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Abstract

In the first part of this thesis we study the control of instability and vibrations of slender structures under conservative loads. The first difficulty we study pertains to nonlinear geometric instability problem, as illustrated with a deep and a shallow truss, or yet a frame structure. The corresponding control strategy considers adding damping from either a viscous damper or a friction device. This kind of control belongs to the well-known concept of passivity. In the second part of the thesis we propose numerical solution procedures for solving the instability problems under both conservative and non-conservative loads. The proposed procedure is validated against the known analytical and semianalytic solutions when available for few academic cases, previously studied in classical works by Euler and by Bolotin. In the last part of this work, we explore the control strategy of instability phenomena by adding viscous dampers. The procedure is illustrated for a cantilever beam under a non-conservative compressive load and a small transverse disturbance both applied at the free end of the cantilever. The details of theoretical developments are given in terms of the non-linear dynamical equations obtained by using the principle of virtual work. All the structural models used for solving more complex problems are built with a numerical approach based upon the finiteelement method and the geometrically exact beam models capable of describing finite rotations. It is show as well that the proposed models can successfully handle large overall motion under static and dynamic instability (or flutter) under both conservative and non-conservative loads. Different numerical simulations are presented in order to illustrate the performance of the geometrically exact models proposed in this thesis. vi Résumé Dans la première partie de cette thèse, nous étudions le contrôle de l'instabilité et des vibrations des structures élancées sous charges conservatrices. La première difficulté que nous étudions concerne le problème d'instabilité géométrique non linéaire, illustré par un treillis surbaissé ou profonde, ou encore une structure de type portique. La stratégie de contrôle choisie considère l'ajout d'un amortissement à partir d'un amortisseur visqueux ou d'un dispositif de friction. Ce type de contrôle appartient au concept bien connu de passivité. Dans la deuxième partie de la thèse, nous proposons des procédures de résolution numérique pour résoudre les problèmes d'instabilité sous des charges à la fois conservatives et non conservatives. La procédure proposée est validée par rapport aux solutions analytiques et semianalytiques qui sont disponibles pour quelques cas académiques, précédemment étudiées dans les travaux classiques d'Euler et de Bolotin. Dans la dernière partie de ce travail, nous explorons la stratégie de contrôle des phénomènes d'instabilité en ajoutant des amortisseurs visqueux. La procédure est illustrée pour une poutre encastrée soumise à une charge de compression non conservatrice et une petite perturbation transversale toutes deux appliquées à l'extrémité libre de la poutre. Les détails des développements théoriques sont donnés en termes d'équations dynamiques non linéaires obtenues en utilisant le principe de travaux virtuels. Tous les modèles structurels utilisés pour résoudre des problèmes plus complexes sont construits avec une approche numérique basée sur la méthode des éléments finis et les modèles de poutres géométriquement exactes capables de décrire des rotations finies. Il est également démontré que les modèles proposés peuvent gérer avec succès un mouvement global important sous instabilité statique et dynamique (ou flottement) sous des charges à la fois conservatrices et non conservatrices. Différentes simulations numériques sont présentées afin d'illustrer les performances des modèles géométriquement exacts proposés dans cette thèse.

viii der conservative or non-conservative forces 13 Displacements components for fixed force or for follower force and subsequent rotations around x-axis direction 1 4.14 Displacements components for fixed force or for follower force and subsequent rotations around x-axis direction 2 4.15 Displacements components for fixed force or for follower force and subsequent rotations around x-axis direction 3 4. [START_REF] Mamouri | Study of Geometric Nonlinear Instability of 2D Frame Structures[END_REF] Cantilever beam under follower load . . . . . . . . . . . 4.17 Kirchhoff beam displacement in direction 1 (8 elements) 4. [START_REF] Houcine | A controlled destruction and progressive collapse of 2D reinforced concrete frame[END_REF] Reissner beam 8 elements displacements in direction 1 4. [START_REF] Mamouri | Nonlinear dynamics of flexible beams in planar motion: formulation and time-stepping scheme for stiff problems[END_REF] The structural instability in dynamics (yet called flutter) and corresponding vibrations control are of great interest for many applications in engineering [START_REF] Gutierrez | Control de vibraciones en estructuras tipo edificio usando actuadores piezoeléctricos y retroalimentación positiva de la aceleración[END_REF]. Namely, the continuous innovation in intelligent materials, with better performance at a more accessible price,allow for constructing slender structures that become more sensitive to instability, under various loads with the most important here as nonconservative loading, some examples are: highrise buildings, bridges, aeroplane wings, wind-turbines flexible blades, or other kind of slender with high sensitivity to instability phenomena (see Fig. 1.1). One such example that we studied recently [START_REF] Ibrahimbegovic | Long-term simulation of wind turbine structure for distributed loading describing long-term wind loads for preliminary design[END_REF] but not from the stand point of structural instability, comes from the domain of wind turbine technology used as renewable power generation that can help meet the sustainable development goals through provision of access to clean, secure, reliable and affordable energy [START_REF]IRENA, Renewable Power Generation Costs in 2019[END_REF]. The progressive electrification of the transport and heating sectors is becoming a tangible reality that should be further enabled by efficient green energy assets. The latter may help with capped costs, and at the same time, it should be virtuously balanced by the flexible demand of these sectors [START_REF] Gwec | Global wind Report Annual Update 2017[END_REF] . If we try to motivate the used for instability studies, we can say that the wind turbine technology has made significant advances over the past decade. Larger and more reliable turbines, along with higher heights and larger rotor diameters, have combined to increase capacity factors. This also makes them more and more sensitive for instability phenomena. Today, virtually all onshore wind turbines are horizontal axis turbines, predominantly using three blades. In the future design of a wind turbine different factors intervene, variations may include different land-use and transportation requirements [START_REF] Meakin | Energy Transitions in the Early 21st Century[END_REF] .

Wind turbines have been built in optimal locations like the ocean front. If we want to ensure an enlarged number of turbines and put the wind turbine technology in any other location, we have to play with increasing the flexibility of blades, making easy to start moving with slow wind, like leaves in the tree. If a flexible blade is easy to start moving, contrary to the stiff wind turbine, it is easy to have excessively large motion and the instability. The correct design of wind turbines is very important because a bad design might have catastrophic consequences. Structures behaviour under dynamic loads control is very important for preventing their instability phenomena that can lead to the turbine collapse. One kind of structure control under dynamic loads can be achieved by adding damping provided by some kind of external damping mechanism to the structure, such as simple dampers or a smart shape memory alloy. This kind of control is equivalent to the well-known concept of passivity [START_REF] Castillo | Dzul Modelling and Control of Mini-Flying Machines[END_REF] [START_REF] Guerrero-Sanchez | Passivitybased control for a Micro Air Vehicle Using Unit Quaternions[END_REF] .

What we have presented in detail for wind-turbines applies to many other slender structures that can be damaged by dynamic instability phenomena (e.g. high-rise buildings or bridges in Figure 1.1.

Lightweight structures may lead to loss of structural stability. The later can be produced by applying critical forces on structures, which are classified into two categories: conservative forces and non-conservative forces such as follower force (see Fig. 1.2). Wind forces acting on wind turbines, buildings on bridges, these forces are non-conservative (e.g. fluid flow exerted pressure). The stability of structures under fluid flow should generally be placed in the category of non-conservative stability problems, which are of main interest for our present studies. Structures under non-conservative forces represent a special class of problems that are prone to losing their stability dynamically. 

Scientific Objectives

In this work, we consider the instability and control of large overall motion and vibration of flexible structures and systems, such as wind turbines with blades, under effect of non-conservative loads. Of the special interest are the models and methods developed in order to avoid instability phenomenon. In particular, structures subjected to non-conservative loads (wind, friction, etc.) are the main interesting subjects in our developments. For this reason a brief summary of the objectives of this work can be given as:

1.-Develop several criteria for the detection of instability phenomena.

-Energy based criterion (equivalent Lyapunov) -Singularity of the stiffness matrix -Zero Eigenvalues computation 2.-Show how to modify these criteria for non-conservative forces, which needs to place the developments in the dynamic framework 3.-Develop numerical modeling for instability problems capable of exploiting criteria above, for truss and frame structures 4.-Explore in more detail the effects of instability of the structures in the dynamic framework under non-conservative load.

5.-Learn how to stabilize the motion by introducing damping effects (equivalent passivity).

Literature review

Solving the nonlinear problems in mechanics of solids and structures with complex constitutive behavior under static and dynamic loading [START_REF] Clough | Dynamics of structures[END_REF] [69]is a complex process. For successful analysis of the stresses and deflections developing in any given type of structure, when it is subjected to an arbitrary dynamic loading, we have to examine the problem from all different facets pertaining to either mechanics, mathematics or computations with a special attention to the finite element methods [START_REF] Ibrahimbegovic | Nonlinear Solid Mechanics: theoretical formulations and finite element solution methods[END_REF].

In particular, finite element implementation of the three-dimensional finite rotations [START_REF] Grbcic Erdelj | Ibrahimbegovic Geometrically non-linear 3D finite-element analysis of micropolar continuum[END_REF], pertinent to the formulation and computational tratment of the geometrically exact structural theories, is considered in this work. More precisely, the Reissner beam [START_REF] Ibrahimbegovic | Finite element analysis of linear and nonlinear planar deformations of elastic initially curved beams[END_REF], taking into account the shear deformation and the Kirchhoff beam (excluding shear deformation) [START_REF] Imamovic | Geometrically exact initially curved Kirchhoff 's planar elasto-plastic beam[END_REF] are both developed in this theses with capability of solving instability problems under non-conservative loads. In our developments, we consider an improved representation of the curved geometries to significantly increase the accuracy of the results [START_REF] Ibrahimbegovic | On finite element implementation of geometrically nonlinear Reissner's beam theory:three-dimensional curved beam elements[END_REF]. Also, among various possibilities to parameterize the finite rotations, was chosen featuring an incremental rotation vector [START_REF] Ibrahimbegovic | On the choice of finite rotation parameters[END_REF] [START_REF] Ibrahimbegovic | On the role of frameinvariance in structural mechanics models at finite rotations[END_REF]. The further development of these models are presented in the dynamic framework with non-conservative forces.

More precisely, in this work we deal with the geometric instability problems of different structures undergoing large overall motion. The geometrically exact beam models are used to obtain the solution to nonlinear instability problems with large pre-buckling displacements. We propose, in particular, a study of dynamic analysis that can deal with instability problems.The damping effect addition is necessary for control, along with the time-integration scheme for problem solution. We consider nonlinear damping to avoid the vibration around the equilibrium point. The Newton iterative scheme and Newmark time-stepping algorithm are applied to solve these problems [START_REF] Mamouri | Study of Geometric Nonlinear Instability of 2D Frame Structures[END_REF] [START_REF] Chen | Dynamic response of a shallow arch under end moments[END_REF]. The fluid-structure interaction problems correspond to steady-state flow representing a large overall motion of wind turbines with flexible blades. Turbine blades can be represented with 3D solids finite elements with drilling rotations in order to describe the dynamic flexibility of the blades and easily capture both bending and torsional. The panel method can be an alternative of modeling the potential fluid flow by introducing a vorticity layer at the fluid-structure interface and Bernoulli's momentum conservation equation in order to provide quantification for the blade thrust [START_REF] Boujleben | Lefrançois An efficient computational model for fluid-structure interaction in application to large overall motion of wind turbine with flexible blades[END_REF].

A nonlinear finite element analysis of elastic structures subject to non-conservative forces has proved capable of dealing with the instability behaviour of such systems like divergence or flutter. The analysis of geometrically nonlinear elastic systems subject to such forces gives, in general, rise to a nonsymmetric stiffness matrix, yet known as the load correction matrix. As a result, the total tangent stiffness matrix becomes unsymmetric [START_REF] Argyris | Symeonidis Nonlinear finite element analysis of elastic systems under nonconservative loading-Natural formulation. Part I. Quasistatic problems[END_REF].Flutter instability in elastic structures subject to follower load, have attracted, and still attract, a very active research interest [START_REF] Bigoni | Flutter and divergence instability in the Pflüger column: experimental evidence of the Ziegler destabilization paradox[END_REF][4] [START_REF] Ibrahimbegovic | On the Role of Geometrically Exact and Second Order Theories in Buckling and Post-Buckling Analysis of Three-Dimensional Beam Structures[END_REF].

Fexible structural elements subjected to non-conservative follower loads, such as those caused by the thrust of rocket, jet engines, by dry friction in automotive disk and drum brake systems, could be solved with analytic solution only for the canonical problems such as, Beck's, Reut's, Leipholz's, and Hauger's columns. Structural analysis has served an important purpose in the development for practical problems with non-conservative forces, such as in aeroelasticity [START_REF] Langthjem | Dynamic stability of columns subjected to follower loads: A survey[END_REF] To give a physical explanation of the mechanism behind to effect of small internal damping in the dynamic stability of Beck's column, an energy equation is derived for the balance between the work done by the non-conservative 'follower force' and the energy dissipated by the internal and external damping forces. If the critical load is evaluated, where a flutter instability is initiated, this equation explicitly shows the influence of damping upon flutter frequency, phase angle, and vibration amplitude [START_REF] Sugiyama | Physical mechanism of the destabilizing effect of damping in continuous non-conservative dissipative systems[END_REF].

The optimal design and optimal control of structures undergoing large rotations is very important in order to recover a desired deformed configuration or some desirable features of the configuration deformed [START_REF] Ibrahimbegovic | Optimal Design and Optimal Control of Elastic Structures Undergoing Finite Rotations and Elastic Deformations[END_REF]. Recently the practical implementation of a Passivity-Based Control algorithm to stabilize an Unmanned Aerial Vehicle was described with unit quaternions based on Euler-Lagrange formulation using a logarithmic mapping in the quaternion space [START_REF] Guerrero-Sanchez | Passivitybased control for a Micro Air Vehicle Using Unit Quaternions[END_REF] [START_REF] Lozano | Adaptive Control of robot manipulators with flexible joints[END_REF].

The opportunities to apply control principles and methods to miniaircraft is increasing. Nonlinear modelling and nonlinear control theory plays an important role in achieving high performance autonomous flight for mini and micro flying machines [START_REF] Castillo | Dzul Modelling and Control of Mini-Flying Machines[END_REF].

