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ABSTRACT

This thesis contributes to improving the motion planning and control of bipedal robots.
Our concrete goal is restoring natural locomotion for paraplegic people in their daily lives
using the medical lower-limb exoskeleton Atalante, notably walking safely and autonomously
without crutches. Consequently, the relevance of our methods is determined by their ability
to fulfill this goal. In this context, pragmatism through constant confrontation with reality
has been the cornerstone of this work. The core idea is to combine traditional robotics and
state-of-the-art machine learning to benefit from their respective advantages.

In the first part, we put aside closed-loop control to focus on planning. The objective
is to enable online trajectory planning while ensuring safe operation. This is a milestone
toward realizing versatile navigation in an unstructured environment and accommodating
the preferences of the user. We achieve this by training offline a function approximation of
the solution to any given trajectory optimization problem over a continuous task space. We
ensure that all the optimal trajectories can be perfectly reproduced by the function approx-
imation regardless of its expressiveness. The computation cost is comparable to generating
a finite database of trajectories and scales well to high-dimensional task spaces. Our algo-
rithm is compatible with any motion planning framework and can be used for solving any
multi-parametric optimization problem beyond the robotic field. In practice, the function
approximation is a neutral network specifically tailored for predicting continuous time series
and serves as a ‘Memory of motion’ that is queried online in no time for the task at hand.

In the second part, we train a policy using reinforcement learning to generalize a pre-
defined set of primitive motions that have been generated and clinically validated for an
average user moving around on flat ground. The challenge is not to achieve the best pos-
sible performance but rather to ensure transferability and safety. We propose an original
formulation closely related to imitation learning, in the sense that trajectories are used to
guide and constrain the policy optimization in the same way as expert demonstrations, while
giving enough freedom to deal with large external disturbances or modelling discrepancies.
Two very different training scenarios have been studied: smoothly transitioning between
nominal motions, and reactive stepping for emergency push recovery while standing. Only
the latter has been evaluated on Atalante for lack of time. It transfers to reality and attains
satisfactory performance without any kind of adaptation, which is very promising.

To support this work, an open-source simulator of poly-articulated robots called Jiminy
has been developed. It is heavily optimized for reinforcement learning applications. In par-
ticular, several parameters are available to trade-off between realism and regularity of the
physics to ease or speed up learning. Internally, it relies on a novel analytical contact formu-
lation that does not involve computing impulse forces. Besides, it takes into account many of
the hardware limitations and side effects, among them backlashes, stochastic communication
delays, the inertia of the rotors, and the mechanical deformation of the structure.






RESUME

L’objectif de cette thése est d’exploiter les methodes existantes issu du domaine machine
learning afin d’améliorer le planning et control des robots bipédes. Dés le départ, nous
nous sommes fixé comme objectif concret d’aider les paraplégiques a remarcher de fagon
autonome & l'aide de I'exosquelette de membres inférieurs Atalante. Afin de ne pas perdre
de vue cette objective, le pragmatisme et la perpetuelle confrontation & la réalité ont été les
pierres angulaires de ce travail. Ce paradigme a eu une importance capitale dans le design
des methodes qui ont été proposé dans ce travail, tout en enforgant malgré tout a étendre
leur portée au maximum. L’idée centrale est de combiner les methodes issues des domaines
du machine learning et de la robotique traditionnelle afin de mutualiser leurs avantages
respectifs, plutdét que de substituer 'un a 'autre.

Dans la premiére partie, nous laissons de coté le controle en boucle fermée. L’objectif
est de permettre la planification de trajectoires en ligne tout en garantissanun fonctionne-
ment sir. Il s’agit d’'une étape importante vers la navigation en environnement non struc-
turé et la prise en compte des préférences utilisateur. Nous y parvenons en entrainant hors
ligne une fonction d’approximation des solutions & un probléme d’optimisation de trajectoire
quelconque pour un espace de tache continu. Nous nous assurons que les trajectoires ainsi
générées puissent étre parfaitement reproduites par la function d’approximation, quelle que
soit son expressivité. Le cotit de calcul est comparable a la génération d’une base de données
de trajectoires et s’adapte bien a un espace de taches de grande dimension. Notre algorithme
est compatible avec n’importe quel outil de planification de mouvement et peut également
étre utilisé pour résoudre n’importe quel probléme d’optimisation multiparamétrique au-dela
du domaine de la robotique. En pratique, la fonction d’approximation est un réseau de neu-
rones spécialement congu pour prédire des séries temporelles continues et sert de "mémoire
du mouvement" pouvant étre évaluée en ligne presque instantanément.

Dans la deuxiéme partie, nous entrainons un contréleur par apprentissage par renfor-
cement afin de généraliser un ensemble prédéfini de mouvements élémentaires qui ont été
générés et validés cliniquement avec un utilisateur moyen se déplagant sur un terrain plat.
L’objectif n’est pas d’atteindre la meilleure performance possible, mais plutét d’assurer la
transférabilité et la sécurité. Nous proposons une nouvelle formulation étroitement liée a
I’apprentissage par imitation, dans le sens ou les trajectoires sont utilisées pour guider et
contraindre 'optimisation du contréleur de la méme maniére que des démonstrations d’ex-
perts, tout en donnant suffisamment de liberté pour compenser de grandes perturbations
extérieures ainsi que les erreurs de modélisation. Deux scénarios trés différents ont été étu-
diés : reproduire l’ensemble des mouvements nominaux, et se rattraper lors d’un violent
impact dans une posture statique de repos. Seul ce dernier cas de figure a été évalué sur
Atalante par manque de temps. La performance du controleur sont satisfaisantes sans aucun
type d’adaptation en dépit du transfert de la simulation a la réalité, ce qui est prometteur.

Un simulateur open-source de robots poly-articulés appelé Jiminy a été développé afin de
rendre ce travail possible. Il est spécifiquement adapté a I’apprentissage par renforcement. En
particulier, plusieurs paramétres sont disponibles pour arbitrer entre réalisme et régularité
de la physique afin de faciliter ou d’accélérer 'apprentissage. En interne, il s’appuie sur une
nouvelle formulation analytique du contact qui ne nécessite pas le calcul de forces impulsion-
nelles. En outre, il tient compte de nombreuses limitations matérielles et effets secondaires,
notamment le jeu articulaire, le délai de communication variable, l'inertie des rotors et la
déformation mécanique de la structure.

iii






Table of Contents

Abstract

Résumé

Table of Contents
List of Figures
Acronymes

1 Introduction
1.1 Context and Motivation . . . . . ... ... ... ...
1.1.1  Enhancing Motor Recovery and Rehabilitation
1.1.2  Restoring Locomotion for Disabled People . . .

1.1.3 Atalante: Self-Balanced Medical Lower-Limb Exoskeleton

1.1.4  Technical Constraints and Challenges . . . . .
1.2 Problem Statement and Contributions . . . .. .. ..
1.2.1  Online Trajectory Planning . . . . . .. .. ..
1.2.2  Robust and Safe Control Policy Optimization .

1.2.3  Realistic Open-Source Simulator for Reinforcement Learning

2 Background in Robotics
2.1  Preliminaries on Rigid Body Dynamics . . . . . . . ..
2.1.1 Spatial Vector Algebra . . . . .. ... ... ..
2.1.2  Whole-Body Dynamics . . . . . ... ... ...
2.2 Planning and Control in Bipedal Robotics . . . . . ..
2.2.1 Notion of Bipedal Locomotion and Terminology
2.2.2  Stability Assessment . . . .. ... ...
2.2.3 Classical Control Methods . . . . . .. ... ..

3 Background in Machine Learning

3.1 Supervised Learning and Neural Networks . . . . . ..
3.1.1 Introduction to Supervised Learning . . . . . .
3.1.2  Fundamentals of Artificial Neural Networks . .

3.2 The Reinforcement Learning Problem . . ... .. ..
3.2.1 The Agent-Environment Interaction Loop . . .
3.2.2 Key Concepts and Terminology . . . . . .. ..
3.2.3 Taxonomy of Algorithms for Continuous Control

4 Related work

iii

ix

xiii

15
15
18
26
28
28
33
42

49
49
49
o4
65
66
73
86

99



vi

4.1 Related Work on Online Trajectory Planning . . . . . ... ... ...
4.1.1 Model Prediction Control . . . ... ... ... ... .. ....
4.1.2 Imitation Learning . . . . . .. .. ... ... . L.
4.1.3 Trajectory Planning and Function Approximation . ... . ..

4.2 Related Work on Robust and Safe Control Policy . . . . .. ... ...
4.2.1 Classical Control Methods . . . . . .. ... ... ... .....
4.2.2 Policy Learning Methods . . . . . ... ... ... .......
4.2.3 Predictability and Safety in Reinforcement Learning . . . . . .

Online Trajectory Planning
5.1 Trajectory Planning Problem . . . .. .. ... ... ... .......
5.1.1 Optimal Control Formulation . . . . .. .. ... ... ... ..
5.1.2  Vector Representation of the Solutions . . . . . .. .. ... ..
5.2 Trajectory Learning . . . . . . . .. . .. . ... ... ... ...
5.2.1 Naive Formulation as a Standard Regression. . . . . . .. ...
5.2.2  Efficient Task Sampling and Certifiability . . ... .. .. ...
5.2.3 Limitations . . . . . .. ...
5.3 Guided Trajectory Learning . . . . . . ... ... ... ... ..
5.3.1 Unifying Trajectory Planning and Learning . . . . .. .. . ..
5.3.2 Trade-off Between Generalization Ability and Optimality
5.4 Tterative Solving . . . . . . . ...
5.4.1 Alternating Direction Method of Multipliers . . . . . . .. ...
5.4.2  Proposed Consensus Optimization Algorithm . . . ... .. ..
5.4.3 Theoretical Analysis . . . . . .. ... ... ... ...
5.5 Structured Prediction with Neural Network . . . . ... ... .. ...
5.5.1 Autoregressive Model . . . . ... ... ... ... ... ...
5.5.2  Generative Single Forward Pass Model . . . . . .. .. ... ..
5.6 Experimental Validation . . . . . . . ... ... . 0oL,
5.6.1 Toy Problem: Van der Pol Oscillator . . . . ... ... ... ..
5.6.2 Application to Atalante: Flat Foot Walking . . . . .. ... ..
5.7 Concluding Remarks . . . . . . ... ... . 0 oL

Learning Robust and Safe Policy

6.1 Problem Setup . . . . .. ...
6.1.1 Learning Environment . . . . . .. ... .. ... ... ... .
6.1.2 Training Scenarios . . . . . . . . . ... .o

6.2 Constrained Policy Optimization . . . .. ... ... ... .. .....
6.2.1 Implicit Constraints through Early Termination . . . . . . . ..
6.2.2 Explicit Constraints through Barrier Functions . . . . .. . ..

6.3 Trajectory-Based Imitation using Reinforcement Learning . . . . . . .
6.3.1 Generalized Space-Time Bounds . . . . ... .. ... .....
6.3.2  Scalable Multi-Tasking through Lower-Bound Maximization . .
6.3.3 Task Transitioning via Cross-Initialization . . . . . .. . .. ..

6.4 Improving Convergence, Predictability and Safety . . . . . . ... ...

125
126
126
127
128
128
129
132
133
133

. 135

136
136
138
138
143
143
145
148
148
151
158



6.4.1 Reward Engineering . . . . . . .. ... ... .. ... .. 187

6.4.2 Termination Conditions . . . . .. ... ... ... ....... 191

6.4.3 Explicit constraints . . . . . .. ... oL 192

6.4.4 Smoothness Conditioning . . . . . . .. ... ... ... ..., 193

6.5 Ensuring Robustness for Bridging the Simulation-Reality Gap . . . . . 194
6.5.1 Plausible External Disturbances . . . ... ... ... ..... 194

6.5.2 Feasible Initial State Generation . . . ... .. ... ... ... 195

6.5.3 Domain Randomization . . .. ... ... ... .. .. ..... 196

6.6 Results. . . . . . . . 198
6.6.1 Policy Network Architecture. . . . . .. ... ... ... .... 198

6.6.2 Training Performance . . . .. .. ... ... ... ... .... 198

6.6.3 Validation in Simulation . . . . . . .. ... ... 198

6.6.4 Standing Push Recovery on Atalante . . . . . . ... ... ... 201

6.7 Concluding Remarks . . . . . ... ... .. oL 201

7 Conclusion 203
7.1 Summary of the Contributions . . . . ... .. ... ... ... .... 203
7.2 Discussion . . . . . . . . e e e e e 205
7.2.1 Online Trajectory Planning . . . . . .. .. .. ... ... ... 205

7.2.2 Robust and Safe Control Policy . . . . . ... ... ... .... 205

7.3 Perspectives and Future Works . . . . . . ... ... ... .. ..... 205
7.3.1 Human-Like Locomotion . . . . . . .. ... ... ... ..... 205

