for φ. An epimorphism from a representable sheaf always admits local sections, in

fact, as idS ∈ S(S), there is a covering family (Ui
fi→ S) and sections σi ∈ F such

that φ(σi) = fi. Then we have a sheaf morphism Ui → P|Ui which sends f ∈ Ui(M)
to P (f)(σi) ∈ P (M).

Remark 1.4.8. The trivial torsor over S induced by f admits a global section

S → X1 ×t,X0,f S

s 7→ (idf(s), s)

so trivial torsors are exactly those admitting a global section.

There is a simple description of morphisms between trivial bundles, that will be
useful in the following:

Proposition 1.4.9. Let f, g : S → X0 in C, and

Hom[X0/X1](S)(f
∗(ξ0), g∗(ξ0))

be the set of morphisms between the trivial bundles induced by f and g respectively,
which project on the identity of S. Then there is a bijection

Hom[X0/X1](S)(f
∗(ξ0), g∗(ξ0))→ {φ : S → X1 ∈ C | s ◦ φ = f, t ◦ φ = g}

Proof. By the triviality and the remark above, ψ is such a morphism iff there is a
commutative diagram

X1 ×t,X0,f S
ψ //

��

X1 ×t,X0,g S

��
S

σ

JJ

idS
// S
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where σ is the trivializing section. We obtain a morphism φ : S → X1 which is the
composition

S
ψ◦σ−→ X1 ×t,X0,g S

π→ X1.

The commuting diagrams

X1 ×t,X0,g S
//

��

X1

t
��

X1 ×t,X0,f S
ψ //

τf
%%

X1 ×t,X0,g S

τg
yy

S g
// X0 X0

assure that s ◦ φ = f and t ◦ φ = g. Conversely, let φ : S → X1 and s ◦ φ = f ,
t ◦ φ = g. Then it easy to check that the morphism

X1 ×t,X0,f S −→ X1 ×t,X0,g S

(h, x) 7→ (φ(x) ◦ h, x)

is in Hom[X0/X1](S)(f
∗(ξ0), g∗(ξ0)). This shows that the mapping in the statement

is a bijection.

Theorem 1.4.10. The category X = [X0/X1], equipped with the forgetful functor

X→ C that sends (P
φ→ S, P

τ→ X0) to S and

P

φ
��

g // P ′

φ′

��
S

f
// S′

to S
f→ S′ is a stack over C.

Proof. First, note that X is a category fibered in groupoids over C. This follow from
the existence of pullbacks in the category of presheaves over C and the fact that the
square (1.3) is a cartesian square. We fix a choice of pullback f∗ for all f ∈ C.
Let us check the stack conditions:

• (St1) is easily verified using that if P, P ′ are sheaves over C, HomSh(C)(P, P
′)

is a sheaf over C;

• (St2) Let (Pi
φi→ Ui, Pi

τi→ X),

π∗ij→i(Pi)
φij //

φi
��

π∗ij→j(Pj)

φj

��
Uij =

// Uij
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be a descent datum for X. We define the presheaf P over U as:

∀V ∈ C P (V ) :=
∐
V→U

colimi Pi(V ×U Ui)

where the projection P
φ→ U is clear from the definition. P is a sheaf, because

the equalizer diagram is a colimit. There is a natural map P
τ→ X induced

by the (τi)i: if σ ∈ P (V ), φ(σ) = V → U , let σi be in the preimage of σ
by the map Pi(V ×U Ui) → colimj Pj(V ×U Uj). Then τi(σi) ∈ X(V ×U Ui)
and τi(σi |Uij ) = τj(σj |Uij ). Moreover V ×U Ui → V is a covering family for
V , and by assumption the topology in C is subcanonical, so there is a unique
f ∈ X(V ) such that

∀i V ×U Ui → V
f→ X = V ×U Ui

τi(σi)→ X

and we set τ(σ) = f . Again, to define an action on P we use the compatibility
of the actions on Pi and that the topology is subcanonical. One then checks
that there is a natural isomorphism P |Ui' Pi compatible with (φij).

There are few references for a general definition of the stack [X0/X1] in an arbitrary
category C: with our definition, the category of (X1 ⇒ X0)-torsors is always a stack.
Then the question is whether such a torsor is representable or not in C.

It is more common in the literature to define (X1 ⇒ X0)-torsors as the representable
ones, i.e. what is called smooth principal bundle in the differentiable case, but
in this case the category obtained is not always a stack. In a geometric context with
some suitable properties (for example in the differentiable one), all the (X1 ⇒ X0)-
torsors are representable; we prove it in the next section.

In the following, we will often use the standard terminology ”smooth principal bun-
dle” instead of ”torsor”.

1.5 The 2-category of differentiable stacks

In this section we study differentiable 1-stacks. We first give the definition of Lie
groupoid and expose some examples. Then we apply the results of section 1.4 to the
special case of Lie groupoid quotients. We give the definition of differentiable stacks
in terms of atlases and we show in theorem 1.5.9 that there is a 1-1 correspondence
between differentiable stacks with a fixed atlas and Lie groupoids.
Then we extend it to a 2-categorical equivalence in theorem 1.7.5 and corollary 1.7.6.
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1.5.1 Lie groupoids and Stacks

In this section we define Lie groupoids and give some examples of differentiable
stacks. The principal references are [27] and [5].

Definition 1.5.1. A Lie groupoid X• = X1 ⇒ X0 is a groupoid object in the
category of smooth manifolds such that the source and the target maps are surjective
submersions.

In summary, a Lie groupoid is the data of (see section 1.4.1):

1. two smooth manifolds X0 and X1 whose point are respectively the objects ad
morphisms of the groupoid;

2. two surjective submersions s, t : X1 → X0 (source and target maps);

3. a smooth embedding ι : X0 → X1 (identity map);

4. a surjective submersion m : X1 ×t,X0,s X1 → X1 (multiplication);

5. a smooth automorphism ·−1 : X1 → X1 (inverse).

satisfying conditions 1.-4. of 1.4.1.

Example 1.5.2. Here are some examples of Lie groupoids:

• (Trivial Lie groupoid) Let M be a manifold. Then M ⇒M , the category with
objects and morphisms the manifold M , and all structural morphisms being
the identity, is a Lie groupoid, called the trivial Lie groupoid of M , denoted
[M ] (or simply by M when the context is clear).

• (Pair groupoid) Let M be a manifold. Then M ×M ⇒M , the category with
objects M , morphisms M ×M , source and target the projections, identity the
diagonal ∆ : M → M ×M and inverse the map ·−1 : M ×M → M ×M
which exchange the factors, is a Lie groupoid, called the pair groupoid of
M , denoted Pair(M).

• Let G be a Lie group. Then we can see it as the set of automorphisms of a
point: with this structure G ⇒ ∗ is a Lie groupoid. Conversely, the set of
morphisms of a one point Lie groupoid is a Lie group.

• Let P → M be a submersion of manifolds. Then P ×M P is a manifold, and
the category P ×M P ⇒ P , with objects P and morphisms P ×M P inherits a
natural structure of Lie groupoid. This is a special case of a smooth atlas for
the manifold M seen as a differentiable stack (see section 1.5.2).
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• (Action groupoid) Let G be a Lie group acting (on the left) on a manifold
M . The projection on the second component and the action are two smooth
submersions G ×M ⇒ M . Since (G ×M) ×t,M,s (G ×M) = G × G ×M we
can define the composition and the identity by

G×G×M → G×M
(g, h,m) 7→ (gh,m)

M → G×M
m 7→ (id,m)

It is easy to check that G×M ⇒M is a Lie groupoid.

• (Groupoid action) Let X1 ⇒ X0 be a Lie groupoid and M be a manifold. A
left action of X1 ⇒ X0 on M is the data of a smooth map φ : M → X0 and
an action map

ρ : X1 ×t,X0,φM →M, (f,m) 7→ f ·m

telle que (g · (f ·m)) = (g ◦ f) ·m.

As before we can obtain a Lie groupoid from this action: the manifold of
morphism is X1 ×t,X0,φM and the manifold of objects is M . Then the source
and target maps are the projection and the action respectively:

s(f,m) = m, t(f,m) = f ·m

The other structural maps are defined easily.

• (Čech groupoids) Let M be a smooth manifold, and (Ui) be an open cover
of M . The Cêch groupoid associated to the open cover (Ui) has objects the
manifold of the disjoint union

∐
i Ui and morphisms the disjoint union of the

intersections
∐
i,j Ui ∩ Uj .

For any i, j, the source and target maps are, respectively, the inclusion in the
first and in the second component Ui ∩ Uj ↪→ Ui and Ui ∩ Uj ↪→ Uj .

The identity map is id : Ui → Ui ∩ Ui, and the composition is the inclusion

Ui ∩ Uj ×Uj Uj ∩ Uk = Ui ∩ Uj ∩ Uk ↪→ Ui ∩ Uk

Note that the Cêch groupoid associated to the open cover {M} is M ⇒ M
with all structural morphisms being the identity.

• (Pullback of groupoids) Let a : H• → K• and b : G• → K• be two groupoid
morphisms. The categorical weak pullback (cf. [43]) H•×K•G• is the category
with:

– Objects the triples (h, α, g) with h ∈ H0, g ∈ G0 and α : a(h)→ b(g);
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– Morphisms between (h, α, g) and (h′, α′, g′) the pairs (β, γ) with β : h→
h′, γ : g → g′ making the following diagram commute:

a(h)
α //

a(β)
��

b(g)

b(γ)
��

a(h′)
α′
// b(g′)

If moreover H•, G• and K• are Lie groupoids and H0 → K0 is a submersion,
then also H• ×K• G• is a Lie groupoid.

Example 1.5.3 (Pullback groupoid). Let G⇒M be a Lie groupoid, and φ : P →
M be a surjective submersion. Since φ is a submersion, the fiber product P φ×sGt×φ
P is a manifold. It is easy to put a Lie groupoid structure on P φ×sGt×φP ⇒ P with
source and target the projections, and composition induced by the composition on
G; we denote it by φ∗(G•). There is a natural Lie groupoid morphism φ∗(G•)→ G•;
we will see that this is what is called a Morita morphism.

Proposition 1.5.4. Let G• = G⇒M be a Lie groupoid, φ : P →M be a submer-
sion, Pair(P ) be the pair groupoid of P and φ∗(P ) the pullback of G⇒M along φ.
Then the groupoid pullback is equivalent to the weak pullback of groupoids

φ∗(P ) ' Pair(P )×[M×M ] G•

where the maps of groupoid are the diagonal morphisms

P × P

�� ��

//M ×M

�� ��

Goo

�� ��
P

∆ //M ×M M
∆oo

Proof. Recall that the weak pullback Pair(P ) ×[M×M ] G• has objects the triples
(p, α,m) with p an object in Pair(P ), m an object in G• and α a morphism in
[M ×M ]. It is easy to see that this is just the manifold P . Morphisms between p
and p′ are morphisms between φ(p) and φ(p′). So morphisms in Pair(P )×[M×M ]G•
are P ×M G ×M P , which are exactly the morphisms of the pullback groupoid
φ∗(G•).

Example 1.5.5 (Pullback Cêch groupoid). A fundamental example which we will
use in the following chapter is the pullback groupoid of an open cover: let G⇒ M
be a Lie groupoid and {Ui} an open cover of M . Then there is a natural submersion
ι :
∐
Ui → M , and we can consider the pullback groupoid ι∗(G•). By definition,

the manifold of morphism of this groupoid is given by
∐
i,j Ui ×s Gt × Uj . Here
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Ui ×s Gt × Uj is the set of morphisms in G with source in Ui and target in Uj . In
general at the n-th level of the nerve, we will have∐

i0,...,in

Ui0 ×s G t × Ui1 ×s G t × · · · ×t Uin

which we also write Ui0,...,in ×Mn+1 Gn. Composition, source and target are defined
obviously.

1.5.2 The quotient stack of a Lie groupoid

By the end of chapter 1.4.2, we pointed out that our definition of quotient stack
works for any groupoid object, but that with this definition torsors are not repre-
sentable in general. We now check that for a Lie groupoid X1 ⇒ X0, all torsors are
representable, and that they coincide with the usual notion of smooth X1 ⇒ X0-
principal bundles.

Proposition 1.5.6. Let Diff be the site of smooth manifolds and open covers, and
X1 ⇒ X0 be a Lie groupoid. Then all the X1 ⇒ X0-torsors are representable i.e.
they are manifold.

Proof. By proposition 1.4.7, we know that all torsors are locally trivial. Now, a
trivial torsors induced by a map φ : M → X0 in Diff is P = X1 ×t,X0,φM . This
is the pull back of the submersion t and the smooth map φ, so it is a manifold.
Now, a sheaf over Diff which is locally a manifold is globally a manifold, so we are
done.

Torsors over Lie groupoids are also called principal groupoid bundles.

1.5.3 Differentiable (1-)stacks

We know from theorem 1.3.3, that (1-)stacks are organised in a 2-category. and
differentiable stacks are just the full sub 2-category of those stack which admit a
smooth atlas.

By the Yoneda embedding (which is fully faithfull) we are allowed to think to a
manifold as a stack over Diff : in the following by ”manifold” we often mean its
image by the Yoneda embedding.

Definition 1.5.7. 1. A stack is called representable if it is isomorphic to a
manifold;

2. A morphism of stacks X→ Y is called representable if for any manifold M
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and morphism M → Y, the homotopical fiber product

X×M Y

��

// X

��
M // Y

is representable;

3. a morphism of stack X→ Y is a surjective representable submersion if it
is an epimorphism of presheaves, it representable and the map X×M Y→M
is a submersion.

Definition 1.5.8. A differentiable stack si a stack X which admits a surjective
representable submersion X → X from a manifold X. We call X → X a smooth
atlas for X.

We now prove that the data of a differentiable stack with the choice of an atlas is
equivalent to that of a Lie groupoid. Let x : X0 → X be a smooth atlas for X. By
definition, the homotopy pullback

X0 ×X X0

s

��

t // X0

x

��
X0

x // X

is representable, i.e. there exists a manifold X1 and an isomorphims of stacks X1 '
X0 ×X X0 . We recall that the homotopy fiber product of presheaves of groupoids
is calculated objectwise as the 2-fiber product of groupoids. In this case, for any
manifold U , the fiber product

X0(U)×X(U) X0(U)

is the set of triples (f, g, φ) such that f, g ∈ C∞(U,X0) and φ : x(f) → x(g) is an
isomorphism in X(U) (see [27] for details).
On can easily check that the maps s, t define a groupoid structure on X0 ×X X0 ⇒
X0. Moreover, by definition of an atlas, s and t are surjective submersions, so
X0 ×X X0 ⇒ X0 is a Lie groupoid.

Theorem 1.5.9. Let X be a differentiable stack, x : X0 → X be a smooth atlas and
X1 ⇒ X0 be the correspondent Lie groupoid. Then there is a canonical isomorphism
of stacks

[X0/X1] ' X

Proof. We consider a stack morphism Ψ : X → [X0/X1] which, for any manifold U
is defined by the groupoid morphism ΨU : X(U)→ [X0/X1](U), which sends:
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1. An object u : U → X ∈ X(U) to U ×u,X,x X0 ∈ [X0/X1]

2. A morphisms

U

f
��

u // X

U ′
u′

>>

in X(U) to the (X1 ⇒ X0-equivariant) map

f × id : U ×u,X,x X0 −→ U ′ ×u′,X,x X0

We need to check that this is a well defined morphism of stacks, and that it is a
monomorphism and an epimorphism of presheaves of groupoids.

• Well defined: What we need to check is that the homotopical fiber product
U ×u,X,x X0 is an X1 ⇒ X0-torsor over U . We know that X1 is isomorphic to
X0×XX0, and it is clear that U ×u,X,xX0 is a X0×XX0 ⇒ X0-torsor, so it is
also an X1 ⇒ X0-torsor. Then it is easy to check that Ψ is natural, so it is a
morphism of stacks.

• Mono: we have to show that for any u, u′ ∈ X(U) and isomorphism α : Ψ(u)→
Ψ(u′), there exist a unique isomorphism β : u → u′ such that Ψ(β) = α. For
this we choose a covering {Ui} of U which trivialize both Ψ(u) and Ψ(u′).
Then over each open Ui of this trivialization there are unique morphisms βi :
u |Ui→ u′ |Ui such that Ψ(βi) = α |Ui . By unicity those isomorphisms concide
over intersections, and since X is a stack they glue to an isomorphism β such
that Ψ(β) = α.

• Epi: Let P → U be an X1 ⇒ X0-torsor over U , and let {Ui} be a trivializing
open cover of U . Then there exist sections Ui → P giving maps Ui → P →
X0 → X such that the composition is in X(Ui). So the restrictions P|Ui are in
the image of Ψ, which means that Ψ is locally surjective, i.e. an epimorphism.

Example 1.5.10. Let G be a Lie group, and BG := [∗/G] the corresponding
quotient stack. We know that for any manifold U , [∗/G](U) is the groupoid of
smooth principal G-bundles over U .

• An atlas for BG is the map ∗ → BG where ∗ is the point intended as a stack,
which means that it is the trivial presheaf of groupoids U 7→ ∗. Then a map
∗ → BG is the choice, for each manifold U , of a principal G-bundle over U .
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For this we have a canonical map, which send a manifold U to the trivial G-
bundle U×G. It is clear that this map is a surjective representable submersion
∗ → BG. Moreover, for any manifold U , we have

∗(U)×BG(U) ∗(U) = {(∗, ∗, φ) | φ is an isomorphism in BG(U)} ' G

so we obtained again the Lie groupoid G⇒ ∗.

• More generally, for any manifold M , there is a canonical morphism of stacks
M → BG giving an atlas of BG. In this case M is intended as the functor of
points U → Hom(U,M), and we just need to specify which is the image the
identity morphisms idM , which is again the trivial G-bundle M ×G→M . In
this case one can easily check that M ×BGM 'M2×G, and the Lie groupoid
associated to this smooth atlas is M2 ×G⇒M .

Of course G ⇒ ∗ and M2 × G ⇒ M are Morita equivalent groupoids, since they
induce the same quotient stack, but they are not isomorphic.

Example 1.5.11. Let M be a manifold. The identity id : M → M is an atlas for
the stack M , corresponding to the pair groupoid Pair(M) ⇒ M . Let now {Ui} be
an open cover of M . Then

∐
i Ui → M is also an atlas for the stack M and the

corresponding groupoid is the Čech groupoid of the open cover {Ui},∐
i,j

Ui ∩ Uj ⇒
∐
i

Ui.

So the Čech groupoid of any open cover of M is a smooth atlas for the stack M .

We just saw that from a differentiable stack we can obtain different Lie groupoids
with different smooth atlases. Two such Lie groupoids are not always equivalent as
groupoid. The correct notion of equivalence is that of Morita equivalence, which
we introduce in the following section.

