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ABSTRACT

The modeling of dynamical phenomena in geophysics and climate is based on a deep under-
standing of the underlying physics, described in the form of PDEs, and on their resolution by
numerical models. The ever-increasing number of observations of physical systems, the recent
rise of deep learning and the huge computational power required by numerical solvers, which
hinders the resolution of existing models, suggest that the future of physical models could be
data-driven. But for this prognosis to come true, deep learning must tackle several challenges,
such as the interpretability and physical consistency of deep models, still largely under-addressed
by the deep learning community.

In this thesis, we address both challenges: we study the prediction of sea surface temperature
(SST) using hybrid models combining a data-driven and a physical model. Ensuring the phys-
ical plausibility of hybrid models necessitates well-posing their learning: otherwise, the high
versatility of neural networks may lead the data-driven part to bypass the physical part.

Our study is divided into two parts: a theoretical study on hybrid models, and a practical
confrontation of our model on simulations of real data. First, we propose a new generic well-
posed learning framework based on the optimization of an upper-bound of a prediction error.
Second, we study real-like ocean observations of SST and velocity fields from the Gulf Stream
current in the North Atlantic (from the NATL60 model). This application highlights the challenges
raised by confronting physics aware learning to the complexity of real-world physics. It also
raises issues such as model generalization, which we discuss as a possible perspective.
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MOTIVATION






MOTIVATION

In this part, we motivate and contextualize our work. First, in chapter 1, we introduce the scientific
context of this thesis and summarize our key contributions. Second, in chapter 2, we present the
technical background required for the thesis work and we summarize the current state of the
literature.
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INTRODUCTION

1.1 CONTEXT

Machine learning (ML), which deals with building computer systems that automatically improve
through experience, is widely regarded as one of the most important disruptive technologies of
our time (Jordan and Mitchell, 2015). Today, the adoption of data-intensive machine-learning
methods can be found throughout science, technology and commerce. ML development is cur-
rently extended and amplified with the rise of deep learning (DL) and the use of deep artificial
neural networks usually optimized via gradient descent techniques (Goodfellow, Bengio, and
Courville, 2016).

Deep learning methods rely on multiple levels of representation to recognize patterns in data:
starting from the raw input data, each level transforms its input into a representation at a higher,
slightly more abstract level (LeCun, Bengio, and G. Hinton, 2015). The composition of multiple
transformations makes it possible to learn very complex functions, which are, most of the time,
difficult to translate into an an intuitive analytic form. The use of hardware accelerators such as
Graphics Processing Units (GPU) and the creation of efficient frameworks (Paszke et al., 2019)
made possible the development of deep learning systems that contain billions of parameters
and that can be trained on very large collections of data such as images, videos, and speech
samples. This way, the last decade has been marked by numerous scientific and technologic
breakthroughs in many domains such as computer vision (Krizhevsky, Sutskever, and G. E.
Hinton, 2012; Szegedy et al., 2017), natural language processing (Collobert and Weston, 2008;
Y. Wu et al., 2016) or even health science (Leung et al., 2014).

Following major advances tackling longstanding problems in the artificial intelligence commu-
nity (Silver et al., 2016), one now questions whether these advancements may be applied to other
fields, such as the natural sciences and the study of physical processes and systems.

1.1.1 ML for physics

The understanding and prediction of the world has long stirred human heart and thus guided
scientific research. Thus, fields such as geophysics, astronomy, epidemiology or chemical kinetics
have been studied for centuries and are now dominated by mechanistic models (e.g. first princi-
ples) based on a deep understanding of the underlying phenomena, mathematically translated as
statistical and/or physical relationships, i.e. laws. The increasing availability of supercomputing
power in the 1970s made feasible the development of numerical simulations (Lynch, 2008),
relying on the assimilation of large amounts of data to model the physical system evolution
through time (Bauer, Thorpe, and Brunet, 2015). Such tools have shown great outcomes: weather
prediction models have achieved unprecedented performances over the past 40 years, and are at
the core of climate models used by the Intergovernmental Panel on Climate Change (IPCC) for
climate change monitoring (Stockhause and Lautenschlager, 2017).

However such approaches are now reaching their limits: on the one hand in terms of tools and
technologies, traditional models are limited due to their computational cost; on the other hand in
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terms of physical knowledge, due to a weak understanding of certain processes, models are loosy
approximations of the reality. Besides, in the era of satellite imagery, a deluge of Earth system data
has become available, with storage volumes already well beyond dozens of petabytes (Agapiou,
2017), and extracting interpretable information and knowledge from such data would help in
advancing scientific discovery. More than just an extension of computing power, the efficiency of
the algorithms used to translate dynamical laws into practical computation will have a direct
impact on the efficiency of existing models.

Having already found tremendous success in numerous applications, ML could help and play
an important role in the future of physical modeling. Indeed, Al-based method have recently
shown great success in weather prediction: outperforming state-of-the-art numerical weather
prediction (Barros et al., 1995) for the first time (Bi et al., 2022; Lam et al., 2022).

1.1.2  Physics-guided ML and Hybrid Modeling

Even though the use of data-driven methods in Earth geosciences is rapidly growing, it is still in its
early stages and makes uneven progresses (Bergen et al., 2019). Whereas data-driven approaches
are model-agnostic interpretation methods (black-box models), representing the physical world
requires interpretable models. To derive models which learn from data while still respecting our
evolving understanding of nature’s laws, the ML community is confronted with new challenges
including : 1. to make use of available physical knowledge, 2. to produce physically consistent
models. In this regard, a new paradigm arises, making use of domain-specific knowledge and
integrating scientific knowledge directly into the ML framework (Bergen et al., 2019). Those
new approaches, referred to as physics-guided or physics-based ML (Willard et al., 2020), are
fundamentally different from mainstream purely data-driven practices and it has expanded in
recent years.

Within this flourishing literature, an emerging field of research is the coupling of physical
process models with data-driven ML (Reichstein et al., 2019). In this perspective, ML is seen
as a complementary approach to traditional physics based models (Dueben and Bauer, 2018).
Both offer advantages: whereas traditional approaches generalize and extrapolate better, high
expressive ML approaches benefit from the ongoing growth of available data such as satellite
observations, with reduced costs. This is referred to as hybrid modeling, and this is the approach
we will focus on throughout this thesis.

1.1.3  The “reality gap”

Physical phenomena are based on processes involving multiple scales and variables : for instance,
processes relevant to understanding Earth’s geosystem behavior range in spatial scale from the
atomic to the planetary, in temporal scale from milliseconds to billions of years and accounts for
dynamic, thermodynamic, radiative and chemical processes (Bergen et al., 2019). However, most
physics-guided ML publications experiment on toy problems in low-dimensional settings and
develop models which are not directly applicable on complex settings and real-case scenario.
Despite the promise shown by early proof-of-concept studies, the community has been slow to
adopt ML more broadly. We inscribe our thesis within this burgeoning research challenge by
studying how deep learning models developped for academic cases may apply to real settings.
This work is at the frontier of real-world research. We conduct an incremental study and explore
the potential of deep learning to complete physical models of the oceanic system. The next
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section is devoted to a brief overview of the ocean modeling challenges. Then, we introduce more
thoroughly this thesis subject and contributions.

1.2 ML FOR EARTH SYSTEM MODELING

This thesis aims at advancing towards bridging the gap between climate sciences and deep
learning. To assess the ability of our models to capture real-world phenomena, we tackle problems
in the field of physical oceanography, that is the study of the physics of marine systems, which is
necessary to sustain life on our planet and plays a critical role in Earth’s climate.

1.2.1  The Ocean within the Earth System

The climate is driven by the energy that we receive from the sun. This energy is unevenly
distributed over the globe, the tropics are favored over the poles. In this context, the ocean plays
two major roles: 1. thanks to its high heat capacity, the ocean’s tropical waters absorb the excess of
radiation from the sun. Around the equator, the ocean thus acts as a massive heat reservoir. 2. the
non-uniform heating leads to temperature differences throughout the globe, which the ocean
acts to reduce by transporting heat from the warm tropics to the cool poles. In other words, the
ocean moderates the climate by taking in heat when the overlying atmosphere is hot, storing that
energy and releasing heat when the atmosphere is cold (Vallis, 2011). It acts both diurnally (i.e.,
the day-night contrast) and annually (the seasonal cycle) (Edenhofer et al., 2011). The higher
heat capacity of oceans explains why maritime climates tend to be less extreme than continental
ones, with smaller day-night and winter-summer differences.

The heat is redistributed thanks to the large-scale ocean circulation : weather patterns are thus
mainly driven by ocean currents (Vallis, 2011), i.e. patterns of water movement created by surface
winds but also partly by temperature and salinity gradients, Earth’s rotation, and tides. For
instance, the famous Gulf Stream moves from the tropics northward through the Atlantic. There
it bathes the shores of Western Europe, where the climate is surprisingly mild for that latitude.
The ocean circulation thus plays a critical part of modeling the overall earth system (Chassignet,
Le Sommer, and Wallcraft, 2019) and has been a major field of study for years.

1.2.2  Large Scale Ocean Circulation

The motion of the ocean is described by ocean currents. Those are driven by three main fac-
tors: 1. tides 2. wind 3. heat and salinity. Whereas tidal currents are strongest near the shore,
in bays and estuaries along the coast, wind is responsible for

surface motions on global scale, e.g. the Gulf Stream in the / P \\

North Atlantic ocean or the Kuroshio current off the coast of / i’ A\
Japan. Taken together, larger and more permanent currents e .
make up the systems of currents known as gyres. Figure 1 \ ‘ /
shows that major gyres flow clockwise in the northern hemi- \ /
sphere and counterclockwise in the southern hemisphere. This T

is due to the Earth’s rotation: because the Earth rotates on its Figure 2: The Coriolis effect.

axis, circulating air (i.e. wind) is deflected toward the right in From NOAA (2022).
the Northern Hemisphere and toward the left in the Southern
Hemisphere. This deflection is called the Coriolis effect(Figure 2). Finally, changes in heat and
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Figure 1: There are five major gyres: the North and South Pacific Subtropical Gyres, the North and South
Atlantic Subtropical Gyres, and the Indian Ocean Subtropical Gyre. From (NOAA, 2021).

salt content constantly change the density of ocean water: while cold and salty water is dense
and sinks to the bottom of the ocean, warm and fresh water surfaces. Heat and salinity are thus
responsible for the deep circulation, known as the thermohaline circulation (“thermo” referring
to temperature, “haline” to saltiness). The sinking and rising of ocean waters up and down on a
global scale creates what is known as the “great ocean conveyor belt”: it takes about 1500 years
for water particles to travel across the entire planet.

1.2.3  Brief overview of ocean modeling

Ocean modeling has a long history. First studies were rather experimental: the first map of
the Gulf Stream was published in 1769 (Figure 3), and the first wind and currents map for
the northern Atlantic Ocean was established in 1848 (Figure 4). More theoretically, Laplace
(1799) described the ocean tides in 1799. Some years later, Navier (1823) and Stokes (1880)
express the conservation of mass, momentum and energy for Newtonian fluids. Those laws are
famously referred to as Navier-Stokes equations. A major breakthrough was achieved in 1901,
when Abbe (1901) proposed to use the laws of physics to forecast the weather. Predicting the
state of the ocean could be treated as an initial value problem of mathematical physics, wherein
future is determined by integrating the governing laws, starting from the observed current
state. However, because of the mathematical intractability of obtaining analytical solutions to
Navier-Stokes equations, it wasn’t until the second half of the 20th century that Bryan (1969)
proposed numerical solutions, using spatial and temporal discretization. This lays out the basis
for computational fluid dynamics and the underlying principles of the algorithmic formulation
of ocean circulation models, i.e. a numerical model that represents the movement of water in the
ocean (Chassignet, Le Sommer, and Wallcraft, 2019). Nowadays, ocean general circulation models
describe physical and thermodynamical processes in the ocean based on a three-dimensional grid.
NEMO (“Nucleus for European Modeling of the Ocean”) is a state-of-the-art modeling framework
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Figure 3: While searching for the legendary Fountain of Youth, the Spanish conquistador Juan Ponce de
Leén landed in Florida in 1513. On his way, he encountered a very strong sea current off the coast that
prevented his ships from moving forward. He had just come across the Gulf Stream. This current was then
reported by many other sailors, until Benjamin Franklin (1706-1790) made the first scientific studies: he
measured its temperature on several occasions during his Atlantic crossings, and published the first map of
the Gulf Stream in 1769.

for research activities and forecasting services in ocean and climate sciences, developed in a
sustainable way by a European consortium (Madec et al., 2017).

1.2.4 Case Study

Because ocean currents are moving bodies of water, they result in changes in the ocean surface. In
turn, this alters ocean surface topography by a few tens of centimeters to more than a meter. For
instance, in the northern hemisphere, the gyre rotates clockwise, bringing water into the sea level,
which thus rises. Since the early 1990s, global surface currents velocity fields are inferred from
satellite observations of sea surface heights (SSH) (Dohan and Maximenko, 2010), i.e. altimetry
data(see Figure 5). Such approximation is used to estimate the dynamics of slow, large-scale
currents (Sinha and Abernathey, 2021), i.e. spatial and temporal resolution of about respectively
50km and a week. However, the dynamics of currents is influenced by phenomena operating
at much finer scales of the order of 1km x lday (Lévy, P. Klein, and Treguier, 2001). Whereas
altimetry does not provide any information on those thin structures, high resolution satellite
imagery could be used to infer fine scale spatio-temporal evolution. Indeed, SST and surface
chlorophyll satellite images are now available daily at kilometric resolution. In this thesis, we
consider ML algorithms as an alternate route to infer surface currents from high resolution
satellite observables quantities such as the Sea Surface Temperature (SST). More specifically, we
explore the dependencies between the SST and the currents velocity fields and investigate hybrid
physico-statistical models to represent the evolution of both the observable SST and unobserved
currents velocity.

9
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Figure 4: In 1848, Matthew Fontaine Maury, an officer from the US navy considered as the father of modern
oceanography, systematically evaluated recorded information to create the first wind and current map for
the northern Atlantic Ocean.
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Figure 5: Sea Surface Height (colour contours) and geostrophic velocity (black arrows) over the Mozambique
Basin on 17 June 2013. Surface currents travel between the troughs and hills of the sea surface height.
From Lamont, Barlow, and Brewin (2018).

Note that, even if we rely on this concrete problem, this thesis is above all methodological.
Indeed, we propose very general models applicable to many physical problems. Nonetheless, to
understand the intuition of the presented models, we will refer to the prototype problem, the
modeling of marine currents from SST data with neural networks, throughout our work.

1.3 CONTRIBUTIONS

We aim at modelling ocean currents velocity fields from sea surface temperature observations
using deep learning. As we focus on a real problem, ensuring the physical soundness of our
results is essential. However, Kirchmeyer et al. (2022) and Willard et al. (2020) underlines the
lack of generalizability of black-box ML models and their inability to produce physically sound
results. As ML alone ignores the fundamental laws of physics and can result in ill-posed problems
or non-physical solutions (Alber et al., 2019), we will rely on hybrid models, using both prior
physical knowledge and machine learning. In this field of research, one of the main challenges is
to solve the ill-posedness inherent to the decomposition between physical and data-based models.
For instance, this can be done by incorporating physically motivated constraints in the learning
of hybrid models, e.g. through regularization penalties. To complete prior physical knowledge
with a data-driven component and ensure interpretability of the decomposition, we first consider
a simplified model of the ocean dynamics. Within this context, we introduce two contributions.

REGULARIZING HYBRID DYNAMICAL MODELS Incorporating physical knowledge, our frame-
work considers the dynamics of the observed SST and its known dependency to the unknown
velocity. Looking at real ocean dynamics equations, the current velocity dynamics should follow
an ordinary differential equation (ODE) (defined in chapter 2). To cope with the ill-posedness
inherent to hybrid modeling, we introduce a dynamical regularization on the estimated velocity,
enforcing it to follow an ODE. This contribution, detailed in chapter 3 of this thesis, led to the
following publication in an international conference workshop.

11
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Marie Déchelle et al. (2020). “Bridging Dynamical Models and Deep Networks to
Solve Forward and Inverse Problems”. In: NeurIPS workshop on Interpretable Inductive
Biases and Physically Structured Learning.

FRAMEWORK FOR THE LEARNING OF HYBRID MODELS  Even though it enables sound experimen-
tal results, the proposed regularization has no theoretical basis and shall in no case be sufficient
to ensure well-posedness in the hybrid approach. To recover well-posedness and interpretability
in the learning of hybrid models, we propose to control an upper bound of the prediction error
and introduce a novel alternate-optimization algorithm for minimizing this bound. This contri-
bution, detailed in chapter 4 of this document, led to the following publication in an international
conference.

Jérémie Dona*, Marie Déchelle*, Marina Levy, et al. (2021). “Constrained Physical-
Statistics Models for Dynamical System Identification and Prediction”. In: Interna-
tional Conference on Learning Representations.

REAL CASE sTUDY Finally, we confront the proposed framework to the modeling of real ocean
dynamics. We study the limitations of the previous approach and propose an adaptation of
our model, incorporating new additional sources of physical knowledge. This improves the
performances compared to the vanilla theoretical model. This contribution is detailed in the
chapter 5 of this document.

This thesis is divided into three parts. Part i motivates our work: it encompasses chapter 1 and
chapter 2. Whereas the former was a global introduction, the latter explains the current state of
the literature and the necessary background for the description of our contributions. We then
introduce our theoretical approaches, proposed in part ii, divided into chapters 3 and 4, and
then a confrontation to real world data, proposed in part iii, in which chapter 5 explores the
application of the derived models to real-world like simulations. Finally, supplementary material
for chapters 2 to 5 is given in appendices A to C.



BACKGROUND AND RELATED WORK

In this chapter, we expose and contextualize the principal notions that are employed and explored
in the rest of this work. We first address in section 2.1 the relationship between physics and deep
learning: physical modeling is based on the numerical resolution of differential equations, on
which we give a brief overview; tackling physical modeling with deep learning encompasses
many issues, which we present with the associated architectures. Then, in section 2.2, we give
an overview on the variables and equations used to describe ocean surface dynamics. We also
introduce our datasets and the simplifying assumptions on which they rely. Finally, in section 2.3,
we introduce the formalism, notations and objectives of this thesis.

2.1 DEEP LEARNING AND PHYSICS

We give in section 2.1.1 an overview of differential equations used together with neural networks
in the context of temporal modeling, a topic that has been increasingly studied throughout recent
years. From such a perspective, we review the various neural networks architectures designed to
learn dynamics associated to ODEs. We also briefly outline the solving of differential equations
with neural networks. Then, in section 2.1.2, we address the incorporation of physics into the
learning framework with a focus on hybrid modeling. In section 2.1.3, we review the main issues
ML faces when handling real data. Finally, we give insights on climate neural models.

2.1.1  Neural Differential Equations

Differential equations (DEs) characterize the evolution of systems in many fields such as physics,
chemistry and biology (Alber et al., 2019). Physical modeling traditionnally relies on under-
standing of the physical phenomena, which are mathematically formalized with Ordinary or
Partial Differential Equations (ODE/PDE). While ordinary differential equations are functions of
a single variable, partial differential equations depend on several dimensions. As methods exist
to reduce PDEs to a single continuous dimension and thus assimilate them to ODEs, we will
only give a theoretical introduction to generic ODEs. We will then present the link established
between ODEs and Neural Networks.

Ordinary Differential Equations (ODEs)

An ordinary differential equation (ODE) is a relation that contains functions of only one inde-
pendent variable, in this thesis that is the time ¢, and one or more of its derivatives with respect

to that variable, i.e. % (t). With y : [0,7] — R? an unknown function and f a function of ¢, y, and
derivatives of y, an ODE is expressed as

dny d 42 4dn-t
= f(Ly) 5 ) (1)
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Considering
y: Ré— R

d d2 dn—l (2)
Yy = <y(t>> CT%; dTga AR dtn—%)

we can rewrite eq. (1) into

dy _

2ty (3)
In the rest of this document, to simplify notations, we write

dy

L=t (4)

Equation (4) associated with an initial condition y, € R™ form an initial value problem (IVP):

@ = f(t,y)
y(to) = Yo (5)

As soon as f is continuous in ¢ and Lipschitz continuous in y, the Picard-Lindel6f theorem
guarantees that eq. (5) admits a unique solution Let y* be this solution. We can then define the
flow ¢, (illustrated in Figure 6) associated to eq. (5) such that:

¢+ [0,T]xR" — R"

6
ta Yo Hy*(t) ( )

Usually, solutions of IVPs does not have a closed-form and are approximated using numerical
schemes, the simplest one being the Euler Method (Butcher, 2016). Given an initial condition
(to,Yo) € [0, T] x R™, this method provides a sequence (y; ), of approximations of the value y(t;)
that the solution of the equation corresponding to this initial condition takes. The approximations
y, are given by the recurrence relation

Yir1 = Y + (L — ) [, 9)

Reindexing y in the time domain, this can be translated into:
Yerar =Y + ALf(ty,) (7)

When solution and derivative values are specified at more than one point, we talk about boundary
value problem (BVPs). However, there is no general theory for the existence and uniqueness of
BVPs solutions.

Including the dependance of y to other variables such as space, eq. (4) becomes a partial differen-

tial equation (PDE), and depends on partial derivatives e In R™ with coordinates (z, 5, ..., ,,),
iy
we write the first order derivatives as

o 0 0
v_<a‘/1:17a/1:27...7a1:n> (8)

As is the case for ODEs, analytic solutions can usually not be obtained. PDEs resolution also
rely on numerical methods, such as finite differences, finite volums, finite elements or spectral
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Figure 6: Illustration (in dashed lines) of the continuous flow of an ODE, with a particular solution that is
plotted with a solid thicker line. Each dashed lines correspond to a different initial condition y,. The black
arrow represents the tangent to the highlighted solution, which is fully determined by its derivative and
initial condition according to variants of the Picard-Lindel6f theorem (Demailly, 2016). In this example, f

is defined as f: (t,y) — }(cost — y), the ODE admitting as solutions functions y.: ¢t + £ + sinct for all
C' € R over the time domain [0, +oo] .
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methods. A necessary condition for the convergence of the explicit time integration methods is
given by the Courant-Friedrichs-Lewy (CFL) condition, involving the time-step At and length
interval Az. However, some numerical schemes, such as the semi Lagrangian scheme, make it
possible to avoid such conditions. Unlike Eulerian scheme, relying on time discretization of the
time derivative, the semi Lagrangian scheme relies on the constancy of the solution of a PDE
along a characteristic curve. Further insights on such a scheme are given in appendix A.1. In our
work, we consider PDEs with boundary value conditions, which we develop in section 2.2 and
aim to learn their associated dynamics. This is a longstanding task in the ML community, on
which we give an overview below.

Learning Dynamics with Neural Networks

Within this section, we consider dynamical systems obeying an ODE or a PDE. In the case of
a PDE, the PDE is considered to be transformed into an ODE, for example with the method
of lines (Hamdi, Schiesser, and Griffiths, 2007). This consists in discretizing the space and
considering only the time variable. This allows the PDE to be replaced by an IVP or BVP described
by a set of ODEs. We thus assume that the physical process can be accurately modeled by a
differential equation of the form of eq. (4), i.e. it follows a dynamics f:

% = ft,y).

In this context, our objective is to forecast the system state, i.e. to make prediction of the system
state y: from a sequence of observations y,_..,, one aims at predicting v, , ;... ,-. To that purpose,
one can learn the dynamics of the studied system by parameterizing f with a neural network f;,.
Learning f, amounts to approximating f from eq. (4) through a parametric class of functions
F (), large enough to represent a wide variety of dynamics f. Note that, as the literature in this
area is very extensive, this section is not intended to be exhaustive.

To learn dynamics from data is a longstanding problem within the ML community (Alvarez,
Luengo, and Lawrence, 2013; Crutchfield and McNamara, 1987) and this has first been addressed
with Recurrent Neural Networks (RNN). Indeed, Funahashi and Nakamura (1993) showed that
any finite trajectory associated to a dynamical system can be learned with RNN. These models
have shown impressive results on dynamical systems learning such as in Jia, Zwart, et al. (2021)
and Wan et al. (2018).

A number of works have noticed the links between spatial derivatives in PDEs and convolutional
networks (Z. Long, Lu, and Bin Dong, 2019; Z. Long, Lu, Ma, et al., 2018b; Ruthotto and Haber,
2020) due to the relationships between convolutions and finite difference approximation methods,
thereby explaining the utility of convolutions even in latent spaces when it comes to predicting
complex spatiotemporal phenomena (Ayed et al., 2020; X. Shi et al., 2015).

While all the aforementioned papers rely on a regular grid sampling, other approaches rely on
Graph Neural Networks (GNN) (Zhou et al., 2020) to address non uniform sampling. For exam-
ple, Brandstetter, Worrall, and Welling (2022) and Pfaff et al. (2020) modeled high-dimensional
dynamics with GNN.

Recently, there has been a regain of interest for neural prediction of dynamical systems with
the interpretation of ResNets as dynamical systems. This opened the door to several studies
on training stability and the understanding of deep learning through the lens of physics. We
introduce below this topic.
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RESIDUAL NEURAL NETWORKS To overcome vanishing gradient in deep networks, He et al.
(2016) proposed to introduce identity mappings, so that each layer only fits a residual mapping.
The activation of the kth layer of ResNet is thus defined as

Yes1 = Y + f(Yk: Of) (9)

where £ is the kth layer of the network. With At = 1 and k integration step, this equation is
similar to the Euler scheme defined in eq. (7), even though the use of ResNet for ML tasks
was not initiated by the analogy with numerical schemes. As previously stated, it was rather
considered for its stability during training: solving vanishing gradient problems enabled very
deep architectures (Zaeemzadeh, Rahnavard, and Shah, 2020). It was later that Weinan (2017)
established that residual neural network appeared to follow the modelling pattern of an ODE.
Finally, the ODE eq. (4) can be formulated as the continuum limit of the ResNet associated with

eq. (9)-

NEURAL oDE This idea was exploited by R. T. Q. Chen et al. (2018), who leveraged ODEs to
model the continuous temporal evolution of NN hidden states, y, given as initial condition the
input of the NN fy, y,:

% = fe(t7y> (10)
y(t =0) =y,

This is possible as standard architectures of neural networks are Lipschitz-continuous (Gouk
et al.,, 2021) and we are thus in the conditions of the Picard-Lindelo6f theorem (see section 2.1.1).
The idea behind Neural-ODE is to view the transformation made by each layer of the neural
network f, as an evolution of the hidden state through time. In other words, R. T. Q. Chen et al.
(2018) consider the dynamics of the hidden state with respect to the network depth, and take the
analogy between ResNet and numerical schemes a step further, involving the continuous limit of
a ResNet. From such perspective and considering the depth of a neural network as continuous,
learning f, can be reformulated as modeling hidden states trajectories, i.e. parameterizing the
hidden state dynamics.