7.3.2 Data Efficiency . . . ... ... .. ... . 206

7.3.3 Global Optimally . . . . . ... ... ... .. .. .. ... .. 206

7.3.4 Transfer toreality . . . ... .. ... ... .. 206
Appendices 209
A Trajectory Planning Using Whole-Body Optimization 211
B Proximal Splitting Method 227
C Jiminy — Open-source Simulator for Legged Robots 235
D Classical Neural Networks Architectures 259
E Classical Approaches in Reinforcement Learning 269
Alphabetical Index 297
Bibliography 299

vii






List of Figures

1.1
1.2
1.3

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

5.1
5.2
5.3
5.4
9.5
5.6
5.7
5.8
5.9

Atalante Product by Wandercraft . . . . . . .. . ... 0oL 3
Overview of the Hardware of Atalante . . . . . . . ... ... ... .... 5
Modelling of the Flexibility of the Mechanical Structure of Atalante . .. 6
Examples of Kinematic Graphs . . . . . .. ... ... ... ... .. 16
Canonical Generalized Coordinate for the Cartpole . . . . . . .. .. ... 18
Description of a Kinematic Chain . . . . . . . ... ... .. ... ..... 25
Examples of Bipedal Robots . . . . . . . ... ... oL 29
Human Planes of Section . . . . .. .. .. ... ... . ... 31
Characterization of Bipedal Locomotion . . . . . . .. ... ... ..... 32
Motion Primitives for Versatile Locomotion on Flat Ground . . . . . . . . 32
Contact Force Measurement . . . . . . . .. ... ... ... ... ... .. 35
Dynamic Stability Assessment on a Flat Ground . . . . . ... ... ... 37
Virtual Support Area . . . . . . ... 39
Centroidal Dynamics and Inverted Pendulum Model . . . . . . .. .. .. 40
Comparison Between True and Projected Support Polygon . . . . . . . .. 41
Mustration of Early Switch Replanning . . . . . .. ... ... ... ... 44
Model Predictive Control over a Finite Horizon. . . . . . . . . ... .. .. 47
Effect of Function Space Complexity and Number of Samples . . . . . .. 53
Mlustration of an Artificial Neuron . . . . . . .. ... .. ... ... ... 55
Simple Binary Classifier . . . . . ... .. ... 0 0oL 55
Ilustration of Backpropagation . . . . . . . ... ... .. ... ...... 56
Graphical Representation of Three Common Activation Functions. . . . . 60
Discrete Convolution Acting As a Filter . . . . . .. ... ... ... ... 63
Agent-Environment Interaction Loop in Reinforcement Learning . . . . . 67
Classic Policy and State-Value Network Architecture . . . . . . . . . ... 78
Taxonomy of Policy Learning Algorithms . . . . . . ... ... ... ... 90
Sample Efficiency of Policy Learning Algorithms . . . . .. ... ... .. 91
PPO-Clipped Objective for a Single Transition Step . . . . .. .. .. .. 96
Monte-Carlo Study of the Maximum Inter-Point Distance . . . . . .. .. 131
Comparison Between Standard Regression and Guided Trajectory Learning141
Comparison Between Behavior Cloning and Trajectory Unfolding . . . . . 143
Denoising Autoencoder . . . . . . . .. .. 144
Trajectory Generation with an Open-Loop Policy . . . . . . ... .. ... 145
Specialized Network Architecture for Continuous-Time Markov Process . . 147
Overview of the Original Optimal Trajectories . . . . . . . . . .. .. ... 148
Evolution of the Total Prediction Error over GTL Iterations . . . . . . .. 149
Prediction Error Distribution for Initial and Final GTL Iterations. . . . . 149

X



5.10 Pairwise Distance Between Training Samples . . . . . . .. ... ... .. 150
5.11 Flat-Foot Walking Domains . . . . . . . ... ... ... ... ..... 151
5.12 Original Optimal Trajectories of the Ankle Joints . . . . . . . ... .. .. 153
5.13 Pairwise Distance Between Training Samples . . . . . . .. ... ... .. 154
5.14 Effect of the Number of Parameters on the Training Error . . . . . . . .. 155
5.15 Effect of Number of Samples on the Testing Frror . . . . . ... ... .. 155
5.16 Norm-Inf Test Error Distribution over Iterations of GTL-0 . . . . . . . .. 156
5.17 Continuity of the Trajectories with Respect to the Task . . . . . ... .. 157
5.18 From Simulation to Reality . . . . . .. ... ... ... ... ... ... . 158
6.1 Overview of Proposed Control Flow. . . . . .. .. ... ... ....... 162
6.2 Probabilistic Constraint on Motor Position Tracking Error . . . . . . . .. 177
6.3 Probabilistic Constraint on Motor Tracking Error . . . . . . . ... .. .. 178
6.4 RBF Kernel for Scaling Reward Components. . . . . . ... .. ... ... 188
6.5 Ablation Study . . . . . ... 199
6.6 Comparison Between the Predicted Target Velocity, Measured Position,

and Command Torque . . . . . . . . ... 200
6.7 Strong Impact Kick . . . . . . ... ... o 200
6.8 Maximum Recoverable Force Magnitude . . . . . . . . .. ... ... ... 201
6.9 Scenarios Showing the Robustness of the Push Recovery Policy . . . . .. 202
A.1 Directed Graph of Foot Rolling Walking Pattern . . . . ... .. .. ... 212
A.2 Tlustration of the PHZD Periodic Orbit . . . . .. .. .. ... ... ... 220
A.3 Mlustration of Feedback Linearization. . . . . . . .. .. ... ... .... 221
A.4 Ilustration of the Direct Collocation . . . . . . .. .. ... ... ..... 224
B.1 Geometric Interpretation of the First-Order Multiplier Iteration . . . . . . 231
C.1 Modelling of the Mechanical Deformation in Simulation . . .. .. .. .. 236
C.2 Non-Uniqueness of the Solution in Case of Constraint Redundancy . . . . 240
C.3 Ground Reaction Force at Contact Point . . . . . .. ... ... ... ... 241
C.4 Theoretical Evolution of Tangential Velocity of a Contact Point . . . . . . 244
C.5 Theoretical Evolution of Contact Depth over Time . . . . . .. ... ... 245
C.6 Example of Polyhedral Linear Approximation of Friction Cone. . . . . . . 247
C.7 Pathological Issue with Collision Detection . . . . . .. .. .. ... ... 249
C.8 Ilustration of Convex Hull for a Chair . . . . .. ... .. ... ... ... 251
C.9 Closest Point to Heightmap Ground Profile . . . . . ... ... ... ... 252
C.10 Evaluation of Acceleration-Level Constrained Dynamics Formulation . . . 253
C.11 Pantograph Example of Closed Kinematic Chain Transmission . . . . . . 256
C.12 Transmission of the Ankle of Atalante Exoskeleton . . . . . .. ... ... 257
D.1 Residual Learning Building Block . . . . . . .. .. ... ... ... ... 261
D.2 Tlustration of Encoder-Decoder Architecture for Image Segmentation . . . 263
D.3 Description of Long Short-Term Memory Network . . .. ... .. .. .. 265



E.1 Generalized Policy Iteration

E.2 Comparison of the Backup Strategies in Reinforcement Learning . . . . .
E.3 Comparison Between LR and RP Gradients . . . . .. ... ... ... ..

X1






Acronymes

A2C
A3C
ABA
ADAM
ADMM
ANN
BC
BFGS
CEM
CG
CGL
CMA-ES
CNN
CoM
CoP
CPI
CPO
CRBA
CROP
DAGGER
DCM
DDP
DDPG
DNN
DoF
DP
DPG
DQN
DTL
EA
EGLP
EKF

Advantage Actor-Critic
Asynchronous A2C

Articulated Body Algorithm
ADAptive Moment estimation
Alternating Direction Method of Multipliers
Artificial Neural Network

Behavior Cloning
Broyden-Fletcher-Goldfarb-Shannon
Cross-Entropy Method

Conjugate Gradient
Chebyshev-Gauss-Lobatto
Covariance Matrix Adaptation Evolution Strategy
Convolutional Neural Network
Center of Mass

Center of Pressure

Conservative Policy Iteration
Constrained Policy Optimization
Composite Rigid Body Algorithm
Certifying RObust Policies

Data AGGERation

Divergent Component of Motion
Differential Dynamic Programming
Deep DPG

Deconvolutional Neural Network
Degree of Freedom

Dynamic Programming
Deterministic Policy Gradient
Deep Q Network

Distributed Trajectory Learning
Evolutionary Algorithms

Expected Grad-Log-Prob
Extended Kalman Filter

xiii



ERL
ES
FD
FEM
FGSM
FIM
FIP
FK
FNN
GAE
GAN
GEV
GJK
GMM
GPI
GPS
GRU
GTL
HER
HLC
HZD
ID

K

IL
IMU
IPO
IS
K-FAC
KKT
KL
KNN
LIPM
LLC
LQR
LR
LSTM

Xiv

Evolutionary Reinforcement Learning
Evolutionary Strategies

Forward Dynamics

Finite Element Method

Fast Gradient Sign Method
Fisher Information Matrix
Floating-base Inverted Pendulum
Forward Kinematics

Feedforward Neural Network
Generalized Advantage Estimator
Generative Adversarial Nets
Generalized Extreme Value
Gilbert-Johnson-Keerthi
Gaussian Mixture Model
Generalized Policy Iteration
Guided Policy Search

Gated Recurrent Unit

Guided Trajectory Learning
Hindsight Experience Replay
High-Level Controller

Hybrid Zero Dynamics

Inverse Dynamics

Inverse Kinematics

Imitation Learning

Inertial Measurement Unit
Interior Point Optimization

Importance Sampling

Kronecker-factored Approximate Curvature

Karush-Kuhn-Tucker
Kullback-Leibler

K-Nearest Neighbors

Linear Inverted Pendulum Model
Low-Level Controller

Linear Quadratic Regulator
likelihood-ratio gradient

Long Short-Term Memory



LTI Linear Time-Invariant

MC Monte-Carlo

MCPO Masked CPO

MDP Markov Decision Process

MFCQ Mangasarian Fromovitz Constraint Qualification
MLCP Mixed Linear Complementary Problem
MLP Multi-Layer Perceptron

MPC Model-Based Predictive Control

MSE Mean Squared Error

NAS Neural Architecture Search

NLCP Non-Linear Complementarity Problem

NLP Non-Linear Program

ocp Optimal Control Problem

OffPAC Off-Policy Actor-Critic

OSIM Operational Space Inertia Matrix

PCA Principal Component Analysis

PGD Projected Gradient Descent

PGS Projected Gauss-Seidel

PHZD Partial HZD

PID Proportional-Integral-Derivative controller
PILCO Probabilistic Inference for Learning COntrol
PINN Physics-Informed Neural Network

PLATO Policy Learning using Adaptive Trajectory Optimization
PPO Proximal Policy Optimization

QP Quadratic Program

RBF Radial Basis Function

RL Reinforcement Learning

RMSProp Root Mean Square Propagation

RND Random Network Distillation
RNEA Recursive Newton-Euler Algorithm
RNN Recurrent Neural Network

RP ReParametrization gradient

SAC Soft Actor Critic

SARSA State-Action-Reward-State- Action
SEA Serial Elastic Actuator

SGD Stochastic Gradient-Descent



SGLD Stochastic Gradient Langevin Dynamics

SMILe Stochastic Mixing Iterative Learning

SOCP Second-Order Cone Program

SSOR Successive Over Relaxation

SVIGP Stochastic Variational Inference for Gaussian Process
SVM Support-Vector Machines

SVR Support Vector Regression

TBDP Trajectory-Based Dynamic Programming

TD Temporal-Difference

TD3 Twin-Delayed DDPG

TRPO Trust Region Policy Optimization

TV Total Variation

VFF Variational Fourier Features for Gaussian Process
VHIP Variable-Height Inverted Pendulum

ZMP Zero-tilting Moment Point

70 Zeroth-Order

xXvi



Chapter 1

Introduction

Contents
1.1  Context and Motivation . . . . . . .. . .. . L o 1
1.1.1  Enhancing Motor Recovery and Rehabilitation . . . ... ... ... 1
1.1.2  Restoring Locomotion for Disabled People . . . . . . ... ... ... 2
1.1.3  Atalante: Self-Balanced Medical Lower-Limb Exoskeleton . . . . . . 3
1.1.4  Technical Constraints and Challenges. . . . . . ... ... ... ... )
1.2 Problem Statement and Contributions . . . . . . .. .. .. ... ... .... 8
1.2.1  Online Trajectory Planning . . . .. ... ... ... ... ...... 8
1.2.2  Robust and Safe Control Policy Optimization . . . . . ... ... .. 10
1.2.3  Realistic Open-Source Simulator for Reinforcement Learning 11

1.1 Context and Motivation

1.1.1 Enhancing Motor Recovery and Rehabilitation

Stroke is a leading cause of motor disabilities. One in 6 people will have a stroke in
their lifetime, and 17 million people have had one in 2010 of which 31% aged less than
65 years (Feigin et al., 2014). Of these, 65% are left with severe disability, affecting
their capacity to independently carry out activities of daily living according to the
Stroke Foundation (2020). In China, which has the highest stroke rate in the world,
there are nearly 15 million disabled people with lower-limb motor dysfunctions (Shi
et al., 2019). More people are in need of stroke rehabilitation every year, but there is
already a lack of therapists. Therefore, lower-limb rehabilitation robots are of great
significance as they can reduce the burden on therapists.

It is known that therapy should begin as soon as possible and provide intensive
sessions that incorporate multiple sensory mechanisms in a structured way to be effec-
tive (Calabro et al., 2016). In recent years, rehabilitation robots have gained interest
for their ability to automate them. Some medical studies came to the conclusion
that powered exoskeletons can supplement a therapist in some cases such as stroke
patients for which the mobility of the upper body is affected (Conesa et al., 2012;
Masiero et al., 2007), but they do not win unanimous support (Kwakkel et al., 2008;
Postol et al., 2021; Veerbeek et al., 2017). Similarly, preliminary studies targeting
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loss of mobility of the lower body for stroke patients show no significant improvement
in motor function recovery using lower-limb exoskeletons compared with conventional
therapy alone (Hobbs & Artemiadis, 2020; Postol et al., 2021; Shi et al., 2019).