Example 1.5.12. In the case where X0 = ∗, i.e. X1 = G is a Lie groupoid, we saw
that [∗/G](U) are just the principal G-bundles over U .
By theorem 1.2.5 we know that stacks are organized in a 2-category, so in particular
between any two stacks there exist a category of morphisms. A 2-categorical version
of the Yoneda lemma works in this context: [∗/G](U) = HomSt(U, [∗/G]), where
HomSt is the category of morphisms between two stacks. This means that the
principal G-bundles over U are classified by the maps of stacks U → [∗/G].

1.6 Some constructions for Lie groupoids

We recall briefly some constructions related to Lie groupoid theory which we will
need in the following.
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1.6.1 The nerve of a Lie groupoid

We briefly recall the nerve construction for a Lie groupoid and fix some notations.
Let G ⇒ M be a Lie groupoid. The nerve of G ⇒ M is the simplicial object G•,
where Gk is the k-fold fiber product

Gk = G1 ×t,M,s · · · ×t,M,s G1︸ ︷︷ ︸
k times

= {(g1, g2, . . . , gk) | t(gi−1) = s(gi)} (1.5)

We will often note by G(k) the k-fold fiber product (1.5). Since the source and the
target maps are submersions, G(k) is a manifold. The simplicial maps are given by
face maps:

di(g1, . . . , gk) =


(g2, . . . , gk) if i = 0
(g1, . . . , gigi+1, . . . gk) if 0 < i < k
(g1, . . . , gk−1) if i = k.

and degeneracy maps

si(g1, . . . gk) = (g1, . . . , gi, 1, gi+1, . . . gk)

for 0 ≤ i ≤ k. Note that the face maps are surjective submersions.

Definition 1.6.1. Let X0 → X be a smooth atlas for a differentiable stack X.
Then the nerve of the Lie groupoid X0×XX0 ⇒ X0 defines an augmented simplicial
manifold X• → X which we call a resolution or a presentation of the differentiable
stack X. Note that the stack X is the homotopy colimit of the simplicial diagram
X•.

1.6.2 The Lie algebroid of a Lie groupoid

Lie algebroids are to Lie groupoids what Lie algebras are to Lie groups and encode
their infinitesimal structure.

Definition 1.6.2. A Lie algebroid over a manifold M is a vector bundle E →M ,
together with a Lie bracket on its module of sections Γ(E), and a morphisms of
vector bundles ρ : E → TM called anchor map, such that:

1. ρ commutes with the brackets: for all X,Y ∈ Γ(E),

ρ[X,Y ] = [ρ(X), ρ(Y )];

2. it satisfy the Leibniz rule: for all X,Y ∈ Γ(E), f ∈ C∞(M)

[X, f · Y ] = ρ(X)f · Y + f · [X,Y ]
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Let G⇒M be a Lie groupoid with source, target and identity denoted respectively
by s, t and ι. We can associate to it a vector bundle on M defined by:

A := ker(ds : ι∗TG→ TM)

and an anchor map dt : A→ TM .

Proposition 1.6.3. With definition as above, A → TM is a Lie algebroid. We
call it the Lie algebroid associated to or the core complex of the Lie groupoid
G⇒M .

See [44] for details.

1.7 The 2-category of Lie groupoids

Definition 1.7.1. A morphism of Lie groupoids

X1
//

�� ��

Y1

�� ��
X0

// Y0

is a Morita morphism if:

1. X0 → Y0 is a surjective submersion;

2. The following square
X1

//

��

X0 ×X0

��
Y1

// Y0 × Y0

is cartesian.

Example 1.7.2. Let G ⇒ M be a Lie groupoid, P → M a surjective submersion,
and φ∗(G) the associated pullback groupoid, of example 1.5.2. Then φ∗(G•)→ G• is
a Morita morphism. It is easy to see that, up to isomorphism, all Morita morphisms
are constructed as pullbacks of submersions.

We need an equivalence relation, so we will define Morita equivalences to be zig-zags
of Morita morphisms:

Definition 1.7.3. We say that two Lie groupoidsX• and Y• are Morita equivalent
if there exist a Lie groupoid Z•, and Morita morphisms Z• → X• and Z• → Y•.

A zig-zag of Lie groupoid morphisms can be rephrased in the language of bibundles,
which we briefly expose now. The two approachs are equivalent, but sometimes it
is more convenient to use bibundles for computations.
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Definition 1.7.4. Let X• and Y• be two Lie groupoids. A smooth (X•, Y•)-
bibundle is a manifold M with a left X•-action and a right Y•-action which com-
mute. A bibundle is called principal (resp. right principal, left principal) if the
actions are principal (resp. right principal, left principal). Namely, a (X•, Y•)-
principal bibundles is a manifold P with submersions

H1

�� ��

P

  ~~

G1

�� ��
H0 G0

such that P is a principal G•-bundle on H0 and a principal H•-bundle on G0.

Let M and N be, respectively, a (X•, Y•) and (Y•, Z•)-bibundles. We can define a
composition bibundle as

N ◦M := (M ×Y0 N)/Y1

where the quotient is taken with respect to the diagonal action

y · (m,n) := (m · y−1, y · n)

If we ask for M and N to be right principal, then N ◦M is again smooth, and it
is a (X•, Z•)-right principal bibundle. This give a well defined composition, up to
isomorphisms of bibundles. We refer to [12] for more details.

It is easy to see that Lie groupoids, Lie groupoid morphisms and right principal
smooth bibundles are organized in a weak 2-category Gpd (or bicategory, see chapter
4.1), and weakly invertible morphisms are exactly Morita morphisms. The following
theorem gives an explicit description of the 2-category of differentiable (1-) stacks.

Theorem 1.7.5 ([12], Thm. 2.18). The weak 2-category Gpd is 2-equivalent to the
2-category of differentiable stacks.

We will not give the definition of 2-equivalence here, we just point out that Morita
equivalent Lie groupoids induce isomorphic quotient stacks:

Corollary 1.7.6 ([5], Theorem 2.26). Let X• and Y• be two Lie groupoids, and X,
Y their quotient stacks. Then the following are equivalent:

1. The differentiable stacks X and Y are isomorphic;

2. The Lie groupoids X• and Y• are Morita equivalent;

3. There exist an (X•, Y•)-bibundle such that the two actions are principal.

Moreover, the stack morphism between X and Y can be described with right princi-
pal (X•, Y•)-bibundles or 2-terms zig-zags of Lie groupoid morphisms, with the left
pointing arrow being Morita (cf. [5], Lemmas 2.29, 2.30, 2.31). Those are often
called generalized morphisms of Lie groupoid.
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Remark 1.7.7. A smooth biprincipal X• − Y• bibundle is the same as a zig-zag
X• ← Z• → Y• of Morita morphisms.

Remark 1.7.8. Note that between two differentiable stacks X and Y there is a
category of morphisms, which we denote by HomSt(X,Y). The 2-Yoneda embedding
for stacks says that for X a differentiable stack and M a manifold, there is a natural
equivalence of groupoids

X(M) ' HomSt(M,X)

Remark 1.7.9. In a large part of this thesis, we study differentiable 1-stack, which
are, roughly speaking, sheaves of 1-homotopy types over the differentiable site, en-
dowed with a smooth structure. In section 1.3 we gave the notion of higher differen-
tiable stacks, which are sheaves of higher homotopy types. The∞-category of these
objects is obtained by a localization at hypercovers of the category of simplicial
presheaves over Diff . In particular, a simplicial manifold can be thought as a stack
by the Yoneda embedding

sDiff ↪→ sPr(Diff)

By the nerve construction (cf. appendix 1.6.1), a Lie groupoid is a special case of
a simplicial manifold, so we could intend it as an higher stack. From now on, we
will often identify a Lie groupoid with a simplicial manifold by means of the nerve
construction.



Chapter 2

Cohomology theories for stacks

In this chapter we study cohomology theories for stacks. For a (non necessarily
paracompact) smooth manifolds, there are many non-equivalent cohomology theo-
ries (sheaf cohomology, De Rham cohomology, hypercohomology, Čech cohomology)
which are related to one another in different, sometimes subtle ways.
We extend these definitions to differentiable stacks, we study some property and
examples and we conclude by recalling in 2.4.1 the Hodge to De Rham (or Bott)
spectral sequence for stacks:

Theorem (cf. [6]). Let X be a differentiable stack. Any cofoliation on X gives rise
to a E1-spectral sequence:

Em,n1 =
⊕

i+2k=m

Hn(X,ΛiΩ⊗ SkΓ)⇒ Hm+n
DR (X)

With the approach of [6] one cannot prove that this spectral sequence is an invariant
of the cofoliation, or in other words, that it does not depend on the choice of a flat
atlas for the stack X.
In chapter 3 we state the same result for stacks, with the language of representations
up to homotopy, without any choice of a cofoliation.

2.1 Cohomology theories

We first recall some notations in homological algebra:

• In the homological notation, for non-derived stacks both tangent and cotangent
complexes are chain complexes, the first concentrated in non-negative degree
and the second in non-positive degrees, the differential is always decreasing
the degree (for the non-derived case).

• If we use cohomological notation, we only have cochain complexes and the
differential increases the degree.

49
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• We write C•[k] to mean that C•[k]i = Ck+i.

In the following we use homological notations; for example the tangent complex of
a Lie groupoid is concentrated in degrees 1 and 0 and the cotangent in degrees -1
and 0.

2.1.1 Sheaf cohomology

For any sheaf F on a manifold M , we define the i-th sheaf cohomology of M with
values in F , denoted H(M,F) as follows: let Γ(M,F) := F(M). Then the global
section functor

Γ : AbSh(M) → Ab
F 7→ Γ(M,F)

is a functor from the category of sheaves of abelian groups over M to the category
of abelian groups which is left exact, i.e. for any exact sequence

0→ F → G → H → 0

the following sequence is exact

0→ F(M)→ G(M)→ H(M)

Note that it can happen that G → H is surjective as map of sheaves (i.e. there are
local sections) but that G(M)→ H(M) is not surjective.

Definition 2.1.1. For any i ≥ 0, we define the sheaf cohomology functor as the
right derived functor of the global section functor Γ:

H i(M, ·) := RiΓ(M, ·)

We remind that RiΓ(M, ·) are calculated as follows: for any F sheaf of abelian
groups over M , we take a resolution by injectives

F → I0 → I1 → I2 → . . .

and we apply to it the functor Γ

Γ(M, I0)→ Γ(M, I1)→ Γ(M, I2)→ . . .

and we compute the cohomology groups of this cochain complex.
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2.1.2 Cohomology of coherent sheaves

In the analytical and algebraic settings, coherent sheaves play a special role: the
theorems A and B of Cartan say that if X is a Stein space (in the analytical case),
or an affine variety (in the algebraic case), and F a coherent sheaf on X, then:

• F is spanned by its global sections, which means that there exist σ1, . . . , σn ∈
F(X) spanning all the stalks FX,x;

• H i(X,F) = 0 for all i > 0.

This imply that in the differentiable case, when we have a fiber bundle V → M ,
which is a coherent sheaf over M , its cohomology are just the global sections

H0(M,V ) = Γ(M,V ), H i(M,V ) = 0

2.1.3 Hypercohomology

Hypercohomology extends the definition of cohomology of sheaves to the case of a
chain complex of sheaves F• over M .

If the complex is bounded below, it is known that there exist an injective resolution
F• → I• i.e. Ij is injective for all j and the map is a quasi-isomorphism. Then the
hypercohomology is just defined by

Hi(M,F•) := H i(Γ(I•))

Of course sheaf cohomology is a special case of hypercohomology for a complex of
sheaves concentrated in degree 0.

In the next paragraphs we will use the following well known result (cf. [32]):

Proposition 2.1.2. There exist a spectral sequence

Em,n1 = Hn(M,Fm)⇒ Hn+m(M,F•)

The same result is true for complexes of sheaves on stacks, once one has extended
the definitions of sheaf cohomology and hypercohomology.

2.1.4 Čech cohomology

Let {Ui} be an open cover of the smooth manifold M . We use the standard notation
Ui1,...,in := Ui1 ∩ · · · ∩ Uin . The general definition of Čech cohomology of M with
coefficients in F , Ȟ(M,F) uses a direct limit over all open covers. The Leray the-
orem says that if the covering {Ui} is acyclic for F , i.e. all the non zero cohomology
groups vanish H i(Ui1...in ,F) = 0, there is a simpler definition of Čech cohomology:
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Definition 2.1.3. Let F be a sheaf on M such that the covering {Ui} is acyclic.
The simplicial diagram of abelian groups F(U•) becomes a cochain complex by using
the alternating sum of the face maps:

F(U)• :=
⊕
i

F(Ui)→
⊕
i,j

F(Uij)→
⊕
i,j,k

F(Ui,j,k)→ . . .

The Čech cohomology Ȟ•(X,F) is the cohomology of the cochain complex F(U)•.

Remark 2.1.4. For a paracompact smooth manifold, there always exists a good
cover, i.e. a cover such that Ui1,...,ik is homeomorphic to Rn for all i1, . . . , ik. Then
the Čech cohomology can be calculated on good covers.

Proposition 2.1.5. There is a map

Ȟ i(M,F)→ H i(M,F)

from Čech cohomology to sheaf cohomology. It is always an isomorphism for i = 0, 1,
but it may fail to be so for higher i’s. If F is acyclic over the Ui1,...,ik , then Cech
cohomology agrees with sheaf cohomology.

Corollary 2.1.6. Let M be a manifold which admits a good cover and F be a sheaf
on it. Then

Ȟ i(M,F) ' H i(M,F)

2.1.5 De Rham cohomology

Definition/Proposition 2.1.7. The De Rham cohomology of a manifold M is
equivalently:

1. the cohomology of the cochain complex

Ω0(M)
dDR−→ Ω1(M)

dDR−→ Ω2(M) −→ . . .

with the usual De Rham differential dDR;

2. the hypercohomology H•(M, (Ω•, d)). where (Ω•, d) is the complex of sheaves
of forms over M .

We denote it by H•DR(M).

Proof. The sheaves Ωp are acyclic over manifolds, so they are injective, and the
hypercohomology can be computed by H•(Γ(Ω•)).

Theorem 2.1.8. Let M be a paracompact smooth manifold, and R be the constant
sheaf with value R, i.e. the sheafification of the presheaf taking value R on any open
subset of M . Then there are isomorphisms

Ȟ i(M,R) ' H i
DR(M)
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2.1.6 Hodge to De Rham spectral sequence

There exist a spectral sequence

Ep,q1 = Hp(M,Ωq)⇒ Hp+q
DR (M)

In the spectral sequence the right hand side is the De Rham cohomology, which
we have already defined. The left hand side are the Hodge cohomology groups
(if we consider algebraic varieties), but in the differentiable case they are just the
cohomology groups of the vector bundle Ωq = Λq(T ∗M). By Cartan’s theorems

Hp(M,Ωq) =

{
0 if p > 0
Ωq(M) if p=0

so the spectral sequence is trivial in this case. This will no longer be true for stack,
by a lack of good covers.

2.2 Cohomology of stacks

We now extend the previous definitions to differentiable stacks (in the following we
write ”stack” for ”differentiable stack”). All proofs and details can be found in [6]
and [7].

2.2.1 Sheaf cohomology of stacks

We want to extend the definition of sheaf cohomology to stacks. First we need
to understand what is a sheaf on a stack. Let X be a differentiable stack; we
can associate to it a Grothendieck site Xbig, called the big site of X, which is
the category of morphisms from a manifold to X, endowed with the topology of
submersions, i.e.

Mi

��

// X

M

>>

is a cover if and only if {Mi → M} is a cover. We denote this site Xbig. Following
the results collected in chapter 1, we can define the (model) categories of presheaves
and sheaves on the stack X. For example a presheaf of abelian groups on the stack
X is just a contravariant functor

F : Xopbig → Ab.

Definition/Proposition 2.2.1. We have:

• A sheaf on the stack X is just a presheaf on X, which is a sheaf whenever
restricted to any manifold;
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• If X• is the nerve of an atlas X0 → X (see 1.6.1), then the data of a sheaf on
X are sheaves Fn on Xn, and compatible maps π∗Fm → Fn for every structure
morphism π : Xn → Xm.

• A sheaf F over X is a vector bundle if Fn is a vector bundle for all n and the
compatible maps π∗Fm → Fn are isomorphisms.

We can now extend the notion of cohomology H i(Xbig,F) for any sheaf on the big
site of X, just by copying word by word the definition in the case of a sheaf on a
manifold.

2.2.2 Čech cohomology of stacks

Let now F be a sheaf on a differentiable stack X, and let X• be the resolution of a
smooth atlas X0 → X. We apply F to the resolution and we obtain a cosimplicial
abelian group F(X•). As usual we can made it a cochain complex just by taking
the differential of alternating sums of the simplicial maps

F(X0)→ F(X1)→ F(X1 ×X0 X1)→ . . .

and then calculate the cohomology groups H i(F(X•)) of this cochain complex.

Proposition 2.2.2. If F is acyclic on manifold, i.e. H i(M,F) = 0 ∀i 6= 0, then
the cohomology groups H i(F(X•)) are Morita invariant, so we can set

Ȟ i(X,F) := H i(F(X•))

for any atlas X0 → X. We call it the i-th Čech cohomology group of X with
values in the sheaf F .

Remark 2.2.3. Note that F being acyclic over manifold does not mean that
H i(F(X•)) is zero, and it is easy to find examples of stacks with non trivial coho-
mology groups. We are doing exactly the analogue of Čech cohomology for manifold,
but in this case we do not have always a good cover for the stack X, so we ask the
sheaf to be acyclic over manifold. In general we will need to use hypercovers if we
want to make the same calculation over general sheaves (cf. [6]).

Example 2.2.4. Let X be a differentiable manifold, and C∞ be the sheaf of C∞-
functions on X, sending a manifold M to the algebra of smooth functions C∞(M).
This extends to a well defined sheaf on the stack X. The Čech cohomology Ȟ∗(X, C∞)
is calculated by mean of a smooth atlas G ⇒ M → X, and is in particular the
cohomology of the complex

C•(G) := C∞(M)→ C∞(G)→ C∞(G(2))→ . . . .
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In section 3.3.2 we will see that this is a dg-algebra, called the dg-algebra of
smooth functions on the Lie groupoid G⇒M . Then the Čech cohomology of
X with coefficient in C∞ is exactly what we will call the differentiable cohomology
of the Lie groupoid G ⇒ M , and the well definedness on X is exactly the Morita
invariance of differentiable cohomology of proposition 3.3.12.