First, eq. (10) is solved forward in time with any solver, for instance Runge-Kutta. Then, relying on
the adjoint method (Pontryagin, 1987), i.e. a method to compute gradients, the parameters can be
optimized in two ways: optimize-discretize (opt-disc), the original approach proposed in R. T. Q.
Chen et al. (2018), or discretize-optimize (disc-opt). With the opt-disc method, the gradients are
computed analytically. Although this has the advantage of not requiring a differentiable solver
and allows an efficient use of memory, it can lead to numerical errors in the evaluation of the
gradients, when discretizing backward (Gholami, Keutzer, and Biros, 2019). Using the disc-opt
method avoids the above problem: it computes the gradients based on the explicit discretization
of the ODE (Gholami, Keutzer, and Biros, 2019; Onken and Ruthotto, 2020). This can be done
using automatic differentiation and amounts to backpropagation. However, as backpropagation
is done through the ODE solver, this one should be differentiable.

Whereas the new paradigm of Neural ODE is memory-efficient and allows us to learn models
that are as close as continuous-time as possible, it is prone to numerical errors inherent to ODE
solvers (Zhuang et al., 2020). Note that Neural-ODE has been used not only for modeling
temporal data, but also for static data, such as in image classification and generation (R. T. Q.
Chen et al., 2018; Dupont, Doucet, and Teh, 2019). In this case, time ¢ is a continuous abstraction
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of the depth of a neural network: inputs are given at time ¢ = 0 and outputs are returned at some
timet = T.

NEURAL NETWORKS MOTIVATED BY NUMERICAL ANALYSIS R.T. Q. Chen et al. (2018), He
et al. (2016), and Weinan (2017) paved the way to the exploration of the continuum between
mechanistic and ML models. From the established links between ODE/PDE and neural networks,
a flourishing literature has thrived, ranging from the development of stable architectures for deep
neural networks (Haber and Ruthotto, 2017) to the reinterpretation of networks such as ResNet,
PolyNet (X. Zhang et al., 2017), FractalNet (Larsson, Maire, and Shakhnarovich, 2016) and
RevNet (Gomez et al., 2017) as different numerical discretizations of differential equations (Lu et
al., 2018). Such considerations finally led to the neural implementation of sophisticated numerical
schemes (Ruthotto and Haber, 2020).

Even though our work derives from the neural representation of ODE, it is not part of this
research theme and the interpretation of neural networks training with numerical analysis in
the prism of classical ODE resolution is out the field of this thesis. However, we will use the
networks presented above for their connection with the physical world and their interpretation
in dynamical terms. We use such insights to model physical phenomena with neural networks.

While the approach just developed is prior-free and relies only on ML, another approach includes
the form of the differential equation as prior knowledge. The introduction of physical knowledge
into models has indeed recently become a hot topic.

Solving differential equations with neural networks

Solving differential equations with neural networks is a long-standing task (Lagaris, Likas, and
Fotiadis, 1998; H. Lee and Kang, 1990) that has recently been reintroduced with Physics-Informed
Neural Networks (PINNSs) (Raissi, 2018; Raissi, Perdikaris, and G. E. Karniadakis, 2019). This
approach assumes that the PDE is known, i.e. the dynamics f as well as initial or border conditions
in eq. (5) are known. The solution is parameterized with a neural network yy, i.e. y, is learned to
approximate y obeying to eq. (5). In fact, this approach builds a surrogate model to solve the
PDE and replace traditional numerical simulations. Such methods present the advantage to be
mesh-free approaches. However, some drawbacks come from their difficulty to represent high
spatial and temporal frequencies and to be grid-dependent, so that they cannot generalize over
new geometry. To overcome the first issue, Sitzmann et al. (2020) uses activation functions to
recover higher-order derivatives and thus high-frequency information. Brandstetter, Worrall, and
Welling (2022) proposes a solver based on graph neural networks, which enables to generalize
to new sampling.

Note the shift of paradigm with section 2.1.1: whereas Ayed et al. (2020) and Yin, Le Guen,
et al. (2021) use Resnet and Neural-ODE to learn the system trajectories, Raissi, Perdikaris, and
G. E. Karniadakis (2019) consider f known and take a physicist standpoint to solve the ODE.
Whereas Physics-informed machine learning has been studied in specific cases for weather and
climate modelling (Kashinath et al., 2021), we rely on the approach developed previously i.e. we
do not focus on approximating the solution to eq. (4) but rather learn its dynamics f.
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2.1.2  Physics-guided Deep Learning and Hybrid Modeling

While Neural ODE and ResNet provide an interesting learning setting, the learned function
remains nonetheless difficult to interpret. Indeed, recent works show that a partially observed
physical system can be subject to accurate prediction by a ResNet-like integration method but the
learned hidden state violates physical principles (Ayed et al., 2020). To palliate such observations,
one can enforce physical properties by considering additional penalty besides the sole prediction
loss. Since the two pioneering works Bezenac, Pajot, and Gallinari (2019) and Karpatne et al.
(2017) constraining neural networks to be consistent with physics using prior physical knowledge
for a prediction task, approaches to integrate physical knowledge have become commonplace.
These are thoroughly reviewed in Willard et al. (2020).

To integrate physical principles into ML models, various methods exist. Increased interpretability
can be obtained via physics-guided loss functions. For instance, Z. Long, Lu, and Bi Dong
(2019) and Z. Long, Lu, Ma, et al. (2018a) impose constraints on the forward model by enforcing
convolutional filters to approximate euclidean differential operators while Geneva and Zabaras
(2020) impose constraints on learned residual.

Physical knowledge may also be incorporated within the design of architecture. Recently, some
works leveraged data specific knowledge to shape the prediction function, for example imposing
specific fluid dynamic (Raissi, Babaee, and Givi, 2019) or Hamiltonian constraints (Toth et al.,
2020). Greydanus, Dzamba, and Yosinski (2019) proposed structural constraints on NN forcing
them to obey the Hamiltonian formalism and integration schemes, thus learning to simulate
mechanical systems obeying a conservative principle such as the coordinate and momentum
variables of an ideal pendulum from pixel observations. This approach to regularize NN has
been generalized to Lagrangian motions (Cranmer et al., 2020).

The originality of our approach is to leverage model-based prior knowledge by augmenting it
with NN-parameterized dynamics, which belongs to the broader class of hybrid ML/MB models
(where MB stands for physical model-based).

Hybrid Modeling

Grey-box or hybrid modeling was first explored in the 1990’s(Psichogios and Ungar, 1992; Rico-
Martinez, J. Anderson, and Kevrekidis, 1994; Thompson and Kramer, 1994). Such models take
into account strong inductive biases to model the evolution of a system state over time, combining
physical models relying on ODE/PDE (hereafter referred to as the MB part) and data based
models (hereafter referred to as the ML part). Hybrid modeling rely on two tasks: identification of
the parameters of the physics-based part, and prediction of the system state. In the last few years,
they have received a regain of interest in the machine learning community. Linial et al. (2021),
Saemundsson et al. (2020), and Tait and Damoulas (2020) use variational encoding (Kingma and
Welling, 2013) to sample the space of initial conditions and parameters to solve both identification
and prediction. Mehta et al. (2020) use Neural ODE combined with prior knowledge in the
forward model and fully observed state to recover unknown parameters.

Hybrid approaches offer several benefits. They allow for alleviated computational costs for fluid
simulation (Kochkov et al., 2021; Tompson et al., 2017; Wandel, Weinmann, and R. Klein, 2021).
They can also be used to complete a physical model: Y. Long, She, and Mukhopadhyay (2018)
and Saha, Dash, and Mukhopadhyay (2020) both use data-driven networks to learn additive
perturbations to a given PDE. Mehta et al. (2020), Saha, Dash, and Mukhopadhyay (2020), San
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and Maulik (2018), and Young, Liu, and M.-C. Wu (2017) also study the learning of a physical
model augmented with a statistical component.

Since inverse problems are inherently ill-posed (Sabatier, 2000), the imposition of prior knowledge
or regularisation is necessary to ensure sound parameter identification (Stewart and Ermon,
2017). For example, Bezenac, Pajot, and Gallinari (2019) estimates a velocity field from data
under the constraint of an advection-diffusion PDE to derive a forecast scheme. However, most
of the above approaches do not address either the uniqueness of the decomposition between
MB and ML or the plausibility of the parameter identification. The challenge of proper MB/ML
cooperation has been raised as a limitation of grey-box approaches, but has only recently been
specifically addressed. For instance, to ensure uniqueness of the solution, Ardizzone et al. (2019)
use invertible neural networks.

APHYNITY In our work, we take from the formalism introduced in Yin, Le Guen, et al. (2021),
which specifically addresses the uniqueness of the MB/ML decomposition. Yin, Le Guen, et al.
(2021) propose to decompose the dynamics into two components, adding both ML and MB
models, such that
f=1r+/a

where f is the overall unknown dynamics, f,, is the physical MB dynamics and f,, accounts for
the data-driven component. In this context, the Aphynity framework enables physically plausible
estimates of the unobserved states, opening the way to well-built combinations between neural
estimation and numerical scheme of partial differential equations. To ensure that f; only plays a
complementary role, i.e. that it models only the information that cannot be captured by fp, Yin,
Le Guen, et al. (2021) proposes the following optimization problem:

dXx
min subjectto VX €D, Vi, t =
pomin I.fall j i

(fp + fa)(Xp)-

Yin, Le Guen, et al. (2021) show that if 7, is a proximinal set, there exists a unique decompo-
sition minimizing such optimization problem, as well as the existence and uniqueness of the
decomposition for looser conditions.

In our work, we make two assumptions: 1. the MB component, i.e. the PDE only provides partial
incomplete information about the physical process, 2. the observations are partial meaning that
we do not observe the whole state of the system. This is a realistic setting for many applications
invloving physical priors and ML. Up to our knowledge, this setting has not been handled yet.
Note that most existing work consider that the whole system state is observed (with the excpetion
of Ayed et al. (2020)). We generalize latter approaches and, as (Yin, Le Guen, et al.,, 2021),
we address the well-posedness in the learning of hybrid ML/MB models through additional
regularization on the estimated parameters of the physical part. Finally, contrary to most papers
listed in this section, we test our proposed models on complex data, coming from ocean modeling
and introduced in section 2.2.

2.1.3 Machine Learning for Complex Data

The last few years have seen an exponentially increasing number of deep learning applications
to geophysics through the use of earth observation data (Bergen et al., 2019). They raise new
concerns, such as the high dimensionality of the data, the complexity of the phenomena...Most
papers experiment on so-called toy dataset, or on low-dimensional phenomena. Even though this
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appears as a necessary step in the confrontation between data-driven models and the physical
world, it now seems important to reach the next step, and to face real-world problems.

ML AND SCIENCE R. Stevens et al. (2020) give an overview of the scientific fields where ML
could be of help and summarizes an Al roadmap for the coming decade, proposing opportunities
for accelerating progress. The challenges concern various fields, from chemistry and materials
to biology and life sciences, from engineering and manufacturing to earth and environmental
sciences. Some works explore the direct application of off-the-shelf models to real-world data.
For instance, while Jia, Willard, Karpatne, Read, Zwart, Michael Steinbach, et al. (2019) consider
lake temperature, PINNs (Raissi, Perdikaris, and G. E. Karniadakis, 2019) have been investi-
gated to simulate incompressible laminar and turbulent flows (Cai et al., 2022; Jin et al., 2021).
These studies could pave the way for a massive reduction in the costs of computational fluid
dynamics (Kochkov et al., 2021), widely used in weather and climate modeling.

ML FOR WEATHER AND CLIMATE MODELING The difference between weather and climate
models lies in the scale and complexity of prediction: while weather prediction focuses on
specific areas and short periods of time, climate models are broader and aim to predict over
longer periods of time. Both rely on data assimilation, and researchers are now asking whether
ML techniques could help with such models. As ML emerges as a viable alternative to physical
models in weather forecasting, many papers have asked whether artificial intelligence methods
will eventually replace current numerical weather models and data assimilation systems (Chantry
et al., 2021; Schultz et al., 2021; Watson-Parris, 2021). Today, this challenge seems to be met:
purely ML methods Bi et al. (2022) and Lam et al. (2022) outperform state-of-the-art numerical
weather prediction (Barros et al., 1995) for the first time. For climate modeling, Monteleoni et al.
(2013) provide a proof of concept for the use of machine learning for climate science, with the
expectation that it will greatly accelerate discoveries in this area of research. For example, ML
could help with climate change attribution (A. Ganguly et al., 2014). The exploitation of massive
climate data could also lead to significant advances in the prediction of climate extremes. Reliable
projections at shorter, more localised time scales would be more easily exploited by policy makers
and thus advocate for adaptation and action. In this regard, downscaling (Groenke, Madaus, and
Monteleoni, 2020) and subgrid parameterization (Bolton and Zanna, 2019; Frezat et al., 2022)
are commonly tackled problems in climate modeling with ML. Ling, Kurzawski, and Templeton
(2016) studies the modeling of turbulent processes, which also has great applications in ocean
processes in climate models (Zanna and Bolton, 2021).

One major challenge for ML is the tricky issue of generalization, i.e. could neural networks infer
system behavior in regions of the phase space not included in the training dataset.

DEALING WITH GENERALIZATION  When handling real-world data, one main problem is over-
fitting. Indeed, data-driven approaches to modeling physical systems fail to generalize to un-
seen systems that share the same general dynamics, but correspond to different physical con-
texts (Kirchmeyer et al., 2022). In other words, deep neural networks are usually trained with
closed-world assumption: the test data distribution is assumed to be similar to the training data
distribution. However, when employed in real-world tasks, this assumption does not hold. For
instance, the model could face new initial conditions or new parameters in the leading ODE.
To generalize, the model should both interpolate, e.g. generalize to new initial conditions, and
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extrapolate, e.g. generalize to new ODE parameters (what we hereafter refer to as new zones).
Whereas ODE are not data specific, a major challenge in ML applied to real-world data is thus the
generalization to Out-of-Distribution (OOD) data: in order to make models trained on synthetic
datasets robust enough to function in real world applications it is necessary to ensure that they
capture the variability of real world data.

In that perspective, meta-learning methods have recently been considered for dynamical systems
as in (Finn, Abbeel, and Levine, 2017; S. Lee, Yang, and Seong, 2021). Their objective is to train
a single model that can be quickly adapted to a novel environment with a few data-points in
limited training steps. Kirchmeyer et al. (2022) and Yin, Ayed, et al. (2021) also consider the
generalization across environments when modeling dynamical systems from real-world data
samples. To be able to adapt to new dynamics, they take from multi task learning (C. Zhang
et al., 2021) by learning to condition the learned model on domain information. Such techniques
are outside the scope of our research, but we will draw on them in part iii.

2.2 OCEAN SURFACE DYNAMICS DATA

Throughout this thesis, we work on data representative of the ocean surface dynamics. In this
section, we first introduce some basic notions for the description of such dynamics (sections 2.2.1
and 2.2.2). We then introduce the data we have been working with. As a first step, we initially
focus on synthetic data, to establish a methodology and derive theoretical guarantees for the
proposed models. We then confront our models to an ocean general circulation model (OGCM) of
the dynamics in the North Atlantic Ocean (NATL60). We present those two datasets respectively
in sections 2.2.3 and 2.2.4.

2.2.1  Ocean variables

Oceanography aims at understanding ocean processes. To that end, one studies the evolution of
ocean physical properties, such as its temperature T, its salinity S, its density p, the chlorophyll
concentration, the velocity U = (u, v, w) (Chassignet, Le Sommer, and Wallcraft, 2019). Such
fields are four-dimensional, i.e. they evolve through time ¢ and tri-dimensional space x, y, z. To
access a discrete sub-sampling of such quantities, past decades have seen an increase in ocean
observation systems, either from in-situ measurements, e.g. thanks to floats or buoys (Roemmich
et al., 2009), or through remote sensing (Esaias et al., 1998). Nowadays, T, S and the chlorophyll
concentration can be observed with satellites, at a 1km x 1day resolution at the sea surface.
Note that the velocity horizontal components u and v are not directly accessible. They are
instead inferred from remote observations of the sea surface height (SSH), at a 50km x 1week
resolution. Despite great advances, observational systems provide limited and incomplete
information. Especially for the deep ocean, i.e. below a water depth of over 200m, only scarce in
situ observations are available (Levin et al., 2019).

2.2.2  Ocean equations

The ocean exchanges fluxes of heat, fresh water, salt, and momentum, for example through wind
stress in the case of atmosphere-ocean interface, with the solid earth, the continental margins,
the sea ice and the atmosphere. Such processes can be described to a good approximation by the
primitive equations, i.e. a set of nonlinear partial differential equations. Under the assumptions
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described in Madec et al. (2017), those include the momentum balance, the hydrostatic equilib-
rium, the incompressibility equation, the heat and salt conservation equations. In this order, they
write as:

ou

E—F(U-V)U—kg/Vh:v/\U—i-DU—i-FU (11a)
dp
a7+pg—0
V-U=0
%t—r:—v~(TU)+DT+FT (11b)
%S:—V~(SU)+DS+F5

where 7 is the Coriolis parameter, h the depth of the surface layer obtained from sea surface
height (SSH) observations, ¢’ the reduced gravity which takes the stratification in density of the
ocean into account such that g’ ~ ¢.1073, p is the pressure, p is the density, D7/U/S refer to small
scale processes such as diffusion and F'7/U/S balance the surface forcings, i.e. the exchanges at
the surface of kinetic energy, heat and salinity. In all equations, the scalar product of the velocity
U and the V operator represents the advection phenomenon: for instance, V - (T U) depicts the
advection of Tby U. v A Uis the cross product of v and U, depicting for the Coriolis effect.

The ocean circulation, that is the current velocity fields dynamics, are now realistically modeled
in tri-dimensional structured models such as NEMO (Madec et al., 2017), relying on numerical
solutions to the above primitive equations. Within this study, we work on data from such models.
This frees us from considerations inherent to observations, and limitations such as the cloud cover
while providing us a realistic setting. Besides, we work on surface data, i.e. we only consider the
two-dimensional surface of the ocean generated by (z,y), hereafter denoted T, U = (u,v) and F'
for respectively the temperature, the velocity and the forcings. We consider as variables of interest
the temperature 7T'and the surface currents velocity fields U = (u, v), and thus only dynamics on
Tand U from egs. (11a) and (11b) i.e. we consider the advection of the temperature by the surface
currents velocity fields. In particular, we do not represent the vertical velocities, responsible for
the movements between the ocean surface and the lower strata. In a two-dimensional setting,

V - (T'U) refers to the advection of a scalar quantity T'by a velocity field U = (u, v) and writes as :

V-(TU) = g—T u+ % v. We first work on a simplified representation of ocean dynamics, relying
2y

on simplifying assumptions, which we review in the following.

2.2.3 Synthetic dataset

For slow movements (that is of characteristic time superior to a day and of spatial dimension

superior to 20km) incompressibility is assumed, i.e the turbulent terms are null: (U - V)U = 0.

Besides, diffusion is omitted. Whereas T'is observed by satellites, U is not known. However,

the Sea Surface Height (SSH) could be used to compute coarse estimates of U. Indeed, under
ou

hypotheses such as stationarity (E = 0), incompressibility ((U - V)U = 0), forcings can be

omited. In this case, eq. (11a) can be rewritten into:

YyAU =g'Vh (12)
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In this case, the SSH h can be regarded as a stream function i.e. a function whose derivatives
express the velocity components. When projected onto = and y axis, eq. (12) becomes

. Oh , Oh
W=9g 5 =95 (13)

Note that eq. (12) and eq. (13) do not hold at fine scales as the stationarity and incompressibility
assumptions only hold at large scale. We first investigate a dataset generated following simplifying
assumptions, which we refer to as Adv+F (for advection + forcing). We don't rely on the true U
and F, we instead build them. Their computation is described below. We generate data following
the tracer equation inspired by eq. (11b) (where Faccounts for F7):

or _

5=V (TU) +F (14)

where U and F computations are derived hereafter. Note that transport equations describe a
wide range of physical phenomena such as chemical concentration, fluid dynamics or material
properties. In this thesis, we interpret eq. (14) as the evolution of the temperature 7"advected by
a time-dependent velocity field U and subject to forcing F.

BUILDING A VELOCITY FIELD U To simulate a transport setting represented by eq. (14), we
first build a velocity field U. Under stationarity and incompressibility hypotheses, U can be
approximated from a stream function 7{. Note that, in this dataset, # is not equal to the SSH h, it
is simulated following Boffetta et al. (2001):

(15)

— B
H(x,y,t) = —tanh( Yy (t) x cos kx ) e

1+ k2B(t)? x sinZkx

where B varies periodically with time according to B = B + €cos(wt + ¢). We compute 10
different velocity fields sampling random parameters By, k, ¢, w, €, ¢. As introduced precedently
(see eq. (13)), eq. (11a) can be simplified and we compute U = (u, v) so that it follows:

oM U

@, ’U—aix (16)

BUILDING A SOURCE TERM F'  In eq. (11b), the diffusion term D7 is omitted. We generate the
forcing term F'so that it represents the forcing term F7 in eq. (11b). To illustrate heat exchanges,
we draw from Frankignoul (1985). This source term is a non linear transformation of U = (u, v)
multiplied by the difference between the ocean temperature and a reference temperature:

OH
0 if =— <104
i o <

FU,T)=w,x(T'—T,) where w,=
1 otherwise.

where T, is the sequence mean image (computed without forcing).

DATASET GENERATION Using generated U and F, we integrate eq. (14) with a timestep At =
8640s (about 2 hours) over 30 days. We integrate with a Semi-Lagrangian scheme, as it is mainly
used to describe physical systems with advective behaviour, such as fluid flows. Details on the
semi-Lagrangian advection can be found in appendix A.1. The semi-Lagrangian is implemented



2.2 OCEAN SURFACE DYNAMICS DATA

Figure 7: Sea Surface Temperature (on the left) and surface current velocity (on the right) data in the North
Atlantic. Mercator Ocean analysis 23/04/2019 (for the SST T) and 22/04/2019 (for the surface currents U)
provided by Andrej Flis.

using Pytorch function gridsample, following Jaderberg et al. (2015). To generate our data,
we sample randomly 8oo images of size 64 x 64 in NATL60 dataset (see section 2.2.4), each
image representing an initial condition. For integration, we impose as border conditions East-
West periodic conditions, implying that what comes out the left part re-enters at the right, and
reciprocally. We impose velocity to be null on both top and bottom parts of the image. Among
these 800 images, 80 are reserved for validation. 200 other images are sampled for test. These
data are used in part ii.

2.2.4 OGCM realistic data

Having worked on ideal data, we want to test the developed models on data closer to reality. To
investigate the ability of deep learning to reconstruct fine-scale surface current velocity fields
from SST, we use the data from the NATL60 simulation, based on the NEMO code (Ajayi et al.,
2020). This is the first kilometer-scale (1/60°resolution) simulation of ocean circulation in the
North Atlantic to take into account the complexity of the coasts and submarine landforms as well
as the large variability of surface atmospheric conditions. Figure 7 gives an example of SST and
surface currents in the North Atlantic Ocean. The data were provided by MEOM research team,
from the IGE laboratory from the Université Grenoble Alpes.

DATASET GENERATION  From the simulation, we select a 1096km x 1352km zone over one year,
representative of the Gulf Stream off the coast of Canada. We use the SST data, as well as the
zonal (west—east direction) and meridional (north—south direction) components of the current
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velocity. We split each image into 320 patches, i.e. regions, of size 64 x 64. We thus have 320
sequences of length one year. To select the test set, we have two choices: 1. to use zones never
seen during training, i.e. to test the ability of our model to extrapolate spatially, 2. to use time
sequences never seen during training, but belonging to training areas, i.e. to test the ability of
our model to extrapolate in the time domain. In this thesis, we focus on the time extrapolation
capacity of our model, and select our test set accordingly. Over one sequence of length one year,
i.e. 365 images, we keep 75 for test and validation, divided into 5 sequences of length 15 days.
Those are regularly sampled over the year, so that all seasons are seen during training, and tested.
The spatial generalizability is out the scope of our study. Note that those data are only used in
part iii, in which we explore the possibility to model real-like ocean dynamics with ML.

2.3 OBJECTIVES OF THE THESIS

We now give an overview of the core hypotheses used through this thesis. Recall that we are only
interested in surface modeling, so we are in a 2D spatial environment. We work on two datasets,
both depicting flow dynamics: we refer to the SST, the velocity and the forcings. In section 2.3.1,
we introduce the formalism of the notations. Then, in section 2.3.2, we present the assumptions
made throughout the document, i.e. we take them into account in all the models we develop. In
section 2.3.3, we introduce our objectives.