It is primarily the devices used in these studies that are to blame for these mixed
results, not the very idea of using powered exoskeletons to supplement conventional
therapy. These technologies are rapidly-evolving and were very immature when these
inconclusive studies were conducted. In particular, they made use of lower-limb ex-
oskeletons that are not self-balanced and require crutches. The patient must have
good motor control of the upper body and a sense of balance to use such devices,
making them unusable during the first weeks after the strokes. This issue is a ma-
jor obstacle to full recovery since motor plasticity quickly decreases after the stroke.
Moreover, the patient must involve all his attention in the walking pattern to effec-
tively stimulate brain plasticity and maximize recovery (Behrman et al., 2006; Kleim
& Jomes, 2008). Having to handle balance with crutches is exhausting, diverting the
attention of the patient from their lower body, and eventually leading to pathological
gait because the walking pattern is far from being natural. Finally, weight transfer
and sense of balance are especially affected in stroke patients having lost lower-limb
motor control capability. It is crucial for a powered exoskeleton to emulate these
sensations by reacting to patient behavior instead of just blindly tracking its nominal
motion, which is out of reach for devices with crutches (Calabro et al., 2016).

This analysis suggests that making lower-limb powered exoskeleton crutch-less
and safe-balanced is a prerequisite for efficient rehabilitation of stroke patients. The
locomotion must be natural enough and span the full set of capabilities affected by
the stroke in the days right after the event to stimulate brain plasticity and maximize
motor recovery (Calabro et al., 2016). The main advantages of such an exoskeleton
over classical therapy are to allow intensive sessions with patients without the need for
therapists and the ability to perform exercises that would be otherwise impossible or
very complicated such as weight transfer and just standing up. Together, it increases
the number of patients that can be treated and may enhance recovery. Furthermore,
strong motivation and a positive attitude are known as keys to the efficiency of the
therapy (Goodman et al., 2014; Tatla et al., 2013), and studies have demonstrated
an increase in motivation from patients using robotic devices for rehabilitation (Lam
et al., 2015; Postol et al., 2021).

1.1.2 Restoring Locomotion for Disabled People

Beyond rehabilitation, restoring locomotion for people suffering from spinal cord
injuries or neurodegenerative diseases is also a major aspect. Indeed, due to an aging
society, the number of people with limb movement disorders is increasing rapidly.
Studies show that maximum muscle power is reduced by about 50% on average by
natural aging, while the number of falls relative to the number of steps per day is
increased by 800% (25 to 90 years) (Grimmer et al., 2019). Age-related diseases,
such as Parkinson’s disease, as well as the medication itself, can significantly affect
walking ability. Furthermore, the World Health Organization reported that over 50
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Figure 1.1: Atalante product by Wandercraft.

million people suffered non-fatal injuries because of road traffic crashes in total, many
of them incurring permanent motor disabilities.

In this regard, walking naturally in an urban environment, while keeping their
minds free of any stability concerns and without being quickly exhausting, contributes
to giving them back a normal life. So far, no lower-limb medical exoskeleton is being
entirely successful at achieving this. On the one hand, balance control is only local
at best and devices are not able to perform reactive stepping strategies to recover
stability in case of emergency (Goswami & Vadakkepat, 2019, Part VI). On the other
hand, every motion is specifically tuned for one situation, and the robot usually has
to stop completely for a short time before switching them. It breaks the flow of action
and prevents dealing with unknown environments. Not being able to overcome any
of these challenges makes it unlikely that such a device will be convenient enough to
be widely adopted, as a wheelchair is still a more versatile alternative.

1.1.3 Atalante: Self-Balanced Medical Lower-Limb Exoskeleton

The exoskeleton Atalante, designed by Wandercraft (2021), is an autonomous device,
self-balancing and self-supporting. It has 6 actuated revolute joints on each leg,

e 3 joints for the spherical rotation of the hip,

e 1 joint for the flexion of the knee,

e 2 joints for the hinge motion of the ankle.
Atalante is depicted in figure 1.1a. The actuators are powerful enough to sustain the
weight of a user heavier than 100kg, with a maximum torque ranging from 100N m to
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350N m. The weight of the exoskeleton is about 75kg, making it one of the heaviest
devices on the market. This is not a major issue because the exoskeleton supports its
own weight in contrast to exoskeletons with crutches, and therefore it is unnoticeable
to the user inside. Still, it is more dangerous in case of a fall.

The exoskeleton Atalante has been designed by Wandercraft (2021). It is arguably
the most advanced medical lower-limb exoskeleton commercially available. It has the
CE marking to be sold in Europe. Wandercraft targets clinical centers in Europe for
the time being, but FDA clearance for selling Atalante in the United States is on the
way. Concurrently, a few additional units have been sold to universities in the United
States for research purposes only. An ongoing medical study seems to confirm that
walking on Atalante is having a significant positive impact on rehabilitation in the
neurosurgical setting (Apra et al., 2022).

It features dimensional adjustments on the thighs and tibias to fit the morphology
of the user. The user is fastened to the exoskeleton using straps on the pelvis, thighs,
tibias, and feet. Those straps have to be slack and stretchy for the user’s comfort and
to reduce the risk of injury. This soft coupling between the user and the exoskeleton
makes the whole system harder to control since the user can move inside the robot
and disturb the dynamics of the exoskeleton. It is especially true for the upper body
(both torso and arms) and the hips in the frontal plane to a lesser extent.

The exoskeleton has only basic proprioceptive sensors figure 1.2,

o 1 Inertial Measurement Unit (IMU) in the pelvis, tibia, and foot of each leg
e 4 vertical force sensors under each foot
e 1 encoder for each joint

An IMU integrates an accelerometer and a gyroscope, which provide a noisy mea-
surement of the classical linear acceleration and the angular velocity in local frame
respectively. An encoder provides a discrete noise-free measurement of the relative
joint position. The velocity is obtained by numerical differentiation and filtering.

There are buttons on the right side of the exoskeleton for the physiotherapist to
control the robot and stop it in case of emergency, but the user can also directly
interact with it using a remote control and a jacket with an IMU on its back, see
figure 1.1b. The user can select the type of gait — i.e. going forward, backward,
turning around, or doing side steps — or switch between walking, standing, or exercise
mode. In addition, one can use a mobile application to fine-tune in real-time the gait
parameters, e.g. step duration and step length. This feature is a direct by-product
of the first contribution of this thesis (cf. chapter 5).

Atalante lacks embedded safety apparatus to cushion the shock and hold the
user’s neck, and falling with it would be dangerous. Thus, it must stay attached
to a mobile gantry. A physiotherapist is also requested to prevent repeated falls
because the control algorithms have limited robustness to disturbances. Offering
some emergency strategy to recover from falling in most cases is a key objective of
this thesis (cf. chapter 6). Combined with airbags, it would dispense for any form of
external assistance on the next product intended for personal use.
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Figure 1.2: Overview of the hardware of Atalante

1.1.4 Technical Constraints and Challenges
Mechanical Flexibility of the Structure

One of the major challenges in robotics is the reality gap. For practical reasons,
among them user safety, social acceptance, and agile locomotion, it is necessary to
make the device relatively lightweight and slim. A direct consequence of this con-
straint is that the whole mechanical structure is flexible, including the transmissions.

In general, compliance is a property that is sought in robotics. Notably, it avoids
breaking parts by relieving internal mechanical constraints in the structure, and it
naturally adapts to the environment by compensating for small discrepancies between
expectation and reality. In the particular case of an exoskeleton, it also prevents
propagating shockwaves in the patient’s bones by absorbing impacts on the ground.

However, controlling systems that are not perfectly rigid is more challenging,
especially when it lacks an accurate dynamic model. It is usually the case when
compliance was not introduced on purpose as for Atalante. Still, Seok et al. (2015)
demonstrated that well-characterized mechanical compliance could be desirable since
it relaxes hardware and software requirements for emulating compliance through
control. For instance, Pratt and Williamson (1995) specifically developed a type of
compliant actuators called Serial Flastic Actuator (SEA). This technology enables
some real robots to perform highly dynamic motions such as jumping or running, e.g.
the commercially available quadrupedal robot ANYmal (Hutter et al., 2016).

We observe on Atalante that the mechanical deformation of the structure only
marginally disturbs the position of the Center of Mass (CoM) but significantly affects
the swing foot figure 1.3. The latter is about 2cm lower than expected, and it touches
the ground 20% earlier, which is enough to make the exoskeleton fall without early
impact handling in the control loop. Currently, this is done by switching to the next
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Figure 1.3: Modelling of the flexibility of the mechanical structure of Atalante as
localized deformation at hip and ankle joints. The deformation is about ldeg for
each flexible joint, lowering the vertical position of the flying foot by about 2cm.
The dashed orange and green robots are respectively the theoretical configurations
as expected by offline planning algorithms and after applying ankle deformation only.
The solid blue one in front is the real configuration under mechanical deformation.

step as soon as the flying foot touches the ground. This strategy is fairly easy to
implement, at the cost of further increasing the gap between the trajectory that was
planned offline and the one performed in reality by the exoskeleton. This issue could
be disregarded for a classic bipedal robot, but not for a rehabilitation exoskeleton for
which it is critical to reproduce physiological walking.

Vigne et al. (2020b) have shown that modelling the mechanical deformation of
Atalante is extremely difficult. The lack of a model means that the phenomenon
cannot be explicitly taken into account in classical trajectory planning methods.
Besides, the dynamics of the mechanical deformation must be decoupled from that of
the controllers to ignore completely the former without rendering the whole feedback
loop unstable. This restriction translates into an upper bound for tracking accuracy,
amplifying indirectly the effect of the deformation at the kinematic level.

One option consists in estimating the mapping from rigid to flexible state by
leveraging experimental data. First, the true nominal trajectory is executed on the
real robot. Then, the difference between the observed and nominal trajectories is
extracted from the data, and the corresponding feedforward time-dependent offset
is subtracted from the command sent to each motor. It results in a new observed
trajectory that should be closer to the original nominal one. It keeps going back and
forth until convergence, and the whole process must be repeated for each nominal
motion individually. In practice, simple linear ramps for the frontal and sagittal hip
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joints of the swing leg work reasonably well on Atalante.

Alternatively, Vigne (2021) compensate online the observed deformation using a
classical observer-controller structure. Their results are competitive with the previ-
ous method without the need for tedious and time-consuming manual tuning, which
is promising. However, it cannot perfectly cancel the effects of the mechanical defor-
mation due to hardware and modelling limitations. Relying too much on a biased
observation in the feedback loop may cause vibrations (Vigne et al., 2020a). Thus,
there remains a strong interest in developing robust control methods capable of han-
dling poorly modeled phenomenons as a complementary approach. The design of
such a controller — and the simulation environment to benchmark it — is an open
question that we partially address in this thesis using the Reinforcement Learning
(RL) paradigm (cf. appendix C and chapter 5). Randomizing the unknown param-
eters and making the task more difficult than necessary are some key components.
For legged locomotion, an uneven ground profile could be used in simulation during
training even though the robot is only supposed to walk on flat ground in reality.

Multi-Agent System with Partially Observable State

The exoskeleton Atalante with a user inside behaves quite differently from a classi-
cal humanoid robot. Indeed, it is not an actual bipedal robot but rather multiple
independent agents interacting with each other and the external environment. More
precisely, the user can only interfere with the exoskeleton, while the exoskeleton
interacts directly with both the user and the environment.

The user is not fully controllable. Their behavior determines whether the system
will fall or walk properly, no matter the theoretical stability of the nominal trajectory.
It is fine as long as they assist the robot during its motion or at least do not disturb it.
Yet, one cannot expect this assumption to hold true because a typical user is disabled.
Most of them have fairly bad control of the upper body and sense of balance, in such
a way that their behavior can be sometimes adversarial or helpful. Moreover, they
tend to hold themselves using their arms by pushing on the batteries, which is also
disturbing the dynamics of the robot.

There is no sensor on the user except one IMU on the back, so their state cannot
be directly observed. Still, assuming the dynamics of the robot is perfectly known,
its proprioceptive sensors are sufficient to estimate the state of the user at any point
in time. Additionally, if a kinematic model of the user is available, then it may even
be possible to deduce their full state from the history of past measurements. One can
expect machine learning techniques to be able to learn it and therefore to be more
robust than classic control approaches.

Once the state of the user is estimated, it can be perceived as something else
than one external disturbance to be rejected among others. It should make it easier
to maintain and recovery balance. More importantly, it enables counteracting the
specific pathologies of the patients and adapting the behavior of the robot to the
evolution of their condition. It should enhance motor recovery, adding up to the
existing benefits of the platform for rehabilitation.
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Offline Trajectory Planning

The exoskeleton is basically tracking pre-computed motions, disregarding early im-
pact handling and admittance control to compensate locally for small disturbances
(cf. section 2.2.3). A set of trajectories corresponding to primitive motions are gen-
erated offline once per user, relying on external computational resources hosted by
Wandercraft. Notably, walking in a straight line, turning round, or doing side steps.

Although this approach was proven successful, it breaks the system’s autonomy.
This is acceptable from a product used in clinical centers, where access to the internet
can be requested. Moreover, the process is repeated systematically, without being
able to leverage the result of previous generations to speed up the next ones, which
is a waste of resources for Wandercraft. Even more concerning is the potential waste
of time for the physiotherapist if the delay induced by the generation process was
not anticipated. It takes about 5 minutes for each first-time user, which is significant
during 30 minutes sessions and may slow down the adoption of the product by clinical
centers. In addition, it lacks versatility since only a finite discrete set of gaits is
available on the device. This is fine for rehabilitation where the set of exercises is
limited, but it makes it very difficult to navigate in a real environment. Finally, it
lacks robustness as there is no guarantee for the optimization to convergence, even
though it is very unlikely to fail in practice.

1.2 Problem Statement and Contributions

This thesis aims at solving some blocking points preventing to restore locomotion for
disabled people in their daily life. Several challenges have been tackled in particular,

e embedding a continuous manifold of nominal trajectories on the exoskeleton to
make it possible to navigate in unstructured environments (cf. chapter 5),

e ensuring smooth and natural transitions between nominal trajectories without
having to go back to stand-still systematically (cf. chapter 6),

e providing a robust control policy to guarantee the safety of the user by maintain-
ing balance at all costs, while actively compensating for discrepancies between
planning and reality (cf. chapter 6).