2.2.3 De Rham cohomology of stacks

With the same notation as above, it is easy to see that we can construct a double
complex

Ω0(G3)
dDR //

OO

Ω1(G3)

OO

dDR // Ω2(G3)

OO

dDR // Ω3(G3)

OO

dDR //

Ω0(G2)

dcs

OO

dDR // Ω1(G2)

dcs

OO

dDR // Ω2(G2)
dDR //

dcs

OO

Ω3(G2)

dcs

OO

dDR //

Ω0(G1)

dcs

OO

dDR // Ω1(G1)

dcs

OO

dDR // Ω2(G1)
dDR //

dcs

OO

Ω3(G1)

dcs

OO

dDR //

Ω0(G0)
dDR //

dcs

OO

Ω1(G0)
dDR //

dcs

OO

Ω2(G0)
dDR //

dcs

OO

Ω3(G0)

dcs

OO

dDR //

where dDR is the De Rham differential and dcs is the cosimplicial differential given
by the alternating sum of the cosimplicial maps.

We take the total complex

Tot(Ω•(X•))
n :=

⊕
p+q=n

Ωq(Xp)

with differential d(ω) = dDR(ω) + (−1)pdcs(ω) for any ω ∈ ωq(Gp). The sign change
is introduced in order that d2 = 0.

Proposition 2.2.5. The cohomology of the complex Tot(Ω•(X•)) is Morita invari-
ant, so we can define

H i
DR(X) := H i(Tot(Ω•(X•)))

Remark 2.2.6. One can easily check that R → Ω1 → Ω2 → . . . is a resolution of
the constant big sheaf R on a differentiable stack X. So one can think the De Rham
cohomology of X as the sheaf cohomology with coefficients in R, the only difference
with the ”manifold case” being that the Ωi are not acyclic over X (but they are over
the resolution X•).
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2.3 The example of equivariant cohomology

In this section we study equivariant cohomology and we see how to translate the
Hodge to De Rham spectral sequence in this context. Let M be a G-manifold, X the
quotient stack for this action, and F be a sheaf on X. By descent, global sections on X
are exactly G-equivariant sections on M , so we can think at equivariant cohomology
as the cohomology of X with coefficients in the sheaf of symmetric powers of the
shifted cotangent complex Sym•LX[−1]

H•G(M) ' H•(X, Sym•LX[−1])

With this viewpoint, proposition 2.3.2 below is a special case of theorem 2.4.1.

2.3.1 The cotangent complex of an action Lie groupoid

Let G be a Lie group. We remind that the tangent at any point of G is a Lie algebra
g, and that the tangent bundle of G is just TG = G×g (this is actually a semidirect
product).

The adjoint representation of G on g is defined as follows:

• We consider the conjugation map

Ψ : G → Aut(G)
g 7→ Ψg : x 7→ gxg−1

• We define Adg : g → g to be the differential of Ψg at the identity. This is a
Lie algebra automorphism, i.e. Adg ∈ Aut(g). We look at Aut(g) as a Lie
subgroup of Gl(g);

• This yields the morphism

Ad : G → Aut(g)
g 7→ Adg

which is a Lie group morphism, so it is a representation of G over g, called
the adjoint representation of G on g.

• If we take the dual morphisms Ad∗g = g∗ → g∗ we obtain the coadjoint
representation of G on g∗.

Let now M be a G-manifold, i.e. a manifold with an action G ×M → M . The
tangent bundle of the action Lie groupoid

G×M ⇒M
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is T (G×M) = M × g, and we have the differential of the action map

M × g→ TM

This is the tangent complex of the Lie groupoid G ×M ⇒ M , and we consider
it to be concentrated in (homological) degrees 0 and 1. By dualizing we obtain that
the cotangent complex is

LX = T ∗M →M × g∗

concentrated in degrees 0 and -1, so its symmetric powers are (see section 2.4)

Symn(LX[−1]) =
⊕

2k+i=n

ΛiT ∗M ⊗ Symk(g∗) =
⊕

2k+i=n

Ωi(M)⊗ Symk(g∗)

with differentials given by

α⊗ p(a1, . . . , ah) =

(
(a1, . . . , ah+1) 7→

h∑
i=0

ιρ(ai)αp(a1, . . . , ai−1, ai+1, . . . , ah)

)

where ιρ(ai)α ∈ Λk−1T ∗M is the contraction of the k-form α on M with ρ(ai), which
is a section of TM . The Lie group G acts by the adjoint representation on Sym•(g∗)
and by pullback on the differential forms on Ω•(M). It is easy to see that this action
commutes with the differential.

Definition 2.3.1. The G-equivariant cohomology groups of M are Hk
G(M) :=

hk(Ω•G(M)), where Ω•G(M) is the Cartan complex of G, defined by

Ωn
G(M) :=

⊕
2k+i=n

(Ωi(M)⊗ Symk(g∗))G

We can now state the well-known theorem relating the equivariant cohomology of a
G-manifold M to the De Rham cohomology of the quotient stack [M/G]:

Proposition 2.3.2 ([7], Prop. 13). If G is compact, there is a natural isomorphism

H i
G(M)→ H i

DR([M/G])

.

Proof. See [7], Lemma 12 and Proposition 13.

We want to informally motivate why this theorem is a special case of the Hodge to De
Rham spectral sequence. Let us consider again Sym•(LX[−1]): in the framework of
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[6], we can consider it as a complex of sheaves on Xbig, and the choice of a cofoliation
allows us to decompose Symn(LX[−1]) as (cf. [6] chapters 3 and 4)

Γ(X, Symn(LX[−1])) =
⊕

2k+i=n

Γ(X, T ∗M ⊗ Symk(g∗))

The global sections of any sheaf F on the stack X are the following homotopy colimit:

Γ(X,F) = hocolim(Γ(M,F)⇔ Γ(M ×G,F) . . . )
= hocolim(F(M)⇔ F(M ×G) . . . )

if G is compact, those global sections over X are the G-equivariant sections of F =
Symn(LX[−1]) on M⊕

2k+i=n

Γ(X, T ∗M ⊗ Symk(g∗))G =
⊕

2k+i=n

(Ωi(M)⊗ Symk(g∗))G

so we conclude that proposition 2.3.2 is a special instance of theorem 2.4.1.

Remark 2.3.3. The idea in the case of the action groupoid G×M ⇒M is that the
data of a complex of vector bundles on X (as sheaves over the big site of X) is just
a complex of vector bundles on the manifold M with a G-action on it (where the
differential is G-equivariant). Then global sections on X are just the G-equivariant
sections on M .

In the case of a general stack X := [M/G] the data of a complex of vector bundles
is more complicated, and it is given by a representation up to homotopy on the Lie
groupoid G⇒M . Actually, also in the case of a G-manifold the data in general will
not be so nice, but for the cotangent complex we have a simple and explicit model,
which is just two vector bundles over the base endowed with and action of G. In
the case of a general Lie groupoid, the cotangent complex can’t be described by a
2-terms complex of vector bundles with a strict action of G on it, and it is necessary
to introduce the notion of action up to homotopy and of representations up
to homotopy. We will do this in the next chapter.

2.4 Hodge to De Rham spectral sequence, first version

In this section we recall some result of [6], which we will re-state later in the frame-
work of representations up to homotopy.

For a smooth manifold, the Hodge to De Rham (or Bott) spectral sequence links the
Hodge cohomology groups, i.e. the cohomology groups Hq(M,Ωp(M)) of the vector
bundles Ωp(M) := ΛiT ∗M to the De Rham cohomology HDR(M) of M :

Ep,q1 = Hq(M,Ωp)⇒ Hp+q
DR (M)
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Theorem 2.4.1 ([6], Thm. 4.21). Let X be a differentiable stack. Any cofoliation
on X gives rise to a E1-spectral sequence:

Ep,q1 =
⊕

i+2k=p

Hq(X,ΛiΩ⊗ SkΓ)⇒ Hp+q
DR (X)

We saw in 2.1.2 that there is a spectral sequence

Ep,q1 = Hq(X, Sym•(LX[−1])p)⇒ Hp+q(X, Sym•(LX[−1]))

If the decomposition ⊕
i+2k=p

ΛiΩ⊗ SkΓ = Sym•LX[−1]p (2.1)

would make sense without the choice of a cofoliation, we would have that the hy-
percohomology of X with values in the symmetric powers of the shifted cotangent
complex is isomorphic to the De Rham cohomology of X:

Claim 2.4.2. Let X be a differentiable stack. Then there are isomorphisms

Hk(X, Sym•(LX [−1])) ' Hk
DR(X)

As we already recalled, the problem here is that the spectral sequence depends on
the choice of a cofoliation (cf. [6]), and that equation (2.1) does not make sense
without the machinery of cofoliations, which remains quite obscure to us. In the
next chapters we try to fill this gap with the language of representations up to
homotopy.



Chapter 3

Representations up to homotopy

Representations up to homotopy first appeared in [4] as a solution to the existence
of an adjoint representation for a Lie groupoid G⇒M . They are defined as differ-
entials on the graded algebra of sections C(G;E)•, or equivalently as a sequence of
tensors encoding an action ”up to homotopy”.

In this chapter we first define vector bundles over stack and usual representations
of groupoids and explain why representations up to homotopy are generalization
of those two objects. Then we point out that representations up to homotopy are
exactly cohesive modules over the dg-algebra of smooth functions C•(G) (cf.[10])
which are builted up from a finitely generated and projective graded module over
C∞(M), i.e. a graded vector bundle over the base manifold M . This new point
of view, which we did not find in the literature, allows us to prove the Morita
invariance of the dg-category Rep∞. We apply this result to define the ∞-category
of perfect complexes over a stack X as the dg-category Rep∞(G) of representations
up to homotopy of any Lie groupoid G⇒M presenting X.

3.1 Vector bundles over stacks

We saw that stacks are generalizations of quotients of the action of a Lie group over
a manifold. It is well known that the fibers of the tangent bundle of a Lie group G
have a Lie algebra structure, and that if M is a G-manifold, there is a natural action
of the Lie algebra g over TM induced by differentiation. In the next chapters we
will study the algebraic structures appearing when differentiating groupoid actions,
so we will need to know what is the infinitesimal structure of a differentiable stack.

For those purposes we will need the notion of vector bundle and of perfect complex
over a stack. We have a good definition for the first in terms of sheaves over the big
site of X and for the second we will need representations up to homotopy.

60
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In section 2.2.1, we saw that a vector bundle over a stack X is a sheaf on the big
site Xbig such that the pullbacks on an atlas are compatible vector bundles.

Let F be a vector bundle over X. We want to prove that the ”descent datum” of
a vector bundle over X is an X1-equivariant vector bundle, i.e. a vector bundle F0

over X0, an isomorphism of vector bundles over X1, ρ : s∗F0 → t∗F0 such that
π∗2ρ ◦ π∗1ρ = m∗ρ, where π1, π2,m : X1 ×X0 X1 → X1 are respectively the projection
over the first, the second component and the composition.

Proposition 3.1.1. There is a 1-1 correspondence between vector bundles over X
and X1-equivariant vector bundles over X0.

Proof. Let F be a vector bundle over X, and Fn be the pullback on Xn, which, by
hypothesis, is a vector bundle. By definition there are linear isomorphisms

s∗F0
// F1 t∗F0
oo

By composition we obtain an isomorphism ρ : s∗F0 → t∗F0. Using the equalities
s ◦ π1 = s ◦m
t ◦m = t ◦ π2

t ◦ π1 = s ◦ π2

we have the following diagram

π∗1s
∗F0

π∗1ρ

��

m∗s∗F0

m∗ρ

%%
π∗1t
∗F0 m∗t∗F0

π∗2s
∗F0

π∗2ρ // π∗2t
∗F0

Since there are no higher homotopies, the diagram must commute on the nose, which
means exactly that π∗2ρ ◦ π∗1ρ = m∗ρ.
Conversely let (F0, ψ) be a X1-equivariant vector bundle over X0. We should prove
that there are compatible morphisms between the various pullbacks Fn on Xn. By
truncation arguments we only need to prove it for n ≤ 2. Then it is easy too see that
the required conditions are necessary and sufficient for {Fn} to be a vector bundle
over X.

Example 3.1.2. In the case of the quotient stack X = [M/M × G] of a Lie group
action on a manifold G y M , a vector bundle over X is just a vector bundle over
M endowed with an action of G.
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A third important characterization of vector bundle over stacks is given in terms of
representable morphisms of stacks. Let F be a vector bundle over X. It is easy to
see that F1 ⇒ F0 is a Lie groupoid (in particular a VB-groupoid over X1 ⇒ X0, cf.
[16]), then the quotient F := [F0/F1] is a differentiable stack and the Lie groupoid
morphism F• → X• induces a morphism of stacks F→ X.

Proposition 3.1.3. Any vector bundle F over X give rise to a morphism of stacks
F→ X such that:

1. the morphism is representable;

2. for every manifold U and smooth map f : M → X the pullback U ×X F → U
is endowed with the structure of a vector bundle;

3. For any g : V → U morphism of smooth manifold, the natural morphism

(f ◦ g)∗F → g∗(f∗F)

is a vector bundle isomorphism.

Example 3.1.4. LetM be a manifold, and
∐
I×I Ui,j ⇒

∐
I Ui be the Čech groupoid

of a trivializing cover {Ui} of M . A rank n vector bundle over M can be described
by the gluing morphisms between the trivializations over the various Ui. This is the
data, for each (i, j) ∈ I × I, of a morphism αi,j : Ui,j → GLn satisfying a cocycle
condition:

∀i, j, k αi,i = id, αi,j ◦ αj,i = id, αi,j ◦ αj,k = αi,k

If we think at GLn as a Lie groupoid over the point GLn ⇒ ∗, it is easy to see that
those cocycle conditions are exactly the Lie groupoid morphisms from

∐
I×I Ui,j ⇒∐

I Ui to GLn ⇒ ∗.

Proposition 3.1.5. The stack BGLn = [∗/GLn] represents vector bundles of rank
n, i.e. for any manifold M , BGLn(M) is the groupoid of rank n vector bundles over
M .

Proof. By the Yoneda lemma (see 1.7.8),

BGLn(M) = HomSt(M,BGLn).

Moreover the morphisms between two differentiable stack are just Morita morphisms
between some Lie groupoids presenting them.
Now, the manifold M is itself a trivial Lie groupoid M ⇒ M with all structural
morphisms being the identity, and GLn ⇒ ∗ is a Lie groupoid presenting BGLn.
Clearly it is not true that morphisms from M ⇒ M to GLn ⇒ ∗ encode all vector
bundles over M , but considering Morita morphisms from M ⇒ M to GLn ⇒ ∗
means that we can choose a covering of M and taking morphisms from the Čech
groupoid of the cover to GLn ⇒ ∗, which gives exactly vector bundles over M , as
we just saw in example 3.1.4.
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Then the category of rank n vector bundles over any differentiable stack X can be
defined as morphisms from X to BGLn:

Proposition 3.1.6. The category of rank n vector bundles over a stack X is equiv-
alent to the category of morphisms HomSt(X, BGLn).

Corollary 3.1.7. Let G ⇒ M be a Lie groupoid presenting X. Then the category
of rank n vector bundles over X is equivalent to the category of Morita morphisms
from G⇒M to GLn ⇒ ∗.

3.2 Representations of groupoids

In the previuos section, we saw what a vector bundle over a differentiable stack is,
and we have been able to translate it into a descent data on the Lie groupoid of
an atlas. We ask now what should be a complex of vector bundles over a differ-
entiable stack. In the algebraic context this corresponds to the category of perfect
complexes. Those are defined essentially by descent: first, for any affine scheme R
one defines an ∞-category of quasi-coherent complexes QC(R), whose homotopy
category Ho(QC(R)) is the usual derived category DQCoh(R) of perfect complexes
on R. Then one shows that the functor

QC : Aff → ∞− Cat
R 7→ QC(R)

can be extended to an ∞-functor on the whole category of stacks

Aff //
� _

��

∞− Cat

St(Aff)

88

So for any stack X ∈ St(Aff) there is an ∞-category of quasi-coherent complexes
over it. The ∞-category of perfect complexes on X is roughly speaking the full
∞-subcategory of QC(X) whose objects are locally quasi-isomorphic to a complex
of vector bundles.
For our purposes we do not need to understand the whole ∞-category of perfect
complexes on a differentiable stack (for this we would need to show the descent in
the differentiable context), but we will try to understand the simpler case of a dif-
ferentiable 1-stack, i.e. the quotient of a Lie groupoid.

Let X = [X0/X1] be such a differentiable stack. A perfect complex on X turns
out to be a complex of vector bundles on X0 endowed with a representation up to
homotopy of the groupoid X1 ⇒ X0. This is a natural generalization of the fact
that the descent datum of a vector bundle on X is a X1-equivariant vector bundle
over X0.
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Example 3.2.1. Let us now describe this idea in detail for the simpler case of
BG = [∗/G], and the resolution Xn = Gn with the usual simplicial structure.
We saw the descent datum of a vector bundles F on X are vector bundles Fn over Xn

with some compatibilities, given by the structure morphisms. Let V • the pullback
(or restriction) of F• to X0 = ∗. In this case V • is just a complex of vector spaces.
As we saw in the proof of proposition 3.1.1, the compatibilities of F•0 and F•1 reduce
to an isomorphism s∗F•0 → t∗F•0 .
However, we know that for complexes the condition of being isomorphic is too strict,
and quasi-isomorphims behave better in this context. So we only ask for a morphism
of complexes of vector bundles which is a quasi-isomorphism on each fiber. In
our example the source and target maps are equal and send G to the point ∗, so
s∗V • = t∗V • = V • × G is a complex of trivial vector bundles over G. Then a
quasi-isomorphism ρ : V •×G→ V •×G is just, for any g ∈ G, a quasi-isomorphism
ρg : V • → V •.
In the case of a vector bundle, we saw in proposition 3.1.1 that the second level
of coherence gives the equation: π∗2ρ ◦ π∗1ρ = m∗ρ. In our example we have the
following diagram of morphism of complexes

V • ×G2
π∗1ρ //

m∗ρ

11V • ×G2
π∗2ρ // V • ×G2

i.e., for any g, h ∈ G
V •

ρg //
ρgh

22V •
ρh // V •

Once again, it is not natural to ask for an equality of morphisms of chain complexes,
and we ask for a chain homotopy

γ : π∗2ρ ◦ π∗1ρ⇒ m∗ρ

i.e. for any g, h ∈ G a chain homotopy

γg,h : ρh ◦ ρg ⇒ ρgh

One can imagine the following steps: for any g, h, l ∈ G there is a tetrahedron whose
faces are the chain homotopies

ρgρhρl
γg,h◦idl⇒ ρghρl

γgh,l⇒ ρghl

ρgρhρl
idg◦γh,l⇒ ρgρhl

γg,hl⇒ ρghl

and instead of asking for those two chain homotopies to be equal, we will ask for a
2-homotopy between them and so on...