2.3.1  Notations

At a time ¢, we observe the SST T, € 7 C RP. This temperature is influenced by the unobserved
surface current velocity, i.e. a vector field, U, € U C R??. To ease notations, we refer to both
observed and unobserved variables as X, = (T},U,) € T x U C RP*24. X, follows a dynamics f
such that:

dx,
dt

= f(Xtvt)'

Every quantities, observed or to estimate, are regularly sampled on a spatiotemporal grid: at
each timestep ¢, the time varying velocity field U, writes as U, = (u,,v,) and u,, v,, T, and the
forcing term F, are all of size 64 x 64 (i.e. p = ¢q). We rewrite fas f = (f, fiy) acting respectively

on Tand U:
dXt _ d Tt _ fT(Xf)
T (v) - (mxa) 47)

In this work, fand f;; from eq. (17) can be interpreted as follows: f; represents the dynamics of
the observed T'and f; represents the dynamics of the unobserved U. In the context of section 2.2.3
(synthetic data), f(X) = —V.(TU) + F. Although f;; is not known, we show in appendix B.1
that U follows an ODE, i.e. that there exists f;; such that Ocll—[t] = fy(U,t). In the context of
section 2.2.4 (realistic NATL60 data), f(X) = —V.(TU) + DT + FT (eq. (11b)) and f,(U) =
—(UN)U +y AU —g'Vh+ DY + FY (eq. (11a)).
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2.3.2 Dynamical Hypothesis

We study hybrid models by assuming available a partial knowledge of the dynamics of the
observed 7;:
ar,
T
where f}.amounts for the physics-based part of f;. f¢amounts for the dynamics not encompassed
by f§. More formally, /7. € H,, is a known operator with unknown parameters, and f¢ € H,, is
the unknown residual dynamics. #,, and #, denote function spaces.

fr(X,) = ftzlj”(Xt) + fjd"(Xt) (18)

OCEAN HYBRID MODELING In the case of eq. (11b), FT accounts for surface forcing terms. D7
accounts for parameterizations of small-scale physics: it represents subgrid scale physics, i.e.
important small-scale physical processes that occur at length-scales that cannot be adequately
resolved on a computational mesh. For instance, turbulent motions are never explicitly solved,
even partially. Instead, they are parameterized (Madec et al., 2017). Even though the estimation
of F" and DT are most important for long-term simulations, there is still an incomplete under-
standing of subgrid scale parameterizations, and forcing fields are still poorly known (Chassignet,
Le Sommer, and Wallcraft, 2019). Thus, we will only consider advection as part of the prior
physical knowledge, and we will aim at learning both exchanges fluxes F7 and parameterizations
DT as residuals.

We can rewrite eq. (17):

dX, [ fHX,) + fHX,)
dt ( ' fU(Xt§ ) (19)

where, in the case of the synthetic dataset Adv+F from section 2.2.3,

fr(T,U) = =V.(TU)
f4=DT+FT

fu is unknown.
and, in the case of NATL60 in section 2.2.4,

FHT,U) = =V.(TU)
It=F
fo(U) = —(UN)YU+y AU — ¢'Vh+ DY + FU.

Note that, with this assumptions, the parameters of f%. are in fact the velocity fields U. In this
work, fris our target function and our objective will be to learn an estimate of f based on
our available knowledge consisting in prior assumptions on f%. and observations. The training
problem is described precisely below.

NOTE ON THE ADDITIVE HYPOTHESIS OF THE DECOMPOSITION  Note that the additive hypothesis
in eq. (18) is not restrictive. First, in the case of a metric space the decomposition as defined in
eq. (18) always exists. Let us detail an intuition for the well-posedness of such decomposition.
Let #H,, be a closed convex subset of functions of an Hilbert space (E, (,)), and f the function we
want to approximate with partial knowledge (represented by the space of hypothesis #,,). Then,
thanks to Hilbert projection lemma, we have the uniqueness of the minimizer of min,;, [f —gl,
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i.e. there exists one unique h,, € M, such that: Vg € H,,, | f —h, s < |f—gl,. Finally, the additive
decomposition hypothesis presents a remarkable advantage in the case of a vector space. Indeed,
if H,, is a (closed) vector space, let H; be its complementary in E, then the additive decomposition
hypothesis allows us to assume the uniqueness in the decomposition: f = f3; + f31, where

fus € H, and fn, € H,. The existence and uniqueness coming directly from the additive
decomposition hypothesis, this might explain why such assumption is common when bridging
ML and physic-based hypothesis.

2.3.3 Objectives

LEARNING PROBLEM We aim at predicting trajectories of T, i.e. to model the evolution of the
observable part following % = fr(X,) with an hybrid model. We approximate f, with a
function h; € H learned from the observed data, where H is an hypothesis space.

Following eq. (18), we assume hy, = h%, + hi- where hf, € H,, i.e. the physical model belongs to
the same hypothesis space as f}: it has the same parametric form. Its parameters are denoted 6,,.
We take as physical prior on the dynamics: hf(T',6,) = —V.(T6,). hi; should thus capture the
advection part in the dynamics f7. We aim at learning parameters 6, of h?, that is the unobserved
U. Free-form h<. aims at learning f¢, i.e. the forcing terms F. h% € H,, is represented by a free
form functional with parameters §,, e.g. a neural network. Finally, the learning problem is to
estimate from data the parameters of h%. so that they match the true physical ones and h% to
approximate at best the unknown dynamics f;. Note that, in some parts of our work, we will
also consider a function h;;, modeling the dynamics f; of the velocity fields U.

INTUITIVE TRAINING OBJECTIVE In this regard, an intuitive training objective is to enforce
ar,

o = hy(T,), i.e. to minimize the distance between hp = h. + h-and fg, such as:

min £, [h(s) ~ fr(s)] (20)

where pg is the distribution of the state X that accounts for varying initial states. Each s defines a
training sample.

Such an approach does not provide any physical guarantees on our model. Indeed, minimizing
eq. (20) with h;. = hf.+ h% enables to predict accurate trajectories but may have an infinite number
of solutions. For instance, h%. may bypass the physical hypothesis h%. Thus, interpretability is not
guaranteed. Our goal is not only to predict accurate trajectories of 7, but also to ensure that we
learn physically meaningful decomposition hy = hf. + h{, i.e. to overcome ill-posedness.

We can refine our learning tasks into two specific objectives: system identification, i.e. estimating
the parameters of the physical model (the currents velocity fields) from observations (the SST),
and prediction, i.e. recovering the trajectories associated to the dynamics (of both the velocity
and the SST). While solving both problems using model-based formulation admits well-known
numerical solutions, for example using the adjoint method (Courtier, Thépaut, and Hollingsworth,
1994; Le Dimet and Talagrand, 1986), the combination of physical models and deep learning is
still an open area of research. In this context, ML applications mainly focus on the prediction
task, at the expense of the system identification. Indeed, Ayed et al. (2020) show that without
any prior knowledge, the recovered estimates of a dynamical system states are not physically
plausible despite accurate predictions. Moreover, as noted by Yin, Le Guen, et al. (2021), learning
a linear MB/ML decomposition with the sole supervision on the system trajectories is ill-posed



2.3 OBJECTIVES OF THE THESIS

and admits an infinite number of decompositions. Such observations highlight the need to
incorporate physically motivated constraints in the learning of hybrid models, e.g. through
regularization penalties. Several works already propose additional constraints to guide the model
towards physical solutions (Jia, Willard, Karpatne, Read, Zwart, Michael S Steinbach, et al., 2019;
Linial et al., 2021; Yin, Le Guen, et al., 2021).

In this thesis, we propose refinements of the objective eq. (20), using physical knowledge to derive
new constraints. In chapter 3, we propose a regularization ensuring that we obtain physically
consistent parameters U. In chapter 4, we go further and propose a framework for the well-
posed learning of hybrid models. Those two contributions are theoretical studies and we present
experiments in the ideal setting of section 2.2.3. In this case, f; = V.(TU) where U are the
velocity fields generated from eq. (16) and f¢ = Fwhere Fis computed from section 2.2.3. In
Chapter 5, we confront our models to the real data simulation Natl6o (section 2.2.4). In this case,
fL = V.(TU) where U are the velocity fields from Natl6o and f¢ = DT + FT.

DISTANCE WITH FLOows  Note that, in practice, f;is unknown and eq. (20) is not tractable. To
train, we rely on the trajectories associated to the dynamics. We minimize the distance between the
ODE flows ¢, and ¢ defined by h and f (the defintion of the flow can be found in section 2.1.1),
d(¢y,, ¢y), over all initial conditions X,

S(on ) =Ex, [ on(r. X0 — o, X, ar (21)
to

We have §(¢y,, ;) =0 = ¢, = ¢y = h = f. The gradients of §(¢,,, ¢;) with respect to the
parameters of h can be either estimated analytically using the adjoint method (R. T. Q. Chen et al,,
2018) or using explicit solvers, e.g. Rk45, and computing the gradients thanks to backpropagation,
see Onken and Ruthotto (2020).

To compute eq. (21), we rely on a temporal sampling of X: our datasets are composed of n
sequences of observations of length N, X = (X{ ..., X] , v ,), where each sequence X follows
eq. (18) and corresponds to one initial condition X} . We then sample the space of initial
conditions X; to compute a Monte-Carlo approximation of 6(¢;,,¢;). Let ODESolve be the
function integrating any arbitrary initial state X, up to time ¢ with dynamics £, so that X, =
ODESolve(X, ,h,t). The estimate of §(¢,, ¢;) then writes as:

~ L

k
— ZHODESolve X hoto + jAL) —

Jj=1

M:

(d)had)f

X e
otJ 9

Il
—

7

In other words, we rely on the trajectories associated to the dynamics:

) ) t0+jAt )
ODESolve(X; , h,t, + jAt) = Xi + / h(X?)dt
t

0

Note that in practice, we don’t learn the actual dynamics h-but its numerical integration. Through-
out the manuscript, we first introduce the learning objective in continuous form. We then explicit
the practical loss J we optimize for training. Finally, for the sake of simplicity, we will refer to

5(¢p, ¢5) as 6(h, f).
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METHODOLOGY






METHODOLOGY

This part is mostly theoretical and deals with the ill-posedness inherent in learning hybrid MB/ML
models. We study the dynamics of the temperature h;, assuming it is modelled by h; = h%. + hé.
We take as physical prior on the dynamics: h#(T',6,) = —V.(T6,). Our goal is to learn the
parameters 6, of hY, i.e. the unobserved velocity fields U. More specifically, we are concerned
with the physical plausibility of h%.

In chapter 3 we propose to regularize the learning of the parameters 6, of h%. To do this, we rely
on a dynamical hypothesis that assumes that these parameters are the solution of an ODE. We
constrain them accordingly. However, this assumption does not solve ill-posedness.

In chapter 4 we go further and present a general framework that allows us to recover well-
posedness when learning hybrid models. This is based on the optimisation of an upper bound on
the prediction error. We also present an alternate optimization algorithm for which we provide a
convergence analysis in a simplified case.

In both chapters we test our models on our synthetic dataset from section 2.2.3. We perform
ablations to support our claims and compare our models to baselines. Both the data and the code
will be made available.
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DYNAMICAL REGULARIZATION FOR THE LEARNING OF HYBRID
MODELS

In this chapter, we propose a first approach to overcome the ill-posedness of the learning problem
developped in section 2.3. We propose to regularize the learning loss corresponding to the
sole minimization of the difference between our model h, and the real dynamics f; given in
eq. (20). To ensure that hY, is physically plausible, we propose to integrate prior knowledge into
the learning process.

In our case, to identify the parameters 6, of i, amounts to solving an inverse problem (D. L. T.
Anderson and Willebrand, 1989). Indeed, the SST is an ocean tracer, i.e. it can be used to track
currents and deduce large-scale ocean circulation (Bigg and Killworth, 1988; England and Maier-
Reimer, 2001). Thus, as in Ayed et al. (2020) and Bezenac, Pajot, and Gallinari (2019), we propose
to learn Hp from observations of 7. However, having no observations of U, one can only rely on
the prediction of future T for training. To further constrain learning, we propose to leverage prior
dynamical knowledge by introducing a dynamical regularization on the unobserved states. Taking
from the momentum balance eq. (11a), we posit that U is the solution to an ODE. Our proposition
is thus to enforce U to follow a dynamics described by a differential equation. Note that this
dynamics is unknown and we approximate it with a neural network, using their interpretation as
numerical discretization of differential equations (He et al., 2016; Lu et al., 2018).

Finally, we shift from our initial problem, namely the estimation of U and the learning of the
dynamics of solely 7, to a new formulation: the learning of the dynamics of the full state X =
(T',U). We show that this proposition enables to estimate velocity fields that are physically
plausible.

This chapter is organized as follows. In section 3.1, we propose a regularization term for the
learning of our predictive model. The implementation of our model is exposed in section 3.2. We
experiment on two datasets depicting simplified ocean dynamics, and give results and metrics
in section 3.3. Finally, the supplementary material referenced in this chapter is available in
appendix B.

3.1 MODEL

Our contributions lie along two intertwined research axes: 1. learning estimates of U; 2. learning
the whole dynamics of X (both observed T'and unobserved U) by incorporating partial physical
knowledge. We give below a formulation of these two steps.

Recall some notations: we study the dynamics of the temperature i, assuming it is modelled by
hy = hl+ h$. hljis our physical prior on the dynamics: (T, 0,) = —V.(T6,). hiis the residual
part. In this chapter, we also consider the unknown dynamics h; of the unobserved velocity
fields U.
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3.1.1  State Estimation

We aim at learning the dynamics of X = (T, U). As we have no observations of U, we first need
to estimate it. To that end, we use the observations of T. Indeed, T'is a flow tracer, i.e. it can be
used to deduce flow pattern, in our case that is the velocity U. Thus, as in Ayed et al. (2020)
and Bezenac, Pajot, and Gallinari (2019), we propose to learn U from past observations of 7. We
formulate this problem as retrieving the full state X, given a sequence of observed variables T
up to ¢, i.e. we solve an inverse problem. To solve this problem, we learn a neural network G
with parameters 6 estimating the unobserved U, from the k precedent consecutive measurements

Ty = (Tt7k+17 ey )

Go: TF—-U

Ty gy Ut (22)

Having no observations of U, it is impossible to supervise the learning of Gy. However, using h,
we are able to weakly supervise U, based on discrepancy between T} 41 and the target image T} ;.
This is developped in section 3.2. Note in particular that we use Gy to estimate the initial state
Xy, = (T, Uy, ), with Uy = Go(T, _yy,)-

3.1.2  Dynamical Model

There is usually no guarantee that U, is coherent temporally nor physically interpretable (Ayed et
al., 2020). Therefore, we propose to estimate its unknown dynamics f;; with a free-form function
hy € Hy, where H;; is a parametric space corresponding to a neural network. To regularize
the estimation, we learn the dynamics of U using a specific PDE. More precisely, we enforce
the unobserved U to obey an explicit PDE and make the trajectory of U well defined from an
initial datum estimated thanks to G,. h; is implemented with a ResNet, which can be viewed
as approximating a transport equation (see for example Karkar et al. (2020) and Li and Z. Shi
(2017)). Also, the method of characteristics provides existence and uniqueness of the solution to
the Cauchy problem associated to the transport equation under mild assumptions.

3.1.3 Learning Objective

We want to accurately estimate the dynamics of the observed variable 7, but also to model the
intrinsic dynamics of the unobserved variable U. We have access to partial observations, i.e. to
T, up to ¢, and want to forecast the full state from ¢, to the final timestep ¢ ;. We consider the
following objective:

min

dT, 5
subjectto —* = (h}.+ h$)(X,) (23)
Gohshy

dt

. N tr
0, — (Uto + / hU(Xt)dt>
to

2

Unfortunately, having no access to the true U we only rely on estimates given by G,. In order to
solve eq. (23), we introduce two losses: we penalize the forecasts errors in the observed state,
and force the unobserved variable U to obey a learned dynamics h;;. In the following, we present
those losses and their implementation.
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3.2 PRACTICAL OPTIMIZATION

In practice, having no priors on the dynamics f¢ and f;, we directly estimate their integrated
counterpart h%.and h; using neural networks. We rely on the associated flows ¢ and the integrator
ODESolve to calculate the losses on the trajectories. The definition of the flow is to be found in
section 2.1.1.

FORECASTING LOSs ONT  For U to be estimated properly, it must lead to accurate predictions of
T. Thus, we penalise the discrepancy between forecasts of T'and their true value using a MSE
loss:

Jr(t) = “ODESolve(XtO, hpt) — T, H2

where
Uto =Gy (Ttofk:to)
and

t
ODESolve(X, ,hp,t) = X, —|—/ hp(Xy,)dr
t

[¢]

EVOLUTION OF U Besides, we are interested in both the estimation and the dynamics of the
unobserved U and constrain it to obey a partial differential equation defined by hy;:

Ju(t) = HODESOlVe(Ge(TtOfk:tO)a hust) = Go(Ty ) H2

where

t
ODESolve(Gy(T,, ou.)» o 1) = Gol(Thy a,) + / h(Gol(Ty, e, )
t

0

Note that for ¢ < t,, T, refers to actual observations, while for ¢ > t,, T} is the prediction done
using former time steps estimations. In practice, ¢ varies from ¢y — kAt to ¢, + nAt, whree k and
n are hyperparameters. In our experiments, At is equal to 864o0s.

The optimization of eq. (23) consists in learning the parameters of (G, hy;, h%) by minimizing
our overall cost function 7 defined by:

n k
J = Z Z(jU(tO + JAL) + ApTr(ty + jAL)) (24)

i=1 j=0
with Jr(t) = || ODESolve(X{ , hr,t) — T;

2
Ty (#) = || ODESolve(Gy(Ty, yq,): o 1) — Go(T )|

where n is the number of initial conditions in the training set and & is an hyperparameter. We
learn jointly all parameters of Gy, hdand hy.

To sum up, to predict X for ¢ > ¢,, we estimate both the initial state X, and the dynamics of the
full state, i.e. hpand hyy. U, is estimated with Gy and used as input to A%: to learn the parameters
of kY. in fact amounts to learning G,. The computational graph from Figures 8 and 9 gives a
schematic representation of our learning scheme over two time steps respectively at training time
and inference time.
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Initialisation Forecast

t=t, P t>t

Tx Tt ki Tr(t+2)

T, Ttz

.
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v
Ju(t+2) 3
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Figure 8: Computational graph of the proposed model on two time steps at training time. At forecast time,
ie. at time ¢t > ¢, the evolution of UthU as modeled with an ODE is constrained to coincide with UtG ¢ as
estimated with G. Forecasting amounts to learning h; and h;; from a sequence of observations of 7. At
each timestep ¢, we predict T'and U at the next timestep ¢ + 1. The forcing term F are modeled with h4 and
learned from a sequence of T. Note that ¢ — k actually refers to the timestep ¢t — kAt.

Finally, the learning of h;; enables to regularize the estimation of Gy, ensuring the physical
soundness of estimated velocity. Note that our model can be adapted to various data specific
scheme such as fully Lagrangian (Bowman, Yassaei, and Basu, 2015) and more general all-
purpose integrator such as Rk4, as long as differentiability is maintained while computing h?.
Gy, hy and h are modeled with neural networks.

3.3 EXPERIMENTS

In this section, we review the model implementation, giving relevant hyperparameters and
architectures. We perform an ablation study: we compare our results to the one obtained without
dynamical constraint, i.e. without h;, and compare our results to baselines: NeuralODE (R. T. Q.
Chen et al., 2018) and Aphyity (Yin, Le Guen, et al., 2021) which proposes to inform the forward
model and to solve ill-posedness by minimizing the /,-norm of h%, which we denote with ||hZ.
Performances are evaluated via the standard MSE (lower is better). We report between brackets
the standard deviation of the metrics over 5 runs.

We investigate two experimental settings: no source term, i.e. ' = 0, and a non null source term
Finspired by (Frankignoul, 1985) (see section 2.2.3). They are hereafter respectively refered
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Figure 9: Computational graph of the proposed model on two time steps at inference time. Forecasting
amounts to learning h, and h;; from a sequence of observations of 7. At each timestep ¢, we predict T'and U
at the next timestep ¢ + 1. Note that the inverse model G/ is only used for the initialisation, i.e. at time ¢ = ¢,.

to as “Advection Only” and “Adv+F”. In practice, we don’t learn the dynamics h%, h;, but their
numerical integration.

3.3.1 Training Details

We used Python 3.8 and Pytorch 1.5 to implement our model trained on Nvidia GPU with CUDA
10.1.

ARCHITECTURES  h% is a U-net with at most 512 latent channels, following the implementation
of (Isola et al., 2017a).

hyr is a convolutional Residual Network with 2 residual blocks. The input are first downscaled
using two layers of strided convolutions. Each residual block has 128 channels, following the
implementation of (Isola et al., 2017a). Relying on eq. (11a), we infer that the evolution of U is
independent from the evolution of 7, thus we make h; takes as input only U, previously estimated
from a sequence of T. We consider h; such that: hy(X,) = hy(U,).

Gy is a U-net with at most 512 latent channels also following the implementation of (Isola et al.,
2017a). hf. implements a differentiable semi-Lagrangian scheme (Jaderberg et al., 2015)

HYPERPARAMETERS The learning rate for all algorithms and baselines is ir = 10~* using Adam
optimizer with 8 = (0.9,0.999), with batch size 32. The number of input frames for G, and h% is
4,ieineq. (22) k = 4. The number of predicted time steps T'is 6. In practice we set A\; = 1, and
specify another multiplicative hyperparameter A;; so that A\;; = 0.01
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Table 1: Compared model results for the Advection Only and the Adv+F datasets. We report the MSE ( x
100) on the predicted observations T, the velocity fields U and the forcing term F over 10 time steps on test
set. The line Ours (U known) refers to the prediction of 7'and the estimations of F'with the real velocity
fields U. The line Ours (||h4) refers to our model with an additional loss term to constrain the norm of
|h&|, as is done in Yin, Le Guen, et al. (2021). The line Ours (no hy;) is an ablation: we train our model
without the dynamical constraint; i.e. U is only constrained through the loss 7, without 7;;. n/a means not
applicable.

Advection Only Adv+F

Models

T U F T U F
Ours (U known)  0.00 n/a 0.00 0.19 n/a 0.12
Ours 2.11(0.1)  4.90(0.92) 0.23(0.62) 4.97(0.41) 4.96(0.98) 0.89(0.71)
Ours (|h%]) 2.04(0.19) 4.49(0.97) 0.07(0.6)  3.11(0.39) 10.10(1.64) 1.11(0.8)
Ours (no hyy) 0.95(0.1) 8.28(1.1) 1.07(0.69) 2.98(0.33) 15.71(2.1)  9.06(1.0)
Aphynity 1.07(0.29) 9.07(1.28) 1.09(0.8) 1.00(0.34) 11.74(2.82) 4.48(1.2)
NeuralODE 3.17(0.03) n/a n/a 5.24(0.07) n/a n/a

BASELINES For Neural ODE baseline, Gy is a 3-layer convolutional networks. It is integrated
using RK4 scheme available from https://github.com/rtqichen/torchdiffeq. For experiments
with minimisation of |h4, a cost is added to the original cost function eq. (24): Tpa = 0.01 x
IWH(T—y.4))lo- For Aphynity, we keep the same architectures for A%, G, and h. as described
previously. We rely on the training described in Yin, Le Guen, et al. (2021), optimizing a cost
J=Jr+ )\h%”h%”, with /\h% = 0.0001.

3.3.2  Results

INVERSE PROBLEM  The inverse problem we aim to solve is the estimation of the velocity U from
observations 7. Figures 10 and 11 show examples of the estimated hidden states and the columns
labeled U in Table 1 give the MSE between estimation and target hidden state.

Both Figure 10 and Table 1 show that G truthfully estimates the hidden state using our framework.
Our ablation study evidences that constraining U to follow an ODE with h;; indeed regularizes the
learning: our model without h;; shows poor results on the inverse problem resolution. However,
note that it performs well on predicting 7. This evidences the ill-posedness inherent to hybrid
modeling: poor estimation of U does not harm prediction but forces h4 to capture the whole
dynamics. In other words, h¢.compensates for the bad 1. Unlike our estimations of F, our model
without h;; thus also fails at estimating an interpretable forcing term F. Therefore, our dynamical
prior on U helps solving the inverse problem and the ill-posedness inherent to hybrid modeling.

FORWARD PROBLEM  The forward problem refers to the prediction of T'using our hybrid model
h&. + hY. Examples of predictions of T are available in Figures 10 and 11 and columns labeled T’
in Table 1 give the MSE between prediction and target 7. Figure 11 shows example of estimated
forcing term F.

Constraining temporally the hidden states harms prediction accuracy despite truthful estimates
in both T (Figures 10 and 11) and forcing term F. Constraining |h%| helps when F' = 0 as it
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3.3 EXPERIMENTS
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Figure 10: Sequences of estimations of 7, U = (u, v) for the dataset with non null physical forcing F, coming
from the test set. For each variable T, u and v, the first line shows the ground truth, the second line the
estimation with our model. Columns represent the time. Note that ¢ + 1 actually means ¢t + At where
At = 8640s. Without ever observing U, our model is able to estimate it from observations of 7"and make
predictions over long time range.
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adds plausible physical information. Thus, the estimates of 7, U and F'are better for Advection
Only. However, the estimates obtained by constraining |h%| when F'is not zero are better without
constraining ||h%|. Adding a dynamical constraint on U through the learning of h, gives thus
more physical information than constraining |h4).

Finally, Aphynity is better at prediction, this can be explained as follows: even constrained, h%
might compensate for the dynamics not encompassed by h%. Data agnostic algorithms such
as NeuralODE are performing worse for long term forecasts than informed neural models,
confirming that providing knowledge in a data-driven forward model brings stability in the
forecasts.

3.4 CONCLUSION

In this chapter, we proposed to bridge PDE-specific numerical scheme with deep networks to
solve forward and inverse problem for partially known dynamics. We empirically show that
regularizing time varying unobserved states helps to solve both the forward problem and the
inverse estimation. Besides, our framework applies to partial observations. In our example
application, we are able to estimate the velocity U and the forcing F'without ever observing them.

