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Abstract
This thesis contributes to improving the motion planning and control of bipedal robots.

Our concrete goal is restoring natural locomotion for paraplegic people in their daily lives
using the medical lower-limb exoskeleton Atalante, notably walking safely and autonomously
without crutches. Consequently, the relevance of our methods is determined by their ability
to fulfill this goal. In this context, pragmatism through constant confrontation with reality
has been the cornerstone of this work. The core idea is to combine traditional robotics and
state-of-the-art machine learning to benefit from their respective advantages.

In the first part, we put aside closed-loop control to focus on planning. The objective
is to enable online trajectory planning while ensuring safe operation. This is a milestone
toward realizing versatile navigation in an unstructured environment and accommodating
the preferences of the user. We achieve this by training offline a function approximation of
the solution to any given trajectory optimization problem over a continuous task space. We
ensure that all the optimal trajectories can be perfectly reproduced by the function approx-
imation regardless of its expressiveness. The computation cost is comparable to generating
a finite database of trajectories and scales well to high-dimensional task spaces. Our algo-
rithm is compatible with any motion planning framework and can be used for solving any
multi-parametric optimization problem beyond the robotic field. In practice, the function
approximation is a neutral network specifically tailored for predicting continuous time series
and serves as a ‘Memory of motion’ that is queried online in no time for the task at hand.

In the second part, we train a policy using reinforcement learning to generalize a pre-
defined set of primitive motions that have been generated and clinically validated for an
average user moving around on flat ground. The challenge is not to achieve the best pos-
sible performance but rather to ensure transferability and safety. We propose an original
formulation closely related to imitation learning, in the sense that trajectories are used to
guide and constrain the policy optimization in the same way as expert demonstrations, while
giving enough freedom to deal with large external disturbances or modelling discrepancies.
Two very different training scenarios have been studied: smoothly transitioning between
nominal motions, and reactive stepping for emergency push recovery while standing. Only
the latter has been evaluated on Atalante for lack of time. It transfers to reality and attains
satisfactory performance without any kind of adaptation, which is very promising.

To support this work, an open-source simulator of poly-articulated robots called Jiminy
has been developed. It is heavily optimized for reinforcement learning applications. In par-
ticular, several parameters are available to trade-off between realism and regularity of the
physics to ease or speed up learning. Internally, it relies on a novel analytical contact formu-
lation that does not involve computing impulse forces. Besides, it takes into account many of
the hardware limitations and side effects, among them backlashes, stochastic communication
delays, the inertia of the rotors, and the mechanical deformation of the structure.
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Résumé
L’objectif de cette thèse est d’exploiter les methodes existantes issu du domaine machine

learning afin d’améliorer le planning et control des robots bipèdes. Dès le départ, nous
nous sommes fixé comme objectif concret d’aider les paraplégiques à remarcher de façon
autonome à l’aide de l’exosquelette de membres inférieurs Atalante. Afin de ne pas perdre
de vue cette objective, le pragmatisme et la perpetuelle confrontation à la réalité ont été les
pierres angulaires de ce travail. Ce paradigme a eu une importance capitale dans le design
des methodes qui ont été proposé dans ce travail, tout en enforçant malgré tout à étendre
leur portée au maximum. L’idée centrale est de combiner les methodes issues des domaines
du machine learning et de la robotique traditionnelle afin de mutualiser leurs avantages
respectifs, plutôt que de substituer l’un à l’autre.

Dans la première partie, nous laissons de côté le contrôle en boucle fermée. L’objectif
est de permettre la planification de trajectoires en ligne tout en garantissanun fonctionne-
ment sûr. Il s’agit d’une étape importante vers la navigation en environnement non struc-
turé et la prise en compte des préférences utilisateur. Nous y parvenons en entraînant hors
ligne une fonction d’approximation des solutions à un problème d’optimisation de trajectoire
quelconque pour un espace de tâche continu. Nous nous assurons que les trajectoires ainsi
générées puissent être parfaitement reproduites par la function d’approximation, quelle que
soit son expressivité. Le coût de calcul est comparable à la génération d’une base de données
de trajectoires et s’adapte bien à un espace de tâches de grande dimension. Notre algorithme
est compatible avec n’importe quel outil de planification de mouvement et peut également
être utilisé pour résoudre n’importe quel problème d’optimisation multiparamétrique au-delà
du domaine de la robotique. En pratique, la fonction d’approximation est un réseau de neu-
rones spécialement conçu pour prédire des séries temporelles continues et sert de "mémoire
du mouvement" pouvant être évaluée en ligne presque instantanément.

Dans la deuxième partie, nous entraînons un contrôleur par apprentissage par renfor-
cement afin de généraliser un ensemble prédéfini de mouvements élémentaires qui ont été
générés et validés cliniquement avec un utilisateur moyen se déplaçant sur un terrain plat.
L’objectif n’est pas d’atteindre la meilleure performance possible, mais plutôt d’assurer la
transférabilité et la sécurité. Nous proposons une nouvelle formulation étroitement liée à
l’apprentissage par imitation, dans le sens où les trajectoires sont utilisées pour guider et
contraindre l’optimisation du contrôleur de la même manière que des démonstrations d’ex-
perts, tout en donnant suffisamment de liberté pour compenser de grandes perturbations
extérieures ainsi que les erreurs de modélisation. Deux scénarios très différents ont été étu-
diés : reproduire l’ensemble des mouvements nominaux, et se rattraper lors d’un violent
impact dans une posture statique de repos. Seul ce dernier cas de figure a été évalué sur
Atalante par manque de temps. La performance du contrôleur sont satisfaisantes sans aucun
type d’adaptation en dépit du transfert de la simulation à la réalité, ce qui est prometteur.

Un simulateur open-source de robots poly-articulés appelé Jiminy a été développé afin de
rendre ce travail possible. Il est spécifiquement adapté à l’apprentissage par renforcement. En
particulier, plusieurs paramètres sont disponibles pour arbitrer entre réalisme et régularité
de la physique afin de faciliter ou d’accélérer l’apprentissage. En interne, il s’appuie sur une
nouvelle formulation analytique du contact qui ne nécessite pas le calcul de forces impulsion-
nelles. En outre, il tient compte de nombreuses limitations matérielles et effets secondaires,
notamment le jeu articulaire, le délai de communication variable, l’inertie des rotors et la
déformation mécanique de la structure.
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1.1 Context and Motivation

1.1.1 Enhancing Motor Recovery and Rehabilitation

Stroke is a leading cause of motor disabilities. One in 6 people will have a stroke in
their lifetime, and 17 million people have had one in 2010 of which 31% aged less than
65 years (Feigin et al., 2014). Of these, 65% are left with severe disability, affecting
their capacity to independently carry out activities of daily living according to the
Stroke Foundation (2020). In China, which has the highest stroke rate in the world,
there are nearly 15 million disabled people with lower-limb motor dysfunctions (Shi
et al., 2019). More people are in need of stroke rehabilitation every year, but there is
already a lack of therapists. Therefore, lower-limb rehabilitation robots are of great
significance as they can reduce the burden on therapists.

It is known that therapy should begin as soon as possible and provide intensive
sessions that incorporate multiple sensory mechanisms in a structured way to be effec-
tive (Calabrò et al., 2016). In recent years, rehabilitation robots have gained interest
for their ability to automate them. Some medical studies came to the conclusion
that powered exoskeletons can supplement a therapist in some cases such as stroke
patients for which the mobility of the upper body is affected (Conesa et al., 2012;
Masiero et al., 2007), but they do not win unanimous support (Kwakkel et al., 2008;
Postol et al., 2021; Veerbeek et al., 2017). Similarly, preliminary studies targeting
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loss of mobility of the lower body for stroke patients show no significant improvement
in motor function recovery using lower-limb exoskeletons compared with conventional
therapy alone (Hobbs & Artemiadis, 2020; Postol et al., 2021; Shi et al., 2019).

It is primarily the devices used in these studies that are to blame for these mixed
results, not the very idea of using powered exoskeletons to supplement conventional
therapy. These technologies are rapidly-evolving and were very immature when these
inconclusive studies were conducted. In particular, they made use of lower-limb ex-
oskeletons that are not self-balanced and require crutches. The patient must have
good motor control of the upper body and a sense of balance to use such devices,
making them unusable during the first weeks after the strokes. This issue is a ma-
jor obstacle to full recovery since motor plasticity quickly decreases after the stroke.
Moreover, the patient must involve all his attention in the walking pattern to effec-
tively stimulate brain plasticity and maximize recovery (Behrman et al., 2006; Kleim
& Jones, 2008). Having to handle balance with crutches is exhausting, diverting the
attention of the patient from their lower body, and eventually leading to pathological
gait because the walking pattern is far from being natural. Finally, weight transfer
and sense of balance are especially affected in stroke patients having lost lower-limb
motor control capability. It is crucial for a powered exoskeleton to emulate these
sensations by reacting to patient behavior instead of just blindly tracking its nominal
motion, which is out of reach for devices with crutches (Calabrò et al., 2016).

This analysis suggests that making lower-limb powered exoskeleton crutch-less
and safe-balanced is a prerequisite for efficient rehabilitation of stroke patients. The
locomotion must be natural enough and span the full set of capabilities affected by
the stroke in the days right after the event to stimulate brain plasticity and maximize
motor recovery (Calabrò et al., 2016). The main advantages of such an exoskeleton
over classical therapy are to allow intensive sessions with patients without the need for
therapists and the ability to perform exercises that would be otherwise impossible or
very complicated such as weight transfer and just standing up. Together, it increases
the number of patients that can be treated and may enhance recovery. Furthermore,
strong motivation and a positive attitude are known as keys to the efficiency of the
therapy (Goodman et al., 2014; Tatla et al., 2013), and studies have demonstrated
an increase in motivation from patients using robotic devices for rehabilitation (Lam
et al., 2015; Postol et al., 2021).

1.1.2 Restoring Locomotion for Disabled People

Beyond rehabilitation, restoring locomotion for people suffering from spinal cord
injuries or neurodegenerative diseases is also a major aspect. Indeed, due to an aging
society, the number of people with limb movement disorders is increasing rapidly.
Studies show that maximum muscle power is reduced by about 50% on average by
natural aging, while the number of falls relative to the number of steps per day is
increased by 800% (25 to 90 years) (Grimmer et al., 2019). Age-related diseases,
such as Parkinson’s disease, as well as the medication itself, can significantly affect
walking ability. Furthermore, the World Health Organization reported that over 50
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Figure 1.1: Atalante product by Wandercraft.

million people suffered non-fatal injuries because of road traffic crashes in total, many
of them incurring permanent motor disabilities.

In this regard, walking naturally in an urban environment, while keeping their
minds free of any stability concerns and without being quickly exhausting, contributes
to giving them back a normal life. So far, no lower-limb medical exoskeleton is being
entirely successful at achieving this. On the one hand, balance control is only local
at best and devices are not able to perform reactive stepping strategies to recover
stability in case of emergency (Goswami & Vadakkepat, 2019, Part VI). On the other
hand, every motion is specifically tuned for one situation, and the robot usually has
to stop completely for a short time before switching them. It breaks the flow of action
and prevents dealing with unknown environments. Not being able to overcome any
of these challenges makes it unlikely that such a device will be convenient enough to
be widely adopted, as a wheelchair is still a more versatile alternative.

1.1.3 Atalante: Self-Balanced Medical Lower-Limb Exoskeleton

The exoskeleton Atalante, designed by Wandercraft (2021), is an autonomous device,
self-balancing and self-supporting. It has 6 actuated revolute joints on each leg,

• 3 joints for the spherical rotation of the hip,
• 1 joint for the flexion of the knee,
• 2 joints for the hinge motion of the ankle.

Atalante is depicted in figure 1.1a. The actuators are powerful enough to sustain the
weight of a user heavier than 100kg, with a maximum torque ranging from 100Nm to
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350Nm. The weight of the exoskeleton is about 75kg, making it one of the heaviest
devices on the market. This is not a major issue because the exoskeleton supports its
own weight in contrast to exoskeletons with crutches, and therefore it is unnoticeable
to the user inside. Still, it is more dangerous in case of a fall.

The exoskeleton Atalante has been designed by Wandercraft (2021). It is arguably
the most advanced medical lower-limb exoskeleton commercially available. It has the
CE marking to be sold in Europe. Wandercraft targets clinical centers in Europe for
the time being, but FDA clearance for selling Atalante in the United States is on the
way. Concurrently, a few additional units have been sold to universities in the United
States for research purposes only. An ongoing medical study seems to confirm that
walking on Atalante is having a significant positive impact on rehabilitation in the
neurosurgical setting (Apra et al., 2022).

It features dimensional adjustments on the thighs and tibias to fit the morphology
of the user. The user is fastened to the exoskeleton using straps on the pelvis, thighs,
tibias, and feet. Those straps have to be slack and stretchy for the user’s comfort and
to reduce the risk of injury. This soft coupling between the user and the exoskeleton
makes the whole system harder to control since the user can move inside the robot
and disturb the dynamics of the exoskeleton. It is especially true for the upper body
(both torso and arms) and the hips in the frontal plane to a lesser extent.

The exoskeleton has only basic proprioceptive sensors figure 1.2,

• 1 Inertial Measurement Unit (IMU) in the pelvis, tibia, and foot of each leg
• 4 vertical force sensors under each foot
• 1 encoder for each joint

An IMU integrates an accelerometer and a gyroscope, which provide a noisy mea-
surement of the classical linear acceleration and the angular velocity in local frame
respectively. An encoder provides a discrete noise-free measurement of the relative
joint position. The velocity is obtained by numerical differentiation and filtering.

There are buttons on the right side of the exoskeleton for the physiotherapist to
control the robot and stop it in case of emergency, but the user can also directly
interact with it using a remote control and a jacket with an IMU on its back, see
figure 1.1b. The user can select the type of gait – i.e. going forward, backward,
turning around, or doing side steps – or switch between walking, standing, or exercise
mode. In addition, one can use a mobile application to fine-tune in real-time the gait
parameters, e.g. step duration and step length. This feature is a direct by-product
of the first contribution of this thesis (cf. chapter 5).

Atalante lacks embedded safety apparatus to cushion the shock and hold the
user’s neck, and falling with it would be dangerous. Thus, it must stay attached
to a mobile gantry. A physiotherapist is also requested to prevent repeated falls
because the control algorithms have limited robustness to disturbances. Offering
some emergency strategy to recover from falling in most cases is a key objective of
this thesis (cf. chapter 6). Combined with airbags, it would dispense for any form of
external assistance on the next product intended for personal use.

4



1.1. Context and Motivation

Figure 1.2: Overview of the hardware of Atalante

1.1.4 Technical Constraints and Challenges

Mechanical Flexibility of the Structure

One of the major challenges in robotics is the reality gap. For practical reasons,
among them user safety, social acceptance, and agile locomotion, it is necessary to
make the device relatively lightweight and slim. A direct consequence of this con-
straint is that the whole mechanical structure is flexible, including the transmissions.

In general, compliance is a property that is sought in robotics. Notably, it avoids
breaking parts by relieving internal mechanical constraints in the structure, and it
naturally adapts to the environment by compensating for small discrepancies between
expectation and reality. In the particular case of an exoskeleton, it also prevents
propagating shockwaves in the patient’s bones by absorbing impacts on the ground.

However, controlling systems that are not perfectly rigid is more challenging,
especially when it lacks an accurate dynamic model. It is usually the case when
compliance was not introduced on purpose as for Atalante. Still, Seok et al. (2015)
demonstrated that well-characterized mechanical compliance could be desirable since
it relaxes hardware and software requirements for emulating compliance through
control. For instance, Pratt and Williamson (1995) specifically developed a type of
compliant actuators called Serial Elastic Actuator (SEA). This technology enables
some real robots to perform highly dynamic motions such as jumping or running, e.g.
the commercially available quadrupedal robot ANYmal (Hutter et al., 2016).

We observe on Atalante that the mechanical deformation of the structure only
marginally disturbs the position of the Center of Mass (CoM) but significantly affects
the swing foot figure 1.3. The latter is about 2cm lower than expected, and it touches
the ground 20% earlier, which is enough to make the exoskeleton fall without early
impact handling in the control loop. Currently, this is done by switching to the next
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Flexible joint
Angular deformation
Vertical foot offset

Figure 1.3: Modelling of the flexibility of the mechanical structure of Atalante as
localized deformation at hip and ankle joints. The deformation is about 1deg for
each flexible joint, lowering the vertical position of the flying foot by about 2cm.
The dashed orange and green robots are respectively the theoretical configurations
as expected by offline planning algorithms and after applying ankle deformation only.
The solid blue one in front is the real configuration under mechanical deformation.

step as soon as the flying foot touches the ground. This strategy is fairly easy to
implement, at the cost of further increasing the gap between the trajectory that was
planned offline and the one performed in reality by the exoskeleton. This issue could
be disregarded for a classic bipedal robot, but not for a rehabilitation exoskeleton for
which it is critical to reproduce physiological walking.

Vigne et al. (2020b) have shown that modelling the mechanical deformation of
Atalante is extremely difficult. The lack of a model means that the phenomenon
cannot be explicitly taken into account in classical trajectory planning methods.
Besides, the dynamics of the mechanical deformation must be decoupled from that of
the controllers to ignore completely the former without rendering the whole feedback
loop unstable. This restriction translates into an upper bound for tracking accuracy,
amplifying indirectly the effect of the deformation at the kinematic level.

One option consists in estimating the mapping from rigid to flexible state by
leveraging experimental data. First, the true nominal trajectory is executed on the
real robot. Then, the difference between the observed and nominal trajectories is
extracted from the data, and the corresponding feedforward time-dependent offset
is subtracted from the command sent to each motor. It results in a new observed
trajectory that should be closer to the original nominal one. It keeps going back and
forth until convergence, and the whole process must be repeated for each nominal
motion individually. In practice, simple linear ramps for the frontal and sagittal hip
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joints of the swing leg work reasonably well on Atalante.
Alternatively, Vigne (2021) compensate online the observed deformation using a

classical observer-controller structure. Their results are competitive with the previ-
ous method without the need for tedious and time-consuming manual tuning, which
is promising. However, it cannot perfectly cancel the effects of the mechanical defor-
mation due to hardware and modelling limitations. Relying too much on a biased
observation in the feedback loop may cause vibrations (Vigne et al., 2020a). Thus,
there remains a strong interest in developing robust control methods capable of han-
dling poorly modeled phenomenons as a complementary approach. The design of
such a controller – and the simulation environment to benchmark it – is an open
question that we partially address in this thesis using the Reinforcement Learning
(RL) paradigm (cf. appendix C and chapter 5). Randomizing the unknown param-
eters and making the task more difficult than necessary are some key components.
For legged locomotion, an uneven ground profile could be used in simulation during
training even though the robot is only supposed to walk on flat ground in reality.

Multi-Agent System with Partially Observable State

The exoskeleton Atalante with a user inside behaves quite differently from a classi-
cal humanoid robot. Indeed, it is not an actual bipedal robot but rather multiple
independent agents interacting with each other and the external environment. More
precisely, the user can only interfere with the exoskeleton, while the exoskeleton
interacts directly with both the user and the environment.

The user is not fully controllable. Their behavior determines whether the system
will fall or walk properly, no matter the theoretical stability of the nominal trajectory.
It is fine as long as they assist the robot during its motion or at least do not disturb it.
Yet, one cannot expect this assumption to hold true because a typical user is disabled.
Most of them have fairly bad control of the upper body and sense of balance, in such
a way that their behavior can be sometimes adversarial or helpful. Moreover, they
tend to hold themselves using their arms by pushing on the batteries, which is also
disturbing the dynamics of the robot.

There is no sensor on the user except one IMU on the back, so their state cannot
be directly observed. Still, assuming the dynamics of the robot is perfectly known,
its proprioceptive sensors are sufficient to estimate the state of the user at any point
in time. Additionally, if a kinematic model of the user is available, then it may even
be possible to deduce their full state from the history of past measurements. One can
expect machine learning techniques to be able to learn it and therefore to be more
robust than classic control approaches.

Once the state of the user is estimated, it can be perceived as something else
than one external disturbance to be rejected among others. It should make it easier
to maintain and recovery balance. More importantly, it enables counteracting the
specific pathologies of the patients and adapting the behavior of the robot to the
evolution of their condition. It should enhance motor recovery, adding up to the
existing benefits of the platform for rehabilitation.
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Offline Trajectory Planning

The exoskeleton is basically tracking pre-computed motions, disregarding early im-
pact handling and admittance control to compensate locally for small disturbances
(cf. section 2.2.3). A set of trajectories corresponding to primitive motions are gen-
erated offline once per user, relying on external computational resources hosted by
Wandercraft. Notably, walking in a straight line, turning round, or doing side steps.

Although this approach was proven successful, it breaks the system’s autonomy.
This is acceptable from a product used in clinical centers, where access to the internet
can be requested. Moreover, the process is repeated systematically, without being
able to leverage the result of previous generations to speed up the next ones, which
is a waste of resources for Wandercraft. Even more concerning is the potential waste
of time for the physiotherapist if the delay induced by the generation process was
not anticipated. It takes about 5 minutes for each first-time user, which is significant
during 30 minutes sessions and may slow down the adoption of the product by clinical
centers. In addition, it lacks versatility since only a finite discrete set of gaits is
available on the device. This is fine for rehabilitation where the set of exercises is
limited, but it makes it very difficult to navigate in a real environment. Finally, it
lacks robustness as there is no guarantee for the optimization to convergence, even
though it is very unlikely to fail in practice.

1.2 Problem Statement and Contributions

This thesis aims at solving some blocking points preventing to restore locomotion for
disabled people in their daily life. Several challenges have been tackled in particular,

• embedding a continuous manifold of nominal trajectories on the exoskeleton to
make it possible to navigate in unstructured environments (cf. chapter 5),

• ensuring smooth and natural transitions between nominal trajectories without
having to go back to stand-still systematically (cf. chapter 6),

• providing a robust control policy to guarantee the safety of the user by maintain-
ing balance at all costs, while actively compensating for discrepancies between
planning and reality (cf. chapter 6).

Hereafter, we summarize our contributions.

1.2.1 Online Trajectory Planning

Online trajectory planning enables robots to deal with a real-world environment that
may change suddenly and to carry out sequences of tasks in unknown orders and
contexts. For instance, walking robots must be able to change direction or adapt
their speed, but also to consider stairs of different heights or the position and size of
obstacles. Conventionally, online trajectory planning capability is achieved by solving
trajectory optimization in real time. This can be done by either relying on embedded
resources or streaming data through the network to a dedicated computation unit.
A hybrid mix of both is also relevant as it enables continuous improvement over the
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whole fleet of devices already deployed by sharing experience globally. For instance,
Boston Dynamics and Tesla are streaming data related to computer vision processing
whenever a network connection is available. In classical robotics, mainly two different
planning approaches are used for bipedal robots: whole-body optimization by solving
directly over the full-body state (Dalibard et al., 2013), or reduced model optimization
which is a two-stage method consisting in first planning the centroidal dynamics –
i.e. the angular momentum and the position of the center of mass – according to a
highly simplified model, and then finding a consistent full-body state (Ahn et al.,
2021; Apgar et al., 2018; Caron, 2020).

Offline trajectory planning based on whole-body optimization is already very
challenging for complex systems that may involve hybrid dynamics, under-actuation,
redundancies, balancing issues, or a need for high accuracy such as bipedal robots.
Although efficient methods exist to solve most trajectory optimization problems such
as Differential Dynamic Programming and Direct Collocation Transcription (Budhi-
raja et al., 2019b; Hereid & Ames, 2017; Hereid et al., 2018; Huynh et al., 2021), there
is no guarantee of convergence and finding solutions is computationally demanding,
preventing their uses online. Hereid et al. (2016b) get around these issues by running
the optimization in the background and updating the trajectory periodically, e.g.
between each step for bipedal robots. However, it remains hard to meet such com-
putational performance, and this still provides a poor reaction time. Reduced model
approaches can be used to speed up the calculations and ensure convergence, for
example by linearizing the dynamics. Nevertheless, it does not have any guarantee
to be feasible in practice because it does not take into account the actual dynamics
of the system, and the overall motion is less natural (Boer, 2012; Kajita et al., 2003).

A workaround to avoid online trajectory optimization consists of using a function
approximation, i.e. performing trajectory learning over a set of trajectories generated
beforehand. This requires no simplification of the model since the optimizations are
carried out offline. Moreover, once training has been done, it operates at a fraction
of the cost of the previous methods. Two distinct approaches can be considered: pol-
icy learning, i.e. training a controller, and trajectory learning, i.e. predicting nominal
state sequences. While the potential of policy learning is impressive, it implies a com-
plete overhaul of the control architecture and new requirements in terms of embedded
and on-premise computational resources, not to mention certifiability concerns. Tra-
jectory learning has the advantage of being effortless to integrate into robotic systems
for which there already exists control strategies that ensure robust tracking of tra-
jectories generated through optimization: it comes down to replacing a finite set of
trajectories with the function approximation. A naive approach would be to train
a function approximation on a database of solutions to the optimization problem.
Although it may work in practice, this is sensitive to overfitting and does not offer
any guarantee to really perform the desired task or to be feasible. This is nonetheless
state-of-the-art in trajectory learning as this field is still largely unexplored.

Our contribution is the Guided Trajectory Learning (GTL) algorithm, which
makes trajectory optimization adapt itself, so that it only outputs solutions that
can be perfectly represented by a given function approximation. The idea is to make
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the trajectory optimization problem adapt itself wherever the function approxima-
tion fails to fit. Our method is readily applicable to any complex robotics system
with a high-dimensional state for which offline trajectory optimization methods and
satisfactory control strategies are already available and efficient. It makes online
trajectory planning based on function approximations more accurate and reliable by
guaranteeing the feasibility of the predictions, thereby being practical for systems
where failure is not an option. We demonstrate it on flat-foot walking with the
exoskeleton Atalante (cf. chapter 5).

This contribution has been the subject of the following publications and patents:
• Online Trajectory Planning Through Combined Trajectory Optimization

and Function Approximation: Application to the Exoskeleton Atalante in
the International Conference on Robotics and Automation

• Procédés d’apprentissage de paramètres d’un reseau de neurones, de généra-
tion d’une trajectoire d’un exosquelette et de mise en mouvement de
l’exosquelette as international patent under the Patent Coopera-
tion Treaty (No. WO2021058918A1)

1.2.2 Robust and Safe Control Policy Optimization

Achieving dynamic stability for bipedal robots is one of the most difficult challenges
in robotics. Continuous feedback control is required to keep balance since the ver-
tical posture is inherently unstable. However, hybrid high-dimensional dynamics,
kinematic redundancy, model and environment uncertainties, and hardware limita-
tions make it hard to design robust embedded controllers. Trajectory planning for
bipedal robots has been solved successfully through whole-body optimization. In
particular, Gurriet et al. (2018) achieved stable walking on flat ground and without
disturbances on the exoskeleton Atalante by using state-of-the-art traditional meth-
ods. Yet, robust tracking of reference motions and emergency recovery is still an open
problem. Classic control approaches require a lot of expert knowledge and effort in
tuning because of discrepancies between approximate models and reality. Solutions
are mainly task-specific, and improving versatility is usually done by stacking several
estimation and control strategies in a modular hierarchical architecture (Herzog et al.,
2016; Kim et al., 2020; Lohmeier et al., 2009; Moro & Sentis, 2018). Despite being
efficient in practice, it makes the analysis as well as tuning increasingly challenging
and thereby limits its capability. Machine learning methods, such as deep RL, in
contrast, require expert knowledge and extensive efforts to design the agent and the
reward rather than structuring explicit controllers and defining good approximate
models. RL aims at solving observation, planning, and control as a unified problem
by training an end-to-end control policy. Tackling the problem globally substan-
tially increases its potential, however, state-of-the-art algorithms still face difficulties
to converge and obtain satisfying behavior for practical applications. Moreover, a
ubiquitous problem of controllers trained with deep RL is the lack of safety and
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smoothness. This is a problem for real-life deployment as human beings aren’t able
to predict future motions. Without special care, the command varies discontinuously
like a bang-bang controller, which can result in a poor transfer to reality, high power
consumption, loud noise, and system failures (Mysore et al., 2021). Despite these
potential limitations, a robust gait and push recovery for the bipedal Cassie robot
was recently learned in simulation using deep RL and then transferred successfully
to the real device (Castillo et al., 2021; Li et al., 2021). Concurrently, several works
on standing push recovery for humanoid robots trained in simulation suggest that
the approach is promising (Ferigo et al., 2021; Melo et al., 2020), although the same
level of performance has not been achieved on real humanoid robots.

Our main contribution is the development of a purely reactive controller for stand-
ing push recovery on legged robots using RL, which is used as the last resort fallback
in case of emergency. Precisely, we design an end-to-end policy featuring a variety
of human-like balancing strategies from the latest proprioceptive sensor data, while
guaranteeing predictable, safe, and smooth behavior. The resulting policy greatly
expands the set of recoverable states in comparison to classical model-based con-
trollers on similar systems. Moreover, the policy can be directly transferred to a real
robot. We demonstrate agile push recovery behavior for strong perturbations on the
self-balanced medical exoskeleton Atalante (cf. chapter 6).

This contribution has been the subject of the following publications and patents:
• Reactive Stepping for Humanoid Robots using Reinforcement Learning: Ap-

plication to Standing Push Recovery on the Exoskeleton Atalante in the
International Conference on Intelligent Robots and Systems

• Methods for training a neural network and for using said neural network to
stabilize a bipedal robot as European patent (under examination)

1.2.3 Realistic Open-Source Simulator for Reinforcement Learning

Simulation is a critical tool in robotics. Robots are no longer limited to operating
in structured environments and performing scripted actions. In this context, being
able to compare and analyze different software and hardware solutions in a virtual
playground can help to bring out the physical constraints, planning challenges, and
control limitations that the robot may face before actually building it. Thus, it
reduces the cost and accelerates the engineering design cycle by quickly discarding
unsuccessful solutions. Furthermore, artificial intelligence techniques such as RL are
now mature for real applications (cf. section 3.2). It promises to endow the next gen-
eration of robots with locomotion and decision-making skills, but those algorithms
are usually extremely data-hungry. Simulation enables generating a large amount of
training data in a fraction of the real-time, without safety concerns or wearing out
the device. Finally, while physically testing robots before deployment is mandatory,
building a controlled environment for every specific task to perform ensures thorough
testing, which avoids regressions over time and enables benchmarking of new solu-
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tions. In parallel, data-driven approaches consisting in training a surrogate model to
replace simulators with an oracle are slowly emerging. One of their main use cases
is speeding up calculations that would otherwise be very costly, e.g. fluid and quan-
tum mechanics. Ha and Schmidhuber (2018) train a function approximation of a
dataset of observations without any additional requirement, which they called world
model. This approach is condemned by the robotic community, mainly because of
a lack of understanding of its internal workings following its black box design, lim-
ited theoretical validation, and unreliable accuracy. Raissi et al. (2019) introduce
Physics-Informed Neural Networks (PINNs) to overcome most of these shortcom-
ings. To do so, they enforce in addition that the model respects any given law of
physics described by general nonlinear partial differential equations, possibly com-
prising unknown physical constants. This approach can be applied to obtain either a
discrete or continuous model while ensuring arbitrary accuracy in both cases. Yet, if
the model is trained from synthetic data, then it has little advantage over an actual
physics engine which is already cheap to evaluate for legged robots, and providing
enough real data to identify the unknown parameters is challenging.

Optimizing control policies using RL for legged robots requires a fast and realistic
simulator. Furthermore, the dynamics must be smooth to minimize the signal-to-
noise ratio and thereby reduce the number of samples necessary to accurately estimate
the gradient of the problem. Several physical simulators were already available when
we started investigating this topic, among them Mujoco (Todorov et al., 2012), Dart
(Lee et al., 2018), Drake, ODE, Simbody, and Bullet. Mujoco is ubiquitous in the
Machine Learning community. Yet, relying on it for anything else than synthetic
benchmarking is not acceptable due to its unrealistic contact model. Moreover, at
that time, it was commercial software, closed-source, and poorly documented. Dart,
Drake, or Simbody are not great options either because they are notably slow. ODE
is based on Newton dynamics instead of Lagrangian dynamics, which is known to lead
to non-smooth physics with poor signal-to-noise ratio, bad numerical stability, and
non-repeatable results. On its side, Bullet was a promising option but not thoroughly
tested nor widely adopted by the machine learning community. Ultimately, all these
simulators were showing limitations regarding the physics and the set of features
readily available. For instance, considering the gantry, the physiotherapist or the
user inside the exoskeleton was theoretically possible but not supported out-of-the-
box. More importantly, none of them were modeling the mechanical deformation of
the structure. Besides, none of these tools were sharing a common interface with
the libraries already developed at Wandercraft internally, substantially hindering the
transfer of knowledge from the existing codebase to the simulation environment.
Typically, being able to export simulation log files in the same format as the real
robot would enable using the analysis toolchain already available.

A new simulator specifically tailored for legged robots has been developed during
this thesis. This simulator, called Jiminy, is open-source and freely available. The
minimal features to perform policy optimization are provided. Notably, it implements
the standard interface required by all RL libraries, and examples of learning environ-
ments are available for a few commercially available legged robots. And last but not
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least, Jiminy comes with basic tools to visualize and analyze the results conveniently.
Its performance is fairly competitive against other available libraries, with a real-time
factor being close to 50 on a single thread for the exoskeleton Atalante. Under the
hood, Jiminy leverages the rigid body dynamics library Pinocchio (Carpentier et al.,
2019). This library is heavily used by the research teams at Wandercraft, and hence
having a simulator based on it greatly eases internal adoption (cf. appendix C).

This contribution had been released in open-source under MIT license:
• Jiminy: a Fast and Portable Python/C++ Simulator of Poly-Articulated

Systems with OpenAI Gym Interface for Reinforcement Learning at
https://github.com/duburcqa/jiminy

• Tianshou: a Highly Modularized Deep Reinforcement Learning Library in
the Journal of Machine Learning Research (Machine Learning
Open Source Software Paper)

Outline of the Thesis

This thesis is organized into six chapters. First, chapter 2 defines the theoretical
model of the system patient-exoskeleton, then it introduces classic planning and con-
trol methods of bipedal robots. Next, chapter 3 gives an overview of supervised
learning and neural networks, then presents reinforcement learning. These two pre-
liminary chapters cover the necessary technical tools to fully comprehend the related
works and our contributions. Chapter 4 is dedicated to discussing the state-of-the-art
approaches related to our contributions. The chapter is divided into two parts. First,
we review existing results about combining trajectory optimization and function ap-
proximation, followed by policy learning approaches from which our contribution
takes inspiration. The second part focuses on presenting some techniques to ensure
robustness and safety of control policy using reinforcement learning and how to do
the sim-to-real transfer. Chapter 5 and chapter 6 constitute our main contributions.
Chapter 5 introduces a new algorithm combining trajectory optimization and func-
tion approximation to enable online trajectory planning. Chapter 6 presents results
on learning versatile locomotion skills for legged robots while ensuring robustness
and safety of the control policy. Finally, Chapter 7 proposes a discussion and some
perspectives on our contributions. Appendix A formalizes mathematically the tra-
jectory optimization problem and illustrates it for walking in a straight line on flat
ground with the exoskeleton Atalante. Appendix C gives some details about the
physics modeling and features available in the Jiminy Simulator that was developed
as part of this thesis. Appendix D summarizes some prominent network architectures
in machine learning. Appendix E reviews in depth the algorithms that led to major
breakthroughs in RL from its foundation almost 50 years ago up to this day while
drawing connections between them.
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2.1 Preliminaries on Rigid Body Dynamics

The Rigid Body Dynamics refers to the study of the kinematics and dynamics for
rigid poly-articulated system. Great progress has been made in this field since the
availability of cheap computational resources. Nowadays, algorithms to compute any
kinematics and dynamics quantities with the lowest possible complexity have been
found (Goswami & Vadakkepat, 2019, Part IV; Featherstone, 2008; Carpentier &
Mansard, 2018). They are fast enough to enable online control for complex systems
such as humanoid robots using embedded computational resources. Nevertheless,
how to efficiently model and integrate over time the interaction with the environment
is still an active research topic. In line with this statement, we offer our very own
contact solver with our open-source simulator Jiminy in appendix C.

Kinematic Trees

A rigid poly-articulated system is mathematically represented as a directed graph
(Goswami & Vadakkepat, 2019, Part IV). The vertices of this graph are rigid bodies,
also called links. A rigid body is not supposed to deform or change shape, which
is an idealization. Any assembly of multiple mechanical parts fixed relative to one
another is viewed as one rigid body. Each body is fully characterized by a small set
of constant physical parameters (cf. section 2.1.1). The edges are joints. A joint
defines the relative motion that is permitted between its parent and child bodies.
It is a mathematical abstraction of one physical mechanism as well as possible its
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(a) Open kinematic tree (b) Closed kinematic graph

Figure 2.1: Examples of kinematic graphs

transmission system doing the interface with actuators if any. Thus, it gives you
limited information about the actual design of the robot: infinitely many mechanisms
would be modeled the same way. Each type of joint characterizes one particular set
of independent movements among the 3 translations (X, Y, Z ) and the 3 rotations
(Roll, Pitch, Yaw) plus any combination between them (cf. section 2.1.1). These
independent movements are termed Degrees of Freedom (DoFs). Their number cannot
exceed 6 in our 3D space. The most common type of joint is the revolute joint which
only enables a single rotation. More complex types exist, such as the helicoidal joint,
allowing a screwing motion coupling a translation and a rotation and therefore still
having a single DoF. Simple directed paths in a kinematic graph are known as sub-
chains. They are the assembly of several rigid bodies articulated by distinct joints.
A sub-chain is said to be closed if cyclic, and open otherwise. Robots having closed
kinematic chains are referred to as parallel, serial otherwise (see figure 2.1).

The most famous example of a parallel robot is the hexapod positioning system
called Stewart platform. Parallel kinematic chains combine high rigidity with small
mass and inertia of the manipulator relative to the load. Thus, they allow high
precision and high speed at the same time without having to compromise between
the two, unlike serial robots. However, the workspace tends to be limited, in part
because there may be singular configurations for which set the system in motion
would require infinitely large efforts for the actuators, leading to the destruction of
the mechanical structure or hardware if reached.

The determination of the singularities is an open problem in the general case.
Moreover, the structure of a parallel robot is said to be hyperstatic or statically in-
determinate: the static equilibrium equations are insufficient for determining the
internal forces acting on that structure. Further information, such as material prop-
erties and mechanical deformations, must be taken into account to find out which
is the unique physically meaningful solution among all the feasible ones (Matheson,
1959). It is necessary to anticipate which parts will break first and when, but that is
all. Indeed, any feasible solution is suitable to simulate the system since all of them
would lead to the same temporal evolution of the system.

Legged robots may comprise closed-kinematic sub-chains. For most of them,
it is possible to completely ignore these sub-chains without modifying the overall
dynamics of the system by virtually relocating the associated motors on some passive
joints. For the others, kinematic constraints must be added, but this specific case is
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ignored for simplicity. Therefore, we will focus on serial robots in the following, and
all kinematic chains will be assumed open unless stated otherwise.

Formally, such an acyclic kinematic graph is an arborescence (directed root tree)
but commonly referred to simply as a tree. Its leaves are the bodies that are not the
parent of any joint and are called end-effectors. Typical examples are the feet of a
legged robot. Conversely, a kinematic tree has only one root. It is the unique body
that is not the child of any joint and is called base. The base can be fixed relative
to the world, which is the case for robotic arms, or free-floating for robots moving
capability of locomotion such as legged robots. Free-floating base are usually called
freeflyer . For a consistent formalism between fixed and free-floating robots, a virtual
fixed body representing the world is systematically prepended to the kinematic tree
of free-floating robots, and the world is connected to the actual freeflyer of the robot
through a joint allowing all the 6 DoFs without restriction. Accordingly, it will always
be assumed that the base is fixed in the following, while still referring to robots as
either fixed or free-floating, whichever is appropriate.

Since the bodies of a kinematic chain are connected in series, exploiting the
sparsity pattern along the whole structure of the robot is crucial. The canonical rigid
body dynamics algorithms (cf. section 2.1.2) developed by Featherstone (2008) are
widely accepted as state-of-the-art in terms of algorithmic complexity. Basically, it
consists in recursively computing physics quantities by going back and forth (possibly
several times) along the chain using the Divide-and-Conquer paradigm (Cormen et al.,
2009). Recently, Carpentier and Mansard (2018) introduced efficient algorithms to
compute their analytical derivatives, along with some additional quantities. Having
access to these derivatives is fundamental in appendix A for whole-body trajectory
planning, which is at the heart of our first contribution (cf. chapter 5).

Generalized Coordinates

The Generalized coordinates are a set of parameters that determines the configuration
of a physical system at any point in time. Formally, the generalized coordinates q
form a coordinate chart, i.e. it is a homeomorphism from a topological space Q called
coordinate manifold to a subset of the euclidean space Rn. For poly-articulated
robots, the coordinate manifold gathers the cartesian positions plus orientations of
all its moving bodies (cf. section 2.1.1). Infinitely many charts can be defined for
the same manifold. The coordinates do not even have to be mutually independent.
For instance, the configuration of a wheel around a fixed axis can be described by
its rotation angle θ. This choice is the most common but flawed: either the an-
gle presents discontinuities or grows unboundedly. The alternative parameterization
(cos(θ), sin(θ)) is somewhat harder to manipulate but does not face such issues.

The generalized velocities q̇ and accelerations q̈ are the time derivatives of the
generalized coordinates q. Notations such as v or a are dismissed to avoid confusion
with classical body velocity or acceleration. If the coordinates manifold is differen-
tiable, then they locally belong to the tangent space TqQ, which is a real vector space
of Rn, where n is the number of DoFs of the system.
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Figure 2.2: Canonical generalized coordinate for the Cartpole. It corresponds to the
vector [x, θ], where x is the linear position of the cart along the rail and θ is the angle
of the pole relative to the vertical axis.

For a poly-articulated robot, the canonical generalized coordinates are obtained
by concatenating the parameterization of the state of all the joints. The parame-
terization for a given joint is not unique to its type. It is said to be minimal if its
dimensional matches the number of DoFs of the corresponding joint, and any value
within range maps to a valid state of the joint. Otherwise, one additional constraint
per extra dimension must be enforced. For spherical joints, the quaternion is the
most common parameterization although not minimal (its norm must be 1) as op-
posed to axis-angle (cf. section 2.1.1), mainly because operations involving rotations
are numerically the cheapest when specialized for quaternions. Similarly, for revolu-
tion joints, the scalar relative angle θ is ubiquitous, but the vector [cos(θ), sin(θ)] is
sometimes preferred if unbounded for numerical stability.

The generalized coordinates are at the heart of Lagrangian mechanics, which aims
to express the dynamics of the system as a function of the generalized coordinates.
This formulation prevents the constraints between bodies due to joints and the cor-
responding internal forces from appearing explicitly in the equations of motion while
ensuring they are satisfied exactly. This property not only speeds up physics com-
putations but also improves the computational accuracy and stability of rigid body
dynamics algorithms compared to Newtonian mechanics. In the latter case, the con-
figuration of the system is rather specified by the placement of all the bodies, and the
resultant forces acting on each of them are derived to obtain independent equations
of motion of each body. See section 2.1.2 for details.

2.1.1 Spatial Vector Algebra

Spatial Motion

The dynamic equations of motion are usually expressed by keeping separated the
linear and angular parts of physical quantities, e.g. linear vs. angular velocities or
forces vs. moments. This unnecessary distinction artificially doubles the number of
terms and equations (although the actual number of scalar equations is obviously
unchanged) and hence the dynamics looks more complicated than it is. This often
leads to mistakes because it is harder to understand and manipulate these terms, and
it impedes the numerical efficiency of some computations. Besides, it prevents from
considering the coupling between the translation and rotation part of transforms (cf.
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section 2.1.1), which has a huge impact when computing distances for instance (cf.
section 6.3.1). In the following, 6D notations called spatial vectors are introduced.
Although non-intuitive, it benefits from solid mathematical foundations that are
helpful to infer important properties.

The spatial motion vector space M6 is used to describe quantities homogeneous
to velocities or any higher order time derivative. More specifically, the spatial velocity
for a rigid body B is called twist . Given a fixed point O anywhere in space, the twist
is fully specified by a pair of 3D vectors: the linear velocity vector vO ∈ R3 of the
point O, and the angular velocity vector ω ∈ R3. The angular one is independent of
the application point O, and as such it has no subscript. Indeed, its direction and
magnitude characterize respectively the axis passing through the origin O around
which the body B rotates and at what speed. In contrast, the linear velocity vector
vO truly depends on the application point. The definition of the spatial velocity and
its subsequent properties generalize naturally to any spatial motion vector.

The origin must be a body-fixed point for a valid vector algebra over coordinate
vectors to be defined, namely linear transformations plus scalar and cross products.
Nevertheless, this origin can still be chosen differently over time. Notably, it can
correspond to a virtual point that happens to coincide with any other point of interest
at the current time only. It is essential to keep in mind this subtle distinction to avoid
any mistakes when differentiating coordinate vectors.

Let us consider a cartesian frame Oxyz with orthonormal basis {i, j, k} and ori-
gin O. It defines a cartesian coordinate system, that we identify to the Carte-
sian frame itself for simplicity. In this Cartesian frame, we have vO = vOxi +
vOyj + vOzk and ω = ωxi + ωyj + ωzk. The so-called Plücker basis is defined as
{dx, dy, dz, dOx , dOy , dOz} ⊂ M6, where dx, dy, dz denote the unit translations in the
directions x, y, z, and dOx , dOy , dOz are the unit rotations about the directed lines
Ox, Oy, Oz. This basis and its coordinate system onM6 are used to write down the
linear and angular velocity vectors vO, ω as one unified 6D vector called a spatial
velocity vector and denoted v̂. The spatial velocity vector v̂ in this basis and its
corresponding coordinate vector v̂O are given by,

v̂ = vOxdx + vOydy + vOzdz + ωxdOx + ωydOy + ωzdOz , (2.1)
v̂O = [vO, ω] = [vOx , vOy , vOz , ωx, ωy, ωz], (2.2)

where vO = [vOx , vOy , vOz ] and ω = [ωx, ωy, ωz].
There is no mention of the Cartesian frame and application point in the notation

of the spatial velocity vector v̂ to emphasize that it does not depend on them. Indeed,
the spatial velocity defines a vector field (the linear velocity field of body B), which
is a quantity intrinsic to the body as a whole rather than a property of individual
body-fixed points. This vector field V can be derived from the linear velocity vO at
a given body-fixed point O and the angular velocity ω,

V(P ) = vO + ω ×−−→OP, (2.3)

where
−−→
OP ∈ R3 is the relative position of P with respect to O, and V(P ) is the

value of the vector field V at a body-fixed point P , namely the linear velocity vector
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of the body B of the point P . This is easy to check that the vector field is invariant
to the application point O despite appearing in its definition. On the contrary, its
coordinate vector v̂O can be interpreted as a measure of a flow passing through the
point O rather than the velocity of one particular body-fixed point.

Interestingly, the spatial velocity of a body i in kinematic chain with N joints is
related to the joint-space velocity q̇ of the system through a 6×N matrix Ji called
body Jacobian for body i,

vi = Jiq̇. (2.4)

The structure of the Jacobian matrix is sparse. Indeed, the velocity of a body only
depends on the previous joints in a kinematic tree, and it is not affected by the other
sub-chains. Its sparsity pattern also depends on the type of joints that are involved.
Being able to take advantage of the sparsity is critical for the scalability of rigid body
algorithms as it can significantly lower their algorithmic complexity.

Spatial Forces

The same reasoning applies to the spatial force vector space, denoted F6. Given a
rigid body B and a fixed point O, the spatial force, also called wrench, consists of a
linear force f acting along a line that passes through O, together with a couple τO
equal to the total moment about O. The total moment about any other point P can
be calculated using the force analogous equation of equation (2.3),

τ(P ) = τO + f ×−−→OP. (2.5)

It shares analogous properties to the spatial motion, e.g. being invariant to the loca-
tion of the application point O.

In the same way as before, the Plücker basis {eOx , eOy , eOz , ex, ey, ez} ⊂ F6 is
used to obtain a spatial force vector f̂ gathering the linear force f and torque τO.
eOx , eOy , eOz are unit torques in directions x, y, z, and ex, ey, ez are unit linear forces
acting along the lines Ox, Oy, Oz. In this basis, the spatial force vector v̂ is given by

f̂ = fxeOx + fyeOy + fzeOz + τOxex + τOyey + τOzez, (2.6)

with corresponding coordinate vector,

f̂
O
= [fx, fy, fz, τOx , τOz , τOz ]

T = [f, τO]
T , (2.7)

where f = [fx, fy, fz]
T and τO = [τOx , τOz , τOz ]

T .

Duality Properties

Formally, the vector spaces M6,F6 associated with spatial motions and forces are
dual. As such, many important properties can be deduced. The hat symbol over
spatial vectors and underlining of coordinate vectors will be dropped in the following
if already implicit. Conversely, if there is any ambiguity, a subscript on a spatial
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vector will specify to which body or moving frame it is related, and a prescript on a
coordinate vector will denote the coordinate system.

The scalar product that takes one element from each vector space is properly
defined. In any event, it is homogeneous to an energy or some higher-order time
derivative such as a power. Yet, it must involve quantities related to the same body
to be physically meaningful. Given m ∈ M6 and f ∈ F6 and their dual coordinate
representations m, f , the scalar product is defined as follows,

m · f = f ·m = mT f = fTm. (2.8)

Therefore, one can interpret the scalar product as applying the operator a· = aT that
maps b to a · b.

Two different cross products are defined on spatial vectors: one takes two motion
vectors and returns a motion vector, and the other one takes a motion vector as
left-hand and a force vector as right-hand to produce a force vector. Let A be a
Cartesian frame that is moving with a spatial velocity of vA, and Am,Af be two
coordinates vectors representing the spatial vectors m ∈ M6, f ∈ F6 in Cartesian
frame A respectively. The coordinate vectors Aṁ ∈ M6,

A
ḟ ∈ F6 that represents

their time derivative in the Cartesian frame A are given by

Aṁ =
A(dm

dt

)
=

dAm

dt
+ AvA × Am,

A
ḟ =

dAf

dt
+ AvA ×∗ Af, (2.9)

where × is the cross product operator and ×∗ can be regarded as its dual. These two
cross-products are involved in the temporal differentiation of spatial vectors.

Time Derivative
dAm
dt , d

Af
dt are the element-wise time derivative of the coordinate vectors representing

the spatial vectors m, f in Cartesian frame A, respectively. It is called apparent
derivative since it can be regarded as the apparent rates of change ofm, f as perceived
by an observer attached to the moving frame A hence having a velocity of vA. If the
Cartesian frame A is fixed, then the spatial and actual derivatives match. Conversely,
if the spatial vector is constant in the Cartesian frame A and the latter is moving,
then the first term of the left-hand of the equalities vanishes. As for the scalar
product, one can define the operators v̂× and v̂×∗ as 6× 6 skew-symmetric matrices
(Siciliano & Khatib, 2008, Part A, Chapter 2),

v̂× =

(
vO×3 ω×3

0 ω×3

)
, v̂×∗ = −(v̂×)T , (2.10)

where ×3 is the skew matrix representation of the cross-product for 3D vectors,

a×3 =

 0 −az ay
az 0 −ax
−ay −ax 0

 . (2.11)
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The matrix operators a×, a×∗ are not efficient from a numerical point of view but
are convenient to derive more complex operators in compact forms. They are used
without distinction from the actual cross-product operators ×,×∗ in the following.

As a side note, the classical acceleration people are accustomed to is the apparent
derivative of the spatial velocity in a Cartesian frame with an orientation fixed in
space but an origin attached to the body. Whereas the spatial acceleration preserves
the structure of the vector space in it, it is not the case for the classic acceleration.
For instance, the addition of spatial accelerations is well-defined, just like for spatial
velocities. Moreover, there is no fictitious force coming from working in a non-
inertial reference frame to worry about, which is a major advantage. The classical
acceleration â′ can be obtained from equation (2.9),

â′ = â−
(
vO
0

)
×
(
vO
ω

)
= â+

(
ω × vO

0

)
. (2.12)

Frame Placement

The pair position plus orientation of a frame in the world is called pose. Formally, the
position corresponds to the cartesian coordinates in the 3D euclidean space R3, but it
is more complicated for the rotation. The set of all possible rotations about the origin
of the 3D euclidean space form a Lie group. As such, special operators must be used
to perform linear operations, integration, or differentiation. The rotation group is
called 3D Special Orthogonal group and denoted SO(3) because it is homeomorphic
to the set of orthogonal matrices of size 3 with determinant +1, i.e. rotation matrices.
The group of poses is homeomorphic to R3 × SO(3) since translations and rotations
are independent. It is called the 3D Special Euclidean group and is denoted SE(3).

Being able to represent rotations using a coordinate system, called chart on
SO(3), instead of rotation matrices is important for several reasons. First, it is
much easier to comprehend. Secondly, it is more compact and therefore numerical
implementations can be more efficient. It exists many coordinate systems, but all
of them are facing multiple-value issues, i.e. different coordinates can represent the
same rotation. Moreover, some of them have singularities making them only valid
locally. For instance, the Euler angles representation (roll, pitch, yaw) is widely used
because it is very intelligible, but the uniqueness property breaks down for some
specific coordinates, which is referred to as gimbal lock. Another famous parameter-
ization are unit quaternions (x, y, z, w), sometimes called versors. It can be used to
represent 3D rotations up to sign, so the unit quaternion group is a double covering
map of SO(3). This is less an issue that the gimbal lock problem in practice, and
therefore it is often preferred over Euler angles, at least for internal implementations.
Although it is hard to interpret unit quaternions directly, it is easy to relate them to
their axis-angle representation (ê, θ),

q = [x, y, z, w]T = eθ/2 ê =

[
sin

(
θ

2

)
ê, cos

(
θ

2

)]T
, (2.13)

22



2.1. Preliminaries on Rigid Body Dynamics

where ê is the axis of the rotation, and θ is the angle. The typical axis-angle coor-
dinates are the product of the angle by the axis θê. It can be obtained from a unit
quaternion through the inverse of the exponential map of its Lie Algebra. It means
that the axis-angle coordinates can be interpreted as coordinates on its tangent space
at 1, that is an angular velocity. Thus, it is often involved in the integration and
differentiation of rotations.

Coordinate Transforms

Being able to define the pose of a frame and use it to perform operations on motion
and force vectors is fundamental for poly-articulated system. To this end, coordinate
transforms are introduced. They are called this way because they map spatial vectors
computed in a given Cartesian frame to another one. The transformation rule is
different according to whether it operates on spatial motion or force vectors. Let A
and B be two Cartesian frames. The coordinate transform from A to B coordinates
for a motion vector is written BXA, while the same transform for a force vector is
denoted BX∗

A to highlight a kind of duality between them. It follows,

m̂B = BXA m̂A, f̂B = BX∗
A f̂A, (2.14)

where m̂A, m̂B, f̂A, f̂B are the coordinate vectors representing the spatial vectors
m̂ ∈M6 and f̂ ∈ F6 in Cartesian frames A and B respectively.

The transform BXA is very important because it also represents the relative po-
sition and orientation of frame A in B coordinates. Suppose that the position and
orientation of frame A in B coordinates is described by a position vector BpA and a
rotation matrix BRA. The transform BXA can be formulated as a 6x6 matrix. It can
be easily obtained by decomposing the transformation BXA into a pure translation
BpA followed by a pure rotation BRA,

BXA =

(
1 BpA×
0 1

)
︸ ︷︷ ︸
pure translation

(
BRA 0

0 BRA

)
︸ ︷︷ ︸

pure rotation

=

(
BRA

BpA × BRA

0 BRA

)
. (2.15)

The 6x6 matrix associated with the inverse transform AXB = BX−1
A can be

computed easily by simply inverting the decomposition. Moreover, from the duality
of the spatial motion and force spaces, it comes BX∗

A = BX−T
A . Similarly, the time

derivative of a transform is given by,

B
ẊA = B(vA − vB)× BXA. (2.16)

Another key property at the heart of rigid body algorithms is the chain rule. Let
us consider a set of k cartesian frames {Ai}ki=1, then

Ak
XA1 = Ak

XAk−1
Ak−1

XAk−2 · · · A2
XA1 . (2.17)
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Rigid Body Description

Important properties of a rigid body B are its total mass m and the relative position
pG of its Center of Mass (CoM) G. It is defined as the unique point where the
weighted relative position of the distributed mass over its volume sums to zero,

pG =
1

m

∫∫∫
VB

ρ(p)pdV, (2.18)

where ρ(p) is the local density at point p. If the density is uniform, then it boils
down to the centroid of the solid.

Another key property is its inertia IG expressed at the CoM. It maps the angular
velocity ω of a body to its angular momentum hG. The angular momentum is central
in analytical mechanics since it relates the acceleration of a body to the external
forces applied to it. It will be presented in more detail in the following. Formally, it
is defined as follows,

IG =

∫∫∫
VB

ρ(p)(∥p∥I3 − p⊗ p) dV, (2.19)

where ⊗ denotes the outer products in R3 and I3 is the identity matrix of size 3.
A reference frame attached to the body in which to compute the aforementioned

physics properties must be specified. This reference frame must be chosen carefully
to minimize coordinate changes when carrying out computations along the kinematic
tree and speed up rigid body algorithms subsequently. By convention, it is the frame
associated with the parent joint of the body.

The spatial inertia Î aggregates some of these properties to operate directly on
spatial vectors. It is the 6x6 matrix

Î =

(
IG 0
0 mI3

)
(2.20)

mapping a spatial velocity vector v̂ ∈M6 to the spatial momentum ĥ ∈ F6,

ĥ = Î v̂. (2.21)

From this definition, it stands out that the spatial inertia Î is a symmetric dyadic
tensor, which means that it can be expressed as the sum of six symmetric outer
products of vectors gi ∈ F6,

Î =
6∑

i=1

gi ⊗ gi. (2.22)

From this and knowing that the spatial inertia is a quantity that is fixed in the body
frame, its time derivative can be derived from equation (2.9),

˙̂
I = v̂ ×∗ Î − Î × v̂. (2.23)
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Body 1 Body 2
Body N

Base

Joint 1

Joint 2

Joint N

Figure 2.3: Kinematic chain with N bodies. Each joint is characterized by its spatial
axis vector si assuming a single degree of freedom.

To wrap up, all the physic properties that are needed to compute the dynamics
of a rigid body are the relative position of the CoM and the spatial inertia matrix
Î expressed at the CoM. They are estimated by the CAD software used to design
the robot. The accuracy is reasonable but far from perfect because many elements
are neglected, i.e. cables, electronics, protection foam, glue, drawing simplifications
(threading, deburring...), and engineering tolerance (material, assembly...). If more
accuracy is needed, typically for spatial applications, then it exists devices to measure
these properties directly for rigid sub-assemblies.

Joint Description

A joint constrains the relative motion between its parent and child bodies in the
kinematic tree. A joint is fixed relative to its parent body. Thus, it is sufficient to
attach a frame to each of them and specify the relative frame placement with respect
to their parent body to carry out computations along the kinematic tree.

By convention, the velocity vJi of a joint i is defined as the spatial velocity of
the child body vi relative to the parent body vi−1, both expressed in the reference
frame of the parent body of the joint. Formally, the joint restricts the velocity vJi to a
subspace Si ⊆M6 at the current time. If the joint allows nf DoFs, then dim(S) = nf
and S(q) is a 6×nf matrix. Similarly, the number of constraints enforced by the joint
is nc = 6−nf and the constraint internal forces lie in the nc-dimensional orthogonal
subspace S⊥ ∈ F6. Indeed, joints do not generate nor consume power since friction
and actuation are handled separately, therefore the scalar product between motion
and force vectors must be zero, which is exactly the orthogonality condition.

The joint constraint is most often scleronomic, i.e. it can be written as equality
only involving positions and velocities without explicit time dependency. It yields,

vJi = S(qi)q̇i, (2.24)

where qi is the subset of the generalized coordinates associated with the joint i, and
S(qi) is a matrix that may depend on the joint configuration. The matrix S(qi) is
specific to each type of joint. It is usually invariable, one notable exception being
the universal joint or Cardan joint. The latter is a compound joint of two revolute
joints whose axes intersect orthogonally. For joints allowing a single DoF such as
prismatic but also helicoidal joint, S(qi) is a constant motion vector Si ∈ M6 and
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0Xi−1Si is the spatial axis vector in base frame for the current configuration si(q)
(see figure 2.3). It is always possible to model a complex joint as a serial chain of
1-DoF coincident joints separated by massless bodies. Such a compound joint is said
to be kinematically equivalent.

Let jvi be the spatial velocity of a body i in the frame of a body j and jvJi be
the spatial velocity of a joint Ji in the frame of a body j. The spatial velocity 0vi of
a body i in the base frame and its Jacobian 0Ji are computed using the chain rule:

0vi =
0Xi−1

i−1vi =
0Xi−1

(
S(qi)q̇i +

i−1vi−1

)
= 0Xi−1S(qi)q̇i +

0vi−1

= · · · =
i∑

j=1

0Xj−1S(qj)q̇j =
[
0Xi−1S(qi),

0Xi−2S(qi−1), · · · , S(q1)
]T
q̇

= 0Jiq̇. (2.25)

2.1.2 Whole-Body Dynamics

The dynamic equation of a poly-articulated robot can either be obtained using
Newton-Euler formulation and Lagrange formulation. The algorithmic complexity
of a rigid body algorithm is directly related to the formulation that is used. One or
the other will be more appropriate depending on the kinematic structure of the robot
and the quantity to compute. Therefore, it is essential to present both. Newton-Euler
is more intuitive and well-known but Lagrange formulation is more commonly used
in robotics to describe the dynamics of a system.

For a single rigid body, the dynamic equation of motion is straightforward to
obtain from the Newton-Euler formulation. The rate of change of the spatial angular
momentum ĥ equals the total spatial force acting on it,

f =
˙̂
h = Î â+

˙̂
Iv̂ = Î â+ v̂ ×∗ ĥ, (2.26)

where f ∈ F6 is a sum of the spatial forces applied on the body, Î is its spatial
inertia, and v̂, â ∈ M6 are its spatial velocity and acceleration respectively. One
can obtain the dynamic equation of the whole system by simply stacking the ones
for each body individually. At this point, f comprises the actual external forces to
the whole system such as the ground reaction forces and motor torques, but also the
internal forces consequent to kinematic constraints and the effect of gravity. It is
possible to get rid of those internal forces by taking into account those constraints
explicitly and solving them using the Lagrangian multiplier method. Let Ti be the
matrix that spans S⊥

i , where Si the motion subspace for joint i,

T T
i vJi = 0. (2.27)

By differentiating this relation, concatenating it for each joint, and using the duality
between motion and force vectors it yields,

T TaJ + Ṫ T vJ = 0, f = τ + fg + Tλ, (2.28)
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where T is a block diagonal matrix having Ti in its j-th diagonal block, τ is the sum
of the actual external forces and λ is the vector of internal forces resulting from the
joint constraints. One can compute the internal forces λ explicitly by jointly solving
equations (2.26) and (2.28).

The Lagrange formulation proceeds via the Lagrangian of the system,

L = T − U, (2.29)

where T,U are the total kinetic and potential energy respectively. The total kinetic
energy is the sum of the kinematic energy of the n individual bodies,

T =
n∑

i=1

1

2
v̂ · ĥ =

n∑
i=1

1

2
v̂Î v̂. (2.30)

This expression can be written in matrix form using generalized coordinates based
on equation (2.25),

T =
1

2
q̇TH(q)q̇ =

1

2

n∑
i=1

n∑
j=1

q̇Ti Hi,j q̇j , (2.31)

where Ici is the aggregated inertia of the subtree rooted at body i treated as a single
composite rigid body and Hi,j = ST

i I
c
max(i,j)Sj . H(q) is called inertia matrix or mass

matrix and only depends on the configuration q of the system.
The dynamic equations of motion can then be developed using Lagrange’s equa-

tion of the first kind,

d

dt

∂L

∂q̇i
− ∂L

∂q
·
(
∂g

∂pi
(g−1(q))

)
= τi (2.32)

where τ are the generalized external forces, pi =
∫
q̇i is the element-wise primitive

of the generalized velocity locally and g ∈ C1 is the mapping from the local chart p
to the generalized coordinates q. If the generalized coordinates are all independent,
which is usually the case except for the spherical joint associated with the freeflyer,
then g is identity. The canonical matrix form of the dynamics of poly-articulated
robots is obtained by replacing equation (2.31) in equation (2.32),

H(q)q̈ + C(q, q̇)q̇ +G(q) = τ = Bu+
∑
i

JT
i (q)fi, (2.33)

where H,C,G are the joint-space inertia, Coriolis, and gravity matrices respectively,
B is a selection matrix that determines how the controls u take effect on the joints,
fi ∈ F6 is the i-th external force applied on body Bi and Ji is the jacobian of Bi.

This general form is important to infer mathematical properties about the system
but is never computed explicitly in practice. Recursive algorithms going back and
forth through the subchains of the kinematic tree are used instead because they have
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much lower algorithmic complexity. The main algorithms are: Recursive Newton-
Euler Algorithm (RNEA) for the Inverse Dynamics (ID), Articulated Body Algorithm
(ABA) for the forward dynamics, and Composite Rigid Body Algorithm (CRBA) for
calculating the joint-space inertia matrix (Featherstone, 2008). Forward Dynamics
(FD) refers to the calculation of the acceleration response of a given rigid-body system
to a given applied force q̈ = FD(model, q, q̇, τ), and the inverse dynamics refers to the
calculation of the force that must be applied to a given rigid-body system in order
to produce a given acceleration response τ = ID(model, q, q̇, q̈).

It must be distinguished from the Forward Kinematics (FK), which consists of
computing the pose, spatial velocity and spatial acceleration of the joints based on
the generalized position and its time derivatives p̂J , v̂J , âJ = FK(model, q, q̇, q̇). This
relation is said to be of n-th order according to the highest order derivative involved.
Any spatial feature up to the same order can be inferred from the joint information by
linear transformation (cf. section 2.1.1), e.g. the position of the CoM or the angular
velocity of Inertial Measurement Unit (IMU) sensors.

Broadly speaking, Inverse Kinematics (IK) is the reverse operation. It is more
challenging because the FK is most often not invertible due to over-constrained kine-
matics. It is formulated as an optimization problem that is solved via an iterative
gradient descent method. At this point, the spatial features of interest are consid-
ered in place of the joints, eventually with different priority levels for weighting their
respective contributions hierarchically. The problem is said to be whole-body if it
operates on the generalized coordinates and derivatives as a whole instead of each
motor individually. The problem can be written as a Quadratic Program (QP) with
inequality constraints, which can be solved efficiently with arbitrary precision. In
theory, it has exponential time complexity, but it is closer to polynomial time in
practice. Still, it is much larger than constant time for recursive algorithms.

2.2 Planning and Control in Bipedal Robotics

2.2.1 Notion of Bipedal Locomotion and Terminology

Description of Bipedal Robots

Bipedal robots fall into the category of rigid poly-articulated systems. A bipedal
robot is a kinematic tree comprising two sub-chains called legs and another one
called torso, all connected at a common body called pelvis. The torso may have two
additional sub-chains for arms. In that case, it is labeled as a humanoid robot. Cassie
robot by Agility Robotics is an example of a bipedal robot that is not humanoid.
Their other product Digit – basically Cassie with the addition of an upper body –
is said to be humanoid, even though it looks like an ostrich (see figure 2.4). It has
a very short femur and foot-like toes, which gives the impression that the knee is
bending backward while in fact, it is its ankle.

A robot is fully-actuated if one can command an arbitrary instantaneous accel-
eration for any state of interest. This assumption holds for any bipedal system with
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Asimo 6 (2014)
2.5M$

Atlas (2016)
2.0M$

Cassie (2016)
150K$

Digit (2019)
250K$

DURUS (2016)

HRP-4 (2010)
325K$

RABBIT (2003) TORO (2013) Talos (2017)
1.0M$

Valkyrie (2016)
2.0M$

Figure 2.4: Examples of bipedal robots (not at scale) with price tags if available.

human-like feet and all joints actuated, as long as at least one foot is in contact with
the ground where it remains flat and does not slip. Being fully-actuated enables
standing still indefinitely without falling, otherwise stepping in place would be nec-
essary. It is usually expected from a bipedal robot but not necessary. RABBIT is a
biped that is under-actuated since it has point feet. In such a case, most of the classi-
cal theory about the stability analysis of legged robots is not applicable. The concept
of Hybrid Zero Dynamics (HZD) has been developed to overcome this limitation and
enable both planning and control on this kind of platform (Finet, 2018).

Most legged robots only feature revolute joints (Goswami & Vadakkepat, 2019,
Part II). However, it can get more complex if the transmissions between the actual
actuators and the mechanical joints are nonlinear, e.g. the ankles of Atalante and
Cassie (cf. appendix C.3). The mechanical structure is supposed to be rigid, or more
precisely, only flexible at specific locations, typically the joints (cf. appendix C.1).

Humanoid robots have to perform reactive motions to keep balance, which re-
quires actuators that can generate high torques and high speeds at the same time.
Atlas robot uses hydraulic actuators powered by an electric pump. It delivers high
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torques with high bandwidth, but it creates loud sounds. Moreover, hydraulic sys-
tems need security features to avoid safety issues due to high pressure, which are
both difficult to implement and certify. With the advent of electric motors in many
industries during the last decade, the technologies behind it have undergone several
breakthroughs (Goswami & Vadakkepat, 2019, Part III). Electric motors can deliver
much higher torque than they used to. Strain wave gearing, also called Harmonic
Drive, are very compact mechanical gears with high reduction ratios that became
increasingly popular. Coupled together with this kind of motor, it can deliver high
mechanical power at the appropriate speed for a small volume and weight. Regarding
the mechanical design, new lighter materials are now available, e.g. carbon fibers. All
these technologies make it possible to design robots capable of very agile and dynamic
motions such as jumping or flipping. Atalante relies on them like many others.

Some legged robots including Valkyrie use Serial Elastic Actuators (SEAs). It is
a special actuator block that introduces physical compliance by inserting an elastic
element between the motor and the load to store and release part of the mechanical
energy. They serve mainly three purposes: filtering external forces, regulating applied
forces, and measuring the torques at the joint level. More precisely, they reduce
the magnitude of force impulses and spreads them out over time. In principle, it
enables completely canceling them out through control, which would be impossible
otherwise. First, the reflected inertia of geared motors limits the response time of
the transmissions even in an ideal world. Secondly, the real hardware stack has
even more limited bandwidth, the surplus energy would be dissipated mainly by
overheating, and the motors have maximum torques. The downside is making the
control significantly more complex as the dynamics of the actuators must be taken
into account (Paine et al., 2015). Torque-controlled robots like DURUS (Hereid et
al., 2018) are very promising. Grasping a glass requires accurate planning based on
its exact shape to avoid breaking it if position control is used without compliance,
whereas knowing its exact shape is not even necessary when controlling the force
applied to it. Thus, torque control not only enables safer interaction with the world
but also alleviates the need of planning ahead actions precisely.

Position control remains relevant to accurately reproduce some nominal trajec-
tory. It has demonstrated its robustness over the years in many applications. For
this reason, Talos allows for both position and torque control (Stasse et al., 2017).

Bipedal Locomotion

Formally, bipedal locomotion consists in translating the center of mass or rotating the
principal axes of inertia by moving the legs. During locomotion, the altitude of the
center of mass is always above a certain level which is used to characterize falling. In
particular, the motion of the center of mass is almost sinusoidal for humans during
walking (Kuo, 2007). Human locomotion has been heavily studied for more than
one century, but its underlying mechanisms are still misunderstood. Many works
agree to say that human walking results in the optimal motion of the center of mass
(Charalambous, 2014; Kuo, 2007). Collins et al. (2009) claim that the motion of
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Figure 2.5: Human planes of section. The sagittal plane divides the body into right
and left sections, the frontal plane splits the body into front and back portions, and
the transverse plane separates the upper body from the lower body.

arms plays a role in the reduction of energetic consumption and the risk of slippage.
Yet, it is not clear which cost function human walking minimizes and how it ensures
robustness and emergency recovery (Bretl et al., 2010).

Human locomotion on flat ground is a cyclic motion. It can be divided into two
phases: the single support phase where only one foot is in contact with the ground,
and the double support phase where both feet are in contact. A leg is said to be in
stance phase when it is in contact with the ground, in swing phase otherwise (see
figure 2.6). The tip of a leg is called foot, no matter if it constitutes an actual foot.
During the stance phase, the flying foot first impacts the ground with the heel. The
foot rotates about the heel. Next, the foot lays flat on the ground. Then, the heel
lifts from the ground and the foot rotates about the toe. The stance phase finishes
when the toe lifts from the ground. In the particular case of walking, when the speed
increases, the duration of the double support phase diminishes until it disappears
altogether. It is called running, and the double support phase is replaced by the
flight phase. The human planes of sections are commonly used in robotics and the
medical field to describe locomotion (see figure 2.5).

Only a small set of primitive periodic motions is necessary to enable versatile
locomotion on flat ground (see figure 2.7). These primitive motions can be combined
to move in complex environments and adapt the pace if necessary. It is natural for
humans, but the underlying mechanism is still unclear. It is not enough to combine
them linearly or to change the speed by time dilation, otherwise, the resulting motion
is not guaranteed to be stable.
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Figure 2.6: Characterization of bipedal locomotion

Flat foot walk Foot rolling walk

Repositioning rightRepositioning left

Repositioning back

Standing pose

Turn around rightTurn around left

Figure 2.7: Motion primitives for versatile locomotion on flat ground

Modelling of the System Patient-Exoskeleton

We assume that each link of the user is rigidly fastened to the exoskeleton. In this
regard, the system exoskeleton-patient can be viewed as a humanoid robot after ag-
gregating their respective mass distributions. Although this simplifying assumption
is rather realistic for the lower body, it is questionable for the upper body. Indeed,
the fastening of the hip and torso to the exoskeleton is slack, and the arms are com-
pletely free. Nevertheless, trying to simulate the coupling between the patient and
the exoskeleton is unlikely to bring any improvement for several reasons,

• the straps are made of deformable composite materials and doing a proper
identification of their physical properties would be very difficult,

• the coupling is never the same as the way users are fastened is not repeatable,
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• simulating the dynamics of the robot and the exoskeleton separately and inter-
acting through coupling forces at several locations is computationally intensive.

In reality, paraplegic people apply involuntary resistive forces on their own joints
as a result of muscle spasticity – a condition in which muscles stiffen or tighten – and
spams. These forces would be regarded as disturbances from the perspective of the
robot, and as such, should be taken into consideration. However, simulating these
effects requires a muscle model, which involves unknown patient-specific parameters.
Besides, patients may also apply forces intentionally or by reflex through the motion
of their upper body. These behaviors are highly subjective and not directly related
to a given pathology. How to model them is an open question.

Under the previous assumption of rigid coupling between the user and the ex-
oskeleton, the mathematical expression of the dynamics of the system is the same as
any other poly-articulated robot. Therefore, most of the theoretical background de-
veloped for bipedal robots can be translated nearly effortlessly (Goswami & Vadakkepat,
2019). Still, some dynamic properties that would be constant for classical robots are
not for Atalante. Especially, the morphology of the user modifies the mass distribu-
tion of the robot and the length of its links featuring dimensional adjustments. The
planning and control algorithms must be adapted to handle such variability.

2.2.2 Stability Assessment

Mammals keep balance while moving seemingly effortlessly. Yet, reproducing this
behavior on legged robots is a challenging task for both planning and control. This
problem is already quite well understood for quadrupedal robots, but much remains
to be done for bipedal robots. Indeed, it gets harder as the number of legs decreases.
First and foremost, it is essential to come up with some criteria to assess whether
the robot is falling. There are two types of local stability: static and dynamic. A
trajectory is said to be statically stable if the robot could stop and hold in place at
any point in time without falling. Although statically stable humanoid locomotion is
generally possible, it often looks unnatural as it is slow-paced and lacks efficiency. It
also limits the set of motions that can be performed, which is even more detrimental
and often prohibitive. For all these reasons, it is no longer an active research topic.
The notion of dynamic stability is more interesting but much harder to define rig-
orously. Roughly speaking, it relates to the ability to keep moving without falling.
Typically, human walking can be viewed as constantly falling forward, slowing the
fall by landing the flying foot at the right location and starting again on the opposite
leg. It is not statically stable as it would be impossible to stay in place in the middle
of a step. More generally, mammal locomotion is a classic example of dynamically
stable motion that is not statically stable. The classical criteria involved in the as-
sessment of dynamic stability are reviewed in this section. More details can be found
in Humanoid robotics: a reference, Part VI or Boer (2012, Chapter 7).

In the particular case of periodic locomotion for legged robots, at least two dif-
ferent notions of stability can be defined: a global one through the analysis of the
convergence to a limit cycle, and a local one only interested in what is happening
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at the current time. Global stability is what matters in practice. However, global
stability criteria are very challenging to define and evaluate. The Poincaré map
relates the attractiveness of a limit cycle over successive steps to the stability anal-
ysis of a fixed point. It is mathematically powerful but is limited to the theoretical
analysis of the stability of periodic nominal motions. Thus, it may be helpful in plan-
ning but has no value in control. The Lyapunov stability theory is comparatively
more versatile, but how to apply this approach to complex systems such as legged
robots is still an active research topic, as discussed in section 4.2.3. Thus, we set
aside the question of global stability in the following to focus exclusively on its local
counterpart. Local stability covers mainly contact stability and capturability . The
former is about preventing the robot from slipping or losing contact with the ground,
while the latter refers to the ability to stop the motion completely in any number
of steps. Guaranteeing contact stability is essential in planning (cf. appendix C.3.2),
while capturability is prematurely useful in control. These two aspects have been
widely studied for generating motion on legged robots, with very impressive results
in simulation (Caron et al., 2020; Caron et al., 2017). Indeed, motions involving
slipping on purpose such as sharp turns heavily rely on the friction model and hence
would hardly work in practice. Consequently, the contact sequence is systematically
planned so as to avoid it, with some safety margin to provide leeway and mitigate
model uncertainties. Then, those local stability criteria are usually involved in the
feedback loop to actively compensate for unexpected disturbances.

Classic planning and control methods have been outperformed recently by end-
to-end policy learning approaches (Castillo et al., 2021; Li et al., 2021). The learning
agent usually discovers all by itself its very own stability criterion. Still, it remains
beneficial to guide the agent by providing reward components from classical stability
metrics because it tends to improve the robustness of the convergence, lead to more
human-like behaviors, and ease sim-to-real transfer. Beyond this, black box end-to-
end approaches raise interpretability concerns. Having in mind the various classical
stability criteria is very helpful to analyze results both in simulation and in reality.

Center of Pressure

Many attempts were made in the past to find a good stability criterion for legged
locomotion. We limit ourselves to the analysis of the contact stability here. Conse-
quently, it is assumed that there is at least one contact point with the ground the
whole time. It is definitely restrictive, as it excludes running or jumping for instance,
but it is nonetheless sufficient for natural locomotion.

Until the last decade, the Center of Pressure (CoP) was ubiquitous in the liter-
ature. It provides an intuitive and easy-to-compute necessary condition for contact
stability but is only defined for coplanar contacts on flat ground. The CoP is the
point C in the ground plane where the momentum of the resultant force exerted by
the pressure field equals zero (Vukobratović & Stepanenko, 1972). It yields,

pC =
τn,c
fn,c

, (2.34)
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Figure 2.8: Pressure force estimation. The sensor axis is not aligned with the ground
normal. The relative angle between them could be observed by placing an additional
IMU sensor in the foot but is usually neglected, leading to measurement error.

where en denotes the normal axis of the ground, fn,c, τn,c are the force and momentum
resulting from the pressure forces (Caron et al., 2017; Sardain & Bessonnet, 2004). If
the ground interaction consists ofm contact points {pi}mi=1, then τn,c =

∑m
i=1 fi,n(pi×

en) and fn,c =
∑m

i=1 fi,n.
Equivalently, the CoP can be reformulated as the barycenter of the pressure forces,

pC =
1

fn,c

m∑
i=1

fi,n pi. (2.35)

As a property of the barycenter, the CoP is always in the closed convex hull of the
contact points, the so-called support polygon.

It follows from these definitions that the CoP must be an interior point of the
support polygon for the contact to be stable. This geometric condition for contact
stability is necessary: if the CoP is on the boundary of the support polygon, then
the robot will start tilting around the corresponding edge and lose contact. Still, it is
not sufficient because the robot might well slip if the friction with the ground is not
large enough no matter the CoP and the support polygon. The distance from the
CoP to the boundary of the support polygon is nonetheless an informative metric
of stability, also called stability margin. It is a numerical indicator of the risk of
tipping-over since the robot may withstand strong disturbances without breaking
contact stability if the CoP is further away from the boundary.

Having a stability metric that is independent of the friction forces is beneficial
for control as it can be estimated from the pressure forces alone. The latter are
usually measured contact sensors only capable of measuring the force along their
own vertical axis, ignoring all the other components. They are almost unbreakable,
while extremely cheap and reliable. However, their vertical axis only matches the
true normal of the ground when the foot on which they are attached is flat on the
ground (see figure 2.8). It is not always the case, notably during the double support
phase in foot rolling (see figure A.1). This discrepancy affects the accuracy of the CoP
estimate. Furthermore, the CoP estimate is confined to the convex hull of the contact
sensors. The latter are never placed at the actual vertices of the feet but further inside
their footprint due to mechanical design considerations (see figure 2.9). Thus, the
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CoP estimate would saturate before ridging an edge of the support polygon. In theory,
sensor fusion and model-based approaches could compensate for such biases while
being robust to intrinsic measurement noise and bias. Yet, this is very challenging in
practice, mainly because of modelling errors. It is also possible to add extra sensors
or switch with more expensive technologies, e.g. relying on a 6-axis force sensor at
each end-effector like Talos, but it would substantially increase the production and
maintenance costs. Using glsrl methods for training observers or end-to-end control
policies directly is a promising research direction to overcome issues related to limited
sensor capabilities and partial state observability.

Zero-tilting Moment Point

Being able to walk on uneven ground or use hands to keep balance by pushing on sur-
faces is important. However, this is out of the scope of the original contact stability
criteria based on the CoP, which is only applicable to coplanar contact points. More-
over, taking into account is helpful to avoid planning feasible motions. New contact
stability criteria emerged during the last decade to overcome these limitations, but
they lack an intuitive geometric interpretation and do not provide a stability metric
for robustness analysis (Caron et al., 2015; Hirukawa et al., 2006). More recently,
Caron et al. (2017) managed to generalize the original contact stability criteria based.