We will see in the next section that representations up to homotopy precisely encode
this huge structure of higher homotopies and coherences, and we will study in detail
the case of a two terms chain complex in chapter 4.
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3.2.1 The general linear groupoid

Given G ⇒ M a Lie groupoid and E → M a vector bundle, a representation
Gy E can be defined as a map ρ : G×M E → E, ρ(x

g→ y, e) = ρg(e), such that

• ρg : Ex → Ey is linear,

• ρid = id

• ρhρg = ρhg.

A pseudo-representation is a sort of non-associative action, it is defined anal-
ogously but just requiring (i) and (ii). We also call it a quasi-action of G on
E.

Example 3.2.2. If G ⇒ ∗ is a Lie group, viewed as a Lie groupoid with a sin-
gle object, then its representations are the usual representations of Lie groups. If
M ⇒ M is a manifold, viewed as a Lie groupoid with only identity arrows, then
its representations are the vector bundles over M . More generally, if G ×M ⇒ M
is the groupoid arising from a Lie group action G y M , then a representation
(G×M) y E is the same as an equivariant vector bundle.

Example 3.2.3. Given M a manifold, a representation Pair(M) y E of its pair
groupoid is the same as a trivialization of E. Given a surjective submersion q : M →
N , a representation M ×NM y E of the submersion groupoid (cf. [21]) is the same
as an isomorphism E ∼= q∗E′ with a pullback vector bundle. This can be further
generalized to a foliation F ⊂ TM , which yields a holonomy groupoid Hol(F )⇒M ,
whose representations are the same as foliated bundles.

Example 3.2.4. Let RP 2 denote the real projective plane, and let E → RP 2 be
its tautological line bundle. Since it is not trivial there cannot be a representation
of the pair groupoid Pair(RP 2) y E. Still, we can define a pseudo-representation
Pair(RP 2) y E, by defining for instance ρ(`′,`)(v) as the orthogonal projection of
v ∈ ` over `′.

Let the General Linear Groupoid (see eg. [21]) be defined as

GL(E) := {(x, y, φ) | x, y ∈M, φ : Ex → Ey}

It is easy to check that with the obvious source and target maps and the natural
smooth structure there is a Lie groupoid structure on GL(E)⇒M .

By means of the exponential law, a Lie groupoid representation can be described as
a Lie groupoid morphism into the General Linear Groupoid

ρ# : (G⇒M)→ (GL(E)⇒M) ρ#(g) = ρg
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In the case of a pseudo-representation we still have a smooth map G → GL(E)
between the arrow spaces, compatible with source and target but that may fail to
preserve the multiplication. This viewpoint allow ones to treat representations as
Lie groupoid morphisms

G //

�� ��

GL(E)

�� ��
M

id //M

and it is specially useful when dealing with differentiation and integration.

Remark 3.2.5. As we just saw, if we simply ask for the square(s) in the diagram
above to commute, we obtain a pseudo-representation, which has no reason to
commute with the composition. However a morphism of simplicial manifolds be-
tween the nerves G• and GL(E)• gives always a Lie groupoid morphism on the
truncation. Consider the following diagram:

G(3) //

��������

GL(E)(3)

��������
G(2) //

���� ��

GL(E)(2)

���� ��
G //

����

GL(E)

����
M

id
//M

(3.1)

Then:

• The commutativity of the lower squares, as already said, gives a quasi-action
of G over E.

• The commutativity of the central squares means that this quasi-action com-
mutes with composition.

• The commutativity of the top squares is automatic, and is given by the fact
that the composition is associative for any Lie groupoid.

In the next chapter we will construct the general linear 2-groupoid, which is not a
Lie groupoid anymore, and in that case the commutativity of the top squares will
be an additional data, i.e. an homotopy between different ways of composing 3
composable morphisms.
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3.3 Cohesive modules over dg-algebras

In this section we recall the definitions of dg-algebra, dg-module, cohesive module
and of the dg-category PA of cohesive modules over a dg-algebra A.

3.3.1 The category of graded objects

Let C be a semi-simple Grothendieck category (cf. [41]) endowed with a monoidal
structure (for example the category of K-vector spaces). We can form the monoidal
category of graded objects in C, denoted Gr(C). Objects are sequences (Mp)p∈Z,
morphisms are the graded vector spaces

HomGr(C)(M,L)r :=
∏
p

HomC(Mp, Lp+r), for r ∈ Z

The tensor product of two graded objects is given by

(M ⊗ L)n :=
⊕
p+q=n

Mp ⊗ Lq

The tensor product of two morphisms f : M →M ′ and g : L→ L′ of degrees r and
s respectively is a morphism of degree r + s such that the n-th component is given
by

(−1)psfp ⊗ gq : Mp ⊗ Lq →M ′p+r ⊗ L′q+s, p+ q = n (3.2)

3.3.2 Dg-algebras, dg-modules and dg-categories

Definition 3.3.1. A differential graded (or dg-) algebra is a graded object A•, with
a degree 1 map d : A• → A•, and a degree 0 map m : A• ⊗A• → A• such that:

1. (A•,m) is a graded algebra;

2. d ◦ d = 0, i.e. d is a differential for A•;

3. It satisfies the ”graded Leibniz rule”

d(m(a⊗ b)) = m(da⊗ b) + (−1)deg am(a⊗ db).

where deg(a) is the degree of a.

Example 3.3.2 (The dg-algebra of a Lie algebroid). Let ρ : A → TM be a Lie
algebroid on a smooth manifold M . By definition Γ(A) is endowed with a Lie
algebra bracket [·, ·] such that for any f ∈ C∞(M), x, y ∈ Γ(A) we have

[x, fy] = f [x, y] + (ρ(x)f)y
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The dg-algebra of A-differential forms is the graded vector bundle Ω•(A) :=
Γ(Λ•A∗) endowed with the usual exterior product ∧ and the differential d : Ω•(A)→
Ω•+1(A) defined by

dη(x1, . . . , xk) :=
∑
i

(−1)i+1ρ(xi)(η(x1, . . . , x̂i, . . . xk))

+
∑
i<j

(−1)i+jη([xi, xj ], . . . , x̂i, . . . , x̂j . . . , xk)

Definition 3.3.3. A right dg-module M• over a dg-algebra (A•,mA, dA) is a graded
object endowed with a differential dM and a morphism of graded objects

· : M• ⊗A• →M•

which is a graded right action of A• on M• and which respects the graded Leibniz
rule

dM (x · a) = dM (x) · a+ (−1)deg ax · dA(a).

Definition 3.3.4. A differential graded category (or dg-category) is a category
enriched over complexes of vector spaces.

Explicitly, a dg-category is a category C such that for any two objects x and y, the
morphisms between them form a complex of vector spaces (C(x, y)•, d). Moreover,
for any three objects x, y and z the composition is a morphisms of complexes

C(x, y)• ⊗ C(y, z)• → C(x, z)•

which satisfies some properties of associativity and unit.

Definition 3.3.5. A dg-functor F : C → D between dg-categories is a functor
such that the maps

C(x, y)• → D(Fx, Fy)•

are maps of complexes. It is called a quasi-equivalence if the maps above are all
quasi-isomorphisms and the induced map between the homotopy categories

HoF : Ho C → HoD

is an equivalence of categories.

The purpose of this chapter is to see that representations up to homotopy are special
kinds of dg-modules over the dg-algebra C•(G), called cohesive modules, and to
study some properties of their dg-category.
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3.3.3 The dg-category PA
Let A = ((A•, d),m) be a dg-algebra and M• a graded right module over the k-
algebra A0.

Definition 3.3.6. A Z-connection D is a k-linear map

D : M• ⊗A0 A• →M• ⊗A0 A•

of total degree one, satisfying the graded Leibiniz rule.

We denote by P•A(M,N ) the complex of morphisms of A-dg-modules between M
and N .

Remark 3.3.7. By definition, a Z-graded connection D is determined by its value
on M•, so we also note by D the restriction

D : M• →M• ⊗A0 A•.

For each k ≥ 0 we have a component

Dk : M• →M•−k+1 ⊗A0 Ak

so we obtain the decomposition D = D0 +D1 +D2 + . . . , where D1 is a connection
in the usual sense and Di is A0-linear for all i 6= 1.

Definition 3.3.8 ([10], def. 2.3.2). For a dg-algebra A = ((A•, d),m) we define the
dg-category PA:

1. An object M = (M•, DM ) in PA, which we call a cohesive module is a
bounded graded right module M• over A, which is finitely generated and
projective, together with a Z-connection

DM : M• ⊗A0 A• →M• ⊗A0 A•

such that D2
M = 0.

2. The degree k morphisms HomPA(M,N )k between two cohesive modulesM =
(M•, DM ) and N = (N•, DN ) are the morphisms

φ : M• ⊗A0 A• → N• ⊗A0 A•

of degree k such that ∀a ∈ A•, φ(ea) = φ(e)a.

The differential on HomPA(M,N )• is defined in the standard way

δ(φ)(m) = DN (φ(m))− (−1)deg φφ(DM(m))

and satisfy δ2 = 0. Again, since φ is determined by its restriction to M•, we have
φ = φ0 + φ1 + φ2 + . . . with

φj : M• → N•+k−j ⊗A0 Aj

Proposition 3.3.9 (cf. [10] Prop 2.3.3). For A = ((A•, d),m) a dg-algebra, PA is
a dg-category.
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3.3.4 The dg-algebra of smooth functions C•(G)

Let G ⇒ M be a Lie groupoid and G• be its nerve. We apply the C∞-functor to
obtain the cosimplicial vector space C∞(G•). We denote by:

• d∗i the coface maps
d∗i : C∞(G(n))→ C∞(G(n+1))

induced by di : G(n+1) → G(n);

• s∗i the codegeneracy maps

s∗i : C∞(G(n))→ C∞(G(n+1))

induced by si : G(n) → G(n+1) (see section 1.6.1).

We can think at C∞(G•) as a graded abelian group by forgetting the cosimplicial
structure. We endow it with a graded multiplication

(f · h)(g1, . . . gk+p) = (−1)kpf(g1, . . . , gk)h(gk+1, . . . , gk+p)

for f ∈ Ck(G), h ∈ Cp(G), which makes it a graded algebra. The cosimplicial
differential dcs :=

∑
(−1)id∗i makes (C•(G), ·, dcs) a dg-algebra, which we will note

simply C•(G). We call it the dg-algebra of smooth functions on G.

We can alternatively consider the normalized dg-algebra Č•(G), which appears in
the Dold-Kan correspondence. The Dold-Kan correspondence (see Appendix A.2)
establish an equivalence between the category of cosimplicial abelian groups (resp.
cosimplicial rings) and the category of positively graded cochain complexes (resp.
dg-rings). The equivalence sends C∞(G•) to Č•(G), defined by

Čn(G) := C∞(G(n))/
n∑
i=1

∂iC∞(G(n−1)) '
n−1⋂
i=0

ker(µi)

with differential the remaining 0-th face map d∗0. Again, (Č•(G), ·, ∂0) is a dg-algebra.
Those two dg-algebras are equivalent:

Theorem 3.3.10 ([28], chapter II). The inclusion Č•(G) ↪→ C•(G) is a quasi-
isomorphism.

Definition 3.3.11. We define the differentiable cohomology of a Lie groupoid
G⇒M as the cohomology of the complex C•(G).

Proposition 3.3.12 (Morita invariance of differentiable cohomology). A Morita
equivalence between groupoids G ⇒ M and H ⇒ N induce a quasi-isomorphism
between the dg-algebras C•(G) and C•(H), so the differentiable cohomology is a
Morita invariant for Lie groupoids.
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Note that the invariance for differentiable cohomology is specific to the differentiable
setting, because it is based on the existence of partitions of unity and Mayer-Vietoris
arguments (see for example [18] lemma 1, p.7).

Proof. Let X = [M/G] = [N/H] be the quotient stack. By definition, the usual
cohomology of the dg-algebras C•(G) and C•(H) calculate the Čech cohomology
Ȟ∗(X; C∞) which, by proposition 2.2.2, is well defined. We conclude that C•(G) and
C•(H) have the same cohomology, i.e. they are quasi-isomorphic dg-algebras.

3.4 Representations up to homotopy

In this section we briefly recall the classical definitions of representations up to
homotopy of [4]. Then we show that they are exactly cohesive modules over the
dg-algebra C•(G). We define the dg-category of representations up to homotopy on
a Lie groupoid G⇒M as PC•(G) and we prove that they are Morita invariant.

In 3.2 we defined a representation of a groupoid in terms of the general linear
groupoid of a vector bundle. We now give an algebraic definition of a represen-
tation, which is easier to generalize to the case of representations up to homotopy.

We saw in example 3.3.4 that (C•(G), ·, dcs) is a dg-algebra. Given a vector bundle
E over M we form the graded vector space C•(G;E), whose degree k part is

Ck(G;E) := Γ(G(k), t∗E)

with t(g1, . . . , gk) = t(gk), which is naturally a (right) C•(G)-graded module: given
η ∈ Ck(G,E), f ∈ Ck′(G), the product η · f ∈ Ck+k′(G;E) is defined by

(η · f)(g1, . . . , gk+k′) := (−1)kk
′
η(g1, . . . , gk)f(gk+1, . . . , gk+k′)

Then a quasi-action λ of G on E induces a degree one operator

Dλ : C•(G;E)→ C•+1(G;E)

Dλ(η)(g1, . . . , gk+1) = (−1)k{λg1η(g2, . . . , gk+1) +
k+1∑
i=1

(−1)iη(dk(g1, . . . , gk+1))}

The normalized subspace Č•(G;E) of C•(G;E) consists of those η such that s∗i (η) =
0 for all i.

Lemma 3.4.1 ([4], Lemma 2.6). The construction λ→ Dλ induces a 1-1 correspon-
dence between quasi-actions λ of G on E and degree 1 operators Dλ on the graded
C•(G)-module C•(G;E) satisfying the graded Leibniz rule.

Moreover:
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1. λ is unital if and only if Dλ preserves the normalized subspace Č•(G;E).

2. λ is an action if and only if it is unital and D2
λ = 0 (i.e. iff (C•(G;E), Dλ) is

a right dg-module over C•(G)).

The lemma says that actions of G on E correspond to dg-module structures on
C•(G;E). We do exactly the same thing on graded vector bundles.
Let E =

⊕
k1≤i≤k2 Ei be a bounded graded vector bundle over M . The space of

E-valued cochains on G will be considered with total grading

C(G;E)n :=
⊕
k+l=n

Ck(G;El)

We say that η ∈ Ck(G;El) has bidegree (k, l). Clearly C(G;E)• is a right graded
C•(G)-module, and the additional graduation is preserved by the action of C•(G).

Definition 3.4.2 ([4] Definition 3.1). A representation up to homotopy of G⇒M
on a graded vector bundle E over M is a linear operator, called the structure
operator which raises the total degree by one

D : C(G;E)• → C(G;E)•+1

satisfying D2 = 0 and the Leibniz identity

D(η · f) = D(η) · f + (−1)kη · d(f)

for any η ∈ C(G;E)k and f ∈ C•(G).

3.5 Ruth as cohesive modules over C•(G)

In this section we show that representations up to homotopy of a Lie groupoid
G⇒M are exactly cohesive modules over the dg-algebra C•(G) (Thm. 3.5.4).

The global sections Γ(E) of a vector bundle E → M , are a finitely generated and
projective C∞(M)-module. We use the following proposition to give a useful inter-
pretation of the dg-module C(G;E)•

Proposition 3.5.1. Let E → M and F → N be finite dimensional vector bundles
over M and N respectively, φ : N →M and

F

��

ψ // E

��
N

φ //M

a morphism of vector bundles which is an isomorphism on fibers. Then there is a
canonical isomorphism of C∞(N)-modules

Γ(E)⊗C∞(M) C∞(N)→ Γ(F )
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Proof. We give the construction of the map, and we refer to [30] for the complete
proof:

• We put a C∞(M)-module structure on C∞(N) with multiplication

C∞(M)⊗ C∞(N) → C∞(N)
f ⊗ g 7→ (f ◦ φ) · g

• The tensor product of C∞(M)-modules Γ(E) ⊗C∞(M) C∞(N) has a natural
structure of right C∞(N)-module with multiplication (σ⊗ g) · g′ := σ⊗ gg′ for
all σ ∈ Γ(E), g, g′ ∈ C∞(N);

• There is a natural map of C∞(N)-modules

Γ(E)⊗C∞(M) C∞(N) → Γ(F )

g ⊗ σ 7→ σ̃

where σ̃(n) = ψ−1(σ(φ(n))).

It is easy to see that this map is an isomorphism.

Corollary 3.5.2. The graded module C(G;E)• (resp. Č(G;E)•) is isomorphic to
the graded module Γ(E)⊗C∞(m) C

•(G) (resp. Γ(E)⊗C∞(m) Č
•(G)).

Proof. By proposition 3.5.1 there are natural isomorphisms

Γ(E)⊗C∞(M) C∞(G(k))→ Γ(G(k), t∗E) = C(G;E)k

It is easy to see that this isomorphism can be restricted to normalized subspaces

Γ(E)⊗C∞(M) Č
k(G)→ Č(G;E)k.

Now, one can pass from vector bundles over M to finitely generated and projective
modules over C∞(M) by means of the global section funtor Γ. The smooth Serre-
Swan theorem states that this is actually an equivalence for connected manifolds:

Theorem 3.5.3 (Smooth Serre-Swan theorem, cf. [47]). Let M be a connected
smooth manifold, FinV ect(M) the category of finite dimensional vector bundles
over M and FinMod(M) be the category of finitely generated and projective mod-
ules over the algebra C∞(M). Then the global section functor Γ : FinV ect(M) →
FinMod(M) sending a vector bundle E to the C∞(M)-module of sections Γ(E) is
an equivalence of categories.

We can finally characterize representations up to homotopy of a Lie groupoidG⇒M
as cohesive modules over the dg-algebra C•(G).
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Theorem 3.5.4. Representations up to homotopy of a Lie groupoid G ⇒ M are
exactly cohesive modules over the dg-algebra C•(G).

Proof. Using theorem 3.5.3 and corollary 3.5.2 we know that there is an equivalence
between the category of graded modules on C∞(M) which are finitely generated and
projective and that of graded C•(G)-modules of the form C(G;E)• for some vector
bundle E on M . By this correspondence, Z-graded connections on C•(G)-modules
correspond exactly to representation up to homotopy structures on C(G;E)•.

We can now give a clear definition of the dg-category of representations up to ho-
motopy on a given Lie groupoid G⇒M :

Definition 3.5.5. The dg-category of representations up to homotopy on a Lie
groupoid G⇒M is Rep∞(G) := PC•(G).