However, no theoretical considerations on the proposed regularization were investigated. This
way, the learning of the decomposition h;. = hf. + hY.is still ill-posed. For instance, U, = 0 for all
t is a solution of eq. (23). In the following chapter, we propose a learning framework ensuring
the well-posedness in the learning of hybrid models.
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Figure 11: Sequences of estimations of 7, U = (u,v) and F for the dataset with non null physical forcing F,
coming from the test set. For each variable 7, u and v, F, the first line shows the ground truth, the second
line the estimation with our model. Columns represent the time. Note that ¢ 4+ 1 actually means ¢ + At
where At = 8640s. Without ever observing U or F, our model is able to estimate them from observations of
T and make predictions over long periods of time.
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CONSTRAINED PHYSICAL-STATISTICS MODELS FOR DYNAMICAL
SYSTEM IDENTIFICATION AND PREDICTION

4.1 INTRODUCTION

In this chapter, not only are we interested in the learning of both physically sound velocity U
and accurate trajectories of temperature 7'but also in solving the ill-posedness induced by the
learning of hybrid ML/MB models introduced in chapter 2. In this sense, we go further than
chapter 3. Besides, contrary to chapter 3, we do not make any assumptions neither on the velocity
fields U nor on its associated dynamics f;;.

Recall that we consider the partially observed state X, = (7}, U,), where the temperature T'is
observed and the velocity fields U are unobserved. We aim to model the dynamics f of T'with
an hybrid model 4. Our proposition is to reformulate the learning problem induced by eq. (20)
in chapter 2, i.e.

|hr(s) — fr(s)la with  hp = i+ hi

mink,.p,
by introducing an upper bound on the prediction error of a physical-statistical model. This
allows us to control the contribution of both the physical and statistical components to the
overall prediction. In other words, we aim to recover well-posedness and interpretability of the
decomposition: while h%.should account for the physical model, 2% should account for the residual
not modeled by h%.. From this upper-bound, we work out a principled framework that generalizes
previous attempts in the regularization of hybrid models. In particular, our proposition goes
further than Yin, Le Guen, et al. (2021), which ensures the uniqueness in the decomposition by
constraining the norm of the ML component. We also propose a novel alternate-optimization
algorithm to learn hybrid models, for which we provide an analysis of the convergence on a
simplified case. As our ultimate aim is to challenge real world problems, i.e. NATL6o data, in a
second time we propose an extension of our framework to incorporate auxiliary data providing
further physical evidence and get closer to complex real-world scenario. Finally, we emphasize
that the method proposed in this chapter is very general and may be applied to many physical
data. We propose experiments on various datasets which are not related to ocean dynamics in
appendix C.2.

Unless otherwise indicated, within this chapter, we refer to the distance d between two functions
h and f as defined in eq. (20) in section 2.3, i.e.

d(h, f) = Eyop llh(s) = f(s)]2
where s is a training sample. Let us recall that this distance is convex, as shown in appendix A.2.

This chapter is organized as follows. In section 4.2, we propose two upper-bounds and a well-
posed learning framework for the learning of physical-statistical models. The implementation of
our model is detailed in section 4.3. We experiment on our dataset depicting simplified ocean
dynamics, and give results and metrics in section 4.4. The supplementary material referenced in
this chapter is available in appendix C.
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4.2 METHOD

Recall that we study hybrid models by assuming available a partial knowledge of the dynamcics
of the observed 7;:

e (x) = 1300 + 10X

where f7.amounts for the physics-based part of f;. f¢amounts for the dynamics not encompassed
by f%. We approximate f; with a function h; learned from the observed data.

Following eq. (18), we assume hy = h%. + hd where h}. belongs to the same hypothesis space
as f4: it has the same parametric form. In this context, we aim to enforce % = hp(T}), ie. to
enforce h to represent the dynamics fr of T. An intuitive objective could thus be to minimize
the distance between h, = hY. + hd and f;, such as:

min €., [hr(s) = fr(s)] (25)

In our hybrid modeling framework, two criteria are essentials: 1. identifiability, i.e. the estimated
parameters of hf. should correspond to the true physical ones (in our case that is the velocity fields
U); 2. prediction power, i.e. the statistical component h¢. should complete h%. so that hy = h}.+ b,
performs accurate prediction over the system states. To control the contribution of each term
kY. and h%, we work out upper bounds out of eq. (25) (section 4.2.1). We then propose to
minimize d(hy, fr) while constraining the upper bounds, which provide us with a well-posed
learning framework (section 4.2.2). Besides, we show that several previous works that introduced
constrained optimization to solve related problems are specific cases of our formulation (Jia,
Willard, Karpatne, Read, Zwart, Michael S Steinbach, et al., 2019; Linial et al., 2021; Yin, Le Guen,
et al., 2021). Finally, we introduce an alternate optimization algorithm which convergence is
shown in section 4.3.2 for a linear approximation of f.

4.2.1  Structural Constraints for Dynamical Systems

To ensure identifiability, we derive regularizations on kY. and h4 flowing from the control of an
upper bound of d(hp, fr). In particular, to minimize d(h%, f7) would enable us to accurately
interpret h}. as the true f7, and h4. as the residual dynamics f¢. However, since we do not
access the parameters of f7, computing d(h%, f%) is not tractable. We then consider two possible
situations. In the setting 1 below, the only available information on the physical system is the
parametric form of f% (or equivalently of A7.). In the setting 2 below, we consider available
auxiliary information about f7. that will be used to minimize the distance between h%.and f7.
While the first setting is the more general, the physical prior it relies on is often insufficient to
effectively handle real world situations. The second setting makes use of more informative priors
on the physics and better corresponds to real cases as shown in chapter 5.

Setting 1: Controlling the ML Component and the MB Hypothesis

We propose a general approach to constrain the learning of hybrid models when one solely access
the functional form of h%. In this case, to make h%. accountable in our observed phenomena,
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a solution is to minimize d(h%, f;). Following the triangle inequality we link up both errors
d(hy, f7) and d(h7y, fr):

d(he, fr) = d(hg, f7) + d(W, fr) — d(h, fr) (26)
< d(h, fr) + |d(hy, f7) — d(BE, fr)
S d(hzj}’v fT) + d(hT7 hg“)

As d(hp, hY) = d(h4,0), we finally have

d(hr, fr) < d(h,0) +d(h7. fr) (27)

We want the physical-statistical model h. = h%.+ h to provide high quality forecasts. Minimizing
the sole upper bound does not ensure such aim, as h¢. is only penalized through d(h%,0) and
is not optimized to contribute to predictions. We thus propose to minimize d(h, fr) while
controlling both d(h$, 0) and d (Y, f7). Such a control of the upper bound of eq. (27) amounts to
balancing the contribution of the ML and the MB components. This will be formally introduced
in section 4.2.2.

LINK TO THE LITERATURE The optimization of d(h%, f;) to match the physical model with
observations is studied in (Forssell and Lindskog, 1997). We propose to optimize an upper bound
to d(hp, fr) based on the introduction of the term d (kY. f;) in eq. (26). While the least action
principle on the ML component, i.e. constraining d(h<., 0), is invoked for a geometric argument
in (Yin, Le Guen, et al., 2021), it appears as a co-product of the introduction of d(h%, f7) in
eq. (27). Thus, our framework allows to constrain both components of a hybrid model, thus
strengthening the soundness of the physical component . compared to (Yin, Le Guen, et al.,
2021), as shown in our experiments (section 4.4).

The general approach of eq. (27) allows us to perform prediction (via h) and system identifica-
tion (via h%.) on simple problems (see experiments in section 4.4 and appendix C). However,
the learning of real-world complex dynamics, via data-driven hybrid models, often fails at yield-
ing a physically sound estimation. This suggests that, given the decomposition assumption
fr= fr+ f4, the observations associated with the dynamics are not sufficient to estimate f.
Thus, learning complex dynamics requires additional information.

In many real-world cases, auxiliary information is available in the form of measurements pro-
viding complementary information on f7. Indeed, a common issue in physics is to infer an
unobserved variable of interest (in our case f} parameters U) from indirect or noisy measure-
ments. For instance, one can access a physical quantity but only at a coarse resolution, as
in (Belbute-Peres, Economon, and Kolter, 2020; Um et al., 2020). Let us denote f}" the coarse
version of fr. It is natural to make the same decomposition assumptions: f7" obeys the additive
decomposition hypothesis of eq. (18), so that f&" = f2P" 4 fhrr,

In this thesis, we aim at estimating the surface velocity fields U (that is f} parameters). In
reality, we cannot access observations of high resolution surface currents. However, thanks to
observations of the Sea Surface Height (SSH), ocean surface currents can be estimated at a coarse
resolution. Figure 12 shows different resolutions of ocean surface currents, that could be used to
estimate f7. Such information could then be used in order to approximate d(hf, f7) instead of
d(h¥., fr). This will be explored in the next subsection.
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Figure 12: Multi scale resolution of ocean surface currents in the North Atlantic Ocean. From Hewitt et al.
(2022). For example, the finest resolution (2.5km) corresponds to real f7 parameters. But only the coarse
resolution (25km) is available. This one is denoted f2"".
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Setting 2: Matching the Physical Hypotheses by introducing Auxiliary Data

We here assume one accesses a coarse version of f7, denoted f2*" € H,. More precisely, we
assume that f7"" comes from a dynamics f7", which is a first-guess model of the true dynamics
fr- 3 obeys the additive decomposition hypothesis of eq. (18), so that f7" and f*" verify

D= fRPT 4 fEPT Our goal is to adapt our framework to incorporate such auxiliary information,
bringmg the regularization induced by f4:*" within the scope of the control of an upper bound.
This enables us to extend our proposition towards the solving of real world physical problems,

still largely unexplored by the ML community. With computations similar to eq. (27), we have:

d(hy, fr) < d(hq, f77) +d(f7, f) (28)
Then:
d(hy, f77) = d(hy, f77) + d(hi, “”")* d(hf, f77)
< d(hp, f777) + |d (R, f77) — d(W f777)]
< d(hg, f777) +|d(h, f77) — d(heg, f777) — d(hg, f7277) + d(RE, 777
< d(W, f777) +|d(h, f77) = d(heg, f2P0)] + [d(RY, f777) — d(hep, b))
< d(n, f277) + A7 fPPT) + dhe, B (29)

Combining Equations (28) and (29), we obtain:
d(hy, fr) < d(hip, f777) + d(hop, ip) + A(f77 f777) + d(f7 fr) (30)

Recall that we don't access fr. fT is the coarse version of f, following the same decomposition
asumption, i.e. f2 = f2P" 4 fPT. We suppose access to f2”" parameters.

Finally, we have:

d(hy, fr) < d(hf,0) + (b, f777) + T (31)

where I' = d(fF", f%P") + d(f}, f) is a constant of the problem that cannot be optimized. It
depends only on f 2P and fT, variables that are beyond our control. As above, we propose to
minimize d(h, f7) whlle controlling both d(h4, 0) and d (%, f2*"), as described in section 4.2.2.

LINK TO THE LITERATURE In (Linial et al., 2021) f2*" stands for true observations used to

constrain a learned latent space, minimizing d(h%., 7. r "). Jia, Willard, Karpatne, Read, Zwart,

Michael S Steinbach, et al. (2019) uses synthetic data as f4"" to pre-train their model which
amounts to the control of an upper bound. Finally, this setting finds an extension, when the
model f7?"" is a learned model, for example trained using eq. (27).

4.2.2  Learning Algorithm and Optimization Problem

From the upper bounds, we recover the well-posedness of the optimization and derive a theoretical
learning scheme. Its practical implementation is developed in section 4.3.

RECOVERING WELL-POSEDNESs ~ We reformulate the ill-posed learning of MiNye ey w3, d(hy, fr),

by instead optimizing d(hr, f7) while constraining the upper bounds. Let us define S, and S, as

Sy={hpeH, [thy) <p,}  Sp={hieH,|d(h}.0) <py} (32)
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where ju,,, 1, are two positive scalars and £(hf;) = d(h#, fr) in the case of setting 1 in section 4.2.1
and ¢(h%) = d(RY., f2F") in the case of setting 2 in section 4.2.1 . Our proposition then amounts
to optimizing d(hp, f7):

min _ d(hy, fr) (33)

hp€S,+S8,4

with S, + S, = { hp = hi.+ hf | W} € S,

hd e S, )

This constrained optimization setting enables us to recover the well-posedness of the optimization
problem under the relative compactness of the family of function #,, (proof in appendix C.1.2).

Proposition 1 (Well-posedness). Under the relative compactness of S, eq. (33) finds a solution h that
writes as h = hfy, + h. € S, + S;. Moreover, this solution is unique.

ALTERNATE OPTIMIZATION ALGORITHM  As the terms in both upper bounds of egs. (27) and (31)
specifically address either h}. or hd, we isolate the losses relative to i and h and alternate
projections of hf,on S, and h$.on S, as described in Algorithm 1. Said otherwise, we learn h.by
alternately optimizing h%. (h being fixed) and h% (hY. being fixed). In practice, we rely on a dual
formulation, which we develop in section 4.3. Besides, note that f; is unknown, the practical
computation of d(h%., f7) is developed in section 4.3.

Algorithm 1 Alternate estimation: General Setting

Result: Converged h%.and he.
Set h7” = 0, hi" = minypey, d(hE, f), tol € R
while d(hy, fr) > tol do
he = arg min d(hf+ hE", )

"o (34)
hy" ™t = arg min d(h5:" + he, fr)
h4eS,
n<n+1
end

The convergence of the alternate projections is well studied for the intersection of convex sets
or smooth manifolds (Lewis and Malick, 2008; Neumann, 1950) and has been extended in our
setting of Minkowski-sum of convex sets (Lange, Won, and J. Xu, 2019). Because d as defined in
section 2.3,1.e. d(h, ) = E,_,_[h(s) — f(s)], is convex, S, and S, are convex sets as soon as H,,
and #, are convex (Appendix A.2). Thus, if d(., f7) is strongly convex, eq. (34) finds one and
only one solution (S. Boyd, S. P. Boyd, and Vandenberghe, 2004). However, neither the convexity
of H, nor of H,, is practically ensured. Nonetheless, we recover the well-posedness of eq. (33)
and show the convergence of Algorithm 1 in the simplified case where h is an affine function of
X, (see section 4.3.2). For complex cases, for which theoretical analysis cannot be conducted,
we validate our approach experimentally and we evidence in section 4.4 that this formulation
enables us to recover both an interpretable decomposition ;. = h}.+ hd and improved prediction
and identification performances.

In the next section, we develop the practical implementation of the alternate estimation algorithm.
In particular, we explain the calculation of eq. (34) and give the actual implementation of
Algorithm 1.
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4.3.1  Practical Optimization

As discussed in chapter 2(section 2.3), because f;- is unknown, d(h, f7) is not tractable. Thus,
we rely on the flow-based distance ¢ (introduced in section 2.3):

t
Sl 1) = Ex, [ on(Xorm) = 67,(Xo, ) @
to

While eq. (32) involves the choice of 11, and y,, in practice we don’t calculate them. We implement
the projection algorithm by descending gradients on the parameters of h%. and h% according to
the alternate algorithm 1, with respect to the following optimization problems:

n}}},n)\hTfs(th fr)+ Ah#(h’%) (35)

minAhT(S(hT, fT) + )\h%(S(h%, O)

he.
where

D . .
((hy) = { O(hs fr) in the case of setting 1 in section 4.2.1

S(h%, fZP")  in the case of setting 2

where A;,_, A\pr, Ay are positive real values.
T T T

In practice, we rely on the two following losses:
Jr(t) = Xy, | ODESolve(X, , by, t) — T, H2 + Ays || ODESolve(X, , bt t) H2 (36)
Ju(t) = Ay, | ODESolve(X, , by, t) — T, H2 + A

ODESolve(X,,, 1y, t) = T,[| | (37)
where

t
ODESolve(X, ,hp,t) = X, —|—/ hp(Xy,)dr
t

[¢]

The optimization of eq. (35) consists in learning % and h% by minimizing the overall cost function
J defined by

n k
T =Y (Tulty + JAL) + ApTp(to + jAL)) (38)

i=1 j=0
with J;(t) = Ay, || ODESolve(X; , hy,t) — T} H2 + Ape

Tu(t) = Ay,

ODESolve(X; , hd. t) H2
ODESolve(X; , b, t) — T}

|ODESolve(Xj , hy,t) — T}

2+)\h1%

2

where A, , Ayp, Aja are hyperparameters, n is the number of initial conditions in the training set
and k is an hyperparameter. We alternate the optimization of the parameters 6, and 6, of h’. and
h¢. according to algorithm 2.




52 CONSTRAINED PHYSICAL-STATISTICS MODELS FOR DYNAMICAL SYSTEM IDENTIFICATION AND PREDICTION

Initialisation L Forecast

t=tg P >ty

Tk Ttk Ir(t+1) Ty g2 Jr(t+2)
z | T

Figure 13: Computational graph of the proposed model on two time steps at training time. Forecasting
amounts to learning G, and h% from a sequence of observations of 7. At each timestep t, we estimate U,
and we predict T at the next timestep ¢ + 1. Note that the inverse model G, is used at every timestep. The
forcing term F are modeled with h¢.and learned from a sequence of 7'

Note that ¢ — & actually refers to the timestep t — kAt.
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Figure 14: Computational graph of the proposed model on two time steps at inference time. Forecasting
amounts to learning G, and h¢- from a sequence of observations of 7. At each timestep ¢, we estimate U,
and we predict T'at the next timestep ¢ + 1. Note that the inverse model G, is used at every timestep.
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The computational graphs from Figures 13 and 14 givea schematic representation of our learning
scheme over two time steps respectively at training and inference time.

Note that the minimisation of §(Y., fr) alone biases our estimate of h%.. However, it may yield a
good estimation of h}. provided that f1. contributes significantly to the prediction of h,. Hence,
d(hp, fr) can be interpreted has an initialization loss, yielding a first estimate of 6, explaining the
dynamics. Thus, in most applications, we progressively decrease its magnitude along training.
On the other hand, §(h%,0) aims at constraining the free form function h% to make its action as
small as possible. Hence, it can be interpreted as a balance loss, preventing the neural networks
to override the physical component. Finally, in order to recover the exact trajectories of the
observations, we proceed as suggested in (Yin, Le Guen, et al., 2021), progressively increasing
the hyperparameter ), according to a rate 7,. The practical implementation is summarized in
the following algorithm, where 6, are the parameters of h{.and 6, are the parameters of %, 7, is
the learning rate.

Algorithm 2 Alternate estimation: Practical Setting

Initialization: 6 = 0, 0} = minyscqy S(hfp, f1), Apys Anzs Ana
for epoch =1: N,

epochs do
for batch =1: B;, do

QZH =0, — Tlvt% [)‘hT(S(hT7 fr) + )‘h’%é(hz”})]
end

for batch = B, : B, do

0 =05 — 11V, [\, 0 (hey fr) + Apgd (R, 0)]

end

— . _ 1 . _ 1
Ahg = ToAngs Az = P Anzs And = 5 Ang.
end

4.3.2  Theoretical Analysis for a Linear Approximation

We investigate the validity of our proposition when approximating an unknown derivative with
an affine function, which is a classical first guess approximator. We here consider h%. as a linear
function. We do not assume any information on fr, thus relieving this section from the need of
an accurate prior knowledge f7. In this context, we show the convergence of the learning scheme
introduced in Algorithm 1 with ¢ = §(h%, f;), demonstrating the validity of our framework in this
simplified setting. For more complex cases, for which theoretical analysis cannot be conducted,
our framework is validated experimentally in section 4.4. All proofs of this section are conducted
using the distance ¢ from section 2.3:

t
S0 1) = Ex, [ 00X = 6,7
to

Let X* be the unique solution to the initial value problem:

dx,

X fr(Xy) with X, o= X, (39)
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With hf(X) = AX and hi(X) = D,, where A € M, (R), D, € RP, and X* the solution to
eq. (39), the affine approximation of f writes as:

dx,
dr

= AX,+ D, with X, ,=X, (40)

We write X the solution to eq. (40) when D 4 # 0 and X the solution to eq. (40) when D 4 = 0.
The alternate projection algorithm with the distance ¢ writes as:

A =arg rr}}}Dn AnpO(hs fr) + App 0 (i, fr)
T

t t
= argmin X2 (r) = XP(7)], dr+ A4 / |x2(7) = XA(7)|| dr (41)
to

to 2

. . ;
Dy =arg min AnO(hys f1) + Apad(hi, 0)

t
:argnDﬁAn/ HXS(T)—XD(T>H2 dr + Ap| Dyl (42)
to
A A
where A, = %, Ag = /\:LI% > 0. We detail in Algorithm 3 the alternate projection algorithm in a
T T

linear setting.

Algorithm 3 Alternate estimation: Linear Setting

Result: A € M, ,(R),D € RP

k=0,D°=0,A5t =0 A5 = min,|X* — XA|

while |D* — D¥1| > eand |A¥ — A*Y| > e do
DH1 = min, | X — XA — DJ3 + Ap| DJ3
AR = min y | X* — XA — D3 0 |X° - XAJ
kE+—k+1

end

As the optimization of eq. (41) is not convex on A, the solution existence and uniqueness is
not ensured. The well-posedness w.r.t A can be recovered by instead considering a simple
discretization scheme, e.g. X, ; ~ (AX, + D) At + X, and solving the associated least square
regression, which well-posedness is guaranteed, see details in appendix C.1.1. Such strategy is
common practice in system identification. Theoretical considerations on existence and uniqueness
of solutions to eqs. (41) and (42) are hard to retrieve. If A is an invertible matrix (proof is available
in appendix C.1.3):

Proposition 2 (Existence and Uniqueness). If A is invertible, There exists a unique D 4, hence a
unique X7, solving eq. (42).

Finally, formulating Algorithm 1 as a least square problem in an affine setting we prove the
convergence of the alternate projection algorithm (appendix C.1.4):

Proposition 3. For A, and X 4 sufficiently high, the algorithm that alternates between the estimation of
A and the estimation of D 4 following egs. (41) and (42) converges.
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4.4 EXPERIMENTS

In this section, we validate Algorithm 1 on the Adv+F dataset depicting idealistic dynamics (its
generation is detailed in chapter 2 in section 2.2). We assess the relevance of our proposition based
on eq. (27), against NeuralODE (R. T. Q. Chen et al., 2018), Aphynity (Yin, Le Guen, et al., 2021)
and ablation studies. Note that we conduct experiments on eq. (31) by considering additional
auxiliary information, but present the associated results on the NATL60 data in chapter 5.

We consider three optimization problems. The original problem:

min Ay, 8(he, f1) + Mg d(hip, fr) + Agd(h, 0) (43)

hb,hd.

We call “Ours” the results with training induced by eq. (43). When §(h%., f7) is not considered in
the optimization of eq. (43),we then train according to:

mlhrb A Ohs fr) + App (i, fr) (44)

D
hT’ T

When §(h4., 0) is not considered in the optimization of eq. (43), we then train according to:

min A, 6(hy, fr) + )\h%‘s(hd:m 0) (45)

Wkt

When his trained by only minimizing the discrepancy between actual and predicted trajectories,
i.e. by only optimizing according to the loss 0 (A, fr), we train according to:

min /\hT(S(h% fr) (46)
hE.h

T
4.4.1  Training Details
All experiments were conducted on NVIDIA TITAN X GPU using Pytorch (Paszke et al., 2019).

ARCHITECTURES DETAILS We parameterize Gy by U-net with at most 512 latent channels also
following the implementation of (Isola et al., 2017a), taking as input a sequence of 4 time steps
of It (T3, ..., T}, +34¢)- The residual dynamics hé-is learned by a convolutional ResNet, with 1
residual block taking as entry the same sequence of T. We implement 4. via a semi-lagrangian
scheme, taking as input 7} and the estimated U, to predict T} ;.

HYPERPARAMETERS, SETTING OF EQ. (43) We select the hyperparameters with the lowest
prediction errors (i.e lowest §(hy, fr)). We initialize A;» = 0.1 and decrease it geometrically
down to A,z = 0.00001. We initialize A;, = 0.01 and increase it geometrically every epoch up to
Any = 1000. Apq is fixed through training at 0.1. The training time for this dataset is 8 hours.

oPTIMIZATION We use Adam optimizer with learning rate 0.0001 for 30 epochs with batch size
32. We supervise the trajectories up to t = At x 6, i.e we enforce § on (T, | a, -, Ty 16a¢)- We
alternate projection on S, and S, by descending the gradient 4-batches on /7 then 6-batches on
he.
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Table 2: Results for the Adv+F data. We report the MSE (x 100) on the predicted observations 7, the
velocity fields U and the forcing term F over 6 time steps on test set.

Models T U F

Ours 0.74 (0.05) 1.99 (0.13) 0.17 (0.01)
Aphynity 0.85 (0.35) 3.07 (0.74) 0.18 (0.05)
NeuralODE 1.35(0.02) n/a n/a

4.4.2  Results

As in chapter 3, we don’t learn the dynamics h, but its numerical integration: h%. implements a
differentiable semi-Lagrangian scheme (Jaderberg et al., 2015) and h.is a ResNet. As in chapter 3,
we estimate U from observations of 7, using an inverse model G4. G4 is a UNet which takes as
input 4 timesteps of predicted temperature 7.

Performances are evaluated via the standard metric MSE (lower is better). We report between
brackets the standard deviation of the metrics over 5 runs.

IDENTIFICATION AND PREDICTION RESULTS To make predictions of 7, we aim at both estimating
the hidden parameters of 1Y, i.e. estimating the velocity U, and learning h‘%, i.e. estimating the
forcing term F. Figures 15 to 18 show examples of estimated hidden states. Columns labeled U
and F'in Tables 2 and 3 give the MSE between estimation and target hidden state.

Table 2 indicates that for the Adv+F dataset, we estimate accurately the unobserved velocity fields
U and forcing term F. Qualitatively, Figure 15 shows that controlling our proposed upper bound
eq. (27) facilitates the recovery of truthful velocity fields U along with an accurate prediction of 7.
Regarding prediction performances on the Adv+F data, Table 2 shows that thanks to our truthful
estimates of U and F, our model provides more precise prediction of 7'than NODE and Aphynity.
Besides, adding prior knowledge in the prediction systems improves prediction performances:
NODE minimizes §(hr, fr) by predicting average and blurred frames. This shows the need for
regularization when learning on structured physical data.