Let us define the gravito-inertial wrench f̂gi and the contact wrench f̂ c as follows,

f̂gi =

(
fg − Ṗ

pG × (fg − Ṗ )− L̇G

)
, f̂ c =

(
f c

τ cO

)
=
∑
i

(
f c,i

pCi × f c,i
)
, (2.36)

where ĥ = (P,LG) is the spatial momentum of the system at its CoM G in world
frame, fG denotes the gravity force, and fi is the contact force exerted by the en-
vironment on the robot at the i-th contact point Ci in world frame (Caron et al.,
2017). Notably, the force at a given contact point i can be decomposed in pressure
fi,n and friction fi,t components are that respectively normal and tangential to the
ground plane (cf. appendix C.2.2).

While the contact wrench only requires going through all the bodies in contact
to be computed, the gravito-inertial wrench aggregates the individual gravity and
inertial forces induced by all the bodies in the kinematic tree. The spatial momentum
ĥ = (P,LG) of the robot taken at its CoM G in world frame is given by,

P =
∑

body k

mkṗGk
, LG =

∑
body k

{
mk(pGk

− pG)× ṗGk
+RkIkωk

}
, (2.37)

where, mk the mass of a given body k, pGk
the absolute position of its CoM Gk, Rk

its orientation matrix in world frame, ωk its angular velocity in local frame, and Ik
its inertia matrix expressed at its CoM in local frame.

The gravito-inertial wrench augmented with the external forces and the contact
wrench are related via the dynamic equations of motion (Sardain & Bessonnet, 2004),

f̂gi + f̂ext = −f̂ c, (2.38)
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Figure 2.9: Dynamic stability assessment on flat ground using the ZMP. If the ZMP
is within the support polygon, then the stability margin corresponds to the distance
from the closest edge. The larger the margin the stronger the force it can withstand
without having to take action to avoid falling.

where f̂ext is the resultant wrench exerted by all external forces except the ground
reaction. These include the controls through the transmissions.

The Zero-tilting Moment Point (ZMP) is defined as the point Z in a given plane
where the tilting momentum acting on the system due to augmented gravito-inertial
wrench equals zero. The tilting momentum is the component that is tangential to
the supporting surface, hence the normal component of the momentum is not zero
in general. Namely, Z ∈ Π(O, en) s.t. en × (τ giZ + τ extZ ) = 0, where Π(O, en) is the
virtual plane Π(O, en) with origin O and normal axis en. It yields,

pΠZ =
en × τ cO
en · f c

. (2.39)

This expression is well-posed mathematically since en ·f c is about equal to the weight
of the robot during walking. It is easy to check that the absolute position of the ZMP
is independent of the origin of the virtual plane Π(O, en), which is expected. Note
that the friction forces have an impact on the ZMP for contact points not contained
in the virtual plane.

According to equation (2.38), the augmented gravito-inertial wrench has been
replaced by the contact wrench in equation (2.39). Indeed, the gravito-inertial wrench
involves the full state of the system and its time derivative, which cannot be reliably
estimated on the real robot. Moreover, some external forces may not be unobservable,
typically the effort of the physiotherapist on the handles in the particular case of a
medical exoskeleton. On the contrary, the contact wrench can be measured almost
directly by placing 6-axis force sensors in the end-effectors. Its computation implicitly
involves the relative position of each end-effector with respect to the CoM of the
robot. The latter can be estimated fairly accurately using a state observer taking
into account the mechanical deformation Vigne et al. (2020b).
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On flat ground, the virtual plane Π(O, en) can be chosen to be the ground itself. In
that case, the ZMP matches exactly the CoP no matter what (Sardain & Bessonnet,
2004). Any virtual plane would be equally acceptable, so that the ZMP can be any
point on the zero moment axis, which is defined as the line between the CoM and
the CoP. Thus, ZMP can be seen as an extension of the CoP to uneven ground.

It is a common misbelief that the ZMP is not confined to the support polygon and
differ from the CoP as soon as the robot starts rotating about an edge of the support
polygon. Such a discrepancy would imply that the dynamic equation of motion is
not verified, which is obviously impossible for the real robot. Still, this may happen
during motion planning if consistency is not strictly enforced. If the ZMP derived
from the augmented gravito-inertial wrench is outside the support polygon during
planning, then the generated motion would not be feasible (not dynamically stable)
and hence impossible to realize experimentally: the contact will break and the robot
will fall if the controller keeps tracking the nominal trajectory.

Caron and Kheddar (2017) refined the original definition of the support area to
take into account the friction for coplanar contacts. The actual support area Z is the
intersection between the convex hull of the contact points S and the friction cone C
rooted backward at the CoM,

Z = S ∩ (pG − C). (2.40)

Having the ZMP strictly within the support area Z is more restrictive than originally
but still does not provide a sufficient condition for contact stability. It only states that
there exists at least one instantaneous acceleration for which the contact is stable.
This acceleration is only guaranteed to be realizable if the system is fully-actuated
and subsequently unbounded controls (see definition in section 2.2.1). Indeed, the
true support area is a subset of Z. Nevertheless, this simplifying assumption is much
weaker than infinite friction and usually not limiting.

This enhanced definition of the support area is still limited to coplanar contact
points. Generalizing it to uneven ground is significantly more challenging than taking
into account friction. First, the friction cone associated with each contact point
is projected in this virtual plane. The pressure can be either positive or negative
depending on the orientation of contact normals relative to the plan normal. Next,
the convex hull corresponding to both positive and negative pressure is extracted
separately. It will result in two separated polygons that can each be empty and are
denoted P+,P− respectively. Assuming there is at least one contact point, there are
three different cases at this point figure 2.10: one of the convex hulls is empty, they
intersect, or they are disjoint. If one of them is empty, then the (virtual) support
area S is a polygon and corresponds to the single non-degenerated convex hull. It
is the most common scenario, for instance walking on a constant slope or on stairs
without using hands to push on walls. It would also be the case if the ground profile
is not too steep and the friction coefficient is bounded. The maximum slope must
not exceed π/2 − arctan(1/α); where α is the friction coefficient. It corresponds to
about 60 degrees for typical friction α = 0.5. If the two polygons are non-empty and
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(a) Either P+ or P− is
empty. S is the only non-
empty polygon.

contact 1

contact 2

contact 3

(b) The intersection of P+

and P− is not empty. S is
the whole virtual plan.

left foot right foot

wall contact

(c) The intersection of P+

and P− is empty. S is the
reunion of C+ and C−.

Figure 2.10: Virtual Support area in the three cases. P+,P− denote the positive and
negative pressure polygons, and S is the virtual support area. (Caron et al., 2017)

intersect, then the contact forces can generate any resultant wrench, which means
that the ZMP can be anywhere while maintaining dynamic stability. For instance, it
will happen if the robot is pushing on the ceiling in a room with flat ground. Finally,
if the two polygons are non-empty and disjoint, then it gets more complicated. The
support area S is the reunion of two polygonal cones C+, C− extending the two convex
hulls P+,P− respectively,

C+ =
{
pZ+ + λ

−−−−→
Z−Z+, λ ≥ 0, Z± ∈ P±

}
(2.41)

C− =
{
pZ− + λ

−−−−→
Z+Z−, λ ≥ 0, Z± ∈ P±

}
. (2.42)

Capture Point

How to assess the dynamic stability of legged robots was put aside for now. Intu-
itively, it requires some kind of forecasting capability, which is out of reach of the
previous criteria that are all about instantaneous contact stability. Pratt et al. (2006)
has introduced the concept of Capture Point to address this question, as intermedi-
ate quantities to maximize the basin of attraction around a nominal trajectory. It is
assumed in the following that contact with the environment is limited to the ground.
It holds true for bipedal locomotion on uneven ground as long as pushing on walls
using the hands is prohibited.

The Capture Point is a point on the ground where the robot must step to bring
itself to a complete stop (Hirukawa et al., 2006). It can be interpreted as an antici-
pation of the future as viewed from the current point in time. Moving the flying foot
to the Capture Point is enough to maintain balance indefinitely. Yet, it is essential
to make sure it is always reachable, eventually in several steps if it is too far away
to be reached in a single step. The Capture Point is closely related to the notion
of N -step capturability, which is thoroughly studied in “Foot placement in robotic
bipedal locomotion”, Chapter 3. If the Capture Point is reachable, then the robot
is 1-step capturable. By extension, 0-step capturability consists in keeping balance
without moving the feet by only changing the posture in double support.
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Figure 2.11: Centroidal Dynamics and Inverted Pendulum Model. S denotes the
support polygon, which is the footprint of the stance leg here. Z is the ZMP while
C is the DCM. The height h may be variable depending on the model. The angular
momentum along y-axis L̇G,y is usually assumed to be zero but not necessarily.

Fast computation of the Capture Point is not possible for complex systems such
as legged robots. It does not have any closed-form solution in the general case,
and the solution may not be unique. To circumvent this limitation, Kajita et al.
(2001) suggested using an approximate model called Linear Inverted Pendulum Model
(LIPM) for bipedal robots. In this model, the height of the CoM is constant and
there is no angular momentum around the CoM. The first assumption implies that the
robot is walking with bent knees. The second one entails that the upper body must
be always straight with locked arms if any, and the inertia of each leg is negligible.

The relation between the temporal evolution of the CoM and the ZMP can be
derived easily for the LIPM,

p̈G = ω2
0(pG − pZ), (2.43)

where ω0 =
√
g/h is called natural frequency, g is the gravity constant and h = zG−zZ

is the height of the CoM. Many less restrictive variants of the original inverted pen-
dulum model have emerged to allow more natural and versatile locomotion. In par-
ticular, Caron (2020) has introduced the Variable-Height Inverted Pendulum (VHIP)
to enable climbing stairs. The natural frequency ω is no longer constant but satisfies
a Riccati equation. Regardless of the specific model, the second-order dynamics can
always be decoupled into two first-order nonlinear systems. It follows

ξ = pG +
ṗG
ω

+
g

ω2
, (2.44)

ξ̇ = ω(ξ − pZ) +
g

ω
, (2.45)

˙pG = ω(ξ − pG), (2.46)
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Figure 2.12: Comparison between true and projected support polygon on 3 different
configurations of the feet for a bipedal robot. The projected support polygon is
depicted by the blue area and the projected one by the red chessboard pattern. As
opposed to the true support polygon, the projected one is smoothly morphing without
discontinuities. They match if and only if both feet are flat.

where the extraneous variable ξ is called Divergent Component of Motion (DCM)
because it is repelled by the ZMP (see figure 2.11). Indeed, the DCM is diverging
over time if the position of the ZMP is not regulated. On the contrary, the CoM
is attracted to the DCM. Consequently, regulating the ZMP suffices to prevent the
full state from diverging and hence avoid falling. It is easy to show that the DCM
matches the Capture Point if the inverted pendulum model is exact: moving the
ZMP to the DCM stops the evolution of the DCM, so that the CoM exponentially
converges to the DCM until the whole motion ends completely.

Let us define the projected support polygon as the virtual support area associated
with the horizontal plane passing through the DCM and involving all the candidate
contact points including those not touching the ground (see figure 2.12). The Cap-
ture Point is not confined to the projected support area unlike the ZMP. In this
perspective, an appropriate dynamic stability metric would be the distance of the
DCM from the border of the projected support polygon.

During single support phases, moving the swing leg will reshape the projected
support polygon, thereby increasing the proposed stability metric. The legs of most
bipedal robots have powerful actuators to withstand the full weight of the robot and
limited inertia, allowing very fast motion of the swing leg. Therefore, the DCM is
likely to end up in the projected support polygon before impact and subsequently
the true one at impact. At this point, regulating the ZMP would be sufficient to
keep balance assuming the system is fully-actuated with unbounded controls. This
foot placement strategy is natural for humans when falling backward (Goswami &
Vadakkepat, 2019, Part VI; Boer, 2012, Chapter 5). Another strategy would be to
lower the center of mass. It is also permitted by the proposed metric since it would
limit the divergence of the DCM and make it easier to catch up. Mesesan et al. (2021)
rely on this strategy to maintain balance if ankle control is not sufficient. They show
that it roughly doubles the maximum force impulse that the robot can withstand.
They were able to recover stability for pushes up to 0.5N.s.kg−1 in simulation on the
humanoid robot TORO, which is competitive against optimal control methods.

The projected support polygon is morphing continuously over time and the DCM
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is evolving continuously. Therefore, the distance of the DCM from the border of the
projected support polygon is also continuous. It makes this metric very appropriate
as an objective function for trajectory planning and policy learning since it provides
a well-defined gradient valid whatever the configuration of the robot and the contact
state. However, estimating the DCM may be harder than the ZMP on the real
platform since it requires estimating the position and velocity of the center of mass,
which is not directly observable. Moreover, it relies on the assumption that the robot
can be approximated by a pendulum, which may not be valid in practice. Besides,
it implicitly assumes that the robot is always in contact with the ground, but the
contact does not have to be stable.

2.2.3 Classical Control Methods

Trajectory-Based Model-Free Motor Control

Proportional-Integral-Derivative controllers (PIDs) are simple yet effective feedback
controller (Siciliano & Khatib, 2008). They are ubiquitous in robotics and are mainly
used for position and velocity control of actuated joints (Boer, 2012; Goswami &
Vadakkepat, 2019). PIDs at the joint level have been studied thoroughly both in
theory and reality over the past century (Åström & Hägglund, 1995). They mimic the
dynamics of spring-damper mechanisms whose stiffness and damping can be adjusted.
If tuned properly, they are moderately robust to model uncertainties, sensor noise,
and communication delay.

It takes as input the target position and velocity computed by a higher-level
controller running at a lower frequency. The objective of the PID is to reach this
target exponentially in time, at a given precision,

u∗j (t) = KP,j

(
(qj(t)− q∗j (t))+

KI,j max

(
−Ie,min

(
Ie,

∫ t

0
(qj(τ)− q∗j (τ)) dτ

))
+

KD,j(q̇j(t)− q̇∗j (t))
)
, (2.47)

where qj(t), q
∗
j (t) are the relative current and target position of joint j at time t

respectively, u∗j (t) is the target torque, KP,j ,KI,j ,KD,j are the proportional, integral
and derivative gains respectively, and Ie is used to clamp the maximum absolute
value of the integral term. Clamping is necessary to limit the command torque if
a joint got stuck after some unexpected event. This phenomenon is referred to as
integral windup. It would also occur in the situation where the PID target undergoes
a large change. The integral term would accumulate a significant error during the
rise, to finally overshoot the target and continue to increase because the integral
term is unwound. However, the integral term is important as it compensates static
errors at rest to enable perfectly reaching the target, which would be impossible
otherwise. The discrete-time version is obtained by replacing qj(t), q∗i (t), q̇j(t), q̇

∗
i (t)

by their discrete-time counterparts, and the integral term by the clamped sum over
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all iterations since startup of the robot. The output torque is held constant until the
next update. Note that it would be equally valid to output the target acceleration
instead of torque. It has the advantage to render the temporal response agnostic to
the load of the motor. In the end, computing the target torque is still necessary.
Doing so requires a model as the torque and acceleration are related by the apparent
inertia of each joint, i.e. their composite subtree inertia.

Finet (2018) has proven that basic high-gain PIDs at the joint level form a good
approximation of the optimal input-output feedback linearization (cf. appendix A.2.2)
if the coupling between the actuators is not too strong. Notably, there are strictly
equivalent if the actuators are perfectly decoupled. In practice, the coupling is weak
for robots having transmissions with high reduction ratios, which means that the
apparent inertia of the joints is large. It is typically the case for Atalante, and
therefore good performances can be expected using high-gain PIDs.

Low-gains PIDs emulate compliance. It accommodates discrepancies between the
real and planning environment instead of fighting against it and thereby alleviates
the need for accurate planning. For instance, the stance foot will stay flat on the
ground regardless of the ground profile. However, the tracking error will increase
and the robot may fall because of it. A time-dependent feedforward term precom-
puted offline could be added to further improve the tracking accuracy. This term
corresponds to the theoretical torque to realize the nominal trajectory and is com-
puted by FD. Thus, the efficiency of the approach heavily depends on the validity
of the theoretical model. Moreover, the theoretical torque may be discontinuous,
causing loud noise and discomfort for the user inside. For these reasons, high-gains
PIDs without feedforward term are often preferred to ensure accurate tracking and
reduce compliance to a bare minimum. Tuning high-gain PIDs is not straightforward
and usually involves heuristics. If the coupling between actuators can be neglected,
then Ziegler-Nichols method (1993) can be used to tune each motor individually.
Otherwise, it gets much tougher. As a sub-optimal workaround, each actuator can
still be tuned independently, reducing the proportional gains causing vibrations in
closed-loop in a second stage.

Tracking the trajectory in joint space does not require any model but has several
limitations. Regarding humanoid robots, in single support, the tracking error for
the pose of the flying foot is going to be much worse than any other body because
of the compounding of errors along the whole kinematic chain. Similarly, PIDs at
the joint level have no direct control over the position of the CoM nor the state of
the freeflyer, so they cannot prevent these quantities from diverging. For humanoid
robots, the swing foot strikes the ground earlier than expected on flat ground because
of the mechanical deformation of the structure. If nothing is done, then it would push
on the ground to complete the step and fall backward in the process. One solution
is to switch directly to the next as soon as impact is detected, though doing so
is not straightforward as it would introduce a discontinuity in the target position
and velocity sent to the controller. It will result in a burst of acceleration of the
motors to cancel the tracking error as fast as possible which would destabilize the
system. Optimal control approaches could be used to prevent such behavior. Yet,
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Figure 2.13: Illustration of early switch replanning. The impact is detected earlier
than expected. Switching directly to the next step is necessary, but discontinuous
PID targets must be avoided. A model-free heuristic is used to transition smoothly
from the past to the next nominal step.

it may be hazardous to use model-based feedback control on real robots because
of the modelling uncertainties. A more conservative model-free heuristic is used on
the exoskeleton Atalante. It is depicted in figure 2.13. The objective is to find the
shortest path to catch up with the original nominal trajectory in a fixed amount of
time while enforcing continuity and bounds on position, velocity, acceleration, and
jerk to get a smooth transition. It has no guarantee to generate a dynamically stable
gait even if perfectly tracked on the device. Nevertheless, the swing foot is only a
few centimeters lower than expected and touches the ground at about 80% of the
expected step duration, such that the nominal trajectory is only marginally modified
by the heuristic and the effect on stability remains limited. Gurriet et al. (2018)
has realized stable walking on flat ground with the exoskeleton Atalante using this
technique. Tracking kinematic features such as the pose of the flying foot and pelvis
alleviates this issue. It requires a model, but it is fairly reliable since it does not
involve the dynamics (Apgar et al., 2018). However, it is still not robust enough to
handle unexpected disturbances, and it does not take into account any of the stability
criteria presented in section 2.2.2.

Trajectory-Based Model-Based Reactive Control

Early impact handling is effective to avoid falling backward systematically but does
not help to maintain stability during the whole motion. It is sufficient for almost
statically stable slow-paced motions such as flat foot walking, but not for dynamic
motion such as foot rolling or stair climbing. As soon as the robot starts to lose
balance, it will quickly fall if nothing is done to recover stability. Let us assume a
nominal trajectory has been computed offline for the theoretical whole-body model
to ensure stability without disturbances in simulation. The objective is to maintain
stability while tracking this trajectory on the real device, rather than recovering
stability once the robot has already started falling. Mathematically, the basin of
attraction of the nominal trajectory must be maximized.

Hirai et al. (1988) have demonstrated that it was possible to regulate the position
of the ZMP without any model. It is based on the observation that adding a tipping
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momentum to the pelvis proportionally to the error is sufficient. They define the
scaling factor as the theoretical vertical inertia of the upper body in the standing pose,
but it would be easy to tune it manually. This approach improves stability, but it does
not bring any guarantee regarding the temporal response. Chevallereau et al. (2008)
introduce a whole-body model-based approach that addresses this shortcoming. It
has strong mathematical guarantees and allows foot tilting during walking. It is
based on the zero dynamics theory presented in appendix A.2.3. Although effective
in simulation on a simple 2D walker, it is unlikely to work in practice as it requires
an accurate dynamic model of the system. Englsberger et al. (2011) has proven that
ideally the ZMP must react proportionally to deviations of DCM relative to this
reference. This solution maximizes the basin of attraction among linear feedback
controllers. On the downside, it requires accurate control of the ground contact
forces, which is beyond the capability of model-free approaches.

Englsberger et al. relies on textitAdmittance control at CoM level without nam-
ing it explicitly. It consists in using position-based control at the joint level to realize
the desired contact forces. A simplified model is used to estimate the current posi-
tion of the DCM and compute the target from the reference trajectory. The most
common approximate model for bipedal locomotion on flat ground is the LIPM but
more complex inverted pendulum models are also found in the literature. The ad-
mittance controller computes target positions and velocities at the joint level that
is slightly off the reference to cancel out the tracking error of the DCM and conse-
quently maintain stability. PIDs are then used to compute the target accelerations in
a feature space gathering the pose of the feet, pelvis, and CoM. Finally, a weighted
task-based second-order IK solver computes the motor accelerations. Later, Caron
et al. (2019) introduces complementary regularization strategies based on the posi-
tions of the end-effectors, so-called whole-body admittance control. This approach is
fast enough for online control. It has been demonstrated on real humanoid robots,
e.g. Atlas (Englsberger et al., 2015) and HRP-4 (Caron, 2020; Caron et al., 2019).

Although efficient in practice, admittance control can only handle small distur-
bances as it relies on local modifications around a reference at the current time. Once
stability is lost, anticipating the fall is necessary to prevent it. For example, apart
from lowering the position of his CoM, it is natural for a human to transfer all the
weight on a single foot to free the other and move the latter in the direction of the
Capture Point. This kind of foot placement strategy implies anticipation but not
necessarily planning ahead of time by integrating explicitly the equation of motion
(Goswami & Vadakkepat, 2019, Part VI; Boer, 2012, Chapter 4). Typically, the Cap-
ture Point carries some information about what will happen next based on the LIPM
model and where to land the foot to stop the fall. So, one solution is to rely on the
projected support polygon to maximize the stability over time instead of tracking the
DCM. Contrary to admittance control, maximizing this objective can exhibit natural
recovery strategies such as foot placement. It is providing much more freedom than
admittance control as it allows not only to regulate the contact forces to move the
DCM closer to the projected support polygon but also to modify the future support
polygon to anticipate impact with the ground and next steps. However, it is incon-
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sistent with tracking the reference trajectory, so it is likely to significantly alter the
reference trajectory. Nevertheless, a weighted task-based inverse kinematics solver
can be used to trade-off between tracking and stability. Very recently, Mesesan et al.
(2021) have validated this approach of the humanoid robot TORO.

Trajectory-Free Model-Based Optimal Control

Anticipating future events without planning ahead explicitly is possible. For instance,
the Capture Point determines where the flying foot is going to touch down in the
future. However, to predict temporal information such as impact time, it is necessary
to rely on a model and integrate the dynamics. Model-based optimal control is going
one step further: instead of predicting what is going to happen over a time horizon,
it is looking for how to perform the desired task optimally. Formally, model-based
optimal control consists in maximizing the future return based on a dynamic model
and starting in a given state. There is no feedback controller involved as it outputs
the optimal command sequence directly, thereby avoiding relying on suboptimal PIDs
at the joint level. The resulting Optimal Control Problem (OCP) is very similar
to the trajectory planning problem (A.29) presented in appendix A. Planning well
in advance allows for performing more efficient and versatile motions by being less
conservative. Indeed, 2-steps capability is less restrictive than 1-step capability.

Even though the entire optimal command sequence over the planning horizon
could be readily applied to the system, it would not work in practice because of the
various discrepancies between simulation and reality. First, the theoretical model is
always approximate so that the future state is getting less and less reliable as time
goes by. Secondly, even if the model is perfectly known, the actual trajectory would
diverge as soon as anything does not go exactly as planned due to local disturbances.
The ensuing error tends to increase exponentially for systems associated with stiff
differential equations such as legged robots. Finally, hazards such as external pushes
may occur in the meantime, instantly invalidating the planned state and command
sequences. To get around these limitations, only the next optimal command is ap-
plied, or a very short window. Then, the new state is observed, and the optimization
process is solved once again in accordance. This approach is more reasonable as it
curbs the propagation of errors and increases the reactivity of the system. This ap-
proach is termed Model-Based Predictive Control (MPC) since computing the next
command involves predicting the future by integrating the differential equations of
motion for a given model (Grüne & Pannek, 2011). It is illustrated in figure 2.14.

The main drawback of MPC is its computational cost. For complex systems such
as legged robots, the original OCP takes the form of a Non-Linear Program (NLP).
The cost of solving such problems scales poorly with the dimensionality of the state
and command spaces, when it does not fail completely. It follows that naively trying
to solve the OCP online in a timely manner is impracticable using limited embed-
ded computational resources. Warm-starting partially addresses these issues but is
rarely sufficient (cf. section 4.1.1). On top of that, the OCP is simplified to make
computations more tractable, starting with the model of the system. Kajita et al.
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Figure 2.14: Model Predictive Control over a finite horizon.

(2003) were the first to regulate the ZMP using model-based optimal control for the
LIPM. In their case, the time is discretized, the model is linearized, and the objective
function is quadratic. Because of these properties, it admits a closed-form solution
in the unconstrained case, which is very cheap to evaluate compared to solving an
optimization problem. If there is any inequality constraint, then it does not admit
a closed-form solution, but it can be solved quickly and reliably since the problem
is convex. This particular type of MPC is called Linear Quadratic Regulator (LQR)
(Anderson & Moore, 2007). A LQR can be viewed as a PID controller with feedfor-
ward whose gains are nearly-optimal in the close vicinity of the nominal trajectory.
Thus, the LQR formulation is one way to tune analytically centralized PID gains to
achieve the desired response, providing that a model is available (He et al., 2000).
Wieber (2006) have slightly extended Kajita et al.’s method to use a linear MPC. It
can handle moderate external disturbances in simulation.

Added to that, the original problem is broken up into smaller ones treated hierar-
chically. It speeds up computation even further by decoupling the whole optimization
into independent smaller problems that are much faster to solve. Traditionally, for
legged locomotion, it is broken up in three stages (Apgar et al., 2018; Caron &
Kheddar, 2017; Dai et al., 2014; Herdt et al., 2010):

1. adjusting the position and timing of the next footprints to handle capturability
and navigation concerns if necessary

2. finding a stable trajectory for the centroidal dynamics that is consistent with
the footprint constraints

3. computing the motor torques using weighted task-based second-order IK
The first two stages generally rely on an inverted pendulum model while the last one
necessitates an accurate whole-body model. It is challenging to guarantee that the
sub-problems are compatible with each other, such that it exists at least one feasible
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solution at a given stage that satisfies the constraints enforced by the previous one.
The failure rate of the whole optimization may be very high because of this lack
of consistency. It reaches 40% for humanoid locomotion on rough terrain (Caron &
Kheddar, 2017). Budhiraja et al. (2019a) overcome this issue by enforcing a consensus
between all stages, at the cost of a moderate increase in the computation burden.
Their approach is very similar to the one we present in chapter 5. State-of-the-art
control methods based on MPC for legged robots are reviewed in section 4.1.1.
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3.1 Supervised Learning and Neural Networks

3.1.1 Introduction to Supervised Learning

Supervised Learning consists in fitting a function mapping an input to an output
based on example input-output pairs. The input-output pairs that will be used for
training are called training examples or training samples, while the whole dataset of
examples is the training set . The inputs are called instances and are characterized
by a set of quantifiable properties known as explanatory variables or features.

Two class of problems falls in this category, classification and regression. In
classification, the outputs are called labels and uniquely identify each instance. Those
labels are elements from a finite set of categories of interest for a given application.
A typical scenario would be to infer the labels of unseen instances based solely on the
training set. This key capability of leveraging available data to predict properties
of new instances is referred to as generalization ability . One famous example is
handwriting recognition. In this case, the features are the gray-scale value of each
pixel of the handwritten character – i.e. a scalar value representing an amount of
light – and the label is the corresponding letter or digit. In regression, the output
is rather called dependent variable or response. The objective here is to model the
relationship between the features and the response. Contrary to classification, both
the features and the response are continuous quantities, which means the input and
output spaces are an uncountable set. Regression is relevant when generating new
input-output pairs is costly or even impossible. It can also be used to remove noise
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from data, analyze the causal relationship between the features and the response, or
simply compress the training set. Using the regression model to predict values within
the range of values of the available features is commonly termed interpolation, while
predicting values outside this range is termed extrapolation. Regression is mainly
used for interpolation because extrapolation relies on strong modelling assumptions.
One example of regression frequently used in robotics is system identification, which
consists in finding optimal values for unknown parameters of the physically-based
model, such as the dry and viscous friction of an actuator.

In the following, we present the rigorous formulation of the learning problem de-
scribed above, with a focus on regression since it is central in chapter 5. Let us denote
X the input space and Y the output space. We define the training set comprising
N samples as the finite set S = {(xi, yi)}Ni=1 = {(x1, y1), (x2, y2), . . . , (xN , yN )} s.t.
(xi, yi) ∈ X ×Y. Supervised learning aims at finding a function f : X → Y mapping
inputs x ∈ X to outputs y ∈ Y. This function f is called classifier or function
approximation for classification and regression problems respectively.

The function f can be either parametric or non-parametric, depending on the
algorithms. Such non-parametric functions are deterministic and only depend on
the training set without involving any extrinsic parameter. The resulting function
approximation does not take any predetermined form but is constructed from the in-
formation derived from the data. Formally, a scalar scoring function g : X × Y → R
conditioned by the training set B can be used to represent the function f , such
that f(x) corresponds to the value of y associated with the highest score f(x) =
argminy∈Y g(x, y). K-Nearest Neighbors (KNN) are probably the most famous non-
parametric models, along with local regression, which is a generalization of moving
average (Ruppert & Wand, 1994) and smoothing splines. Eventually, basic pre-
processing steps remove unnecessary data or reduce the dimensionality. It helps to
compress information and improve prediction accuracy. One of the major concerns
about non-parametric methods is their scalability to large datasets. This is condi-
tioned by the ability to efficiently prune unnecessary samples to prevent the cost of
evaluating f from growing unbounded. This procedure is an optimization process by
itself. Despite pruning, the accuracy of non-parametric models increases very slowly
with the amount of data available, which is not surprising because the data must sup-
ply both the model structure and the estimates. Nevertheless, they are sometimes
used in robotics, notably for picking a good initial guess for complex optimization
problems (cf. sections 4.1.1 and 5.2.3).

Conversely, a parametric function is fully specified by a vector θ of size m and
is denoted gθ to highlight this particularity. The vector θ gathers variables that are
usually continuous but may well be discrete. The number of parameters m should
reflect the complexity of the mapping. It implies that the cost of evaluating the
function approximation gθ is invariant to the number of training samples N . The
challenge here is to choose an appropriate parameterization achieving a good trade-off
between its expressive power , defined as its capability to approximate with arbitrary
accuracy a large variety of continuous functions, and the number of parameters to
ensure high generalization ability. Widespread examples of such parameterization are
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the monomial basis, which is widely used in many fields where the amount of data
available is limited and very noisy including robotics, and artificial neural networks,
which will be presented soon after.

From now on, let us focus only on the parametric case. First, a loss function
l : Y × Y → R+ function that measures the distance between elements of Y must
be specified. It will be used to evaluate the prediction error l(y, ŷ) between the true
outputs y and the values ŷ returned by the function for each training sample f(x)
and thereby quantify how well the function f fits the training set.

Given the joint probability distribution D(X × Y) of the samples, the objective
is to minimize the expectation of the prediction error, which is called the true risk
or approximation error for classification and regression respectively,

RD(f) = E
(x,y)∼D

[l(y, f(x))] . (3.1)

Let F denote the set of all possible functions, such that each element of F is a
function f mapping from X to Y. An optimal function f∗ minimizes the approxima-
tion error RD over the set of possible functions F and the joint distribution D,

f∗ = argmin
f∈F

RD(f). (3.2)

For classification, the usual loss is based on the binary indicator function,

l(y, ŷ) = 1{y}(ŷ), (3.3)

where 1Y ′(y) = 1,∀y ∈ Y ′, 0 otherwise. This loss is non-convex, and finding a near-
optimal solution is an NP-hard problem (Ben-David et al., 2003). Instead, a common
approach is to consider a convex approximation of the original problem. The model
is no longer deterministic but probabilistic so that the function approximation f(x)
is a (log-concave) probability density function, e.g. a Gaussian distribution. Then,
the loss is then replaced by the negative log-likelihood of the true data according to
the probabilistic model. It yields,

l(y, y′) = − logP(y|y′) = − log [f(x)]y. (3.4)

For regression, assuming the output space is Euclidean, the Lp-norm is typically used,

l(y, ŷ) = ∥y − ŷ∥pp =
m∑
i=1

(yi − ŷi)p. (3.5)

In practice, the joint distribution D is unknown. Therefore, the true error cannot
be computed directly and one has to replace with a surrogate. Given that training
samples are available, a natural candidate is the sample mean over the whole training
set S. We define the empirical risk or estimation error for classification and regression
respectively as follows,

RS(f) =
1

|S|
N∑
i=1

l(yi, f(xi)). (3.6)
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Since the sample mean is an unbiased estimate, a function f̃ minimizing the es-
timation error is guaranteed to minimize the approximation error if and only if the
number of samples N is infinite and the samples are drawn independently and iden-
tically according to D(X × Y) where X × Y is a compact space. These conditions
never hold in practice. Still, intuitively, increasing the number of samples or decreas-
ing the complexity of the function space F both decrease the ensuing extra error,
which is called complexity penalty . An upper bound to the approximation error by
the estimation error and a complexity penalty is called generalization bound.

The complexity of a function space F is also termed capacity, richness, or ex-
pressiveness. This notion is difficult to define rigorously in the general case. Yet,
one can reckon it depends on the regularity of the function f , which is quantified by
its Lipschitz constant for continuous functions, and the size of the function space F ,
namely its cardinality |F| when countable. It exists multiple metrics to assess the
complexity of an uncountable function space F depending on problems. For instance,
the Vapnik-Chervonenkis dimension has been proposed for binary classification and
is defined as the largest training set that the algorithm can learn to perfectly fit.
Similarly, the Rademacher complexity measures the richness of a class of real-valued
functions with respect to a given probability distribution. These metrics are then used
to derive the complexity penalty. Alternatively, assessing the complexity penalty di-
rectly based on the Lipschitz constant has drawn a lot of attention during the last
few years, especially in the field of adversarial robustness of neural networks. In such
a case, evaluating the Lipschitz constant can be extremely costly. Providing a tight
upper bound that is scalable and efficient to compute is an active research topic.

The true error can get arbitrarily large if the function f can be discontinuous. For
instance, consider the function to fit perfectly the training set and infinite otherwise,

f(x) =

{
yi if ∃(xi, yi) ∈ S s.t. xi = x

∞ otherwise
.

Clearly, it seems already more reasonable to output the value of the closest neigh-
bor if the input is unseen because it is likely to be similar. Defining the function space
F based on assumptions about the relationship between the input and the output is
called inductive bias. For example, it is commonly assumed that the mapping to be
linear to reduce the set of possible candidates. It will significantly reduce the com-
plexity penalty, but also increase both the estimation error and the approximation
error. Indeed, If the complexity of the function space F is too high, then the function
f will fit most perfectly the training set but will have an error order of magnitudes
higher on unseen samples. This phenomenon is called overfitting . In contrast, if the
complexity is too low, the error will be about the same for training data and unseen
samples, but this error will be larger than it could be. This phenomenon is called
underfitting . This compromise is referred to as the bias-variance trade-off and is il-
lustrated in the classical example of polynomial regression in figure 3.1. The optimal
trade-off is achieved when the training and testing errors are similar, which means
good generalization ability, but starts to differ if the complexity is further increased.
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Underfitting (degree 1) Goot fit (degree 6) Overfitting (degree 16)
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(a) Optimal function approximation for different complexity
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Mean Squared Error
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125 samples - training
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(b) Training and testing error for different complexity and number of samples

Figure 3.1: Effect of function space complexity and number of samples on polynomial
regression of the cosine function with small normal noise. The complexity must be
small to avoid overfitting when few samples are available, but it is less of an issue
when they are numerous. Moreover, more samples lead to lower approximation error
since one can train over a richer function space for the same complexity penalty.
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As seen above, picking the right complexity for the function space is not straight-
forward. One solution to get optimal accuracy is to perform a higher-level optimiza-
tion. First, the original training set is separated into an actual training set for fitting
the model and a testing set for evaluating its generalization ability. Then, the opti-
mal function is found for several function spaces, and the associated empirical error
is computed on the testing set. Finally, the function space giving the lowest empirical
error is selected. This approach is known as cross-validation.

Reduced complexity comes with more restrictive global regularity properties: it
would be impossible to get a good fit if more complexity is locally required. A simple
way to adapt this trade-off automatically is to jointly minimize the empirical error
and the complexity of the function approximation as a weighted sum. This kind
of penalty term is known as regularization function. Let us define a regularization
function r : F → R+, which takes a function approximation as input and measures a
surrogate of its complexity. The optimization problem becomes,

f∗ = argmin
f∈F

(RD(f) + r(f)). (3.7)

Classic examples of regularization for parametric models are the L1- and L2-
norm of the vector of parameters θ. The ensuing optimization problems are called
respectively Lasso and Ridge regression. The L2-norm regularization is also termed
Tikhonov regularization (Tikhonov et al., 1995). It shrinks all coefficients globally
but none of them would be close to zero. Although effective to avoid over-fitting, it
prevents large values entirely, which is often detrimental in practice. On the contrary,
the L1-norm encourages sparsity. Most of the coefficients would be exactly zero, with
a few of them growing very large. In the end, the properties of Lasso are usually
preferable over the Ridge regression, but the non-convexity of the L1-norm and the
discontinuity of its gradient make Lasso hard to solve in practice.

3.1.2 Fundamentals of Artificial Neural Networks

Artificial Neuron and Fully-Connected Feedforward Neural Network

An Artificial Neural Network (ANN) is a collection of interconnected units called ar-
tificial neurons. Artificial neurons are inspired by the ones in a biological brain. Each
of them receives multiple signals xi simultaneously coming from input connections as
a real-valued vector x, then it mixes those signals using a weighting sum depending
on the strength of each connection wi and finally processes this aggregated signal
including a fixed bias through a non-linear function σ called activation function to
output a real number y. The mechanism is illustrated figure 3.2.

The capability of a single neuron is limited but nonetheless interesting. Assuming
the activation function is the hyperbolic tangent, then it can be used for binary
classification to split in two the input space with a hyperplane. Several hyperplanes
can be combined using more neurons to create complex clusters, for instance by
taking the maximum output among them, as seen in figure 3.3. Typically, neurons

54



3.1. Supervised Learning and Neural Networks
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transfer
function

bias activation
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Figure 3.2: Illustration of an artificial neuron

Features Neuron layer Classification output

Figure 3.3: Simple binary classifier with a single layer and hyperbolic tangent acti-
vation function (adapted from Tensorflow Playground).

are gathered into layers. Each layer may use a different activation function. The
input travels from the first layer called input layer, to the last layer called output
layer through some intermediary layers called hidden layers. The number of layers
excluding the input layer is referred to as the depth of the network, while the number
of neurons per layer is termed width. Given a depth n ∈ N∗, let w = (wi)

n+1
i=0 be the

sequence of layer widths, θ = (θi := (Wi, bi))
n
i=1 the sequence of weights matrices and

bias vectors such that Wi ∈ Rwi×wi+1 and bi ∈ Rwi+1 and a sequence of activation
functions σ = (σi)

n+1
i=1 such that σi : Rwi+1 → Rwi+1 . Let X ∈ Rw0 and X ∈ Rwn+1 be

the input and output spaces respectively. A Feedforward Neural Network (FNN) is
the function fθ,σ : X → Y such that

fθ,σ(x) =

(
n
⃝
i=1

ϕθi,σi

)
(x) = (ϕθn,σn ◦ · · · ◦ ϕθ2,σ2 ◦ ϕθ1,σ1) (x), (3.8)

where ϕθi,σi
: Rwi → Rwi+1 is the transfer function of the layer i and is defined as

follows ϕθi,σi
(x) = σi(Wix + bi). The explicit dependency on σ is usually dropped

since it is not a free parameter but fixed a priori in contrast to θ. It is known as a
Multi-Layer Perceptron (MLP) when the weight matrices are dense and unstructured.

Backpropagation and Stochastic Optimization

The generic approach for minimizing the empirical risk or estimation error is by
gradient descent. It relies on the backpropagation algorithm, which was introduced
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Figure 3.4: Illustration of backpropagation for the function f(x1, x2) = x1x2+sin(x2).
The function f is decomposed in a set of elementary functions {sin,+,×} for which
the value and gradient is well-known, so that it forms an orientated graph. The value
of the function is evaluated by the forward pass in blue, and the partial derivative
with respect to each input x1, x2 is computed by the backward pass in red.

by Rumelhart et al. (1986). The gradient of the outputs with respect to the network
parameters is computed backward using the chain rule recursively. Let fθ be a FNN
with n layers, xi be the output of the i-th layer and ϕθi its transfer function, such that
xi = ϕθi(xi−1). For a given sample {x, y}, the error E associated with a differentiable
loss function l is given by l(y, fθ(x)). It yields,

∂E

∂θi
=
∂E

∂xi

∂ϕθi
∂θi

∣∣∣∣
xi−1

,
∂E

∂xi
=

∂E

∂xi+1

∂ϕθi+1

∂x

∣∣∣∣
xi

, (3.9)

where ∂E
∂xn

= ∂l
∂x(y, x) is known analytically. The first equation computes some terms

of the gradient of the network ∇θE with respect to the parameters, while the second
equation propagates backward the partial derivative with respect to the input.

During each training iteration, the neural network’s parameters are updated pro-
portionally to the gradient ∇θE. Evaluating the neural network for a given input
is called the forward pass, while computing the gradient is the backward pass. This
method is directly related to automatic differentiation, which is at the core of ev-
ery open-source deep learning toolbox, e.g. Torch by Meta or Tensorflow by Google
among others. It is illustrated in a simple example in figure 3.4.

Thanks to the linearity of the operators, a bunch of data can be processed si-
multaneously and efficiently by generalizing matrices to tensors. It is referred to as
batch processing . The gradient of the loss RS(fθ) in equation (3.6) with respect to
the network parameters θ can be computed as follows,

∇θRS(fθ) =
1

|S|
N∑
i=1

∇θl(yi, fθ(xi)). (3.10)

It is straightforward to find a local minimum of the loss with any first-order
iterative optimization algorithm known as Gradient Descent algorithms. At each
iteration i, the loss and its gradient are evaluated, then the network parameters are
updated by doing a step in the opposite direction of the gradient,

θi+1 = θi − η∇θRS(fθ)|θi (3.11)
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where η is the update step or learning rate. Generally, the number of training samples
is so large that evaluating the loss and its gradient would be prohibitive, because of
memory capacity or computational power. So, the gradient is not computed over the
whole dataset of training samples but on a subset of fixed size termed mini-batch. The
mini-batch is randomly selected at each iteration. The resulting stochastic gradient
is an unbiased estimator of the true gradient. This modified optimization algorithm
is referred to as Stochastic Gradient-Descent (SGD) algorithm (Ruder, 2016). It
would never converge unless the learning rate reduces over iterations, typically with
a polynomial rate. Anyway, the vanilla SGD algorithm is never used in practice
because it converges slowly and tends to get stuck in poor local minima.

Second-order optimization methods, also known as Newton’s methods, adjust
the update step optimally for every parameter individually according to the local
second-order expansion of the loss function. These methods not only benefit from a
fast and steady convergence but are also more stable and find better solutions than
first-order methods. They are preferred in many fields including Robotics. In this
case, computing the step direction involves the Hessian matrix of the loss,

θi+1 = θi − (∇2
θRS(fθ)|θi)−1∇θRS(fθ)|θi . (3.12)

For probabilistic models, Kakade (2002) propose to approximate the Hessian with
the Fisher information matrix, which is defined as the negative (empirical) expected
Hessian of the log-likelihood, i.e.

Fθ(s) =
1

|S|
N∑
i=1

∇2
θ log [fθ(xi)]yi |θi (3.13)

The resulting update step is said to follow the natural policy gradient in that it is
independent of the parameterization of the function fθ. This Fisher matrix does
not asymptotically converge to the exact Hessian necessarily. The cost of evaluating
the inverse matrix H−1

k is prohibitive. Instead, algorithms computing the solution
xk of the linear problem Hkxk = gk without explicit matrix inversion are more
efficient and have better numerical stability. Approximate iterative algorithms are
preferred over direct methods such as the Cholesky decomposition to further reduce
the computational cost. Indeed, finding the exact solution is irrelevant because of
the already high variance of the gradient estimator. The number of iterations enables
to trade-off between accuracy to efficiency. The Conjugate Gradient (CG) method
is commonly used because it is well-suited for symmetric positive-definite matrices.
Although this impedes the theoretical rate of convergence, it works surprisingly well
in practice. Still, about 100 CG iterates may be necessary to obtain the desired
accuracy. The large memory requirements and high computational complexity make
this approach impracticable for large models.

Building on this, Martens and Grosse (2015) introduce Kronecker-factored Ap-
proximate Curvature (K-FAC) to avoid having to solve a linear problem entirely.
K-FAC is a carefully crafted approximation of the Fisher matrix that is neither diag-
onal nor low-rank and yet can be inverted efficiently. It is derived by approximating
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various large blocks of the Fisher matrix as being the Kronecker product of two
much smaller matrices. While only several times more expensive to compute than
the SGD, the updates produced by K-FAC make more progress in optimizing the ob-
jective, resulting in an algorithm that is much faster in practice. Unlike the previous
approximation relying on CG, K-FAC works very well in highly stochastic optimiza-
tion regimes. This is because the cost of storing and inverting this approximation to
the Fisher matrix does not depend on the amount of data used to estimate it.

Despite all these advances, second-order methods are still rarely used in practice,
as the cost of estimating the natural policy gradient is still several times larger than
vanilla SGD. It is often replaced with more advanced first-order methods relying on
momentum estimates. The momentum is the discounted cumulative stochastic gra-
dient, which is a biased estimate of the first moment of the gradient. Instead of doing
a step according to the current estimate of the gradient, the updated momentum is
used. The momentum tends to steer in the same direction and is only slowly changing
over time, preventing oscillations and avoiding poor local minima. Although effective
in practice, it still requires scheduling the learning rate over iterations, which can be
very tedious. More recently, adaptive methods to avoid having to tune it manu-
ally been introduced, e.g. Root Mean Square Propagation (RMSProp) (Tieleman &
Hinton, 2012) and ADAptive Moment estimation (ADAM) (Kingma & Ba, 2015).

Unlike the other first-order methods, ADAM performs consistently and suffi-
ciently well on a huge variety of real-world problems. It is a tremendous advantage in
practice, which is why ADAM is now the de facto optimizer in the industry for deep
learning applications. Yet, its performance in terms of speed, stability, and solution
optimality is still much worst than approximate second-order methods such as K-
FAC in practice. (Amid et al., 2022) focus exclusively on reducing the gap between
first- and second-order methods when training MLP. To this end, they introduce
LocoProp, a layer-wise loss construction framework that can be combined with any
off-the-shelf first-order optimizer. It relies on a three-component loss, target, and
regularizer combination, for which altering each component results in a new update
rule. Their results are promising on standard benchmark models and datasets, but
it remains to be seen how well their method works on real-world problems.

Universal Approximation Theorem

In regression problems, a parametric function is tuned to approximate the mapping
between input and output over a finite dataset of samples. ANNs are especially suit-
able as they are known to be universal approximators under some conditions. Univer-
sal approximators are classes of functions that can represent any given function space
of interest with arbitrary accuracy. Those conditions involve both the regularity of
the function to represent and the parameter space of the approximators. Concerning
ANNs, their parameter space is fully specified by the network architecture. Uni-
versal approximation theorems establish the density of a class of functions within a
given function space of interest. The space of continuous functions and Lebesgue p-
integrable functions are the main functions spaces of interest. It is an open question
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whether it is possible to derive analytically necessary and sufficient conditions generic
for any possible network architectures on those function spaces. It is still an active
field of research, but the particular case of FNNs has been thoroughly studied. The
parameter space comprises the depth of the network, the width of each layer, and
the activation functions. It gets significantly more difficult for more complex network
architecture, involving for instance memory, recursive cells, or skip connections. The
original Universal Approximation Theorem is credited to Hornik (1991) and Hornik
et al. (1989). It holds for neural networks of arbitrary width and bounded depth on
the continuous function space.

Theorem 1 (Universal Approximation Theorem). Let σ : R → R be any continuous
function, and Nθ,σ be the class of FNNs with activation function σ and one hidden
layer of arbitrary size. Let n,m denote the input and output size respectively and
K ⊆ Rn be compact. Then Nθ,σ is dense in C(K) if and only if σ is non-polynomial.
More precisely, for any continuous function f : Rn → Rm and ϵ arbitrarily small,
there exists a continuous function f̂ϵ such that supx∈K ∥f(x) − fϵ(x)∥ < ϵ where
f̂ϵ =W2 ◦ σ ◦W1.

This result can be extended to any bounded number of hidden layers by requiring
that any additional hidden layer approximates the identity function. Thus, it ad-
dresses the case of arbitrary width and bounded depth. The seemingly dual problem
of FNNs with bounded width and arbitrary depth has been addressed very recently
(Hanin, 2019; Kidger & Lyons, 2020).

Theorem 2 (Dual Universal Approximation Theorem). Let σ : R → R be any non-
affine continuous function that is continuously differentiable in at least one point,
with nonzero derivative at that point. Let Nθ,σ be the class of FNNs with an arbitrary
number of hidden layers of uniform size k and the same activation function σ, except
for the output layer for which it is the identity function instead. Let n,m denote the
input and output size respectively and K ⊆ Rn be compact set. Then Nθ,σ is dense
in C(K;Rm) with respect to the uniform norm.

Zhou (2020) has shown similar results for Convolutional Neural Networks (CNNs).
This type of structured neural network relies on another linear operator than the
matrix-vector product. It will be presented soon hereafter.

Network Architecture Meta-Optimization

The activation function can be any function of the output vector of the preceding
layer. Most of the time, it is a scalar function applied element-wise, such as the
Sigmoid or ReLU. It is preferred over multivariate functions for simplicity. Indeed,
the analysis of activation functions lacks a good theoretical foundation and the choice
is mostly based on empirical study, hence it is convenient to restrict candidates to
scalar functions. Yet, it may be necessary to choose a multivariate function in some
cases, to return the maximum value of the output layer for instance.
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Figure 3.5: Graphical representation of three common activation functions

More exotic functions based on permutations have been proposed recently, e.g.
GroupSort (Tanielian et al., 2021). They still result in universal approximators while
preserving the norm of the gradient. This property is interesting as it circumvents the
infamous vanishing gradient problem that prevents the weights from changing after
only a few training iterations with backpropagation (Bengio et al., 1994). Thereupon,
we present the most common activation functions illustrated in figure 3.5:

• Logistic function (Sigmoid function or hyperbolic tangent)

The Sigmoid function was the first continuous nonlinear function to be used in
the context of neural networks. It is defined as follows

σ(x) =
1

1 + e−x
=

1

2

(
1 + tanh

(x
2

))
. (3.14)

It takes any real value as input, so it is applied element-wise to the input vector,
and its output is bounded between 0 and 1. This function is 1-Lipschitz, which
prevents the exploding gradient problem. Yet, it significantly shrinks the norm
of the gradient, which leads to the vanishing gradient problem as the depth of
the network increases. This issue occurs when the input values are large. In this
case, the output is almost saturated to {−1, 1} and the gradient is close to 0.
It is sometimes replaced by the hyperbolic tangent with little or no advantage.

• Leaky Rectified Linear (Leaky-ReLU) (Nair & Hinton, 2010)

The ReLU activation was proposed to address the issue of vanishing gradient.
It acts as a filter canceling out negative values and leaving positive values
unchanged. Its derivative is either zero or one on R− and R+ respectively, which
tends to preserve the norm of the gradient between layers. Despite its simplicity,
this function is rich enough for MLPs relying on it to be universal approximators
thanks to the discontinuity of its derivative. Incidentally, it is much cheaper
to evaluate numerically than logistic or trigonometric functions both involving
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iterative routines. However, the gradient being exactly zero leads to so-called
dead units. They are neurons whose weight cannot be trained anymore since
the gradient of any function with respect to them would be always zero. This
property leads to a sparse gradient, which impedes convergence. Later, the
Leaky-ReLU function was proposed to overcome this issue. It introduces a
parameter α≪ 1 that governs the slope on R−. It is defined as follows

σ(x) = max(αx, x), 0 ≤ α ≤ 1. (3.15)

• Softmax (Bridle, 1990)

The Softmax function is a generalization of the logistic function to multiple
dimensions. It is often used as the last activation function of a neural network
to normalize the output of a network to a probability distribution over predicted
output classes. It can be further generalized by introducing a temperature
parameter β > 0 to control the spread of the distribution. The lower the
temperature parameter the more diffuse the distribution. It can be tuned to
approximate the maximum value by a differentiable function, hence its name.
The Softmax function σ(x) : Rn → [0, 1]n is defined by the formula

σi(x) =
eβxi∑n
j=1 e

βxj
. (3.16)

The optimal activation function is specific to each problem. The same goes for the
depth and width of the network. Additionally, the size of the training dataset puts an
upper bound on the number of parameters of the network to avoid overfitting, though
it is unclear to what extent. To this day, the analysis of the benefits of the various
network architectures lacks a good theoretical foundation and the choice is mostly
based on empirical results. This issue can be partially addressed by using a para-
metric activation function tuned with backpropagation as any other parameters, but
the effectiveness is very limited in practice. Another approach is meta-optimization,
which consists in solving the optimization problem independently for a finite set of
network architecture to select the one leading to the highest performance. Although
effective, it is extremely intensive, so only a small subset can be compared. Few
years ago, more sophisticated methods based on so-called Neural Architecture Search
(NAS) or network adaptation have arisen (Liu et al., 2021b; Real et al., 2017). NAS
is a technique that automates the design of artificial neural networks by alternatively
optimizing the architecture and training it. Many improvements have been made to
reduce its computational cost, but it is still very demanding and not accessible to
most practitioners (Fang et al., 2021). Reducing the cost even further is an active
area of research. Concurrently, Evolutionary Algorithms (EA) has been used for more
than twenty years to jointly search for the optimal neural architecture and the weights
of the corresponding neural network. This approach is termed NeuroEvolution and
is well-suited for small to medium scale neuron networks (Stanley & Miikkulainen,
2002). As such, it has mostly been applied to learning control policies.
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Structured Neural Networks

If there is no restriction on the weight matrices Wi, the layers are said to be fully-
connected . A FNN has a very large number of parameters to train. For example, a
neural network with uniform width n has n(n + 1) parameters per hidden layer. It
is not uncommon for a FNN to accumulate a few millions of parameters to perform
seemingly basic tasks. The optimal depth and width are problem specific. Their sim-
ple feedforward architecture and the redundancy of parameters make it surprisingly
easy, fast, and cheap to train them at first. However, this premature convergence to
a suboptimal local minimum requires a much larger depth and width than necessary.
This property ultimately limits their capability to tackle complex tasks. First, in-
creasing the depth may lead to the vanishing gradient problem, though it is possible
to mitigate this issue by choosing the activation function appropriately. Secondly,
large depth and width imply important expressiveness of the model, which leads to
overfitting if nothing is done to prevent it through regularization. Finally, they get
expensive to evaluate as they grow larger, which makes them impractical for embed-
ded use cases. Researchers have designed specialized linear operators and network
architectures to reduce the number of parameters, speed-up evaluation, or have better
properties for a specific problem.

Structured neural networks aim to reflect inherent properties of the problem in
their architecture rather than through training. This helps to avoid overfitting by
reducing the number of parameters while guaranteeing some desired properties that
would be hard to enforce differently. CNNs are typical examples of structured neural
networks with a specialized linear operator called discrete convolution. Lecun et al.
(1998) popularized it, and it is now the backbone of many sophisticated architectures
(Krizhevsky et al., 2017; Tan & Le, 2019). The convolution operator encodes the
translational invariance of the input, which is desirable to process images. It also
forces the network to leverage information locality and eventually multiscale corre-
lations with dilated convolution (Dumoulin & Visin, 2016). Besides, it allows for a
very compact representation of the weight matrix called convolution kernel .

Let us consider a vector x of size n and a kernelK of size k. The 1D convolution of
x by K with stride s and zero-padding of size p is the vector of size ⌊(n−k+2p+s)/s⌋
defined as

(K ∗ x)[i] =
⌈k/2⌉∑

j=−⌊k/2⌋

{
f [s i− j]g[j] if s i− j ∈ [0, n]

0 otherwise
, (3.17)

Padding consists in extending the input vector x at its boundaries, essentially to
preserve the output size when the stride is 1. Zero-padding is the most common but
is sometimes replaced with same-padding, which holds constant the actual boundary
values, or circular-padding, which repeats the input vector as if it was periodic.
It is straightforward to generalize this formula to higher dimensional inputs. The
dimensionality of the kernel is the same as the input. In the case of monochrome
images, it is a k × k matrix where k is the kernel size, as illustrated in figure 3.6. A
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Figure 3.6: Discrete convolution acting as a filter. 3 × 3 kernel sliding over 5 × 5
image padded with 1×1 border of zeros using 2×2 stride. (Dumoulin & Visin, 2016)

classical linear layer with a dense matrix has n2 parameters, whereas a 1D convolution
layer only has k parameters where k ≪ n is usually very small, e.g. 3 or 5.

Any given convolution kernel applies a specific filter. It may be interesting to
apply several filters to extract different features. Each of these filters corresponds to
one output channel. They are stacked into a single kernel representation by adding
one extra dimension to it and generalizing the convolution operator. Similarly, it is
desirable to apply the same filter to several input channels so that it can perform
cross-correlation, e.g. the one-dimension time series of the relative joint angles of
poly-articulated robots or the three monochrome pixel arrays of RGB images. The
results for all the inputs individually are summed up to form one output channel.

In any case, the convolution operation can be written as a standard matrix prod-
uct. The corresponding matrix would be sparse and have a distinctive structure with
the same number of free parameters as the kernel. Other well-known types of struc-
tured matrices are Toeplitz, Vandermonde, or circulant matrices to name a few. As
a general rule, structured matrices admit algorithms for the matrix-vector multipli-
cation that are much cheaper than that of a general matrix product, so it reduces
the computational cost of evaluating the network.

CNNs have been state-of-the-art for computer vision tasks, but they are also
relevant for time series forecasting problems e.g. speech synthesis. In all those sce-
narios, the size of the input (pixels of images, sequence of words ...etc.) is much
bigger than the extracted information. For this reason, they are called encoders or
discriminators depending on the situation. On the contrary, some networks are used
to generate more data than actually provided in input and are called decoders or
generators. A widespread example of a decoder is the Deconvolutional Neural Net-
work (DNN), which is used to generate spatial or temporal correlated sequences from
compressed information, e.g. images or trajectories of robots. This size increase is
obtained via dedicated linear operators. One option is the transpose convolution
(Dumoulin & Visin, 2016). It gets its name from the fact that its sparse matrix
representation is the transpose of the classical convolution with the same kernel. It
can be implemented efficiently by noticing that the gradient of the matrix product
is the transposed matrix, so that the transpose convolution is obtained by swapping
the forward and backward passes. The transpose convolution is known to create
checkerboard pattern artifacts in practice. Thus, it was mostly abandoned in favor

63



Chapter 3. Background in Machine Learning

of the upsampling operator combined with the usual convolution. The upsampling
operator simply consists in increasing the size of the input by repeating each element
successively. Roughly speaking, polling that replaces a group of elements by its mean
or max value can be seen as the reverse operation. In particular, DNNs have been
used in chapter 5 to generate on-the-fly stable walking trajectories provided some
desired high-level patient and gait features as input, e.g. such as the patient weight
or the speed and step length.

Based on the success of CNNs, researchers have studied and proposed other types
of neural networks based on weight matrices with different structures. It remains un-
clear whether other types of structured networks can be beneficial to other types
of applications and which type of structure can provide both accuracy and efficient
computation. The vulnerability of neural networks against adversarial attacks has
raised concerns after the demonstration by Goodfellow et al. (2015) that it was fairly
easy to fool image recognition networks based on CNNs with an imperceivable but
carefully constructed noise in the input. Leveraging the properties of structured ma-
trices to secure neural networks is promising. Robustness against adversarial attacks
is even more critical when it comes to control policies for autonomous robots. Even
without malicious intent, a faulty sensor may trigger similar unexpected behavior.
It must be avoided at all costs to avoid injuring nearby people. Several methods to
deal with adversarial attacks in policy learning are discussed in section 4.2.3.

Accelerating Deep Learning

Using the most appropriate data structure for a given problem is one way to ac-
celerate calculations and save memory, and lowering the precision number format is
another. The industry has moved from 64-bit precision to 16-bit precision formats
by simply replying on batch normalization and gradient scaling, but going further
is not straightforward. This issue is related to quantization, which consists in ap-
proximating a large set (eventually uncountable) by a countable smaller one, here,
real numbers by bits. The current standard is the IEEE-754 floating-point arith-
metic. It was designed in 1985 to be highly versatile and met the requirements of
any application. Thus, this representation is far from optimal for machine learning
applications where numbers are usually normalized, keeping most of them between
-1 and 1. New representations of real numbers tailored for machine learning have
emerged since then. They improve accuracy while retaining the same number of
bits, thereby enabling using 8-bit precision formats not only for inference but also
for training. Gustafson and Yonemoto (2017) has introduced a new data type called
a posit designed as a drop-in replacement for IEEE-754 floating-point arithmetic
that establishes the standard binary encoding of real numbers. Posits provide com-
pelling advantages over floating-point arithmetic, including larger dynamic range,
higher accuracy, better closure, bit-wise identical results across systems. In princi-
ple, the number of operations per second could be significantly higher using similar
resources, but it is unlikely to happen as it would require new math pipeline hardware
designs. Very recently, Micikevicius et al. (2022) have proposed another data type
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that minimally deviates from the IEEE-754 standard. This ensures that software
implementations can continue to rely on such IEEE-754 properties as the ability to
compare and sort values using integer operations. Yet, supporting this new data type
natively still requires adapting the existing math pipeline hardware designs.

One last option to speed up calculations is enhancing the basic scientific com-
puting routines themselves. Typically, the complexity of the best known algorithms
for computing the dense matrix product is still higher than the proven minimum.
Beyond this, which algorithm to choose in practice strongly depends on the available
hardware, the size of involved matrices, and the required numerical accuracy. For
instance, the Strassen (Strassen, 1969) and Laderman (Laderman et al., 1992) algo-
rithms are generally faster than the standard naive matrix multiplication algorithm
for large matrices but slower for smaller matrices, while always being less accurate.
Fawzi et al. (2022) used Reinforcement Learning (RL) to discover faster and provably
correct algorithms for the multiplication of arbitrary matrices by training an agent to
find tensor decompositions within a finite factor space. They showcase the applicabil-
ity of this approach to structured matrix operations by recovering the state-of-the-art
complexity for the skew-symmetric matrix-vector multiplication. Remarkably, they
found algorithms tailored for specific hardware by optimizing the actual wall time.

3.2 The Reinforcement Learning Problem

RL is one of the three machine learning paradigms, alongside supervised and unsu-
pervised learning (Sutton & Barto, 2018). It is concerned with how an intelligent
agent should take action in an environment in order to perform a given task. Specif-
ically, finding optimal decision sequences that benefit the agent over the long term,
even if this requires taking undesirable actions in the short term. Ultimately, the
goal is to reproduce the emergence of human-like cognitive skills. No training sam-
ples are readily available and the agent has to collect them via interaction with the
environment, much like a young child does. The collected data are unlabeled as in
unsupervised learning, but the agent enjoys a reward for each action. This reward
is supposed to be used by the agent to sort actions: better actions are associated
with larger rewards. Nevertheless, providing an informative reward is in no way
necessary. It is possible to systematically return zero until task completion, but this
makes learning very difficult. Contrary to supervised learning, it is an indirect metric
of the optimality of the agent’s behavior. It is not evaluated with respect to some
ground truth that would be known in advance but rather must be discovered through
maximization of the total cumulative reward termed return. In this way, RL fills the
gap between supervised and unsupervised learning.

Fundamentally, it aims at solving the same problem as optimal control but the
mindset and theoretical grounding are dramatically different. The theory of optimal
control is concerned with the existence and characterization of optimal solutions
and algorithms for their exact computation. Consequently, a white-box model of the
system dynamics must be at one disposal. The optimal solution is computed through
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gradient descent after the evaluation of the analytical gradient. On its side, RL is
about leveraging data to improve upon the current behavior. To do so, it relies on
trials and errors and stochastic process formalism to derive algorithms that converge
to the optimal policy in expectation over the observed distribution of state. It only
requires being able to interact with the environment to assess the current behavior
of the agent. A black-box environment whose current state is partially observable is
sufficient, and it could even be a real physical system. It is not necessary to be able
to freely evaluate the system dynamics for arbitrary state-action pairs, nor to have
access to the analytical gradient. RL has been around since the mid-1950s but has
not received much attention until the so-called deep learning revolution that started
about ten years ago. Due to its generality, reinforcement learning is studied in many
disciplines, such as game theory, control theory, collective intelligence, and statistics.
Applications range from training a bot to achieve high scores in a game to controlling
a robot to complete physical tasks. One of the first practical demonstrations was
playing Backgammon at master level (Tesau & Tesau, 1995).

3.2.1 The Agent-Environment Interaction Loop

Global Overview

RL is inherently discrete-time and sequential: the agent starts in an initial state s0
drawn from some distribution ρ0 that is supposed to be unknown. At every timestep,
the agent takes an action at based on an observation ot of the current state of the
world st and a reward rt if any. Then, time passes until the next timestep t+1, and
the action at takes effect on the world in the meantime. A supervisor is responsible
for sending a new observation ot+1 and reward rt according to all the previous events
from the start and the updated state st+1. The set of events that occurred between
two successive timesteps is called transition step et and is represented by the tuple
(st, at, rt, st+1) aggregating all the information available. An ordered but possibly
truncated sequence of transition steps (et)t is called a trajectory and denoted τ .
Finally, it ends at time T when the time limit is reached or a termination condition
is triggered, e.g. the task has been performed successfully or a critical failure has
occurred. An episode refers to the unfolding of events from start to end. It is
characterized by the complete trajectory {et}Tt=0. At this point, the world is reset, a
new initial state is sampled, and it repeats all over again. The behavior of the agent
is defined by a policy π. In general, this policy maps the current observation ot and
the past reward rt to the next action at+1. This process is summarized in figure 3.7.

Typically, the practitioner has no control over the evolution of the world following
the actions of the agent. It obeys some rules or dynamics equations whether it is a
discrete or continuous-time system. Those are pre-defined and cannot be changed.

The supervisor is doing the interface between the environment and the agent.
It sends to the agent an observation of the world and a reward. The observation
comprises information about the agent itself and its surrounding environment. In
robotics, they are called proprioceptive and exteroceptive data respectively. Tradi-
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supervisor

agent

environment

is done ?yes

Figure 3.7: Agent-environment interaction loop in Reinforcement Learning. The
color intensity of the blocks indicates how much freedom is left to the practitioner to
design them.

tionally, the observation only concerns the current state, but it may gather a history
of past events. It can have any data structure and contain heterogeneous informa-
tion, e.g. a binary occupancy grid together with integer raw encoder measurements
and the continuous tilt angle estimation. These data are sometimes pre-processed
algorithm to extract features using unsupervised learning before being forwarded to
the agent, most notably when they include pixel arrays of camera recordings. As
for the reward, it is expected to be a single scalar under the classical RL formalism,
although this assumption may be dropped by considering Pareto optimality (Censor,
1977) instead of strict maximization. It is the responsibility of the practitioner to
design the supervisor in a way to guarantee that the policy maximizing the return is
really performing the task optimally.

The behavior of the agent is defined by a stochastic policy mapping the current
observations ot to a probability distribution π(·|ot) over the action space A, which
can be viewed as a function itself. To be more specific, π(at|ot) = P(a = at|o = ot).
In robotics, it is referred to as control policy since it is the actual controller of the
system. The design of the policy is completely free. In deep RL, the policy is a neural
network whose parameters are adjusted during training to achieve optimal behavior.

Discretization of Continuous-Time Systems

For continuous-time systems, doing one transition step implies integrating the equa-
tions of motion over a given timestep while holding constant the latest action of
the agent. The timestep is usually fixed because there is limited interest in doing
otherwise, but it is not strictly required.

If the timestep is very small, then only the integral (or moving average) of the
action would affect the state, high-frequency variations being naturally filtered by
physical systems. Although this phenomenon is not an issue for traditional control
methods, it may significantly impede the performance of RL algorithms for several
reasons. First, it makes exploration challenging. The latter is an essential component
of RL algorithms which relies on the stochasticity of the actions taken by the agent
to obtain informative data (cf. section 3.2.2). If the underlying random process
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is not temporally correlated, then its effect would have a single timestep to build
up. This would severely hinder exploration and cancel it out entirely at the limit.
Apart from that, the difference between consecutive states may not be statistically
significant anymore due to the inherent stochasticity of the process or the noise in
the observation. Such transition steps bring no information as it is impossible to
assess the impact of the actions. Consequently, the agent would be unable to learn
anything using RL algorithms considering the transition steps individually. Before
getting there, it is essential to increase the size of the training batches when reducing
the timesteps to preserve the sample diversity. Indeed, the observed distribution of
transition steps must be representative of the closed-loop dynamics of the system
under a given policy for associated stochastic estimates to be unbiased.

In this perspective, it seems better to set the timestep as large as possible to
maximize the signal-to-noise ratio and thereby the information provided by the in-
dividual transition steps. However, the sensitivity of the next state increases with
the timestep: a small alteration of the current state or action may radically change
the next state after integration. This issue is well-known and studied as it is also
pathological to shooting methods in numerical analysis. Because of this, the tran-
sitions may appear utterly random, and it would not be possible to learn anything.
Before such extreme consequences, increasing the timestep limits the optimal per-
formance that can be expected. This applies not only to policies trained using RL
but also to optimal control methods. This effect is marginal at first. In most robotic
applications, the action gathers some high-level features driving a traditional Low-
Level Controller (LLC) that, in turn, updates the motor torques accordingly multiple
times during a single transition step. Thus, not being able to update the action does
not completely prevent from reacting to unexpected events or disturbances. Yet, the
agent can only adapt its behavior with a delay, so the system may become completely
uncontrollable at some point depending on the actual LLC. This issue is related to
the famous bang-bang control problem in classical control theory (Bellman et al.,
1956): arbitrary high performance can be achieved with a controller having only two
possible actions available (on-off) if the update frequency is high enough.

In the end, there is an optimal trade-off that is problem-specific. When learning
policies for legged robots, we observe that it can be as large as 40ms even for a basic
LLC such as Proportional-Integral-Derivative controller (PID) without noticeably
impeding the performance. It must be closer to 5ms for direct torque control, but it
is already larger than what is usually required by traditional model-based approaches.

Offline vs. Online Reinforcement Learning

During training, the actual environment may be replaced by a synthetic model that
may be unknown from the agent’s perspective. If so, it is referred to as offline RL,
otherwise online RL. Offline RL is often necessary as interacting with the real en-
vironment may be time-consuming, costly, or put the agent and the environment at
risk of physical damage. However, it introduces the additional burden of being able
to transfer the policy from simulation to reality. This sim-to-real transfer is usually
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challenging because of the so-called reality gap (Jakobi et al., 1995). If there are dis-
crepancies between the simulated and real environment, the encountered distribution
of states is likely to drift over time relative to the expected one. This particular issue
is known as distributional shift (Yu et al., 2020). If nothing is done during training to
prevent this drift from occurring, then the expected return being optimized would be
biased and the agent is set to underperform in reality. The agent may finally reach
a state at some point that has never occurred in simulation, leading to catastrophic
failure. (Zhao et al., 2020) wrote a comprehensive survey reviewing the main issues
caused by the reality gap and the state-of-the-art methods to ease transfer to reality.

Nonetheless, offline RL may still be preferable over online RL as it enables the
agent to have access to privileged information that would be impossible to provide
otherwise (Vapnik & Vashist, 2009). It can bring critical information about the en-
vironment that makes it substantially easier to perform the task. For instance, it
could be the exact map of the environment including its topography for locomotion
tasks on legged robots. It implies an extra learning step after training the policy in
order to get rid of the privileged information before transfer to reality as it cannot be
measured nor estimated experimentally by definition. Training one policy to mimic
another one (eventually using different inputs) is an example of policy distillation
(Rusu et al., 2016) and is characterized by the Teacher-Student learning framework
(Li et al., 2014). The classic approach for tackling such a problem is Imitation Learn-
ing (IL), which focuses on training the student from expert demonstrations provided
by the teacher (Hussein et al., 2017). The simplest form of IL is Behavior Cloning
(BC) (Bain & Sammut, 1999; Ross & Bagnell, 2010), which is a supervised learning
algorithm. First, trajectories are collected from the teacher. Then, the correspond-
ing state-action pairs are treated as independent training samples and the student
is trained to minimize the empirical prediction error. These two steps are repeated
iteratively until convergence. It has been applied to self-driving cars (Bojarski et al.,
2016) and quadrupedal locomotion (Miki et al., 2022). See section 4.1.2 for details.

Dense vs. Sparse Reward

The supervisor usually provides a dense informative reward at every timestep. The
latter is supposed to guide the agent toward a policy that is successfully achieving
the task by providing insightful feedback about the optimality of the current policy.
In this way, the agent can continuously and gradually improve its behavior, and
therefore it is possible to train it using fairly simple algorithms. This kind of reward
is said to be dense. It is task-specific and must be carefully tailored to incorporate
domain knowledge. Designing a reward to improve convergence, speed-up training, or
enforce distinct features for the policy is known as reward engineering (Dewey, 2014).
However, domain knowledge induces some biases toward particular behaviors as it is
nothing more than preconceptions regarding how the task should be done. It may
prevent the emergence of effective but unanticipated strategies, which is detrimental
overall. Besides, incorporating domain knowledge in the reward is time-consuming
and requires problem-specific expertise, which means that it is impossible to target
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a wide variety of problems simultaneously.
Conversely, a sparse reward does not carry any information except when some

specific event of low probability occurs. A classical example of sparse reward is
returning -1 for failure, 1 for success, and 0 otherwise. It has the advantage to
be extremely generic and straightforward to implement without expert knowledge.
Nevertheless, it requires more sophisticated training methods to leverage such sparse
information. At initialization, the agent must discover how to solve the task at least
once to bootstrap learning. The naive strategy is the random walk (Pearson, 1905)
since the reward is not informative enough to serve as a guide. Yet, many problems
are too complicated to be solved that way, and the agent would never start learning
anything. Curiosity-driven exploration and curriculum learning (cf. section 3.2.2) are
some of the approaches that can be leveraged to overcome this issue.

Infinite-Horizon Markov Decision Process Formulation

The entire agent-environment interaction loop can be framed as infinite-horizon
Markov Decision Process (MDP), which is a discrete-time stochastic control pro-
cess (Bellman, 1957). It is an extension of the Markov chain, the difference being the
addition of actions to allow choices and rewards to give incentives. Mathematically,
a MDP is an 8-tuple M = {S,O,A, P,R,O, ρ0, γ}, where S,O,A are the state, ob-
servation and action spaces respectively, P : S × A × S → [0, 1] is the transition
probability function, R : S ×A×S → R is the reward function, O : S → R is the ob-
servation function, ρ0 is the initial state distribution, and γ ∈ [0, 1] is the discounting
factor for future rewards. In principle, the agent only has access to the observation
ot while the transition probability function depends on the state st. It is assumed
in the following that the state is fully observable and no further distinction will be
made between the state and the observation. This simplification is common in the
literature as it makes everything clearer without invalidating the reasoning.

The reward function associates an instantaneous score to each transition step.
As presented in the next section, it is actually its cumulative sum over complete
episodes that is being maximized. Therefore, it is not easy to make sense of the
reward function without considering trajectories much longer than the time constant
of the problem. Still, this score is intended to assess how promising or profitable the
current state is, in light of the previous state, the action taken, and the task at hand,
but ignoring any older event. The reward function is a deterministic function of the
transition step that can be written as follows,

rt = R(st, at, st+1). (3.18)

Providing the two consecutive states plus the action is critical for the scoring of a
transition step because it enables gauging the efficiency of an action by its effect.

The reward function in RL is the counterpart of the running cost in Optimal
Control Problems (OCPs). It plays a more important role in RL which lacks equality
and inequality constraints in most cases, unlike optimal control. Enforcing hard
constraints is challenging since the transition function is unknown to the agent and
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the action is a random variable. In particular, any constraint involving the transition
function on continuous state spaces is at best guaranteed to be satisfied up to some
confidence level. To date, few authors have investigated this question. It is at the
heart of our contribution in RL and is discussed thoroughly in sections 4.2.2 and 6.2.

The transition probability function characterizes the agent in the environment.
It records the probability of transitioning from a given state s to another one s′ after
taking action a. It yields,

P (s′|s, a) = P(st+1 = s′|st = s, at = a). (3.19)

The realization of a transition from the current state st to the next one st+1 under
the effect of action at is known as a transition step and is represented by the 3-tuple
{st, at, st+1}. The MDP is assumed to be stationary, which means that the whole
problem is time-invariant. This includes the distribution ρ0 of the initial state and
the transition function that determines how the world changes under the actions of
the agent but also the reward function prescribed by the supervisor. Notably, this
hypothesis does not hold when curriculum learning is applied to gradually increase
the task difficulty over training iterations (cf. section 3.2.2), e.g. the magnitude of
external forces for robust locomotion. Intuitively, it changes the observed state dis-
tribution and subsequently the optimal policy. This issue can be neglected as long as
the updates of the environment happen at a much slower rate than the policy itself
to approximately decouple both phenomena.

In RL, it is assumed that the world is unknown. The agent and the learning
algorithm cannot enquire about the true transition probability function P but can try
to estimate it. It is the main difference between the classical Dynamic Programming
(DP) and RL algorithms (Van Otterlo & Wiering, 2012). It enables targeting every
large MDPs where exact methods become infeasible. The task at hand is supposed to
be episodic, which means that there is at least one termination state and the average
length of a complete episode is bounded, as opposed to continuing tasks.

All states in MDPs have Markov property, namely, the future only depends on
the current state, not the history. In other words, the future and the past are condi-
tionally independent given the present, as the current state already encapsulates all
the information possibly available to predict the future:

P(st+1|st) = P(st+1|s0, s1, . . . , st) (3.20)

In essence, physics laws are local in time, thus this simplifying assumption in RL is
generally fairly accurate for real applications. One could imagine a system for which
the next state depends on k consecutive states. If so, then it is sufficient to redefine
the state as s′t = (st−2, st−1, st) to obey the Markov property.

This condition is necessary to prove the convergence of learning algorithms to
the optimal policy but has limited practical implications. It often partially holds in
practice, but most algorithms are robust enough to find a policy achieving the desired
task successfully anyway. The MDP property is true for continuous-time autonomous
systems if and only if it is fully observable. Any high-order differential equation can
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be rewritten as first-order by augmenting the state with as many derivatives as its
original order minus one. This augmented state would have Markov property, or
equivalently, a history of the past whose length is equal to the order after discretiza-
tion of the differential equation. Thus stacking a few past observations may help to
get closer to full observability in some cases, but the impact has not been studied
thoroughly. Although it should strictly improve the performance of the policy the-
oretically, it rarely happens it makes training harder. Another approach would be
to add memory to the agent so that it can remember past events without having to
provide them explicitly, but it suffers from similar training issues.

Originally, before the deep learning revolution, RL was mostly tabular and the
optimal action was selected as the one leading to the highest future return after the
enumeration of all possible choices. Learning the optimal policy mostly consisted in
assessing the optimal action in every possible state. Thus, the state and action spaces
were finite discrete sets. It is typically the case for classical board games such as
Backgammon, Go, and Chess to name a few. In the control field, the true action space
is commonly continuous. Regardless, the action was historically limited finite set of
values. For continuous-time systems, it does not significantly limit the performance
as long as the timestep is small enough. As mentioned in section 3.2.1, only the
integral of the actions affects the state, which can be regulated more accurately than
the actions themselves. In many problems, the true state space is also continuous, but
its quantization is hardly an option as opposed to the action. Its quantization would
translate to rounding errors in the observation. It is then impossible for the agent
to distinguish states associated with the same value. Whether it can be tolerated
highly depends on the problem. As a rule of thumb, it gets exponentially difficult to
control the system as the quantization step size increases. More advanced partitioning
techniques have been proposed but are only tractable for low-dimensional spaces, e.g.
tile-coding (Sutton & Barto, 2018). For this reason, it is generally supposed that the
action space is a finite discrete set but not the state space. No such restriction will
be enforced in the following unless stated otherwise.

Stochastic World Model

Even if the agent dynamics is theoretically deterministic, assuming the world is
stochastic and modelled by a transition probability function P (s′|s, a) is preferable
(cf. section 3.2.1). If it appears that it is truly deterministic, then the transitions
can be represented with the Dirac function for any state, but it is rarely the case
anyway. First, the world dynamics may be randomized on purpose to improve ro-
bustness and facilitate sim-to-real transfer. In robotics, one way is to sample different
physical properties of the agent at every episode, e.g. the mass distribution for poly-
articulated robots. Similarly, the properties of the environment itself could change,
e.g. the ground friction coefficient. This would inevitably affect the transition func-
tion which models the whole agent-environment interaction and not solely the agent.
This technique is known as domain randomization and is presented in section 4.1.3.
Secondly, the environment is considered stochastic as soon as unexpected events may
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disturb the agent, which is often the case. If it happens, the future state for two
identical state-action pairs would be different, and therefore the transition function
would be stochastic. Next, the dynamics may be stiff, and two undistinguishable
state-action pairs may be associated with statistically different next states. Typical
examples are collisions and foot slippage in legged robotics: it will slip as soon as
it loses contact even if it is only one nanometer above the ground, which may be
tricky to predict accurately from the state. A stochastic model would be able to take
advantage of such sensitivity. More specifically, it can be interpreted as a smooth
approximation of the true transition function. Finally, it is impossible to define a
state that really encapsulates every bit of information that may influence the future.
Consequently, even if the laws of physics are deterministic at a macroscopic scale, it
would appear stochastic since two identical state-action pairs would result in a differ-
ent next state. In this case, the world is said to be partially observable as part of the
information necessary to model it is missing. This issue is even more significant given
that the state is not directly accessible to the agent but only the observation provided
by the supervisor. The observation is distinct from the state and may contain less
information, be noisy, or have a delay. Nevertheless, the agent has to estimate the
transition function or at least take action based on the observation exclusively.