Note that definition 3.3.8 gives an explicit description of k-morphisms between rep-
resentations up to homotopy.

From now on, we denote by M = (M•, D) a cohesive module over C∞(M) and by
E = (E•, D) a representation up to homotopy in the usual sense.

We would like to have a simple statement saying that the assignementG 7→ Rep∞(G),
sending a Lie groupoid to the dg-category of representations up to homotopy on it,
is well defined on stacks, i.e. it ”pass to the quotient by Morita morphisms”. If we
could prove that there is an ∞-functor from dg-algebras to dg-categories

dgA → dgCat
A 7→ PA

the proposition 3.3.12 would immediately lead the result. Unfortunately such a
∞-functor does not exist: one can find quasi-isomorphic dg-algebras with non-
equivalent associated dg-categories of cohesive modules (cf. [11]).

However, we will see that the statement is true for algebras of smooth functions
of Morita equivalent Lie groupoids. Cohesive modules on the dg-algebra C•(G) of
smooth functions of a Lie groupoid G ⇒ M are, roughly speaking, vector bundles
over M , endowed with an action of C•(G) on the sections. The idea now is that
Morita morphisms are very simple in the differentiable setting: they can just be
described by surjective submersions P →M on the base manifolds. A vector bundle
on M can be pulled back to a vector bundle on P and consequently the action of the
dg-algebra, giving a dg-functor PC•(G) → PC•(P ). The point is that this functor has
an explicit quasi-inverse PC•(P ) → PC•(G) thanks to the existence of local sections
for P →M and a partition of the unity on M .

We will study in detail this equivalence in section 3.8.
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3.6 The tensors Di

We can now give an important geometric interpretation of the tensors

Dk : M• →M•−k+1 ⊗C∞(M) C
k(G)

of remark 3.3.7.

Proposition 3.6.1. Let N• = Γ(E•) be the graded module of sections of a graded
vector bundle E• → M . Let End•(E•) → M be the graded vector space of linear
endomorphisms of E•. Then there are isomorphisms

HomC∞(M)(N
•, N•−k+1 ⊗C∞(M) C

k(G)) ' Ck(G; End1−k(E•))

for all k ≥ 0.

Proof. It is well known that for modules A and B on the algebra R

Hom(A,B) ' A∗ ⊗R B

We apply this to the left hand side to obtain

HomC∞(M)(N
•, N•−k+1 ⊗C∞(M) C

k(G)) ' (N•)∗ ⊗C∞(M) (N•−k+1 ⊗C∞(M) C
k(G))

' HomC∞(M)(N
•, N•−k+1)⊗C∞(M) C

k(G)

fully faithfullness in Serre-Swan ' End1−k(E•)⊗C∞(M) C
k(G)

prop. 3.5.1 ' Ck(G; End1−k(E•))

Corollary 3.6.2 ([4], Proposition 3.2). There is a bijective correspondence between
representations up to homotopy of G on the graded vector bundle E• and sequences
{Dk}k≥0 of elements Dk ∈ Ck(G; End1−k(E•)) which, for all k ≥ 0, satisfy:

k−1∑
j=1

(−1)jDk−1(g1, . . . , gjgj+1, . . . , gk) =
k∑
j=0

(−1)jDj(g1, . . . , gj) ◦Dk−j(gj+1, . . . , gk)

(3.3)
The same idea idea can be applied to morphisms φ : E → F , which turn out
to be sequences {φk}k≥0 of elements φk ∈ Ck(G; Hom−k(E•, F •)) satisfying some
coherences.

Remark 3.6.3. In the theorem:

1. D0 : E• → E•+1 is a differential ∂ on the graded vector bundle E•;

2. D1 : E• → E• is our quasi-action ρg of G on E•, and equation (3.3) says that
it is a chain map ρ∂ = ∂ρ;
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3. D2 : E• → E•−1 is an homotopy γg,h, and equation (3.3) says that

ρg ◦ ρh − ρgh = ∂ ◦ γg,h + γg,h∂

We will see this point of view more in detail in chapter 3.

Example 3.6.4 (Vector bundles over stacks). We saw in section 3.1 that a vector
bundle on a stack X is the same as an X1-equivariant vector bundle on X0. In
the framework of representations up to homotopy we can intepret a graded vector
bundle E• on X as a representation up to homotopy on (E•, D) of X1 ⇒ X0 such
that D = D1, i.e. there is no differential nor higher homotopies, and the action of
X1 on E• is just D1.

3.7 Homotopy theory of representations up to homo-
topy

In this section we define the cohomology of representations up to homotopy and we
prove the Morita invariance of the dg-category of representations up to homotopy
Rep∞. We conclude by giving a definition of the dg-category of perfect complexes
over a differentiable 1-stack X.

Definition 3.7.1. The differentiable cohomology of a representation up to homo-
topy M = (M•, D) is the cohomology of the complex (M•, D).

Note that if G⇒M is a Lie groupoid, and E →M is the trivial line bundle on M ,
then C(G;E)• is isomorphic to C•(G) as C•(G)-dg-modules. Then the differentiable
cohomology of E is just the differentiable cohomology of the Lie groupoid G⇒M .

Definition 3.7.2. A degree 0 morphism φ in Rep∞(G) is called homotopy equiv-
alence if it induces an isomorphism in the homotopy category Ho(Rep∞(G)).

Proposition 3.7.3 (cf. [10], Prop.2.5.2). A closed morphism φ ∈ Rep∞0 (E ,F) is
an homotopy equivalence if and only if φ0 : E• → F • (see definition 3.3.8) is a
quasi-isomorphism of complexes of vector bundles.

Corollary 3.7.4. Let φ : E → F be a morphism of representations up to homotopy
such that φ0 : E• → F • is a quasi -isomorphism of vector bundles. Then E and F
have isomorphic differentiable cohomology.

3.8 Morita invariance of Rep∞(G)

In this section we prove that Morita equivalent groupoids have quasi-equivalent dg-
categories of representations up to homotopy. For this we take a Morita morphism
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of Lie groupoids H → G and we show that it induces naturally two dg-functors
Rep∞(H)� Rep∞(G), such that the compositions are equivalences of dg-categories.

First, recall from example 1.7.2 that a Morita morphism of Lie groupoid with target
G ⇒ M is just the data of a submersion φ : P → M , and let P̃ be the pullback
groupoid P̃• := φ∗(G•). Let PM := P ×M P ⇒ P be the Lie groupoid associated to
the submersion P →M (see example 1.5.2).

Lemma 3.8.1. There is a quasi-isomorphim of dg-algebras

C•(P̃ )→ C•(PM )⊗C∞(M) C
•(G)

where the differentials are respectively dP̃ and dPM ⊗ 1 + 1⊗ dG.

Proof. We just remark that by proposition 3.3.12 the Lie groupoid morphisms P̃ →
G and PM → [M ] induce quasi-isomorphisms of dg-algebras C•(G) → C•(P̃ ) and
C•(PM )→ C•([M ]), and by construction C•([M ]) ' C∞(M) .

This allows us to construct two dg-functors associated to this Morita morphism:

1. A representation up to homotopy of G is a cohesive module on C•(G), i.e. a
graded vector bundle E →M and a degree 1 differential dE on C•(G)⊗C∞(M)

Γ(E) satisfying the Leibniz rule. We send it to

C•(PM )⊗C∞(M) C
•(G)⊗C∞(M) Γ(E)

which, by lemma 3.8.1 is quasi-isomorphic to C•(P̃ ) ⊗C∞(M) Γ(E), with dif-
ferential dPM ⊗ 1 + 1⊗ dE . This is clearly a representation up to homotopy of
P̃ . We denote by φ∗ : Rep∞(G)→ Rep∞(P̃ ) the corresponding dg-functor.

2. A representation up to homotopy on P̃ is a graded vector bundle F → P and
a degree 1 differential dF on satisfying the Leibniz rule. By lemma 3.8.1 we
have a quasi isomorphisms

C•(P̃ )⊗C∞(P ) Γ(F ) ' C•(G)⊗C∞(M)

(
C•(PM )⊗C∞(P ) Γ(F )

)
(3.4)

Since C•(PM ) is quasi-isomorphic to C∞(M), (3.4) is quasi-isomorphic, as a
C•(G)-dg-module, to C•(G)⊗C∞(P ) Γ(F ), with differential dF . This last is a
cohesive module on C•(G). We denote by φ∗ the corresponding dg-functor

φ∗ : Rep∞(P̃ ) → Rep∞(G)

C•(P̃ )⊗C∞(P ) Γ(F ) 7→ C•(G)⊗C∞(P ) Γ(F ).

Proposition 3.8.2. The dg-functors φ∗ and φ∗ are quasi-inverse to one another,
and preserve differentiable cohomology.
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Proof. We need to prove that

φ∗ ◦ φ∗ ' idRep∞(G) and φ∗ ◦ φ∗ ' idRep∞(P̃ ).

Let (E, dE) ∈ Rep∞(G). Then φ∗ ◦ φ∗(E, dE) is the graded C•(G)-module

C•(G)⊗C∞(M)

(
C•(PM )⊗C∞(M) Γ(E)

)
endowed with the differential dPM ⊗ 1 + 1 ⊗ dE . Since (C•(PM ), dPM ) is quasi-
isomorphic to C∞(M), then φ∗ ◦ φ∗(E, dE) is quasi-isomorphic to (C•(G) ⊗C∞(M)

Γ(E), dE) = (E, dE). We conclude that φ∗ ◦ φ∗ is equivalent to idRep∞(G).

For the other composition, let (F, dF ) be a C•(P̃ )-dg-module. Then φ∗ ◦ φ∗(F, dF )
is the C•(P̃ )-dg-module

C•(PM )⊗C∞(M) C
•(PM )⊗C∞(M) C

•(G)⊗C∞(M) Γ(F )

endowed with the differential dPM ⊗ 1 + 1⊗ dF . Since C•(PM ) is quasi-isomorphic
to C∞(M), the multiplication

m : C•(PM )⊗C∞(M) C
•(PM )→ C•(PM )

is a quasi-isomorphism of dg-algebras and induces a quasi-isomorphism of C•(P̃ )-
dg-modules

φ∗ ◦ φ∗(F, dF )→ (F, dF )

(the Leibniz rule ensures that m commutes with the differentials), so φ∗ ◦ φ∗ is
equivalent to idRep∞(P̃ ). We conclude that the dg-functors

φ∗ : Rep∞(G)� Rep∞(P̃ ) : φ∗

induce an equivalence of dg-categories.

Finally, we remark that φ∗ obviously preserves differentiables cohomology. By the
first part of the theorem this implies that φ∗ also does, and we are done.

The previous results immediately lead to the Morita invariance for representations
up to homotopy:

Theorem 3.8.3. Let G ⇒ M and H ⇒ N be Morita equivalent Lie groupoids.
Then the categories Rep∞(G) and Rep∞(H) are quasi-equivalent (see def.3.3.5).

We claim that theorem 3.8.3 can be refined into a more complete and elegant way
to state this descent result, which we will not prove here:
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Claim 3.8.4. Let

Perf : Diffop → DG− Cat

be the (∞-)functor from the (classical) category of manifolds to the ∞-category of
dg-categories, which sends a manifold M to the dg-category of representations up to
homotopy of M , i.e. graded vector bundles over M . Then Perf has descent and the
extended functor

Perf : St(Diff)op → DG− Cat

sends a differentiable stack X to the dg-category Rep∞(G), where G ⇒ M is any
Lie groupoid presenting X.

We conclude by giving a definition of the dg-category of perfect complexes over a
differentiable stack and their cohomology:

Definition 3.8.5. The dg-category of perfect complexes over a differentiable stack
X is

Perf(X) := Rep∞(G)

for any Lie groupoid G⇒M presenting X.

Definition 3.8.6. The cohomology of X with values in a perfect complex F• is

H•(X,F•) := H•diff (G;E)

for any Lie groupoid presenting X and representation up to homotopy presenting
F•.

Thanks to theorem 3.8.4 this is a well definition of Perf(X) and H•(X,F•).

Example 3.8.7 (Vector bundles over stacks again). Following the example 3.6.4,
we can define graded vector bundles over stacks as those perfect complexes which
admit a presentation (E•, D) such that D = D1.

3.9 Symmetric powers of representations up to homo-
topy

In [1] is shown the existence and unicity of a tensor product on the homotopy
categories of representations up to homotopy. This yields a definition of tensor
product for complexes of vector bundles over stacks by Morita invariance.

Here we just remind the principal properties of this functor, and we show that it
descends to stacks. We call a morphism of representations up to homotopy ζ : E → F
strict if it is just a morphism between the complexes underlying E and F .
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Proposition 3.9.1 ([4], Def. 3.25, [1]). Let G⇒M be a Lie groupoid, and q ∈ N.
There exist a unique ∞-functor

Sq : Rep∞(G)→ Rep∞(G)

such that:

1. For any E ∈ Rep∞(G), the complex underlying Sq(E) is the symmetric power
of the differential graded complex underlying E;

2. For any E ∈ Rep∞(G), the quasi-action of Sq(E) is the diagonal quasi-action
on Symq(E) induced by the quasi-action underlying E;

3. Sq preserves strict morphisms and quasi-isomorphisms;

4. for any Φ : E → F ∈ Rep∞(G), the morphism of complexes underlying Sq Φ
is q-th symmetric power of the morphism of complexes underlying Φ.

Corollary 3.9.2. The q-th symmetric power is well defined on perfect complexes.

Proof. Two representations up to homotopy represent the same perfect complex if
and only if they are quasi-isomorphic. Since Sq preserves quasi-isomorphisms, we
conclude.

Definition 3.9.3. Let F be a perfect complex over a differentiable stack X. Let E
be a representation up to homotopy presenting F. The q-th symmetric power of F,
denoted Sq F, is the equivalence class of Sq E.

3.10 The tangent and cotangent complexes

For any Lie groupoid, the choice of a connection induces a representation up to ho-
motopy on the Lie algebroid A→ TM , called the adjoint representation. This is
the generalization of the adjoint representation of a Lie group to the framework of
Lie groupoids, and it is not a classical representation anymore. So representations
up to homotopy arise naurally as a generalization of Lie group representations.

We resume here some results of [4] about the adjoint/coadjoint representations up
to homotopy.

Proposition 3.10.1. Let G → M be a Lie groupoid with Lie algebroid A
ρ→ TM ,

with A in degree 0, TM in degree 1 and ρ the anchor map.

1. The choice of a connection σ on G induces a representation up to homotopy
Adσ called the adjoint representation up to homotopy on G.
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2. If σ and σ′ are two connections on G, there is a canonical isomorphism Adσ →
Adσ′.

We note by AdG the isomorphism class of Adσ ∈ Rep∞(G). By duality we define
the coadjoint representation Ad∗G.

Proposition 3.10.2. Let G and H be Morita equivalent Lie groupoids. Then they
have quasi-isomorphic adjoint and coadjoint representations up to homotopy.

Proof. One can find a proof of this fact in [22], using that:

• under the Grothendieck construction the adjoint/coadjoint representation up
to homotopy is sent to the tangent/cotangent VB-groupoid and quasi-isomorphisms
of representations up to homotopy are sent to VB-Morita equivalences;

• the tangent/cotangent groupoids of Morita equivalent groupoids are VB-Morita
equivalent.

We can now define the tangent/cotangent complex of vector bundles over a differ-
entiable stack X:

Definition 3.10.3. The tangent (resp. cotangent) complex TX (resp. LX) of a
differentiable stack X is the equivalence class of AdG (of Ad∗G) for any Lie groupoid
G presenting X.

3.11 Hodge to De Rham spectral sequence for Lie groupoids

In this section we recall the Hodge to De Rham spectral sequence of [4] relating the
definition of differentiable form on a stack X to the double complex of forms Ωp(Gq)
on the nerve of a Lie groupoid G presenting X; we use our definition of perfect
complexes to obtain the same result on stack (cor. 3.11.2).

Theorem 3.11.1 ([4], Thm. 4.1). Let G ⇒ M be a Lie groupoid. Then for the
cohomology of the complex

Ωq(M)
dh // Ωq(G)

dh // Ωq(G(2))
dh // . . .

one has
Hp
dh

(Ωq(G•)) ' Hp−q(G; Sq Ad∗G)

Corollary 3.11.2. Let X be a differentiable stack and G ⇒ M a Lie groupoid
presenting it. Then

Hp(Xbig; Ωq) ' Hp−q(X; Sq LX[−1])
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Proof. Since G• → X is a resolution of X, we have

Hp(Xbig; Ωq) = Hp(Ωq(G•))

and by definition of cohomology of perfect complexes

Hp−q(X; Sq LX[−1]) = Hp−q(G; Sq Ad∗G)

3.11.1 Bott spectral sequence for differentiable stacks

We saw in theorem 2.4.1 that the choice of a cofoliation on a differentiable stack X
induces a E1-spectral sequence⊕

i+2k=p

Hq(X; ΛiΩ⊗ Skγ)⇒ Hp+q
DR (X) (3.5)

but with techniques of [6] it was not possible to prove it independently of such a
choice. In [4], the same spectral sequence was shown for Lie groupoids:

Theorem 3.11.3 ([4], Thm. 4.3). Let G be a Lie groupoid. There is a spectral
sequence converging to the De Rham cohomology of G

Ep,q1 = Hp−q
diff (G; Sq(Ad∗))⇒ Hp+q

DR (G) (3.6)

In light of the results of this chapter, namely corollary 3.9.2, and section 3.10, the
proof of thm. 4.3 in [4] can be adapted to the framework of stacks:

Corollary 3.11.4. Let X be a differentiable stack. There is a spectral sequence
converging to the De Rham cohomology of X

Ep,q1 = Hp−q
diff (X; Sq LX[−1])⇒ Hp+q

DR (X) (3.7)

We think that it is possible to obtain a decomposition similar to equation (3.5) of
[6], but we could not be able to prove it here.



Chapter 4

The general linear 2-groupoid

In this chapter we expose the content of [20], a paper issued from a collaboration
with Matias Del Hoyo, already accepted by the Pacific Journal of Mathematics. In
the final section (4.7) we added a new part, aimed at building the stack Perf[0,1],
which was not part of that collaboration.

4.1 Basics on 2-categories

We review here definitions and basic facts on set-theoretic 2-categories that are
fundamental for the rest of the chapter. We give a definition of 2-groupoid, compare
it with others in the literature, and discuss the notion of lax functors. We refer to
[13, 40, 43] for further details. The material here is preparatory, to set notations
and conventions and to serve as a quick reference. We often use the notation gf for
the composition g ◦ f .