ABLATION sTUDY  We present in Table 3 an ablation study on the Adv+F dataset evidencing the
influence of our learning choices on the solution of both identification and prediction tasks. “Joint”
rows of Table 3 indicate that the learning of h% and 1. is done simultaneously. Table 3 shows
that the sole optimization of d(h, f7) fails at estimating physically sounded U. This evidences
the ill-posedness in such unconstrained optimization. Table 3 indicates that all introduced
regularizations improve the recovery of U w.r.t. the «Only §(h, fr)» baseline, while adding
§(h, 0) significantly improves both prediction performances and velocity fields estimation. We
highlight that the alternate optimization performs better compared to optimizing jointly all
parameters of i}, and h$. Notably, our proposition to optimize h%. and k¢ alternately beats all
baselines on both T'prediction and U identification (Table 3, Joint rows). Finally, jointly trained
models fail at estimating U in Table 3, forcing h¢. to capture the whole dynamics.
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Figure 15: Sequence of estimations of F, T'and U = (u, v) on the Adv+F dataset, coming from the test set.
For each variable 7, u and v, the first row shows the ground truth, the second row the estimation with our
model optimization based on eq. (43). Columns represent the time. Note that ¢ + 1 actually means ¢ + At
where At = 8640s. Without ever observing U, our model is able to estimate it from observations of T"and
make predictions over long time range.
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Figure 16: Estimations, targets and differences between estimations and targets on T, U = (u,v) and F on
the Adv+F dataset, coming from the test set. Each column refers to a time step. Note that ¢ + 1 actually
means ¢ + At where At = 8640s. On the left, true and estimated U = (u, v) over 6 time steps, and differences
between targets and estimations. On the right, prediction of 7"and F over 6 time steps, and differences
between targets and estimations.
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Figure 17: Estimations and targets on 7, U = (u, v) and F on the Adv+F dataset, coming from the test set.
Each column refers to a time step. Note that ¢ + 1 actually means ¢ + At where At = 8640s. On the left,
sequence of T'inputs (4 time steps). In the middle, prediction of T, U = (u,v) and F over 8 time steps. On
the right, true T, U and F over 8 time steps.
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Figure 18: Estimations, targets and differences between estimations and targets on 7, U = (u, v) and Fon
the Adv+F dataset, coming from the test set. Each column refers to a time step. Note that ¢ + 1 actually
means t + At where At = 8640s. On the left, true T, U and F over 5 time steps. In the middle, prediction of
T, U = (u,v) and F over 8 time steps. On the right, differences between targets and estimations.
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Table 3: Ablation Study on Adv+F. We report the MSE (x 100) on the predicted observations 7, the velocity
fields U and the forcing term F over 6 time steps. “Joint” rows refer to the simultaneous optim. of hh.and k.

Training  Models T U F
Ours (U known) 0.52 n/a 0.19
Ours 0.74 (0.05) 1.9 (0.13) 0.17 (0.01)
eq. (46) 1.02 (0.16) 4.08 (023) 0.19 (0.06)
Alternate 0 (44) 1.02 (0.09) 3.66 (0.15) 0.19 (0.03)
eq. (45) 0.77 (0.06) 2.38 (0.17)  0.19 (0.01)
e 0TS 1.44 (0.08) 330 (0.18) 0.30 (0.03)
eq. (46) 138 (0.19) 6.96 (021) 0.39 (0.08)

4.5 CONCLUSION

We propose in this work an algorithm to learn hybrid MB/ML models. For interpretability
purposes, we impose constraints flowing from an upper bound of the prediction error and derive
a learning algorithm in a general setting. We prove its well-posedness and its convergence in a
linear approximation setting. Empirically, we evidence the soundness of our approach thanks to
ablation studies and comparison with recent baselines on our simplified ocean dynamics dataset.
In the next part iii, we go further and confront this framework to model data representative of
real-world ocean dynamics.



Part II1

REAL-LIKE OCEAN DATA






REAL-LIKE OCEAN DATA

This part is more practical than methodological. We dig deeper than part ii, exploring the
possibility to model real-like ocean dynamics with ML. The idea introduced so far highlights a
principled methodology for completing physical models with ML components. Our experiments
show their validity for simple dynamics and their associated simulated data.

In chapter 5, we confront the models developed in part ii to the data from NATL6o. When dealing
with real or real-like dynamics and data, one is faced with a “reality gap” due to their increased
complexity so that this principled approach shall be further enhanced with e.g. the incorporation
of additional information sources. In this part, we make a first attempt towards this direction by
augmenting the model from chapter 4 with additional information.
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5.1 INTRODUCTION

In this section, we focus on NATL60 data, which are simulations of real data. Even if many
uncertainties inherent to real observational data are not present, e.g. uncertainties due to cloud
cover or measuring devices, these data reflect closely the complexity of real observations. Note
that ocean dynamics is a tri-dimensional spatial phenomenon, involving many variables on
several interrelated scales. Thus, whereas the simulated data used in part ii are bi-dimensional,
the phenomena studied in this section is tri-dimensional. For convenience, we only focus on the
surface velocity fields, and ignore the vertical components.

In line with several works presented in chapter 2, we seek to confront data-driven models to
real-life like data. With this in mind, we do not claim to solve a problem from the oceanography
field. We rather aim at detecting the limits of our theoretical models, when confronted to
complex dynamics. Thus, this chapter extends the previous chapters, adapting the methodologies
presented to simulations of real data. First, section 5.2 is a reminder of our model proposed in
chapter 4. Then, in section 5.3, we analyse the performance of the model introduced in chapter 4
on the challenging NATL60. We then introduce and discuss different attempts for adapting our
model to the complexity of NATL6o. Finally, in section 5.4, research directions are proposed to
improve the results and pave the way for the development of new models.

5.2 HYPOTHESIS AND MODEL REMINDERS

We access a partially observed dynamical state X, = (T}, U,) where the ocean surface temperature
T'is observed and the ocean surface current velocity fields U are unobserved. We aim at estimating
the dynamics f; of T with an hybrid model h;. = h¥. + hd, where k. is the physical part with
known form and h{. is the data-driven part, completely unknown. k%, depends on unknown
parameters 0, (in our case that is the velocity U), which we aim to estimate from observations of
T, using as inverse model a neural network G.

To learn a physically sound h;- = h%. + h<, we propose to add constraints on both components h?.

and h%. To that end, in chapter 4, we propose to derive our cost function from an upper bound.
Constraining h%. to participate as many as possible for fleads us to eq. (27):

d(th fT) < d(h’?ﬁ 0) + d(h}%v fT)
associated with the optimization problem:

min Ay, 8(hy, fr) + Mg d (Wi, fr) + Mg d(he, 0) (47)

hY., hd

where

t
St 1) = Ex, [ o, (X0r7) = 61, (X7 0
to
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However, we show in the next section that this seems insufficient when dealing with real-like
data. Thus, we propose to add information on f7. To that end, we assume one accesses a coarse

version of f1, denoted f5:*" € H,.. Note that this is a plausible assumption when dealing with

physical problems. More precisely, we assume that f2*" comes from a dynamics f7", which is a
first-guess model of the true dynamics f,. f7" obeys the additive decomposition hypothesis of
eq. (18), so that f2" and f27" verify f2 = f2F" 4 f%P". We adapt our framework to incorporate
such auxiliary information, bringing the regularization induced by f2*" within the scope of the

control of an upper bound. We aim to constrain d (Y., f7*"), which leads us to eq. (31):
d(hT7 fT) < d(h’%a O) + d(h177“7 ’%pr) +I
The optimization problem is then the following:

min )\hT5<hT’ fT) + A}L:’%(S(hg—v, g,pr> + Ah%d(h%, O) (48)

hip bt

In the following section, we explain how we adapt these two bounds and associated optimizations
in the context of the NATL60 dataset.

5.3 WHEN THEORY MEETS REALITY

In this part, we examine the model proposed in chapter 4, as it is theoretically grounded. First,
we show that the first bound is not sufficient to estimate U in the case of NATL60. To rely on
the second upper-bound proposed in section 4.2, we assume that we access f7*" parameters. In
section 5.3.1 we present how we implement such bound and propose adaptation to deal with
the complexity of NATL60 data. We also present experimental results. Then, in section 5.3.2, we
extend this model, adding the regularization proposed in chapter 3. Finally, in section 5.3.3, we
review the limitations of our model and present the avenues explored to address the encountered
problems.

5.3.1  Model Adjustment

We train the model from chapter 4 on NATL60 data using both upper-bounds egs. (47) and (48).
Remember that the velocity fields U are the parameters of f%, and we aim at estimating the
parameters 6, of hf.

Using eq. (47)

We first rely on the optimization problem eq. (47), i.e.

min A, (hy, fr) + Mg S fr) + A 6(hT,0)

P pd
hiphg

Modeling the evolution of T'in NATL6o is challenging as its dynamics is chaotic and highly
non-linear, which is representative of the complexity encountered in real world data. According
to Figure 19 and first row of table 4, the principled approach of eq. (47) is insufficient here and
one must resort to additional physical information. We then propose to use eq. (48).
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t t+1 t+2 t+3

t t+1 t+2 3
u estimated v estimated
(eq (47)) (eq (47))
= Tt
u estimated v estimated
(eq (48)) (eq (48))

Figure 19: Sequence of estimations 6, of U = (u,v) for the NATL60 data. Left and right figures respectively
illustrate both components v and v of the two dimensional U = (u, v). The second and third row respectively
refer to training according to eq. (47) and eq. (48). The loss term §(h%., f7*") in eq. (48) enables our model

to learn more accurate velocity fields than when only trained following eq. (47).

Using eq. (48) with auxiliary data
We thus propose to rely on the optimization problem eq. (48), i.e.
}g}i{é )‘hT(S(hT7 fT) + )‘h’}(S(hg“v %pr) + )‘h%(S(h%v O)

To use eq. (48), we need to calculate §(hf, f5:7"). As both fI and " belong to the same
functional space H,, they have identical parametric forms. This means that 0" are in fact

estimations of real parameters of f%, such that f7:*" = hfj(.,6?") ~ f%. We thus propose to enforce
d(hf, f7*") directly into the parameter space, i.e. to minimize |, — 65" |,. Indeed, minimizing

16, — 657 ||, will bring A closer to f7*" and thus to f7.

As a concrete example, consider Figure 20. In this figure, ¢, are the true surface currents, i.e.
what is shown in high resolution in the red box. 9§T are the currents derived from the SSH, i.e.
what is shown in low resolution across the North Atlantic Ocean. They are rough estimates of
high resolution surface currents.

To enforce d(h7, f7""), we estimate 6, with Gy and supervise it with 5. Note that we use as 63"
the velocity fields U. However, in a real-case scenario, one does not access such observations:
only coarse approximations of U are computable from the SSH, see chapter 2.

For the highly complex NATL6o, fig. 19 and Table 4 (second row) show that the introduction of
auxiliary data following the formulation in eq. (48) helps identification. The dynamics is too
complex to be able to recover physically interpretable velocity fields using the bound of eq. (47).
We thus propose to add more physical information to our model.

Adding More Information

There are conditions that have not been considered so far and for which the model can easily be
adapted. Firstly in terms of spatial coordinates, and secondly regarding the Courant-Friedrichs-
Lewy condition. We develop both aspects below.

IRREGULAR GRID NATL60 data results from an ocean model simulation at a resolution close to
the kilometer, i.e one pixel represents the average value of the measured field over a surface of
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NATL60/SARGAS60 Region on North Atlantic
SSH SARGAS60-region - 2012-10-01T12:00:00.000000000

o3 . o T =

80°W 60°W 40°wW 20°W

Figure 20: Sea Surface Height in the North Atlantic Ocean. The red box shows the ocean surface currents at
a resolution of about 2.5km. Out of the red box, the resolution is about 50km. From Hewitt et al. (2022).

t t+1 t+2 +3 t+4 t+5 t++6
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u (ours)

v (real)

v (ours)

Figure 21: Sequence of estimations on T'and U = (u, v) for the NATL60 data. Each column refers to a time
step and predictions range from 1 to 7 days. Estimations deteriorate very quickly.
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Table 4: Ablation Study for the NATL60 data: we test our two upper-bounds from chapter 4 (first two rows)
as well as the second bound with further physical knowledge (third row). We report the MSE (x 100) on
the predicted observations 7, the velocity fields U and the forcing term F over 3 time steps on test set.

Models T U F

Ourseq. (47)  827(0.06) 11.72 (0.07) 6.01 (0.08)
Ourseq. (48)  7.37(0.12) 109 (0.1)  4.98 (0.09)
Ourseq. (48)  6.86 (0.12) 6.81 (0.07)  4.35 (0.11)

Aphynity 8.18 (0.16) 11.75(0.49) 6.02 (0.02)
Neural ODE 8.83(0.98) n/a n/a

approximately 1km x 1km. As the grid is not uniform across all the NATL60 domain, dz and dy
are computed for each latitude and longitude, according to:

dz = Rcos ¢ dy
dy = Rd¢

where R = 6378km is the Earth radius, ¢ is the latitude and ¢ is the longitude. NATL6o is
at a resolution of 1/60 °, i.e. d¢p = d¢p = 1/60. We have At = 86400s = lday. To run the
semi-Lagrangian scheme, representing the advection of T'by U, we thus compute dz and dy
accordingly.

DEALING WITH THE CFL CONVERGENCE CONDITION There are difficulties inherent to the
NATL6o data. As data are sampled every day, about every 2 km, the CFL convergence condition
might therefore not be respected. Moreover, we access data for one year only, which leads to
problems when learning and testing the modeled dynamics: the observation conditions are not
the same in winter and summer, for example. To deal with the CFL convergence condition, we
propose to adapt the size of images of T given as h%. inputs. Considering that an ocean water
particle approximately travels 86 km per day, when computing the advection of T'with the Semi-
Lagrangian scheme, we thus need to give a border condition of about 40 grid points. To deal
with numerical limits, we thus estimate U, T'and F'as 256 x 256 images. Note that this practice
considerably increases the convergence time of the training and limits the forecast horizon.

Table 4 (third row denoted Ours eq. (48) %) shows that adding such information enhances results.
Thus, it seems that one cannot do without physical knowledge when dealing with real data.
However, fig. 21 shows that the velocity fields reconstructed from eq. (48) are not yet satisfactory,
especially regarding long-term predictions. In the following, we propose to add the dynamical
constraint proposed in chapter 3 to overcome this limit.

5.3.2 Hybrid models with dynamical regularization

Long-term prediction seems to be a problem for learning on the NATL60 dataset. In fact, the
accuracy of neural networks predictions for long horizons strongly depends on the capacity of the
model in producing accurate outputs at each time-step. Indeed, error may accumulate leading to
aberrant or unrealistic predictions.
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O~ OO
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Figure 22: Chapter 4 (left) and Chapter 3 (right) modeling. Whereas we estimate the hidden state U, from
observations 7, at each time step in chapter 4, we learn the dynamics h;; to predict U at each time step in
chapter 3. This prevents the error on T to propagate.

To constrain our model to learn the dynamics of the velocity U, we propose to combine both
methods from chapters 3 and 4. First, we recall the regularization proposed in chapter 3. Then,
we propose a new training objective coupling the optimization of the second bound in chapter 4
and the regularization from chapter 3.

Model Reminders

In chapter 3, we propose to learn the whole dynamics of the state X = (7', U), following the
objective defined in eq. (23):

min

dT, ~
subject to —t = (kL + hd)(X
1 ] (b7 T(X)

dt

N . ty
0, - (Uto + [ hU(Xt)dt>
0

2

where G, is an inverse model so that U, = G4(T,_,.,),and X, = (T}, U,). hy, is a dynamical model
used to constrain U to follow an ODE. This formulation amounts to simulate both dynamics f
and f.

Model Adaptation

To constrain the dynamics of U, we propose to learn both dynamics associated to 7'and U, while
retaining the constraints associated with eq. (48). This amounts to combine both methods from
chapters 3 and 4. We learn the dynamics of U with a neural network, and use the predictions of
U to predict T (see fig. 22). Contrary to chapter 3, we do not enforce the dynamics of U using
an inverse model. Instead, we use the constraints derived in chapter 4 using the observations
¢0p". We thus propose to constrain the dynamics associated to both T'and U using the following

objective:
- ty
07" — Ut0+/ hy(X,)dt
t

0

min

. dT, p PR
hp€8,+8,hy subject to —= = (hy + h7)(Xy) (49)

dt

2

To solve eq. (49), we introduce the same constraints as in chapter 4, i.e. §(h%,0), §(hh., f277),
d(hp, fr). The difference with chapter 4 comes from the use of a neural network to model i, (see

fig. 23).
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Figure 23: Computational graph of the method proposed in this chapter on two time steps at training time.
In this case, °"®7,(¢) is defined in eq. (50). At forecast time, i.e. at time ¢ > t,, the evolution of UthU as
modeled with an ODE is constrained to coincide with U}". Contrary to chapter 3, J; also encompasses
a loss term on h¢. Forecasting amounts to learning k. and h, from a sequence of observations of 7. At
each timestep t, we predict T'and U at the next timestep ¢ + 1. The forcing term F'are modeled with h% and
learned from a sequence of T. Note that ¢t — k actually refers to the timestep t — kAt

The optimization of eq. (49) consists in learning h%, h% and h;; by minimizing the overall cost
function J defined by

n k
T =3 (Tulte + 5A) + ATty + jAt)) (50)

i=1 j=0
with J;(t) = Ay, || ODESolve(X} , by, t) — T} H2 + Aya || ODESolve (X} , hd. t) H2

Ju(t) = Ay, | ODESolve(X} , hy,t) — T} H2 + Ay, || ODESolve( X by, t) — 0,77 ,

where A;, A, , A4 are hyperparameters, n is the number of initial conditions in the training

set and k is an hyperparameter. We alternate the optimization of the parameters ¢, and ¢, of
(h%, hyy) and hé.

The computational graphs from Figures 23 and 24 give a schematic representation of our learning
scheme over two time steps respectively at training and inference time. We also recall the
computational graphs Figures 25 and 26 respectively from chapters 3 and 4. The method proposed
here is a combination of both approaches: as in chapter 3, we use h; to constrain U to follow an
ODE, while enforcing our model with the loss proposed in chapter 4.
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Initialisation = Forecast

t=t, L t>t

Tk Ty k1] Ty ria

h hy
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Figure 24: Computational graph of the method proposed in this chapter on two time steps at inference time.
Forecasting amounts to learning h;, and h;, from a sequence of observations of T. At each timestep ¢, we
predict T'and U at the next timestep ¢ + 1. Note that the inverse model G, is only used for the initialisation,
i.e. attimet =t,.

Table 5: Ablation Study for the NATL60 data: comparison between estimations made from eq. (48) and
eq. (49). In both cases, the x denotes that we use information about latitide/longitude and CFL condition.
We report the MSE (x 100) on the predicted observations 7, the velocity fields U and the forcing term F
over 3 time steps on test set.

Models T U F

Ourseq. (48) x  6.86 (0.12) 6.81(0.07)  4.35(0.11)
Ours eq. (49) »  6.23(0.21)  6.1(0.2) 4.42(0.09)
Aphynity 8.18 (0.16) 11.75 (0.49) 6.02 (0.02)

NeuralODE 8.83 (0.98) n/a n/a
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Figure 25: Computational graph of the method proposed in chapter 3 on two time steps. At forecast time,

ie. at time ¢t > ¢,, the evolution of UthU as modeled with an ODE is constrained to coincide with UtG ¢ as
estimated with G. In this case, "3 7;;(¢) uses the estimation from G, to constrain hy;.
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Figure 26: Computational graph of the method proposed in chapter 4 on two time steps. At each timestep ¢,
we estimate U, using Gy. In this case, "4 J;,(t) is computed between T and the estimation of h%.

Table 5 and fig. 27 show the relevance of the introduction of the dynamical regularization. Note
that the physical information about latitude/longitude and CFL is retained in the experiments.
However, despite the improvement in results, a number of pitfalls persist. Notably, we observe a
strong overfitting to 7, i.e. the model focus on the modeling of T'and bypass h.. In the following
section, we discuss these effects and list experiments designed to combat them.

Training details

ARCHITECTURE DETAILS The architectures in this setting are identical to the ones described in
chapter 4, section 4.4.1.

optimizaTION  We use Adam optimizer with learning rate 0.00001 for 50 epochs with batch size
32. We enforce ¢ over 6 time-steps, i.e we supervise the predictions on timesteps: (t,+ At, ..., t, +
6At). We use dropout in both G, and h.

HYPERPARAMETERS, SETTING OF EQ. (47) The selected model is the one with lowest prediction
errors on validation set (i.e lowest d(hy, fr)), sampling uniformly the hyperparameters: A ~
U(1,0.1,...,107%). Ah,. geometrically increases from 0.01 up to 100. We initialize A;» = 0.1 and
decrease it geometrically down to Aj,» = 0.00001. A4 is fixed through training at 0.1. We alternate

projection on S, and S, by descending the gradient 10-batches on both A%, and h4.

HYPERPARAMETERS, SETTING OF EQ. (48) AND EQ. (49) The selected model is the one with
lowest 8(h, fr)+3(hY., f12P") error, sampling uniformly the hyperparameters: A ~ /(1,0.1,...,107%).
Because the dynamics of NATL60 is highly non linear and chaotic, we follow Jia, Willard, Karpatne,
Read, Zwart, Michael S Steinbach, et al. (2019) and first warm-up the parameters recognition
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Figure 27: Sequence of prediction on T',u, v, F' for the NATL60 data across 3 days trained according to
eq. (49). From the test set. On the left, true variables. On the right, outputs of our model designed from

eq. (49)-

network G on the velocity fields proxies for 10 epochs. For this setting, \;,  geometrically increase
from 0.01 up to 1. A is set equal to A, . A4 is fixed through training at 0.01. After warm-up,
we alternate projection on S, and S,; by descending the gradient 100-batches on /7. and 300 on
e

BASELINES For the training of Aphinity (Yin, Le Guen, et al., 2021), we set the learning rate at
0.0001 and train on 30 epochs. We initialize A, = 0.01 and increase it geometrically every epoch
up to Ay, = 100. A4 is fixed through training at 0.1. For the training of NODE (R. T. Q. Chen
et al., 2018), we set the learning rate at 0.00004 and train on 50 epochs. To perform prediction, we
first encode the 4-consecutive measurements of 7' (as a 3 x 64 x 64 state) then learn to integrate
this state in time thanks to a 3-layer convolutional networks, with 64 hidden channels. It is
integrated using RK4 scheme available from https://github.com/rtqichen/torchdiffeq.

5.3.3 Analysis

Neither conventional ML methods nor the addition of physical knowledge have proven effective
for the complex NATL60 dataset. We now discuss several aspects that may be limiting the learning
on NATL60 dataset. First, we underline the gap between theory and practice. Second, we list
several attempts made to overcome the observed limitations of our model.
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Regarding the reality gap

Even if we rely on a theory based on proofs of convergence, in practice the assumptions made
are not respected. For example, for the optimization problem eq. (33) to be well-posed, both
the relative compactness of H,, and the convexity of d (as defined in eq. (20)) are necessary.
Moreover, to ensure the convergence of algorithm 1, both H,, and #H,; should be convex and d
should be strongly convex. However, in reality, there is no reason for #,, to be convex. Besides,
we use the loss ¢ defined in eq. (21) which is not convex either.

More than a gap between theory and practice, there is also a gap between the Adv+Source dataset
used in part ii and the NATL60 data. For instance, h% accounts for more phenomena, as here F
not only accounts for ocean-atmosphere heat exchanges but also for interactions with deep ocean
layers. Besides, whereas the velocity fields generated following eq. (16) are periodic, those from
NATL60 are not, which makes the learning more complicated. Finally, whereas the Adv+Source
data accounts for 10 different velocities, in NATL60 there are as many velocity fields as zones, i.e.
320 different fields. This touches on problems of generalisation, which we address in section 5.4.

The fact that the model learns poorly on NATL60 data is evidenced through three observations:
1. Uis smoothed out as learning progresses; 2. the model strongly overfits T} 3. we observe a high
sensitivity to hyperparameters. In the following, we give insights on reasons for such limitations
and propose solutions to overcome them.

Experimental Trials

The failure of our model to learn on NATL60 data can be attributed to several reasons. The
overfitting may be due to a lack of data or an inadequate physical model. Our hybrid model
assumption may also be questioned. We present below several tests that have been carried out to
improve the results.

FIGHTING SMOOTHING  The smoothing probably comes from the use of the MSE loss function to
learn U. Indeed, the MSE is known to lead to blurry predictions (Mathieu, Couprie, and LeCun,
2015). We attempted to retropropagate using the L1 loss function and the PSNR, even though it
is usually used as metrics. It did not led to an improvement in results.

FIGHTING OVERFITTING To predict SST, the model ignores U. That means that no physics is
learned, i.e. Gy does not learn the relationship between T'and U. Classical solutions have been
tried, such as weight decay or dropout on both G, and h%. Note that increasing the batch size
was impossible, due to the high dimensionality of the images and the limit in GPU memory. It
has not led to an improvement in results.

PHYSICAL STANDPOINT  To reduce overfitting, another intuition would be to incorporate more
physical knowledge into the model. One wonders which information, and how. We are trying
to learn two phenomena from observations of T' the velocity fields U and the forcing term F.
Whereas the link between T'and U is evidenced in (Bigg and Killworth, 1988), to learn a source
term from the sole SST seems fairly ambitious. Indeed, the source terms mainly depend on the
environment: for instance, if the atmosphere is warmer than the ocean, the exchanges will go
from the atmosphere to the ocean, which is the case at the equator but not at the poles. Thus,
providing geographic information such as latitude and longitude associated to each region could
help the model.
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A first attempt was made by providing to h$ part of the forcing term: those are divided into the
radiative part (i.e. the solar flow) and the turbulent part (i.e. from evaporation and conduction
at the surface). We tried to inform h¢. with the radiative fluxes and let it learn the turbulent part.