3.2.2 Key Concepts and Terminology

Expected Return Maximization

The goal is to find the policy π∗ that maximizes the discounted cumulative reward
in expectation over the distribution of trajectories τ induced by the policy. Let us
assume the length T of the episodes is fixed for simplicity. The return for given
T -steps trajectory τ = {(si, ai)}Ti=0 is abusively denoted R(τ). It gives,

R(τ) =
T∑
t=0

γtrt, (3.21)

where γ ≥ 0 is called the discount factor. This expression generalizes to variable
length trajectories without hassle. In the case of infinite-horizon MDPs, the discount
factor γ must be strictly lower than one to guarantee that the return is bounded.
This condition is necessary to prove of convergence of most learning algorithms.

The expected return for a given policy J(π) is computed as follows

J(π) = E
τ∼π

[R(τ)] =

∫
τ

P(τ |π)R(τ) dτ, (3.22)

where τ ∼ π refers to the distribution of trajectories under the current policy π.
More precisely, the probability of a T -steps trajectory τ is

P(τ |π) =
∫

s0∈S

{
ρ0(s0)

T−1∏
t=0

P (st+1|st, at)π(at|st)
}
ds0. (3.23)
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Finally, the optimization problem in RL is formulated as

π∗ = argmax
π

J(π). (3.24)

The discount factor γ is a hyperparameter that must be tuned carefully. It must
not be underestimated as it may affect the optimal solution dramatically, especially
for dense reward functions. If the discount factor is small, then the effect of future
reward does not matter much in the computation of the return, so that the agent
only looks for quick short-term profit without anticipating much in the future. For
instance, in economics, it would be more profitable in the short term to rent an
apartment than to buy it if the interest rate is high regardless of the prices, while
it would be more beneficial in the long run to buy now if the prices are currently
low. On the contrary, if the discount factor is very high, then every single point
in time is taken into consideration when choosing the next action. At the limit,
it does not matter if the event is going to happen right after or in a very long
time. It seems appealing at first, as it promotes a truly optimal policy that takes
informed actions based on present and future events. However, it is only about
probabilities as it is impossible to predict exactly the future, and anyway, the accuracy
of such forecasting drops exponentially with the horizon of time. It creates virtual
barriers and limits the agent’s actions based on prophecies that are not even going
to happen, limiting the overall performance. It is risky to tune the discount factor
accordingly to the confidence in the probability of future events. Is suffering your
whole life to avoid dying in an accident really the dream everyone should pursue?
The discount factor is directly related to the horizon of time that will be taken into
account for planning the next action: the instantaneous reward that will be obtained
more than log(0.99)/ log(γ) steps ahead accounts for less than 1% of the current one.
This horizon must be consistent with the time it takes for the effect of an action to
completely vanish for a given task. It’s not about being reluctant to the unexpected,
but rather about providing the opportunity to plan for long-term profits. For push
recovery, it makes sense to consider a horizon of 2s, which is enough to do a few steps
to avoid falling (cf. section 6.6). Anything longer would encourage the agent to be
more cautious and adopt a resting posture that is uncomfortable to the patient but
makes it easier to keep balance in the prospect of unexpected events. On the contrary,
if the horizon is shorter than the time it takes to fall, it may be more profitable to
do nothing and keep falling as long as it does not penalize the instantaneous reward.

Value Functions and Optimality Conditions

The Value function measures how promising a state s is in terms of future return.
The future return, also called reward-to-go, is denoted Gt or Rt(τ) to point out
the trajectory dependency. It is defined as the return that would be obtained if
starting counting from time t in state s, i.e. Gt =

∑T−t−1
k=0 γkrt+k+1 for a given

trajectory τ = {(si, ai, ri)}Ti=0. For infinite-horizon MDPs, the current time cannot
be distinguished from any other, so it is the same as is equal to the expected return as
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if the trajectory started in that state and the agent acted according to a given policy
π forever after. It is sometimes called state-value to highlight that it is conditioned by
the starting state s, and denoted Vπ(s). Let τt:, τ:t denote the sequence of transition
steps on a trajectory starting after and finishing at time t respectively. It yields,

Vπ(s) = E
τt:∼π

[Rt(τ)|st = s] = E
τ∼π

[R(τ)|s0 = s] . (3.25)

Alternatively, it may be interesting to compute the value assuming the initial action
a can be arbitrary and does not have to come from the policy. In this case, it is
rather called the action-value or Q-value function and denoted Qπ(s, a). It gives,

Qπ(s, a) = E
τt:∼π

[Rt(τ)|st = s, at = a] = E
τ∼π

[R(τ)|s0 = s, a0 = a] . (3.26)

Then, the action-value is related to the state-value function as follows,

Vπ(s) = E
a∼π

[Qπ(s, a)] . (3.27)

One can assess the optimality of a policy π at state s by comparing the state-value
and action-value functions. It is known as the advantage and denoted Aπ(s, a),

Aπ(s, a) = Qπ(s, a)− Vπ(s). (3.28)

If the advantage is positive, then it is better to take action a rather than follow the
policy π, it is the contrary otherwise. If the policy is optimal, then the advantage is
always negative whatever the state and action.

Most RL algorithms leverage either the value function, the Q-value, or the advan-
tage to improve the policy. Knowing the initial state s0, the optimal policy maximizes
the state-value functions for that state,

π∗ = argmax
π

Vπ(s0). (3.29)

As before, the optimal state-value function V ∗(s) is related to the optimal action-
value function Q∗(s, a),

V ∗(s) = max
a∈A

Q∗(s, a) (3.30)

If the optimal action-value function Q∗(s, a) is available, then the optimal policy can
be defined as a by-product. The action a that maximizes it is greedily selected for
any given state s,

π∗(s) = argmax
a∈A

Q∗(s, a). (3.31)

Bellman Equations

A Bellman equation is a necessary condition for optimality associated with discrete-
time optimization problems. It derives from DP and therefore is central in the RL
formulation. Its continuous-time counterpart is the Hamilton-Jacobi-Bellman equa-
tion that is presented in appendix A.3 as a method for solving OCP applied to
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trajectory planning. It writes the value of a policy at a given time in terms of the
return from some initial actions and the value for the remaining decision process.
This breaks the optimization problem into a sequence of simpler sub-problems, as
Bellman’s principle of optimality prescribes. In particular, the value functions are
decomposed into the immediate reward plus the discounted future value,

Vπ(s) = E
s′∼P
a∼π

[
R(s, a, s′) + γVπ(s

′)
]

(3.32)

Qπ(s, a) = E
s′∼P

[
R(s, a, s′) + γVπ(s

′)
]
. (3.33)

The Bellman equations for the optimal value functions are obtained by replacing the
expectation of the action over the policy with the one leading to the highest value,

Q∗(s, a) = E
s′∼P

[
R(s, a, s′) + γV ∗(s′)

]
. (3.34)

If the world is known analytically, then it enables computing the value at the current
state s knowing the one at the future state s′ and the reward obtained by following
the policy π. If the world is known analytically, then this turns into a OCP solvable
by DP. In most scenarios, we do not know the transition or the reward function ana-
lytically, so it cannot be solved directly by applying Bellman equations. Nonetheless,
it lays the theoretical foundation in RL.

The Bellman equations enable estimating the value functions from incomplete
episodes without having to track them up to termination. The episodes do not have
to terminate at some point anymore, which allows for solving continuing tasks. The
key idea is bootstrapping : the current estimate of a value function takes into account
its previous estimate rather than exclusively relying on collected data. The most
basic algorithm leveraging this capability is Temporal-Difference (TD) learning. The
Bellman equations introduced here are said to be one-step look-ahead. Looking more
steps ahead would give more weight to the collected data over the previous estimate.
Formally, it reduces the bias due to the previous estimate being off, at the cost of
increasing the variance. See appendix E.3 for details.

At every iteration, a training batch of fixed size is collected, and a value function
estimate is computed accordingly. For this estimate to be unbiased, the distribution
of trajectories must be representative of the closed-loop dynamics. For instance, if the
agent may end up in a periodic cycle and keep collecting similar samples over and over
again, then the training batch would degenerate and provide misleading information
to the agent. This issue is commonly mitigated by truncating the episodes to a max-
imum duration called time limit, despite the horizon of the MDP being theoretically
infinite (Pardo et al., 2018). This would likely affect the distribution of trajectories
and thereby the optimal policy (see equation (3.23)). Intuitively, this limit must be
short often to ensure sufficient sample diversity, but not too short to give enough
time for long-term phenomena to build up. There is only one scenario where such
bias does not occur: training an agent for solving a continuous task where the initial
state distribution matches the stationary one (cf. appendix E.5). This side-effect has
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been largely ignored in the literature because the time limit is usually much larger
than the equivalent cumulative reward horizon specified by the discount factor.

Policy and Value Function Parameterization

The target policy must be distinguished from the behavior policy. The former is
the one being trained while the latter is used to collect data. They are different
or identical depending on the type of algorithm (cf. section 3.2.3). The behavior
policy must be stochastic for the sake of exploration (cf. section 3.2.2), but there is
no such restriction for the target policy. For continuous control problems, the target
policy is necessarily a function approximation parametrized by θ (cf. appendix E).
The preferred function approximations in deep learning are ANNs, though Gaussian
Mixture Models (GMMs) are sometimes used, especially for online RL and IL (Pignat
& Calinon, 2019), because of their high expressiveness relative to their number of
parameters. If the target policy is deterministic, then it is denoted µθ instead of πθ
and maps the current observation ot to the action at that the agent ought to take.

It gets more complicated If the target policy is stochastic: the network outputs
values characterizing a given action distribution. Originally, the action space was
exclusively finite, and thereby the action distribution was categorical. It is fully
specified by the probability of each possible action. Since probabilities must be
positive, the networks must predict their logarithm instead, hence the name logits.
Indeed, it is extremely difficult to enforce positivity constraint to the output of a
ANN, and clamping its output is not an option as it would break backpropagation.
The probabilities are recovered using Softmax activation function for the output layer,

P(a = ai) =
exj∑|A|
j=0 e

xj

, ∀ai ∈ A (3.35)

In continuous control, the action distribution is mostly isotropic multivariate Gaus-
sian. Isotropic means the components of the action space are independent and iden-
tically distributed (iid) random variables. It implies that the covariance matrix Σ is
diagonal, i.e. Σ = diag(σ). This distribution is characterized by its mean µθ and
standard deviation σθ. Those parameters are frequently called logits improperly.
The standard deviation must be positive. Following the same reasoning as before,
the network predicts its logarithms. Let z ∼ N(0, I) be a vector of noise drawn from
the standard isotropic Gaussian. An action sample at state s can be computed with,

a = µθ(s) + σθ(s)⊙ z. (3.36)

This formula is commonly known as the reparametrization trick (Kingma & Welling,
2014), also stated as Ea∼N(µ,σ)[f(a)] = Ez∼N(0,1)[f(µ + σ ⊙ z)]. More generally, a
policy is said to be reparameterizable if it is possible to write it as a ∼ fθ(s, z), where
z is a random noise drawn from some independent distribution ξ. It is true for any
continuous distribution since all of them can be derived from the standard uniform
distribution, including the normal law itself. Nevertheless, it requires the inverse
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(a) Actor-Critic network with shared features (b) Normal reparametrization

Figure 3.8: Classic policy and state-value network architecture: single MLP with up
to three hidden layers of variable width ranging from 64 to 256 units. The action is
normally distributed, hence the action logits are the mean and standard deviation.
The standard deviation is often a free parameter instead of an output of the network.

cumulative distribution function to admit a closed-form to be practical, which is not
necessarily the case. It follows π(a|s) = Ez∼ξ[1{a}(fθ(s, z))], where the integrand is
the probability of action a conditioned by (s, z). It is illustrated in figure 3.8b.

The classical network architecture is a basic MLP because it is easy to train, but it
could be a Long Short-Term Memory (LSTM) if the state is partially observable. In
many training algorithms, the state-value function is jointly learned with the policy.
Typically, the policy and the value networks share all hidden layers. In RL, it is a
common interpretation that once appropriate features have been extracted, a linear
mapping is enough due to the feedback loop. It is consistent with traditional feedback
controllers, for which the action is proportional to the error in a given feature space.
As a result, the hidden layers are responsible for extracting features and the final layer
learns the linear mapping. Interesting, sharing layers also reduces the computational
cost and memory footprint. The complete architecture is shown in figure 3.8a.

Curriculum learning

Curriculum learning (Narvekar et al., 2020) derives from the intuition that the dif-
ficulty of the task must be adapted to the current capability of the agent for it to
learn efficiently. Translating this simple idea into an actual training method poses
two questions: how to evaluate the capability of the agent? How to select the most
appropriate task based on it?

Vanilla curriculum learning that was introduced first about ten years ago dismisses
these interrogations altogether by relying exclusively on a priori expert knowledge
(Bengio et al., 2009). The difficulty is monotonically increased over iterations ac-
cording to a fixed schedule. It is based on the bold assumption that the capability
of the agent increases over iterations whatever happens, so that estimating the suit-
able difficulty of the task is roughly the same as scheduling over iterations if tuned
properly. Then, the mapping from the desired difficulty to a task is manually spec-
ified. Although this approach has proven successful in practice, it has major flaws.
First, if the learning curve is highly non-linear and sensitive, then it is impossible to

78



3.2. The Reinforcement Learning Problem

anticipate when it is going to start learning anything, and scheduling over time is
unreliable. It is typically the case for locomotion tasks in bipedal robotics. At first,
the robot is not even able to stand, and it is hard to predict when it is going to be the
case. Secondly, the notion of difficulty of the task may be hard to define intrinsically
for complex problems as it may combine multiple aspects or depend on the agent
itself. For instance, both the ground profile and the external forces contribute to the
difficulty of locomotion tasks, and it is difficult to unify them. Moreover, one of these
components may be easier for the agent to tackle that the other, making it even more
challenging to balance them over time.

Several more advanced curriculum learning methods have been proposed to over-
come these shortcomings. The pivotal idea of self-paced and Teacher-Student cur-
riculum learning is to estimate the difficulty of the task from the perspective of the
agent. The probability of sampling individual tasks is a function of the capability of
the agent in solving them according to a given performance metric, while maintaining
enough diversity in the resulting distribution. It mitigates the two aforementioned
limitations at once. Indeed, the difficulty is now intrinsically defined, so it implicitly
combines multiple criteria and relates to the actual agent’s potential. Besides, It is
usually easy to determine a good performance metric based on the reward. However,
it introduces a coupling between the increase in difficulty of the tasks and the capa-
bility of the agent that may create self-excitatory oscillations and prevent monotonic
improvement. It would impede convergence and lead to a plateau effect in terms of
the performance of the policy. This issue can be avoided by decoupling their respec-
tive dynamics by varying the difficulty slowly enough for the agent to catch up with
the increase instead of having to lower it again. The easiest way to achieve this is
to filter the performance metric with a moving average filter over training iterations.
Curriculum learning is also suitable for multitasking, where a policy is trained to
solve a heterogeneous set of problems simultaneously. The most difficult task can be
presented more often to make sure the agent is equally capable of solving all of them.

Hindsight Experience Replay (HER) is a method that can be viewed as a kind
of automatic curriculum learning (Andrychowicz et al., 2017). The core idea is to
randomly select the task for the current episode among all the outcomes that have
been obtained in the previous episodes. This way, the task to achieve is likely to
match the current capability of the agent. This intermediary task is a moving target
contrary to the actual task. As such, it is termed a goal to highlight this distinction.
The agent will be aware of the current goal as part of the observation. Thus, it just
has to learn to reproduce what it has already done before, but this time on purpose.
HER is especially well suited for sparse reward problems since the previous episodes
act as expert demonstrations guiding exploration. The agent will progressively gain
knowledge about the transition probability function of the MDP and extrapolate
what to do from the skills already required. For instance, when shooting a ball,
being able to hit more and more specific locations would be helpful to finally learn to
score. It has been demonstrated on manipulation tasks with a virtual robotic arm.
Surprisingly, the performance of the policy at runtime is even better when providing
a sparse reward instead of a dense one. Nevertheless, this method is only applicable
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if it is possible to define intermediary goals that relate to the actual task whatever
the outcome of an episode. In the case of push recovery, the task is to avoid falling.
Defining goals that would help the agent learn to keep balance is not straightforward.

Curriculum learning is not always applicable as the appropriate behavior may
change dramatically even if the difficulty increases gradually. It is typically the case
for emergency push recovery: if the pushes are light enough, then controlling the
posture without moving the feet is sufficient to withstand them, while it is necessary
to do steps as soon as their strength exceeds some threshold. This issue is related to
the notions of deceptive objective function presented in section 3.2.2.

Exploration-Exploitation Dilemma

The objective for the agent is to maximize the expected return. Exhaustive search
methods would require sampling all possible trajectories for every candidate policy,
which is untractable. Alternatively, one could imagine using function approximations
and the gradient descent method either to train the policy directly or an estimate of
the value function. It partially addresses the issue since it is no longer necessary to
review all candidate policies, but it does not prevent computing at least the expecta-
tion over all possible states extensively. In practice, only a finite set of trajectories is
computed at every iteration, from which how to improve the current policy must be
used to infer. For this process to be efficient, it is necessary to try different behaviors
in order to discover more promising state-action pairs than what would be obtained
according to the current policy. It is true, no matter if the reward is dense or sparse.
Although exploration is critical and necessary, it also harms performance to a certain
extent. The policy has to deviate from the best strategy found so far in the hope
of coming upon a better one. This issue is known as the exploration-exploitation
dilemma. In a pathological scenario, it may prevent finding any valid solution at
all if the agent explores too much, especially if a specific sequence of actions is re-
quired to complete the task. Exploitation refers to sticking to the expected best
action based on already accumulated data without giving other actions a try along
the path. The additional information that would be collected this way to improve the
current knowledge is entirely dependent on the intrinsic stochasticity of the world,
which is very limited in many cases. Intuitively, it seems important to explore at
the beginning of the training to collect a lot of data regarding the state-action space,
then gradually decrease it to focus on exploitation at the end. The goal is to find
the best solution as fast as possible, but committing to solutions too quickly without
enough exploration is undesirable as it is likely to end up in a bad local minimum or
even fail. How to maximize the efficiency of exploration is still an open question.

The most common form of exploration relies exclusively on the stochasticity of the
behavior policy. The ϵ-greedy is the first strategy that was proposed (Watkins, 1989).
A parameter ϵ ∈ [0, 1] is controlling the amount of exploration vs. exploitation. With
probability 1−ϵ, exploitation is chosen and the agent chooses greedily the action that
it believes has the best long-term effect. Otherwise, the action is sampled randomly.
Tokic (2010) adapt the parameter ϵ based on the agent’s uncertainty about the world.
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This approach effectively increases the diversity of the trajectories by completely
randomizing the behavior at a few timesteps instead of slightly disturbing it all along
the trajectory, so it only explores through large jumps and never locally. It may
be fine if the action space is discrete but not if it is continuous. For example, this
strategy is problematic in robotics where the action commands the motors. First, it
would produce loud noise and vibrations during online learning, which may damage
the device. Secondly, it would fail for the task requiring high precision.

It seems more appropriate to use a continuous random process with a relatively
small standard deviation as behavior policy. Every action would be selected randomly
but very localized around a mean value that depends on the current observation. In
most cases, the standard deviation is constant or scheduled over time. This approach
is double-edged: it is very robust but suboptimal. It does not allow for adjusting the
exploration strategy based on the current state. Yet, it is not clear how to learn a
function approximation of the optimal standard deviation since the expected return
alone does not provide any insight into it. Thus, the objective function must be
augmented one way or the other. Entropy regularization is commonly used, and in
particular it is central in Soft Actor Critic (SAC) (Haarnoja et al., 2018). The entropy
is defined as the expected negative log-likelihood. Loosely speaking, it measures the
expected amount of disorder in the exploration strategy of the agent. Let x be a
random variable with probability distribution P . Then,

H(P ) = E
x∼P

[− logP (x)] . (3.37)

The agent gets a bonus reward at each time step proportional to the entropy of the
policy at that timestep. It changes the original RL problem (3.24) to

π∗ = argmax
π

Eτ∼π

[ ∞∑
y=0

γt
(
rt − α E

a∼π
[log π(a|st)]

)]
, (3.38)

where α is a weighting factor. Mathematically, it can be positive or negative, even
though it is always positive in practice. It bolsters exploration if high, and conversely.

In the particular case of Q-learning, the softmax strategy, also known as Boltz-
mann or Gibbs exploration has been proposed as a substitute for the basic ϵ-greedy
to adapt the exploration automatically (Sutton & Barto, 2018). It has the advantage
to rely on the already estimated action-value function instead of training yet another
function approximation. However, it is rarely used in state-of-the-art algorithms,
especially in the continuous domain, because sampling from such a probability dis-
tribution is not straightforward. Either way, these noise models are temporally un-
correlated. It is usually effective to force exploration, but not necessarily, no matter if
the standard deviation is extremely high. For a MDP representing a continuous-time
system, the timestep must be chosen properly to give enough time for the effect of the
randomness to build up, but it is not possible if very high reactivity is mandatory for
some reason. If the random process changes dramatically at every timestep but has
zero mean, then it would have no effect on average. It is true for Gaussian noise but
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also for the ϵ-greedy strategy. Temporally correlated random processes can be used
to get around this issue. The Ornstein-Uhlenbeck process (1930) is one of them. It is
a variant of the random walk that has the tendency to move back towards a central
location, with a greater attraction further away from the center. Roughly speaking,
it is a continuous-time normal distribution. It is rarely used in continuous control
benchmarks because the timestep is large, and hence it has little advantage over un-
correlated normal noise, not to mention implementation difficulties. Various other
types of noise have been proposed in the literature to avoid clipping or squashing
the actions if bounded, in particular, the beta distribution (Chou et al., 2017) and
the truncated gaussian distribution (Fujita & Maeda, 2018). Besides, a popular trick
to improve exploration for off-policy methods is to start with a completely random
policy that spans uniformly the whole action space. Then, after a few iterations, it
switches back to a more sensible exploration strategy. It is a step forward to ensure
that the state-action space has been explored thoroughly and that the history of past
data has not degenerated at the early stage.

EA has been relying on parameter perturbations since the 70s, notably Evolu-
tionary strategies that we briefly present in appendix E.9. They are known to explore
the search space extensively, but they have poor sample efficiency compared to RL
methods, including on-policy algorithms (cf. section 3.2.3). This can be explained
by its inability to leverage the temporal structure of the problem. For the interested
reader, Eiben and Smith (2015) offers a thorough introduction to the field of Evo-
lutionary Computing. It is very possible to apply the same technique to RL since
the policy is a parametric function approximation. Matthias et al. (2018) were first
to investigate how adding noise in the parameter space rather than the action space
can be effectively combined with off-the-shelf RL algorithms to improve exploration.
Adding noise in the parameter space in RL can be seen as a bridge between Evolu-
tionary Strategies and classical RL methods to take the best of both worlds. This
form of exploration is applicable to both high-dimensional discrete environments and
continuous control tasks, using on- and off-policy methods. Besides, It works with
any observation and action space. Experiments were conducted on the widespread
DeepMind Control Suite (dm-control) (Tunyasuvunakool et al., 2020), which gathers
a set of control tasks based on Mujoco (Todorov, 2010). The results indicate that
parameter noise leads to a more consistent exploration and a richer set of behaviors
than adding noise in action space, especially in tasks with a sparse reward.

Adding noise to the action is well suited for problems that can be solved by simply
exploring the state space. First, it must be uniformly challenging for the action to
drag the state in any direction whatever the current one. Mathematically, it implies
that the graph of the MDP is strongly connected or irreducible, which means that
any state communicates with any other state. Two states i, j communicate if they
are accessible from each other after an arbitrary number of steps. Maze solving
fits perfectly with this description, but it may not be the case. Even if the MDP is
irreducible, some states may only be accessible after a specific sequence of past events,
which would have an extremely low probability under random actions. Secondly, the
reward must be dense and informative, otherwise, it would not be possible to sort out
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different states. It is said to be a hard-exploration problem if these two requirements
are not satisfied. How to solve this class of problem is an active research topic.

Extrinsic vs. intrinsic Reward

A dense and informative reward is a form of extrinsic motivation for the agent to
complete the task. As such, it is supposed to constantly steer the agent toward
better policies. However, landscapes induced by such a hand-crafted reward are often
deceptive (Lehman & Stanley, 2011), which means that part of the time, the reward
is pointing the wrong way. It follows that a randomly initialized agent is unlikely to
uncover a path through the search space that ultimately leads to achieving the task.
For biped locomotion, rewarding falling the farthest is likely to encourage the agent
to jump away rather than walk, which exemplifies a deceptive local optimum.

One solution is to bootstrap learning by guiding the agent with a few expert
demonstrations to avoid relying exclusively on exploration at the beginning of the
learning (Nair et al., 2018; Vecerik et al., 2017). This approach, combined with the
decomposition of the task into a curriculum of subtasks requiring short sequences of
actions, was successfully applied to the infamous ‘Montezuma’s Revenge’ atari game
but failed on ‘Pitfall!’ (Salimans & Chen, 2018). They are respectively the second
and first hardest atari games. However, there is no solution readily available for many
real-world problems, so it is impossible to provide expert demonstrations. Moreover,
curriculum learning is not generic as it involves decomposing the task into subtasks
or parametrizing it to adjust its difficulty.

A more promising direction is to augment the original reward with some intrinsic
reward promoting curiosity (Schmidhuber, 1991). Such a reward is dense, without
expert bias, and compatible with any existing training algorithm. Hence, it is broadly
applicable to many problems without domain knowledge. In general terms, curiosity
is about encouraging the agent into seeking to learn more about the world (both itself
and its surrounding environment) without explicitly seeking to achieve an objective.
Such an intrinsic reward is often referred to as a bonus, to distinguish it from a
regularization term. The entropy in equation (3.38) can be viewed as a naive curiosity
bonus that promotes diversity of action for itself without looking at its effectiveness.

Lehman and Stanley (2011) propose highly generic curiosity-driven intrinsic re-
ward search for the behavioral novelty. Because there are only so many simple be-
haviors, the search for novelty leads to increasing complexity. A good metric of the
novelty is the sparsity in the behavior space, that is, the space of unique behaviors.
Areas with denser clusters are rated less novel and therefore rewarded less. Basically,
it boils down to encouraging the agent to explore states it has never encountered
before. This approach was originally developed with Evolutionary Computing in
mind. In this context, the performance of the agent is only assessed at the end of
the episodes. Thus, Lehman and Stanley define the novelty as the average distance
between the final state of the agent and its k-nearest neighbors in the history of
all the final states of previous episodes. They have shown that novelty search sig-
nificantly outperforms objective-based search in some maze navigation and biped
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walking tasks. In RL, the reward is provided at every transition step and not only at
the end. Generalizing the metric introduced by Lehman and Stanley requires storing
the whole history of previously visited states. This causes scalability issues because
computing the k-nearest neighbors is getting more and more impracticable as the
amount of data keeps growing unboundedly. Nonetheless, (Seo et al., 2021) have
successfully applied to simple locomotion and navigation tasks from dm-control. For
discrete state spaces, one could keep track of the state visitation frequencies: the
states that have been visited less frequently would be rated as more novel. Although
this approach is computationally effective, it scales poorly with dimensionality as it
completely ignores the similarities between states.

Parametric function approximations such as neural networks do not face these
scalability issues regarding the number of samples or the dimensionality. However,
it is not clear what to approximate with it since the state visitation is ill-defined
in the continuous domain. (Burda et al., 2019) came up with a very peculiar but
effective way to overcome this issue called Random Network Distillation (RND). A
first neural network is randomly initialized and kept fixed forever after. This map-
ping is fully deterministic and forms a scalar (smooth) embedding for observations
without any physical meaning. Then, a second network is trained to approximate
the specific scalar observation embedding defined by the first one. Both shares the
same architecture but are initialized differently. This way, the second network is
guaranteed to have the ability to perfectly reproduce the first one regardless of its
expressiveness. The novelty of a given state is characterized by the error between the
output of the two networks for the corresponding observation. This prediction error
can be interpreted as an exotic metric of the similarity between the current state and
all the previously visited states, much like the average distance from the k-nearest
neighbors. How sharply the similarity between neighboring states drops relative to
their actual distance depends on the generalization ability of the model and thereby
its expressiveness: the similarity would drop faster if the expressiveness is increased.
Thus, the complexity of the architecture must be chosen in relation to the problem
at hand, which may be tricky. Besides, if the state is partially observable, different
states would map to the same observation, which introduces a bias. Yet, Burda et al.
(2019) have successfully applied their method to ‘Montezuma’s Revenge’ but failed
on ‘Pitfall!’. They are respectively the second and first hardest atari games.

Alternatively, Oudeyer et al. (2007) intend to assess the knowledge about the
world instead of simply monitoring how well the state space all a whole has been
explored so far. A subsidiary model called expert is responsible for predicting the
future observation from the current one and the ongoing action of the agent based on
all the collected data from the beginning of the learning, namely learning a forward
dynamics model. There is no assumption regarding the learning rate of the model,
thus this approach complies with one-shot learning methods or non-parametric func-
tion approximations like KNN, as well as with slowly learning ANNs that would be
trained concurrently to the policy. The error between the actual and predicted future
state is then used as a basis to define an intrinsic reward. This prediction error is
expected to capture the state visitation frequency to some extent. It should be large
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for novel states that have been encountered before, and small if frequently visited
in the past. It is related to the epistemic uncertainty, namely data are missing to
properly approximate the dynamics at the current state. Consequently, it seems rea-
sonable to maximize the prediction error. Stadie et al. (2015) applied this method on
many Atari games with mixed results. In particular, the agent fails on ‘Montezuma’s
Revenge’. This is because the prediction error can be large for many other reasons:

• the true dynamic model may be stochastic, known as aleatoric uncertainty,
• the state is only partially observable and information is missing,
• The expressiveness of the function approximation is not high enough.

The aleatoric uncertainty is the most problematic, namely the agent being attracted
by local sources of entropy unrelated to exploration. A famous thought experiment
is the so-called "Noisy-TV" problem. It is a pathological scenario where a screen
displays white noise. The next state is unpredictable, and so the agent would enjoy
a large intrinsic reward by just looking at the TV, encouraging it to stay in place
without getting any closer to solving the actual task. (Achiam & Sastry, 2017) replace
the classical L2-norm used to compute the prediction error by a metric based on the
Kullback-Leibler (KL) divergence over iterations. This approach is very robust to
aleatoric uncertainties but tends to be computationally expensive. Moreover, it does
not help much with unlearnable situations.

Oudeyer et al. suggest maximizing the learning progress by monitoring the evolu-
tion of the error rate. This ensures that the agent will not stay in front of white noise
or unlearnable situations because this does not lead to a decrease in prediction error.
The corresponding intrinsic reward is defined as the inverse of the difference between
the expected mean prediction error in the close future and the mean error rate in
the close past, which is an estimate of the local derivative of the mean error rate.
They validated their approach on several simple robotic tasks both in simulation and
reality. However, they focus their analysis on exploration, ignoring the actual perfor-
mance of the agent, so it is hard to infer whether it would be effective in real-world
applications with concrete objectives. More recently, Pathak et al. (2017) proposed
to learn an inverse dynamics model, i.e. learning to infer the action from the past
and current states. As opposed to the forward dynamics model, all the variability
in the world that is not affected by the action taken by the agent would be useless
to make this prediction and filtered out. Pathak et al. have demonstrated that an
intrinsic reward combining both forward and inverse dynamics models is insensitive
to aleatoric uncertainty for the most part. In particular, they achieved high scores
in the video games ‘Doom’ and ‘Super Mario Bros’.

All the previous approaches focus on providing a long-term novelty bonus. It is
sufficient to deal with a local exploration, i.e. exploring the consequences of short-
term decisions. However, a global exploration that involves coordinated decisions
is beyond their reach. To circumvent this limitation, Badia et al. (2020) propose
an episodic novelty metric based on an inverse dynamics model. The history of
inferred past actions is stored in a buffer over a time window of fixed length. The
latter is supposed to be consistent with the short coordinated decision sequences
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that the agent must perform to solve the task. Then, for every predicted action, its
novelty is defined as the distance from its nearest neighbors. The episodic novelty
of the predicted action is then used to modulate the long-term novelty bonus for
encountering new states coming from RND. This method has been able to solve
‘Pitfall!’ for the first time without expert demonstrations.

3.2.3 Taxonomy of Algorithms for Continuous Control

Many learning algorithms have been introduced over the years, and it is impossible to
review all of them with their connections. Thus, only the most famous ones are listed
here. A usual tree graph representation has been adopted, even though this choice is
questionable considering the modularity of the algorithms. Only the state-of-the-art
methods will be presented in detail in this section. A thorough discussion of the
historical algorithms and the main alternatives to RL is available in appendix E. As
mentioned in section 3.2.2, algorithms can be partitioned according to three different
criteria: model-free or model-based, on- or off-policy, and value- or policy-based.

Model-Based vs. Model-Free Methods

Traditional model-based control methods rely on a model of the system for planning
actions on a real robot. This theoretical model is sometimes a very rough approx-
imation to make computations tractable, e.g. the Linear Inverted Pendulum Model
(LIPM). Moreover, the sensor measurements may be noisy and provide a partial ob-
servation of the current state of the system, not to mention communication delays.
These discrepancies limit the performance that can be expected from such controllers.

Model-free policy learning methods are promising approaches for generating ro-
bust feedback controllers that incorporate model knowledge and implicitly plan over
a horizon through trials and errors. Such policies have demonstrated their capability
to handle large model uncertainties and unexpected events at runtime if combined
with transfer learning techniques such as domain randomization (cf. section 4.2.2).
However, they suffer from interpretability issues, often lack theoretical stability guar-
antees, and are difficult to fine-tune to tightly adjust the closed-loop behavior.

Alternatively, the reduced dynamics in the observation space can be learned ex-
plicitly. The resulting model is differentiable, so it can be used in conjunction with
classical Model-Based Predictive Control (MPC) (Deisenroth & Rasmussen, 2011;
Ha & Schmidhuber, 2018; Racanière et al., 2017). However, model learning is fun-
damentally hard. It was applied successfully to discrete state and action spaces, but
it struggles in the continuous case. MuZero (Schrittwieser et al., 2020) is famous for
playing Chess, Go, and Atari games above the human level.

Policy- vs. Value-Based Methods

RL algorithms are iterative. First, sample trajectories are collected following the
current policy to take action. Then, it leverages those data to improve the policy.
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This loop is repeated until convergence. An algorithm will be policy-based, value-
based, or both depending on the way it makes use of the collected data. A method is
said to be policy-based if the policy is parametrized with a function approximation
πθ and the parameters θ are optimized. It is value-based if the same goes for a
value function instead. These two approaches are not mutually exclusive as one can
imagine training jointly the policy and a value function.

If a method is purely policy-based, then it solves the problem explicitly by updat-
ing the parameters of the policy θ by gradient descent so as to maximize the expected
return. One example of such a basic algorithm is REINFORCE (Williams, 1992),
i.e. vanilla policy gradient. Conversely, if a method is purely value-based, then it
finds the solution indirectly by estimating an action-value function and defining the
current policy as a by-product. This basic algorithm is known as Policy Iteration
(Sutton & Barto, 2018). It is proven that defining the policy greedily according to
equation (3.31) guarantees monotonic improvement of the policy if the action-value
function is associated with the current policy and estimates it perfectly. This is the
direct application of the Policy Improvement Theorem.

Theorem 3 (Policy Improvement Theorem). Let π(a|s), π′(a|s) be two stochastic
policies and define Qπ(s, π

′) = Ea∼π′ [Qπ(s, a)]. If ∀s ∈ S, Qπ(s, π
′) ≥ Vπ(s), then it

holds that ∀s ∈ S, V ′
π(s) ≥ Vπ(s). It means that π′ is at least as good a policy as π.

Qπk
(s, πk+1) = maxQπk

(s, a) and for a greedy policy Vπk
(s) = Ea∼πk

[Qπk
(s, a)],

hence Qπk
(s, πk+1) ≥ Vπk

(s). Moreover, to show convergence to the optimal policy, it
is enough to show that if there is no improvement in the value function at any state.
If ∃k s.t. ∀s ∈ S, Vπk+1

(s) = Vπk
(s), then Vπk

(s) satisfies the Bellman optimality
equation, and thus Vπk

(s) = V ∗. This policy is fully deterministic, which means that
exploration only comes from the initial condition and the transition function. If both
are deterministic, then the trajectory would be unique. In practice, those conditions
are often met, so that the agent can hardly discover interesting behaviors. State-
Action-Reward-State-Action (SARSA) is an early algorithm based on this principle
that is now famous (Rummery & Niranjan, 1994). Nowadays, it is not an active
research topic as this approach is significantly outperformed by others. Alternatively,
the optimal action-value function can be estimated in place of the current one. The
same technique as before is used to define the current policy. This basic method is
called Q-learning (Watkins, 1989).

Hybrid methods being both policy-based and value-based are known as actor-
critic (Konda & Tsitsiklis, 2000). It covers a wide range of very different algorithms,
but the core idea remains the same: learning a value function to compute the update
direction for the parameters of the policy. The actor is the policy that takes action,
then the critic estimates a value function to suggest a meaningful update direction to
the actor. Most state-of-the-art algorithms derive from this paradigm. Such methods
are not restricted to estimating the action-value function. Indeed, the state-value
function can be used as a baseline to reduce the variance of the gradient estimate.
Variance reduction techniques are presented in appendix E.7.1.
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On- vs. Off-Policy Methods

RL algorithms can be partitioned into two categories: on-policy and off-policy . The
distinction between them is simple but has many implications. An algorithm is said
to be on-policy if the target and behavior policies are the same in expectation, off-
policy otherwise. Still, the behavior policy may be somehow related to the target
policy even in the off-policy setting. Typically, it is a past version of the target
policy in state-of-the-art algorithms. Which quantities are involved in the learning is
specific to every algorithm, depending on whether they are policy-based, value-based,
or both. It could be the expected return, or the state- and action-value functions
under the target policy. In addition, the off-policy setting allows learning directly
the action-value function under the optimal policy. As stated in equation (3.34), this
quantity only depends on the transition function. Asynchronous A2C (A3C) (Mnih
et al., 2016), Trust Region Policy Optimization (TRPO) (Schulman et al., 2015) and
Proximal Policy Optimization (PPO) (Schulman et al., 2017) are prominent on-policy
methods, while Deep DPG (DDPG) (Lillicrap et al., 2016), Twin-Delayed DDPG
(TD3) (Fujimoto et al., 2018), SAC are some of the most effective off-policy methods.
These algorithms and many others are reviewed in section 3.2.3 and appendix E.

In on-policy algorithms, the collected data are only valid for the current itera-
tion and must be thrown away afterward since the target policy has been updated
and therefore now differs from the behavior policy. The principal advantage of the
off-policy setting is to allow the agent to learn from the whole history of previously
collected data without introducing bias since matching between the behavior and
target policy is not required. More specifically, any available trajectory can be used
to improve its estimate as long as the MDP is stationary. In robotics, this assump-
tion never truly holds as the physical properties of robots slowly change over time
due to wear and tear. This process is usually very slow compared to the update step
and hence can be ignored during the training. Yet, it would be interesting to never
fully stop learning to continuously adapt to these changes, which is one of the main
purposes of online RL. More generally, it is recommended to discard the oldest data
by storing a history of fixed size called replay buffer. It avoids keeping data that are
no longer consistent with the current MDP. More importantly, it reduces the variance
of the gradient estimate for the policy update. This in turn enables converging to
better solutions and speeds up the training by permitting larger update steps with-
out instability. Intuitively, the closer the transition steps in the replay buffer from
the closed-loop behavior under the target policy the more information they provide
on how to update the policy to improve its performance. This is related to Impor-
tance Sampling (IS), which is a technique for estimating quantities associated with a
particular distribution, while only samples drawn from another one are available (cf.
??). In practice, it consists in weighting each transition step involved in the update
of the policy according to their relevance at the time being.

The difference between on and off-policy methods is fundamental. The former
aims at a moving target. It is a local optimization process. Only trajectories in-
duced by the current policy are sampled to improve it. It is ideal in the sense
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that it optimizes the parameters solely for what the current policy does in closed-
loop interaction with the environment. The collected transition steps belong to a
low-dimensional manifold embedded in the state-action space, so that only vectors
tangential to this manifold are considered as candidate update direction for the pol-
icy parameters. In this way, estimating accurately a meaningful update direction
requires a minimal amount of data. On the contrary, off-policy methods are closer to
global optimization. It requires mapping the whole state-action space instead of only
the state space, but the function to estimate is stationary in contrast to on-policy
methods. It enables mixing new samples under the current policy and old ones dur-
ing training, which dramatically improves sample efficiency. However, the history of
state-action pairs span a region of the state-action space much larger than necessary.

Neither off-policy nor on-policy is strictly superior to the other. Off-policy meth-
ods tend to face more difficulties in finding appropriate policies for complex problems,
whereas on-policy algorithms have poor sample efficiency. What matters the most
to the end-users depends on the scenario. In robotics, it is not uncommon to have
to collect hundreds of millions on transition steps, corresponding to months in real-
ity. It is nonetheless possible to train a policy in a few hours in simulation as the
throughput is around tens of thousands per second. Yet, it is not suitable for online
RL where increasing the throughput means duplicating real environments, which is
very costly, especially in the robotic field. Moreover, interactions in the real world
are time-consuming and demand special care, so they must be limited by all means.

Landscape of Policy Learning Algorithms

Nowadays, the dichotomy between value and policy-based methods is hardly relevant
for continuous control tasks. All modern algorithms are actor-critic, and so they are
both value- and policy-based to some extent. Similarly, recent algorithms blur the
line between on- and off-policy paradigms. It is also quite common that model-based
planning and control methods are somehow combined with model-free RL algorithms.
One way to do so is to provide pre-computed trajectories to guide the agent, either
as expert demonstrations (Levine & Koltun, 2013) or as an additional term in the
reward function (Xie et al., 2019). Another option is to train an agent to predict high-
level features that will be realized via traditional MPC, e.g. the position and timing
of the next footprints. The motivations are the same as always: improving learning
stability and sample efficiency while ending up with more powerful controllers. The
landscape of the most renowned algorithms is depicted in figure 3.9. There is no
vertically ordering by the time of publication, but top-down connections do reflect
the heredity relationship between algorithms. Zhu (2021) provides a continuously
updated exhaustive listing of all existing methods.

The existing policy learning methods are roughly ordered according to their sam-
ple efficiency in figure 3.10. Still, it is important to keep in mind that the sampling
efficiency alone is not sufficient to sort out algorithms in terms of wall time, which is
what really matters in the end. The latter depends on the cost of collecting samples
relative to the policy update rule. Although Evolutionary Strategies are known to
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Figure 3.9: Taxonomy of policy learning algorithms
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Figure 3.10: Sample efficiency of policy learning algorithms

have poor sample efficiency (cf. appendix E.9), their policy update rule is extremely
cheap and they explore the search space extensively. Besides, they are highly par-
allelizable, which speeds up computations even further. All in all, Evolutionary
Strategies may be faster overall than RL algorithms in practice.

Off-policy methods are ostensibly more efficient than on-policy ones (cf. sec-
tion 3.2.3). Thus, many on-policy algorithms offer the opportunity to further im-
prove their sample efficiency with optional off-policy updates. As for any on-policy
algorithm, all previous training samples are still discarded and new ones are collected
under the current policy at every training iteration, then the policy is updated in
the usually on-policy way. At this point, any additional policy update that would
be performed on the same training batch would get more and more off-policy. This
discrepancy would introduce a bias in the gradient estimate that cannot be ignored.

It is tempting to correct this bias using IS when training a stochastic policy. How-
ever, it does not work well because of the high variance of likelihood-ratio gradient
(LR) estimators. More recently, weighted IS (Mahmood et al., 2014) and adaptive
techniques (Hachiya et al., 2009) have been proposed to overcome those limitations.
Weighted IS is biased but asymptotically correct and with much lower variance.
Although it has some benefits for pathological problems, it brings marginal improve-
ments at best in general. More advanced methods to reduce the bias without adding
much variance are presented in appendix E.7.1. How to improve these approaches,
especially in the context of off-policy learning, is still an active research topic. In any
event, these additional policy updates are doomed to become less and less effective
compared to the first one. The correction of the bias is usually combined with an-
other technique to limit it in the first place. The most common consists in bounding
the KL divergence at every update, but other variants are found in state-of-the-art
on-policy methods. PPO is known to have a much cheaper policy update rule than
TRPO thanks to several mathematical approximations. As such, off-policy updates
are rarely performed for TRPO, whereas they are about 20 per iteration for PPO.

It is possible to get around this issue by training a deterministic policy instead.
It enables getting rid of the IS entirely. Deterministic Policy Gradient (DPG) (Silver
et al., 2014) was proposed first, following between DDPG and TD3 and others. How-
ever, the convergence of these algorithms is usually not guaranteed with non-linear
function approximators, and extensive hyperparameter tuning is required to coun-
terbalance their inherent instability. To overcome these limitations, SAC manages
to learn a stochastic policy in an off-policy way by relying on the reparametrization
trick to compute the gradient instead of IS. It reduces the variance significantly and
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guarantees monotonic improvement of the policy.
To go further, it is possible to unify on- and off-policy methods to get the best

of both worlds. Q-Prop (Gu et al., 2017) can be seen as using an off-policy critic
to reduce the variance of the policy gradient or using on-policy Monte-Carlo (MC)
returns to correct for bias of the critic gradient. The critic learns the action-value
function off-policy. Then, it uses its first-order Taylor expansion as a control variate,
resulting in an analytical gradient term through the critic and a MC policy gradient
term consisting of the residuals in advantage approximations. More recently, LR and
ReParametrization gradient (RP) gradients have been unified by enabling interpola-
tion between the two approaches (Liu et al., 2018; Parmas & Sugiyama, 2021; Tang
& Abbeel, 2010). See appendix E.7.1 for details.

Concurrently, there is a new trend in combining Evolutionary Strategies with RL
methods. Various approaches have been proposed over the years, Evolutionary Rein-
forcement Learning (ERL) being one of the most successful (Khadka & Tumer, 2018).
It mixes EA with DDPG, but any off-policy RL algorithm would be equally valid. It
outperforms EA, PPO and DDPG on Atari games and dm-control benchmarks.

State-of-the-Art On-Policy Algorithms

Vanilla policy gradient is presented in appendix E.5. The monotonic improvement of
the policy is not guaranteed. A conservative constant step size would limit the risk
of a catastrophic performance drop but cannot prevent it entirely. Indeed, even tiny
differences in parameter space may have a large impact on the policy locally due to
ill-conditioning. Dynamically adjusting the step size to make it as large as possible
would greatly improve learning stability and sample efficiency. The key is bounding
the distance between the current and updated policy according to the similarity of
their outputs. This idea is simple but has strong mathematical foundations.

The objective is still to maximize the expected return J(π) over the trajectories
induced by the current policy π. Any independent baseline can be subtracted from the
objective function without affecting its optimum. Let us consider the improvement
of the current policy π relative to the behavior policy β that was used to collect
samples, J(π)− J(β). It is equal to the expectation of the relative advantage of the
current policy (Kakade & Langford, 2002),

π∗ = argmax
π

J(π)− J(β) = argmax
π

E
τ∼π

[ ∞∑
t=0

γtAβ(st, at)

]
. (3.39)

The expectation over the trajectory distribution can be reformulated to make the
state and action distributions explicit. It yields,

π∗ = argmax
π

E
s∼ρπ
a∼π

[Aβ(s, a)] , (3.40)

where ρπ is the unnormalized discounted stationary state distribution induced by
policy π. Only transition steps associated with the behavior policy β are available,
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so IS is used to swap the action distribution.

π∗ = argmax
π

E
s∼ρπ
a∼β

[
π(at|st)
β(at|st)

Aβ(st, at)

]
. (3.41)

The likelihood ratio between the target and behavior policy π(at|st)/β(at|st) is known
as the importance weight. It weighs the importance of the transition steps in the
update of the policy π. Intuitively, the more likely the current policy would be
to take the same action as the behavior one, the more relevant it is to take into
account the associated advantage Aβ(st, at), and conversely. At this point, the state
distribution ρπ is not consistent with the collected data, but it is not possible to swap
it for the right one. One way to get around this limitation is to maximize a lower
bound of the real objective function. Kakade and Langford (2002) first suggested the
Conservative Policy Iteration (CPI), but it only applies to specific policy update rule.
Schulman et al. (2015) generalized it by relying on metrics of the distance between the
action distributions associated with the current and the behavior policy, e.g. the Total
Variation (TV) distance, which is defined asDTV(β||π)[s] = (1/2)∥β(·|s)−π(·|s)∥1 =∫
a∈A |β(a|s)− π(a|s)|. The following lower bound holds (Achiam et al., 2017),

J(π)− J(β) ≥ E
τ∼β

[ ∞∑
t=0

γt
π(at|st)
β(at|st)

Aβ(st, at)

]
︸ ︷︷ ︸

LCPI
β (π)

− 2γϵπ
1− γ E

s∼ρβ
[DTV(β||π)[s]] , (3.42)

where ϵπ = maxs∈S |Ea∼β[Aβ(s, a)]|. Another widespread metric is the KL diver-
gence. It is the expectation of the log-likelihood ratio between the two distribu-
tions, i.e. DKL(β||π)[s] = Ea∼β

[
log β(a|s)

π(a|s)

]
. It can be interpreted as the expected

excess of surprise for sampling from the current policy in place of the behavior
one. The TV distance is related to the KL divergence by Pinsker’s inequality,
DTV(β||π) ≤

√
DKL(β||π)/2. Combining this with Jensen’s inequality,

J(π)− J(β) ≥ LCPI
β (π)−

√
2γϵπ

1− γ
√

E
s∼ρβ

[DKL(β||π)[s]], (3.43)

Schulman et al. (2015) have proven that monotonic improvement of the policy
is guaranteed as long as the right-hand side in equation (3.43) inequality increases.
Thus, the true objective can be replaced by the lower bound. However, it is not
desirable because it would lead to very small step size. TRPO enables doing larger
steps using a trust region constraint,

πk+1 = argmax
π

LCPI
πk

(π) s.t. D̄KL(πk, π) ≤ δ, (3.44)

where D̄KL(πk, π) = Es∼ρπk
[DKL(π||πk)[s]], and δ > 0 is the step size. It comes with

a worst-case performance degradation guarantee that depends on δ,

J(πk+1)− J(πk) ≥
−
√
2δγϵπk+1

1− γ . (3.45)
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Finally, this optimization problem is solved efficiently using a linear approxima-
tion of the surrogate objective and quadratic approximation of the KL constraint.
This results in a second-order optimization method involving the natural policy gra-
dient. Introducing the parameter θ of the policy,

θk+1 = argmax
θ

gTk (θ − θk) s.t.
1

2
(θ − θk)THk(θ − θk) ≤ δ, (3.46)

where gk = ∇θL
CPI
πk

(πθ)|θk and Hk = ∇2
θD̄KL(πk, πθ)|θk . It is a simple Quadratic

Program (QP) that can be solved in closed-form,

θk+1 = θk +

√
2δ

gTkH
−1
k gk

H−1
k gk. (3.47)

In practice, the CG method is used to compute xk s.t. Hkxk ≈ gk. As before in
section 3.1.2, it is much cheaper than evaluating the inverse matrix H−1

k and has
better numerical accuracy. The QP is only an approximation of equation (3.44).
Therefore, it is not guaranteed that the surrogate objective truly improves and that
the KL constraint is satisfied. Equation (3.47) may compute large steps that cause
a catastrophic drop in performance. Line search is performed to prevent it,

θk+1 = θk + αj

√
2δ

xTkHkxk
xk. (3.48)

where α ∈ [0, 1] is the backtracking coefficient, and j is the smallest nonnegative
integer such that πθk+1

satisfies the KL constraint and produces a positive surro-
gate objective. The gradient gk is equal to the jacobian of the original objective
∇θJ(πθ)|θk , which is given by the Policy Gradient theorem 10. Its computation
requires estimating the advantages Aπk

(st, at) beforehand. Different estimator are
possible but Generalized Advantage Estimator (GAE) (Schulman et al., 2016) is by
far the most common. It enables a trade-off between bias and variance. More details
are provided in appendix E.7.1. On its side, the Hessian Hk corresponds to the av-
erage Fisher Information Matrix (FIM) and can be computed without second-order
derivative (Kakade & Langford, 2002; Schulman et al., 2015),

Hk = E
τ∼πk

[ ∞∑
t=0

γt∇θ log πθ(at|st)|θk∇θ log πθ(at|st)|Tθk

]
. (3.49)

TRPO algorithm is summarized in algorithm 1. It is a great improvement over the
vanilla policy gradient, but it has several flaws. First, it cannot be used in conjunc-
tion with a more advanced SGD optimizer such as ADAM since the update step is
governed by the natural policy gradient. Next, the policy update is computationally
expensive and difficult to implement compared to the original method. As mentioned
in section 3.2.3, TRPO allows for performing several policy updates using the same
training batch, but it is not worth it because it increases the wall time in practice.
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Algorithm 1: Trust Region Policy Optimization (Schulman et al., 2015)
Input: Backtracking coefficient: α, Initial parameters of the policy: θ0
for k = 0, 1, 2, . . . do

Collect a set Dk of N trajectories τ of length T on policy πk = π(θk);
Compute advantages Ât = Âπk

(st, at) using any advantage estimator;
Estimate policy gradient ĝk as

ĝk =
1

N

∑
τ∈Dk

T∑
t=0

γtÂt∇θ log πθ(at|st)|θk ;

Estimate the average KL Hessian / Fisher Information Matrix Ĥk;
Use the Conjugate Gradient method to compute Ĥkxk ≈ gk;
Compute initial policy step ∆k =

√
2δ

xT
k Hkxk

xk;

for j = 0, 1, 2, . . . do
Compute candidate parameters θ = θk + αj∆k;
if LCPI

πk
(πθ) ≥ 0 and D̄KL(πk, πθ) ≤ δ then

Update the policy θk+1 ← θ;
break;

end
end

end

PPO has been proposed to get around these downsides. According to equation (3.45),
the potential degradation of the policy for using the surrogate objective LCPI

πk
(π) in

place of the true one is proportional to the TV divergence. It is straightforward to
show that, ∥β(·|s)− π(·|s)∥1 ≤ ∥π(·|s)β(·|s) − 1∥∞. It yields,

1− ϵ ≤ π(a|s)
β(a|s) ≤ 1 + ϵ =⇒ E

s∼ρβ
[DTV(β||π)[s]] ≤ ϵ. (3.50)

Hence, it seems reasonable to constraint the likelihood ratio to limit the worst-case
performance degradation. Instead of adding this constraint explicitly, the objective
function is clipped in a way that it is never favorable to violate it. It is both effective
and cheap since it is sufficient to follow the direction of the gradient. PPO introduces
the surrogate objective LCLIP

πk
(π),

LCLIP
πk

(π) = E
τ∼πk

[ ∞∑
t=0

γtmin (rtAt, clip(rt, 1− ϵ, 1 + ϵ)At)

]
, (3.51)

where rt = πθ(at|st)
πk(at|st) and At = Aπk

(st, at). This expression looks complicated, but
it is in fact quite simple. Let us consider every transition step individually. If the
advantage is positive, then the objective is equal to min(rt, 1 + ϵ)At. It increases
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Figure 3.11: Clipped surrogate objective LCLIP of PPO for a single transition step as
a function of the likelihood ratio r, for positive (left) and negative advantages (right).
The red circle shows the starting point before any optimization step, i.e. r = 1.

if the action becomes more likely. i.e. πθ(at|st) increases. At a certain point, it
will hit the ceiling 1 + ϵ and the new policy does not benefit by going further away
from the old one. Conversely, if the advantage is negative, the objective is equal to
max(rt, 1 − ϵ)At. This time, it increases if the action becomes less likely, as long as
it is larger than 1+ ϵ. This behavior is illustrated in figure 3.11. An extra term that
penalizes the average KL divergence D̄KL(πk, π) is often added. It can be interpreted
as a compromise between the relaxed trust region formulation in equation (3.44) and
the lower bound maximization in equation (3.43). In general, its weighting factor α
is adaptive, using a very simple heuristic: compute d = D̄KL(πk, π), if 1.5 < δ/d then
α ← α/2, if 1.5 < d/δ then α ← 2α. δ is supposed to be the higher bound of the
update steps, but here is used as a target. It is based on the assumption that it is
always profitable to make them as large as possible. PPO algorithm is summarized
in algorithm 2. It has been demonstrated that it works at least as well as TRPO.

The value function is learned along with the policy. It is used in the computation
of the advantage estimator to reduce the variance. If the parameters of the policy and
the value network are independent, then they are going to extract different features.
It would be beneficial to share the same encoding between them. It should end up
with more robust features, and thereby improve the overall performance. Therefore,
it has been suggested to share all hidden layers between the policy and value network.
However, it creates a coupling between two different objective functions that may be
locally conflicting. In practice, it improves the performance in some applications and
is detrimental to others. Phasic Policy Gradient (Cobbe et al., 2021) achieves the
best of both worlds by splitting the optimization into two phases. During the first
phase, the whole policy network and the output layer of the value function are trained
separately to optimize their respective objective. Then, during the second phase, the
whole value network is trained while minimizing distortions to the policy. It gives
complete freedom to optimize the policy, so it enables sharing features without neg-
ative side effects. Furthermore, the value function can be trained more aggressively
with a higher level of sample reuse, which improves sample efficiency.
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Algorithm 2: Proximal Policy Optimization (Schulman et al., 2017)
Input: Clipping ratio: ϵ, Initial KL penalty weight: α0, KL target: δ, minibatch

size: M , number of epochs: K, Initial parameters of the policy: θ0
for k = 0, 1, 2, . . . do

Collect a set Dk of N trajectories τ of length T on policy πk = π(θk);
Compute advantages Ât = Âπk

(st, at) using any advantage estimator;
for l = 0, 1, 2, . . . ,K do

Randomly sample a minibatch D̃l of size from Dk;
Update the policy by maximizing the surrogate objective

1

M

∑
τ∈D̃l

T∑
t=0

{
γtmin

(
πθ(at|st)
πk(at|st)

Ât, clip
(
πθ(at|st)
πk(at|st)

, 1− ϵ, 1 + ϵ

)
Ât

)

− αDKL(πk||πθ)[st]
};

via Stochastic Gradient-Descent, typically using ADAM.
end
Compute the average KL divergence d = D̄KL(πk, πk+1);
if 1.5 < δ/d then

Update the KL penalty weight αk+1 ← αk/2;
else if 1.5 < d/δ then

Update the KL penalty weight αk+1 ← 2αk;
end

end

State-of-the-Art Off-Policy Algorithms

TD3 is a state-of-the-art algorithm for off-policy learning. It extends DDPG pre-
sented in appendix E.7 to further improve its stability by introducing a few mecha-
nisms that are now shared among many algorithms:

• Double Q-Networks

There is still only one policy but two Q-networks Qϕ1 , Qϕ2 . Those two networks
are initialized with different random parameters ϕ1, ϕ2. One target Q-value is
defined for each of them, denoted Q̂1, Q̂2 respectively. The only effect is to
modify the way TD targets are computed. For a given transition step et =
{st, at, rt, st+1}, the maximum action-value is approximated by the minimum
of the two target Q-values with respect to the target policy. The TD targets are
shared between the Q-networks, but the latter are updated separately based
on their own residual errors. Their respective loss function Li(ϕi) are given by

Li(ϕi) =
1

N

∑
et∈B

(
rt + γ min

j={1,2}
Q̂j(st+1, π̂(st+1))−Qϕi

(st, at)

)2

. (3.52)
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Finally, the policy is optimized toward the best action associated with the first
Q-network Qϕ1 arbitrarily. Lan et al. (2020) generalized this technique to any
number of Q-networks and showed that it leads to an unbiased estimate with
lower approximation variance.

• Target Policy Smoothing

If the policy is fully deterministic, then it may overfit to narrow peaks in the
target Q-value function. It worsens the effect of the overestimation of the
true action-value, impeding the performance of the algorithm. To mitigate
this issue, a random noise ϵ is added to the target action â outputted by the
target policy. Doing so smooths out sharp peaks in the predicted Q-value along
with changes in action. Indeed, it is no longer reliable to exploit peaks that
are thinner than the standard deviation of noise σ, indirectly enforcing that
similar actions should have similar values. In a way, it mimics the idea of
SARSA, which is already using a noisy action for the sake of exploration, then
using it to update the Q-value estimate as a consequence of being an on-policy
algorithm. In practice, the noise is normally distributed with zero mean. It is
drawn individually for all batch samples, then clipped to be bounded. For a
given transition step et = {st, at, rt, st+1}, it gives

â = µ(st+1) + ϵ, ϵ ∼ N(0, σ) (3.53)
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4.1 Related Work on Online Trajectory Planning

4.1.1 Model Prediction Control

Online Whole-Body Optimization

Model-based optimal control (aka. Model-Based Predictive Control (MPC)) blurs
the line between planning and control (Wieber, 2006). This method aims at solving
the same optimization problem as trajectory planning, as an integral part of the
feedback control loop. Thus, the optimization problem must be solved online and
repeatedly rather than once and for all, taking into account the updated estimate
of the system state at every timestep (cf. section 2.2.3). Compared to the more
traditional "plan then execute" paradigm, this approach enables the compensation
of unexpected events and prevents the accumulation of errors due to uncertainties
(Diehl et al., 2005). Extremely promising results have been obtained in simulation
(Erez et al., 2013; Tassa et al., 2012).

Solving the Optimal Control Problem (OCP) for the exact whole-body formu-
lation is computationally expensive, which is incompatible with the high-frequency
precondition for closed-loop control without a lower-level controller. Indeed, it is
commonly accepted that the minimal update period to maintain stability during
very dynamic motions for humanoid robots is 1kHz. This limitation hinders the
applicability of this method to real devices (Herdt, 2012). Still, Koenemann et al.
(2015) have obtained impressive experimental results by combining two controllers in
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cascade running: a High-Level Controller (HLC) and a Low-Level Controller (LLC).
The HLC is responsible for solving the OCP at low frequency, while the LLC is track-
ing the resulting trajectory at high frequency. This method was validated on HRP-2
with 50ms and 5ms as high- and low-level update periods, effectively removing the
need for offline trajectory planning. However, the underlying formulation is restricted
to simple motions that neither make nor break contact with the environment.

Another limitation encountered when applying classical optimal control is the
non-linearity and non-convexity of the OCP for the whole-body formulation. This
is problematic because there is no guarantee of the existence of a solution, nor the
convergence of the algorithm to a feasible point if any. Moreover, when it does
converge, at best it is guaranteed to be a local optimum, and the required number of
iterations is highly variable (Caron & Kheddar, 2017; Dantec et al., 2021). Different
approaches have been suggested to handle solver failure. The most basic one consists
in keeping the previous solution as the target trajectory for the LLC, while constantly
retrying for updated state estimate until a valid solution is found. This is sufficient
for tasks with a low failure rate (Erez et al., 2013; Koenemann et al., 2015), but it
is unlikely to work for complex tasks. A more reliable method would be to rely on a
simpler fallback control strategy that is guaranteed to converge and fast to compute.
Caron and Kheddar (2017) have proven in simulation that it was satisfactory for
walking on rough terrain despite a failure rate as high as 40%.

Being able to solve the OCP in 30 to 50ms for a whole-body model is already
a significant breakthrough, but it is not enough to allow dynamic motion without
resorting to trajectory tracking using a LLC. The computation time can be reduced
dramatically by splitting the optimization into hierarchical sub-problems. Tradition-
ally, the sequence of future footprints is planned first (timings and placements), then
the centroidal dynamics, and finally the motor torques realizing it (Apgar et al.,
2018; Caron & Kheddar, 2017; Dai et al., 2014; Herdt et al., 2010). This approach
enables computation as fast as 300Hz on typical hardware Caron and Kheddar. The
resulting motions are stable but rather conservative compared to offline trajectory
optimization frameworks (Carpentier & Mansard, 2018; Carpentier et al., 2016).

On a different note, the tasks to solve are almost always multi-modal, i.e. there
are several very different trajectories to achieve it. Similarly, the mapping from the
task parameters to the output solution is not continuous in general if constraints are
considered: smoothing varying the former may change dramatically the latter. To-
gether, the behavior of the robot ends up being hardly predictable. It is not an issue
if the system is not supposed to interact with humans, but it is in the context of col-
laborative robotics, e.g. with exoskeletons being the extreme embodiment. Typically,
the task space gathers the current state of the system and some decision variables for
the user to play with. It is tedious and unreliable to seek uniqueness and continuity
by modifying the cost function and constraints. Besides, the absence of regularity
according to the task implies that safety must be proven mathematically for all possi-
ble scenarios, which is almost impossible when it comes to human-robot interaction.
It is a major barrier to software certification in human-centric applications.
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Explicit Formulation

The explicit MPC formulation (namely pre-computed) can be considered when solv-
ing the optimization problem online is not an option (Alessio & Bemporad, 2009).
The objective is to replace online optimization with a function approximation map-
ping tasks to trajectories, so that online operation reduces to a single evaluation. It
allows for fast computations in constant time, eliminating the need for a LLC entirely.
Historically, the mapping is computed offline using multi-parametric programming
techniques (Pistikopoulos et al., 2007). It consists in solving the OCP analytically as
a function of the task belonging to a given class. This is only tractable for Quadratic
Program (QP) under linear constraints. Thus, the function must be piecewise linear.

This MPC approach can be viewed as a lookup table of linear gains over a poly-
topic partition of the task space (Bemporad et al., 2000). Incidentally, it has the
advantage of providing a continuous manifold of solutions. It circumvents the pre-
dictability issue and can be certified numerically on a finite set of scenarios. However,
it has major drawbacks as well: it requires linearizing the dynamics and the constraint
of the original problem, and the size of the partition grows exponentially with the
dimensionality of the task space.

Warm-Start

A more realistic compromise is to warm-start the OCP solver during online execution
with a good initial guess. This does not affect the cost of each optimization iteration,
only the number required to converge: an initial guess that is close enough to a
local optimum leads to a much lower number of iterations. We observe empirically
that it also significantly reduces the variability of the total computation time and
prevents most optimization failures, two ubiquitous issues when it comes to Non-
Linear Program (NLP) because of bad local minima.

The trajectory from the previous iteration is not always appropriate to warm-
start the solver. Indeed, if some decision variable has changed in the meantime,
then the solution of the OCP may be completely different. A much better candidate
would be the nearest neighbor in the task space over a finite dataset of trajectories
computed offline. It can be computed efficiently after building a multidimensional
binary search tree data structure, so-called a K-D tree (Bentley, 1975). Berenson
et al. (2009) have applied this method experimentally for manipulation planning.
Yet, it does not scale well with the dimensionality of the task space as the distance
between samples increases exponentially, similarly to multi-parametric programming.

Another option is performing regression using a function approximation. The
approach offers a compressed representation of the dataset as a continuous mapping
from tasks to trajectories. It has the advantage to be cheap to evaluate, but the exact
model must be chosen carefully to avoid being inaccurate even on the samples them-
selves. This kind of so-called “Memory of Motion” has been assessed in simulation
for simple tasks on several robots and toy models (Lembono et al., 2020; Mansard
et al., 2018). Different function classes have been compared, including Gaussian Mix-
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ture Model (GMM) and Feedforward Neural Network (FNN). For single-step motion
planning on Talos, the number of iterations goes from 9.5 ± 4 to 3 ± 0.5 with 100%
success rate, which is a great improvement both in average and variance. However,
it is limited to uni-modal tasks. Otherwise, the mapping from tasks to trajectories
would appear pseudo-random, and naive regression techniques are doomed to fail.
Increasing the number of samples is counter-productive as it strengthens the aver-
aging of surrounding solutions, which is meaningless. Up to now, the only solution
that has been proposed is to rely exclusively on K-Nearest Neighbors (KNN), despite
their above-mentioned limitations. Dantec et al. (2021) have validated this approach
on Talos very recently. It is the first successful demonstration of whole-body MPC
in real-life experiments for a torque-control humanoid robot.

In all these works, the initial guess is still fairly inaccurate, and they do not
address the root cause of the problem, namely the non-uniqueness of the solutions.
Having a better initial guess could speed up computation even further, one itera-
tion being the limit if already feasible. However, non-linear solvers tend to be very
sensitive to this kind of discrepancy, so just a small error can substantially increase
the computation time. As a result, it is as difficult as classical MPC to certify the
safety contrary to explicit MPC. It has no guarantee of convergence, even though it
is better in practice than without warm-starting.

Warm-starting enables running a whole-body MPC at up to 100Hz (Dantec et
al., 2021). It is only sufficient for quasi-static motions, yet expecting to run much
faster is unrealistic. Indeed, the computation cost for a single iteration is too costly
without simplifications of the original formulation. Therefore, this approach does not
eliminate the need for a dedicated LLC.

4.1.2 Imitation Learning

Prediction Error Miminization

In essence, policy learning consists in optimizing the open- or closed-loop performance
of a controller mapping the current state observation to the next action, potentially
driven by some user-specified decision variables. In the same vein of explicit MPC, it
replaces the entire OCP solving at runtime by a single function evaluation. One such
approach is Reinforcement Learning (RL), which focuses on the closed-loop perfor-
mance. In theory, policy learning may exhibit richer and nicer behaviors than the
previous approaches based on MPC because no model simplifications or hierarchical
decomposition is required. However, it comes with additional challenges.

In Imitation Learning (IL), a policy is trained to reproduce the behavior of an
expert in the form of demonstrations (Attia & Dayan, 2018; Hussein et al., 2017).
Those demonstrations are supposed to provide insight into how the task should be
performed by the agent. They can originate from heterogeneous sources simulta-
neously. There is a myriad of possible sources, among them: a set of specialized
policies already available, a whole-body MPC or motion capture recordings. Thus,
this approach is extremely generic. Behavior Cloning (BC) is the simplest algorithm
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to do imitation (Bain & Sammut, 1999). Every transition step is considered individ-
ually and the objective is to minimize the prediction error using standard regression.
It corresponds to optimizing the open-loop performance in expectation under the
expert state distribution. In a closed-loop at runtime, the policy might encounter
completely different observations than those under expert demonstrations once it has
made a mistake, leading to the compounding of errors and ultimately catastrophic
failure. Mathematically, there is a distributional shift between the expert and ac-
tual state distribution (open vs. closed loop respectively) because the policy was
optimized for the wrong objective function. Ignoring this phenomenon leads to very
poor performance at runtime (Ross et al., 2011; Ross & Bagnell, 2010). It is typically
mitigated via a supplementary training phase called policy refinement, during which
the actual closed-loop performance is assessed and optimized using RL, leaving out
the expert. The idea is to render the optimal trajectory manifold attractive, so that
the policy not only maintains the system on that manifold but also brings it back if
necessary.

Open-Loop Reward Maximization

Atkeson and Liu (2013) has alleviated the distributional shift by aggregating many
local Differential Dynamic Programming (DDP) policies for various tasks and using
the policy of the nearest neighbor in the current state. As already explained, KNN
does not scale well with dimensionality. To circumvent this issue, the dataset is
refined dynamically based on the error over the induced state distribution. New
trajectories are added this way until it achieves good results for any task. This
algorithm is called Trajectory-Based Dynamic Programming (TBDP). Contrary to
the memory of motion presented previously, the prediction is supposed to be already
valid, which means that it is not necessary to go through a second optimization
phase. It addresses concerns about runtime cost and convergence failure, but not the
predictability of the behavior. Moreover, all the policies must be kept in memory
as this approach is nonparametric, which is technically difficult for large databases.
Despite these limitations, this approach has been validated successfully in simulation
on a complex humanoid robot. Levine and Koltun (2013) has shown that it works
well as long as the evaluation task is part of the training set. Otherwise, it fails almost
systematically due to the poor generalization ability of nonparametric models.

Ross and Bagnell presents another approach called Stochastic Mixing Iterative
Learning (SMILe). It is known as a reduction-based algorithm, which is a kind of
IL algorithm that aims to solve a complex task by leveraging the capability of an
oracle to provide demonstrations for a series of derived simpler tasks (Beygelzimer
et al., 2005), e.g. training a policy using a MPC as an oracle to achieve robust and
versatile locomotion. The policy is trained iteratively. At every iteration, the oracle
provides expert demonstrations for the current state distribution in closed-loop as a
black box, and the policy is updated to mimic them. At the end of the process, the
policy is mathematically guaranteed to perform reasonably well under its own state
distribution in a closed-loop. Specifically, assuming the action space is countable, the
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drop of expected return between the optimal and expert policy is smaller than the
squared trajectory length times the expectation that the policy makes a mistake.

This algorithm is an improvement over SEARN (Daumé III et al., 2009) in that it
removes the need of sampling complete episodes. Consequently, it demands substan-
tially fewer interactions with the oracle, which is very beneficial because it is by far
the main bottleneck. In SMILe, the policy is stochastic and defined as a mixture of
trained policy snapshots for all previous iterations. Inspired by ϵ-greedy exploration
strategy, at every timestep the action is taken according to the expert with proba-
bility 1− α, the current policy otherwise. This is important as the first few policies
may make many mistakes and visit states that are irrelevant as the policy improves.
The efficiency of SMILe has been assessed on a racing game and Mario Bros with a
human expert and near-optimal planner respectively. The results are promising in
terms of both performance and sample efficiency.

Ross et al. state that SMILe may be unsatisfactory for robotic applications as
the resulting controller would be unstable if some policies in the mixture are worse
than others. To avoid this issue, they introduce Data AGGERation (DAGGER)
algorithm that learns a deterministic policy. The cornerstone is that all the expert
demonstrations are kept in a large database instead of thrown away. The current
policy is updated to minimize the reconstruction error computed on this ever-growing
database. During training, the behavior policy is still stochastic and follows the ϵ-
greedy strategy. DAGGER is also closely related to TBDP (Atkeson & Stephens,
2008). While both SMILe and TBDP are building up a non-parametric model for
the policy consisting in fetching the nearest neighbor in a database, DAGGER trains
a function approximation, i.e. an Artificial Neural Network (ANN). Interestingly, the
required number of iterations scales nearly linearly with the effective horizon of the
problem. DAGGER was compared to SMILe on the same synthetic benchmark as
before and the performance gain is significant. Notably, the failure rate at runtime
goes down to zero while it was not the case for SMILe. However, DAGGER still
assumes that the expert demonstrations are optimal for all states. In practice, they
rely on DDP to generate them, so they are optimal locally at best and no longer valid
if the state has drifted away significantly. Levine and Koltun have illustrated this
phenomenon on a 2D walker. Recomputing the next optimal action for every visited
state in a MPC fashion would prevent such an issue. Yet, the computational cost
would be quadratic in the trajectory length, and it would still not guarantee optimal
demonstrations as the solver may find local minima or even completely fail.

Closed-Loop Return Maximization

Levine and Koltun overcame the limitations of DAGGER by maximizing the actual
return of the policy, making it less vulnerable to suboptimal experts. Their method is
called Guided Policy Search (GPS) and comprises two additional mechanisms. First,
the oracle adapts itself in relation to the current policy. Originally, the objective
of the DDP is to find the policy that maximizes the expected return under its own
state distribution. Here, the objective is modified to maximize the expected return
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under the state distribution induced by the current policy instead. This is equivalent
to adding a bonus term to the original objective function that promotes generating
trajectories with high log-likelihood according to the current policy. Secondly, the
current policy is not trained to blindly mimic the expert, but rather to maximize the
expected return under the current policy in an off-policy way with weighted Impor-
tance Sampling (IS). Hence, the trained policy must be stochastic. It has isotropic
multivariate Gaussian action distribution, so it can exploit the reparametrization
trick: the mean is represented by an ANN and the standard derivation is fixed. After
learning, only the mean is extracted to get a deterministic policy at runtime.

Levine and Koltun claim that bootstrapping learning with naive imitation on a
pre-computed dataset of expert demonstrations is critical. Indeed, DAGGER wastes
a lot of effort on states where the DDP policy is not valid for inherently unstable
systems such as a walker. Pre-training significantly improves the overall performance
and sample efficiency by avoiding falling into poor local minima from the start.

Apart from improving the robustness of the policy, adaptation of the oracle is ab-
solutely necessary when the initial samples cannot be reproduced by any policy, typ-
ically when it acts differently in similar states as a result of multi-modality. Among
all possible solutions, it gives priority to the one that is the highest log-likelihood
according to the current policy. The policy is a function approximation, so it is
important to limit its expressiveness to ensure high generalization ability and avoid
overfitting. However, it implies that the policy would not be capable to reproduce
accurately all possible trajectories. Adaptation ensures that DDP outputs only solu-
tions that can be accurately reproduced, so that at the end of the process, the final
policy matches exactly the expert demonstrations. Unlike TBDP, policies trained
with GPS generalizes well to tasks that are not part of the training set, e.g. training
a humanoid robot to walk on constant slopes and evaluating on random terrains.
Stochastic off-policy learning is known to be unstable because the variance of the
likelihood-ratio gradient (LR) scales poorly with the dimension of the action space.

Kahn et al. (2017) introduce the Policy Learning using Adaptive Trajectory Opti-
mization (PLATO) algorithm, which is a variant of GPS replacing DDP with MPC.
For a DDP-based oracle, the expert demonstrations are provided by a finite set of
locally-optimal controllers for different tasks, each of them bringing the state of the
system back to its underlying nominal trajectory. Whereas for MPC-based oracle,
the expert demonstrations are all coming from a unique globally-optimal controller
for a given OCP that may involve an approximate model of the system. Although
a limit cycle may arise, there is no nominal trajectory per se since the OCP is re-
peatedly solved based on the current state. Assuming the exact model is considered,
MPC-based methods are expected to outperform their DDP-based counterparts as
the oracle truly acts optimally over the whole state space. Kahn et al. have demon-
strated the superiority of their algorithm over GPS for aerial navigation tasks in
simulation. The agent learns faster while experiencing substantially fewer catas-
trophic failures during training. However, this approach is not tractable for complex
problems in which solving the OCP is computationally demanding because it must
be done repeatedly at every timestep. Typically, in legged robotics, solving the OCP

105



Chapter 4. Related work

takes at least 20ms using state-of-the-art methods (cf. section 4.1.1). It is about 100
times slower than simulation (Lee et al., 2018; Todorov et al., 2012), thereby slowing
down training by the same factor.

4.1.3 Trajectory Planning and Function Approximation

Sim-to-Real Transfer

Imitation approaches are effective in simulation but are likely to fail once transferred
to reality. This is mainly due to the domain shift between simulation and reality
(Haider et al., 2021; Hays & Singer, 1989; Zhao et al., 2020). GPS generalizes to
unseen tasks but not to model uncertainties. How to learn such a robust policy is
an open question. The most famous methods to handle the reality gap are domain
adaptation and domain randomization.

Domain adaptation is useful when there is a mismatch between simulation and
reality regarding the mapping from state to observation. The most famous appli-
cation is learning to perform manipulation tasks based on raw pixels from cameras.
Learning these tasks entirely in simulation is substantially less expensive in price and
time than resorting to real experiments, but simulated data are usually not realistic
enough to transfer skills to the real device. One option is to extract domain-invariant
features that are rich enough to perform the task properly. Another way is to train
an additional network to fake real data from simulated data as faithfully as possible.
These two approaches are not mutually exclusive and can be combined. Bousmalis
et al. (2018) was able to grasp objects in reality by doing so.

Domain randomization consists in modifying randomly the original transition
probability function of the world throughout the learning. Various aspects can be
altered: the parameters of the physical model, the motors and sensors, the feedback
loop, or the characteristics of the external environment. As opposed to domain
adaptation, it does not require knowing precisely the target environment. (Tobin
et al., 2017) has used this technique to perform grasping in reality without relying
on any real data or prior knowledge during learning. It has proven effective countless
times in robotic applications. However, it is bounded to learn a suboptimal policy
because it optimizes the performance on a much larger domain than the one on which
it will be applied in practice.

Identifying online the domain to adapt the policy accordingly is expected to yield
better performance as it does not suffer from this limitation. Learning a unified con-
trol strategy performing some sort of online system identification internally would
require the network to have a memory or a history of observations as input, which
is notoriously very difficult to train by RL. Yu et al. (2017) overcome this limita-
tion by considering separately system identification and control using two networks
connected in cascade. The first one is responsible for estimating the set of unknown
parameters from a history of past observations. Its estimate is then forwarded to a
policy network alongside the current observation. These two networks are trained
separately using supervised and reinforcement learning respectively. Following this
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explicit decomposition, a simple feedforward policy can theoretically perform opti-
mally as long as the true value of the parameters is accurately estimated. Peng et al.
(2020) extend this approach to further improve the performance. A variational au-
toencoder is used in place of a classical FNN for system identification, which allows
the estimation of the unknown parameters in a low-dimensional latent space. Seeking
to reduce the dimensionality makes sense because different parameters may have a
similar effect on the transition probability function. It has the benefit to improve the
robustness to uncertainties and ease feature extraction by the policy.

These extra inputs driving the policy can be interpreted as privileged information
(Vapnik & Vashist, 2009). During training, they are perfectly known, but they must
be estimated at runtime. Alternatively, Miki et al. (2022) have unified identification
and control as a black box via an additional teacher-student training phase. More
precisely, another policy without privileged information as input is trained to mimic
the first one. To make this possible, the new policy must keep track of past events one
way or the other. It can be implicit or explicit, e.g. using a Recurrent Neural Network
(RNN) or forwarding as input a partial history of past observations respectively. They
obtained very impressive results in reality on a quadrupedal robot.

The feedback loop introduces a coupling at runtime between the network esti-
mating of the unknown parameters and the policy itself for which neither of them
has been trained. The feedback loop is likely to be unstable in reality, leading to
catastrophic failure of the system if the policy is not made robust to this side effect.
This concern is not addressed by any of the previous approaches.

A similar approach is meta-learning, also referred to as learning to learn. It is
more promising as online adaptation is much faster and reliable (Arndt et al., 2020).
The basic principle is to train a policy that can be easily adapted to any domain.
Formally, it is an average policy in parameter spaces that can be specialized to a
given domain within a very few gradient descent steps. The idea is enticing but
the existence of such a set of parameters is questionable for complex problems such
as bipedal locomotion, specifically when the tasks already encompass many user-
specified decision variables for various environments. The results were satisfactory
for learning to shoot a hockey puck to a target location with a real robotic arm. It
is hard to conclude if it can be applied reliably on a more complex and intrinsically
unstable system such as a humanoid robot. If it fails right from the start, then no
data can be collected and it cannot learn anything.

Leveraging Expert Policies

Policies trained using RL algorithms have been able to solve complex tasks in reality
after training in simulation only, e.g. rough-terrain quadrupedal locomotion (Miki
et al., 2022) and bipedal stair traversal without exteroceptive sensors (Siekmann
et al., 2021b). These approaches systematically rely on domain randomization to
deal with the reality gap. One of the main drawbacks of this approach is the great
difficulty in enforcing specific features for the induced trajectories. This is especially
problematic for lower-limb exoskeletons, where the gait pattern is supposed to be

107



Chapter 4. Related work

natural and conformable for the user. Inverse RL aims at tackling this limitation
by inferring the reward function automatically from expert demonstrations, but it
scales very poorly with the dimensionality of the state and action spaces (Arora &
Doshi, 2021). Another major issue is unpredictable close-loop behavior and lack of
robustness certificate. Preliminary works have been done on this point but much
remains to be done (Wu et al., 2022).