Research Methodology

The first and foremost objective of this work, dealing with thought understanding of dynamic instability, forces us to clearly define the class of problems where this kind of phenomena are present. Namely, the criteria role is played by a clear classification of types of instability (linear versus nonlinear instability), as well as the method used for solving these problems (static versus dynamic framework). We will first be interested in reviewing several classical solution methods, such as equilibrium approach for the well-known Euler buckling versus Lyapunov approach for dynamic motion Instability. We will then identify the class of problems which cannot be solved with either of these classical methods for instability problems computation, which concern the instability under non-conservative loads. Namely on one hand, it was shown by Bolotin [4] that the static equilibrium approach is insufficient in solving instability problems under non-conservative loads, and indicating the need to place the solution procedure within the dynamics framework. Moreover the classical Lyapunov method of constructing the corresponding scalar potential (here the total energy) in orther to deal with instability problems, will no longer be applicable to non-conservative loading where one cannot construct the corresponding load potential. Hence, we are led to construct an original research methodology, where a dynamic equilibrium is chosen as the most appropriate framework for solving instability problems with nonconservative loads. Different ingredients of our research methodology are discussed further in this section.

Here we will present the solution to the problem of instability not only for a Euler-Bernoulli beam under the action of a compressive and non-conservative force but also of shear deformable Timoshenko beam. Euler case requires to deal with non-conservative forces, by including inertia and friction forces [4] [START_REF] Sugiyama | Dynamic Stability of Columns Under Nonconservative Forces : Theory and Experiments[END_REF]. Different detection criteria for instability are used in statics, including the energy criterion. The latter can also be used to detect instability in dynamics (in terms of Liapunov criterion). Namely,the instability of an equilibrium state can be evaluated by vanishing of the second variation of the total potential energy, or in dynamics with large oscillations about the deformed equilibrium state. In statics, the energy criterion can also be restated in terms of the tangent stiffness matrix which is the best linear representation of some nonlinear instability problems. Instability is indicated when the tangent stiffness matrix becomes singular. Another equivalent criterion based on zero eigenvalue of the tangent stiffness can provide the corresponding critical mode.

Further understanding of critical equilibrium state detection will be illustrated on several simple mechanical models. First of them is the Euler buckling problem for which we can also obtain analytic solutions (for instability problems of the Euler-Bernoulli beam under the action of a compressive conservative force). The same approach is successfully used in determining critical conditions for a number of elastic structures which have small pre-buckling displacement before they arrive to instability. But for more complex structure one needs numerical solution. Bolotin [5] was successful in providing the analytic solution for the simplest case instability of a thin (no shear) cantilever beam.

In the problems referred to as nonlinear instability all the displacements, rotations can reach large values before we arrive at the critical equilibrium point for any such structure. For that reason, it is often impossible to obtain the analytic solution, as the one available for linear instability problem of Euler's buckling. One exception is a simple problem of nonlinear instability for a shallow truss composed of two truss-bar elements with 2-nodes, which is loaded by a vertical force at the apex. We show through such an example that the detection criteria and instability computation can be carried out in much the same manner.

For any possible solution to more complex instability problems with slender structures, we can use geometrically exact beam instead of the truss. The instability phenomena with large displacements and large rotations can easily be handled in fully geometrically nonlinear setting [ [14] [12] [13]]. The non-conservative forces in general required to switch to the dynamics equations, which are solved by using time integration schemes.The best solution can be obtained by the secondorder time-integration schemes, such as the Newmark method.For dissipating oscillations produced in the dynamic analysis, we can use two kinds of damping. The first one is viscous damping, which depends on the viscosity coefficient, and the second is a friction damping, which depends on frictional coefficient.

After we present the results of a number of numerical simulations for instability problems under either conservative or non-conservative loading. The instability of frame structure and systems has been studied under a path-independent conservative load.

The structures subjected to non-conservative forces are sensitive to instability problem that leads to flutter phenomena characterized by large oscillations with increasing amplitudes even when triggered by a small perturbation force.We study and compare two geometrically exact beam models capable of describing finite rotations, the one including shear deformation, so called Reissner beam, and another excluding shear deformation, so called Kirchhoff beam. The computed results with two different models can be used to better understand the instability problem. The geometrically nonlinear response under non-conservative loads cannot be computed analytically. A few exceptions are available for static loading, which we also treat in this paper in order to validate our geometrically exact approach. However, for solving the problem in presence of instability, we move to dynamics framework and employ the Newmark time-integration scheme.

In the final part of this work, we explore how to control the instability phenomena by adding viscous dampers. Such concept is equivalent to classical notion of passivity for conservative loads, but need to be further extended for non-conservative loads. We derived the theoretical model in terms of the non-linear dynamics equations by using the principle of virtual work. We further provide the corresponding discrete approximation by using the FE structural models including geometrically exact beams models. More specially, we propose the Reissner beam to study instability of a cantilever under the combined action of a compressive non-conservative load and a small transverse disturbance both at the free end of the cantilever. With the proposed approach we obtain more general results compared to the currently available analytic solution of Bolotin.

Outline of the thesis

The outline of the thesis is as follows. In Chapter 2 we first present the classical Euler instability buckling problem concerning the beam with small deformations and moderate rotations. We select different boundary conditions, like i)one end fixed versus other end free,ii) both ends fixed, iii)one end simply supported and other end fixed. After that, we find the solution to the problem of instability of a Euler beam under the action of a non-conservative compressive force concentrated mass and distributed mass. Finally, we propose a semi-analytic solution for static and dynamic instability of more complex frame structure.

In Chapter 3 we present the control for nonlinear geometric instability problem of a deep or a shallow truss or yet a frame structure. Different criteria for detecting instability are presented. After that we discuss different types of instability phenomena, illustrated on a geometrically nonlinear truss structure. All the structural models are built with geometrically exact truss and beam finite elements, with both linear and nonlinear instability problems.The proposed models can successfully handle large overall motion under static or dynamic conservative load. The dynamic framework is developed capable of handling with different ways of instability control.The control strategy considers adding a damping from either friction device or viscous damper. This kind of control belong to well-known concept of passivity. Several illustrative numerical examples are presented . In last section, we give some concluding remarks.

In Chapter 4 of this work we propose a numerical solution procedure for instability problems under either conservative or non-conservative loading. Both static and dynamics frameworks are developed, with the latter needed for non-conservative case. Analytic solutions are available for few simple cases, mostly due to Bolotin contribution and its generalization presented herein. For more complex problems, the proposed approach is capable of computing numerical solutions, where we use the finite-element method which employs the geometrically exact beam models capable of describing finite rotations. In particular we discuss the weak form, the corresponding finite element discrete approximation and the special follower force element used for such geometrically exact beam model. We cannot make it much closer to the classical engineering beam formulation in terms of co-rotational beam since the Reissner beam includes shear deformation. However, we show to specialize our beam formulation to so-called Kirchhoff beam where the beam cross-section remains perpendicular to beam axis, and consequently eliminates any contribution of the shear deformation. For clarity, the latter is further specialized to two-dimensional application. In the last section, we present and discuss the results of several numerical simulations, including both static and dynamic non-conservative loadings. The corresponding remarks are stated in the final chapter.

Chapter 2

Instability phenomena detection criteria and their control in statics and dynamics

Introduction

The design of a structural systems involves many parameters that influence the response of the structure under conservative static or dynamic loads. For the optimal result for the design close to reality, it is very important to know how to detect the presence of instabilities, and to solve any such problem for preventing the structure to collapse. Most of the instability problems such as Euler buckling have been studied under a conservative load and small pre-buckling displacement. Much less is known on nonlinear instability that is characterized by large overall motion, and in particular very large pre-buckling displacements. To Gain a better insight in non-linear instability the goal of this chapter is the study of instability of structures in dynamic framework, which has not been studied sufficiently especially on how to control instability-induced vibration. More precisely to avoid instability of structure or to be able to control it under dynamic loads, can be achieved by adding a damping provided by some kind of external damping mechanism. One can use a viscous damper, a friction device or a smart shape memory alloy (see [START_REF] Oliveira | Dynamical Behavior of a Pseudoelastic Vibration Absorber Using Shape Memory Alloys[END_REF] and [START_REF] Machado | Lyapunov exponents estimation for hysteretic systems[END_REF]).

Any control of this kind is equivalent to the well-known concept of passivity (e.g. [3]). This work presents an application of the finite element method to solving such instability problem with large overall displacements of elastic truss and frame structures, subject to a conservative force. Different ways to achieve the passive control are dis-cussed for nonlinear instability problem for a shallow two-dimensional elastic truss and frame structure.

The outline of the chapter is as follows. Different criteria for detecting instability are presented in Section 2.2. We discuss different types of instability phenomena, illustrated on a geometrically nonlinear truss structure. The dynamic framework with different ways of instability control, including viscous damping or friction devices, are presented in Section 2.3.1. Several illustrative numerical examples are presented in Section 2.4.

Instability phenomena: linear versus nonlinear buckling

The instability phenomena imply in general that a small perturbation of loading can lead to a disproportional amplification of the response.

The instability depends on many factors, such as the nature of load, the spatial geometry, the material properties, boundary conditions like connections and supports, as well the mass (see [START_REF] Ibrahimbegovic | Nonlinear Solid Mechanics: theoretical formulations and finite element solution methods[END_REF], [START_REF] Argyris | Symeonidis Nonlinear finite element analysis of elastic systems under nonconservative loading-Natural formulation. Part I. Quasistatic problems[END_REF], [5] and [START_REF] Xu | Aerodynamic stability analysis of geometrically nonlinear orthotropic membrane structure with hyperbolic paraboloid in sag direction[END_REF]). We can distinguish two types of instability here referred to as nonlinear (see Fig. 2.2) versus linear (see Fig. 2.1). The latter is yet known as the Euler buckling, where pre-buckling displacements remain small.

Types of instability

Contrary to linear instability the pre-buckling displacement for nonlinear instability is large. Hence,the solution to such a problem requires the full power of the nonlinear formulation and computations

Detection criteria for instability in statics

There are several classical criteria for detecting instability phenomena. These are briefly reviewed here.

Energy criteria

For the class of conservative problems, the instability of an equilibrium state can be evaluated by the second variation of the total potential energy, which can be written as:

δΠ(u + αw) = Π(u) + δΠ(u; w) + 1 2 δ 2 Π(u; w) + O δu 2 (2.1)
For illustration, we look at a simple conservative system of the solid body in the gravity field where the energy potential is defined as Π = V = mgz. The instability energy criteria can be easily defined with respect to three different positions (see Fig. 2.3). For positon B, if the body is disturbed by a small perturbation, it will simply recover the static equilibrium position at the lowest level of energy potential;thus ,such a position is called stable. The second derivative of the total potential energy for this position remains positive given that any perturbed configuration (to left or to right of point B ) has higher energy potential. If the body is perturbed at point A, it will tend to move away from the static equilibrium position, lowering potential energy in any such perturbed configuration. Hence, it can not longer return to the equilibrium position, once the perturbation is removed. Such an equilibrium position is called unstable. In this case, the second derivative of the total potential energy is negative. Finally, if the body is disturbed the energy potential in perturbed configuration will remain the same at point C, the energy potential in perturbed configuration will remain the same and the value of the second derivative of the total potential energy remains equal to zero. Such an equilibrium point regarding transmition from a stable state to unstable equilibrium is referred to as critical (see [START_REF] Ibrahimbegovic | Nonlinear Solid Mechanics: theoretical formulations and finite element solution methods[END_REF] and [5]). 

Criteria based on singularity of stiffness matrix

The energy criterion can also be restated in terms of the singularity of the stiffness matrix which is obtained by linearizing the internal force to obtain the best linear approximation of equilibrium state. It is easy to see the second variation of potential energy can be written as quadratic form in perturbed displacement, featuring the tangent stiffness K. Hence, when the tangent stiffness matrix becomes singular, its determinant takes zero value at the critical state of equilibrium.

δ 2 π(δu; δu) = δu T Kδu = 0 ⇒ det K (d cr ) = 0 (2.2)
There is an excessively high computing cost for the determinant of the stiffness matrix,as well as and rapid increase/decrease in values of the determinant around zero which can lead to significant convergence difficulties of Newton's iterative method for computing the corresponding displacement. Thus the determinant-based criterion for detection of the critical equilibrium state is not very practical for complex systems (see [START_REF] Ibrahimbegovic | Nonlinear Solid Mechanics: theoretical formulations and finite element solution methods[END_REF]).

Criteria based on zero eigenvalue

Criterion based on zero eigenvalue reveals instability in terms of the corresponding zero eigenvalue of the tangent stiffness matrix. Such a criterion not only can be used to verify if the tangent stiffness is a singular matrix, but also with this detection criterion we can indicate the type of instability mode by computing the eigenvector of the tangent stiffness at the critical equilibrium point associated with zero eigenvalue. Namely, the transition of the structure from stable to unstable regime occurs with a zero-eigenvalue in the tangent stiffness (see [START_REF] Argyris | Symeonidis Nonlinear finite element analysis of elastic systems under nonconservative loading-Natural formulation. Part I. Quasistatic problems[END_REF] and [START_REF] Ibrahimbegovic | Nonlinear Solid Mechanics: theoretical formulations and finite element solution methods[END_REF]), which can be written as

[K -λ cr I] ψ cr = 0 ⇒ Kψ cr = 0 (2.3)
where ψ cr is the critical mode that can reveal the nature of the instability. It is easy to see that λ cr = 0 also implies det K=0, if we write the tangent stiffness in principal axes.

Instability computation for truss structures

For the special case, of small pre-buckling displacements the tangent stiffness can be expressed in a simplified form, where the geometric part of the tangent stiffness is a linear function of applied loading [START_REF] Ibrahimbegovic | Linear instability or buckling problems for mechanical and coupled thermomechanical extreme conditions[END_REF]. For example, for a simple structure that consists of 2 truss-bar elements, (see Fig. 2.5) the present case of geometric instability, the critical values can be obtained as:

det [K m + λ cr K g ] = 0 ⇒ 2EA l 3 h 3 b 2 b 2 + hu cr + 1 2 u 2 cr = 0 (2.4)
where the material and geometric part of the stiffness matrix can be written as:

K e m = EA l e     1 0 -1 0 0 0 0 0 -1 0 1 0 0 0 0 0     ; K e g = N l e     0 0 0 0 0 1 0 -1 0 0 0 0 0 -1 0 1     (2.5)
By improving the boundary conditions and solving the resulting eigenvalue problem, we can finally obtain, the values of the critical load as:

λ cr1 = 2EA l e b 2 h ; λ cr2 = 2EA l e h 3 b 2 (2.6)
We can express the critical displacement as function of the geometric characteristics of the truss structure as:

u cr = -h ± h 2 -2b 2 (2.7) 
We note that these values of the critical displacement are very small for deep truss where b << h, (see Fig. 2.4). Hence, it is important to recall that the linear instability concerns only small pre-buckling displacement. Also, the critical mode ψ cr = 1 0 concerns the lateral displacements. 