A second attempt was made to provide h4 with information about the area. The training sequences
have been reorganised to include spatio temporal information, so that each sequence corresponds
to a season and a zone. This information was provided to h% as a code corresponding to an area
and to a season. Another attempt was made to provide latitude and longitude to G,.

The model as we have designed it does not work on simulations of reality. Several made attempts
do not enhance the results. In the next section, we propose some perspectives for modifying our
model in order to solve the aforementioned issues.

5.4 PERSPECTIVES

In this last section, prospects for overcoming the identified issues are proposed. Notably, we
tackle the smoothing of U and the generalization across regions not seen through training. We
propose several model reformulation, focusing on the learning of both %, and h4. The changes
we propose are based on both the network architectures and the optimization framework.

5.4.1  On the learning of h

It has been underlined that it seems almost impossible for h4 to learn a forcing term from the
sole SST. To give spatial information seems more relevant. We distinguish two solutions to meet
this condition.

USING IMPLICIT NEURAL REPRESENTATIONS One could take as input to h% the coordinates
where S'is to be estimated. This is reminiscent of mesh-agnostic approaches for solving PDEs
such as (Raissi, Perdikaris, and G. E. Karniadakis, 2019; Sirignano and Spiliopoulos, 2018).
Recently, Sitzmann et al. (2020) coined such approaches as implicit neural representations (INR).
Besides, one could imagine giving temporal information, such as the month, as additional input
to he.

DOMAIN GENERALIZATION Instead of providing spatial information, this one could be directly
learned by the network. Drawing from domain generalization (J. Wang et al., 2022) and especially
generalization in dynamical systems (Kirchmeyer et al., 2022), one could rely on a spatiotemporal
code concentrating information on one domain. This could be learned from a sequence of SST,
and h4. could take as input a spatiotemporal code instead of the SST. Remaining questions are
how to constrain such code and how to perform adaptation at test time.

5.4.2  On the learning of hf.

The main issues encountered when learning U are smoothing and overfitting. We distinguish
three propositions to overcome them.

INITIALIZATION  Global surface currents velocity fields are nowadays inferred from satellite ob-
servations of sea surface heights (SSH). Even though those estimations have a low spatiotemporal
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resolution, they could be used as inputs to Gy, which would then perform a super resolution
task.

ADVERSARIAL LEARNING OF U  To solve the smoothing of U inherent to the use of the MSE,
adversarial learning could be of great help. As high resolution of U is not accessible in a real life
setting, one could consider an unsupervised learning of the velocity fields, for instance using a
conditional GAN (Mirza and Osindero, 2014). This would use a sequence of SST as condition,
and use the velocity fields modeled with NATL6o for the training. One would thus learn the
probability distribution of interest py;. Notably, one could take from (Isola et al., 2017b) and
enforce L2 constraint on the SST, i.e. on the outputs of the generator.

HYBRID MODELING OF f;;  Asfor fr, the dynamics f;; encompasses several phenomena, some of
which are well known. To better constrain the learning of U, one could also encode h; as a hybrid
model hy, = hY, + h{, where hY; would account for a known process, and h¢; would account for a
process learned from data. Recall that f;; account for the dynamics

ou
% =—(UNV)U—¢Vh+ fAU+ DY+ FY (51)

For instance, in eq. (51), A}, could amount to the advection term and the derivative of the SSH, i.e.
hY(U) = (U.V)U — ¢’ Vh. h{; would then encompass for the Coriolis force effect and the forcings,
ie. h, = f AU + DY + FU. As developed above regarding h<, one should carefully care for the
inputs of h{, which could be modeled by an INR. Note that the vertical component of the velocity
should be taken into account when computing the advection. Otherwise, this would be reflected
in the term h¢,, which would then lose some of its physical meaning.
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CONCLUSION

To conclude, in section 6.1 we first review the main contributions of this thesis. Then, in section 6.2,
we confront ML with real world problems and provide insights on major hazards that reseacrh
in ML could face in the coming decades.

6.1 HYBRID MODELING OF OCEAN DYNAMICS

In this thesis, we took an interest in the current research path aiming at solving real-world physical
problems using deep learning. To that end, we chose to study the oceanic system to analyze the
practical aspect of our research. More specifically, we consider deep learning algorithms to model
ocean currents directly from SST observations. To exploit the long gained physical knowledge
and guarantee the physical consistency of our estimations, we use hybrid models, combining both
a data-driven and a physical model. However, the underlying learning is inherently ill-posed:
the high versatility of neural networks may lead the data-driven part to bypass the physical part.

As a first step, we have conducted a theoretical study on the learning of hybrid models and their
well-posedness. To that end, we worked on a synthetic dataset which is a simplified representation
of ocean dynamics. This led to two contributions. First, we proposed a dynamical regularization
constraining the estimated velocity fields U to follow an ODE. Second, we proposed a well-posed
framework for the learning of hybrid models, relying on the optimization of an upper-bound of
the original ill-posed loss.

As a second step, we conducted an experimental investigation, during which we confronted
our framework to real-like ocean observations of SST and velocity fields from the Gulf Stream
current in the North Atlantic (from the NATL60 model). However, this did not lead to the
expected results. This can be explained in several ways: on the one hand the assumptions made
in theory are not valid in practice, on the other hand there is a gap between synthetic and real data.
Indeed, the NATL60 data forcing term synthesises more phenomena than that generated for the
synthetic Adv+F dataset. It includes vertical advection, lower ocean forcing and air-sea exchange.
Besides, velocity vectors have more complex, finer-scale and non-periodic structures than those
generated synthetically. Such gaps lead to difficulties through training, which is evidenced with
strong overfitting. Several attempts have been made to overcome this issue. We questioned the
loss function, attempted to address overfitting using classical ML methods, and added physical
knowledge. None of these attempts proved effective.

Still, there are some solutions that are relatively easy to implement that would quickly solve
some of the problems. Firstly, training on more than one year of data would probably reduce
overfitting. In addition, we had access to only one observation per day, which did not allow us
to predict scales as fine as those in the NATL60 dataset, and led to an explosion in prediction
error. Secondly, the 2D advection scheme we use could be replaced by a 3D scheme, better
adapted to the phenomenon modelled by NATL6o. This would also make the forcing term more
interpretable.

In the short term, adaptations of our model could facilitate learning: for example, using a hybrid
model to learn the dynamics associated with ocean surface velocity fields U, or using an INR
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to associate the forcing with a location. In the long term, attention could be given to mesh free
modeling, domain generalization and unsupervised learning of U.

6.2 ML FOR PHYSICS: REAL WORLD PROBLEMATICS

This thesis aimed at exploring how deep learning models translate in real settings. Among the
many issues related to ocean modelling, one of the main ones is the study of the impacts of
climate change. I am convinced that climate change is probably the most important issue of our
time.

ML FOR CLIMATE CHANGE ? Climate change refers to long-term shifts in temperatures and
weather patterns, driven by human activities. The burning of fossil fuels like coal, oil and gas
generate greenhouse gas (GHG) emissions, for instance carbon dioxide and methane. Those
absorb solar energy, trapping heat within the atmosphere (Romm, 2022). This induce both
near and long term consequences, including hotter temperatures, more severe storms, increased
drought, a warming and rising ocean, loss of species, food shortage, health risks, poverty and
displacement (Portner et al., 2022). Unless we rapidly reduce GHG emissions, Masson-Delmotte
et al. (2018) shows that we head towards a rise in temperatures of 4°C by 2100. Under such
warming, the sea level would rise of nearly 9 meters, puting approximately 700 million people at
risk, that is 10 times the France population. To deal with these threats, climate change adaptation
and mitigation is to be considered in our everyday activities, including our research.

If applied to real-life data, ML could be useful in combating climate change. For example, short-
term forecasting of local risks (such as floods or fires) is a major challenge in terms of adaptation.
However, current models do not allow for such forecasts. It could also be useful in quantifying
the uncertainties inherent in current models. Recently, Rolnick et al. (2022) describe how ML can
be a powerful tool in reducing greenhouse gas emissions and helping society adapt to a changing
climate. Their paper lists areas where ML could be of help such as electric systems, transportation,
agriculture and forest preservation but also climate prediction and solar geoengineering. Before
rushing into techno-solutionism, let’s refocus our attention on the many limitations that ML will
have to overcome before it appears as a viable solution.

TOWARDS THE LOW-TECH ERA?  Firstly, ML has a significant carbon cost, mainly due to the
infrastructure needed to operate it but also to the training of models. Accurate reporting of
energy and carbon consumption is essential to understanding the potential climate impacts of
ML research. Henderson et al. (2020) proposes a framework that makes this easier by providing
a simple interface for tracking realtime energy consumption and carbon emissions.

Secondly, we must be wary of extractivism. Bihouix (2019) warns us of resource scarcity: metal
consumption in the information and communication technologies sector tripled between 1980
and 2010 (Bihouix and De Guillebon, 2021). Notably, supply with rare earth elements is likely
to be disrupted in the near future (De Boer and Lammertsma, 2013). To avoid reaching dearth,
we should regulate our consumption of resources and adopt more economical practices (Vidal,
2018).

Lastly, we can ask ourselves about the future we are heading towards. Whereas the physical
paradigm focuses on understanding the physical laws behind a phenomenon, the data paradigm
relies on a vision that can be described as more materialistic, refraining from any understanding
and relying only on the accumulation of data to model a phenomenon. In the long term, this
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paradigm shift raises philosophical questions: are we ready to abandon the goal of understanding
our world and entrust it to machines? Moreover, climate change and planetary limits will sooner

or later push us towards a technically sustainable civilisation, a society based on low-technology
systems (Bihouix, 2014).

83



84 CONCLUSION



PartV

APPENDIX






SUPPLEMENTARY MATERIAL FOR CHAPTER 2

A.1 SEMI LAGRANGIAN SCHEME

A semi-Lagrangian scheme is a numerical method for solving PDEs. It is mainly used to describe
physical systems with advective behaviour, such as fluid flows. For cases where the fluid velocity is
much larger than the diffusive and dissipative effects, traditional finite difference or finite element
methods can produce numerical errors and spurious oscillations, but the semi-Lagrangian method
is more stable and accurate. It is therefore widely used in computational fluid dynamics, especially
in meteorology and atmospheric modelling. In this method, the solution is approximated by
tracking fluid elements along their characteristic curves and updating the solution at each time
step.

CHARACTERISTIC CURVE  The characteristic curve of a fluid element is the path followed by that
element in a fluid as it moves over time. In other words, it is the trajectory of the fluid particle in
space and time. In a fluid flow, the velocity field determines the movement of fluid elements,
and the characteristic curve of a fluid element is obtained by integrating the velocity field along
the particle’s path. The characteristic curve can be thought of as a mapping from the particle’s
initial position to its position at some future time.

The characteristic curve is a key concept in the semi-Lagrangian scheme. In this method, the
solution is updated by integrating the PDE along the characteristic curves of the fluid elements,
and the solution at each time step is approximated by interpolating the values at the particle
locations.

THE SEMI-LAGRANGIAN METHOD  The semi-Lagrangian method starts by discretizing the spatial
domain into a fixed grid. At each time step, the solution is updated by integrating the PDE along
the characteristic curves of the fluid, which are the paths followed by fluid elements (fig. 28). The
solution at the new time step is then interpolated onto the grid for storage and post-processing.
The semi-Lagrangian scheme is thus computationally efficient, as it only requires the evaluation
of the solution at the particle locations.

In our case, consider a solution to the advection equation:
or
— =—-V - (TU)+ F
= (rv) +
with F' = 0. The method of characteristics consists in exhibiting curves (z(s), t(s)) along which

or
the derivative of the solution T'is simple, i.e 5 (z(s),t(s)) = 0. For a 1D constant advection
s
scheme, computations lead to:

dt

%:U: =29+ Ut

giving therefore, T'(z,t) = T,(z — Ut), linking the value of the solution at all time to its initial
condition. Therefore from a single observation at ¢, it suffices to estimate the original departure
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Figure 28: Basic steps involved in semi-Lagrangian transport. Imagine a fluid flowing over a surface and the
velocity field at each point in the fluid is known. The semi-Lagrangian scheme would track the movement of
fluid elements along the velocity field to calculate their position at a future time. This process is repeated at
each time step to simulate the evolution of the fluid flow over time. For instance, on the left, the red particle
figures T'(x — Ut) with known value. The black particle on the top right figures T'(x, t), which estimate
from T'(z — Ut). From Verma, Xuan, and Blanquart (2014).

points x, — Ut to infer the prediction at ¢.
However, when U is not constant in time, the method remains doable, not along characteristic
lines defined by : (z, + Ut), but along characteristic curves which are given by:

%:1 — s=1t
E=U(x,1) (52)

SEMI-LAGRANGIAN AND FULLY LAGRANGIAN SCHEMES Semi-Lagrangian and fully Lagrangian
schemes are both numerical methods for solving PDEs, but they differ in the way they approximate
the solution. A semi-Lagrangian scheme uses a combination of Lagrangian, i.e. particle-based
and Eulerian, i.e. grid-based techniques. In this method, fluid particles are tracked along their
characteristic curves and the derivatives of the solution are approximated at each time step. The
resulting solution is then interpolated onto a fixed grid for storage and post-processing. A fully
Lagrangian scheme, on the other hand, is a purely particle-based method in which the solution
is represented by a set of discrete particles that move and deform over time to approximate the
evolution of the fluid. In this method, there is no fixed grid, and the solution is only defined at
the particle locations.

A.2 DISTANCE

Aa.2.1  Distance Between Dynamics

We here give the definition of the distance d. Let u and v be two functions of £?(R?,RP). We
consider the distance:

d(u,v) = Ex.p Ju(X) —v(X)], (53)



A.2 DISTANCE

Naturally, eq. (53) verifies the triangle inequality, the symmetry and the positiveness. Moreover,
in this case, for all functions f, d(., f) is convex. Indeed, for u, v two functions, and A € [0, 1]:

d(du+ (1=, f) = Ex, [Au(X) + (1 = Mo(X) = f(X)],
= Expy [Au(X) = AF(X) = (1= 2) F(X) + (1 = Mo(X)],

S Ay, [w(X) = FX, + (1= NEx, [o(X) = F(X)],

Hence the convexity of d(., f). This consideration suffices to ensure the convexity of S, and S,
defined in chapter 4, section 4.2.

A.2.2  Distance Between Flows

With the definition of eq. (6), we can define the distance between two flows of ODE as:
000 = Ex oy, [ 160,06 X0) = 050t Xy (54)
0 is positive and symmetric. Let ¢,,, ¢, be two flows, we have the triangle inequality:
0000 = Ex oy, [ 16018 X0) = 050t Xy
= Exp, [ 10008 50) = 00f8Xa) + 6400 Xa) + 60, X))

< x| 160(6:X0) = 6,08 X0)] 5 10,0 X0) + 6t Xy de
to

S 6(d)v) QSU) + 5(¢’U’ ¢f)

Let ¢ be fixed, we also have the convexity of §(., ¢ ) with respect to the first argument. Indeed
for A € [0, 1]:

Sy + (1= Ny f) = Ex / Tku(t, Xo) + (1= N)o, — ¢4(t, Xo)|| dt
to

—Exyp, / Mt X0) + (1= N, — Ayt Xo) — (1= Ngylt, Xp)| dt

However, in this case the convexity is not ensured with respect to u and v.This is the reason why
for theoretical investigations, we consider the distance d instead of . Nonetheless, 6(¢,,, ¢;) =
0= ¢,=0¢; = u=[.
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B.1 PROOF THAT U FOLLOWS AN ODE

With
g(x,t) = \/1 + k2B(t)%sin?(kx) (56)
Let ;
Hiag.t) = —tanh (L2200 g (57)
_O0H _of ., _of
We denote H,, = I fo= ERY fi= ETia
We have U = (u,v) = (%ﬁ:’ ,— g’;) = (H,, —H,)
Let’s calculate
H, = ng_zfg” <tanh2(§) — 1) =—v (58)
_fy( zf_> _1< 2f_> _
Hyfg tanh(g) 1 +cfg tanh (g) 1| +c=u (59)

We wonder whether U follows an ODE, i.e. there is a function [/ such that ‘(11—? = [(U). We have
‘é—? = (%, ‘;—:). We calculate

du = _9 (tanhZ(f) - 1) + 1%2’@“}1(5)(1 - tanhZ(g))

9° g g
- ! (tanhQ(f) - 1) (gt +fo— o _Qfgt2tanh(f)>
g g g g g
= —u (gt + Je9— 19 _ngtZtanh(f)> +c (gt + 9= 19 _zfthtanh(f)>
g g g g g g

With a = %, we calculate
dv — ¢ (tanh2 I — 1) +am2tanh I 1 — tanh? I
= (g) 7 (g)( (g))
= —vftg;zf‘%Q tanh(f) +a, <tanh2(f) - 1)
g g g

Hence, U as defined in section 2.2.3 follows an ODE, which justifies the constraint from section 3.1.
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C.1 PROOES
c.1.1  ODE Identification

Consider the following set: S, = {X(t) € C'([0,T],R?) such that: 34 € M, (R), X’ = AX},
where T > 0.

S, is not a convex set. Consider v and vin S, and consider A* and A so that v’ (t) = A" u(t)
and v’ (t) = A%v(t). For A €]0, 1[: we have:

Au~+ (1= XNv) =" + (1 — M)
= A*u+ (1 — M) A%
In general the last term is not equal to AN+ (1=2? (A4 (1— \)v), for some matrix AN+(1=Nv Thus

S 4 is not a convex set. However, discretizing the trajectories and employing a simple integration
scheme leads to considering the following cost function:

LA) =) (X3t +1) — (AAt + Td) XA (1)) [3 (60)

As a least square regression problem, £(A) is convex with respect to A. A least square regression
setting can also be recovered using more complex integration schemes, or several time steps
integration.

c.1.2  Proof for the Well-posedness of Equation (33)

We set ourselves in the Hilbert space of squared integrable functions with the canonical scalar
product (£2 (RP,RP), <, > > For further consideration on such functional space we refer to (Dro-
niou, 2001).

We assume that H,, hence S, is convex and a relatively compact family of functions.

CONVEXITY OF S, Letu,v €S
d(tu+ (1 —=t)v, f) = tu+ (L =ty — fl = [tu—tf + (L= t)o— (1 = 1) f|
Stpg + (1=t =y

Hence the convexity of S,,.

CONVEXITY OF S; Lett € [0,1] and u,v € S,;.
d(hy, hy, + tu+ (1 —t)v) = d(0, tu + (1 — t)v)
< td(u,0) + (1 —t)d(v,0)
< Mg

Hence the convexity of S,.
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CONVEXITY OF S, +S,; LetS=85,+8,={fI3f,€S5,, /4 €Sy, f= [, + [a}. Let f,g € Sand
A €]0,1:
MAA=Ng=Af, + (L =Ngp + A4+ (1—=Ng, €S,+S,

Hence the convexity of S.

Closeness of S; We show that S, is a closed set. Indeed, S; = g ([0, 1, ]), where g(u) = |u],
Because g is 1-Lipschitz (using the triangle inequality), g is continuous. Therefore S, is closed set
as the inverse image of a closed set by continuous function.

SEQUENTIAL LIMIT  We now show that S is a closed set thanks to the sequential characterisation:
let f* a converging sequence of elements of S and denote f its limit. We prove that f™ converges
inS.

Because Vn, f,, € S, we have: [ = f' + fi/, where fi! € §;and f! € S,,.

Thanks to the relative compactness of S, we can extract a converging sub-sequence, of indexes
n,, from f so that f,” — f, € S,,.

Because f"* — f, the sub-sequence f"i converges: f"i — f.

By definition, fulisa sequence of S; and we also have that: ful = fr — f: 7. Because the right
member of the equation converges (as a sum of converging functions), the left member of the
equation converges i.e. f,’ converges.

Since S, is a closed set fo! converges in S;. We write f, its limit. Therefore, ful = fr — f,? T f=f=
fa € 84 Hence, f = f, + f, with f; € §;and f,, € S,,.

Therefore S is a closed set.

Finally, we can apply Hilbert projection lemma on the closed convex set S and retrieve the
uniqueness of the minimizer of eq. (33).

REMARK Therelative compactness of a family of functions is a common assumption in functional
analysis. For example, in the study of differential equation Cauchy-Peano theorem provides the
existence to the solution of an ODE under the assumption of relative compactness. Also, Ascoli
theorem provides the relative compactness of a family of function 7 under the hypothesis of the
equi-continuity of 7 and the relative compactness of the image space A(z) = {f(z)|f € F}.

c.1.3  Proof of Proposition 2

We now set ourselves in the Hilbert space (£2 ([0,T],RP), <, > ) of squared integrable functions,
where <, > is the canonical scalar product of £2([0, T, RP).

Proposition 4 (Existence and Uniqueness). If A is invertible, There exists a unique D 4, hence a
unique X, solving eq. (42).

Proof. Let Abe a given invertible matrix. We consider the following space S, = {X € C!([0, T], R?) such that: 3D ¢
RP, X' = AX + Dand X(t =0) = X}, where T > 0. We show that S, is a closed convex set.

convExITY Indeed,let A €]0,1[ and u,v € Sp. Au + (1 — M)v is differentiable and:
Pu+ (1T=Xv)] =+ (1 —=Nv =AM+ (1—Nv)+ D,

Where D = AD,, + (1 — A\)D,. Hence Au + (1 — A\)v € Sp.



C.1 PROOFS

CLOSENESS VIA AFFINE-SPACE To prove the closeness of S, we prove that it is an affine space

of finite dimension. Let g the application that to any vector D € R? associate the solution XP.
D . . . . .

Let Dy € R”, we show that g, : D — g(Dy + D) — g(D,) is a linear application. Naturally, for

9p,(Ogs) = 0z2. Then for D # O, we have:

gp,(D) = e Xy + A"Y(Dy + D)) — A"Y(Dy + D) — et (X, + A7 (Dy) + A1 D,
=eMATID
Therefore g, is a linear function and g is an affine function. Moreover, g is an injection. Indeed,
if two functions are equals, then they have at most one inverse image by g thanks to Cauchy-
Lipschitz theorem. Therefore it defines a bijection of R? in g(R?). Since, Sj, = g(R?), Sp, is an

affine space of dimension p and g is continuous in particular for the canonical norm induced on
£2([0,T],RP). Therefore Sy, is an affine space of finite dimension and is a closed set.

FINDING A UNIQUE MINIMIZER  We conclude by applying Hilbert projection lemma: our prob-

lem of minimizing fo T||X (1) — XP(7)||, amounts to an orthogonal projection problem. Because
Sp is a closed convex set, we have existence and uniqueness of such projection. Therefore, it
exists a unique function X, € Sy and a unique vector D minimizing its distance to the function
X, O

c.1.4  Proof to Proposition 3

Proposition 5. For A\, and X, sufficiently high, the algorithm that alternates between the estimation of
A and the estimation of D , following eqs. (41) and (42) converges.

Naturally, one could estimate jointly D and A using least square regression. However, the idea is
to verify the convergence of such alternate algorithm in a simple case. We conduct the proof for
the first dimension of ) to lighten notations, meaning that we are regressing the first dimension
of Yagainst the X. A similar reasoning for the other dimension completes the proof.

Proof. We first give the analytical solution for D. Let A™ be fixed.

ESTIMATION OF D  Consider:

Lp=|Y—XA"—D|;+\|D|; (61)
! oL
where D = (d, ... ,d) € R?. For Q samples, we find d so that i 0:
oL —0@4*%( X, A" —d) +20d =0
ad 2 Yi i =
Q
& Qd+ A= (y,— X;A")
im1
Q
<dQ+A) = Z(% — X;A")
i1
oy Yo XA
1+ 0/Q

where Y — XA = 5 Z?:l(yi — X, A").
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ESTIMATION OF A Let D be fixed and consider:
Ly=|Y—XA—D|>+~]y — XAl (62)

Similarly, we aim to cancel the first derivative of £, with respect to all parameters of A =
(a’lﬁ i ap):

OL 4
Oa ;

J

Q
— 0 <> — 2 *k sz,](yl - aoxi,O + oo + apxi,p - d)
1=1

— 27 % f:x”(yz —agT; g+t apxi’p) =0
o — 2Xt(;1— XA—D)—29X{ (Y — XA) =0
S1+7)X'XA - XY (Y —D)—~X'Y =0
&(1+7)X XA =X (Y + (Y = D))

B1Xxt
1+~

A=="((1+7Y-D) (63)

where B = X'X. Equation (63) indicates that as soon a D converges, A™ converges. Thus, we
now prove the convergence of (D™). Then, for n > 1 consider:

|D"+ — D7|| = [V =XAr -y — XA |

1
1+/\/Q‘

1 _
Tglx@r - A

S A/C;>(1 +v)HXB?1Xt<[(1 F)Y =D = (1Y - D)
! —1yt[n—1 n

= Gy B X =
K

ESVOETiL

where K = |XB~!X?!|. Therefore, for \,~, sufficiently large, % < 1.||D, — D,

1+A/Q)(1+v
converges as a positive decreasing sequence. Finally, the sequence of (D,,) converge and so the
sequence of (4,,). In conclusion, the proposed algorithm converges. O

C.2 ADDITIONAL RESULTS ON DATASETS DEPICTING OTHER DYNAMICS

In this section, we illustrate the learning scheme induced by eq. (27) on fully observed low
dimensional dynamics: a simple example emerging from Newtonian mechanics and a population
dynamics model. Performances are evaluated via standard metrics: MSE (lower is better) and
relative Mean Absolute Error (rMAE, lower is better)

c.2.1  Damped Pendulum

ARCHITECTURE DETAILS The physical parameters to be learned is a scalar of dimension 1, and
h,, is a 1-hidden layer MLP with 200-hidden neurons with leaky-relu activation.
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opTiMizATION For this dataset we use RMSProp optimizer with learning rate 0.0004 for 100
epochs with batch size 128. We supervise the trajectories up to t = At x 50, i.e we enforce d
over (t, + At, .., ty + 50At). Overall the number of optimization subsequences for training is
17000. We alternate projection on S, and S,, by descending the gradient 10-batches on &, then
10-batches on h,,.