A more conservative approach is to completely ignore the control aspect during
learning by merely predicting nominal trajectories and then relying on a classical off-
the-shelf LLC to track them. It seems reasonable because an adequate and thoroughly
tested LLC is readily available in most robotic applications. The main advantage is
to put less pressure on learning since the reality gap does not have to be handled at
this stage. In fact, this responsibility is only transferred to the LLC. The latter is
implicitly expected to render the trajectories attractive by applying minor correction
if necessary, which is typically out-of-reach of basic Proportional-Integral-Derivative
controllers (PIDs) for floating base robots. Consequently, the LLC has to be sophis-
ticated since its capability is now bounding the overall performance. Moreover, if
the closed-loop behavior is not satisfactory, then it is not clear whether the planning
formulation or the controller must be revised because of the coupling between them.

Daumé III et al. (2009) suggest that policy learning could be used to generate
trajectory. Indeed, trajectories are sequences that can be viewed as structured pre-
dictions whose underlying data structure is the policy itself. If the policy predicts the
target torque, then a simulator is used to integrate the dynamics and output the fu-
ture observation. It is not even necessary to rely on a simulator if the policy predicts
the target state. It is enough to simply pass on earlier predictions as inputs for future
ones, just like the unfolded representation of RNNs. This leads to a degenerate form
of IL where the system dynamics is deterministic and trivial. Trajectories computed
using only single-pass, greedy predictions with these methods achieve competitive re-
sults versus trajectory learning (Ross et al., 2011). Nevertheless, by reducing policy
learning to an indirect approach to generating trajectories, the former loses its main
advantage over the latter: the policy itself is confined to open-loop control, which
limits the performance compared to closed-loop control.

Kudruss et al. (2015) have realized multi-contact stair climbing on HRP-2 by
simply tracking the nominal motion in Euclidean space using Inverse Dynamics (ID).
Going one step further, Da and Grizzle (2019) were able to achieve robust walking on
MARLO using standard regression and basic PID as low-level controller. It is capable
to walk on uneven ground using the trajectory network to regulate the pelvis velocity.
The user can update the target velocity at any time without losing balance. This
approach was motivated by the theoretical study of Wieber and Chevallereau (2006)
suggesting that online selection of the nominal trajectory could stabilize walking.
However, previous works on imitation indicate that naive regression is not reliable
and may not be sufficient in some cases. Apart from the reality gap, it suffers from the
same issues as policy learning, including multi-modality and generalization ability.
Predicting whole trajectories at once prevents the compounding of uncertainties, so
the impact of the reconstruction error on the stability is less dramatic. Nonetheless,
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fitting accurately the solutions to the original problem is still important. That is
all the more true for kinematic constraints. For humanoid robots, 1 degree of error
on the ankle shifts the flying foot by 1 cm vertically. It considerably affects the
impact time and causes shuffling that may lead to falling. Likewise, consistency
between position and velocity is often assumed by the LLC. If this is the case, then
ignoring it would create motor vibrations. It is possible to predict only the position
and get the velocity by analytical differentiation of the network, but it would lead to
approximation error due to the discretization of the timesteps. The velocity generated
by trajectory optimization frameworks is compensating for this phenomenon, so it is
better to learn it as if it was an independent quantity. All in all, fitting accurately is
always beneficial because tracking would be easier for the LLC.

Leveraging Nominal Trajectories

Each of the imitation methods reviewed in section 4.1.2 relies on a model-based
optimal control algorithm for the oracle, namely DDP or MPC. It guarantees the
attractiveness of the nominal trajectory manifold without extra burden. However,
having to provide a controller instead of plain trajectories as demonstrations is very
limiting. First, DDP faces difficulties to handle constraints. It is only recently that
an extension based on the augmented Lagrangian has been proposed for equality
constraints, while inequalities are still out of reach (Kazdadi et al., 2021). Secondly, it
prevents leveraging effective trajectories obtained experimentally without numerical
optimization, e.g. motion capture recordings or human demonstrations by moving the
joints of the robot manually in transparent operation mode. Finally, it is incompatible
with any existing motion planning framework that generates optimal trajectories
without an accompanying stabilizing controller.

Mordatch and Todorov (2014) introduced an algorithm called Distributed Trajec-
tory Learning (DTL) that basically follows the same principle except that the oracle
provides nominal trajectories directly, as raw temporal sequences. It enables using
any trajectory planning method and not just DDP. The direct collocation framework
in particular is numerically robust and scalable (cf. appendix A.3.1). Notably, it has
proven its ability to generate natural motions for humanoid robots in complex scenar-
ios (Gurriet et al., 2018; Hereid & Ames, 2017; Huynh et al., 2021). Its application
to Atalante is presented thoroughly in appendix A. Like Levine and Koltun (2013),
they are still learning a policy, and the OCP is adapted to seek a trade-off between
the optimality of the demonstrations and the capability of the policy to mimic them.
Formally, a penalty term is added to the original OCP to promote finding solutions
consistent with the policy. It results in a joint optimization problem that is solved
iteratively with Alternating Direction Method of Multipliers (ADMM) (Boyd, 2010).
A special effort is required to ensure the attractiveness of the trajectory manifold
under the policy. To this end, they derive a Linear Quadratic Regulator (LQR) from
DDP by linearizing locally the system dynamics. It specifies the gradient of the pol-
icy to behave the same, which simply translates to a second term in the regression
loss. The addition of the penalty term to the OCP relates the solutions for different
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tasks through the function approximation. Combined with the joint optimization,
it enables performing global optimization over the task space to encourage finding
solutions that all belong to the same smooth trajectory manifold whose regularity
complies with the function approximation. This approach is effective against multi-
modality and ensures good generalization ability. However, adding a penalty term is
not enough to provide mathematical guarantees. The weighting factor must be tuned
manually, and it is impossible to cancel out the reconstruction error completely. It
has only been assessed on toy models, a 2D walker with 7 Degrees of Freedom (DoFs)
being the most advanced one. However, this approach is likely to fail once transferred
to a real device since they do not address the reality gap.

4.2 Related Work on Robust and Safe Control Policy

4.2.1 Classical Control Methods

Proportional-Integral-Derivative Controllers

PIDs are widely used in industrial applications (Goswami & Vadakkepat, 2019).
They are commonly used to output a command torque proportional to the tracking
error in position and velocity for each motor separately (cf. section 2.2.3). It renders
the nominal trajectory locally attractive at the motor level by actively compensating
for small disturbances and preventing the compounding of uncertainties. Although
PIDs are mathematically simplistic in isolation, the coupling between them through
the mechanical structure gives rise to complex dynamical behaviors, let alone motor
backlash or delay. In practice, using basic PIDs at the motor level is well-suited for
any application without human-robot interaction or a need for adaptive compliance.
This way, stable walking on flat ground has been realized on the exoskeleton Atalante,
when supplemented by the heuristics of switching directly to the next nominal step as
soon as the flying foot hits the ground instead of waiting for step completion (Huynh
et al., 2021). However, it does not give any guarantee regarding the attractiveness of
the whole-body trajectories for free-floating base or under-actuated robots. To get
around this limitation, PIDs can output targets in a feature space, followed by some
weighted ID to compute the command torques that are supposed to realize these
targets. Apgar et al. (2018) validated experimentally this approach on Cassie for a
feature space gathering the pose of the feet and pelvis.

Simplified Models

It is necessary to actively maintain balance based on actual stability criteria instead
of blindly trusting the supposedly intrinsic stability of the nominal motion. Upright
standing offers a large variety of recovery strategies that can be leveraged in case
of emergency to avoid falling, among them: ankle, hip, stepping, height modula-
tion, and foot-tilting for any legged robot, plus angular momentum modulation for
humanoid robots (Yuan et al., 2020; Boer, 2012, Chapter 5). For moderate perturba-
tions, in-place recovery strategies controlling the Zero-tilting Moment Point (ZMP)
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(Hyon et al., 2009), the centroidal angular momentum (Stephens & Atkeson, 2010),
ankle control (Mesesan et al., 2021) or the foot tilting (Li et al., 2017) are satisfactory.
Most of these approaches involve a very crude model to approximate the centroidal
dynamics, namely the Linear Inverted Pendulum Model (LIPM) (Kajita et al., 2001).
To handle stronger hazards, Kajita et al. (2003) were the first to propose an uncon-
strained LQR controller based on ZMP trajectory generation for Asimo. This type
of LQR admits a closed-form solution, so it is very cheap to evaluate.

Later, Wieber (2006) improved the previous formulation to enhance robustness
to external pushes by tracking into account box constraints on the ZMP. Such linear
MPC cannot be solved analytically but the solution can be found very efficiently using
QP and has strong convergence guarantees. At this time, it was only investigated in
simulation for HRP-2. The latter was able to withstand pushes having a normalized
force impulse – force magnitude times duration over robot weight – of 0.3N s kg−1.

Linearity of the MPC imposes simplifying assumptions and restricting constraints.
Getting rid of this prerequisite would free the positions of the feet in the OCP whereas
it was prescribed by the nominal trajectory, extending the set of strategies that can
be leveraged by the controller to maintain and recover balance. As long as the MPCs
remains unconstrained, it can still be solved efficiently and invariably converges to
a solution, which is no longer globally but locally optimal. Wittmann et al. (2015)
and Feng et al. (2016) concurrently demonstrated this approach in reality for flat-
foot walking on the humanoid robots LOLA and Atlas respectively. Built upon the
work of Kajita et al., they formulated unconstrained non-linear MPCs capable of
foot placement strategies. Remarkably, Atlas was able to recover from pushes of
0.5N s kg−1 in single support. In both cases, the MPC is running at 500Hz and
combined with PIDs at the motor level for tracking the target trajectory.

Alternatively, Englsberger et al. (2011) have showed promising results on real
robots a few years earlier using admittance control (cf. section 2.2.3). Krause et al.
(2012) extended this method for taking into account a finite horizon rather than
exclusively the current time, which has been validated experimentally on the DLR-
Biped robot. In their work, they assume that the nominal footsteps are realized. As
previously mentioned, this condition is necessary to make the constraints linear. It is
cheap to solve numerically, but it prohibits shifting the footsteps to improve stability
or doing extra recovery steps in case of emergency.

Mesesan et al. (2021) were able to achieve state-of-the-art push recovery capability
using only reactive control. Their approach is designed to rely exclusively on ankle
control at first, then reactive stepping based on the Divergent Component of Motion
(DCM) if necessary. Despite being purely reactive, this controller allows for foot
placement strategies. More precisely, if the swing foot strikes the ground at the
end of the horizon, then it can be seen as an extension of the projected support
polygon (cf. section 2.2.2) with proper mathematical foundation and consideration of
the impact timing. This approach was assessed in simulation on the humanoid robot
TORO. It enables to recover from pushes of up to 0.5N s kg−1 in single support. The
control can run faster than 1kHz, which is enough for direct torque control.
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Whole-Body Model

All of these methods still rely on variants of the inverted pendulum model to make
online execution tractable. For instance, the Floating-base Inverted Pendulum (FIP)
model has been used to derive a constrained non-linear MPC during the single sup-
port phase to walk on rough terrain for HRP-2 (Caron & Kheddar, 2017). A HLC is
solving the OCP at 30Hz, while a low-level LQR is running at 300Hz. This kind of hy-
brid control architecture is important to track accurately the generated trajectories,
but also to handle situations where the OCP solver fails to converge. For the double
support phase, it relies on a more conservative model-free controller that handles
multiple non-coplanar contacts, and it switches back to single support as soon as the
non-linear MPC admits a solution. The validity of the model affects the robustness
of the controller to some extent that is hard to predict. It is related to sim-to-real
transfer. Since reduced performance is expected in practice, conservative behaviors
with large safety margins are preferred to prevent instabilities. Ultimately, the mo-
tion tends to be restricted to moderately fast and conservative motions. Besides,
being able to withstand strong pushes larger than 2.0N s kg−1 requires substantially
different recovery strategies as it is necessary to do several recovery steps.

Whole-body MPC as the potential to tackle such complex problems. However, it
is impossible to solve such NLP during online execution, even with the most powerful
algorithm to date DDP. Furthermore, having a blind trust in the model to design
a controller is hazardous. Although it would perform optimally if the model is ac-
curate, it lacks robustness to model uncertainties, which often leads to instability
in practice. For example, Vigne et al. (2020a) were unable to achieve stable walk-
ing using an inverse dynamics controller that actively compensates the mechanical
deformation according to a flexible model observer leveraging Inertial Measurement
Unit (IMU) data. Yet, they obtained much better performance by using basic de-
centralized PIDs and adding a feedback term on the deformation angle and velocity.
For robustness to the flexible model, the gains of the controllers are tuned using a
linearized Serial Elastic Actuator (SEA) model for each joint to which they apply
a steady-state LQR. Robust MPC (Campo & Morari, 1987; Villa & Wieber, 2017)
and more recently stochastic MPC (Heirung et al., 2018) are more comprehensive
approaches that addresses model uncertainties, but how to use such techniques on
real robotic platforms it is still an active research topic.

State Estimation

The state of the world is indirectly observed through sensors. Depending on their
signal-to-noise ratio, it may be necessary to use advanced sensor fusion algorithms,
which increases the overall complexity. Beyond this, the state is usually only partially
reconstructed. Advanced state observers such as Extended Kalman Filter (EKF)
(Anderson & Moore, 2012; Lillicrap et al., 1960) and invariant EKF (Hartley et al.,
2020) may help, but they neglect any coupling that may exist between the observer
and controller dynamics. For linear systems, everything works as one naively expects:
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the feedback loop is stable if both the observer and the controller are individually
stable. However, it is no longer guaranteed for non-linear systems. In practice, the
feedback loop is likely to be unstable unless the observer and controller are tuned to
decouple their respective dynamics. Classically, the time constant of the controller is
chosen much larger than that of the observer, which limits the overall performance.
Policy learning methods such as RL do not suffer from this limitation. Indeed, the
agent is aware of the observer and controller that will ultimately be used on the real
robot during training, so it can learn to make them work together when possible.
The policy does not have to be end-to-end for this to hold, namely responsible for
the whole feedback loop including observation and control. In the robotic field, the
policy is generally confined to the high-level controller.

4.2.2 Policy Learning Methods

Relation with Optimal Control

RL purses the same goal as explicit MPC and memory of motion, i.e. enabling
online operation without hierarchical control architecture, model approximation, or
linearization. The output is an end-to-end black-box controller mapping sensors
to controls, with little to no understanding of the underlying observation and con-
trol strategies. RL is more generic than MPC because it is black-box optimization
method. As opposed to IL, RL approaches may be completely problem-agnostic if
combined with intrinsic curiosity techniques (Pathak et al., 2017). All it requires in
RL is to collect a large amount of data, usually synthetic by running simulations us-
ing one of many physics engines readily available. The challenge here is being able to
create diverse virtual environments that encompass the reality in order to compel the
agent to explore all the desired strategies. Then, it relies on the generalization ability
of the policy network to guess what must be done for unseen observations. On the
contrary, the underlying OCP in MPC must be well-posed for every practical scenario
that the agent may be facing in practice, and only involve analytical constraints that
are differentiable. It is arguably harder to achieve than creating environments for RL.
For instance, it is only recently that a constraint for the non-coplanar multi-contact
stability condition of legged robots has been proposed (Caron et al., 2015).

Several ground-breaking advances were made in RL during the last decade. Learn-
ing to solve complex problems without any expert demonstration in an end-to-end
manner with RL is increasingly popular and an active research topic. It has shown
impressive effectiveness at solving complex continuous control problems for toy mod-
els, (Heess et al., 2017; Lillicrap et al., 2016; Peng et al., 2018) being some of the
most famous simulation-oriented studies.

Real-World Applications to Legged Robots

Real-world applications are still rare and almost exclusively concern quadrupeds
among legged robots. Regarding bipedal robots, a few policies have been trained
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and transferred to reality for the biped Cassie or its humanoid upgrade Digit. How-
ever, these successes were mainly due to the high accuracy of the model used in
simulation rather than special efforts to handle the reality gap. For instance, Xie
et al. (2019) were able to achieve stable walking experimentally on Cassie in the ab-
sence of disturbances, whereas the policy was trained in simulation without involving
any transfer learning technique such as domain randomization. The latter predicts
targets motor positions that are forwarded to low-level PIDs assuming zero target
velocity. Such an easy transfer cannot be expected for less agile and more anthropo-
morphic humanoid robots. It is even worse for Atalante because of the completely
unknown user dynamics. Still, it is worth mentioning the methods that worked on
legged robots even if applying them to Atalante is not straightforward.

Hwangbo et al. (2019) learned dynamic and agile maneuvers on the quadruped
ANYmal which were smoothly transferred to reality. Domain randomization is used
to sample the model parameters, while domain adaptation enables them to reproduce
the behavior of the real actuators in simulation. The transfer function of the actu-
ators is trained using supervised learning with collected data on a test bench. Very
recently, they stopped relying on domain adaptation in favor of privileged information
estimated online as a black-box (Miki et al., 2022).

More recently, (Siekmann et al., 2021b) went further and manage to learn stair
traversal walking on Cassie using only proprioceptive sensors. It also takes into ac-
count a few user-specified decision variables as input, i.e. the desired forward, lateral
and rotational speed in the world plane. Domain randomization enables dealing with
disturbances for which it was never trained, including pushes. Although effective, it
leads to more conservative behaviors than necessary. Note however that, used incor-
rectly, this technique can prevent learning completely: it is indeed fundamental to
increase the variability progressively (Li et al., 2021). Alternatively, the stability can
be improved by predicting high-level features for a model-based controller (Castillo
et al., 2021), but it bounds the overall performance and is harder to analyze.

In practice, the state of legged robots is often partially observable. The agent
would significantly underperform or even fail to solve the task if a basic feedforward
network is used as policy and only the current observation is provided. This issue can
be addressed by feeding the policy with a history of previous observations instead
(Li et al., 2021). Alternatively, a network having memory capability by keeping
track of some internal state (either implicitly or explicitly) may be used, e.g. RNN
(Siekmann et al., 2021b). Both approaches are theoretically equivalent in terms of
optimal performance. They are still relevant if the state is fully observable because
it improves robustness to noise and model uncertainty. However, they make training
significantly harder (Miki et al., 2022). Which one is the most appropriate depends
on the application and the actual network architectures being compared.

Robust locomotion and standing push recovery for humanoid robots using RL
falls short of expectations on real devices. Learning walking on flat ground without
nominal trajectory was demonstrated on a mid-size humanoid (Rodriguez & Behnke,
2021). However, the motion was slow and unnatural, with limited robustness to
external forces. Regarding standing push recovery, promising results were obtained
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in simulation by several authors concurrently (Ferigo et al., 2021; Yang et al., 2020;
Yang et al., 2018). Yet, the emerging behaviors were often unrealistic and hardly
transferable to reality. Moreover, safe and predictable behavior must be enforced or
at least strongly promoted. It is especially important for Atalante where human-robot
interaction is ubiquitous. None of the previous methods address this concern.

Dynamically Stable Natural Motions

In RL, the agent is only guided by the reward function, so it is basically free of trying
any strategy to solve the task. Thus, the resulting policies typically exhibit richer
and more exotic behaviors than using classical model-based approaches. However,
training is often unstable and struggles to converge as it easily gets stuck in local
minima. As with any other black-box optimization, a very large amount of data is
required. The vast majority of RL algorithms maximize the expected return without
considering hard constraints. The only way to enforce them is the penalty method,
i.e. by adding extra terms to the reward function. Thus, the constraints have no
guarantee to be satisfied, and tuning the weight of every reward component is very
tedious. It makes it very hard to enforce specific constraints on the overall agent’s
behavior. That may be fine in some cases, but not physical devices that are supposed
to interact with humans such as bipedal exoskeleton.

More generally, learning policies from scratch is difficult. Thus, it is desirable to
leverage any prior knowledge that may already be available. If it comes in the form
of expert demonstrations. In which case, IL seems more appropriate than RL. A
naive approach would be to train first the policy with the sole objective to accurately
mimic the expert via IL, then to refine it to improve robustness and transfer to reality
via RL. This kind of bootstrapping approach may be effective on simple tasks, but
it does not work on long-running tasks with a sparse reward landscape because of
domain shift. Uchendu et al. (2022) uses an expert policy to provide initial guidance.
It is only used to collect meaningful data with non-zero rewards, so it does not
have to be optimal. Actions are taken under the expert policy at the beginning
of the episodes, then, at one point, it switches to the current policy. Inspired by
curriculum learning, they progressively reduce the number of guiding steps according
to a fixed schedule. This method lowers the sample complexity for non-optimism
exploration methods from exponential to polynomial with respect to the horizon.
They demonstrate performance improvement on a set of realistic simulated robotic
tasks. It outperforms both pure IL and RL algorithms in the small-data regime.
Still, this method would fail if the trained policy is not capable to mimic expert
demonstrations. Moreover, it does not help to get tight control of the final behavior
of the policy since it relies solely on RL at the end of the training.

Similarly, GPS or DTL are able to learn a function approximation of the solution
to a constrained non-linear MPC over a task space, no matter if the problem is
multi-modal. Relying on whole-body MPC or trajectory optimization to generate
expert demonstrations is double-edged. On the one hand, it is sample efficient since
it is a first-order optimization method, and it makes it easy to satisfy the behavior
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of the policy by tuning the underlying OCP. Hard constraints and specific features
are straightforward to enforce this way. It is very important for exoskeletons since
the gait pattern is supposed to enhance rehabilitation of the patients. On the other
hand, coming up with a OCP formulation that is flexible enough to fit any task
of interest requires a lot of expertise. For locomotion problems, the OCP must be
parametrized with high-level features of the environment such as a segmentation map
of the environment. Moreover, the dynamics and constraints must be differentiable,
which is not always true, e.g. in the unilateral contact model for legged robots.
Besides, GPS and DTL are robust the distributional shift but not to the reality
gap. This could be alleviated via domain randomization. DTL relies purely on
expert demonstrations for training, without any actual simulation. Therefore, the
world parameters such as the ground profile must be randomly sampled in the OCP
directly. It implies an even more generic OCP formulation, which is very challenging.
On the contrary, the expert demonstrations in GPS are only guiding samples while
the actual return is being optimized by the policy. So it is straightforward to perform
domain randomization directly in the simulation while the OCP is still solved for the
theoretical environment. The policy would have to find a compromise between fitting
the theoretically optimal policy and being robust to domain shift.

For both GPS and DTL, it is possible to provide raw sensor data as a partial ob-
servation of the real state, while the oracle is having access to privileged information.
This enables fusing state observation, system identification, and control as a unified
network, whereas Miki et al. (2022) had to split training into two stages. Peng et al.
(2018) have synthesized extremely natural motions on a simplified humanoid model
by leveraging motion capture recordings. They have no interest on transfer to reality
in this work. The main focus was on combining RL and expert demonstration to
generate physically valid motions. The nominal is used to define a set of reward com-
ponents that are normalized and aggregated together. This approach is orthogonal
to previous work on IL. Later, Peng et al. (2020) extend it to handle the reality gap.
It involves both domain randomization and online estimation of physics parameters.
It was applied to the quadrupedal robot Laikago.

Concurrently, Li et al. (2021) train a policy that predicts the target motor po-
sitions for decentralized low-level PIDs. First, they generated a finite database of
optimal trajectories over a low-dimensional task space. Then, they forward to the
policy the nominal state at the current time for a given set of user-specified deci-
sion variables. It uses a neural network with residual structure, namely the output
of a trainable Multi-Layer Perceptron (MLP) is added to the current nominal state
to obtain the actual target motor positions. They claim that such a policy is eas-
ier to train since applying minor corrections to the nominal trajectory is generally
sufficient. Indeed, the output of the MLP should be almost zero most of the time,
except when an unexpected event occurs or during transitions from one trajectory to
another following the update of the decision variables. They validated their approach
experimentally on the bipedal robot Cassie.

As Peng et al., most reward components are related to reproducing the nominal
trajectories. Inverse RL aims at inferring automatically the right reward compo-
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nents to reproduce the expert demonstrations without having to tune each of them
manually. However, it does not scale well with the dimensionality and the existing
techniques only support discrete action spaces (Arora & Doshi, 2021).

4.2.3 Predictability and Safety in Reinforcement Learning

Constrained Policy Optimization

Being able to enforce hard constraints explicitly in RL is an active research topic. It
enables RL to tackle the exact same OCP than MPC but without needing the analyt-
ical gradient. As a result, it would bring the same flexibility and tight control of the
agent’s behavior. Achiam et al. (2017) introduced Constrained Policy Optimization
(CPO) based on Trust Region Policy Optimization (TRPO) (cf. section 3.2.3). This
method is effective but limited to discounted cumulative constraints over complete
episodes. The distance of the optimal policy from the boundary of the feasible do-
main is governed by the reward function and termination conditions in a way that
is hard to predict. This is problematic as it means that the safety thresholds of the
constraints and the reward function must be jointly hand-tuned by trial and error,
which is a highly demanding task only suitable for domain-specific experts.

Building upon CPO, Van Havermaet et al. (2021) present Masked CPO (MCPO)
to resolve the safety-performance trade-off without needing to hand-tune the re-
ward. Rewards are considered unsafe if associated with transition steps for which
the constraint is violated. If so, they are masked out when computing the advantage
estimator. Thus, the agent has no incentive to go beyond the limit, which breaks the
coupling between the safety thresholds and the reward function. Although effective,
this algorithm is data-intensive, and the policy update is very costly.

To circumvent this limitation, Chow et al. (2019) post-process the unconstrained
action using a so-called safety layer (Dalal et al., 2018). In their case, it is a linear
projection onto a safe hyper-plane that ensures the policy always predicts actions
satisfying the desired constraints. This approach avoids having to project the train-
ing parameters onto the feasibility set induced by the constraints. Unlike previous
methods that are deeply grounded in TRPO theory, it can be plugged into any policy
gradient method, both on- and off-policy. They chose Proximal Policy Optimization
(PPO) as on-policy algorithm since it is much cheaper to update the parameters
than TRPO and easier to implement. They demonstrated the effectiveness of their
method on a real-world robot for an obstacle-avoidance problem.

Another option is the barrier function method, which allows a compromise be-
tween penalty and hard constraints. It can be viewed as a special kind of penalty
that is added to the surrogate objective directly. It requires having access to the
analytical gradient of the constraints. In turn, the optimal policy is mathematically
guaranteed to satisfy the constraints in contrast to adding gradient-free penalty terms
in the reward. This approach is compatible with any policy gradient algorithms, just
like the L2-norm regularization. The constraints may be violated throughout the
training, depending on the actual barrier function being employed. This relaxation

117



Chapter 4. Related work

helps to speed up converge and achieve better final performance compared to meth-
ods handling hard constraints such as CPO. Liu et al. (2020b) drew from Interior
Point Optimization (IPO), which uses the logarithmic barrier function in particular.
Unlike IPOs, the slope of the barrier must be adjusted manually. Yet, doing so is as
easy as for MCPO because the penalty marginally affects the return as long as the
constraint is satisfied, thereby avoiding any coupling with the reward function.

Presumably, Liu et al. deal with ill-conditioning by clipping the violation of the
constraints before going through the barrier function, but this point is not discussed
explicitly in their work. No gradient is backpropagated in such a case, and all theo-
retical guarantees about the constraint violations are lost. In practice, it works well
if and only if the policy must be feasible upon initialization. To get around this
limitation, Liu et al. (2020a) split the optimization in two phases. First, they find a
feasible policy by exclusively reducing constraint violation by penalizing the reward.
Then, they proceed with the same method as before.

All the previous approaches only support cumulative constraints. Liu et al.
(2021a) summarize all the existing methods and discuss their pros and cons. It stands
out that very few methods can handle instantaneous constraints, one of them being
the safety layer. Besides, having to define problem-specific analytical constraints
tempers the advantage of RL over classic control approaches.

Alternatively, Ma et al. (2021) relies on spacetime bounds around a nominal
trajectory and early termination to enforce hard constraints indirectly. The idea is
to stop the episodes prematurely as soon as the state deviates too much from the
nominal motion. It is a strong incentive for the agent to avoid such states because
it prevents the return from accumulating any longer. The nominal does not have
to be valid, but the spacetime bounds must be loose enough for a valid solution to
exist. It completely alleviates to need for hand-crafting reward components to mimic
the nominal. The bounds are specified in a feature space gathering the relative joint
angles, the position of the Center of Mass (CoM), the orientation of the pelvis, and
the distance between the end-effectors (namely the feet and the hands). Very complex
and natural motions were generated using this approach for a humanoid model based
on motion capture, including running, doing back-flip, and dancing. They use the
same residual structure with low-level PID than Li et al. (2021). The initial state is
sampled randomly along the nominal trajectory at a specific time.

Ma et al. (2021) and Park et al. (2019) progressively adapt the sampling distri-
bution to focus primarily on the skills that are currently harder to learn rather than
using a fixed uniform distribution, which is sometimes abusively referred to as im-
portance sampling. More precisely, the probability to sample a given nominal motion
obeys a Boltzmann distribution (with some offset to be non-zero everywhere) based
on an average return estimate. This estimate is updated at every training iteration
according to the performance of the current policy.
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Smoothing using Low-Pass Filters

Policies trained with RL are usually jerky, with the action varying discontinuously
like a bang-bang controller. This impedes performance once transferred to real de-
vices, creates loud noises, and causes premature wear. For exoskeletons, it could even
be harmful to the user inside or at least uncomfortable. A naive approach would be
to post-process the output of the policy with a low-pass filter to cancel out high
frequencies. Although it can be sufficient (Peng et al., 2020), it is not recommended
(Mysore et al., 2021). If the filter is only added at runtime, then the feedback loop
is likely to be unstable. Indeed, it introduces an unexpected delay that dramatically
changes the dynamical response of the system expected by the policy. On the con-
trary, adding the filter during learning breaks the Markov assumption. If the delay
is large, then it is necessary to provide as inputs the history of past events or the
internal state of the filter, or at least to use a neural network with memory. Notably,
PIDs act as linear low-pass filters, and hence their internal state should be observed
unless their gains are high enough to ignore this effect. Moreover, the random process
involved in exploration is generally a white noise signal added to the mean action
and having the controller update rate as its fundamental frequency. Thus, the filter
is going to alter the exploration to some extent that depends on its cutoff frequency.
Training may fail because of this side effect.

Smoothing by Monte-Carlo Averaging Post-Process

More generally, policies may behave unexpectedly in some circumstances if nothing is
done to prevent it, especially for states that were never observed. This risk is getting
more serious with the ever-growing complexity of the network architectures, which
enhances their generalization ability at the cost of a higher sensitivity to overfitting.
Indeed, modern machine learning models are not rule-based but neural networks,
which are facing interpretability or explainability issues: it is notoriously difficult to
characterize the rationale behind their predictions. This situation is unacceptable
for robots that are supposed to operate in a human-populated environment or even
interact with humans, and guaranteeing that a policy would behave properly once
deployed in reality is more pressing than ever. This concern has drawn a lot of
interest since their vulnerability to adversarial attacks was unveiled Goodfellow et al.
(2015) after years of being disregarded. For now, little work has been done on this
topic. Several approaches with strong theoretical guarantees have been proposed for
neural networks with discrete outputs. However, they are tailored for supervised
learning and cannot be translated easily to RL. In the latter case, the prediction
error accumulates over time and can make the system unstable in a closed-loop.

Keeping the action within bounds though hard constraints may help but would
hardly solve the issue. As a workaround, independent safety checks are generally
performed at runtime to make sure everything works as expected. Yet, it remains
difficult to be exhaustive. This is problematic as it may damage the device or even
hurt people around it if any, not to mention exoskeletons. Alternatively, one may
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try to anticipate in simulation every possible situation that may occur in practice.
However, it is only applicable to robots operating in controlled environments, which
is rarely the case for floating base robots and completely dismissed in the event of
human-robot or multi-agent interactions, e.g. the behavior of the user inside the
exoskeleton Atalante. Moreover, it implicitly requires knowing the system perfectly,
including the dynamic model and hardware defects such as noise and delay, which is
unreasonable. Thus, it is more promising to seek to certify mathematically that the
policy would behave properly in any circumstance by design.

Cohen et al. (2019) relies on randomized smoothing of a pre-trained classifier to
derive a tight condition of the validity of its prediction. The predicted class is the one
with the highest probably after disturbing the input with an isotropic normal noise,
which is estimated using Monte-Carlo (MC) sampling. The noise level determines
the tradeoff between robustness and accuracy. Later, Everett et al. (2021) applied
this technique to Q-learning and policy-based algorithms with discrete action spaces.
The output of the action-value network or the policy is smoothed out respectively,
according to the worst-case perturbation. It consists in taking the minimum value in
a ball whose radius equals the observation uncertainty after training to choose the
action at runtime. They derived a robustness guarantee but limited to linear bounds,
and it is not suitable for high-dimensional environments.

Wu et al. (2022) present a unified framework Certifying RObust Policies (CROP)
that provides robustness certification on both the action and reward. It involves local
average smoothing with isotropic normal noise instead of worst-case perturbation,
which is closely related to the work of Cohen et al. Still, it is only applicable to
discrete action spaces. Indeed, the basic is always the same: verify that the output
would not change at all by disturbing the input after smoothing. In the context of
RL with continuous action space, such a condition is too restrictive.

Controllability and Lyapunov Stability

What matters is guaranteeing the stability of the system in a closed-loop under a
given control policy. Chow et al. (2019) were the first to propose a method based on
the notion of Lyapunov functions. Lyapunov functions have a long history in control
theory. They provide an effective way to guarantee the global safety of a behavior
policy during training via a set of local, linear constraints. More precisely, Chow
et al. employ a safety layer to project the action onto a Lyapunov-safe hyper-plane
to make sure the policy only outputs actions satisfying the Lyapunov constraints.

Similarly, Zhang et al. (2022) learn a Lyapunov function and use it as a contraction
metric to assess exponential stability. From it, they develop stability certificates for
unknown dynamical systems under adversarial perturbations. Their method is com-
putationally tractable but its validity is not proven theoretically as they train a func-
tion approximation using naive regression without regularity conditions. Whether
it is possible to obtain stronger guarantees, for instance by bounding the Lipschitz
constant of the network, is an open question.
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Alternatively, Mandlekar et al. (2017) and Jin and Lavaei (2020) present two dif-
ferent stability criteria that do not involve learning a function approximation leverag-
ing the notion of controllability. However, they are only applicable to Linear Time-
Invariant (LTI) systems in principle, which is too restrictive for robotic platforms.
Going further, (Castañeda et al., 2020) use RL to learn the state-dependent parame-
ters involved in the classical input-output feedback linearization of any second-order
affine autonomous systems (cf. appendix A.2.2), i.e. any real poly-articulated robot.
It leverages the knowledge of an approximate theoretical model to bootstrap learn-
ing. Thus, the behavior of the policy should be reasonable from the start, ultimately
enabling online learning. If the parameters are perfectly estimated, then it provides
strong closed-loop stability guarantees. However, it is unlikely to be the case in
practice, and how to verify this condition was never addressed in their work.

Lipschitz-Constrained Network Architectures

All the aforementioned approaches are smoothing locally the output of the network
after learning via MC sampling. This leads to performance degradation that is usually
acceptable in supervised learning but not in RL. The reasoning is the same as before
regarding filtering the output of the policy: it changes the closed-loop dynamics of
the system without the policy being trained for it. Furthermore, MC sampling adds
a substantial computational burden at runtime. It is more promising to seek global
smoothness during training. One way is to use neural networks with globally bounded
Lipschitz constant. Parseval network is a form of ANN in which the Lipschitz constant
is constrained to be smaller than 1 (Cisse et al., 2017). All the singular values
of the weight matrices are set to 1, which can be interpreted as a special case of
Björck orthonormalization (Björck & Bowie, 1971). After each gradient descent, the
closest orthonormal matrix is computed through an iterative application of the Taylor
expansion of the polar decomposition. Another approach is spectral normalization
(Miyato et al., 2018). The largest singular value of each weight matrix is enforced
to be less than 1 by estimating the largest singular value and associated vector
using power iteration. It is inexpensive, but it does not guarantee gradient norm
preservation. Because of this, the network tends to underuse its Lipschitz capacity.

(Anil et al., 2019) improved upon Cisse et al.’s method. First, the projection is
done in the forward pass and not after. This helps to keep the weight matrices close
to orthonormal during learning. Then, norm-constrained weight matrices are com-
bined with the gradient norm preserving GroupSort activation function. Together, it
actually imposes the norm of the gradient for the entire network and throughput the
whole input space rather than solely the global Lipschitz constant. However, such
neural networks are much harder to train than classical MLP. Policy distillation may
be an option, but it would have little advantage over smoothing after learning. Al-
though effective in supervised learning benchmarks, bounding the Lipschitz constant
is too restrictive for continuous control tasks. For bipedal locomotion, bursts of mo-
tion are necessary to start recovering balance as soon as possible. Preventing them
would significantly shrink the area of capturable states. Indeed, the DCM diverges
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exponentially fast, and it is critical to react on time.

Smoothing via Adversarial Robustness

Alternatively, Pattanaik et al. (2018) train a policy to be robust to adversarial noise
without bounding the Lipschitz constant. The policy is trained first with any classical
RL algorithm. Then, the same algorithm is used once again, but observations are
perturbed by adversarial attacks at every timestep. The agent must adapt itself to
the task successfully regardless. Mandlekar et al. (2017) rely on the same approach,
except that they train the policy from scratch with adversarial attacks. Although
the authors are not benchmarking their method against any other, their procedure
is expected to outperform smoothing after training. It is also less restrictive than
bounding the Lipschitz constant, but it is difficult to infer the relation between both.
Nevertheless, the policy would be suboptimal in the sense that it has to deal with
perturbations at every timestep while it is very unlikely to happen in reality.

Smoothing through Regularization

Promoting global smoothness during learning through regularization terms seems
more appropriate. Regularization terms are penalty costs added directly to the sur-
rogate objective function instead of additional reward components. Their gradient is
estimated via ReParametrization gradient (RP), which assumes that the state distri-
bution is invariant as if the training data were collected from a dedicated behavior
policy in the off-policy setting (cf. section 3.2.2). This formulation has several ad-
vantages over additional reward components. First, the gradient estimate has much
lower variance (cf. appendix E.7.1). Next, the regularization terms can be negative
without giving the agent the opportunity to kill itself as a way to improve the total
objective. Finally, they do not compete against the original reward with the same
level of priority, which eases the tuning of the penalty factors.

Smoothness regularization makes the overall behavior of the agent both safer and
more predictable. It reduces the search space and prevents falling into shallow local
minima by focusing on reliable strategies that are globally effective. Thus, it improves
both sample efficiency and learning stability. Moreover, such regularization urges the
agent to have consistent behavior throughout the state space. More precisely, the
state space will be partitioned into a few large clusters, each of them correspond-
ing to a different strategy. Indeed, variations of the observation marginally modify
the action within each cluster, while it undergoes large variation when crossing the
boundaries. By increasing the penalty factor, the agent would prioritize minimal
action and hence prefer a small subset of strategies rich enough to avoid failure but
nonetheless suboptimal in relation to the original return. However, a large penalty
factor would impede performance to some extent that is hard to predict as it depends
on both the reward and transition probability functions. Finding a good trade-off
between performance and reliability is a tedious manual procedure.
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Even though smoothness cannot replace domain adaptation or randomization,
it makes the policy not only more resilient to sensor measurement errors but also
to changes in environment dynamics parameters. Besides, smoothness regulariza-
tion improves the robustness to adversarial attacks, but it does not provide any
guaranteed (Zhang et al., 2020). It is not a major flaw since it is out of reach of
smoothness-inducing approaches for continuous control tasks anyway. Several for-
mulations have been proposed concurrently in recent years. They all involve some
form of spatial regularization. Jin and Lavaei (2020) penalize the Lipschitz constant
of a deterministic policy, i.e. the norm of the gradient along the trajectories,

LS = E
τ∼π

[
∥∇θµθ(st)∥22

]
. (4.1)

This technique was originally termed double backpropagation (Drucker & Cun, 1992).
Since it does not guarantee that the Lipschitz constant is globally bounded, they
rescale the weight matrices of the policy network after every training iteration if
necessary. This ensures that the Lipschitz constant stays under a threshold based on
a lower-bound estimate. Finally, they add a cost for the temporal finite difference,

LT = E
τ∼π

[
∥at − µθ(st+1)∥22

]
. (4.2)

They state that it induces consistency during training: the observation is not sup-
posed to change much between successive iterations and so is the action. Relying on
the L2-norm is a major drawback because it is known to strongly discourage spar-
sity in favor of uniform distribution. Thus, it prohibits seldom bursts of motion,
damaging the performance for tasks such as push recovery.

Independently, Mysore et al. (2021) came up with the following spatial and tem-
poral regularization terms,

LS = E
τ∼π

ϵt∼N(0,σ)

[
∥πθ(a|st)− πθ(a|st + ϵt)∥22

]
, (4.3)

LT = E
τ∼π

[
∥πθ(a|st)− πθ(a|st+1)∥22

]
, (4.4)

where ϵ is the noise scale. It does not affect the actual observation received by the
agent. Unlike Jin and Lavaei, they do not bound the Lipschitz constant explicitly.
According to their study, the spatial cost alone forces what they called "bands on
controls": it partitions the state space in clusters and the agent keeps away from
their boundaries as long as possible, so that the state never leaves the cluster in
which it started. Adding temporal regularization breaks this segmentation and al-
lows the state to cross boundaries from time to time if it is beneficial in the long
run. Therefore, combining both spatial and temporal terms is essential to achieve
the desired behavior. These conclusions are based on experiments and lack theo-
retical grounding. The performance of this approach was validated on a quad-rotor
drone. It results in 80% reduction in power consumption and consistently flight-
worthy controllers. Their formulation penalizes exploration as a side effect, but it
can be counterbalanced with an entropy bonus.
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Cooman et al. (2021) compared the effectiveness of equations (4.2) and (4.4).
They are referred to as supervised and contrastive smoothing respectively. The su-
pervised formulation guarantees that taking action at in state st can lead to state
st+1. Thus, there is a strong temporal connection between the consecutive actions in
the supervised formulation that is non-existent in the contrastive one. Despite this
discrepancy, it appears that their effects are roughly identical, at least on DeepMind
Control Suite (dm-control) continuous control benchmarks.

Shen et al. (2020) introduced another metric for spatial smoothness exclusively,

LS = E
τ∼π

[
max

ϵ∈B∞(σ)
DJ(πθ(·|st)||πθ(·|st + ϵ))

]
(4.5)

where B∞(σ) is the ball of radius σ for L∞-norm, and DJ(P ||Q) is the Jeffrey’s
divergence 1/2(DKL(P ||Q)+DKL(Q||P )). This spatial regularizer is well-motivated.
Indeed, Zhang et al. has proven that the value function drop under adversarial per-
turbations can be upper-bounded by the Total Variation (TV) up to a constant. The
TV is itself upper-bounded by the Kullback-Leibler (KL) divergence, and Jeffrey’s di-
vergence matches the KL divergence if the variance of the action is state-independent.
However, the inner maximization is fairly costly to evaluate since it is a non-linear
optimization problem on its own. It can be interpreted as an adversarial attack.
Shen et al. roughly approximate the solution by 10 iterations of projected Stochastic
Gradient-Descent (SGD). They claim that it works sufficiently well in practice.

Nevertheless, many more powerful methods exist. Zhang et al. (2020) uses a
hybrid variant of the first order algorithms Projected Gradient Descent (PGD) and
Stochastic Gradient Langevin Dynamics (SGLD). PGD consists in doing several it-
erations of Fast Gradient Sign Method (FGSM) for the bounded L∞-norm adversary
(Kurakin et al., 2017; Madry et al., 2018). The core idea of SGLD is to add noise to
the gradient estimator. It gives,

ϵi+1 ← ΠB∞(σ)

(
ϵi + α sign

(
∇ϵf(x+ ϵ)|ϵi +

√
2α/βξ

))
, (4.6)

where f is the function to maximize, α is the update step, β is the temperature
parameter, ξ is an isotropic standard normal noise, and ΠB∞(σ) is the projection
operator on B∞(σ). The number of iterations is chosen heuristically. It must be
large enough to reach the edge of the ball. This method is cheaper than second-order
methods and more reliable than projected SGD as it can escape saddle points and
shallow local optima. Mysore et al. proposed to replace the inner maximization with
a simple averaging. It is much cheaper to evaluate, and it works well if the number
of samples per batch is large, which is often the case.

One last option is to predict the rate of the change of the action and augment
the observation with the current action (Chisari et al., 2021). The actual action is
obtained via explicit Euler integration. Then, it is enough to penalize the norm of
the prediction to promote temporal smoothness. This method was validated success-
fully in reality on miniature race car driving. All these approaches have never been
compared with each other, so it is impossible to guess which one is the most efficient.
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Optimal control unifies planning and control under the same framework. There
is no need for any pre-computed nominal trajectory anymore, but it comes with
extra challenges. First, the problem must be simplified to run fast enough for online
operation, restricting the search space to a subset of feasible motions. Secondly, it
is difficult to certify the closed-loop behavior of the robot. It is especially important
for bipedal exoskeletons since there is a user inside and people nearby. It is safe and
predictable to put them at ease, but also natural to enhance rehabilitation.

These limitations can be alleviated by first generating offline a finite database
of nominal trajectories, and then tracking them using classic control methods. Tra-
jectory planning is carried out without any simplification and over a long horizon
since computation time is no longer a concern. The controller is supposed to only
apply local corrections to compensate for disturbances, so it is sufficient to validate
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each trajectory individually to make sure the overall behavior is appropriate in any
circumstance. Nevertheless, versatility is somewhat limited because the device has
only access to a discrete set of primitive motions at runtime. It is sufficient for lim-
ited community ambulation (Huynh et al., 2021), but it must be planned beforehand
for every specific task and users cannot go at their own pace, giving the unpleasant
feeling of being forcibly manhandled.

We propose to enhance the versatility of trajectory-based control methods by
enabling online trajectory planning. This conservative approach strictly improves
upon what has already proven successful over the years to bridge the gap between
trajectory-based and trajectory-free control methods. It avoids taking the risk of
making anything worst and preserves the advantages of decoupling planning and
control while empowering the user with fine-grained tuning capability. To this end,
we train offline a function approximation to reproduce the solutions of any given
Optimal Control Problem (OCP) over a continuous task space. It acts as a memory
of motions having no impact on the control side. Thus, it does not induce any side
effects concerning the reality gap or closed-loop behavior.

Our main contribution in this chapter is Guided Trajectory Learning (GTL). It
consists in modifying the original trajectory optimization problem to enforce it ex-
clusively generates trajectories that can be perfectly reproduced by a given function
approximation when possible and regardless its expressiveness. It results in a consen-
sus optimization problem that is untractable on its own. We overcome this limitation
by solving it iteratively via Alternating Direction Method of Multipliers (ADMM),
which converges to the exact solution under reasonable assumptions. The compu-
tational cost is comparable to generating a finite database of trajectories and scales
well with the dimensionality of the task space.

5.1 Trajectory Planning Problem

Trajectory planning consists in finding the state and command evolution over time
to perform a given task optimally. Then, a lower-level trajectory-based controller is
responsible for tracking the resulting trajectory (cf. section 2.2.3).

5.1.1 Optimal Control Formulation

Let us consider a time-invariant time-continuous dynamical system of the form ẋ(t) =
f(x(t), u(t)), where x(t) ∈ Rp, u(t) ∈ Rq are respectively the state and the command
of the system applied at time t, and f denotes the dynamics of the system. Given a
task to perform τ ∈ Dτ ⊂ Rm, where Dτ is a closed compact set denoting the task
space, a trajectory optimization problem for such a system can be formulated as

y∗τ = argmin
y∈Cτ

Lτ (y) (5.1)

where Lτ is the total cost function, y : t 7→ (x(t), u(t), T ) is a trajectory of duration
T with implicit temporal dependency. Optimal quantities are denoted ⋆∗τ to highlight
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the dependency on the task τ . Cτ is the feasibility set

Cτ = {y ∈ Dx ×Du ×DT | 1 ≤ i ≤ m, gi(τ, y) ≤ 0,

1 ≤ j ≤ l , hj(τ, y) = 0},

where Dx,Du,DT are closed compact sets. Concretely, Dx,Du embody kinematic and
power limitations respectively, while DT is related to design choices. The total cost
function y 7→ Lτ (y) must be bounded on Cτ for any task τ ∈ Dτ , and the constraint
functions gi, hj must be twice continuously differentiable with respect to the task τ .

The generic constraints gi, hj on complete trajectories y are usually boundary con-
ditions hb(τ, y(0), y(T )) = 0 or running constraints gt(τ, y(t), t) ≤ 0, ht(τ, y(t), t) = 0
for every time t ∈ [0, T ]. The periodicity and duration of the trajectory are examples
of boundary conditions, while the dynamics equation and the admissibility conditions
are part of the equality and inequality constraints respectively. The task τ gathers a
set of high-level features, i.e. the desired step length and forward velocity for walking
robots. The total cost adds up a running cost l and a boundary cost lb, namely

Lτ (y) =

∫ T

0
l(τ, y(t), t) dt+ lb(τ, y(0), y(T )). (5.2)

Computing a global minimum for non-linear non-convex problems is unattainable.
Finding a local minimum is nonetheless sufficient for most applications, which is
guaranteed to exist if Cτ is non-empty since it is a closed compact. For this reason,
argmin refers indifferently to a global or local minimum in the following for easiness.

5.1.2 Vector Representation of the Solutions

Trajectories must be encoded for the sake of learning. Such a vector representation is
not unique. They are all equivalent but some are easier to reproduce accurately than
others. Moreover, this encoding must be enforced in trajectory planning to avoid
introducing approximation error at this stage.

Continuous functions can be parametrized by the coefficients of a single high-
order polynomial. However, this choice is not appropriate because it scales poorly
with the trajectory duration, and it gets more or more ill-conditioned as the order
increases. Bezier splines or simple piecewise interpolation of discretized signals can
be used to get around these limitations. Both are cheap to evaluate, but we prefer
piecewise interpolation for portability. Indeed, it is compatible with all optimization
frameworks including Differential Dynamic Programming (DDP) since it naturally
arises when linearizing the system dynamics locally.

Predicting the velocity is avoided by recomputing it according to the original in-
terpolation scheme. It ensures physical consistency between the position and velocity
sequences, which is important as it is implicitly assumed by any Low-Level Controller
(LLC). The position error propagates linearly to the velocity, which is acceptable.

It is convenient to discretize trajectories with a fixed number of breakpoints in-
stead of a fixed timestep. Otherwise, it would be necessary to add or remove break-
points based on the trajectory duration. Thus, the duration itself cannot be a free
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parameter because it would require modifying the structure of the Non-Linear Pro-
gram (NLP) dynamically. Similarly, it would change from one trajectory to another
if it is a decision variable, so it would much harder to warm-start the solver. Besides,
it enables predicting whole trajectories at once using a single forward pass, which
is much cheaper to evaluate and easier to train than an autoregressive model. The
resulting sampling frequency would be variable, while the target of the LLC must be
updated at a given fixed rate. Thus, it is necessary to resample the discrete trajectory
according to the interpolation scheme. In principle, what matters is the prediction
error after velocity inference and resampling at the controller update period.

A unique function decodes the raw vector representation to return a discrete
trajectory where the state and command are temporal sequences of fixed length L, i.e.
((x(t1), x(t2), . . . , x(tL)), (u(t1), u(t2), . . . , u(tL)), T ). The entire encoding-decoding
procedure, velocity inference, and resampling are omitted in the following for the
sake of simplicity. In this context, we can consider without loss of generality that the
generated trajectories are discrete from the start.

5.2 Trajectory Learning

Trajectory learning is a degenerated form of policy learning. The agent is trained to
predict the complete sequence of states and commands that achieves various tasks
under nominal conditions. The observation only contains information about the task,
namely some gait features requested by the user such as the speed and steering an-
gle, without any feedback from the environment. This approach is conservative: it
completely decouples planning from control so that the reality gap is not a concern,
which alleviates the need for Reinforcement Learning (RL). Thus, we restrict our-
selves to vanilla Behavior Cloning (BC) using supervised learning: each individual
observation-action pair must be reproduced as accurately as possible, ignoring the
closed-loop dynamics. While BC is not suitable for training end-to-end policies, here
we assumed that some controller capable of stabilizing the predicted trajectory is
readily available. In this work, the expert demonstrations are provided by a motion
planning framework that can generate the optimal trajectory for any given task.

5.2.1 Naive Formulation as a Standard Regression

The objective is to replace solving the trajectory optimization problem with a func-
tion that can be queried in no time. Classically, this problem is formulated as a
standard regression. Let us consider a function Ŷ : (τ,W ) 7→ y parametrized by
W ∈ Rn and predicting complete trajectories y in one go. The set of parameters W
is optimized to approximate the optimal trajectories as accurately as possible, i.e. to
minimize the prediction error in expectation over the whole task space Dτ . It yields,

W ∗ = argmin
W∈Rn

E
τ∼U(Dτ )

[Rτ (y
∗
τ ,W )] , (5.3)
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where Rτ (·,W ) is the prediction error for task τ . It is usually given by,

Rτ (y,W ) = ∥y − Ŷ (τ,W )∥22. (5.4)

The distribution of tasks is uniform but this choice is arbitrary. Any other distribu-
tion could be used to give priority to tasks selected more often or harder to predict
in practice. For any given task τ , the predicted trajectory Ŷ (τ,W ∗) must be fea-
sible, if not optimal. Although the feasibility constraints of the original trajectory
optimization problem are not enforced explicitly, they are satisfied at the limit when
the prediction error vanishes.

The expectation of the prediction error cannot be computed analytically. Thus,
it is estimated by the empirical prediction error over a finite database of N optimal
trajectories {(τi, y∗i )}Ni=1, namely,

W ∗ = argmin
W∈Rn

N∑
i=1

Rτi(y
∗
i ,W ). (5.5)

In practice, each of these trajectories is generated individually by the same motion
planning framework.

5.2.2 Efficient Task Sampling and Certifiability

The number of trajectories N must be minimized since they are costly to generate.
Yet, the highest priority is to certify that the function approximation outputs safe
trajectories over the whole task space. Specifically, it consists in guaranteeing that
the prediction error remains below a given threshold whatever the task. The largest
acceptable threshold δ is specific to every application. Its definition for Atalante
is presented in section 5.6.2. This problem is common to all trajectory learning
methods, including the one that we propose in the next section.

It is assumed in the following that the total prediction error is completely canceled
for the training samples. Thus, every prediction is feasible and safe for training tasks,
and bounding the maximum deviation apart from them is sufficient to certify that
everything would be fine over the whole task space. In addition, the mapping from
tasks to trajectories is continuous with bounded Lipschitz constant K for the L∞-
norm. It can be interpreted as a problem of robustness to adversarial attack. How
to enforce these conditions in practice will be discussed later in section 5.3.

Mathematically, the worst-case prediction error is upper-bounded by the Lipschitz
constant K and the furthest distance from all training samples ϵ,

max
τ∈Dτ

∥y∗τ − Ŷ (τ,W )∥∞ ≤ Kϵ (5.6)

where ∥y∗τ−Ŷ (τ,W )∥∞ corresponds to the discrete-time maximal derivation between
the optimal and predicted trajectory. It is always possible to define a unique scalar
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Lipschitz constant K for the raw vector representation, even when dealing with het-
erogeneous data, by simply normalizing each element accordingly. ϵ is given by

ϵ = max
τ∈Dτ

Dnn(τ), (5.7)

where Dnn(τ) = min1≤i≤N ∥τ − τi∥∞ is the nearest neighbor distance. Finding the
nearest neighbor of each point is an optimal problem on its own. It is called the
Voronoi diagram and can be computed iteratively in linear time of the number of
points (Dwyer, 1991). It turns out that computing the partition can be avoided if
only the maximum distance is of interest, which is the case here. Specifically, it can
be reformulated as half of the maximum inter-point distance, taking into account
edge effects. It yields,

ϵ = max
τ∈Dτ

(
1/2 max

1≤i≤N
Dnn(τi), max

τ∈∂Dτ

Dnn(τ)

)
. (5.8)

Equation (5.8) is much easier to analyze than the original formulation. One can
show that the continuous boundary of the task space ∂Dτ can be replaced by the finite
set of vertices of its convex hull. The limiting distribution of the maximum inter-point
distance for independent and identically distributed (iid) random variables is related
to the Generalized Extreme Value (GEV) theory. It has been well studied by many
authors (Dette & Henze, 1989; Györfi et al., 2019). For a uniform distribution on a
hypercube domain, it has been conjectured from Monte-Carlo (MC) studies that,

NDnn(τi)
m − a log(N)− b log log(N)− c −−−−→

N→∞
G, (5.9)

where G is the extreme-value distribution P(G < z) = exp(− exp(−z)), z ∈ R so-
called standard Gumbel distribution, and a, b, c are constants that only depends on
the dimensionality of the task space m ≥ 3. Moreover, a = 1, b = 0 for m = 3
and a → 0, b → 1 for m ≫ 1. For high-dimensional task space (m >= 6), the edge
distance is dominating in equation (5.8), while it is the inter-point distance otherwise.
According to Jensen’s inequality and using E[Z] ≤ E[max(Z, 0)], an upper bound of
the expectation of ϵ can be derived that

E[ϵ] ≤
(
γ + a log(N) + b log log(N)− c

N

)1/m

, (5.10)

where γ is the Euler’s constant. It turns out to be a very tight bound for m ≫ 1
large. A lower bound can be computed as follows,

1

2N1/m
≤ E[ϵ]. (5.11)

This bound is attained when splitting the domain into N partitions of equal size.
It depends on the number of samples N and the domain itself. It has no closed-
form expression in general. For a hypercube, dividing each dimension evenly in k
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Figure 5.1: Monte-Carlo study of the maximum inter-point distance for N iid uni-
formly sampled random variables on the unit hypercube [0, 1]m.

sub-intervals and taking samples on the regular grid passing through their middle
points is the optimal partition for size N = km. Typically, it is the case if the task
variables are mutually independent. It is not always true, e.g. higher forward speed
necessitates larger step length at some point.

These results demonstrate that it is much better to spread the training tasks
{τi}Ni=1 on a regular grid. The MC study in figure 5.1 indicates that E[ϵ] is con-
sistently more than double when sampling tasks randomly with uniform distribu-
tion. Therefore, having the same worst-case prediction error requires 2m times more
samples, which is extremely large for high-dimension. It is interesting to note that
discretizing the task space and sampling points randomly is not helping. It is not sur-
prising since a single hole already doubles the maximum inter-point distance, which is
bound to happen if the number of samples is strictly smaller than the size of the grid.
Still, discretizing the task space dramatically reduces the variance of the maximum
inter-point distance, which is beneficial.

It is clear from equation (5.8) that the allowed variation between training samples
is only twice the worst-case prediction error. The minimum size of the partitions of
the task space is determined by the Lipschitz constant K of the mapping from tasks
to actions and the maximum acceptable prediction error δ, i.e.

Kϵ ≤ δ. (5.12)

It means that the number of samples N must be at least (K/(2δ))m, even if opti-
mally distributed. If the computational cost is prohibitive, then the dimensionality
of the task space must be reduced or the mapping must be made smoother. Be-
ing able to generate more than 100000 trajectories is unlikely. It corresponds to
about 7 sub-intervals per task variable for a hypercube with 6 dimensions. For a
single motion pattern, the data overview in section 5.6.2 about flat-foot walking with
Atalante suggests that it is sufficient. Indeed, the total variation over the whole
task space maxi ̸=j ∥Ŷ (τi,W ) − Ŷ (τj ,W )∥∞ never exceeds 0.1 rad. The constraint
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on the allowed variation prevents mixing completely different patterns, but it is not
fitting our preliminary assumptions anyway. In particular, a continuous task space
is required, while the type of gait would be discrete information. Nonetheless, the
advantage would be questionable. Apart from certifiability concerns, it is important
to sample enough data to capture all the information regarding the mapping from
tasks to trajectories according to Nyquist-Shannon sampling theorem.

5.2.3 Limitations

The standard regression does not bring any guarantee regarding the total prediction
error for the training samples. It is a major issue as it impedes the performance of
the real robot. Indeed, trajectory-based control methods assume that the reference
is feasible, namely physically consistent, dynamically stable, and satisfying some
kinematic constraints – e.g. having both feet flat on the ground in double support. If
not, then the local attractiveness of the trajectory manifold is no longer guaranteed,
not even in the absence of disturbances. Conversely, non-parametric methods do not
face such an issue, but it does not help to enforce the global Lipschitz constant for
the mapping from tasks to trajectories. The following lower bound can be defined,

max
i ̸=j

∥Ŷ (τi,W )− Ŷ (τj ,W )∥∞
∥τi − τj∥∞

≤ K. (5.13)

Clearly, it would be very large if nothing is done to keep the Lipschitz constant
bounded. Thus, it would require a prohibitive number of samples to certify the
prediction accuracy over the whole task space. Increasing the number of samples
is likely to increase the lower-bound estimate, growing to infinity if the mapping is
discontinuous. It is typically the case because the planning problem is a NLP. Finding
a global minimum is not guaranteed, and it would converge to a local minimum
at best. Hence, it is very sensitive to initialization, and modifying the tasks very
slightly may completely change the solution. Not to mention that the problem may be
intrinsically multi-modal. At the extreme, the mapping would appear pseudo-chaotic,
namely without any structure. As a result, it would be impossible to fit accurately
the training samples using a parametric model unless the number of parameters
grows with the number of samples. If not, then it would lead to an averaging effect
worsening the prediction error compared to using fewer samples paradoxically.

Non-parametric approaches are preventing the averaging effect but are not ad-
dressing the root cause of the problem. More precisely, K-Nearest Neighbors (KNN)
would perform better than any other method because it sticks to the training samples.
It ensures the feasibility and safety of the predictions apart from training samples,
which is not true as soon as interpolation is involved since the feasible set Dτ is
non-convex. Besides, the problem can be locally ill-conditioned for some isolated
tasks. Trajectory optimization is likely to fail when it happens, preventing fitting
accurately the mapping in their vicinity. The work of Dantec et al. (2021) supports
this analysis: KNN performs better than a few parametric models for bipedal loco-
motion with HRP-2. It is not sufficient to be used directly on the real device, so they
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are using the predictions to speed-up computations by warm-starting the solver. It
enables running fast enough for generating trajectories online without approximation
but after simplifying the planning problem if necessary.

Neither the standard regression nor non-parametric methods provide any mech-
anism to enforce all the prescribed conditions for certifiability at training time. It
is tempting to give up on it since it is cheap to check at runtime if the predicted
trajectories are feasible and fallback on the aforesaid warm-starting strategy if not.
However, not being able to certify the function approximation suggests that the
optimal trajectories are hardly predictable, which is problematic for human-robot
interaction even if perfectly learned.

5.3 Guided Trajectory Learning

5.3.1 Unifying Trajectory Planning and Learning

The objective is to compute the mapping from tasks to optimal trajectories. NLP
can solve the trajectory planning problem (5.1) provided that that task is known in
advance. On the contrary, Parametric Programming aims at solving an optimization
problem with respect to some decision variables as a function of others. In general,
it can be formulated as follows,

∀τ ∈ Dτ , Y
∗(τ) = argmin

y∈Cτ
Lτ (y). (5.14)

Pistikopoulos et al. (2007) presents a generic framework to handle a subset of nonlin-
ear convex optimization problems for which the optimal mapping is linear. However,
it is too restrictive for real-world applications.

We propose to reduce this problem to a classic NLP in order to solve it. To
this end, we introduce a function approximation Ŷ and consider the subsequent
optimization problem,

W ∗ = argmin
W∈Rn

E
τ∼U(Dτ )

[
Lτ (Ŷ (τ,W ))

]
.

st. ∀τ ∈ Dτ , Ŷ (τ,W ) ∈ Cτ
(5.15)

It admits a solution if and only if it exists a set of parameters W st. the predicted
trajectories are in their respective feasible set Cτ for all tasks. Assuming it holds true,
the mapping tasks to trajectories is given by τ 7→ Ŷ (τ,W ∗). It matches exactly the
solution Y ∗(τ) of problem (5.14) if and only if the function approximation does not
induce any coupling between the sub-problems associated with each individual task.
Equivalently, the Lipschitz constant of the function approximation must be larger
than the one of the original optimal mapping Y ∗(τ). Typically, it is guaranteed for
non-parametric models since their Lipschitz constant can grow unboundedly. If not,
then the solution is different since minimizing the sum is no longer equivalent to
minimizing each term separately. Yet, it only has an effect in terms of optimally, not
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feasibility, which is the main concern. Anyway, modifying the optimal trajectories
originally generated by problem (5.1) to some extent is unavoidable to enforce the
necessary conditions for certifiability.

The first condition was to cancel out the total prediction error for training samples
in the case of standard regression, but it can be relaxed to only require satisfying the
feasibility constraints. The second one was to regularize the global smoothness of the
mapping from tasks to trajectories by bounding its Lipschitz constant over the whole
task space. Even though the solution to the original planning problem may change
completely for arbitrary small variations of the task, it is sufficient to bound the
Lipschitz constant of the function approximation Ŷ . How much the original solution
is altered by this constraint is directly related to how restrictive the threshold K is
compared to the original problem. This side effect is discussed thoroughly thereafter.

Computing quantities and enforcing constraints on a continuous task domain is
theoretically possible via basis functions just like the temporal dimension. However,
it has very little advantage over discretizing the task space with a finite collection
{τi}Ni=1. First, it does not hinder certifiability as for standard regression. Next, the
constraint on the Lipschitz constant determines the maximum constraint violation,
and the total cost is barely modified if the number of samples is large. Formally, the
trajectory planning cost function L is continuously differentiable and the task space
is compact. Thus, the expectation can be estimated via MC integration,

IN =
1

N

N∑
i=1

Lτi(Ŷ (τi,W )), (5.16)

where N is the number of samples and {τi}Ni=1 are sampled uniformly on Dτ . Ac-
cording to the law of large numbers,

IN −−−−→
N→∞

E
τ∼U(Dτ )

[
Lτ (Ŷ (τ,W ))

]
(5.17)

Var(IN ) =
1

N(N − 1)

N∑
i=1

(Lτi(Ŷ (τi,W ))− IN )2. (5.18)

The standard deviation of the cost estimator IN decreases linearly with the number
of samples regardless the dimensionality of the task space, hence discretizing the task
space marginally affects optimality. It gives

W ∗ = argmin
W∈Rn

N∑
i=1

Lτi(Ŷ (τi,W )).

st. 1 ≤ i ≤ N, Ŷ (τi,W ) ∈ Cτi ,
∥∇τ Ŷ (τi,W )∥∞ ≤ K

(5.19)

Problem (5.19) is an extremely large, non-sparse, optimization problem. Solving
it iteratively requires evaluating the gradient of all the trajectories Ŷ (τi,W ) at once
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for every update step of the parameters W . It is clearly intractable since the number
of tasksN ranges from thousands to hundreds of thousands. An approximate solution
can be computed accurately and efficiently using the ADMM. The idea is to solve
the sub-problems associated with each task independently, as it was originally the
case, while gradually enforcing to reach a consensus between them. Doing so is not
straightforward under the previous formulation, so we propose to rewrite it as follows,

Y ∗ = argmin
Y ∈(

∏N
i=1 Cτi)∩Z

N∑
i=1

Lτi(yi),

st. Z = {Z ∈∏N
i=1R

p | min
W∈Rn

N∑
i=1

Rτi(zi,W ) = 0,

st. 1 ≤ i ≤ N, ∥∇τ Ŷ (τi,W )∥∞ ≤ K}

(5.20)

where Y = (y1, y2, . . . , yN ) and Z = (z1, z2, . . . , zN ) gather trajectories for all tasks.
It will give rise to the consensus optimization algorithm presented in section 5.4.

5.3.2 Trade-off Between Generalization Ability and Optimality

Not being able to solve the problem (5.14) exactly is not a big deal as long as
the generated trajectories are certified, i.e. guaranteed to be feasible up to some
acceptable margin to be defined. The optimality is not a real concern since finding
a global minimum is out of reach in the first place for such large NLPs as trajectory
planning problems. Reducing the computational cost is often more important than
optimality. This is typically done by stopping the optimization at the early stage
once the constraints are satisfied. Indeed, empirically the solution barely changes
after this point due to the large number of constraints restricting the search space.
The cost function Lτ is mostly here to give some insight to the solver in which
direction trajectories with suitable properties lie. It helps to converge faster, more
reliably, and avoid obviously inappropriate motions. One of the most common cost
functions for bipedal walking is the total energy consumption of the system, another
one is the L2-norm of the jerk. These choices are motivated by studies on what
humans are doing while walking. Yet, this argument is partially valid because of the
mismatch between the motion of the robot and the patient in practice.

As mentioned before, limiting the expressiveness of the function approximation
is essential for certifiability. One option is to bound its Lipschitz constant explicitly.
Several technics for Artificial Neural Network (ANN) have been presented in chap-
ter 4. They are cheap and easy to implement for small networks with up to a few
millions of parameters, so this is not a blocking point. Yet another option is to restrict
the number of training parameters W . Experimental results on Atalante suggest that
it is sufficient in practice (cf. section 5.6.2 for details). As a by-product, it promotes
uni-modality and thus predictability since it enforces the continuity of the mapping.
All the generated trajectories are in the image of the functional W 7→ Ŷ (·,W ) by
design no matter its expressiveness. However, no solution may exist if it is too
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restrictive. It can be interpreted as a smoothness regularization of the original prob-
lem (5.14). In that respect, it is not surprising that it helps to limit the number
of samples required to train an accurate model of the mapping as demonstrated in
section 5.2.2. Low expressiveness corresponds to a strong regularization that would
substantially alter the original solution and conversely.

It should be possible to update the desired task on-the-fly, for instance, the direc-
tion and velocity for bipedal robots. The target state and command would undergo
an instantaneous jump when it happens, which adds up to the current tracking error.
It is essential to minimize it because the capability of the LLC to absorb such discon-
tinuity and cancel it while maintaining balance is limited. We have proven that the
magnitude of the jump is upper bounded by the variation of task times the Lipschitz
constant of the function approximation. Consequently, imposing the continuity of the
mapping is essential for seamless transitions. That is all the more true for a legged
exoskeleton because it enhances the comfort of the patient. For large variations of
the task, it is likely necessary to split the update into several intermediary steps and
wait for the tracking error to go back to normal before moving on. Hence, increasing
the smoothness of the mapping would speed up transitions in such a case.

5.4 Iterative Solving

5.4.1 Alternating Direction Method of Multipliers

Let us consider the following separable non-convex consensus problem (Andreani et
al., 2008; Magnusson et al., 2016)

(Y ∗, Z∗) = argmin
0≤i≤N, yi∈Yi

Z∈Z

N∑
i=1

fi(yi) + g(Z),

st. 1 ≤ i ≤ N, Yi = {yi ∈ Dy | ψi(yi) = 0, ϕi(yi) ≤ 0} ,
Z = {Z ∈ Dz | θ(Z) = 0, σ(Z) ≤ 0}
Y − Z = 0

(5.21)

where Dy ⊂ Rp,Dz ⊂ RNp are closed compact sets. The cost functions fi : Rp →
R, g : RNp → R and the equality and inequality constraints ψi, ϕi, θ, σ are twice
continuously differentiable. Such non-convex problems can be handled gracefully by
the Augmented Lagrangian Method (Bertsekas, 1976, 1982). This is an exact penalty
method (Di Pillo & Grippo, 1989; Han & Mangasarian, 1979), which means that the
solution to the minimization of the augmented Lagrangian matches the one of the
original problem. Its scaled form Lρ for problem (5.21) can be stated as

Lρ(Y,Z,Λ) =
N∑
i=1

fi(yi) + g(Z) +
ρ

2
∥Y − Z + Λ∥22 , (5.22)

where Λ is the vector of Lagrangian multipliers and ρ is a penalty factor.
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ADMM is a method to approximately solve optimization problems composed of a
collection of sub-problems linked by a single linear equality constraint but otherwise
independent (Boyd, 2010). This is done by minimizing the augmented Lagrangian in
an alternating Gauss-Seidel manner, optimizing each variable while holding the others
fixed (Bezdek & Hathaway, 2003; Boyd, 2010). Therefore, this method is especially
suitable when each of the sub-problems has a readily available solving method. It
yields to algorithm 3. Similarly to Y , (z1, z2, . . . , zN ) and (λ1, λ2, . . . , λN ) denote the
task decompositions of Z and Λ respectively. α is referred to as the dual step size.

Algorithm 3: ADMM for Non-Convex Consensus Problem
Initialization;
while stopping criteria not met do

for 1 ≤ i ≤ N do
1 Update the optimization variables yki individually and concurrently:

yk+1
i = argmin

yi∈Yi

fi(yi) +
ρk

2
∥yi − zki + λki ∥22;

end
2 Update the last optimization variable Zk:

Zk+1 = argmin
Z∈Z

g(Z) +
ρk

2
∥Y k+1 − Z + Λk∥22;

3 Update the Lagrangian multipliers:

Λk+1 = Λk + α(Y k+1 − Zk+1);

end

The stopping criteria may be a threshold on the L∞-norm of the consensus error
∥Y k − Zk∥∞ or the variation of the predictions over successive iterations ∥Y k+1 −
Y k∥2. The variation of the multipliers ∥Λk+1 − Λk∥2 is often suggested but far from
ideal. Indeed, the predictions are guaranteed to converge even if the problem is
unfeasible, which is not true for the multipliers. See section 5.4.3 for details.

All the results presented here can be generalized with minor changes to any
penalty function ϕ st. ϕ(x) > 0, ∀x ̸= 0 and ϕ(x) = 0, at the extra condition to
have ϕ′′(0) > 0. Basically, any Lp-norm to power p st. 1 < p ≤ 2 is valid. Using a
norm of higher-order k may be desirable to be consistent with the certifiability criteria
previously introduced that is based on L∞-norm. The right way to do so is to combine
it with a valid Lp-norm, typically the L2-norm. It gives ϕ(x) = ∥x∥22+∥x∥kk, k ≤ 2. It
is usually counterproductive to use higher order that k = 4 because of ill-conditioning.
Note that it is necessary to adapt the update rule for the multipliers accordingly,
namely Λk+1 = Λk + ϕ′(Y k+1 − Zk+1). See appendix B for details.
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5.4.2 Proposed Consensus Optimization Algorithm

Step 1 of algorithm 3 consists in solving the sub-problems associated with the op-
timization variables yi individually and concurrently. It corresponds to the original
trajectory planning problem (5.1) modified to add a penalty term in the cost function,

yk+1
i = argmin

yi∈Cτi
L(yi) +

ρk

2
∥yi − zki + λki ∥22, (5.23)

Next, the last sub-problem associated with Z is solved in step 2. It boils down
to a standard regression problem,

W k+1 = argmin
W∈Rn

N∑
i=1

Rτi(y
k
i + λki ,W ).

st. 1 ≤ i ≤ N, ∥∇τ Ŷ (τi,W )∥∞ ≤ K
(5.24)

Once done, Zk+1 is inferred from the function approximation Ŷ as follows,

1 ≤ i ≤ N, zk+1
i = Ŷ (τi,W

k+1). (5.25)

One can think of the multipliers λi as being the cumulative residual prediction
error for task τi. They reveal where the function approximation makes repeating
prediction errors. They progressively adapt the original trajectory planning and
regression problems to give more weight to regions of the task space where errors are
consistently made. Over iterations, the trajectories become easier to mimic for the
function approximation but less optimal with respect to the original cost function,
until a consensus is found. This algorithm reduces problem (5.20) to a sequence of
trajectory planning and regression problems, each of which is well-studied and has
an efficient solving method. It is summarized by algorithm 4.

It can be interpreted as a consensus optimization. Trajectory planning and learn-
ing are jointly solved, so that trajectory planning acts as a teacher rather than a
demonstrator. In the view of trajectory planning, the penalty promotes trajectories
that can be accurately reproduced by the function approximation despite its lim-
ited expressiveness. The smoothness constraint on the Lipschitz constant encourages
the mapping from tasks to trajectories to be continuously differentiable with respect
to the task. Regarding trajectory learning, the penalty alone is a weighted regres-
sion putting more effort into tasks that have been poorly predicted previously. The
initialization of the algorithm 4 corresponds to the naive regression presented in sec-
tion 5.2.1. The stopping criteria on the consensus error ∥Y k − Zk∥∞ would be met
right from the start unless co-adaptation is truly necessary. Thus, the computational
burden is unchanged for problems that can be addressed via the naive regression.

5.4.3 Theoretical Analysis

Existence of a Solution

The existence of a solution depends on both the regularity of the trajectory plan-
ning problem (5.1) with respect to the task τ and the image of the functional
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Algorithm 4: Guided Trajectory Learning
Generate N uniformly sampled tasks: {τi}Ni=1 st. τ ∼ U(Dτ );
Initialize Y 0 by solving the original trajectory planning problem (5.1)
concurrently for each task;

Initialize Λ0 to zero;
Compute W 0 as a standard regression problem (5.5) and deduce Z0 from
equation (5.25);

while not converged do
1 Update Y k+1 by solving the adapted trajectory planning problem (5.23)

concurrently for each task;
2 Compute W k+1 as the adapted regression problem (5.24) and deduce Zk+1

from equation (5.25);
3 Update the Lagrangian multipliers: Λk+1 = Λk + α(Y k+1 − Zk+1);

end

W 7→ Ŷ (·,W ). Roughly speaking, all it requires for a well-posed trajectory plan-
ning problem is the set of training parameters W to be large enough if the function
approximation is a Feedforward Neural Network (FNN). Theorem 4 proves that our
proposed algorithm makes sense and has a strong theoretical grounding.

Theorem 4. Let the task space Dτ be a closed compact set and the function ap-
proximation be a FNN with training parameters W ∈ Rn. Let us suppose that
∀τ ∈ Dτ the feasible set Cτ of the trajectory planning problem (5.1) is non-empty
and the Mangasarian Fromovitz Constraint Qualification (MFCQ) is satisfied for all
(τ, y) ∈ Dy × Cτ : the gradients of the equality constraints hj are linearly indepen-
dent at y and there exists a vector ξ st. ∇ygi(τ, y)

T ξ < 0 for all active inequality
constraints and ∇yhj(τ, y)

T ξ = 0 for all equality constraints.
Then, for any number of tasks N and threshold ϵ > 0 on the maximum total

prediction error, there exists a number of parameters n and a threshold K on the
Lipchitz constant st. the following problem admits a solution:

Y ∗ = argmin
Y ∈(

∏N
i=1 Cτi)∩Zϵ

N∑
i=1

Lτi(yi),

st. Zϵ = {Z ∈
∏N

i=1R
p | min

W∈Rn

N∑
i=1

Rτi(zi,W ) < ϵ,

st. 1 ≤ i ≤ N, ∥∇τ Ŷ (τi,W )∥∞ ≤ K}

Proof. Clearly, the trajectory planning problem problem (5.1) must admit a solution
for any task τ ∈ Dτ . It holds true for a given task τ if and only if the feasible Cτ is
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non-empty. Considering a collection of tasks {τi}Ni=1, it yields

lim
N→∞

∏
1≤i≤N

Cτi ̸= ∅. (5.26)

The next step is to prove the existence of a continuous function τ 7→ Y (τ) map-
ping tasks to feasible trajectories, i.e. ∀τ ∈ Dτ , Y (τ) ∈ Cτ . Twice continuous differ-
entiability of the constraints is necessary but insufficient. In addition, the MFCQ
must be satisfied for all (τ, y) ∈ Dy × Cτ . Without it, isolated points may appear
or disappear after perturbation of the task. This linear independence of the equality
constraints can be relaxed in favor of a fixed rank in the neighborhood of x. Still,
complementarity constraints are out-of-scope. The interested reader is encouraged
to look at (Still, 2018, Chapter 6) for details.

The Universal Approximation Theorems introduced in section 3.1.2 state that
some families of FNN can approximate arbitrary well continuous functions on a com-
pact set K if the number of parameters n is large enough, typically a Multi-Layer
Perceptron (MLP) with sigmoid activation function. Let us consider a threshold
ϵ > 0, a continuous function f defined on K, and a family of FNN θ 7→ f̂θ with a set
of parameters θ ∈ Rn of variable length n. Then, there exists a number of parameters
n0 st. for all n ≥ n0,

∃ θ ∈ Rn | ∀x ∈ K, ∥f̂θ(x)− f(x)∥ < ϵ. (5.27)

Furthermore, Anil et al. (2019) has proven that FNN combining norm-constrained
weight matrices with the gradient norm preserving GroupSort activation function are
universal Lipschitz approximators on compact sets. Therefore, it is possible to take
into account the Lipschitz constraint if the constant K is large enough. ■

According to theorem 4, there exists a FNN with bounded expressiveness for
which the unified optimization problem (5.15) is feasible up to some tolerance ϵ on
the total reconstruction error. It cannot be canceled exactly in general. For instance,
the feasible set may be degenerated and consist of a single trajectory. The universal
approximation theorem still holds, but it proves density and not equality. Why it is
not a major issue in practice will be discussed afterward.

Convergence Analysis

Originally, this method was intended to solve convex unconstrained optimization
problems, but it has been proven to converge for non-convex consensus optimization
problems under mild conditions (Hong & Luo, 2017; Hong et al., 2015; Magnusson
et al., 2016). More specifically, Andreani et al. (2008) has proven that algorithm 3
converges R-linearly for α small enough and ρ constant. Strictly increasing ρk makes
the convergence faster (up to super-linearly), but it is impracticable at some point.
Indeed, a high penalty factor leads to ill-conditioning, making the optimization diffi-
cult to solve numerically. Successive iterations of GTL are illustrated in figure 5.2a.
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(a) Feasible

(b) Infeasible

Figure 5.2: Comparison between standard regression and Guided Trajectory Learn-
ing. Y denotes all the trajectories (y1, y2, . . . , yN ) associated with a whole collection
of tasks. If the consensus optimization problem is feasible, GTL converges to a local
minimum, i.e. the predicted trajectories Ŷ are feasible and minimize the original total
planning cost. If infeasible, the expected distance between the predicted trajectories
and their respective feasible set is minimized, ignoring the original planning cost.

Theorem 5. Algorithm 3 converges to the local minimum (Y ∗, Z∗) of problem (5.21)
that is the closest to its initialization (Y 0, Z0) under the following assumptions:

• The consensus optimization problem (5.21) is feasible.
• ∀k ∈ N, yki (resp. Zk) computed at step 2 (resp. step 3) of the algorithm is

locally optimal.
• Let L denote the set of limit points of the sequence

(
(Y k, Zk)

)
k≥1

and let
(Y ∗, Z∗) ∈ L. (Y ∗, Z∗) is a regular point, i.e. the gradient vectors at y∗i (resp.
Z∗) of the set of active constraints of Yi (resp. Z) are linearly independent.

