
HAL Id: tel-04166826
https://theses.hal.science/tel-04166826

Submitted on 20 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hole Quantum Dots in Strained Ge/SiGe Quantum-Well
Heterostructures

Gonzalo Troncoso Fernandez-Bada

To cite this version:
Gonzalo Troncoso Fernandez-Bada. Hole Quantum Dots in Strained Ge/SiGe Quantum-Well Het-
erostructures. Physics [physics]. Université Grenoble Alpes [2020-..], 2023. English. �NNT :
2023GRALY022�. �tel-04166826�

https://theses.hal.science/tel-04166826
https://hal.archives-ouvertes.fr


THÈSE 
Pour obtenir le grade de 

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES

École doctorale : PHYS - Physique
Spécialité : Nanophysique
Unité de recherche : PHotonique, ELectronique et Ingéniérie QuantiqueS

Boîte quantique des trous sur des hétérostructures de Ge/SiGe

Hole  Quantum  Dots  in  Strained  Ge/SiGe  Quantum-Well
Heterostructures

Présentée par :

Gonzalo TRONCOSO FERNANDEZ-BADA
Direction de thèse :

Xavier JEHL
Directeur de recherche, CEA Centre de Grenoble

Directeur de thèse

Romain MAURAND
Ingénieur HDR, CEA Centre de Grenoble

Co-encadrant de thèse

 

Rapporteurs :
DOMINIK ZUMBÜHL
Professeur, Universität Basel
DOMINIQUE MAILLY
Directeur de recherche, CNRS DELEGATION ILE-DE-FRANCE SUD

Thèse soutenue publiquement le 20 mars 2023, devant le jury composé de :
DOMINIK ZUMBÜHL
Professeur, Universität Basel

Rapporteur

DOMINIQUE MAILLY
Directeur de recherche, CNRS DELEGATION ILE-DE-FRANCE SUD

Rapporteur

NATALIA ARES
Professeur assistant, University of Oxford

Examinatrice

ALESSANDRO CRIPPA
Chargé de recherche, Istituto Nanoscienze CNR

Examinateur

FRANCK BALESTRO
Professeur des Universités, UNIVERSITE GRENOBLE ALPES

Président

Invités :
ROMAIN MAURAND
Ingénieur Docteur, CEA CENTRE DE GRENOBLE







"Ante los fenómenos que desfilan por los órganos senso-
riales, la actividad del intelecto sólo puede ser verdader-
ament útil y fecunda reduciendose modestamente a obser-
varlos, describirlos, compararlos y clasificarlos, según sus
analogías y diferencias, para llegar después, por inducción,
al conocimiento de sus condiciones determinantes y empíri-
cas."
-Santiago Ramón y Cajal
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Résumé

Les points quantiques des semi-conducteurs ont été un domaine de recherche
fructueux au cours des 30 dernières années. Les atomes artificiels ouvrent un grand
nombre de possibilités. De l’effet quantique orbital à la polarisation de spin, des
groupes du monde entier ont mené des études. La publication de DiVicenzo en
1998 soulignait la possibilité de coder des informations quantiques dans les états
de spin des charges à l’intérieur de points quantiques semi-conducteurs définis par
une grille. Depuis lors, plusieurs démonstrations ont montré que cette possibilité
est une réalité, même s’il reste encore pas mal de pierres sur le chemin. Parmi les
semi-conducteurs utilisés pour fabriquer des points quantiques, le germanium est
un nouveau candidat qui présente un fort potentiel.

Parmi ses propriétés intrinsèques, on trouve une faible interaction hyper-
fine, due au caractère de type p de sa bande de valence, et un fort couplage
spin-orbite. Grâce à ces deux caractéristiques, les états de spin dans les points
quantiques ont une longue durée de vie en cohérence et peuvent être pilotés par
un champ électrique externe. Dans les hétérostructures de puits quantiques en
germanium/silicium-germanium (Ge/SiGe), on obtient des gaz de trous à haute
mobilité avec de faibles masses effectives. L’hétérostructure consiste en une couche
de germanium (Ge) de 16 nm comprimée entre deux couches de silicium germa-
nium (SiGe). L’alignement de la bande de valence entre les semi-conducteurs crée
un puits quantique pour les trous dans la couche de Ge, formant un gaz de trous
bidimensionnel (2DHG). L’objectif de cette thèse est de développer une recette de
fabrication robuste pour former des points quantiques dans les hétérostructures
Ge/SiGe. Plusieurs étapes de gravure au plasma, de dépôt de diélectrique, de
lithographies de grille et d’évaporation de métal ont été sondées et optimisées.
Une fois la recette obtenue, nous avons fabriqué avec succès des transistors à effet
de champ de trous (H-FET), des contacts ponctuels quantiques (QPC), des points
quantiques simples (SQD) et des points quantiques doubles (DQD). Nous avons ef-
fectué des mesures de transport de ces dispositifs quantiques à basse température.
Dans les derniers chapitres, nous avons démontrons la viabilité de la recette pour
obtenir des points quantiques simples (SQD) et doubles (DQD), et avons atteint
l’état de l’art pour la fabrication de dispositifs quantiques à hétérostructures de
Ge. Cette thèse est la base d’une recherche future basée sur des points quantiques
à trous en germanium de haute qualité pour explorer la physique de l’interaction
spin-orbite, pour réaliser le traitement de l’information quantique avec des qubits
à trous et plus...
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Abstract

Semiconductor’s quantum dots has been a fruitful research field for the last
30 years. Artificial-made atoms open a large amount of possibilities. From or-
bital quantum effect down to spin-polarization, studies have been carried on from
groups all around the world. DiVicenzo’s publication in 1998 pointed out the
possibility of encoding quantum information in the spin states of charges inside
gate defined semiconductor quantum dots. Since then, several demonstrations
have shown that this possibility is a reality, even though there are still quite a
few stones along the path. Out of the semiconductors used to fabricate quantum
dots, Germanium is a new candidate that shows strong potential.

Among its intrinsic proprieties, we find low hyperfine interaction, due to its
p-type character of the valence band, and a strong spin-orbit coupling. With
these two characteristics, the spin states in the quantum dots have long coherence
lifetime and can be driven with an external electric field. In germanium/silicon
germanium (Ge/SiGe) quantum well heterostructures, high mobility holes gases
with low effective masses are achieved. The heterostructure consists in a germa-
nium (Ge) layer of 16 nm compress between two silicon germanium (SiGe) layer.
The valence band alignment between the semiconductor creates a quantum well
for holes at the Ge layer, forming a two-dimensional hole gas (2DHG). The pur-
pose of this thesis is developing a resilient fabrication recipe to form quantum dots
in Ge/SiGe heterostructures. Several steps of plasma etching, dielectric deposi-
tion, gate lithographies and metal evaporation have been probed and optimized.
After the recipe was obtained, we successfully fabricated Hole-Field Effect Tran-
sistors (H-FET), Quantum Point Contacts (QPC), Single Quantum Dots (SQD)
and Double Quantum Dots (DQD). We performed transport measurements of
these quantum devices at low temperature. In the last chapters, we probed the
viability of the recipe to host SQD and DQD, and reached the state-of-the-art for
the Ge heterostructures quantum device fabrication. This thesis is the foundation
for a future research based on high quality germanium hole quantum dots to ex-
plore the physics of the spin-orbit interaction or to realize quantum information
processing with hole spin qubits and more...
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Introduction

It remains unclear who was the first person to construct an atomic theory
for Nature. Historically, it was attributed to Democritus, an ancient Greek pre-
socratic philosopher from the fifth century BC. In his book The Great World-
System, Cosmography,On the Planets, On Nature, On the Nature of Man or On
Flesh [1], he claims that everything was made of small, indestructible particles
that he called "atoms". Controversy comes when we account for his master and
predecessor, Leucippus, who could also have developed an atomic theory. Since
none of their books have survived to our days, we only know about them from
third-party historians. Around one millennium needed to pass until new theories
were born.

In the 17th century, people recovered the atomic theory and continue the re-
search: François Bernier, Walter Charleton, Robert Boyle, John Dalton, Amedeo
Avogardo... They started to view solid matter as a conglomerate of atoms, and
begin to explain their macroscopic properties from the small scale. It was in the
early 1940 when, in the American Physical Society, the term "Solid State Physics"
was finally proposed. It merged the new Quantum Theory with the atomic-like
definition of matter, creating a new field of research.

On another side of History, we have the technological development of mate-
rials. Since the old days, people were studying the properties of solids; electrical
conductance, strain, optical properties, etc... From the old pre-historic Iron Age
and Bronze Age, to the modern steel and plastic era, material research has always
been a motor to technological development in Human Society.

Now days, new technological challenges appear and new solution are proposed.
In this thesis, the objective is the development of gate defined quantum dots based
on a germanium quantum well. There are several applications for these devices,
from qubits for Quantum Computation to current generators in solar cells. Here
we will learn how they work, how they are produced and how to characterize
them.
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Introduction

Quantum dots as artificial atoms

As it is said in L.P. Kouwenhoven et al. [2], "quantum dots are small man-
made structures in a solid, typically with sizes ranging from nanometers to a
few microns. They consist of 103 − 109 atoms with an equivalent number of
electrons. In semiconductors all electrons are tightly bound to the nuclei except
for a small fraction of free electrons. This small number can be anything from a
single, free electron to a puddle of several thousands in quantum dots defined in
a semiconductor". The characteristic of few isolated electrons in a confinement
potential has given to quantum dots the name of "artificial atoms" [2, 3]. They also
resemble in the formation of discrete energy spectrum. Same as in real atoms, the
symmetries in the QD electric confinement lead to an orbital degeneracy known
as shells (1s, 2s2p, 3s3p3d...). Electron’s wave functions must be well-defined
according to these orbital levels. Same way that a single QD forms an artificial
atom, two QDs coupled together form an artificial molecule [4]. If the nature
of the coupling is more capatitance coupling than tunnel coupling, the artificial
molecule would replicate an ionic bonding. If the tunnel coupling strength excess
the capacitance coupling, it would simulate a covalent bonding. Instead of using
light interaction to study the atom-like properties of the QDs, they are observed
with transport measurement [5, 6]. QDs research field is being very active and
fruitful since the first experiments in the late eighties [7]. The range of phenomena
starts with artificial atoms and coupled quantum systems, pass by quantum Chaos
and quantum Hall effect, and finishes with Quantum Computation and quantum
sensors.

Since the first QDs were fabricated, a large variety of architectures have been
tested. The classification of these architectures can be done by its dimension. In
the 0-dimensional materials, we can find self-assembled quantum dots with GaAs
or InAs [8], or with Si and Ge [9]. In the 1-dimensional architectures there are
nanopillars made of PbS, Si and CdS/CdTe, strongly used in solar cell research
[10, 11]. Same way, III-IV semiconductors [12], Si and Si/Ge nanowires [13, 14]
and CMOS nanowires [15] have been developed. We can also find 1-dimensional
QDs in carbon nanotubes [16, 17]. As 2-dimensional QDs, we can find quantum
well structures in type III-IV semiconductors [18–20], in bilayer graphene [21], in
SiMOS structures [22, 23] and finally, in Si/Ge heterostructures [24, 25].

Ge, the chosen semiconductor

This thesis’ research is about the QD’s fabrication and characterization in
Ge/SiGe quantum well heterostructures. The heterostructures consists in a Ge
layer of 16 nm compress between two layers of SiGe. A 2DHG is formed in the
Ge. Figure 1 shows a schematic of the Ge/SiGe heterostructure.

Ge is not chosen randomly. Because of its appealing electrical properties, the
first transistor ever made was Ge-based [27]. It is well known that Si overcame Ge
in the early microprocessor development because of its exceptional oxide quality,
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Figure 1: Schematic of the Ge/SiGe heterostructure. Figure taken from [26].

but due to the Second Quantum Revolution, Ge is living a "Renaissance" [28–
30]. The heterogeneous integration with Si in a convention CMOS process allows
an accessible framework for Ge-based circuit development. The same industrial
process for Si can be used for Ge. Even more, the compatibility of Ge with
high-κ dielectric has been demonstrated, a keystone in the microelectronic circuit
integration. This big interest in Ge-based devices lunched the research of quantum
nature phenomena and hole’s properties in such heterostructures. Some of them
are the ultra-high mobility [31, 32], which provides the formation of high-quality
quantum dots. The low strain-tunable effective mass [26, 33], that enhance the
QDs energy level spacing, allowing to relax the gate lithography requirements.
The anisotropy in the g-factor and the large out-of-plane component [34, 35],
which complements with the intrinsic hole’s Spin-Orbit Interaction (SOI) [36, 37].
Lastly, the p-type orbital wavefunction for holes in the valence band decrease the
hyperfine interaction, which enhance the coherence time of the spin states.

Quantum Computation with QDs

Out of the several quantum properties of matter, one of them is the superpo-
sition of states. This is a consequence of a purely quantum phenomenon, the wave
function. It is still not settled why Nature behaves like this, but we can trust all
the experiments carried on in the last century to believe that it does. In 1982, the
physicist Richard Feynman formulated the idea of using the superposition propri-
ety of Nature to create the primitive idea of quantum computers [38]. Opposite
to the classical computer numeration for bits (0 or 1), its quantum counterpart
could be a superposition of states (α|0⟩ + β|1⟩). Feynman’s proposition was fo-
cused on simulation of quantum systems, but Peter Shor went a bit further. In
1994, he published a paper developing the idea of quantum mechanics to solve
a computational problem [39]. This date is accepted as the birth of Quantum
Computation. Four years later, Daniel Loss and David P. DiVincenzo published
a paper where they merge the new field of Quantum Computation with QDs [40].
They proposed using the spin-states of electrons in QDs as a coding element for
quantum computing.

Specifically talking about the topic in this thesis. Ge-based devices has shown
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in the Quantum Computation field an impressive development in the last years.
QDs have been measured in nanowires, hut-wires and quantum wells [14, 25,
41–48]. Electrical manipulation of spin and the qubit formation has also been
achieved [49–52]. Ge has also been used for the implementation semiconduc-
tor/superconductor hybrid devices, either for spin-photon coupling [45, 46, 53] or
gatemons [54, 55].

This thesis...

This thesis is a travel diary from the birth of the Ge-based semiconductor
substrate to the final electrical tune of QDs. In the chapter 1, the basis of band
theory applied to strained Ge quantum well is discussed, as well as the QDs
transport theory for Single Quantum Dots (SQD) and Double Quantum Dots
(DQD). Second chapter 2 speaks about the fabrication development. Here we will
see the different decisions we took during the recipe creation, and we will learn
that the path to success is not a straight line. In chapter 3 we will discuss the
heterostructures mobility measurements, as well as some surface trap tunneling
effect and pinch-off voltage drift. For this purpose, we fabricated Hole-Field Effect
Transistors (H-FET) and Quantum Point Contacts (QPC). Next chapter 4 is
about the SQD. We show the tuning protocol to reach the Coulomb blockade
regime, and we measure some figures of merit, like lever arm, charging energy, g-
factor, etc... The final chapter 5 is focus on a DQD device characterization. Here,
we demonstrate the tuning of the two dots coupling strength, and we measure
stability diagrams to extract the relevant capacitances of the system. Eventually,
suing a proximal charge-sensor, we were able to count charge occupation in the
DQD down to the last occupation. The last section is dedicated to the final
discussion and perspectives of the project.

XVIII



1

Chapter 1
Theoretical background

In this first chapter, the theoretical background related to the electronic trans-
port measurements performed in the experimental section is discussed. It is di-
vided into two parts. The first part focus on solid state physics, mainly on band
theory and on the Luttinger-Kohn Hamiltonian. The second part is about quan-
tum confinement and quantum transport, with special attention to the devices
built in this thesis: H-FET, QPC and single and double QD.

Piece of germanium. Alfred Pasieka. Image taken from Science Photo Library, Getty Images.
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Chapter 1. Theoretical background

1.1 Band structure in Ge

Germanium is a semiconductor and its Bravais lattice is diamond cubic. The
atomic number is 32 and has an atomic mass of 72.64u. Knowing that its density
is 5.3g/cm2, this gives 4.41 × 1021 atoms per square centimeter. Each of those
atoms contributes with 32 electrons to the system and with their corresponding
electrostatic field, it would be nearly impossible to solve the many-body Hamil-
tonian. Thankfully, we can apply some simplifications to the problem [56].

Figure 1.1: a) schematic of a diamond lattice. Each sphere represents an atomic site.
This lattice is observed in type-IV semiconductors. Image taken from the NSO website.
b) the first Brillouin zone for the diamond lattice.

The first approximation we will consider is that only the most external elec-
trons (those in the last atomic orbitals) contribute to transport. We assume the
inner electrons are strongly bonded to the atom nuclei. The next approximation is
the Born-Oppenheimer, or adiabatic, approximation. Electrons dynamic is faster
than the ion’s vibration frequency. From the electron point of view, ions inside
the lattice are essentially stationary. This approximation allow us to split the
Hamiltonian in two parts: one for electrons and another one for nuclei. Finally,
the last approximation is the mean-field approximation. The sum of all the elec-
tric field contribution from the atoms in the crystal is recovered as an average
potential V (r). The Schrödinger equation for an electron in such potential is:

HnΦn(r) =
(

p2

2m
+ V (r)

)
Φn(r) = EnΦn(r). (1.1)

Φn is the electron wavefunction of a single electron in the electrostatic poten-
tial V (r). We can go further and consider a translational symmetry due to the
atom’s periodicity inside the crystal. This implies that the potential can be ex-
pressed as V (r) = V (r+R)), where R is the lattice’s periodic length. A schematic
of the Ge atomic unit cell is represented in figure 1.1 a). In a periodic potential,

2
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the electron wave function can be expressed as a complete set of eigenfunctions
Ψ(r) that has the form of flat waves. This conclusion is derived from the Bloch
theorem, and the basis is known as Bloch functions. They are

Ψ(r) = eikru(r), (1.2)

where r is the length dimension and k is known as the wave vector. The crystal
symmetry is also reflected in the wave vector: k and k + 2nπ/R are solutions of
the Bloch function. This symmetry allows us to define, in the reciprocal space,
the first Brillouin zone, represented in figure 1.1 b) This three-dimensional surface
are the bounds in a three-dimensional lattice of the periodic wave vector. Each
crystal lattice has its own Brillouin zone associated.

1.1.1 k-p theory for spin-degenerate bands

This section is mainly based in the book of Peter Y. Yu and Manuel Cardona
Fundamentals of semiconductor [56] and the book of Roland Winkler Spin-Orbit
Coupling Effects in Two-Dimensional Electron and Hole Systems [36]. I also got
inspiration from the thesis of Raisei Mizokuchi [57].

There are several methods to analytically resolve the electronic wavefunction
in a periodic potential. The eigenvalues for equation 1.1 are known as energy
bands in the solid. The bands are the allowed energy states for electrons in the
lattice. The method known as tight-binding allows to resolve the band structure of
a solid for any value of k. It considers the superposition of the orbital wavefunction
of isolated atoms located in each atomic site. In figure 1.2 a) we see the Ge band
diagram solved with tight binding.

In this thesis we will follow the k-p approach for spin-degenerate electrons.
If we replace the Bloch function into the Schrödinger equation 1.1, we obtain[

p2

2m
+ ℏk · p

m
+ ℏ2k2

2m
+ V0

]
unk = Enkunk. (1.3)

Around the high-symmetric point k0 = (0, 0, 0), previous equation is reduced
to [

p2

2m
+ V0

]
un0 = En0un0. (1.4)

This equation is much easier to solve than equation 1.1. Here, the Bloch
functions are periodic, and they form a complete and orthogonal set of basis.

The other terms from the Hamiltonian ℏk·p
m and ℏ2k2

2m can be treated as per-
turbations in the degenerate or non-degenerate perturbation theory. Around a
chosen k0, only a few experimental parameters are necessary to compute the full
k-values of the Brillouin zone. We expand the basis un0 around the k0 point
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Figure 1.2: a) Ge band diagram solved using tight-binding. Over the Fermi level (dashed
line), we see the conduction bands for electrons. Below the Fermi level, we observe the
valence bands for holes. The difference between the bottom-most point in the conduction
band and the top-most point in the valence band is the gap energy. Figure taken from
[58] b) quadratic band dispersion of the Ge bands around the point k = 0. We observe the
splitting of valence band with the hole spin value. The lowest energetic band correspond
to the holes with J = 1

2 and the top-most valence band is for J = 3
2 . Figure taken from

[30].

unk = un0 + ℏ
m

∑
n′ ̸=n

|⟨un0|k · p|un′0⟩|2

En0 − En′0
. (1.5)

The associated energy taking into account the perturbation theory is

Enk = En0 + ℏ2k2

2m
+ ℏ2

m2

∑
n′ ̸=n

|⟨un0|k · p|un′0⟩|2

En0 − En′0
. (1.6)

Here, the linear terms in k are no longer considered because the calculations
are taken in an extremum of Enk. For small k values, we can write

Enk = En0 + ℏ2k2

2m∗ . (1.7)

Where m∗ is defined as effective mass. This is a very relevant concept in
semiconductor band theory. The expression for the effective mass comparing the
two previous equation is

m∗ = m

1 + 2
mk2

∑
n′ ̸=n

|⟨un0|k · p|un′0⟩|2

En0 − En′0

−1

. (1.8)

We observe that the effective mass of the electron is different from the one in
vacuum. Actually, the inverse of the effective mass corresponds to the curvature
of the energy band.
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1.1.2 Luttinger Hamiltonian

Up to now, we have seen the band theory applied to a generic case. In this
section we will focus in the particular case of type-IV semiconductors, which have
a diamond kind of lattice. In particular, we will consider Ge.

The previous Hamiltonian have only taken into account the interaction be-
tween the electrostatic potential from the lattice and the electrons. Due to lattice
symmetries, we can add an extra term known as "spin-orbit interaction" (SOI).
This phenomenon is well known in atomic physics and can be derived from the
Dirac equation. It is a relativistic correction whose nature arise from the interac-
tion of lattice-generated magnetic fields and the electron spins in the solid bands.
We consider the SOI as

ESOI = δSOI l · s, (1.9)

where the factor δSOI is a material dependent magnitude, l is the orbital
number and s is the electron spin. We will consider that (l+s)2 = l·l+s·s+2(l·s)
and l · s = 1/2

[
(l + s)2 − l · l − s · s

]
. From the sum of angular momentum, we

can use that for a given ν we can say ν · ν = ν(ν + 1). We can then mix all
previous terms into the spin-orbit equation and obtain that

δSOl · s = δSO

2 [j(j + 1) − l(l + 1) − s(s + 1)] . (1.10)

The Ge has 32 electrons, its electron configuration is [Ar]3d104s24p2. The
last orbital has angular momentum of p → l = 1. We know that the electron spin
is s = 1/2. The sum of both angular momentum is j = l + s = 3/2, 1/2. When
we replace the angular momentum values for the last Ge electrons, we obtain:

If j = 3
2 , then l · s = 1

2 , and the spin-orbit becomes ESOI,j=3/2 = 1
2δSOI .

If j = 1
2 , then l·s = −1, and the spin-orbit becomes ESOI,j=1/2 = −δSOI .

From previous equation, we observe an energy difference between the two
bands for electron with angular momentum j = 3/2 and j = 1/2. For Ge, the
energy difference is ESO,j=3/2 −ESO,j=1/2 ≈ 300meV. In band theory, we say that
the valence bands are populated by holes, and the spin j = 3/2 correspond to the
hole spin.

The previous spin-orbit calculation can be generalized with the interaction
Hamiltonian

HSOI = ℏ
4c2m2 (∇V × p)σ, (1.11)

where c is the speed of light and σ are the Pauli matrix for spin s = 1/2.
When we add the interaction term in the k-p theory (equation 1.4), we arrive to
the Luttinger-Kohn Hamiltonian
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HLK = − ℏ2

2m

[(
γ1 + 5

2γs

)
k2 − 2γs(k · J)2

]
. (1.12)

The derivation of this equation is not easy, for a deeper calculation we refer to
[36]. The parameters γ1 and γs are material-dependents and known as Luttinger
parameters.

The purpose of this thesis is to discuss the quantum dots viability with
holes. This implies that we can perform a simplification on the Luttinger-Kohn
Hamiltonian and focus only in the j = 3/2 hole subband. Inside this band,
the possible projection for J along the z-directions are JZ = 3/2, −3/2, know
as heavy-holes, and JZ = 1/2, −1/2, known as light holes. The k-p theory
Hamiltonian with the spin orbit interaction for holes of J = 3/2, in the basis{

| + 3
2⟩, | + 1

2⟩, | − 1
2⟩, | − 3

2⟩
}

, has the form

H4kp = ℏ2

2m


P + Q −S R 0
−S∗ P − Q 0 R
R∗ 0 P − Q S
0 R∗ S∗ P + Q

 , (1.13)

where:

P = γ1(k2
x + k2

y + k2
z) (1.14)

Q = γ2(k2
x + k2

y − 2k2
z) (1.15)

R =
√

3[−γ3(k2
x − k2

y) + 2iγ2kxky] (1.16)

S = 2
√

3γ3(kx − iky)kz, (1.17)

kz, ky and kx are the wave vector components in the different crystallographic
directions. For Ge, γ1 = 13.38, γ2 = 4.24 and γ3 = 5.69. We can observe the
off-diagonal terms in equation 1.13 which account for the coupling between light
and heavy holes.