HYPERPARAMETERs ~ We initialize A, = 0.1 and decrease it geometrically down to A, = 0.001.

We initialize A, = 0.1 and increase it geometrically up to A, = 100. A, is fixed through training
at 0.1. The hyper-parameters were chosen by randomly exploring the hyper-parameters space
by sampling them so that A ~ /(1,0.1,...,10~%). We select the ones with the lowest prediction
errors, i.e with lowest d ,(h, f). For the ablation study of Table 6, we set to 0 the hyper-parameters
associated to the non-considered loss. The training time for this dataset is 1 hour.

c.2.2 Lotka-Volterra

ARCHITECTURE DETAILS The physical parameters to be learned is a vector of dimension 2
accounting for («, ) in eq. (65), and h,, is a 1-hidden layer MLP with 200-hidden neurons with
leaky-relu activation.

opTIMIZATION ~ We use Adam optimizer with learning rate 0.0005 for 200 epochs with batch
size 128. Overall the number of sequences for training is 15000. We supervise the trajectories up
tot = At x 25, i.e we enforce d over (t, + At, .., 1, + 25At). We alternate projection on S;, and
S, by descending the gradient 10-batches on &, then 10-batches on A,,.

HYPERPARAMETERs ~ We initialize A, = 0.1 and decrease it geometrically down to A, = 0.001.

We initialize A, = 0.001 and increase it geometrically up to A, = 1. A, is fixed through training
at 0.001. The hyper-parameters were chosen by randomly exploring the hyper-parameters space
by sampling them so that A ~ /(1,0.1,...,10~%). We select the ones with the lowest prediction
errors (i.e lowest d(h, f)). For the ablation study of Table 6, we set to 0 the hyper-parameters
associated to the non-considered loss. The training time for this dataset is 2 hours.

pAMPED PENDULUM (DPL) Now a standard benchmark for hybrid models, we consider the
motion of a pendulum of length L damped due to viscous friction (Greydanus, Dzamba, and
Yosinski, 2019; Yin, Le Guen, et al., 2021). Newtonian mechanics provide an ODE describing the
evolution of the angle « of the pendulum:

&—g/Lsin(z)+ki=0 (64)

We suppose access to observations of the system state Z = (z,%). We consider as physical
motion hypothesis hj(x,8,) = 6, sin(z). The true pulsation §* = g/L of the pendulum has to be
estimated with 6,.. The viscous friction term ki remains to be estimated by h,,.

POPULATION DYNAMICS (Lv) Lotka-Volterra ODE system models a prey/predator population
dynamics describing the growth of the preys (x) without predators (y), and the extinction of
predators without preys, the non linear terms expressing the encounters between both species:

t=azr—fry, and Y= —7yy+dzy (65)
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We observe the system state Z = (z,y) and set as prior knowledge: h,(z,y) = (6pz, —0%y).
0* = (a, ) has to be estimated by 6, = (0}, 07). h,, accounts for the non linear terms (Bxy, dzy).

EXPERIMENTAL SETTING  For both DPL and LV experiments, we consider the following setting:
we sample the space of initial conditions building 100/50/50 trajectories for the train, valida-
tion and test sets. The sequences share the same parameters; respectively (£, k), for DPL, and
(e, B,7,9) for LV. The parameter 6,, is set to a neuron (of dimension 1 in the pendulum and 2 for
LV) and h,, is a 2-layer MLP.

Table 6: Experimental Results for PDL and LV data. The presented metric for parameter evaluation is the
rMAE reported in %. Pred. columns report the prediction log MSE on trajectories on test set.

Model PDL v
rMAE(0,, 0%) Pred. logMSE rMAE(0,, 0%) Pred. logMSE

Ours eq. (27) 1.56 (0.009) -13.7 (0.84) 7.80 (0.011) -9.28 (0.75)
Only d(h, f) 9.35 (0.04) -13.3 (0.65) 245 (0.017) -9.21 (0.91)
d(h, f) +d(hy, f) 1.82 (0.01) -13.4 (0.56) 7.91 (0.02) -9.01 (0.99)
d(h, f) +d(h,,0) 11.1 (0.03) -12.9 (0.29) 9.80 (0.098) -9.45 (0.55)
Aphynity 6.15 (0.009) -12.2 (0.13) 21.1 (0.016) -9.89 (0.53)
NeuralODE - -10.1 (0.32) - -9.11 (1.1)

IDENTIFICATION AND PREDICTION RESULTS Table 6

shows that despite accurate trajectory forecasting, the Y B
unconstrained setting «Only d(h, f)» fails at estimat- ‘

ing the models parameters, showing the need for reg-
ularization for identification. Constraining the norm \
of the ML component can be insufficient: for LV data,
both Aphynity and d(h, f)+d(h,,,0) do not accurately AN
estimate the model parameters. However, the control
of d(hy, f), following eq. (27), significantly improves S gradient iterations (x200)
the parameter identification for both datasets. Indeed, N

in the PDL case, h;, and f are (pseudo)-periodic of
the same period, hence the gain in the performances.
Finally, our proposition based on eq. (27) is able to
identify the parameters of DPL and LV equation with
a precision of respectively 1.56% and 7.8% beating all
considered baselines. Regarding prediction performances, in under-constrained settings ( «Only
d(h, f)» in Table 6), h,, learns to corrects the inaccurate h;. Table 6 and figs. 30 and 31 (ap-
pendix C.2.3) show that our proposition provides more consistent prediction performances.
These experiments confirm that the constraints on h,, and &,, arising from the control of the upper
bound of eq. (27) increase interpretability and maintain prediction performances.

Figure 29: Affine Case : Evolution of the MSE
between estimated dynamics (.AL D) and the
true one (A, D) with the number of gradients
steps for linearized DPL.

THROWBACK TO THE AFFINE casi  We verify the convergence proved in section 4.3.2 using the
damped pendulum (eq. (64)) linearized in the small oscillations regime (see appendix C.2.2).
Making an affine hypothesis following eq. (40), we apply our alternate projection algorithm and
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optimize A and D , alternately using SGD. Figure 29 shows that we are able to accurately estimate
A and D using our proposition, recovering both the oscillation pulsation and the damping
coefficient.

c.2.3 Results for Pendulum and Lotka-Volterra Datasets

We provide respectively in figs. 30 and 31 phase diagrams for the damped pendulum and Lotka-
Volterra experiments. Both graphs in the phase space indicate that the trajectories and their
nature are well handled by the learned decomposition, providing a periodic phase space for
Lotka-Volterra (fig. 31), and a converging spiral for the damped pendulum (fig. 30).

é
— true
0.057 prediction
0.04 4
0.03 4
0.02 4 /

0.01 - /
0.00 - /

-0.014 /
/
-0.02 A
—0.03 1
-0.6 -0.4 -0.2 0.0 0.2

Figure 30: Damped Pendulum Phase Diagram. The true phase diagram (blue) and learned (orange dashed)
are close, indicating consistency in the prediction
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Figure 31: Lotka-Volterra Phase Diagram. The true phase diagram (blue) and learned (orange dashed) are
close, indicating consistency in the prediction
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D.1 INTRODUCTION

L'apprentissage automatique a pour objectif de construire des systémes informatiques s’amélio-
rant automatiquement avec I'expérience. Cette technologie est largement percue comme 1'une
des plus disruptives de notre époque, et I'utilisation de méthodes d’apprentissage automatique
nécessitant de grandes bases de données se retrouve aujourd’hui dans de nombreux domaines:
scientifique, économique ou encore technologique. Le développement du ML est actuellement
étendu et amplifié avec 1’essor de 1’apprentissage profond (DL) et l'utilisation de réseaux neu-
ronaux artificiels profonds, généralement optimisés par des techniques de descente de gradi-
ent (Goodfellow, Bengio, and Courville, 2016).

Les méthodes d’apprentissage profond s’appuient sur plusieurs niveaux de représentation pour
expliciter des données en modéles: a partir des données d’entrée brutes, chaque niveau trans-
forme son entrée en une représentation a un niveau supérieur, légerement plus abstrait (LeCun,
Bengio, and G. Hinton, 2015). La composition de suffisamment de transformations permet
d’apprendre des fonctions tres complexes, qui sont, la plupart du temps, difficiles a traduire sous
une forme analytique intuitive. L'utilisation d’accélérateurs matériels tels que les processeurs
graphiques (GPU) et la création de frameworks efficaces ont permis de construire des systemes
d’apprentissage profond contenant des milliards de parameétres et pouvant étre entrainés sur
de tres grandes collections de données telles que des images, des vidéos et des échantillons de
parole. Ainsi, la derniére décennie a été marquée par de nombreuses percées scientifiques et tech-
nologiques dans de nombreux domaines tels que la vision par ordinateur (Krizhevsky, Sutskever,
and G. E. Hinton, 2012; Szegedy et al., 2017), le traitement du langage naturel (Collobert and
Weston, 2008; Y. Wu et al., 2016) ou encore les sciences de la santé (Leung et al., 2014). La récente
résolution de problémes ayant résisté aux meilleures tentatives de la communauté de 'intelli-
gence artificielle pendant de nombreuses années (Silver et al., 2016) pousse la communauté a se
demander si ces résultats se transposent a d’autres domaines comme les sciences naturelles et
I'étude des processus et systemes physiques.

p.1.1 ML et physique

La compréhension et la prédiction du monde sont depuis toujours les principaux moteurs de la
recherche scientifique. Ainsi, des domaines tels que la géophysique, I’astronomie, I'épidémiologie
ou la cinétique chimique font I'objet d’études depuis des siécles et sont aujourd’hui dominés par
des modeles mécanistes, reposant sur une compréhension approfondie des phénomenes sous-
jacents, traduits mathématiquement par des relations statistiques et/ou physiques, autrement
dit des lois. La disponibilité croissante de la puissance des superordinateurs dans les années
1970 a rendu possible le développement de simulations numériques (Lynch, 2008), reposant sur
I'assimilation de grandes quantités de données pour modéliser 1’évolution du systéme physique
dans le temps (Bauer, Thorpe, and Brunet, 2015). De tels outils donnent d’excellents résultats :
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les modeles de prévision météorologique ont atteint des performances sans précédent au cours
des 40 derniéres années, et sont au coeur des modéles climatiques utilisés par le Groupe d’experts
intergouvernemental sur 1’évolution du climat (GIEC) pour la surveillance du changement clima-
tique (Stockhause and Lautenschlager, 2017). Cependant, ces approches atteignent aujourd’hui
leurs limites : d’une part en termes d’outils et de technologies, les modeles traditionnels sont
limités en raison de leur cofit de calcul ; d’autre part, en termes de connaissances physiques, en
raison de la faible compréhension de certains processus, les modeles sont des approximations de
la réalité. De plus, a I’ére de I'imagerie satellitaire, un déluge de données sur le systéme terrestre
est devenu disponible, avec des volumes de stockage dépassant déja largement les dizaines de
pétaoctets (Agapiou, 2017), et extraire des informations et des connaissances interprétables de
ces données serait d'une grande aide pour faire avancer la science. Plus qu'une simple expansion
de la puissance de calcul, Iefficacité des algorithmes utilisés pour traduire les lois dynamiques en
calculs pratiques aura un impact direct sur lefficacité des modéles existants. Ayant déja rencontré
un succes considérable dans de nombreuses applications, la ML pourrait étre utile et jouer un
rOle important dans 1’avenir de la modélisation physique.

ML GUIDE PAR LA PHYSIQUE ET MODELES HYBRIDES  Bien que l'utilisation de méthodes orientées
données dans les géosciences se développe rapidement, elle n’en est encore qu’a ses débuts et
progresse de maniére inégale (Bergen et al., 2019). Alors que les approches orientées données
sont des méthodes d’interprétation agnostiques par rapport aux modéles (ces modeles sont
souvent qualifiés de boites noires), pour représenter le monde physique, nous recherchons des
modeéles interprétables. En outre, il serait dommage de se passer des connaissances accumulées
pendant des années. Pour dériver des modeéles qui apprennent au maximum des données tout en
respectant notre compréhension évolutive des lois de la nature, la communauté ML est confrontée
a de nouveaux défis: 1. utiliser les connaissances physiques disponibles, 2. produire des modeles
physiquement cohérents. A cet égard, un nouveau paradigme apparait, utilisant les connaissances
spécifiques au domaine et intégrant les connaissances scientifiques directement dans le cadre du
ML (Bergen et al., 2019). Ces nouvelles approches, appelées ML guidées par la physique (Willard
et al., 2020), sont fondamentalement différentes des pratiques courantes purement axées sur les
données et se sont développées ces dernieres années. Dans cette littérature florissante, un domaine
de recherche émergent est le couplage des modeles de processus physiques avec le modéle orienté
données (Reichstein et al., 2019). Dans cette perspective, le ML est considéré comme une approche
complémentaire aux modeéles traditionnels basés sur la physique (Dueben and Bauer, 2018). Les
deux offrent des avantages : alors que les approches traditionnelles généralisent et extrapolent
mieux, les approches ML a haute expressivité bénéficient de la croissance continue des données
disponibles telles que les observations satellitaires, avec des cofits réduits. C’est ce qu’on appelle
la modélisation hybride, et c’est I'approche sur laquelle nous nous concentrons tout au long de
cette these.

LE FOSSE DE LA REALITE Les phénomeénes physiques sont basés sur des processus impliquant
de multiples échelles et variables : par exemple, les processus pertinents pour comprendre le com-
portement du géosysteme terrestre vont de 1’échelle atomique & planétaire, de 1’échelle temporelle
de la milliseconde aux milliards d’années et prennent en compte des processus dynamiques,
thermodynamiques, radiatifs et chimiques (Bergen et al., 2019). Le paradigme traditionnel se
traduit par la résolution quotidienne d"un systeme d’équations différentielles non linéaires a
environ un demi-milliard de points par pas de temps entre le moment initial et des semaines
ou des mois a venir, et par la prise en compte de processus dynamiques, thermodynamiques,
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radiatifs et chimiques fonctionnant a des échelles allant de centaines de metres a des milliers
de kilomeétres et de secondes a des semaines. Cependant, la plupart des publications de ML
guidé par la physique expérimentent sur des problémes jouets dans des environnements de faible
dimension et développent des modéles qui ne sont pas directement applicables a des environ-
nements complexes et a des scénarios réels. Malgré les promesses montrées par les premiéres
études de validation de concept, la communauté a été lente a adopter le ML de maniére plus
large. Nous inscrivons notre thése dans cette recherche naissante en étudiant comment les mod-
éles d’apprentissage profond se traduisent dans des situations réelles. En effet, 'apprentissage
profond guidé par la physique est un sujet trés récent, et méme si I’apprentissage profond est un
outil prometteur, il n’a pas encore atteint les résultats des modeles basés sur la physique. Cette
theése se situe dans le domaine préliminaire de la recherche en milieu réel.

Dans cette theése, nous abordons la question de la modélisation de phénomeénes physiques
évoluant dans le temps et dans 1’espace a partir de données, en utilisant I’apprentissage profond,
en visant une application pratique en océanographie. Nous menons une étude incrémentale
et explorons le potentiel de I’apprentissage profond pour compléter les modéles physiques du
systéme océanique. La section suivante est consacrée a un bref apercu des défis de la modélisation
océanique. Ensuite, nous présentons plus en détail le sujet et les contributions de cette these.

p.1.2  Cas d’étude

Les courants océaniques sont des masses d’eau en mouvement. A la surface des océans, ils
peuvent modifier la topographie de quelques dizaines de centimetres a plus d’un metre. Par
exemple, la gyre de I’Atlantique Nord tourne dans le sens des aiguilles d'une montre et éleve
le niveau de la mer en son centre. Depuis le début des années 1990, les champs de vitesse des
courants de surface mondiaux sont déduits des observations par satellite de la hauteur de la
surface de la mer (SSH) (Dohan and Maximenko, 2010), c’est-a-dire des données altimétriques.
Cette approximation est utilisée pour estimer la dynamique des courants lents et a grande
échelle (Sinha and Abernathey, 2021), c’est-a-dire a résolution spatiale et temporelle d’environ
50km et une semaine. Cette approximation permet de distinguer les échelles de mouvement
dites résolues et non résolues. En effet, ces courants peuvent étre observés grace a des données
altimétriques ayant une résolution spatiale d’environ 50km et une résolution temporelle d’environ
une semaine. Cependant, la dynamique des courants est influencée par des phénomeénes opérant
a des échelles beaucoup plus fines de 'ordre de 1km x lday (Lévy, P. Klein, and Treguier, 2001).
Les structures a ces échelles sont liées aux courants océaniques par des interactions complexes
impliquant ’advection d’une part, et les instabilités dynamiques d’autre part (Lévy, P. Klein,
and Treguier, 2001). Alors que l’altimétrie ne fournit aucune information sur ces structures
fines, I'imagerie satellitaire a haute résolution pourrait étre utilisée pour déduire I'évolution
spatio-temporelle a fine échelle. L'imagerie satellitaire haute résolution fournit des informations
a travers des mesures telles que la température de surface de la mer (SST), dont I'évolution
spatio-temporelle devrait permettre d’améliorer les modeles de courants globaux dérivés de
l'altimétrie. L'intégration de ces informations avec les données altimétriques pose plusieurs
défis tels que la quantité de données générées a ces échelles fines, l'intégration de données
provenant de sources a la fois par leur nature (altimétrie versus images haute résolution) et
par leur résolution spatio-temporelle. En effet, les images satellites de SST et de chlorophylle
de surface sont maintenant disponibles quotidiennement a une résolution kilométrique. Dans
cette these, nous considérons les algorithmes ML comme une voie alternative pour inférer les
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courants de surface a partir de quantités observables par satellite a haute résolution telles que la
température de surface de la mer (SST). Plus précisément, nous explorons les dépendances entre
la SST et les champs de vitesse des courants et nous étudions des modéles physico-statistiques
hybrides pour représenter 1’évolution de la SST observable et de la vitesse des courants non
observée. Notons que, méme si nous nous appuyons sur ce probléme concret, cette these est
avant tout méthodologique. En effet, nous proposons des modeles trés généraux applicables
a de nombreux problémes physiques. Néanmoins, pour comprendre 'intuition des modeles
présentés, nous nous référerons au probléme prototype, la modélisation des courants marins a
partir des données SST avec des réseaux de neurones, tout au long de notre travail.

p.1.3 Contributions

Notre objectif est de modéliser les champs de vitesse des courants océaniques a partir des
observations de la température de surface de la mer en utilisant I’apprentissage profond. Comme
nous nous concentrons sur un probleme réel, il est essentiel de garantir la plausibilité de nos
résultats d’un point de vue physique. Cependant, Willard et al. (2020) souligne 'incapacité des
modeles ML de type boite noire a généraliser ainsi que leur incapacité a produire des résultats
physiquement solides. Comme le ML seul ignore les lois fondamentales de la physique et
peut aboutir a des problemes mal posés ou a des solutions non physiques (Alber et al., 2019),
nous nous appuierons sur des modéles hybrides, utilisant a la fois des connaissances physiques
préalables et I'apprentissage automatique. Dans ce domaine de recherche, I'un des principaux
défis consiste a résoudre les problémes mal posés inhérents a la décomposition entre les modeles
physiques et ceux basés sur les données. Par exemple, cela peut étre fait en incorporant des
contraintes motivées par la physique dans l'apprentissage de modéles hybrides, par exemple
par des pénalités de régularisation. Pour compléter les connaissances physiques préalables par
une composante basée sur les données et assurer l'interprétabilité de la décomposition, nous
considérons d’abord un modele simplifié de la dynamique de 'océan. Dans ce contexte, nous
introduisons deux contributions.

REGULARISATION DES MODELES DYNAMIQUES HYBRIDES En incorporant des connaissances
physiques, notre cadre considere la dynamique de la SST observée et sa dépendance connue a la
vélocité inconnue. Sil’'on considére les équations réelles de la dynamique océanique, la dynamique
de la vitesse actuelle devrait suivre une équation différentielle ordinaire (ODE). Pour faire face a
la difficulté de l'identification et récupérer une estimation significative, nous introduisons une
régularisation dynamique sur la vitesse estimée, 1'obligeant a suivre une ODE. Cette contribution
a conduit a la publication suivante dans un workshop de conférence internationale.

Marie Déchelle et al. (2020). “Bridging Dynamical Models and Deep Networks to
Solve Forward and Inverse Problems”. In: NeurIPS workshop on Interpretable Inductive
Biases and Physically Structured Learning.

FRAMEWORK FOR THE LEARNING OF HYBRID MODELS  Bien qu’elle permette d’obtenir de bons
résultats expérimentaux, la régularisation proposée n’est pas fondée sur le plan théorique et ne
sera en aucun cas suffisante pour garantir le caractere bien posé de ’'approche hybride. Afin de
retrouver le caractére bien posé et interprétable de I’apprentissage des modéles hybrides, nous
proposons de contrdler une limite supérieure de 1’erreur de prédiction et proposons un nouvel
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algorithme d’optimisation alternatif. Cette contribution a conduit a la publication suivante dans
une conférence internationale.

Jérémie Dona*, Marie Déchelle*, Marina Levy, et al. (2021). “Constrained Physical-
Statistics Models for Dynamical System Identification and Prediction”. In: Interna-
tional Conference on Learning Representations.

cas D’ETUDE REEL  Enfin, nous confrontons le cadre proposé a la modélisation de la dynamique
océanique réelle. Nous étudions les limitations et proposons une adaptation de notre modele,
incorporant de nouvelles sources de connaissances physiques. Ceci améliore les performances
dans les taches d’identification et de prédiction par rapport au seul modele théorique.

D.2 DONNEES ET NOTATIONS
p.2.1  Données

Tout au long de cette these, nous travaillons sur des données représentatives de la dynamique de
la surface de 1'océan.

VARIABLES DANS L'OCEAN  L'océanographie vise a comprendre les processus océaniques. Pour
cela, on étudie 1’évolution des propriétés physiques de 'océan, telles que sa température T, sa
salinité S, sa densité p, la concentration en chlorophylle, la vitesse U = (u, v, w) (Chassignet, Le
Sommer, and Wallcraft, 2019). Ces champs sont quadridimensionnels, c’est-a-dire qu’ils évoluent
dans le temps ¢ et dans un espace tridimensionnel z, y, z. Pour accéder a un sous-échantillon
discret de ces quantités, les derniéres décennies ont vu une augmentation des systemes d’ob-
servation des océans, soit a partir de mesures in-situ, par exemple grace a des flotteurs ou des
bouées (Roemmich et al., 2009), soit par télédétection (Esaias et al., 1998). Ces quantités sont
accessibles soit par des mesures in-situ, par exemple grace a des flotteurs ou des bouées (Roem-
mich et al., 2009), soit par télédétection. Le développement des systemes satellitaires tout au
long du 20éme siecle a permis d’augmenter le nombre d’observations océaniques. De nos jours,
T, S et la concentration en chlorophylle peuvent étre observés par des satellites, a une distance
de 1km x lday a la surface de la mer. Cela donne un sous-échantillonnage avec une résolution
spatiale d’environ un kilométre et une résolution temporelle d’environ un jour. Notez que les
composantes horizontales de la vitesse u et v ne sont pas directement accessibles. Elles sont
plutdt déduites d’observations a distance de la hauteur de la surface de la mer (SSH), a une
résolution de 50km x 1week. Malgré de grands progres, les systemes d’observation fournissent
des informations limitées et incomplétes. En particulier pour 'océan profond, c’est-a-dire en
dessous d'une profondeur d’eau de plus de 200m, seules quelques rares observations in situ sont
disponibles (Levin et al., 2019).

L'OCEAN EN EQUATIONS L'océan échange des flux de chaleur, d’eau douce, de sel et de quantité
de mouvement, par exemple par le biais de la tension du vent dans le cas de l'interface atmospheére-
océan, avec la terre solide, les marges continentales, la glace de mer et I’atmosphere. De tels
processus peuvent étre décrits avec une bonne approximation par les équations primitives, c’est-a-
dire un ensemble d’équations différentielles partielles non linéaires. Sous les hypothéses décrites
dans Madec et al. (2017), celles-ci comprennent le bilan de quantité de mouvement, 1’équilibre
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hydrostatique, I'équation d’incompressibilité, les équations de conservation de la chaleur et du
sel. Dans cet ordre, elles s’écrivent comme suit :

%I+(U-V)U+g’Vh=7AU+DU+FU
op B
£+pg—0
V-U=0
T
%:—V'(TU)JFDTJFFT
%SZ—V'<SU)+DS+FS

ol vy est le parametre de Coriolis, h la profondeur de la couche de surface obtenue a partir des
observations de la hauteur de la surface de la mer (SSH), ¢’ la gravité réduite qui prend en
compte la stratification en densité de l'océan de telle sorte que ¢’ ~ g.1073, p est la pression, p
est la densité, D7/U/S se référe aux processus a petite échelle et F7/Y/S équilibre les forcages
de surface, c’est-a-dire les échanges a la surface d’énergie cinétique, de chaleur et de salinité.
La circulation océanique, c’est-a-dire la dynamique des champs de vitesse des courants, est
maintenant modélisée de fagon réaliste dans des modeéles structurés tridimensionnels tels que
NEMO (Madec et al., 2017), en s’appuyant sur la résolution numérique des équations primitives
ci-dessus. Dans le cadre de cette étude, nous travaillons sur des données issues de tels modeles.
Cela nous libére des considérations inhérentes aux observations, et des limitations telles que
la couverture nuageuse tout en nous offrant un cadre réaliste. Par ailleurs, nous travaillons sur
des données de surface, c’est-a-dire que nous ne considérons que la surface bidimensionnelle
de l'océan générée par (z,y), ci-aprés dénommée T, U = (u,v) et F pour respectivement la
température, la vitesse et les forcages. Nous considérons comme variables d’intérét la température
T et les champs de vitesse des courants de surface U = (u, v), et donc uniquement la dynamique
sur T et U c’est-a-dire que nous considérons 'advection de la température par les champs de
vitesse des courants de surface. En particulier, nous ne représentons pas les vitesses verticales,
responsables des mouvements entre la surface de l'océan et les strates inférieures. Dans un cadre

bidimensionnel, V - (I'U) désigne I'advection d'une quantité scalaire T'par un champ de vitesse

oT or
U = (u,v) et s’écrit comme suit: V - (TU) = — u + —— v. Nous travaillons d’abord sur une

Ox Oy

représentation simplifiée de la dynamique océanique, en nous appuyant sur des hypotheses
simplificatrices, que nous passons en revue dans la suite.