A 2-category C is a category enriched over the category of small categories. It
has three levels of structure: objects, arrows between objects, and arrows between
arrows or 2-cells, whose collections we denote by C0, C1, C2 respectively. We use
letters x, y, . . . for objects, f, g, . . . for arrows, and α, β, . . . for 2-cells.

x

f

99

g
%%

⇑α y

The arrows and 2-cells between two fixed objects x, y form a category C(x, y), whose
composition we denote by •. For each triple x, y, z there is a composition functor

C(x, y)× C(y, z)
◦−→ C(x, z) and a unit idx ∈ C(x, x) satisfying the axioms encoded

83
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in the following commutative diagrams:

C(x, y)× C(y, z)× C(z, w)
id×◦
uu

◦×id
))

C(x, y)× C(y, w)

◦ ))

C(x, z)× C(z, w)

◦uu
C(x,w)

C(x, y)
idx×id

))
id×idy

uu
id

��

C(x, y)× C(y, y)

◦ ))

C(x, x)× C(x, y)

◦uu
C(x, y)

Example 4.1.1. The paradigmatic example of a 2-category is that of small cat-
egories, functors and natural transformations. Another basic example is that of
spaces, continuous maps and (homotopy classes of) homotopies.

We are interested in 2-groupoids. For us, a 2-groupoid G is a 2-category such
that (i) it is small, in the sense that G0 is a set, (ii) every 2-cell is invertible, and

(iii) every arrow x
f→ y is invertible up to homotopy, namely there exists y

g→ x
and 2-cells g ◦ f ∼= idx and f ◦ g ∼= idy. Some references demand the arrows to
be invertible on the nose. We call such groupoids strict. Let us remark that our
fudamental example, that of the general linear 2-groupoid, is not strict.

Example 4.1.2. A topological space X yields a 2-groupoid π2(X) whose objects are
the points of X, arrows are the continuous paths I → X, and 2-cells are (homotopy
classes of) path homotopies. Composition is given by juxtaposition, moving through
each path at double speed. A non-constant path is only invertible up to homotopy,
hence π2(X) is not strict.

A simple characterization of (small) 2-categories and strict 2-groupoids is by using
double structures, namely diagrams of compatible structures as below, where com-
patible means that the horizontal structural maps are functorial with respect to the
vertical structures.

G2
////

����

G0

����
G1

//// G0

However, our notion of 2-groupoid does not benefit much out of this perspective.
The following lemma, that is automatic for strict groupoids but works in general,
will be useful later.

Lemma 4.1.3. If G is a 2-groupoid and x
f→ y is an arrow in G, then the left

multiplication functor Lf : G(y, z)→ G(x, z) is an equivalence of categories for any
z. The same holds for right multiplication.

Proof. A 2-cell α : f ⇒ g defines a natural isomorphism Lf ⇒ Lg, since the 2-cells
are invertible. Then, given an arbitrary f , and picking g a quasi-inverse, we have
idG(x,x) = Lidx

∼= LgLf and analogously idG(y,y) = Lidy
∼= LfLg.
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A functor φ : C → D between 2-categories consists of functions φi : Ci → Di

preserving all the structure on the nose. This notion is sometimes too rigid because
it involves many identities between functors. A useful variant is that of a (normal)
lax functor φ : C 99K D, which consists of three maps φi : Ci → Di preserving
source, target, units and the composition •, but only preserving ◦ up to a given
natural transformation. More precisely, it is also given a map

φ1,1 : C1 ×C0 C1 → D2 φ1,1(g, f) : φ1(g ◦ f)⇒ φ1(g) ◦ φ1(f)

ruling the failure of associativity of ◦ and satisfying the coherence axioms below:

i) φ1,1(id, f) = id = φ1,1(f, id) (normality)

ii) (φ2(b) ◦ φ2(a)) • φ1,1(g, f) = φ1,1(g′, f ′) • φ2(b ◦ a)

iii) (φ1,1(h, g) ◦ φ1(f)) • φ1,1(hg, f) = (φ1(h) ◦ φ1,1(g, f)) • φ1,1(h, gf)

When the structure 2-cells φ1,1(g, f) are invertibles the lax functor is called a
pseudo-functor. These notions are very interesting even when C is a usual cate-
gory, viewed as a 2-category with only identity 2-cells. To ease the notation we will
often write φ instead of φi, etc.

Example 4.1.4. Given π : G→ H an epimorphism of groups, a set-theoretic section
σ : H → G, σ(1G) = 1H , leads to a pseudo-functor φ : H 99K {Groups}, where G
is viewed as a 2-groupoid with one object and only identity 2-cells, and {Groups}
is the 2-category of groups, morphisms, and inner automorphisms as 2-cells. Here
φ(∗) = K is the kernel of π, φ(h) is given by conjugation by σ(h), and φ(h′, h) is
the conjugation by σ(h′)σ(h)σ(h′h)−1. The lax functor is an actual functor if and
only if σ is a morphism.

We also need to deal with morphisms between lax functors (cf. [13]). Given φ, ψ :
C 99K D lax functors between 2-categories, a lax transformation H : φ ⇒ ψ
associates to each x ∈ C0 an arrow Hx : φ(x) → ψ(x) and to each arrow f : x → y
a 2-cell Hf : ψ(f)Hx ⇒ Hyφ(f) satisfying

i) Hidx = idHx (normality)

ii) (Hyφ(α)) •Hf = Hg • (ψ(α)Hx), and

iii) for each pair of composable arrows x
f→ y

g→ z there is a commutative prism
with vertical faces Hg, Hf , Hgf and horizontal faces given by the structural
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2-cells of φ, ψ.

φ(x)

��

''

// φ(z)

��

φ(y)

��

77

ψ(x) //

''

ψ(z)

ψ(y)

77

Such an H is a lax equivalence if the Hx are invertible up to a 2-cell and the Hf

are invertible.

Remark 4.1.5. Example 4.1.4 can be easily extended to those special epimorphisms
defining fibered categories (see section 1.1). The outcome is the Grothendieck cor-
respondence between equivalence classes of fibred categories E → C and pseudo-
functors C 99K {Categories}. This is the first and most important example of lax
functors. The main goal of this part can be considered to be a smooth linear variant
of this correspondence.

4.2 The nerve of a 2-category

We already defined the nerve for Lie groupoids. We discuss here the nerve for 2-
categories and 2-groupoids. We explain its behavior with respect to lax functors,
and we use it to relate 2-groupoids with the weak approach to higher categories
based on the horn filling condition. Some references for this are [15, 9, 35, 40].
For simplicial sets we will adopt the notation of appendix A.1.

Recall (cf. appendix A.1) that given C a category, and given φ : ∆→ C a covariant
functor, that should be thought of as a model for simplices in C, we can define a
singular functor φ∗ : C → {Simplicial sets} that associates to each object X ∈ C
a simplicial set by the formula (φ∗X)n = homC(φ([n]), X).
We are concerned with the nerve construction for 2-categories, namely the singular
functor defined when C is the category of 2-categories and lax functors, and φ([n]) =
[n] is viewed as a 2-category with only identity 2-cells. Thus, if C is a 2-category,
then its nerveNC has as n-simplices the lax functors u : [n] 99K C, and its simplicial
operators are given by pre-composition. Note that NC0 = C0 and NC1 = C1 consist
of the objects and arrows of C, respectively, and NC2 consists of triangles that are
commutative up to a given 2-cell:

y
g

��
x

f
??

h
//

⇑α

z
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To describe the higher simplices, note that a lax functor u : [n] 99K C can be thought
of as a labelling of an abstract n-simplex, where ui are objects at the vertices, uj,i
are arrows at its edges, and uk,j,i are 2-cells corresponding to each triangle. For each
tetrahedron on the simplex the following equation among 2-cells must hold:

ul,i
ul,j,i

!)

ul,k,i

u}
ul,kuk,i

ul,kuk,j,i !)

ul,juj,i

ul,k,juj,iu}
ul,kuk,juj,i

The above data completely determines the nerve NC in the sense that it is 3-
coskeletal, namely NCk = {∂∆k → NC} for k > 3.
A fundamental feature of the classic nerve for 1-categories is that it defines a fully
faithful functor, it embeds the category of (small) categories into that of simplicial
sets. Extending this, there is the following proposition for the nerve of 2-categories,
which also provides information about the 2-cells. Here, by a simplicial homotopy
we mean a simplicial map X ×∆1 → Y .

Proposition 4.2.1 (cf. [9]). The nerve C 7→ NC defines a fully faithful functor
from the category of (small) 2-categories and (normal) lax functors to the category
of simplicial sets. Moreover, if φ, ψ : C 99K D are lax functors and every 2-cell in
D is invertible, then there is a lax transformation H : φ⇒ ψ if and only if there is
a simplicial homotopy H̃ : Nφ ∼= Nψ.

Sketch of proof. Given a simplicial map φ̃ : NC → ND, we can define a lax functor
φ : C 99K D such that Nφ = φ̃ by setting φ0 = φ̃0, φ1 = φ̃1, and defining φ2 and φ1,1

as restrictions of φ̃2 to the following type of triangles. The simplicial identities on φ̃
imply the axioms of lax functor on φ, and that Nφ = φ̃, proving the first assertion.

y
idy

��
x

f
??

f
//

⇑α

y

y
g

��
x

f
??

gf
//

⇑idgf

z

Regarding the second one, given φ, ψ : C 99K D lax functors, while a lax transforma-

tion H : φ ∼= ψ associates to an arrow x
f→ y a 2-cell filling a commutative square,

a simplicial homotopy H̃ : Nφ ∼= Nψ should provide a triangulation of that square:

φ(x)
φ(f) //

Hy
��

⇓Hf

φ(y)

Hx
��

ψ(x)
ψ(f)

// ψ(y)

φ(x)

''

φ(f) //

H̃x
��

⇑H̃f,0
φ(y)

H̃y
��

ψ(x)
ψ(f)

//
⇓H̃f,1

ψ(y)
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where H̃f,0 and H̃f,1 are short for H̃(s1(f), s0(id[1])) and H̃(s0(f), s1(id[1])). The

lax transformation H induces a simplicial homotopy H̃ by setting H̃f,0 = id and
H̃f,1 = Hf . Conversely, if every 2-cell on D is invertible, we can define an H out of
H̃ by setting Hf = H̃f,1 • (H̃f,0)−1.

Another fundamental feature of the classic nerve is the following characterization of
its image: a simplicial set is the nerve of a category if and only if every inner horn
(0 < k < n) admits a filling, and this filling is unique for n > 1. Similarly, it is the
nerve of a groupoid if and only if the same holds for every horn, inner or not.

Λnk
∀ //

��

X

∆n
∃(!)

>>

This motivates an approach to higher category theory that has received much atten-
tion lately. A simplicial set X is then a weak m-category if every inner horn in X
admits a filling, and the filling is unique for n > m, and X is a weak m-groupoid if
the same holds for every horn, inner or not. The missing face of the horn, provided
by the filling, should be though of as a composition, defined up to homotopy, of the
remaining faces. Next proposition relates 2-groupoids with weak 2-groupoids via
the nerve functor. Similar results are discussed in [24].

Proposition 4.2.2. Given C a 2-category, NC is a weak 2-category if and only if
every 2-cell of C is invertible, and NC is a weak 2-groupoid if and only if C is a
2-groupoid.

Proof. Since NC is 3-coskeletal, every (n, k)-horn has a unique filling for n ≥ 5.
For n = 2 the horizontal composition of arrows provide inner horn-fillings, and the
fillings of the outer horns correspond to the existence of quasi-inverses. So let us
study the cases n = 3, 4.

For n = 3, given a 2-cell α : f ⇒ g : x→ y, we can build a (3, 1)-horn with faces as
below,

y

id⇒ id⇒
y

id
OO

id
))x

f
//

g

??

g 55
α⇑

y

id

__

and the remaining face of a filling will give a right inverse β : g ⇒ f to α, showing
that inner-horn filling implies that every 2-cell is invertible. Conversely, a horn gives
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three 2-cells, that correspond to three sides on a square as below:

u3,0
+3

��

u3,1u1,0

��
u3,2u2,0

+3 u3,2u2,1u1,0

In an inner horn, either the 2-cell on the top or in the left is missing, but since every
2-cell is invertible, we can fill the square by taking the obvious composition. In an
outer horn, either the 2-cell on the bottom or on the right is missing, and assuming
C is a 2-groupoid, we can get the missing face by factoring the triple composition
by either u3,2 or u1,0 as it follows from 4.1.3.
For n = 4, the 2-skeleton of a 4-simplex u gives the edges of a cube as below:

u4,0

%-qy ��
u4,1u1,0

�� %-

u4,2u2,0

qy %-

u4,3u3,0

��qy
u4,2u2,1u1,0

%-

u4,3u3,1u1,0

��

u4,3u3,2u2,0

qy
u4,3u3,2u2,1u1,0

Each face of the 4-simplex corresponds to the commutativity of the corresponding
face of the cube. The bottom face commutes because of the compatibility between
horizontal and vertical composition. Since every 2-cell is invertible, five commuting
faces on the cube imply that the other is commutative as well, thus every horn
admits a unique filling, concluding the proof.

Remark 4.2.3. Other ways to associate a simplicial set to a 2-category C are by
regarding it as a double category with a trivial side, applying twice the classic nerve,
and reducing the resulting bisimplicial set by using the diagonal d or the total functor
T , also known as bar or codiagonal:

2-categories
N2

−−→ bisimplicial sets
d,T

⇒ simplicial sets

It is shown in [15] that TN2C and dN2C are equivalent to NC from a homotopy
viewpoint. We remark here that, when C is a strict 2-groupoid there is actually
an isomorphism TN2C ∼= NC, which is completely determined by the following
formula for 2-cells.

x
⇑α

h // y
g // z

x
f
// y

x

7→

y
f

��
x

g
??

gh
//

⇑gα−1

z
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4.3 Defining Lie 2-groupoids

We discuss here the smooth versions of 2-categories and 2-groupoids we are going
to work with, provide some examples, and discuss other uses for those terms in the
literature.

A Lie 2-category C is, roughly speaking, a 2-category internal to the category of
smooth manifolds. It consists of a (small) 2-category as defined before, on which
(i) the sets of objects C0, arrows C1 and 2-cells C2 are equipped with manifold
structures; (ii) the source and target maps s, t : Ci → Ci−1 of 2-cells and arrows are
surjective submersions, and (iii) the units u : Ci−1 → Ci and the multiplications ◦
and • are smooth. Functors φ : C → D between Lie 2-categories are easy to define,
as 2-functors for which the three maps φi : Ci → Di are smooth.

Example 4.3.1. Let (R, ·) be the multiplicative monoid of real numbers, viewed as
a Lie 2-category with a single object, space of arrows R, and both horizontal and
vertical composition equal to the multiplication. This is a Lie 2-category on which
not every 2-cell is invertible.

Let G be a Lie 2-category that, from the set-theoretic viewpoint, is also a 2-groupoid,
as defined in the previous sections. In order to define when G is a Lie 2-groupoid
we have to make sense of smooth inversions. For 2-cells this is clear, because there
is an inversion map i : G2 → G2, and we can require it to be smooth. For arrows
this is less clear: since inversion is only defined up to homotopy, there is not an
inversion map in general. Note that, since source and target G2 → G1 are surjective
submersions, the sets of 2-horns N2,iG = hom(Λ2

i , NG) define manifolds:

N2,0G =

{
y

x

f ??

h
// z

}
N2,1G =

{
y g
��

x

f ??

z

}
N2,2G =

{
y g
��

x
h
// z

}

We will discuss a smooth structure on the whole nerve NG in the following sections.
For now, we just endow N2G with a manifold structure using the following fibered
product.

N2G //

��

N2,1G

m

��
G2 t

// G1

We define G to be a Lie 2-groupoid if, besides being a Lie 2-category and a 2-
groupoid, (i) the inversion of 2-cells i : G2 → G2 is smooth, and (ii) the following
restriction maps are surjective submersions:

d2,0 : N2G→ N2,0G d2,2 : N2G→ N2,2G.
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We say that the Lie 2-groupoid is strict if it is set-theoretic strict and the inversion
of arrows i : G1 → G1 is smooth. The smooth structure on N2G also allow us to
make sense of lax functors in the smooth setting. We define a smooth lax functor
betwen Lie 2-categories φ : C 99K D as a lax functor such that φ0, φ1 and the map
(φ2, φ1,1) : N2C → N2D is smooth.

Example 4.3.2. Given K an abelian Lie group, we can see it as the 2-cells of a
Lie 2-category with one object and one arrow, and where both multiplications •
and ◦ agree with that of K. The resulting 2-category K ⇒ ∗ ⇒ ∗ is in fact a
Lie 2-groupoid. A similar thing can be done with a bundle of abelian Lie groups
G⇒M , such as a torus bundle. This delooping construction stays within the finite
dimensional setting and plays a key role for instance in the theory of gerbes.

We recall briefly the Dold-Kan correspondence, from appendix A.2. When C is
an abelian category, eg. that of vector spaces, then a simplicial object X : ∆◦ → C
gives rise to a chain complex (X ′n, ∂) by defining X ′n = ∩i>0 ker(di : Xn → Xn−1)
and ∂ = d0. It turns out that this construction yields an equivalence of categories
between simplicial objects and positively graded chain complexes. The horn-filling
condition translates into the abelian setting, in such a way that categories and
groupoids both correspond to 2-term complexes, and linear natural transformations
correspond to chain homotopies.

Example 4.3.3. By a linear 2-category we mean a Lie 2-category V on which
the Vi are (real finite dimensional) vector spaces and the structure maps are linear.
They are examples of Lie 2-groupoids. Viewing them as double linear categories,
and applying Dold-Kan correspondence both horizontally and vertically, we encode
such a V into a 3-term complex as below.

V ′2
//

��

0

��
V ′1

// V0

Remark 4.3.4. We warn the reader about different uses for the word Lie 2-groupoid
within the literature other than the one we have introduced, which suits our funda-
mental example. In [46],[51] and other references, they use the word to refer to what
we called strict Lie 2-groupoid, they demand a fonctorial choice of the inverse of ar-
rows to exists, so our notion is more general. In [64], [25] and other references Lie
2-groupoids are defined as smooth versions of weak 2-groupoids, they do not require
the existence of a well-defined composition. We will see later that a smooth version
of the nerve functor for Lie 2-categories allow us to regard our Lie 2-groupoids as
examples of them.
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4.4 The general linear 2-groupoid

Here we show our first main theorem, asserting that the symmetries of a (2-term)
graded vector space or bundle can be endowed with the structure of a Lie 2-groupoid,
which we call the general linear 2-groupoid. This construction extends the gen-
eral linear groupoid of a vector bundle without a grading (see eg. [21]).