1.1.3 Planar structures

We will consider the particular case of two-dimensional structures. These
structures form a sandwich of SiGe/Ge/SiGe. Because of the valence band align-
ment, the Ge acts as a quantum-well for holes. A 2DHG is formed in the SiGe/Ge
top interface. Let’s call the vertical confinement direction z and x, y the in-plane
directions. The hole wavefunction has border constriction in the z direction, it
vanishes at both interfaces. We can use the Hamiltonian 1.13 for the case where
k2 = k2

x + k2
y. We take the two diagonal terms for heavy holes (HHH , JZ = ±3/2)

and light holes (HLH , JZ = ±1/2) and obtain

6



1

Chapter 1. Theoretical background

HHH = ℏ2

2m
(P + Q) = ℏ2

2m

[
(γ1 + γ2)k2 + (γ1 − 2γ2)k2

z)
]

HLH = ℏ2

2m
(P − Q) = ℏ2

2m

[
(γ1 − γ2)k2 + (γ1 + 2γ2)k2

z)
]

.

(1.18)

From these two equation we can define the effective mass for heavy holes and
light holes for in-plane axis and out-of-plane. In-plane light-hole effective mass is
ml

∥ = m/(γ1 − γ2), in-plane heavy hole effective mass is mh
∥ = m/(γ1 + γ2). The

out-of-plane components read as ml
⊥ = m/(γ1 + 2γ2) and mh

⊥ = m/(γ1 − 2γ2). It
is noticeable how the in-plane heavy hole effective mass is lighter than the light
holes effective mass.

Lattice strain also plays a role in the two-dimensional quantum-well struc-
tures. In the SiGe/Ge/SiGe heterostructures, the Ge is under a compressive
strain due to the lattice parameter mismatch with the SiGe. The strain will affect
the band dispersion and the effective masses of heavy and light hole. In addi-
tion, it will break the degeneracy in the k = 0 maximum of the valence band.
Schematics in figure 1.3 shows the top-maximum of the valence band for different
strain cases. We observe that for our case, the compressive strain creates a gap
between the heavy and light holes. In practice, this will produce that the first
holes accumulated at the quantum-well will be heavy holes. Eventually, if the gate
potential keeps increasing, light holes will also be accumulated. When both kind
of holes cohabit in the quantum well, the effective mass becomes a combination
of heavy and light holes, and same with the Landé g-factor.

Figure 1.3: Band diagram splitting due to the effect of strain in the lattice. We observe
how with compressive strain, the heavy hole and light hole bands separate each other in
energy. For tensile strain the effect is the opposite. The subband below correspond to
the holes with j = 1/2, it also called split-off band. Figure taken from [59].

In Ge, the spin splitting is caused by the Rashba Spin-Orbit Interaction.
This phenomenon arises in two-dimensional systems where there is an inversion-
asymmetry [36, 37, 60]. The derivation of this term is out of the scope of this
work.
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1.2 Quantum devices

Along this chapter section I will introduce the mesoscopic transport theory
for three quantum devices in particular: Field Effect Transistor (FET), Quantum
Point Contact (QPC) and quantum dots (QD). From all the bibliography, I wrote
in this thesis a brief summary of the relevant aspect for the experiments. If the
reader wants a deeper discussion, I recommend going to the cited references.

The FET section is mainly based in two books and two reviews. The band
structure approach, where the Schottky barrier are discussed is taken from the
development of Physics of semiconductor by S.M. Sze [61], the paper review from
Y. Wang et al. [62] and finally the study from R.T. Tung [63]. The field effect as
a parallel plate capacitor is based from the book Semiconductor Nanostructures
by Thomas Ihn [64].

The QPC section is inspired by the two books of Semiconductor Nanostruc-
tures by Thomas Ihn [64] and Mesoscopic Electron Transport [7]. Some develop-
ment is also inspired from the Boris Brun-Barriere’s thesis [65].

For the final section of quantum dots, I based this thesis in the books of Semi-
conductor Nanostructures by Thomas Ihn [64] and Mesoscopic Electron Transport
[7] again. But also from the reviews of R. Hanson et all. [66], the J.M. Elzerman
review [67], the W.G. van der Wiel [4] and the review from F.A. Zwanenburg [24].

1.2.1 Field effect in a quantum well

When two solids enter in contact, they minimize the overall energy by a charge
displacement until the Fermi level of both materials align. In semiconductors, the
Fermi level is not defined the same way as it is for metals. It does not exist an
overlapping in the electrons k-surfaces between two consecutive Brillouin zones.
We define it by the energy value corresponding to the electron density average
between the densities in the conduction and the valence bands. The Fermi energy
would be in the middle of the gap. When a metal and a semiconductor enter
in contact, the Fermi level of the metal align with the virtual position of the
semiconductor’s Fermi level. At the interface, the valence and conduction bands
pinch to the metal, bending its potential energy. This is known as Schottky effect.
Far from the interface, the semiconductor bands recover their bulk value.

In the case studied here, the metal and the semiconductor have a high-k di-
electric in between. The top-most value of the valence band in the heterostructure
is represented in figure 1.4. We can appreciate the Schottky barrier at the inter-
face. The amplitude of the bending depends up on the metal work function (Φm)
and the virtual semiconductor position for the Fermi level (ΦS).

When a gate voltage is applied (figure 1.4 c) the bands bend according to the
gate displacement of EF . Once the top-band overcome the Fermi level defined by
the ohmic contacts, holes start to accumulate and a 2DHG is formed.

This effect can be model as a parallel plate capacitor. One side of the ca-
pacitor is the metallic gate, and the other side is the 2DHG. This model has one
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Figure 1.4: a) to c) are schematics showing the top-most point in the heterostructure
valence band and the metallic gate. In a), the two materials are not in contact and their
electronic potential is defined with respect to the vacuum. In b), they are contacted and
the Fermi level align. For this case, the Schottky barriers raised in the interfaces between
different materials. c) is the system with a voltage VG applied to the gate. In d) we can
see a schematic of the heterostructure with the different materials between the metallic
gate and the quantum well.

disadvantage. It does not consider the activation potential to accumulate carriers
in the quantum well. But on the other hand, it gives an easy insight on the physics
and can be quite accurate in the low-density regime. We consider the capacitance
equation for a plate capacitor

C = ϵeff ϵ0A

t
, (1.19)

where ϵeff is the effective dielectric constant between the gate and the quantum
well, ϵ0 is the vacuum dielectric constant, A is the gate surface and t is the
distance between gate and quantum well. In the figure 1.4 d) we can see a system’s
schematic. When a potential Vg is applied to the gate, the charges accumulate as
Q = VgC. The total charge is equal to the number of carriers times the individual
charge of a carrier Q = |e|N . Because of the energy conservation principle, the
same quantity of charges are accumulated at the quantum well. We can say that
Vg = |e|Nt/ϵeffϵ0A. Writing the density as n = N/A we obtain
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n(Vg) = tϵeffϵ0
|e|

Vg. (1.20)

This model does not take into account the surface tunneling effect [68] or
disorder potential, which are pure quantum effects. This is a classical approach
which connects a capacitively model with the band theory. In the following sec-
tion, we will take the advantage of the capacitively models to explain the physics
in the QPC and the quantum dots.

1.2.2 Quantum Point Contact

In a quantum-well heterostructure, a QPC device consists in two metallic
gates facing each other with a gap between them. When the metallic gates are
biased, the potential created confines the carrier gas in a one-dimensional channel.
Conductance through such constriction will be quantized according to a multiple
of the quantum of conductance G0 = 2e2/h.

In figure 1.5 a) we can see a representation of the parabolic approximation
for the electrostatic potential at the QPC. Conductance is only allowed through
the states in the potential. In figure 1.5 b) we observe the conductance curve of
a QPC and the typical plateaus, multiples of G0.

Figure 1.5: a) schematic of the parabolic potential energy states along the y-direction
(the direction perpendicular to carrier transport). The wavefunction of the carries that
pass through the QPC should match the eigenfunction of the electrostatic potential. b)
typical QPC conductance plot (taken from [69]). We observe how each plateau appears
at an integer value of G0. The small inset image (a) shows a schematic of the sample from
top view. The inset (b) is the conduction measured before correcting the line resistance.

The parabolic potential, the saddle-point model

In order to have a theoretical approach, we can follow the development in [70],
we can model the electrostatic potential in the middle of the QPC as a saddle-
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point. Being the x-axis the conduction direction and the y-axis the transversal
direction, the saddle-point potential increase towards the y-axis and decrease in
the x-axis. The two electronic reservoirs are considered to be in electrochemical
equilibrium.

In the parabolic approximation, the electrostatic potential created by the two
gates at the quantum well level can be seen as a quadratic potential. We write

V (x, y) = V0 − 1
2m∗ω2

xx2 + 1
2m∗ω2

yx2, (1.21)

where ωx and ωy are the angular frequencies associated with the parabolic
potential, and m∗ is the carrier effective mass. We can assume the potential is
separable. Along the perpendicular direction to transport, the parabolic potential
forms quantized states. They are represented in figure 1.5 a). The energy for those
states is En = (n + 1/2)ℏωy.

Conduction through the QPC for charges in the 2DHG can be seen as a scat-
tering mechanism. Particles are transmitted with T (E) = 1 if their energies match
the QPC energy levels, and they are fully reflected if they do not. Considering
that the Fermi level is the last occupied energy state, all the QPC levels below
the Fermi level are contributing to the conductance.

Transport through a QPC

Transport in the small bias regime δVbias can be calculated from the current
through a one-dimensional channel. We integrate the density of states D(E) with
the group velocity v(E) around the Fermi level and multiply by the transmission
probabilities τ(E). The formula read as

I = e

∫ EF +|e|δVbias

EF

D(E)v(E)τ(E)dE. (1.22)

The carrier density in one dimension is D(E) = 2
2πℏ
√

2m∗/E. The group
velocity is v(E) = ∂E/∂vx which equals to v(E) =

√
E/2m∗. When we solve

the current equation, we can see than the terms related to the effective mass
and the energy vanish, and it is only kept the pre-factor. The current is I =
2e
h |e|δVbiasτ(EF ). To express the conduction, we divide G = I/δVbias = 2e2

h τ(EF ).
The previous equation only took into account one transmission channel through

the QPC. We have seen in the previous section that each time an eigenstate of the
parabolic potential falls below the Fermi level, it opens another channel of trans-
mission. In figure 1.6 we see a schematic of the QPC potential and the Fermi level.
The sum of all the conduction channel contribution to the total conductance is
known as the Landauer formula, and it looks like

G = 2e2

h

N∑
n

τn. (1.23)

11



1

Chapter 1. Theoretical background

In figure 1.5 b) we can see the typical curve of conductance through a QPC.
We can appreciate the quantization in the conductance plateaus as multiples of
2e2/h.

Figure 1.6: Schematic of the QPC parabolic potential next to the source and drain
electrochemical potential and the Fermi level. All the QPC states below the Fermi level
contribute to conductance through the constriction with a quantum of conductance G0.

1.2.3 Quantum Dots

In order to quantitatively describe a QD, we will use the constant interaction
model. In this model, we assign a capacitance between the different electrodes
in the system. We work in a constant electric field interaction among all the
elements. To form a QD, we need two terminals for the current to flow, and a
region in space where the carriers can be confined. The confinement is produced
by an electrostatic potential. The carrier island is what we know as QD. In order
to have a better control over the electrostatic potential shape, it is convenient
to have a third terminal that is capacitively couple to the QD. A schematic is
represented in figure 1.7. If there is no coupling between the island and the
source-drain electrodes, the carrier number in the QD is fixed an equal to N . The
total charge of the island is then eN . In the case that carriers can go in and
out of the QD, the system will always tend to minimize its energy by exchanging
particles with the reservoirs. The change of dot’s electrostatic energy because of
a charge going in or out of the island is EC = e2/C, where C = CD + CG + CS .
This magnitude called charging energy.

Quantum dot energy scales

Now, we need to discretize the charge energy levels, but some conditions needs
to be fulfilled. First, the charging energy has to be larger than thermal energy
kBT . Second, the coupling between the QD and the reservoirs has to be large
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Figure 1.7: Schematic of a single quantum dot with three terminals: source, drain and
gate. Figure taken from [71]. The dot is tunnel coupled to source and drain (CS , CD)
and capacitively to the gate (CG).

enough to allow particle exchange, but small to allow particle accumulation in the
confinement potential. To estimate this values, we say that the discharging time
for a carrier is ∆t = RtC, where Rt is the tunnel resistance between the QD and
the source-drain reservoirs. By the Heisenberg uncertainty relation, we obtain
∆E∆t = (e2/C)CRt > h. This implies that Rt > h/e2, which is the quantum of
resistance R0 = 25.813kΩ. In conclusion, the two conditions are:

Rt >>
h

e2 , e2

C
>> kBT. (1.24)

The gate purpose is to continuously change the total dot potential. With this
constant interaction, the system will minimize its energy by adding or subtracting
one carrier from the QD when |e| = CGVG, being VG the gate voltage. With the
gate electrode, we can directly control the particle number in the quantum dot.

Level spacing in a QD

We can roughly estimate the quantum dot energy level spacing with its size.
This estimation is good to have an idea of the length scales. Also, it will be use
eventually to calculate the dot size.

We can assume that the electric potential which defines the QD is a sharp
quantum well potential being V (x) = ∞ if x < 0 or x > L and V (x) = 0 if
0 < x < L. This is a text book exercise where the boundary condition force us to
some quantized solution for the Schrödinger equation. We will not consider any
spin.

Ê|Ψ(k)⟩ = En|Ψn(k)⟩, En = ℏ2k2
n

2m∗ , (1.25)

where m∗ corresponds to the carrier effective mass and ℏ is the Plank constant.
The wavefunction of the charges inside the quantum well must vanish at the edges
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x = 0 and x = L. So we guess |Ψ(k)⟩n = Ψ0 sin(k). The possible solution for k are
k = nπ/L being n an integer and positive number. When we add the wavevector
to the eigenenergy, for a 1D quantum well we obtain

En = (ℏπ)2n2

2m∗L
. (1.26)

We can then generalize the solution of the equation to higher dimensions; 2D
and 3D. A schematic representation of the wavefunction and the QD states is
pictured in figure 1.8.

Another approach to this problem is considered the electric potential as a
parabolic function in the in-plane direction. This scenario is closer to reality in
the sense that a real electric field decays along the dielectric, and the potential
experimented by holes at the quantum well is parabolic in the in-plane direction.
The potential energy would read as

V (x, y, z) = 1
2m∗ω2

0(x2 + y2) + 1
2m∗ω2

zz2, (1.27)

where x, y and z are the space directions and ω0 and ωz are the angular
parabolic potential frequencies. The solution of this Hamiltonian are the Fock-
Darwin states.

EN,M,NZ
= ℏω0(2N + |M | + 1) + ℏωz(Nz + 1/2), (1.28)

where N is the radial quantum number, M is the angular momentum number
and Nz is the out-of-plane quantum number. In such systems, the characteristic
unit of length of the extended ground state is

l0 =
√

ℏ
m∗ω0

(1.29)

To compare energy scales, we calculate the excited state energy difference
between two consecutive levels ∆E = En − En−1 for the infinite potential and
between ∆E = EN+1,M,Nz − EN,M,Nz :

For 1D: ∆E = (N/4)ℏ2π2/mL2 (1.30)

For 2D: ∆E = (1/π)ℏ2π2/mL2 (1.31)

For 3D: ∆E = (1/3π2N)1/3ℏ2π2/mL2. (1.32)

For parabolic potential: ∆E = 2ℏω0. (1.33)

We observe that for a 2D potential, the energy spacing is independent of the
number of particles in the dot. With a first estimation, for a QD size of 100 nm
and an effective mass m∗ = 0.08me, we obtain an energy spacing of 0.5meV.
In temperature, it corresponds to ∼ 8K. We observe that lower effective mass
contributes to enlarge the level spacing.
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Figure 1.8: Schematic for a particle wavefunction inside square potential potential with
1D and 2D. GS stands for ground state and ES for excited state. In the bottom, we see
the rep[resentation of the excited states in a parabolic potential. Figure taken from [18].

An important remark here is to not confuse the charging energy EC with the
level spacing ∆E. In the first case, we count the particle-particle interaction. It
comes from a pure electrostatic treatment of the QD. The quantum confinement
energy level spacing, also known as orbital level spacing, is a quantum treatment
of particles in a potential. In each charge energy configuration there is space for
several orbital levels.

Interaction model

Now let us define the charge energy levels in a quantum dot with several
particles. We start by making a couple of assumptions. First, we say that the
quantum levels can be calculated independently of the particles number in the dot
N . Second, we assume that the particle number N does not affect the overall dot
capacitance C, represented in schematic from figure 1.7. This is a strong assump-
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tion which is true for many particles, but becomes false when the quantum dot is
almost empty. In this regime, the dot shape, and by extension its capacitance, is
very sensitive to disorder potential, which influence in the energy levels.

We start by approximating the QD to a perfect capacitor of capacitance C.
The electrostatic energy is

U(N) = Q2

2C
. (1.34)

The charge of our model is the number of particles inside the dot N . It is also
affected by the potential at the three electrodes, which are capacitively coupled
to the dot. We can also count the charges in the QD (N0) which compensate
the dislocation potential of the quantum-well. The energy contribution from the
orbital levels is En. The new expression for the energy becomes

U(N) = [−|e|(N − N0) + CSVS + CDVD + CGVG]2

2C
+
∑

n

En, (1.35)

Previous equation is useful for understanding the energies in the system, but
not to experimentally observe the quantum dot. We measure the dot in transport,
what we really see is the current produced by carrier exchange in the quantum
dot. That is why we define a new energy scale called dot electrochemical potential,
it is defined as µ(N) ≡ U(N) − U(N − 1). In terms of the dot capacitance it is

µ(N) =
(

N − N0 − 1
2

)
EC − EC

|e|
(CGVG + CSVS + CDVD) + En. (1.36)

We observe that the electrochemical potential linearly depends upon the gate
voltage. This makes a very convenient representation of the dot tunneling. We
see µ(N) as a "ladder" that goes upwards or downwards with the gate voltage.
When the chemical potential is aligned with the source-drain reservoirs, we ob-
serve current through the system. Figure 1.9 shows a schematic of the chemical
potential.

The energy difference between two consecutive charge transition states is de-
fined as the addition energy Eadd(N):

Eadd(N) = µ(N + 1) − µ(N) = EC + ∆E. (1.37)

This magnitude is very convenient because we directly observe it in transport
measurement.

Transport in a SQD

The current through a SQD can be described with the Landauer-Buttiker
theory [4, 64]. This formula is applied for two terminals system in the limit of a
low source-drain bias:
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Figure 1.9: Schematic of the quantum dot chemical potential ladder and the source and
drain chemical potential. When µS > µ(N) > µD there is current through the dot. ΓS,D

are the source and drain tunnel rates. In c) there is a schematic of the system current in
function of the gate voltage. Figures taken from [66].

I = e

h

∫
τ(E) [fL(E) − fR(E)] dE. (1.38)

In the case of a SQD, the left fL(E) and the right fR(E) reservoir act as
source and drain. Between them, there is a small bias difference eδV . The Fermi
distribution is also affected by temperature. The term τ(E) is the transmission
probability of a particle to go L to R (or vice-versa).

In a SQD, we have two tunnel barrier gates in series. We can start by approx-
imating those barrier gates to a Fabry-Perot interferometer. Instead of photons
and an electromagnetic wave we have the charge carriers and the particle wave-
funtion. This approximation is accurate in the lengths of the carrier’s mean free
path, where particles behave ballisticaly. Figure 1.10 a) shows a schematic of
the Fabry-Perot interferometer with the reflecting and transmission probabilities
for the two barriers. We can approximate the resonance to a Lorentzian by the
Lorentz approximation, but we have to fulfill some conditions. The transmission
coefficient for both barriers should have small transmission |tL|, |tR| ≪ 1, and by
extension |rL|, |rR| ∼ 1. And the Lorentz model is only valid close to a resonance
point. This means that the electrochemical potential of the dot is aligned with
the source-drain chemical potential. With a general channel p contributing to
conductance, the total transmission τ for carrier through the system is
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τ = |t0|2

1 + (E − Ep)2/(Γp/2)2 , (1.39)

where Ep is the chemical potential energy for transmission channel p and ΓP

is the Lorentzian line width of the curve, represented in figure 1.10 b). The third
term |t0| is

|t0| = 4τRτL

(τL + τL)2 , (1.40)

where τR = |tR|2 and τL = |tL|2 are related to each barrier in the Fabry-Perot
interferometer. The equation 1.40 has a maximum value when τR = τL. This
implies than when two barriers are in series, the amplitude is maximum when
both barriers have the same transmission.

Figure 1.10: a) schematic of the Fabry-Perot interferometer for model the two tunnel
barriers. We observe the transmission and reflection probabilities en each of the barrier.
b) is the Lorentzian line-shaped curve for the transmission in a double barrier quantum
dot. The resonance is around the energy value Ep for the transmission channel p. The
Lorentzian width is given by the tunnel rate Γp = Γ(R)

p + Γ(L)
p . Figures taken from [64].

With all the previous equation and using that the tunnel rate for right and left
barriers, around the resonance is proportional to the transmission ΓR/L

p ∝ τ
R/L
p ,

we can write

τ =
∑

p

Γ(L)
p Γ(R)

p

Γ(L)
p + Γ(R)

p

Γp

(Γp/2)2 + (E − Ep)2 . (1.41)

Coming back to the Lorentzian width Γp, we observe that the peak is broad-
ened by the contribution of the source and drain tunnel rates. For now, we have
not considered any other phenomenon, so the total peak width can be expressed
as Γp = Γ(R)

p + Γ(L)
p . It is convenient to express the Lorentzian-shape function as

Lp[E − Ep] = Γp

(Γp/2)2 + (E − Ep)2 . (1.42)
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If we solve the equation 1.38 with the calculated transmission, we obtain the
final conductance G = I/δV equal to

G = e2

h

∑
p

Γ(L)
p Γ(R)

p

Γ(L)
p + Γ(R)

p

∫
dELp[E − Ep]

(
∂f

∂E

)
. (1.43)

At this point, we can consider different thermal regimes for transport. They
are:

• e2/C ≪ kBT, eVbias, transport happen through several QD lev-
els. There is not any Coulomb blockade.
• hΓp, ∆E ≪ kBT ≪ e2/C, metallic quantum Coulomb blockade
regime. Transmission happens through several states in the QD.
• hΓp, kBT ≪ ∆E < e2/C, quantum Coulomb blockade regime.
Transmission happens through a single QD level.

In the first limit, the thermal energy is larger that the QD charging energy.
In this regime, there is no Coulomb blockade. The system conductance is given
by the ohmic sum of the two tunnel barrier conductance 1/G = 1/GR + 1/GL.
The conductance is fully characterized by the barrier and is independent of the
QD size.

The second and third regime are very similar. The difference in the transmis-
sion curve is the width of the signal. This width is broadened by temperature kBT
and by each transmission channel through the dot. The excited states contribute
with their own tunnel rate. We can solve equation 1.43 and obtain

G = e2

h

1
4kBT

∑
p

Γ(L)
p Γ(R)

p

Γ(L)
p + Γ(R)

p

cosh−2 [(Ep − EF )/2KBT ] . (1.44)

In this equation, if the case is a metallic quantum dot, we add the tunnel
rate for each excited estate. If the dot is in the quantum regime, only one state
contributes to conductance.

We can also calculate the limit for conductance when kBT ≪ hΓp. We obtain
the Breit-Wigner formula

GBW = e2

h

Γ(R)Γ(L)

(Γ(R) + Γ(L))2 . (1.45)

In order to illustrate the previous calculation, in figure 1.11 we see two mea-
surements of Coulomb peaks in different regimes. The idea of both experiments
is to fit the peak shape to the transport equation shown previously. In the case
that hΓp ≈ kBT the approximation taken before are not good enough and the
equation 1.38 must be computed numerically.
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Figure 1.11: Images from [5] (left) and [72] (right). In the left panels, we can see
two regimes for conductance. When kBT ≈ hΓp in the broad peaks and hΓp ≪ kBT
for the narrow ones. In the right panels there are schematics for three cases and their
corresponding measurements. We can observe how the used different fiting method for
each case.

Cotunneling

So far, we have considered the cases where transport is a first order process.
Nevertheless, it is possible that two transport event happen at the same time.
This second order process is known as cotunneling. We will study two regimes:
elastic and inelastic cotunneling. In figure 1.12 we observe two measurements
where they observed cotunneling. In a) it is measured the elastic cotunneling,
its signature is the broadening of the peaks as the gate voltage increases. This
measurement was done in GaAs/AlGaAs in the many-body regimes. The case
we observe in b) is measured in the low-electron regime in double quantum-well
structures of AlGaAs/InGaAs/AlGaAs. They observed inelastic cotunneling for
the even ocupation number inside the dot.