Nonlinear instability computation

In the class of problems referred to as nonlinear instability, all the displacements, rotations and strains are all large in general before arriving at the critical equilibrium point. For that reason, it is often impossible to obtain the analytic solution, as the one available for linear instability problem of Euler's buckling [START_REF] Ibrahimbegovic | Nonlinear Solid Mechanics: theoretical formulations and finite element solution methods[END_REF]. One exception is a general problem in nonlinear instability for a shallow truss composed of two truss-bar elements with 2-nodes, which is loaded by a vertical force at the apex. We can note that maintaining the stability of equilibrium in the system will require zero value of vertical external force for the displacement values v = h and v = 2h. These two equilibrium states correspond, respectively, to the truss equilibrium state where both bars are horizontal and the equilibrium state where bars have been moved through to the opposite side so that the deformed length of each bar remains the same as in the initial configuration, which implies zero internal force. The natural deformation measure for such truss is the stretch, which can be computed as the ratio of the deformed versus initial length of the bar:

λ t = l ϕ t /l (2.8)
For the computational purpose, it is better to use the Green-Lagrange strain, which can be easily computed for a 2-node truss bar element as

E h 11 l = 1 (l) 2 x eT H e d e + 1 2(l) 2 d eT H e d e
(2.9)

Where x eT are nodal coordinates d e nodal displacements and H e has block unit matrix structure that means

H e = I -I -I I (2.10)
When the truss constitutive behaviour is linear elastic, which means it is governed by the Saint-Venant-Kirchhoff material law, we can easily obtain the corresponding finite element approximation of the second Piola-Kirchhoff stress as:

S h 11 l = E 1 (l) 2 x eT Hd e + 1 2(l) 2 d e Hd e (2.

11)

Where E is Young's modulus.

We can also obtain the corresponding finite element approximation of the virtual Green-Lagrange strain:

Γ 11 = 1 (l) 2 x eT + d eT Hw e ; w e =     w e 1,1 w e 1,2 w e 2,1 w e 2,2     (2.12)
Where w e are nodal values of virtual displacements.

Finally, the contribution to the discrete approximation allow us to define the internal virtual work according to:

G int,e = w T f int,e ; f int,e = H T 1 l (x e + d e ) S h 11 (2.13)
where we denote:

x e =     x 1 y 1 x 2 y 2     ; d e =     d e 1,1 d e 1,2 d e 2,1 d e 2,2     =     0 0 0 d     ; H e =     1 0 -1 0 0 1 0 -1 -1 0 1 0 0 -1 0 1    
(2.14) Introducing the consistent linearization of this weak form, we obtain the tangent stiffness matrix, with the material and geometric part that can be written as:

K e = K e m + K e g (2.15)
By assuming the motion symmetry with d eT = (0, 0, 0, d), the weak form of the equilibrium equations for this shallow truss structure can be rewritten as:

G ext = G int ⇔ wf = w2AS 11 1 l (h + d); S 11 = E 1 l 2 hd + 1 2 d 2 (2.16)
which allows us to define the explicit form of internal force as a function of (the only non-zero component)of vertical displacement v :

f = 2EA l 3 (h + d) hd + 1 2 d 2 (2.17)
The corresponding tangent stiffness matrix also reduces to a single entry. This, it is easy to confirm the presence of two critical equilibrium states, which can be computed from zero value of K:

In any case, for either linear or nonlinear instability, we conclude that δ 2 Π = 0, and for a simple case of one degree of freedom this can be replaced by

0 = K := df int dv = 2EA l 3 (h + d) 2 + 2EA l 3 hd + 1 2 d 2 (2.18)
The solution of nonlinear instability phenomenon indicates that the pre-buckling displacements are very large (here, on the order of 40 % of h=hight in initial configuration).

All this was instability for static equilibrium where inertia forces are negligible (because the load is applied very slowly until reaching the critical point).

Dynamic case or instability of vibration

If we study dynamic equilibrium (In the spirit of d'Alembert), we can apply many similar approaches, but other scientific domains, like control in electrical engineering and automatics, one use the detection criterion equivalent to energy criteria, so called Liapunov criterion of instability of motion. Examples Instability of Unmanned Aerial Vehicle [START_REF] Guerrero-Sanchez | Passivitybased control for a Micro Air Vehicle Using Unit Quaternions[END_REF] drone modelled as a material point: Potential energy (in the earth gravity field)

π = V = mgz (2.19)
Kinetic energy (accounting for linear and angular motion)

K = 1 2 ḋm ḋ + 1 2 θJ θ (2.20)
The corresponding total energy potential can then be obtained as:

T ≡ L = K -V (2.21)
where T is the total energy. Instability detection criterion state that T (or L) increases a lot for a small perturbation. But the difficulty arises when we have to treat the non-conservative loads, where we cannot obtain the loading potential and cannot write f = -∂V ∂z . Such is the case for the pressure induced by water or wind or the follower force applied to a structure which follows the motion of the structure (e.g. always remains perpendicular to a cross section). This loads to a special class of instability problems called flutter instability, that are not fully covered by the detection methods explained previously in this chapter. Namely, neither equilibrium nor Lyapunov total energy approach can be used for finding the solution to such an instability problem under follower(non-conservative) force. Hence, we will establish the proper detection criteria for instability under follower forces. The criteria is a judicious combination of studies of critical equilibrium state and dynamics framework. More precisely, this kind of instability has to be studied in dynamics and we can use the dynamics equilibrium equations. Thus the instability is manifested by very large vibrations amplitudes to be monitored (rather than the energy in Lyapunov approach) for a small perturavation. More details are in chapter 3 for simple cases where analytic solution exist and chapter 4 where numerical solution is constructed.

Control in dynamic by adding damping

For the case where total potential energy cannot be defined (for a e.g. non-conservative loading, follower force), we can switch to dynamic frame work for instability. In general case, the dynamic equations are solved by using time integration schemes.

The instability criteria already presented by the truss model are all valid for this geometrically exact beam model, for the case of conservative loading where we can define the total potential energy. The solution of the differential equation of motion can be obtained through numerical methods with step-by-step time integration scheme. The solution depend on initial conditions, and has to include the equations of motion at time t n+1 .

M dn+1 + C ḋn+1 + Kd n+1 = F ext n+1 (2.22)
The best solution can be obtained by the second-order time-integration schemes, such as the central difference or the Newmark method. In this work, we can work with either the first or the second method, where the velocity and displacement can be expressed as:

d n+1 = d n + h ḋn + h 2 1 2 -β a n + βa n+1 ḋn+1 = ḋn + h (1 -γ) dn + γ dn+1 (2.23)
Here, the factor γ affects, the acceleration in the velocity equation, whereas β affects displacements. With values β equal to 0 and γ equal 1/2 we obtain the central difference and with values β = 1/4 and γ = 1/2 correspond to the trapezoidal rule, which assumes that acceleration will remain constant (see [START_REF] Ibrahimbegovic | Nonlinear Solid Mechanics: theoretical formulations and finite element solution methods[END_REF], [START_REF] Clough | Dynamics of structures[END_REF], [START_REF] Chapra | Numerical Methods for Engineers[END_REF]).

The dynamic response of a simple dynamic system can oscillate indefinitely if it does not have any force that can dissipate energy and reduce motion to zero. However, in real life the oscillation will reduce gradually due to damping of the system. Here, we present two types of damping, which both fit into the same framework.

f int (d) + damping = f ext (2.24)

Viscous damping

This model is used successfully to model the exponential vibration amplitude decay in a variety of mechanical systems. One example of viscous damper can be a piston fit into a cylinder filled with oil.

Here the damping force is proportional to the velocity of the piston, in direction opposite of the motion. Such a damping force illustrated in Figure 2.6 has the form:

f c = c ḋ(t) (2.25)
Figure 2.6: Viscous damping

Frictional damping

This kind of damping with sliding friction is well known Coulomb damping, which is characterized by:

f c ( ḋ) =    -µN ḋ > 0 0 ḋ = 0 µN ḋ < 0    (2.26)
One way to illustrate this kind of damping in a system shown in Fig. 2.7, It is equivalent to perfect plasticity model where the sliding resistance is equal to elasticity limit σ y (see [START_REF] Ibrahimbegovic | Nonlinear Solid Mechanics: theoretical formulations and finite element solution methods[END_REF] and [START_REF] Inman | Engineering vibration[END_REF]). 

M d + f c sgn( ḋ) + f int (d) = f ext (2.27)
In short, adding different damping mechanism correspond to passive control of vibration (see [START_REF] Lozano | Adaptive Control of robot manipulators with flexible joints[END_REF] and [3]) Passive control of vibrations was used successfully in many control applications, for example, the stabilization of unmanned aerial vehicle using unit quaternions (see [START_REF] Guerrero-Sanchez | Passivitybased control for a Micro Air Vehicle Using Unit Quaternions[END_REF]) where the authors reduced the problem to the longitudinal plane and the potential energy V=mgz, as a conservative load by the product of the mass m, gravity g, and the position in the vertical axis in the internal frame z.

Hence, to design structures or machines and have a desired transient and steady state response to some extent the designer can play with mass, stiffness or damping. Adding mass and changing stiffness values are also methods of passive control. However, it is not always possible to choose all the parameters to play with them due to design constraints that have to be satisfied. Hence, in order to avoid vibrations, it may be necessary to add an external damper or some mass could be added to a given structure to lower its natural frequency. Damping treatments increase the rate of decay of vibrations as the nonlinear control technique based on passivity. Passivity is a fundamental property exhibited by many physical systems which involves energy dissipation and transformation (see [START_REF] Inman | Vibration with control[END_REF]).

Illustrative numerical simulation

In this section, we present several illustrative numerical examples of instability computations and control. First example is a simple cantilever beam in free vibration represented, with a truss element, where we control the beam vibrations by adding two different kinds of damping in order to dissipate the oscillations, viscous damping and equivalent friction damping, in order to dissipate the oscillations. Then we consider the case of a nonlinear instability case with the Williams toggle frame which is modelled with either two truss elements for 8 beam elements. In the first case, we will present arc-length method results and after that the results, we obtain by adding viscous damping and equivalent friction damping.

Simple Cantilever with truss element

We propose the control of axial oscillations of a simple cantilever modeled by truss, and show how the structure will behave.. We take a cantilever first subjected to a triangular pulse load, which will continue to oscillate in free vibration (see Fig. For dissipating these oscillations, we can use two kinds of damping, which is modelled with special elements placed at the end of the bar. The first one is viscous damping, which depends on the viscosity coefficient, and the second is a friction damping, which depends on frictional coefficient.

Cantilever truss element with viscous damping

In the case when we add a viscous damping, the cantilever oscillation will decrease, with decrement that depends on the value of the viscosity coefficient. If we further increase this value, the amplitude of oscillations decay (see Fig. 2.10 and 2.11). For the second option of vibration control we take the same cantilever truss, and we add a friction element at free end (see Fig. 2.12), we propose an equivalent friction damping. The first control model is a truss element with perfect plasticity, and the second one is plasticity with kinematic hardening. We note that these models are not exactly pure friction. However, they can still store dissipate energy, since the rheological model of plasticity consists of elastic plus friction part. When increasing the values of applied load, the frame displacement increases proportionally until the load reaches the critical value. At critical load, the sudden increase of displacement will occur. In computing this first part of response, we perform the static analysis. Subsequently we continue with the dynamic analysis, where we apply the Newmark time integration scheme (see Fig. 2.18 and 2.19). We present two different models of this structure: first with two truss elements and second with 8 beam elements. At the end of instability induced sudden jump in dynamics we will see some oscillations (see Fig. 2.18b and 2.19b), and the goal will be to damp out these oscillations. Thus we propose to first add a viscous damping and then to add an equivalent friction damping like in the case of cantilever truss.

Williams toggle frame model with truss elements

In this part we model the frame with two truss elements chosen material with the properties and geometry shown in Figure 2.19. First we add viscous damping and then an equivalent friction damping, with a perfect plasticity. We check their ability to control oscillations after the critical load. In the first case when we add a viscous damping the behavior is similar to the cantilever truss. Namely, the decay of vibration amplitude directly depends on viscosity coefficient. The oscillations will decrease faster when we increase this value. For the case of perfect plasticity, we change area values. The oscillations are changing directly with changing this value. The values in this analysis were chosen as .4125, 4.125 and 41.25 of the cross section of the damping device. We can see the results in Fig. 2.21. With the value of .425, the amplitude of oscillations decreases but is not significantly. Here the value that dissipates energy is 41.125. We change this area in the function of the area of the frame element.

Williams toggle modelled with frame beam elements

Here, we model the frame with 8 beam elements. We use the same properties as shown in Figure 2.17. Again we use viscous damping and equivalent friction damping with either perfect plasticity or another one with kinematic hardening. With beam elements, the behaviour is similar to the previous with truss, when we add viscous damping, as the viscosity coefficient increases the dissipation also increases until one point where there are no oscillations. On the other hand, for plastic damping the key factor is the chosen value of the yield stress. The oscillations are changing directly with changing this value. The values in this analysis were chosen as 0.3, 0.4 and 1. We can see the results in Fig. 2.23.

Chapter 3

Analytical solution for instability problems either under conservative or non-conservative forces Seeking reliable and accurate results and the knowledge of structural stability theory is of paramount importance to the practising structural engineer. One well known case of structural instability is so called Euler buckling which in many instances is the primary instability consideration in the design of typical configurations of slender structures. In this case we deal with the instability phenomenon of buckling that occurs in structures subjected to mechanical or thermal actions, if these exceed the value of the critical load, the structure will undergo sudden configuration change, which is generally related to bifurcation. The concept of critical load for buckling phenomena was proposed by Euler, corresponds to a perturbation in an ideal structure. Namely for a structure in critical equilibrium state, an infinitely small disturbance is enough to cause the structure to lose its balance or stability. To provide analytic solution to this problem there are simplified methods that idealize the structural behaviour. The equilibrium method seeks the stability criterion of the structures by looking at the configuration change (small is stable, large is unstable) under a small perturbation load value; in other words, if we do not end up in configurations adjacent to the equilibrium, the applied load is critical and produce instability.