• Let define ρ̄ such that ∀yi ∈ Dy,∀Z ∈ Dz, fi and gi have an L-Lipschitz
continuous gradient. The sequence (ρk)k≥1 is increasing and either:

– 0 < α ≤ 1 and ∃k0 ≥ 1 st. ∀k ≥ k0, ρk > ρ̄.
– α = 0 and (ρk)k≥1 −→ +∞.
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The maximum number of training parameters n is bounded by hardware limita-
tions. Indeed, evaluating the function approximation must be fast enough to enable
online execution on the device. Hence, it is likely that the necessary conditions for
the existence of a solution are locally not met due to some tasks in particular. In such
a case, theorem 5 does not hold. Nevertheless, one can show that algorithm 3 con-
verges to stationary point (Y ∗, Z∗) that minimizes the consensus error ∥Y ∗ − Z∗∥∞
under the assumption that all the trajectory sub-problems in step line 3 are feasible
individually. This property makes it straightforward to check a posteriori whether
the consensus optimization problem (5.21) is infeasible. It is essential because it is
impossible to check beforehand that all the conditions to converge are satisfied.

More generally, the consensus error ∥Y ∗ − Z∗∥∞ is a metric to compare the
performance of different model architectures and assess which one has the lowest
runtime cost. In theory, it indicates whether the number of training parameters n or
the bound of Lipschitz constant K must be increased. Yet, the results in section 5.6.2
suggest that it is unreasonable to expect canceling out the consensus error perfectly
in practice since it would require an extremely large number of samples. The total
prediction error was supposed to be zero for certifiability, but it can be relaxed as
long as the consensus error is lower than the acceptable safety threshold δ. Indeed,
the local prediction error for each task ∥y∗i − z∗i ∥∞ adds up linearly to the worst-case
prediction error between tasks. Therefore, one can modulate the density of samples
over the whole task space based on the local prediction error and check after learning
that the worst-case prediction is safe.

A numerical solver would fail to solve problem (5.21) directly and stop at an ar-
bitrary infeasible point. Conversely, naive standard regression would not fail but its
solution corresponds to the projection of the original optimal trajectories Y 0 onto the
image of the functional W 7→ Ŷ (·,W ), which has nothing to do with mitigating infea-
sibility. Hence, the algorithm 3 is preferable over tackling the consensus optimization
problem as a whole and the naive standard regression. Still, it may be necessary to
stop the algorithm prematurely because the multipliers would grow unboundedly.
The trajectory planning sub-problems would be increasingly ill-conditioned and the
solver is likely to fail at some point. The infeasible scenario is depicted in figure 5.2b.

It follows from theorem 5 that algorithm 4 can be simplified by setting the dual
step size α to 0. By doing this, it reduces the algorithm to an instance of the
Alternating Direction Penalty Method (Magnusson et al., 2016). We refer to this
variant as GTL-0. Since the multipliers are constant and equal to zero, it is no
longer necessary to keep them in memory. Moreover, it enables generating a new set
of tasks at every iteration, which is useful to adapt the distribution for certifiability
as mentioned previously. Besides, it eases the implementation of the algorithm since
the generation of the tasks is completely decentralized. The price to pay is a non-
vanishing consensus error unless the sequence of penalty factors goes to infinity.
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Optimal trajectory
Behavior cloning
Trajectory unfolding

Figure 5.3: Comparison between Behavior Cloning and trajectory unfolding

5.5 Structured Prediction with Neural Network

Learning to predict trajectories is fundamentally a structured prediction problem.
On the one hand, the next state xt+1 is related to the current state and command
(xt, ut) via the dynamics of the system xt+1 = f(xt, ut). On the other hand, all the
optimal trajectories result from the same optimal policy π∗ mapping the history of
states x:t = (x′t)0≤t′≤t to the next command ut+1. Knowing the closed-loop dynamics
f∗π , the minimal information defining uniquely a trajectory comprises the initial state
x0 and the trajectory duration T . It is much more compact than the raw vector
representation comprising the entire sequences of states and commands.

5.5.1 Autoregressive Model

The closed-loop dynamics under the policy f∗π can be learned with an autoregressive
model, which aims at predicting the future outcome of a sequence from the observa-
tion of the previous ones. Then, the whole trajectory is generated sequentially, one
timestep after the other. Such a model can be viewed as an open-loop controller for
which the state at the next timestep is supposed to be realized by the LLC.

Only the state is considered because the command is not involved in the closed-
loop dynamics. An auxiliary model of the policy itself ut = π(xt) may be trained to
predict the nominal command if necessary. We put aside this question since they are
usually unused in practice, and anyway it is a classical supervised learning problem
without any particular challenge. In practice, even though only the states would
be involved in recursive computations for trajectory unfolding, the same network
would output both the next state and command. Sharing the hidden layers to have
a common feature extraction halves the computation cost and improve prediction
accuracy by fully leveraging correlations.

Traditionally, an autoregressive model is linear. Instead, we suggest using a
generic MLP with the Sigmoid activation function (cf. section 3.1.2). Moreover,
we assume that the optimal policy only depends on the current state, so that the
dynamics under the optimal policy is Markovian xt+1 = f∗π(xt, τ). It implies that
trajectories cannot cross each other since the command for a given state-task pair
are unique. This assumption is reasonable for high-dimension systems.
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Figure 5.4: Denoising autoencoder. Noisy samples are generated by corrupting the
original trajectory samples with additive isotropic Gaussian noise. Then, a classical
FNN is trained to recover the original noise-free samples from the noisy ones.

A basic approach to learning f∗π is to unfold complete trajectories at training
time. The gradient flows through the network a large number of times during back-
propagation, leading to gradient vanishing problems. It is a well-known issue when
training Recurrent Neural Network (RNN). It is mitigated by using a residual net-
works x̃t+1 = x0+f(x0)+

∑t
i=1 f̂(x̃i, τ). If memory is needed because the Markovian

property is not satisfied, then Long Short-Term Memory (LSTM) must be used. Yet,
it does not help to reduce the computational complexity of learning complete trajec-
tories that is quadratic with respect to their length. Conversely, BC does not face
such issue: the current state is taken from the optimal trajectory at every timestep
x̃t+1 = xt + f̂(xt, τ). It ignores temporality, and thereby timesteps that can be
sampled in any order during training (see figure 5.3).

After training, it remains necessary to unfold trajectories recursively to generate
them at runtime. In the case of BC, the prediction would diverge exponentially fast if
nothing is done to prevent the compounding of errors. We propose to use a denoising
autoencoder that makes sure the trajectory manifold is attractive. This procedure
is depicted in figure 5.4. One can show it is equivalent to learning the projection
operator onto the trajectory manifold. Galashov et al. (2022) recently proposed a
similar technique. They assume some expert policy is available and can be queried at
will. It follows that they can update the optimal action after perturbing the original
states along the trajectories. Having such an expert policy at one’s disposal is very
restrictive and not necessary to learn the optimal closed-loop dynamics f∗π . On the
contrary, we just assume that the next optimal state is not affected by the local
perturbation that was applied to the current state.

Apart from predicting normal trajectories, learning f∗π is a promising approach to
extrapolate smooth transition between tasks at any point in time. The distance from
the trajectory manifold may grow very large when the current task is updated. How
fast the current state converges back to the trajectory manifold cannot be adjusted at
will if the denoising autoencoder is trained to both project and move forward in time
at once. Moreover, it may be useless to assess how far the current state is for various
applications, including assistive control. We learn to project and forecast separately
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(a) Block diagram

(b) Transition example

Figure 5.5: Trajectory generation with an open-loop policy. A denoising autoencoder
computes the gradient to project on the trajectory manifold. Then, a model of the
vector field computes the gradient to move forward in time. Finally, the projection
and forward gradient are summed up and integrated until the next timestep.

using vanilla behavior clone and denoising autoencoder respectively. Then, both are
combined at runtime using a weighted sum. This approach is illustrated in figure 5.5.

5.5.2 Generative Single Forward Pass Model

Here we consider the case where the whole sequences of states and commands are
predicted at once. Computation of the whole sequence is very cheap compared to
autoregressive models since all timesteps are computed concurrently instead of se-
quentially, and thereby it can exploit way better the available resources. Despite
the computational complexity of learning whole trajectories being quadratic of their
length, it remains advantageous to predict them in a single forward pass for short
sequences up to several hundred timesteps.

Aside neural networks, many models are available: Support Vector Regression
(SVR), Gaussian Mixture Model (GMM), Variational Fourier Features for Gaussian
Process (VFF) and Stochastic Variational Inference for Gaussian Process (SVIGP)
to name a few. Yet, they tend to scale poorly with the number of samples or the di-
mensionality of the problem, and how to enforce the Lipschitz constant K is unclear.
On the contrary, a classical MLP features excellent scalability and versatility. Al-
though effective in practice, it is often necessary to rely on regularization technics to
reduce the search space artificially and avoid overfitting. For instance, it helps to en-
force temporal smoothness. The maximum number of parameters is upper-bounded
by the capability of the embedded hardware and so is the prediction accuracy. In
particular, for a given width and depth, the prediction accuracy drops linearly with
the length of the trajectories.
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It would be beneficial to leverage the actual structure of the problem to further
improve accuracy without increasing the computational cost. To this end, we propose
to use a Deconvolutional Neural Network (DNN) (Dong et al., 2015; Wojna, 2019) as
function approximation since it is especially well-suited for generating multidimen-
sional temporal sequences (Tachibana et al., 2018). Notably, the deconvolution op-
eration combines 1D convolution and upsampling, as opposed to the usual transpose
convolution that is sensitive to artifacts (Odena et al., 2016). The entire architecture
is described in figure 5.6. It completely decouples the task from the time in a way
that closely resembles the minimal information representation described above, but
it is more flexible. First, a low-dimensional feature encoding substitutes the initial
state and duration via a FNN, which has the potential to be more compact. Next,
the whole sequences of states and commands are unfolded at once by a DNN without
learning the closed-loop system dynamics explicitly. The Markovian assumption is
not needed and temporal causality can be ignored by leveraging both forward and
backward temporal correlations. This two-stage approach is similar to predicting
coefficients for the monomial basis or spline but expressiveness and smoothness are
easier to adjust. While the regularity with respect to the task depends on both
networks, the regularity with respect to the time only depends on the DNN.

The actual hyperparameters of the model are the width Lh and depth Nh of
the FNN. The size of the 1D convolution kernel Nk is usually small, typically 3. It
reduces the number of parameters without undermining expressiveness since it would
have both short- and long-range effects through the successive upsampling layers
regardless. It would be symmetric or not depending on whether enforcing causality
is relevant. On its side, the number of upsampling layers determines the temporal
smoothness of the predicted trajectories. More specifically, each upsampling layer
halves the upper bound on the Lipschitz constant with respect to the time. Such
regularization is beneficial since it reduces the search space and mitigates overfitting.
However, it must not exceed the inherent regularity of the optimal trajectories to
avoid impeding accuracy. The optimal trade-off is problem-specific. Finally, the
number of channels Nch and the length of the feature vector Lseq derive from other
parameters, Nch = p 2Nup−2, Lseq = ceil(LT /2

Nup).

As mentioned before, the consensus optimization problem is likely to be partially
infeasible in practice since trajectory planning and learning may not reach a con-
sensus for some tasks. The associated feasibility constraints would be violated. It
is manageable regarding certifiability, but it is nonetheless necessary to enforce the
physical limitations Dx,Du,DT . In particular, the predicted joint position, veloci-
ties, and torques must be within hard bounds all along, or it would be impossible
to execute the trajectory on the real device otherwise. Taking inspiration from Inte-
rior Point Optimization (IPO) for policy optimization Liu et al. (2020b), we suggest
instead to use exponential barrier penalty function. It would reduce the prediction
error compared to clipping at runtime, which is beneficial for certifiability.
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Figure 5.6: Specialized network architecture for continuous-time Markov process: a
FNN generates low dimensional features and a DNN produces sequences from them.
i denotes the index of the upsampling layer.
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Figure 5.7: Overview of the original optimal trajectories. The red dashed lines are the
boundary of the admissible set Dx. The color gradient from black to red represents
the flow of time. s denotes the normalized time.

5.6 Experimental Validation

5.6.1 Toy Problem: Van der Pol Oscillator

Let us consider the problem of keeping a Van der Pol oscillator within bounds over
a finite horizon while minimizing the commands:

∀τ ∈ Dτ , Y
∗
τ = argmin

Y ∈Cy

∫ T

0
u2 dt

st. Dτ = {−0.4 ≤ x1(0) ≤ 0.9, −0.9 ≤ x2(0) ≤ 0.4, 0.2 ≤ umax ≤ 1.0, 0.2 ≤ T ≤ 1.0}
Dx = {x ∈ R2 | −0.5 ≤ x1 ≤ 1.0, −1.0 ≤ x2 ≤ 0.5}
Du = {x ∈ R2 | −umax ≤ u ≤ umax}
Cy = {(x, u) ∈ Dx ×Du | ẋ1 = (1− x22)x1 − x2 + 4u, ẋ2 = x1}

(5.28)
A subset of the original optimal solution over the whole task space is shown in

figure 5.7. It gives an overview of the diversity of trajectories to learn. The regularity
of the original mapping τ 7→ Y ∗(τ) can be analyzed by plotting the pairwise distance
in task space vs. trajectory spaces. The line of minimal slope keeping all samples
on its right is a tight lower-bound estimate of the global Lipschitz constant K. It
appears from figure 5.10a that K is larger than 50, which prevents certifiability.

A basic MLP with a single hidden layer of width 50 and Leaky-ReLU activation
function is used as function approximation. Assuming that the norm of the gradient
of the activation functions is smaller than 1, one can show that the Lipschitz constant
in L∞-norm of the network K is upper-bounded by,

K ≤
∏

1≤k≤n

∥Wk∥ (5.29)
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Figure 5.8: Evolution of the total prediction error over GTL iterations
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Figure 5.9: Prediction error distribution for initial and final GTL iterations

where n is the depth of the network and Wk denotes the weight matrix of layer k.
In practice, this upper bound is very tight for shallow networks, specifically for the
L∞-norm. The spectral normalization of all the weight matrices keeps the Lipschitz
constant bounded for the L2-norm. Applying the same principle to the L∞-norm is
even easier since each row is normalized individually,

1 ≤ k ≤ n, 0 ≤ i ≤ wk+1,
∑

0≤j≤wk

|Wk,(i,j)| = K
1
n , (5.30)

where wk denotes the width of layer k and Wk,(i,j) is the element of the weight matrix
W k on the i-th row and j-th column. In practice, K is set to 1.7 to demonstrate the
effectiveness of the method.

The multiplier update step α and the penalty factor ρ are equal to 0.5 and 50
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Figure 5.10: Pairwise distance between training samples. The black dashed line is
the Lipchitz constant K of the function approximation.

respectively for all iterations. We refer to the initialization of algorithm 4 either as
‘iter 0’ or as ‘Regression’ to highlight that it corresponds to the standard regression
method. Similarly, GTL sometimes alludes to its last iteration assuming convergence.
Figure 5.8 shows that the total prediction error is initially very large for ‘Regression’.
Nevertheless, the error reduces significantly over iterations, and the algorithm con-
verges extremely fast: 5 iterations for the exact formulation GTL, and only 2 for the
simplified one GTL-0. More precisely, the total prediction error drops quadratically
over iterations for GTL while it is instantaneous for GTL-0. This effect is explained
by the multipliers smoothing out the progress and avoids premature convergence. It
gives a chance to reach a better compromise by letting the function approximation
adapts itself, even though most of the improvement is due to the modification of the
trajectory planning problem in this example. Either way, the error never vanishes
completely because the consensus optimization problem is partially infeasible, essen-
tially due to the very restrictive threshold on the Lipschitz constant. The distribution
of errors for the first and last iterations are compared on figure 5.9. While it is very
spread at the beginning because of the irregularity of the mapping, it is much more
localized at the end, except for a few outliers that are not reproducible.

At the end, most of the optimal trajectories generated by the modified planning
problem are compliant with the function approximation. While it is difficult to ana-
lyze the effect of the limited expressiveness of the network, it is clear from figure 5.10b
that the Lipschitz constant of the mapping has been dramatically reduced. The effect
is even more noticeable locally for close-by samples. The certifiable safety threshold
can be deduced from the Lipschitz constant and the number of training samples.
However, it is not applicable to the whole task space since some areas are poorly re-
produced. In theory, those areas of the task space should be excluded. Alternatively,
the constraint on the Lipschitz constant can be relaxed to get around this issue, but
it would require increasing the number of samples.
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Figure 5.11: Flat-foot walking domains

5.6.2 Application to Atalante: Flat Foot Walking

Optimal Control Problem Formulation

We assume that the patient is rigidly fastened to the exoskeleton, including the upper
body. As discussed in section 2.2.1, this assumption is questionable. Nevertheless, it
enables considering the system patient-exoskeleton as a usual bipedal robot so that
most of the theoretical background can be translated nearly effortlessly. The ensuing
discrepancy is mitigated by adding safety margins in the stability conditions when
formulating the trajectory optimization problem.

The mechanical structure of the robot has deformation points located at the an-
kles and hips, and the swing leg is touching the ground earlier than expected because
of it. The early impact could be prevented entirely by adding the expected vertical
deflection of the swing leg to the task space and generating motions virtually climb-
ing stairs of this height. Then, the deflection parameter would be adjusted manually
each time that the patient or gait features change. Although effective, this procedure
is tedious. Thus, it was decided to actively compensate for the deformation via ro-
bust feedback control methods such as admittance control presented in section 2.2.3.
This approach is more versatile and improves overall stability, regardless of whether
modelling uncertainties or unexpected events come into play.

This work focuses on flat foot walking in a straight line. Stability is enforced
conservatively by making sure that the stance foot remains flat on the ground and
does not slip. Formally, it corresponds to keeping the center of pressure far from
the edges of the foot. It is supposed for simplicity that the stance foot never rotates
around the vertical axis. This hypothesis is sensible since the torsional force should
be negligible. Besides, the swing foot is required to stay parallel to the ground all
the way. This limits the risk of early impact and scuffing the feet.
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Unilateral constraints are used for the ground contact model. This follows that
the impact is rigid, and hence the double support phase is instantaneous: the robot is
always in single support during the continuous dynamics, with the discrete dynamics
modelling the impact (see figure 5.11). More details about the impact model are
found in appendices A.1.3 and C.2.2. We take advantage of the symmetry of the
gait and the robot across the sagittal plane to optimize the trajectory only for right
leg support. The other side is obtained through the relabeling trick described in
appendix A.1.3. The system is fully-actuated during the whole motion, thereby the
state only has to comprise the position and velocity of the motors.

As mentioned in section 5.3.2, the choice of the running cost is of minimal impor-
tance because the constraints are such that any gait satisfying them would be satis-
factory. It is unreasonable to expect to find a running cost that leads to consistently
superior walking patterns experimentally either in terms of comfort or physiology
over the whole task space. The instantaneous power consumption was used in prac-
tice. Other common choices such as the L2-norm of the jerk would be meaningful
physically but lead to higher optimization failures on average. Additional regulariza-
tion terms are added to further alleviate multi-modality issues. This is not necessary
since the algorithm 4 can handle it, but it helps to reach a consensus faster with-
out increasing the computational burden. Here, the maximum knee extension of the
stance leg over the motion is maximized, which is consistent with the human walk.

The resulting trajectory optimization problem can be solved efficiently under the
direct collocation framework, even for systems with a high number of DoFs such as
humanoid robots. This approach is presented in appendix A.

Patient Morphology and Gait features Task Space

The task gathers a set of high-level features of the gait that the physiotherapist or
the patient might be interested in playing with, namely:

• duration, length, and width of the steps,
• lower-bound height of the swing foot before moving forward,
• upper-bound displacement of the pelvis in the frontal plane,
• upper-bound absolute roll and positive pitch angles of the pelvis,
• upper-bound absolute momentum along z-axis of the stance foot,
• apex of the swing foot trajectory,
• upper-bound velocity of the foot at impact,
• upper-bound excursion of the swing foot behind its take-off position,
• upper-bound excursion of the swing foot above its touch-down position,
• initial-final position and dimension of the bounding box of the CoP,
• upper-bound torque consumption.

We also include the characteristics of the patient in the task space, that is to say:
• morphology of the patient: height and weight,
• settings of the exoskeleton: thigh and shank lengths.

It increases the number of dimensions of the task space but enables computing a
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Figure 5.12: Original optimal trajectories of the ankle joints. The stance leg is the
left. Accurate ankle trajectory planning is critical since it has a huge impact on the
position of the Center of Pressure (CoP) of the robot, and the height and orientation
of the swing foot.

unique function approximation for all patients and gaits at once. Physically, it makes
no sense to change the patient on-the-fly, but it is computationally more efficient since
it leverages the correlation between similar patients by nature. Mathematically, it is
free of cost because patient features are just additional task variables.

Data Overview

A small subset of the of optimal trajectories associated with the original planning
problem is shown in figure 5.12. It focuses on the position of the ankle over time
for clarity as it looks very similar to the other joints. The temporal smoothness
supports the use of the aforementioned deconvolutional network. In addition, the
optimal position at a given timestep does not change much. It never exceeds 0.2rad.s
in the worst-case, i.e. the right ankle joint at about 10% of the step. As a result,
it should be doable to reproduce them using a function approximation with limited
expressiveness and to strongly constrain the Lipschitz constant with respect to the
task. This conclusion is supported by figure 5.13 that shows the correlation between
the distance in task space and trajectory space. Nevertheless, trajectories that are
close in task space can be very far away in trajectory space in a few cases. This
dispersion is the outcome of the multi-modality issue. By looking at this figure, it
appears that 10.0 seems to be appropriate for the Lipschitz constant in L2-norm.

Validation criteria

Classical Proportional-Integral-Derivative controllers (PIDs) are used on the robot
to track the nominal trajectories. They are tuned in a way to guarantee that the
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Figure 5.13: Pairwise distance between training samples

maximum tracking error for the joint positions does not exceed 0.01rad in the nominal
case. It has proven to be small enough to achieve stable walking and safe for the
patient when the trajectories are generated offline through optimization. It enforces
an upper bound on the L∞-norm prediction error, so it concurs with the acceptable
safety threshold for certifiability of the function approximation. The effect of the
number of training parameters on the prediction accuracy for ‘Regression’ is evaluated
in figure 5.14. It demonstrates it improves very slowly, and it cannot be expected
to satisfy the desired validity criteria just by increasing the number of parameters.
This result alone confirms the relevance of our algorithm.

The task space is very high dimensional to challenge the scalability of our method.
It is critical to make sure the predicted trajectories are safe, but it is not possible to
certify the function approximation over the whole task space. Indeed, the condition
derived in section 5.2.2 would require a number of samples that is beyond the capa-
bility of the available resources despite the apparent smoothness of the trajectories.
To circumvent this limitation, we check first that all the prediction errors for the
training samples are below the acceptable safety threshold. Then, the task space
is discretized and the violation of the feasibility constraints is verified offline for all
trajectories. It avoids having to design a fallback strategy since the predictions are
guaranteed to be valid at runtime.

Training Performance

Solving the trajectory planning problem is computationally heavy. Hence, it is critical
to choose appropriately the number of trajectories to be generated. The number of
samples is increased progressively until the prediction accuracy on a testing set does
not improve any further. Figure 5.15 indicates that about 40000 samples are sufficient
regardless of the number of GTL iterations. It reduces over iterations because the
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Figure 5.14: Effect of the number of parameters on the training error

Figure 5.15: Effect of number of samples on the testing error

mapping gets more regular, which is confirmed by the standard deviation reducing. It
takes almost 3 minutes to obtain one trajectory on a single core. Grid5000, a French
national large-scale grid for computer science, was used to generate the training data
on 300 physical cores during about 12 hours per GTL iterations. The convergence
rate of the solver fluctuates between 92% and 97%, ending up with a collection of
about 70000 trajectories. It is surprisingly small given the dimensionality of the task
space as it corresponds to one training sample of all the vertices of the hypercube
domain. It suggests that the final mapping is very smooth.

The performance of GTL-0 is solely assessed for practical reasons. First, it con-
verges much faster than GTL. Secondly, it is easier to implement as it is not necessary
to keep track of the training tasks and multipliers over iterations. It is not a major
limitation because it gives a lower bound on the expected performance of GTL, and
it was demonstrated in the Van der Pol example that it does not impede the final per-
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Figure 5.16: Norm-inf test error distribution over iterations of GTL-0

formance if the penalty factor is large. Finally, no Lipschitz constraint is considered
because its relation with certifiability was established only later. The penalty factor is
kept equal to the highest value for which ill-conditioning does not affect significantly
the convergence rate, i.e. k ≥ 1, ρk = ρ̄ = 10. Indeed, the total computation time
already doubles if the convergence rate drops to 90%. Empirically, it approximates a
solution to the problem (5.21) sufficiently well in relation with the acceptable safety
threshold. The values of the parameters are summarized in table 5.1.

Prediction Accuracy

The accuracy of ‘Regression’ is compared to GTL-0 in table 5.2. The conclusions are
consistent with the Van der Pol example. Unlike ‘Regression’, GTL-0 shows promis-
ing results despite the lack of multipliers. figure 5.16 shows that the error distribution
for ‘Regression’ is very spread and has a long right tail. Therefore, a large part of
its predictions has a reconstruction error much larger than the maximum acceptable
error of 0.01rad. It is much better for GTL-0, but the prediction error of GTL-0
is not zero after convergence. It is hard to tell whether it could be handled by the
multipliers, or the consensus optimization problem is partially infeasible. Increasing
the penalty factor ρ may further improve the accuracy, at a cost of worsening the
conditioning of the trajectory planning problem.

The efficiency of GTL-0 can be understood in the light of figure 5.17. It reveals
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Algorithm Mean (rad) Mode (rad) > 0.01 rad > 0.015 rad

Regression 2.01× 10−2 8.16× 10−3 50.3% 16.1%
GTL-0 7.43× 10−3 4.25× 10−3 10.5% 4.5%

Table 5.2: Testing accuracy in L∞-norm
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Figure 5.17: Continuity of the trajectories with respect to the task. It shows the
effect of the variation of the step length of the walking gait on the angle of the left
ankle joint at 20% of the step (see figure 5.12).

several discontinuities for the solutions to the original problem, which are impossible
to fit accurately using a continuous function approximation. By contrast, the tra-
jectories generated via GTL-0 are perfectly continuous with respect to the task. A
single iteration of GTL is sufficient to enforce the continuity of the solutions, thereby
explaining the very fast convergence of the algorithm in 2 iterations.

Real World Validation

We have evaluated our ability to control the average velocity of the exoskeleton.
Data are only available for GTL-0, since most predictions were unstable on the real
robot using the standard regression. It is not surprising as our validation criterion
is not met for half of the trajectories. Although it does not mean that the predicted
trajectories are necessarily unstable, such a large ratio is a strong indicator. The
situation is much more favorable for GTL-0, and it turns out that many of them
were stable in reality. Notably, the prediction accuracy is getting worse as the task
is closer to the boundary of the task space. This boundary effect is directly related
to the increase of the average distance to the nearest neighbor Dnn(τ). It could be
compensating at weighting the training samples accordingly during training of the
function approximation. Another option is to simply restrict the span of the task
space at runtime. In practice, all the predicted trajectories were stable for GTL-0
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Figure 5.18: From simulation to reality: comparison between the desired and achieved
average velocity on 6 valid people with a different morphology. Each pair marker-
color corresponds to one patient. The average velocity is a by-product of the step
length and duration which are actual decision variables.

after shrinking the range of the decision variables by about 10%. Figure 5.18 shows
that the measured velocities are close to the desired ones for every patient.

5.7 Concluding Remarks

In this chapter, we presented a novel algorithm called GTL that learns a function
approximation of the solutions to a trajectory planning problem over a task space.
Accurate and reliable predictions are ensured by simultaneously training the function
approximation and adapting the trajectory optimization problem such that its solu-
tions can be perfectly fitted by the function approximation and satisfy the constraints
concurrently. It results in a consensus optimization problem that we solve iteratively
via ADMM. We demonstrate its efficiency on flat-foot walking with the exoskeleton
Atalante. We believe that our method offers a new scope of applications, such as
reinforcement learning, perturbation recovery, or path replanning. Enabling adapta-
tion of the architecture of the neural network itself to further improve its efficiency
and usability is an exciting direction for future work.

The whole nominal trajectory is predicted at once, so it does not help to extrapo-
late stable transitions between them. It means that the task must be updated slowly
enough to rely on local attractiveness due to closed-loop control. Besides, motions
that require a very faithful model are out of reach using traditional model-based
approaches. For example, sliding on purpose is natural for humans for recovering
balance or doing sharp turns. These questions are addressed in the next chapter. It
presents a more disruptive approach that combines Imitation Learning (IL) with RL
to learn a robust and versatile control policy.

158



Chapter 6
Learning Robust and Safe Policy

Contents

6.1 Problem Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.1.1 Learning Environment . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.1.2 Training Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.2 Constrained Policy Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.2.1 Implicit Constraints through Early Termination . . . . . . . . . . . . 167
6.2.2 Explicit Constraints through Barrier Functions . . . . . . . . . . . . 170

6.3 Trajectory-Based Imitation using Reinforcement Learning . . . . . . . . . . . 172
6.3.1 Generalized Space-Time Bounds . . . . . . . . . . . . . . . . . . . . 173
6.3.2 Scalable Multi-Tasking through Lower-Bound Maximization . . . . . 182
6.3.3 Task Transitioning via Cross-Initialization . . . . . . . . . . . . . . . 186

6.4 Improving Convergence, Predictability and Safety . . . . . . . . . . . . . . . 187
6.4.1 Reward Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
6.4.2 Termination Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 191
6.4.3 Explicit constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
6.4.4 Smoothness Conditioning . . . . . . . . . . . . . . . . . . . . . . . . 193

6.5 Ensuring Robustness for Bridging the Simulation-Reality Gap . . . . . . . . 194
6.5.1 Plausible External Disturbances . . . . . . . . . . . . . . . . . . . . . 194
6.5.2 Feasible Initial State Generation . . . . . . . . . . . . . . . . . . . . 195
6.5.3 Domain Randomization . . . . . . . . . . . . . . . . . . . . . . . . . 196

6.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
6.6.1 Policy Network Architecture . . . . . . . . . . . . . . . . . . . . . . . 198
6.6.2 Training Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 198
6.6.3 Validation in Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 198
6.6.4 Standing Push Recovery on Atalante . . . . . . . . . . . . . . . . . . 201

6.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Offline generation of natural motions for bipedal robots has been solved success-
fully through whole-body optimization. Still, it is meaningless without a controller
that is capable to track them while keeping balance on the real robot. In general, a re-
active controller is used, e.g. a basic Proportional-Integral-Derivative controller (PID)
or a more sophisticated admittance controller. Tuning is tedious and gets worse as
the number of scenarios to tackle increases. It is a major issue for exoskeletons since
the morphology of the patients is unknown and their behavior is unpredictable. Ad-
vanced control methods such as whole-body Model-Based Predictive Control (MPC)
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could alleviate this issue substantially. It unifies planning and control under the same
framework, thus the computational cost is much higher, and it does not play well with
pre-defined nominal trajectories. The limited embedded computation power requires
making assumptions and approximations to run fast enough for online execution,
resulting in suboptimal and less natural motions.

On the contrary, Reinforcement Learning (RL) is very effective in simulation, and
the policy is cheap to evaluate. It is a probabilistic method that is both gradient-based
and model-free. It implies that any model for the system and the world can be used
without any restriction, so it alleviates the reality gap by being more realistic in the
first place. The closed-loop behavior is only a by-product of the maximization of the
expected return: complex motions emerge from a small set of fundamental incentives
rewarding the agent for every transition step individually. It eliminates human bias
when designing gaits and is closer to human reasoning. It is also more generic because
different tasks are likely to share most reward components. However, it is hazardous
to anticipate the trajectory that the agent will perform. More generally, it is difficult
to handle hard constraints or fine-tune the closed-loop behavior if necessary.

Offline trajectory planning with a theoretical model is very effective when it
comes to generating a tightly constrained natural gait for a given task. Yet, it is
almost impossible to anticipate and characterize mathematically all situations in an
ever-changing environment. Falling to do so will certainly cause system failures. In
this work, we overcome this limitation by learning a robust policy using RL. We
present a method that aims to preserve the nominal trajectories through imitation,
while giving enough freedom to go beyond from time to time if necessary. It is more
conservative than end-to-end approaches and brings back expert bias, but in a good
way. More specifically, it avoids fixing what has proven to be working and thereby
prevents regression. The capability to enhance the rehabilitation of the patient has
already been validated for the nominal motions, thus seeking to reproduce them
whenever possible is reasonable. Besides, imitation guides the agent and enables
solving complex tasks without advanced exploration strategies or reward engineering.

Imitation has been mostly ignored but has drawn attention recently in the field of
computer-generated animation. Our method builds on the work of Ma et al. (2021).
The key idea is to derive space-time bounds acting on a set of high-level features from
nominal motions. These hard constraints are enforced for every transition step by
aborting the episode as soon as any of them is violated. Hand-crafted reward compo-
nents are not necessary anymore to reproduce locomotion tasks, thereby simplifying
reward engineering and tuning. We generalize this approach to handle never-ending
nominal motions and external disturbances. On top of that, we propose a method to
reproduce accurately multiple locomotion tasks. Unlike Won et al. (2020), all tasks
are learned at once as a single policy through worst-case improvement formulation.
First, it inherently leverages common knowledge and correlations between similar
tasks, hence it scales much better with the number of tasks. Secondly, it has the
advantage to support both discrete and continuous task spaces out-of-the-box. Or-
thogonally, we also present an approach to infer stable transitions from any task to
any other that can be triggered at any point in time. It does not entail an additional
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computational burden and is effective regardless of the number of tasks. The main
advantage is to avoid systematically going back to the resting state in between.

Safety and predictability are essential preconditions in robotics that are often
overlooked in RL. To address this concern, we take advantage of technics that have
been initially developed to certify the robustness to adversarial attacks in supervised
learning. Unlike Jin and Lavaei (2020), we do not bound the Lipschitz constant of the
network to avoid being overly restrictive from the start and penalizing exploration.
Instead, we employ spatial regularization in line with the work of Shen et al. (2020),
Zhang et al. (2020), and Cooman et al. (2021). As suggested by Mysore et al. (2021),
an extra regularization term promoting temporal smoothness is also added. Together,
they encourage the agent to focus on a few successful strategies and do nothing
if the state is unrecoverable or simply unseen. Besides, they break the excitatory
coupling between observation and control causing jerky and sporadic motions. The
overall behavior would be safer, more predictable, and transfer to reality more easily.
Finally, we enforce hard bounds on the predicted action to make sure the motors are
within the well-tested operating range. It prevents large tracking errors that would
be dangerous as it induces violent or uncontrolled motions.

Some emerging strategies would be very challenging to reproduce using classical
model-based control. Moreover, the policy smoothly transfers to a real bipedal robot
without additional tuning. We demonstrate safe and efficient push recovery behav-
iors for strong perturbations experimentally on the self-balanced medical exoskeleton
Atalante carrying different users, as shown in the video1.

6.1 Problem Setup

6.1.1 Learning Environment

Low-Level Control and Action Space

A distinctive feature in RL is the slow update frequency in contrast to classic control
approaches, about 50Hz vs. 1kHz respectively. It gives enough time for the effect of
the actions to build up and drift the future state away from the current one, which
is beneficial in several aspects. First, it improves the signal-to-noise ratio of the indi-
vidual transition steps by giving prominence to the underlying system dynamics over
random effects that are mostly high-frequency noise. It indirectly speeds up learning
because it significantly reduces the variance for the gradient estimate and allows for
smaller training batches. Secondly, it greatly improves exploration efficiency when
it relies on pure random noise added to the action. Temporally correlated noises
such as Ornstein-Uhlenbeck stochastic process (Lillicrap et al., 2016) are not affected
by this issue. Alternatively, Raffin et al. (2022) suggests using as noise a randomly
parametrized linear function of the features extracted by the policy. The predicted
sequence of actions would be smooth during training, enabling online RL from scratch

1https://youtu.be/HLx6CHfpmBM
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Figure 6.1: Overview of proposed control flow.

on real robots. Various other methods have been presented in section 3.2.2 but none
of them is readily supported by the main learning libraries.

Predicting the motor torques u directly at such a low frequency is not recom-
mended. In case of an unexpected event, the current state may have already drifted
far away before the policy is given the opportunity to drive it back to the nominal
state. This lack of responsiveness bounds the optimal performance. Besides, it is
difficult to assert at runtime that the command torques are valid since it involves the
dynamic model, which is very problematic for safety-critical devices. This issue can
be partially addressed by post-processing the output of the policy with some readily
available classic controllers. This Low-Level Controller (LLC) will be responsible for
updating the motor torques at a high frequency based on the difference between the
target and current quantities associated with some high-level features. On their side,
these target quantities are a by-product of the action predicted by the policy. This
way, the latter can keep being updated at a low frequency without rendering the
closed-loop dynamics unstable.

In this work, we use simple decentralized low-level PIDs without integral term
(cf. section 2.2.3). It follows that the command torque for each motor is proportional
to their own tracking error in position and velocity in isolation. Altogether, it yields,

um = KP ((q̃m − qm) +KD(˜̇qm − q̇m)), (6.1)

where q̃m, ˜̇qm (resp. qm, q̇m) denotes target (resp. current) positions and velocities
of all motors at once, and KD,KP are vectors of proportional and derivative gains.
These gains are tuned to trade tracking accuracy for compliance. Notably, it limits
internal shear forces and bending moments in double support that cause premature
wear. Decoupled impedance control is well-known for its robustness to model uncer-
tainties. Thus, this hybrid control architecture sensibly improves transferability.

There should be a temporal integration constraint between the target positions
and velocities,

q̃m(ti +∆t) = q̃m(ti) + ˜̇qm(ti)∆t, (6.2)

where ti corresponds to the last time the target positions and velocities were updated
by the policy, and ∆t can be any positive duration before the next one. Satisfying
this constraint is a prerequisite for accurate tracking, which is itself one of the most
effective criteria to detect whether something is going wrong at runtime: the system
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enters some degraded operation mode whenever the tracking error in position exceeds
a given safety threshold since this situation is classified as potentially dangerous for
the user. Yet, this consistency issue was disregarded in previous works, presumably
because it does not hinder performance but rather interpretability and safety. Most
often, the policy solely predicts the target positions, and the target velocities are
all kept equal to zero (Siekmann et al., 2021b). Any consistent target positions and
velocities can be rewritten in this way but not the other way around,

q̃′m = q̃m +KD
˜̇qm. (6.3)

This relation shows that such target positions are plain computational artifacts with-
out physical meaning. In particular, the tracking error in position is expected to be
roughly proportional to the current motor velocities. Thus, they are doomed to
exceed the acceptable safety threshold discussed in appendix A during fast motions.

Similarly, the target velocity is clipped first followed by the updated position
to make sure it stays within the physical limitations of the system assuming per-
fect tracking. It implies that the motors cannot output a torque forcing against the
mechanical stops if already close to them. It is double-edged since pushing within
bounds might be needed to oppose external forces, but it prevents hitting and dam-
aging them as long as the tracking is accurate.

Our exact control architecture is described in figure 6.1. The policy predicts target
motor velocities ˜̇qm at fh = 25Hz. The target motor positions are integrated from
their previous values at every update of the LLC according to equation (6.2), whereas
the target motor velocities are held constant. The LLC is running at fl = 100Hz. It
slightly impedes the performance compared to 1kHz, but it allows for taking larger
integration steps in simulation to speed up learning. This approach is equivalent to a
safety layer (Dalal et al., 2018). Assuming the current target motor positions are part
of the observation, this safety layer would concurrently output the whole sequence of
future target motor positions and velocities for the LLC until the next update of the
action, while ensuring the consistency between them.

In place of the velocity, any higher-order derivative could be predicted and inte-
grated. The higher the order, the smoother the target positions and velocities (and
subsequently the command torques). However, a discrete integrator acts as a low-
pass filter with a lower cut-off frequency as the order increases. This property makes
the system less reactive and thereby harder to control because the effect of the action
takes more time to build up. The agent would be harder to train as the side effect
of random exploration being canceled out more aggressively (cf. section 4.2.3). In
practice, any higher order than the velocity impedes performance.

Tracking can be made more accurate without instability by jointly increasing
the PID gains and the update rate of the LLCs. Yet, it is undesirable because it
slows down the simulation and puts more pressure on the hardware. Alternatively,
Siekmann et al. (2021a) are incorporating the PID gains in the action predicted
by the policy. It enables adapting the gains based on the apparent inertia to set
in motion, effectively turning the decentralized PIDs in coupled Linear Quadratic
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Regulators (LQRs) at joint level tuned optimally under the local closed-loop whole-
body dynamics. This way, the same tracking accuracy and response time for all
motors can be achieved without causing instability whatever the system state. This
property is very useful for legged robots as the inertia of the subtree is substantially
different between stance and flying legs. If a single centralized PID is controlling
all motors at once, then it would behave as a locally optimal whole-body LQR. It is
even more powerful but the gains would be dense positive semi-definite matrices. Any
real-valued vector can be interpreted as a compact encoding of such matrices since
the product of any lower triangular matrix and its transpose is always positive semi-
definite. However, it increases the dimensionality of the action space, and hence the
policy may be challenging to train. Moreover, the command torques would undergo
discontinuities each time the gains are modified. It is important to make sure the
gains are smoothly varying to avoid inducing jolts in the mechanical structure and
loud noise. The smoothness conditioning approach presented in section 6.4.4 is well
suited to address this specific concern.

State and Observation Spaces

The observation should characterize uniquely the current state of the agent in the
world for the learning environment to be fully observable. Here, the state of the
agent gathers the ones of the patient and the exoskeleton, each of them having its
own dynamics coupled together by straps. Nevertheless, we suppose as before that the
patient is rigidly fastened, so providing only the state of the exoskeleton is sufficient.
This hypothesis is dubious for the upper body. Pseudo-periodic external forces are
applied at the pelvis to mitigate this discrepancy and improve the robustness to the
reality gap. Even so, the full state of the agent st is defined by:

• the position pb, orientation (Roll ψb, Pitch θb, Yaw ϕb), linear velocity vb and
angular velocity ωb of the pelvis,

• the motor positions qm and velocities q̇m,
• the internal state of LLCs if any,
• the state of the mechanical deformation and backlash if any,
• the external disturbances if any,
• the surrounding ground profile,
In reality, the state must be reconstructed from raw sensor data. The available

post-processed sensor data are presented in section 1.1.3. They are all proprioceptive
and many insightful quantities cannot be reliably estimated without exteroceptive
sensors, e.g. the pelvis height zb and linear velocity vb. They are not included in the
observation space because a significant mismatch between simulated and real data
may prevent the transfer to reality. Even though the odometry pose po := [xb, yb, ϕb]

T

is not observable, it is not really limiting as the recovery strategies should be invariant
to it. The observation ot ∈ O ∈ R49 comprises:

• the roll ψb, pitch θb and angular velocity ωb of the pelvis,
• the total vertical forces acting on each foot in local frame rF z

r ,
lF z

l ,
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• the current motor positions qm and velocities q̇m
• the current target motor positions q̃m

Note that the target motor positions must be part of the observation because they
constitute the internal state of the LLC.

Asserting observability of the roll and pitch using Inertial Measurement Units
(IMUs) is misleading since the raw data are the angular velocity and classical angu-
lar acceleration. The orientation can be estimated using the nonlinear complementary
filters introduced by (Mahony et al., 2008). Originally, it is only valid in an inertial
frame of reference. It induces a state-dependent bias, partially corrected by Vigne
et al. (2022) by considering that one foot is fixed in the world at all times. Alterna-
tively, one could only provide this information and let the policy infer the orientation.
However, it would impede the performance significantly, unless data are accumulated
over several time steps, because the acceleration is very noisy. Similarly, we chose
to be conservative and completely ignore the IMUs in the feet, although they could
be used to observe indirectly the combined effect of the mechanical deformation and
backlash. The orientation estimation is not reliable for a short duration after impact
on the ground and modeling this phenomenon is out of reach.

Those quantities are heterogeneous and have different scales. It is essential to
normalize them to avoid giving more weight to some features relative to others. It
would be hazardous to do it manually because their distribution is conditioned by
the current policy, and it may change dramatically over training iterations. Hence,
all quantities are independently normalized over training batches.

6.1.2 Training Scenarios

Two very different training scenarios have been considered:
• reactive stepping for emergency push recovery while standing
• nominal gait learning with smooth transitioning
The first scenario is about handling strong external pushes on flat ground without

falling. Pushes may not be foreseen in reality, thus we assume it is always the case
to be conservative. It means that the recovery strategies must be purely reactive.
The nominal standing pose has been designed with comfort in mind rather than
stability. It is not the most favorable setup but comes close. Therefore, it mainly
serves as a baseline of what can be expected at best in a realistic situation, i.e. while
moving around. Pushes have variable magnitude and direction, so that doing steps
is occasionally the only way to keep balance. They are applied to the pelvis at the
hip level. It does not create momentum since this point is almost co-located with
the Center of Mass (CoM). On the contrary, the tip of the pelvis would be way
more challenging but less sensible. Predicting zero velocity on average maintains the
initial position of the motors indefinitely. Depending on how the policy is initialized,
it would occur right at the beginning of the learning process. It entails that the robot
is already stable in the absence of disturbance granted that the initial pose already
is. It facilitates learning in contrast to having to learn how to compensate the gravity
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already. RL is well-known to be capable of addressing such local optimization problem
in simulation. The main difficulty is being able to transfer the policy on a real device.
At the very least, the emerging strategies must be safe no matter what and comply
with the specification of the hardware.

The second scenario is more prospective and mixes imitation with classical RL.
The objective is to learn multiple locomotion tasks at once and equally well with
a single control policy. The set of periodic primitive motions presented earlier in
section 2.2.1 has been pre-computed using offline trajectory planning. As for the
resting pose, each of them is specially tailored to be comfortable and human-like.
Their capability to enhance rehabilitation has been validated clinically. However,
some of them are not intrinsically stable without external assistance, starting with
the foot rolling walk. Besides, it is not versatile enough to move around naturally
on flat ground because of the lack of seamless transitions between them without
going back to rest. The agent must reproduce the nominal motions faithfully as long
as it does not jeopardize stability to the point of falling and generalize them with
transitions that can be triggered at any time. Robustness to model uncertainties and
compounding of errors is also expected. It is already challenging on its own, so we
set aside the robustness to external disturbances and transfer to reality.

It is not straightforward to merge both scenarios to offer versatile locomotion skills
that would be robust to external disturbances. In the standing pose, it is more or less
possible to push in any direction and at any time without issue. It is no longer true
while moving because the projected support polygon changes dramatically. Overall,
the same level of robustness cannot be expected in single vs. double support. It seems
necessary to rely on some kind of curriculum learning for scheduling automatically the
magnitude of the pushes based on their direction and the current state of the robot.
Yet, it has been observed that the learned motions degenerate and the robot drags
its feet if pushes are too strong but recoverable. How to get around this issue is an
interesting research direction for future work. Anyhow, we propose a unified training
framework that is capable of solving both scenarios using the same hyperparameters.

We use the simulator Jiminy (Duburcq, 2019) based on Pinocchio (Carpentier et
al., 2019). It has been developed during this thesis and is presented in appendix C.
In this work, only the average patient model is studied. It could be easily extended,
providing that the morphology of the patient is forwarded as input to the policy.

6.2 Constrained Policy Optimization

Being able to enforce constraints is a central part of our work as they are involved
in both imitation and safety (cf. sections 6.3 and 6.4). The main criteria to parti-
tion them is whether they are instantaneous, cumulative over complete episodes, or
probabilistic. The question is distinct in each case, and approaches that have been
developed for one do not translate to others effortlessly. Judging from their ubiquity
in trajectory planning and optimal control, instantaneous constraints are arguably
more important than cumulative or probabilistic ones. Yet, how to deal with them
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has been largely disregarded in the context of RL. Very few methods with limited
application scope have been proposed so far. Conversely, dealing with cumulative
constraints is well-studied in the literature. It may be explained by the difficulty
to handle violation that is bounded to happen in general, and the lack of a reli-
able gradient estimate as it is state-dependent and thereby cannot be averaged over
an episode. We are solely interested in instantaneous constraints in the following.
They are said to be explicit if they have an analytical closed-form expression that is
known. This way, the constraint function plus its gradient can be evaluated ad lib.
for any state. Otherwise, they are implicit, and only their binary feasibility status
for all encountered states is accessible. Explicit and implicit constraints are handled
differently to get the best out of the available information.

We assume that the reward function is bounded and normalized, i.e. ∀(s, a, s′) ∈
S×A×S, R(s, a, s′) ∈ [0, 1]. Note that scaling does not affect the solution, as opposed
to the mean. The larger the ratio of the mean reward over its scale, the stronger the
agent is encouraged to settle for surviving instead of optimizing the average reward.
In this case, the maximum improvement and instantaneous reward are both equal
to one, and so whether the agent will favor one or the other in practice will depend
on the current reward distribution. Yet, the reward is always positive, which implies
that the agent is always marginally encouraged to survive rather than killing itself.
It is crucial for complex tasks for which the policy has very bad performance initially.

6.2.1 Implicit Constraints through Early Termination

We first study the handling of implicit constraints. There are not many options con-
sidering that the actual constraint violations for every transition step are unknown.
One approach consists in including the feasibility information in the reward itself to
treat the policy optimization problem as if it was unconstrained. The resulting addi-
tional sparse reward component would be equal to some positive constant if all the
constraints are satisfied and zero otherwise. It can be interpreted as an instance of the
classical penalty method. Although intuitive, this method is flawed for several rea-
sons. First, it is said to be inexact, which means that the constraints are not strictly
enforced and can be slightly violated here and there. Next, the penalty competes
against the original reward directly. Weighting it properly to give prominence to the
constraints and adjust the maximal violation is tedious as it is problem-specific and
usually sensitive. Finally, states encountered after any violation may not be relevant
or meaningful anymore for the rest of the episode if some constraints characterize
critical failure. It impedes the sample efficiency and corrupts the gradient estimate
of the return. Avoiding such failure via external guidance is only doable in simulation
and often challenging to implement. Moreover, it does not play well with learning
as it makes it harder for the agent to induce the effect of its actions. For example,
naively adding a virtual physiotherapist to avoid failing and penalizing the agent for
relying on it when walking never converges to an autonomous policy.

We propose instead to rely on early termination as a generic framework to enforce
black-box soft constraints whose analytical formulation is inaccessible. The idea is
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to abort an episode as soon as a constraint is violated, preventing the reward from
accumulating any longer and capping the return to a fraction of a maximum that
depends on the discount factor. This technique is mainly used to avoid bad local
minimum and speed-up convergence (Won et al., 2020). The work of Ma et al.
(2021) on space-time bounds brought out remarkably that it is much more powerful
than that. It circumvents the two limitations of the previous approach: the training
batches are inherently free from irrelevant data, and satisfying the constraints has
a higher level of priority than maximizing the reward since it is a pre-condition
for accumulating it. It has a minimal information access requirement but a slower
convergence rate than explicit approaches. Nevertheless, it was never rigorously
analyzed to the best of our knowledge, and it raises two interrogations: toward which
solution it converges? can it be adjusted to make the constraint hard or soft?

We thereupon demonstrate that it is equivalent to solving a given constrained
policy optimization problem and introduce an optional hyperparameter that specifies
how tightly the constraints must be satisfied at a cost of worse problem conditioning.
Let us suppose that horizon of the Markov Decision Process (MDP) is infinite or
long enough to be considered as such, and the objective to maximize is the sum of
the discounted rewards in expectation. Intuitively, the agent learns to avoid states
leading to early termination as it impedes the return. More precisely, the agent
becomes risk-averse to some extent because the world is stochastic: it requires extra
safety to be confident about preventing such critical failure. Surprisingly, it does not
stand out from the math. It is rather the contrary.

As a reminder, the objective J(π) is to maximize the expected return R(τ)
over the trajectories τ induced by the policy π or equivalently the expected reward
R(s, a, s′) over the discounted stationary state distribution ρπ (cf. appendix E.5),

J(π) = E
τ∼π

[R(τ)] = E
s∼ρ0

[Vπ(s)] = E
s∼ρπ

[
E

s′∼P
a∼π

[
R(s, a, s′)

]]
. (6.4)

Formally, early termination at time t can be formulated as reaching a virtual ab-
sorbing state sc for which the reward is always zero regardless the action, namely
Vπ(sc) = 0 and ρ

(t′)
π (s → sc) = 1 if t′ ≥ t, 0 otherwise. It appears that termination

happening a while after the episode started barely affects the discounted state dis-
tribution and thus has no impact on the objective. To frame it differently, failing is
not a big deal once the maximum return has been obtained asymptotically.

Constraints can be enforced by returning a negative reward −rc at termination.
Let ϵ denotes the probability to violate a constraint under the current policy, i.e.
E

a∼π
[P(st+1 = sc|st ̸= sc, at = a)]. The probability to terminate at time t is given by,

P(T = t) =

{
ϵ(1− ϵ)t−1 if t ≤ 1

0 otherwise
. (6.5)

Assuming that the constraints can be satisfied exactly, the optimal value function
is guaranteed to be positive because the reward is always positive. The worst-case
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probability to violate the constraints can be derived from this observation:

0 ≤ V ∗(s) ≤ 1 +

∞∑
t=1

[(
t−1∑
t′=0

γt
′ − γtrc

)
ϵ(1− ϵ)t−1

]

≤ 1 +
∞∑
t=1

[(
1− γt
1− γ − γ

trc

)
ϵ(1− ϵ)t−1

]
≤ 1 +

ϵ

1− ϵ

[
1

ϵ(1− γ) −
(

1

1− γ + rc

)
1

1− γ(1− ϵ) + rc

]
It yields,

∀rc >
2

γ
, ϵ ≤ 2− γ

γ(rc − 1)
. (6.6)

The higher the termination reward, the stronger the incentive for the optimal policy
to satisfy the constraints. After increasing the termination reward, the probability
to violate the constraints for the optimal policy cannot be larger than before. This
probability is likely to be lower in practice but there is no guarantee. Either way, any
value of the termination reward larger than 2/γ surely translates into a worst-case
probability to violate the constraints for the optimal policy. This threshold increases
as the discount factor decreases, which makes sense since long-term effects would
have less impact on the objective.

If the above condition is met, then the policy gradient will necessarily steer the
parameters in a direction that would reduce the constraint violations. Increasing
the termination reward beyond this threshold would further reduce the maximum
constraint violations but lead to ill-conditioning at some point. Hence, the con-
straints cannot be enforced exactly. Besides, bounding the probability to violate the
constraints does not bring any guarantee regarding the actual constraint violations
as this information is not even accessible. Nevertheless, under sufficient regular-
ity assumption regarding the constraints, reducing the probability to violate them
incidentally reduces the actual violations themselves.

It was implicitly assumed the whole time that state-of-the-art policy gradient
algorithms converge to the globally optimal policy, which is highly debatable. They
are all performing local searches in the first place and are notoriously unstable. But
more importantly, their update rules involve a biased estimator of the policy gradient.
As discussed in appendix E.5, Nota and Thomas (2020) has shown that nearly all
state-of-the-art policy gradient algorithms are in fact following the gradient of the
value function in expectation over some weighted stationary state distribution,

∇θJ(πθ) = E
s∼ρ0

[∇θVπ(s)] ̸= E
s∼ρ̃π

[∇θVπ(s)] , (6.7)

where ρ̃π =
∑∞

k=0 ωkP(st = s) with w0 = 1, wi = 1− γ ∀i ≥ 1. This gives the same
weight to all k-steps state distributions except the initial one. As a result, these
learning algorithms come closer to optimizing the expectation of the average reward
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than the discounted one. The discount factor does not vanish completely and still
appears in the computation of the value function. This gives the desired sense of
short-term vs. long-term profit while reducing the variance of the gradient estimate
by putting more trust in recent data (Thomas, 2014).

This unforeseen property turns out to be the key that enables leveraging early
termination to enforce soft constraints without termination reward. The value func-
tion is considered equal to zero for the final state preceding early termination, i.e.
Vπ(sT ) = 0. This way, early termination would have a significant impact on the
update direction no matter when it happens. The constraints are not guaranteed
to be strictly enforced, as violating them does not necessarily lead to a decrease of
the value function in expectation over the weighted stationary distribution. Nev-
ertheless, we observe in practice that policies trained without termination reward
satisfy the constraints exactly for our standing push recovery scenario in simulation
(cf. section 6.3.1). This includes safety margins in the nominal case so that the
constraints do not get violated when an unexpected event occurs. These promising
results suggest the worst-case reasoning is pessimistic for real-world applications.

6.2.2 Explicit Constraints through Barrier Functions

We now study the handling of explicit constraints. In that respect, the associated
analytical functions and derivatives can be freely evaluated within the learning al-
gorithm. Constrained optimization methods leveraging this additional ability are
expected to provide stronger guarantees compared to early termination.

Classically, Interior Point Optimization (IPO) performs Newton steps at every
iteration until convergence for a given α. It prevents constraint violation after each
update and speeds up convergence by scheduling the step size optimally and automat-
ically. It is a second-order method: the Hessian matrix of the problem is evaluated
and inverted to compute the step size. As such, it is not viable for deep learning appli-
cations for which the models have millions of parameters. Indeed, the time complexity
of matrix inversion is at least quadratic, and the Hessian is a square symmetric matrix
whose dimension is the number of training parameters. To get around this limitation,
Liu et al. rely on the usual Stochastic Gradient-Descent (SGD) method. In this case,
the feasibility of the policy after its update is not guaranteed. In general, it would
be impossible to provide such a guarantee anyway. First, the distribution of states in
training batches is often not representative of the true discounted state distribution.
Then, we are resorting to the hypothesis of perfect tracking for constraints involving
the state of the robot.

They claim that IPO is applicable regardless. The initial policy does not even
have to be feasible. They evaluated their method on a few common toy problems.
The constraint violation is large at first but decreases asymptotically over iteration.
After convergence, the constraints are always satisfied in practice. As a matter of
fact, the policy is slightly more conservative than the other constrained policy opti-
mization algorithms for explicit cumulative constraints. It is not surprising because
the logarithmic barriers are always pushing toward the center of the feasible domain.

170



6.2. Constrained Policy Optimization

In spite of that, it achieves higher return on expectation. They conjecture that it is
because IPO avoids premature convergence and thereby bad local minima. Unlike
other algorithms, it does not focus exclusively on reducing the constraint violation if
any but keeps optimizing the return on the side.

Sadly, how to handle ill-conditioning or ill-defined logarithms is never explained
by the authors and the source code is not available. They are likely clipping the
constraint function Jci

π to make sure it is always negative before composition with
the barrier function. However, no gradient could be back-propagated when triggered.
Some feasible points may be discovered through exploration, so it may eventually
improve over time as the gradient would be non-zero in expectation. If it is not
sufficient, they suggest splitting the learning algorithm into two stages. First, the
original reward is ignored and replaced by a single constraint. Once satisfied, it
is made into a penalty in the surrogate loss and another constraint is considered.
Secondly, IPO is applied, so that the original reward is taken into account. It is
appropriate as long as a feasible policy exists, but it brings back potential premature
convergence issues.

We propose the following loss function for handling instantaneous constraints ci,

Lc = Ê
st∼ρ̄π ,at∼πθ

st+1∼P

[
p∑

i=1

g(ci(st, at, st+1))

]
, (6.8)

where Ê denotes the empirical mean over all the transition steps in a given training
batch B. It neglects the dependency between the policy and the task distribution, as
the constraint should be enforced equally for all states anyway,

Lc =
1

|B|
∑
et∈B

p∑
i=1

g(ci(st, at, st+1)), (6.9)

where et = {t, st, at, rt, st+1} is a single transition step. The barrier function g
has been moved inside the expectation, and the true state distribution has been
swapped for the discounted one. It obviates the discount factor that is irrelevant for
constraints, while keeping bounded the expectation.

As intended, it approaches infinity on the boundary of the feasible domain of
any constraint at any transition step. Basically, it explodes as soon as a constraint
is violated at a single point, which boils down to ρ̄(s) = 0 for all infeasible states.
Being able to find a trajectory that satisfies all the constraints by local exploration
was already questionable when cumulative, but it is far more challenging here. One
way to overcome this issue is to rely on a barrier function g that is well-defined and
has a non-zero gradient outside the feasible domain. The exponential barrier function
is a legitimate candidate,

g(x) = −eαx. (6.10)

Despite being well-defined for any value of x, we suggest clipping the input x <
5/α for numerical stability. It extends the domain of non-zero gradient beyond the
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boundary of the feasible one, which should be enough to find a valid policy by local
exploration in most cases. Alternatively, some authors are replacing the tail of the
classical logarithmic barrier with another function,

g(x) =

{
log(−x)/α, if x ≤ δ
hδ(x)/α otherwise

. (6.11)

The two main classes of relaxing functions found in the literature are the polynomial
hk>1,δ and exponential he,δ ones (Feller & Ebenbauer, 2017):

hk,δ =
k − 1

k

{(
kδ + x

kδ − δ

)k

− 1

}
− log(δ) (6.12)

he,δ = exp
(
1 +

x

δ

)
− 1− log(δ) (6.13)

We prefer the exponential barrier function for simplicity. Cominetti and Dussault
(1994) have proven that it has similar properties to the logarithmic one in terms of
convergence rate and accuracy of the solution with respect to the original constrained
problem.

As a result of this relaxation, the optimal policy may slightly violate the con-
straints from time to time. In general, it is not blocking since the threshold associated
with each constraint is fairly arbitrary in the first place. It is impossible to obtain
the same worst-case guarantees as Constrained Policy Optimization (CPO) (Achiam
et al., 2017). Still, there is a relationship between the maximum constraint violation
ci and the associated probability for the exponential barrier function:

−g(ϵ)P
(
max
1≤i≤p

(ci) > ϵ
)
< Lc <

1

1− γ =⇒ P
(
max
1≤i≤p

(ci) > ϵ
)
<

e−αϵ

1− γ

A much tighter bound could be obtained under the assumption of continuity for both
the constraints and the system dynamics. It is left to the interested reader.

6.3 Trajectory-Based Imitation using Reinforcement
Learning

As mentioned before, the second case study mixes imitation learning with classical
RL. A set of periodic primitive motions have been pre-computed offline for a simplified
theoretical model on flat ground. As is, they are not dynamically stable, neither in
simulation nor on the real device. The goal is two-fold: mimicking each nominal
trajectory as accurately as possible while keeping balance, and designing a unified
policy capable of doing so for all motions at once along with transitioning between
them. Those two aspects are orthogonal and treated separately in the following.
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6.3.1 Generalized Space-Time Bounds

Instantaneous

Ma et al. (2021) have introduced a simple yet impressive method for imitation using
RL. In particular, they were able to generate natural motions that are dynamically
stable for a humanoid in simulation by leveraging motion capture recordings. The
core idea is simply to restrict the deviation between the actual and nominal tra-
jectories. Simply put, it consists in enforcing a set of constraints called space-time
bounds acting on the state at unevenly distributed timesteps. These constraints are
enforced via early termination without terminal reward. This method has the major
advantage to be capable of finding a sensible policy without reward engineering. It is
usually enough to provide a sparse reward returning +1 systematically until failure or
reaching the time limit Tf . On the contrary, coming up with hand-crafted imitation
reward components is known to be challenging and time-consuming as they must be
specifically tailored for one application in general.

Let sτ ∈ STf denotes the sequence of states (st)
Tf

t=0 over a complete episode τ and ⋆̂
refers to nominal quantities. Let us consider a constraint function bi : STf × [0, Tf ]→
R defined as the distance between the current and nominal states at one particular
timestep in a given feature space,

bi(sτ , t) = d(f(s(t)), f(ŝ(t))), (6.14)

where f is responsible for extracting the feature of interest from a given state and d
is a metric. For example, it could be the absolute position of the CoM together with
the classical L2-norm.

The space-time bounds characterize the subset of complete trajectories Biτ ⊂ T
that are satisfying the constraint at a set of independent breakpoints I up to some
tolerance threshold σi for each breakpoint i,

Biτ = {τ ∈ T | ∀i ∈ I, bi(sτ , ti) ≤ σi}. (6.15)

Assuming the system dynamics is continuous, a finite set of breakpoints is sufficient
to limit the maximum deviation globally at any point in time, and it gets tighter as
their number increases. Still, this definition can be extended to a continuum easily,

Bi′τ = {τ ∈ T | ∀t ∈ [0, Tf ], b
i(sτ , t) ≤ σ(t)}. (6.16)

They rely exclusively on this second formulation in practice. It is more generic and
enables limiting the maximum deviation irrespective of the Lipschitz constant of the
system dynamics. They are only considering a pure imitation setup without any
disturbance, so they can afford to be more restrictive.

For a policy to be a feasible solution to the RL problem, it must be an element
of the subset of policies Biπ ⊂ Π that induces only valid trajectories for initial state
distribution ρ0. It yields,

Biπ = {π ∈ Π | ∀τ ∼ π, τ ∈ Biτ}. (6.17)
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Probabilitistic

Defining bounds that only depend on the current state without history is problematic.
It entails that the only way to achieve accurate imitation is confining the actual
trajectory within a tube around the nominal, and thus having tight bounds σ(t)
during the whole motion. Otherwise, the agent will surely abuse it. First, a slowdown
in the world plane is expected compared to the nominal motion because it is easier to
maintain and recover balance when doing steps as small as possible. Walking in place
may even be a local optimum for locomotion tasks on hazardous terrains. Secondly,
the robot lacks exteroceptive sensors to locate the ground without touching it, and
knowing it would be helpful to keep balance. Hence, the agent is going to walk
warily and drag them during the whole motion if permitted. Conversely, handling
unexpected events inevitably induce transient dynamics that are deviating locally
from the nominal by a wide margin. These two objectives are conflicting and cannot
be reconciled. Thus, their formulation is suitable for locomotion on flat ground with
0-step capturable disturbances but does not allow for reactive stepping strategies.

Besides, setting the time-dependent tolerance σ(t) for each feature requires prior
knowledge. From an imitation perspective, the smaller, the better. However, it
shrinks the whole feasible domain for which the constraints associated with the
physics and the space-time bounds must be jointly satisfied, and it may be empty at
some point. Consequently, it is increasingly difficult to find a valid policy by random
exploration. The optimal trade-off between imitation accuracy is feature-specific (not
least because it involves different Degrees of Freedom (DoFs)), and hence tuning the
tolerances accordingly is tedious and time-consuming. For instance, it may be ex-
pected to reproduce perfectly the nominal trajectory of the feet in the absence of
disturbances but not the one of the relative joint angles, owing to the mechanical
deformation among other kinematic discrepancies.

To tackle these limitations, it is necessary to take into account past events implic-
itly or explicitly. We propose to only require the instantaneous space-time bounds to
be satisfied once in a while. Mathematically, it amounts to bounding the minimum
deviation over a sliding time window ∆,

b p(sτ , t) = min
t′∈[t−∆T,t]

bi(sτ , t
′), (6.18)

B p
τ = {τ ∈ T | ∀t ∈ [∆T, Tf ], b

p(sτ , t) < σ}. (6.19)

Strictly speaking, it breaks the Markovian assumption since the transition prob-
ability now partially depends on past events and not just the current state. Yet, it
has no effect apart from seldom early termination events. The actual dynamics is
unchanged and remains markovian if it was, so it is not a major concern.

This constraint is more permissive than a finite set of evenly spaced breakpoints.
Formally, it is equivalent to letting the agent freely choose breakpoints at which the
instantaneous space-times bounds must be satisfied as long as they are not further
apart than ∆T . Notwithstanding, it strongly encourages only deviating from the
nominal if absolutely necessary and canceling unexpected events as fast as possible.
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The reason is that the agent does not have access to the history of past states. It has
no other choice than to seek to satisfy the instantaneous space-time bounds all along,
otherwise it would risk violating the constraint at some point. In theory, it could
also oscillate periodically. The current time is missing in the observation space, but
the current nominal state is part of it and could serve as a clock. This contingency is
ruled out by smoothness conditioning promoting minimal action (cf. section 6.4.4).
Anyway, it is likely easier to discover a policy mimicking accurately the nominal
rather than oscillating around it on purpose to trick the constraint.

Our space-time bounds can be expressed as a classical probabilistic constraint. It
amounts to bounding the probability to violate the instantaneous space-time bound
at every transition step individually and without history,

B p′ = {τ ∈ T | ∀t ∈ [0, Tf ],P(b
i(sτ , t) ≥ σ) < ∆T−1}. (6.20)

It is a kind of soft relaxation over enforcing an instantaneous hard constraint, giv-
ing enough freedom to deviate locally from the nominal without triggering early
termination systematically. This formation is convenient for mathematical analysis
but impracticable. The actual distribution is computationally demanding to assess
during training and completely unknown to the agent.

The interval ∆T must be short to urge the agent to promptly cancel the effect
of disturbances. If too long, then the behavior of the policy may feel unnatural and
unconformable for the patient. Typically, the robot may stumble for longer than
necessary to maximize the return, for instance to avoid hitting the joint bounds (cf.
section 6.4). Still, it must be long enough so as not to lower the capability of the
agent by preventing doing enough recovery steps.

Our formulation is very robust to the value of maximum acceptable deviation σ
as opposed to the instantaneous one. Notably, a feasible policy may exist even if σ
is equal to zero. As a result, we make it a constant for simplicity.

Cumulative

The original space-time bounds were designed with trajectories of finite duration in
mind. Therefore, it is possible to make sure the initial and final states at time 0 and
Tf respectively match accurately the nominal ones. In the context of locomotion,
we are intrinsically dealing with an infinite-horizon MDP since the objective is to
keep moving indefinitely. A naive approach would be viewing each periodic primitive
motion as a usual trajectory of finite duration by considering a fixed number of steps.
Somehow it works, but it does not prevent long-term drift. This phenomenon is
unacceptable since the motions are specially generated for a set of high-level features
that includes the desired average velocity in the world plan.

Tightening the space-time bounds uniformly reduces the drift but does not allow
for deviating from the nominal whenever it is necessary to recover balance. Alter-
natively, tightening them at the endpoints breakpoints only is not any better. First,
their exact timings are often meaningless since there are no actual endpoints to pe-
riodic motions, but they still have an impact on the resulting policy that is hard to
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predict. Next, it would be much harder for the agent to discover a feasible policy as
the information provided to the agent is sparse. The agent has no clue whether it is
currently drifting until reaching the next breakpoint, where it may fail because of it.
Finally, it encourages the agent to catch up on the delay that may have accumulated
a while ago due to local shifts following unexpected events, which is undesirable. A
better compromise may be achieved by combining both, but it is not solving any of
these issues. Increasing the number of steps is not going to help much either. In
theory, it prevents drifting at the limit, but the duration of the episodes must not
exceed about 30s to maintain healthy sample diversity.

More generally, what happened long ago and where the robot really is in space are
irrelevant when dealing with locomotion tasks. Only recent events should be taken
into account regardless of the episode duration when assessing the current policy.
It follows that any reward component or constraint should be agnostic to the past.
One option would be to consider the instantaneous spatial velocity of the features
instead of the pose. However, it prohibits fast and short bursts of velocity. They
have a limited impact on the drift. Yet, they are necessary to react rapidly and
thereby recover balance efficiently. Bounding the deviation of the average velocity
over a time window combines the best of all worlds: it prevents long-term drift
without impeding the recovery capability nor giving precedence to any point in time
in particular. Mathematically, we propose to act on the deviation of the variation
over a sliding time window ∆T . It yields,

bc(sτ , t) = d([f ◦ s]t(t−∆T )+ , [f ◦ ŝ]t(t−∆T )+), (6.21)

B p = {τ ∈ T | ∀t ∈ [0, Tf ], b
c(sτ , t) < σ}. (6.22)

where ⋆+ = max(⋆, 0) and [⋆]t2t1 =
∫ t2
t1
⋆̇ = ⋆(t2)⊖⋆(t1) denotes the variation along the

current trajectory over the interval [t1, t2]. The latter is linearly increasing until it
reaches ∆T . It can be interpreted as a kind of automatic curriculum learning schedule
based on the actual capability of the agent. The space-time bounds would be less
restrictive at first, giving prominence to dynamic stability. Then, once the robot is
able to stand up and move without falling, reducing the drift will be more pressing.
The maximum deviation σ is not time-dependent for simplicity as scheduling it would
serve the same purpose.

The maximum interval ∆T is not related to the period of the primitive motion.
It must be long enough for averaging to take effect, otherwise the space-time bounds
would be prone to false positives caused by successive pushes. The effect of unex-
pected events would also cancel out naturally if homogeneous, so that the agent is no
longer encouraged to catch up with local shifts anymore. It is approximately true for
a random ground profile that is flat on average or external pushes whose orientation
is sampled uniformly. Any value significantly longer than both the pseudo-period
of external disturbances and subsequent transients is fine. There is no advantage
beyond this point. Then, the maximum deviation is chosen accordingly.
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Figure 6.2: Probabilistic constraint on motor position tracking error

Application to robust locomotion

Nominal Dynamics. Long-term drift of the odometry position is inevitable, but it
must be limited. The user may have to rectify it manually but this should remain ca-
sual. We restrict the odometry displacement through cumulative space-time bounds
over a time window of ∆T = 20s (see figure 6.2),

Bco =
{
τ ∈ T | ∀t ∈ [0, Tf ],

∣∣[wpo]t(t−20s)+ ⊖ [wp̂o]
t
(t−20s)+

∣∣ < [2.0m, 3.0m, 180deg]
}
,

(6.23)
where the vector inequality must be understood element-wise. The constraint is
satisfied if and only if the condition for all of its components is met.

Transient Dynamics. The robot must track the nominal if there is no hazard,
only applying minor corrections to keep balance. Rewarding the agent for doing
so is not effective as favoring robustness remains more profitable. Indeed, it would
anticipate disturbances, lowering its current reward to maximize the expected future
return, primarily averting falling.

We enforce probabilistic space-time bounds at the joint level. Since the configu-
ration of each joint is its relative angle with respect to its parent, the errors at the
joint level propagate along the kinematic chains and are maximal at the end-effectors.
Considering all the joints at once mitigates this phenomenon (see figure 6.3),

B p
m =

{
τ ∈ T | ∀t ∈ [4s, Tf ], min

t′∈[t−4s,t]
∥qm(t′)− q̂m(t′)∥2 < 0.3rad

}
. (6.24)

A healthy human being should be able to withstand up to 5-step capturable distur-
bances but nothing stronger than it, so we set ∆T = 4s. The maximum acceptable
deviation is quite slack. This is to allow a bit of hysteresis when standing at rest after
reactive stepping. It is both inefficient and unnatural to do one additional small step
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t

Figure 6.3: Probabilistic constraint on motor tracking error

to go back to the nominal resting pose if the final configuration is not too distant. It
is necessary for walking on uneven ground without triggering early termination.

Mimicking the nominal trajectories of the feet accurately is what matters most.
First, it plays a significant role in the feeling of natural walking. Secondly, they are
designed to reduce the impact on the reality gap – mainly due to the mechanical
deformation in particular but not only – and the robot is likely to fall in practice if
already not lifting the feet properly in simulation. Thus, we also enforce probabilistic
space-time bounds for the feet even if partially redundant. It is not as straightforward
as for the joints. The constrained feature must not be subject to drifting, otherwise
this effect will interfere and finally dominate, leading to systematic failure. The plain
absolute pose of the feet in world frame wXr,l is obviously not suitable. Similarly, the
poses in base frame bXr,l is misguided: poorly mimicking the orientation of the torso
would directly impact the reproduction error for both feet, which is not motivated by
any physical reasoning. For example, when we turn our torso to look around while
walking, our feet keep following the same trajectory. It appears that the reference
frame must be independent of the base to avoid any kind of harmful coupling. Picking
one of the feet as a reference rXl is better but still not satisfactory. It puts more
pressure on the reference foot because its orientation affects the relative position in
contrast to the other one. This asymmetric is not physically motived either.

One option is to express the pose of the feet in a reference frame that involves
them equally. It is referred to as the motion frame and denoted wXr+l in the following.
Intuitively, the average pose is a good candidate, but it is not well-posed. Several
definitions exist, especially for the orientation (Markley et al., 2007). One of them
consists in finding the rotation that minimizes the mean square error of the distance
with all the others. For any legged robot, it gives

argmin
R∈SO(3)

n∑
i=1

d(wRi, R)
2, (6.25)

where n is the number of feet, wRi is the rotation of the i-th foot in the world frame,
and d is a distance metric to be determined. Once again, the distance metric is
not unique (Huynh, 2009). The Frobenius norm of the residual rotation is commonly
used, i.e. d(wRi,

wRj) = ∥I3−wRi
wRT

j ∥F = 2
√
1− cos(θi-j) = 2

√
2| sin(θi-j/2)| where

θi-j is the angle of the axis-angle representation of the residual rotation wRi
wRT

j =
wRi-j = exp((θi-jui-j)×3). This metric is boundedly equivalent to the angle θi-j ≥ 0,
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so they should be interchangeable. The result would differ whether one or the other
is optimized, but very slightly since the angle itself is a very good approximation
of the Frobenius norm (less than 1% error for angles up to 15 degrees). For this
particular metric, the quaternion of the solution to problem (6.25) is the Eigenvector
associated with the largest Eigenvalue of the matrix Q defined as

Q =

n∑
i=1

qiq
T
i , (6.26)

where qi is the quaternion for the i-th foot. For humanoids, it admits a closed form,

qr+l =

√
1

2(1 + |qTr ql|)
(
qr + sign(qTr ql)ql

)
. (6.27)

On its side, the reference position is defined as the barycenter of the positions
of the feet, pr+l = (pr + pl)/2. Alternatively, it could also be kept as the origin of
the world if one considers only relative positions. Typically, the pairwise relative
positions between the feet for legged robots. No information is lost compared to
using the barycenter as a reference, and it does not give prominence to any of the
feet. For humanoid robots, both formulations are strictly equivalent. Nevertheless,
the barycenter is slightly easier to work with as the features can be interpreted as
actual frame poses and not just mathematical artifacts. Plus, it gets increasingly
robust as the number of feet increases in contrast to the pairwise relative positions.

Extracting relevant transforms is half of the problem, computing the deviation
between their actual and nominal values is the other one. Being able to set bounds for
each component individually is critical for tightly adjusting the maximum acceptable
deviation on each axis. It follows that the deviation must be expressed in the motion
frame and the coordinate system easy to interpret. This choice is unrelated to the
distance metric involved in the estimation of the motion frame.

As a reminder, any element of the Lie Group of transforms SE(3) can be mapped
to an element of its Lie Algebra se(3) ⊂ R3 × R3 at identity – which identifies to its
tangent space – through the pseudo-inverse of the exponential map for transforms
(Blanco-Claraco, 2021). Basically, the angular part is the product of the axis by the
angle of the relative rotation between the feet. For small rotations, it is approximately
the same as the Euler angles (Roll, Pitch, Yaw). It should always be the case since
it is the whole point of bounding the deviation through early termination conditions.
However, it is much harder to interpret the linear part. It mixes the translation
with the rotation, and it does not even preserve the norm of the translation. Hence,
this coordinate system is suitable as it is difficult to make sense of all components
separately. Still, this coordinate system would be satisfactory if the objective was
to cancel the deviation completely without paying attention to intermediary states,
e.g. performing a gradient descent on its L2-norm. As a topological space, SE(3)
is homeomorphic to R3 × SO(3), and the coordinate system for the translation and
rotation can be chosen independently. The translation is kept as is since it is already a
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vector. Then, the pseudo-inverse of the exponential map for the Lie group SO(3) can
be applied to the rotation, which would provide the same axis-angle vector as before.
Even though it is perfectly fine, we suggest using the Euler angles for convenience.
It is easier to interpret for most people and physically meaningful.

Accommodating uneven ground requires allowing large deviations in rotation for
the roll and pitch angles. On the contrary, it is helpful to be restrictive for the z-axis
for the translation to enforce lifting the feet properly so as temper the reality gap
without reward engineering. It is less straightforward for the translation along x- and
y-axes. Tolerating some deviation in translation enables adaptation of the theoretical
motions to better fit the actual needs and avoid unnecessary repositioning steps as
discussed previously. However, being restrictive is helpful to mitigate the drifting
phenomenon. Notably, the average velocity of the gait is determined by the step
length and thus the deviation in translation along x-axis. The question of long-
term drifting is already tackled by probabilistic space-bounds in equation (6.24),
but cumulative bounds are intended to be triggered way sooner, thereby discarding
bad local minima at an early stage during the optimization process. Besides, if not
restrictive enough for the translation along y-axis, the robot would spread the legs to
improve stability, which is unconformable for the patient, unnatural, and eventually
dangerous for people nearby. More generally, it is recommended to be restrictive if
slack bounds are not strictly necessary for solving the task.

The difference between two transforms is characterized by the coordinate vector
of a residual. Classically, the residual is the transform moving from one frame to the
other, i.e. XiX

−1
j or XjX

−1
i . It is still expressed in the motion frame, as opposed to

the relative transform between frames jXi = X−1
j Xi. Yet, it is not the quantity we

are looking for because the residual translation depends on the orientation of both
transforms while it should be invariable. It is not a problem if the goal is to cancel
the deviation, and this formulation is found in most inverse kinematics algorithms
for pick-and-place. But here, we must consider the residual translation and rotation
singly, pi-j = pi− pj , Ri−j = RiR

T
j . This decomposition is occasionally referred to as

double geodesic difference. The residual translation and rotation may be aggregated in
a transform for convenience, but it is more of a computational artifact since its inverse
does not make much sense. Moreover, it is not useful for computing the associated
coordinate vector as the translation and rotation are handled independently anyway.
It is worth noting that it is also possible to compute the difference between the two
coordinate vectors associated with the transforms. It is not well-defined, but it is a
good approximation if the two transforms are sufficiently close.