For the elastic cotunneling, represented in figure 1.13, the total process’ energy
is conserved. This effect can happen through another QD charge state or through
an excited QD state. It is typically observed in cases where the tunnel rates to
source and drain are large enough, so equation 1.41 does not apply. In the limit of
zero temperature and for QD orbital level spacing being smaller than the charging
energy ∆E ≪ EC , Averin and Nazarov [75] calculated the conductance with the
elastic cotunneling:
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Figure 1.12: Two measurements of SQD cotunneling transport. In a) [73] they measured
the change in regime from an isolated Coulomb island, where cotunneling does not occur,
to the regime where cotunneling transport is visible. The SQD is in the many-body
regime. In b) [74] they measured in the low-electron number regime. They were able to
observe inelastic cotunneling when increasing the bias voltage.

Gel = ℏGSGD∆E

4πe2

(
E−1

e + E−1
h

)
. (1.46)

In this equation, GS and GD are the conductance of the barrier connecting
source and drain. Ee = µN+1 − EF and Eh = EF − µN , where EF is the Fermi
energy of source and drain. These magnitudes represent the energy difference
of the next QD charge level and the previous one with respect to the source and
drain chemical potential. We observe that a larger coupling with source and drain
produce a large cotunneling conductance.

The inelastic cotunneling may look like it does not conserve energy. We can
observe in figure 1.13 how the final state of the QD is different from the initial,
but actually the energy difference comes from the bias voltage. The inelastic
cotunneling can only happen when a finite bias is applied to the system, and even
more, when eVbias > ∆E. Using again the Fermi golden rule, we can calculate
the transmission

Ginel = ℏGSGDπ

3e2 (kBT )2
(
E−1

e + E−1
h

)2
. (1.47)

In this case, we consider also the thermal broadening of the peak. Eventu-
ally, the excited state inside the QD may decay to the ground state. This effect
contributes to the broadening of the conductance peak.

1.2.4 Double Quantum Dots

The energy scale requisites in a DQD are the same as in the SQD. Tunnel
barrier resistance has to be larger than the quantum of resistance R0 ≪ Rt and
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Figure 1.13: Schematic of an elastic and an inelastic cotunneling process. Figure taken
from [64].

the dot charging energy should exceed thermal energy kBT ≪ e2/C. With these
considerations, we will directly jump to the electrostatic calculation of the system
energies in the constant interaction model.

Constant interaction model in a DQD

For the DQD, we will also start with the constant interaction model seen
in the SQD section. This time, the system will be expanded to cover a second
quantum dot next to the previous one. The quantum dots are in series with the
reservoirs. In figure 1.14 is drawn a schematic of the DQD system. N1 and N2
are the charge number for dots 1 and 2. The numeration is kept for the gate
electrodes with VG1 and VG2. Both dots are considered to be tunnel-coupled
with the capacitance Cm.

Figure 1.14: Schematic of a DQD system.
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We can do the same calculation as in previous chapter and define an electro-
static energy in the system. We count the charges in each quantum dot as well
as the potential influence of the gates around, without forgetting the coupling
between dots:

Q1 = −|e|(N1 − N0,1) + CSVS + CG1VG1 + Cm

C2
Q2

Q2 = −|e|(N2 − N0,2) + CDVD + CG2VG2 + Cm

C1
Q1.

(1.48)

The charge N0,1 and N0,2 represent the screening charges that compensate
the disorder potential in dots 1 and 2, respectively. From the previous charge
definition, we obtain that the electrostatic potential U(N1, N2) is

U(N1, N2) = 1
2N2

1 EC1 + 1
2N2

2 EC2 + N1N2Cm + f(VG1, VG2) (1.49)

where the f(VG1, VG2) read as

f(VG1, VG2) = 1
−|e|

[CG1VG1(N1EC1 + N2ECm)

+CG2VG2(N1ECm + N2EC2)]

+ 1
e2

[1
2C2

G2V 2
G1EC1 + 1

2C2
G2V 2

G2EC2

]
+ 1

e2 CG1VG1CG2VG2ECm.

(1.50)

In equation 1.49 we have defined a charging energies for each dot, EC1 and
EC2. The other term ECm is the coupling energy of one dot when a charge is
added into the other dot. Their expressions are

EC1(C2) = |e|2

C1(2)

 1
1 − C2

m
C1C2

 , ECm = |e|2

Cm

 1
C1C2
C2

m
− 1

 . (1.51)

In order to understand a bit more the coupling between the two dots, we can
picture the extremes where the coupling is zero (Cm ≈ 0) and where the coupling
is large (Cm ≈ C1(2)).

In the first case, Cm ≈ 0, both quantum dots are independent of each other.
The equation 1.49 becomes

U(N1, N2) = (−|e|(N1 − N01) + CG1VG1)2

2C1
+ (−|e|(N2 − N02) + CG2VG2)2

2C2
.

(1.52)
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We can see how there is not any interaction between the dots. Previous
equation could be divided into U(N1, N2) = U(N1) + U(N2) where U(N1(2)) are
the SQD electrostatic energy. The charge stability diagram of such system is in
figure 1.15 a).

In second case, Cm ≈ C1(2), we are in the high coupled dot regime. When
solving equation 1.49 we get

U(N1, N2) = (−|e|(N1 + N2 − N01 − N02) + CG1VG1)2 + CG2VG2)2

2(C∗
1 + C∗

2 ) , (1.53)

where both C∗
1 and C∗

2 are C∗
1(2) ≈ C1(2)−Cm. We observe that when coupling

is too large, the charge in each dot can be renamed as N = N1+N2, and we recover
the SQD electrostatic energy. In practice, when dot coupling Cm is too large, the
DQD behaves as a big single quantum dot whose chemical potential is tuned with
the two plunger gates VG1 and VG2. The charge stability diagram can be seen in
figure 1.15 c).

In figure 1.15 b) we see an intermediate case of both discussed above. The
electrostatic energy of each dot is mainly controlled by its gate voltage, but it
exists a cross-talk between gates and a tunnel coupling between dots. The pattern
formed is known as "honeycombs".

Due to the coupled quantum dot, the way we define the chemical potential
must take into account the charges in the other dot. Each chemical potential
is not independent of each other. Same as in the previous section, the chem-
ical potential is equal to the energy difference between two consecutive charge
states: µ1(N1, N2) = U(N1, N2) − U(N1 − 1, N2) and µ2(N1, N2) = U(N1, N2) −
U(N1, N2 − 1). The expression in terms of capacitance and charging energies are

µ1(N1, N2) =
(

N1 − N01 − 1
2

)
EC1 + N2ECm − CG1VG1EC1 + CG2VG2EC2

|e|
(1.54)

µ2(N1, N2) =
(

N2 − N02 − 1
2

)
EC2 + N1ECm − CG1VG1EC1 + CG2VG2EC2

|e|
.

(1.55)
From the honeycomb sizes we can extract some experimental values of the

capacitive system. Figure 1.15 d) shows a zoom into a honeycomb. In the hori-
zontal axis, the energy difference between the charge regions can be related with
the chemical potential of N1 and N1 + 1 and the gate voltage difference. We
can say that µ1(N1, N2, VG1, VG2) = µ1(N1 + 1, N2, VG1 + ∆VG1, VG2). With some
algebra in equation 1.54 we arrive to

∆VG1 = |e|
CG1

, and ∆VG2 = |e|
CG2

. (1.56)

Comparably, we can extract the voltage influence of one dot by adding a
charge in the other dot. We write that µ1(N1, N2, VG1, VG2) = µ1(N1, N2 +
1, ∆V m

G1 + VG1, VG2), which results in
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Figure 1.15: This plot shows some schematics of the charge stability diagram of a DQD.
We see in both axis the plunger gate voltages for gate 1 versus gate 2. The numbers
inside each section indicates the charges in both quantum dots (N1, N2). The difference
among each plot is the coupling between the quantum dots Cm. In a), we see the case for
two uncoupled quantum dots where each chemical potential is control by its own gate.
In b) there is a finite coupling which affect the charge configuration, and we observe the
honeycombs features. We can also appreciate the slope in the charge transition which
comes from the cross-talk between a dot and the other dot’s plunger gate. In c) we see the
case where the coupling between dots is too large. In this regime, the system behaves as
a big single quantum dot whose chemical potential is controlled by the two plunger gates.
c) represents a zoom into a honeycomb from which we can extract some electrostatic
capacitance, like CG1 and CG2. Figures taken from [4].

∆V m
G1 = |e|Cm

CG1C2
= ∆VG1

Cm

CG2
. (1.57)

For the other dot is

∆V m
G2 = |e|Cm

CG2C1
= ∆VG2

Cm

CG1
. (1.58)
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Triple points and charge lines

In order to understand a bit more the charge stability diagram, we will focus
on the region between the states (0,0) and (1,1). We can see in figure 1.16 a
schematic of these charge states. In the plot we find the called "triple points".
They are called like that because the two dot chemical potentials µ1, µ2 are aligned
with the source-drain chemical potentials µS , µD, and there is conductance at zero
bias. The two triple points in the schematics are µS = µ1(0, 0) = µ2(0, 0) = µD

and µS = µ1(1, 1) = µ2(1, 1) = µD. In the diagonal line which join both points,
the chemical potential of both dots are aligned. This line is called "interdot" line.

Figure 1.16: Schematic of the triple points in a DQD. We see the change between the
regions (0,0) and (1,1). In this schematic, the source and drain electrochemical potential
are grounded µS = µD = 0. Figure taken from [66].

From the schematic we can also appreciate the difference between the dot
coupling Cm and the tunnel ratio between the dots tc. The effect of Cm is reflected
in the cross-talk between the plunger gate on the other dot. It bends the charge
stability lines and create the apparition of the interdot lines. The tunneling rate
is a pure quantum effect. Charges have a possibility of tunnel through the barrier
between dots. The effect on the charge stability diagram is the rounding of the
corners in the triple points.

In the schematic we can also see the charge lines. Those lines represent the
edges of the charge regions. For a charge to be loaded in one of the two dots, it
is necessary to align the electrochemical potential of that dot with the reservoir.
This event does not produce current through the device. In order to observe them
we need other techniques like charge sensing [76], [77], [67].

26



1

Chapter 1. Theoretical background

Bias triangles

The DQD signature of current measurement are the bias triangles. When a
finite bias voltage is applied between the source and drain reservoirs µS − µD =
|e|Vbias, the triple point seen in the previous section becomes a bias triangle.
Now, we have opened a window through which transport can occur. The size of
the bias triangles is directly related with the bias voltage Vbias. We can see the
experimental data of two bias triangles in figure 1.17 a) and b). We can observe
how a larger bias increase the size of the bias triangles. Transport through the
excited states is also visible. In figure 1.17 c) we can see a schematic of the triple
points with a finite bias applied. In figure 1.17 d) there is a zoom into on of the
triangles, with special attention to the QD excited states.

The same way as in the SQD, each of the DQD has quantum excited states.
In the regime where hΓ ≪ ∆E we can observe transport through the excited
states, as it is represented in figure 1.17 c).

1.2.5 Charge sensor

As it was mention before, the charge sensing is a measurement technique to
observe the charge transition in the quantum dots. It was first performed in 1993
by M. Field et al. [76]. The idea is to use the capacitively coupling between the
QD and a quantum transport device nearby. Schematic in figure 1.18 a) shows
the system’s capacitively model. In the beginning, a QPC was used [67] (as it
shown in figure 1.18 b)), but eventually, the charge sensing was also performed
with QD [52].

The physics behind this device is that a small change in the dot charge ∆Q =
|e| will produce an effect on the QPC electrostatic environment of a magnitude
∆VQP C = |e|/CQP C . This change in the QPC voltage can be observed in the
QPC conductance as an abrupt step. In figure 1.18 c) we can see a plot of a QPC
coupled to a DQD device. The top curve is the current of the last QPC plateau
and the bottom plot is the QPC conductance while sweeping the interdot gate in
the DQD device. We observe each time a charge is charged (or discharged) into
the left QD as a displacement in the conductance through the QPC.
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Figure 1.17: a) and b) show two measurement of two bias triangles taken from [4]. The
difference between plots is the bias voltage. At the bottom there are two schematics of
the triple points under a source-drain bias µS − µD = |e|Vbias. In b) we see the two bias
triangles created between the charge regions (0,0) and (1,1). We can also see the charge
edge regions lines. c) shows a close look into a single bias triangle. We observe better
the transport through the excited states of the quantum dot. The triangle base is the
conduction through the ground state in each dot. The other lines raising in the middle
of the triangle is transport through at least one excited state. Bottom figures taken from
[66]
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Figure 1.18: a) charge sensing schematic in a SQD. In this case, it is a QPC capacitively
coupled to the dot with CQP C . b) SEM picture of a DQD with two QPC in the extremes
to measure charge sensing, image is taken from [67]. c) typical plot from a QPC charge
sensor. The top curve is the QPC conductance versus the QPC gate. We observe the
last conductance plateaus and the cross indicates the QPC voltage chosen to perform the
charge sensing. Bottom curve is the QPC conductance while sweeping the interdot gate.
We can observe the flat regions in the conductance, indicating a change in the QPC gate
voltage of ∆VQP C = |e|/CQP C . This is produce by a charge moving in the DQD device.
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Chapter 2
Fabrication

Fabrication of devices is, without any doubt, a fundamental brick in the quan-
tum physics research. Complex and technological challenges must be overcome
to build nanometric size structures. In fabrication, development dynamic con-
sists in a good amount of process characterization and optimization feedback. In
this chapter, we will explore the fabrication for our quantum devices, specially
focus on quantum dots development. The chapter will start with an overlook to
the features needed to create and measure quantum devices and the bibliography
support. Second part is a brief description of the Ge/SiGe heterostructure growth.
After that, all the different fabrication steps are discussed in detail. Last section
is the recipe that we found to be optimal.

SEM picture of a mesa edge.
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2.1 Introduction and overlook to the process

The fabrication process consists in several steps. We start with the optical
markers, follow by the ohmic contacts. Then, mesa structures and dielectric are
built. We finish the devices with the metallic gates. Image in figure 2.1 a) shows
a top schematic view of the sample. This image is a small portion of the total
sample surface. The processed samples were 2 × 2cm. The pattern we see in figure
2.1 a) is repeated sixteen times.

First step is for markers, they are used all along the fabrication chain. We
align for each UV lithography with these markers, and also for the first exposition
inside the e-beam masker.

Next step is the ohmic contact fabrication. A schematic can be seen in figure
2.1 b). An ohmic contact consists in a metallic lead electrically connected to
the 2DHG. It is used to feed carriers into the quantum well and to drive current
through the devices. The quantum well is Ge, a semiconductor. When a metal
and a semiconductor enter in contact they form Schottky barriers at the interface.
In order to avoid this phenomenon, we anneal after the ohmic contact deposition.
An increment in temperature produces the Ge diffusion into metals, and vice-
versa [78]. This new mix of metal and Ge does not behave a Schottky barrier
anymore, but shows an ohmic behavior, even at low temperature. The electrical
current flowing through such contacts experiences a resistance known as "ohmic
contact resistance" [78]. Ge has the feature of hybridize with almost any metal
[79, 80], and it forms good alloys. The easy-to-contact proprieties of Ge quantum
well become evident when we see that Al [25], Pt [35] and Pd [51] have been used
as ohmic contacts.

Another step in fabrication is the construction of a mesa. We can see a
schematic in figure 2.1 c). Its purpose is to isolate the 2DHG in a small region of
the sample, where the quantum devices will be located. The rest of the sample
surface has the quantum well etched away. It is in this absence-of-quantum-well
region where the gate’s bonding pads are built. The absence of quantum well
below the bonding pads avoids the possibility of shorting the 2DHG and the
gates while bonding. This method is used in [35, 51, 55]. Other groups, like [49]
and [81], rely on the oxide thickness below the gate’s pads to avoid shorts. In
our group, we already had some experience with mesa etching, so we decided to
go for this method. Two possible ways of etching were considered; wet etching
(with chemical compounds) and dry etching (with plasma leading to chemical-
mechanical reactions). We tested both method looking for the optimal process
for us.

Next step is the dielectric deposition, shown in figure 2.1 d). Its quality is
directly related to the device performance. A big effort is invested in improving
and studying new dielectric materials and new deposition techniques. Dielectric
properties research is a scientific field in its own. There are different deposition
techniques like Chemical Vapor Deposition (CVD) or Atomic Layer Deposition
(ALD). We decided to go with ALD technique because of its conformal growth,
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Figure 2.1: a) top schematic view of the sample. We observe four patterned structures,
the optical and the e-beam markers, and the device names (C-1.1, C-1.2...). Each color
correspond to a different fabrication layer. The inset image is a zoom into the mesa,
where we can appreciate the metallic gates of a quantum device (in this case a DQD).
From b) to f) there is a schematic for each step in the fabrication chain. It shows the
mesa from the top view and a cut along the dashed line. The pictures are taken from the
software Klayout, used for design the lithography patterns.

even in rough surfaces. Same as in [49] and [51], we decided to use Al2O3 as
dielectric insulator. ALD works by sequentially mixing an active molecule with
Al (trimethyl aluminium) and a precursor. Precursor role is to chemical activate
the oxidation of the Al on the sample’s surface. Historically, water was used as
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Figure 2.2: Representation of the fabrication steps with different images for each stage.
All images are taken from our sample except the dielectric schematic, taken from [82].

precursor molecule in the ALD process, but in the last times, O2 plasma has
growth as a promising alternative [83, 84].

The last step in fabrication are the metallic gates. The technological advance-
ments in lithography, like electron-beam lithography [85] and immersion lithogra-
phy [86], allow the creation of nanometer size structures. In this thesis, we used
an electron-beam masker for developing our QPC and QD devices. The QPC de-
signs where pretty straight-forward, two metallic gates facing each other, same as
in [87] or [88]. For QD, we can find lift-off designs where only a single gate layer is
required. This is seen in GaAs devices [89–91], in Ge/SiGe heterostructures [25,
51] and in Ge-core nanowires [41, 92]. For some other cases, the QD were fab-
ricated in a double gate layer. This process is used in undoped heterostructures
where carrier accumulation is necessary like Si/SiGe [93–95] and Ge/SiGe [49]. In
some other processes, instead of lift-off, gates are fabricated by etching. This is
done in Ge/SiGe heterostructures [81] and also in CMOS nanowires [96].

In figure 2.2 there is a representation of all steps and the order we followed
to fabricate them. Along the fabrication process, we used several machines in the
PTA-CEA clean-room.

2.2 Ge/SiGe heterostructure fabrication

The heterostructure growth is done on a 200 mm Si(001) wafer by CVD at
high temperature (T = 850◦C) and low pressure. Figure 2.3 a) shows a schematic
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of the heterostructure transversal view.

Figure 2.3: a) is a schematic of the heterostructure layer stack. b) and c) show two AFM
images of the sample surface. b) is without the CMP step in the process and c) with the
step.

The first step in the process is a SiGe deposition with an increment gradient
in the Ge concentration. Being Si1−XGeX the heterostructure composition, with
X ranging from 0 to 1, the process starts with X = 0 and increase until X = 0.79.
The deposition is done over a thickness of several microns. We use an increment
gradient because the dislocations and defects in the SiGe are reduced. On the
other hand, the slow change in the lattice parameter produces strain in the semi-
conductor. We can observe the strain’s effect on the sample surface. Figure 2.3
b) shows an image of a usual Ge/SiGe heterostructure surface. We observe a
square pattern of several nanometers high. This effect is produced by the lattice
strain. In order to get rid of that roughness, growers implemented a Chemical-
Mechanical Planarization (CMP) step in the fabrication. With this technique
the surface is flatted. Results can be observed in figure 2.3 c). Once the CMP
is finished, we continue the deposition in the CVD for another 100 nm. At this
point the 16 nm Ge quantum-well is grown. Its growth on the Si0.21Ge0.79 lattice
creates a mismatch between the lattice parameter of the substrate (5.61Å) and
the Ge (5.66Å). This mismatch forces a compressibility strain in the Ge lattice.
The quantum well thickness is smaller than the Ge relaxation length, so all the
quantum well is under strain. The strained Ge quantum well is then packed with
a cap layer of Si0.21Ge0.79 of 44 nm thickness. Finally, all the process is capped
with 2 nm of pure Si for surface protection.
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2.3 Optical and e-beam lithography markers

Even though markers for lithography seems like a trivial step, it is not. Good
markers are essential when several sequential lithography steps are performed,
and even more if the process includes e-beam lithography. In our fabrication, we
evaporate two set of markers at different stages in the process chain. The first
ones are done with UV lithography and the second ones with e-beam lithography.

The first set is exposed just after the heterostructure growth. We use a mask
aligner MJB4 with a UV lamp working at 365 nm wavelength and 6 mW/cm2. The
resist is AZ-1512-HS, which has a thickness of 1.2 µm. After some calibration, we
found that 35 s of exposition time performs the best results. We also studied the
different exposure methods availables in the machine: vacuum mode, hard contact
mode, soft contact... Vacuum mode shows the largest precision. With the help of
a plastic o-ring, the machine generates vacuum around the sample, between the
mask and the sample holder. This reduction in pressure push the sample surface
against the mask, making a full homogeneous contact and increasing resolution.

In figure 2.4 a) and b) there are two optical images of the UV lithography-
made markers. Markers in a) are used for optical alignment and in b) for e-beam
alignment. In figure 2.4 c) we see the second set of markers, done with the e-beam
masker.

The e-beam masker uses a secondary electron detector to find the markers and
align on them. We observed that the electron signal scattered from the quantum
well interferes with the signal from the markers. For the same metal thickness, the
marker’s contrast when they were located above the quantum well was drastically
reduced. To solve this problem, instead of gold as metal we used platinum, and
at the same time we increased the marker’s metal thickess up to 100nm. We
evaporate 5:100 nm of Ti:Pt. This was not an issue for the second set of markers,
the e-beam lithography-made. They are located at the bottom of the mesa, where
there is not a quantum well. For those markers, the deposition is 3:32 nm of Ti:Pt.

2.4 Ohmic contacts

The ohmic contact lithography, similar to the mesa and markers one, was
performed in a MJB4 with UV lithography. We use Al as leads, same as in the
Delft group [25].

Al’s diffusion rate in SiGe increase with temperature, but for the heterostruc-
ture, there is an upper limit of 400◦C. If the temperature increase beyond that
limit, the Ge in the quantum well starts to relax. The first time we tried to fab-
ricate ohmic contacts, we directly evaporate Al in the top of the sample and rely
on the Al diffusion through the dielectric, this process didn’t work. We did not
realise that Al does not diffuse across SiO2, and the heterostructure was capped
with Si, which naturally oxidized to SiO2. For the next samples, we decided to
etch the SiO2 and the SiGe until we reached the quantum well, and then deposit

36



2

Chapter 2. Fabrication

Figure 2.4: Three optical images for the different markers in the sample. Markers in
a) and b) are done with UV lithography. a) squares are used to align the different UV-
lithography layers. b) crosses are used in the e-beam masker. c) show the markers done
with the e-beam lithography.

the Al. This process was successful, and we manage to have ohmic contact. Re-
sults for both process with some schematic can be seen in figure 2.5. In order to
study a bit further the metal/Ge interface, we compare an annealed sample and
a not-annealed sample, also shown in figure 2.5.

The no-etched curve in figure 2.5 plot, clearly shows an open circuit, the
Al ohmic contacts never reached the quantum well, so there is no conduction
through the sample. In the other cases we observe a current flow. At small bias,
the resistance for non-annealed sample is three order of magnitude larger than
for annealed (2.5MΩ versus 3.3kΩ). Also, the curve shape is different. For the
annealed sample, the system is purely ohmic, while for non-annealed, there is a
zero-current region at low bias. This behavior is the typical response of a Schottky
barrier [97, 98]. At finite voltage, carrier tunneling through the Schottky barrier
is induced because of the bias difference. If source-drain bias keeps increasing, the
Schottky barrier replicates an ohmic contact with a tunnel-barrier resistance.
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Figure 2.5: Schematic and resistance measurement at 4K for the three ohmic contact
fabrication processes. When the Al is directly deposited over the sample surface, there is
not an ohmic contact between metal and Ge. In the etched process but not-annealed, we
found a Schottky barrier behavior. For the etched and annealed sample, the results were
purely ohmic with a hole gas resistance plus the ohmic contact resistance of 3.3 kΩ.

2.5 Mesa structure

For the mesa etching, we explored two different possibilities; wet etching and
dry etching with ICP. In this step the lithography is also done with the UV
lithography mask aligner, following the same process that for the markers and
ohmic contacts.
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2.5.1 Wet etching

The chemical solution used for wet etching, which is taken from a recipe
to etch Si and SiO2, was HF : HN3 : H2O with proportion of 10 : 26 : 20. After
several trials, we never manage to have a reproducible process. In figure 2.6 c) and
2.6 d) we present two profilometer measurements of two samples. In principle, the
processes used for both samples are equal, but the mesa thickness are different by
50 nm, around a 50% of the total thickness. We were having this kind of results
for every test we did.