Euler buckling: small deformations with moderate rotations

In this section we present one of the well-known Euler buckling linear instability problem. It consists of a cantilever beam subjected to a compressive load, It will reach an unfavourable deformed configuration when the value of the compressive load is bigger than the value of the critical load. then we present three variants of boundary conditions for this problem and its corresponding solution for the value of the critical load.

d 2 M (x) dx 2 + P d 2 v dx 2 = q(x) (3.1) or EI d 4 v(x) dx 4 + P d 2 v dx 2 = q(x) (3.2) d 4 v(x) dx 4 + k 2 d 2 v dx 2 = 0 ; k = P EI (3.3) 
which general solution is:

v(x) = A 1 sin kx + A 2 cos kx + A 3 x + A 4 (3.4)
where A 1 , A 2 , A 3 and A 4 are obtained from boundary conditions.

Simple supported beam

Boundary conditions

v(0) = 0 ; EI d 2 v(0) dx 2 = 0 (3.5) v(l) = 0 ; EI d 2 v(l) dx 2 = 0 (3.6) Determinant     0 1 0 1 sin kl cos kl l 1 0 -k 2 0 0 -k 2 sin kl -k 2 cos kl 0 0     det [•]=0     A 1 A 2 A 3 A 4     =     0 0 0 0     (3.7) k 4 l sin kl = 0 (3.8) Critical load P cr = π 2 EI l 2 (3.9)
3.1.2 One end fixed/one end free beam

Boundary conditions v(0) = 0 ; M(l) = EI d 2 v(l) dx 2 = 0 (3.10) dv(0) dx = 0 ; T(l) = -EI d 3 v(l) dx 3 dy(1) dx -P dv(l) dx = 0 k 2 dv(l) dx + d 3 v(l) dx 3 = 0 (3.11) Determinant     0 1 0 1 k 0 1 0 -k 2 sin kl -k 2 cos kl 0 0 0 0 k 2 0     det [•]=0     A 1 A 2 A 3 A 4     =     0 0 0 0     (3.12) k 2 cosk l = 0 (3.13) cos kl = 0 ⇔ kl = 2n -1 2 π, n = 1, 2, . . . (3.14) 
Critical load

P cr = π 2 EI 4l 2 = π 2 EI (2l) 2 = 1 4 π 2 EI L 2 (3.15)

Both end fixed beam

Boundary conditions

v(0) = 0 v(l) = 0 dv(0) dx = 0 dv(l) dx = 0 (3.16) Determinant     0 1 0 1 sin kl cos kl l 1 k 0 1 0 k cos kl -k sin kl 1 0     det [•]=0     A 1 A 2 A 3 A 4     =     0 0 0 0     (3.17) -4 sin kl 2 kl 2 cos kl 2 -sin kl 2 = 0 (3.18) sin kl 2 = 0 ⇒ kl 2 = nπ (3.19) 
Critical load

P cr = π 2 EI (l/2) 2 (3.20)

Strong form based solution for instability of Euler-Bernoulli and for Timoshenko beam concentrated mass

In this section we present the solution to the problem of instability of a Euler-Bernoulli beam under the action of a compressive force. This implies that the rotates together with the free end section of the beam and remains tangential to its deformed axis (see Fig. 3.1). Where EI is the bending stiffness of the bar, f = v(l) is the deflection at the free end of the beam and l its length. We can propose the general solution of this differential equation as:

v(x) = A 1 sin kx + A 2 cos kx + f -ϕ(l -x) (3.22)
where A 1 and A 2 are arbitrary constants. Whereas f and ϕ are unknowns free end displacement and force. The boundary conditions for this problem are zero displacement and zero slope at cantilever beam support point and assumed values of displacement and slope at the free end with :

v(0) = 0, dv(0) dx = 0, v(l) = f, dv(l) dx = ϕ (3.23)
If we substitute the general solution into these boundary conditions, we obtain the following set of algebraic equations, written in the matrix notation:

    0 1 1 -1 k 0 0 1 sin kl cos kl 0 0 cos kl -sin kl 0 0         A 1 A 2 f ϕ     =     0 0 0 0     (3.24)
It is easy to compute that the determinant of this system matrix equals -1, which means that there are no other solution but trivial, i.e. (v(x) ∼ = 0). Hence, we conclude that the static approach cannot be used to solve this instability problem.

For that reason we turn towards finding the solution of instability problem within the dynamic framework. In other words, we study the possibility of flutter instability. Hence, the equilibrium is said to be unstable if a disturbance, causes a finite deviation of the system from the considered dynamic equilibrium. The complete solution of this problem can be obtained by assuming that the disturbance depends on time and by deriving equations which will enable the variation of the disturbance with time to be taken into account. With the follower load explicitly dependent on time, the system is non-conservative, and the only approach that should be used in such cases is the dynamic approach. The equation of small oscillations of a bar about its position of equilibrium takes the following form

EI d 2 v(x, t) dx 2 = P(f(t) -v(x, t)) -Pϕ(t)(l -x) -m(l -x) d 2 f(t) dt 2 (3.25)
where v(x, t) is the dynamic deflection at each point and f(t) is the deflection at the free-end of the cantilever, i.e. f (t) = v(l, t). The solution to this equation can be obtained by separating the variables

v(x, t) = v(x)e iωt , f(t) = fe iωt , ϕ(t) = φe iωt (3.26)
We can assume that the rectilinear form of the bar is stable If the bar performs harmonic oscillations with frequency ω, we reduce the equation 3.25 to the form

EI d 2 v dx 2 + k 2 v = k 2 F -k 2 φ(l -x) + mω 2 f EI (l -x) (3.27)
Making use of the corresponding boundary conditions for cantilever beam v(0) = 0, v (0) = 0, v(l) = f, v (l) = φ, we obtain a new from of the system in equation 3.24, and again check for non-trivial solutions by enforcing that

     0 1 1 + mω 2 l k 2 EI -1 k 0 -mω 2 k 2 EI 1 sin(k1) cos(k1) 0 0 k cos(k1) -k sin(k1) -mω 2 k 2 EI 0      = 0 (3.28)
We can further obtain the corresponding value of ω by using the characteristic equation enforcing the zero determinant of the system in 3.28 above, and find out that such value becomes infinite (nonphysical) if the following condition is verified:

ω = ± P ml 1 sin kl kl -cos kl → ∞ ⇔ tan kl = kl (3.29)
The last expression provides the numerical solution for the critical value kl = √ 2.05π . Thus, the critical follower load for Euler-Bernoulli beam can be computed as k = P EI → P cr = 2.05π 2 l 2 EI (3.30)

Analytic solution for Timoshenko beam buckling under follower force

The instability problem for Timoshenko beam buckling can be defined in a similar manner, by using linear kinematics and constitutive equations, combined with nonlinear equilibrium equation imposed in Timoshenko beam deformed configuration; this can be written as:

Kinematics:

κ = dθ dx ; γ = dv dx -θ (3.31)
Constitutive equations:

M = (EI)κ; V = (GA c ) γ (3.32)
Equilibrium in the deformed configuration:

M = M + P • v = 0 (3.33) F y = -P sin θ + V = 0 ⇒ V = P θ (3.34) V = GA c γ = GA c dv dx -θ ⇒ dv dx = θ + V GA c = θ + P θ GA c (3.35) dv dx = 1 + P GA c θ | d dx (3.36)
d 2 v dx 2 = 1 + P GA c dθ dx (3.37) 0 = M + P • v (3.38) = EI dθ dx + P v (3.39) = EI d 2 v dx 2 1 1 + P GA c + P v ⇒ (3.40)
d 2 v dx 2 + P EI 1 + P GA c v = 0 (3.41)
We have shown the equivalence of the differential equation governing the instability problem for Timoshenko beam. Hence, the solution to such instability problem will again be computed within the dynamics framework as in equation 3.29. One can follow the same steps to arrive at the same final result as the one in 3.30, but with the corresponding value of k (see equation 3.42). Hence, the expression that provides the critical value of the follower load for Timoshenko beam can be obtained as follow

k = P 1 + P GA c EI → k 2 = 2.05π 2 l 2 (3.42) P cr = 1 + 4 2.05π 2 EI GA c l 2 -1 2 GA c
(3.43)

Strong form based solution for instability of Euler-Bernoulli beam distributed mass

If we now have a cantilever beam with the distributed mass (see Figure 3.2) the beam motion is governed by

EI d 4 v dx 4 + P d 2 v dx 2 + m d 2 v dt 2 = 0 ⇔ d 4 v dx 4 + k 2 d 2 v dx 2 + ω 2 d 2 v dt 2 = 0 (3.44)
The boundary conditions at the fixed end and at the free end of cantilever are given as:

v(0, t) = ∂v(0, t) ∂x = 0 ; ∂ 2 v(l, t) ∂x 2 = ∂ 3 v(l, t) ∂x 3 = 0 (3.45) v(z, t) = V (z)e iΩt (3.46) d 4 V dζ 4 + β d 2 V dζ 2 -ω 2 V = 0 (3.47) ζ = z l , β = P l 2 EJ , ω = Ωl 2 m EJ (3.48)
Furthermore, we can rewrite the differential equation of the free vibrations of the column as follows where α and β are

d 4 g dx 4 + k 2 d 2 g dx 2 - mω 2 EI g = 0 (3.49)
α = k √ 2 (1 + 1 + 4mω 2 EIk 4 ) 1/2 β = k √ 2 (-1 + 1 + 4mω 2 EIk 4 ) 1/2 (3.51)
By taking into account the boundary conditions, and searching for the nontrivial solution, we obtain the critical force value as follows

P cr = 2π 2 EI l 2 (3.52)

Static and dynamic instability of frame: semianalytic solution

In this section we give an analytic solution for given the critical load of a frame under two conservative loads applied at the corner nodes. The frame geometry is as shown in Fig. 3.3. Under applied the loads, we will have the deformed configuration of the frame as shown in Fig. 3.4. The main idea for constructing the solution is to propose an equivalent system that would have the same deformed shape. Such as he equivalent system consists of a cantilever beam with a spring at the free end of the beam, which is a correct replacement for the appropriate boundary condition on top of the column see Fig. The corresponding differential equation characterizing critical equilibrium state for this problem is similar to the one in 3.58 for a cantilever beam

d 4 v dx 4 + k 2 d 2 v dx 2 = 0; k = P EI (3.53) 
Their general solution to this differential equation can be written as follows:

d 4 v dx 4 + k 2 d 2 v dx 2 = 0 ; k = P EI (3.54)
Their general solution to this differential equation can be written as follows:

v(x) = A 1 sin kx + A 2 cos kx + A 3 x + A 4 (3.55)
The main modification from the previously developed analytic solution by Bolotin for cantilever beam is a new form of the boundary condition of top of the column which is brought by the presence of the spring. Thus we can write as follows:

v(0) = 0 (3.56) dv dx (0) = 0 (3.57) EI d 2 v(l) dx 2 + α dv(l) dx = 0 d 2 v(l) dx 2 + β dv(l) dx = 0 β = α EI (3.58) EI d 3 v(l) dx 3 + P dv(l) dx = 0 d 3 v(l) dx 3 + k 2 dv(l) dx = 0 k 2 = P EI (3.59) 
Where α = 6EI l is an estimate for the beam bending stiffness retaining the top of the column, which is obtained by using the FEM solution as shown next; For that reason we refer this development as semi-analytic solution.

Namely, by using the finite element method solution based upon the Hermite polynomials representing the beam deformed shape, we can obtain the following approximation of deformation beam contribution

M 1 M 2 = 4EI l 2EI l 2EI l 4EI l θ θ = 6EI l 6EI l θ (3.60)
indicated the correct value for beam bending stiffness approximation reproduced by parameter

β = α EI (3.61)
With these boundary conditions we can obtain the critical load by following the usual procedure and enforcing the value of the corresponding determinant

      0 1 0 1 k 0 1 0 0 0 k 2 0 (kβ cos kl (-kβ sin kl -k 2 sin kl -k 2 cos kl β 0           A 1 A 2 A 3 A 4     =     0 0 0 0     (3.62)
Which allows us to obtain the critical load solution as follows

k = P EI ; P cr = (2, 71) 2 EI l 2 = 7, 344EI l 2 (3.63)
We can see that such a semi-analytic solution is slightly lower than the critical load that we could obtain from the FEM approximation of deformed shape which is equal to:

P cr = 7, 5EI l 2 (3.64)
That is why we seek the analytic solution wherever possible to get the best estimate of the critical load and to validate our FEM solutions.

In the following example, we propose three different frames see Figs.

3.6, 3.7 and 3.8 each loaded with two compressive conservative or nonconservative loads. The main difference among three cases are changing values of the beam bending stiffness EI i) the same bending stiffness EI in columns and beam, ii) the beam bending stiffness 100 times smaller than the bending stiffness for columns iii) the beam bending stiffness 100 times bigger than the bending stiffness for columns. The corresponding analytic analytic solution for each case 2 or 3 can be easily identified from the semi-analytic solution frame value defined in 3.64. case 2: In this case the contribution of the beam is not as big. In order to define the behavior of the columns, we can neglect the contribution of the beam. Therefore, the value of the critical load become the same (or tends to) the value we can computed for a single cantilever k = P EI → P cr = 2.05π 2 l 2 EI (3.65)

Case 3: In this case the stiffness of the beam is so dominant over the stiffness of the columns that it does not allow any bending at the top of the columns, which cannot have any rotation. This results with the follower load acting as a conservative load. Therefore the solution is

P cr = π 2 EI (2l) 2 (3.66)
Chapter 4

Non-linear Response and Instability of Beams under Non-Conservative Loads

Introduction

The application field of lightweight structures is currently expanding to many application areas, from road and air transportation driven with the need for reducing the fuel consumption and cost to biomechanics or soft-robotics applications used for different soft materials reinforcements. The instability problem thus remains of great importance, due to typically rather slender structure dimensions, which are used to ensure the lightweightedness. Many of these application fields require ability to account for overall large displacements and rotations that come as the consequence of geometric instabilities, where a small perturbation results with a disproportionally large response of the structure. This paper deals with this class of problems, which can be successfully modeled and solved by using so-called geometrically exact models of beams (e.g. [START_REF] Reissner | On finite deformations of space curved beams[END_REF], [START_REF] Simo | A three-dimensional finite-strain rod model, Part 11: Computational aspects[END_REF], [START_REF] Saje | Finite element formulation of finite planar deformation of curved elastic beams[END_REF], [START_REF] Ibrahimbegovic | On finite element implementation of geometrically nonlinear Reissner's beam theory:three-dimensional curved beam elements[END_REF], or [START_REF] Ibrahimbegovic | On the role of frameinvariance in structural mechanics models at finite rotations[END_REF]). The original aspect of such model its ability to represent in the geometrically exact manner the large overall motion, including the problems with instabilities ( [START_REF] Ibrahimbegovic | On the Role of Geometrically Exact and Second Order Theories in Buckling and Post-Buckling Analysis of Three-Dimensional Beam Structures[END_REF], [START_REF] Ibrahimbegovic | Quadratically Convergent Direct Calculation of Critical Points for 3d Structures Undergoing Finite Rotations[END_REF]).