Despite our best efforts, the deviation in translation is biased by the deviation
in rotation. Indeed, it is implicitly assumed for computing the difference that the
two transforms are expressed in the same reference frame oXi,

oXj . In our case, it
means that the estimation of the motion frame is consistent between the actual and
nominal trajectories. It is not true unless the orientations of the feet match exactly in
both cases since the motion frame is derived from them, ignoring the base as already
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mentioned. The estimation error is bounded according to the deviation in rotation:

∥ o1p1 − o2p2∥2 = ∥ o1p1 − o2Ro1(
o1p1 +

o1p1-2)∥2
≤ ∥(I3 − o2Ro1)

o1p1∥2 + ∥ o2Ro1
o1p1-2∥2

≤ λmax(I3 − o2Ro1)∥p1∥2 + ∥p1-2∥2
≤ ∥I3 − wRT

o2
wRo1∥F ∥p1∥2 + ∥p1-2∥2

≤ ∥I3 − wRo2
wRT

o1∥F ∥p1∥2 + ∥p1-2∥2
≤ 2
√
2 |sin (θo1-o2/2)| ∥p1∥2 + ∥p1-2∥2

It shows that it is a reasonable approximation if the deviation in rotation is small,

0 ≤ ∥
o1p1 − o2p2∥2
∥p1-2∥2

− 1 ≤ 2
√
2 |sin (θo1-o2/2)| , (6.28)

e.g. 10 degrees induces at most 25% estimation error.
The pairwise distances between the feet have the advantage of not being affected

by the estimation error of the motion frame since the Euclidean norm is invariant by
rotation. Similarly, the angle from the axis-angle representation is independent of the
reference frame contrary to the Euler angles. Therefore, defining a reference frame
can be avoided altogether by focusing solely on the deviation of the pairwise distances
and angles. Information may be partially lost according to the number of feet. This
question is related to multidimensional scaling (Borg & Groenen, 2005): estimating
the position of points from the matrix of pairwise distances between them. It is
under-determined if the number of points is not sufficient. More points are required
as the dimension of the embedding space increases. If the measure of the distances is
noisy, then adding more points is still relevant even if fully determined as it reduces
the variance of the estimation of the positions. For instance, only two configurations
exist when 4 points are available in a 3-dimensional space. It entails that almost no
information is lost for a quadrupedal robot and none beyond that. It is not true for
humanoid robots, but it would be adequate for tasks where penalizing differently the
deviation for each coordinate is not essential.

We enforce the following probabilistic space-time bounds for the feet,

Bpr,l = {∀t ∈ [4, Tf ], min
t′∈[t−4,t]

∥ r+lpr-l(t
′)− r+lp̂r-l(t

′)∥2 < 10cm}

∩ {∀t ∈ [4, Tf ], min
t′∈[t−4,t]

∥rpy(r+lRr-l(t
′)

r+l
R̂T

r-l(t
′))∥∞ < 15deg},

(6.29)

where rpy is the function mapping rotation matrices to the corresponding Euler
angles, properly restricted to ranges ensuring uniqueness except for a few pathological
configurations (cf. section 2.1.1).

All these space-time bounds (Bib,Bco,B
p
m,Bpr,l) are generic enough to be used as is

for any locomotion task with or without external disturbances and uneven ground.
Some of them have been specialized for humanoid robots when it was clearer but are
applicable to any legged robot. They are designed to be robust to the hyperparame-
ters, so that the exact same values are used for our two training scenarios.
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6.3.2 Scalable Multi-Tasking through Lower-Bound Maximization

The second training scenario involves learning a policy capable of performing equally
well multiple distinctive tasks by imitation. As before, the task encapsulates both
gait and patient features in order to learn a generic policy for all patients or even
adapt to changes, e.g. the patient gain weight.

Siekmann et al. (2021a) present a simple method to learn a continuum of gaits and
to smoothly transition between all of them by means of a generic policy. It consists
in changing the desired gait features multiple times during a single episode. The set
of active reward components differs according to the desired type of gait (hopping
vs. walking vs. standing ...etc), and the desired gait features are forwarded as input
to the policy. This way, it does not break the assumption of stationary MDP. They
validate this approach experimentally on the bipedal robot Cassie. Specifically, the
gait features are the forward velocity of the pelvis, the frequency of the steps, and
the phase ratio between both legs.

The previous approach is only effective if learning to perform each of the desired
gaits has similarly difficult for the agent. Depending on the robot of interest, some
motions may be significantly more difficult to perform than others. For instance, flat
foot walking on Atalante is easier than foot rolling, itself much easier than doing a
front flip. If so, then naively learning all motions at once without special care as Siek-
mann et al. would be unsuccessful: the agent would get stuck in a bad local minimum
where it performs a subset of the tasks extremely well while others are completely left
out. It comes from the fact that the agent is maximizing the return in expectation
over the distribution of tasks. For a discrete set of motions, a naive approach would
be to learn an expert policy for each motion individually and unify them as a single
policy afterward. It is only applicable for very few motions because it scales linearly
with their number and learning any of them is already costly. Moreover, it does not
generalize to the continuous domain while most gait features vary continuously.

Won et al. (2020) introduce a more scalable and versatile method that combines
preconditioning and warm-starting. The core idea is to flatten virtually the difficulty
across motions, thereby enabling learning them all at once. To this end, the pro-
cedure is two-stage. First, they partition the motions into several coherent groups
in which variation of high-level gait features is supposed to have no discernible im-
pact on difficulty. This is done using an unsupervised clustering algorithm for a
fixed number of groups rather than leveraging prior knowledge from an expert. One
expert policy is trained for each group of motions. Then, they are fused together
by a gating network that acts as an adaptive weighted sum. It outputs normalized
weights based on the current observation, and the action is the weighted sum of
the predictions associated with all the expert policies. In practice, the network is a
simple Feedforward Neural Network (FNN) with Softmax activation function as the
final layer, and the observation gathers the actual state and some desired high-level
gait features. The tasks are evenly distributed for the policy to perform equally well
for all of them. The computational cost scales linearly with the number of groups.
It is already a great improvement upon the naive approach and generalizes to the
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continuous domain. The agent may fail to learn some motions if their clustering is
too coarse relative to their actual diversity because of limited resources.

Impressive results were achieved in simulation for one hundred humanoid motions
on flat ground and without external disturbances. Nevertheless, their approach is not
well-suited for learning to transition between motions at any point in time by chang-
ing the high-level gait features, which is one of our goals. It is only allowed within
the same group in the first stage, and it has to rely on a linear combination of expert
policies in the second stage. Each expert policy is tailored for one specific skill and
has only observed the nominal states among their own group, not to mention that op-
timal transitions may have nothing to do with any of the nominal motions. Although
the parameters of the experts are still trainable at the second stage, it is unlikely to
be sufficient. RL algorithms are finding local optima so splitting the process into two
stages impedes performance. Besides, there is no information aggregation during the
training of the expert policies. This segmentation prevents sharing of basic knowl-
edge that could be common to all of them, in particular the feature extraction and
the underlying system dynamics. Jointly learning all the expert policies from the
start may speed up convergence and improve the robustness to corrupted input or
model uncertainties. Still, the overall architecture restricted to linear combinations
of policies has less expressiveness than a generic feedforward policy.

Being able to train from scratch a single feedforward policy to perform multiple
tasks equally well regardless of their difficulty would overcome these limitations al-
together. Let us consider a task space T that may be discrete or continuous. The
task τ is a random variable that is sampled at the beginning of each episode and
stays the same until termination. In general, the reward function Rτ , the transition
dynamics P τ and subsequently the discounted stationary state distribution ρτπ all
depend on the current task τ . We assume that the task distribution is independent
of the conditional expectation of the return Jτ

π given the task τ , such that the law of
total expectation can be applied. It follows that the total expectation of the return
for a given policy Jπ can be written as the average of the conditional expectation Jτ

π

weighted by the probability P(τ),

Jπ = E
τ∼P(τ)

[Jτ
π ] = E

τ∼P(τ)

[
E

s∼ρτπ
a∼π

[
E

s′∼Pτ

[
Rτ (s′, a, s)

] ]]
. (6.30)

Assuming infinite expressiveness of the policy π, maximizing the objective func-
tion Jπ is equivalent to maximizing the expected return for each task individually
irrespective of their probability. It is the best performance that could be possibly
achieved. In practice, it is a completely different story. First, RL algorithms are
not finding the global maximum but rather a local one by iteratively optimizing the
training parameters. Updating the parameters to improve the performance for a
given task at one point would actually impact them all until convergence to some
extent that is hard to anticipate. Poor performance due to premature convergence is
a prominent manifestation of this phenomenon. Next, the expressive power is nec-
essarily limited. Improving the performance for one task would affect similar ones,
thereby the optimization problem for each task is no longer decoupled but compete
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with each other. The agent would give precedence to the tasks leading to the largest
improvement weighted by their probability when updating the training parameters,
eventually marginally impeding the others. Therefore, maximizing the expected re-
turn is not equivalent to performing all tasks equally well and may lead to large
discrepancies between them. How to choose the probability P(τ) for each task in or-
der to learn a policy that performs equally well for all of them is not straightforward.

We propose instead to maximize explicitly the lower-bound of the expected return
for all task JLB

π , i.e. only the task for which the agent is the least successful,

JLB
π = min

τ∈T
Jτ
π . (6.31)

Finding the optimal policy under this formulation is a so-called minimax problem:
maximizing the minimum of the expected return with respect to the policy over the
task space. It can be interpreted as pushing away as far as possible a Pareto front.
This problem is NP-hard, so trying to solve it as such is extremely challenging what-
ever the optimization algorithm. First, improving the worst case may degrade the
others without affecting the total cost. Classic SGD is not effective for solving such a
problem because of the local sparsity of the gradient. It would significantly slow the
convergence and may even damage the performance ultimately. Next, computing the
minimum on a continuous domain is an optimization problem by itself that would
be too costly to solve at every SGD iteration. Anyway, changing the task being
optimized at every iteration does not give enough time to the agent to learn any of
them efficiently. For learning to solve a given task without forgetting it, it is crucial
to focus on this task for a while and still have a chance to draw it later on.

To address these concerns, we only consider a finite collection of tasks {τi}mi=0

spanning the whole space, and we relax the minimization using a smooth approxi-
mation. A common choice is the real-valued function ‘LogSumExp’ aka LSEβ with
temperature parameter β > 0,

LSEβ
1≤i≤m

(wi) = −
1

β
log
(∑

1≤i≤m exp(−βwi)
)
, (6.32)

where wi is a score associated with task τi, here, the conditional expectation of return
J i
π. The optimization of the relaxed objective function JLSE

π in place of the true one
is well-motivated mathematically. First, ‘LogSumExp’ matches the true minimum
when the temperature goes to infinity,

min
1≤i≤m

wi −
log(m)

β
≤ LSEβ

1≤i≤m

(wi) < min
1≤i≤m

wi. (6.33)

This parameter is used to adjust the trade-off between accuracy and sparsity. Then, it
was demonstrated in section 5.2.2 that the minimum for a uniformly sampled collec-
tion approximates the true minimum over a continuous domain under some regularity
assumption about the score function f . As for the temperature, this approximation
matches the true minimum when the number of samples goes to infinity.
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The objective function JLSE
π involves estimating the conditional expectation of the

return Jτ
π for each task separately. It does not fit with the classical framework, and

applying any existing RL algorithm with it would require a custom implementation
of its gradient computation. Such an inconvenience can be avoided by choosing the
task distribution appropriately in the original objective function Jπ:

∇πJ
LSE
π = ∇πLSEβ
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where S is the Boltzmann distribution P(i) = exp(−βwi)/
∑

1≤i≤m exp(−βwi), Ê is
the empirical mean for the observed distribution of tasks on a given training batch,
and ∇̂π is the empirical gradient estimate. Taking the gradient out of the expectation
is possible because any potential dependency between the tasks and the policy is
implicitly ignored by the gradient estimate.

Actually, maximizing the lower bound of the expected return is not strictly equiv-
alent to optimizing the original objective function J(π) for an adaptive task distri-
bution updated at every iteration. Indeed, the last equality is only valid if the law of
total expectation can be applied. It requires the task distribution to be independent
of the policy, which is obviously wrong if the task distribution is updated at every it-
eration according to the performance of the policy for each task. Besides, estimating
reliably the task for which the agent is the least successful requires observing many
of them. It scales already poorly with the dimensionality for the uniform distribu-
tion, and it is much worse for the Boltzmann distribution. The number of tasks in
a single training batch would hardly be sufficient since its value is sampled once per
episode. Moreover, the task distribution affects the observed transition probability
and reward function, and updating it breaks the fundamental markovian assumption.
We suggest computing the task distribution based on the estimated performance over
several training iterations at once. It effectively decouples the task distribution from
the current policy if the number of iterations is large enough, but it must not be
too large to avoid overfitting some tasks. This approach is closely related to the so-
called importance sampling method first introduced by Park et al. (2019) and later
applied by Ma et al. (2021). For convenience and to spare memory, it can be im-
plemented as a moving average filter when updating at every iteration the score wi.
This trick is essentially the same as the delayed target updated in Deep Q-learning
(cf. appendix E.4), but the probability is smoothed out rather than being updated
periodically. It has the additional advantage to improve tremendously the reliability
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of the estimated performance for the current policy over the whole task space by
increasing the number of samples available. Samples from previous iterations are
going to be off-policy. This phenomenon is neglected, and thereby the learning rate
is limited by the window size of the filter.

The expected return is not the best metric to assess the performance of the agent
for a given task as it takes into account many more aspects such as the comfort of the
patient. Instead, its performance should be regarded in terms of the ability to satisfy
the hard constraints of the problem. Thus, we rely on the mean relative duration
of the episodes before termination to compute the score wi. This metric is even
more sensitive than the expected return: the robot may fall after a few seconds or
walk indefinitely by slightly changing the parameters of the policy or just resampling
the initial state and the external pushes. This variability is not an issue in practice
thanks to the moving average filter.

6.3.3 Task Transitioning via Cross-Initialization

Robust imitation of nominal motions has been addressed in the previous section. It
is already a valuable achievement on its own, but it does not answer the question of
how to reach these limit cycles in the first place. Resorting on some advanced classic
controller to handle specifically the transient dynamics at runtime is not going to
play well with the policy because it was not trained for it. We prefer to avoid any
additional complexity once embedded in the real device by putting more effort into
the training process in simulation. Considering the resting pose as a motion like any
other, what is really needed is learning an end-to-end control policy that is capable
of smoothly transitioning between nominal motions at any point in time.

It is a logical follow-up to the work that has been done in the previous chapter.
Relying on trajectory planning to generate optimal transitions is not suitable either.
Considering only two motions, it is already unattainable because time is continuous.
It is not ideal to force the transition to happen at one particular moment because
it impedes the reactivity of the system and shatters symbiotic coordination: it feels
weird to wait for the system to go back to a given configuration in the limit cycle
before transitioning. Even so, the total number of transitions scales quadratically
with the number of nominal motions m, which is already untractable to generate in
most cases. Notably, going from task i to j or vice versa is not strictly equivalent
since the dynamics stability is time reversal but not the appreciation of the patient.
One conceivable approach consists in using the resting pose as a universal midpoint
for transitioning from one nominal motion to any other. This greatly reduces the
number of transitions to generate, namely one to start and one to stop for all nominal
motions. However, such transitions would feel unnatural for the patient. This may
be acceptable when switching between very different motions, but it is clearly not
appropriate when the gait features are changing continuously.

We suggest discovering stable and robust transitions using RL without generating
the optimal ones. To this end, the initial state of the robot is uniformly sampled
among all the states that belong to the nominal motions put together regardless of the
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actual task to perform for the current episode. The agent will learn to converge back
to the limit cycle as fast as possible while keeping balance all along to avoid triggering
early termination because of the generalized space-time bounds. This method is
simple to implement and more powerful that the autoregressive model presented in
section 5.5.2. The latter extrapolates the transition of maximum likelihood from a
prior distribution of optimal nominal motions. Such a transition has no guarantee
to be stable if the acceptable safety threshold is exceeded, which is very likely unless
the task features are updated by small increments. Moreover, the attractiveness of
the limit cycle was fixed and tuned manually, requiring being conservative.

Setting up a time limit instead of running indefinitely until failure is imperative
for sample diversity (cf. section 3.2.2). Here, it ensures that each training batch
comprises many independent episodes and corresponding initialization steps. Thus,
switching nominal motion during the episodes as Siekmann et al. (2021a) would add
extra complexity without any advantage.

6.4 Improving Convergence, Predictability and Safety

Imitation of nominal motions through generalized space-time bounds acts as a guide
that contributes to ensuring the safety of the user and people nearby while enhanc-
ing rehabilitation. It is different from tracking the nominal motion the whole time
because allowing a large deviation locally is necessary to recover balance and adapt
to uneven ground. The side effect of this extra freedom is a lack of predictability and
safety when an unexpected event occurs. Moreover, the hardware has some physical
limitations that cannot be ignored, for instance, the position, velocity, and accelera-
tion bounds of the motors. We present several mechanisms to partially address these
concerns in the following.

6.4.1 Reward Engineering

Providing an informative reward is optional since the generalized space-time bounds
are already doing most of the job. The agent would learn a sensible policy for a
sparse reward returning +1 systematically until termination. Nevertheless, doing
some reward engineering is still beneficial. First, it speeds up convergence in most
cases by discouraging poor local minimum earlier during training by providing insight
into how to perform the task, i.e. keeping balance. Next, it can complement hard
constraints by encouraging being closer to the nominal motions than strictly required
if it does not undermine the stability. Finally, it enables discriminating between
several suitable behaviors that solve the task. Specifically, we want to trigger reactive
steps only as a last resort as it is unpleasant. Other strategies should be employed
first, motor compliance being the preferred option. We aim to be generic, so they
can be used for both training scenarios and in conjunction with any nominal motion.

The total reward is a real-valued function aggregating individual reward com-
ponents. These reward components are derived from errors in heterogenous metric
spaces. Thus, the preliminary step consists in scaling them uniformly through the
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Figure 6.4: RBF kernel for scaling reward components.

widespread Radial Basis Function (RBF) (see figure 6.4),

K(x, x̂) = exp
(
−κd(x, x̂)2

)
∈ [0, 1], (6.34)

where x is a vector-valued feature, d is the distance between its current and target
values, and κ is a cutoff parameter. It defines the operating range and must be
tuned carefully for each reward component. This procedure is tedious but must be
done only once for each environment in most cases. If too small, the margin for
improvement is small. Conversely, if too large, then the agent has no idea what to
do. In both cases, the agent barely gets any incentive to improve itself because the
gradient vanishes. This issue pertains to squeezing the positive real number into the
unit interval and is not specific to the exponential transform.

At least two different approaches are found in the literature to mix multiple reward
components: additive and multiplicative (Lee et al., 2019). For the multiplication,
the agent gets a reward if and only if all components involved are rewarded. It makes
sense for components that are mutually dependent and tend to reinforce each other.
For instance, tracking the position of the feet and the relative joint angles. On the
contrary, the addition is more appropriate if it embodies goals that have nothing in
common or even conflicting, so they can be pursued concurrently while searching for
a compromise. In principle, the addition could be used in both cases, but the multi-
plication has extra benefits. The addition is fine with having only a few components
being rewarded, which is often undesirable. In contrast, the multiplication urges to
balance the total reward among all components. This lack of competition alleviates
the need to weigh the components, which is strongly related to the problem at hand.
As a result, the multiplication has fewer parameters, and a large variety of problems
for a given environment can be addressed without dedicated hyperparameter tuning.

Despite all this, we chose to stick with the addition in this work because it is more
usual, and we consider only non-conflicting reward components. The total reward is
a normalized weighted sum of individual reward components,

rt =
∑

iwi exp(−κic2i ) ∈ [0, 1], (6.35)

where ci ≥ 0 is a cost and wi its weight. The weights are normalized, i.e.
∑

iwi = 1.
Their values determine the priority level of each reward component. The current
time is omitted in the following for simplicity if there is no ambiguity.
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Tracking

We define a set of independent reward components all promoting tracking of the
nominal motions, which is the resting pose for standing push recovery. Even if one
is poorly optimized, it is still possible to improve the others as they are unrelated.
The goal is essentially the same as the generalized space-time bounds, so they share
most of the features and distance metrics.

Odometry. In a real scenario, the environment is likely to be cluttered. For
a recovery strategy to be of any use, it is important to make sure the robot stays
within a limited action radius. As mentioned before, the cost impacts the deviation
of the velocity because the position in the world plane is allowed to drift.

∥v̄b − ˆ̄vb∥2, (6.36)

where v̄ denotes the average velocity since the previous timestep. The average velocity
is obtained by backward differentiation of the transform, i.e. (pb(t)⊖ pb(t−∆t))/∆t
where ⊖ is the geodesic difference in SE(3). It reflects what truly happened since
the agent took action for the last time, and the corresponding reward component
does not break the markovian assumption. It is also much smoother than the true
instantaneous velocity, which would be misleading if the dynamics is jerky. Thus,
this reward should be easier to optimize for the agent. However, the average velocity
cannot be inferred from the current observation.

Motors. The agent should track the nominal already stable. Besides, it must
not take any action once falling is inevitable. It is essential to prevent dangerous
motions in unexpected situations. Rewarding the agent for tracking the nominal at
the joint level fulfills this goal because this metric is completely agnostic to the actual
stability and can be maximized despite being falling,

∥qm − q̂m∥2. (6.37)

End-effectors. The feet should be flat on the ground and at a specific distance
from each other. Without promoting this via a reward component, the agent would
learn to spread the legs as much as possible to improve the robustness to external
forces, which is both unnatural and unpleasant. Considering the norm of the residual
transform as a whole to compute the error is not advisable. Indeed, a large error for
a single coordinate would be enough for the whole gradient to vanish because of the
rescaling by the RBF kernel. The translational and rotational parts of the residual
transform are independent, so it is more appropriate to penalize them separately,

∥ r+lpr-l − r+lp̂r-l∥2, (6.38)

|angle(r+lRr-l
r+l
R̂T

r-l)|. (6.39)

Stability

We define reward components that aim to give a sense of balance and encourage
the agent to deviate from the nominal for the sake of stability. They are insightful
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regardless of the state of the system and the magnitude of the disturbance. Notably,
they are well-defined even if the robot is flying.

Dynamic stability. The Zero-tilting Moment Point (ZMP) should be kept inside
the support polygon for dynamic stability,

∥wpzmp − wpsp∥2, (6.40)

where sp is the center of the projected support polygon instead of the true one. It
anticipates future impact with the ground and is agnostic to the contact state. The
rationale behind it has been presented in section 2.2.2.

Foot placement. We want to move the feet as soon as the Capture Point goes
outside the support polygon. We encourage moving the pelvis toward the Capture
Point to get it back under the feet,

∥ opcp − op̂cp∥2, (6.41)

where opcp is the relative position of the Capture Point in the odometry frame.

Safety and Comfort

Safety needs to be guaranteed during the operation of a bipedal robot. Comfort is
also important for a medical exoskeleton to enhance rehabilitation.

Balanced contact forces. Distributing the weight evenly on both feet is key in
natural standing,

|wF z
r δ̂r +

wF z
l δ̂l −mg|, (6.42)

where δ̂r,l ∈ {0, 1}2 are the right and left nominal contact states, and wF z
r,l are the

right and left total vertical forces in world frame.
Ground friction. Reducing the tangential contact forces limits internal con-

straints in the mechanical structure that could lead to overheating and slipping.
Moreover, exploiting too much friction may lead to unrealistic behaviors,

max
i∈Cr∪Cl

∥ iF x,y
i ∥2

iF z
i

, (6.43)

where Cr,l are the right and left active sets of contact points, and iF x,y
i , iF z

i are the
tangential and vertical forces acting on the i-th contact point in local ground frame.
It is upper-bounded by the friction coefficient with the ground mu.

Pelvis momentum. Fast pelvis motions are unpleasant. Besides, reducing the
angular momentum helps to keep balance,∥∥[ψ̇b, θ̇b

]
−
[ ˙̂
ψb,

˙̂
θb
]∥∥

2
, (6.44)

where ˙̂
ψb,

˙̂
θb denote the average velocity of the roll and pitch of the pelvis since the

previous timestep respectively.
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6.4.2 Termination Conditions

We present here carefully designed instantaneous space-time bounds that ease trans-
fer from simulation to reality and forbid unsafe behaviors. Incidentally, it speeds up
convergence by reducing the search space. The numerical values of the hyperparam-
eters are specific to the environment. They were obtained via a qualitative study in
simulation unless stated otherwise.

Unrecoverable State

Stopping the simulation if the state is surely unrecoverable avoids gathering useless
transition steps and thereby speeds up the learning process.

Pelvis Height. The height of the pelvis is a fast and conservative heuristic,

Biz = {∀t ∈ [0, Tf ], 30cm < zb(t)}. (6.45)

Power Consumption. We limit the power consumption to fit the hardware
capability and prevent motor overheating,

Bip = {∀t ∈ [0, Tf ], ⟨um(t), q̇m(t)⟩ < 3kW}. (6.46)

Safety and Comfort

We must prevent behaviors that may cause premature wear or damage the hardware
if possible. Hurting the patient must be avoided at all costs, and ideally, the motion
must be gentle enough to not frighten the user and people nearby.

Pelvis Orientation. We restrict the orientation of the pelvis. For example, the
upper body is never leaning back. It yields,

Bib = {∀t ∈ [0, Tf ], |ψb(t)| < 0.4rad}
∩ {∀t ∈ [0, Tf ],−0.25rad < θb(t) < 0}. (6.47)

Joint Bounds Collisions. Hitting the mechanical stops q−m, q+m is inconvenient,
but forbidding it completely is undesirable. It constrains the problem too strictly and
avoiding falling is the highest priority. Never hitting bounds requires safety margins
that would dramatically impede performance. Still, the maximum velocity at impact
must be restricted to prevent destructive damage or injuries due to the shockwave.
An acceptable threshold has been estimated from real experiments. It is enforced
separately for each motor i,

Bii = {∀t ∈ [0, Tf ], q
−
i < qi(t) < q+i }

∪ {∀t ∈ [0, Tf ], |q̇i(t)| < 0.6rad s−1}.
(6.48)

Foot Collisions. Foot collisions need to be forestalled,

min
pr∈CHr,pl∈CHl

∥pr − pl∥2 > 2cm, (6.49)
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where CHr,l are the convex hulls of the right and left footprints respectively. It has
no closed-form expression but can be computed efficiently (Kaown & Liu, 2009), e.g.
using Gilbert-Johnson-Keerthi (GJK) algorithm.

Impact Forces. Like hitting the mechanical stops, violent impacts on the ground
cannot be avoided entirely but must be limited as much as possible,

Bif =
{
∀t ∈ [0.5s, Tf ], max

i∈Cr∪Cl

∥ iFi∥2
mg

< 4.5
}
, (6.50)

where iFi is the linear force acting on the i-th active contact point in the local frame.

Transferability

Some behaviors may be very effective in simulation but poorly executed on the robot
due to the reality gap. We mitigate this phenomenon by prohibiting such behaviors.

Contact Persistence. Jumping knowingly with the robot from the resting pose
is a challenge. This is even worse when pushed since the feet often tilt and stick
on the ground. Supposedly, this is caused by the dynamic model of the mechanical
deformation being off. Anyway, the flying phase is disturbing for the user. Alternative
strategies such as ankle control or stepping are harder to perform (also for humans!)
but do not face these issues. Losing contact for a short instant is unavoidable after
strong pushes. Thus, we relax the condition of strict contact by checking the distance,

Bic =
{
∀t ∈ [0.5s, Tf ], min

pa∈CHr∪CHl
pw∈G

∥pa − pw∥2 < 3mm
}
, (6.51)

where G denotes the geometry of the ground. The first 0.5s are skipped to prevent
instant failure following randomized initialization.

6.4.3 Explicit constraints

The action gathers the target velocity of all the motors. Reducing the motor tracking
error is important for predictability, safety and transfer to reality (cf. section 6.1.1).
Typically, a large error would trigger a preemptive emergency stop on the real device
as this situation can be dangerous. The lower-level PIDs have their own dynamics
that are unknown. Therefore, the only reliable way to limit the tracking error is by
bounding the maximum acceleration of the motors.

More generally, it is advisable to prohibit excessively fast motions. First, it should
be unnecessary in most cases. Secondly, the behavior must be as slow as possible to
mitigate the risk of injuries because of muscle spasticity and osteoporosis. Finally, it
drives the hardware into a corner for which it is not certified: motors may overheat,
mechanical parts may break, and the power supply must collapse.

We bound the target accelerations ˜̈qm. This way, it only involves the policy and
not the actual dynamics, so it can be enforced analytically using exponential barrier
functions as discussed in section 6.2.2. This approach is not always appropriate. For
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instance, it cannot be used to prevent hitting the mechanical stops as the target
position q̃m cannot be out of bounds in the first place. This phenomenon happens
precisely because of the discrepancy between the target and current motor positions.

In practice, we consider the variation of the target velocities ˜̇qm over successive
timesteps. The rationale is the same as for the odometry reward: it is the average
acceleration since the last time the agent took action that matters. Anyway, the true
target acceleration ˜̈qm is unknown because it depends on the time derivative of the
current observation and necessitates the model. Moreover, the actual target velocity
˜̇qm is replaced by the expectation of the policy for the corresponding state E[π(st)] to
avoid penalizing exploration during training. The variation of target velocity cannot
exceed 40% of the operational range,

cim(st, at, st+1) =
|E[π(st+1)]− E[π(st)]|

q̇+m
− 0.4, (6.52)

where q̇+m denotes the maximum velocity of the motors. The division and subtraction
must be understood element-wise. The action is normalized, so it requires at least 5
steps (200ms) to reverse the direction of rotation at full speed. It corresponds to a
maximum acceleration of about 20rad s−2.

The slope of the exponential barrier function α is set to 10.0. This is slack on
purpose as there is no hard constraint on the maximum acceleration. It is preferable
to exceed the prescribed threshold from time to time if necessary to avoid falling.

6.4.4 Smoothness Conditioning

Jerky commands are not accurately simulated, hardly transfer to reality, and shorten
the lifetime of the hardware. In the case of a medical exoskeleton, smoothness is even
more critical as vibrations are annoying and can cause anxiety for its user. Ensuring
smoothness during training mitigates these issues without impeding performance if
tuned correctly. Beyond this, it leads to more predictable behaviors.

In RL, smoothness is commonly promoted by adding regularization as reward
components, such as the total power consumption or the norm of the motor velocities
(Ferigo et al., 2021; Yang et al., 2018). However, components in the reward function
have no guarantee to be optimized as they are a minor contribution to the actual
loss of learning algorithms. Injecting the regularization as extra terms in the loss
function directly gives us control over how much it is enforced during the learning.

The policy is generally a dense neural network that has thousands or even mil-
lions of training parameters. It follows that the optimization problem is ill-posed.
Global regularization approaches including smoothness conditioning are known for
substantially reducing the variability of the solutions so that the final policy would
be roughly the same between several runs after changing the random seed. This
property is important as it reduces the number of experiments on the real platform
that is required for tuning hyperparameters. Besides, it tends to slightly improve
the convergence speed and discard pathological behaviors that would be considered

193



Chapter 6. Learning Robust and Safe Policy

valid otherwise, e.g. oscillating periodically to trick the generalized space-time bounds
instead of mimicking the nominal motion.

As suggested by (Mysore et al., 2021), we use both temporal and spatial regular-
ization to promote smoothness for the learned state-to-action mappings of the neural
network controller. The temporal and spatial regularization terms are given by,

LT (π) = ∥E[π(st+1)]− E[π(st)]∥1 , (6.53)

LS(π) = ∥E[π(st)]− E[π(s′t)]∥22, (6.54)

where s′t ∼ N (st, σS). As a reminder, the state is supposed to be normalized. They
are added to the original surrogate loss function of the training algorithm LR,

L(π) = LR(π) + λTL
T (π) + λSL

S(π), (6.55)

where λT , λS are hyperparameters than must be tuned to adjust the smoothness.
Mysore et al. choose σS based on expected measurement noise and/or tolerance.

However, it limits its effectiveness to robustness concerns. Its true power is unveiled
when smoothness is further used to enforce regularity and cluster the behavior of
the policy (Shen et al., 2020). By choosing the standard deviation properly, in
addition to robustness, we were able to learn a minimal yet efficient set of recovery
strategies, as well as to adjust the responsiveness and reactivity of the policy on the
real device. A further improvement is the introduction of the L1-norm in temporal
regularization. It still guarantees that the policy reacts only if needed and recovers as
fast as possible with minimal action, but it also prevents penalizing too strictly short
peaks corresponding to very dynamic motions. It is beneficial to withstand strong
pushes and reduce the number of steps. Finally, it is more appropriate to penalize
the mean of the policy µθ(st) instead of the actions πθ(st) as originally stated. It
provides the same gradient with respect to the parameters θ but is independent of
the standard deviation σ, which avoids penalizing exploration.

Although the temporal regularization acts on the same quantity as the acceler-
ation bounds previously introduced, their effects are complementary. While regu-
larization shrinks the acceleration globally regardless of its magnitude, the explicit
constraint suppresses peaks without penalizing large but otherwise valid values. The
combination of both enables fine-tuning the behavior of the policy more easily. In
practice, we set the hyperparameters to σS = 0.13, λT = 0.2, λS = 0.4.

6.5 Ensuring Robustness for Bridging the
Simulation-Reality Gap

6.5.1 Plausible External Disturbances

Patient Momemtum

The user has a huge impact on the stability of the robot (cf. section 1.1.4). Usually,
they have limited control of their upper body, so they are not standing upright in the

194



6.5. Ensuring Robustness for Bridging the Simulation-Reality Gap

exoskeleton as expected in the model but rather leaning in front. This discrepancy
may be sufficient for the robot to fall backward or on the side. It may also walk in
place or even stumble before falling forward if the feet stick to the ground. Being
robust to external pushes does not help. Unlike reactive stepping, compensating
the patient disturbances requires continuous adaptation and online estimation of the
stability to some extent.

We apply a pure momentum at the root of the pelvis between the hips. This is
not representative of a user in the exoskeleton, the true dynamics is almost impossible
to model. It is supposed to encompass the worst case if tuned properly. The value
of the momentum is slowly varying over time to further improve the robustness.
The temporal evolution is defined by an aperiodic random Perlin process with a
wavelength of 5s and 6 octaves. It ranges from −50Nm (right) to 50Nm (left) and
−10Nm (back) to 90Nm (front) for x- and y-axes respectively.

Extrinsic Periodic Impulse Force

To learn sophisticated recovery strategies, the external pushes in the learning envi-
ronment need to be thoughtfully scheduled. They must be strong enough to require
stepping most of the time, but pushing too hard would prohibit learning.

As suggested by (Ferigo et al., 2021), we apply forces for a short duration period-
ically on the pelvis, and the orientation is sampled from a spherical distribution. The
pushes are bell-shaped instead of uniform for numerical stability. They are applied
during 400ms (interval of time during which the magnitude of the force is larger than
1%). In this work, the peak magnitude of the pushes is not constant over time but
gradually increased until it reaches the time limit Tf . It can be interpreted as a kind
of curriculum learning (cf. section 3.2.2). The most effective recovery strategies may
be utterly superfluous for small pushes. Therefore, the initial magnitude must be
large enough for all the desired recovery strategies to be useful right from the start,
otherwise premature convergence to a suboptimal policy would be observed. In this
work, it ranges from 800N to 1600N. The pushes are applied every 3s, with a jitter
of 1s to not overfit to a fixed push scheme and learn recovering consecutive pushes.

The benefits of allowing some hysteresis after pushes are clearly identified but
introduce unexpected side effects. If the direction of the successive pushes is sampled
independently, then they would most probably be roughly opposite. Thus, the effect
of hysteresis is going to cancel itself without any effort from the agent to prevent
its accumulation. Later on, the real robot would find itself in an increasingly bad
configuration when pushed repeatedly in the same direction and finally fall. To
mitigate this undesirable phenomenon, successive pairs of pushes are systematically
sampled with the same orientation during learning in simulation.

6.5.2 Feasible Initial State Generation

The initial state distribution ρ0 must ensure that the agent has to cope with a large
variety of situations to promote robust recovery strategies.
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Naive uniform random sampling for the whole state space is not suitable. First,
it is not representative of reality as many of them would never occur in practice. Sec-
ondly, it would generate many unrecoverable states or even trigger early termination
instantly. The resulting episodes have limited value and can make learning unstable.
Ideally, it should span all recoverable states, but even the theoretical model of the
system is too complex to compute this set analytically. One option would be to limit
ourselves to the 1-step capturable states and to rely on an approximate model for
which computations are tractable, e.g. the Linear Inverted Pendulum Model (LIPM).
Yet, it would be preferable to be able to determine the recoverable states without
requiring expert knowledge. Another approach consists in initializing the state ran-
domly and discarding the ones that can lead to instant failure. However, it may be
extremely inefficient for high-dimensional systems such as legged robots.

We propose to sample the initial state uniformly among the nominal motions
and to add Gaussian noise for increasing the diversity. Its standard deviation must
be large enough for robustness and versatility, but small enough to mostly output
recoverable states. This approach would be effective if the set of nominal motions is
rich enough. The current target velocity ˜̇qm is the predicted action, and the current
target position q̃m is obtained by integration of its previous value according to the
observation. Therefore, an initial distribution of previous target positions must be
specified. In theory, it depends on the current policy π, which is unknown to the
environment. Thus, we define a fixed prior distribution q̃m ∼ N(q̂m, 1deg). It is not
clear whether this distribution has an impact on the training process.

6.5.3 Domain Randomization

The combination of the various techniques previously introduced is sufficient to trans-
fer the policy from simulation to reality. It is nonetheless relevant to also rely on do-
main randomization because it is complementary. This avoids overfitting the physical
parameters that are unknown or may change over time, e.g. the dynamic parameters
of the mechanical deformation or the ground friction coefficient.

Domain randomization has no computational cost and is easy to implement. Yet,
excessive randomization does more harm than good. First, it is increasingly unlikely
to learn a policy that is effective for all values as the range increases. Next, it trades
performance over robustness when randomizing parameters that are not observable
since the agent has to rely on the exact same behavior no matter their current values.
In such a case, it is recommended to settle for their true values.

System Dynamics

The relative CoM placement pi, mass mi and inertia matrix Ii of each body i in
the kinematic tree are slightly modified around their respective theoretical values
p̂i, m̂i, Îi. It is a bit tricky for the inertia since its positive semi-definite property
must be preserved. The principal axes Q̂i and moments λ̂i are extracted first through
Eigenvalue decomposition, then the moments are perturbed and a small rotation is
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applied to the principal axes. The inertia is given by Qidiag(λi)QT
i . It yields,

pi ∼ N(p̂i, 0.15%), (6.56)
mi ∼ N(m̂i, 0.2%), (6.57)

Qi ∼ Q̂i exp3(N(03, 0.1)), (6.58)

λi ∼ N(λ̂i, 0.1%), (6.59)

where exp3 denotes the exponential map for the Lie group SE(3). The position i−1p̂i
of each body i relative to its parent i− 1 is also slightly altered,

i−1pi ∼ N(i−1p̂i, 0.01%). (6.60)

In addition, the stiffness parameter of each deformation point is completely ran-
domized. Then, the damping parameter νi is derived from it to ensure critical damp-
ing, and the inertia Ii is adjusted for numerical stability. The χ2 distribution with
4 degrees of freedom is used for sampling the stiffness parameter ki. It is always
positive and has a long tail, so that large values are likely to be sampled. It follows,

ki ∼ 3000(1 + χ2
4), (6.61)

Ii = ki

(π
3
fl

)−2
, (6.62)

νi = 2
√
kiIi. (6.63)

Finally, the viscous friction νi of each joint is also randomized, with gamma
distribution to be always positive,

νi ∼ ν̂iΓ(10, 0.1). (6.64)

Hardware

The communication between the main board and the peripherals has a jitter: the
update of the motor commands and sensor measurements occurs with a random
delay. The policy tends to generate high-frequency vibrations on the real robot.
Smoothness conditioning is sufficient to mitigate this phenomenon, but adding a
jitter in simulation can only be beneficial. In practice, we update the sensor data
with a small delay ranging from 0 to 4ms and uniformly sampled at every timestep.

Environment

The friction coefficient varies with the material of the ground. Randomizing it during
training prevents overfitting one particular value. The agent would have to learn
recovery strategies that are effective regardless of the friction coefficient and therefore
transfer to reality more easily. We uniformly sample its value from 0.5 to 2.5. The
maximum friction is unrealistic but discourages the agent to slide on purpose.
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6.6 Results

6.6.1 Policy Network Architecture

The policy and the value function have the same architecture but do not share param-
eters. The only way to ensure safety is to limit their expressiveness, i.e. minimizing
the number of parameters. It guarantees good generalization ability to avoid overfit-
ting, and thereby leads to more predictable and robust behavior on the real robot,
even for unseen or noisy observations. However, it hinders the overall performance
of the policy. Different networks with varying depths and widths have been assessed
by grid search. The final architecture has 2 hidden layers with 64 units each. Below
this size, the performance drops rapidly.

6.6.2 Training Performance

We train our policy using the open-source framework RLlib (Liang et al., 2018)
with refined PPO parameters. The episode duration is limited to Tf = 60s, which
corresponds to T = 1500 time steps. In practice, 100M iterations are necessary for
asymptotic optimality under worst-case conditions, corresponding to roughly four
months of experience on a real robot. It takes about 6 hours to obtain a satisfying
and transferable policy, using 40 independent simulation workers on a single machine
with 64 physical cores and 1 GPU Tesla V100.

The training curves of the average episode reward and duration in figure 6.5 show
the impact of our main contributions:

• Smoothness conditioning slightly slows down the convergence but does not
impede the asymptotic reward.

• Using a simplistic reward, namely +1 per time step, similar training perfor-
mance can be observed until 25M thanks to the well-defined termination con-
ditions. After this point, the convergence gets slower and the policy slightly
underperforms at the end. This result validates our convergence robustness and
that our reward provides insight into how to recover balance.

• Without the termination conditions for safety and transferability, faster con-
vergence in around 30M is achieved. It is consistent with (Ferigo et al., 2021;
Li et al., 2021; Melo et al., 2020). However, it would not be possible to use
such a policy on the real device.

6.6.3 Validation in Simulation

Closed-loop Dynamics

Figure 6.6 shows that smoothness conditioning improves the learned behavior, can-
cels harmful vibrations, and preserves dynamic motions. Moreover, it also recovers
balance more efficiently, by taking shorter and minimal actions.
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Figure 6.5: Ablation study of our proposed reward formulation, policy regularization
for smoothness, and termination conditions for safety. The standard deviation is
taken over episodes per batch.

Vibrations in Standing

Our regularization is a key element in avoiding vibrations in standing on the real
device and promoting smooth actions. The effect is clearly visible in the target
velocity predicted from our policy network, see figure 6.6. The target velocity without
regularization leads to noisy positions and bang-bang torque commands, whereas our
proposed framework learns an inherently smooth policy. Moreover, using L1-norm
for the temporal regularization enables us to preserve the peaks at 13.8s and 17.5s,
which is critical to handle pushes and execute agile recovery motions.

Steady-state Attractiveness and Hysteresis

Once pushed, the robot recovers balance with minimal action, see figure 6.6. It
quickly goes back to standing upright close to the nominal. A small hysteresis is
observed, see figure 6.9a. It does not affect the stability and will vanish after the
next push. It avoids doing an extra step to move the feet back in place.

Analysis of Learned Recovery Strategies

Different recovery strategies are generated and tested in simulation for horizontal
pushes on the pelvis. We build an interactive playground in Jiminy, to test the
trained policy with pushes from all sides. Depending on the direction and application
point, a specific recovery is triggered and a different maximal magnitude for the force
can be handled, see figure 6.8. In-place strategies, like the ankle or hip strategies,
are sufficient for small pushes from any direction. Strong front, back, and diagonal
pushes are handled with reactive stepping strategies, and even jumps, while side
pushes activate a different behavior performed with the ankles, see table 6.1. For
side pushes, the robot twists the stance foot alternating around the heel and the
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Figure 6.6: Comparison between the predicted target velocity, measured position, and
command torque for the left knee joint with and without smoothness conditioning.

Figure 6.7: Strong impact kick, 1 recovery step per frame in the highlighted section.

Emerging strategy front back diagonal side small
Ankle control ✗ ✗ ✗ ✓ ✓

Hip control ✗ ✗ ✗ ✓ ✓

Stepping ✓ ✓ ✓ ✗ ✗

Jumping ✓ ✗ ✓ ✗ ✗

Foot tilting ✓ ✓ ✗ ✗ ✓

Angular momentum ✗ ✗ ✗ ✓ ✗

Table 6.1: Overview of emerging strategies for pushes from all sides

toes while balancing the opposite leg, figure 6.9d. This dancing-like behavior avoids
weight transfer, which was found the most difficult to learn. A larger variety of push
recovery strategies on the real device are displayed in the supplementary video1.

Recent results in simulation on the Valkyrie robot (Yang et al., 2018) invite for
comparison. The humanoid has roughly the same weight as the exoskeleton Atalante
carrying a dummy (135kg) and the height of an average human person (1.8m). To
compare impulses, the applied forces are put in relation to the duration of the push.
We can handle impulses of about 190Ns for sagittal pushes on the pelvis with our
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N

N

N

Figure 6.8: Maximum recoverable force magnitude F (bell-shaped with duration of
400ms) applied from any direction in plane (cos(φ), sin(φ), 0) at several locations on
the patient (P) and the left side of the robot (R). Solid and dashed lines are associated
with our policy and PD tracking of the nominal standing pose respectively.

safe policy shown in figure 6.8, compared to 240Ns for Yang et al. (Yang et al., 2018).
This is satisfactory considering that the motor torque limits are about 50% lower on
Atalante and knowing that the safety constraints are limiting our performance.

6.6.4 Standing Push Recovery on Atalante

The trained control policy is evaluated qualitatively for both valid users and dummies
of different masses on several Atalante units in the Wandercraft offices. Even though
the robot is only pushed at the pelvis center during the learning, figure 6.5 strongly
suggests that the policy can handle many types of external disturbances. We push
the robot in reality at multiple application points and obtain impressive results, see
figures 6.7 and 6.9. The recovery strategies are reliable for different push variations
and pulling. The transfer to Atalante works out-of-the-box despite the wear of the
hardware and modelling uncertainties, notably the ground friction, the mechanical
deformation of the structure, and the patient disturbances.

6.7 Concluding Remarks

We obtain a controller that provides robust and versatile recovery strategies. Several
techniques are combined to promote smooth, safe, and predictable behaviors, even
for unexpected events and unrecoverable scenarios. As theoretical guarantees are
limited, our method was only verified empirically in simulation and reality. The
policy was easily transferred to the exoskeleton Atalante. Even though trained for a
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(a) front push shoulder (b) strong kick pelvis

(c) random user moves (d) side push hip

Figure 6.9: Scenarios showing the robustness of the push recovery policy

single average patient model, our policy was validated experimentally with different
users and dummies. It performed successfully a variety of recovery motions against
unknown perturbations at various locations. To our knowledge, we are the first to
demonstrate reactive push recovery at rest on a real humanoid robot using RL.

Our framework is generic and could theoretically be applied to any nominal mo-
tion in order to stabilize it and provide recovery capability. For now, walking was put
aside because it is more challenging than standing. Indeed, the stability is precar-
ious during single support phases and the mechanical deformation of the structure
becomes problematic. We are planning to unify walking and push recovery in fu-
ture works. Besides, our framework can be adapted to other bipedal robots, and it
would be interesting to compare the performance on other platforms. Further re-
search directions include switching to more sample-efficient off-policy algorithms and
enhancing exploration via curiosity-based intrinsic reward.
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7.1 Summary of the Contributions

The agile and versatile locomotion of biped robots has been an active research topic
since the 70s. The theoretical analysis of the controllability of these systems despite
their inherent instability has been the primary matter of interest in early studies.
Today, these aspects are well understood, and it is rather the limited capability
of the embedded hardware (actuators, sensors, and computing power) related to
the necessity of being commercially profitable that contributes for the most part to
making biped locomotion a real challenge.

In this thesis, we have developed motion planning and control algorithms for
legged robots that can be readily applied to real devices. They yield a strict yet
modest improvement over the existing methods. All our contributions have been
validated experimentally on the exoskeleton Atalante. In this context, enhancing the
quality of life of the users while guaranteeing a safe and predictable behavior of the
robot has been major a concern throughout this work.

Our first contribution focuses on motion planning. The concrete objective is to
enable the user to change high-level gait features on-the-fly. It is a step toward
versatile locomotion since stability is disregarded. We achieve this by training offline
a parametric function approximation of the trajectories generated with a motion
planning framework over a continuous task space. The large prediction error resulting
from the application of the naive standard regression prevents us from guaranteeing
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the safety of the user when blindly tracking the predicted trajectories. To overcome
this limitation, we propose the Guided Trajectory Learning (GTL) algorithm that
ensures high accuracy regardless of the expressiveness of the function approximation.
Our algorithm is very generic and can be used for solving any multi-parametric
optimization problem beyond the robotic field. The function approximation takes
the form of a deconvolution neural network. This architecture is specially designed
for generating smooth time series. It significantly reduces the computation cost at
runtime and guarantees the desired regularity properties of the predicted trajectories.
A simplified variant of our algorithm has been successfully validated on Atalante with
valid users despite having weaker guarantees in terms of accuracy.

Our second contribution focuses on robust control using reinforcement learning.
The ultimate objective is to achieve human-like navigation in an unstructured en-
vironment while avoiding falling. For simplicity, two basic scenarios have been con-
sidered: smooth transitioning between nominal motions, and emergency push recov-
ery while standing. We propose an original formulation closely related to imitation
learning. A pre-defined set of primitive motions that have been validated clinically
is used to guide and constrain the optimization of the policy. First, we introduced
generalized space-time bounds that ensure minimal deviation from the nominal tra-
jectories while giving enough freedom to deal with external disturbances or adapt
to the real environment. We demonstrate mathematically that early termination is
sufficient to enforce these implicit constraints. Secondly, we designed a lower-bound
maximization algorithm for solving multiple tasks of heterogenous difficulty over a
continuous domain. Together, they enable training from scratch a single policy ca-
pable to perform all nominal motions at once equally well. Safety and predictability
are encouraged using a combination of spatial and temporal regularizations called
smoothness conditioning. This approach is traditionally found in supervised learning
for robustness against adversarial attacks. We observe that it leads to the clustering
of the closed-loop behavior for standing push recovery: the agent learns a minimal set
of highly generic and effective strategies. In addition, we present a method inspired
by the penalty and barrier function methods to enforce explicit constraints that only
depend on the policy by taking advantage of their analytical gradient. It is used to
bound the maximum acceleration of the motors, which eases transfer to reality.

To support this work, an open-source simulator of poly-articulated robots called
Jiminy has been developed. It is heavily optimized for reinforcement learning appli-
cations. In particular, several parameters are available to trade-off between realism
and regularity of the physics to ease or speed up learning. Internally, it relies on a
novel analytical contact formulation that does not involve computing impulse forces.
Besides, it takes into account many of the hardware limitations and side effects,
among them backlashes, communication delays, the inertia of the rotors, and the
mechanical deformation. All simulations are perfectly repeatable and Jiminy offers
fine-grained monitoring and visualization utilities to facilitate their analysis.
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7.2 Discussion

7.2.1 Online Trajectory Planning

Our GTL algorithm has several limitations that may hinder its applicability. First,
our certificate of safety is based on the prediction error to be completely agnostic
to the dynamic model of the system. This is convenient but overly restrictive since
a large prediction error does not entail infeasibility, which is what really matters.
Moreover, it puts more pressure than necessary on the global Lipschitz constant of the
function approximation and the number of samples to collect. Secondly, the image
of the function approximation and the feasibility domain of the motion planning
problem may be disjoint for a given task. If so, the corresponding prediction error
may be arbitrarily large theoretically, invalidating our certificate of safety.

7.2.2 Robust and Safe Control Policy

A policy trained for standing push recovery as part of our second contribution has
been assessed experimentally. It transfers to reality and attains satisfactory perfor-
mance without any kind of adaptation, which is very promising. However, we were
unable to provide results for the second training scenario related to versatile locomo-
tion, which is disappointing. In practice, we observe that even learning to walk in a
straight line on flat ground does not transfer to reality. The robot keeps walking in
place without moving forward because its feet stick to the ground. Supposedly, this is
caused by the dynamic model of the mechanical deformation being off. However, the
domain randomization technique is not sufficient to handle this discrepancy, probably
because our simulation environment is not challenging enough. This indicates that
the agent has never learned what it means to move forward, which raises concerns
about our ability to transfer the policy to the reality of more sophisticated behaviors.
How to design a simulation environment for which maximizing the expected return
urges the agent to learn the expected skills is an open question.

7.3 Perspectives and Future Works

7.3.1 Human-Like Locomotion

Much remains to be done regarding robust human-like locomotion in unstructured
environments. The logical follow-up would be to combine our work on learning mul-
tiple trajectories at once and transitioning with our emergency push recovery while
standing. If successful, then it would be worthwhile to enable changing the high-level
gait features on the fly over a continuous task space. To this end, one could train
the policy for discovering suitable trajectories on its own. This approach has already
been proven effective by Won et al. (2020). However, it may be hard to reconcile with
our imitation learning paradigm that aims to minimize the deviation for the nominal
trajectories. A better option may be to simply replace the finite set of gaits with
continuous function approximation generated using GTL. Concurrently, studying the
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emergence of human-like locomotion without pre-defined motion to guide the policy
is an interesting research direction. Great results have been obtained by Lee et al.
(2019) in the field of computer-aided animation using realistic muscle-based dynamic
models of the human body. Yet, it has never been applied to a real robot for now.

7.3.2 Data Efficiency

The wall time for training a policy for push recovery using Proximal Policy Opti-
mization (PPO) – a state-of-the-art on-policy learning algorithm – is about 6 hours
on a single server-grade computer. This is mostly due to the need of collecting more
than 50 million samples to fully converge. Off-policy learning algorithms such as TD3
could substantially improve the sample efficiency and hence reduce the wall time, but
they are known to converge to highly sub-optimal solutions.

A more promising approach may be to reduce the variance of the on-policy gra-
dient estimate using an action-dependent control variate based on stein identity (Liu
et al., 2018). This would reduce the training batch size per iteration, which is very
high in our case as it corresponds to 50 minutes in simulation time. It is also possible
to mix on- and off-policy gradient estimates using hybrid algorithms, e.g. Q-prop.

7.3.3 Global Optimally

We have been able to learn very effective and robust strategies for push recovery
while standard. They are nonetheless fairly basic and only locally deviate from the
resting pose. For instance, none of them involves transferring the weight from one
leg to the other on purpose, typically by bending the knee of the supporting leg.
Yet, this is essential for doing sidesteps when already falling. This may be slightly
mitigated by using a more advanced optimizer than ADAptive Moment estimation
(ADAM) that is ubiquitous in machine learning, notably K-FAC (Martens & Grosse,
2015). However, this is likely to be insufficient as the main limitation is generally
the exploration. Relying on curiosity-driven intrinsic rewards to promote behavioral
novelty is more relevant. It has already demonstrated its efficiency for evolution
strategies (Lehman & Stanley, 2011). It is an active research topic in Reinforcement
Learning (RL), with encouraging preliminary results (Badia et al., 2020).

7.3.4 Transfer to reality

The disputable realism of the physics engines is a major issue. For example, it is
extremely difficult to train a policy for moving around without entirely lifting the
feet. The trick is usually to lift the feet much higher than necessary, but it is far
from satisfactory. Indeed, being overly restrictive on what is considered acceptable
behavior in simulation impedes the overall performance of the policy. Moreover, it is
often necessary to rely on the domain randomization technique or the like, which leads
to sub-optimal policies in reality. Yu et al. (2017) overcome this limitation by learning
a generic policy taking as input the unknown parameters and identifying them online
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on the real robot later on. It would also be helpful to reduce the reality in the first
place by improving the simulator itself. In the particular case of the exoskeleton
Atalante, one may consider the patient as an independent system having its own
dynamic model and interacting with the robot through non-penetration conditions
and spring-damper mechanisms for the straps. We could also perform a system
identification of the unknown parameters once and for all using a dedicated apparatus
such as motion capture. In addition, the simulation could be made hybrid and
integrate data-driven building blocks trained using supervised learning, e.g. the
transfer function of the actuators (Hwangbo et al., 2019). Finally, the impact of
the reality gap could be reduced by learning a policy that predicts high-level features
to an advanced traditional low-level controller, typically the placement and timing
of the future footprints for a whole-body Model-Based Predictive Control (MPC).
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A Trajectory Planning Using
Whole-Body Optimization

Being able to generate theoretically stable primitive motions for the exoskeleton is
an essential building block of the thesis. The work on stable dynamic walking with
paraplegics for the exoskeleton Atalante started before the beginning of this thesis
but was refined in the meantime to make the gait pattern more physiological, further
improve stability, and extend it to other motions. The methodology is based on the
Hybrid Zero Dynamics (HZD) theory. The latter has been developed for the planning
and control of under-actuated bipedal robots (Westervelt et al., 2003). Nevertheless,
it is relevant for any bipedal robot as a way to automatically adapt to disturbances.
This approach has proven effective for the control of planar bipedal robots with point
feet. However, its naive application to realistic humanoids was unfruitful (Finet,
2018). Later, Hereid et al. (2018) successfully validated the HZD theory on many
bipedal robots with practical value, including DURUS, MARLOS and Cassie.

A sparse Non-Linear Program (NLP) is obtained via the Direct Collocation tran-
scription to ensure scalability to very large problems. Huynh et al. (2021) generate
trajectories involving more than 10 independent domains coupled together for the
exoskeleton Atalante using this framework in less than 5 minutes, corresponding to
about 50000 variables. Many other planning methods exist. The most successful
alternatives are based on Differential Dynamic Programming (DDP) (Budhiraja et
al., 2019b; Mastalli et al., 2020). The interested reader is encouraged to look at
(Goswami & Vadakkepat, 2019, Part VII) for details.

A.1 System Modeling

A.1.1 Hybrid System Model

Let us consider a robot with a free-floating base and n joints. The classical generalized
coordinates for such a system is

q = (p, ϕ, qJ) ∈ Qq, u ∈ Uq (A.1)

where p ∈ R3, ϕ ∈ SO(3) denote the position and orientation of the base frame Rb

in world frame, qJ = (q1, q2, · · · , qn) ∈ QJ,q is the vector of joint configurations and
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Figure A.1: Directed graph of foot rolling walking pattern for the exoskeleton Ata-
lante. The motion is only optimized for left leg support and the relabeling trick is
used to skip right left support. It half the number of continuous domains of the
problem, so that it is easier to solve it numerically.

u ∈ Uq denotes the controls. For instance, qJ is simply the vector of the relative
angles of all joints qi ⊂ R for a robot having only bounded revolute joints, and the
controls u are the torques applied by the motors to all the actuated joints individually.
Qq,Uq encompass the physical limitations of the joints of the robot. In general, they
are hypercubes that do not depend on the current configuration q, but it can get
more complex if the transmissions between the actual actuators and the modelling
joints are nonlinear, as for the ankle of the exoskeleton Atalante. The subscript is
dropped for the ease of notation. Similarly, the velocity of the joints q̇J is likely to
be bounded, in particular the actuated joints because of the viscous friction. Apart
from that, it makes sense to, restrict artificially the admissible velocity for the ease
of the patient and safety, while improving convergence rate by discarding irrelevant
state upstream. The state of the system x simply gathers the position and velocity,

x = (q, q̇) ∈ D ⊆ T Q (A.2)

where D represents the admissible states, TqQ is the tangent space of the manifold
Q at point q and T Q =

⋃
q∈Q TqQ is its tangent bundle.

The dynamic behavior of bipedal locomotion is characterized as a hybrid system
consisting of a sequence of continuous and discrete domains. Each continuous domain
is related to a specific contact phase, e.g. single support with flat foot, double support
with both feet flat, or rolling contacts around the heels and toes. Discrete events
happen when transitioning between continuous domains. The mapping linking the
final state of previous continuous domain to the initial state of the next one is called
reset map and denoted ∆. It is the switching surface S ∈ D, also called guard surface,
that determines the specific condition that triggers the transition from one domain
to next one. Formally, it constitutes a cyclic directed graph Γ = (V,E) whose nodes
v ∈ V are continuous domains and directed edges e = v → v+ ∈ E are discrete
events. The directed graph for foot rolling walk is depicted in figure A.1.
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As extensively explained in appendix C.3.2, the continuous dynamics can be
written as an affine autonomous control system,

ẋ = f(x) + g(x)u, (A.3)

where x is the system state. The functions f, g depend on the active contact points,
which are specific to the current contact phase. Mathematically, it implies that the
control system is different for every domain.

In the particular case of flat foot walk generation, there is one continuous domain
corresponding to single support on right leg, and one discrete event when the swing
leg touches the ground flat. Note that the rigid impact model does not allow for
having a double support phase in planning, but there is one in practice because of
the mechanical deformation of the structure. The symmetry of the gait relative to
the sagittal plane is leveraged to avoid optimizing for both side. It has the advantage
to guarantee the symmetry of the gait without dedicated equality constraint. The
resulting hybrid system dynamics can be written as

Σ :

{
ẋ = f(x) + g(x)u(x) , x /∈ S
x+ = ∆(x−) , x ∈ S , (A.4)

where the vector fields f, g are from the continuous-time swing-phase dynamics and
u is the feedback controller that depends on the current state.

A.1.2 Continuous Dynamics

As thoroughly explained in appendix C.2.1, the interaction of the robot with the
environment can be formulated as a holonomic constraint fc(q) = 0. This constraint
is the same for every single contact point: it gathers all the locked Degree of Freedom
(DoF) of the corresponding frame, typically the three translations. Then, the overall
constraint is obtained by concatenating the one acting at every contact point.

Although approach is mathematically valid, it induces many redundancies in prac-
tice. The ensuing optimization problem would be ill-posed, and the numerical solver
would be prone to optimization failure. Notably, enforcing the position of several
points that are fixed relative to the same body is problematic. There is no easy way
to get around this issue in simulation. Nevertheless, the contact phase is usually
known in advance in planning since it is part of the specifications for the motions
being generated. For instance, one foot may be fixed on the ground while the other
one is rolling around its heel during a given phase. This property can be leveraged to
get rid of the redundancies. It follows that the constraints applied locally on the DoF
of every contact point can be unified to operate directly on the DoF of their respec-
tive parent body. Doing so, the overall constraint is now obtained by concatenating
the one acting at each body being in contact in at least one point. This approach
effectively avoids any redundancy for the vast majority of legged robots, in particular
if the interaction with the environment is limited to the end-effectors (i.e. the feet
and hands for a humanoid robot).
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To enforce this holonomic constraint, it is sufficient to set its acceleration to zero,
along with its initial position and velocity,

∀(q, q̇) ∈ D,∀q̈ ∈ T Q, Jc(q)q̈ + J̇c(q, q̇)q̇ = 0 Domain acceleration (A.5)
Jc(q0)q̇0 = 0 Initial velocity (A.6)

c(q0) = 0 Initial position (A.7)

where (q0, q̇0) is the initial state of the robot. In simulation, Baumgarte stabilization
is used to drive the velocity toward zero exponentially instead of the enforcing the
initial position and velocity. This difference stems from the fact that the contact is
not necessarily stable in simulation while it is a prerequisite in planning.

Let us recall the Karush-Kuhn-Tucker (KKT) conditions of the constrained op-
timization problem: (

JcH
−1JT

c

)
λ = ac,free (A.8)

ac,free = Jc(q)q̈free + J̇c(q, q̇)q̇ (A.9)

q̈free = H−1(u− C(q, q̇)q̇ −G(q)) (A.10)

where λ is the vector of lagrangian multipliers. As mentioned in section 2.1.2, it
contains the efforts associated with the locked DoF due to the holonomic constraints.
The vector of lagrangian multipliers is abusively referred to as the contact wrench f
for the sake of simplicity.

One can show that the vector of lagrangian multipliers can be computed in closed-
form as long as the Jacobian matrix Jc(q) is full-rank. If so, then the closed-form
expression of the contact wrench f is given by,

f = Ac +Bcu, (A.11)

where Ξ =
(
JcH

−1JT
c

)−1 is the Operational Space Inertia Matrix (OSIM), Ac =

Ξ(Jη(q)H
−1(C(q, q̇)q̇ + G(q)) − J̇c(q, q̇)q̇) and Bc = ΞJc(q)H

−1. The jacobian Jc is
full-rank if and only if there is no redundancy in the holonomic constraint, otherwise
the solution for the contact wrench is not unique. Physically, it means that an infinity
of contact wrenches would satisfy the holonomic constraint, all resulting in the same
generalized acceleration q̈. A pseudo-inverse could be employed to pick one solution
arbitrarily, but it is unlikely to be the only one that is physically meaningful.

The unified formulation of the contact at body level is preferred over the naive
concatenation for every contact point. This is so because the Jacobian Jc(q) of
the unified formulation is guaranteed to be full-rank for the exoskeleton Atalante
(ignoring side effects due to the joint bounds). It is true even in double support as
there is at least 6 independent DoFs in the kinematic chain going from one foot to
the other plus 6 additional DoFs for the floating base. Consequently, it is possible to
control the position and orientation of both feet completely independently.

At this point, one can substitute the closed-form expression of the contact wrench
in the whole-body dynamic equations of motion (equation (2.33)). This resulting

214



A.1. System Modeling

equation of motion is referred to as the reduced dynamics because the system be-
comes mathematically analogous to a fixed-based robot: the contact forces does
not appear anymore and the state is restricted to the lower-dimensional manifold
satisfying the holonomic constraint. Although appealing, the reduced dynamics is
rarely used in motion planning as it makes the whole optimization slower empirically.
There are mainly two reasons: computing the reduced dynamics is expensive, and
more importantly, it impedes the sparsity of the problem. Thus, the general equation
of motion and the holonomic constraint for the contact are usually enforced as two
separated equality constraints.

Anyhow, additional constraints must enforce contact stability since it is a pre-
requisite. The classical Zero-tilting Moment Point (ZMP) criteria presented in sec-
tion 2.2.2 cannot be used because the support polygon could be degenerated during
some phases of the motion. To get round this limitation, inequality constraints en-
sures that the pressure force at any contact point is always positive and Coulomb
friction law is satisfied (cf. appendix C.2.2).

A.1.3 Discrete Dynamics

Rigid Impact Model

The rigid impact model has been formulated rigorously by Hurmuzlu and Marghitu
(1994). It states that at impact, the configuration of the system q remains unchanged,
but the velocity q̇ undergoes a discrete jump due to the instantaneous changes in
momentum. The jump in velocity is captured by the reset map ∆, which represents
the relationship between the pre- and post- states x−, x+, i.e. x+ = ∆(x−).

Under the assumption of rigid impact, it is possible to compute the post-impact
velocity q+ given the pre-impact velocity q−. The velocity of the swing foot is zero
instantly after touching the ground and the former stance foot lift-off immediately.
Formally, the velocities after impact verify,

J+
c q̇

+ = 0, J−
c q̇

+ > 0, (A.12)

where J−
c , J

+
c are the Jacobian of the pre- and post-impact holonomic constraints

f−c , f
+
c respectively, which are different since the stance foot has changed.

In the case of rigid impact with no friction in rotation along z-axis, Hurmuzlu and
Marghitu (1994) have proven that the angular momentum is conserved. We have

Hq̇+ −Hq̇− = J+
c

T
f̃ (A.13)

where f̃ = limt−→t+
∫ t+

t− fdt is called ground reaction impulse and corresponds to the
intensity of the contact wrench over the infinitesimal duration of the impact event.

The system of equations comprising equations (A.12) and (A.13) can be inverted
in order to compute the post-impact velocity q̇+ in closed-form. It yields,

q̇+ = q̇− +H−1J+
c

T
f̃ , f̃ = −Ξ+J+

c q̇
−, (A.14)

where Ξ+ =
(
J+
c H

−1J+
c

T
)−1

is the post-impact OSIM.
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Periodicity Condition and Relabeling

All primitive motions as 2-steps periodic by definition, ignoring the offset of the
freeflyer consequent to the actual displacement of the Center of Mass (CoM) of the
robot in world frame. As a result, it is enough to optimize the motion over a complete
gait cycle and enforce the periodicity condition. It must be checked while taking into
account the desired displacement of the CoM. Thus, instead of enforcing the initial
state of the first domain to match exactly the final state of the last domain, the
difference must be equal to an offset that depends on the specification of the pattern,
e.g. the step length, the walking direction or the turning angle. Computing the
desired offset is trivial for pure translations and rotations in world plane, such as
climbing stairs or turning in place, but it is not for more complex motions, such as
turning while walking. How to compute this offset in the general case is out of scope.

It is possible to go even further by leveraging the symmetry of the pattern if any.
It avoids optimizing the trajectory over a complete gait cycle to focus only on either
right or left leg support, thereby reducing the computational cost and improving the
convergence rate. For the pattern to be symmetric, the total displacement of the
freeflyer must be a pure translation that is consistent with the mirroring plane of the
robot. More precisely, the total displacement must be orthogonal to the sagittal plane
of the robot, which coincides with y-axis of the local frame of the robot. It holds
true for forward and backward walking, as well as stair climbing. Let us consider
a motion primitive that is symmetric relative to the sagittal plane of the robot, so
that the roles of the legs can be swapped. Swapping the role of each leg is called
relabeling . It is a linear transformation that can be written as the product of two
operations: swapping the state of each joint, and mirroring the state of each joint
individually. The former is just a mapping the state of each joint to their counterpart
on the opposite leg. It is a matrix that contains a single 1 for each row and column.
The latter is more complicated. It is a block diagonal matrix in the general case,
whose blocks are is a mirroring operation specific to each joint. Let us consider only
single DoF joints. Any joints corresponding to pure translations or rotations can
be decomposed in a chain of single DoF joints. It may not be the case for more
complex types of joint, but they are ignored as rarely encountered in practice. In
the case, the full mirroring matrix is diagonal and contains only the value -1 or 1.
Indeed, any single DoF joints is fully specified by a constant spatial axis in parent
joint frame. The mirroring operation relative to sagittal plane consists of flipping
the components dy, dOx , dOz components using Plücker notations, i.e. dx, dy, dz is the
basis for translation and dOx , dOy , dOz is the basis for rotation.

For spherical joints, it is often preferable to use the unified quaternion represen-
tation instead of decomposing them in 3 revolute joints and use Euler angle repre-
sentation, as presented in section 2.1. It is typically the case for the freeflyer state,
that is commonly decomposed in 3 linear joints and a spherical joint. It is possible to
perform the mirroring operation directly without further decomposition of the spher-
ical joint: the x and z components of the quaternion and angular velocity are flipped,
as if it was independent rotations. Nevertheless, the dimensionality is not the same
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for the configuration and velocity, and therefore different relabeling matrices must
be used for the position and velocity.

Reset Map

The reset map is specific to each transition between continuous domains. It can either
be the identity, the rigid impact model, the relabeling function, or a combination of
both impact and relabeling into a single map. For instance, the identity is used when
lifting one foot in double support phase. The rigid impact model is used when the
swing foot strikes the ground, no matter if it lands flat or on the heel. Relabeling is
used to optimize only one side of the motion, which could gather several domains,
for example foot rolling walking in straight line.

A.2 Gait Parameterization

A.2.1 Virtual Constraints and Trajectory Parameterization

The method of inverse dynamics is ubiquitous in the field of robotics. It consists of
defining a set of outputs and then designing a feedback controller that asymptotically
drives the outputs to zero. The task is encoded into this set of outputs in such a
way that the nulling of the outputs is asymptotically equivalent to achieving the
task. It can be any real-valued function of the state of the system x at time t,
such as the velocity of the CoM. In this perspective, the controls are no longer free
variables but rather a function of the state x and time t in the general case. In
the case of bipedal locomotion, it is unnatural to explicit the time-dependency since
walking arises from the coordinate movement of the joints across the step progress,
called phase. Formally, the phase variable s can be any scalar differentiable function
strictly monotonous over the step progress which only depends on the configuration
of the robot q. Ideally, when the robot is disturbed by some unexpected event, the
feedback controller should be responsible for going back to state that belongs to the
reference trajectory, without the additional burden of re-synchronizing with time.
Virtual constraints are used to synthesize such feedback controller.

Virtual constraints are relations between the joints – i.e. constraints – that are
imposed through feedback control instead of a physical connection. Like physical
constraints, they induce a reduced-order dynamic model called the zero dynamics
that captures the natural dynamics of the robot under constraints. The outputs of
the feedback controller are virtual constraints specifically designed to synchronize the
evolution of the joints of the robot in order to create an attractive periodic motion.
This type of controller also has the advantage to be time-invariant, which facilitates
theoretical analysis. Only velocity-modulating outputs with constant references and
position-modulating outputs are considered:

y2(q, α) = ya2(q)− yd2(s̃(q), α) (A.15)
y1(x, vd) = ya1(x)− vd (A.16)
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where s̃ is the normalized phase variable going from 0 to 1 over the whole step,
yd1 ∈ Rn1 are velocity-modulating or relative degree 1 outputs and y2 ∈ Rn2 are
position-modulating or relative degree 2 outputs. The reference degree 1 outputs
is denoted vd. It is chosen constant for simplicity, but it is not mandatory. The
reference degree 2 outputs are parametric functions of the vector α. α must be
optimized to obtain a stable periodic motion. Bézier’s polynomials of degree M have
been used as parametric functions for reference degree 2 outputs, fully specified by
M + 1 coefficients called control points. They are defined as follows

yd2(s̃, α) :=

M∑
i=0

α[k]
M !

k!(M − k)! s̃
k(1− s̃)M−k. (A.17)

Bézier’s polynomials are used because they are smooth, easy to analyze graph-
ically, and well-behaved no matter the value of parameters. More specifically, the
convex hull of the control points contains the curve itself. By leveraging this prop-
erty, it is possible to restrict the optimization to a sensible domain. Indeed, it is
usually possible to guess a priori the domain where the outputs are expected to be,
which is directly related to bounds on the Bézier coefficients α. It makes the numeri-
cal optimization more stable, and it converges faster and more reliability by avoiding
looking for the solution where it is known in advance that it cannot be. Moreover, the
derivative is guaranteed to be continuous and bounded, which is critical since numer-
ical solvers expecting the gradient and hessian of the problem to be properly defined.
The desired output functions yd1 , y2 is uniquely defined over the whole trajectory, and
thus the same Bézier coefficients α are used across all continuous domains.

Using a feedback controller to drive the virtual constraints to zero is preferable
over enforcing the trajectory to them match exactly during the whole motion. Impos-
ing perfect matching of the virtual constraints strongly constraints the NLP, which
affects the converge rate. Besides, it is unrealistic in most cases. For example, in the
case of a velocity-modulating output on the forward velocity of the pelvis, it would
enforce it to move at a constant speed during the whole step. Using a feedback con-
troller instead gives more freedom to the optimization to find complex solution that
cannot be represented as Bézier polynomials without significantly increasing their
degree, whereas it is favorable to keep it as low as possible. Indeed, higher degree
polynomials allow finding solutions that are less smooth, and thus more difficult to
transfer on the real device and likely to feel uncomfortable for the user.

A.2.2 Input-Output Feedback Linearization

The objective is to design a feedback controller that is driving the virtual constraints
to zero exponentially. Classically, it is achieved by means of feedback linearization
(Finet, 2018; Hereid et al., 2018). Let us consider the first-order time-invariant
formulation of the general dynamic equation of motion,

ẋ = f(x) + g(x)u, (A.18)
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where

f(x) =

(
q̇

H−1(q)(C(q, q̇)q̇ +G(q))

)
g(x) =

(
0

H−1(q)

)
. (A.19)

Let h be any differentiable function of the state x of the system

ḣ(x) =
∂h(x)

∂x
ẋ =

∂h(x)

∂x
(f(x) + g(x)u) = Lfh(x) + Lgh(x)u (A.20)

where Lfh(x) is called the Lie derivative of h(x) with respect to the differentiable vec-
tor field f . If h is holonomic, which means that it only depends on the configuration
of the system q, then it follows

Lgh(x) =

(
dh(q)

dq
, 0

)(
0

D−1(q)B

)
= 0. (A.21)

Differentiating twice h, it yields

ḧ(x) =
∂Lfh(x)

∂x
ẋ = L2

fh(x) + LgLfh(x)u. (A.22)

Therefore, the dynamic equations of the virtual constraints is given by(
ẏ1
ÿ2

)
=

(
Lfy1
L2
fy2

)
︸ ︷︷ ︸

Lf

+

(
Lgy1
LgLfy2

)
︸ ︷︷ ︸

Af,g

u, (A.23)

where Af,g is called the decoupling matrix . Feedback linearization consists of writing
the controls u as function of a surrogate v

u = A−1
f,g(−Lf + v), (A.24)

where v must be chosen in a way to ensure y = (y1, y2) converges to zero exponentially.
A typical choice is

v =

(
ϵy1

2ϵLfy2 + ϵ2y2

)
(A.25)

where ϵ > 0 is a free parameter. Under this control law, the dynamic of the virtual
constraints is linear and has the form,

ẏ1 = −ϵy1
ÿ2 = −2ϵẏ2 − ϵ2y2.

(A.26)

It corresponds to critical damping, which is known to converge exponentially. The
resulting feedback controller is illustrated in figure A.3.
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Figure A.2: Illustration of the PHZD periodic orbit for a two-domain hybrid system.

A.2.3 Hybrid Zero Dynamics

Each virtual constraint of relative degree 1 and 2 are locking respectively 1 or 2
DoFs of the system. The number of locked DoFs cannot exceed the total number of
DoFs of the system. If they do not match exactly, it gives rise to a zero dynamics,
which corresponds to the part of the system that is not controlled. The proposed
feedback law renders the zero dynamics sub-manifold invariant in each continuous
domain. Yet, it is not necessarily invariant through discrete dynamics. Enforcing
impact invariance of the relative degree 1 output is too strong due to the velocity
change at impact. Hence, invariance is enforced only for the relative degree 2 virtual
constraints y2, resulting in a so-called partial zero dynamics surface, given by

PZ = {(q, q̇) ∈ T Q | y2 = 0, ẏ2 = 0}. (A.27)

Moreover, the sub-manifold PZ called impact invariant, if there exist a set of pa-
rameters {vd}o∈O1 and {α}o∈O2 , so that

∆x ∈ PZ, ∀x ∈ S ∩ PZ. (A.28)

A manifold PZ is said to be hybrid invariant if it is invariant over the continuous
dynamics and impact invariant through the discrete dynamics, namely, a solution
that starts in PZ remains in PZ, even after impulse effects. If a feedback control
law renders PZ hybrid invariant, then the hybrid control system is said to have a
Partial HZD (PHZD). The PHZD manifold is illustrated in figure A.2.
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Figure A.3: Illustration of input-output feedback linearization for a one-domain hy-
brid system. The nominal trajectory is a periodic orbit. This initialized state x0 is a
bit off the nominal trajectory. The relative degree 2 outputs are non-zero at initial-
ization but are driven exponentially to zero over time. The trajectory asymptotically
convergences to a limit cycle that belongs to the partial zero dynamics surface PZ.

A.3 Problem Transcription

Let us consider a generic Optimal Control Problem (OCP) for an autonomous system
of the form ẋ = f(x, u). It can be formulated as follows,

J = min
x(0),u(t)

∫ T

0
l(x(t), u(t)) dt

st. x(t) =
∫ t

0
f(x(t), u(t)) dt{

cin(x(t), u(t)) ≤ 0
ceq(x(t), u(t)) = 0

, 0 ≤ ∀t ≤ T

(A.29)

where l represents the running cost function, and cin, ceq are path inequality and
equality constraints respectively. In our case, the objective is to find a parameteri-
zation of the virtual constraints for which the hybrid control system admits a PHZD
while minimizing a given cost function.

There are three types of algorithms for solving optimal control problems (Ander-
son & Moore, 2007; Kalman, 1960; Kelly, 2015; Zhou, 1990): Dynamic Programming,
indirect methods, and direct methods. Dynamic Programming consists in solving the
Hamilton-Jacobi-Bellman equation associated with the problem over the entire state
space. Indirect methods analytically derive the necessary and sufficient conditions
for optimality by leveraging Pontryagin’s maximum principle, then they discretize
these conditions and solve them numerically. By contrast, direct methods discretize
first the problem and then derive the conditions for optimality. Both indirect and
direct methods yield a single trajectory through state and control space rather than
a policy like Dynamic Programming. The conversion of an OCP in a NLP before
passing it to a numerical solver is referred to as problem transcription. This process
is common to indirect and direct methods.
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DDP is the most effective Dynamic Programming algorithm (Jacobson & Mayne,
1970). DDP supports continuous state and action spaces and allows for fast conver-
gence at a relatively low computational cost. However, it was originally limited to
unconstrained problems. Very recently, Kazdadi et al. (2021) extended it to support
general equality constraints, while Tassa et al. (2014) can take into account box con-
trol constraints. These methods are not mutually exclusive and can be combined,
but they still lack versatility. Indirect methods tend to be numerically unstable and
are difficult to implement and initialize (Kelly, 2015). Consequently, we restrict fo-
cus to direct methods for transcribing and solving the OCP, in particular the direct
collocation method. This method scales well to high-dimensional systems and is fast
even for offline trajectory planning.

A.3.1 Direct Collocation

The traditional approach to transcribing a trajectory optimization problem is the
direct single shooting method. It involves integrating the dynamics via standard
time-marching numerical methods, evaluating the constraint violations, and employ-
ing a NLP solver to drive them to zero. However, this method scales very poorly with
the dimensionality of the problem, which is rapidly growing for multi-domain trajec-
tory optimization. Direct multiple shooting methods based on reduced-dimensional
hybrid zero dynamics can be used to improve reliability and speed, but such ap-
proaches also run into scalability issues with increasing degrees of freedom, due to
the increased complexity of the equations describing the zero dynamics (Hereid et
al., 2015). The Direct Collocation method works by replacing the explicit forward
integration of the dynamical systems with a series of integration constraints (Har-
graves & Paris, 1987; Kelly, 2017). More precisely, the system dynamics is expressed
as basic implicit equations instead of complex close-form equations, and therefore
the computational cost is not significantly affected by the dimensionality of the sys-
tem dynamics. While the virtual constraints provide a formal guarantee of stability
of the resulting trajectory, the Direct Collocation provides scalability for optimizing
large-scale dynamical systems through discretization and approximation of states and
inputs. This method has proven to be successful on DURUS (Hereid et al., 2016a)
and Atalante (Gurriet et al., 2018).

The key concept of Direct Collocation method is to avoid numerical integration by
approximating the continuous solution using a finite set of points. Then a piece-wise
polynomial interpolation is used to infer the continuous solution from this discrete
representation. Specifically, the time interval t ∈ [0, T ] is divided into a fixed number
of distributed intervals. Since the discrete representation of the system must satisfy
the differential equation of the system, the spline of the state must respect some
condition to be a faithful approximation. Suppose a discrete representation with
spline degree K defined as follows,

x̃i(t) =

K∑
k=0

(
ai,k(t− ti)k

)
, (A.30)
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where x̃i(t) denotes the polynomial approximation of the solution over a time interval
[ti, ti+1] and parametrized by coefficients ai = (ai,0, ai,1, . . . , ai,K). The coefficients ai
must be chosen such that the approximation matches the solution at the beginning
of the interval but not necessarily at the end, and that the derivatives match at K
uniformly distributed points τj in the time interval [ti, ti+1], namely,

x̃i(ti) = x(ti) (A.31)
˙̃xi(τj) = f(x̃i(τj), ũi(τj)) (A.32)

τj = ti +
j − 1

K − 1
(ti+1 − ti), ∀1 ≤ j ≤ K (A.33)

These conditions are known as the collocation conditions, the intermediate points τj
are called interior nodes or collocation points, and the points ti are called cardinal
nodes. No further distinction is made between interior nodes ti and cardinal nodes τj
for simplicity. If the coefficients ai satisfy the collocation conditions, then the poly-
nomials x̃i(ti) are uniquely defined and yield to accurate approximated continuous
solution over the time intervals [ti, ti+1].