Figure 2.6: a) and b) show two SEM images of two mesas etched with wet etching.
We can observe that the mesa edges are not clean and straight. It looks like the wet
compounds diffused below the resist and etched the mesa from the sides. c) and d) are
two profilometer measurement of two mesas in different samples. Both etching time were
3 min, but c) mesa thickness is 20 nm and d) is 75 nm.

Each time we perform a wet etching process, there are a few parameters
that need to be exactly the same, and are human dependent: the amount of
each compound, the etching times, the temperature, the aging of the solution...
A small variation in any of those parameters would create a different process’s
etching rate. May be for long etching (several microns), where a bigger absolute
error can be tolerated, it is not a problem to have this variability in the etching
ratios. For us, this was not the case. We were looking for a nanometer-scale
precision. We found another drawback of using wet etching, it is the final etching
profile. In figure 2.6 a) and 2.6 b) we can observe some SEM images of the mesa
after the etching. The profile is not clean and eventually, this would be a problem
for growing quantum devices gates.
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After the previous results, we decided to continue the development with dry
etching. Results will be shown in the next section.

2.5.2 Dry etching

We already had a SiGe etching recipe previously developed in the group. It
consists in a mixture of CF4 : Ar with 10:40 sccm. This recipe produces a vertical
etching. It has good reproducibility and a known etching rate. There is one
issue with this method, we were not looking for a vertical etching but for smooth
slope edges. The reason for this is that for a thin metal layer (≈ 10nm) it would
be easier to make a contact between the top and the bottom of the mesa. Two
schematic images are represented in figure 2.7.

Figure 2.7: Schematic of a transversal view with a vertical etching process in a), and
a sloppy edges in b). We want to illustrate how, for a gate deposition, the profile in b)
allows a non-interrupted metal contact between the top and the bottom of the mesa. This
is true for any gate thickness smaller than the mesa.

We started testing other recipes with SF6 : O2 : CH2O2 [51]. We tried differ-
ent pressures, plasma power and ratios. Our objective was to find a reproducible
etching process leading to a smooth mesa edges. Some examples of these experi-
ments can be seen in figure 2.8. In terms of reproducibility, dry etching was more
stable than wet etching, but taking some precautions. Because of the heavy usage
of the ICP machine in the clean-room, the main chamber atmosphere was con-
stantly changing. We always took the precaution of cleaning the chamber before
using it We also performed a special conditioning for our process. The cleaning
consisted in a 1000W power plasma of O2 for 10 minutes. The conditioning was
done by running the etching recipe for 5 minutes, but without a sample inside the
machine. This way the inside atmosphere was already saturated with the same
gases as for the etching recipe.

The smooth angled mesa edges were a complicated issue to achieve, we thought
that an isotropic etching would help to create the desired profile. The problem is
that there are too many parameters interfering in the process: chamber pressure,
gases flows, ICP power, RF power, etc... The work flow for recipe optimization
consisted in applying changes in one parameter at a time and observe the results
in the SEM. From the microscopy images we decided which parameter gave the
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Figure 2.8: SEM images of the different test sample for the mesa etching step. Scale bar
is 100 nm for every image. We can observe the huge variety in the mesa profiles. From
a very roughness surface in a) to a step-edge mesa in c) and d). Somehow we did some
wave-like border in b) and a totally vertical etch in e). When we found f), we considered
it a success and save that recipe for all the samples.

best result, keep that parameter and proceed to change another one. A wide
variety of recipes were fabricated. A selection of mesas can be seen in figure 2.8,
each of them with a different recipe. After a quite large amount of tests, we found
the desired conditions in 2.8 f). The approach we followed in this last recipe was
to decrease as maximum the plasma power (15W) while the chamber pressure is
relatively high (4Pa). We observed that this condition decreases the etching ratio
and produces a more isotropic etching.

2.6 Dielectric growth

The dielectric used in our fabrication process is Al2O3 grown by ALD . The
groth temperature is 280◦C, the machine limit. High temperature helps to grow a
better quality dielectric and, at the same time, diffuse the Al deposited in section
2.4 to form ohmic contacts. We studied five different processes to deposit Al2O3,
table 2.1 presents a summary.

Oxide thickness (nm) Precursor Surface pre-treatment Temperature
7 water - 280 (◦C)
7 water NH3 280 (◦C)
7 O2 plasma NH3 280 (◦C)
7 O2 plasma 10 min O2 plasma 280 (◦C)
10 O2 plasma 10 min O2 plasma 280 (◦C)

Table 2.1: Summary of ALD parameters.
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In order to compare the quality among the different processes, we fabricated
samples with two metallic layers separated by the ALD dielectric. For each layer,
we imprint a pattern of long metallic leads. The second layer is rotated 90◦ from
the first one, so the leads cross each other and create an array of capacitors. Figure
2.9 a) shows a sample’s schematic. The experiment’s objective was to measure
the voltage value for which the current breakthrough the dielectric. To do it,
we apply a voltage difference between two leads until we observe current, as it is
shown in 2.9 b). This curve is the system response for one of the overlaps in the
sample. We recover the data for many of the sample overlaps. In this particular
plot, we observe a step in current at V = 7.9V, where the current saturates to
the DMM limit (0.5µA). The inset image shows a zoom into the beginning of the
step. We can observe how the current increases exponentially. In our experiment,
we consider the dielectric broken at this voltage value.

For the two first samples in table 2.1, with water precursor, the number of
broken contacts (short contacts before applying any voltage) was extremely high.
More than 3/4 of the capacitors were broken. We found no difference between
the NH3 pre-treatment sample and the other. Because of that reason, we directly
rejected these fabrication processes. For the O2 plasma precursor results were
more promising. We can see in figure 2.10 a histogram of the breakthrough voltage
for each sample. Between the sample without pre-treatment and the sample with
NH3 there is not too much difference. It seems like the second one has a bigger
dispersion, but the statistic is small to get a clear conclusion. Where there is an
obvious difference is in the 10 nm oxide thickness. More thickness increase the
field limit for which the dielectric breaks. The average voltage is increased with
respect to the other two samples. The median in voltage for each sample is: 7.4V
for the 7 nm Al2O3, 7.8V for the 7 nm Al2O3 and NH3 pre-treatment and 8.4V
for 10nm Al2O3 and O2 plasma pre-treatment.

There is another comparison possible. We can count the number of broken
contacts and compare it with the total number of contacts measured. These short
may come from a badly deposited dielectric. The yield is defined as

Y = broken contacts
total contacts . (2.1)

We found Y = 0.66 for the 7 nm oxide sample, Y = 0.43 for the 7 nm oxide
and NH3 pre-treatment and Y = 0.32 for the 10 nm and O2 pre-treatment. In
this analysis we observe that the 10 nm thickness with O2 plasma pre-treatment
has the lower yield. Thicker dielectrics have a higher resistance to shorts, so it
could be that the slight improvement in yield is not because of the precursor,
but because of the increment in thickness. Finally, for our fabrication process we
decided to continue with the 10 nm O2 precursor dielectric and the 10 min of O2
pre-treatment.
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Figure 2.9: a) shows a schematic representation of the sample. Two layers with a
dielectric between them. The experiment consists in applying voltage to two gates at
different layers and observe the breakthrough voltages. b) typical plot of current versus
voltage showing the breakthrough voltage. In the plot it occurs at V = 7.9V7.9 V. The
inset figure is a semi-log plot around the break through voltage. We can observe tunneling
current before the dielectric breaks.
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Figure 2.10: Histograms representing breakthrough voltages of three different dielectric
growth process. It exists a tendency towards higher voltages values with the use of
precursor. A correlation between oxide thickness and higher voltages can also be observed.

2.7 Metallic gates

The final step in the fabrication process is the metallic gate construction. Up
to now, fabrication is the same for any kind of sample; QD, QPC, FET... It is in
the last step where, depending on the experiment we want to perform, we design
the device gate layout. For the big structures (FET, Hall-Bars, and those whose
features are >2 µm) we use UV lithography. For small structures (QD, QPC, and
those whose feature are <2 µm) we use the e-beam lithography masker.

The conditions for the UV lithography gates are equal to those previously
discussed. We use the MJB4 mask aligner with the AZ-1512-HS resist. In figure
2.11 we see an example of a FET device done with UV lithography. It consists in
a NbN metallic layer which overlaps, at least, two ohmic contacts. This sample
was fabricated before the bevelled mesa edge recipe was fully developed.

In the next sections we will comment on the results we obtained with the
e-beam lithography masker.
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Figure 2.11: Optical image of a FET. Scale bar is 50 µm. We can see the top of the
mesa covered with a NbN metallic gate which overlaps six Al ohmic contacts. The Au
gates are used to connect the NbN with the bonding pads, located at the end of the gates
(out of the picture).

2.7.1 One layer, NbN etching

Our first approach was to develop a recipe to work with a 10 nm thickness
layer of NbN. The metal was deposited by sputtering, and it covered all the
sample’s surface. The idea was to etch the metal from all the surface except
from the mesas. We did a UV lithography exposition to protect the mesas and
then, dry etched non-covered NbN with the ICP machine. Once there was only
NbN on the mesas, we patterned the gates with the e-beam lithography masker.
After the gate lithography was done, we etched again with the same recipe. This
technique has some advantage: only one gate layer was needed. Even more, future
implementation of a high impedance superconducting resonator would be easier,
since it can be fabricated with the same metal [99]. At some point, we abandoned
the idea because of the difficulties found in resolving the QD gates.

In the clean-room, the e-beam masker machine is shared among several re-
search groups. The strong usage of the machine forces that two masker parameters
were fixed, and we could not changed them. The e-beam current was fixed at 1 nA,
and the potential at 1000 kV.

Figure 2.12 show four SEM images of different devices patterned in NbN. The
etching process was the same for all four samples, it is summarized in table 2.2.
Resist used for the lithography is also the same: ZEP. We can observe that the
SiO2 substrate has better resolved gates than the Al2O3. It turns out that the
etching described in table 2.2 also etch SiO2, and even at a higher ratio that NbN.
We relate the well-defined gates in 2.12 a) to the fact that the gases kept etching
the substrate once the NbN is fully etched. This generates more surface chemical
reactions and avoids metal redeposition. As opposite, on Al2O3 the etching is
abruptly stopped, so the gases start to react with the metal below the resist by
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Figure 2.12: SEM pictures of NbN gates, scale bar is 500 nm for the four images. In
a), substrate is SiO2 and dose is 360 µC/cm2. For b), c) and d), substrate is Al2O3 and
doses are 350 µC/cm2, 280 µC/cm2 and 245 µC/cm2. The etching used for the NbN also
etch SiO2, but not Al2O3. That is the reason why lithography in a) seems cleaner and
well-defined while in the other pictures is the opposite.

side contact and etch it horizontally. In the SEM images b), c) and d) we can see
some border features around the gates, typical from redeposited metals. We can
also see the dielectric surface with some cross-linked resist leftover.

This problem could have been solved by changing the dielectric to SiO2, but
this was not an option. The low thickness of 10 nm didn’t allow us to try SiO2
because of technical issues. In our clean-room, SiO2 is grown with CVD, which
does not assure good dielectric quality for thin layers. It also requires high tem-
peratures, which compromise the Ge quantum well strain. We tried to overcome
this problem with dose optimization and proximity effect correction, but never
manage to have clean gates. We already observe in 2.12 that a dose change of
50% does not resolve the problem of gate definition. After all the difficulties we
decided to try some other method.

Gases and flow (sccm) ICP power RF power Pressure Time
SF6(5) + O2(10) 0 50W 5mTor 40s

Table 2.2: Etching recipe to etch NbN and SiO2.
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2.7.2 One layer, Ti:Pt lift-off

The first new process we tried was single metal layer with lift-off. We changed
the resist to PMMA 2%, the metal to Ti:Pt with 3 : 32nm thickness, and repeat
the dose tests. In figure 2.13 we see four SEM pictures of a structure done with
four different doses. We did more tests but figure 2.13 can summarize the results.
As expected, the lower dose has the lower proximity effect. When dose increase,
the effect becomes larger. For the dose 2000 µC/cm2, all structures are already
merged. One could think that the lower dose is the better, but this is not always
true. For small structures (40 nm width gates), 1000µC/cm2 was not enough to
properly resolve the lithography. Then, we had to choose a compromise between
not overdosing the structures and still be able to resolve every gate. We finally
chose 1200µC/cm2.

Figure 2.13: SEM pictures for lift-off test structures done at different doses: a)
1000µC/cm2, b) 1200µC/cm2, c) 1600µC/cm2 and d) 2000µC/cm2. Scale bar is 500 nm
for each picture.
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Figure 2.14: a) SEM picture of two lift-off gates with a colored region representing the
original gate design. Because of proximity effect, resist is overdose and the final gate size
increases: 20 nm in length and 10 nm for each side. b) SEM picture where we can observe
the gates on the top of the mesa. The two colored squares represent the regions where
the dose is 1200µC/cm2 (blue) and 1400µC/cm2 (purple). Scale bar is 10 µm.

After setting the dose, we had to face the proximity effect corrections in the
gate shapes. Gates in the design are not exactly equal to the gate lithography in
the sample. Proximity effect distorts the sizes. Even though there are software
which correct this effect with physical calculation, we did it by hand. After all
the dose tests, we could extract the increment in size for each gate. In figure 2.14
a) we see a SEM image of two gates with a gap in the middle and a colored region
in green. The colored region is the original design of the gate. As we can see,
they do not exactly match. From this and other similar test, we found a thumb
rule to follow: increment in length is 20 nm and an increment in width is 10 nm,
for each side. These two magnitudes were constant without any correlation to
the gate width, at least in for small sizes (< 500nm). This increment in size is
really important because of the small dimensions for QD gates. We had to be
really careful to don’t pattern two gates too close to each other. Anyhow, always
before depositing the metal for QD gates, we tested the dose with dummy devices
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to check that all the gates pop out correctly. We lose some time doing so, but
definitely, less time than having to repeat the full fabrication process because
some gates were merged.

There is another issue worth to discuss, it is related to the exposition field in
the e-beam masker. The masker has a working field where it is able to electro-
statically shift the electron beam to lithography the design. This field can have
different sizes, but we always used the 62.5 µm one. The sample design is cut
in square portions of 62.5 µm, each corresponding to an exposition field. When
the structures inside a field are completely exposed, the machine mechanically
moves to another field and continue with the process. It may happen that some
structures are in two different fields. Then, a stitching problem in the masker
would produce that some parts of the designs to not be exposed. These cuts are
typically in the nanometer scale, around 50 nm. To avoid this from happening, we
increased the dose close to the field edge. This exposes the possible gap. If it is
done far from the quantum gate structures, there is not any risk of overdosing the
small gates, and we avoid the field effect cuts. In figure 2.14 b) we see the e-beam
lithography gates and the two regions for doses: the small structures 1200cm2/µC
region (where the QD are located, in blue) and the overdose 1400µC/cm2 region
(in purple).

2.7.3 Two layers, Ti:Pt lift-off

We realised after the first measurements (discussed in the next chapter) that
we needed another extra gate layer to have functional devices. Dose problems
were already solved, but now we faced another issue: alignment. The original
crosses done with optical lithography did not have enough resolution to align QD
gate layers. The trend was having misalignment in the order of 200 nm, very
far from the nominally 10 nm assure by the masker manufacturer. In figure 2.15
a) we observe a SEM image of the first layer for a DQD device. Figure 2.15 b)
shows the same structure as in a) but with the second layer on top. To solve this
problem, we started to imprint some markers at the same time as the first gate
layer lithography was exposed. Image in 2.15 c) shows the same structure as in
b), but align on the e-beam lithography markers. We observed an improvement
in alignment precision. In 2.15 b), the bumps in the surface come from a not well
cleaned exposition, issue that was solved for the next sample c). Finally, in figure
2.15 d) we see a well aligned SQD structure.

From this point on, we were able to fabricate different nanometric structures
with good alignment and good resolution. Figure 2.16 shows two DQD examples.
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Figure 2.15: SEM pictures of QD gates. Scale bars are 500 nm. a) is the first gate layer
of a DQD. b) is the second layer of a DQD whose lithography was aligned using the global
markers, the one exposed with the UV-lithography. c) is the same second gate structure
as in b), but align to the e-beam lithography markers. d) is an example of well-align SQD
device.

Figure 2.16: SEM images of full processed devices. Scale bars are 200 nm. Both are
DQD, but a) has a charge sensor at the bottom and b) has two QPC at both sides of the
DQD.
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2.8 Conclusions

Here I will summarize all the fabrication processes and discuss what we believe
was the best final option to choose. At the end, we came up with a recipe which
was reproducible and achieve the objective of creating QD.

For every UV lithography exposition, we found the best resolution and re-
producibility was given with vacuum mode exposure and 35 s exposition time.
Resist is always AZ 1512 HS. Also, it is worth to mention that the development
time is 35 s instead of the 30 s recommended by the manufacturer. In UV lithog-
raphy markers, we observed the best results with respect to the e-beam masker
alignment when the metals are 5 : 100nm of Ti:Pt.

For ohmic contacts, the best results were given when we etched the het-
erostructure and contact directly the metal with the Ge quantum well. We also
observed the importance of annealing to obtain clean contacts. Recipe for etching
uses CF4 + Ar at 1.2Pa with 50W of RF power and 200W of ICP power. Oppo-
site to the mesa etching recipe, this is a fully vertical etch. After reaching the
quantum well with etching, 50 nm of Al was deposited in an EBM.

The mesa structure fabrication was a difficult step. The characteristics we
were looking for are not easy to get: small etched distances (100 nm) and bev-
elled slopes. After quite some effort, we discarded wet etching because of lack in
reproducibility. We chose dry etching with ICP. At the end of an optimal recipe
research, we found one with SF6 + O2 + CH2F2 at 4Pa and 15W of RF power.

Dielectric growth was performed in an ALD machine. We used Al2O3 with
10 nm thickness. After testing water and O2 plasma as precursor, we found plasma
as the best option. The surface pre-treatment was also studied with NH3 and O2
plasma. Here, results were inconclusive from the lack in statistics. The dielectric
deposition is done at 280◦C. The high temperature diffuse the ohmic contacts
into the quantum well.

Finally, for the quantum device gates, we discarded the single layer NbN etch-
ing because of the impossibility to obtain clean gates. We changed to lift-off using
PMMA 2% as resist. Optimal dose for our structures was studied and we develop
a thumb rule to correct the proximity effect, with very good accurate results. For
first layer exposition, optimal doses turned to be 1200 and 1400µC/cm2, the metal
deposition was 3:32nm of Ti:Pt. Finally, for reason discussed in next chapter, we
were forced to do a second gate layer. We faced some alignment issues that were
solved by using the first gate layer as reference. Exposition dose was 1200µC/cm2

with same metal gates thickness, 3:32 of Ti:Pt.
It is worth to say that developing this fabrication process was long and some-

times exhausting. The final recipe with which we were happy is shown in next
section. We remind the final objective of this recipe is to form quantum dots
in Ge/SiGe heterostructures. In the next chapters we will test our fabrication
process in addition to the heterostructures characteristics. With the results from
those measurements, we will conclude in the quantum dot fabrication viability.
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2.8.1 Final fabrication recipe
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Chapter 3
QPC and H-FET mesoscopic
transport characterization

We will explore in this chapter the viability of the Ge/SiGe heterostructure, as
well as the fabrication recipe from chapter 2, to form quantum dots. We will start
by measuring Hole Field Effect Transistor (H-FET). From this experiment we can
extract the conduction pinch-off voltage and calculate the 2DHG sheet resistance.
After that, we will discuss on some fabrication improvement and hysteresis effect
due to surface charge tunneling. The first section will finish with the extraction
of the 2DHG mobility. The second part of the chapter will focus on Quantum
Point Contact (QPC) and their transport characterization. Single and double
gate layer devices have been tested. The chapter will finish with the nonlinear
transport measurement of a QPC under bias voltage.

Image taken from the YouTube video "QPC quantization". Boris Brun-Barriere.
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3.1 Set-up

All the measurements in this chapter where performed in a home-made 4K
stick. It consists in a PCB holder at the end on a metallic stick shield with a
vacuum cane. There are 24 direct current lines (DC) down to the PCB. Everything
is introduced in a liquified He4 bottle. With this set-up, we were able to measure
at 4.2 K. The advantage of this measurement system is the low time required
to have a sample at base temperature. In less than two hours we were able to
measure a new device.

Figure 3.1: Schematic and picture of the 4K stick set-up. There is a voltage divider
for the input voltage bias and a I/V converted in the output line. The vacuum case is
sealed around the 4K-Stick. With a rotatory and a turbo pump, we achieve a vacuum
of < 10−4mBar. Then, we introduce a small quantity of He in the cane to provide heat
exchange between the PCB and the liquid He from the bottle.

During this chapter, we used three different technique to measure the H-FET
and the QPC. We measured in direct current from source to drain, in two-point
contact circuit and in four-point contact circuit. For gating the device, we used
a DAC (Digital Analog Converter) featuring 24 low noise DC sources with 16
bits on ±2V or 8 V. Along the source-drain DC line there is a voltage divider of
10−2V/V for the DC bias and 10−4V/V for the low-frequency lock-in bias. In the
detector chain there is an I/V-converter. We had a Digital Multimeter (DMM)

Delft IVVI-Rack
Agilent 34401A
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to measure the current amplitude. We also counted with a Lock-In to measure
low-frequency differential conductance (77.66Hz) with an amplitude of 50µV. In
figure 3.1 we can see a schematic of the circuit line and a picture of the 4kStick
in the laboratory.

3.2 Field effect

The first quantum device we measured was a H-FET. The transport results
demonstrate our ability to control the 2DHG density with an electrostatic field.
This requisite is fundamental to form quantum dots in semiconductors.

The H-FET devices consist in a mesa, a top metallic gate and a total of six
ohmic contacts to the quantum well. In figure 3.2 a) there is an optical image of
the sample, and in figure 3.2 b), there is a transversal cut along the dashed line.
The depleting (or accumulating) voltage is applied at the top gate. For a direct
contact or a two-point measurement, we will only use two out of the six ohmic
contacts. In the four-point measurement, four contacts will be used. The picture
shown in figure 3.2 a) has a NbN top gate, but along the chapter we used Ti:Pt
gates. The devices are essentially the same, a single top gate covering four or six
ohmic contacts.

3.2.1 Pinch-off voltage

We understand as pinch-off, or threshold voltage, the voltage value that turns
on the H-FET. This phenomenon was described in the theory section 1.2.1. We
observe current through the sample when a conduction channel is formed in the
2DHG between two ohmic contacts.

We fabricated several H-FET devices, all with the same fabrication process.
Results for three samples can be seen in figure 3.3. We observe a hysteresis in the
sample’s pinch-off voltage which depends on the top gate voltage sweep direction.
We assume this hysteresis of few tens of mV comes from the charging traps in the
different dielectric interfaces [100, 101]. Charge traps in the dielectric interfaces
are filled by charge tunneling from the quantum well. A positive voltage in the
gate induces the filling of the negative charges. The negative charges at the
dielectric interfaces induce an effective field on the quantum well which displaces
the effective gate voltage. That is why hysteresis is always in the same direction.

It is also clear that for each device, the threshold voltage varies. Each sample
is located in a different place on the wafer surface. Local variations in defect den-
sities can produce a non-homogeneous disorder potential influencing the pinch-off
voltage. Small changes in the gate work function would also affect the threshold
voltage. What all samples have in common is the positive pinch-off voltage, from
Vg = 1.2V up to Vg = 1.35V. Theoretically, the undoped Ge/SiGe strained quan-
tum well should not have carriers at zero field [102, 103]. From the Ti:Pt work-

HF2L, Zurich instruments
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Figure 3.2: a) optical image of the sample used to measure field effect and hole mobility.
b) is a transversal schematic view along the dashed line. We observe the different layer
stack and a representation of the holes in the heterostructure (the circle with a plus
symbol).

function (ΦTi ∼ 4.3eV) and the Ge electron affinity (χGe ∼ 4eV), we can estimate
the gate voltage necessary to push the semiconductor valence band over the Fermi
level. Ge gap is ∼ 0.7eV, so the Ti Fermi level falls more-less in the middle of the
gap. There are around ∼ 0.35eV energy difference. With the top gate, we would
need to this energy difference to accumulate holes, around Vg ∼ −0.35V. We can
see how far the samples measured are from this estimation. We conclude that
there should be a charged layer somewhere in the heterostructure that effectively
populate the quantum well. In figure 3.4 there are two schematic representation
of the band alignment with a top metallic gate. In case a), the top gate bends the
valence band but not enough to overpass the Fermi level; there are not any hole
in the quantum well. For case b), there is an extra charged region between top
gate and quantum well. The electric potential caused by this charged layer bends
the band structure, and at the quantum well they overcome the Fermi level. This
induces hole’s accumulation.