The main novelty in this work is to have these geometrically exact beam model formulations to bear upon the cases where the applied external forces are no longer conservative; in other words, these forces do not derive from a potential, so that the fundamental postulate of instability (also known as Lyapunov condition; e.g. [START_REF] Brogliato | New relationships between Lyapunov functions and the passivity theorem[END_REF]) in terms of disproportional increase of energy due to a small perturbation (e.g. see [START_REF] Mejia Nava | Instability phenomena and their control in statics and dynamics: Application to deep and shallow truss and frame structures[END_REF]) will no longer apply. The non-conservative forces, and corresponding problem of instability, can occur in a number of different application domains, most importantly within the class of problems of fluid-structure interaction (e.g. [START_REF] Ibrahimbegovic | Computational Methods for Solids and Fluids: Multiscale Analysis, Probability Aspects and Model Reduction[END_REF]) where the instability problems are referred to as flutter (e.g. [START_REF] Ch | Modeling of Fuel Sloshing and its Physical Effects on Flutter[END_REF]). It was a fundamental contribution of [START_REF] Bolotin | The Dynamic Stability of Elastic System[END_REF]Bolotin [ , 1965]], followed by a number of more recent works (e.g. [START_REF] Lacarbonara | Nonlinear Structural Mechanics: Theory, Dynamical Phenomena, and Modeling[END_REF], [START_REF] Jeronen | On the effect of damping on stability of nonconservative systems[END_REF], among others) to show that the instability problems under non-conservative loading should be properly treated only within dynamics framework. The latter requires to generalize the solution methods for instability problems towards nonlinear dynamics with time-integration schemes (e.g. [START_REF] Ibrahimbegovic | Finite Rotations in Dynamics of Beams and Implicit Time-Stepping Schemes[END_REF], [START_REF] Lacarbonara | Nonlinear Structural Mechanics: Theory, Dynamical Phenomena, and Modeling[END_REF], [START_REF] Mchugh | Nonlinear Response of an Inextensible, Free-Free Beam Subjected to a Nonconservative Follower Force[END_REF]).

The geometrically nonlinear response under non-conservative loads cannot in general be computed analytically. A few exceptions are available for static loading, which we also treat in this paper in order to validate our geometrically exact approach. However, for solving the problem in presence of instability, we move to dynamics framework and employ the Newmark time-integration scheme (e.g. [START_REF] Ibrahimbegovic | Nonlinear Solid Mechanics: theoretical formulations and finite element solution methods[END_REF]).

Moreover, we study and compare two geometrically exact beam models capable of describing finite rotations, the one including shear deformation, so called Reissner beam, and another excluding shear deformation, so called Kirchhoff beam. The computed results with two different models can be used to provide better understanding of instability problem, and also to quantify the relative importance of different model's features, and ability to provide either more precise results or more robust computations.

The outline of the chapter is as follows. In Section 4.2, we define the most general geometrically exact beam models, and discuss its weak form, the corresponding finite element discrete approximation and the special follower force element used for such geometrically exact beam model. In Section 4.3, we further specialize this general model to make it closer to classical engineering beam formulation in terms of co-rotational beam model (e.g. [START_REF] Esmaeili | Dynamic instability response in nanocomposite pipes conveying pulsating ferrofluid flow considering structural damping effects[END_REF]). More precisely, we specialize our beam formulation to so-called Kirchhoff beam where the beam cross-section remains perpendicular to beam axis, and consequently eliminates any contribution the shear deformation. For further clarity, the latter is further specialized to two-dimensional application. In Section 4.4, we present and discuss the results of several numerical simulations, including both static and dynamic non-conservative loadings.

Weak form based solution for thick beams 4.2.1 Variational formulation for 3D Reissner Beam model

In this section, we first develop the theoretical formulation of threedimensional geometrically exact beam capable of including shear deformation (so called Reissner beam model [START_REF] Reissner | On finite deformations of space curved beams[END_REF]) within the framework of large displacement and rotations. The space discretization is carried out by the finite element method while the time discretization is implemented by using the Newmark time-stepping scheme.

Beam Kinematics

The beam strain measures count: the bending k, and contains the axial and the shear strains, which can be regrouped for geometrically exact beam and written in a vectorial form as

=   Σ Γ 2 Γ 3   = ϕ -g; k = ω (4.1)
In 4.1 above, g is the basis vector perpendicular to the cross-section in the initial configuration, ϕ is the position vector of the beam axis in the deformed configuration, prime denotes the derivative with respect to the beam axis coordinate s , i.e. (•) = d(•)/ds and ω is the axial vector of the skew-symmetric tensor Ω.

Ωb = ω × b; ∀b ∈ R 3 (4.2)
The latter can be computed as the derivative of the orthogonal tensor Λ as

Ω = Λ Λ T (4.3)
The orthogonal tensor Λ rotates the cross-section in its new position a to the deformed configuration, i.e. a = Λg

The corresponding stress resultants related to the finite strain measures in 4.1 are defined through the set of constitutive equations, which can be written as

n = ΛCΛ T ; C = diag (EA, GA 2 , GA 3 ) (4.4)
and

m = ΛDΛ T K; D = diag (GJ, EI 2 , EI 3 ) (4.5)
where: E is Young's modulus, G is the shear modulus, A is beam cross section, A 2 and A 3 are so-called shear effective section, J is a polar moment of cross-section (assuming for simplicity circular crosssection) and I 2 and I 3 are moments of the corresponding values of moment of inertia.

By considering, for simplicity, the homogeneous Dirichlet boundary conditions, the weak form of the equilibrium equation or the virtual work equations can be written in the form

G int -G ext = 0; G int (•) := L {δ • n + δk • m}ds, G ext = L δu • f ds (4.6)
Here, δ and δk are virtual strain measures corresponding to the virtual displacement δu and the virtual rotation δΛ, multiplied respectively by the energy-conjugate stress resultants n and couples m. We will further provide details on how to compute incremental rotational work, whereas the external virtual work, computation for non-conservative loading will be described in section 4.2.4

Finite rotations

The main difficulty in dealing with geometrically exact beam concerns the proper parameterization of the finite rotation tensor Λ. In incremental analysis the update of the finite rotations can be reduced to the product of incremental orthogonal tensor by the corresponding one computed in the previous time step. Such orthogonal tensor can be represented by four quaternion parameters, which renders the associated update computationally more efficient.

Namely, with rotation tensor representation by quaternion algebra, which is chosen in order to obtain a minimum number of parameters [START_REF] Ibrahimbegovic | On the role of frameinvariance in structural mechanics models at finite rotations[END_REF] for representing the finite rotations, we use a set of four parameters, including a scalar part q 0 and vector part q, {q 0 , q}. Such a four-parameter representation of an orthogonal matrix Λ can be written explicitly as:

Λ = 2q 2 0 -1 I + 2q 0 (q × I) + 2q ⊗ q (4.7)
Besides a minimum number of parameters, the quaternion representation offers the most efficient rotation update replacing the orthogonal tensors multiplicative updates, which can be carried out directly in terms of the quaternion parameters as follows:

Λ 1 := (q 0 , q) ; Λ 2 := (p 0 , p) (4.8) Λ = Λ 2 Λ 1 = (q 0 ← p 0 q 0 -p • q, q ← p 0 q -p × q) (4.9)
Rotation matrix via rotation vector: Euler's theorem for the finite rotation of rigid body states that there exists a vector θ that remains the same when multiplied by the corresponding orthogonal tensor Λ. Such vector is referred to as rotation vector and can be written as

θ = Λϑ = Iϑ (4.10)
where we took into account that Λ is a two-point tensor. Given that, ϑ is a two point tensor ϑ. Rotation vector can also be used for representation of the orthogonal rotation tensor Λ leading to the Rodriguez formula which can be written as follow

Λ = Λ(θ) = cos θI + sin θ θ Θ + 1 -cos θ θ 2 θ ⊗ θ (4.11)
where θ = θ 2 1 + θ 2 2 + θ 2 3 is the magnitude of the rotation vector θ and Θ is a skew-symmetric tensor for which θ is the axial vector, i.e.

Θb = θ × b∀b ∈ R 3 ; Θ =   0 -θ 3 θ 2 θ 3 0 -θ 1 -θ 2 θ 1 0   , θ =   θ 1 θ 2 θ 3   (4.12)
By using the standard vector identity Θ(Θb) = θ ⊗ θ -θ 2 I we recover from 4.11 an alternative form of the Rodrigues formula, which is proved to be a closed form solution of the exponential mapping

Λ = exp[Θ] = I + sin θ θ Θ + 1 -cos θ θ 2 ΘΘ (4.13)
By Considering that the rotation of the beam cross-section can be very large, or finite, its intrinsic parameterization is given by an orthogonal tensor Λ, which is an element of so-called SO(3) group

SO(3) = Λ : R 3 → R 3 | Λ T Λ = I, det Λ = 1 (4.14)
The principal dificulty introduced by such a parameterization is due to the fact that SO(3) is not a linear space (it is rather a manifold), hence the issues pertinent to the theoretical formulation, consistent linearization and update procedure become more complex, as briefly discussed here.

Angular velocities and accelerations: by exploiting the notion of rotation vector, defined in the previous section we show that it can be used for simplifying the construction of time-stepping schemes for dynamics. A problem complexity is introduced by Λ being a twopoint tensor. Hence in constructing the admissible variations or time derivative of Λ, as discussed next, one should choose between their spatial and material representations [START_REF] Ibrahimbegovic | Finite Rotations in Dynamics of Beams and Implicit Time-Stepping Schemes[END_REF]. For example, the angular velocity field can be computed in a spatial representation as

Ẇ = ΛΛ T (4.15)
or in a material representation as

Ψ = Λ T Λ (4.16)
From 4.15 and 4.16 above, and from Λ being a two-point tensor, one can readily verify that Ẇ is a spatial, whereas Ψ is a material object. The last two expressions can be rewritten as the derivatives of

Λ := d dt t=0 [Λ t ] = d dt t=0 [exp(t Ẇ)]Λ = Λ d dt t=0 [exp(t Ψ)] (4.17)
which brings out more clearly the fact that Λ is constructed by superposing infinitesimal rotations, either Ẇ in spatial or Ψ in material representation, onto the finite rotations represented by Λ. From the last expression and orthogonality of Λ, we can establish a mutual relationship between the material and spatial angular velocities as

Ẇ = Λ ΨΛ T (4.18) Ψ = Λ T Ẇ Ẇ = Λ ΨΛ T (4.19)
which further leads to the corresponding relationship between their axial vectors 

ẇ = Λ ψ (4.20) Ψ = Λ T ẇ (4.

Incremental and iterative updates of finite rotations

The solution procedure is based upon, incremental analysis where the evolution of configuration space variables is obtained by a step-by-step integration scheme. To that end, the time interval of interest [0,1] is partitioned into a number of time steps:

0 < t 1 < t 2 . . . < t n < t n+1 < • • • < T.
At a typical time t n the values of displacement and rotation components are denoted as

d n = ϕ (t n ) ; Λ n = Λ (t n ) (4.24)
As described further, one-step schemes are used to compute the evolution of the state variables, so that their values at time t n+1 are computed solely on the basis of the corresponding values at time t n . For displacement vector we thus have

d n+1 = d n + u n+1 (4.25)
where u n+1 are incremental displacements.

For rotation update we need to take into account that Λ is a twopoint tensor and thus choose between two possibilities corresponding to the spatial and material representations. If we denote the spatial incremental rotation vector θ n+1 and the material incremental rotation vector ϑ n+1 , the rotation update can be carried out as

Λ n+1 = Λ (θ n+1 ) Λ n = Λ n Λ (ϑ n+1 ) (4.26)
where Λ(•) is given by the exponential mapping formula in 4.11. By considering that Λ n is an orthogonal tensor from 4.26 we can obtain that

Λ (θ n+1 ) = Λ n Λ (ϑ n+1 ) Λ T n (4.27) Λ (ϑ n+1 ) = Λ T n Λ (θ n+1 ) Λ n (4.28)
Furthermore, a skew-symmetric tensor and the corresponding orthogonal tensor obtained by its exponentiation, share the same eigenvectors [START_REF] Ibrahimbegovic | Computational Aspects of Vector-like Parameterization of Three-Dimensional Finite Rotations[END_REF]. From 4.27 and 4.28 above, it then follows that

Θ n+1 = Λ n Θ n+1 Λ T n (4.29) Θ n+1 = Λ T n Θ n Λ n (4.30)
where

Θ n+1 b = θ n+1 × b and Θ n+1 b = ϑ n+1 × b, ∀ b ∈ R 3 .
The last result in return leads to the following relation between the spatial and material rotation vectors:

θ n+1 = Λ n ϑ n+1 , ϑ n+1 = Λ T θ n+1 (4.31)
It is important to note that θ n+1 and ϑ n+1 belong to the linear (tangent) spaces T Λ SO(3) and T Λ SO(3), respectively.

Iterative rotation Updates: The final values of the state variables in each increment are established by an iterative procedure which ensures the satisfaction of the weak form of the equilibrium equations. Details of iterative updates of rotations and displacements are discussed further.

The superscript (i) denote a typical value of iteration counter. At each iteration, the incremental displacement update is performed in the standard, additive manner

u (i+1) n+1 = u (i) n+1 + ∆u (i+1) n+1 (4.32)
where ∆u (i) n+1 , is the (i)th iteration contribution to the incremental displacement field.