Hereafter, we summarize our contributions.

1.2.1 Online Trajectory Planning

Online trajectory planning enables robots to deal with a real-world environment that
may change suddenly and to carry out sequences of tasks in unknown orders and
contexts. For instance, walking robots must be able to change direction or adapt
their speed, but also to consider stairs of different heights or the position and size of
obstacles. Conventionally, online trajectory planning capability is achieved by solving
trajectory optimization in real time. This can be done by either relying on embedded
resources or streaming data through the network to a dedicated computation unit.
A hybrid mix of both is also relevant as it enables continuous improvement over the
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whole fleet of devices already deployed by sharing experience globally. For instance,
Boston Dynamics and Tesla are streaming data related to computer vision processing
whenever a network connection is available. In classical robotics, mainly two different
planning approaches are used for bipedal robots: whole-body optimization by solving
directly over the full-body state (Dalibard et al., 2013), or reduced model optimization
which is a two-stage method consisting in first planning the centroidal dynamics —
i.e. the angular momentum and the position of the center of mass — according to a
highly simplified model, and then finding a consistent full-body state (Ahn et al.,
2021; Apgar et al., 2018; Caron, 2020).

Offline trajectory planning based on whole-body optimization is already very
challenging for complex systems that may involve hybrid dynamics, under-actuation,
redundancies, balancing issues, or a need for high accuracy such as bipedal robots.
Although efficient methods exist to solve most trajectory optimization problems such
as Differential Dynamic Programming and Direct Collocation Transcription (Budhi-
raja et al., 2019b; Hereid & Ames, 2017; Hereid et al., 2018; Huynh et al., 2021), there
is no guarantee of convergence and finding solutions is computationally demanding,
preventing their uses online. Hereid et al. (2016b) get around these issues by running
the optimization in the background and updating the trajectory periodically, e.g.
between each step for bipedal robots. However, it remains hard to meet such com-
putational performance, and this still provides a poor reaction time. Reduced model
approaches can be used to speed up the calculations and ensure convergence, for
example by linearizing the dynamics. Nevertheless, it does not have any guarantee
to be feasible in practice because it does not take into account the actual dynamics
of the system, and the overall motion is less natural (Boer, 2012; Kajita et al., 2003).

A workaround to avoid online trajectory optimization consists of using a function
approximation, i.e. performing trajectory learning over a set of trajectories generated
beforehand. This requires no simplification of the model since the optimizations are
carried out offline. Moreover, once training has been done, it operates at a fraction
of the cost of the previous methods. Two distinct approaches can be considered: pol-
icy learning, i.e. training a controller, and trajectory learning, i.e. predicting nominal
state sequences. While the potential of policy learning is impressive, it implies a com-
plete overhaul of the control architecture and new requirements in terms of embedded
and on-premise computational resources, not to mention certifiability concerns. Tra-
jectory learning has the advantage of being effortless to integrate into robotic systems
for which there already exists control strategies that ensure robust tracking of tra-
jectories generated through optimization: it comes down to replacing a finite set of
trajectories with the function approximation. A naive approach would be to train
a function approximation on a database of solutions to the optimization problem.
Although it may work in practice, this is sensitive to overfitting and does not offer
any guarantee to really perform the desired task or to be feasible. This is nonetheless
state-of-the-art in trajectory learning as this field is still largely unexplored.

Our contribution is the Guided Trajectory Learning (GTL) algorithm, which
makes trajectory optimization adapt itself, so that it only outputs solutions that
can be perfectly represented by a given function approximation. The idea is to make
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the trajectory optimization problem adapt itself wherever the function approxima-
tion fails to fit. Our method is readily applicable to any complex robotics system
with a high-dimensional state for which offline trajectory optimization methods and
satisfactory control strategies are already available and efficient. It makes online
trajectory planning based on function approximations more accurate and reliable by
guaranteeing the feasibility of the predictions, thereby being practical for systems
where failure is not an option. We demonstrate it on flat-foot walking with the
exoskeleton Atalante (cf. chapter 5).

This contribution has been the subject of the following publications and patents:
e Online Trajectory Planning Through Combined Trajectory Optimization
and Function Approximation: Application to the Erxoskeleton Atalante in
the International Conference on Robotics and Automation
o Procédés d’apprentissage de parameétres d’un reseau de neurones, de généra-
tion d’ume trajectoire d’un exosquelette et de mise en mouvement de
l’exosquelette as international patent under the Patent Coopera-
tion Treaty (No. W02021058918A1)

1.2.2 Robust and Safe Control Policy Optimization

Achieving dynamic stability for bipedal robots is one of the most difficult challenges
in robotics. Continuous feedback control is required to keep balance since the ver-
tical posture is inherently unstable. However, hybrid high-dimensional dynamics,
kinematic redundancy, model and environment uncertainties, and hardware limita-
tions make it hard to design robust embedded controllers. Trajectory planning for
bipedal robots has been solved successfully through whole-body optimization. In
particular, Gurriet et al. (2018) achieved stable walking on flat ground and without
disturbances on the exoskeleton Atalante by using state-of-the-art traditional meth-
ods. Yet, robust tracking of reference motions and emergency recovery is still an open
problem. Classic control approaches require a lot of expert knowledge and effort in
tuning because of discrepancies between approximate models and reality. Solutions
are mainly task-specific, and improving versatility is usually done by stacking several
estimation and control strategies in a modular hierarchical architecture (Herzog et al.,
2016; Kim et al., 2020; Lohmeier et al., 2009; Moro & Sentis, 2018). Despite being
efficient in practice, it makes the analysis as well as tuning increasingly challenging
and thereby limits its capability. Machine learning methods, such as deep RL, in
contrast, require expert knowledge and extensive efforts to design the agent and the
reward rather than structuring explicit controllers and defining good approximate
models. RL aims at solving observation, planning, and control as a unified problem
by training an end-to-end control policy. Tackling the problem globally substan-
tially increases its potential, however, state-of-the-art algorithms still face difficulties
to converge and obtain satisfying behavior for practical applications. Moreover, a
ubiquitous problem of controllers trained with deep RL is the lack of safety and
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smoothness. This is a problem for real-life deployment as human beings aren’t able
to predict future motions. Without special care, the command varies discontinuously
like a bang-bang controller, which can result in a poor transfer to reality, high power
consumption, loud noise, and system failures (Mysore et al., 2021). Despite these
potential limitations, a robust gait and push recovery for the bipedal Cassie robot
was recently learned in simulation using deep RL and then transferred successfully
to the real device (Castillo et al., 2021; Li et al., 2021). Concurrently, several works
on standing push recovery for humanoid robots trained in simulation suggest that
the approach is promising (Ferigo et al., 2021; Melo et al., 2020), although the same
level of performance has not been achieved on real humanoid robots.

Our main contribution is the development of a purely reactive controller for stand-
ing push recovery on legged robots using RL, which is used as the last resort fallback
in case of emergency. Precisely, we design an end-to-end policy featuring a variety
of human-like balancing strategies from the latest proprioceptive sensor data, while
guaranteeing predictable, safe, and smooth behavior. The resulting policy greatly
expands the set of recoverable states in comparison to classical model-based con-
trollers on similar systems. Moreover, the policy can be directly transferred to a real
robot. We demonstrate agile push recovery behavior for strong perturbations on the
self-balanced medical exoskeleton Atalante (cf. chapter 6).

This contribution has been the subject of the following publications and patents:
e Reactive Stepping for Humanoid Robots using Reinforcement Learning: Ap-
plication to Standing Push Recovery on the FExoskeleton Atalante in the
International Conference on Intelligent Robots and Systems
e Methods for training a neural network and for using said neural network to
stabilize a bipedal Tobot as European patent (under examination)

1.2.3 Realistic Open-Source Simulator for Reinforcement Learning

Simulation is a critical tool in robotics. Robots are no longer limited to operating
in structured environments and performing scripted actions. In this context, being
able to compare and analyze different software and hardware solutions in a virtual
playground can help to bring out the physical constraints, planning challenges, and
control limitations that the robot may face before actually building it. Thus, it
reduces the cost and accelerates the engineering design cycle by quickly discarding
unsuccessful solutions. Furthermore, artificial intelligence techniques such as RL are
now mature for real applications (cf. section 3.2). It promises to endow the next gen-
eration of robots with locomotion and decision-making skills, but those algorithms
are usually extremely data-hungry. Simulation enables generating a large amount of
training data in a fraction of the real-time, without safety concerns or wearing out
the device. Finally, while physically testing robots before deployment is mandatory,
building a controlled environment for every specific task to perform ensures thorough
testing, which avoids regressions over time and enables benchmarking of new solu-
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tions. In parallel, data-driven approaches consisting in training a surrogate model to
replace simulators with an oracle are slowly emerging. One of their main use cases
is speeding up calculations that would otherwise be very costly, e.g. fluid and quan-
tum mechanics. Ha and Schmidhuber (2018) train a function approximation of a
dataset of observations without any additional requirement, which they called world
model. This approach is condemned by the robotic community, mainly because of
a lack of understanding of its internal workings following its black box design, lim-
ited theoretical validation, and unreliable accuracy. Raissi et al. (2019) introduce
Physics-Informed Neural Networks (PINNs) to overcome most of these shortcom-
ings. To do so, they enforce in addition that the model respects any given law of
physics described by general nonlinear partial differential equations, possibly com-
prising unknown physical constants. This approach can be applied to obtain either a
discrete or continuous model while ensuring arbitrary accuracy in both cases. Yet, if
the model is trained from synthetic data, then it has little advantage over an actual
physics engine which is already cheap to evaluate for legged robots, and providing
enough real data to identify the unknown parameters is challenging.

Optimizing control policies using RL for legged robots requires a fast and realistic
simulator. Furthermore, the dynamics must be smooth to minimize the signal-to-
noise ratio and thereby reduce the number of samples necessary to accurately estimate
the gradient of the problem. Several physical simulators were already available when
we started investigating this topic, among them Mujoco (Todorov et al., 2012), Dart
(Lee et al., 2018), Drake, ODE, Simbody, and Bullet. Mujoco is ubiquitous in the
Machine Learning community. Yet, relying on it for anything else than synthetic
benchmarking is not acceptable due to its unrealistic contact model. Moreover, at
that time, it was commercial software, closed-source, and poorly documented. Dart,
Drake, or Simbody are not great options either because they are notably slow. ODE
is based on Newton dynamics instead of Lagrangian dynamics, which is known to lead
to non-smooth physics with poor signal-to-noise ratio, bad numerical stability, and
non-repeatable results. On its side, Bullet was a promising option but not thoroughly
tested nor widely adopted by the machine learning community. Ultimately, all these
simulators were showing limitations regarding the physics and the set of features
readily available. For instance, considering the gantry, the physiotherapist or the
user inside the exoskeleton was theoretically possible but not supported out-of-the-
box. More importantly, none of them were modeling the mechanical deformation of
the structure. Besides, none of these tools were sharing a common interface with
the libraries already developed at Wandercraft internally, substantially hindering the
transfer of knowledge from the existing codebase to the simulation environment.
Typically, being able to export simulation log files in the same format as the real
robot would enable using the analysis toolchain already available.

A new simulator specifically tailored for legged robots has been developed during
this thesis. This simulator, called Jiminy, is open-source and freely available. The
minimal features to perform policy optimization are provided. Notably, it implements
the standard interface required by all RL libraries, and examples of learning environ-
ments are available for a few commercially available legged robots. And last but not
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least, Jiminy comes with basic tools to visualize and analyze the results conveniently.
Its performance is fairly competitive against other available libraries, with a real-time
factor being close to 50 on a single thread for the exoskeleton Atalante. Under the
hood, Jiminy leverages the rigid body dynamics library Pinocchio (Carpentier et al.,
2019). This library is heavily used by the research teams at Wandercraft, and hence
having a simulator based on it greatly eases internal adoption (cf. appendix C).

This contribution had been released in open-source under MIT license:

e Jiminy: a Fast and Portable Python/C++ Simulator of Poly-Articulated
Systems with OpenAl Gym Interface for Reinforcement Learning at
https://github.com/duburcqga/jiminy

o Tianshou: a Highly Modularized Deep Reinforcement Learning Library in
the Journal of Machine Learning Research (Machine Learning
Open Source Software Paper)

Outline of the Thesis

This thesis is organized into six chapters. First, chapter 2 defines the theoretical
model of the system patient-exoskeleton, then it introduces classic planning and con-
trol methods of bipedal robots. Next, chapter 3 gives an overview of supervised
learning and neural networks, then presents reinforcement learning. These two pre-
liminary chapters cover the necessary technical tools to fully comprehend the related
works and our contributions. Chapter 4 is dedicated to discussing the state-of-the-art
approaches related to our contributions. The chapter is divided into two parts. First,
we review existing results about combining trajectory optimization and function ap-
proximation, followed by policy learning approaches from which our contribution
takes inspiration. The second part focuses on presenting some techniques to ensure
robustness and safety of control policy using reinforcement learning and how to do
the sim-to-real transfer. Chapter 5 and chapter 6 constitute our main contributions.
Chapter 5 introduces a new algorithm combining trajectory optimization and func-
tion approximation to enable online trajectory planning. Chapter 6 presents results
on learning versatile locomotion skills for legged robots while ensuring robustness
and safety of the control policy. Finally, Chapter 7 proposes a discussion and some
perspectives on our contributions. Appendix A formalizes mathematically the tra-
jectory optimization problem and illustrates it for walking in a straight line on flat
ground with the exoskeleton Atalante. Appendix C gives some details about the
physics modeling and features available in the Jiminy Simulator that was developed
as part of this thesis. Appendix D summarizes some prominent network architectures
in machine learning. Appendix E reviews in depth the algorithms that led to major
breakthroughs in RL from its foundation almost 50 years ago up to this day while
drawing connections between them.
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2.1 Preliminaries on Rigid Body Dynamics

The Rigid Body Dynamics refers to the study of the kinematics and dynamics for
rigid poly-articulated system. Great progress has been made in this field since the
availability of cheap computational resources. Nowadays, algorithms to compute any
kinematics and dynamics quantities with the lowest possible complexity have been
found (Goswami & Vadakkepat, 2019, Part IV; Featherstone, 2008; Carpentier &
Mansard, 2018). They are fast enough to enable online control for complex systems
such as humanoid robots using embedded computational resources. Nevertheless,
how to efficiently model and integrate over time the interaction with the environment
is still an active research topic. In line with this statement, we offer our very own
contact solver with our open-source simulator Jiminy in appendix C.

Kinematic Trees

A rigid poly-articulated system is mathematically represented as a directed graph
(Goswami & Vadakkepat, 2019, Part IV). The vertices of this graph are rigid bodies,
also called links. A rigid body is not supposed to deform or change shape, which
is an idealization. Any assembly of multiple mechanical parts fixed relative to one
another is viewed as one rigid body. Each body is fully characterized by a small set
of constant physical parameters (cf. section 2.1.1). The edges are joints. A joint
defines the relative motion that is permitted between its parent and child bodies.
It is a mathematical abstraction of one physical mechanism as well as possible its
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Figure 2.1: Examples of kinematic graphs

transmission system doing the interface with actuators if any. Thus, it gives you
limited information about the actual design of the robot: infinitely many mechanisms
would be modeled the same way. Each type of joint characterizes one particular set
of independent movements among the 3 translations (X, Y, Z) and the 3 rotations
(Roll, Pitch, Yaw) plus any combination between them (cf. section 2.1.1). These
independent movements are termed Degrees of Freedom (DokFs). Their number cannot
exceed 6 in our 3D space. The most common type of joint is the revolute joint which
only enables a single rotation. More complex types exist, such as the helicoidal joint,
allowing a screwing motion coupling a translation and a rotation and therefore still
having a single DoF. Simple directed paths in a kinematic graph are known as sub-
chains. They are the assembly of several rigid bodies articulated by distinct joints.
A sub-chain is said to be closed if cyclic, and open otherwise. Robots having closed
kinematic chains are referred to as parallel, serial otherwise (see figure 2.1).

The most famous example of a parallel robot is the hexapod positioning system
called Stewart platform. Parallel kinematic chains combine high rigidity with small
mass and inertia of the manipulator relative to the load. Thus, they allow high
precision and high speed at the same time without having to compromise between
the two, unlike serial robots. However, the workspace tends to be limited, in part
because there may be singular configurations for which set the system in motion
would require infinitely large efforts for the actuators, leading to the destruction of
the mechanical structure or hardware if reached.

The determination of the singularities is an open problem in the general case.
Moreover, the structure of a parallel robot is said to be hyperstatic or statically in-
determinate: the static equilibrium equations are insufficient for determining the
internal forces acting on that structure. Further information, such as material prop-
erties and mechanical deformations, must be taken into account to find out which
is the unique physically meaningful solution among all the feasible ones (Matheson,
1959). It is necessary to anticipate which parts will break first and when, but that is
all. Indeed, any feasible solution is suitable to simulate the system since all of them
would lead to the same temporal evolution of the system.

Legged robots may comprise closed-kinematic sub-chains. For most of them,
it is possible to completely ignore these sub-chains without modifying the overall
dynamics of the system by virtually relocating the associated motors on some passive
joints. For the others, kinematic constraints must be added, but this specific case is
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2.1. Preliminaries on Rigid Body Dynamics

ignored for simplicity. Therefore, we will focus on serial robots in the following, and
all kinematic chains will be assumed open unless stated otherwise.

Formally, such an acyclic kinematic graph is an arborescence (directed root tree)
but commonly referred to simply as a tree. Its leaves are the bodies that are not the
parent of any joint and are called end-effectors. Typical examples are the feet of a
legged robot. Conversely, a kinematic tree has only one root. It is the unique body
that is not the child of any joint and is called base. The base can be fixed relative
to the world, which is the case for robotic arms, or free-floating for robots moving
capability of locomotion such as legged robots. Free-floating base are usually called
freeflyer. For a consistent formalism between fixed and free-floating robots, a virtual
fixed body representing the world is systematically prepended to the kinematic tree
of free-floating robots, and the world is connected to the actual freeflyer of the robot
through a joint allowing all the 6 Dol's without restriction. Accordingly, it will always
be assumed that the base is fixed in the following, while still referring to robots as
either fixed or free-floating, whichever is appropriate.

Since the bodies of a kinematic chain are connected in series, exploiting the
sparsity pattern along the whole structure of the robot is crucial. The canonical rigid
body dynamics algorithms (cf. section 2.1.2) developed by Featherstone (2008) are
widely accepted as state-of-the-art in terms of algorithmic complexity. Basically, it
consists in recursively computing physics quantities by going back and forth (possibly
several times) along the chain using the Divide-and-Conguer paradigm (Cormen et al.,
2009). Recently, Carpentier and Mansard (2018) introduced efficient algorithms to
compute their analytical derivatives, along with some additional quantities. Having
access to these derivatives is fundamental in appendix A for whole-body trajectory
planning, which is at the heart of our first contribution (cf. chapter 5).

Generalized Coordinates

The Generalized coordinates are a set of parameters that determines the configuration
of a physical system at any point in time. Formally, the generalized coordinates ¢
form a coordinate chart, i.e. it is a homeomorphism from a topological space Q called
coordinate manifold to a subset of the euclidean space R™. For poly-articulated
robots, the coordinate manifold gathers the cartesian positions plus orientations of
all its moving bodies (cf. section 2.1.1). Infinitely many charts can be defined for
the same manifold. The coordinates do not even have to be mutually independent.
For instance, the configuration of a wheel around a fixed axis can be described by
its rotation angle 6. This choice is the most common but flawed: either the an-
gle presents discontinuities or grows unboundedly. The alternative parameterization
(cos(#),sin(@)) is somewhat harder to manipulate but does not face such issues.

The generalized velocities ¢ and accelerations ¢ are the time derivatives of the
generalized coordinates q. Notations such as v or a are dismissed to avoid confusion
with classical body velocity or acceleration. If the coordinates manifold is differen-
tiable, then they locally belong to the tangent space 1;Q, which is a real vector space
of R™, where n is the number of Doks of the system.
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Figure 2.2: Canonical generalized coordinate for the Cartpole. It corresponds to the
vector [z, 0], where z is the linear position of the cart along the rail and 6 is the angle
of the pole relative to the vertical axis.

For a poly-articulated robot, the canonical generalized coordinates are obtained
by concatenating the parameterization of the state of all the joints. The parame-
terization for a given joint is not unique to its type. It is said to be minimal if its
dimensional matches the number of DoFs of the corresponding joint, and any value
within range maps to a valid state of the joint. Otherwise, one additional constraint
per extra dimension must be enforced. For spherical joints, the quaternion is the
most common parameterization although not minimal (its norm must be 1) as op-
posed to axis-angle (cf. section 2.1.1), mainly because operations involving rotations
are numerically the cheapest when specialized for quaternions. Similarly, for revolu-
tion joints, the scalar relative angle € is ubiquitous, but the vector [cos(), sin()] is
sometimes preferred if unbounded for numerical stability.

The generalized coordinates are at the heart of Lagrangian mechanics, which aims
to express the dynamics of the system as a function of the generalized coordinates.
This formulation prevents the constraints between bodies due to joints and the cor-
responding internal forces from appearing explicitly in the equations of motion while
ensuring they are satisfied exactly. This property not only speeds up physics com-
putations but also improves the computational accuracy and stability of rigid body
dynamics algorithms compared to Newtonian mechanics. In the latter case, the con-
figuration of the system is rather specified by the placement of all the bodies, and the
resultant forces acting on each of them are derived to obtain independent equations
of motion of each body. See section 2.1.2 for details.

2.1.1 Spatial Vector Algebra
Spatial Motion

The dynamic equations of motion are usually expressed by keeping separated the
linear and angular parts of physical quantities, e.g. linear vs. angular velocities or
forces vs. moments. This unnecessary distinction artificially doubles the number of
terms and equations (although the actual number of scalar equations is obviously
unchanged) and hence the dynamics looks more complicated than it is. This often
leads to mistakes because it is harder to understand and manipulate these terms, and
it impedes the numerical efficiency of some computations. Besides, it prevents from
considering the coupling between the translation and rotation part of transforms (cf.
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section 2.1.1), which has a huge impact when computing distances for instance (cf.
section 6.3.1). In the following, 6D notations called spatial vectors are introduced.
Although non-intuitive, it benefits from solid mathematical foundations that are
helpful to infer important properties.

The spatial motion vector space MP is used to describe quantities homogeneous
to velocities or any higher order time derivative. More specifically, the spatial velocity
for a rigid body B is called twist. Given a fixed point O anywhere in space, the twist
is fully specified by a pair of 3D vectors: the linear velocity vector vo € R3 of the
point O, and the angular velocity vector w € R3. The angular one is independent of
the application point O, and as such it has no subscript. Indeed, its direction and
magnitude characterize respectively the axis passing through the origin O around
which the body B rotates and at what speed. In contrast, the linear velocity vector
vo truly depends on the application point. The definition of the spatial velocity and
its subsequent properties generalize naturally to any spatial motion vector.

The origin must be a body-fixed point for a valid vector algebra over coordinate
vectors to be defined, namely linear transformations plus scalar and cross products.
Nevertheless, this origin can still be chosen differently over time. Notably, it can
correspond to a virtual point that happens to coincide with any other point of interest
at the current time only. It is essential to keep in mind this subtle distinction to avoid
any mistakes when differentiating coordinate vectors.

Let us consider a cartesian frame Ogy. with orthonormal basis {i, j,k} and ori-
gin O. It defines a cartesian coordinate system, that we identify to the Carte-
sian frame itself for simplicity. In this Cartesian frame, we have vo = vo,i +
vo,J +vo.k and w = wyi + wyj + w.k. The so-called Pliicker basis is defined as
{ds,dy,d.,do,,do,,do.} C ME where dy,d,,d, denote the unit translations in the
directions w,y, z, and do,,do,,do, are the unit rotations about the directed lines
Oz, 0y, 0. This basis and its coordinate system on MO are used to write down the
linear and angular velocity vectors vp,w as one unified 6D vector called a spatial
velocity vector and denoted ©. The spatial velocity vector ¢ in this basis and its
corresponding coordinate vector U, are given by,

U= vozdw + ’ondy + vozdz + (,ugcdoz + wydoy + wzdoz, (2.1)
@O = [QO,Q] = [UOZ7UOy7 Uozawlvavwz}v
where v = [vo,,v0,,v0.] and w = [ws, wy, w.].

There is no mention of the Cartesian frame and application point in the notation
of the spatial velocity vector v to emphasize that it does not depend on them. Indeed,
the spatial velocity defines a vector field (the linear velocity field of body B), which
is a quantity intrinsic to the body as a whole rather than a property of individual

body-fixed points. This vector field V can be derived from the linear velocity vp at
a given body-fixed point O and the angular velocity w,

V(P) =0 +w x OP, (2.3)

where O? € R? is the relative position of P with respect to O, and V(P) is the
value of the vector field V at a body-fixed point P, namely the linear velocity vector
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of the body B of the point P. This is easy to check that the vector field is invariant
to the application point O despite appearing in its definition. On the contrary, its
coordinate vector 0, can be interpreted as a measure of a flow passing through the
point O rather than the velocity of one particular body-fixed point.

Interestingly, the spatial velocity of a body 4 in kinematic chain with NV joints is
related to the joint-space velocity ¢ of the system through a 6 x N matrix J; called
body Jacobian for body 1,

The structure of the Jacobian matrix is sparse. Indeed, the velocity of a body only
depends on the previous joints in a kinematic tree, and it is not affected by the other
sub-chains. Its sparsity pattern also depends on the type of joints that are involved.
Being able to take advantage of the sparsity is critical for the scalability of rigid body
algorithms as it can significantly lower their algorithmic complexity.

Spatial Forces

The same reasoning applies to the spatial force vector space, denoted F¢. Given a
rigid body B and a fixed point O, the spatial force, also called wrench, consists of a
linear force f acting along a line that passes through O, together with a couple 7o
equal to the total moment about O. The total moment about any other point P can
be calculated using the force analogous equation of equation (2.3),

7(P) =10+ f x OP. (2.5)

It shares analogous properties to the spatial motion, e.g. being invariant to the loca-
tion of the application point O.
In the same way as before, the Pliicker basis {eo,,¢e0,,€0., ¢z, ey, €.} C FO is

used to obtain a spatial force vector f gathering the linear force f and torque 7p.
€0,,€0,, €0, are unit torques in directions x,y, z, and ey, ey, e, are unit linear forces
acting along the lines O, Oy, O.. In this basis, the spatial force vector ¢ is given by

f = feeo, + fyeo, + freo. + To,ex + 10, €y + 0,2, (2.6)

with corresponding coordinate vector,
iO = [fx7fy7fzaTOz7TOzaTOz]T: [i7IO]T7 (27)
where f = [fz, fy,fz]T and 7, = [70,,70.,70.] .

Duality Properties

Formally, the vector spaces MO, F6 associated with spatial motions and forces are
dual. As such, many important properties can be deduced. The hat symbol over
spatial vectors and underlining of coordinate vectors will be dropped in the following
if already implicit. Conversely, if there is any ambiguity, a subscript on a spatial
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vector will specify to which body or moving frame it is related, and a prescript on a
coordinate vector will denote the coordinate system.

The scalar product that takes one element from each vector space is properly
defined. In any event, it is homogeneous to an energy or some higher-order time
derivative such as a power. Yet, it must involve quantities related to the same body
to be physically meaningful. Given m € M® and f € F5 and their dual coordinate
representations m, f, the scalar product is defined as follows,

m-f=f-m=m"f=f"m (2.8)

Therefore, one can interpret the scalar product as applying the operator a- = a” that
maps b to a - b.

Two different cross products are defined on spatial vectors: one takes two motion
vectors and returns a motion vector, and the other one takes a motion vector as
left-hand and a force vector as right-hand to produce a force vector. Let A be a
Cartesian frame that is moving with a spatial velocity of va, and 4m,f be two
coordinates vectors representing the spatial vectors m € M, f € F% in Cartesian

. . . A
frame A respectively. The coordinate vectors “m € M6 " f € FO that represents
their time derivative in the Cartesian frame A are given by

A A ) A

where X is the cross product operator and x* can be regarded as its dual. These two
cross-products are involved in the temporal differentiation of spatial vectors.

Time Derivative

A A L o : :
dd—tm, % are the element-wise time derivative of the coordinate vectors representing

the spatial vectors m, f in Cartesian frame A, respectively. It is called apparent
derivative since it can be regarded as the apparent rates of change of m, f as perceived
by an observer attached to the moving frame A hence having a velocity of v4. If the
Cartesian frame A is fixed, then the spatial and actual derivatives match. Conversely,
if the spatial vector is constant in the Cartesian frame A and the latter is moving,
then the first term of the left-hand of the equalities vanishes. As for the scalar
product, one can define the operators vx and vx* as 6 x 6 skew-symmetric matrices
(Siciliano & Khatib, 2008, Part A, Chapter 2),

. _ [VOX3 WX3 ook (s T
1)><< 0 w><3>’ ox* = —(0x)", (2.10)

where X3 is the skew matrix representation of the cross-product for 3D vectors,
0 —a, ay
axs3=| a, 0 —a;]l. (2.11)

—ay —az; 0
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The matrix operators ax,ax* are not efficient from a numerical point of view but
are convenient to derive more complex operators in compact forms. They are used
without distinction from the actual cross-product operators x, x* in the following.

As a side note, the classical acceleration people are accustomed to is the apparent
derivative of the spatial velocity in a Cartesian frame with an orientation fixed in
space but an origin attached to the body. Whereas the spatial acceleration preserves
the structure of the vector space in it, it is not the case for the classic acceleration.
For instance, the addition of spatial accelerations is well-defined, just like for spatial
velocities. Moreover, there is no fictitious force coming from working in a non-
inertial reference frame to worry about, which is a major advantage. The classical
acceleration @' can be obtained from equation (2.9),

()@ () e

The pair position plus orientation of a frame in the world is called pose. Formally, the
position corresponds to the cartesian coordinates in the 3D euclidean space R3, but it
is more complicated for the rotation. The set of all possible rotations about the origin
of the 3D euclidean space form a Lie group. As such, special operators must be used
to perform linear operations, integration, or differentiation. The rotation group is
called 3D Special Orthogonal group and denoted SO(3) because it is homeomorphic
to the set of orthogonal matrices of size 3 with determinant +1, i.e. rotation matrices.
The group of poses is homeomorphic to R? x SO(3) since translations and rotations
are independent. It is called the 3D Special Euclidean group and is denoted SFE(3).

ST

Frame Placement

Being able to represent rotations using a coordinate system, called chart on
SO(3), instead of rotation matrices is important for several reasons. First, it is
much easier to comprehend. Secondly, it is more compact and therefore numerical
implementations can be more efficient. It exists many coordinate systems, but all
of them are facing multiple-value issues, i.e. different coordinates can represent the
same rotation. Moreover, some of them have singularities making them only valid
locally. For instance, the Fuler angles representation (roll, pitch, yaw) is widely used
because it is very intelligible, but the uniqueness property breaks down for some
specific coordinates, which is referred to as gimbal lock. Another famous parameter-
ization are unit quaternions (x,y, z,w), sometimes called versors. It can be used to
represent 3D rotations up to sign, so the unit quaternion group is a double covering
map of SO(3). This is less an issue that the gimbal lock problem in practice, and
therefore it is often preferred over Euler angles, at least for internal implementations.
Although it is hard to interpret unit quaternions directly, it is easy to relate them to
their axis-angle representation (é,0),

T . 0 o\1"
q=lz,y,z,w] = e?/2é = [sin (2> é, cos <2>} , (2.13)
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where € is the axis of the rotation, and 6 is the angle. The typical axis-angle coor-
dinates are the product of the angle by the axis 6é. It can be obtained from a unit
quaternion through the inverse of the exponential map of its Lie Algebra. It means
that the axis-angle coordinates can be interpreted as coordinates on its tangent space
at 1, that is an angular velocity. Thus, it is often involved in the integration and
differentiation of rotations.

Coordinate Transforms

Being able to define the pose of a frame and use it to perform operations on motion
and force vectors is fundamental for poly-articulated system. To this end, coordinate
transforms are introduced. They are called this way because they map spatial vectors
computed in a given Cartesian frame to another one. The transformation rule is
different according to whether it operates on spatial motion or force vectors. Let A
and B be two Cartesian frames. The coordinate transform from A to B coordinates
for a motion vector is written ZX 4, while the same transform for a force vector is
denoted BX:Z to highlight a kind of duality between them. It follows,

mp = BX 4 g, fs =BX% fa, (2.14)

where My, mp, fA, fB are the coordinate vectors representing the spatial vectors
m € MS and f € F% in Cartesian frames A and B respectively.

The transform ®X 4 is very important because it also represents the relative po-
sition and orientation of frame A in B coordinates. Suppose that the position and
orientation of frame A in B coordinates is described by a position vector Ppy and a
rotation matrix PR4. The transform ZX 4 can be formulated as a 6x6 matrix. It can
be easily obtained by decomposing the transformation X4 into a pure translation
Bp 4 followed by a pure rotation PR 4,

B B Bra BpaxPBR
Bx, = <1 pA><> < Ra BO ) _ A pAB 4\ (2.15)
0 1 0 R 0 R4

pure translation  pure rotation

The 6x6 matrix associated with the inverse transform 4Xp = BXgl can be
computed easily by simply inverting the decomposition. Moreover, from the duality
of the spatial motion and force spaces, it comes BX;; = BX;T. Similarly, the time
derivative of a transform is given by,

"X = Boa—vg) x BXa. (2.16)

Another key property at the heart of rigid body algorithms is the chain rule. Let
us consider a set of k cartesian frames {A° le, then

2

AkXA1 = AkXAkA AkilXAkfz e X (2.17)
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Rigid Body Description

Important properties of a rigid body B are its total mass m and the relative position
pg of its Center of Mass (CoM) G. Tt is defined as the unique point where the
weighted relative position of the distributed mass over its volume sums to zero,

pe = ;///VB p(p)pdV, (2.18)

where p(p) is the local density at point p. If the density is uniform, then it boils
down to the centroid of the solid.

Another key property is its inertia I expressed at the CoM. It maps the angular
velocity w of a body to its angular momentum hg. The angular momentum is central
in analytical mechanics since it relates the acceleration of a body to the external
forces applied to it. It will be presented in more detail in the following. Formally, it
is defined as follows,

o= /V o)Iplls —p @) AV, (2.19)

where ® denotes the outer products in R? and I3 is the identity matrix of size 3.

A reference frame attached to the body in which to compute the aforementioned
physics properties must be specified. This reference frame must be chosen carefully
to minimize coordinate changes when carrying out computations along the kinematic
tree and speed up rigid body algorithms subsequently. By convention, it is the frame
associated with the parent joint of the body.

The spatial inertia [ aggregates some of these properties to operate directly on
spatial vectors. It is the 6x6 matrix

[ = <Ig n313> (2.20)

h = Ib. (2.21)

From this definition, it stands out that the spatial inertia Iisa symmetric dyadic
tensor, which means that it can be expressed as the sum of six symmetric outer
products of vectors g; € F9,

6
1= g®g. (2.22)
=1

From this and knowing that the spatial inertia is a quantity that is fixed in the body
frame, its time derivative can be derived from equation (2.9),

[=ox*T—1xa (2.23)
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Figure 2.3: Kinematic chain with N bodies. Each joint is characterized by its spatial
axis vector s; assuming a single degree of freedom.

To wrap up, all the physic properties that are needed to compute the dynamics
of a rigid body are the relative position of the CoM and the spatial inertia matrix
I expressed at the CoM. They are estimated by the CAD software used to design
the robot. The accuracy is reasonable but far from perfect because many elements
are neglected, i.e. cables, electronics, protection foam, glue, drawing simplifications
(threading, deburring...), and engineering tolerance (material, assembly...). If more
accuracy is needed, typically for spatial applications, then it exists devices to measure
these properties directly for rigid sub-assemblies.

Joint Description

A joint constrains the relative motion between its parent and child bodies in the
kinematic tree. A joint is fixed relative to its parent body. Thus, it is sufficient to
attach a frame to each of them and specify the relative frame placement with respect
to their parent body to carry out computations along the kinematic tree.

By convention, the velocity v, of a joint ¢ is defined as the spatial velocity of
the child body wv; relative to the parent body v;_1, both expressed in the reference
frame of the parent body of the joint. Formally, the joint restricts the velocity v, to a
subspace S; C M at the current time. If the joint allows ny DoFs, then dim(S) = ny
and S(q) is a 6 x ny matrix. Similarly, the number of constraints enforced by the joint
is n. = 6 —ny and the constraint internal forces lie in the n.-dimensional orthogonal
subspace S+ € F°. Indeed, joints do not generate nor consume power since friction
and actuation are handled separately, therefore the scalar product between motion
and force vectors must be zero, which is exactly the orthogonality condition.

The joint constraint is most often scleronomic, i.e. it can be written as equality
only involving positions and velocities without explicit time dependency. It yields,

vy, = 5(ai)gi, (2.24)

where ¢; is the subset of the generalized coordinates associated with the joint ¢, and
S(¢;) is a matrix that may depend on the joint configuration. The matrix S(g¢;) is
specific to each type of joint. It is usually invariable, one notable exception being
the universal joint or Cardan joint. The latter is a compound joint of two revolute
joints whose axes intersect orthogonally. For joints allowing a single DoF such as
prismatic but also helicoidal joint, S(g;) is a constant motion vector S; € M® and
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9X;_1S; is the spatial axis vector in base frame for the current configuration si(q)
(see figure 2.3). It is always possible to model a complex joint as a serial chain of
1-DoF coincident joints separated by massless bodies. Such a compound joint is said
to be kinematically equivalent.

Let Jv; be the spatial velocity of a body 4 in the frame of a body j and v, be
the spatial velocity of a joint J; in the frame of a body j. The spatial velocity “v; of
a body i in the base frame and its Jacobian °.J; are computed using the chain rule:

Ov; =X, 1" o = X1 (S(ai)di + " i) = °Xi1S(ai)ds + viea

== ZOXj—1S(Qj)Qj = ["X;-18(4:), " Xi—25(gi-1), - -+ ,S((h)]Tq

j=1
=974 (2.25)

2.1.2 Whole-Body Dynamics

The dynamic equation of a poly-articulated robot can either be obtained using
Newton-FEuler formulation and Lagrange formulation. The algorithmic complexity
of a rigid body algorithm is directly related to the formulation that is used. One or
the other will be more appropriate depending on the kinematic structure of the robot
and the quantity to compute. Therefore, it is essential to present both. Newton-Euler
is more intuitive and well-known but Lagrange formulation is more commonly used
in robotics to describe the dynamics of a system.

For a single rigid body, the dynamic equation of motion is straightforward to
obtain from the Newton-Euler formulation. The rate of change of the spatial angular
momentum £ equals the total spatial force acting on it,

+ I =1Ta+dx*h, (2.26)

>
I
~>
jo}

o

where f € F is a sum of the spatial forces applied on the body, I is its spatial
inertia, and 9,4 € M©5 are its spatial velocity and acceleration respectively. One
can obtain the dynamic equation of the whole system by simply stacking the ones
for each body individually. At this point, f comprises the actual external forces to
the whole system such as the ground reaction forces and motor torques, but also the
internal forces consequent to kinematic constraints and the effect of gravity. It is
possible to get rid of those internal forces by taking into account those constraints
explicitly and solving them using the Lagrangian multiplier method. Let T; be the
matrix that spans SZ-J-, where S; the motion subspace for joint 1,

T vy, =0. (2.27)

7

By differentiating this relation, concatenating it for each joint, and using the duality
between motion and force vectors it yields,

TTa;+TTv; =0, f=14f +T) (2.28)
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where T is a block diagonal matrix having 7T; in its j-th diagonal block, 7 is the sum
of the actual external forces and A is the vector of internal forces resulting from the
joint constraints. One can compute the internal forces A explicitly by jointly solving
equations (2.26) and (2.28).

The Lagrange formulation proceeds via the Lagrangian of the system,

L=T-U, (2.29)

where T, U are the total kinetic and potential energy respectively. The total kinetic
energy is the sum of the kinematic energy of the n individual bodies,

"1 "1
T=YS Z6-h=Y =oIb. 2.30

This expression can be written in matrix form using generalized coordinates based
on equation (2.25),

1. D ey .
T=Sd"H(@dg=5 > i Hijij (2.31)
i=1 j=1

where I7 is the aggregated inertia of the subtree rooted at body ¢ treated as a single
composite rigid body and H; ; = Sf[;ax(i,j)sj. H(q) is called inertia matriz or mass
matriz and only depends on the configuration ¢ of the system.