We believe from the experiments that the system is in the case b) of figure 3.4.
Is therefore necessary to apply a gate depletion potential (positive voltage, because
carriers are holes) to close conductance from source to drain. The quantum well
was feed with carriers at zero gate voltage. It is not the first time this phenomenon
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Figure 3.3: Three source-drain current versus gate voltage for three different H-FET
devices. Bias voltage is Vbias = 1mV. Yellow plot is ramping up the voltage and maroon
plot is ramping down. We observe some differences in the pinch-off voltage of ±150mV,
and also hysteresis in the field effect of ±15mV.

is observed, oxide interfaces are well known to from dislocations that bond carriers
into charge traps [101, 104, 105]. If the trap density is high enough, its electrostatic
potential could act as a virtual gate which accumulate holes in the quantum
well. Another possibility is that charges are being trapped at the CMP surface
in the heterostructure growth. But this scenario was discarded after testing other
heterostructures with different cap buffer thickness. We observed a correlation
between the SiGe thickness above the quantum well and the pinch-off voltage,
but the CMP layer is at the same distance for all samples. The hypothetical
influence of the CMP layer should not change from sample to sample. Even more,
we observed than the pinch-off voltage for the thinner cap buffer layers needed
to be stronger. These results made us believe that the charged layer should be
above the quantum well.

3.2.2 Dielectric charged interface

To test which interface was acting as a gate, we made samples that where
measured after each step in the fabrication process. We tested a sample with a
top gate, another one just after the ALD and a third one after the mesa etching.

In figure 3.5 a) we see a H-FET curve. The threshold voltage is around
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Figure 3.4: Two schematics of the band structure of the SiGe heterostructure. In case
a), there is a small bending produced by the metallic top gate, but the bending is not
large enough to accumulate holes in the quantum well. In case b), there is an extra layer
of charged traps that act as a virtual gate. The bending produced by the trapped charges
is large enough to accumulate holes at the quantum well. Holes are represented as red
circles.

Vg = 1.3V. At the right of the plot there are two schematics representing the
2DHG density for both gate states. In the top image, the gate voltage is not large
enough to deplete the hole gas and there are still carriers in the quantum well. In
the bottom schematic, the gate voltage is large enough to electrostatically empty
the quantum well. The samples stopped during the fabrication process are in
figure 3.5 b) (ALD) and figure 3.5 c) (MESA). Sample named ALD is measured
after the ALD step and sample named MESA is measured after the mesa etch. In
figure 3.5 d) we see the transport results for those two samples. We observe that
the resistance for both cases is purely ohmic. This means that there are holes in
the quantum well for both cases, even without an accumulating gate.

From this experiment, we can estimate the sheet resistance of the 2DHG using
that ρ2D = L/wR where L is the distance between ohmic contacts and w is the
width of the contacts. For ALD and MESA sample, resistance is extracted directly
from the slope of the plot, it is 3 kΩ, after removing the line resistance (1 kΩ)
and the PCB lumped resistances (4 kΩ). A broad estimation of the resistivity
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Figure 3.5: Results for the accumulation threshold voltage for three sample at three
different stage in the fabrication process. Plot a) represent the source-drain curve vs top
gate voltage of a sample with a H-FET. Next to it there are two schematic showing the
hole gas density for the two top gate voltage values. In b) and c) there two schematic of
two sample done until the MESA step and the ALD. d) is a plot of current vs bias voltage
for the two samples in the schematic of b) and c). We can see the ohmic response of the
current, which indicates the presence of carriers in the quantum well.

give a value of ρ2D = 150Ω□. In the sample with the top gate, the differential
conductance was obtained with four-point circuit, which directly gives then 2DHG
resistance. In saturation, R = 3.3kΩ. The estimated sheet resistance is ρ2D =
165Ω□. There is around 9% difference with respect to the other samples. The
difference may be related to the 2DHG density or to a difference in the ohmic
contacts’ resistance.

With data from figure 3.5, we conclude that the interface that is acting as a
gate is not related to our fabrication development. The only interface left to test
was the SiGe/Si cap layer, but we also think there may be a second interface. As
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the Si cap layer naturally oxidize to SiO2, there is a possibility that it didn’t fully
oxidize, and Si/SiO2 interface is formed. We will study this scenario in the next
section.

3.2.3 Si oxidation with oxygen plasma

Following the assumption of the Si/SiO2 interface, we found two possible ways
to solve it. One possibility would be removing the Si and the SiO2 layers with
wet-etching of HF [47]. But this process raised two problems for us. The first is
that we had to use HF, and in our research center we don’t have easy access to it.
Second, the complete removal of the Si cap layer would expose the SiGe beneath,
and this layer will oxidize itself again. Then, we would have to deal again with
some semiconductor-oxide interface. The other solution we thought was to fully
oxidize the Si and create a SiGe/SiO2 interface. We found in bibliography that
it was possible to use oxygen plasma to oxidize several nm of Si [106–108]. We
tried to replicate this process in the ICP with a strong O2 plasma. The recipe
used was 1000 W of ICP at 1Pa with an oxygen flux of 50 sccm. This was done
over 1 min. This step was performed just after the mesa etching and before the
ALD. A schematic of the sample surface before and after the plasma is pictured
in figure 3.6.

Figure 3.6: At the left, two schematics of the surface oxidation process with the ICP
plasma. At the right, current versus gate voltage for two H-FET devices. Bias voltage
in both experiment was Vbias = 0.5mV. The red curve is data from an oxidized device
and yellow correspond to a non-oxidized one. For non-oxidize H-FET, the threshold is
Vg = 1.3V while for the oxidize sample is Vg = −0.3V
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To test the results of the experiment, we measured again the threshold volt-
age of the oxidized sample. Results can be seen in figure 3.6. There is a clear
difference in pinch-off voltage for oxidized and non-oxidized samples, it drifted
towards negative values more than 1V. We assume this displacement is due to the
elimination of charge traps in the Si or in the Si/SiO2 interface. Now, all the Si
layer is fully oxidize. In principle, it may look like this result is not relevant, it just
moved the threshold voltage, but we found it to be of a great importance. Apply-
ing less gate voltage means less risk for leaks in the dielectric. Also, it improves
the sample hysteresis, this will be discussed in the next section. In conclusion,
after these results, we decided to apply this fabrication step to all future samples.

3.2.4 Field effect drift

Our scenario is that the sample hysteresis comes from the surface trap charg-
ing, as it was commented before. A schematic representation of the tunneling
effect is in figure 3.7 a). There is another consequence for the surface trap tunnel-
ing. The more electric potential is applied to the gate, the more charges tunnel to
the surface states [68, 100]. The trap states have a slow dynamics, which means
that once a trap is charged, it will take long time to decay. This is translated in
a constant compensation from the top gate to overcome the effect of the virtual
gate. This effect is known as voltage drift or field effect drift.

Results for the voltage drift experiment are in figure 3.7 b). We see current
versus gate voltage in four different plots. The current was measured chronolog-
ically from top to bottom. In the first plot, voltage start from zero and is swept
until Vg = −500mV. The pinch-off voltage is Vg = −200mV. We wait 3 min
at Vg = −500mV, then the gate is swept again to zero. We observe how both
traces (ramping up the gate voltage and ramping down) are almost equal. In this
case, hysteresis is negligible. In the second plot, gate voltage is swept from 0 to
Vg = −1000mV, stopped during 3 min, and swept again to 0. Now we can observe
a strong hysteresis. When decreasing the voltage, the H-FET opens at the same
point as the previous plot, Vg = −200mV, but coming back to zero, it closes at
Vg = −600mV. This difference comes from the accumulation of charges at the
surface states. The gate has to compensate the effect of those charges. The same
pattern is replicated for the other two plots. In figure 3.7 c) all the returning to
zero curves are plotted together. The increment in gate voltage for each plot was
∆V = 500mV, and the voltage drift for each plot is equally spaced by 400 mV.

The field effect drift could be a problem for the quantum devices’ stability.
The more voltage is applied to the gate, the more charges tunnel. There are two
ways to "reset" the sample. Warming up until the SiGe becomes conductive or
applying positive potential to the gate for long time. Warming up works great for
this purpose, samples were always coming back to its original threshold values.
The technique of positive potential was not as effective. We observed some drift
towards less negative pinch-off values, but after waiting several hours.
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Figure 3.7: a) H-FET plots showing current vs gate voltage. Bias voltage was Vbias =
0.5mV for all plots. They are chronologically arranged from top to bottom. We can
observe in the threshold voltage drift that surface states are being filled by carriers from
the quantum well [100]. b) shows the current plot for gate sweep towards zero voltage.
c) is a schematic of the carrier tunneling to the surface states. These charges act as a
virtual gate and screen the effect of the metallic top gate. The slow dynamic for the traps
discharge makes the voltage drift a one-way effect.

3.2.5 Mobility measurements

Usually, mobility is extracted measuring the Quantum Hall effect [102, 109].
But to observe this phenomenon a magnetic field is needed. The set-up we used
was not equipped with a magnet, so we had to apply some approximations to
estimate the mobility. We have the chance to be able to compare our estimation
with Hall-bar measurement data. Those experiments were carrying on by another
PhD in the laboratory, Elyjah Kiyooka.

The approximation we will use is consider the H-FET and the 2DHG as a
parallel capacitor. This scenario works well when the system is far from saturation
(close to the pinch-off voltage) [100]. From a perfect plate capacitor, we take the
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equation from the theory section 1.20. The system permittivity is given by the
dielectric constant of the materials between the metallic gate and the quantum
well. To calculate it we have to take into account the three materials: SiO2, Al2O3
and SiGe. Considering three capacitors in series, the effective dielectric constant,
with data from [110, 111], is ϵeff ≈ 11.9. Another way to extract the effective
dielectric constant is by fitting Hall-bar measurement to a linear function. In
figure 3.8 we can see the density measured with Hall-bar and the fit to equation
1.20. We can observe how both values match.

Figure 3.8: Density versus top gate voltage in a Hall-bar device. The solid line is a fit
to a linear function from which we can extract the ϵeff .

From the Drude model, we know that the mobility of a two-dimensional carrier
gas is expressed as

µ = σ

p2D|e|
, (3.1)

where σ is 2DHG conductance, p2D is the hole density in two-dimensions and
|e| is the electron charge. The current flowing through the sample is directly
related to the conductance I = σVbias. We observe from the experiment, that
conductance and current vary with respect to the gate voltage. This is due to
field effect and the carrier density modulation. If we differentiate the current with
respect to the gate voltage we get that

dI

dVg
= dσ

dVg
Vbias. (3.2)

We can take the differential equations for the mobility and the hole density
in a parallel plate capacitor
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dp2D = ϵ0ϵeff
d|e|

dVg, µ = 1
|e|

dσ

dp2D
. (3.3)

After some algebra, we arrive to the differential equation

µ = tVbias
ϵ0ϵeff

dI

dVg
. (3.4)

Figure 3.9: a) mobility versus hole density measured with Hall bars and quantum Hall
effect. This experiment gives the exact density for every gate voltage. b) current plot and
mobility estimation versus gate voltage. The mobility here was extracting by a parallel
plate capacitor model. We can only trust the right half of the peak, where the system
behaves as a capacitor. After the peak, the mobility decrease, which is an artifact of the
model. The maximum mobility from this method is 65 000 cm2/V

We can differentiate the curve for the H-FET and find the mobility for each
gate voltage. This is done in figure 3.9 b), green line. The yellow plot is the
current versus gate voltage. For the mobility, we can see that there is a peak at
Vg = −260mV, and then it decreases. The reduction in mobility is an artifact
from the capacitor model we have used. In reality, the mobility doesn’t decrease.
We can trust the results in the first half of the peak and in its maximum, which
corresponds to the maximum slope in the H-FET plot. The maximum mobility we
find is µ = 65000cm2/Vs. In figure 3.9 a) we have the plot of mobility versus hole
density measured with Hall bars. With this technique, we can extract the 2DHG
density at every top gate voltage. This measurement is much more accurate. We
see that the beginning of the mobility plot is a linear function, and eventually
it flattens. The beginning of the curve correspond to the system behaving as a
parallel capacitor (dashed line); there is a linear response of the carrier density
with the gate voltage. In the plot b), this corresponds to the right side of the
mobility peak. We can observe that this region ends with a maximum mobility of
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80 000 cm2/V. There is a 20% difference with respect to the parallel plate model.
Once the system overcome the first region, it begins to flatten because of the
surface trap tunneling [68, 100]. The maximum mobility measured in our devices
was 135 000 cm2/V. For quantum dots, the region we are most interested in is the
beginning of the curve, when the system just start to accumulate carriers.

If we take a look into the bibliography, the best hole mobility in Ge/SiGe
heterostructure is for A. Dobbie et al. [31] for a value over 1 000 000 cm2/Vs. Their
heterostructure was doped with B ions and the quantum well had a deepness of
70 nm. In undoped heterostructure, measurement in A. Sammak et al. [102] found
values between 40000 and 500 000 cm2/Vs. We don’t reach values as high as the
state-of-the-art, but our maximum mobility is at the same order of magnitude.
We can claim that our heterostructure is good enough to host quantum dots, and
eventually, hole spin qubits.

3.3 QPC

The construction of QPC is the next step we did to test the mesoscopic
proprieties of our heterostructures. With a QPC we locally control the carrier
density of states and measure quantum transport.

QPC devices consist in depositing two metallic gates face to face. We tested
different gate width and gap length between gates. Since our objective is a proof
of concept gate shapes are rectangular. In previous chapter 2 we can see a SEM
image of a QPC in figure 2.14 a). We have to mention that these measurements
were done before the discovery of the O2 plasma treatment to oxidize the SiO2.
That is the reason why all voltage gates are strongly positive and there is a 2DHG
without a top gate.

In total, we measured three different gap length (40, 60, 80 nm) with six gate
lengths each (70, 110, 150, 180, 210, 230 nm). We did this for the two fabrication
development; single gate layer and double gate layer. For simplicity, we will only
show the more interesting results. All samples shown have a gap length of 40 nm.

3.3.1 Single gate layer QPC

The first generation of QPC we did were with Ti:Pt gates and in a single layer
lithography. In figure 3.10 a) we have a sample SEM image. For each QPC there
are two gates face to face. The differential conductance was measured in two-
point contact configuration. Figure 3.10 b), c) and d) are the transport results
for different length QPC. The inset figure is a SEM picture of the device. What
we expect to see are quantum transport plateaus according to Landauer equation
1.23.

We can observe conductance plateaus in figure 3.10 b) (233 nm width) and
in figure 3.10 d) (78 nm width). These plateaus are broad by temperature (the
measurements were taken at 4.2K) and by the system’s geometry [70]. For the
QPC c), the conductance is more similar to a H-FET. If we look to the SEM image
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Figure 3.10: Results for the sample of single layer QPC. The heterostructure had carriers
at zero bias, so there was not needed an accumulation gate. a) shows a SEM image of
the device. Each QPC has two metallic gates. In total there are four ohmic contact,
but only two were used, the measurement was taken with two-point contact. b), c) and
d) are the conductance versus gate voltage with the corrected conductance value. The
line resistance were removed from the data. The QPC gates had lengths of 233, 213 and
77 nm. The inset image is a SEM picture of each QPC. We can distinguish plateaus in
the plot b) and another plateau in plot d). For c), the sample behaves as a H-FET.

of b), it looks like the gap is totally metalized, but the fact that we observe very
clear plateaus means that there is a quantum transport channel. We believe that
there is some resist left-over in the gap, and the metal has been deposited above
it. The gate forms a bridge which allows conductance beneath it. Opposite,
the curve in c) indicates a gate like a H-FET device. Finally, for d) we can
distinguish one big plateau with some noise. The voltage needed to apply to this
QPC is Vg = 7V, 3V larger than for the other devices. Our scenario is that, with
a constant trapped charge density at the dielectric, there is a screening effect
proportional to the surface inside the QPC. The wider the gates are, the less
potential we need to apply to overcome the trap density. To support this idea
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we have the data of the QPC with larger gaps (60, 80 nm). In those devices, the
pinch-off QPC voltage was never reached, it fell above Vg > 8V. In those cases,
the constant trapped charge density increases the trapped charged because the
gap is bigger. This forces the QPC gates to apply a larger voltage to pinch-off.
Eventually, at higher enough voltage the QPC would be closed.

The better conductance plateaus were observed in the QPC which formed a
bridge. Essentially, this is an extra gate layer over the QPC transport channel.
From this result we decided to build devices with a second gate layer. The top
gate will be used to reduce the 2DHG density around the QPC, and, at the same
time, the voltage applied to the QPC gates would decrease. This reduces the risk
of leaking.

3.3.2 Double gate layer QPC

Figure 3.11: Results for the double gate layer QPC sample. a) schematic of the sample.
Red are first gate layer and green second gate layer. This sample was measured in four-
point contact. Lengths are 200, 180 and 70 nm for plots b), c) and d). Top gate layer
was at 3 V. We can now distinguish more plateaus for all the samples.
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In the double layer QPC devices, we used a four-point circuit to extract the
differential conductance. In figure 3.11 we have the results. Picture a) shows an
image from a digital software of the sample. Green structures are a second gate
layer that overlaps the QPC’s, done in the first gate layer. In plots b), c) and
d) we observe the conductance vs gate voltages for QPC of lengths 200, 180 and
70 nm respectively. The top gate was at VTOP = 3V for all the measurements.
We can already observe that there are plateaus for all the devices. Even in d),
with 70 nm, we can distinguish the two first plateaus at 2 e2/h and 4 e2/h. If we
compare with the previous sample of single layer, we conclude that lowering the
overall hole density helps to define the quantum transport channel.

3.3.3 Comparison between double and single gate layer

The other big difference between double and single gate layer devices is the
pinch-off voltage. In figure 3.12 we see the six conductance measurement in one
graph. Yellow plot are single gate layer devices and maroon plot are double gate
layer. The trend for threshold voltage from single to double layer is towards
smaller values. For the 70 nm length, the sweep is 3.2 V.

In conclusion, we have improved in two ways the device response by adding
a second gate layer. First, the threshold voltage is shifted to lower voltages,
which helps to avoid leaks through the dielectric. Second, the devices shows
better conductance plateaus, certainly due to less charge disorder above the QPC
channel.

Figure 3.12: All the conductance plots for double (maroon) and single (yellow) gate layer
in the same graph. Here we can appreciate the threshold voltage drift for the double gate
layer.

3.3.4 Nonlinear quantum conductance in a QPC

The last experiment we performed with the QPC was exploring the nonlinear
conductance. This effect raises when a voltage bias is applied to the conductance
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channel. In figure 3.13 we can see some bibliography examples of this phenomenon.
When a bias voltage is applied to a QPC, we find regions where conductance is
not a multiple of the quantum of conductance. In the early 90’s people started
to develop a theory framework around this effect. Here we will present a taste of
the theoretical derivation.

Figure 3.13: Literature examples of non-linear transport in a QPC. a) is taken from [112],
b) from [113] and c) from [114]. The three devices presented consisted in GaAsAl/GaAs
two-dimensional quantum well. In all the plots we can observe the half integer conduc-
tance plateaus that rise from the non-linear transport. The color plot in c) shows the
transconductance, defined as dG/dVg.

If we situated ourselves in the QPC reference frame, the system source (µs)
and drain (µd) chemical potential when there is a voltage bias applied are

µs = EF + βeVbias and µd = EF + (1 − β)eVsd, (3.5)

where EF is the Fermi energy, e the electron charge and β is a coefficient
between 0 and 1 that define how much of the bias potential drops in the 2DHG
before the constriction. The transport subbands spacing is given by the QPC
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lateral gates. If a voltage bias is applied, it is possible to force the chemical
potential of source or drain to overcome an upper QPC subband. In this scenario,
the forward and backward direction don’t align with the same number of QPC
subbands. According to GK theory [115] and to [112], conductance through the
QPC in this case can be written as

G = 2e2

h
[βN+ + (1 − β)N−], (3.6)

where N+ are the subbands below the Fermi level in the forward direction
and N− in the backwards one. Equation 3.6 is pertinent in the ballistic transport
and when the QPC potential is adiabatic. We can define the subband difference
as N = N+ − N− and rewrite the conductance in the nonlinear regime as

G = (N − β)2e2

h
. (3.7)

In our devices, to observe this effect we used the device 200 nm double gate
layer. It was measured in a four-point contact circuit while a bias voltage was ap-
plied to source. Results are in figure 3.14. In plot a), we see the direct conductance
measurement of gate voltage vs bias voltage. In b) the gate transconductance is
plotted.

Figure 3.14: Color plot showing the QPC behavior under voltage bias. a) shows the
system conductance varying Vg vs Vbias. We observe a diamond-shape structures due to
the self-gate effect and the half integer conductance of the QPC. b) shows the transcon-
ductance from color-plot a). We observe again the diamond-shape structures and the
number represent the unities of e2/h for each diamond.
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In both plots we observe diamond shaped structures. Each of the diamond
correspond to a different conductance values. At zero bias, conductance plateaus
appears at the known values; 2e2/h, 4e2/h, etc... But when the system enters
the nonlinear regime, we observe how the conductance starts to have odd number
of the quantum conductance, e2/h and 3e2/h for positive bias and 0.4e2/h and
2.8e2/h for negative bias. The difference is produced because the factor β is
different for each polarity. When reversing the bias, the current is affected by the
sheet resistance of the 2DHG, which depends on the distance from the device to
the source. Since the QPC is not in the center of the sample (see figure 3.11 a)),
the resistance is different.

From figure 3.14 b) we can extract the subband level spacing. It is given by the
half height of the diamond and correspond to 9 meV. If we compare the subband
energy with the temperature T = 4.2K → 300µeV, we see we are in the order
where temperature is 30 times smaller. This means that the broadening in the
QPC plateaus comes mainly from the curvature of the parabolic potential. We can
estimate the QPC channel width using the subband level spacing. With equation
1.29, distance of l0 ∼ 20nm is obtained for an effective hole mass of 0.08me, and
l0 ∼ 10nm for an effective hole mass of 0.02me. These two magnitudes are in
the order of what we could expect. The channel width at the device surface is
∼ 40nm, so a reduction of up to 75% at the quantum well is not surprising.

3.4 Conclusions

Along this chapter, we have studied some electrical proprieties of the SiGe
heterostructures. Our objective was to estimate the viability of the samples to
host quantum dots. All the experiments were measured in a 4K-Stick at 4.2 K.

We have done some field effect experiment and found that the pinch-off volt-
age was too positive for what we would expect. We conclude that the cause was a
virtual gate of charges trapped in the Si/SiO2 interface. After that, we improved
the fabrication recipe by adding an extra O2 plasma step. Then, the surface trap
tunneling was studied. The first part is finished by the estimation of the field ef-
fect mobility, 65 000 cm2/V, only 9% off from the values obtained with Hall bars:
80 000 cm2/V. In the second part of the chapter, we focused on quantum trans-
port and QPC devices characterization. We tested single and double gate layer
devices and found that double gate layer structure gave a better quantum trans-
port results. Several conductance plateaus were measured for different devices.
We found that a second gate layer helps to reduce the overall electric potential
that we need to apply to the gates for depleting the hole gas. The last experi-
ment performed was the nonlinear response of the system under a voltage bias.
We studied the half integer conductance of the QPC. We could also extract the
subband level spacing of the QPC levels, which is 9 meV. The estimated channel
width according to the parabolic potential is ∼ 20nm and ∼ 10nm for effective
masses of 0.08me and 0.02me. The two values are smaller than the device width
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at the surface, 40nm, but inside what we could expect.
In conclusion, all the characterization and experiments performed in the het-

erostructure open the way to develop quantum dots. We are able to control the
2DHG density and achieve quantum transport. The next step, and the next
chapter, is the quantum dot characterization.
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In this chapter, we present the preparation of a single quantum dot (SQD) into
the Coulomb blockade regime and the measurements to characterize its quantum
transport features. The purpose of this experiment is to qualitatively estimate the
fabrication method viability to host a hole spin qubit in the gate design produced
in 2. The chapter starts with the sample and set-up description, followed by
the technique used to tune the device in the Coulomb blockade regime. The
second part focuses on the coupling optimization of the tunnel barriers to enhance
Coulomb peak visibility. This regime is achieved when both barriers have similar
tunnel rates ΓR ≈ ΓL. In the next section, we present the extraction method of
the charging energy (EC) and the lever arm (α) from Coulomb diamonds. At the
end of this chapter, we focus on measurements used to extract the hole Landé
g-factor as well as charge noise characterization.

PCB after bonding a SQD sample.
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4.1 Device description

The presented SQD is thought to be measured in transport. Figure 4.1 a)
shows a SEM picture of the device. The plunger gate (VP) finish with a disk of
200 nm diameter. VDP is used for depleting the 2DHG beneath the plunger gate
arm. Barrier gates between the SQD and the reservoirs have a width of 120 nm
and their names are VBT for the top barrier, VBB for the bottom barrier and VBR
for the right barrier. Finally, to accumulate carriers from the ohmic contacts to
the quantum dot, we use VOT and VOB as ohmic top and ohmic bottom gates.
As it was seen in the previous chapter, the heterostructure field effect oscillates
up to a few percent of mV. Sometimes the pinch-off voltages being positive and
sometimes negative. Due to this variability, we specially thought this design to be
functional for both scenarios. The high density of gates around the SQD allows
a complete tuning of the confinement potential. On the other hand, the dot’s
chemical potential is sensitive to any of the gates, not only to the plunger. This
effect is referred as cross-talk.