DONNEES SYNTHETIQUES Pour les mouvements lents (c’est-a-dire de temps caractéristique
supérieur a un jour et de dimension spatiale supérieure a 20km) la diffusion est omise et 'incom-
pressibilité est supposée, c’est-a-dire que les termes turbulents sont nuls : (U - V)U = 0. Alors
que T est observé par les satellites, U n’est pas connu. Cependant, la hauteur de la surface de la
mer (SSH) pourrait étre utilisée pour calculer des estimations grossiéres de U. En effet, sous des

hypotheses telles que la stationnarité (%] = 0), I'incompressibilité ((U - V)U = 0), les forcages

peuvent étre omis. Dans ce cas, I'équation sur U peut étre réécrite en :

YyANU =—¢g'Vh
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Dans ce cas, la SSH h peut étre considérée comme une fonction de courant, c’est-a-dire une
fonction dont les dérivées expriment les composantes de la vitesse. Lorsqu’elle est projetée sur
les axes x et y, I'équation géostrophique devient

, Oh , Oh
W95 =0 g

Notez que ces équations ne tiennent pas a des échelles fines car les hypotheses de stationnarité et
d’incompressibilité ne tiennent qu’a grande échelle. Nous étudions tout d’abord un ensemble de
données générées a partir d’hypotheses simplifiées, que nous appelons Adv+F (pour advection
+ forcage). Nous ne nous basons pas sur les vrais U et F, mais nous les construisons. Leur calcul
est décrit ci-dessous. Nous générons des données en suivant 1’équation de tragage:

oT _
> =

ott les calculs de U et F'sont dérivés ci-aprés. Notons que les équations de transport décrivent un
large éventail de phénomeénes physiques tels que la concentration chimique, la dynamique des
fluides ou les propriétés des matériaux. Dans cette these, nous interprétons cette équation de
transport comme 1'évolution de la température T'advectée par un champ de vitesse U dépendant
du temps et soumis & un forcage F.

V- (TU)+ F

DONNEES REALISTES ISSUES D’OGCM  Apreés avoir travaillé sur des données idéales, nous
voulons tester les modeéles développés sur des données plus proches de la réalité. Cependant,
pour éviter de faire face a de nombreuses incertitudes, nous ne travaillons pas sur des observations
réelles. Pour étudier la capacité de 'apprentissage profond a reconstruire des champs de vitesse
de courant de surface a fine échelle a partir des SST, nous utilisons les données de la simulation
NATL60, basée sur le code NEMO (Ajayi etal., 2020). Il s’agit de la premiére simulation a 1’échelle
kilométrique (résolution de 1/60°) de la circulation océanique dans I’Atlantique Nord qui prend
en compte la complexité des cotes et des reliefs sous-marins ainsi que la grande variabilité des
conditions atmosphériques de surface. Les observations satellitaires ont une résolution de 1/4 de
degré. Nous utilisons NATL60o, un ensemble de données provenant d’une simulation compléte
d’un modeéle océanique réaliste basé sur le moteur océanique NEMO exécuté a une résolution
kilométrique sur le bassin de I’Atlantique Nord. Les données ont été fournies par I'équipe de
recherche MEOM, du laboratoire IGE de 1'Université Grenoble Alpes.

p.2.2 Notations

A un instant ¢, nous observons la SST T, € 7 C RP. Cette température est influencée par la
vitesse d’écoulement de surface non observée, c’est-a-dire un champ vectoriel, U, € U C R24.
Pour simplifier la notation, nous désignons les variables observées et non observées par X, =
(T,,U,) € T x U C RPT24: Soit X, € 2 C RP™ un état physique partiellement observé, écrit
comme X, = (T},U,) € T xU ouT, € T C R? estlaSST observée et U, € U C R? est la vitesse du
courant de surface non observée. Nous considérons le systéme dynamique dont I'état au temps ¢
estnoté X, = X(t):
X

Toutes les quantités, observées ou a estimer, sont échantillonnées réguliérement sur une grille
spatio-temporelle : a chaque pas de temps ¢, le champ de vitesse variable dans le temps U, s'écrit
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U, = (uy,v;), et uy, v, Ty et le terme de forcage F, sont tous de taille 64 x 64. Nous réécrivons f
comme f = (f, fiy) agissant sur T'et U respectivement :

dX, _d (T _ [ f2(Xy)

e dt \U, fu(Xy)
fret fy peuvent étre interprétés comme suit: fr représente la dynamique des T observés et f;;
représente la dynamique des U non observés. Bien que f;; ne soit pas connu, nous montrons que

U suit une ODE, c’est-a-dire qu'il existe f;; tel que ‘?j—? = fy(U,t). Dans le contexte des données
NATLé6o réalistes, f(X) = —V.(TU)+ DT+ FTet f,(U) = —(UN)U+~yANU —g'Vh+ DY+ FU.

HYPOTHESE DYNAMIQUE Nous étudions des modeles hybrides, c’est-a-dire que 1'on suppose
disponible une connaissance partielle de la dynamique du T, observé :

U (X = 130X + X))

ou f} représente la partie physique de f;. f& représente la dynamique qui n’est pas englobée
par f7. Plus formellement, f7. € H,, est un opérateur connu avec des paramétres inconnus §*, et
f4 € H, est la dynamique résiduelle inconnue. Notons que les parametres inconnus 6* sont en
fait les champs de vitesse U. Les expressions H,, et H, désignent des espaces de fonctions.

MODELISATION HYBRIDE DES OCEANS  Dans le cas de I'équation sur 7, T représente les termes
de forcage de surface. DT représente les paramétrisations de la physique a petite échelle : il
représente la physique a 1’échelle de la sous-grille, c’est-a-dire les processus physiques importants
a petite échelle qui se produisent a des échelles de longueur qui ne peuvent pas étre résolues
de maniere adéquate sur une maille de calcul. Par exemple, les mouvements turbulents ne sont
jamais résolus explicitement, méme partiellement. Au lieu de cela, ils sont paramétrés (Madec et
al., 2017). Méme si l'estimation de F'7 et DT est trés importante pour les simulations a long terme,
la compréhension des paramétrisations a I’échelle de la sous-maille est encore incompléte, et les
champs de forcage sont encore mal connus (Chassignet, Le Sommer, and Wallcraft, 2019). Ainsi,
nous ne considérerons 'advection que comme une partie de la connaissance physique préalable,
et nous viserons a apprendre a la fois les flux d’échanges F'7 et les paramétrisations D” en tant
que résidus. La deuxiéme difficulté est le manque actuel de connaissance des termes sources
et puits, incluant non seulement le forcage thermique mais aussi les vitesses d’entrainement
ou l’advection verticale, que nous négligeons pour le moment (Rio and Santoleri, 2018). Par
ailleurs, tout au long de ce travail, nous supposerons que f;; n’est pas connu. Nos hypotheses de
modélisation correspondent alors a :

fH(T,U) = =V.(TU)
f% — DT-l- FT
fu is unknown.

que l'on peut réécrire

dX, _ [ £0X,) + F(X))
dt fu(Xy)

En résumé, pour prédire avec précision la dynamique de 7, nous cherchons a apprendre f4 tout
en estimant avec précision U. Cette description correspond a nos hypothéses de modélisation.
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Dit autrement, f; est une fonction cible inconnue. Notre objectif est d’apprendre une estimation
de fr sur la base de nos connaissances disponibles, constituées d’hypotheses préalables sur f7. et
d’observations. Le probleme d’apprentissage est décrit précisément ci-dessous.

p.2.3 Objectifs

PROBLEME D’APPRENTISSAGE Notre objectif est de prédire les trajectoires de 7, c’est-a-dire
de modéliser 1’évolution de la partie observable suivant % = fr(X,) avec un modeéle hybride.
Nous approximons f par une fonction h € H apprise a partir des données observées, out H est
un espace d’hypotheses. Nous supposons hy = hfj. + hf. ot hfj, € H,, c’est-a-dire que le modele
physique appartient au méme espace d’hypotheses que f% : il a la méme forme paramétrique.
Ses paramétres sont notés ¢,,. Nous prenons comme antériorité physique sur la dynamique :
h(T,6,) = —=V.(T6,). Nous cherchons & apprendre les parametres 6, de hf}, ’est-a-dire les U
non observés. Ainsi, nous avons h¥(.,0%) = fh. La forme libre h. vise a apprendre f&. ht. € H,
est représenté par une fonctionnelle de forme libre avec des parameétres ¢,, par exemple un
réseau neuronal. Enfin, le probléme d’apprentissage consiste a estimer a partir de données les
parametres de h¥. de maniere a ce qu'ils correspondent aux vrais parametres physiques et de h.
pour approximer au mieux la dynamique inconnue f.

OBJECTIF D’APPRENTISSAGE INTUITIF A cet égard, un objectif d’apprentissage intuitif consiste
a appliquer % = hp(T},), c’est-a-dire & minimiser la distance entre hy = h%. + hl. et f, comme
suit :

}lb’i}é% Eopg lhr(s) — fr(s)]2

oll pg est la distribution de 1’état X qui tient compte des états initiaux variables. Chaque s définit
un échantillon d’apprentissage. Une telle approche ne fournit aucune garantie physique sur
notre modele. En effet, la minimisation de cet objectif avec h = h}. + hd. permet de prédire
des trajectoires précises mais peut avoir un nombre infini de solutions. Par exemple, h%. peut
contourner I'hypothése physique h%. Ainsi, l'interprétabilité n’est pas garantie. Notre objectif
n’est pas seulement de prédire les trajectoires exactes de 7, mais aussi de nous assurer que nous
apprenons une décomposition physiquement significative h,. = h%.+h<, c’est-a-dire de surmonter
le caractére mal posé. Comment s’assurer que les états appris X sont physiquement significatifs
? C’est-a-dire : comment s’assurer que h,, capture toute la physique incluse dans f, ? Nous
pouvons affiner nos taches d’apprentissage en deux objectifs spécifiques : l'identification du
systéme, c’est-a-dire l'estimation des parametres du modéle physique (les champs de vitesse
des courants) a partir des observations (la SST), et la prédiction, c’est-a-dire la récupération
des trajectoires associées a la dynamique (de la vitesse et de la SST). Les deux sont essentiels
pour les modéles hybrides MB/ML de systémes dynamiques. Alors que la prédiction vise une
extrapolation robuste, 'identification tient compte de l'interprétabilité physique du modele
MB/ML. Alors que la résolution de ces deux problémes a 1’aide d’une formulation basée sur
un modele admet des solutions numériques bien connues, par exemple en utilisant la méthode
de l'adjoint (Courtier, Thépaut, and Hollingsworth, 1994; Le Dimet and Talagrand, 1986), la
combinaison de modeles physiques et d’apprentissage profond reste un domaine de recherche
ouvert. Dans ce contexte, les applications ML se concentrent principalement sur la tache de
prédiction, au détriment de l'identification du systéme. En effet, Ayed et al. (2020) montrent
que sans aucune connaissance préalable, les estimations récupérées des états d'un systéme
dynamique ne sont pas physiquement plausibles malgré des prédictions précises. De plus,
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comme le notetextciteYin2021, l'apprentissage d’une décomposition linéaire MB/ML avec la
seule supervision sur les trajectoires du systeme est mal posé et admet un nombre infini de
décompositions. De telles observations soulignent la nécessité d’incorporer des contraintes
motivées physiquement dans l’apprentissage de modéles hybrides, par exemple par des pénalités
de régularisation. Plusieurs travaux proposent déja des contraintes additionnelles pour guider le
modele vers des solutions physiques (Jia, Willard, Karpatne, Read, Zwart, Michael S Steinbach,
et al., 2019; Linial et al., 2021; Yin, Le Guen, et al., 2021).

Dans cette thése, nous proposons des raffinements de cet objectif, en utilisant les connaissances
physiques pour dériver de nouvelles contraintes.

DISTANCE AVEC LES FLUX Dans la pratique, f; est inconnu. Pour s’entrainer, on utilise donc les
trajectoires associées a la dynamique. Nous minimisons la distance entre les flux ODE ¢, et ¢ ¢
définis par h et f, (¢, @), sur toutes les conditions initiales X, :

t
5(¢ha¢f) = [EXO/ ”¢h<7—7X0) - ¢f(7_7X0>H2 dr
to

Nous avons d(¢y,, ¢;) =0 = ¢, = ¢, = h = f. Les gradients de (¢, ) par rapport aux
parameétres de h peuvent étre estimés analytiquement en utilisant la méthode adjointe (R. T. Q.
Chen et al.,, 2018) ou en utilisant des solveurs explicites, par exemple Rk45, et en calculant les
gradients grace a la rétropropagation, voir Onken and Ruthotto (2020).

Pour le calcul, nous nous appuyons sur un échantillonnage temporel de X : nos ensembles de
données sont composés de n séquences d’observations de longueur N, X* = (X} , ... 7X§0 LNAL)s
ot1 chaque séquence X' correspond a une condition initiale X; . Nous échantillonnons ensuite
I'espace des conditions initiales X; pour calculer une approximation de Monte-Carlo de §(¢y,, ¢ 7).
Soit ODESolve la fonction intégrant tout état initial arbitraire X, jusqu’au temps ¢ avec la dy-
namique h, de sorte que X, = ODESolve(X, ,h,t). Lestimation de 6(¢;,, ¢) s’écrit alors comme

ny Ny
5(¢py bf) ~ n11n2 > |loDESolve(X; bty + jAY) — Xj . J‘AtH2
i=1 j=1

En d’autres termes, nous nous appuyons sur les trajectoires associées a la dynamique :

) ) tUJrjAt )
ODESolve(X; , bty + jAt) = Xj + / h(XP) dt
t

0

Notez qu’en pratique, nous n’apprenons pas la dynamique réelle h mais son intégration
numérique.

D.3 REGULARIZATION DYNAMIQUE POUR L’APPRENTISSAGE DE MODELES HYBRIDES

Nous proposons une premiere approche pour surmonter le caractéere mal posé induit par le
rapprochement des modeéles numériques d’équations aux dérivées partielles et de 'apprentissage
profond. Nous proposons de régulariser 'apprentissage en se basant sur la seule minimisa-
tion de la différence entre notre modele h et la dynamique réelle f;. Pour garantir que h?.
est physiquement plausible, nous suggérons d’intégrer des connaissances préalables dans le
processus d’apprentissage. Dans notre cas, identifier les parametres 6, de A revient & résoudre
un probléme inverse (D. L. T. Anderson and Willebrand, 1989). En effet, la SST est un traceur
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océanique, c’est-a-dire qu’elle peut étre utilisée pour suivre les courants et déduire la circulation
océanique a grande échelle (Bigg and Killworth, 1988; England and Maier-Reimer, 2001). Ainsi,
comme dans Ayed et al. (2020) and Bezenac, Pajot, and Gallinari (2019), nous proposons d’ap-
prendre 6, a partir des observations passées de T. Cependant, n’ayant pas d’observations de U, on
ne peut se baser que sur la prédiction des futurs T'pour 1'évaluation. Pour contraindre davantage
I'apprentissage, nous proposons de tirer parti des connaissances dynamiques antérieures en
introduisant une régularisation dynamique sur les états non observés. Nous supposons que U
est la solution d"une ODE. Notre proposition est donc d’imposer a U de suivre une dynamique
décrite par une équation différentielle. Notons que cette dynamique est inconnue et que nous
l'approximons avec un réseau de neurones, en utilisant leur interprétation comme discrétisation
numérique des équations différentielles (He et al., 2016; Lu et al., 2018).

Enfin, nous passons de notre probléme initial, a savoir I'estimation de U et 'apprentissage de la
dynamique du seul 7, a une nouvelle formulation : I'apprentissage de la dynamique de 1’état
complet X = (T, U). Notre proposition revient & apprendre un modéle prédictif d’espace d’état
pour estimer 1’état complet X et, en considérant la dynamique de la variable observée et sa
dépendance connue a des variables inconnues, pour prédire X sur des pas de temps futurs.
Nous montrons que 'espace latent d'un tel modéle figure les champs de vitesse U et est donc
physiquement significatif comme souhaité.

oPTIMISATION Nous voulons estimer avec précision la dynamique de la variable observée 7,
mais aussi modéliser la dynamique intrinséque de la variable non observée U. Nous avons acces
a des observations partielles, c’est-a-dire a 7, jusqu’a ¢, et voulons prévoir I’état complet de ¢,
jusqu’au pas de temps final ¢;. Nous considérons I'objectif suivant :

min
Gg,hé,hy

subject to % = (hh+ h$)(X,)

~ . tr
0, - (Uto + / hU(Xt)dt>
tO

2

Malheureusement, n’ayant pas acces a la vraie U, nous ne pouvons compter que sur les estimations
données par G. Pour I'apprentissage, nous introduisons deux fonctions de cotit: nous pénalisons
les erreurs de prévision de l'état observé, et nous forcons la variable non observée U a obéir a
une dynamique apprise hy;. Dans la suite, nous présentons ces pertes et leur implémentation.

D.4 MODELES PHYSICO-STATISTIQUES CONTRAINTS POUR L'IDENTIFICATION ET LA PREDICTION
DE SYSTEMES DYNAMIQUES

Nous nous intéressons non seulement a I'apprentissage de la vitesse U physiquement fondée et
des trajectoires précises de la température 7, mais aussi a la résolution du probléme mal posé
induit par I'apprentissage de modeles hybrides ML/MB. Nous ne faisons aucune hypothése ni
sur les champs de vitesse U ni sur sa dynamique associée f;;. Rappelons que nous considérons
I'état partiellement observé X, = (7},U,), olt la température T est observée et les champs de
vitesse U ne sont pas observés. Nous cherchons a modéliser la dynamique f; de T'avec un modeéle
hybride h;. Notre proposition consiste a reformuler le probléeme d’apprentissage

min€ ., he(s) = frls)l with hy= b+ b

en introduisant une borne supérieure sur l’erreur de prédiction d’un modéle physico-statistique.
Cela nous permet de contrdler la contribution des composantes physique et statistique a la
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prédiction globale. En d’autres termes, nous cherchons a retrouver la qualité de la décomposition
et son interprétabilité : alors que h%. doit rendre compte du modele physique, h% représente
le résidu non englobé par h%. A partir de cette limite supérieure, nous élaborons un cadre
de principe qui généralise les tentatives précédentes de régularisation des modéles hybrides.
En particulier, notre proposition va plus loin que Yin, Le Guen, et al. (2021), qui assurent
"unicité dans la décomposition en contraignant la norme de la composante ML. Pour compléter
la connaissance dynamique préalable par une composante pilotée par les données et assurer
I'interprétabilité de la décomposition. Nous élaborons un cadre de principe qui généralise les
tentatives précédentes de régularisation des modeles hybrides. Nous proposons également un
nouvel algorithme d’optimisation alternatif pour apprendre des modeles hybrides, pour lequel
nous fournissons une analyse de la convergence sur un cas simplifié. Comme notre objectif ultime
est de résoudre des problemes du monde réel, c’est-a-dire les données NATL60, nous proposons
une extension de notre cadre pour incorporer des données auxiliaires et nous rapprocher d'un
scénario complexe du monde réel. Enfin, nous soulignons que la méthode proposée dans ce
chapitre est trés générale et peut étre appliquée a de nombreuses données physiques.

opTIMISATION Pour assurer I'identifiabilité, nous dérivons des régularisations sur h?. et hd.
découlant du controle d'une borne supérieure de d(h, fr). En particulier, minimiser d(h., f7)
nous permettrait d’interpréter avec précision h%. comme la vraie f}, et h% comme la dynamique
résiduelle f¢. Cependant, comme nous n’avons pas acces aux parametres de f7, le calcul de
d(h%, f}) n’est pas faisable. Nous considérons alors deux situations possibles. Dans la premiere,
la seule information disponible sur le systéme physique est la forme paramétrique de f% (ou
de maniere équivalente de h%.), la formation ne repose donc que sur les trajectoires observées.
Dans le second, on consideére les informations auxiliaires disponibles sur f7 qui seront utilisées
pour minimiser la distance entre 1}, et f7. Bien que le premier parametre soit le plus général,
I'antériorité physique sur laquelle il repose est souvent insuffisante pour traiter efficacement
les situations du monde réel. Le second parameétre utilise des antériorités plus informatives et
correspond mieux aux cas réels.

Controle de la composante ML et de I'hypothése MB

Nous proposons une approche générale pour contraindre I'apprentissage de modéles hybrides
lorsqu’on a uniquement acces a la forme fonctionnelle de Y. Dans ce cas, pour rendre h?.
responsable de nos phénomenes observés, une solution est de minimiser d(h%, f;). En suivant
l'inégalité triangulaire, nous lions les deux erreurs d(h, f7) et d(hl, fr) :

d<hT7 fT) < d(h%, 0) + d(hzi)“v fT)

Nous voulons que le modele physico-statistique hy = h}. + h fournisse des prévisions de haute
qualité. Pour ce faire, h¥. doit expliquer autant que possible les phénomeénes observés de maniére a
capturer la physique dans l'inconnue £} et que h% doit se concentrer sur le résidu de la dynamique
qui ne peut étre expliqué par la composante physique h%. La minimisation de la seule borne
supérieure ne garantit pas un tel objectif, car h%. est seulement pénalisé par d(h%, 0) et n’est pas
optimisé pour contribuer aux prévisions. Cependant, la seule minimisation du c6té droit de
la borne supérieure est insuffisante car h¢- n’est pas responsable dans les prédictions. Nous
proposons donc de minimiser d(h, f7) tout en contrdlant a la fois d(h%, 0) et d(h%., f7). Un tel
contrdle de la borne supérieure revient a équilibrer la contribution des composantes ML et MB.
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Introduction de données auxiliaires pour matcher les hypotheéses physiques

Nous supposons ici que l'on accéde a une version grossiére de f7, notée f2*" € H,. Plus
précisément, nous supposons que 7’ provient d'une dynamique f%, qui est un modele de
premiere approximation de la véritable dynamique f;. é‘;rdobéit a 'hypothese de décomposition
i DT op fPPT GArif pro_ ep.pr P ot ,
additive, de sorte que f7' et f;"" vérifient 7" = f7"" + f?7". Notre objectif est d’adapter notre
cadre pour incorporer de telles informations auxiliaires, en faisant entrer la régularisation induite
par f7’" dans le cadre du controle d’une borne supérieure. Cela nous permet d’étendre notre
proposition a la résolution de problémes physiques du monde réel, encore largement inexplorés

par la communauté ML. Avec des calculs similaires, nous avons :
d(he, fr) < d(hd, 0) + d(hE, f2P") + T

ou I' =d(f4, f7P") + d(f4, fr) est une constante du probléme qui ne peut étre optimisée. En
effet, elle ne dépend que de /2", f7:P" et fr, variables qui échappent a notre contrdle. Ainsi, un pré-
entrainement sur des données auxiliaires de dynamique f7 revient a controler le terme d(h, f4")
dans la borne supérieure. Comme ci-dessus, nous proposons de minimiser d(h, fr) tout en
contrdlant a la fois d(h%,0) et d(h, f1P"). A partir des limites supérieures, nous retrouvons le

caractére bien posé de l'optimisation et dérivons un schéma d’apprentissage théorique.

RECOUVREMENT DE LA BONNE POSOLOGIE Nous reformulons I'apprentissage mal posé de

MmNy pacy 1, d(hy, fr), en optimisant plutot d(h, f7) touten contraignant les bornes supérieures.

Définissons S, et S; comme suit
Sy ={np e, | L) <p,}  Sg={h§ € Hy|d(hF,0) < pg}

ol fu,, 1y sont deux scalaires positifs et £(hf,) = d(hf, fr) dans le cas de la premiére borne
supérieure et £(h%) = d(hY., f7P") dans le cas de la deuxiéme. Notre proposition revient alors a
optimiser d(hq, fr) sur la somme de Minkowski S, + S, = { hp = hf+ b | h € S, hf €S, }:
min  d(hr,
hr€S,+S4 ( T fT)
Ce cadre d’optimisation sous contrainte nous permet de retrouver la validité du probléme
d’optimisation sous la compacité relative de la famille de fonctions H,,.

D.5 CONFRONTATION AUX DONNEES REELLES

Nous nous concentrons sur les données NATL60, qui sont des simulations de données réelles.
Méme si de nombreuses incertitudes inhérentes aux données d’observation réelles ne sont pas
présentes, par exemple les incertitudes dues a la couverture nuageuse ou aux appareils de mesure,
ces données refletent étroitement la complexité des observations réelles. Il convient de noter
que la dynamique des océans est un phénomene spatial tridimensionnel, faisant intervenir de
nombreuses variables a plusieurs échelles interdépendantes. Ainsi, alors que les données simulées
utilisées sont bi-dimensionnelles, le phénomene étudié dans cette section est tri-dimensionnel.
Pour des raisons de commodité, nous nous concentrons uniquement sur les champs de vitesse
de surface, et ignorons les composantes verticales.

Nous cherchons & confronter des modéles pilotés par les données a des données de type réel. Dans
cette optique, nous ne prétendons pas résoudre un probléme du domaine de 'océanographie.
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Nous cherchons plut6t a détecter les limites de nos modéles théoriques, lorsqu’ils sont confrontés
a des dynamiques complexes. Ainsi, nous adaptons les méthodologies présentées aux simulations
de données réelles. Nous analysons les performances du modéle introduit précédemment sur
NATL60. Nous présentons et discutons ensuite les différentes tentatives d’adaptation de notre
modeéle a la complexité du NATL6o. Enfin, des directions de recherche sont proposées pour
améliorer les résultats et ouvrir la voie au développement de nouveaux modéles.
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