The dynamic equations of motion can then be developed using Lagrange’s equa-

tion of the first kind,

G0~ g (pm@)) == (2.32)
where 7 are the generalized external forces, p; = [ ¢; is the element-wise primitive
of the generalized velocity locally and g € C! is the mapping from the local chart p
to the generalized coordinates ¢. If the generalized coordinates are all independent,
which is usually the case except for the spherical joint associated with the freeflyer,
then ¢ is identity. The canonical matrix form of the dynamics of poly-articulated
robots is obtained by replacing equation (2.31) in equation (2.32),

H(q)i+ C(q,d)q+G(g) =7 = Bu+ Z I (@) fi, (2.33)

where H, C, G are the joint-space inertia, Coriolis, and gravity matrices respectively,
B is a selection matrix that determines how the controls u take effect on the joints,
fi € FO is the i-th external force applied on body B; and .J; is the jacobian of B;.
This general form is important to infer mathematical properties about the system
but is never computed explicitly in practice. Recursive algorithms going back and
forth through the subchains of the kinematic tree are used instead because they have
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much lower algorithmic complexity. The main algorithms are: Recursive Newton-
Euler Algorithm (RNEA) for the Inverse Dynamics (ID), Articulated Body Algorithm
(ABA) for the forward dynamics, and Composite Rigid Body Algorithm (CRBA) for
calculating the joint-space inertia matrix (Featherstone, 2008). Forward Dynamics
(FD) refers to the calculation of the acceleration response of a given rigid-body system
to a given applied force ¢ = FD(model, ¢, ¢, 7), and the inverse dynamics refers to the
calculation of the force that must be applied to a given rigid-body system in order
to produce a given acceleration response 7 = ID(model, g, ¢, §).

It must be distinguished from the Forward Kinematics (FK), which consists of
computing the pose, spatial velocity and spatial acceleration of the joints based on
the generalized position and its time derivatives ps, 07, a; = FK(model, q, ¢, ¢). This
relation is said to be of n-th order according to the highest order derivative involved.
Any spatial feature up to the same order can be inferred from the joint information by
linear transformation (cf. section 2.1.1), e.g. the position of the CoM or the angular
velocity of Inertial Measurement Unit (IMU) sensors.

Broadly speaking, Inverse Kinematics (IK) is the reverse operation. It is more
challenging because the FK is most often not invertible due to over-constrained kine-
matics. It is formulated as an optimization problem that is solved via an iterative
gradient descent method. At this point, the spatial features of interest are consid-
ered in place of the joints, eventually with different priority levels for weighting their
respective contributions hierarchically. The problem is said to be whole-body if it
operates on the generalized coordinates and derivatives as a whole instead of each
motor individually. The problem can be written as a Quadratic Program (QP) with
inequality constraints, which can be solved efficiently with arbitrary precision. In
theory, it has exponential time complexity, but it is closer to polynomial time in
practice. Still, it is much larger than constant time for recursive algorithms.

2.2 Planning and Control in Bipedal Robotics

2.2.1 Notion of Bipedal Locomotion and Terminology
Description of Bipedal Robots

Bipedal robots fall into the category of rigid poly-articulated systems. A bipedal
robot is a kinematic tree comprising two sub-chains called legs and another one
called torso, all connected at a common body called pelvis. The torso may have two
additional sub-chains for arms. In that case, it is labeled as a humanoid robot. Cassie
robot by Agility Robotics is an example of a bipedal robot that is not humanoid.
Their other product Digit — basically Cassie with the addition of an upper body —
is said to be humanoid, even though it looks like an ostrich (see figure 2.4). It has
a very short femur and foot-like toes, which gives the impression that the knee is
bending backward while in fact, it is its ankle.

A robot is fully-actuated if one can command an arbitrary instantaneous accel-
eration for any state of interest. This assumption holds for any bipedal system with
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Figure 2.4: Examples of bipedal robots (not at scale) with price tags if available.

human-like feet and all joints actuated, as long as at least one foot is in contact with
the ground where it remains flat and does not slip. Being fully-actuated enables
standing still indefinitely without falling, otherwise stepping in place would be nec-
essary. It is usually expected from a bipedal robot but not necessary. RABBIT is a
biped that is under-actuated since it has point feet. In such a case, most of the classi-
cal theory about the stability analysis of legged robots is not applicable. The concept
of Hybrid Zero Dynamics (HZD) has been developed to overcome this limitation and
enable both planning and control on this kind of platform (Finet, 2018).

Most legged robots only feature revolute joints (Goswami & Vadakkepat, 2019,
Part II). However, it can get more complex if the transmissions between the actual
actuators and the mechanical joints are nonlinear, e.g. the ankles of Atalante and
Cassie (cf. appendix C.3). The mechanical structure is supposed to be rigid, or more
precisely, only flexible at specific locations, typically the joints (cf. appendix C.1).

Humanoid robots have to perform reactive motions to keep balance, which re-
quires actuators that can generate high torques and high speeds at the same time.
Atlas robot uses hydraulic actuators powered by an electric pump. It delivers high
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torques with high bandwidth, but it creates loud sounds. Moreover, hydraulic sys-
tems need security features to avoid safety issues due to high pressure, which are
both difficult to implement and certify. With the advent of electric motors in many
industries during the last decade, the technologies behind it have undergone several
breakthroughs (Goswami & Vadakkepat, 2019, Part III). Electric motors can deliver
much higher torque than they used to. Strain wave gearing, also called Harmonic
Drive, are very compact mechanical gears with high reduction ratios that became
increasingly popular. Coupled together with this kind of motor, it can deliver high
mechanical power at the appropriate speed for a small volume and weight. Regarding
the mechanical design, new lighter materials are now available, e.g. carbon fibers. All
these technologies make it possible to design robots capable of very agile and dynamic
motions such as jumping or flipping. Atalante relies on them like many others.

Some legged robots including Valkyrie use Serial Elastic Actuators (SEAs). Tt is
a special actuator block that introduces physical compliance by inserting an elastic
element between the motor and the load to store and release part of the mechanical
energy. They serve mainly three purposes: filtering external forces, regulating applied
forces, and measuring the torques at the joint level. More precisely, they reduce
the magnitude of force impulses and spreads them out over time. In principle, it
enables completely canceling them out through control, which would be impossible
otherwise. First, the reflected inertia of geared motors limits the response time of
the transmissions even in an ideal world. Secondly, the real hardware stack has
even more limited bandwidth, the surplus energy would be dissipated mainly by
overheating, and the motors have maximum torques. The downside is making the
control significantly more complex as the dynamics of the actuators must be taken
into account (Paine et al., 2015). Torque-controlled robots like DURUS (Hereid et
al., 2018) are very promising. Grasping a glass requires accurate planning based on
its exact shape to avoid breaking it if position control is used without compliance,
whereas knowing its exact shape is not even necessary when controlling the force
applied to it. Thus, torque control not only enables safer interaction with the world
but also alleviates the need of planning ahead actions precisely.

Position control remains relevant to accurately reproduce some nominal trajec-
tory. It has demonstrated its robustness over the years in many applications. For
this reason, Talos allows for both position and torque control (Stasse et al., 2017).

Bipedal Locomotion

Formally, bipedal locomotion consists in translating the center of mass or rotating the
principal axes of inertia by moving the legs. During locomotion, the altitude of the
center of mass is always above a certain level which is used to characterize falling. In
particular, the motion of the center of mass is almost sinusoidal for humans during
walking (Kuo, 2007). Human locomotion has been heavily studied for more than
one century, but its underlying mechanisms are still misunderstood. Many works
agree to say that human walking results in the optimal motion of the center of mass
(Charalambous, 2014; Kuo, 2007). Collins et al. (2009) claim that the motion of
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Figure 2.5: Human planes of section. The sagittal plane divides the body into right
and left sections, the frontal plane splits the body into front and back portions, and
the transverse plane separates the upper body from the lower body.

arms plays a role in the reduction of energetic consumption and the risk of slippage.
Yet, it is not clear which cost function human walking minimizes and how it ensures
robustness and emergency recovery (Bretl et al., 2010).

Human locomotion on flat ground is a cyclic motion. It can be divided into two
phases: the single support phase where only one foot is in contact with the ground,
and the double support phase where both feet are in contact. A leg is said to be in
stance phase when it is in contact with the ground, in swing phase otherwise (see
figure 2.6). The tip of a leg is called foot, no matter if it constitutes an actual foot.
During the stance phase, the flying foot first impacts the ground with the heel. The
foot rotates about the heel. Next, the foot lays flat on the ground. Then, the heel
lifts from the ground and the foot rotates about the toe. The stance phase finishes
when the toe lifts from the ground. In the particular case of walking, when the speed
increases, the duration of the double support phase diminishes until it disappears
altogether. It is called running, and the double support phase is replaced by the
flight phase. The human planes of sections are commonly used in robotics and the
medical field to describe locomotion (see figure 2.5).

Only a small set of primitive periodic motions is necessary to enable versatile
locomotion on flat ground (see figure 2.7). These primitive motions can be combined
to move in complex environments and adapt the pace if necessary. It is natural for
humans, but the underlying mechanism is still unclear. It is not enough to combine
them linearly or to change the speed by time dilation, otherwise, the resulting motion
is not guaranteed to be stable.
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Figure 2.6: Characterization of bipedal locomotion
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Figure 2.7: Motion primitives for versatile locomotion on flat ground

Modelling of the System Patient-Exoskeleton

We assume that each link of the user is rigidly fastened to the exoskeleton. In this
regard, the system exoskeleton-patient can be viewed as a humanoid robot after ag-
gregating their respective mass distributions. Although this simplifying assumption
is rather realistic for the lower body, it is questionable for the upper body. Indeed,
the fastening of the hip and torso to the exoskeleton is slack, and the arms are com-
pletely free. Nevertheless, trying to simulate the coupling between the patient and
the exoskeleton is unlikely to bring any improvement for several reasons,

e the straps are made of deformable composite materials and doing a proper

identification of their physical properties would be very difficult,

e the coupling is never the same as the way users are fastened is not repeatable,
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e simulating the dynamics of the robot and the exoskeleton separately and inter-
acting through coupling forces at several locations is computationally intensive.

In reality, paraplegic people apply involuntary resistive forces on their own joints
as a result of muscle spasticity — a condition in which muscles stiffen or tighten — and
spams. These forces would be regarded as disturbances from the perspective of the
robot, and as such, should be taken into consideration. However, simulating these
effects requires a muscle model, which involves unknown patient-specific parameters.
Besides, patients may also apply forces intentionally or by reflex through the motion
of their upper body. These behaviors are highly subjective and not directly related
to a given pathology. How to model them is an open question.

Under the previous assumption of rigid coupling between the user and the ex-
oskeleton, the mathematical expression of the dynamics of the system is the same as
any other poly-articulated robot. Therefore, most of the theoretical background de-
veloped for bipedal robots can be translated nearly effortlessly (Goswami & Vadakkepat,
2019). Still, some dynamic properties that would be constant for classical robots are
not for Atalante. Especially, the morphology of the user modifies the mass distribu-
tion of the robot and the length of its links featuring dimensional adjustments. The
planning and control algorithms must be adapted to handle such variability.

2.2.2 Stability Assessment

Mammals keep balance while moving seemingly effortlessly. Yet, reproducing this
behavior on legged robots is a challenging task for both planning and control. This
problem is already quite well understood for quadrupedal robots, but much remains
to be done for bipedal robots. Indeed, it gets harder as the number of legs decreases.
First and foremost, it is essential to come up with some criteria to assess whether
the robot is falling. There are two types of local stability: static and dynamic. A
trajectory is said to be statically stable if the robot could stop and hold in place at
any point in time without falling. Although statically stable humanoid locomotion is
generally possible, it often looks unnatural as it is slow-paced and lacks efficiency. It
also limits the set of motions that can be performed, which is even more detrimental
and often prohibitive. For all these reasons, it is no longer an active research topic.
The notion of dynamic stability is more interesting but much harder to define rig-
orously. Roughly speaking, it relates to the ability to keep moving without falling.
Typically, human walking can be viewed as constantly falling forward, slowing the
fall by landing the flying foot at the right location and starting again on the opposite
leg. It is not statically stable as it would be impossible to stay in place in the middle
of a step. More generally, mammal locomotion is a classic example of dynamically
stable motion that is not statically stable. The classical criteria involved in the as-
sessment of dynamic stability are reviewed in this section. More details can be found
in Humanoid robotics: a reference, Part VI or Boer (2012, Chapter 7).

In the particular case of periodic locomotion for legged robots, at least two dif-
ferent notions of stability can be defined: a global one through the analysis of the
convergence to a limit cycle, and a local one only interested in what is happening
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at the current time. Global stability is what matters in practice. However, global
stability criteria are very challenging to define and evaluate. The Poincaré map
relates the attractiveness of a limit cycle over successive steps to the stability anal-
ysis of a fixed point. It is mathematically powerful but is limited to the theoretical
analysis of the stability of periodic nominal motions. Thus, it may be helpful in plan-
ning but has no value in control. The Lyapunov stability theory is comparatively
more versatile, but how to apply this approach to complex systems such as legged
robots is still an active research topic, as discussed in section 4.2.3. Thus, we set
aside the question of global stability in the following to focus exclusively on its local
counterpart. Local stability covers mainly contact stability and capturability. The
former is about preventing the robot from slipping or losing contact with the ground,
while the latter refers to the ability to stop the motion completely in any number
of steps. Guaranteeing contact stability is essential in planning (cf. appendix C.3.2),
while capturability is prematurely useful in control. These two aspects have been
widely studied for generating motion on legged robots, with very impressive results
in simulation (Caron et al., 2020; Caron et al., 2017). Indeed, motions involving
slipping on purpose such as sharp turns heavily rely on the friction model and hence
would hardly work in practice. Consequently, the contact sequence is systematically
planned so as to avoid it, with some safety margin to provide leeway and mitigate
model uncertainties. Then, those local stability criteria are usually involved in the
feedback loop to actively compensate for unexpected disturbances.