Figure 4.1: a) colored SEM picture of the SQD device. Red colored gates indicate the
first gate layer while blue are for the second gate layer. Source and drain are connected
to the top and bottom ohmic accumulation gates, respectively. b) represents a schematic
view of the system chemical potentials. c), schematic that shows a transversal view of
the layer stack along the dashed line in a).

Figure 4.1 b) shows a schematic of the system chemical potentials. As it was
discussed in the theory section, when the dot’s chemical potential µN is located
between the source and drain chemical potentials, carrier transport is possible.
ΓS and ΓD are the tunnel rates to source and drain respectively, and they are
mainly controlled by gates VBB, VBR and VBT. I emphasize "mainly" because of
the cross-talk, the other gates around also play a role in the tunnel coupling. The
dot’s chemical potential µN is mainly controlled by VP. The chemical potentials
µS and µD are given by the source-drain voltage bias.
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In figure 4.1 c) we picture the layer stack along the black dashed line in figure
4.1 a). The barrier gates are fabricated in the first gate layer (at 56 nm from the
quantum well) and the accumulation gates in the second gate layer (at 66 nm from
the quantum well).

4.2 Measurement technique and set-up

Figure 4.2: Cryostate and wiring schematic of the set-up. The cooling power is driven
by an He3 condensation circuit. It can last up to 11 h at 300 mK. The pictures are taken
in the lab showing the fridge chamber and the electric measurement systems. We can
also see the probe with the sample holder and the cooling system.

The set-up used to measure the SQD was a commercial HelioxVT from Ox-
ford Instruments. It is a He3 condensation cryostate with a base temperature
of 300 mK. The schematic of the fridge and the measurement set-up is represented
in figure 4.2. For sample characterization, we measured the differential conduc-
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tance with a standard low-frequency (77.66 Hz) lock-in technic . The chosen
AC-amplitude was 30 µV. In the charge-noise section, the device was measured
in direct current using a DMM (Digital Multimeter). The set-up also includes a
coil magnet with a Cryomagnet power supply which provides a bipolar magnetic
field. It is oriented perpendicular to the sample. For gating the device, we used
a DAC (Digital Analog Converter) featuring 24 low noise DC sources with 16
bits on ±2V or 8 V. Along the source-drain DC line there is a voltage divider of
10−2V/V for the DC bias and 10−4V/V for the low-frequency lock-in bias. In the
detector chain there is an I/V-converted.

4.3 Tuning a SQD into Coulomb blockade regime

As it was discussed in the theory section, there are two requisites to enter the
Coulomb blockade regime. First, the quantum dot charging energy must excess
thermal energy kBT ≪ e2/C. Second, the tunnel resistance from the reservoirs
to the SQD should be larger than the quantum of resistance Rt > R0. In order
to find the gate voltages that electrostatically define a Coulomb blockade regime,
we always follow the same procedure. First, we accumulate carriers below the
accumulation gates (VP, VOT and VOB,) until we observe current from source to
drain. Second, we test the quantum transport regime by forming a QPC with
each barrier gate (VBT, VBB and VBR,). Finally, we try to observe Coulomb
oscillations with the plunger gate. This method has been successfully used during
all the experiments.

4.3.1 Carriers accumulation

In the case that there are not carriers at zero gate voltage, we start by applying
negative potential to the accumulation gates, VP, VOT and VOB, until current
is observed between source and drain. This state is represented in figure 4.3
a). The fuchsia cloud is a schematic representation of the 2DHG. We want to
characterize the conduction threshold voltages for each accumulation gate. To do
so, conductance is measured by sweeping independently VP, VOT and VOB, and
by sweeping the three gates at the same time. Figure 4.3 b) shows the results of
such sweeps. When only one gate is swept, the other two are kept at −700 mV
and all the rest (VBB, VBR, VDP , VBT) are at 0 V. The maximum conductance is
dI/dV = 0.29e2/h when the three gates are at Vgate = −700mV. At that voltage,
the circuit resistance is R ≈ 89kΩ. In the circuit we have in series the resistance
of the measurement elements (I/V converter, voltage divider, wires, etc...) and
the resistance related to the sample (tunnel barriers, 2DHG resistivity, ohmic
contacts, etc...). The sum among the measurements elements is not larger than
10 kΩ. The other ≈ 79kΩ resistance comes from the sample. We don’t know what

MFLI from Zurich Instrument
Agilent 34401A
Delft IVVI-Rack
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is the 2DHG density, so we cannot estimate its resistivity. But we know that the
hole gas reach saturation in less than 150 mV of the top gate. Then we can say
that in the SQD device, the hole gas is highly accumulated, so its contribution to
resistance is of ∼ 150Ω□. We presume that the main contributions for resistance
come from the ohmic contact resistance and the tunnel barriers. The tunnel
resistance should be at least Rt > R0 = 25.8kΩ, and this resistance is twice
because of the two tunnel barriers. The rest of the total resistance should come
from the ohmic contact resistance. In the etching step before the Al deposition for
the ohmic contact, the etched deepness came out larger of what we aim for. This
means that the metal is side-contacted with the quantum well in a smaller surface
than in other samples. This effect could increase the ohmic contact resistance.

Figure 4.3: a) schematic representation of the 2DHG density over a device SEM picture.
b) differential conductance versus the accumulation gate voltage for the three accumula-
tion gates. Dashed lines show the coinciding peaks for VOT and VOB.

The pinch-off voltage for the ohmic gates is around VOB,OT = −400mV, and
for the plunger gate VP = −500mV. The threshold voltage of the three gates
is limited by the lower one among them, in this case VP. We observe that for
both ohmic accumulation gates, the voltage is higher than for the plunger gate
VOB,OT > VP. This is understood from an electrostatic potentials point of view.
The distance to the quantum well is the same for all gates: t = 66nm, but the
width of each gate is different. The QD plunger gate width is wQD = 200nm and
the ohmic contact accumulation are wohmic = 1µm, figure 4.4 shows a schematic
of both gates and their distance to the quantum well.

From the schematic in figure 4.4, we can picture the capacitor model for each
gate. The limit where less gate potential is needed to accumulate charges in the
quantum well is the infinite plate capacitor. A comparison of the gate width with
the capacitor thickness raises that wQD/t ≈ 3 and wohmic/t ≈ 15. The ohmic
accumulation gates are closer to an infinite parallel plate capacitor than the QD
plunger.
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Figure 4.4: Schematic of the QD plunger and the ohmic accumulation gates. Both
designs are made to scale.

Another feature in the plot are the oscillations between VOT,OB = −500mV
and VOT,OB = −700mV, marked with dashed lines in figure 4.3 b). We observe
that the peaks are at the same gate voltage for VOT and VOB. Those oscillations
may correspond to the SQD Coulomb peaks in the regime where barrier gates
are very transparent e2/C < hΓbarrier. This highly coupled dot is formed by the
gate constriction in the sample geometry. When sweeping the ohmic gate voltage,
we are controlling the dot chemical potential by cross-talk. Both ohmic gates are
more-less symmetric with respect to the QD plunger gate, and that is the reason
why the oscillations coincide in gate voltage. We can also observe two oscillations
with VP at VP = −575mV and VP = −650mV.

From these measurements, we conclude that is possible to form a source-drain
conduction channel using the accumulation gates.

4.3.2 QPC with barrier gates

Once we know that the accumulation gates have control over the 2DHG
density, we probe the barrier gates. While the accumulation gates are set at
V = −700mV, QPC contacts are formed using VBB, VBR and VBT. Figure 4.5
a) presents, in red and in blue, a schematic of the two possible sample’s QPC.
From the data in figure 4.5 b) we observe that the differential conductance as
a function of VBR and VBT follow almost the same line. If we sweep VBB, the
threshold voltage increases. We don’t know what is the cause of the pinch-off
difference, it may come from lithography or disorder potential, or even material
issues. What we care about is that we are able to close the conductance channel
with the barrier gates.

4.3.3 Coulomb peaks with plunger gate

Last step to probe the quantum dot viability is, of course, to form a quantum
dot. We set the accumulation gates at V = −600mV and the barrier gates close
to the QPC pinch-off of figure 4.5 b). Once in this configuration, we apply a
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Figure 4.5: a) shows a schematic of a QPC formed with the barrier gates. b) source-
drain differential conductance vs barrier gate voltage. While sweeping one gate, the other
barrier gates remain at 0 V. Accumulation gates are still at −700 mV and each plot in b)
is taken while the other barrier gates remain at 0 V

Figure 4.6: a) is a schematic of the hole density in a quantum dot. b) shows differential
conductance versus plunger gate VP. The oscillations observed are Coulomb peaks.

voltage to VDP to deplete the 2DHG beneath the plunger gate. This voltage will
be constant all along the next experiments, VDP = 500mV. Then after, we sweep
VP. If oscillations are found, we know we are in the good regime. If not, we
slightly change the tunnel barriers and repeat the plunger sweep.

A qualitative representation of the hole gas density is given in figure 4.6 a).
In figure 4.6 b) we see a typical plot of Coulomb peaks. When VP > −600mV,
the peaks are separated by Coulomb blockade. This is noticeable because the
conductance drops to zero between oscillations. The SQD regime is kBT ≪
hΓ, e2/C. Below this voltage, VP < −600mV, the peak tails overlap with each
other, so we don’t find Coulomb blockade anymore. This is caused by too large
tunnel rates, which induce conductance through cotunneling events.
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4.4 Symmetric tunnel rate for barrier gates

Symmetric tunnel rates were discussed in the theory section 1.2.3. In Coulomb
blockade regime, with barrier tunnel rates kBT ≪ hΓ ≪ e2/C, the highest con-
ductance amplitude is achieved when both tunnel rates are equal ΓBB = ΓBT

[116, 117]. In this section, we will see how to find the regime hΓ ≪ e2/C and how
to symmetrize the barrier as much as possible.

4.4.1 Barrier gate space

First approach is shown in figure 4.7 a). We set some barrier voltage value
and sweep the plunger gate voltage. We see some Coulomb peaks in a regime
where barrier gates are widely open. Once we set VP in the top of a Coulomb
peak (black arrow), we start to explore the barrier vs barrier gate space. Results
are in figure 4.7 b). Here, VBB and VBT limits are 0 and −40 mV. We observe
that VBT totally suppress the current if VBT > −15mV while VBB does not fully
close the conductance channel. From this plot we learn that barrier gate influence
in the 2DHG density is not symmetric in voltage. With this we mean that the
same voltage in both gates, does not produce the same effect in the tunnel rates.
We had an insight of this asymmetry in figure 4.5, where the QPC formed by
VBB and VBT are not equal. To form a QD, we need to go to the low tunnel rate
regime. For this is very useful to know the barrier gate pinch-off values. In order
to do so, we need to continue the color-map towards positive values in VBB. In
our system, source tunnel rate is controlled by VBT and drain tunnel rate by VBB.
We say ΓBT ≡ ΓS and ΓBB ≡ ΓD.

Figure 4.7: a) differential conductance versus plunger gate. It shows some Coulomb
peaks in the first approach to barrier optimization. The overlapping of the peak tails in-
dicates that the QD dot is in the high conductance barrier regime. b) color-map exploring
the VBB vs VBT space. The plunger voltage is set to the black arrow value in figure a).

Figure 4.8 a) is an extended region from 4.7 b) to a more positive VBB voltages.
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Figure 4.8: a) color-plot of the differential conductance versus barrier gates VBB and
VBT. We reach the pinch-off value for the gate voltage where current is fully suppressed.
There are different regimes for the barrier gates represented with schematics around the
color plot. When ΓBT ≈ 0 or ΓBB ≈ 0, conductance is totally suppressed. Inside the
conductance diagonal features (withe diagonal marks), we sweep in the regime where
tunnel rates are quasi symmetric ΓBT ≈ ΓBB , to the extremes where ΓBT > ΓBB or
vice-versa. The dashed lines indicate the conductance regions used to define the voltage
for the symmetric tunnel rates. b) differential conductance versus plunger gate VP in
three different configuration for barrier gates. Each color star correspond to the color
star in figure a).

We can observe how both barrier gates close the conductance channel. This
happens for gate values VBB > 15mV and VBT > −15mV. The diagonal features
in the middle of the plot correspond to Coulomb peaks tuned by the barrier gates,
we will use them to symmetrize the tunnel rates. We can observe how conductance
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modulates along the longitudinal axis of these regions (dashed lines), being larger
around the middle and vanishing as it approach the edges. Inside these features,
the point with the largest conductance shoueld have the most similar tunnel rates.
This symmetry in barriers is specific to a value of VP. Due to the cross-talk, a
change in plunger value would move the symmetric point somewhere else.

In figure 4.8 d) we observe three conductance plots sweeping VP in three
different symmetric configuration for the barrier gates, represented with colored
stars in figure 4.8 a). The bottom plot (green) is the one done with the lowest
tunnel rates, the middle plot (pink) is in an intermediate stage and the top one
(maroon) has the largest tunnel rates. We can observe that the plunger voltage
VP for the first Coulomb peak is different for each cut. This effect is again due to
the cross-talk between the barrier gates and the SQD. When barrier gate voltage
decrease, to compensate the effect on the SQD, the plunger gate must apply higher
voltage. And the opposite for an increasing barrier gate voltage.

With this method we found a technique to easily tune the barrier gates in a
close-to-symmetric regime. But we can go a bit further.

4.4.2 Sweeping barrier gates along the symmetric tunnel rates

So far, we have found the quasi-symmetric tunnel rates for a single pair of
barrier gate voltages VBB and VBT. We can define a linear combination of those
gates that will keep the symmetry at different voltages. We call this linear com-
bination a virtual barrier gate Vcom. The new gate is extracted by joining the
highest conductance point in each diagonal feature from plot 4.8 a). The green
dashed line in figure 4.9 b) is a schematic representation of the line along which
Vcom exists.

The mathematical expression for the virtual gate is

Vcom = VBB + 1.38VBT. (4.1)
We observe how much one barrier changes with respect to the other to keep the

tunneling symmetric. In figure 4.9 a) we see a color plot of conductance with Vcom
and VP as axis. At higher values of Vcom, both barrier gates remain closed. When
Vcom becomes more negative (tunnel rate increase), more Coulomb oscillations
appear in the plot, but also the peak broadness increase. If Vcom is too negative,
the high conductance barriers prevent the formation of Coulomb blockade. This
is observable in the bottom left corner, where conduction is strongly affected by
disorder.

We can see the cross-talk between the barrier gates and the QD in the
Coulomb peaks diagonal displacement. As mention before, this cross-talk is re-
sponsible for the QD chemical potential tuning with the barrier gates. From the
diagonal displacement slope of plot 4.9 a) we can extract VP /Vcom = −0.596.
Each mV swept in Vcom is a virtual tuning of VP of −0.596 mV. It could be possi-
ble, following this argument, to create a second virtual gate V

(v)
P with the plunger

gate which account all the chemical potential influence of the barriers. This new
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virtual gate would modify the QD chemical potential without affect the tunnel
rates, its equation is V

(v)
P = VP − 0.596Vcom. Unfortunately, we did not have

enough time to do experiments with this new virtual gate. We can find the use
of virtual gates in some publications [49, 52].

In figure 4.9 c) we see two horizontal cuts of the color plot at different Vcom.
The green one is done with low tunnel rates hΓBT,BB ≪ e2/C. We observe
Coulomb blockade between peaks and a lower conductance maximum compare
with the other cut. The pink cut is done with barrier gates more open. In that
regime, Coulomb peaks overlap with each other and the conductance increase.

Figure 4.9: a) color plot of conductance with VP in the horizontal axis and the linear
combination of barrier gates Vcom in the vertical axis. b), in green the barrier gate
combination that defines Vcomc) two cuts in the color plot to observe the conductance
versus VP for different barrier gates values. In both regimes, the barrier gates are supposed
to be symmetric.

This study is interesting to find the barrier gate values where we can preserve
the Coulomb blockade regime and, at the same time, try to maximize the con-
ductance signal. For the next experiments in the chapter, we just choose a slide
of Vcom from figure 4.9 a).
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4.5 Coulomb diamonds

Once the tunnel barriers are tune with symmetric tunneling rates, we per-
formed non-linear transport measurements to observe Coulomb diamonds and
extract some figures of merit, like charging energy (EC), lever arm (α) and QD
excited states (∆E). Figure 4.10 shows a compilation of some Coulomb diamonds
observed in different architectures. The experiment consists in measuring dif-
ferential conductance sweeping the QD plunger gate versus Vbias. The diamond
structure formed in the plot are the so-called Coulomb diamonds. The inner part
of the diamond (zero conductance) is in Coulomb blockade and the charge number
in the dot is fixed. When the bias voltage overcomes the limits of the diamond, an
electrochemical potential state falls in the bias window, and current flows through
the SQD.

Figure 4.10: Coulomb diamonds in different devices. a) is taken from [2] in the few-
electrons regime. b) are the first Coulomb diamonds measured in Si/SiGe heterostructures
[118]. c) are data taken in SiGe nanocrystal [9]. It is noticeable for a) and c) how the
diamond size increase as we approach an empty dot. This is due to an increasing addition
energy.

We performed the same experiment in our SQD and results can be seen in
figure 4.11. It exists some asymmetry in the diamonds. This indicates a difference
between the plunger gate coupling to the dot CG and the source and drain coupling
CS , CD, more precisely, the coupling to the plunger gate is larger than the others
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CG > CS , CD.

Figure 4.11: Coulomb diamonds in the SQD. The plot is a color-plot for the differential
conductance sweeping VP vs Vbias. The barrier gate voltages are VBT = −47mV and
VBB = −14mV. The charging energy is EC = 1.2 ± 1meV. The plunger voltage difference
between Coulomb peaks is ∆VP = 6.7mV. In the bottom of the plot we can see three
excited states with ∆E = 275µeV. At the right there are three schematics showing the
system chemical potential at the diamond edge and in the Coulomb blockade.

First thing we will extract from the plot is the lever arm (α factor). The lever
arm is the capacitance coupling ratio between the plunger gate VP and the SQD
total capacitance. It shows the effective control of the plunger voltage on the dot
chemical potential. In the constant interaction model, this is expressed as the ratio
between the gate capacitance (CG) and the total dot capacitance (C); α = CG/C.
The distance between two Coulomb peaks at zero bias is e/CG = ∆VP . The
height of the diamonds is the addition energy Eadd. This energy depends on the
particle number inside the dot and the orbital filling. It is Eadd = EC when two
holes are charged in the same orbital and Eadd = EC + ∆E when the holes are
charged in different orbital. With the equations we have, we can then divide both
values and write

α = EC

e∆VP
. (4.2)

From figure 4.11 we obtain α = 0.18eV/V.
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The charging energy can be used to estimate the QD size. We consider the
SQD as a 2D charge disk which is capacitively coupled to the top gate. The
simplest assumption is considering parallel plate capacitor

CG = ϵeffϵ0A

d
, (4.3)

where ϵ0 is the vacuum dielectric constant, ϵeff is the effective dielectric con-
stant. A and d are the disk surface and the distance between gate and the quantum
well, respectively. For this value, we will take ϵeff = 11.8 ± 1, calculated in the pre-
vious chapter. Using that ∆VP = e/CG and knowing that the distance between
gate and quantum well is 66 nm, we obtain a disk surface of A = 15000 ± 2000nm2

with a diameter D = 140 ± 20nm. This value is in accordance with the 200 nm
diameter disk in SEM picture 4.1 a). The calculated SQD size is smaller, some-
thing understood taking into account the distance between the plunger gate and
the quantum well.

Figure 4.12: a) color-plot from figure 4.11 with two cuts at different bias. In b) we can
see the differential conductance versus VP for those two cuts. The appearance of a second
oscillation each Coulomb peak is due to the conductance through an excited state. In the
bottom we can see a schematic for each case. GS stands for "Ground State" and ES is
"Excited State".

Another feature visible in figure 4.11 are the conductance through the SQD
excited states. Figure 4.12 b) shows two cuts at two different bias from the

86



4

Chapter 4. Single Quantum dot

Coulomb diamonds plot, shown in figure 4.12 a). At zero bias, we see a single
peak for each conductance level in the dot. When bias is applied, we observe that
the peak unfolds in two peaks. One of them correspond to conductance through
the ground state and the other through the excited state. The exited state in the
first peak (VP = −576mV) is very well resolved, it indicates that the tunneling
rate is smaller than the excited energy difference inside the QD hΓ < ∆E. That
is not the case for the third peak (VP = −562mV). The peak tail of the excited
state and the ground state are merged, the regime is hΓ ≈ ∆E. In both cases,
the barrier gate voltages are the same, but not the plunger gate voltage. The
cross-talk between VP and the tunnel barriers is enough to sweep the tunnel rates
from one regime into the other.

The last interesting thing we can calculate is the QD size from the excited
state’s energy difference. We can approximate the dot’s potential to a square
quantum well, the level energy difference is given by equation 1.31. To know the
size, we write

L =
√

1
∆E

ℏ2π

m∗
h

. (4.4)

The same argument can be used but with the parabolic potential of equations
1.33 and 1.29. If we replace the terms with obtain the ground state characteristic
length of

l0 =

√
2ℏ2

m∗∆E
. (4.5)

In our SQD, the excited energy is ∆E = 275µeV. We don’t know the effective
hole mass at the measurement density, but we know it should be in a range from
m∗

h = 0.02me to m∗
h = 0.09me [102], where me is the vacuum electron mass. The

estimated length for a two-dimensional box vary from L ≈ 200nm to L ≈ 100nm,
and for a parabolic potential l0 ≈ 170nm to l0 ≈ 80nm.

The three methods to calculate the QD size give similar values. In the last
two method, we considered a square potential and a parabolic potential, whereas
in reality, the shape of the dot is unknown. The assumption to a disk is also not
true. The disorder potential in the quantum well affects the dot shape. We can
say that at least, the estimated size is in the order of magnitude of the expected
value.

4.6 Charge-noise

Charge noise is one of the limiting factor for quantum devices [119]. In the
last years, research advances has been done in InGaAs quantum dots [120], GaAs
heterostructures [121] and Si/SiGe heterostructures quantum dots [122]. The
dominant cause of the noise is believed to be the sum of two-level fluctuators
with different decay rates. Each of the fluctuators contributes to noise with a
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Lorentzian spectrum function that has a cutoff at the decay rate. The sum of
many fluctuators with equally distributed decay rates raises a 1/f noise spectral
density. This power law is known as telegraphic noise.

Figure 4.13: Charge-noise measurements taken from the literature, a) [123] measured in
InGaAs quantum dots, b) [124] in Si/SiGe quantum-well electron quantum dots and c)
[125] in Si/SiO2 devices. The case in a), data are fit to the sum of two functions, a 1/f
telegraphic noise and the two-level contribution with a given decay rate. In b), the fit is
done to a power law 1/f and a Lorentzian-like function of 1/(f2 + 1), which account again
with the single two-level fluctuator contribution. For c), the fit is directly done to a 1/f.

In some cases, like the ones shown in figure 4.13 a) and 4.13 b), the best fit
for the charge-noise spectrum is a sum of a 1/f power law and a single fluctuator
contribution. In figure 4.13 a) they calculated the noise for two decays rates, one
for charge and one for spin. For the case exposed in 4.13 c), a simple 1/f function
can fit the data. With these three examples we want to illustrate that charge-noise
spectrum for QD devices can have different behaviour depending on the device.
The general trend is to have a 1/f spectrum of noise. However, in presence of
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few fluctuators well coupled to the QD, it is possible that the noise spectrum is
affected by 1/f2 spectral component as a signature of single fluctuators. It can be
related to defects in the lattice or surface states [123]. In the following, we will
show the analysis that we performed in our devices.

The first approach to charge-noise we did is the color plot shown in figure
4.14 a). Here we studied the ultra-low frequency noise (∼ 1.7mHz). We swept
over several Coulomb peaks and wait 10 min before doing another sweep. The
Coulomb peak displacement in plunger gate voltage is due to the SQD chemical
potential perturbations. There are two remarkable Coulomb peak displacement
where the peak moves over 2 mV (the double of the peak width) in plunger gate,
after 170 min and after 290 min. This experiment evidences the slow dynamics in
the sample and gives us a lower boundary in frequency for the next measurement.

In figure 4.14 b) there is the Coulomb peak measurement where the charge-
noise was calculated. A deeper analysis of the peak width is in annex B. In order
to extract information about charge-noise over several frequencies, we set VP in
two regimes: at Coulomb blockade (pink star VP = −541mV in figure 4.14 b))
and at the peak slope (blue star VP = −553.5mV in figure 4.14 b)). At the slope,
the sensitivity to the chemical potential fluctuations is maximal [124]. We observe
the charge-noise produce by the sample environment and the contribution from
the electronic. In Coulomb blockade, current through the sample is zero, so any
noise must come from the electronics in the set-up, like the I/V converter and the
DMM.

For each regime, we measure current over two minutes, as it shown in figure
4.14 c). The upper time limitation was set to avoid the strong peak displacement
observed in figure 4.14 a). The lower limitation was given by the cycling time of
the DMM, each point in 4.14 c) was taken with a sampling rate of 10Hz. It is
already clear that the dispersion in the peak slope is much larger than in Coulomb
blockade. From the current plot, we can calculate the SQD chemical potential
oscillations. It goes as followed.

We can make use of the known lever arm α to extract that

δI = dI

dV

δµ

α
, (4.6)

where dI/dV is the peak slope, δµ are the chemical potential energy fluctua-
tions and δI are the current fluctuations. The energy dispersion is plotted in 4.14
d). We can use the relation between chemical potential and the current fluctu-
ations to extract the current noise spectrum SI and the charge noise spectrum
Sµ:

Sµ = 1
|dI/dV |2

α2SI . (4.7)

Current noise spectrum is the correlation function of the current amplitude.
For the power spectra calculation, we will use the Barlett analysis method [126].
Its purpose is reducing statistical error. If a time measurement has non-correlated
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Figure 4.14: a) differential conductance color plot as a function of VP and time. We
can see that the resonance peaks are wiggling in the ultra-slow frequency regime. It is
also remarkable the two big swept that displace the peak more than two times the peak
width. b) Current versus plunger voltage showing the Coulomb peak where the charge-
noise was measured. c) current versus time to extract the charge-noise fluctuations at
higher frequency than a). Each point of this plot was taken with a cycle time of 0.1 s. Pink
plot is at Coulomb blockade regime (pink star in b) and blue plot is at the Coulomb peak
slope (blue star in b). At the right there is a histogram of the current values distribution
d) chemical potential energy fluctuations versus time. This plot was derived from the
slope current measurement in b). At the right we see the energy distribution.

noise, it is possible to take equal-spaced sections in time domain and apply the
Fourier transform independently, then, average all the Fourier transform. We
applied this method to the sample in sections of 12s. We were able to map noise
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between 0.16 Hz and 5 Hz.

Figure 4.15: a) power spectrum of the current amplitude in figure 4.14 a). Blue points
are in the Coulomb peak slope and pink in Coulomb blockade (represented in figure 4.14
b)). The solid line is a fit to a 1/f function. b) chemical energy power spectrum using
the transformation of equation 4.7. The 1 Hz amplitude (marked with dashed line) is
S

1/2
µ (1Hz) = 8.1 ± 2µeV/

√
Hz.

In figure 4.15 a) we can see the current noise spectrum in Coulomb blockade
(pink) and in the peak slope (blue). The noise amplitude in Coulomb blockade
is smaller than at the peak. More precisely, three order of magnitude smaller.
This is understood since for Coulomb blockade perturbations, there is only the
noise contribution from the electronics. Even though there are only two order of
magnitudes, we plotted a 1/f function over the experimental data that fits the
results very accurately. From this fit we will extract the 1 Hz noise amplitude.
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The figure of merit used to measure the charge-noise.
Figure 4.15 b) represents the chemical energy spectrum. We have applied to

the current amplitude the transformation in equation 4.7. The noise amplitude
at 1 HZ is S

1/2
µ (1Hz) = 8.1 ± 2µeV/

√
Hz. The error is estimated by the window

where the 1/f fits the experimental results. Two other devices measured with same
conditions gave values of 7.9 ± 2µeV/

√
Hz and 8.7 ± 2µeV/

√
Hz. The average is

8.3 ± 2µeV/
√

Hz. In the paper from Blake M. Freeman et al. [125] (data in figure
4.13 c)), they consider that the Coulomb peak current fluctuations are not just
produced by the charge-noise, but also by fluctuations in tunnel rates. In order
to get rid of the tunnel rates contribution to noise, they recorded current in both
slopes of the Coulomb peak and in the top. At the peak maximum, the chemical
potential fluctuations due to charge-noise does not affect the current through the
device since dI/dVP = 0. In other words, a change in the dot chemical potential
would not be observed if the drift in gate voltage is small. With this assumption,
any current fluctuation at the peak top comes from a change in the tunnel rates.
In the experiment, they removed the noise spectrum obtained at the peak top
from the measurement at the peak slopes. In our case, it is very likely that our
tunnel rate is being modified by charge-noise, and we see the consequences in the
peak conductivity. Unfortunately, we did not measure the Coulomb peaks in all
the region necessary for this analysis.

If we compare our device charge-noise amplitude with that of the state-of-
the-art, we see that for other Ge quantum well, the value is 0.6 µeV/

√
Hz [127].

For SiMOS devices it is 0.5 µeV/
√

Hz [122]. In Si/SiGe heterostructures we find
0.8 µeV/

√
Hz [125]. We find 0.5 µeV/

√
Hz for GaAs [128]. All state-of-the-art

values are below 1 µeV/
√

Hz, while ours is eight time larger.
The conclusion to this measurement is that the charge-noise in our devices

is around eight times larger, but still in the same order of magnitude as the
state-of-the-art literature. It should not be an impediment to continue towards
spin qubit fabrication. We also conclude that there is still room to improve our
measurements.

4.7 Magnetic field spectroscopy

Last characterization we performed in the SQD is the Landé g-factor extrac-
tion and the study of the hole spin states under large magnetic fields. In figure
4.16 we observe two method to extract the hole g-factor. The plot in a), taken
from the paper [34], show the Subnikov-de Hass (SdH) oscillations. These oscilla-
tions are produced when the hole Landau levels exceed the Fermi level due to the
Zeeman splitting EZ = 1/2gµB|B⃗|, where |B⃗| is the magnetic field amplitude, µB

is the Bohr magneton and g Landé g-factor. From the oscillation periodicity it
is possible to extract the hole g-factor. This method is also been used to explore
the g-factor asymmetry in strained Ge quantum-well [129]. Another technique for
extracting the g-factor is shown in 4.16 b), from the paper of Matthias Brauns
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et al. [130]. Here we observe the splitting in the SQD excited states with an
increasing magnetic field. The difference in energy is directly produced by the
Zeeman splitting. In the same paper they also discussed the g-factor asymmetry
for holes, but in nanowires instead of quantum-well.

Figure 4.16: Examples of literature experiment where the g-factor for holes was ex-
tracted. a) is taken from [34] and b) from [130].

In our experiment, we tried to perform the QD excited states spectroscopy,
but we did not achieve enough resolution to clearly differentiate between states.
So we had to improvise another method to calculate the g-factor. At the same
time, another colleague in the lab was measuring the SdH oscillations, which we
will use to compare with the results presented in this thesis.

Our experiment consists in measuring conduction while VP and a perpendicu-
lar magnetic field are swept. Figure 4.17 a) show a color plot with the results. We
can appreciate that the Coulomb peaks displace with magnetic field. Image 4.17
b) is a zoom into the first peak. The peaks chemical potential energy displace-
ment is due to the Zeeman energy. The charge state is spin polarize because of the
quantum dot orbital level filling. The Zeeman energy is given by the interaction
between the hole pseudo-spin SZ = 1/2 and the magnetic field. From the plot,
we can extract a g-factor of g = 9.8 ± 3 by fitting the peak drift to the Zeeman
splitting. In similar structures as ours (undoped Ge/SiGe heterostructures), there
has been reported values from g = 13 to g = 28 in [34] and g = 10 to g = 12 in
[35]. These values are in accordance with our experiment. Moreover, measure-
ments of the SdH oscillations performed on Hall bar devices revealed values of
g = 9 ± 2. The other interesting effect we observe in plot 4.17 a) is the vanishing
of the conductance with increment in the magnetic field. That will be discussed
in the next figure.

After obtaining the g-factor, we can study the SQD in high magnetic field.
Figure 4.18 a) shows a color plot of the conductance changing VP vs B. We observe
that the Coulomb peaks have a diagonal displacement, again produced by the
spin-magnetic field interaction. There is also an oscillatory effect. Conductance
appears and disappears as magnetic field is increased. We explain this effect
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Figure 4.17: Color plots showing Coulomb peaks under perpendicular magnetic field. a)
shows three Coulomb peaks in a field from 1 to -1 T. b) is a zoom in the dashed square
region from a). There are two dashed lines indicating the peak displacement in magnetic
field. The displacement is due to the Zeeman energy of the hole sate in the QD. By fitting
EZ = 1/2gµB |B⃗| we extract a g-factor of 9.8 ± 3.

with two main reasons: the spin polarization in the reservoirs and the spin-state
displacement caused by the Zeeman interaction.

The framework of our hypothesis is that the 2DHG in the reservoirs is spin-
polarized under the external magnetic field. It is known that the tunnel rates can
depend upon the carrier spin orientation [131, 132]. If the spin tunnel rate for
a given spin orientation is too low, we would not be able to measure it. This is
what we think is happening. The tunnel rate for the antiparallel spin orientation
with the magnetic field is too low, enough to suppress the conduction through the
device.

The dashed lines of figure 4.18 a) indicate the spin state position. The Zeeman
splitting produce crossing of antiparallel spin states. In figure 4.18 b) we can see a
schematic showing the effect of the magnetic field in the SQD states. Each of the
EN, EN+1 level represent a charge state in the SQD. At zero B, these states are
spin-degenerate. The degeneration is broken when the dot is under a magnetic
field. The state with the spin parallel to the magnetic field decrease its energy
with B and the antiparallel-spin state, increase it. At some point, the spin-state
cross each other. When this happens, the spin of the fundamental state in the
SQD (the last occupied state) changes. We can follow the last state in the dot
with the green line in 4.18 b). The quantum dot conductance is through this last
state.

Taking both effect into account, we expect to see a change in the conductance
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of the Coulomb peak caused by the spin-dependent tunnel rate, and we also expect
to see a spin-sweep of the last occupied state in the SQD. This is what we observe
in figure 4.18 a). In the case of our SQD, the change in tunnel current with the
spin is large enough to suppress the current. The crossings we observe in figure
4.18 a) are produced by excited states of the SQD.

Figure 4.18: a) color plot of the QD conductance with respect to VP and the perpen-
dicular magnetic field. The two color dashed lines represent the spin state evolution with
parallel orientation to the external magnetic field (green) and antiparallel orientation
(pink). Both are plotted with the g-factor of 9.8 ± 3. b) schematic of the QD states
under magnetic field. The spin state crosses each time that EZ = 1

2 (EN − EN−1).
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4.8 Conclusions

In this chapter we have studied the viability of our Ge/SiGe heterostructures
to form a SQD. All the experiments were done measuring electronic transport in
a 300 mK condensation cryostate, HelioxVT from Oxford.

At the beginning of the chapter, we discussed a reliable method to find
Coulomb blockade and Coulomb oscillations. We also studied the barrier gate
space and describe a technique to symmetrize the tunnel rates ΓBB ≈ ΓBT . The
symmetric points enhance the SQD conductance. A virtual gate was defined with
the two barrier gates. We discussed the methodology to create a second virtual
gate with the plunger gate and the two barrier gates.

Once the tunnel barrier are symmetric and the SQD is in the Coulomb block-
ade regime, we studied the Coulomb diamonds and extracted some figures of merit.
The values we found are EC = 1 2meV and α = 0.176eV/V . Some QD excited
states were resolved in the Coulomb diamonds with an excited energy around
∆E = 275µeV. These results indicate a SQD of around 140 ± 20nm diameter, in
accordance with a parallel plate capacitor model, with a strong lever arm (typical
values for dots are between 0.05-0.1 eV/V).

The next experiment discussed was the charge-noise measurement. We recorded
the current noise over time in a Coulomb peak and transform it into a power spec-
trum. At 1 Hz, we found a power amplitude average of S1/2

µ (1Hz) = 8.3 ± 2µeV/
√

Hz.
It is one order of magnitude larger that those in the state-of-the-art.

Last chapter section is focus on the spin spectroscopy under magnetic field.
We extract the out-of-plane g-factor g = 9.8 ± 3. It is in accordance with SdH
oscillations in the same heterostructure Hall bar devices. We also observed some
spin-state crossing at large magnetic field and deduce that the reservoir are spin-
polarized. The combination of spin polarized reservoirs and the Zeeman splitting
of the spin states produced the conductance oscillations we measured.

In conclusion, we are able to form a SQD and measure some figures of merits.
This was the objective propose in this chapter. We can claim that our fabrication
method from chapter 2 is proper to the hole SQD formation. The probe of spin
polarization is another good news towards the hole spin qubit fabrication.

Even more, having QD opens a good amount of choices for other experiments.
We could start improving the SQD design. Shorter barrier gates would imply more
control on the tunnel rate and make it possible to enter the regime hΓ ≪ kBT .
We could also implement a charge sensor in the vicinity of the SQD and measure
in charge sensing. This technique allows the possibility of reaching the few-holes
regime for the QD. This regime is very interesting for studying the orbital filling
of the dot [18]. We could also consider measuring Kondo effect in QD. It is being
found in GaAs [20] but not in strained Ge quantum-well. Using the spin to charge
conversion [133] we have access to spin state of the dot and observe singlet-triplet
states [66, 134]. Another path to follow would be the addition of a second QD
close enough to have tunnel coupling, as J. M. Elzerman et al. did for first time
in planar structures [135]. This is what we decided to do.
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In this final chapter we present the characterization of a double quantum
dot device. Measurements were taken in a dilution fridge at a base temperature
of 7 mK. The first section is focus on the set-up description. Just after, we
will present the sample design and the measurement techniques. In the first
half of the chapter the DC current measurements are presented. We will discuss
on the process followed to achieve Coulomb blockade in a DQD as well as the
barrier gate’s tunnel rates symmetrization. Next section is about the interdot
gate between dots. We show that the voltage applied to the interdot gate is able
to change the device from a big single QD to a double quantum dot with a weak
interdot tunnel rate. The last features observed in DC are the bias triangles and
the transport through QD excited states. The second half of the chapter shows
a discussion on how to tune a proximal charge-sensor for read-out. In the final
section, we will present a stability diagram showing our system in the last hole
regime.

Creative representation of an interdot coupling.
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5.1 Set-up

The DQD measurements were done in a commercial BlueFors fridge. It is a
dilution fridge that reach 7 mK at base temperature, a schematic can be found in
figure 5.1. The fridge is equipped with 24 DC lines. For sample characterization,
we measured the DC current with two I/V converter with 1 : 108 amplification.
We used two DMM to record the voltage produced by tho tow I/V converters.
Sample design will be explained in the next section. For gating the device, we
used a low-noise DAC with a precision of 21 bits with a voltage range of ±1.2V.

Figure 5.1: In the left, it is represented a schematic of the set-up circuit. In the right, a
cryostate’s picture taken in the laboratory.

5.2 Device description

The DQD device, same as the SQD design seen in previous chapter, is though
to be functional in accumulation and depletion regimes. It is built with a double
gate layer stack. The main device’s features are the two quantum dots, tunnel-
coupled with each other, and a third charge-sensor quantum dot capacitively
coupled to the other two. The plunger gates associated to each chemical potential
are G1 and G2 for dots 1 and 2, and CP for the charge-sensor. To control the

Agilent 34461A
Itest Bilt
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coupling with the different leads, there are several tunnel barriers and depletion
gates. An SEM image can be seen in figure 5.2. In red color we have the first
gate layer and in blue, the second gate layer. The two gates with a circular
ending in the top are the accumulation gates for dots 1 (G1) and 2 (G2). Around
them, we see the barrier gates (B2 and B1) and the depletion gates (D2 and D1).
Between the dots there is the interdot barrier gate (BT). The charge-sensor circuit
is located at the bottom. It consists in another quantum dot with a plunger gate
(CP), its own depletion gates (DC) and the two barriers connected to the ohmic
accumulation gates (CBL and CBR).

Figure 5.2: SEM picture of the DQD device. Red color gates are the first gate layer
and blue color gates are the second. a) shows the configuration for the charge sensing
read-out. b) shows the configuration for the DC current measurements.

There are three ohmic contact in the device. The idea is to be able to inde-
pendently measure current through the DQD and the charge-sensor. The position
of source and drain will vary along the chapter.

In the first half of the chapter, the circuit design is the one presented in 5.2
b) We had one bias voltage applied to the right ohmic (Vbias) and two DMM
recording current through the charge-sensor (ICS

SD) and the DQD (IDQD
SD ). For the

second half, we measure current only through the charge-sensor. In that case, the
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sample circuit is in figure 5.2 a). The current is measured through the righ ohmic
contact (ISD). The device can be biased at the charge-sensor lead (VCS

bias), and at
the DQD lead (VDQD

bias ).

5.3 Tuning the DQD into Coulomb blockade regime

For the DQD device tuning, we followed the same process as for the SQD,
discussed in section 4.3. First, we test all the gates to see that there is not gate
leakage in the sample. Once this is checked, we accumulate carriers with the
plunger gates until we observe current. After this, we proceed to form QPC with
all the gates. Once this is achieved, we look for Coulomb oscillations in both
dots. We can look back to the theory section 1.2.4 and observe the system’s
capacitances: Cm between dots and C1,2 between each plunger gate and its dot.
At this point, the system could be in a high-coupled regime (Cm ≈ C1,2) or a
low-coupled one (Cm ≪ C1,2). For barrier optimization, we found it better to let
the system in a high-coupled regime, where the double dots behave as a single big
dot.

The device shown in this chapter turns out to work in a depletion regime.
There were carriers in the quantum well at zero gate voltage, so we skipped the
first step of carrier accumulation and jumped directly to the QPC formation. The
system’s circuit is shown in figure 5.2 b).

5.3.1 QPC with barrier and depletion gates

The QPC test, same as in previous chapter, consist in forming a QPC with
each barrier and depletion gate. It is done independently for every gate. Here we
focus on the double dot gates and let the charge-sensor aside.

Results for the QPC test are in figure 5.3 a) (barrier gates) and figure 5.3
(depletion gates). In figure 5.3 c) there is a colored SEM picture of the device
with the sample’s QPC. In plot a), we observe that the saturation current for
the three QPC is at similar amplitude, IDQD

SD ∼ 500nA. We see a difference in
the pinch-off voltage. For VBT and VB1 is VB1,BT ∼ 225mV, but for VB2 it is
VB2 ∼ 150mV. This difference can be attributed to some lithography difference
in the gate shape. Also, we can think that the influence of CBC is bigger at B2
than at the other gates. We can also observe that there is an oscillation below
B1 just before pinch-off. It can be caused by disorder below the gate that form a
high-coupled quantum dot.

In figure 5.3 b) we see the response of the system when we sweep the two
depletion gates. Current pinch-off is not reached, but we clearly see a linear
response of the current as the voltage is increased. This is enough to probe their
influence on the 2DHG density. For these gates, the conduction channel is wider
than for the plunger gates. Nevertheless, the trend is that at higher voltage it
would close.
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Figure 5.3: QPC test for the barrier and depletion gates. The objective is to see the
2DHG response for each of the gate swept independently. Bias voltage is Vbias = 1mV. a)
shows the source-drain current vs gate voltage for the barrier gates. All of them are able
to close the conductance channel. b) shows the results for the two depletion gates. In c)
we can see a colored SEM image of the device with some marks indicating each of the
QPC formed from the plots above. The gates for the charge-sensor circuit (in the bottom
of the device) are all at 200 mV except CBC, which is at 300 mV. With this configuration,
we were sure that the current was flowing to the DQD ohmic lead.
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Once we are sure that the sample can reach the quantum transport regime,
and we have an idea of the pinch-off voltages, we can proceed to the next step.
Studying the barrier gate space and search for Coulomb oscillations.

5.3.2 Barrier and plunger gates

In this section we will discuss the barrier optimization. The way to proceed
is the same as in the previous chapter, section 4.4. We look for symmetric tunnel
rates to enhance the transport signal. Instead of explaining all the steps again, we
will directly jump to the barrier vs barrier plot. Figure 5.4 a) shows the current
through the DQD versus barrier gates. For this configuration, the depletion gates
are high enough to deplete the 2DHG below the plunger gate’s arm. We observe
in the voltage window that B2 is fully close above VB2 > 140mV and B1 above
VB1 > 220mV. For the next plot, we stay in the figure a) star value for the barrier
gates.

In the plots in figure 5.4 b) and figure 5.4 c), we start to explore the plunger
vs plunger gate space. Figure 5.4 b) shows a broad map and c) a zoom into
few mV. The transversal oscillations are the DQD Coulomb oscillations in a high
interdot coupling regime. The system behaves as a big single quantum dot whose
chemical potential is tuned by the two plunger gates. It is understood since the
interdot barrier gate is at 0V. In plot b), there is a region in the bottom left that
shows a higher conductance. We assume this is caused by disorder in the sample
heterostructure, or by a change in the tunnel barrier to the leads, caused by the
gate cross-talk. It totally banishes as we approach the upper right part of the
graph, the region we are interested in.

The final plot in figure 5.4 d) shows the Coulomb oscillation of the big single
dot but only sweeping VG1. This plot is very similar to those of a SQD. At volt-
age below VG1 < −130mV, the Coulomb peaks start to merge with each other.
In the middle region −130mV < VG1 < −75mV, it seems that Coulomb block-
ade is achieve between oscillations. We see the total absence of current above
VG1 > −75mV.

After this section, we already know the configuration for the gates to enter the
Coulomb blockade regime. The next step is testing the interdot barrier gate and
see if we can drive the system from a big single quantum dot into two separated
double dots.

5.4 Tunneling barrier

In this section we will study the interdot barrier gate (VBT). This gate tunes
two coupling mechanisms: the capacitively coupling between dots and the tunnel
coupling between holes in each dot. A high electric potential between dots would
push the hole’s wavefunction apart, increasing their distance. On the other hand,
a low potential would bring them together. The dots’ distance is directly related
with the two coupling phenomena. Tunnel coupling is a pure quantum effect, it
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Figure 5.4: Color plots of the process to achieve the Coulomb blockade regime. Bias
voltage is Vbias = 0.2mV. a) shows barrier vs barrier. We observe the typical traces,
similar to the SQD. Plunger voltages in this plot are VG2,G1 = −200mV and depletion
voltages VD2,D1 = 440mV. In the next plots, the system is at the star barrier voltage
values VB1 = 213mV and VB2 = 128mV. b) and c) are plots exploring the plunger vs
plunger gate space. b) has a broader range and c) is a zoom into a smaller region. The
transversal oscillation observed are the Coulomb peaks of a big single quantum dot below
both plunger gates. d) is a plot of the Coulomb oscillation by sweeping only one of the
plunger, VG1.

exponentially depends on the distance. The capacitively coupling is a classical
effect, its relation with the distance is linear.

In this experiment we will observe the transition from a single dot to a double
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Figure 5.5: Schematic of the DQD device for different tunnel barrier gate voltages. We
can see the transition from a big single quantum dot (a) to a two separated quantum dots
(c). The middle regime is represented in (b).

dot. A schematic of the system’s evolution is represented in figure 5.5. In a),
the hole wavefunction is extended below both plunger gates. It forms a unique
quantum dot. In b) we start to localize the holes below both plunger gates. In
c), the two dots are totally separated.

We will measure current through the DQD in the Coulomb blockade regime
while we sweep both plunger gates. In figure 5.6 there are four color plots with
four different voltage in the interdot barrier gate. The four plots are measured in
the same range for the plunger gates. We can observe the system’s evolution from
a single dot to two dots, same than in schematic from figure 5.5. Plot a) shows
the behavior of a single dot whose chemical potential is controlled by the two
plunger gates, sames as in figure 5.4 c). In b), we start to see that the diagonal
lines bend. The dot wavefuntion start to localize below each plunger gate. In c), a
honey comb pattern raises. Now we can clearly distinguish each charge state. The
cotunneling through the interdot barrier make the charge addition lines visible for
both dots. In d) we see the typical plot for a DQD measure in current. There
is conductance through the device when the dot’s electrochemical potentials are
aligned, and they are also align with the reservoirs.

With these results we can conclude that the interdot barrier gate controls the
capacitance coupling between dots. We can shape the system from a single dot to
a double dot, with all the intermediate regimes. The tunneling control on a DQD
is a key element in order to do two qubit gate based on exchange interaction, or
to do a single-triplet spin qubit.

5.5 Bias triangles and transport measurements

In this section we will discuss the measurements of bias triangles. We can
see in figure 5.7 two examples from bibliography. In the left panels we see a
differential conductance measurement with honey combs patterned on top. The
device consisted in a carbon nanotube controlled with two plunger gate electrodes
and a back gate. In this paper they demonstrated interdot tunneling tuning, and
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Figure 5.6: Color-plots showing the transition from a single dot to a double dot measured
in current. We observe source-drain current sweeping VG2 versus VG1. Bias voltage for
the four plots is Vbias = 0.4mV. Barrier and depletion voltages are the same as in figure
5.4.

they show control over the ohmic lead transparency. From the honey combs in
transport, it is impossible to distinguish between capacitively coupling and tunnel
coupling, but we can define the ratio between them. It is known as fractional
splitting ratio f = 2∆VS/VP [136] (in the bottom left panel of figure 5.7 there
are the voltage definitions). They observed from f ∼ 0.3 up to f ∼ 0.7. In the
right panel we see some bias triangles measured in SiMOS gate defined DQD.
This was the first experiment of Si DQD at 50mK. The splitting ratio in this case
is f ∼ 0.2. They even observed some excited states across the bias triangles.
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Figure 5.7: Left panel is taken from [137]. They measured DQD in carbon nanowire.
From this experiment we can extract the system capacitance. This method was discussed
in the theory section 1.2.4. Right panels are taken from [22]. They measured in SiMOS
DQD. In this case, they also extracted the system capacitance and were even able to
observe excited states through the bias triangles.

In our case, we will start by analyzing the system capacitance from the honey
comb patterns. Figure 5.8 shows the honey comb lattice drawn over the bias
triangles previously presented in figure 5.6 d).

We can use equations 1.56 and obtain each gate capacitance. They are equal
to CG1 ∼ 27aF and CG2 ∼ 22aF. We can also calculate the splitting ratio between
tunnel rate and coupling capacitance, it is f ∼ 0.3. This value means that the
capacitance coupling dominates. In order to extract the dot coupling Cm and the
charging energies, we have to measure the bias triangles.

In figure 5.9, a) shows a zoom into a triangle pair from figure 5.8. We see
current versus both plunger gates and a guide to the eye to reconstruct the trian-
gles. Two triangles are observed which overlap each other. From this plot we can
extract the lever arm for each plunger gate α1, α2. With the level arm we have
access to the charging energies and to the interdot coupling.

To extract the level arm, we use that the applied bias voltage gives the
boundaries for conduction through the DQD. The horizontal projection of the
triangle gives a voltage difference of ∆VG1 ∼ 2.1meV and the vertical projection
∆VG2 ∼ 1.7meV. From these two values and the bias voltage Vbias = 0.4meV, we
calculate that both lever arms are α1 = 0.19eV/V and α2 = 0.24eV/V. The lever
arm is the ratio between the gate capacitance and the total dot capacitance, we
can say that α1 = CG1/C1 and the equivalent for dot 2. With this relation, we
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Figure 5.8: Color plot of the source-drain current by sweeping the two plunger gates VG1
and VG2. Bias voltage is Vbias = 0.4mV and the interdot barrier gate is at VBT = 205mV.
We observe the patterned honey combs joining the different bias triangles. From the
plot, the voltage values are ∆VG1 = 5.9mV, ∆VG2 = 7.3mV, ∆V m

G1 = 0.88mV and
∆V m

G2 = 0.98mV. We also measure ∆VP = 8.1mV and ∆VS = 1.3mV.

use equations 1.57 and 1.58 to write that

Cm = ∆V m
G1|e|

∆VG1∆VG2α2
= ∆V m

G2|e|
∆VG1∆VG2α1

. (5.1)

We obtain that Cm ∼ 13aF. The respective charging energies are EC1 ∼
1.1meV and EC2 ∼ 1.8meV. The last factor we will extract is the interaction
energy, equal to ECm ∼ 162µeV.

In figure 5.9 b) we see two peaks corresponding to the ground and excited state
of the QD. The clear distinction of the peaks indicate that the thermal and the
tunnel rate broadening are smaller than the excited state energy hΓ, kBT < ∆E.
The energy difference of the first excited state transition is ∆E ≈ 190µeV. This
value is in the same order as the one obtained in the previous chapter for a SQD
∆ESQD = 275µeV. Without further analysis we cannot tell through which excited
states conductance is happening. Between the peaks, the current does not drop
to zero. The tail overlapping is a signature that the tunneling rate of some the
DQD are similar to temperature, and we observe elastic cotunneling.
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Figure 5.9: a) Color plot of two bias triangles in the DQD. We see the two plunger gates
being swept in both axis. The dashed lines indicate the lines for the two bias triangles
presented in the measurement. The triangle base feature is the conductance signal through
the two ground states in the DQD, while the shorter feature is the conductance through
some excited state. From the plot, we can recover the bias voltage eVbias = 0.4meV
weighed by the lever arm. Lever arms are α1 = 0.19eV/V and α2 = 0.24eV/V. b) shows
a plot of current versus detuning along the maroon line in plot a).

108



5

Chapter 5. Double Quantum Dot

5.6 DQD in charge sensor

The original idea was to use the bottom QD (CP) as the charge-sensor, but
eventually we moved to the QPC formed with CBR.

5.6.1 QD as charge-sensor

The first step is tuning the charge-sensor QD in the Coulomb blockade regime.
For this purpose, we let the DQD gates in the same configuration than for the bias
triangles. Then, we looked for the Coulomb peaks in the charge-sensor QD same
way as in chapter 4. Figure 5.10 shows the Coulomb peaks of the charge-sensor
QD.

Figure 5.10: Coulomb peaks in the charge-sensor QD. a) shows a colored SEM im-
age of the DQD device with the gate voltages. b) shows current versus charge-sensor
QD’s plunger gate (VCP). We observe Coulomb oscillations in the open barrier regime.
For the purpose of the charge-sensor, this regime is fine. The bias voltage applied was
Vbias = 1mV.

Once the Coulomb oscillations are found, we start sweeping the DQD plunger
gates while measuring the current through the charge-sensor. What we expect to
see are some step’s displacement in the current amplitude, as it was discussed in
the theory section 1.2.5.

The system circuit for this measurement is with two DMM, represented in
figure 5.2 b). This way we can measure the current through the DQD and the
charge-sensor at the same time. Results of the experiment are in figure 5.11. We
swept both DQD plunger gates VG1 and VG2 towards more positive values. At
some point, the DC current through the dots banishes. However, with the charge-
sensor we are still able to recover the charge transition signal, meaning that holes
are tunneling into the DQD.

At this point, we decided to change our QD charge-sensor to the QPC formed
with the gate CBR, mainly because the QPC has not the same distance to both
quantum dots in the DQD. It is closer to dot 1, so in principle it would be easier
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Figure 5.11: Color plot showing DC current through the DQD (left) and the charge-
sensor current (right). We swept the DQD plunger gates while measuring both currents
at the same time. We can directly have a comparison between both techniques. As the
DQD plunger gate voltages increase (the dot is being emptied), the DC signal start to
vanish and the bias triangles are no longer visible. On the other hand, the charge sensor
technique still shows some charge transition lines with the typical honey comb pattern.
Voltage bias was Vbias = 1mV

to discriminate when a charge is loaded in each dot. The next section will talk
about the QPC charge sensor optimization.
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5.6.2 QPC as charge sensor

Figure 5.12: QPC as charge sensor. In a) we see the QPC current ISD produced by
sweeping VCBR. The chosen amplitude to record the charge loading in the DQD was
VCBR = 160mV. In b), c), d) and e) we see four plots of the QPC current while sweeping
the dot 2 plunger gate VG2 at different bias voltage VCS

bias. We can observe the noise
evolution with bias. The step resolution also changes with the bias voltage.

From now on, the system is biased at the QPC ohmic contact. The DQD
ohmic is connected to ground. The system’s circuit is shown in figure 5.2 a). The
first thing we did was observe the QPC formed by CBR. Same as before, we let
the DQD charged with some holes and swept VCBR. Results can be seen in figure
5.12 a). We set VCBR = 160mV and sweep the plunger gates. At the right, we
observe the QPC curve while sweeping one of the plunger. We can clearly observe
the steps in current each time a hole is loaded or unloaded from the quantum dot.

In order to optimize the QPC resolution, we studied the system’s response
at different bias. Results of this experiment is in figure 5.12 b), c), d) and e).
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Figure 5.13: Charge sensor measurements at different ohmic accumulation values. In a)
there is a colored SEM image. In the bottom figures, what is called Vohmics are the gates
VOR, VOT and VOB.

The slope presented in all plots is due to the cross-talk between the QPC and the
plunger gate VG2. At VCS

bias = 2mV, the charge steps are quite smooth and almost
indistinguishable from noise. When we reduce the bias to VCS

bias = 1mV, the steps
start to be better resolved and the noise peaks decrease. The curve looks even
better when VCS

bias = 0.5mV. Each charge state is clear. We tried to push a bit
more and measure at VCS

bias = 0.2mV. In this stage, the resolution does not get
better, and neither the noise. We can clearly see a trend in noise level with the
bias voltage. Increase the bias window increases the noise. This may be produced
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by unwanted charge states close to the Fermi level. Finally, we decided that the
best bias to measure was VCS

bias = 0.5mV.
The last optimization we performed on the QPC sensitivity was modifying the

ohmic gate accumulation. We performed the QPC current measurement sweeping
VG1 at different accumulation values in VOR, VOT and VOB. We ranged from
−50 mV up to 50 mV in steps of 10 mV. In figure 5.13 we present a selection of
four plots. Among the plots, b) and c) are quite similar. In both of them we
can distinguish the charge loading step with some noise peaks. The plot d) has
the lowest noise and the biggest contrast to locate the charge loading. Finally,
e) steps are the worse resolved and noise level is the highest. The total current
amplitude also changes with the ohmic accumulation. We observe the largest
current amplitude in the most accumulated regime, and it decreases as the 2DHG
is depleted. We believe this effect is caused by two phenomena. The first is that
the hole density in the reservoirs is reduced, so the sheet resistivity increase. The
second one, may be less relevant, is that the cross-talk between gates modify the
tunnel rate between the charge-sensor QD and the reservoirs. We decided that the
20 mV at the ohmic accumulation gates gave the best results for charge sensing.

5.7 Charge stability diagram

The last experiment we performed is the charge stability diagram. We manage
to empty both dots.

In figure 5.14 there are some charge diagram examples. In all the cases,
the (0,0) charge region is reached. Once the system is in this region, just by
counting the charge lines we know the total number of carriers in each QD. For
all the experiment, they used charge sensing to measure the DQD, but with small
differences in the methodology. In figure 5.14 a), the current through the charge-
sensor is kept constant. Every time that there is a charge addition in the dots, the
change in the electrostatic environment affects the current in the charge-sensor.
The magnitude plotted is the compensation current ∆I applied to recover the
original current. In figure 5.14 b) and figure 5.14 c), the charge-sensor is a QPC.
They plotted the derivate of the QPC conductance. Finally, last plot in figure
5.14 d), the stability diagram is measured with a SQD as charge-sensor. They
used reflectometry in the SQD’s ohmic lead. This technique allows measuring
faster than in DC current. In this last example, the DQD had holes as carriers,
and that is why the charge regions are inverted. The (0,0) is at top-right corner.

The results for our DQD device are in figure 5.15. In a) it is plotted the
big charge stability map. We used this plot to be sure that the last holes in
each quantum dot was reached. The top right region of the plot is the (0,0)
charge region. We can distinguish lines in two direction. The almost vertical
ones, related to the charge loading into dot 1. And the lines of ∼ 45◦ inclination,
which correspond to a charge loading into dot 2. From the line’s angle we can
calculate the coupling between plunger gates. The almost vertical charge lines
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Figure 5.14: Figure with the charge stability diagrams from different groups. a) is
measured in a SiMOS double quantum dot [23]. In the plot we see the ∆I for the charge
sensor. b) and c) are taken from [19]. The device was a DQD in GaAs/AlGaAs. b) shows
the charge stability diagram in a large scale while c) focus in the (0, 0) → (1, 1) charge
transition. d) is taken from [138]. Here we see the charge stability diagram, but for holes
in Ge/SiGe quantum well. This data was recorded with a reflectometry circuit in the
charge sensor.

for dot 1 indicates a strong coupling between plunger G1 and dot 1, and a weak
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coupling between plunger G2 and dot 1. On the other hand, the tilted lines for
charge loading into dot 2 show that G1 coupling with dot 2 is similar to the
coupling between G2 and dot 2. We explain this effect by assuming that the dot
2 wavefunction position is in the midway between gate G1 and gate G2. Another
interesting phenomenon in plot a) is the decrease in the addition energy as the
dots are filled with holes. The first honey combs are bigger than the ones at the
bottom left. We can see how the hole occupation modifying the dot size.

Figure 5.15: Two stability diagrams of our DQD. a) shows the big map of several charge
states. We see charge sensor current versus both plunger gates. The top right corner
shows the (0,0) charge region. We can distinguish the charge loading lines corresponding
to dots 1 and 2. b) shows a zoom into the top right corner of map a). Here we see the
differential conductance versus both plunger gate voltages. The interdot coupling is lower
than in plot a). This probes that we can access the few-charges regime for our DQD.

In plot from figure 5.15 b) we observe a zoom into the top right corner of figure
5.15 a). The labels indicate the number of charges in each dot. They are counted
from the (0,0) charge region. The few-charges regime is very interesting to perform
experiments. Knowing the number of charges in each dot gives more control in
the formation of singlet and triplet states, and allows to perform Coulomb spin-
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blockade for read-out.

5.8 Conclusions

Along this chapter we have shown the results of the DQD device produced
with our fabrication method. The device consisted in a double gate layer with a
charge-sensor near-by. It was measured in a dilution fridge at 7 mK.

The first section of the chapter was focus on DC measurement through the
DQD. We discussed the Coulomb blockade regime tuning and the barrier gate
optimization. The interdot barrier gate was used to tune the dot capacitance
coupling Cm, being able to form a big SQD with both plunger gates and two
independent QD.

We measured bias triangles in the many-hole regime from which we extracted
some characteristic parameters of the system: charging energies EC1 and EC2,
the dot capacitance C1 and C2, the dots lever arm α1 and α2, and the interdot
coupling Cm. This measurement can be used to fully characterize the system’s
electrostatic capacitance. In the bias triangles, we also see some traces of transport
through excited states.

The second part of the chapter is focused on the charge sensing technic. We
searched for the most sensitive points to measure. The best conditions were with
a charge sensor bias of VCS

bias = 0.5mV. We also observe that decreasing the hole
density at the ohmic reservoirs helped to increase the contrast of signal versus
noise. The best results were when the ohmic accumulation gates were tune at
Vohmics = 20mV.

The last part of the chapter are measurements of the charge stability diagram.
We were able to reach the (0,0) charge region, where both dots are empty. We
also measure the last charge regions with high precision and nice contrast.

The results in this chapter are very promising, here we are touching the top
of the iceberg. We demonstrated the viability of our Ge/SiGe quantum well
heterostructures to host DQD. And even more, we reached the empty dot region
measuring with a charge sensor. In terms of technology, we have reached the
state-of-the-art framework for quantum dots in Ge heterostructures. From here
on, there are a lot of possible ways to continue the research. In the system’s
configuration for figure 5.15 b), the hole’s tunnel rate dependence with the interdot
barrier gate could be studied. This experiment could have been easily achieved,
but we lacked of time to perform it. In a more long-term experiment, with a DQD
it is already possible to form a charge qubit. It’s been done in GaAs [139, 140]
and in Si based devices [141]. With applied magnetic field, we would have access
to the hole’s spin states. This can also be used to form qubits, as it is being
demonstrated in Si nanowires [142], SiMOS [143], Si/SiGe heterostructures [144],
CMOS nanowires [96] and Ge/SiGe heterostructures [145]. With two quantum
dots, a two-qubit logic gate can be created like in [23, 146, 147]. Another step
we could take is the implementation of a reflectometry line for read-out or to a
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superconductive resonator [45, 46]. The strong photon-spin interaction has still
not been reached in strained Ge quantum well structures, but it has been in other
architectures [148–150]. Another path to follow could be the scalability with more
quantum dots to perform more complicated quantum operation [52].

117



Chapter 5. Double Quantum Dot

118



Chapter 6
Conclusions

6.1 Summary

Along this PhD thesis, I have presented the development of a fabrication
recipe for quantum devices in a Ge/SiGe heterostructure, with the posterior char-
acterization and analysis of mesoscopic transport measurement. Ge/SiGe het-
erostructure is growing as a promising material for quantum spintronic, quantum
computing hardware and superconductor-semiconductor hybrid devices. The key
proprieties of Ge/SiGe heterostructures are the small in-plane hole effective mass,
a large out-of-plane g-factor, the intrinsic spin-orbit coupling and the reduced
hyperfine interaction due to the p-wave symmetry in the hole’s wavefunction.

An important part of my work was focus on the recipe development and
its optimization. The process consists in several steps, each of them with its own
particularities. I used optical lithography for the large scale features of the sample
(ohmic contacts, mesa, gate pads) and e-beam lithography for the quantum device
gates. For both lithography process, a study in the exposition conditions was
necessary. Specially for the e-beam lithography, where doses tests and proximity
effect corrections were performed for almost every design. Two different etching
steps had to be optimized, one for the ohmic contact and another one for the
mesa etching. I paid special attention to the mesa etching step, several recipes
were developed and pictured with SEM. Finally, for the two dielectric steps in
the recipe, an ALD process was tested and improved. Oxygen plasma precursor
and high temperature conditions are growing a high quality Al2O3 dielectric,
characterize by a high breakdown voltage. The final recipe was obtained after
several years of work in the clean-room.

The heterostructure and the fabrication process were tested with several meso-
scopic transport measurement. We observed field effect, tunneling into surface
traps and pinch-off voltage drift. I implemented an extra step in the fabrication
recipe focus on oxidizing the samples’ surface with a strong oxygen plasma. This
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way surface traps were reduced and hysteresis improved. The first quantum de-
vices measured were QPC and H-FET. With H-FET I observed a control over the
2DHG density, and quantum transport was obtained with the QPC devices. Both
of these results are important for the QDs construction. They demonstrate the
viability of the fabrication recipe and the Ge/SiGe heterostructures to host QDs.

Another probe for the fabrication process is the SQD measurements. Several
text-book characterizations were performed, like extracting the charging energy,
the lever arm, the dot size, etc... A study on the barrier gates is performed, looking
for the symmetric tunnel rate regime. At the end of the corresponding chapter,
we also measured charge-noise with results not very far from the state-of-the-art.
Last measurement was transport under magnetic field, showing a polarization of
the reservoir’s spin. With this data, the out-of-plane Landé g-factor was extracted.

The last chapter is focus on DQD devices, measured in DC current and with
charge sensing. Here we arrived to the final step in the viability study for the
Ge/SiGe heterostructures. The DQD construction is the final keystone to start
building a functional qubit, either spin qubit or charge qubit. I demonstrate
interdot coupling control, being able to switch from a single quantum dot to
a double quantum dot. Characterization of the system’s capacitances was also
performed. Eventually, a charge sensor in the vicinity of the DQD has been tuned
and used for the charge state readout of the DQD. Even the (0,0) charge region
was obtained.

Eventually, the PhD work reported in this manuscript demonstrate that the
Ge/SiGe heterostructure complemented with electrostatic gates can host partic-
ularly good semiconductor quantum devices. The recipe developed is also been
probed to be resilient and useful for different layouts. In conclusion, quantum
dots have been successfully created and measured.

6.2 Perspectives

I would like to conclude this thesis with the perspective and possible future
plans. The results obtained in the SQD and DQD devices, plus the demonstration
that we can spin-polarize the holes in the sample, open the road to a quite large
amount of future experiments.

In a SQD, an improvement in the design could easily be done. Smaller barrier
gate length would allow a better control over the tunnel rates. Because of a
tight schedule, we didn’t have enough time to properly measure the SQD under
magnetic field, but we could have done a study on the g-factor anisotropy [44].
We could also consider measuring Kondo effect in QD. It is being found in GaAs
[20] but not in strained Ge quantum-well. Using the spin to charge conversion
[133] we have access to spin state of the dot and observe singlet-triplet states [66,
134], and measure the recently proposed Rabi anisotropy [151].

In a DQD, with our device it is already possible to form a charge qubit.
It’s been done in GaAs [139, 140] and in Si based devices [141]. With applied
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magnetic field, we would have access to the hole’s spin states. This can also
be used to form spin qubits, as it is being demonstrated in Si nanowires [142],
SiMOS [143], Si/SiGe heterostructures [144], CMOS nanowires [96] and Ge/SiGe
heterostructures [145]. With two quantum dots, a two-qubit logic gate can be
created like in [23, 146, 147]. Another step we could take is the implementation
of an RF line for read-out, as they do in [45, 151, 152], or a superconducting
circuit, like in [153]. Strong photon-spin interaction has still not been reached
in strained Ge quantum well structures, but it has been in other architectures,
like CMOS spin qubits [148] and Si/SiGe quantum well heterostructures [149,
150]. Another path to follow could be the scalability with more quantum dots
to perform more complicated quantum operation [52]. Nevertheless, scalability
implies an increment in the number of quantum dot gates, and this leads to a
more complex process to tune the Coulomb blockade regime. In order to relax
this effort, a solution could be machine learning algorithms [154, 155].

Another way to go would be exploring more exotic quantum phenomena.
The fabrication process developed in this thesis has been probed strong enough
to try other device designs. We could study spin pumps in strained Ge/SiGe
heterostructures, like in [156]. Another brave option could be the electron tem-
perature cooling with hole’s exchange, what is known as Maxwell’s daemon [157].
Other interesting termodynamic experiments can be carried on [158, 159] We
could also go into the semiconductor-superconductor hybrid devices [53–55, 160].
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A

Appendix A
Clean-room techniques

In this annex I want to explain the different techniques I used in the clean-
room. Most of them related to lithography processes like lift-off or resist spinning.

A.1 Clean surfaces are important

No one knows what is going on with interfaces. People have tried to explain
it, and some have success up to some point, but it still remains as a dark side
of science. An interface can charge your device, discharge it, can make it leaky
or can protect it. Semiconductor devices are very sensitive to anything around
them. In a normal fabrication process, several steps add layer of material to the
sample. A dirty surface will make a dirty interface, and we don’t want that. If I
had to just give one advice out of the hours I spend in the clean-room, it would
be "clean surface are important".

In general, I found three different situations where I had to clean a sample: the
very beginning of the fabrication process, after a lift-off and for removing the resist
(either because of a wrong lithography exposition or because the fabrication step
was just etching). For each of those three situation, the cleaning process slightly
changes. In figure A.1 I represented a chart-graph with the process. When doing
a lift-off, it works much better if the sample is deposited in the acetone for some
time before doing the real lift-off. If it can be a full night, it would be fantastic.
Another trick for the lift-off is pipetting the sample surface with a plastic pipette
(the same used for the resist). The pipetting is done inside the same acetone
directly on the sample surface. I do this until I don’t see any more metal attach
to the surface. At than point, I start with the yellow-background process of the
figure.

If the process is followed propertly, I assure clean and brilliant surfaces or
your sample. Another important thing is to clean the cleaves from time to time.
Just acetone and a clean-room napkin make the job.
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Figure A.1: Protocol for cleaning a sample. Green background indicates the steps to
follow when doing alift-off. Yellow background indicates the step to follow in any case.

A.2 Resist spinning

Only two advices. Before putting the sample into the spinner, I like to heat
it at 100◦C for one minute so all the water attached to the surface evaporate. In
the clean-room there should not be water, but you never know. After the minute
in the hot plate, I put it in the spinning machine and start the vacuum. Next
step is taking the resist from the bottle. Never ever, no matter what happen, let
a resist drop falling again in the bottle. The pipette for taking the resist should
be introduced only once. If something fails in the process, take another pipette.
The advice is to blow with nitrogen the pipette before introducing them into the
resist bottle.
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If those steps are well followed, the resist spinning should go well. Resist
quantity should be just enough to cover the surface, but in case of doubt, it is
better to put more resist than less. Just after the spinning, there should not be
any small particles in the surface. In case that there are, cleaning the resist and
trying again is the way to go, otherwise there will be problems in the mask aligner.
If the resist is for e-beam, then the particles in the surface are not a big issue.
Still it would be better if they are not there.

137



A

Appendix A. Clean-room techniques

138



B

Appendix B
Coulomb peak analysis

B.1 Coulomb peak analysis

In this annex we will analyise the Coulomb peak with a conduction equation
fit. A schematic of the system is in figure B.1 a) and next to it the results
for the experiment, in figure B.1 b). The current through the peak follows the
equation [reference to theory section], just that now, the bias voltage applied is
not negligible. We write

I = e

h

∫ ΓSΓD

(∆E)2 + (ΓP /2)2 [fS(E) − fD(E)]dE, (B.1)

where ΓP = ΓS + ΓD, ∆E = E − EP being EP the resonant peak energy, and
fS,D(E) are the Fermi source and drain distribution due to temperature, they are
defined as

fS,D(E) = 1

(1 + exp
(

E+eV S,D
bias

kBT

) . (B.2)

We already see that the solution for equation B.1 is not trivial and it needs
to be solved numerically. In our case, the bias voltage is Vbias = 100µV, and
temperature 300mK. The tunnel rates remain unknown for us. We could have
extracted the tunnel rate values if we had measured the Coulomb peak at different
temperatures. For now, we will do a peak broadening analysis in terms of energy.
The FWHM for peak in figure B.1 b) is FWHM = 181.6µeV , (we extracted it
from a fit to a Lorentzian function). Thermal energy is Etemp = 4kBT = 102µeV.
The bias voltage adds eVbias = 100µV. The tunnel rates are not known. But
already bias voltage and temperature will broad the peak by

√
E2

temp + (eVbias)2 =
140µeV. The rest of the peak broadness is assumed to come from the tunnel rates
Γ ≈ 114µeV.
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Figure B.1: a) schematic of the QD state during the charge-noise measurements. We
can observe a Fermi level broadening at the reservoirs because of thermal excitation.
b) Coulomb peak where the charge noise measurements have been performed. It shows
current through the SQD versus plunger gate voltage. The blue star correspond to the
slope measurements and the pink start to the Coulomb blockade measurements. Solid
line is a fit to the Buttenkir conductance.
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