Throughout this section, let V = V1 ⊕ V0 → M be a graded vector bundle over a
smooth manifold M . We will first describe the set-theoretic structure of its general
linear 2-groupoid GL(V )• and then take care of the smoothness. From the set-
theoretic viewpoint we have:

i) An object ∂x ∈ GL(V )0 is a differential ∂x : V x
1 → V x

0 on the fiber V x =
V x

0 ⊕ V x
1 ;

ii) An arrow α : ∂x → ∂y ∈ GL(V )1 is a couple of linear maps α1 : V x
1 → V y

1 ,
α0 : V x

0 → V y
0 , defining a quasi-isomorphism between V x and V y;

V x
1

α1 //

∂x

��

V y
1

∂y

��
V x

0 α0

// V y
0

iii) A 2-cell R : α → α′ : ∂x → ∂y on GL(V )2 is a chain homotopy, given by a
linear map R : V x

0 → V y
1 such that R∂x = α1 − α′1 and ∂yR = α0 − α′0.

V x
1

α1 //

∂x

��

V y
1

∂y

��
V x

0 α0

//

R
>>

V y
0

The multiplication ◦ in GL(V )• is the composition of maps, and the multiplication
• is the composition of chain homotopies, which is just the sum of the corresponding
maps R. Every 2-cell is invertible, and every arrow is invertible up to a 2-cell. Thus
we have a well-defined 2-groupoid GL(V )•. Via Dold-Kan we can embed it into the
2-category of linear categories.

Remark 4.4.1. Even when M = ∗ our construction GL(V )• yields a 2-groupoid
and not what one might call a 2-group, for there are many objects and not just one.
Fixing an object ∂ on GL(V )•, its isotropy 2-groupoid GL(V )∂ can be compared
with the construction studied in [50].

Next we show that GL(V )• inherits a smooth structure from certain vector bundles.
To ease the notation, given A,B →M vector bundles, we write [A,B]→M for the
inner-hom vector bundle. Then we have that:
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i) GL(V )0 identifies with the total space of [V1, V0]→M ;

ii) GL(V )1 is a subspace of E = [π∗1V1, π
∗
1V0] ⊕ [π∗2V1, π

∗
2V0] ⊕ [π∗1V1, π

∗
2V1] ⊕

[π∗1V0, π
∗
2V0], a vector bundle over M × M , where πi : M × M → M are

the obvious projections;

iii) GL(V )2 is the set-theoretic fiber product GL(V )1 ×M×M [π∗1V0, π
∗
2V1].

The issue here is to show that GL(V )1 ⊂ E is a submanifold. Then GL(V )2 will
identify with a fibered product along a submersion, in fact with a pullback vector
bundle. This issue is rather subtle and will require a careful analysis. The first step
in our argument is to provide a simple system of equations describing GL(V )1 ⊂ E.

Lemma 4.4.2. We can write GL(V )1 = F ∩ U1 ∩ U0 where

F = {(∂x, ∂y, α0, α1) ∈ E : α0∂
x = ∂yα1}

U1 = {(∂x, ∂y, α0, α1) ∈ E : ker(∂x) ∩ ker(α1) = 0}
U0 = {(∂x, ∂y, α0, α1) ∈ E : im(∂y) + im(α0) = V y

0 }

Proof. An element (∂x, ∂y, α0, α1) belongs to F if and only if the corresponding
square of vector space maps commute, it belongs to U1 if and only if the morphism
between the fibers is injective in degree 1 homology, and belongs to U0 if and only if
it is surjective in degree 0 homology. Since both fibers V x, V y, as 2-term complexes,
have the same Euler characteristic dimV0 − dimV1, then so do their homologies,
and therefore the two inequalities dimH1(V x) ≤ dimH1(V y) and dimH0(V x) ≥
dimH0(V y) imply that α is in fact a quasi-isomorphism.

The subset F can be seen as the preimage of the zero section of the following map
between the total space of vector bundles over M ×M , where E′ = [π∗1V1, π

∗
2V0].

φ : E → E′ φ(∂x, ∂y, ρ1, α0) = α0∂
x − ∂yα1

This map is quadratic and its rank is not constant in general, as next example shows.

Example 4.4.3. Let M = ∗ and V0 = V1 = R. Then GL(V )0
∼= R, E ∼= R4 and

F identifies with {(x, y, z, w) ∈ R4 : xy − zw = 0}, that is not a submanifold of
R4. This examples shows that if we define the general linear 2-category gl(V ) as
we have defined GL(V )•, but without imposing the quasi-isomorphism axiom, then
gl(V ) cannot be made a Lie 2-category in a reasonable way.

Next we show that the map φ above has maximal rank over the opens Ui, and since
the zero section 0M×M ⊂ E′ is closed embedded, the same holds for GL(V )1.

Proposition 4.4.4. The map φ : E → E′ has maximal rank over the opens Ui.
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Proof. Let p = (∂x, ∂y, α1, α0) ∈ U1 and let q = φ(p) = α0∂
x − ∂yα1. To show

that dφp : TpE → TqE
′ is surjective we argue by realizing vectors as 1-jets of

curves. Given γ(t) ∈ E′, γ(0) = q, we want to lift the curve γ to a curve on
E through p. By using local trivializations of V we can assume x(t) = x and
y(t) = y are fixed. Let us suppose that p ∈ U1, the other case is analogous. Since
ker ∂x ∩ kerα1 = 0, the linear map (∂x, α1) : V x

1 → V x
0 ⊕ V

y
1 is a monomorphism,

and therefore it admits a linear retraction (∂̃x, α̃1) : V x
0 ⊕V

y
1 → V x

1 . Then the curve
γ̃(t) = (∂x, γ(t)α̃1, α1, γ(t)∂̃x) ∈ E is a lift as required.

Theorem 4.4.5. Given V = V1 ⊕ V0 a graded vector bundle, its general linear
2-groupoid GL(V )• inherits a natural structure of a Lie 2-groupoid.

Proof. As we have already discussed, GL(V )0 identifies [V1, V0], GL(V )1 ⊂ E with
the preimage of a closed embedded submanifold along a maximal rank map, and
GL(V )2 is a fiber product along a submersion. It is straightforward to check that
with these definitions the structure maps of GL(V )• are smooth, including the inver-
sion of 2-cells. It only remains to show that the restriction maps below are surjective
submersions:

d2,0 : N2G→ N2,0G d2,2 : N2G→ N2,2G

Let us show it for d2,0, the other case is analogous. We argue again by lifting curves.
We start with α(t) : ∂x(t) → ∂y(t) and γ(t) : ∂x(t) → ∂z(t) ∈ GL(V )1, defining a curve
on N(2,0)G, and in order to lift it to N2G, we want to define β(t) : ∂y(t) → ∂z(t)

and R(t) : γ(t) ⇒ β(t)α(t). Working locally we can again assume x = x(t), y =
y(t), z = z(t) are fixed. The monomorphism (α1(t), ∂x(t)) : V x

1 → V y
1 ⊕ V

y
0 admits

a retraction α̃1(t), ∂̃x(t), and by basic argument on linear algebra, we can take it
smooth on t. Then the following short exact sequence splits smoothly,

0→ V x
1

(α1(t),∂x(t))−−−−−−−−→ V y
1 ⊕ V

y
0

(∂y(t),α0(t))−−−−−−−−→ V y
0 → 0

and we gain a section (∂̃y(t), α̃0(t)). We can define βi(t) = γi(t)α̃i(t) and R(t) =
γ1(t)∂̃x.

Remark 4.4.6. Let us denote by GL′(V )• ⊂ GL(V )• the open Lie 2-groupoid with
the same objects, arrows the invertible chain maps, and 2-cells the chain homotopies.
This is a strict Lie 2-groupoid, somehow simpler than our version, and both agree
around the units, thus both should behave in the same way with respect to differ-
entiation, even though this process is not yet clear. See [50] for a related discussion.
But regarding our purposes, this simpler construction GL(V )′• is not satisfactory,
there are representations up to homotopy of Lie groupoids that cannot be invertible.
An example is the adjoint representation of the pair groupoid of the sphere Pair(S2),
or of any other non-parallelizable manifold. We will come back to this later.
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4.5 The nerve of a Lie 2-category

We deal here with the problem of endowing the nerve NC of a Lie 2-category C with
a reasonable smooth structure. We show with a simple example that for general C
this may not be possible. Our second main theorem shows that if every 2-cell is
invertible then NC is indeed a simplicial manifold, and this happens for instance if
C is a Lie 2-groupoid.

Given C a Lie 2-category, we define its ambient simplicial manifold AC for the
nerve NC, roughly speaking, by considering arbitrary collections {uk,j,i} of 2-cells
and disregarding any compatibility. More precisely, we define AC by

AnC =
∏

[2]
a−→[n]

C2 u ∈ AnC, b : [n]→ [m] ⇒ b∗(u)a = ub◦a ∈ AmC

This way AC is a well-defined simplicial manifold, and every face map is a surjective
submersion, for it is just the projection onto some of the coordinates. There is a
canonical inclusion φ : NC → AC defined by the formula φ(u)a = (u ◦ a)2,1,0,
where u ∈ NnC, u : [n] 99K C, and a : [2] → [n]. In other words, φ(u) keeps
track of the 2-cells corresponding to each triangle, and by means of the identities,
the arrows on the edges and the objects on the vertices. Since every simplex in
NC is determined by its 2-skeleton, the map φ is injective. We are concern with
the question of whether φ(NnC) ⊂ AnC is a submanifold, which is not the case in
general.

Example 4.5.1. Let (R, ·) be the multiplicative monoid viewed as a Lie 2-category
as described in Example 4.3.1. Then N0C = {∗}, N1C = {id∗}, and N2C = R,
but N3C ⊂ A3C is not a submanifold. Disregarding the degenerate coordinates,
we can identify N3C with tuples (x, y, z, w) ∈ R4 such that xy = zw, the equation
corresponding to the commutativity of the tetrahedron.

For C a 1-category, a simplex u ∈ NnC is the same as a chain of n composable
arrows, so we can write NnC as an iterated fiber product, and use this to define
a smooth structure on it. Next we develop a similar combinatorial description for
simplices u ∈ NnC, where C is a 2-category whose 2-cells are invertible.

We see ∆n−1 inside ∆n by using the face dn, and define a decreasing filtration

∆n = F0∆n ⊃ F1∆n ⊃ · · · ⊃ Fn−1∆n ⊃ ∆n−1

by setting Fk∆
n = {a : [m] → [n] | a(m) < n or a(0) ≥ k}, namely Fk∆

n is the
union of ∆n−1 with the last face of dimension k. As an example, we depict the
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filtration for n = 3:

0

3

1

2

3

1

2

0 0 1

2

3

F0∆3 F1∆3 F2∆3

Define Nk
nC = {Fk∆n → NC}. Note that N0

nC = NnC, that we have projections
Nk
nC → Nk+1

n C, and that Nn−1
n C = Nn−1 ×C0 C1 is the set-theoretic fiber product

over u 7→ un and s.

Proposition 4.5.2. If every 2-cell of C is invertible then there are set-theoretic
fiber products:

Nk−1
n C

t

��

φkn

//

//

��

C2

Nk
nC C1

φkn(u) = un,k ◦ uk,k−1

Proof. The inclusion Fk+1∆n → Fk∆
n has all the vertices on its image, all the edges

except for (n, k), and all the triangles except for (n, l, k), with k < l < n. Thus,
given u : Fk∆

n → NC, if we know its restriction u′ to Fk+1∆n and the 2-cell α
corresponding to the triangle (n, k + 1, k), then we have all the vertices, we recover
the edge (n, k) as the source of α, and we recover the 2-cells corresponding to the
triangles (n, l, k) inductively on l − k by means of the equation:

un,l,k = (un,l ◦ ul,k+1,k)
−1 • (un,l,k+1 ◦ uk+1,k) • un,k+1,k

This shows that the map Nk
nC → Nk+1

n C ×C1 C2 is injective.

To see that it is also surjective, we need to check that, given u′ : Fk+1∆n → NC
and given α : u′n,k ⇒ u′n,k+1u

′
k+1,k, the above equations can be used to define

a simplicial map u : Fk∆
n → NC. This translates into showing that for every

tetrahedron (l, k, j, i) the above equation holds. The only tetrahedrons that deserve
an explanation are those of the type (n, l′, l, k) with k < l < l′ < n. Moreover, if
l = k + 1 then the equation holds by the construction of u. So let us assume that
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k + 1 < l. The 4-simplex corresponding to (n, l′, l, k + 1, k) yields a cube as below:

un,k

%-px ��
un,k+1uk+1,k

�� &.

un,lul,k

px %-

un,l′ul′,k

��qy
un,lul,k+1uk+1,k

&.

un,l′ul′,k+1uk+1,k

��

un,l′ul′,lul,k

qy
un,l′ul′,lul,k+1uk+1,k

We want to see that the back right face commutes. But we know that: the back
left face commutes by definition of un,l,k; the upper face commutes by definition of
un,l′,k; the left front face commutes for it factors through uk+1,k; the right front face
commutes for it factors through un,l′ ; and the bottom face commutes for ◦ and •
are mutually distributibe. Hence the result.

We can now prove our second main theorem.

Theorem 4.5.3. Given C a Lie 2-category, if its 2-arrows are (smoothly) invertible,
then the nerve NC is naturally a simplicial manifold.

Proof. We endow each NnC with a smooth structure inductively. For n = 0, 1 we
do it by means of the obvious identifications N0C = C0 and N1C = C1. For larger
n we use the filtration and fiber products on previous proposition, noting that one
of the maps is always a surjective submersion, and using the standard transversality
criterion. Hence NnC is a closed embedded submanifold of the product

NnC ⊂ Nn−1C ×
∏

(i+1,i)

C1 ×
∏

(n,i+1,i)

C2

We will prove that, for these smooth structures, the canonical inclusion φ : NnC →
AnC into the ambient is a closed embedding. This implies that (i) the smooth
structures that we have defined on NnC do not depend on the particular filtration
we have used, and that (ii) the simplicial maps on NC are smooth and NC is a
simplicial manifold.
For each triple (k, j, i), we have to show that the composition φk,j,i = πk,j,iφ :
NnC → AnC → C2 is smooth. By projecting on the first coordinate of the above
product, and using an inductive argument, we solve the case n > k. By projecting
on the other coordinates we solve the cases (n, i+1, i). It remains to study the other
projections φn,j,i. But such a projection can be written as an expression involving
the other coordinates and the multiplications ◦ and •, that are smooth. A similar
argument applies also to the degenerate coordinates.
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It follows from our theorem that the nerve of a Lie 2-groupoid is a simplicial manifold,
and that a smooth pseudo-functors φ : G 99K G′ is the same as a simplicial smooth
map φ : NG→ NG′. Next we present a less immediate corollary.

Corollary 4.5.4. With the above hypothesis, the face maps di : NnC → Nn−1C are
surjective submersions.

Proof. This is more a corollary of the proof rather than of the statement. When i = n
it follows by factoring dn through the filtration, for each projection Nk

nC → Nk+1
n C

is the base-change of a surjective submersion, as well as Nn−1
n C → Nn−1C. When

i 6= n we can argue similarly, but now using a different filtration of ∆n, by complexes
containing the face di(∆

n−1).

We finish this section by developing a smooth version of 4.2.2, setting a bridge
between our theory and that of weak Lie 2-categories and weak Lie 2-groupoids, as
defined in [35, 64]. A simplicial manifold X is a weak Lie m-category or a weak
Lie m-groupoid if the corresponding restrictions maps Xn → Xn,k are surjective
submersions, for some reasonable smooth structure on the space of (n, k)-horns. The
space of horns Xn,k can be expressed as an equalizer∏

i 6=k
Xn−1 ⇒

∏
i,j 6=k

Xn−1,

which may not exists in the category of manifolds. In general this is argued by an
inductive argument. In our case, when X = NC is the nerve of a Lie 2-category
with invertible 2-arrows, it follows from our construction that Xn →

∏
i 6=kXn−1 is a

closed embedded submanifold for n > 3 and for n = 3, k = 2. The case n = 3, k = 1
follows by using a symmetric filtration on the simplex. Therefore, since Xn is also
a set-theoretic equalizer, we conclude that Xn

∼= Xn,k is a diffeomorphism in these
cases. The case n = 2 is easy, and therefore we can conclude:

Proposition 4.5.5. Let C be a Lie 2-category on which every 2-arrow is invertible.
Then NC is a weak Lie 2-category. Moreover, NC is a weak Lie 2-groupoid if and
only if C is a Lie 2-groupoid.

Remark 4.5.6. The main theorem on [46] shows that if G is a strict Lie 2-groupoid
then TN2G is a weak Lie 2-groupoid. Thus, in light of the isomorphism described
in 4.2.3, our theorem can be regarded as an extension of that to non-strict Lie 2-
groupoid. This is crucial for us, for our fundamental example GL(V )• is not strict.

4.6 Representations as pseudo-functors

In this section we study representations up to homotopy of chapter 3 in the particular
case of 2-term vector bundles V = V1 ⊕ V0, and present our main theorem, stating
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a 1-1 correspondence between representations G y V and pseudo-functors G 99K
GL(V )•.

We studied in chapter 3 representations up to homotopy of a Lie groupoid G over a
graded vector bundle V = ⊕Vi. We defined it as a degree 1 differential D on a space
of sections Γ(NG,V ) of V over the nerve of G inducing a graded module structure.
By decomposing D = ⊕Di into bi-homogeneous components, we can reinterpret
D as a pseudo-representation over a complex (V, ∂) with homotopies controlling
its associativity. We recall here the 2-term case, the simplest new case, using an
homological convention.

Proposition 4.6.1 (cf. [22, 29]). If V = V1 ⊕ V0, then a representation up to
homotopy Gy V is the same as a tuple (∂, ρ1, ρ0, γ), where ∂ : V1 → V0 is a linear
map, ρi : Gy Vi are pseudo-representations commuting with ∂, and

γ : (x
g→ y

h→ z) 7→ (γh,g : ρhg ⇒ ρhρg)

is a curvature tensor satisfying

ρg31 ◦ γ
g2,g1 − γg3g2,g1 + γg3,g2g1 − γg3,g2 ◦ ρg10 = 0.

A morphism φ : V → W is the same as a triple (φ1, φ0, µ) where φi : Vi → Wi are

vector bundle chain maps and µ : (x
g→ y) 7→ (µg : V x

0 → W y
1 ) is a tensor satisfying

ρφ− φρ = µ∂ + ∂µ and

φ1γ
h,g + µgρ

h
2 + ρg1µh − µ

gh − γh,gφ0 = 0.