Classic planning and control methods have been outperformed recently by end-
to-end policy learning approaches (Castillo et al., 2021; Li et al., 2021). The learning
agent usually discovers all by itself its very own stability criterion. Still, it remains
beneficial to guide the agent by providing reward components from classical stability
metrics because it tends to improve the robustness of the convergence, lead to more
human-like behaviors, and ease sim-to-real transfer. Beyond this, black box end-to-
end approaches raise interpretability concerns. Having in mind the various classical
stability criteria is very helpful to analyze results both in simulation and in reality.

Center of Pressure

Many attempts were made in the past to find a good stability criterion for legged
locomotion. We limit ourselves to the analysis of the contact stability here. Conse-
quently, it is assumed that there is at least one contact point with the ground the
whole time. It is definitely restrictive, as it excludes running or jumping for instance,
but it is nonetheless sufficient for natural locomotion.

Until the last decade, the Center of Pressure (CoP) was ubiquitous in the liter-
ature. It provides an intuitive and easy-to-compute necessary condition for contact
stability but is only defined for coplanar contacts on flat ground. The CoP is the
point C in the ground plane where the momentum of the resultant force exerted by
the pressure field equals zero (Vukobratovi¢ & Stepanenko, 1972). It yields,

po = e (2.34)
e
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Figure 2.8: Pressure force estimation. The sensor axis is not aligned with the ground
normal. The relative angle between them could be observed by placing an additional
IMU sensor in the foot but is usually neglected, leading to measurement error.

where e, denotes the normal axis of the ground, f,, ¢, 7. are the force and momentum
resulting from the pressure forces (Caron et al., 2017; Sardain & Bessonnet, 2004). If
the ground interaction consists of m contact points {p; }7,, then 7, . = > " fin(pi ¥
en) and fn,c = Z?il fi,n-

Equivalently, the CoP can be reformulated as the barycenter of the pressure forces,

1 m
pe =52 finpi (2.35)
Foe 2=

As a property of the barycenter, the CoP is always in the closed convex hull of the
contact points, the so-called support polygon.

It follows from these definitions that the CoP must be an interior point of the
support polygon for the contact to be stable. This geometric condition for contact
stability is necessary: if the CoP is on the boundary of the support polygon, then
the robot will start tilting around the corresponding edge and lose contact. Still, it is
not sufficient because the robot might well slip if the friction with the ground is not
large enough no matter the CoP and the support polygon. The distance from the
CoP to the boundary of the support polygon is nonetheless an informative metric
of stability, also called stability margin. It is a numerical indicator of the risk of
tipping-over since the robot may withstand strong disturbances without breaking
contact stability if the CoP is further away from the boundary.

Having a stability metric that is independent of the friction forces is beneficial
for control as it can be estimated from the pressure forces alone. The latter are
usually measured contact sensors only capable of measuring the force along their
own vertical axis, ignoring all the other components. They are almost unbreakable,
while extremely cheap and reliable. However, their vertical axis only matches the
true normal of the ground when the foot on which they are attached is flat on the
ground (see figure 2.8). It is not always the case, notably during the double support
phase in foot rolling (see figure A.1). This discrepancy affects the accuracy of the CoP
estimate. Furthermore, the CoP estimate is confined to the convex hull of the contact
sensors. The latter are never placed at the actual vertices of the feet but further inside
their footprint due to mechanical design considerations (see figure 2.9). Thus, the
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CoP estimate would saturate before ridging an edge of the support polygon. In theory,
sensor fusion and model-based approaches could compensate for such biases while
being robust to intrinsic measurement noise and bias. Yet, this is very challenging in
practice, mainly because of modelling errors. It is also possible to add extra sensors
or switch with more expensive technologies, e.g. relying on a 6-axis force sensor at
each end-effector like Talos, but it would substantially increase the production and
maintenance costs. Using glsrl methods for training observers or end-to-end control
policies directly is a promising research direction to overcome issues related to limited
sensor capabilities and partial state observability.

Zero-tilting Moment Point

Being able to walk on uneven ground or use hands to keep balance by pushing on sur-
faces is important. However, this is out of the scope of the original contact stability
criteria based on the CoP, which is only applicable to coplanar contact points. More-
over, taking into account is helpful to avoid planning feasible motions. New contact
stability criteria emerged during the last decade to overcome these limitations, but
they lack an intuitive geometric interpretation and do not provide a stability metric
for robustness analysis (Caron et al., 2015; Hirukawa et al., 2006). More recently,
Caron et al. (2017) managed to generalize the original contact stability criteria based.

Let us define the gravito-inertial wrench fgi and the contact wrench fc as follows,

rgi fg — P . fe _ fc _ fc’i |
foi = (pG x (f9 - P) — LG> , o f (75> Z <ch- y f> . (2:36)

where h = (P, Lg) is the spatial momentum of the system at its CoM G in world
frame, fo denotes the gravity force, and f; is the contact force exerted by the en-
vironment on the robot at the i-th contact point C; in world frame (Caron et al.,
2017). Notably, the force at a given contact point ¢ can be decomposed in pressure
fin and friction f;; components are that respectively normal and tangential to the
ground plane (cf. appendix C.2.2).

While the contact wrench only requires going through all the bodies in contact
to be computed, the gravito-inertial wrench aggregates the individual gravity and
inertial forces induced by all the bodies in the kinematic tree. The spatial momentum

~

h = (P, Lg) of the robot taken at its CoM G in world frame is given by,

P= Y mpa, Lo= ), {mk(ka = pa) X pa, + kaku)k}, (2.37)
body k body k

where, my, the mass of a given body k, pg, the absolute position of its CoM Gy, Ry,
its orientation matrix in world frame, wy, its angular velocity in local frame, and I
its inertia matrix expressed at its CoM in local frame.

The gravito-inertial wrench augmented with the external forces and the contact
wrench are related via the dynamic equations of motion (Sardain & Bessonnet, 2004),

fgi + fezt = _fC; (238)
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Figure 2.9: Dynamic stability assessment on flat ground using the ZMP. If the ZMP
is within the support polygon, then the stability margin corresponds to the distance
from the closest edge. The larger the margin the stronger the force it can withstand
without having to take action to avoid falling.

where fe‘”t is the resultant wrench exerted by all external forces except the ground
reaction. These include the controls through the transmissions.

The Zero-tilting Moment Point (ZMP) is defined as the point Z in a given plane
where the tilting momentum acting on the system due to augmented gravito-inertial
wrench equals zero. The tilting momentum is the component that is tangential to
the supporting surface, hence the normal component of the momentum is not zero
in general. Namely, Z € I1(O, e,) s.t. e, x (75 + 75") = 0, where I1(O, e,,) is the
virtual plane I1(O, e,) with origin O and normal axis e,. It yields,

en X TH
en'fc.

This expression is well-posed mathematically since e, - f¢ is about equal to the weight
of the robot during walking. It is easy to check that the absolute position of the ZMP
is independent of the origin of the virtual plane II(O, e, ), which is expected. Note
that the friction forces have an impact on the ZMP for contact points not contained
in the virtual plane.

Py = (2.39)

According to equation (2.38), the augmented gravito-inertial wrench has been
replaced by the contact wrench in equation (2.39). Indeed, the gravito-inertial wrench
involves the full state of the system and its time derivative, which cannot be reliably
estimated on the real robot. Moreover, some external forces may not be unobservable,
typically the effort of the physiotherapist on the handles in the particular case of a
medical exoskeleton. On the contrary, the contact wrench can be measured almost
directly by placing 6-axis force sensors in the end-effectors. Its computation implicitly
involves the relative position of each end-effector with respect to the CoM of the
robot. The latter can be estimated fairly accurately using a state observer taking
into account the mechanical deformation Vigne et al. (2020Db).
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On flat ground, the virtual plane II(O, e, ) can be chosen to be the ground itself. In
that case, the ZMP matches exactly the CoP no matter what (Sardain & Bessonnet,
2004). Any virtual plane would be equally acceptable, so that the ZMP can be any
point on the zero moment axis, which is defined as the line between the CoM and
the CoP. Thus, ZMP can be seen as an extension of the CoP to uneven ground.

It is a common misbelief that the ZMP is not confined to the support polygon and
differ from the CoP as soon as the robot starts rotating about an edge of the support
polygon. Such a discrepancy would imply that the dynamic equation of motion is
not verified, which is obviously impossible for the real robot. Still, this may happen
during motion planning if consistency is not strictly enforced. If the ZMP derived
from the augmented gravito-inertial wrench is outside the support polygon during
planning, then the generated motion would not be feasible (not dynamically stable)
and hence impossible to realize experimentally: the contact will break and the robot
will fall if the controller keeps tracking the nominal trajectory.

Caron and Kheddar (2017) refined the original definition of the support area to
take into account the friction for coplanar contacts. The actual support area Z is the
intersection between the convex hull of the contact points S and the friction cone C
rooted backward at the CoM,

Z=8N(pc—C). (2.40)

Having the ZMP strictly within the support area Z is more restrictive than originally
but still does not provide a sufficient condition for contact stability. It only states that
there exists at least one instantaneous acceleration for which the contact is stable.
This acceleration is only guaranteed to be realizable if the system is fully-actuated
and subsequently unbounded controls (see definition in section 2.2.1). Indeed, the
true support area is a subset of Z. Nevertheless, this simplifying assumption is much
weaker than infinite friction and usually not limiting.

This enhanced definition of the support area is still limited to coplanar contact
points. Generalizing it to uneven ground is significantly more challenging than taking
into account friction. First, the friction cone associated with each contact point
is projected in this virtual plane. The pressure can be either positive or negative
depending on the orientation of contact normals relative to the plan normal. Next,
the convex hull corresponding to both positive and negative pressure is extracted
separately. It will result in two separated polygons that can each be empty and are
denoted P*, P~ respectively. Assuming there is at least one contact point, there are
three different cases at this point figure 2.10: one of the convex hulls is empty, they
intersect, or they are disjoint. If one of them is empty, then the (virtual) support
area S is a polygon and corresponds to the single non-degenerated convex hull. It
is the most common scenario, for instance walking on a constant slope or on stairs
without using hands to push on walls. It would also be the case if the ground profile
is not too steep and the friction coefficient is bounded. The maximum slope must
not exceed 7/2 — arctan(1/«); where « is the friction coefficient. It corresponds to
about 60 degrees for typical friction o« = 0.5. If the two polygons are non-empty and
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(a) Either PT or P~ is (b) The intersection of P™ (c) The intersection of P+
empty. S is the only non- and P~ is not empty. Sis and P~ is empty. S is the
empty polygon. the whole virtual plan. reunion of C* and C~.

Figure 2.10: Virtual Support area in the three cases. P™, P~ denote the positive and
negative pressure polygons, and S is the virtual support area. (Caron et al., 2017)

intersect, then the contact forces can generate any resultant wrench, which means
that the ZMP can be anywhere while maintaining dynamic stability. For instance, it
will happen if the robot is pushing on the ceiling in a room with flat ground. Finally,
if the two polygons are non-empty and disjoint, then it gets more complicated. The
support area S is the reunion of two polygonal cones C*,C~ extending the two convex
hulls P*, P~ respectively,

—
¢t ={pye+227 2% 1> 0,7 e P*} (2.41)
-
C = {pz— +AZTZT N >0,2F € Pi} . (2.42)

Capture Point

How to assess the dynamic stability of legged robots was put aside for now. Intu-
itively, it requires some kind of forecasting capability, which is out of reach of the
previous criteria that are all about instantaneous contact stability. Pratt et al. (2006)
has introduced the concept of Capture Point to address this question, as intermedi-
ate quantities to maximize the basin of attraction around a nominal trajectory. It is
assumed in the following that contact with the environment is limited to the ground.
It holds true for bipedal locomotion on uneven ground as long as pushing on walls
using the hands is prohibited.

The Capture Point is a point on the ground where the robot must step to bring
itself to a complete stop (Hirukawa et al., 2006). It can be interpreted as an antici-
pation of the future as viewed from the current point in time. Moving the flying foot
to the Capture Point is enough to maintain balance indefinitely. Yet, it is essential
to make sure it is always reachable, eventually in several steps if it is too far away
to be reached in a single step. The Capture Point is closely related to the notion
of N-step capturability, which is thoroughly studied in “Foot placement in robotic
bipedal locomotion”, Chapter 3. If the Capture Point is reachable, then the robot
is 1-step capturable. By extension, 0-step capturability consists in keeping balance
without moving the feet by only changing the posture in double support.
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Figure 2.11: Centroidal Dynamics and Inverted Pendulum Model. & denotes the
support polygon, which is the footprint of the stance leg here. Z is the ZMP while
C' is the DCM. The height A may be variable depending on the model. The angular
momentum along y-axis I'/G7y is usually assumed to be zero but not necessarily.

Fast computation of the Capture Point is not possible for complex systems such
as legged robots. It does not have any closed-form solution in the general case,
and the solution may not be unique. To circumvent this limitation, Kajita et al.
(2001) suggested using an approximate model called Linear Inverted Pendulum Model
(LIPM) for bipedal robots. In this model, the height of the CoM is constant and
there is no angular momentum around the CoM. The first assumption implies that the
robot is walking with bent knees. The second one entails that the upper body must
be always straight with locked arms if any, and the inertia of each leg is negligible.

The relation between the temporal evolution of the CoM and the ZMP can be
derived easily for the LIPM,

pe = wi(pe — pz), (2.43)

where wg = \/g/h is called natural frequency, g is the gravity constant and h = zg—zz
is the height of the CoM. Many less restrictive variants of the original inverted pen-
dulum 