The numerical integration scheme used to approximate the state x is the Hermite-
Simpson scheme, which is a 2-stage implicit Runge-Kutta scheme that relies on cubic
interpolating polynomial. An implicit integration scheme is favored over an explicit
one because it is generally more suitable for computing the solution of stiff differential
equations such as periodic motions because their region of absolute stability is bigger.
For the controls u, a simple trapezoidal scheme was used. It goes the same for
polynomial inference x̃i and discrete representation xi. Let assume the step is divided
in 2N +1 timesteps t0, t1, . . . , t2N . At each discrete node of t = ti, an approximation
of the state variable xi = x(ti) and the command torques ui = u(ti) is introduced as
a set of optimization variables to be solved. The collocation condition specified by
equation (A.32) gives

ẋi = f(xi, ui), ∀i ∈ {0, 2, . . . , 2N} (A.34)

whereas the collocation condition specified by equation (A.31) becomes

xi+1 − xi−1 =
1

6
∆ti(ẋi−1 + 4ẋi + ẋi+1), ∀i ∈ {1, 3, . . . , 2N − 1} (A.35)

xi =
1

2
(xi−1 + xi+1) +

∆ti
8

(
ẋi−1 − ẋi+1

)
(A.36)

where equations (A.35) and (A.36) are obtained by integrating the state using the
Simpson’s quadrature rule and cubic polynomial inference respectively.

The distribution of cardinal nodes within a domain can be arbitrary, but the
interior points have to be uniformly distributed between two adjacent cardinal nodes
as a requirement of the integration scheme. The Chebyshev-Gauss-Lobatto (CGL)
distribution is used to improve accuracy near the boundary conditions, namely,

∆ti =
Tf
2

(
cos

(
π
2⌊ i+1

2 ⌋
2N + 1

)
− cos

(
π
2⌊ i+1

2 ⌋+ 1

2N + 1

))
(A.37)
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{ {

Figure A.4: Illustration of the Direct Collocation with Defect Constraints.

where Tf is the duration of the trajectory over the domain, and ⌊.⌋ is floor operator.
It is important to refine the spline approximation of the trajectory at the boundaries
of the domains because the behavior of the robots tends to be more dynamics around
contact phase changes. For instance, the accelerations undergoes a large jump before
and after impact when switching support leg in order to transfer the center of pressure
from one foot to the other.

A.3.2 Non-Linear Programming

Defect variables are optimization variables that could have been determined by
closed-form functions, e.g. xi and ẋi at collocation points. Compute these variables
explicitly is equivalent to impose constraints between defect variables, but it tends
to be preferable to introduce defect variables on purpose. First, closed-form expres-
sions are often expensive to compute, which is slowing down the optimization. For
example, computing ẋi explicitly requires inverting the inertia matrix H, whereas the
equality constraint does not. Finally, it decouples the global optimization problem in
many independent sub-problems, bound together through affine equality constraints
to enforce consistency. Such formulation promotes sparsity and scalability, not to
mention that it greatly simplifies the analytical derivation of the Jacobian of the
optimization problem. These sub-problems can be tackled separately during the op-
timization process before consistency is enforced. Roughly speaking, it gives more
freedom to the solver to find a valid solution since the equality constraints do not
have to be valid all along the optimization process, as it would be the case using their
closed-form counterparts. This property is even more beneficial that each constraint
violation is driven to zero independently. For instance, it may be more appropriate
to satisfy approximately constraints at position and velocity level, before finding an
actual solution of the problem in the vicinity. The Direct Collocation method with
defect constraints is illustrated in figure A.4.

This formulation significantly increases the number of constraints and optimiza-
tion variables, leading to a large-scale nonlinear optimization problem. Yet, the
Jacobian matrix is very sparse, and the density of the matrix is less than 1%. This
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kind of NLP can be solved efficiently using a sparse NLP solver such as IPOPT
(Hereid et al., 2016a). Note that such formulation enables to solve the optimization
problem using the generalized Alternating Direction Method of Multipliers method,
though it was not used here since direct solving is tractable.

With the discretization of a continuous domain, let

zi = (Tf,i, qi, q̇i, q̈i, ui, Fext,i, αi, vd,i) (A.38)

be the vector of optimization variables defined at each node i ∈ 0, 1, ..., 2N , where Tf,i
is the total duration of the step, and Z = (z0, z1, ..., z2N ). Using this formulation, the
collocation conditions (equations (A.35) and (A.36)) are computed using the defect
variables instead of evaluating the system dynamics explicitly. The same goes for any
other constraints, except the collocation condition specified by equation (A.34). In
the latter, the evaluation of the constrained dynamics at each node is performed by
the evaluation of the continuous dynamics and the holonomic constraints separately
instead of using its closed-form expression. Note that it is unnecessary to explic-
itly introduce the current time of the node ti because the current time is uniquely
determined by the index of the node i and the step duration Tf through the CGL
distribution. Anyway, the closed-loop dynamics is time-invariant because the motion
is rather synchronized with a kinematic phase variable than the time.

Once a solution Z∗ is found, only of few elements are extracted, namely, q∗i and q̇∗i
at each discrete time ti, which are then interpolated to match the high-level control
period on the robot. It is irrelevant the extract the nominal torque ui or the reference
outputs parameters vd,0 and α0 since they are not used for control in practice.

A.3.3 Cost Function and Extra Constraints

So far, only the necessary constraints for the problem to be consistent and generate
stable periodic motions have been addressed. Some additional constraints must be
considered to enforce some desired gait features. In the particular case of flat foot
walking in a straight line, the gaits features are:

• the duration of the step,
• the length of the step,
• the width of the step.
The question of the running cost l(x, u) is often overlooked for robotics, for good

reason since it usually barely affects the solution in practice. The direction of the
optimization gradient is mostly determined by canceling constraint violation. The
gradient of the running cost is only dominant at the last stage, where not much can
be done to change the solution at this point given the large number of constraints
that must be satisfied. In general, energy consumption is minimized in robotics. It
is reasonable to make this choice since many robotic systems are powered by bat-
teries. Moreover, the optimization marginally converges faster in practice because
the gradient often heads in the direction of interesting solutions, though any sensible
running cost should lead to similar performance. The formulation of power consump-
tion depends on the hardware specification. For Atalante, the power generated by
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each motor individually during braking (ui · q̇i < 0) cannot be used to power each
other nor to recharge the batteries. Thus, it must be minimized just like the power
consumed to facilitate the dissipation by the hardware of the superfluous energy in
thermal losses. It yields the following approximate running cost at node i,

lp(xi, ui) =
∆ti
Tf
∥ui ⊙ q̇i∥2, (A.39)

where ⊙ denotes the element-wise product, also called Hadamard product . Note that
L2-norm is used in place of L1-norm. The latter has a singularity at the origin, which
is an issue when computing the analytical hessian. However, in practice, the hessian is
not computed analytically by approximating numerically using the Broyden-Fletcher-
Goldfarb-Shannon (BFGS) iterative algorithm. It is robust to this kind of singularity
by smoothing it out, allowing the use of the L1-norm formulation. Besides, if it is
possible to make use of the generated energy to power other motors at the current
time but not to charge the batteries, then the Hadamard product is replaced by the
classical scalar product.

In addition, it may be beneficial to also maximize the extension of the knee of
the stance leg. It is human-like, but more importantly, it reduces the variability of
the trajectories. Assuming one of the position-modulating outputs corresponds to
the relative knee angle, the extension can be approximately maximized by adding a
cost on its reference ydk,

lk(xi, ui) = max
s∈[0,1]

ydk(s, αi). (A.40)

It is a continuous and differentiable function of the αi which can be computed in a
closed form by analytical differentiation of the Bézier polynomial ydk.

The cost function, which is defined as the integral of the running cost, is computed
using Simpson’s quadrature rule for irregularly spaced data. Let L(x, u) be a function
that needs to be integrated over the continuous domains. It can be stated as∫ Tf

t=0
L(x(t), u(t)) =

2N∑
i=0

ωil(xi, ui), (A.41)

where

ωi =


1/3∆t1, if i = 0
2/3∆ti, ∀i ∈ {1, 3, ..., 2N − 1}
1/3(∆ti−1 +∆ti+1), ∀i ∈ {2, 4, ..., 2N − 2}
1/3∆t2N−1, if i = 2N

.
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B Proximal Splitting Method

B.1 Method of Multipliers and Quadratic Penalty

B.1.1 Generalities

Let us consider a general optimization problem

x∗ = argmin
x∈Rp

f(x)

st. x ∈ X , h(x) = 0
(B.1)

where X ⊆ Rp is a closed set and f : Rp → R, h : Rp → Rq are continuous functions.
The Augmented Lagrangian function Lρ : Rp × Rq → R is given by

Lρ(x, λ) = f(x) + λTh(x) +
ρ

2
∥h(x)∥2 , (B.2)

where ρ ∈ R is the penalty factor and λ ∈ R is the lagrangian multiplier. ∥·∥ is the
Euclidean norm, i.e. the L2-norm. All the results presented here can be generalized
with minor changes to any penalty function ϕ that is positive-definite in place of the
Euclidean norm, i.e. ϕ(x) > 0, ∀x ̸= 0 and ϕ(x) = 0, with the extra condition to have
ϕ(2)(0) = 1 (Bertsekas, 1976).

The method of multipliers with quadratic penalty function consists in solving a
sequence of problems of the form,

xk = argmin
x∈X

Lρk(x, λ
k). (B.3)

The following assumption is central to the method of multipliers. It makes sure that
the coupling constraint is gradually enforced, and satisfied at the limit:

Assumption 1. The sequence of Lagrange multipliers {λk}k≥0 is bounded in R,
namely ∀k ≥ 0, ∃M ∈ R st.

∥∥λk∥∥ < M , and the penalty cost satisfies

∀k ≥ 0, 0 < ρk ≤ ρk+1, ρk →∞ (B.4)

Intuitively, solving problem (B.3) under assumption 1 is the same as solving prob-
lem (B.1) at the limit. Rigorously, additional conditions must hold true. Bertsekas
(1982) has proven the subsequent theorem:
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Theorem 6. If assumption 1 is satisfied and ∀k ≥ 0, xk is a global optimum of
problem (B.3), then the limit point of the sequence {xk}k≥0 is a global optimum of
problem (B.1).

Problem (B.3) may not have a global optimum even if problem (B.1) admits one.
Still, it is sufficient to have X compact (as opposed to closed) to prove that prob-
lem (B.3) as a global minimum by the Weierstrass Extreme Value Theorem. Another
option is to alter f, g to make them positive, i.e. ∀x ∈ Rp, f(x) > 0 and g(x) > 0.
Yet, having to converge to a global optimum is very restrictive. This condition can-
not be guaranteed beyond Quadratic Program (QP) on X = Rp under linear equality
constraints. It can be relaxed in favor of isolated local optima, which is more at-
tainable. For a given optimization problem, an isolated set of local optima X∗ is
defined as any non-empty subset of Rp st. any point in X∗ is a local optimum of the
problem, and the set X∗

ϵ = {x ∈ Rp | ∥x− x∗∥ ≤ ϵ for some x∗ ∈ X∗} contains no
local optima of the problem. Bertsekas (1982) has demonstrated that:

Theorem 7. If assumption 1 is satisfied and X∗ is an isolated set of local optima
of problem (B.1) that is compact, then there exists a subsequence {xk}K converging
to a point x∗ ∈ X∗ st. ∀k ∈ K, xk is a local minimum of problem (B.3), where K
is an infinite subset of positive integers. Furthermore, if X∗ is a single point {x∗},
there exists a sequence {xk}k≥0 and an integer k̄ ≥ 0 st. xk → x∗ and xk is a local
minimum of problem (B.3) for all k ≥ k̄.

The aforementioned theorem has limited practical interest. The whole point of
proximal splitting methods is enabling finding a solution of problem (B.1) without
solving it directly, thus its local optima always are unknown. The following corollary
is more relevant:

Corollary 7.1. If assumption 1 is satisfied, and a subsequence {xk}K , where K is an
infinite subset of positive integers, converges to a point x̄ ∈ Rp such that, ∀k ∈ K, xk

is a local minimum of problem (B.3), then there exist a local optima of problem (B.1)
x∗ such that x̄ = x∗.

Proof. The proof is straightforward. The Augmented Lagrangian Lρ(x, λ) is contin-
uous with respect to ρ, {λk}k≥0 is bounded, and ρk →∞. Hence, Lρk(x, λ

k)→ f̃(x),
where f̃ : Rp → (−∞,∞] is defined by

f̃ =

{
f(x), if h(x) = 0
∞, if h(x) ̸= 0

(B.5)

Consequently, if xk is a local minimum of problem (B.3) for ∀k ∈ K, and K is an
infinite subset of positive integers, then the subsequence {xk}K converges to a local
minimum of f̃ , and therefore a local minimum of problem (B.1). Roughly speaking,
taking the limit to infinity (whenever the limit exists) is equivalent to converging
with respect to K as the latter is an infinite subset. ■
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The ill-conditioning of problem (B.3) is characteristic of penalty methods because
the cost function is very steep is the penalty factor ρk is large and the equality
constraints h(x) are violated. It can be mitigated by warm-starting the optimization
close enough to a local minimum of problem (B.3) at each iteration, which is doable
as long as the increase of the penalty factor ρk remains small. There is no theoretical
method to find the fastest sequence {ρk}k≥0. Bertsekas (1982) states that ρk+1 = βρk

with β ∈ [4, 10] works well in general.

B.1.2 Multipliers update

The sequence of Lagrange multipliers {λk} can be chosen freely. They are all set
to zero in the original method of multipliers, but updating them appropriately can
dramatically improve the convergence rate and relax the requirement to have ρk →∞
to converge. The proposal for the update rule of the multipliers is

λk+1 = λk + ρkh(xk) (B.6)

Formal results and a geometric interpretation in two dimensions for f, h ∈ C2 on
X = Rp is explained in details by Bertsekas (1982). A brief summary is presented
here to understand why this choice is natural, alleviate the difficulties due to ill-
conditioning of (B.3), and relax the requirement to have ρk → ∞ to converge. It
assumes that f, g ∈ C2, which is not very restrictive in practice. Nonetheless, this
hypothesis can be alleviated if necessary (Bertsekas, 1976).

A vector x st. h(x) = 0 is said to be a regular point if the gradients of the
constraints ∇h1(x),∇h2(x), . . . ,∇hq(x) are linearly independent. If x∗ is an isolated
local minimum for problem (B.1) that is also a regular point, then it satisfies the
standard second-order sufficiency conditions to be an isolated local minimum for
problem (B.3). That is to say, the hessian of the Augmented Lagrangian Lρ is
positive definite on the tangent space T ∗

xD, where D is the surface associated with
the equality constraints g. More precisely, there exists a unique vector λ∗ ∈ Rq st.

∇xLρ(x
∗, λ∗) = 0 (B.7)

zTHx(x
∗, λ∗)z > 0, ∀z ∈ Rp \ {0} with ∇h(x∗)z = 0 (B.8)

where Hx(x
∗, λ∗) = ∇x∇xLρ(x, λ)|(x,λ)=(x∗,λ∗) is the Hessian matrix of Lρ with re-

spect to x at point (x∗, λ∗).
Let us assume on the contrary that it exists a point (x∗, λ∗) for which the second

order conditions are met:

Assumption 2. Let x∗ be st. h(x∗) = 0. Assume that there exist a vector λ∗ ∈ Rq

st. ∇xLρ(x
∗, λ∗) = 0 and zTHx(x

∗, λ∗)z > 0,∀z ∈ Rp \ {0} with ∇h(x∗)z = 0.

If assumption 2 is satisfied, then x∗ is an isolated local minimum for (B.1). More-
over, there exists x(·), λ(·) continuously differentiable functions such that x(0) =
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x∗, λ(0) = λ∗, and ∀u ∈ R, (x(u), λ(u)) is a local minimum for

x∗ = argmin
x∈Rp

f(x)

st. h(x) = u
(B.9)

Furthermore,
∇uf(x(u)) = −λ(u), ∀u ∈ R. (B.10)

Consider the functional p defined as

p(u) = min
h(x)=u

f(x), (B.11)

where the minimization is understood to be local in an open sphere within which
x∗ is the unique local minimum of (B.1). From the previous proposition, it gives
∇p(0) = −λ∗ since p(0) equals f(x∗). The minimization of Lρ(x, λ) with respect to
x can be broken down into two stages, first minimizing for x such that h(x) = u for
a given u, and then minimizing for u. This yields

min
x
Lρ(x, λ) = min

u
min

h(x)=u

(
f(x) + λTh(x) +

ρ

2
∥h(x)∥2

)
(B.12)

= min
u

(
p(u) + λTu+

ρ

2
∥u∥2

)
(B.13)

where the minimization is understood to be local in an open sphere within which
u = 0. The minimum is attained at the point u(λ, ρ) for which the gradient of
p(u) + λTu+ ρ

2 ∥u∥
2 vanishes, or equivalently

∇u

(
p(u) +

ρ

2
∥u∥2

)
|u=u(λ,ρ) = −λ. (B.14)

In addition, it gives

min
x
Lρ(x, λ)− λTu(λ, ρ) = p(u(λ, ρ)) +

ρ

2
∥u(λ, ρ)∥2 (B.15)

so the tangent hyperplane to p(u) + ρ
2 ∥u∥

2 at u(λ, ρ) intersects the vertical axis at
the value minx Lρ(x, λ) as shown in figure B.1. It can be seen that if ρ is large enough
then p(u) + λTu+ ρ

2 ∥u∥
2 is convex in the neighborhood of the origin. Furthermore,

minxLρ(x, λ) is close to p(0) = f(x∗) for values of λ close to λ∗ and large values of ρ.
Figure B.1 depicts a geometric interpretation of the multipliers update iterations

according to equation (B.6). Note that if xk minimizes Lρk(x, λ
k) with respect to x,

then the vector uk given by uk = h(xk) minimizes p(u) + λk
T
u+ ρk

2 ∥u∥
2. Hence,

∇
(
p(u) +

ρk

2
∥u∥2

)
|u=uk = −λk (B.16)

and
∇p(uk) = −(λk + ρkuk) = −(λk + ρkh(xk)). (B.17)
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Figure B.1: Geometric interpretation of the first-order multiplier iteration

It follows that the multipliers at the next iteration λk+1 are given by

λk+1 = λk + ρkh(xk) = −∇p(uk). (B.18)

The figure makes it clear that if λk is sufficiently close to λ∗ and/or ρk is sufficiently
large, the next multiplier λk+1 will be closer to λ∗ than λk is. In addition, the
convergence is the fastest if ∇p(0) = 0. It is not necessary to have ρk →∞ in order
to converge, but only that ρk exceeds some threshold after a certain index.

B.1.3 Convergence in the non-convex case

Results about the convergence rate in the non-convex case problem (B.1) was first
exposed by (Bertsekas, 1976). A summary of the most important ones is given here.

Under assumption 2, for any given λ bounded subset of Rq, there exist a unique
scalar ρ∗ ≥ 0 such that for every ρ > ρ∗ and every λ ∈ Λ, the function Lρ(x, ρ) has
a unique minimizing point x(λ, c) with some open sphere centered at x∗, where x∗ is
a local minimum of problem (B.1). Furthermore, for some scalar M > 0 it yields

∥x(λ, ρ)− x∗∥ ≤ M ∥λ− λ∗∥
ρ

, ∀ρ > ρ∗, λ ∈ Λ (B.19)

∥λ̃(λ, ρ)− λ∗∥ ≤ M ∥λ− λ∗∥
ρ

, ∀ρ > ρ∗, λ ∈ Λ (B.20)

where the vector λ̃(λ, c) ∈ Rq is given by λ̃(λ, c) = λ+ ρ h(x(λ, c)).
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This proposition induces both sufficient conditions for the convergence and the
rate of convergence of the method of multipliers when they are updated via the update
rule in equation (B.6). It constitutes the strongest convergence result available for
problem (B.1). It shows that if Λ contains λ∗ in its interior, the generated sequence
{λk} remains in Λ, the penalty parameter ρ is sufficiently large after a certain index,
and the minimization of Lρ=k(x, λ

k) yields the local minimum x(λk, ρk) which is
closest to λ∗, then we obtain x(λk, ρk)→ x∗, yk → λ∗.

Theorem 8. Consider a non-decreasing positive penalty parameter sequence ρk such
that for some integer k̄ ≥ 0 we have ρk̄ ≥ max(M,ρ∗). Let {λk} be a sequence such
that yk̄ ∈ Λ and generated for all k > k̄ by the update rule (B.6), where xk is the
local minimizing point of minx Lρ(x, λ

k) closest to x∗ in the sense of (B.19). Then
x(λk, ρk)→ x∗, yk → λ∗. Furthermore, if ρk → ρ̄ <∞ and λk ̸= λ∗, ∀k, then

lim
k→∞

sup

∥∥λk+1 − λ∗
∥∥

∥λk − λ∗∥ ≤
M

ρ̄
(linear convergence) (B.21)

while if ρk →∞, ∥∥λk+1 − λ∗
∥∥

∥λk − λ∗∥ → 0 (superlinear convergence) (B.22)

It follows that it is not necessary to increase ρk to infinity for the method of
multipliers to converge. Therefore, the ill-conditioning effects associated with large
penalty parameters can be eliminated or at least moderated in multiplier methods.

B.2 Alternating Direction Method of Multipliers

Let’s consider a general optimization problem as follows,

(x∗, z∗) = argmin
x∈Rp1 ,z∈Rp2

f(x) + g(z),

st. x ∈ X , z ∈ Z
Ax+Bz = c

(B.23)

where X ,Z are closed subsets of Rp1 and Rp2 respectively, A ∈ Rq×p1 , B ∈ Rq×p2 , and
c ∈ Rq, and the functions f : Rp1 → R and g : Rp2 → R are continuously differentiable
on Rq×p1 and Rq×p2 respectively. The affine constraint Ax+Bz = c is referred to as
the coupling constraint.

Problem (B.23) is general in the sense that many interesting large-scale problems,
including consensus. Such non-convex problems can be handled gracefully by the
penalty and augmented Lagrangian method presented previously. In this case, the
augmented Lagrangian is given by

Lρ(x, z, λ) = f(x) + g(z) + λT (Ax+Bz − c) + ρ

2
∥Ax+Bz − c∥2 (B.24)
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where x and z are the primal variables of problem (B.23).
The primal variable update is given by

(xk+1, zk+1) = argmin
x∈X ,z∈Z

Lρk(x, z, λ
k) (B.25)

where xk+1, zk+1 are the optimal value of x, z at iteration k+1 for a given λk. Notice
that x, z are initialized with the previously computed xk, zk.

The challenge of the method of multipliers is to choose appropriately the sequence
of multipliers {λi} to converge as fast as possible without needing ρi →∞. Based on
the results of the previous section, an appropriate choice is to update the multipliers
according to the following recursion,

λk+1 = λk + ρk(Axk +Bzk − c). (B.26)
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C Jiminy – Open-source
Simulator for Legged Robots

C.1 Modelling of the Mechanical Deformation

The structure of poly-articulated robots appears flexible due to the continuous defor-
mation of all their mechanical parts, including bodies and transmissions. The Finite
Element Method (FEM) is generally used to model this phenomenon. First, each part
is decomposed in a large set of interconnected polyhedra (commonly tetrahedra), each
of them having known physical properties that only depend on the manufacturing
material, e.g. density, Young’s modulus, shear modulus, and Poisson’s ratio. Then,
the deformation in static equilibrium at the macroscopic level is deduced from the in-
teraction between all these tiny elements given external forces. This technique is very
accurate and well-motived physically. For instance, it is used to study soft and de-
formable materials. However, it is limited to static equilibrium and the computations
are very demanding. Thus, this approach is not appropriate in robotics.

We suggest relying nonetheless on a simpler approximate model of the deforma-
tion in simulation, as it already brings a significant improvement over the classic rigid
model while being much cheaper than FEM. Two different methods are found in the
literature (Vigne et al., 2020a; Vigne et al., 2019):

• assuming that the robot is fully-actuated and all its joints are 1-Degree of
Freedom (DoF), a virtual flexible element is added between the motors and
their corresponding joints,

• a body followed by a spherical joint are inserted into the kinematic tree at key
locations to fit the overall deformation.

The second approach is way more generic and powerful. In particular, any system
is supported without restriction, and any number of deformation points located at
joints or inside bodies can be considered. Notably, it gets closer to the FEM as
the number of deformation points increases. It has the additional benefit to be
supported out-of-the-box in simulation, whereas the first one is not because it requires
keeping track of some hidden internal state at the motor level. The only advantage
of the first approach is being very convenient for designing model-based observers
and controllers. We restrict focus to the second approach in the following since we
are more interested in faithful simulation for training robust control policies.
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Figure C.1: Modelling of the mechanical deformation in simulation. For each local
deformation point, a body followed by a spherical joint Jf are inserted into the
kinematic tree. The internal dynamics of the flexible joint corresponds to a spherical
mass-spring-damper mechanism with inertia If , stiffness k, and damping ν.

For most legged robots, adding deformation points located at the joints is more
than enough to accurately fit the actual deformation. More specifically, it is suffi-
cient to add deformation points at the start and end of each sub-chains, namely the
hips and ankles for bipedal robots. The resulting model of the system is referred
to as flexible model, in contrast to the rigid model. The current configuration of
the flexible model minimizes the MSE between the true orientation of all the bodies
and the theoretical one computed by Forward Kinematics (FK). It is mathematically
equivalent to projection operation, so it is extremely fast to evaluate. Vigne et al.
(2019) validated that deformation points at the sagittal hip joint and the sagittal an-
kle joint of each leg can explain the overall deformation for the exoskeleton Atalante,
using motion capture on nominal motions as ground truth. Once embedded in the
real robot, the orientation of the bodies is estimated using IMU sensors, assuming at
least one foot is flat on the ground and the contact is stable (Vigne et al., 2020b).

The mass mi+0.5 and inertia Ii+0.5 of the intermediate body Bi+0.5 depends on
the location of the deformation point. If the latter is inside a body, then the mass and
inertia of this body are distributed between the original and extra bodies at the user’s
discretion. Similarly, an intermediate body is still added even if the deformation point
is located at a joint, but it is fictitious in this case. More precisely, it is massless
and dimensionless, so that the flexible joint is coincident with the true one, i.e.
ipf = 0, iRf = I3. This is necessary because two joints cannot be connected together
in a kinematic tree. By convention, the intermediate body is placed after the original
joint in the latter case. As expected, the flexible and rigid configurations match
exactly for θf = 0 whether the location of the deformation point.

The internal dynamics of the flexible joints are modelled as spherical mass-spring-
damper mechanisms (see figure C.1),

If ω̇f = −k log(qf )− νωf − τf (C.1)

where qf is the orientation of the flexible joint as a quaternion, log is the inverse
exponential map on SO(3) mapping quaternions to their axis-angle representation
(see equation (2.13)), ωf is the angular velocity of the joint, τf is the torque apply
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by its parent body Bf , Ia is a positive diagonal inertia matrix, and k, ν are positive
semi-definite matrices representing the stiffness and damping of the deformation re-
spectively. If the extra intermediate body is massless, then τi = τf , where τf is the
force apply by the virtual joint Jf on the intermediate body Bi+0.5.

The inertia If of the flexible joint is implemented as armature inertia in rigid
body algorithms to avoid altering the inertia of the whole system. This way, it
affects the dynamics of the flexible joint in its local frame but does not propagate
downward in the sub-chain composite inertia. Mathematically, armature inertia is a
block-diagonal matrix added directly to the mass matrix of the system H(q). If the
armature inertia If is infinite, then ω̇f = 0 and the dynamics of the flexible model is
the same as the rigid one. On the contrary, if If = 0 then the numerical integration
of the dynamics of the flexible joint is unstable if the intermediary body Bi+0.5 is
massless. In theory, it should be valid regardless, but it reduces the order of the
dynamics from two to one: the analytical velocity would change discontinuously if
ν > 0, the analytical position otherwise.

The inertia If is not well-motived physically. It is rather introduced to smooth
out the dynamics and avoid discontinuity in acceleration, which is essential to allow
for a large integration time step during simulation. The control period is about 10ms
for policy learning applications on legged robots, so ideally the integration step must
be as close as possible to this value to maximize the simulation speed and hence
reduce the training time. For Atalante, it corresponds to an armature inertia of
about 1.0kgm2 on each axis. In comparison, the integration step must be around
10us to avoid numerical instability if If = 0.

C.2 Ground Contact Interaction

C.2.1 Enforcing Bilateral Kinematic Constraints

Bilateral kinematic constraints are equality constraints involving the current state of
the system and time in general. They are ubiquitous in poly-articulated robots. For
instance, to model closed kinematic chains or complex transmissions such as mirrored
joint or differential gear. In all but a few cases, it can be formulated as holonomic
constraints fc(q) = 0, so we restrict our analysis to this particular kind of kinematic
constraint in the following. Let P be a frame attached to a body B, and O is a fixed
point in space. The constraint fc(q) = 0 resulting from fixing frame P at O is simply
the error between the current pose (pP , RP ) of frame P and the target pose (pO, RO)
of point O, expressed in an arbitrary reference frame with origin P . It gives,

fc(q) =

(
pP − pO

R̄T log
(
RPR

T
O

)) Jc(q) = JP (C.2)

where R̄ is the rotation matrix representing the orientation of the reference frame
in space, JP is the jacobian of the position and orientation of the body B at point
P in the reference frame, and log is the inverse exponential map on SO(3) mapping
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rotation matrices to their axis-angle representation. As a reminder, the reference
frame is always considered fixed even if moving.

This objective is to take into account these constraints when integrating the
dynamics of the system. More precisely, we are looking for the acceleration q̈ of the
system based on the current position, velocity, external forces, and constraints. The
classical forward dynamics algorithm does not handle constraints, and the Gauss’s
principle of least constraint must be used instead. It states that the acceleration of the
constrained system is as close as possible to that of the corresponding unconstrained
system in a least-squares sense. It was originally formulated for point mass particles,
but it is straightforward to generalize for poly-articulated systems by considering
the inertia matrix as opposed to the mass of each body. Formally, the subsequent
optimization problem must be solved:

q̈∗ = argmin
q̈

1

2
∥q̈ − q̈free∥2H (C.3)

s.t. fc(q) = 0 (C.4)

where H is the inertia matrix of the system, ∥x∥H =
√
xTHx is the kinetic metric

and q̈free is the solution of the forward dynamics without constraints q̈free = H−1(τ −
C(q, q̇)q̇−G(q)). The metric ∥x∥H is a valid norm since the matrix H is positive semi-
definite by property of the kinematic energy 1/2q̇THq̇ ≥ 0. Using this metric, joints
having a limited effect on the total kinematic energy of the system have a limited
effect on the norm and conversely. The constraint fc(q) = 0 implicitly depends on
the acceleration q̈. This dependency must be made explicit by differentiating twice
equation (C.4) to be able to solve the optimization problem,

ac = Jc(q)q̈ + γc = āc (C.5)

where Jc(q) is the jacobian of the constraint, γc = J̇c(q, q̇)q̇ is called drift , and āc
is the target constraint acceleration. γc is usually obtained by computing ac for
q̈ = 0 using forward kinematics. The target acceleration āc serves as correction
term to prevent the constraint fc(q) = 0 from drifting. Without correction, it is
only sufficient if the constraint is already exactly satisfied at both the position and
velocity levels, which may not be the case. Therefore, a correction term is introduced
to reduce the constraint violation over time at the position and velocity levels if
necessary. Physically, this approach is questionable, but it is convenient to allow
large integration timestep without diverging because of compounding errors during
integration. A classical correction is the Baumgarte stabilization (Flores et al., 2011),

āc = −k fc(q)− ν vc(q, q̇) (C.6)

where vc = Jc(q)q̇ is the velocity of the constraint and k, ν are free parameters.
Loosely speaking, it can be viewed as a kinematic spring-damper mechanism whose
stiffness and damping parameters are k, ν respectively. In practice, those parameters
are chosen to get critical damping, which means that the constraint violation is
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exponentially reducing over time. It yields k = ω2, ν = 2ω where ω = 2π/∆T is the
pulsation and ∆T is the time constant.

The optimization problem (C.3) can be solved using the method of Lagrange mul-
tipliers after replacing the original constraint by its regularization at the acceleration
level equation (C.5). The associated Lagrangian is

L(q̈, λ) =
1

2
∥q̈ − q̈free∥2H + λT (ac − āc) (C.7)

where λ is the vector of lagrangian multipliers. The solution to the original problem
is a saddle node of its Lagrangian,

(q̈∗, λ∗) = argmin
q̈

argmax
λ

L(q̈, λ). (C.8)

The optimality conditions, also called Karush-Kuhn-Tucker (KKT) (KKT) condi-
tions, can be formulated as a linear system (Carpentier et al., 2021)(

H JT

J 0

)(
q̈
λ

)
=

(
Hq̈free
−γc + āc

)
, (C.9)

which can be inverted in a closed-form. It yields,

q̈ = q̈free −H−1JT
c λ (C.10)

ac = − (JcH
−1JT

c )︸ ︷︷ ︸
A

λ+ ac,free = āc (C.11)

where A is the inverse Operational Space Inertia Matrix (OSIM) or Delassus matrix
(Khatib, 1987), λ are the lagrangian multipliers and ac,free = Jc(q)q̈free + γc is the
acceleration of the constraint if not enforced. It has been mentioned in preliminaries
that a spatial force f̂ = (f, τP ) associated with the bilateral constraint fc(q) = 0
can be expressed in joint space as τ = JT

P f because of the duality condition between
spatial motion and force spaces. Consequently, the Lagrange multiplier λ can be
interpreted as the spatial force vector f̂ applied at point P on body B in the reference
frame. Similarly, the velocity vc and acceleration ac of the constraint are the spatial
velocity vP and acceleration aP of the contact point P in the reference frame.

Carpentier et al. (2021) have shown that equation (C.11) admit a unique solution
if and only if A is strictly positive definite, which can be obtained efficiently using
sparse Cholesky decomposition. However, in most cases, this condition does not hold.
Indeed, the OSIM matrix A is only guaranteed to be positive semi-definite. A is rank
deficient if some constraints are redundant figure C.2. In such as case, there is an
infinite number of solutions and Cholesky decomposition cannot be used anymore.
Several approaches can be considered to circumvent this limitation. Carpentier et al.
solves it iteratively using a proximal algorithm, which converges to a solution of the
original problem at a linear rate. Alternatively, L2-norm penalty term can be added
to the Lagrangian, so-called Tikhonov regularization.

L̄(q̈, λ) = L(q̈, λ)− 1

2
∥λ∥2Γ, (C.12)
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C

Figure C.2: Non-uniqueness of the solution in case of constraint redundancy. The
box is in static equilibrium if and only if the spatial force applied at the CoM C
by the n contact constraints fc,i cancels the weight exactly. There is an infinity of
solutions to this problem for n > 1. Two different solutions are illustrated.

where Γ must be strictly positive definite. It achieves a trade-off between solving the
original problem and minimizing the norm of the multipliers, so it does not converge
to an exact solution anymore. However, it helps to get smoother forces, by prevent-
ing jumping from one to another if it is not unique, whatever the initial guess. It is
also faster to compute than proximal methods, and the effect of the regularization
is very limited when Γ is properly tuned. It is the preferred approach in Jiminy
(Duburcq, 2019). A common choice Γ = γ diag(A), where diag operator extracts the
diagonal of a matrix as a diagonal matrix, and γ is scalar called damping parameter
around 1e−3. This relative weighting of the penalty terms is important to be robust
to the unbalanced mass distribution along the kinematic tree, and thereby consis-
tently provides a good approximation of the optimal solution. Using this approach,
equation (C.11) must be slightly revised. It follows,

(JcH
−1JT

c + Γ)︸ ︷︷ ︸
Aγ

λ− (ac,free − āc)︸ ︷︷ ︸
b

= 0. (C.13)

where Aγ is called the damped inverse OSIM.

C.2.2 Contact as Unilateral Constraints

Physically, contact constraints are not bilateral but rather unilateral, and the ground
reaction force is unbounded. More precisely, the robot can slip on the ground and no
torque can be applied by individual contact points figure C.3. According to Coulomb
friction law (Moreau, 1988),

0 ≤ vn ⊥ fn ≥ 0 No penetration & Non-adhesive ground (C.14)
0 ≤ ∥vt∥2 ⊥ µfn − ∥ft∥2 ≥ 0 Coulomb friction cone (C.15)

vt · ft = −∥vt∥2∥ft∥2 Maximum energy dissipation (C.16)
τP = 0 No torque (C.17)

where v ⊥ w is the complementarity condition v ·w = 0, vt, ft are the linear velocity
and force at the contact point in the plane orthogonal to en axis respectively, vn, fn is
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Figure C.3: Ground reaction force at contact point

the linear velocity and force along en axis respectively, and µ is the friction coefficient.
These conditions must hold during the whole motion. The equality equation (C.17) is
equivalent to masking the lines in the jacobian JP associated with torque coordinates.
In this way, the Lagrange multiplier only gathers the linear force vectors at all contact
points. This simplification is done in the following for conciseness.

Contact constrained can be formulated as fixed frame constrained whose asso-
ciated force must satisfy the aforementioned complementarity conditions. Equa-
tion (C.11) is only valid for bilateral constraints, and it has no longer guaranteed
to hold for contact constraints because of the additional requirements. Instead, it
must be replaced by a minimization problem, or equivalently its dual Non-Linear
Complementarity Problem (NLCP) (Anitescu & Potra, 1997). One can derive this
optimization problem using the same framework as bilateral constraints, starting
from some holonomic constraint fc(0) to enforce, even though it cannot be done
exactly. In the particular case of contact constraints, the notion of target pose pre-
viously introduced is ill-defined. It is not really a fixed point in space but rather a
moving target. At every instant, the target position is the projection O onto the sur-
face of the contact point P . Therefore, if it slips in translation or rotation, then the
target pose is updated accordingly. The reference frame is defined in a way that its
vertical axis is normal to the ground while the two orthogonal axes in the tangential
plane are arbitrary. This choice preserves the isotropy of Coulomb friction and eases
computations for the complementarity conditions of the contact model. It yields,

fc(q) =
(
0 0 d 0 0 0

)T
Jc(q) =

(
R̄T 0
0 R̄T

)
0JP (C.18)

where d is the depth of the contact point, 0JP is the jacobian of the position and
orientation of the body B at point P in the world frame. Using this formulation,
Baumgarte stabilization progressively brings the contact point back to the surface
without any effect at the position-level in the tangential plane and cancels out the
spatial velocity of the contact point. However, it is no longer guaranteed that con-
straint violation will reduce over time because of bounded forces. If there are n
contact points, then the constraint function fc is the concatenation of the set of
individual constraints {fc,i}ni=1.
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The resulting constrained dynamics is discontinuous in velocity because of this
contact model. As a result, it is not possible to integrate the dynamics at the ac-
celeration level anymore. The classical approach is to integrate the velocity directly,
dealing with impulses instead of forces. Impulses f̃ are integral of the forces f over
the integration timestep h. Impulses associated with contact constraints are incon-
sistent with their time-continuous counterpart because of the discontinuous nature
of the contact model, known as Painleve’s paradox . The latter states that contact
impulses are not equal to the timestep multiplied by the continuous-time forces, not
even at the limit when the timestep approaches zero. Indeed, for the time-continuous
formulation, forces would grow unboundedly, while the corresponding impulses are
always bounded. Only a position shift can occur at the velocity level, which can
only be on the normal axis for contact constraints as the reference position pO in
the tangential plane is the contact point itself pP . Since the contact model enforces
the normal velocity to be positive, the contact point will naturally move up to the
surface without target velocity to stabilize the constraint. Thus, Baumgarte stabi-
lization can be ignored. Todorov et al. (2012) reformulated equation (C.11) at the
velocity level by discretizing the constraint acceleration ac = (v+− v−)/h where h is
the timestep. It results in an implicit time-stepping scheme for computing the next
timestep velocity v+,

v+ = −Aγ f̃ + hac,free + v−

0 ≤ v+n ⊥ fn ≥ 0

0 ≤ ∥v+t ∥2 ⊥ µfn − ∥ft∥2 ≥ 0

v+t · ft = −∥v+t ∥2∥ft∥2

(C.19)

One can demonstrate it admits a unique solution if A is positive definite. It corre-
sponds to the set of first-order KKT conditions of the following Second-Order Cone
Program (SOCP),

f∗ = argmin
f̃∈K

1

2
∥v+∥2

A−1
γ

s.t. v+ = −Af̃ + hac,free + v−
(C.20)

where ∥v+∥2
A−1

γ
can be interpreted as the kinematic energy in contact space (Todorov

et al., 2012) and K = {x = (xt, xn) ∈ R2 × R | xn ≥ 0, xn − ∥xt∥2 ≥ 0} denotes
the second-order cone. The position is then integrated based on the next timestep
velocity v+ using a so-called semi-implicit integration. This is essential for numeri-
cal stability as the velocity is integrated implicitly and can change discontinuously.
Usually, Euler’s semi-implicit scheme is used, but nothing prevents from modifying
Runge-Kutta 4 to operate on the next timestep velocities rather than accelerations
(Stewart & Trinkle, 1996; Todorov et al., 2012).

Another approach is the regularization of the contact model to ensure the forces
and accelerations are time-continuous and bounded. Providing smoother dynam-
ics over the velocity-based method is a significant advantage for machine learning
algorithms, which are best suited for continuous problems. Indeed, it can be demon-
strated that the required number of parameters for a neural network is directly related
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to the regularity of the function to approximate through its Lipchitz constant. Neu-
ral networks of low complexity are naturally more robust to input noise and easier
to train, which is critical for training control policies. Moreover, it makes it harder
for the agent to abuse the physics, thereby improving transferability. Yet, the gap
between the approximate and exact models should be marginal for the simulation to
be realistic. We resort to Baumgarte stabilization to smooth out the system dynam-
ics at impact by gradually enforcing the constraints over time. In particular, there is
no temporal discontinuity up to the acceleration level.

Baumgarte stabilization has the additional benefit to cancel any position shift
along the normal axis over time. On the one hand, this relaxes the need for enabling
contact constraints at the exact impact timing, allowing larger integration timestep.
On the other hand, it enables handling arbitrary ground profiles without special care.
Specifically, if the ground profile is locally concave, then the depth of the contact point
would increase in case of slippage. Stewart and Trinkle (1996) address this issue by
replacing the non-penetration condition with a more complex one. The latter is
coupling the velocity in the normal and tangential directions to enforce sliding along
the surface, which requires having access to the gradient of the ground profile. It is
important for the velocity-level formulation, but it is much less of an issue for the
acceleration-level formulation thanks to Baumgarte stabilization constantly moving
the contact point back to the surface.

The objective is to solve an alternative SOCP,

f∗ = argmin
f∈K

1

2
∥δ∥2

A−1
γ

s.t. δ = ac − āc = −Aγf + b

(C.21)

where ∥δ∥2
A−1

γ
as no straightforward physical meaning, unlike the velocity-level for-

mulation. This choice can be better understood by considering its dual NLCP,

δ = ac − āc = −Aγf + b

0 ≤ δn ⊥ fn ≥ 0

0 ≤ ∥δt∥2 ⊥ µfn − ∥ft∥2 ≥ 0

δt · ft = −∥δt∥2∥ft∥2

(C.22)

The target acceleration āc for contact constraints is given by

āc = −(ω2den + 2ωvn)− 2ωvt. (C.23)

Typically, ω ≫ 1, such that δ is almost colinear with āc. Therefore, vt · ft ≈
−∥vt∥2∥ft∥2, which complies with the maximum energy dissipation principle unless
the acceleration of the contact point is not dominated by its velocity. Using the same
reasoning, the tangential target acceleration 2ωvt should be large enough to saturate
the tangential force at the boundary of the friction cone unless the tangential velocity
closely approaches zero. It implies that 0 ≤ ∥δt∥2 is equivalent to 0 ≤ ∥vt∥2 almost
every time, as illustrated in figure C.4.
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t

Figure C.4: Theoretical temporal evolution of tangential velocity of a point mass
m for the acceleration-level formulation of constrained dynamics. Flat ground and
constant normal force are assumed. The maximum tangential force resulting from
Coulomb friction is denoted F . It matches the true contact model from the beginning
until the very end when the target velocity is too slow to saturate the tangential force.
It prevents discontinuity at the velocity level so that it smoothly stops asymptotically.
The contact model mismatch transient is highlighted in grey.

The approximate contact model can be quite off during transient phases because
the maximum dissipation principle is not strictly enforced. Notably, the ground
reaction force would accelerate the tangential velocity instead of slowing it down if
the target acceleration is higher than the free acceleration. In practice, this unrealistic
phenomenon always occurs right before transitioning from slipping to sticking and
slightly delays its timing. This discrepancy is absolutely necessary for the acceleration
to be continuous. Indeed, the orientation of the force cannot change instantly from
forcibly aligned with the velocity to whatever is necessary to hold the contact point
in place. Even though it can be seen as a violation of the laws of physics, the induced
extra slippage is insignificant and can be neglected.

The behavior along the normal direction is more tricky to analyze because of
the depth d generally being non-zero at impact. Assuming flat ground and positive
normal force, critically damped Baumgarte stabilization ensures the normal velocity
vn is first positive during 1/ω, then negative until the contact point reaches the sur-
face asymptotically. As expected, it does not match the true contact model during
this first phase, else it would be impossible to guarantee the continuity of the ac-
celeration and bounded forces. The complementary condition on the normal axis in
problem (C.22) entails that of the true contact model after this short transient. Still,
it is more restrictive as it forces the contact point back to the surface (see figure C.5).

Overall, the regularization only has an effect during short transient phases at
impact or between sticking and slipping, which should barely affect the simulated
trajectory if properly tuned. Lowering the critical time of Baumgarte stabilization
would shorten the transient phases. Yet, it would result in a stiff differential equation,
leading to numerical instability if the integration timestep h is not reduced. The for-
mulation of the constrained dynamics at the acceleration level through regularization
of the contact model is the preferred approach in Jiminy. A more comprehensive case
study is presented in appendix C.2.3.

To a lesser extent, complementary-free approaches based on a convex contact
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2%

Figure C.5: Theoretical comparison of the temporal evolution of contact depth for
velocity-level and acceleration-level formulation of constrained dynamics. The normal
velocity of the contact point goes instantly to zero as soon as impact is detected for
the velocity-level formulation on the left. On the contrary, both the position and
velocity are continuously differentiable for the acceleration-level formulation due to
Baumgarte stabilization, and the contact point is forced to slowly move back to the
surface. The contact model mismatch transient is highlighted in grey.

model are used by some simulators, Mujoco being by far the most famous simulator
relying on such model (Todorov, 2010, 2014). It has the advantage to approximate
the original optimization problem that would be NP-hard in the general case without
regularization by a convex optimization that can be solved efficiently using newton-
based methods. The resulting contact dynamics is analytically invertible, which
means that the forces can be recovered from any state and derivative of the system
(q, q̇, q̈), regardless of the constraint violations. In the same way, the analytical
gradient of the contact model can be obtained efficiently. It is a major advantage
for trajectory planning and optimal control that requires access to the gradient of
the contact problem. The issue with such a model is that it tends to be constantly
unrealistic and not just during transient phases. For this reason, this kind of approach
is not well-regarded by the robotics community, for which being able to simulate
realistic contact is often critical for transfer from simulation to reality.

Contact models based on phenomenological spring-damper interaction forces were
popular in the 90s (Marhefka & Orin, 1996). In these phenomenological models,
the ground reaction is completely decentralized, ignoring any coupling between the
contact points. Thus, computations are simple to implement, interpretable, and ex-
tremely fast (scaling linearly with the number of contact points). However, they
have fallen out of favor on account of their many drawbacks. First, it requires exact
impact timing detection to prevent forces from exploding due to large penetration
depth. Relying on an adaptive timestep integrator alleviates this issue without effort.
Yet, the average timestep would hardly exceed 10us for legged locomotion. This may
substantially increase the overall computational cost if not mitigated by updating
some rigid body quantities at a lower frequency. Moreover, the resulting dynamics
lacks smoothness, limiting the performance of policy learning methods. Secondly,
viscous friction can be modelled but not static friction, also called stiction. It means
that the contact points must have some residual tangential velocity for a tangential
force to be applied. Consequently, the support feet are constantly moving on the
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ground. This is problematic because they are supposed to be fixed on the ground for
both planning and control. Besides, the lack of stiction acts as a low-pass filter on the
dynamics and may hide some excitatory coupling between observation and control
that may occur experimentally. Finally, it requires tedious manual tuning of the stiff-
ness and damping parameters to be numerically stable. If the contact-space inertia is
too large, then it will result in a large penetration and oscillations. Conversely, if the
inertia is too small, then the contact dynamics will be stiff and difficult to integrate
numerically (Todorov et al., 2012). Since the contact-space inertia depends on the
current configuration of the robot, it may be impossible to find constant parameters
achieving a good trade-off regardless the motion for a given system. Nevertheless,
the stiffness and damping parameters can be adjusted automatically to make sure
the contact points are critically damped if the diagonal of the matrix A is known,
closing the gap with Baumgarte stabilization. Jiminy offers two contact models: a
phenomenological one with adaptive critically damped parameters for joint bounds
collisions, and an analytical one enforcing unilateral constraints.

It can be demonstrated that both problems (C.19) and (C.22) admit a unique
solution as long as Aγ is positive definite, which is always the case for γ > 0. They
both are very similar and can be tackled using the same methods. It could be solved
directly using a general-purpose non-linear programming algorithm. It is never done
in practice because it is likely to be very slow, and convergence cannot be guaranteed.
Another option is to formulate the NLCP as fixed point optimization problems con-
sisting in repeatably solving a well-posed SOCP, much like the proximal formulation
aforementioned. Acary et al. (2011) have proven that it converges even if the solution
is not unique. The approach is computationally very costly and never used in prac-
tice. Instead, the issue is usually overcome by making several approximations, in a
way that it can be reformulated as a Mixed Linear Complementary Problem (MLCP)
(Anitescu & Potra, 1997; Arechavaleta et al., 2009). Then, it can be solved exactly
using algorithms with strong global converge guarantees such as Lemke (Cottle et al.,
2009) or PATH (Dirkse & Ferris, 1995). The first approximation is the linearization
of the friction cone. It consists of writing the tangential force as a linear combination
of forces along several predefined directions and bounding the magnitude of the force
along these directions independently. It can be interpreted as a polyhedral approxi-
mation of the friction cone figure C.6 (Stewart & Trinkle, 1996). This approximation
is anisotropic because the maximum tangential force depends on the orientation of
the contact points on the world plane. Increasing the number of directions alleviates
this issue, at the cost of increasing the dimensionality of the problem to solve. The
canonical form of a MLCP is the following:

w+ − w− = Ax+ b

0 ≤ w+ ⊥ x− l ≥ 0

0 ≤ w− ⊥ u− x ≥ 0

(C.24)

At this point, the NLCP cannot be formulated this way because its complementary
conditions are mutually dependent. Indeed, the maximum tangential force depends
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Figure C.6: Example of polyhedral linear approximation of friction cone.

on the normal one despite the linearization of the friction cone. To get around
this limitation, the normal force involved in the complementary conditions is usually
replaced with a constant estimate. The value resulting from bilateral constraints is a
reasonable estimate. This amounts to inverting the linear system w+−w− = Ax+ b.
If the set of active contact points has not changed, then the value at the previous
timestep is an even better estimate that is otherwise free of cost. The problem can
now be written as a MLCP, but the impact of this approximation is hard to guess.

Solving MLCPs is computationally demanding. It is generally the main bottle-
neck of the simulation pipeline, even for high-dimensional systems. Thus, choosing
the most efficient solver is critical. The splitting methods are iterative methods orig-
inally intended for solving unconstrained linear systems. They can be adapted for
solving MLCPs. However, they scale poorly with the dimensionality of the prob-
lem, and their convergence is slow. Because of that, these iterative methods are
disregarded in many fields, in favor of non-iterative methods such as the Lemke and
PATH algorithms. Nevertheless, the splitting methods remain competitive in the
particular context of physics simulation (Enzenhöfer et al., 2018; Lacoursière, 2003;
Servin et al., 2014). This can be explained by several reasons. First, poor scalabil-
ity is barely an issue for robotics applications. The dimensionality of the problem
only depends on the number of constraints, not the kinematic tree of the robot it-
self. Legged robots are usually bipedal or quadrupedal, corresponding to at most
16 contact constraints. Therefore, the dimension of the problem should be less than
50 components. Next, the complementary conditions are guaranteed to be satisfied
after every iteration. More precisely, the force is always inside the friction cone, al-
though the maximum energy dissipation principle may not be satisfied. As a result,
the algorithm can be aborted to spare computational resources if necessary, and it
would still provide a physically meaningful solution. In addition, splitting methods
guarantee that the error is strictly decreasing so that extra iterations always improve
the accuracy of the solution. Finally, they can easily be warm-started even if the set
of active contact constraints is changing dynamically. In such a case, the Lagrangian
multipliers associated with newly active constraints are initialized to zero, whereas
the others keep their previous values. It is a major advantage since the solution at
the current timestep is likely to be very close to the previous one.

The Gauss-Seidel or Jacobi methods are the most common splitting methods (La-
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coursière, 2003). They are both very similar. While the Gauss-Seidel method relies
on the forward substitution, the Jacobi method is performing the very same opera-
tions but simultaneously. This difference has an impact on the respective conditions
of convergence. The Gauss-Seidel method is guaranteed to converge if the matrix A
of the linear system is positive definite. This is the case after linearization, provided
that exactly two orthogonal tangential directions are considered for the discretization
of the friction cone, corresponding to the well-known friction pyramid . Conversely,
the condition is more restrictive and not always verified for the Jacobi method: the
matrix A must be diagonal dominant. Besides, the Gauss-Seidel method tends to
converge significantly faster than the Jacobi method in terms of the number of iter-
ations. Quarteroni et al. (2007) have shown that it converges twice as fast for some
pathological scenarios. Thus, the Gauss-Seidel method is preferred in this work.

It is straightforward to adapt splitting methods for handling lower and upper
bounds on the unknown x. It simply consists in clipping the current iterate after
every operation. The ensuing algorithms are proven to converge under the same
conditions as originally if the bounds are fixed, but it gets more complicated oth-
erwise. The extension of the Gauss-Seidel method that handles bounds using this
technique is called Projected Gauss-Seidel (PGS) Silcowitz et al. (2010). Quarteroni
et al. have proven that PGS converges for A is positive definite whatever the initial
guess. In general, it may converge for some initial guesses and diverge for others, but
it will always converge if the initial guess is close enough to a solution. Moreover,
the residual Ax − b always converges even if the solution x diverges, so it is more
appropriate to define the stopping criteria in residual space. Randomized Kaczmarz
method is a variant of the coordinate descent method which closely resembles PGS.
It is proven to converge for A positive semi-definite matrix, relaxing the need for
regularization. However, it is computationally about twice more expensive per itera-
tion, and it requires much more iterations to converge in practice. Therefore, PGS is
more appropriate if regularization must not be avoided at all costs. If A is symmetric
positive definite, the Gauss-Seidel method is monotonically convergent for the norm
∥ · ∥A, and the spectrum radius ρ(A) controls the convergence rate. Regularization
enforces a lower bound to the spectral radius ρ(A) > γ and subsequently the con-
vergence rate. There is no general result about the convergence rate of PGS. Worse
still, it is affected by the index ordering when the bounds are mutually dependent.
In particular, because the maximum tangential force at each contact point depends
on the associated normal force through the friction cone. Thus, updating first all the
normal forces and only then all the tangential forces is expected to converge faster
than the other way around or even simultaneously.

PGS convergence rate can be further enhanced using subspace minimization. It
consists of performing PGS iterations on the full problem, followed by fixing the
active set and performing iterations on the reduced problem, then starting over.
Indeed, PGS is known to be very efficient when it comes to identifying rapidly a good
candidate for the active set (Silcowitz et al., 2010). Additionally, Successive Over
Relaxation (SSOR) can be used to enhance the convergence rate, but it introduces
a new parameter tricky to tune to get consistent improvement. Note that increasing
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Figure C.7: Pathological issue with collision detection for a box on flat ground using
the deepest point as the unique contact point. The ground reaction is jumping
discontinuously from one corner to the other, inducing a momentum at the Center
of Mass (CoM) of the box, therefore never stabilizing flat on the ground.

regularization also makes convergence faster, but it increases the gap between the
current and target constraint acceleration, which makes the simulation less realistic.

The friction pyramid approximation is problematic for learning control policy
since the orientation in the world plane is usually not observable. This makes it
much harder for the agent to take advantage of contact force information as it ap-
pears noisy from its perspective, limiting its performance. For instance, the policy
cannot predict whether the robot is going to slip. We present a novel algorithm 5
for solving problem (C.22) without any approximation. It is inspired by PGS and
Jacobi methods, combined with the projection on a second-order cone.

Assuming it converges, the result must be a fixed point of the algorithm. Ex-
amining all individual cases, one can prove A positive definite is sufficient but not
necessary. If it converges, then its output is the solution of problem (C.22). The
update of tangential forces is done for both axes simultaneously, slightly improving
the computational efficiency over vanilla PGS. Modifying this algorithm to take into
account the torsional friction would be straightforward.

C.2.3 Contact Detection

Ground contact interaction is usually loosely approximated by a finite set of contact
points. Being able to determine efficiently the optimal set of contact points minimiz-
ing the discrepancy between reality and simulation is an active field of research. For
generic shape, this problem is NP-hard, so heuristics must be used to find a set of
points that is good enough with limited computational resources. This problem is
related to collision detection. State-of-the-art collision libraries only provide a single
contact point for every shape, regarded as the deepest point of intersection between
the two mediums. This is not enough to simulate ground contact efficiently. For
instance, consider a box on a flat ground figure C.7, the deepest point is jumping
discontinuously from one corner to the other at every point in time and never sta-
bilizing whatever the integration step. This kind of issue happens systematically for
shapes that are not strictly convex. There are many heuristics to try to overcome this
limitation, among them using remanent contact points or limiting the maximum dis-
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Algorithm 5: Successive Second-Order Cone Displacement
Input: Linear system to solve: A, b - Initial guess: f (0)

Output: Solution: f
Compute initial residual δ(0): δ(0) = Af (0) + b;
for k = 0 to kmax do // do at most kmax iterations

for i = 0 to n do // loop over n contact constraints
Update normal force f (k)ni using forward substitution:

f (k+1/2)
ni

+=
1

Ani,ni

(
bni −

∑
j<ni

Ani,jf
(k+1)
j −

∑
j≥ni

Ani,jf
(k)
j

)
;

Enforce positive normal force:

f (k+1)
ni

= max
(
0, f (k+1/2)

ni

)
;

Update tangential force f (k)ti
for x and y axes simultaneously:

f
(k+1/2)
ti

+=
1

max(diag(Aγ)ti)

(
bti −

∑
j<ti

Ati,jf
(k+1)
j −

∑
j≥ti

Ati,jf
(k)
j

)
;

Project tangential force on friction cone:

f
(k+1)
ti

= min

1, µ
f
(k+1)
ni∥∥∥f (k+1)
ti

∥∥∥
2

 f
(k+1/2)
ti

;

end
Compute updated residual δk: δ(k+1) = Af (k+1) + b;
if |δ(k+1) − δ(k)| < tolabs or |1− δ(k+1)/δ(k)| < tolrel then

break ; // Abort if tolerance satisfied for every component
end

end

placement of a unique contact point at every integration step. How to do it properly
is an active field of research. Alternatively, one can approximate the true body shape
by their convex hull , which is the smallest convex set that contains the true one. In
this way, the deepest point is guaranteed to move continuously along its surface, and
therefore the integration is numerically stable if the integration step is small enough.
However, the convex hulls can be very different from the original shapes, leading to
unrealistic simulations. It is the case of the feet of the exoskeleton Atalante for which
bumpers at the corner of the sole plate elevate it about 2 cm about the ground, much
like the pathological chair example figure C.8.

In Jiminy, the real shape of the collision bodies is ignored and replaced by a finite
set of candidate contact points at the surface. Those candidate contact points must
be placed carefully to minimize the corresponding approximation error. Increasing
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Figure C.8: Illustration of convex hull for a chair

the number of points strictly decreases the error but increases the computational
burden as well. Typically, boxes are replaced by the 8 corner points, eventually
including the center of each face. Such an approach is satisfactory as long as the
regularity of the ground profile is consistent with the chosen set of points. The
Nyquist-Shannon sampling theorem can be used to assess if the chosen set of points
makes sense. Indeed, this theorem establishes a sufficient condition for a discrete
sequence to capture all the information from a continuous signal of finite bandwidth.
In this case, the discrete sequence relates to the contact points, and the continuous
signal is the ground profile. It states that if the lowest period of spatial patterns of the
ground profiles is D meters, then it can be approximated by a series of points spaced
at most 2D apart. In the following, it is assumed that a finite set of candidate contact
points has been defined for the bodies in the system that are likely to collide with the
ground. It is commonly limited to the end of every sub-chain in the kinematic tree to
speed up the simulation. Similarly, handling of internal collisions between bodies can
be ignored and replaced by a safety radius associated with each body. The simulation
is aborted as soon as the two spheres intersect. Such an approximation is not limiting
for most applications since the motion is likely to be unsatisfactory when it happens.
For Atalante, there is one contact point at the center of each bumper under both
feet. This is necessary because there is one vertical force sensor inside each bumper.
Simulating the sensors require having access to the force applied to their locations.
The contact problem is not invertible, which means that it is not possible to uniquely
decompose the spatial force applied on each foot into linear force on each bumper.
Therefore, it is only possible to simulate such sensors if candidate contact points are
coincident with them. In such as case, their measurements are the extraction of the
vertical forces from the solution of the contact problem directly. This modelling turns
out to be quite realistic in practice for Atalante.

The ground profile is defined as a smooth heightmap function h ∈ C1 that maps
the position in world plane (x, y) to the height of the ground zh and unit normal axis
en at this location. The restriction to a heightmap ensures that the search region
of the closest point on the ground from the contact point is closed and bounded.
The computation of the closest point is tractable since it can be formulated as a
global optimization problem of a non-convex smooth function with bounded Lipschitz
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(a) Exact (b) Approximation

Figure C.9: Exact and approximate methods to compute the closest point to a smooth
heightmap ground profile h. Both methods are equally valid no matter if the candi-
date contact point P is above or below the ground profile.

constant over a closed bounded region (see figure C.9a). Algorithms exist to solve
exactly this problem, but they are computationally costly. Instead, a very fast first
order approximation method is used in Jiminy (see figure C.9b). First, the height zh
and normal axis en of the ground is computed at the position in world plane (xP , yP )
of a candidate contact point P , then the signed depth d is estimated projecting the
signed vertical height difference ∆ = zh−zP on the normal, d = ∆(en ·ez). A contact
constraint is activated if the contact point is below the ground profile. However, this
constraint is not deactivated as soon as the contact point gets above the ground,
but a hysteresis parameter dthr is introduced to improve the numerical stability. Its
value is around 1mm. This procedure is summarized by algorithm 6. We assess its
performance for a falling box on flat ground (see figure C.10).

C.3 Mechanical Transmissions and Actuators

C.3.1 Direct Drive

The rigid body dynamics algorithms are unaware of the hardware powering the robot.
Yet, taking into account the dynamics of the motors in simulation is important. For
instance, the torque and power that a motor can deliver are limited. This limits the
efforts that can be applied at the joints by the controller in a way that depends on
the current state of the robot. If this aspect is ignored when training control policies,
the motor torque may saturate unexpectedly and the robot may fall incidentally.

Physically, the mechanical transmissions are the structural elements that cause
the actuators to apply forces to the joints. Each transmission system couples one
or more actuators with one or more joints, which are forced to move together as a
consequence of this coupling. Most of the time, the motors and joints are connected
one by one, which is referred to as direct drive. In this particular, the dynamics of
the motors and joints are mathematically confused, and thus it is not necessary to
model the transmissions explicitly to take into account their effects.

The mechanical parts of transmissions are often not weightless and have their
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(c) Energy dissipation

Figure C.10: Evaluation of acceleration-level constrained dynamics formulation on a
box of size 1m×1m×1m and mass 1kg. There is one candidate contact point at each
corner. The box is thrown on flat ground with an initial height of z = 1.5m, linear
velocity vx = 3.0m s−1, and angular velocity ωx = 1.0rad s−1, ωz = −5.0rad s−1. The
regularization is set to γ = 1e−3. It ensures the tangential forces go back to zero.
The explicit Euler scheme with 1ms timestep is used for integration.
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Algorithm 6: Contact detection
for i = 0 to n do // loop over n candidate contact points

Fetch position pP = (xP , yP , zP ) of the candidate contact point i;
Evaluate ground profile at P : zh, en = h(xP , yP );
Compute first-order approximate signed depth d: d = (zh − zP )(en · ez);
if d ≥ 0 then // below ground surface

// enable constraint if below ground surface
Activate constraint;

else if d ≤ −dthr then
// disable constraint if significantly above ground surface
Deactivate constraint;

end
if Constraint is active then

Update target pose (pO, RO): pO ← pP − den, RO ← RP ;
Update local reference frame R̄:

etx =
en × ex
∥en × ex∥

, ety = etx × ety , R̄ =
(
etx ety en

)
;

end
end

own inertia. Usually, the inertia of the structural elements is very light and can
be neglected. However, it may not be the case for the actuators. The importance
of taking into account the inertia of the rotor, the so-called armature inertia, can
be highlighted in a simple case. Let us consider a single revolute joint driven by
a simple rotary motor through a gearbox. Now, assume the rotation axis of the
motor is aligned with the joint, the transmission is fixed in the world frame, and
the structural elements of the transmission have no inertia. Let qm be the actuator
position and qj be the joint position. Iload denotes the inertia of the load attached
to the joint, Im is the inertia of the motor, and r > 1 is the gear ratio. It follows,

q̇m = rq̇j , u = rum. (C.25)

The transmission is in an inertial frame, so the total kinetic energy of the system is,

K =
1

2
Iloadq̇

2
j +

1

2
Imq̇

2
m =

1

2
Ieq q̇

2
j , (C.26)

where Ieq = Iload + r2Im is called reflected inertia to joint. This is the equivalent
inertia viewed from the joint. Generally, the armature Im is very small relative to
the load Iload. However, its impact is quadratic with respect to the gear ratio r. If
the latter is large, which is often the case in practice, then it can significantly affect
the equivalent inertia and even dominate the load. It clearly shows that the effect of
the armature on the kinematic energy, hence on the dynamics, cannot be neglected.
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For more complex systems including all free-floating base robots, transmissions
are not fixed in the world frame but rather embedded into the system. Taking
into account the transmissions is harder if they are not in an inertial frame, as
it cannot be modelled as equivalent inertia. Indeed, a Coriolis effect will appear
as long as the rotation axis of the motor is not orthogonal to its angular velocity,
which depends on the configuration of the robot in general and therefore cannot be
assumed. The derivation of the exact dynamical equations including the transmission
inertia can be obtained as usual using the Lagrangian formalism presented previously
(Sciavicco et al., 1995). To this end, each transmission is considered as a separate
entity connected to the robot. It results in a dynamical system whose state includes
both the classical joint state and the motor state. Then, the kinematic constraint
relating the state of the motors to the state of the joints is enforced through additional
bilateral constraints. The advantage of this approach is to model the poly-articulated
system and its associated transmissions using the same formalism and without any
approximation. However, first, it doubles the dimensionality, which is raising the
computation cost for rigid body algorithms involved in the numerical integration.
Secondly, it requires solving an optimization problem to compute the acceleration of
the system based on Gauss’s principle of least constrained, which does not have a
closed-form solution in the general case. Solving this problem in particular is several
times more expensive than neglecting transmission.

Various approximations can be made to avoid solving this optimization prob-
lem explicitly. One solution is to suppose that the coupling between the joint
and the transmission is not rigid but flexible. The kinematic constraints associ-
ated with transmissions are then replaced in spring forces (Siciliano & Khatib, 2008,
Part B|Section 13.1). This model is known as Serial Elastic Actuator (SEA). Al-
though effective from a mathematical point of view, it has the same limitations as
the phenomenological spring-damper contact model: it results in a stiff differen-
tial equation that requires a small integration timestep to be numerically stable,
and it adds extra vibration modes that may be unrealistic and impeding control
performance. The standard approach is to assume that the kinetic energy of the
transmission is due to its own spinning only. It boils down to considering that the
transmission system is in an inertial frame by neglecting the coupling effects between
the transmission and the link motion. Consequently, there is no additional Coriolis
effect due to the transmissions, and it can be modeled as an equivalent inertia as in
the simple case. Spong (1987) introduced first this approximation for the modelling
of elastic revolute joints. Later, it was extended to any joint with rigid coupling.
The equivalent inertia matrix is obtained by adding a block diagonal matrix to the
original inertia matrix without transmissions computed with Composite Rigid Body
Algorithm (CRBA). The block associated with each joint depends on its type. For
robots having only linear and revolute joints whose axes are colinear to the ones of
the motors, it is a diagonal matrix with non-zero values equal to the rotor inertia
at joint-level r2Im for components corresponding to actuated joints. This approxi-
mation is implemented in Jiminy as it is cheap to evaluate and constitutes a strict
improvement over neglecting the inertia of the transmissions completely.
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Figure C.11: Pantograph example of closed kinematic chain transmission

C.3.2 Advanced Transmissions

Complex transmissions are sometimes used in robotics. Differential drives are good
examples of non-trivial transmissions that are widespread in wheeled robots. In this
section, we present the generalization of direct drive to any n-to-m transmission.

Formally, the motion in motor space Qm is related to the motion in joint space
Qj by some forward transformation f : Qm 7→ Qj . If the transformation is invertible,
the torque and armature inertia can be reflected at the joint level. It follows that
the state of the system can be reduced to the one of the mechanical structure and
integrated using the classical Forward Dynamics (FD) algorithm. The updated state
of the motors can be finally computed in closed form. For reasoning is the same
as for bilateral contact constraints (cf. ). However, the transformation may not be
invertible. If the transformation is injective, then the joint state is over-constraint.
For instance, the transmission used in graspers to power the two pincers with a single
motor falls into this category. A reduced formulation of the system dynamics can
still be formulated, but additional holonomic constraints must be enforced to restrict
the joint space in accordance. The number of independent constraints corresponds
to the rank deficiency of the transformation. The resulting optimization problem can
be solved using the approach presented in appendix C.2.1. On the contrary, if the
transformation is surjective, then the motor state is undetermined. This is the most
challenging scenario to simulate. The only option is to jointly integrate the dynamics
of the actuators and motors, coupled together by the forward transformation as a
holonomic constraint f(qm) = qj . This approach is the most generic and can be
applied in any other case. However, it significantly increases the computational cost
compared to relying on the reduced dynamics whenever possible.

Some closed kinematic chains can be modelled equivalently as the combination
of an open kinematic chain with a transmission whose transformation is injective.
Leveraging this property would speed up the simulation. The pantograph mechanism
is a classical example figure C.11. This kind of mechanical design is interesting as it
reduces the inertia of moving parts by placing the actuators closer to the base.

In the case of Atalante, the transmission of the ankle is quite complex. It maps two
linear motors to two joints whose axes are orthogonal but not coincident figure C.12.
The position of the linear motors is bounded, unlike their rotary counterparts. This
reduces the operation space of the joints, and therefore must be accounted for in the
simulation. Doing so is straightforward since all it requires is enabling one additional
holonomic constraint at the joint level whenever a motor hits a bound.
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Figure C.12: Transmission of the ankle of Atalante exoskeleton
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D Classical Neural Networks
Architectures

A bunch of neural network architectures have emerged over the last two decades.
Altogether, they cover most applications targeting specific tasks, but none of them
is capable of general intelligence, i.e. being able to address any task indifferently and
simultaneously as a human would do. Hereafter, we present the classical architectures
and review some applications for which it achieves state-of-the-art results.

D.1 Multi-layer Perceptron

The Multi-Layer Perceptron (MLP) is an generic and unstructured type of Feedfor-
ward Neural Network (FNN) that has been introduced more than half a century ago.
It has been the only architecture found in the literature for about 30 years. It is the
most fundamental class of Artificial Neural Networks (ANNs) and is still ubiquitous
up to this day. MLPs are known to be universal approximators of continuous func-
tions, so they could theoretically tackle a huge diversity of problems, provided that
all the necessary information is forwarded as input.

They have the advantage to be simple to implement and relatively cheap to train.
Fairly small neural networks with up to three hidden layers having one million param-
eters each are surprisingly easy to train in practice and cheap enough to be evaluated
in embedded hardware afterward. This is large enough for most applications, which
makes the MLP the most widely used architecture in the industry. However, they
tend to perform poorly for problems with high-dimensional inputs as computer vision
tasks, or when it requires memories of events that happened long ago in the past as
time series forecasting. In these cases, relying on models with hundreds of millions of
parameters is the only way to mitigate the inability of MLPs to leverage efficiently
the spatial or temporal correlations in the input data. Such generic architectures tend
to be highly inefficient due to their large number of redundant parameters and are
notoriously difficult to train. In particular, the results fall short of expectations when
applied to end-of-end autonomous driving or handwriting recognition tasks. They are
superseded by more conventional methods such as Support-Vector Machines (SVM).

MLPs are especially suitable to parametrize control policies in robotics. The
inputs are proprioceptive sensor data. They are very compact, assuming that the
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feature extraction has been performed upstream for camera data. Thus, it does
not suffer from the issue of high-dimensional input. Moreover, the complexity of
the agent’s behavior comes from the feedback mechanism rather than the policy
itself. Indeed, a simple Proportional-Integral-Derivative controller (PID) already
exhibits complex closed-loop dynamics while it corresponds to a single-layer MLP
with the identity as activation function. For these reasons, policy networks are almost
exclusively MLPs in Reinforcement Learning (RL) when the state is fully observable.

D.2 Residual Neural Network

Recent evidence reveals that network depth is of crucial importance. Indeed, deep
networks naturally integrate more low-, mid- and high-level features as the number
of layers increases. The limitation of vanishing or exploding gradient has been largely
addressed by normalized initialization and intermediate normalization layers (Ioffe
& Szegedy, 2015), which enable training networks with tens of layers. The leading
results using classical FNNs all exploit depths of sixteen to thirty hidden layers (He
et al., 2016). However, a degradation problem has been exposed for deeper networks:
with the network depth increasing, accuracy gets saturated and then degrades rapidly.
It is not caused by overfitting nor vanishing/exploding gradient but indicates that
very deep FNNs are simply hard to train. Specifically, it suggests that solvers have
more difficulties in approximating the identity using multiple nonlinear layers. This
observation holds for Convolutional Neural Networks (CNNs) but also MLPs.

A few years back, residual learning was introduced to completely prevent such
degradation. Strictly speaking, it is not a network architecture by itself but rather a
modification of the connections between the layers of existing feedforward architec-
tures. It simply consists in adding shortcut connections every few layers, also called
skip connections. The shortcut connections simply perform identity mapping, and
their outputs are added to the outputs of the stacked layers, as depicted in figure D.1.
It does not add any extra parameter nor increase computational complexity, and
the entire network can still be trained by Stochastic Gradient-Descent (SGD) with
backpropagation. With the residual learning reformulation, if identity mappings are
optimal, the solvers may simply drive the weights of the multiple nonlinear layers
toward zero to approach identity mappings, which is much easier to optimize that
the original formulation. This seemingly simple trick is powerful enough to keep im-
proving training accuracy monotonously up to a thousand layers (He et al., 2016).
It was state-of-the-art for image classification and visual recognition tasks solely due
to the extremely deep representations that residual learning enables.

D.3 Encoder-Decoder Architecture

Originally, Kramer (1991) proposed the encoder-decoder architecture by to tackle
unsupervised learning problems. Unlike supervised learning, unsupervised learning
deals with unlabeled training samples, which means that the dataset comprises only
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hidden layers

shortcut connection

...

Figure D.1: Residual learning building block

inputs. Generally, the objective is to find patterns in the data, but its scope goes way
beyond this. It is useful to identify clusters, but also to compute global coordinate
charts (namely atlases) on low-dimensional manifolds that may be embedded in much
higher-dimensional euclidean space, or to find geodesics on complex manifolds that
may not even have closed-form expressions.

Such topological problems are ubiquitous in the robotics field, especially for tra-
jectory planning problems. A generative neural network was trained in chapter 5 to
represent the solutions to trajectory optimization problems as a function of a set of
hyperparameters. It is convenient for picking the one trajectory having the desired
hyperparameters but does not suit all needs. For example, let us consider a transition
from a trajectory having given hyperparameters to another one. How to compute
extrapolate the trajectory that is most likely to be stable? This question has been
discussed in section 5.5.1. Next, let us assume the human is capable of moving the
joints of the robot by his own motion and the robot is supposed to assist him to
keep balance or compensate for any asymmetry of the gait. It involves computing
the closest state on the manifold of stable trajectories given the current one.

In unsupervised learning, the network is trained to predict an output that matches
the input. In principle, a basic FNN with uniform width should be able to do so, but
it turns out that this kind of architecture is unable to exhibit a robust and compact
representation of the input space. The idea is to force learning such a representation
through the network architecture directly. The width of the layers of the encoders
is gradually reduced to form a bottleneck. Its output has low dimensionality and is
supposed to be a lossless compression of the input. The objective is to achieve the
highest compression ratio by shrinking the size of the bottleneck as much as possible
while still being able to accurately reconstruct the data. This low-dimension space
is called latent space but is sometimes referred to by its interpretation, e.g. context
for machine translation or features for facial recognition. The encoder is inherently
robust to corrupted data as it naturally learns to leverage information redundancy
from the input to compute the compressed representation. As a result, the encoder
should always output the same encoding even after adding noise or partially damaging
the input. For images, one may also expect to be able to blur the input, rescale it
or even rotate it. Then, the decoder can be used to recover the original input. In
general, the decoder has the same structure as the encoder, with layers in reverse
order, as illustrated in figure D.2. The encoder and decoder are jointly trained. This
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means that the decoder learns to reconstruct the input while the encoder is still
refining its representation to reduce compression loss as much as possible. All it
requires is minimizing the reconstruction error, as the capability of the decoder is
conditioned by the quality of the encoding. In unsupervised learning, the encoder-
decoder architecture is referred to as auto-encoder . The auto-encoder was initially
introduced to perform non-linear Principal Component Analysis (PCA), which is a
dimensionality reduction method, long before it became popular and generalized to
supervised learning problems. Variants of the vanilla auto-encoder exist:

• Regularized auto-encoders (Alain & Bengio, 2014): The objective is to extract
features that capture the structure in the input distribution. Such property can-
not be assessed directly but can be enforced through regularization. Indeed,
one can demonstrate analytically that minimizing a particular form of regular-
ized reconstruction error yields features that locally characterize the manifold
of the data-generating density. Thus, this approach has nothing to do with the
network architecture itself but rather concerns the training process and can be
applied to any auto-encoder architecture. The rationale behind such regular-
ization is that a good low-dimensional representation is supposed to be robust
and stable to slight variations of input. Vincent et al. (2008) proposed first the
denoising auto-encoder. The input is corrupted before being forwarded to the
network, and the objective is to recover the true original input. Usually, it is
corrupted by the addition of small isotropic Gaussian noise, but any other form
of corruption is equally valid. Another approach is to add a penalty term that
corresponds to the Frobenius norm of the gradient of the output with respect
to the input. This results in a localized space contraction which in turn yields
robust features, hence the name contractive auto-encoder (Rifai et al., 2011).
This penalty explicitly carves a representation that captures the local direc-
tions of variation dictated by the data, corresponding to a lower-dimensional
manifold, while invariant to orthogonal directions. Contractive auto-encoder
tends to surpass denoising auto-encoders but are significantly more costly to
evaluate due to the explicit gradient assessment. One can show that denois-
ing auto-encoders with small corruption noise are similar to their contractive
counterpart, but with contraction applied on the whole reconstruction function
rather than just the encoder. In both cases, they effectively capture the score,
namely the derivative of the log density with respect to the input, instead of
the energy function as sometimes stated.

• Variational auto-encoders (Kingma & Welling, 2014): Variational autoencoders
are meant to compress the input information into a constrained multivariate
distribution. Thus, the latent space is a mixture of distributions instead of a
fixed vector. Unlike vanilla and regularized auto-encoders, the empirical recon-
struct error is not minimized directly but rather indirectly in terms of proba-
bility. Variational autoencoders belong to the families of variational Bayesian
methods. The input data is sampled from a prior distribution, and the auto-
encoder is trained to minimize the Kullback-Leibler (KL) divergence between
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original image segmented imageencoder decoder

latent space

Figure D.2: Illustration of encoder-decoder architecture for image segmentation

the parametric posterior and the true posterior. In practice, a surrogate varia-
tional lower bound estimate is optimized instead of the true objective function
to make computations tractable. This model scales well to large datasets.

Denoising and contractive auto-encoders are commonly used for learning robust
encoding, while variational auto-encoders are more suitable for generation tasks that
consist in randomly generating new data looking similar to the training samples from
any input. For example, Goodfellow et al. (2014) used variational auto-encoders to
generate realistic fake celebrity faces, before being outperformed by Generative Ad-
versarial Nets (GAN) on high-resolution images. GAN is not a network architecture
but a learning process for encoder-decoder especially designed for this kind of gener-
ative task. Instead of training them simultaneously to collaborate, they are trained
alternatively to compete against each over. The encoder (called discriminators) must
determine if some data is real or fake, while the decoder (called generator) must gen-
erate fake outputs that are realistic often to fool the discriminator. Although very
powerful, this method is notoriously very difficult to tune to avoid the domination of
one of the two networks. The encoder-decoder architecture applies to many problems,
including dimensionality reduction, clustering, noise removal, data completion, data
visualization, anomaly detection, and feature extraction. Examples of applications
are facial recognition, image segmentation, and 3D object reconstructions from 2D
pictures. The encoder-decoder architecture is also suitable for problems where the
inputs and/or the outputs are variable-length. The encoder is responsible for com-
pressing the input into a fixed-length vector, then the decoder can expend it back
independently of the original input. One famous example is machine translation.
Finally, pre-trained encoders and/or decoders are often used as part of more com-
plex architectures to provide compact intermediate representations of the input data.
This approach can be encountered in classification, deep generative or discriminative
models, and control policies for legged robots (Miki et al., 2022).