The iterative update of finite rotations is more involved in that not only we have to choose between spatial and material representations, but also between different iterative rotation parameters. To elaborate further upon the latter choice, we first consider the material form of the iterative rotation parameters and the kind of the rotation update where we make use of the exponential mapping at each iteration, we get

Λ (i+1) n+1 = Λ (i) n+1 Λ ∆Ψ (i) n+1 (4.33)
where ∆Ψ (i) n+1 , is material form of the iterative rotation vector. The same value of the total rotation, Λ (i+1) n+1 , can be obtained by making use of the material form of the incremental rotation vector ϑ (i) n+1 , and its iterative increment ∆ϑ (i) n+1 . Since both are the elements of a linear space, they can directly be superposed to get

Λ (i+1) n+1 = Λ n Λ ϑ (i) n+1 + ∆ϑ (i) n+1 (4.34)
From the last two expressions and the incremental rotation vector definition in 4.11, we can obtain Λ ϑ

(i) n+1 Λ ε∆Ψ (i) n+1 = Λ ϑ (i) n+1 + ε∆ϑ (i) n+1 (4.35)
which, by the analogy with the procedure described in the previous section for angular velocity computation, further leads to

∆Ψ (i) n+1 = T T ϑ (i) n+1 ∆ϑ (i) n+1 (4.36)
By exchanging the order of existing and iterative rotations, the rotation update can be performed with the spatial rotation parameters as

Λ (i+1) n+1 = Λ θ (i) n+1 + ∆θ (i) n+1 Λ n (4.37)
Contrary to the material representations of incremental rotation updates, the mutual relationship between the two spatial representations of iterative rotation parameters is no longer analogous to the angular velocity relation. In order to derive the relationship of this kind we use

w (i) n+1 = Λ (i) n+1 ∆Ψ (i) n+1 ; ∆θ i) n+1 = Λ n ∆ϑ (i) n+1 (4.38)
which, along with the relationships in 4.26 and 4.36 further leads to ∆w

(i) n+1 = Λ (i) n+1 T T ϑ (i) n+1 Λ T n ∆θ (i) n+1 = Λ θ (i) n+1 Λ n T ϑ (i) n+1 Λ T n ∆θ (i) n+1 (4.39)
From the material form in 4.36 we obtain the corresponding spatial form in 4.47, along with the additional result T-1 θ

(i) n+1 = Λ n T -1 ϑ (i) n+1 Λ T n (4.40) T-1 ϑ (i) n+1 = Λ T n T-1 ϑ (i) n+1 Λ n
By taking into account the well-known result [START_REF] Ibrahimbegovic | Computational Aspects of Vector-like Parameterization of Three-Dimensional Finite Rotations[END_REF] that a tensor T and its inverse share the same eigenvectors, we can show that the last result also applies when T -1 (•) is replaced by T(•).

Dynamics and Newmark implicit time integration scheme

The standard implementation of the Newmark algorithm [START_REF] Ibrahimbegovic | On finite element implementation of geometrically nonlinear Reissner's beam theory:three-dimensional curved beam elements[END_REF] can be used to compute the velocities and accelerations at time t n+1 with

v n+1 = γ βh u n+1 + β -γ β v n + (β -0.5γ)h β a n (4.41) a n+1 = 1 βh 2 u n+1 - 1 βh v n - 0.5 -β β a n
where h = t n+1 -t n is a typical time step, and β and γ are free Newmark parameters. Replacing these approximations into the weak form of the balance equations, we obtain a system of non-linear equations in incremental displacements as

r (u n+1 ) = f n+1 (4.42) 
Typical choice for β = 1 4 and γ = 1 2 leads to the scheme of secondorder accuracy. The corresponding algorithm is yet referred to as a trapezoidal rule or average acceleration method, the reasons for which can be made more transparent with an alternative, so-called acceleration form of the Newmark approximations is used, where

u n+1 = hv n + h 2 [(0.5 -β)a n + βa n+1 ] (4.43) 
and

v n+1 = v n + h [(1 -γ)a n + γa n+1 ] (4.44) 4.2 

.4 Follower force finite element for thick beams

In general, the instability of a system has been studied under a pathindependent conservative load, for example the load which remains of constant direction during deformation and motion of the body. A force acting in the direction perpendicular to the cross section or beam axis in general cannot be considered as conservative. In other words, the manner of application of the loading has a decisive influence upon instability of a system. Structures subjected to non-conservative forces can be more sensitive to a loss of stability, which happens in terms of flutter leading to large oscillations with increasing amplitudes even when triggered by a small perturbation force. In this section, we study instability problem for non-conservative loads that cannot be derived from a potential, since they remain path-dependent being, tied to the cross-section. The dynamic framework offers the only appropriate physical model of the system instability evolution under any applied non-conservative loading ( [START_REF] Bolotin | Nonconservative Problems of Theory of Elastic Stability[END_REF], [START_REF] Argyris | Symeonidis Nonlinear finite element analysis of elastic systems under nonconservative loading-Natural formulation. Part I. Quasistatic problems[END_REF], [5]).

Here we present the follower force time evolution starting from initial value as specified with time function g(t). In the dynamics framework, this can be written as

F n+1 = p 0 g (t n+1 ) (4.45)
If we further consider this load as a follower force, it has to be multiplied by the orthogonal matrix Λ, which must be increasing in the same way as the body motion under study. In this way, we can obtain the follower force contribution to the residual at time t n+1

p n+1 = Λ n+1 F n+1 ; p n+1 =   p 1 p 2 p 3   (4.46) 
In this case, Λ n+1 is rotation tensor that can be represented with quaternion algebra (see Section 4.2.1), which allows for truly finite rotations.

The tangent stiffness will be affected by this follower force. To that end, we need to define the skew symmetric tensor P n+1 , which is defined in analogy with the cross product between the residual vector and any vector v

P (t n+1 ) v = p n+1 × v =   p 2 v 3 -p 3 v 2 p 3 v 1 -p 1 v 3 p 1 v 2 -p 2 v 1   =   0 -p 3 p 2 p 3 0 -p 1 -p 2 p 1 0     v 1 v 2 v 3   (4.47) 
The corresponding contribution of this kind of follower force applied at a node to the virtual work principle can then be written as:

G ext (ϕ n+1 , Λ n+1 ; δϕ a ) := δϕ a Λ n+1 p n+1 (4.48)
where δϕ a is virtual displacement, Λ n+1 is rotation matrix, p 0 is the initial value of the follower force that can be increasing in time.

The follower force will contribute to the tangent operator according to

DG(•) (∆ϕ a ) = δϕ a P (t n+1 ) ∆w a (4.49) 
which should be taken into account writing a modified form of the linearized form of the equilibrium equation:

lin G int -G ext = G int -G ext + K n+1 ∆u n+1 + K f f n+1 ∆u n+1 (4.50)
In summary, we can see that the external loading also contributes to the element tangent stiffness matrix K e , for a node where the follower force is applied. The contribution of the follower external force to tangent stiffness is as follows:

K f f n+1 = P t =   0 -p 3 p 2 p 3 0 -p 1 -p 2 p 1 0   (4.51)
4.3 Weak form based solution for thin beam

Variational formulation with Kirchhoff beam model

In this section we specialize the previous developments for the case of so called Kirchhoff beam where no shear deformation is taken into account. For added clarity we further study only 2D case. The rotated strain measure for geometrically exact beam proposed by Reissner [START_REF] Reissner | On finite deformations of space curved beams[END_REF] can then be written explicitly as:

K = dψ dx Σ = 1 + du dx cos ψ + dv dx sin ψ -1 Γ = -1 + du dx sin ψ + dv dx cos ψ (4.52)
where u and v are displacements, while Σ and Γ are, respectively, the axial and shear strain in rotated configuration and K is the curvature or bending strain and ψ is rotation of beam axis.

The equations (4.52) 1 and (4.52) 2 can be rewritten in compact matrix notation as:

Σ = (Σ, Γ) T = Λ T (h(a) -Λ) (4.53) Λ = cos ψ -sin ψ sin ψ cos ψ ; h(a) = 1 + du dx dv dx
where we keep only 2D version of orthogonal variation tensor, which can be parameterized by a single parameter of rotation angle ψ (equal to norm of the rotation vector). By imposing at this stage the Kirchhoff constraint, which implies that not only the beam section remains plane but also perpendicular to the beam axis, results with zero value of the shear strain (Γ = 0) . We thus obtain [START_REF] Imamovic | Geometrically exact initially curved Kirchhoff 's planar elasto-plastic beam[END_REF] tan ψ = By exploiting the results in (4.54) and (4.52) 3 we can obtain the corresponding expression for curvature of the geometrically exact Kirchhoff beam

K = d ψ dx = Λ 0 d ΛT d ψ dh(a) dx 1 ∆l (4.56) 
where

d ΛT d ψ = (-sin ψ cos ψ) T ; dh(a) dx = d 2 u dx 2 d 2 v dx 2 (4.57) ∆l = 1 + du dx 2 + dv dx 2
The virtual strain measure, required for writing the weak form of equilibrium equation, can then be derived by taking the directional derivative of the strain measures in (4.55) and (4.56). This can be written explicitly as [START_REF] Imamovic | Geometrically exact initially curved Kirchhoff 's planar elasto-plastic beam[END_REF]:

Σ = ΛT d(â) (4.58) K = d ΛT d ψ dd(â) dx 1 ∆l -ψ ΛT dh(a) dx 1 ∆l ; dd(â) T dx = d 2 û dx 2 d 2 v dx 2 T (4.59)
The virtual rotation can be expressed in terms of the first derivatives of virtual displacement field:

ψ = d dβ ( ψ(a + βâ)) = - dû dx sin ψ + d V dx cos ψ 1 ∆l = d ΛT d ψ d(â)
1 ∆l (4.60) Finally, with previous results in hand, we can express virtual curvature as:

K = d ΛT d ψ dd(â) dx 1 ∆l - d ΛT d ψ d(â) ΛT dh(a) dx 1 ∆l 2 (4.61)

Constitutive equations

In the elastic regime we choose the simplest set of linear constitutive equations for finite strain beam in terms of Biot's stress resultants and rotated strain measure:

T = C e H; C e = diag(EA, EI) (4.62) 
In the plastic regime, the same constitutive relation can be used by using elasto-plastic modulus C ep instead of elastic modulus C e . In a more general case of elasto-plastic beam, we use the additive decomposition of the displacement and rotation gradients into elastic part (• e ) and plastic part (• p ), which corresponds to the multiplicative decomposition of deformation gradient:

F = I + ∇u e + ∇u p + I + ∇ ψe + ∇ ψp = (4.63) = (∇x + ∇u e ) I + ∇u p ∇x + ∇u e + I + ∇ ψe I + ∇ ψp I + ∇ ψe = F e u,v F p u,v + F e ψ F p ψ
We also note that such multiplicative decomposition of the deformation gradient leads to the additive decomposition of the stretch tensor U [START_REF] Imamovic | Nonlinear kinematics Reissner's beam with combined hardening/softening elastoplasticity[END_REF]:

U = R T (∇x + ∇u e + ∇u p ) + R T I + ∇ ψe + ∇ ψp (4.64) = U e u,v + U p u,v U u,v + U e ψ + U p ψ U ψ
where:

U e u,v =
1 + du e dx cos ψ + dv e dx sin ψ 0 -1 + du e dx sin ψ + dv e dx cos ψ 0

;

U e ψ = -ζ d ψe dx 0 0 1 U p u,v = du p dx cos ψ + dv p dx sin ψ 0 -du p dx sin ψ + dv p dx cos ψ 0 ; U p ψ = -ζ d ψp dx 0 0 0 (4.65)
The Helmholtz free energy can be defined as a quadratic form:

Ψ (U e , ξ p ) = 1 2 U e,T • C e • U e + 1 2 ξ p,T • K h • ξ p (4.66) 
where U e is the elastic part of the stretch tensor, ξ p is the vector of hardening variables and K h are the corresponding hardening moduli.

The yield criterion condition is composed of two uncoupled criteria. The first is related to the axial force and the second to the bending moment. Both criteria are postulated in terms of stress resultants of the Biot stress, imposing that φ(T, q) := T -(T y -q) ≤ 0 (4.67)

where: q = q N , q M is the vector of internal hardening stress like variables related to the axial force and bending moment, respectively; and T y = [N y , M y ] are the yield stress resultants of Biot stress, axial force and bending moment. The second principle of thermodynamics [START_REF] Ibrahimbegovic | Nonlinear Solid Mechanics: theoretical formulations and finite element solution methods[END_REF] can be used to state that the plastic dissipation must remain nonnegative:

0 ≤ D = T - dΨ e dU e D e =0 Ue + T Up - ∂Ξ p ∂ξ p dξ p dt D p (4.68) 
The principle of maximum plastic dissipation [START_REF] Hill | The Mathematical Theory of Plasticity[END_REF] can then be enforced to obtain the corresponding evolution equations of plastic strain and hardening variable. This principle can be formulated as the constrained minimization problem, where the constraint is yield function in 4.67. This can further be recast as corresponding unconstrained minimization by using the Lagrange multiplier method:

min T,q max γ [L p (T, q, γ) = -D p (T, q) + γ • φ(T, q)] (4.69)
where γ is plastic multiplier. The corresponding Kuhn-Tucker optimality conditions result with the evolution equations for internal variables in rate form, along with the loading/unloading conditions:

∂ Lp ∂T = - Up + γ ∂ φ ∂T = 0 ⇒ Up = γ ∂ φ ∂T ∂ Lp ∂q = -∂ ξp ∂t + γ ∂ φ ∂q = 0 = ∂ ξp ∂t = γ ∂ φ ∂q γ ≥ 0, φ ≤ 0, γ φ = 0 (4.70)
The appropriate value of plastic multiplier γ can be determined from the plastic consistency condition for the case of sustained plastic flow:

φ = 0 ⇒ γ = ∂φ ∂T C e U ∂φ ∂T C e ∂φ ∂T + ∂φ ∂q K h ∂φ ∂q ; C e = EA 0 0 EI (4.71)
By replacing the last result into stress rate equation, we can obtain the elasto-plastic modulus C ep that should replace the elastic modulus C e in plastic regime:

C ep = C e - C e ∂φ ∂T ⊗ C e ∂φ ∂T ∂φ ∂T C e ∂φ ∂T + ∂φ ∂q K h ∂φ ∂q (4.72)
We note in passing that the elasto-plastic tangent modulus above remains the same in the time-discretized problem, which is obtained by using the backward Euler time integration scheme applied to 4.71 with result replaced in 4.75.