The point-wise homology of a 2-term representation Gy V consists of Hx
1 (V ) =

ker ∂x and Hx
0 (V ) = coker ∂x. If the rank of ∂ is constant then H1(V ) and H0(V ) are

vector bundles and there is an induced representation over them. A representation
up to homotopy V whose point-wise homology vanishes is called acyclic. A mor-
phisms φ : V →W of 2-term representations up to homotopy inducing isomorphims
on the point-wise homology is called an equivalence.

Example 4.6.2. Given ρ : Pair(P 2) y E the pseudo-representation discussed in
3.2.4, we can define an acyclic representation up to homotopy Pair(P 2) y E ⊕ E
by setting ∂ = id, ρ1 = ρ0 = ρ and γ = ρ − ρρ. The same can be done for any
pseudo-representation.

We are now ready to present our main theorem. Given a Lie groupoid G ⇒ M
we have a canonical projection πG : G → P (M) that just remembers the source
and target of an arrow. Given a 2-term vector bundle V →M , we have a canonical
projection πV : GL(V )• → P (M) that only remembers the base-points on the vector
bundle. Then we have
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Theorem 4.6.3. Given G ⇒ M a Lie groupoid and V = V1 ⊕ V0 → M a graded
vector bundle, there is a 1-1 correspondence between equivalence classes of repre-
sentations up to homotopy ρ : G y V and of pseudo-functors φ : G 99K GL(V )•
satisfying πV φ = πG.

Proof. This is a rather direct consequence of the constructions and results collected
during our work. In light of our construction of the general linear groupoid (cf.
4.4.5) and in light of our definition of smooth pseudofunctors, supported on the
simplicial characterization (cf. 4.5.3), a pseudo-functor φ : G 99K GL(V )• is a
simplicial map φ : NG → NGL(V )•, the degree 0 component φ0 is the same as a
differential ∂ on V , the degree 1 component φ1 gives a pseudo-representation ρ on V
compatible with ∂, and the degree 2 component φ2 yields a curvature tensor (x

g→
y

h→ z) 7→ (γh,g : ρhg ⇒ ρhρg), defining a 2-term representation up to homotopy,
as characterized in proposition 4.6.1. Analogously, a smooth lax equivalence H :
φ ⇒ ψ between two pseudo-functors consists of smooth maps H : M → GL(V )1,
H : G → GL(V )2, which correspond to the components φ0, µ of a morphism of
representations described in 4.6.1, the component φ1 being determined by φ, ψ and
φ0. It is straightforward to check that this way we get a 1-1 correspondence between
equivalence classes of smooth pseudo-functors and representations up to homotopy.

If we combine our main theorem with the main theorem of [29] then we get what
we might call a smooth linear variant of Grothendieck correspondence (cf. 4.1.5).{

VB-groupoids
Γ→ G

}



{
2-term RUTH
Gy V1 ⊕ V0

}



{
pseudo-functors
G 99K GL(V )•

}
Corollary 4.6.4. Given G ⇒ M a Lie groupoid, there is a 1-1 correspondence
between equivalence classes of VB-groupoids Γ → G and of pseudo-functors φ :
G 99K GL(V )• satisfying πV φ = πG.

We close this section by outlining two different problems related to our results, the
first related to the infinitesimal picture and the second with higher versions of our
results.

Remark 4.6.5. In [45], an infinitesimal analog to our main theorem was announced.
It is commonly accepted that weak higher Lie groupoids and higher Lie algebroids
are related by a theory of differentiation and integration, though the details of
such a theory are yet to be understood. Within this context, we expect that the
differentiation of our general linear 2-groupoid is the object gl(V ) introduced there,
and that the differentiation and integration of maps will provide an alternative
approach to the integration of 2-term representations up to homotopy, other that
that of [16].
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Remark 4.6.6. It is natural to expect our results to remain valid on higher degrees.
The construction of the general linear groupoid seems plausible to be generalized for
more general graded vector bundles. The understanding of pseudo-functors within
this context seems to be less clear, though a complete immersion into the simplicial
approach would solve this issue. Expectations here should be curbed, for even
disregarding the smooth and linear structures, such a higher analog for Grothendieck
correspondence is still unknown.

4.7 The stack Perf[0,1]

In chapter 3 we saw how to relate perfect complexes on a differentiable stack X to
representations up to homotopy on a given presentation G ⇒ M of X. Then in
chapter 4, we constructed a Lie 2-groupoid GL(V )• of automorphisms of a 2-terms
graded vector bundle V = V0 ⊕ V1 →M , and we showed that representations up to
homotopy of a Lie groupoid G⇒M on V are exactly morphisms of Lie 2-groupoids
(which we called ”pseudo-functors”) G 99K GL(V )•. In this last section we will use
these two results to construct a stack Perf[0,1] of perfect complexes of amplitude
[0, 1], where amplitude [0, 1] means that we can find a Lie groupoid presenting X
such that the pullback on it is a representation up to homotopy concentrated in
degrees 0 and 1.
For this, we construct a weak Lie 2-groupoid GL• such that:

1. GL• does not depend on the Lie groupoid presenting X nor on a choice of
vector bundles;

2. The 2-category of morphisms from G ⇒ M to GL• is equivalent to the full
sub-dg-category of Rep∞(G) of those representations which are concentrated
in degrees 0 and 1;

3. The quotient 2-stack Perf[0,1] of GL• is 2-geometric and Hom(X, P erf[0,1]) is
the (2-)category of perfect complexes of amplitude [0, 1] over X.

In this section we will denote in the same way a Lie groupoid and its simplicial
nerve.

Definition 4.7.1. The general linear weak 2-groupoid GL• is

GL• =
⊕

(n,m)∈N×N

GL(Rn0 ⊕ Rm1 )

where Rn0 and Rm1 are respectively the degree 0 and 1 terms of a two terms graded
vector bundle over the point ∗.

Here we prefer to think at GL• as a simplicial manifold, so the direct sum should
be intended as a direct sum of simplicial manifolds.
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Remark 4.7.2. Let G⇒ Rk be a Lie groupoid with trivial base. Then a two term
graded vector bundle over Rk is trivial and is determined, up to isomorphism, by
the data of ranks n and m, of the degree 0 and 1 terms. By the results of section
4.6, we deduce that pseudo-functors from G⇒ Rk to GL• are in 1-1 correspondence
with all representations up to homotopy of the Lie groupoid G⇒ Rk.

We recall from section 1.7, that morphisms of differentiable stacks from X = [M/G]
to Y = [H/N ] correspond to zig-zags

X•←̃Z• → Y•

the left pointing morphism being a Morita morphism. We are concerned with gen-
eralized morphisms with source a Lie groupoid and target a 2-Lie groupoid. In this
special case, generalized morphisms are defined as above.

Definition 4.7.3. We define Perf[0,1] as the homotopy colimit of the simplicial
manifold GL•, in the ∞-category St(Diff).

Claim 4.7.4. Let Rep∞(G)[0,1] be the full sub-dg-category of Rep∞(G) of those
representations on graded vector bundles concentrated in degrees 0 and 1, and let
X = [M/G]. Then there is an equivalence

Rep∞(G)[0,1] ' HomSt(X, P erf[0,1])

We will not show the ∞-categorical equivalence here, we only sketch the 1-1 cor-
respondence between the objects on the homotopy categories. By theorem 4.6.3,
there is a 1-1 correspondence between representations up to homotopy of G ⇒ M
on V = V0 ⊕ V1 and morphisms of simplicial manifolds G• → NGL(V )• (or pseudo
functors G• 99K GL(V )•). Moreover the perfect complexes of amplitude [0, 1] on a
differentiable stack X are

Perf[0,1](X) =
⋃

V=V0⊕V1

{
pseudo-functors
G 99K GL(V )•

}
where V varies over all possibles 2-terms graded vector bundles over M .
The idea now is that the choice of V0 and V1 depends on the choice of a cocycle on an
open cover {Ui} of M , so instead of choosing for each element of the union a graded
vector bundle, we could just refine the base manifold M , by taking the pullback
Čech groupoid (

∐
Ui)• of a trivializing cover. Note that a vector bundle on

∐
Ui is

always trivial, so morphisms (
∐
Ui)• → GL• (ou pseudo functors (

∐
Ui)• 99K GL•)

are already all the representations up to homotopy of (
∐
Ui)•, as we saw in remark

4.7.2. Then we should just show that this includes all possible choices of vector
bundles V on M . This is a sort of generalization of proposition 3.1.5 to the two
terms case.
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Sketch of proof. Let G• → GL(V )• be a representation up to homotopy of G⇒M
on V . The Hom-stack HomSt(Diff)(X, P erf[0,1]) has objects the zig-zags

G•←̃H• → GL•

with H• → G• Morita morphism (see [26], lemma 2.18). We now find a Morita
morphism H• → G• and a morphism H• → GL• giving the same representation up
to homotopy.

Let {Ui ' Rk} be a trivializing open cover of M , and (
∐
Ui)• be the associated

pullback groupoid (see 1.5.2). Let α0
ij : Uij → GLk0 and α1

ij : Uij → GLk1 be
the cocycles associated to the vector bundles Vk for k = 0, 1, of ranks k0 and k1

respectively, with respect to the open cover {Ui}.
We remind from theorem 4.6.1 that the data of a morphisms G→ GL(V0 ⊕ V1) is:

1. for each x ∈M , a differential ∂x : V 0
x → V 1

x ;

2. for each f : x→ y in G, a quasi-isomorphism ρf : ∂x → ∂y;

3. for each couple of composable arrows x
f→ y

g→ z, an homotopy γh,g : ρhg ⇒
ρhρg.

Satisfying some compatibilities. Now, the data of a morphism (
∐
Ui)• → GL(RK0⊕

Rk1 is:

1. for each i, x ∈ Ui, a differential ∂i,x : Rk0 → Rk1 ;

2. for each i, j, x ∈ Ui, y ∈ Uj , f : x→ y in G, a quasi-isomorphism

Rk0
ρ0f,ij //

∂i,x
��

RK0

∂j,y
��

RK1

ρ1f,ij

// RK1

3. for each i, j, k, x ∈ Ui, y ∈ Uj , z ∈ Uk and couple of composable arrows

x
f→ y

g→ z, an homotopy γh,g,ijk : ρhg,ik ⇒ ρh,ijρg,jk.

By construction of the pullback Čech groupoid (cf. 1.5.5), morphisms in (
∐
Ui)• are⊕

ij

Ui ×M G×M Uj

We remark that Ui ∩ Uj is the subset of Ui ×M G×M Uj of identity functions, and
that for l = 0, 1 we can define

αlij : Uij → GLkl by αlij(x) := ρlidx,ij



104 CHAPTER 4. THE GENERAL LINEAR 2-GROUPOID

then {αlij}ij is a cocyle up to homotopy for the open cover {Ui}. If we add the
condition that the homotopies γidx,idx,ijk are trivial for all x, then we obtain that
{αlij}ij is a honest strict cocycle for l = 0, 1, defining vector bundles E0 and E1 on
M , and that we can glue the various ρf,ij and γh,g,ijk to obtain a representation up to
homotopy ofG⇒M on E0⊕E1. This mean that the representations up to homotopy
(
∐
Ui)• → GL• include all representations up to homotopy G• → GL(V )• for all two

terms graded vector bundle V = V0⊕V1 on M , as the subset of those representations
which are a strict cocycle when restricted to the subgroupoid

∐
ij Uij ⇒

∐
Ui.



Appendix A

Sites, simplicial preasheaves and
hypercovers

A.1 Simplicial sets

As usual, let [n] = {n, n−1, · · · , 1, 0} denotes the ordinal of n+1 element, and ∆ the
category of finite ordinals and order preserving maps, spanned by the elementary
maps

di : [n− 1]→ [n] di(k) =

{
k k < i

k + 1 k ≥ i

sj : [n+ 1]→ [n] sj(k) =

{
k k ≤ j
k − 1 k > j

which satisfy the so-called simplicial identities. Then a simplicial set is a con-
travariant functor X : ∆◦ → {Sets}. It can be described as a sequence of sets
Xn = X([n]) and a collection of face di = X(di) and degeneracy sj = X(sj) oper-
ators satisfying the (dual) simplicial identities. Maps of simplicial sets are natural
transformations, or equivalently, sequences of maps compatible with the faces and
degeneracies. Simplicial objects on a category C are defined analogously.

Example A.1.1. A simple but fundamental example is the n-simplex ∆n. From
the functorial viewpoint, it is the one represented by the ordinal [n]. Thinking of ∆n

as a graded set with further structure, it is freely generated by an element of type
[n], namely id[n]. By Yoneda Lemma, a map ∆n → X is the same as an element in
Xn. The border ∂∆n ⊂ ∆n is spanned by all the faces of the generator, and the
horn Λnk ⊂ ∆n by all the faces but the k-th.

Given C a category, and given φ : ∆ → C a covariant functor, that should be
thought of as a model for simplices in C, we can define a singular functor φ∗ :
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C → {Simplicial sets} that associates to each object X ∈ C a simplicial set by the
formula (φ∗X)n = homC(φ([n]), X). In other words, φ∗X is the restriction of the
contravariant functor represented by X to ∆ via φ.

Example A.1.2. When C is the category of topological spaces and φ([n]) is the
topological n-simplex, then φ∗X = SX is the singular simplicial set associated
to X, used to define its homology. When C is the category of (small) categories and
φ([n]) = [n], where we see an ordinal as a category by setting an arrow i → j if
i ≤ j, then φ∗C = NC is the nerve of the category, whose n-simplices are chains of
n composable arrows, and faces and degeneracies are given by droping an extremal
arrow, composing two consecutive ones, or inserting an identity.

A.2 The Dold-Kan correspondence

The Dold-Kan correspondence is an equivalence between the category Ch≥0 of non-
negatively graded cochain complexes of abelian groups and the category Ab∆ of
cosimplicial abelian groups.
This equivalence is defined by a pair of inverse functor

N : Ab∆ ↔ Ch≥0 : K

For a cosimplicial abelian ring C•, the cochain complex N(C)•, called the normal-
ized Moore complex of C• is defined by

N(C)n := Cn/
n∑
i=1

∂iC
n−1 '

n−1⋂
i=0

ker(di : Cn → Cn−1)

For a non-negatively graded cochain complex (V, d), the cosimplicial abelian group
K(V )• is defined by

K(V )n :=
n⊕
i=1

(
n
i

)
V i ' V i ⊗ ΛiZn

If in addiction V is a dg-ring, we can put a product on K(V ) making it a cosimplicial
ring.

Proposition A.2.1 (cf. [17]). The pair of functors (N,K) establish an equivalence
of categories. Moreover, the restriction of K to dg-rings establish an equivalence
between the category of positively graded dg-rings and cosimplicial rings.

A.3 Simplicial presheaves and hypercovers

We recall now some results from [23].



A.3. SIMPLICIAL PRESHEAVES AND HYPERCOVERS 107

Definition A.3.1. A simplicial presheaf on a category C is a functor from C to
the category of simplicial sets Cop → sSet.

Definition A.3.2. Let X ∈ sPr(C) and S be a simplicial set. We denote by
Hom(S,X) the limit

Hom(S,X) := lim
∆k→S

Xk

Definition A.3.3. Let f : X → Y be a morphism in sPr(C). Then the matching
object Mk(f) is the limit

hom(∂∆k, X)×hom(∂∆k,Y ) Yk

and we denote by µk(f) the natural map from Xk to Mk(f). When Y is the final
object we write Mk(X) instead of Mk(f).

Definition A.3.4. Let f : E → B be a morphism of simplicial presheaves. We say
that f is a generalized cover if for all X ∈ C and morphisms X → B, there is a
cover {Ui → X} such that for all i, Ui → B lifts through f .

Definition A.3.5. A morphism of simplicial presheaves f : U• → V• is an hy-
percover if and only if each Uk is a coproduct of representables and the maps
µk(f) : Uk →Mk(f) are generalized covers.

We say that f : U• → V• is an n-hypercover if moreover µk(f) : Uk → Mk(f) is an
isomorphism for all k ≥ n.

We can convince ourselves that hypercovers are exactly the higher analogue of the
local isomorphisms between presheaves of sets by analyzing the hypercovers between
n-truncated object, for low n.

Example A.3.6 (Hypercovers between presheaves of sets). The 0-truncated
objects in sPr(C) are exactly the presheaves of sets, i.e. the constant simplicial
objects in Pr(C). Let us see what would be the weak equivalences between two such
objects in the localization of Pr(C) by hypercovers: we recall that in the Bousfield
localization sPr(C)S weak equivalences are exactly the S-local weak equivalences
where S is the set of hypercovers. Those are exactly the cofibrations G1 → G2 such
that for all fibrant S-local objects F ,

Hom(G2, F )→ Hom(G1, F )

is a trivial Kan fibration. From [36] we deduce that:

• S-local objects are just F ∈ Pr(C) such that for all generalized covers U → X,
F (X)→ F (U) is a bijection, i.e. sheaves on C;
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• S-local equivalences are morphism G1 → G2 such that for all sheaves F ,

Hom(G2, F )→ Hom(G1, F ) (A.1)

is an isomorphism.

This is exactly what we did in the introduction of section 1.3.2. In fact, two
presheaves are locally weak equivalent (i.e. they have isomorphic sheafification)
if and only if the map (A.1) is an isomorphism for all sheaves F .

Example A.3.7. 0-hypercovers are isomorphisms of simplicial manifolds. 1-hypercovers
between the nerve of two Lie groupoids are just the nerve of Morita morphisms.

A.4 Grothendieck sites and sheaves

A sheaf (of sets) over a topological space X can be seen as a contravariant functor
from the category Ouv(X) of open subsets of X to Sets, which satysfies a descent
condition, meaning that sections are local. The notion of Grothendieck topology
allows us to define sheaves over more general category than Ouv(X).

Definition A.4.1. Let C be a category and c an object in C, and f : d → c be a
morphism in C.

• A sieve Sc for c is a subfunctor of Hom(−, c).

• The pullback of Sc is defined by the following fiber product

f∗Sc := Sc ×Hom(−,c) Hom(−, d)

• A Grothendieck topology τ on C is the data, for each object c ∈ C, of a
collection τ(c) of distinguished sieves on c which satisfy the following axioms:

1. (Base change) The pullback of a covering sieve is a covering sieve;

2. (Locality) Let S be a covering sieve for c, and T be a sieve on c. If for
any object d ∈ C and any arrow f ∈ S(d), f∗T is a covering sieve for d,
then T is a covering sieve.

3. (Identity) Hom(−, X) is a covering sieve for any X ∈ C.

In order to understand this definition it suffices to look at the example of Ouv(X).
The objects are just open subsets of X, and Hom(U, V ) = {∅} (the singleton) if
U ⊂ V , and ∅ otherwise.
Then a sieve on U is just a collection of open subsets of U . One can verify that if
one choses open covers as covering sieves, this gives exactly the notion of topology
on the topological space X.
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