D.4 Recurrent Neural Network

Recurrent Neural Networks (RNNs) are a class of ANN especially tailored to process
or generate sequences. They rely on step-by-step sequential evaluation and maintain
a hidden state that serves as a memory of the past. At each evaluation step, the
hidden state is updated to aggregate new information and forget the previous events
that became irrelevant. Different configurations are possible:

263



Appendix D. Classical Neural Networks Architectures

• One-to-many : A initial state is used to generate a whole sequence by looping
recursively on itself. At each generation step, the preceding output is forwarded
as input without any extrinsic information. It can be used for music generation.

• Many-to-one: A whole input sequence is processed sequentially but only the
final output is preserved. It is suitable for sentiment classification.

• Many-to-many : A whole input sequence is processed sequentially and the whole
output sequence is of interest.

Advanced architectures combine several configurations. In machine translation, state-
of-the-art results are achieved by two networks with encoder-decoder architecture. A
first RNN of type many-to-one encodes the context, which is then forwarded to
another RNN of type one-to-many that decodes the whole translated sentence.

One of the main challenges for RNNs is being able to learn long-term dependen-
cies or correlations. For instance, consider trying to predict the last word in the text
"I grew up in France [...] I speak fluent". It is clear from the context that the next
word is probably "French", but the gap between the relevant piece of information and
the point where it is needed may be very large. Any FNN evaluated sequentially and
maintaining a hidden state could be used as RNN. Such architecture is very generic
but suffers from the vanishing gradient problem. Indeed, the last output depends on
all the previous ones recursively, so that the former can be interpreted as the output
of a single virtual neural network with up to thousands of layers sharing parameters.
This virtual neural network is said to be the unfolded representation of the RNN.
Backpropagation of the gradient from the output to the input through the virtual
layers induces the same training issues mentioned previously for a single extremely
deep neural network. Long Short-Term Memory (LSTM) is a network architecture
that has been designed by Hochreiter and Schmidhuber (1997) to prevent vanishing
gradient. It does so thanks to an additional cell state that goes all the way through
the network without being altered by any layer directly, so that information can flow
backward to the input no matter how long the sequence is. Then, storing and forget-
ting capabilities are added via a special technique called gating mechanism. Gates
are a way to selectively let information pass through based on some excitatory signal.
This approach is common to any RNN architecture. For LSTMs, the excitatory sig-
nals of the gates are the concatenation of the current elements of the sequence with
the hidden state. First, the forget gate filters out the cell state. Then, a candidate
new cell state is computed using a single layer with hyperbolic tangent activation,
itself filtered by the input gate before summing it up with the previously filtered cell
state. Finally, the updated cell state is used to compute the new hidden state using a
single layer following by the filtering with the output gate. There exists many variants
of LSTMs. Its behavior is summarized in figure D.3. The way the excitatory signals
of the gates are computed varies from one architecture to another, sometimes gates
are coupled together or completely disappear. In the end, they are all very similar
in terms of architecture and overall performance (Greff et al., 2017). Yet, Gated
Recurrent Unit (GRU) stands out more than the others as it merges the cell state
and the hidden state as a single signal (Cho et al., 2014). Their performance was
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AA A
Figure D.3: Description of Long Short-Term Memory network

found to be similar to that of LSTMs while being computationally more tractable.
In few years, they achieved state-of-the-art results for many difficult problems, in-

cluding handwriting recognition and generation, language modeling and translation,
acoustic modeling of speech, speech synthesis, protein secondary structure predic-
tion, analysis of audio and video data. However, they have been surpassed in many
domains by non-recurrent architectures. One of the main issues of RNNs is a direct
consequence of its own strength, namely sequential evaluation. Not being able to
evaluate all input at once is slowing down both the training and evaluation processes
as it is not possible to exploit the computational resource to the full extent. More-
over, there is no explicit hierarchy of information, which means that such a structure
must arise during training instead of being explicitly enforced by the architecture
itself. This is limiting the performance of RNNs on complex multiscale problems for
which the hierarchy may be unclear and thereby hard to learn.

D.5 Convolution Neural Network

RNNs can deal with short- and long-term dependencies and can process or gener-
ate variable-length sequences. However, this property requires their evaluation to
be sequential, therefore costly to evaluate. Next, it is difficult to improve upon the
vanilla architecture to push performances further. Finally, fixed-length sequences can
approximate reasonably well by unbounded sequences in many problems, since the
effect of elements far away in the sequence at the time being tends to vanish. If so,
then a CNN can be used in place of a RNN. CNNs have already been introduced
in section 3.1.2. It is a special type of FNN with translational invariance property
that enables dealing with high-dimensional data that is either spatially or temporally
correlated. Groups of layers form filters that extract features at different scales. Each
layer has fewer parameters than their equivalent dense representation using MLPs.
Combined with a residual architecture, one can stack many of them to extract more
features without overfitting the data. CNNs have led to a series of breakthroughs in
image classification. They have applications in image and video recognition, recom-
mender systems, image classification, image segmentation, medical image analysis,
natural language processing, brain-computer interfaces, and financial time series.
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D.6 Attention-based Network

Historically, CNNs were surpassing RNNs in many problems, notably language un-
derstanding tasks. They can exploit long-term dependencies, but doing so requires
very deep networks because it goes against their translational invariance property.
What truly matters is the context, which is defined by the sum of information con-
tained in the input irrespective of the relative positioning of every single element of
data. The attention mechanism has been introduced on that basis. It substitutes per-
mutation invariance with translational invariance to remove any preference for data
locally. In practice, the network would be equally likely to extract features leveraging
short- or long-term dependencies whatever the depth of the network. However, the
relative ordering of the data carries some information in many problems, which is lost
using such architecture. The original data are usually augmented with a positional
encoding to make up this shortfall, e.g. Fourier features (Tancik et al., 2020).

The attention mechanism is commonly referred to as QKV attention as it com-
bines query , key , and value vectors. Each of these vectors belongs to a different low-
dimensional embedding encoded by a single fully-connected linear layer. It is called
self-attention if the same input signal is passed to all these networks, cross-attention
if the query network is fed by a different input. In general terms, a modality refers
to one specific channel of information. Self-attention considers on intra-modality
relationships. This mechanism is at the heart of co-reference resolution – the task
of finding all expressions that refer to the same entity – based on the past sentence
for machine translation. It only concerns a single modality in the latter case, but
nothing prevents gathering several modalities at once. It is generally the case when
the data are augmented with positional encoding. Cross-attention enables pulling
apart those modalities to restrict focus on the inter-modality relationship between
them. It is computationally cheaper as the intra-modality relationship is completely
ignored. Cross-attention is used to combine efficiently RGB pixel arrays with height
maps to enhance image segmentation.

The QKV attention was originally referred to as Scaled Dot-Product because
it computes the dot product of all queries with all keys and gathers all possible
combinations in a matrix called attention map. Optionally, the attention map can
be masked to enforce causality if relevant. The numbers of queries and key/value
pairs are equal for self-attention but different for cross-attention. As one can expect,
the number of outputs is always equal to the number of queries. Similarly, the query
and key low-dimensional embeddings have to match, but the value embedding may
differ. Let Q ∈ Rn×ek ,K ∈ Rm×ek , V ∈ Rm×ev be queried, key and values matrices
respectively, where Ek, ev is the size of the query/key and value embeddings, and
m,n is the length of the source and target sequences. The operation performed by
the QKV attention block is

Attention(Q,K, V ) = softmax
(
QKT

√
ek

)
V, (D.1)

where Attention(Q,K, V ) ∈ Rn×ev . This operation has approximate complexity
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O(mn) as it involves two matrix multiplications with matrices of large dimensions.
Transformers (Vaswani et al., 2017) is a type of attention-based network spe-

cialized for machine translation. It stacks several self-attention blocks together in
an encoder-decoder architecture. Concurrently, Gehring et al. (2017) used a similar
attention mechanism to improve the accuracy of CNNs used for machine translation.
It turns out the transformer architecture outperforms both state-of-the-art RNNs
and attention-based CNNs for machine understanding tasks while being cheaper to
evaluate and having fewer parameters. Perceivers (Jaegle et al., 2021) generalizes
the Transformer architecture to heterogeneous data that can be possibly anything,
e.g. videos, sounds, or texts. Self-attention would in untractable in this case as the
computational complexity scaled quadratically with the length of the input sequence
(i.e. the number of pixels or audio samples). To circumvent this limitation, cross-
attention is used instead. The query embedding is a low-dimensional latent space
n≪ m, so that the computational complexity is now linear with respect to the input
size. Perceivers achieve state-of-the-art results on classification problems without any
convolution layer, which is considered a breakthrough.
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E Classical Approaches in
Reinforcement Learning

E.1 Dynamic Programming

This method can only be applied if the model is perfectly known and the reward
is dense enough. Although it is untrue in Reinforcement Learning (RL), it is still
important to review the method. First, it helps to understand early algorithms that
are at the root of state-of-the-art off-policy algorithms. Secondly, it can still be
applied after learning an approximate model of the world. Several algorithms are
based on this principle, e.g. World Models (Ha & Schmidhuber, 2018) or Probabilis-
tic Inference for Learning COntrol (PILCO) (Deisenroth & Rasmussen, 2011). It is
an iterative algorithm that alternates between policy evaluation and policy improve-
ment. This procedure is called Generalized Policy Iteration (GPI) and illustrated in
figure E.1: the state-value function for the current policy is approximated iteratively
to be closer to the true one, while the policy is improved to approach optimality. The
way to update the value function is specific to every method and is called the backup
rule. Let us assume the state and action spaces are finite for simplicity. If not, then
quantization may be an option.

• Policy evaluation

It is to compute the state-value Vπ for the current policy π. From Bellman
equation (3.32), it yields

Vπ(s) =
∑
a∈A

π(a|s)
∑
s′∈S

P (s′|s, a)(R(s, a) + γVπ(s
′)). (E.1)

It is a linear system with |S| unknowns, namely Vπ(s), ∀s ∈ S. It should
be invertible and solvable in closed form, but it would be computationally
costly. A more efficient method consists in approximating the exact solution
iteratively. The value function is initialized arbitrarily for any state s ∈ S
except the terminal state, if any, that must be given value 0. The approximate
value function Vk is updated repeatedly according to equation (E.1). The value
function Vπ is clearly a fixed point for this backup rule. The sequence can be
shown in general to converge as long as Vπ exists. The process stops once the
norm of the residual improvement is small enough, i.e. ∥Vk+1 − Vk∥∞ < ϵ.
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(a) Generalized Policy Iteration (b) Evolution of the value function

Figure E.1: (a) Generalized Policy Iteration: sequence of policy updates and value
computation that converges asymptotically to an optimal solution. (b) Evolution of
the value function across the value space for a state space with two states S = {s1, s2}.
Each rectangle corresponds to the region of the value space containing the value
function at a given iteration. One iteration is the application of policy improvement
and evaluation successively. The value for each state increases monotonically.

• Policy improvement

It generates a better policy by acting greedily according to equation (3.31) after
computing the action-value from the state-value using Bellman equation (3.33),

Qπ(s, a) =
∑
s′∈S

P (s′|s, a)(R(s, a) + γVπ(s
′)). (E.2)

The proof of convergence and monotonic improvement is very similar to the one
that was briefly outlined for purely value-based on-policy methods.

E.2 Monte-Carlo Methods

If the model is unknown, it is not possible to solve analytically the policy evaluation
problem, also called prediction problem. And even if it was, it may be untractable if
the cardinality of the state space is very high. Monte-Carlo (MC) methods enabled
compute an approximate solution to this problem without involving a model or enu-
merating all possible states anymore. It simply consists in replacing in computations
the expectation over all possible trajectories under a given policy by the empirical
mean over a batch of episodes. It requires collecting complete trajectories, so all the
episodes must terminate, which is a significant limitation.

Let us assume the state and action spaces are finite and consider a single episode
of the length T for simplicity. The empirical value function is

V̂π(s) =

∑T
t=1 1st(s)Gt∑T
t=1 1st(s)

, (E.3)
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This formulation is referred to as the every-visit MC method since it averages the
future return every time the state has been encountered. Alternatively, one may take
into account only the first time it occurs per episode, which is the first-visit MC
method.

It is straightforward to extend this formulation to the action-value function by
counting state-action pairs. Once the action-value function has been estimated, the
policy is improved just as in Dynamic Programming (DP). The resulting GPI proce-
dure except for the backup rule. This basic approach is never used as is in practice
because it has a very high variance, so an extremely large number of samples is needed
to approximate reliably the action-value function. The high variance comes from the
observed future returns in computations. It can be explained in several ways. First,
it involves the integration of the current state over a horizon. This is problematic
as the variance of the mapping between the initial and final state tends to grow ex-
ponentially with the number of steps, no matter if the world is fully deterministic.
This issue is known as deterministic chaos (Ott, 2002). At the limit, rounding er-
rors in the initial condition or different instruction sets at the CPU-level can yield
diverging outcomes, making long-term prediction impossible. It is systematic for any
dynamical system as long as it does not have any attractive fixed points or closed or-
bits, even for fairly simple models such as the classical double-rod pendulum without
friction. Shooting methods for solving Optimal Control Problems (OCPs) are facing
the exact same issue. Secondly, the policy is at least partially stochastic in practice
to promote exploration. The outcome may be different for a single transition step
if the transition function is very sensitive or discontinuous. It may result in dra-
matically different rewards for the same action on average. Typically, it is the case
for legged locomotion, where contact is specified by unilateral kinematic constraints,
as explained in appendix C.2.2. Working on individual transition steps instead of
the complete trajectories would significantly alleviate this issue while relieving the
constraint of episode termination. The Temporal-Difference (TD) learning enables
doing so and has been a milestone in RL.

E.3 Temporal-Difference Learning

TD learning alternates between policy evaluation and policy improvement as in all the
previous methods. Similar to MC methods, it is model-free and learns from collected
data, but it relies on yet another backup rule to update the value function. The
central idea is bootstrapping : the computations during policy evaluation leverages
the previous estimates rather than exclusively relying on collected data. It enables
approximating the return and thereby the value function from incomplete episodes,
which is a significant improvement upon MC methods. It is no longer necessary to
track the episodes up to termination, and they do not even have to terminate at all.

The return Ĝt can be estimated from the Bellman equation (3.32),

Ĝt = rt + γV (st+1). (E.4)
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This term is called TD target. It matches the true return in expectation if V is equal
to the value function associated with the current policy Vπ. As for MC methods, the
value function is updated based on an estimate of the return, but the TD target is
used in place of the observed return. Moreover, a ratio α ∈ [0, 1] is introduced to
avoid forgetting completely the previous value every time the state is visited. It takes
the form of an update rule applied to every collected transition step independently,

V (st)← (1− α)V (st) + αGt = V (st) + α(rt + γV (st+1)− V (st)). (E.5)

This update rule can be interpreted as a recursive approximation of the moving
average that does not take into account the number of past samples, so it computes
a good approximation of the value function if the number of samples is large enough.
The hyperparameter α is called the learning rate and must be tuned manually for
each specific problem. It can be fixed, scheduled, or adaptive depending on the
method. Higher values give more weight to new data by shortening the window of
the moving average but increase the variance. Conversely, lower values rely more
on the previous estimate but increase the bias. It is straightforward to derive the
equivalent formula for the action-value,

Q(st, at)← Q(st, at) + α(rt + γQ(st+1, at+1)−Q(st, at)). (E.6)

The algorithm that results from applying the GPI procedure using this backup
rule is State-Action-Reward-State-Action (SARSA). It is on-policy as it estimates the
value function associated with the current policy, just like DP and MC methods. The
following steps are repeated until convergence:

1. Get into the next state st+1 and receive a reward rt.
2. Choose the next action at+1 greedily: at+1 = argmaxa∈AQ(st+1, a).

Update the Q-value function according to equation (E.6).
3. Take previously selected action at+1.

TD targets can be replaced by the ones corresponding to the Bellman equations
for the optimal value functions. According to equation (3.34) it yields,

Q(st, at)← Q(st, at) + α(rt + γmax
a∈A

Q(st+1, a)−Q(st, at)). (E.7)

As expected, this backup rule is completely independent of the current policy, so it
is not necessary to choose the action and take it separately. The resulting off-policy
algorithm is Q-learning. The steps are slightly simplified versus SARSA:

1. Get into the next state st+1 and receive a reward rt.
2. Take the next action at+1 greedily: at+1 = argmaxa∈AQ(st+1, a).

Update the Q-value function according to equation (E.7).

Even though the action taken by the agent and the one used to estimate the optimal
action-value appears to be the same in this basic algorithm, there is no relationship
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Monte-CarloDynamic Programming Temporal-Difference

Figure E.2: Comparison of the backup strategies of Dynamic Programming,
Temporal-Difference, and Monte-Carlo for the state value function.

between them. The action leading to the maximal Q-value at the next state st+1 is
always used to update the estimate of the optimal action-value, but there is no such
restriction for the actual action. They may very well be different, which would be
the case if the policy is stochastic, e.g. using ϵ-greedy to pick the action.

The computation of the TD target in equation (E.4) relies on one-step look-ahead
Bellman equation. It is a low-variance estimate of the return Ĝt compared to MC
methods as it avoids the compounding of uncertainties. However, it is biased since
the future return beyond the next step is approximated using an estimate of the value
function that may be off. On the contrary, MC methods have the advantage to be
unbiased since it only involves collected data. Having to choose between low variance
or bias is a common dilemma. How much to favor one or the other is problem-specific,
so it would be advantageous to have a more fine-grained control than having to choose
between two extreme cases. It is straightforward to extend one-step TD learning to
take multiple steps. It bridges the gap with MC methods and enables a trade-off
between bias and variance (cf. appendix E.7.1). For n steps, it gives

Ĝ
(n)
t =

n−1∑
i=0

γirt+i + γnV (st+n). (E.8)

It is preferable to weigh all possible n-step TD targets instead of picking only
one of them to get an even better estimate. The weights must decay exponentially
with the number of steps n, in consistency with the discount factor for future rewards
when computing the return. It is explained by the deterministic chaos theory already
mentioned: the confidence about future predictions decreases exponentially over time
because of the compounding of uncertainties. Besides, relating a future reward to a
specific action becomes increasingly difficult as these events get more distant since
all the actions taken in the meantime would affect this exact same reward. This
weighted sum of many n-step returns is called λ-return (Sutton & Barto, 2018),
Ĝλ

t = (1−λ)∑∞
n=1 λ

n−1Ĝ
(n)
t , where λ ∈ [0, 1] is the decay factor. The normalization

factor 1− λ ensures that all weights to sum up to 1.
TD learning that adopts λ-return for computing the TD target is labeled as

TD(λ). The decay factor λ is a fixed hyperparameter that must be tuned manually
for each problem. A higher decay factor increases the variance but reduces the
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bias. Its optimal value depends on how much distance states can be trusted. The
naive one-step look-ahead variant is the special case TD(0), while TD(1) corresponds
to the every-visit MC method applied on incomplete episodes. Mathematically, it
is equivalent to another mechanism called eligibility traces (Rummery & Niranjan,
1994). Roughly speaking, the eligibility trace is a record for each episode of the
occurrence of recent state-action pairs that vanishes exponentially over time by a
factor λ ∈ [0, 1] called trace decay. It is then used for computing the TD target
by weighting state-action pairs proportionally to how often they have been visited
recently. The rationale is to assign credit or blame only the states that are supposed
to be responsible for the TD error. The λ-return is more suitable for theoretical
analysis while the eligibility trace is convenient for practical implementation. The
three different backup strategies are summarized in figure E.2.

E.4 Deep Q-Network

If the state and action spaces are finite, then it is theoretically possible to store
in tables the optimal value Q∗ for every possible state-action pair. However, the
number of pairs grows exponentially with the dimensionality, and it quickly becomes
untractable as state and action space grow larger. In many problems, the state space
is continuous and this tabular approach is not even applicable.

The naive approach to overcome this limitation is to replace the value function
estimate by a function approximation with parameters ϕ. The latter generally takes
the form of a neural network. For the action-value in particular, it is referred to
as Q-network and denoted Qϕ. The use of a neural network should be beneficial
overall, as it allows for more efficient exploitation of the collected data. Specifically,
they leverage similarities through its generalization ability: updating the parameters
ϕ to improve the prediction for any given state-action pair would inevitably drag the
close-by ones in the same direction. This makes sense at first since similar state-
action pairs tend to have similar values under sufficient regularity assumption of the
underlying system dynamics. Yet, the whole state-action space is impacted to some
extent that is hard to predict. This may also be detrimental from time to time as it
causes aliasing and the regularity assumption must not reflect reality.

In principle, it should be possible to mitigate this issue by increasing the ex-
pressiveness of the function approximation, but it would be prone to overfitting.
Overfitting creates artifacts, especially for states that have been not encountered re-
cently (even if surrounded by dense regions of training samples). Although of minor
importance for state-action pairs considered individually, these artifacts induce an
overestimation bias that has a dramatic effect on the backup rule (Lan et al., 2020).
This is due to the TD target involving the maximum over the predicted action-value
for a given state, which is very sensitive to outliers. Since the predicted action-value
will probably be higher than the true one for one or more of the action, the TD target
is likely to be skewed toward an overestimate. For example, even unbiased estimates
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Qϕ(s, a) will vary due to stochasticity. According to Jensen inequality,

E[max
a∈A

Qϕ(s, a)] ≥ max
a∈A

E[Qϕ(s, a)] = max
a∈A

Q∗(s, a) (E.9)

Consequently, Q-learning suffers from instability and divergence due to the com-
bination off-policy learning, bootstrapping, and nonlinear function approximation
concurrently. This issue is known as the deadly triad (Sutton & Barto, 2018). Deep
Q Network (DQN) (Mnih et al., 2015) greatly improves the stability of Q-learning
with two mechanisms:

• Experience Replay

All transition steps et = {t, st, at, rt, st+1} are stored in a replay buffer D =
{e1, . . . , et}. The Q-value is updated with samples from the replay buffer.
They are drawn at random, hence they are used many times during the whole
training process. It improves sample efficiency, but it also removes correlations
in observation sequences and smooths out the effect of the distributional shift
consequent to policy improvements.

• Delayed Target Update

In Q-learning, the Q-value is optimized toward targets that depend on the
Q-value itself. This direct coupling creates short-term oscillations that make
learning unstable. To break it, the Q-value involve in the TD targets is sep-
arated from the current estimate. This target Q-value Q̂ is kept frozen and
only updated periodically to match the current estimate Qϕ every few transi-
tion steps. This way, a delay is introduced between the update of the Q-value
and its effect on the TD targets. It significantly weakens their coupling, while
still providing a sensible approximation of the Q-value in computations. The
current estimate is still used to compute the actions taken by the agent.

The Q-network Qϕ cannot be optimized directly by applying successfully the up-
date rule specified by equation (E.7) in Q-learning. It is replaced by the minimization
of the residual error between the TD targets and the corresponding predictions of
the Q-network with respect to its parameters ϕ. Formally, a batch B of N transition
steps {ei}Ni=0 is uniformly sampled from the replay buffer D, i.e. B ∼ U(D). The loss
L(ϕ) is the empirical mean of the residual error over the whole batch,

L(ϕ) = 1

N

∑
et∈B

(
rt + γmax

a∈A
Q̂(st+1, a)−Qϕ(st, at)

)2

. (E.10)

Then, a single gradient descent step with learning rate α is applied,

ϕ← ϕ− α∇L(ϕ). (E.11)

Since a function approximation has limited expressiveness, the error cannot be can-
celed out completely. In this scenario, it is critical to encourage evenly distributed
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error over the whole state-action space to reduce overestimation. This is done by min-
imizing the squared residual error rather than the absolute one. Moreover, the entire
batch must be considered at once instead of doing many successive updates as the
value for any given state-action pair influences all the others. This was not the case
in tabular Q-learning. Note that introducing a non-linear function approximation
means that convergence is no longer guaranteed in contrast to previous methods.

Some transition steps in the replay buffer may be completely off, either because
such states are never encountered anymore, or because the value associated with
the state-action pairs is so low that the agent would no longer take such actions.
In both cases, these samples are irrelevant in the update of the estimated optimal
value Function. This is not a big deal if the estimate is tabular as the value for
each state-action pair is updated independently, but this is potentially harmful if it
is a function approximation. Specifically, this may steer the whole approximation
in a bad direction regarding the current policy if too many irrelevant samples are
considered. For legged locomotion tasks, the robot would not even be able to bear
its own weight in the first episodes. It has nothing to do with the actual task, and
including those samples for the update of the parameters would just make everything
worse once the robot can stand up.

E.5 Policy Gradient Methods

E.5.1 Policy Gradient Theorems

All the previous methods are value-based: they aim to learn the action-value function
and then select actions accordingly. For continuous state and action spaces, they are
also policy-based, which gives rise to actor-critic algorithms. Both the action-value
and the policy are function approximations, and the latter is trained to output the
action maximizing the action-value for any state. Vanilla policy gradient methods
are only policy-based: the policy is a function approximation πθ trained to maximize
directly the expected return in equation (3.22). At every training iteration, trajecto-
ries are collected under the current policy πθ, then the parameters θ are updated by
doing a single gradient ascent step. The core component is the computation of the
gradient of the expected return with respect to the parameters θ.

Likelihood Ratio Estimate

As a reminder, the Markov Decision Process (MDP) is supposed to be stationary. In
addition, the Markov chain resulting from taking actions according to a given policy
π is sometimes assumed to be ergodic, i.e. irreducible and aperiodic. Mathematically,
this means that there exists a number N such that any state can be reached from any
other state in at most N steps whatever the current time. The Fundamental Theorem
of Markov Chains states that if a Markov chain is ergodic then it has a unique
stationary distribution ρ̄π, and the probability to end up in some state s wherever
you started is equal to this distribution as the number of steps in between approaches
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infinity. Let us denote ρ(n)π (s→ s′) the probability to reach the state s′ from state s
after n steps, P(sn = s′|s0 = s). Then limn→∞ ρ

(n)
π (s→ s′) = ρ̄π(s

′),∀s, s′ ∈ S. The
ergodicity property is not essential and never required. The unnormalized discounted
state distribution ρπ is the discounted counterpart of the stationary distribution,
namely ρπ(s

′) =
∑∞

k=0 γ
kρ

(k)
π (s → s′). This quantity has no physical meaning but

appears in the computation of the gradient.
The Policy Gradient Theorem (Sutton et al., 1999) enables computing the gra-

dient of the expected return without knowledge of the generating distribution. This
formula is at the heart of all policy gradient methods. The proof is a bit lengthy but
insightful, so it is worth carrying it out in detail. Let us present first the Expected
Grad-Log-Prob (EGLP) lemma and a corollary as the proof relies on it.

Lemma 9 (Expected Grad-Log-Prob). Let Pθ be probability distribution over a ran-
dom variable x with parameters θ. Then,

E
x∼Pθ

[∇θ logPθ(x)] = 0 (E.12)

Corollary 9.1. Let ψ be a function that depends on the state up to time t and the
action up to time t− 1. Then,

E
τ∼πθ

[ψ(s:t, a:t−1)∇θ log πθ(at|st)] = 0, ∀t ≥ 1 (E.13)

Proof. First, the law of iterated expectation is split the expectation over complete
trajectories into two parts. Then it is a direct application of the EGLP lemma.

E
τ∼πθ

[ψ(s:t, a:t−1)∇θ log πθ(at|st)]

= E
s:t,a:t−1∼πθ

[
E

st:,at−1:∼πθ
[ψ(s:t, a:t−1)∇θ log πθ(at|st)|s:t, a:t−1]

]
= E

s:t,a:t−1∼πθ

[
ψ(s:t, a:t−1) E

at∼πθ
[∇θ log πθ(at|st)]︸ ︷︷ ︸
= 0 (EGLP)

]
= 0

■

Theorem 10 (Policy Gradient Theorem). Let M = {S,O,A, P,R,O, ρ0, γ} be an
infinite horizon stationary MDP with discounted reward. The gradient of the return
R(τ) in expectation over the distribution of trajectories τ induced by policy πθ with
parameters θ is given by

∇θ E
τ∼πθ

[R(τ)] = E
τ∼πθ

[ ∞∑
t=0

R(τ)∇θ log πθ(at|st)
]

(E.14)

= E
s∼ρπ
a∼πθ

[Qπ(s, a)∇θ log πθ(a|s)] , (E.15)
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where Qπ(s, a) is the action-value function and ρπ is the unnormalized discounted
state distribution under the policy π.

Proof. The expected return J(π) is reformulated to replace the return by the value-
function that is easier to manipulate,

J(π) = E
τ∼πθ

[R(τ)] = E
s∼ρπ
a∼πθ

[R(s, a)] = E
s∼ρ0

[Vπ(s)] .

The first step to differentiate this expression is to compute the gradient of the value
function Vπ(s) with respect to the parameters θ. Equation (3.27) is used to substitute
the value function Vπ(s) for the action-value Qπ(s, a),

∇θVπ(s) = ∇θ E
a∼πθ

[Qπ(s, a)] .

It is possible to move directly the operator ∇θ inside the inner expectation, but it
introduces an additional term because of the dependency on the policy. It yields,

∇θVπ(s) =

∫
a∈A

Qπ(s, a)∇θπ(a|s) da︸ ︷︷ ︸
ϕπ(s)

+ E
a∼π

[∇θQπ(s, a)] .

Bellman equation (3.33) is injected to make the value function appears on both side,

∇θVπ(s) = ϕπ(s) + γ E
s′∼P
a∼π

[
∇θVπ(s

′)
]
.

This recursive representation will be helpful to derive a closed form. The idea is
to go through more intermediary states, but it is hard to do so with the current
formulation. The trick is to apply the definition of the expectation for a continuous
domain and to realize that ρ(1)π (s→ s′) = P(st+1 = s′|st = s) = E

a∼π
[P (s′|s, a)]:

∇θVπ(s) = ϕπ(s) + γ

∫
s′∈S
∇θVπ(s

′)

∫
a∈A

π(a|s)P (s′|s, a) da ds′

= ϕπ(s) + γ

∫
s′∈S
∇θVπ(s

′) E
a∼π

[
P (s′|s, a)

]
ds′

= ϕπ(s) + γ

∫
s′∈S

ρ(1)π (s→ s′)∇θVπ(s
′) ds′

This formula can be unrolled to transition from the state s to any state after any num-
ber of steps infinitely by summing up the visitation probabilities using the identities∫
s′∈S ρ

(n)
π (s→ s′)ρ

(1)
π (s′ → s′′) = ρ

(n+1)
π (s→ s′′) and ρ(0)π (s→ s′) = 1{s}(s

′):

∇θVπ(s) = ϕπ(s) + γ

∫
s′∈S
ρ(1)π (s→ s′)

{
ϕπ(s

′) + γ

∫
s′′∈S
ρ(1)π (s′ → s′′)∇θVπ(s

′′) ds′′
}
ds′

= ϕπ(s) + γ

∫
s′∈S

ρ(1)π (s→ s′)ϕπ(s
′) ds′ + γ2

∫
s′′∈S

ρ(2)π (s→ s′′)∇θVπ(s
′′) ds′′
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· · · =
∞∑
k=0

γk
∫
s′∈S

ρ(k)π (s→ s′)ϕπ(s
′) ds′ =

∫
s′∈S

ϕπ(s
′)

∞∑
k=0

γkρ(k)π (s→ s′)︸ ︷︷ ︸
ηπ(s′|s)

ds′

ηπ(s
′|s) can be interpreted as the expected discounted visitation of state s′ during a

single episode starting in state s. The gradient of the objective function is given by:

∇θ E
τ∼πθ

[R(τ)] = E
s∼ρ0

[∇θVπ(s)]

=

∫
s∈S

∫
s′∈S

ϕπ(s
′)ηπ(s

′|s)ρ0(s) ds′ ds

=

∫
s′∈S

ϕπ(s
′)

∫
s∈S

ηπ(s
′|s)ρ0(s) ds︸ ︷︷ ︸

ρπ(s′)

ds′

= E
s∼ρπ

[ϕπ(s)]

ρπ(s
′) denotes unnormalized discounted state distribution. It is impossible to evaluate

ϕπ(s) directly, but it can be rewritten as the expectation over the policy itself by
noticing ∇θπθ(a|s) = πθ(a|s)∇θ log πθ(a|s):

∇θ E
τ∼πθ

[R(τ)] = E
s∼ρπ

[∫
a∈A

Qπ(s, a)∇θπ(a|s) da
]

= E
s∼ρπ

[∫
a∈A

Qπ(s, a)πθ(a|s)∇θ log πθ(a|s) da
]

= E
s∼ρπ

[
E

a∼πθ
[Qπ(s, a)∇θ log πθ(a|s)]

]
=

∞∑
t=0

E
τ∼πθ

[
γtQπ(st, at)∇θ log πθ(at|st)

]
(E.16)

The sum operator can be moved inside the expectation at will. Moreover, the reward
at time t is a deterministic function of the state rt and action at, rt = R(st, at). So,
it is sufficient to replace the action-value Qπ(s, a) by its definition, apply the law of
iterated expectation, then the EGLP corollary to end the proof:

∇θ E
τ∼πθ

[R(τ)] =
∞∑
t=0

E
τ∼πθ

[
γt E

τt:∼πθ
[Rt(τ)|st, at]∇θ log πθ(at|st)

]
=

∞∑
t=0

E
τ:t∼πθ

[
E

τt:∼πθ

[
E

τt:∼πθ

[
γtRt(τ)∇θ log πθ(at|st)|st, at

] ∣∣∣τ:t]]
=

∞∑
t=0

E
τ:t∼πθ

[
E

τt:∼πθ

[
γtRt(τ)∇θ log πθ(at|st)|τ:t

]]
= E

τ∼πθ

[ ∞∑
t=0

R(τ)∇θ log πθ(at|st)
]

■
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The effect of following the gradient can be better understood after rewriting equa-
tion (E.14) once again. The probability of a trajectory is given by equation (3.23),
so its log-probability is simply ∇θ logP(τ |πθ) =

∑∞
t=0 log πθ(at|st). It yields,

∇θ E
τ∼πθ

[R(τ)] = E
τ∼πθ

[R(τ)∇θ logP(τ |πθ)] . (E.17)

The log is a strictly monotonic function and can be ignored in the interpretation
of this equation, but it is worth mentioning that the term ∇θ logP(τ |πθ) is called
score in statistics. P(τ |πθ) is the likelihood of the trajectory τ given the parameters
θ. It measures how likely it is to sample the trajectory τ under the policy πθ.
Assuming a batch of trajectories is available, every gradient ascent step would change
their respective likelihood on purpose by updating the parameters θ. Whether the
likelihood will increase or decrease is proportional to the observed return R(τ): the
higher the return the more likely to sample the corresponding trajectory in the future.
The direct consequence will be the shift of the distribution of trajectories and the
discounted state distribution. This seems all very intuitive: making what is working
happen more often and avoiding what is not.

MC sampling is used to estimate the policy gradient since the actual distribution
is unknown. Let D be a set of N chunks of trajectory τ with length T . Then,

∇̂θJ(θ) =
1

N

∑
τ∈D

∞∑
t=0

R̂τ∇θ log πθ(at|st), (E.18)

where R̂τ is the total return for the trajectory τ .
A numerical loss must be constructed from this estimator to interoperate with

automatic differentiation frameworks. In theory, only the policy should be differen-
tiated. This is not an issue when the loss is computed using the actual total return.
Indeed, the transition steps (st, at, rt) are black-box outputs of the environment for
which it is impossible to track back their relationship with the policy anyway. How-
ever, the total return is commonly replaced with the estimated advantage function,
which involves a function approximation of the state-value function. If so, the state-
value function and the policy are updated alternatively at every training iteration.
While optimizing the policy, the state-value function must be considered independent
of the training parameters during backpropagation. This includes any parameter in
common with the policy itself. This point is important because the policy and the
value networks may share the same feature encoding, as mentioned in section 3.2.2.

The log-likelihood log πθ must be known analytically. Let us consider only the
most common case where the policy distribution is multivariate diagonal Gaussian
with parametric mean and constant standard deviation. Then the log-likelihood is,

log πθ(a|s) = −
k∑

i=1

(
1

2

(µθ(st)i − ai)2
σ2i

+ log σi + log 2π

)
, (E.19)

where k is the dimension of the action space A.
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Reparametrization Estimate

Let us suppose that the action-value function is perfectly known analytically and its
gradient can be evaluated at will. This additional information can be leveraged to
estimate the policy gradient without relying on the log-likelihood of the policy. It is
a direct application of the reparametrization trick (cf. section 3.2.2).

Theorem 11. Let M = {S,O,A, P,R,O, ρ0, γ} be an infinite horizon stationary
MDP with discounted reward. The gradient of the action-value function Qπ(s, a) in
expectation over the unnormalized discounted state distribution ρπ induced by policy
πθ with parameters θ is given by

∇θ E
s∼ρπ
a∼π

[Qπ(s, a)] = E
s∼ρπ
z∼ξ

[∇θfθ(s, z)∇aQπ(s, a) | a = fθ(s, z)] . (E.20)

Proof. This proof follows the same mathematical reasoning as for the theorem 10, so
intermediary computations are omitted when possible to avoid redundancies. Let us
recall first the expression of the gradient:

∇θVπ(s) = ∇θ E
a∼πθ

[Qπ(s, a)] = E
z∼ξ

[∇θQπ(s, fθ(s, z))]

Taking the derivative of the inner term directly is tricky since both the action and
the action-value function depend on the parameters, but it is easy once expended:

∇θQπ(s, fθ(s, z))

= ∇θ E
s′∼P

[
R(s, fθ(s, z), s

′) + γVπ(s
′)
]

=

∫
s′∈S

{
(R(s, fθ(s, z), s

′) + γVπ(s
′))∇θP (s

′|s, fθ(s, z))

+∇θ(R(s, fθ(s, z), s
′) + γVπ(s

′))P (s′|s, fθ(s, z))
}
ds′

=

∫
s′∈S

{
(R(s, fθ(s, z), s

′) + γVπ(s
′))∇θfθ(s, z)∇aP (s

′|s, a)

+ (∇θfθ(s, z)∇aR(s, a, s
′) + γ∇θVπ(s

′))P (s′|s, fθ(s, z))
}
ds′

=

∫
s′∈S
∇θfθ(s, z)

{
(R(s, fθ(s, z), s

′) + γVπ(s
′))∇aP (s

′|s, a)

+∇aR(s, a, s
′)P (s′|s, fθ(s, z))

}
ds′ + γ

∫
s′∈S
∇θVπ(s

′)P (s′|s, fθ(s, z)) ds′

= ∇θfθ(s, z)

∫
s′∈S
∇a

{
(R(s, a, s′) + γVπ(s

′))P (s′|s, a)
}
ds′ + γ E

s′∼P

[
∇θVπ(s

′)
]

= ∇θfθ(s, z)∇aQπ(s, a)|fθ(s,z) + γ E
s′∼P

[
∇θVπ(s

′)
]

The gradient of the value function is obtained by injecting and unrolling this formula:

∇θVπ(s) = E
z∼ξ

[∇θfθ(s, z)∇aQπ(s, a)|a = fθ(s, z)] + γ E
s′∼P
z∼ξ

[
∇θVπ(s

′)
]
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= E
z∼ξ

[∇θfθ(s, z)∇aQπ(s, a)|a = fθ(s, z)]︸ ︷︷ ︸
ϕπ(s)

+γ

∫
s′∈S

ρ(1)π (s→ s′)∇θVπ(s
′) ds′

· · · =
∫
s′∈S

ϕπ(s
′)ηπ(s

′|s) ds′

It just remains to take the expectation over the initial state distribution ρ0:

∇θJ(π) = E
s∼ρ0

[∇θVπ(s)]

= E
s∼ρπ

[ϕπ(s)]

= E
s∼ρπ
z∼ξ

[∇θfθ(s, z)∇aQπ(s, a) | a = fθ(s, z)]

■

E.5.2 REINFORCE

Introduced by Williams (1992), REINFORCE ("REward Increment × Nonnegative
Factor × Offset Reinforcement × Characteristic Eligibility") is the most basic policy
gradient algorithm (see algorithm 7). It relies on the empirical future return for
complete episodes just like the MC methods, i.e. Gt =

∑T−t
k=0 γ

krt+k. It has the
benefit to be simple and does not require estimating a value function. However, it
suffers from the same high variance issues as MC methods. The root cause is that
all information is lost between iterations, and hence any estimate is going to be
extremely sensitive to the training batch at every iteration. REINFORCE algorithm
is generally not able to find reasonably good solutions for real-world applications.

Algorithm 7: REINFORCE (Williams, 1992)
Input: Step size: α, Initial parameters of the policy: θ0
for k = 0, 1, 2, . . . do

Collect a set Dk of N trajectories τ of length T on policy πk = π(θk);
Compute future return Ĝt =

∑T−t
k=0 γ

krt+k;
Estimate policy gradient ĝk as

ĝk =
1

N

∑
τ∈Dk

T∑
t=0

Ĝt∇θ log πθ(at|st)|θk ;

Update the policy by gradient ascent θk+1 = θk + αĝk;
end

One way to mitigate this issue is defining a baseline. Mathematically, it is a quan-
tity subtracted from the action-value in the gradient estimate to reduce its variance
without introducing bias. There are infinitely many possibilities. Williams suggest
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using a moving average of the empirical future return written as a recursive filter,

Ḡk+1 = αGt + (α− 1)Ḡk. (E.21)

They also mentioned training a function approximation of the state-value function,
which is still today the most common baseline in state-of-the-art on-policy learning
algorithms. Indeed, one can show that it is the optimal state-dependent baseline.
Nonetheless, there may exist a better baseline without such a restriction, and finding
the most effective one is still an active research topic (cf. appendix E.7.1).

Sutton et al. (1999) avoid defining a baseline entirely by replacing the empirical
future return in the gradient with a function approximation of the action value un-
der the current policy. At every training iteration, the Q-Network is first updated
as many times as necessary to converge. Then, the parameters of the policy are
updated once via the gradient descent following REINFORCE’s update rule. This
allows for aggregating new information and benefits from the generalization ability of
the network, which dramatically reduces the variance of the gradient estimate. Any
of the methods previously introduced can be used to train the Q-Network. To devi-
ate the least from REINFORCE, Sutton et al. proposed originally to minimize the
mean squared error between the current prediction and the empirical future return.
Although intuitive, this approach is flawed. First, the training procedure converges
to a local minimum. As such, the function approximation will be more prone to get
stuck in a local minimum if the step size is large, but it will forget already cumu-
lated knowledge at a slower rate. Formally, a small step size increases the bias but
decreases the variance and vice versa. Secondly, the function approximation has lim-
ited expressiveness, which also introduces bias unless some impracticable condition is
met. Any function approximation satisfying these conditions is said to be compatible,
and the corresponding update rule is a true gradient.

It is possible to reduce the variance without adding much bias by rather minimiz-
ing the residual TD error and performing only one update step per training sample.
This actor-critic algorithm has the same benefits as TD learning, including learning
from incomplete episodes. It can either be on-policy like SARSA or off-policy like
Q-learning. Yet, the on-policy variant was never really used because its drawbacks
outweigh its advantages. Notably, a gradient estimate based on a function approxi-
mation of the action-value would most certainly be biased. On the contrary, gradient
estimates involving the advantage function based on a function approximation of the
state-value function are guaranteed to be unbiased while having even lower variance
in practice. The lone consequence of a poor approximation of the state-value func-
tion is a larger variance than could have been optimally achieved. This on-policy
algorithm is simply called Stochastic Actor-Critic (SAC) or Advantage Actor-Critic
(A2C) (Degris et al., 2012a). Asynchronous A2C (A3C) (Mnih et al., 2016) extend
it to multiple agents learning in parallel but sharing the same parameters to get the
most out of the available CPU resources.

283



Appendix E. Classical Approaches in Reinforcement Learning

E.5.3 Vanilla Off-Policy Actor-Critic Learning

Degris et al. (2012b) present the vanilla Off-Policy Actor-Critic (OffPAC) algorithm
for stochastic policies with normal distribution, which is a very important milestone.
As with any off-policy methods, the distribution of training samples is not consistent
with the target policy being trained. This is not an issue in DQN because it learns the
optimal action-value function instead of the current one, but it presents its own limita-
tions. First, it does not scale well to continuous action spaces: finding the best action
for every single visited state is a non-linear non-convex optimization problem on its
own. Secondly, it suffers from an overestimation bias without advanced techniques
to prevent it. In theory, gradient ascent could be used to find it since action-value
is a function approximation and thus analytically differentiable. Yet, this approach
is impracticable because it results in a non-linear non-convex optimization problem
that would be very costly to solve. Another option is to compute an approximation
solution using Cross-Entropy Method (CEM). It is a simple derivative-free optimiza-
tion algorithm that samples a batch of N values at each iteration, fits a Gaussian
distribution to the best M < N of these samples, and then samples the next batch
from that Gaussian. This method is relatively cheap and scalable but inaccurate.
The resulting algorithm from combining DQN and CEM is called QT-Opt (Kalash-
nikov et al., 2018). It has been successfully applied for vision-based manipulation
using an online RL framework with many robots in parallel.

Degris et al. propose to completely avoid computing the best action by learning
the current action-value instead of the optimal one. None of the mechanisms of DQN
are used, so there is no replay buffer nor delayed update. A dedicated behavior
policy is used to collect samples and is theoretically unrelated to the target policy
and action-value that are learned. Let β(a|s) denote a stochastic behavior policy.
The objective function is defined as the expectation of the return over the discounted
state distribution ρβ induced by the behavior policy,

J(θ) = E
s∼ρβ

[Vπ(s)] = E
s∼ρβ
a∼πθ

[Qπ(s, a)] . (E.22)

Any state distribution can be used without adding much bias, even though in theory
it should be the initial state distribution ρ0 as mentioned before. The analytical
gradient of the objective function is easy to compute since the state distribution is
independent of the target policy. It gives,

∇θJ(θ) = E
s∼ρβ

[∫
a∈A

{
Qπ(s, a)∇θπθ(a|s) + πθ(a|s)∇θQπ(s, a)

}]
. (E.23)

The inner term in the integrand πθ(a|s)∇θQπ(s, a) is neglected because it is too
difficult to estimate in an incremental off-policy setting. In spite of this, Degris et al.
(2012b) have proven that monotonic improvement of the policy is guaranteed, and it
converges to a true local minimum of the objective J(θ). At this point, the actions
must still be taken according to the target policy. This is an issue because we would
like to be able to collect samples without relying on the target policy at all. This
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is where Importance Sampling (IS) comes into play. It is a technique for estimating
quantities associated with a particular distribution, while only samples drawn from a
different distribution are available. The gradient estimate is reformulated as follows,

∇θJ(θ) ≈ E
s∼ρβ

[∫
a∈A

Qπ(s, a)β(a|s)
πθ(a|s)
β(a|s)

∇θπθ(a|s)
πθ(a|s)

]
= E

s∼ρβ
a∼β

[
Qπ(s, a)

πθ(a|s)
β(a|s) ∇θ log πθ(a|s)

]
, (E.24)

In practice, the behavior policy is a uniform distribution over all possible actions,
and the parameters θ are updated using a single gradient ascent step as always.

Degris et al. present an action-value function estimate that combines a function
approximation of the state-value function with eligibility trace. The eligibility trace
assigns a lower weight to future transition steps as time progresses to rely instead on
the predicted state-value. This significantly reduces the variance but introduces bias
because the function approximation is always off to some extent. The decay rate λ is
a hyperparameter that must be fine-tuned manually for each problem to adjust this
trade-off optimally. The resulting action-value estimate is based on the discounted
residual TD errors. It is very similar to the Generalized Advantage Estimator (GAE)
presented in appendix E.7.1 but in the off-policy setting. OffPAC performs much
better than the off-policy Q-learning methods that define the target policy as the
best action according to a function approximation of the optimal action-value. It is
true at least for algorithms using greedy or softmax policies for exploration. However,
the vanilla IS estimator does not scale well with the dimensionality of the action space,
and the weights rapidly degenerate (cf. appendix E.7.1). It dramatically increases
the variance of the gradient estimate and makes learning unstable, so it is never used
and deterministic methods are preferred (cf. appendix E.6).

E.6 Deterministic Policy Gradient

Until now, the policy was considered stochastic, but this is not a prerequisite. Math-
ematically, a deterministic policy µθ(s) is equivalent to a stochastic one with binary
indicator distribution π(a|s) = 1{µθ(s)}(a), so that expectation over actions is a single
value. This distribution is not differentiable, which implies that the policy gradient
estimate based on the likelihood ratio is not applicable. Nevertheless, a gradient
estimate based on the reparametrization trick can be derived,

∇θJ(π) = E
s∼ρπ

[∇θµθ(s)∇aQπ(s, a) | a = µθ(s)] . (E.25)

The resulting family of policy learning algorithm is called Deterministic Policy Gradi-
ent (DPG) by Silver et al. (2014). Although on-policy learning with a deterministic
policy is theoretically possible, it is not viable. The main issue is that the policy
cannot promote exploration. This would lead to sub-optimal solutions unless there
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is sufficient noise in the environment itself to ensure adequate exploration, which is
highly likely in practice. Thus, its primary purpose is didactic.

It seems more reasonable to train a deterministic target policy while still relying
on a stochastic behavior policy for the sake of exploration. The stochastic off-policy
learning algorithm OffPAC served as the foundation for the deterministic off-policy
methods. The minimal modification consists in replacing the stochastic target pol-
icy with a deterministic one. Let β denote the behavior policy. The objective in
equation (E.22) can be simplified,

J(θ) = E
s∼ρβ

[Qπ(s, µθ(s))] . (E.26)

The behavior policy is supposed to be independent of the target policy µθ that
is being trained. This avoids any coupling between the sampling distribution and
the one induced by the target policy. The gradient estimate is obtained by direct
application of the chain rule:

∇θJ(θ) = E
s∼ρβ

[∇θQπ(s, µθ(s))]

= E
s∼ρβ

[∇θµθ(s)∇aQπ(s, a) + µθ(s)∇θQπ(s, a) | a = µθ(s)]

Unlike OffPAC, this gradient estimate does not involve IS despite the mismatch
between the target and behavior policy. This is a major advantage since the IS is
known to dramatically increase the variance, making learning unstable. Following
the same rationale as Degris et al. (2012b), the second inner term µθ(s)∇θQπ(s, a)
is dropped. It can be viewed as a greedy local improvement of the target policy with
the sole objective of taking the best action according to the current estimate of the
action-value function in all visited states, while completely ignoring the impact this
will have on the closed-loop dynamics, much like Behavior Cloning (BC).

The critic is a linear function approximation that estimates the action-value from
features ϕ(s, a) = ∇θµθ(s)(a − µθ(s)). The linearity property guarantees some of
the compatibility conditions to preserve the true gradient when replacing the actual
action-value function with this approximation. Off-policy Q-learning may diverge
when using linear function approximation. Similar to the OffPAC algorithm, Silver
et al. use gradient temporal-difference learning to update the parameters if the critic.
This ensures that the critic converges as long as it is updated at a much faster rate
than the actor to decouple them. A linear function approximator is not powerful
enough for predicting action-values globally since the action-value diverges for large
actions. Silver et al. mitigate this issue by injecting a linear function approximation
of the state-value function as a baseline, i.e. Qw(s, a) = wTϕ(s, a)+vTϕ(s) where the
features ϕ(s) are generated by tile-coding the state-space. A natural interpretation is
that Vv(s) = vTϕ(s) estimates the value of state s, while the first term estimates the
local advantage Aw(s, a) = wTϕ(s, a) of taking action a over action µθ(s) in state s.

At every iteration, the critic first estimate the current action-value function, and
then the actor is updated in the direction prescribed by the critic until convergence
to a consensus. This training procedure resembles Alternating Direction Method of
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Multipliers (ADMM) where two mutually dependent are solved separately until con-
vergence. Therefore, it is reasonable to expect this algorithm converges to the globally
optimal policy, but it cannot be guaranteed for non-linear function approximations.

In practice, the behavior policy is simply to target policy with a normalized noise
with fixed variance added to it. DPG has been compared to OffPAC for the same
behavior policy. DPG was performing slightly better and was more stable.

E.7 Deep Deterministic Policy Gradient

DQN is still competitive nowadays for discrete action space problems. It has the
advantage to be sample efficient thanks to the replay buffer, but it does not generalize
well to continuous action spaces. DPG does not have such a limitation, but learning
is unstable because of the coupling between the update of the action-value and the
policy. It is natural to combine both approaches to circumvent those limitations. The
resulting off-policy actor-critic algorithm is called Deep DPG (DDPG) (Lillicrap et
al., 2016). As for updating the parameters of the Q-network, a single gradient ascent
step is done at every training iteration, using the very same batch of transition steps.
Let B be a set of N transition steps {ei}Ni=0. It follows,

θ ← θ + α
1

N

∑
et∈B
∇θµθ(s)∇aQπ(s, a)|a=µθ(s). (E.27)

The policy πθ is updated toward the best action based on an approximation of the
action-value Qϕ that is itself changing to better estimate the optimal one Q∗. This
coupling is stable because it is not reciprocal. Nevertheless, a target policy p̂i must be
introduced in the computation of TD targets to avoid learning instabilities. Following
the delayed update mechanism, it is a frozen copy of the policy πθ that is updated
periodically, jointly with the target Q-network. The original loss function of DQN is
modified as follows,

L(ϕ) = 1

N

∑
et∈B

(
rt + γQ̂(st, π̂(st))−Qϕ(st, at)

)2
. (E.28)

ϵ-greedy is no longer used to sample the actual action performed by the agent.
Instead, a small gaussian noise is systematically added to every action taken by the
action. The standard deviation is a hyperparameter. It is usually scheduled to be
large at first and monotonically reduce as training progresses. This helps to fine-tune
the behavior of the agent in complex problems while escaping bad local minima.

E.7.1 Variance Reduction

Monte-Carlo Sampling from Incomplete Episodes

The gradient estimate in equation (E.18) is unbias but has several flaws. First, it
requires sampling from complete episodes. Secondly, every trajectory is considered as
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a whole, ignoring the effect of individual actions. It corresponds to the MC method
presented in appendix E.2, which is known to be unreliable due to very large variance.

The formulation in Equation (E.15) enables sampling from incomplete episodes to
compute the policy gradient, contrary to equation (E.14). Let us consider a batch B of
N transition steps et = {t, st, at, rt, st+1}. According to equation (E.16), the gradient
of the objective function J(θ) can be estimated using MC sampling as follows,

∇̂θJ(θ) =
1

N

∑
et∈B

γtQπ(st, at)∇θ log πθ(at|st). (E.29)

This gradient estimator is theoretically unbiased. This issue has already been dis-
cussed in appendix E.4. However, the action-value Qπ(st, at) itself is unknown and
must be estimated beforehand. While this could be done in a non-parametric fash-
ion based on the collected data alone, the resulting variance would be prohibitive.
Instead, it is a function approximation jointly trained with the policy. This function
approximation is never going to match the true action-value function in practice,
which introduces bias in the gradient estimator. Off-line methods are facing the very
same issue (cf. appendix E.4).

Thomas (2014) pointed out that most if not all state-of-the-art policy gradient
methods are dropping the term γt in equation (E.29). This modification is essential
for these algorithms to have any practical value as it dramatically improves their
sample efficiency. Otherwise, the term γt would decay to zero rapidly, causing the
true gradient to ignore data collected after a short burn-in period. The modified
formula goes against the policy gradient theorem except in the averaging scenario
(γ = 1). In all other cases, it is not even the gradient of any function because its
mixed partials are not symmetric, which is impossible according to Clairaut’s theorem.
Interestingly, the discount factor is ignored in the state distribution but not in the
action-value function. It means that these biased algorithms are actually optimizing
something closer to the expectation of the average reward, with the discount serving
to reduce variance, much like TD(λ) (Thomas, 2014).

Recently, Nota and Thomas (2020) have derived a very generic identity that
highlights the mistake in the existing formulation. Let us define ρ̃π =

∑∞
k=0 ωkP(st =

s), where the sequence {wk}∞k=0 are free parameters. Then,

E
s∈ρ̃π

[∇θVπ(s)] = E
τ∼π

[ ∞∑
t=0

Q(st, at)∇θ log πθ(at|st)
t∑

k=0

ωkγ
t−k

]
(E.30)

The true gradient is obtained for w0 = 1, wi = 0 ∀i ≥ 1. Likewise, the gradient
estimate after dropping the term γt corresponds to w0 = 1, wi = 1 − γ ∀i ≥ 1. As
expected, both matches in the averaging scenario but that is all. The factor γt is
ignored most of the time, which is a mistake introducing bias to an otherwise unbiased
estimator. More precisely, it means that it does not optimize the return with respect
to the initial state distribution ρ0 but some weighted stationary distribution.

This discrepancy is not a big deal in most cases, but it may lead to complete fail-
ure in finding an even reasonable policy in pathological scenarios (Nota & Thomas,
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2020). Nevertheless, it is generally profitable for continuing tasks. In this context,
setting a time limit to the episodes would guarantee sufficient sample diversity as
long as the start time has no particular meaning. The initial state should be indis-
tinguishable from any other to prevent side effects. This implies that the initial state
distribution should match the stationary one under the optimal policy. The latter
is unknown in advance, so the former is going to be a cheap approximation based
on prior assumptions. Thus, the state distribution involved in the modified gradient
estimate is actually closer to the stationary one than the initial one in practice.

Generalized Advantage Estimator

It is impossible to compute exactly the policy gradient using MC sampling if the
state space is continuous because it requires collecting an infinite amount of data.
Instead, it is approximated from a batch of transition steps at every training iteration.
Replacing the true expectation with the empirical mean results in different estimators,
all having their own bias and variance. Limiting the bias is important to converge
to the optimal policy while reducing the variance improves sample efficiency. How to
obtain an unbiased estimator with the lowest possible variance is an open question.

The most straightforward solution to reduce the variance is to replace the re-
turn R(τ) in equation (E.14) by the future rewards following action at, i.e. γtRt(τ).
Intuitively, past events do not depend on the current state and action, so it is pos-
sible to get rid of them in the expectation. They have zero mean but non-zero
variance, so they would just increase the variance of the estimate of the policy
gradient without any advantage. Beyond this, the control variates method is the
most widely used variance reduction technique in policy gradient. Suppose the
expectation µ = Eτ∼T [g(s, a)] must be estimated via MC sampling of trajectories
τ = {(st, at)}Tt=0 drawn from some distribution T . A control variate is an arbitrary
function f(s, a) with known expectation. It is assumed without lose of generality that
Eτ∼T [f(s, a)] = 0. With f , an alternative unbiased estimator of µ can be defined,

µ̂ = Ê
τ∈D

[g(s, a)− f(s, a)], (E.31)

where Ê denotes the empirical mean, and D is a finite set of trajectories. The variance
of this estimator is proportional to var(g − f) instead of var(g) for the vanilla MC
estimator. The variance can be significantly reduced by taking f to be similar to g,
thus resulting in a more reliable estimator.

When applied to policy gradient, the control variate is referred to as the baseline
and denoted ψ. Historically, Weaver and Tao (2001) suggested learning the optimal
constant baseline. From equation (E.17), it yields,

ψ =
Eτ∼πθ

[R(τ)∇θ logP(τ |πθ)2]
Eτ∼πθ

[∇θ logP(τ |πθ)2]
. (E.32)

This approach has been largely disregarded as the marginal reduction of variance it
brings is not worth the additional complexity. From the EGLP corollary, any function
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ψ that depends on the current state st would be valid baseline, i.e.

E
a∼π

[ψ(s)∇a log π(a|s)] = 0. (E.33)

The optimal state-dependent baseline can be learned by minimizing the variance of
the gradient estimator explicitly. However, it involves training yet another function
approximation since the state-value function is needed to a compute the action-value
function from incomplete episodes regardless. This can be avoided by using the
state-value function itself as a baseline. It is a reasonably good approximation of
optimal. One can demonstrate that the variance of the estimator is approximately
proportional to Eτ∼π[(γ

tRt(τ)− b(st))2], and hence minimizing it is a Least Squares
problem. It is well known that the optimal solution is given by Eτ∼π[γ

tRt(τ)|st], i.e.
the discounted value function γtVπ(st). It follows that the action-value Qπ(st, at) can
be replaced by the advantage function Aπ(st, at) in the gradient estimate.

It turns out that the discounted residual TD error δt = rt + γV (st+1)− V (st) is
an unbias estimator of the advantage for the true value function.

E
st+1∼ρπ

[δt|st] = E
st+1∼ρπ

[rt + γV (st+1)|st]− V (st) = Q(st+1)− V (st) = A(st)

The GAE generalizes this formulation (Schulman et al., 2016). This allows for reduc-
ing the variance even further, at the cost of adding more bias. The trade-off between
both is determined by the additional parameter λ. It is very similar to the return
estimator in TD(λ) algorithm. First, an n-step advantage function estimator Â(n)

t

is defined as the difference between the n-step return Ĝ
(n)
t in equation (E.8) and a

baseline Vπ(st). The contribution is to reformulate the advantage as a telescoping
sum of residual TD errors,

Â
(n)
t = Ĝ

(n)
t − Vπ(st) =

n−1∑
i=0

γirt+i + γnVπ(st+n)− Vπ(st) =
n−1∑
i=0

γiδt+i. (E.34)

Then, following the same principle that TD(λ), all possible n-step estimators are
summed up with exponential weight decay factor λ to get a better estimate, namely

ÂGAE
t = (1− λ)

∞∑
k=1

λk−1Â
(k)
t =

∞∑
k=0

(γλ)kδt+k. (E.35)

This advantage estimator is state-of-the-art. In practice, it is used systematically.

Stein Control Variate

More recently, Liu et al. (2018) have proposed a broader class of functionals based
on Stein-Hudson identity. Let p(x) be a smooth density supported on X ⊆ Rd, and
ψ(x) = [ψ1(x), . . . , ψd(x)]

T a smooth vector function. Stein’s identity states that for
sufficiently regular ψ(x),

E
x∼p

[Apψ(x)] = 0, Apψ(x) = ∇x log p(x)ψ(x)
T +∇xψ(x). (E.36)
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where Ap is called the Stein operator. This identity can be easily checked us-
ing integration by parts, assuming mild zero boundary conditions on ψ(x), either
p(x)ψ(x) = 0,∀x ∈ ∂X if X is compact, or lim∥x∥→∞ p(x)ψ(x) = 0 when X = Rd.
The following theorem enables applying this identity as a control variate. It is not
straightforward because the derivatives with respect to a and θ must be converted.

Theorem 12 (Stein Control Variate). Let πθ be a stochastic policy that is reparam-
eterizable, i.e. a = fθ(s, z) where z ∼ ξ and ξ is independent of θ. Then, for all
real-valued function ψ(s, a) s.t. π(a|s)ψ(s, a) decays exponentially fast to zero,

E
a∼πθ

[
∇θ log πθ(a|s)ψ(s, a)T | s

]
= E

z∼ξ
[∇θfθ(s, z)∇aψ(s, a) | s, a = fθ(s, z)] .

(E.37)

Proof. First, the Stein’s identity is applied on P(a|s, z) s.t. x = (a, s, z),

E
P(a|s,z)

[
∇(a,s,z) logP(a|s, z)ψ(a, s, z)T +∇(a,s,z)ψ(a, s, z)

]
= 0

The functional ψ is independent of z, and only the derivative with respect to a is of
interest. Besides, ∇a logP(a|s, z) = ∇a(logP(a, z|s)− logP(z|s)) = ∇a logP(a, z|s).

E
P(a|s,z)

[
∇a logP(a, z|s)ψ(a, s)T +∇aψ(a, s)

]
= 0

The policy is given by π(a|s) = Ez∼ξ[1{a}(fθ(s, z))]. The weak derivative of the
integrand is the same as limh→0 exp(−∥a − fθ(s, z)∥22/h2)/h2. It follows from the
Lebesgue-dominated convergence and monotone convergence theorems,

πθ(a|s) = lim
h→0

E
z∼ξ

[
exp(−∥a− fθ(s, z)∥22/h2)/h2 | s

]
.

Therefore, P(a, z|s) can be replaced by the Gaussian exp(−∥a− fθ(s, z)∥22/h2)/h2 in
computations, taking the limit afterward. It is easy to show that,

∇θ logP(a, z|s) = −∇θ fθ(s, z)∇a logP(a, z|s).

Multiplying both sides with ψ(s, a) and taking the conditional expectation:

E
P(a,z|s)

[
∇θ logP(a, z|s)ψ(s, a)T

]
= E

P(a,z|s)

[
−∇θfθ(s, z)∇a logP(a, z|s)ψ(s, a)T

]
= E

z∼ξ
[∇θfθ(s, z) E

P(a|s,z)

[
−∇a logP(a, z|s)ψ(s, a)T

]
|s]

= E
z∼ξ

[∇θfθ(s, z) E
P(a|s,z)

[∇aψ(s, a)] | s]

= E
z∼ξ

[∇θfθ(s, z)∇aψ(s, a) | s, a = fθ(s, z)]
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where the third equality comes from Stein’s identity. On the other hand:

E
P(a,z|s)

[
∇θ logP(a, z|s)ψ(s, a)T

]
= E

P(a,z|s)

[
∇θ log(πθ(a|s)P(z|s, a))ψ(s, a)T

]
= E

P(a,z|s)

[
∇θ log πθ(a|s)ψ(s, a)T

]
+ E
a∼πθ

[ E
P(z|s,a)

[∇θ logP(z|s, a)]︸ ︷︷ ︸
= 0 (EGLP)

ψ(s, a)T | s]

= E
a∼πθ

[
∇θ log πθ(a|s)ψ(s, a)T | s

]
■

The most generic formulation of policy gradient ∇θJ(θ) with control variate
ψ(s, a) is derived from theorems 10 and 12,

∇θJ(θ) = E
s∼ρπ
z∼ξ

[∇θ log πθ(a|s) (Qπ(s, a)−ψ(s, a))T+∇θfθ(s, z)∇aψ(s, a) | a = fθ(s, z)],

(E.38)
where any fixed choice of ψ(s, a) does not introduce bias. Let us consider a batch B
of N transition steps et = {t, st, zt, at, rt, st+1} s.t. at = fθ(st, zt), an estimator of
the gradient is

∇̂θJ(θ) =
1

N

∑
et∈B

{
∇θ log πθ(at|st) (Qπ(st, at)−ψ(st, at))T+∇θfθ(st, zt)∇aψ(st, at)

}
.

(E.39)
Equation (E.38) bridges the gap between on- and off-policy methods. If ψ is

action-independent, then the last term in the integrand equals zero and the estimator
corresponds to the formulation in equation (E.17). It is known as likelihood-ratio
gradient (LR) and is used in all on-policy algorithms based on REINFORCE or
A2C. Conversely, if ψ is the action-value function, then the first term vanishes. The
resulting estimator is referred to as ReParametrization gradient (RP),

∇θJ(θ) = E
s∼ρπ
z∼ξ

[∇θfθ(s, z)∇aQπ(s, a) | a = fθ(s, z)] .

It is well known from the variational inference literature that LR has much higher
variance than RP (Liu et al., 2018; Tang & Abbeel, 2010). The former is based on the
principle of modifying the likelihood of an action based on its outcome. The capability
of doing so is directly related to the amount of information brought by collected
samples, namely the entropy of the policy. If the latter is almost deterministic, then
the variance of the estimator would be infinite. On the contrary, the latter is rather
trying to modify the policy to predict the best action no matter the actual outcome.
As such, the variance of this gradient estimator is not affected by the diversity of
action. If the policy is deterministic, then it corresponds to DPG algorithm presented
in the next section. The two formulations are compared in figure E.3. In any case,
stochasticity is still useful to mitigate overfitting of the action-value and smoothing
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Figure E.3: Comparison between LR and RP gradients. LR keeps the positions of
the bars fixed, while RP keeps the probability mass fixed.

out artifacts that would lead to over-estimation otherwise. It is especially critical
for off-policy algorithms to rely entirely on the action-value estimate to select the
best action. In particular, Twin-Delayed DDPG (TD3) addresses this issue in the
context of deterministic policy. In practice, the policy is close to being deterministic
to keep optimizing locally around the best performing strategy, so RP gradient can be
expected to have to lower variance than LR in the context of RL. Lately, Parmas and
Sugiyama (2021) have carried out an in-depth analysis of the relationship between
both. They provide a physical interpretation based on fluid dynamics. LR and RP
are alternative methods of keeping track of the movement of probability mass, and the
two are connected via the divergence theorem. It also proves that there is no better
MC gradient estimator outside the search space characterized by equation (E.38).

There are two main approaches for constructing a baseline: fit the action-value
function or minimize the variance of the gradient estimator explicitly. The action-
value function is natural because it is just the generalization of the usual state-value
function baseline. It is a good choice as it cancels the LR term in expectation if
the approximation is unbiased, which has the largest variance between both terms.
However, it is not the best choice because the RP term has also its own variance and
bias. The optimal trade-off depends on the stochasticity of the transition steps, which
varies from one application to another and is likely to change over training iterations.
It seems preferable to find the baseline minimizing the variance at the current point.
Note that Var(∇̂θJ(θ)) = E[(∇̂θJ(θ))

2] − E[∇̂θJ(θ)]
2. Since E[∇̂θJ(θ)] = ∇θJ(θ)

does not depend on ψ, it is sufficient to minimize the first term, that is

min
ω

T∑
t=0

∥(Qπ(st, at)− ψω(st, at))∇θ log πθ(at|st) +∇θfθ(st, zt)∇aψω(st, at)∥22 ,

(E.40)
where ψ is a function approximation with parameter ω. It involves the gradient of
fθ with respect to the parameters θ, which is costly to evaluate by design for some
deep learning frameworks but not all. Liu et al. (2018) suggested to specialize the
computations for Gaussian policies and to optimize var(∇̂µJ(θ)) + var(∇̂ΣJ(θ)) as
a proxy. It gets rid of the derivative with respect to θ, but it lacks mathematical
grounding. It works reasonably well but not significantly better than fitting the
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action-value instead. In any case, it is more efficient to write the baseline as ψ(s, a) =
Vπ(s)+ϕ(s, a) where Vπ is a function approximation. It is equivalent to replacing the
action-value function by the advantage in equation (E.38). It is profitable because
the function to learn would be centered around zero.

It is convenient to use the action-value function as a baseline because it can be
estimated off-policy, even if the rest of the algorithm is on-policy. In which case,
it consists in minimizing the Bellman error for the best action, just like DQN. It is
not true for all baseline ψ(s, a). For this reason, it may be beneficial to learn the
action-value instead of a more generic control variate because it may be harder to
learn an accurate estimate of it. The resulting formulation of the policy gradient
differs from DDPG in that it corrects the bias induced by estimating the action-
value with a function approximation. Q-Prop (Gu et al., 2017) is the earliest method
that does exactly this. It constructs a state-action dependent control variate using
Taylor expansion. The resulting gradient estimator is identified with a special case
of the above formulation, where the control variate depends on the action linearly,
i.e. ψ(s, a) = V̂π(s) + (a− µπ(s))T∇aQ̂π(s, a)|µπ(s) where both V̂π, Q̂π are estimates
of the state- and action-value functions under target policy π, respectively. They are
actually function approximations but their parameter dependency is ignored in the
computation of the gradient. It is a better baseline than the state-value alone as the
Stein control variate is capable of decreasing the variance even more.

E.8 Zero-Order Optimization

Zeroth-Order (ZO) optimization goes by many names depending on its field of appli-
cation: black-box optimization, derivative-free optimization, pattern search, or direct
search to list a few. It is arguably the most generic category of optimization methods
that can be imagined. All it requires is being able to evaluate at will the scalar
objective function to be maximized given a set of parameters. No analytical gradient
is provided, so it can be applied to objective functions that are not continuous or
differentiable. No assumption is made about the structure of the problem.

Let us consider a multi-variate scalar stochastic function f : Rn → R. A naive
approach to estimate its gradient is the forward finite difference. The input x ∈ Rn

is perturbed by a small amount σ > 0 along every single component ei individually,

[∇̂xJ(x)]i =
J(x+ σei)− J(x)

σ
. (E.41)

It requires n+ 1 function evaluations to estimate the gradient in any direction. The
accuracy of this estimate depends on the number of parameters n, the intrinsic noise
|J(x) − E[J(x)]| ≤ ϵ,∀x ∈ Rn, and the global Lipchitz constant ∥∇xE[J(x)]∥ ≤
L,∀x ∈ Rn (Berahas et al., 2022). Specifically,

∥∇̂J(x)−∇xE[J(x)]∥2 ≤
√
nLσ

2
+

2
√
nϵ

σ
. (E.42)
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It appears that the perturbation σ must be small but not infinitesimal, unless the
function f is perfectly deterministic. It is easy to show that the optimal value is,

σ = 2

√
ϵ

L
. (E.43)

Alternatively, the central finite difference could be used to estimate the gradient. It
is slightly more accurate and stable but doubles the number of evaluations.

Gradient estimates based on finite differences are accurate but impracticable for
many problems. Regarding policy learning, each function evaluation requires running
a complete episode while a basic policy network has at least 10000 parameters. A
more reasonable approach would be to sample random direction ξ in the parameter
space and to pick the one that better improves the performance on average:

∇̂J(x) = E
ξ∼N(0,I)

[
J(x+ σξ)− J(x)

σ

]
=

1

σ
E

ξ∼N(0,I)
[J(x+ σξ)ξ] (E.44)

It is sometimes referred to as the one-point gradient estimate as the function is evalu-
ated once per direction. It can be demonstrated that this estimate corresponds to the
gradient of the average fitness for perturbed parameters x, J̃(x) = Ez∼N(x,σ)[J(z)].

Proof. The proof relies on the reparametrization trick, the log-derivative trick, and
the expression of the log-likelihood of an isotropic Gaussian:

∇x E
z∼N(x,σ)

[J(z)] =

∫
z
J(z)∇xp(z|x, σ) dz = E

z∼N(x,σ)
[J(z)∇x log p(z)]

= E
z∼N(x,σ)

[
J(z)

z − x
σ2

]
=

1

σ
E

ξ∼N(0,I)
[J(x+ σξ)ξ]

■

The averaging smooths out the original function f . Its effect is comparable to
a moving average or a low-pass filter. It is not surprising that smoothing appears
naturally. Indeed, such regularization of the Lipschitz constant is a precondition for
the gradient to be properly defined if the function f is not differentiable but bounded.
This approach is generally called directional Gaussian smoothing.

Although stochastic estimates are cheap to evaluate, their accuracy is worse than
finite difference methods because the sampling directions are not orthogonal. Many
other ZO gradient estimators are found in the literature, but none of them is really
superior (Berahas et al., 2022). The pivotal idea to make ZO optimization viable is
to leverage previous estimates to bootstrap new ones instead of throwing them away.
It makes sense because the parameters are only slightly updated at every iteration,
which means that the gradient should have barely changed. Moreover, it ensures
the gradient keeps steering in roughly the direction for a while before eventually
changing, which prevents getting stuck in poor local minima. Overall, it dramatically
improves the sample efficiency by reducing the variance of the gradient estimate but
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introduces bias. Such optimization algorithms tend to find better solutions and have
stable convergence. One of the most effective ZO optimization algorithms is ZO-
Adam (Chen et al., 2019). It is a modified version of ADAptive Moment estimation
(ADAM) that estimates the gradient according to equation (E.44). The sampling
distribution is not adapted, but the first and second-order momentums are used
to adjust the update rate and add inertia. The effect is expected to be similar to
adjusting the covariance matrix instead.

E.9 Evolutionary Strategies

Evolutionary Strategies (ES) (Beyer & Schwefel, 2002) belongs to the big family
of ZO optimization. It is a specific type of Evolutionary Algorithms (EA), just like
generic algorithms. They mostly differ from each other by their encoding of candidate
solutions. For OCP in particular, the underlying agent-environment interaction loop
is completely disregarded, and the MDP formalism so ubiquitous in RL is not even
involved. The individual transition steps are not accessible, nor are the complete
trajectories. Within the scope of the RL, ES are similar to the vanilla policy gradient
method in several aspects. The policy is a function approximation with parameters θ.
Those parameters are directly optimized by gradient descent, following a stochastic
approximation of the gradient. However, the policy gradient theorem does not apply
since trajectories are not available. In this context, the return for a complete episode
is referred to as the fitness score.

EA try to reproduce the Darwin evolution process. In the wild, only the fittest
can survive in competition for limited resources. It starts with a population of ran-
dom agents, corresponding to different sets of parameters. There are four steps per
iteration: evaluation, selection, recombination, and mutation. First, all the agents
interact with the environment in parallel. Secondly, the candidate policies associated
with low relative fitness scores are discarded. Next, a new generation is then created
by recombining the parameters of high-fitness survivors. Finally, some agents endure
random mutations. This process is repeated until one of the agents solves the task.

EA are known to explore the search space extensively. No backpropagation must
be performed, it is invariant to delayed or long-term rewards, and it is massively
parallelizable with very little data communication. However, it has poor sample ef-
ficiency compare to RL methods because it cannot leverage the temporal structure
of the problem. In the vanilla Evolutionary Strategy, the parameters are sampled
according to an isotropic gaussian distribution with a fixed standard deviation. The
efficiency can be further enhanced using a full covariance matrix instead, which would
be automatically adapted. It reduces the variance of the gradient estimator, con-
verges faster, and increases the fitness of the final solution. This algorithm is called
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) (Hansen & Ostermeier,
1996). The samples are spread out initially, with a large variance in the direction
of interest. Then, it becomes more concentrated as the confidence in finding a good
solution increases. It is closely related to ZO-Adam (cf. appendix E.8).
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Actor-critic, 87
Admittance control, 45
Artifical neural network

Activation function, 54
Backpropagation, 55
Batch processing, 56
Chain rule, 56
Convolution kernel, 62
Dead unit, 61
Discrete convolution, 62
Fully-connected, 62
Neuron, 54
Polling, 64
Structured network, 62
Transpose convolution, 63
Universal approximator, 58
Vanishing gradient, 60

Attention-based network
Attention map, 266
Cross-attention, 266
Key, 266
Query, 266
Self-attention, 266
Value, 266

Automatic differentiation, 56

Capturability, 34
Capture Point, 39
Centroidal Dynamics, 9
Classification, 49
Collocation method

Cardinal node, 223
Collocation condition, 223
Collocation point, see Interior node

Interior node, 223
Contact wrench, 36
Convex hull, 250
Curriculum learning, 71

Encoder-decoder architecture
Auto-encoder, 262
Latent space, 261

Expressive power, 50

Feedback linearization, 218
Decoupling matrix, 219

Function approximation, 50

Gauss’s principle of least constraint, 238

Hadamard product, 226
Hybrid system model

Guard surface, see Switching
surface

Phase, 217
Relabeling, 216
Reset map, 212
Switching surface, 212

Hybrid zero dynamics
Hybrid invariant, 220
Partial zero dynamics, 220
Zero dynamics, 220

Kinematic constraint
Drift, 238
Friction pyramid, 248
Painleve’s paradox, 242
Scleronomic, 25
Second-order cone, 242
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Meta-optimization, 61

Neural architecture search, 61

Poly-articulated system, 15
Base, 17
Body, 15
Chain rule, 23
Delassus matrix, 239
End-Effector, 17
Freeflyer, 17
Inertia matrix, 27
Joint, 15
Kinematic sub-chain, 16
Kinematic tree, 17
Link, 15
Mass matrix, see Inertia matrix

Recurrent neural network
Cell state, 264
Forget gate, 264
Gating mechanism, 264
Input gate, 264
Output gate, 264

Regression, 49
Reinforcement learning

Action-value, 75
Advantage, 75
Control policy, 67
Curiosity, 83
Dense reward, 69
Distributional shift, 69
Domain randomization, 72
Exploration-exploitation dilemma,

80
Fully observable, 71
Imitation learning, 69
Importance sampling, 285
Off-policy, 88
Offline Reinforcement Learning

(RL), 68
On-policy, 88
Online RL, 68
Partially observable, 73
Policy distillation, 69
Privileged information, 69

Q-value, see Action-value
Reality gap, 69
Replay buffer, 275
Return, 65
Reward engineering, 69
Sim-to-real transfer, 68
Sparse reward, 70
Value function, 74

Residual neural network
Shortcut connection, 260
Skip connection, see Shortcut

connection

Spatial vector algebra
Apparent derivative, 21
Body Jacobian, 20
Cartesian frame, 19
Classical acceleration, 22
Euler angles, 22
Generalized coordinates, 17
Pose, 22
Spatial force, 20
Spatial motion, 19
Twist, 19
Versor, 22
Wrench, 20

Supervised learning
Approximation error, 51
Complexity penalty, 52
Epproximation error, 52
Estimation error, 51
Explanatory variable, 49
Feature, see Explanatory variable
Generalization ability, 49
Label, 49
Overfitting, 52
Prediction error, 51
Training set, 49
Underfitting, 52

Teacher-Student, 69
Tikhonov regularization, 54

Unsupervised learning, 260

Virtual constraints, 217
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MOTS CLÉS

Robots à jambes, exosquelettes de membres inférieurs, locomotion, apprentissage automatique, apprentis-
sage par renforcement, optimisation, contrôle, planification de trajectoires

RÉSUMÉ

Cette thèse contribue à améliorer la planification de trajectoires et le contrôle des robots bipèdes. Le but concret est
de permettre aux paraplégiques de remarcher de façon autonome avec l’exosquelette de membres inférieurs Atalante.
Notre approche combine les méthodes issues l’apprentissage automatique et de la robotique traditionnelle. Nous met-
tons d’abord de côté le contrôle. L’objectif est de permettre la planification de trajectoires en ligne tout en garantissant un
fonctionnement sûr. C’est une étape cruciale vers la navigation en milieu incertain et la prise en compte des préférences
utilisateur. Nous entraînons ensuite un contrôleur par renforcement afin de généraliser un ensemble prédéfini de mou-
vements élémentaires. Nous ne cherchons pas la meilleure performance, mais plutôt la transférabilité et la sécurité.
Nous proposons une formulation qui apparente à l’apprentissage par imitation mais laisse suffisamment de marge de
manœuvre pour affronter des événements inattendus.

ABSTRACT

This thesis contributes to improving the motion planning and control of biped robots. Our concrete goal is restoring natural
locomotion for paraplegic people in their daily lives using the medical lower-limb exoskeleton Atalante, notably walking
safely and autonomously without crutches. The core idea is to combine traditional robotics and state-of-the-art machine
learning. We put aside closed-loop control to focus on planning at first. The objective is to enable online trajectory planning
while ensuring safe operation. This is a milestone toward realizing versatile navigation in an unstructured environment
and accommodating the user preferences. Second, we train a policy using reinforcement learning to generalize a pre-
defined set of primitive motions. We do not seek the best possible performance, but rather transferability and safety. We
propose a formulation closely related to imitation learning while giving enough leeway to deal with unexpected events.

KEYWORDS

Legged robots, lower-limb exoskeletons, locomotion, machine learning, reinforcement learning, optimization,
control, trajectory planning
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