Weak form of equations of motion

The weak form of the equations of motion is provided by the d' Alembert principle, which postulates that the snap-shot of motion taken at time t can be described formally with the equilibrium equations. Unlike the statics problem, these equilibrium equations should also include an extra external load in terms of inertia forces, which are proportional to mass and directed opposite to acceleration. In this approach, the time is kept fixed at the time t corresponding to particular deformed configuration, hence virtual displacement field is independent of time. Weak form of equilibrium of equation in the material description, see [START_REF] Ibrahimbegovic | Nonlinear Solid Mechanics: theoretical formulations and finite element solution methods[END_REF], can be written as

G(a, â) := L âΛ T M 1 Λä dx + L d(â) T Λ EA ΛT (h(a) -Λ) dx+ L dd(â) T ds d Λ d ψ 1 ∆l -d(â) d Λ d ψ ΛT dh(a) ds 1 ∆l 2 EI d ΛT d ψ dh(a) ds 1 ∆l dx -G ext = 0 (4.73)
where M l is mass matrix defined in deformed configuration and ä = ü v ψ T is an acceleration vector. The mass matrix M l consists of two parts, the first is related to displacement and the second to rotation:

M l = L ρAdX + L ρIdX (4.74)
where ρ is the mass density.

The final step needed for numerical implementation is the linearization of the weak form of equilibrium equations so that an iterative strategy can be employed. It can be obtained by the consistent linearization of the expression 4.73 to get

L(G)| a = G(a, â)| a + d dβ [G(â, a + β∆a)] β = G(a, â) + L d(â), dd(â) ds T D Σ + D K dd(∆a) ds ds (4.75)
where D Σ and D K are tangent stiffness's related to axial and bending response, while the inertia forces are included in G(a, â) The results obtained for both models, Reissner Beam and Kirchhoff beam, are here identical (see Fig. 4.2, 4.3, 4.4 and 4.5) since there is no shear deformation. Moreover, the computed value of rotation is exact for both models, and directly proportional to applied bending moment. 

Static analysis of bending under follower lateral force

We present a cantilever beam under a vertical follower load at the free end. The length of the beam is 100, the chosen value of follower load is 6.28. The finite element mesh is controlled with 10 beam element see In this comparison we can notice that initially the trajectory is rather similar, see displacement-time diagrams in Figure 4.9 and 4.10, but due to ability to account for contribution of shear force it is pos-sible to go until half-circle bending for the Reissner beam, but not for the Kirchhoff beam model. This example, adapted from [START_REF] Ibrahimbegovic | On the role of frameinvariance in structural mechanics models at finite rotations[END_REF] considers bending of an L-shape frame, with length of 10 per each member see Figure 4.11 and 4.12.

The mesh was constructed with four element in each leg. The material and section properties are selected as: EA = GA y = GA z = 10 6 and GJ = EI y = EI z = 10 3 . The frame is initially placed in a horizontal plane, fixed at one end and loaded by a vertical force F = 5 at the other, free-end. This frame is under two load cases. The first one considers only the force which increases to its final value in five equal time steps. The second load case, applied subsequently to the first one, concerns the imposed support rotation around x-axis. This is supposed to illustrate the model performance for a rigid body rotation, which would also affect to the vertical position of the fixed force and turn it into a follower force. Thus, it is wrong to keep the direction of the force fixed. In such a case the results at the end of any full turn are different from those obtained previously, in that there appears a constant shift from one turn to another; see Fig. The main reason for this difference pertains to a nontrivial external work contribution by the fixed force during the support rotation phase. Namely, it is clear that the rigid body motion of the support should not perturb the existing stress state established at the end of the first loading phase. However, this can be achieved only if the force will subsequently follow the support rotation. By taking into account that in the second loading phase the cantilever rotates as the rigid body, which implies that stress state under the rotation remains constant throughout. Thus, the proper interpretation of the force, which preserves the stress state of the deformed configuration corresponds to the follower force, which follows the beam motion rotating with a particular cross-section. Our computations carried out for that kind of follower force confirm that the deformed shapes are indeed identical in each and every turn, as shown in Fig. 4.12. This example provides the numerical solution of the cantilever beam instability under a follower compressive load. Such instability problem has to be placed within dynamics framework where instability is triggered by a small disturbance. For the simplest case of linearized instability we can use the analytical solution proposed by Bolotin, and its generalization to shear deformable beam given in section 3.3. Here, we test this problem with Reissner and Kirchhoff beam. In order to find the critical load for the first model, we try with two different meshes. First mesh is with eight elements and the second is with 100 elements. The chosen values for material and geometric properties are: length 100, axial stiffness EA = 10 6 , bending stiffness EI =1000. For Reissner beam model we also choose shear stiffness GA = 10 6 and St Venant torsion GJ =2000. We explore different values of applied force and small perturbation in order to find the critical load by disproportional vibration response of the cantilever beam, which mimics the Bolotin solution. For Reissner beam model and Kirchhoff with 8 finite elements we can see in Figs. 4.18 and 4.17 that any load value smaller than 2 is not producing large displacement amplitudes in free vibrations triggered by a small perturbation. Hence, the cantilever beam remains stable. The value of the critical load for Kirchhoff beam is equal to 2.1 and for Reissner Beam 2.2, since the vibration amplitude becomes very big (see Figs. 4.17 and 4.18). In the case of refined mesh with 100 elements for Reissner Beam model, we can see in Fig. 4.19 that the critical load value is reduced to 2.1. We consider this result to be logical, since such a value is closer to the analytical solution, because 100 element mesh can better represent true deformed buckled beam shape obtained by analytical solution in terms of sine function. However, the difference between the numerical results obtained by these two meshes is not that big, so we continue the rest of the analysis by using only a coarse mesh. In this example we propose a frame under two compressive loads applied in vertical direction, along with two small disturbances in horizontal direction, as is shown in Fig. 4.21. We are searching for the value of the critical load by following the same procedure as in the previous example. We study three different cases, first for conservative loads and then for non-conservative loads. We vary the values of bending stiffness as follows: i) all elements have the same bending stiffness EI =1000, ii) columns have bending stiffness EI =1000 and the beam has 1% of the bending stiffness of columns, iii) columns have bending stiffness EI =1000 and beam has 100 times bigger bending stiffness than columns. In each case we obtain the value of the critical load. The length of each column is equal to 10, the same as for the beam. The axial stiffness for all the cases remain the same EA = 10 6 We then present table 4.1 with summary of the values of critical load for the frame under conservative force . In the same table we also show the values of semi-analytic solution for each case, which was presented in section 3.4. One can compare the analytic solution versus the corresponding results obtained by numerical solution, (see Figs. 4.22, 4.23 and 4.24 ) all summarized in the same table. In this comparison we can see that values are very near, which confirms the generality of our computational results. We also present table 4.2 with a summary of results obtained for all numerical solution and simulations compared with the semi-analytical solution obtained in section 3.4 In order to illustrate the behavior of Reissner beam in 3D case, we present in this example an out-of-plane instability for a planar frame. The frame is built with two columns and one beam, each with length equal to 10. The columns are fixed at the free end. The chosen material and geometric properties are: length 100, axial stiffness EA = 10 6 , bending stiffness EI =1000. For Reissner model we also choose shear stiffness GA = 10 6 and torsional stiffness GJ =2000. We study two load cases, the first is compressive load at both corners with a follower load in direction 2, plus in direction 3 a small follower disturbance equal to 0.10 of the compressive load (see Fig. 4.28). The second case is the compressive load at both corners with a follower load in direction 2, plus in direction 3 a small follower disturbance equal to 0.10 of the main load, the second corner is load with a follower load in direction 2, plus in direction 3 an small follower disturbance equal to 0.10 of the main load in the opposite direction to that of the first corner Fig. 4.33. Chapter 5

Role of damping in instability phenomena under non-conservative loads

Introduction

The main idea that we explore in this chapter pertains to controling of instability phenomena by adding viscous dampers. This issue has not been studied in depth, perhaps due to lack of more powerful computational tools. Rather, the early works turned to provide a corresponding analytic solution. In particular, Ziegler [START_REF] Ziegler | Die stabilitatskriterien der elastomechanik)[END_REF] reported in 1952 on instability analysis of a double pendulum.The pendulum model was built with linear springs and dampers, subjected to a non-conservative load in terms of a 'follower force' applied at the pendulum free end. Ziegler [START_REF] Ziegler | Die stabilitatskriterien der elastomechanik)[END_REF] provided the value of the critical load, where a dynamic instability or flutter is initiated, with a surprising result that its value is higher for zero damping than for a vanishingly small damping values. Bolotin in [START_REF] Bolotin | Nonconservative Problems of Theory of Elastic Stability[END_REF] 1963 confirmed this result and proposed that the addition of dissipative forces can stabilize the equilibrium only for a system under the action of conservative forces. However, if a non-conservative force is applied,this is not true anymore and, the addition of dissipative forces can have a destabilizing effect in certain cases. The destabilizing effect of non-conservative forces depends on position that places the system in compressive state. Sugiyama and Langthjem [START_REF] Sugiyama | Physical mechanism of the destabilizing effect of damping in continuous non-conservative dissipative systems[END_REF] in 2007 attempted to give a physical explanation of the mechanism behind the such destabilizing effect introduced by a small (internal) damping on the dynamic stability. This was studied in a continuous nonconservative dissipative system of Beck's column, where both internal and external damping are considered. We wrote in passing that such a choice can be made equivalent to Rayleigh damping in FEM-based discrete approximation leading to semi-discrete equation of motion in 5.1. In [START_REF] Sugiyama | Physical mechanism of the destabilizing effect of damping in continuous non-conservative dissipative systems[END_REF], this was shown by an energy equation derived for the balance between the work done by the non-conservative follower force and the energy dissipated by the internal and external damping forces.

In [START_REF] Jeronen | On the stability and trayectories of the double pendulum with linear springs and dampers[END_REF], Jaronen and Kouhia provided technical details for the derivation of a system equivalent to the one presented by Ziegler consisting of a double pendulum with springs, under the action of gravitational load and a follower load at the free end. However, the approach proposed in [START_REF] Jeronen | On the stability and trayectories of the double pendulum with linear springs and dampers[END_REF] was more general. Namely, different models are derived in terms of non-linear dynamics equations starting with virtual work principle in terms of the non-linear dynamical equations using the principle of virtual work. Here, we start for this development, but we further extend to FE structural models including geometrically exact models, presented in previous chapter.More specifically, propose a Reissner cantilever beam under combined action of a compressive non-conservative load and a small transverse disturbance both at the free end of the cantilever.

Equation of motion with viscous Rayleigh damping

When damping is included in a system of a single degree of freedom, the system response in free vibration is governed by the following equation of motion:

M ü(t) + C ü(t) + Ku(t) = 0 (5.1)
in which u(t) represents the dynamic response.

In order to solve the homogeneous equation of motion 5.1 in free vibration we can express displacement, velocity and acceleration in terms of the time t, parameters s and a constant A (amplitude)

u(t) = A exp(st) u(t) = A sexp(st) ü(t) = As 2 exp(st) (5.2) ms 2 + cs + k =0 A exp(st) =0 = 0 (5.3)
The two values of s that satisfy this quadratic expression depend on the value of c relative to the values of k and m; the type of motion given depends on the amount of damping in the system.

s 1,2 = -c ± √ c 2 -4mk 2m (5.4)
If damping is present in the system, the solution of Eq. 5.3 can be two different extremes as follow Overdamping (no vibration but only exp. decay)

c 2 -4mk > 0(c > 2 √ mk C cr ) (5.5)
Critical damping (yes vibration)

c 2 -4mk < 0(c < 2 √ mk C cr ) (5.6) c cr = 2mω ; ω = k m (5.7) 
To evaluate the free-vibration response in this case, it is convenient to express damping in terms of a damping ratio

ζ = c c cr (5.8)
When the displacements have n degrees of freedom, such as

u(t) =      u 1 (t) u 2 (t) . . . u n (t)      (5.9)
The equation of motion in (5.1) is replaced by a set of n equations M ü(t) + C u(t) + Ku(t) = 0 (5.10)

One way to obtain the damping matrix in this set of equations of motion (5.10) is by using the Rayleigh damping in which damping matrix is proportional to mass and stiffness matrix.The Rayleigh damping can be written as follows In order to implement Rayleigh damping for a geometrically exact beam, we follow the following procedure to obtain the damping ratio corresponding only to mass matrix. In this case, we remove the value dependent on the stiffness matrix, which is changing at each iteration C = M a 0 (5.15)

5.1.2 Analytic and semi-analytic solution to linearised dynamic instability under non-conservative follower load in presence of damping

In this section we a cantilever beam with length L under a compressive non-conservative load, combined with a small disturbance, both applied at the free end ( see Fig. 5.1).

Here we first develop the governing equation of semi-discrete approximation obtained by using the finite element method. This development is illustrated for the simplest case of a single Euler.Bernoulli beam finite element, which leaves 3 dofs. We note in passing that the real computations are performed by a larger number of elements, so that we can compare our semi-analytic approach against, analytic solution obtained earlier by Bolotin [START_REF] Bolotin | Nonconservative Problems of Theory of Elastic Stability[END_REF] Figure 5.1: Cantiliver beam under follower load For such system with 3 dofs the corresponding mass matrix is constructed with lumped mass approximation leading to a diagonal mass matrix, which can be written as follows:

The corresponding set of dynamic equations of motion under small perturbation load is coupled and can be written as

M ü(t) + C u(t) + (k m + k g + k f f ) u(t) = 0 (5.23)
We transform this system into a set of uncoupled equations by using the modal transformation ( [START_REF] Clough | Dynamics of structures[END_REF]), in this particular case, it is possible solve the eigenvalue problem by using the fixed part of the stiffness matrix. Hence, the characteristic equation of the system is expressed in Ec. (5.24). with ω 2 i as the eigenvalues or characteristic values, indicating the square of the free-vibration frequencies, and φ i as the corresponding eigenvectors which express the corresponding shapes of the vibrating system yet known as the mode shapes.

k m -ω 2 i M det(•)=0 φ i = 0 ⇒ ω 2 1 ≤ ω 2 2 ≤ ω 2 3 (5.24) i = 1, 2, 3
Through the model orthogonality relationships relative to the mass matrix, material part of the stiffness matrix and the damping matrix of Raylegh, we can obtain the following expressions

u(t) = n i=1 Φ i y i (t) ⇒ u(t) = n i=1 Φ i ẏi (t) ⇒ ü(t) = n i=1 Φ i ÿi (t) (5.25) m = 1 = Φ T i M Φ i k = ω 2 i = Φ T i K m Φ i c = 2ζω i = Φ T i CΦ i (5.26) 
Hence, we can now write the equation of motion in modal coordinates y

i (t) ÿi (t) + 2ζω i ẏi (t) + ω 2 i y i (t) + n j=1 Φ T i K g Φ j + Φ T i K f f Φ j y j (t) = Φ T i p(t)
(5.27) This kind of equation 5.27 was also proposed by Bolotin as the basis for computing the analytic solution for linearized instability problem; the main difference is choosing continuous system and different notation (ÿ i (t) = d 2 f j dt 2 , ε j = 2ζω i , df j dt = ẏi (t), Ω 2 j = ω 2 i , f j = y i (t), αa jk = Φ T i K f f Φ j , βb jk = Φ T i K g Φ j , f k = y j (t) ), which allows to write: where f j (t) are modal coordinates in the series expansion of the deflection v(z, t), n is the number of modes of oscillation, df j /dt are generalized velocities, ε j (2ζω i ) are elements of the diagonal matrix of the dissipative forces, Ω j are frequencies of oscillation, β and α are Parameters (see section 3.48) and b jk is the matrix of coefficients that we can obtain for system with two degrees of freedom as follow where Ω 0 is the natural frecuency If we consider η as a function of β * as a conclusion Bolotin [START_REF] Bolotin | Nonconservative Problems of Theory of Elastic Stability[END_REF] said that it reach the maximum value of β * when η = 1 like in the following figure In the case of non-linear analysis of stability of dynamics equilibrium under the action of non-conservative loads, the addition of dissipative forces can also be helpful. In this section we present the results of several numerical simulations in other to illustrate the behaviour of a geometrically exact beam structure under a non-conservative follower load with addition of damping. We will return to the problem studied in the Section 4.4.1 considering a cantilever beam under non-conservative compressive load within dynamics framework where instability is triggered by a small disturbance. The only difference for this time is in addition of damping introduced by concentrate dampers (see Fig. 5.5). The chosen Reissner beam characteristics are: length of l = 100, axial stiffness EA = 10 6 , bending stiffness EI =1000, shear stiffness GA = 10 6 and torsional stiffness GJ =2000. We use a finite element mesh with 8 beam elements, (see Fig. 5.3). we have already proved that such a beam model can successfully deal with fully 3D problems.However we here chose to simplify the analysis for 2D case by blocking all out-of-plane displacements and in plane rotations.

d 2 f j dt 2 + ε j df j dt + Ω 2 j f j + α
β * * = β * 2 √ η 1 + η 1 + O g 2 (ω 2 2 -ω 2 
Thus, we only need to add dampers in vertical and horizontal directions, and in rotational dof around axis perpendicular to the planar beam, see figure 5.5 Comparing the results presented in fig. 5.6(a) obtained with damping ratio ζ=0.05 and those in Fig. 4.18 without using any damping, we can observe that vibrations are significantly reduced. This means that the value of critical load has also changed. In Figures 5.7, 5.8 and 5.9 showing the results for damping ratio values ζ=0.25, ζ=0.5, ζ=1 we can further observe that the vibrations continue to decrease both in direction 1 (horizontal) and in direction 2 (vertical), until they are almost not visible for highest chosen value of damping ratio. This implies that we can control instability with such a value, eventhough only model 1 control is used here with a mass proportional damping. Next we repeat the analysis with same values of damping ratios equal to 0.05, 0.25, 0. For further increase of damping ratio above 1 the mode-one vibration can be stopped unless one increases the critical load even further. We note in Figures 5.13 and 5.14 that if we decrease the damping ratio values the vibrations almost disappear. For this reason, it is more difficult to find the value of the critical load. It happens because of the damping radius values are very high, we can expect that the behaviour will continue like this until reaching the value of overdamping and will not exist more vibration.

In the following graph we summarize the values of the corresponding critical loads for each value of damping ratio obtained from the previous analysis. In graph show in Fig. 5.15, we can see that, the difference in the value of critical load between damped and no damped case is not so big initially. However as we further increase the damping ratio value, the critical load get significantly bigger.

Conclusions

In this work we developed novel numerical models capable of solving instability problems of frame structures under non-conservative forces, which are representative of many applications (e.g. fluid flow or wind, friction force apply to structures). The proposed models can handle not only small pre-buckling displacement typical of Euler buckling, but also arbitrary large displacements and rotations. In other words the proposed approach is not limited to linear instability problems but can also handle nonlinear instability.

We have discussed several different criteria for detecting nonlinear instability problem, and provided corresponding illustrative examples how they can be used in practice. In particular shallow truss under a static load in the apex is used to clearly define how each detection criterion can be used to compute the critical load. A special attention is given to instability under non-conservative loads, so called flutter instability, where the critical load has to be computed by the dynamic analysis, dealing with the structure that will start to oscillate. We thus have to be able to control these vibrations. For studies of instability under dynamic loads, we have here implemented two different kinds of damping mechanism viscous damping and friction damping and have verified the corresponding dissipative behavior.

We have found out that when we add viscous damping to the truss structure or frame the reduction on oscillations depends of the viscous damping coefficient. If we increase this value, we will obtain a reduction of the oscillations. Equivalent friction damping with perfect plasticity behavior is also reducing these oscillations, but in a particular manner for each case. For example, in the case of simple truss, the frictional dissipation produced by device aligned with the structure depends on the yield stress. However, for the William toggle frame, with truss elements used for friction device, the dissipation depends on the area of such device greater the area, greater dissipation. For solving instability phenomenon for complex structures, two beam finite element models are developed herein, Kirchhoff beam and Reissner beam. The main difference of these two is in inability for the Kirchhoff or in ability for the Reissner to represent shear deformation. For that reason, in the case of a beam bending under concentrated moment with zero shear applied at the free end of the beam, the Reissner beam model has the same behavior as the Kirchhoff beam. However, in the case of a cantilever beam bending under vertical follower load applied at the free end, the behavior is the same only if the beam cross section properties are chosen so that the shear is not dominant. In general it is no longer possible to obtain exactly the same results with the Reissner beam including the shear deformation as those with excluding it from the Kirchhoff beam model.

We have validated both beam models against the instability problem of cantilever beam under follower force, where we found that the numerical solution for critical load value was very close to the analytical result by Bolotin, for the case of using the Kirchhoff beam, and also was very close to the generalization of Bolotin's solution presented in our work for the case of shear deformable beam. The effect of using a more refined mesh was not very big in the case of the Reissner beam and neither is for the Kirchhoff beam; i.e. fairly coarse mesh can already get very close to analytic solution. As for the influence of shear force effects present only for the Reissner beam, we here noticed that the value of critical load is changing only when we use a very small value of shear area, which results in a relatively more important contribution of shear deformation to the critical equilibrium state .

Finally we have tested the influence of damping upon the corresponding value of the critical follower force. Here, we were not able to confirm the findings of Bolotin on influence of damping to reduce the critical load. The main reason for that is the use of geometrically exact model as improved manner of formulating instability problem. The main goal of this thesis to confirm the general tendencies in instability problems under non-conservative loads was achieved by working with truss and frame structures. The numerical models of real structures can often require other structural elements. The methods presented in this thesis would equally apply to these more general structural models. In fact, the models of this kind would also allow a more refined representation of the follower force in terms of fluid pressure loading by fluid structure interaction. These and other ideas are left for the perspective of this work.
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  2.8 and 2.9). The chosen material and geometric characteristics are EI = 2.66 × 10 5 Ncm 2 , EA = 8.251 × 10 6 N, ρ = 7.79 × 10 -3 kg/cm 3 .
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 214216 Figure 2.14: Cantilever truss, oscillations displacement-time of free vibration, friction damping and kinematic hardening
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 218 Figure 2.18: Diagram force displacement truss element
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 219 Figure 2.19: Diagram force displacement beam element
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 220 Figure 2.20: Williams toggle frame modelled with truss elements with viscous damping
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 221 Figure 2.21: Williams toggle frame modelled with truss elements with perfect plasticity damping
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 222223 Figure 2.22: Williams toggle frame modelled with beam elements with viscous damping

Figure 3 . 1 :

 31 Figure 3.1: Euler-Bernoulli cantilever beam under follower load
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 3613723 Figure 3.6: case 1

  21) where Ẇb = ẇ × b and Ψb = ψ × b, ∀ b ∈ R 3 . By taking the time derivatives of the expressions in 4.18 and 4.19 we get, respectively, spatial and material form of the angular acceleration field Ẅ = ΛΛ T + Λ ΛT (4.22) Ψ = Λ T Λ + ΛT Λ (4.23)

  deformation, the axial deformation and the orthogonal rotation tensor in equation 4.53 can be rewritten as a function of the beam axes displacements Σ = (Σ, Γ = 0) T = ΛT (h(a) -Λ); Λ = cos ψ -sin ψ sin ψ cos ψ (4.55)
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 44145 Figure 4.4: Displacements of Reissner and Kirchhoff models under conservative load direction 1

  Fig 4.6. These beam elements are used with two different models; Reissner beam and Kirchhoff beam.
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 491410 Figure 4.9: Displacements of Reissner and Kirchhoff models under non-conservative load direction 1
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 411 Figure 4.11: Deformed shapes for follower-force and subsequent rotation around x-axis (a)first sequence of deformed shapes under fixed load, (b)second sequence of shapes under follower loads that correctly represent the superposed rigid body rotation introduced by rotating at the support.
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 412 Figure 4.12: Deformed shapes for follower-force and subsequent rotation around x-axis

Figure 4 . 13 :
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 423 Figure 4.23: Critical load of frame under vertical conservative load Case 2 EI b = 0.01 * EI c
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 424 Figure 4.24: Critical load of frame under vertical conservative load Reissner beam Case 3 EI b = 100 * EI c
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 436 Figure 4.36: Diagram time versus displacement direction 1, in node 11 and 21
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 438 Figure 4.38: Diagram time versus displacement direction 3, in node 11 and 21
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The Euler critical value of the parameter β is β * = ± 1 (b 12 b 21
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1 ) 2 ( 5 . 32 )

 12532 If slight damping takes place and if the partial frequencies are not too close together, we can setβ * * ≈ β * 2 √ η 1 + η (5.33)
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 575859 Figure 5.7: Diagram diplacement-time with ζ=0.25

  5 and 1, trying to detect the true critical load for each value. The results are displayed in Figures 5.10
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 514 Figure 5.14: Diagram diplacement-time with ζ=1.5,P cr =3.5
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 515 Figure 5.15: Sketch of dampers and their corresponding position in each degree of freedom
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 4 1: Values of conservative Load Semi-Analytic Solution and Numerical Solution

	Case Semi-Analytic Solution Numerical Solution Numerical Solution
			Reissner Beam	Kirchhoff Beam
	1	P cr = 2.71 2 l 2 * EI = 0.73	0.75	0.74
	2	P cr = 1.57 2 l 2 * EI = 0.25	0.3	0.26
	3	P cr = 3.14 2 l 2 * EI = 0.99	1.0	1.0

(a) Reissner beam (b) Kirchhoff beam

(a) diplacement-time direction1 (b) diplacement-time direction2
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Numerical Examples

In this section we present several numerical examples in order to illustrate the performance of two of the proposed models of Reissner beam and of Kirchhoff beam. The examples consider the instability problems under the follower load and several comparison under fixed load, in both static and dynamic case.

Static analysis of pure bending under fixed moment

The first one is a simple validation example which examines the test problem of the pure bending of a cantilever beam under concentrated moment applied at its free end. Both proposed Reissner beam and Kirchhoff beam can deliver the exact solution due to their ability to properly handle finite rotation (this is not the case of many other beam models). The selected mechanical and geometric properties chosen in both models are: length 100, axial stiffness EA = 10 6 , bending stiffness EI =1000. For Reissner beam we also choose the model shear stiffness GA = 10 6 and the stiffness for St Venant torsion GJ=2000. Below we present a comparison of deformed shapes and displacements at the free end obtained by using these two models (see Figs. The deformed configuration that is obtained for both models is exactly the same like we can see in Figures 4.4 Where the coefficient a 0 and a 1 can be computed from (see [START_REF] Clough | Dynamics of structures[END_REF] and [START_REF] Ibrahimbegovic | Nonlinear Dynamics of Structures Under Extreme Transient Loads[END_REF])

In the inelastic time history analyses of structures in seismic motion [START_REF] Jehel | Initial versus tangent stiffness-based Rayleigh damping in inelastic time history seismic analyses[END_REF], part of the seismic energy that is imparted to the structure is absorbed by the inelastic structural model. The Rayleigh damping is commonly used in practice as an additional energy dissipation source.Typical values for ξ are ξ = .05 for concrete and ξ = .02 for steel. It has been acknowledged that Rayleigh damping models lack physical basis. Namely, the mass proportional term of Rayleigh damping we would have a physical justification of the vibration resistance as viscous only if the structure is vibrating inside a viscous fluid, This would results with an extra term ρa 0 ∂u ∂t next to inertial term ρ ∂ 2 u ∂t 2 ; see eq.( 5.13).

More over, the stiffness proportional part of Raleigh damping requires the constitutive behaviour described by linear viscoelasticity ( see [START_REF] Ibrahimbegovic | Nonlinear Solid Mechanics: theoretical formulations and finite element solution methods[END_REF]) σ = Eε(x, t)

Which is not typical of solid materials. Also, if f int (u) = Ku(t) as for the case of, geometrically non-linear(or geometrically exac,t with finite rotation)structural model, there is a problem to define the correct stiffness matrix, wich will change at each iteration K; we can follow [START_REF] Jehel | Initial versus tangent stiffness-based Rayleigh damping in inelastic time history seismic analyses[END_REF], or we can only take a Mass-matrix proportional damping.

Here,the first criticism is the use of linear viscoelasticity, which is not very physically justified model for behaviour of solid materials, (although, it is the simplest inelastic constitutive model with internal with internal variables (see [START_REF] Ibrahimbegovic | Nonlinear Solid Mechanics: theoretical formulations and finite element solution methods[END_REF] Pp 152-154).

where m is the linear mass in each displacement degree of freedom and I is the rotational inertia, each computed as a function of the mass density ρ according to:

(5.17)

In linearised instability approach, we can divide the stiffness matrix into three parts. The first one is so-called material stiffness contribution that follows from elastic behaviour of the material. The second one is so-called geometric stiffness that corresponds to change of prestressed beam structure geometry. The last one is the stiffness which is produced by a contribution of the non-conservative load in terms of follower force

we note that both K m ,K g are symmetric, where as K f f → is non symmetric. For the chosen illustrative example of a single beam element structure, we can obtain the corresponding material, geometric and follower force contributions to the stiffness matrix as follows: