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Titre : Principes d’auto-assemblage pour des particules avec des géométries simples et des inter-
actions complexes
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Résumé : Dans les cellules vivantes, les pro-
téines s’auto-assemblent en agrégats de formes
diverses pour réaliser des fonctions biologiques.
Les interactions locales entre les protéines con-
trôlent la forme des agrégats, notamment les
interactions attractives entre les résidus à la
surface des protéines. Malgré la diversité
de ces interactions, seules quelques catégories
d’agrégats de protéines sont observées, tels que
des oligomères, des fibres, des capsides virales et
des micelles. Les protéines similaires provenant
d’organismes différents peuvent former des agré-
gats différents. Les modèles de particules à
patchs collants sont utilisés pour simuler l’auto-
assemblage. Pourtant, ils ne tiennent pas
compte des variations subtiles de l’attraction
des patchs ni de la relation entre les propriétés
des interactions et la forme de l’agrégat. Dans
cette thèse, nous proposons l’hypothèse que les
particules avec des interactions complexes peu-
vent présenter de la frustration géométrique,
c’est-à-dire des interactions attractives incom-
patibles en raison de contraintes géométriques.
Nous développons un modèle de particules sur
un réseau à deux dimensions et étudions l’auto-
assemblage en fonction des interactions locales.
En pratique, nous considérons des particules
hexagonales qui sont en contact par leurs faces
et définissons une carte d’interaction. Nous
étudions l’auto-assemblage de particules avec
une carte d’interaction choisie avec un recuit
simulé de type Monte-Carlo vers une tempéra-
ture finie. Pour une particule avec un ensem-
ble donné d’interactions locales, on peut alors
déterminer la forme de l’agrégat résultant de
l’auto-assemblage à l’équilibre des particules.
Nous explorons également un grand nombre de
cartes d’interactions aléatoires pour compren-
dre la relation entre les interactions locales et la
forme de l’agrégat. Nous identifions huit caté-
gories d’agrégats et utilisons l’apprentissage au-
tomatique pour classifier les résultats de l’auto-
assemblage. Nous constatons que l’énergie de

l’organisation périodique la plus stable des par-
ticules est un bon prédicteur de la forme de
l’agrégat. Nous introduisons également une
transformation numérique de renormalisation
pour explorer les paramètres d’interactions et
identifier les points fixes stables, qui garantit
que le nombre d’occurrences de chaque paire
de particules est conservé dans un réseau de
maille plus grande. Nous n’utilisons pas la
renormalisation comme outil pour mesurer les
exposants critiques au voisinage d’une transi-
tion de phase. Nous constatons que la renor-
malisation permet de rationaliser l’existence de
quelques catégories d’agrégats malgré la com-
plexité des interactions. Ensuite, nous étudions
un type spécifique d’interaction conduisant à un
agrégat cristallin avec des lignes de défaut fa-
vorables, appelé agrégat camembert. Cet agré-
gat est frustré et peut avoir une taille finie con-
trôlée par la force des interactions. Nous étab-
lissons le diagramme de phases à température
nulle et confirmons nos résultats par des simu-
lations numériques à température finie. Ce mé-
canisme est complémentaire des mécanismes ex-
istants qui reposent sur le design individuel de
chaque particule, sur son auto-fermeture, ou sur
la déformabilité des particules. Nous expliquons
des idées préliminaires pour tester ce design
dans une réalisation expérimentale hors réseau à
partir d’origami d’ADN. Enfin, nous proposons
une méthode pour détecter l’auto-assemblage
en fibres de protéines avec des interactions ar-
bitraires en analysant les signaux de diffusion
dans des expériences cristallographiques. Nous
suggérons d’utiliser l’apprentissage automatique
supervisé pour reconnaître les agrégats fibril-
laires à partir des données expérimentales, et
montrons qu’il est possible de tirer parti de la
grande quantité de données disponibles, à con-
dition que le réseau de neurones soit entraîné
sur une grande variété d’agrégats protéiques de
dimensionnalité connue, et dans différentes con-
figurations expérimentales.
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Abstract: In living cells, proteins self-assemble
into aggregates of various shapes to perform bi-
ological functions. Local interactions between
proteins control the shape of aggregates, includ-
ing attractive interactions between residues on
the surface of proteins. Despite the diversity of
these interactions, only a few categories of pro-
tein aggregates are observed, such as oligomers,
fibers, viral capsids and micelles. Similar pro-
teins from different organisms may form differ-
ent aggregates. Patchy particle models are used
to simulate self-assembly, but they do not ac-
count for subtle variations in patch attraction or
the relationship between the properties of inter-
actions and the shape of the aggregate. In this
thesis, we propose the hypothesis that particles
with complex interactions can exhibit geometric
frustration, that is, incompatible attractive in-
teractions due to geometric constraints. We de-
velop a model of particles on a two-dimensional
lattice and study self-assembly as a function
of local interactions. In practice, we consider
hexagonal particles which are in contact by their
faces and define an interaction map. We study
the self-assembly of particles with a chosen in-
teraction map with a simulated Monte-Carlo an-
nealing towards a finite temperature. For a par-
ticle with a given set of local interactions, one
can then determine the shape of the aggregate
resulting from the equilibrium self-assembly of
the particles.

We explore a large number of random in-
teraction maps to understand the relationship
between local interactions and the shape of the
aggregate. We identify eight categories of ag-
gregates and use machine learning to classify
the results of self-assembly. We find that the
energy of the most stable periodic organization

of the particles is a good predictor of the shape
of the aggregate. We also introduce a numer-
ical renormalization transformation to explore
the parameters of interactions and identify sta-
ble fixed points, which ensures that the number
of occurrences of each pair of particles is con-
served in a coarse-grained lattice. We do not
use renormalization as a tool to measure critical
exponents near a phase transition. We note that
the renormalization allows to rationalize the ex-
istence of some categories of aggregates despite
the complexity of the interactions. Next, we
study a specific type of interaction leading to a
crystalline aggregate with favorable disclination
lines, called a camembert aggregate. This ag-
gregate is frustrated and can have a finite size,
controlled by the strength of the interactions.
We establish the phase diagram at zero tem-
perature and confirm our results by numerical
simulations at finite temperature. This mecha-
nism is complementary to existing mechanisms
which rely on the individual design of each parti-
cle, on its self-closing, or on the deformability of
the particles. We explain preliminary ideas for
testing this design in an off-grid experimental
realization from DNA origami. Finally, we pro-
pose a method to detect self-assembly into pro-
tein fibers with arbitrary interactions by analyz-
ing scattering signals in crystallographic exper-
iments. We suggest using supervised machine
learning to recognize fibrillar aggregates from
experimental data, and show that it is possible
to take advantage of the large amount of data
available, provided the neural network is trained
on a wide variety of protein aggregates of known
dimensionality, and in different experimental se-
tups.
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1 - Introduction: frustrated self-assembly of protein-
like particles

Self-assembly is a process in which individual constituents come together in an ag-
gregate with a specific geometry. The relationship between the shape of the individual
constituents and the geometry of the aggregates they form is not well understood. For
instance, proteins assemble into a large variety of functional biological aggregates, and
there seem to be generic principles that dictate which shape they will form, beyond evolu-
tionary pressure. We further detail this phenomenon in Sec. 1.1. The intrinsic dependency
of the assembly shape on the interactions between its individual constituents can also be
exploited beyond biological questions. Self-assembly is indeed a preferential building tool
for small scale objects: the individual particles are engineered in such a way that they will
assemble into the desired geometry. In Sec. 1.2, we show that individual particles are built
following a few well-studied design principles. However, self-assembling constituents can
have incompatible interactions due to geometric constraints. In that case, their interactions
are defined as frustrated. The concept of frustration has only been partially studied in the
context of self-assembly in dilute environments. In Sec. 1.3, we explain the implications of
frustration for self-assembly. Frustration in the interactions could provide both new design
principles for nano-materials, and a better understanding of the self-assembly of complex
constituents such as proteins.

1.1 Self-assembly rules of proteins are not fully understood

To achieve various biological functions, cells rely on proteins that form large symmetric
assemblies [1] of diverse shapes, sizes, and constituent organizations. In Sec. 1.1.1, we
show how the functionality of a protein complex is dictated by its shape. There are also
indications that the result of protein assembly is not just fine-tuned by evolution. Indeed,
there is no unique outcome for the assembly of a protein (Sec. 1.1.2), and proteins can also
assemble into pathological aggregates (Sec. 1.1.3).

1.1.1 Protein assemblies have biological functions
Here, we explain what a protein is and show that the functionality of a protein aggregate

is often related to its geometry, suggesting that protein aggregates geometries are optimized
by evolutionary processes.

A protein is a long polymer of amino-acids. Most of the time, the amino-acid chain
folds and organizes in a three-dimensional well defined structure of a few nanometers, with
some amino-acids at the surface of the protein, and some others buried inside the structure.
The amino-acids on the surface of the protein can be seen as sticky spots, that will enable
the protein to bind to its neighbors. An individual protein is a building subunit for the
cell, that can assemble with others to perform specific functions.

Proteins often form complexes of a few subunits. We show with some examples the
cooperative nature of those complexes. For instance, Piezo1 is a protein in the membrane
of the cells composed of three subunits (Figure 1.1a, each subunits have a different color).
Each subunit has a blade, that is thought to sense the mechanical distortion of the mem-
brane. Upon mechanical change in the environment, the blades are deformed, and an ion
channel will open in the middle of the three subunits to initiate the cell reaction to the
changes [2]. Lactate dehydrogenase is composed of four subunits (Figure 1.1b), and it
will eliminate lactic acid accumulated in the muscles after anaerobic exercise [3]. Cellu-
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Figure 1.1: Biological assemblies have diverse shapes. a) Piezo1 is composed of three
subunits. It is an ion channel that responds to pressure [2]. b) Lactate dehydrogenase is
composed of four subunits. It is involved in the elimination of lactic acid after anaerobic
exercise. [3]. c) Sickle cell hemoglobins form fibers [7] and are responsible for sickle-cell
anemia. d) Beta-amyloid peptides form fibrils [8] and are responsible for Alzheimer’s
disease. e) Small pieces of DNA are engineered to form a lattice [9]. f) Simian virus
capsids are composed of pentameric units [10]. g) Cellulose synthase is composed of six
trimers of enzyme. Each enzyme synthesizes a cellulose fibril [4] h) Casein proteins form
micelles in milk [11, 12].

lose synthase forms groups of six trimers (Figure 1.1h), and each of these 18 subunits will
synthesize a cellulose filament. Those 18 filaments will then form a stiff fibril that gives
structure to the cells of green plants [4].

Protein assemblies can also be larger than a few subunits, and have different shapes,
such as capsids or fibers. The capsids of viruses result from the symmetric organization of a
precise number of subunits [5], and enclose the genetic material of the virus. An example of
viral capsids is shown in (Figure 1.1f). The mechanical resistance of the cells is controlled
by the cytoskeleton filaments, which are linear assemblies of actin or microtubule subunits.
These fibers form intertwined networks that control the rigidity of the cell.

Finally, protein assemblies are not necessarily organized. For instance, casein proteins,
present in high concentration in milk, assemble into micelles of nanometric sizes, and are
responsible for some of the milk properties [6]. Idealized image of such a casein micelle is
shown in Figure 1.1h.

These examples show that proteins assemble into very diverse shapes. Because the as-
sembly shape is related to the function, proteins have probably been optimized by evolution
to form such assemblies.

10



1.1.2 Protein assemblies are modular
A protein can form different assemblies, such that there is no single functional complex

or assembly for a given protein. We give some examples of proteins that form different
complexes in the same organism, or in different species. It means that there is no clear
rule to rationalize which parts of the protein surface are in contact with the neighboring
protein in the complex. As a consequence, it is hard to predict what complex a protein
will give.

In some cases, the same protein can alternatively assemble into one complex or another,
within the same organism. Smad protein, involved in cell growth, usually forms a trimer,
unless a phosphate group is attached to one of its surface residues, in which case it does
not form a trimer, and does not perform its function [13]. Bacterial CTPS enzyme forms
a tetramer, and it is inactivated through its polymerization into a filament of tetramer,
providing a fast switching mechanism for the cell [14]. The activity of an HIV protein
is inhibited when the tetrameric complex is made more stable than the dimeric one, a
mechanism that has been explored as a drug design methodology [15].

Similar proteins also assemble into different complexes from one organism to the other.
This has been observed for a specific enzyme that forms dimers: the orientations of the
protein in the dimer are different between a virus and other species, and gave the virus
an evolutionary advantage [16]. Similarly, plant lectins in different species have similar
individual structures, but assemble into completely different oligomers from one species
to the other [17]. Cytoplasmic enzymes CTPS also form different types of filaments in
prokaryotes and eukaryotes [18].

As a consequence of this modularity, it is difficult to predict which amino-acids of a
protein are involved in the contact with its neighbor in the complex. Then, it is difficult
to predict the organization of a protein assembly from the 3D structure of the individual
proteins it is made of. Comparing amino-acid compositions of many protein surfaces is not
sufficient to discriminate between the parts of the protein surface involved in contacts, and
the others [19]. For example, γD-crystallin protein crystallizes in two different polymorphs,
and it was possible to identify which parts of the protein surface were involved in each of
them only through detailed crystallographic analysis and modeling [20]. A whole field of
research is dedicated to the determination of the residues of the protein surfaces that are
in contact in a given complex (the protein interfaces) [21–23]. Computational tools have
enabled some progress in this task [24], but correctly predicting the interface for protein
complexes that are very dissimilar to previously identified complexes remains a challenge.
In 2019, a panel of around 30 research group were not able to correctly predict complicated
protein complexes [25].

The fact that there are several possibilities for the assembly of a protein suggests that
a protein is not only fine-tuned by evolution to result in one specific assembly. In most
cases, this modularity is beneficial for the cell because it provides switching mechanisms.

1.1.3 Unwanted protein aggregation is the cause of several diseases
Proteins sometimes form aggregates instead of remaining separated, and those ag-

gregates are pathological. This can be illustrated by both specific examples of protein
aggregation diseases, and systematic studies of protein mutations.

Pathological protein aggregates often have fibrillar shapes. This is the case with sickle
cell hemoglobin, which aggregates into a stiff fiber after a mutation of an amino-acid on its
surface. This fiber then deforms the red blood cell and causes sickle cell anemia [26]. The
organization of such a fiber is shown in Figure 1.1c. Through a different mechanism, the
amyloid beta precursor protein, when partially unfolded, aggregates in a fiber through the
stacking of some of the amino-acids that are exposed to the solvent because of the unfold-
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ing. An example of the organization of such a fiber obtained in vitro is shown in Figure1.1d.
Those types of fibers are observed in patients suffering from Alzheimer’s disease. Patho-
logical amyloid fibrils are common in other diseases such as Parkinson’s disease, related
to α-synuclein aggregation, some cases of spongiform encephalopathies, related to prion
aggregation, or type II diabetes [27, 28]. Pathological fiber aggregation in neurodegener-
ative diseases can also be caused by external factors, such as exposure to pesticides, that
induce a change in the structure of the individual proteins [29, 30]. Modification of the
structure of the protein can also lead to their aggregation in the eye crystallin, causing
congenital cataracts: the protein aggregates scatter the light, and the crystallin loses its
transparency [31]. Through very different mechanisms (misfolding, denaturation, muta-
tion, and interactions with chemical substances), pathological protein aggregation results
most of the time in the formation of fiber.

In most of the examples above, mutation or misfolding of the protein enables the emer-
gence of new sticky spots at the surface of the protein, i.e. the amino-acids at the surface
will interact with the surface of another protein. A systematic in vivo study of the emer-
gence of new supramolecular assemblies upon mutation revealed that out of 73 mutated
proteins, 30 aggregated into fibers or small size aggregates, even at low protein concentra-
tions [32], while the mutations were not specifically meant to lead to this aggregation. The
study suggests that proteins are in general likely to aggregate, and that evolution rather
prevents those unwanted aggregations by adding on their surface some amino-acids that
will not interact with others.

Examples of pathological protein aggregation confirm that protein assembly is not
necessarily the result of evolutionary optimization to build functional objects. Moreover,
it appears that fibrilar aggregates are often the result of those unwanted aggregations. This
suggests that protein assembly might rely on physical rules that are common to any particle
with complex shape and surfaces, beyond the specificities of each biological process.

1.2 Self-assembly is a design tool

Proteins assemblies do not require external action to bring the subunits together. They
rather self-assemble because their subunits have attractive interactions. This principle
can be used to build many types of assemblies at a very small scale, provided that the
interactions between the subunits are designed correctly. We show how self-assembly can
be used to build biological and non-biological objects with applications in different scientific
fields (Sec. 1.2.1). The design of the interaction is the key for self-assembly. We illustrate
how very specific interactions between the subunits is achieved experimentally (Sec. 1.2.2).
We then explain how the interactions between the individual particles and the properties
of the self-assembly are related by looking at how the size (Sec. 1.2.3) and the shape
(Sec. 1.2.4) of the aggregates are controlled.

1.2.1 Self-assembly is useful in many scientific fields
Proteins can be self-assembled into crystals, which serve for imaging purposes. Self-

assembly also enables the building of new materials with applications in biology, photonics,
or soft-matter.

An important use of self-assembly for proteins is crystallization: if a large number of
identical proteins crystallize, the individual structure of the protein can be resolved with
X-ray imaging [33]. Finding the correct conditions to achieve protein crystallization is still
very challenging [34]. Proteins can also be assembled into an array of periodic cages where
smaller proteins are trapped, to be imaged by electron microscopy [35].

Self-assembly can also be used to build new materials. Self-assembly of biological

12



molecules (proteins or DNA) is very broad, from advanced medical tools (such as drug
delivery [36, 37], synthetic bioreactors [38] or virus trapping [39]), to the construction of
synthetic organelles [40]. With tuning of the local interactions of the subunits, the self-
assembled objects can also be reconfigured, enabling the design of nano-robots with motile
parts and several configurations [41–43].

The self-assembly of non-biological individual subunits into a large organized array is
also useful in other fields. It is used to build nanophotonic materials with nanoscale control
over the local organization of metallic particles [44–46]. Soft particles can also be placed at
the interface between two liquids and act as stabilizers of that interface [47]. The capillary
interactions between those particles can then be tuned to achieve specific patterns of the
particles at the interface [48].

Self-assembly is a tool for different scientific communities, but the challenges they face
are similar. The interactions between the individual particles have to be tuned to achieve
the expected assembly, which either has a specific size and shape, or is a periodic array
that should be as large as possible, with precise organization of its constituents.

1.2.2 Experimental design of specific interactions
It is often possible to achieve precise control over the interactions between the individual

constituents to obtain the desired self-assembly. It is necessary for the interactions between
the subunits to be specific: two particles, or portions of the particle, interact with a large
binding energy, but they do not interact with other particles, or portions of the particle. We
explain on which physical mechanisms these interactions rely with three types of materials
that can be used for self-assembly, among others: inorganic colloids, DNA, and proteins.

Colloidal spheres of micrometer sizes have long been used to study packing [49] and
crystallization problems [50]. More recently, patchy [51] or anisotropic [52] colloids were de-
signed experimentally to self-assemble into predefined structures such as crystals in 3D [53]
and 2D [54, 55], chains [56] or small clusters of a few particles [57]. Colloids interact
through sticky patches on their surface [58], hydrophobic interactions [59], electric or mag-
netic fields [60]. The specificity of the interaction between the colloids can, for instance,
be achieved by choosing an optimized pattern of magnetic patches on the surface of a
cylindrical colloid [61]. Colloids can also interact through depletion forces, where smaller
particles will push together the colloids to decrease their excluded volumes [62]. Based on
this principle, the use of non-spherical colloids [63] increases the design possibilities and
enables the assembly of clusters of a finite number of particles (up to a few monomers)
through lock-and-key interactions [64]: if two colloids have complementary shapes, they
will bind, like jigsaw pieces. 3D printed colloids also appear as a preferential tool to achieve
highly specific directional interactions and complex self-assembled structures [65].

In the last decades, the self-assembly of DNA-based materials has been developed.
DNA nanotechnology often relies on the Watson and Crick pairing between complementary
nucleotides of the DNA polymer. In one of those nanotechnologies, a long scaffold strand
and many stables strands, when designed in a complementary manner, will fold into a 2 or
3D shape called DNA origami [66]. Because the size of individual DNA origami blocks is
limited by the size of the scaffold stand [67] that is typically 7 kilo-base, self-assembly of
multiple origamis is necessary to design large structures. Interestingly, the interactions be-
tween two DNA origamis can also rely on base pairing of the nucleotides, offering numerous
design possibilities for highly specific interactions. Those DNA bricks can be designed indi-
vidually, and therefore assemble into large and finite structures. Distinct DNA bricks were,
for example, assembled into any arbitrary pattern and rendered shapes such as a smiley
face in 2D [68], or planes in 3D [69]. DNA bricks can also be designed to interact through
shape complementarity: a non-specific weak binding between the nucleic acid molecules is
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combined with a shape recognition mechanism to enable specific interactions between the
building blocks [41]. Finally, recent techniques were developed to cheaply and massively
produce DNA origamis [70], making potential technological applications implementable at
large scales.

Proteins are also used to design artificial assemblies, beyond the physiological examples
we introduced in Sec. 1.1. The physical mechanisms of their interactions are now well un-
derstood: they interact because of polar or electrostatic interactions between the residues,
because of shape complementarity, or because the residues at their surface are hydropho-
bic and need to be buried from the solvent [71–74]. Again, oligomers, fibers, or 2D and
3D arrays have been designed from physiological proteins [75]. De novo proteins can also
be synthesized and assembled into protein complexes, where the interactions between the
subunits are not constrained by the specificities of existing proteins, enriching even further
the design space for both the interactions [76, 77].

In all those examples, interactions between the subunits are made specific because of
shape complementarity, chemical specificity, or both. Self-assembled structures of precise
shape or size are then obtained by carefully designing those interactions.

1.2.3 Controlling the size of the assembly
So far, however, extensive technological applications of self-assembly have been limited

by the lack of size and shape control over the assembled structure [52, 78]. The technological
bottleneck in the size control of self-assembly lies not only in the experimental design
of individual particles but also in the physical principles that drive the assembly of the
individual constituents. Here, we explain why it is difficult to achieve self-assembly of
large but finite sizes, and present some of the methods used in DNA-origami or colloid
experiments to circumvent these limitations. They rely on the individual design of each
of the building blocks (addressable assembly), the self-closing of the assembled structure,
or mechanical constraints (geometrical frustration). The distinction between those three
mechanisms was introduced in [79]. We describe each of them.

As soon as there is an attractive interaction between subunits, there is no simple
thermodynamic way to stop the growth of the assembly, unless the environment ran out of
constituents. An aggregate of large size will always be more favorable than two aggregates
of smaller size, because particles in the large aggregates realize more attractive interactions
on average. The growth of the aggregate can be limited for kinetic reasons [80], but we focus
on the self-assembly of constituents at equilibrium. Indeed, if there is a way to control the
size of the aggregate thermodynamically, it also enables us to ensure that all the aggregates
have the same size. With specific anisotropic interactions, a narrow size distribution of
the aggregates can be observed for oligomers composed of a few subunits [57]. Reaching
aggregate sizes that go beyond a few subunits while remaining finite and controlled is,
however, one of the key challenges of self-assembly [79].

We now describe the possible mechanisms of equilibrium self-limited assembly. In
addressable assemblies, each building block is individually designed so that it has a unique
set of neighbors in the final assembly. For this reason, its position in the assembly is
also fixed. This is illustrated in Figure 1.2a, where jigsaw pieces stand for the individual
particles. Here, they are all distinguishable. This distinguishability allows for precise
position of each particles in the aggregate. For instance, the red jigsaw piece should only
interact with the gray and blue pieces. Because of this, it will always be positioned in the
corner of the assembly. To design a large assembly using these techniques, a large number
of distinct subunits with specific interactions should be designed individually, which can be
costly. The difficulty is then to reach the highest possible yield, i.e. the ratio of aggregates
that have been completely assembled. In the jigsaw example of Figure 1.2a, the second
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Figure 1.2: Self-limiting assembly at equilibrium relies on the specific design of the
subunits interactions. Drawings are adapted from [79]. a) All the constituents are different
(different colors) and have specific neighbors. b) The constituents have an intrinsic angle
and form a ring of a fixed number of constituents. c) Constituents need to be deformed
to be added to the assembly (the more orange, the more they are deformed). Images of
experimental realization of each technique with DNA origami. a) AFM image of an array
of DNA tiles representing the Mona-Lisa [81]. b) TEM micrograph of a self-closed ring of
oligomers assembled from V-bricks [82]. c) TEM micrograph of a geometrically-frustrated
polymer of deformable polybricks [83]. The number n of subunits per assembly is indicated
in white on each image.
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image is, for example, not fully assembled. The specificity of the interaction can then
be quantified with information theory [84], and optimized to reach the highest possible
yield [85, 86]. An example of a self-assembly of 64 DNA tiles, all patterned with a different
portion of the Mona-Lisa is shown in Figure 1.2a. Because the yield decreases with the
number of subunits [81], it is hard to build aggregates of very large size with this technique.

Self-limitation of the size is also achieved by self-closing of the assembly. Individual
subunits can be geometrically designed such that the assembly will grow with an intrinsic
angle. The final assembly is then a ring or a sphere. This is illustrated in Figure 1.2b,
where all the jigsaw pieces have an angle and assemble into a ring. The radius of the
self-assembly is then directly related to the angle in the shape of the individual particles.
This is a possible mechanism for the self-assembly of viral capsids [87]. Assembling
up to 30 identical building blocks in a predefined 3D-geometry has been demonstrated
with DNA origamis, and a two-dimensional realization of the principle is illustrated in
Figure 1.2b [82]. With this method, it is difficult to achieve assemblies that do not have
spherical or cylindrical symmetry. This technique also requires fine tuning of the subunit
geometry. Finally, if the subunits are slightly deformable, it can change the total number
of subunits that can fit in a ring-like assembly such as the one shown in Figure 1.2b for
instance, and its size. The minimum rigidity of the subunits increases with the desired size
of the assembly, as demonstrated in a minimal model in [79].

As opposed to self-closing, an assembly has open-boundaries if some of the constituents
have fewer neighbors than the others, i.e., they are at the surface of the assembly. To
achieve an assembly with an open boundary and limited size, the individual subunits can
be designed such that they will be deformed when added to the assembly. Strain will then
accumulate up to a limit where adding an extra monomer to the assembly is unfavored. The
assembly is considered frustrated because if the particles are in their locally preferred con-
figuration (undeformed), they cannot tile the plane [88]. This is illustrated in Figure1.2c:
the jigsaw pieces have incompatible geometry, but if they are deformed (in orange), as-
semble. This mechanism was proposed as an explanation mechanism for the self-limited
assembly of twisted tropocollagen filaments into collagen fibrils, where the fibril radius is
controlled by the elastic properties of the individual filament [89]. Geometrical frustration
has been used to control the length of the polymer of DNA deformable bricks [83], as illus-
trated in the experimental image in Figure 1.2c. A major requirement of this technique of
self-limitation is the deformability of the individual particle. The mechanical properties of
the individual particles need to be fine-tuned to ensure their self-assembly in the aggregate
of the desired size, which can be challenging experimentally. Hagan and Grason [79] also
suggest that there is a threshold to the size of an open-ended self-limited aggregate: if the
frustration associated with a large aggregate is too important, the subunits will reorganize
to avoid paying the energetic cost for frustration.

The main advances to achieve size control of self-assembled structures at equilibrium
proposed so far rely on the particles being distinct, deformable, or on the self-closing of the
assembly. This requires precisely controlling the shape, deformability, or interactions of the
individual particles. In these methods, the shape of the aggregate cannot vary, and tuning
the interactions can only control the size of the aggregates (the size of the self-closing ring
in Figure 1.2b, or the size of the two dimensional isotropic bulk in 1.2c).
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Figure 1.3: Small variations in the particle interactions lead to important changes for
the aggregate. In all cases, the red patches are attractive. In a), the blue patches are also
attractive. In c), the black-black and red-black interactions are repulsive, and the strength
of the repulsive black-black interaction is tuned. The top images correspond to oligomers in
2D (b,c) or 3D (a), with only a few particles per cluster. The bottom images correspond to
aggregates of infinite size but reduced dimensionality: the fibers (one-dimensional objects)
in 2D for (b,c), and sheets (two-dimensional objects) in 3D for (a). Images taken from [51]
(a), [90] (b) and reproduced from [91] (c).

1.2.4 Controlling the shape of the assembly

Beyond its size, it is also possible to control the shape of the aggregate. In Sec. 1.1, we
introduced protein aggregates of very variable shapes, from small oligomers, to viral cap-
sids, fibers, or crystals. Those aggregates vary not only in the number of their constituents,
but also in their dimensionality (the oligomer is 0D, while the fiber is 1D). The position
of the sticky regions of the particle, i.e. the directionality of the interaction, is responsible
for controlling the shape of the aggregate. We introduce the concept of patchy particles
and provide examples of the amount of possibilities it brings for designing the interaction
of the individual particles. In particular, we show that minor changes in the interactions
of the individual particles can lead to major changes in the shape of the aggregate.

A patchy particle has several sticky patches on its surface that will interact with the
sticky patches of the neighboring particle through short range interactions. This was, for
instance, introduced in [51] and is illustrated in Figure 1.3a: the yellow sphere has red
and blue patches that bind and result in oligomers (top) or sheets (bottom), depending on
the number and distribution of the patches on the surface of the particle. Those results
are obtained with molecular dynamic simulations. In this study, Zhang and Glotzer also
account for the self-assembly of fibers, sheets with different organization of the particle
(into a square or a triangular lattice), and oligomers of 4, 6 or 12 particles. In this type
of model, there are a lot of different qualitative ways to tune the interactions. One can
vary the number of patches, their position (how dense and how isotropically distributed
on the surface they are), the strength of the interactions, but also the type of interaction:
patches of the same color can stick to themselves (homomeric interaction) or to other colors
(heteromeric interaction) [52]. All those elements could be tuned independently, providing
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a huge design space for the individual particles.
Changing only one feature of the interaction described above can already drastically

change the result of the self-assembly. In [90], the position of two sticky patches on a
rhombus of two-dimensional particles is systematically varied (see Figure 1.3b). The par-
ticles either remain as monomers (clusters have less than 3 particles), oligomers (such as
the example of Figure 1.3b, top), or fibers (such as the example of Figure 1.3b, bottom).
With Monte-Carlo simulation, Karner et al. systematically study what aggregates are ob-
served for which patches positions. In both examples of Figure 1.3a and b, for instance,
the sticky patches are not isotropically distributed on the surface of the particle. Then,
depending on whether they are at the tip of the particle or in the middle, the assembly
changes drastically, from a zero-dimensional oligomer to a one-dimensional fiber [51, 90].

The strength of the interaction can also be varied without changing the position of the
sticky patches. A two-dimensional lattice gas model of cross-shape particles with direc-
tional and tunable interactions was introduced in [91], to study the assembly of anisotropic
particles adsorbed on gold. In this model, a particle has four sides, one red and three black
(see Figure 1.3c). There is three types of interactions: red-red, red-black, and black-black,
which all have different interaction energies. A site of the lattice can be occupied by a
particle or empty (the particles can be adsorbed on the substrate or not). They explore
this parameter space and identify four types of aggregates: dimers, pentamers, fibers, and
crystals. Again, we show in Figure 1.3 that a small change in the particle interactions (the
repulsive black-black interaction is increased) leads to important changes in the equilibrium
assembly, either dimers (top) or fibers (bottom).

Those studies provide specific examples of how one characteristic of the interactions
(position or strength of the patches) influences the result of the self-assembly. To our
knowledge, however, the relation between both is not understood systematically, and de-
termining the equilibrium result of the self-assembly requires resorting to numerical sim-
ulation. Moreover, the particles in these examples are only designed such that all the
favored interactions can be realized, without any competition between two pairs of attrac-
tive patches that cannot bind at the same time because of geometric constraints on the
particles.

1.3 Frustration arises from incompatible interactions

Frustration arises in self-assembly when particles have incompatible favored interac-
tions, or when they need to be deformed to take part in the assembly, as we mentioned
in Sec. 1.2.3. We describe precisely the frustration of incompatible interactions in dense
environments and lattice models (Sec. 1.3.1) and illustrate how only some of the concepts
of frustration have been used so far as a design tool for self-assembly problems in dilute
environments (Sec. ??). We emphasize how frustration in the interaction can bring new
insight into understanding the rules of protein self-assembly and can be used as a design
principle for the individual interactions (Sec. ??).
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Figure 1.4: Because of frustration, there are some unfavored interactions between indi-
vidual particles. Favored interactions are in blue, unfavored interactions or configurations
in red. a) Lattice sites are up (light gray) or down (dark gray). There is at least one
unfavored interactions (red) per triangle. b) Particles with ferromagnetic first-neighbor in-
teractions and antiferromagnetic second-neighbor interactions can lead to patterns in the
particle organization c) Rods organize into a double-twisted cylinder, and the cylinders
form a lattice. Disclination lines (red) arise where the molecules alignment is unfavored.
Drawing taken from [95] d) It is not possible to tile the plane with pentagons without
deforming the particles, or leaving an unfavored space between them.

1.3.1 Frustration in a dense environment

We introduce the concept of geometrical frustration with two lattice models, and show
how it can lead to non-trivial spatial organization of the particles.

The most simple example of frustrated interactions is that of an antiferromagnetic
Ising model on a triangular lattice [92], illustrated in Figure 1.4a. The spin at position i

is either up (dark grey, si = 1) or down (light grey, si = −1) and the coupling between
two neighboring spins i and j is Jsisj with J > 0, such that neighboring spins will try
to anti-align. In the triangular lattice, it is not possible to satisfy the interactions of a
group of three neighboring particles all at once, there is necessarily one of the two bonds
that is unfavored. On Figure 1.4a, this results in necessarily having one unfavored (red)
interaction per triangle, between pairs of particles that have the same orientation. In [93],
Ronceray showed that the frustration in the antiferromagnetic Ising model is short-ranged:
if we consider the state of the triangles of three spins, instead of the individual spins, as
variables, then all the triangles are in the configuration of minimum energy (up-up-down
or up-down-down). Frustration is not always that trivial, and in other cases, the extra
energy of the ground state related to the impossibility to satisfy local constraints cannot
be trivially removed by a change of the variables of the system [94].

Frustration can have effects on the way particles are organized, and lead to specific
spatial patterns. The axial next-nearest neighbor Ising model (ANNNI) is an example
of such effect [96]. It is an adaptation of the Ising model where the nearest neighbor
has a ferromagnetic interaction Ji,i+1 = J1 < 0, and the next-nearest neighbor has an
antiferromagnetic interaction Ji,i+2 = J2 > 0. This is shown in Figure 1.4c, where the
nearest neighbors of the same orientation (same color) have favored interaction, but the
next-nearest neighbor of the opposite orientation has favored interaction. The intrinsic
competition between the couplings J1 and J2 can result in non-trivial spatial patterns at
finite temperatures in two dimensions, and the relative strength of repulsive and attrac-
tive interactions can be varied to change the relative width of the domains of the same
orientation [96].

Spatial patterns resulting from frustrated interactions have been observed experimen-
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tally in the blue phase of liquid crystals [97, 98]. If the interaction energy between two
chiral rods is minimal when they are slightly twisted with respect to one another, they
organize into a double-twisted cylinder. The organization of the rods within one cylinder
is shown in Figure 1.4c, left). However, the size of those cylinders is limited because it is
impossible to extend this double twist organization to the whole space. For this reason,
the most stable configuration is that of several cylinders intertwined. In this configuration,
the relative orientations between most of the rods are those of minimal energy. There are,
however, some disclination lines, i.e. regions where the interaction between two rods is
unfavored. The cubic lattice organization of the cylinders is shown in Figure 1.4c, right,
with the disclination lines in red. The period of the organization is of the order of the
wavelength of blue light, hence the name blue phase, and it can be used for photonic
applications.

When individual particles have competing interactions, they sometimes cannot organize
without having some unfavored interactions, or defects. In those cases, minimization of
the energy leads to periodic spatial patterns with length scales that are controlled by the
interaction between individual particles.
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2 - A model of lattice particles with arbitrary inter-
actions

In this chapter, we propose a model of directional interactions, whose directionality
and strength can be tuned between extreme cases: the particle can either be completely
isotropic, or interact with its neighbor in very specific directions, and each interaction can
be infinitely sticky, repulsive, or have arbitrary binding energies. Indeed, such model en-
ables us to explore the design space of the particles interactions systematically: enumerate
the different ways the particles can interact. Then, this systematic exploration enables to
understand the relation between the interactions of the individual constituents, and the
shape of the aggregate they form upon self-assembly. Here, we develop the tools to both
design particles with very diverse interactions, and to study the shape of the aggregate
they form at equilibrium. We also show how this model enables to consider frustrated
interactions.

In Sec. 2.1, we introduce our model of directional lattice particles with arbitrary in-
teractions. In Sec. 2.2, we explain how we use numerical simulation to determine the
equilibrium configuration of the particles that self-assembled. In Sec. 2.3, we compare
the different strategies to explore the parameter space of the interactions and show that
this can be done by considering random interactions. In Sec. 2.4, we explain how we can
characterize the geometry and the shape of the aggregates resulting from the numerical
self-assembly of a particle with chosen interactions. Throughout the thesis, we mostly
study the self-assembly of two-dimensional particles on a triangular lattice. In Sec. 2.5, we
show how the model relies on concepts that are generic enough to be generalized towards
other particle geometries.

2.1 Model of anisotropic particles

We propose a model which encompass most of the complexity of patchy particles in-
troduced in Chapter 1 into the definition of an interaction map: for each possible relative
orientations of neighboring particles, we define an interaction energy. Such an interaction
map can then be used to model the self-assembly of patchy particles with variable number
of patches, patches positions, or relative strength of the interaction. It also enables to take
into account both the homomeric and heteromeric patches: a region of the particle can
preferentially bind to the same region on the neighboring particle, or to another region.
This generalization is made possible by considering lattice particles, that only have a finite
number of relative orientations. We show that this model enables to observe a large variety
of aggregates by varying quantities that are comparable (the interaction energies between
two particles) as opposed to the patchy particles model where the design choices concerns
quantities that are hard to compare, such as the number of patches on the particle and
their number of colors. We introduce how the self-assembly of the particle depends on
its interaction map that has tunable parameters in Sec. 2.1.1. In Sec. 2.1.2, we introduce
state variables that enable to compute the energy of the system easily. We demonstrate
in Sec. 2.1.3 that there are some invariances of the system that restrict the design space
to 21 parameters. Finally, in Sec. 2.1.4, we illustrate the diversity of aggregates that are
obtained from different interaction maps.
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a Square lattice b Triangular lattice c Cubic lattice

Figure 2.1: We define particles are Voronoï cells of the lattice. Lattice particles are for
instance squares (a), hexagons (b) or cubes (c).
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Figure 2.2: The interaction energy depends on the faces in contact. i and j are neighbor
sites of the lattice. φi is the global orientation of particle at site i. In (a) and (b), the blue
and light green faces of the particles are in contact: the interaction is the same. In (c), the
light purple and yellow faces of the particle are in contact, the interaction is different.

2.1.1 Self-assembly of lattice particles with a chosen interaction map
As in the model of patchy rhombic dodecahedra introduced in Figure ?? of Chapter 1,

we consider particle that occupy sites of a lattice. The maximum number of neighbors of
a particle is then defined by the lattice: for instance, the maximum number of neighbors
is four on a square lattice, six on a triangular lattice, and six on a cubic lattice, as shown
in Figure 2.1. Then, the geometry of the particle is that of the Voronoï cells of a lattice.
The number Nfaces of faces of the particles is the maximum number of neighbors. In the
following, we introduce notations that are valid for any lattice, but mostly show examples
with the triangular lattice. We choose to focus our study on the self-assembly of hexagonal
particles and not squares for instance, because as it was shown in Chapter 1, frustration
due to incompatible interactions arises easily in triangular lattices: only three particles are
required to make a loop.

The orientations of the individual particles is not the most convenient variable to
describe their interactions, and the model we consider cannot be mapped to a Potts model
[99]. For each particle, we can define an orientation φ, as in a Potts model, and the
interaction depends on which faces of the two particles are in contact. This is exemplified
in Figure 2.2. The pair of particles in the panel (a) and the panel (b) have the same
interaction, because the same pair of faces are in contact (blue and light green in this
case). However, the orientations of the particles are different, because the direction of
the contact is different. We denote by vi→j = j − i the direction of the contact between
particles on site i and j (i is the position of site i). The three possible directions of contact
are shown in red in Figure 2.2. On the other hand, the pair of particles in panel (a)
and panel (c) are not equivalent (blue and light green are in contact in (a), light purple
and yellow are in contact in (b)), even if the global orientations are the same up to an
inversion ((φi, φj)panel a = (φj , φi)panel b). In Potts models, the coupling energy between
two particles is proportional to δ(φi−φj). In the Potts model, situations of panel (a) and
(c) in Figure 2.2 would be associated with the same energy.
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Instead of computing the system energy from the orientation of its particle, we describe
it from the local configurations of the particles. We label the faces of the particles as
a, b, c, .., (the colors in the previous discussion). We can define a mapping M, between the
orientation of two particles and the direction of their contact on the one hand (φi, φj ,vi→j),
and the pair of faces that are in contact on the other hand (a, b). We only count the distinct
pair of faces, such that (a, b) = (b, a) = s, where s is a reference integer for the situation
where faces a and b of the particles are in contact.

M(φi, φj ,vi→j) = (a, b) = s (2.1)

For instance, both local configurations of the particles in Figure 2.2a and b are equivalent,
such that M(φi = π, φj = 4π/3,vi→j = v1) = (blue− green) = M(φi = 4π/3, φj =

5π/3,vi→j = v2). This formalism was initially introduced in [93] with the name Local
Energy Landscape, to study the frustration in lattice spin systems. In that model, each
local configuration of the lattice particles (labeled s), is assigned an energy ϵs.

Similarly, in our model, for each unique face pair (a, b), we define a binding energy
that can be any arbitrary number. This energy should not directly depend on the value of
the contact angle φi − φj , and should rather depend on the local properties of the surface
(the patches of the colloid, or the amino-acid on the protein surface). To parameterize the
interaction energies in our model, we define the interaction map {Jab}, where Jab is the
energy associated with face a of a particle being in contact with face b of another particle.

For any pair of neighbor sites of the lattice ⟨i, j⟩, and direction of contact vi→j , we can
determine ai and bj , the faces of the particles at sites i and j involved in the contact.

The number of face pairs depends on the geometry of the particle. For two-dimensional
particles, the number of distinct face pairs is simply

Npairs =
1

2
Nfaces × (Nfaces − 1) (2.2)

Npairs is not the square of the number of faces because a contact (a, b) is equivalent to a
contact (b, a). Finally, we can represent the interaction map as a matrix: we order the
entries of the matrix such that the column index refers to the face of the left particle, and
the line index to the face of the right particle. In that convention, the matrix is symmetric.
The interaction map of the hexagonal particle is shown in Figure 2.3b. Only the triangular
inferior part of the matrix is independent, because (a, b) and (b, a) are equivalent. From
eq. 2.2, it is straightforward that there are 21 independent coupling energies that can be
defined for the hexagonal particles of 6 faces.

Along the thesis, we always represent the interaction map as a matrix. In the calcula-
tions, we either refer to its values by the label of the faces Jab or by the label of the face
pair, Js = Jab if s = (a, b) with the definition of eq. 2.1. Sometimes, we use the interaction
vector J that is simply an array of all the interaction values in an arbitrary order.

2.1.2 The energy depends on the occurrence of the face pairs
Here, we describe the configuration of the system by counting the face pairs instead

of counting the particles in each orientation, and show how this enables to compute the
energy of the system.

We write the Hamiltonian of the system with the face pair variable. We first introduce
the variable δaibj that is 1 if the face a of the particle at site i and the face b of the particle
at site j are in contact. With this notation, and given the interaction map introduced
in 2.1.1, the Hamiltonian of the system reads

H =
∑
⟨i,j⟩

δaibjJab (2.3)
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Figure 2.3: The interaction maps lists all the possible ways two particles can interact.
It depends on the faces of the particles in contact. a) We determine the faces in contact
from the relative orientations of two particles. b) We represent the interaction map as a
symmetric matrix (only the entries colored in gray are chosen independently).

We then denote by Nab the number of occurrence of each face pairs in the system. It
verifies the following relation

Nab =
∑
⟨i,j⟩

δaibj (2.4)

With this simplified description of a system configuration, the Hamiltonian simply reads

H =
∑
a≤b

NabJab =
∑
s

NsJs (2.5)

In this formalism, the total energy of the system does not depend explicitly on the
positions and the orientations of the particles. The occurrence of a face pair, Nab, is a set
of Npairs number (21 for the hexagonal particle, as explained in Sec. 2.1.1). The measure
of Nab is then sufficient to determine the energy of a system.

2.1.3 Redundant surface interactions
In the interaction map shown in Figure 2.3, we only account for the interaction energy

between the faces of two particles. We call full the sites of the lattice where there is a
particle, and empty those where there are no particles. We adopt the following convention:
if a site is empty, the face involved in the contacts with the neighbors is labeled 0. Then
the full-full interaction is the interaction maps Jab introduced before, and the empty-full
interactions, Ja0, are the interaction energies between a face and an empty site. We also
define an empty-empty interaction, J00, which set the global level of the energies. In this
section, we show that if the number of particles in the system is fixed, the empty-full and
empty-empty interactions can always be set to zero, up to a shift of all the energies in the
system.

In Sec. 2.1.2, we introduced eq. 2.5, which gives the total energy of the system for a
given configuration, i.e. for a given set of {Nab}, the count of the occurrences of a contact
between face a and face b. We now expand this equation to distinguish between the full-full,
empty-full and empty-empty interactions.

E = J00N00 +

Nfaces∑
a=1

Ja0Na0 +

Nfaces∑
a=1

a∑
b=1

JabNab (2.6)

For the hexagonal particles, there are 7 conserved quantities in the system, that do not
depend on the chosen interaction map, or of the configuration at a given time. Those
quantities are the total number of bonds (1 conserved quantity, eq. 2.7) and the number
of face a (the number of yellow face of the particle), because the number of particles is
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Figure 2.4: We obtain a large diversity of aggregates by changing the interaction map. We
show the triangular inferior matrix for which the coordinates are defined in Figure 2.3 (top)
and the corresponding equilibrium organization of the particles at temperature kT = 1
(bottom). The blue entries correspond to an interaction energy of −10kT and the white
to an interaction energy of 0kT .

fixed (6 conserved quantities, one for each face, eq. 2.8). For a particle with arbitrary
geometry, there are 1 + Nfaces conserved quantities, and we derive the demonstration in
the most generic situation. We denote by Nbonds the number of bonds (that can be either
empty-empty, empty-full, and full-full) in a system. It is proportional to the size of the
system. We also denote by Nparticles, the number of particles (or occupied sites) in the
system.

N00 +

Nfaces∑
a=1

Na0 +

Nfaces∑
a=1

a∑
b=1

Nab = Nbonds (2.7)

for a in J1, NfacesK, Na0 +
∑
b ̸=a

Nab + 2Naa = Nparticles (2.8)

The energy of the system is always defined up to a constant, and in eq. 2.9, we shift
it by a constant that depends on the number of particles and the number of bonds in the
system. We replace those values by their definition in the equations above (2.7 and 2.8).
This shift is chosen such that the effective coupling for the empty-empty bonds and for the
full-empty bonds are zero.

E′ = E − J00Nbonds −
Nfaces∑
a=1

(Ja0 − J00)Nparticles

=

Nfaces∑
a=1

a∑
b=1

(Jab − J00 − (Ja0 − J00)− (Jb0 − J00))Nab

=

Nfaces∑
a=1

a∑
b=1

(Jab + J00 − Ja0 − Jb0)Nab

=

Nfaces∑
a=1

a∑
b=1

J ′abNab (2.9)

We can therefore define a new interaction map J ′, with J ′ab = Jab + J00 − Ja0 − Jb0.
The empty-empty and empty-full couplings of J ′ are zero, but it will result in the same
equilibrium configuration of the particles as J .

In the rest of the thesis, we adopt the convention that the empty-full and empty-empty
interactions (J00 and Ja0) are zero. Therefore, there are only 21 interactions to consider
when exploring the design space of the individual particles.

2.1.4 Diversity of aggregates
We then look for the configuration of the system that minimizes the Hamiltonian of

eq. 2.5. We give extensive details on how this is done in Sec. 2.2, but we start by showing
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some examples of interaction maps and the corresponding equilibrium configuration of the
system in Figure 2.3c. In this case, interaction maps are chosen in a simple way: some
interactions have energy J0 = −10kT (the corresponding entries of the interaction map
are colored in blue), while the other interactions have energy 0kT (colored in white). We
see that this model enables to recover all the aggregates observed in the patchy particles
models introduced in Sec. 1.2.4 of Chapter 1: fibers (4), oligomers (5), or monomers (6).
The equivalent of a three-dimensional crystal is the aggregate shown in (2): it is a two-
dimensional periodic aggregate in a two-dimensional space. Crystal can also have vacancies
and form aggregate, which we call sponge (3). The aggregate in (1) corresponds to the
situation where all faces of the particles are sticky, this is simply a lattice gas model of
isotropic particles.

Because each interaction between faces is chosen independently, all the design possibil-
ities of a patchy particles model (number of patches, number of different patches, strength,
distribution of the patches, etc) are accounted for by the interaction map. The interac-
tion map has numerous independent parameters (21), but those parameters are all binding
energy values, and are comparable. The diversity of aggregates typically obtained with
patchy particles were retrieved with our models, by changing the relative strength of the
interactions. This is also an indication that we are not missing important phenomenology
by considering lattice particles: we observe the same aggregates as in off-lattice molecular
dynamics simulations of patchy particles [51].

2.2 Equilibrating with Monte-Carlo Metropolis-Hasting

For a given interaction map, we can change the relative levels of the interactions, which
changes the shape of the aggregates, as shown in Figure 2.4. We can also change the global
level of the interaction energies. Here, we show that we can determine the equilibrium of
the system at kT = 1, such that changing the global level of the interaction amounts
to changing the temperature of the system. In general, the Hamiltonian introduced in
eq. 2.5 is not solvable analytically. We determine the equilibrium configuration of a system
of identical particles associated with a given interaction map, by running Monte-Carlo
simulated annealing that we coded in C++. In Sec. 2.2.1, we show that we can study the
self-assembly by running simulations with a fixed-number of particles at low density. In
Sec. 2.2.2, we choose elementary Monte-Carlo steps that ensure a fast equilibrating of the
system. In Sec. 2.2.3, we show that progressively decreasing the temperature of the system
towards a finite temperature enables both to equilibrate it and measure its fluctuations.

2.2.1 System definition
We fix the number of particles in the system, which we denote Nparticles. The lattice

has a size Nsites = Lx × Ly × Lz. For the two-dimensional case, Lz = 1. The number
of bonds in the system, introduced in eq. 2.7, is simply the number of lattice sites, times
the number of bonds per sites. In the triangular lattice, each particle makes 6 bonds,
but a bond is shared between two sites, which makes 6/2 = 3 bonds per particles. Then
Nbonds = 3Nsites. We implement periodic boundary conditions. We choose a density of
particles Nparticles/Nsites of the order of 0.1 to be in dilute condition. This enables to
consider both dense and dilute organization of the particles: if the interaction map is such
that the particles are attractive, the result of the equilibrating is a dense aggregate of the
total number of particles (examples (1) of Figure 2.4). If the particles are not attractive,
they will be distributed in random positions in the system, as the example (5) of Figure
2.4. The low density then ensures that the self-assembly driven by the interactions between
the particles only.
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2.2.2 Elementary steps
We explore the configurations of the system by flipping or displacing particles. At a

given step t of the equilibrating, the configuration of the system is described by the positions
{xi(t)} and the orientations {φi(t)} of all the particles labeled i. The energy of the system
Et, defined in eq. 2.5, is the sum of the interaction energy weighted by their occurrence
in the system. We only change the configuration of one single particle per step t. At a
given step, we draw with a uniform probability which particle will change configuration.
With probability 0.5, the chosen particle changes orientation: φi(t) → φ′i(t+ 1). φ′i(t+ 1)

is chosen randomly among the orientations that are different from φi(t). With probability
0.5, the particles changes position on the lattice xi(t) → x′i(t + 1). The new position is
chosen randomly among the empty sites of the lattice. Therefore, there are no correlations
between xi(t) and x′i(t+ 1): the moves are delocalized. This ensures a faster exploration
of the configuration space, but prevents us from studying kinetic considerations on the
self-assembly. We do not perform collective moves of particles that belong to the same
cluster [100].

Then we compute the new energy of the system E′ and compare it to the old energy
E. In practice, we only recompute the energy from the bonds of the particle i and its old
and new neighbors. This elementary move is always accepted if E′ < E. If E′ > E, it is
accepted with a probability p = exp(−(E′−E)/Tt), where Tt is the temperature at step t.
This is the Metropolis-Hastings algorithm [101]. It ensures that the system converges to a
steady state [102]: the possibility to make a step Monte-Carlo step towards a configuration
of higher energy, while slowly decreasing the temperature, ensures that the optimization
will not be trapped in a local minimum of the energies.

2.2.3 Annealing
Here, we show that decreasing the temperature of the system to kBT = 1 enables to

determine its equilibrium configuration at finite temperature, and to sample the fluctua-
tions of the system. The level of the fluctuations is set by the strength of the attractive
interactions in the interaction maps.

We start the simulation at high temperature and slowly decrease the temperature
towards kT = 1, to ensure that the energy of the system at the end of the annealing cor-
responds to the minimization of the free-energy of the system. In the code, we implement
the annealing such that there are NT different values of temperatures, and at each tem-
perature, there is Nsteps Monte-Carlo steps. In Figure 2.5, we show the parallel evolution
of the temperature and the energy per particle as a function of the number of Monte-Carlo
steps. In this example, the number of temperatures is small (NT = 4) for illustration
purposes. We typically choose the number of temperatures to be large, to prevent the
system from being trapped in a local minimum of the energy. The total number of an-
nealing steps is simply Nannealing = NT ×Nsteps. At high temperature (left of Figure 2.5,
image (a), the energy of the system is large, and the particles are in a gas phase. As
the temperature decreases, the energy of the system decreases and the system reaches its
equilibrium configuration, in which the particles are assembled (images (i) and (j)). We
choose the annealing parameters (NT , Nsteps, and the initial temperature of the annealing
T0) such that increasing the annealing time does not decrease the energy of the system,
which guarantees that the system is at equilibrium.

After the annealing, we keep performing Monte-Carlo steps at constant temperature
kT = 1 to sample the fluctuations of the system. There is Nstatistics such extra steps. In
Figure 2.5, this starts after point (j). In our simulation, the number of temperatures NT ,
the number of steps per temperatures Nsteps, the time of statistics collection Nstatistics,
and the initial and final temperatures are adjustable parameters. Typically, for one given
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Figure 2.5: The system reaches its equilibrium configuration at kT = 1 after progressively
decreasing the temperature. For the steps labelled with a letter, we show the configuration
of the system at that step in the images below. As the temperature decreases, performing
Monte-Carlo moves decrease the energy of the system. After running Nannealing Monte-
Carlo steps, (Nsteps for each temperature) we compute statistics on the system during
Nstatistics steps at temperature kT = 1 during which the energy slightly fluctuates.

interaction map, we also repeat the same annealing procedure several times, and we average
every quantitative results over all the realizations of the system.

We have developed numerical simulation that enable to reach the equilibrium configu-
ration of the system for a given interaction map, and sample the fluctuation of the system
at equilibrium.

2.3 Exploring a 21-dimensional space

We introduced this model to identify the relation between the interactions of individual
particles and the shape of aggregate they form. In Sec. 2.1, we showed that the interaction
maps corresponds to 21 interaction energies, and that choosing the favored and unfavored
interactions lead to very diverse aggregates. We also showed in Sec. 2.2 that changing the
global levels of the interactions was equivalent to changing the temperature of the system.
We can now vary independently each interaction energy between two faces, and determine
how it changes the shape of the equilibrium aggregate. For the hexagonal particle, there are
21 independent pairs of faces, which corresponds to a design space that is too large to be
explored exhaustively (R21). Here, we compare the different strategies to explore this very
large design space. In Sec. 2.3.1, we show that the vertices of the particles can be assigned
some sticky patches. This design gives indication that incompatible interactions reduces
the size of the equilibrium aggregates, but it is too simplistic to provide a systematic
understanding of the relation between the interactions and the shape of the aggregate.
In Sec. 2.3.2, we show that choosing the interactions to be either attractive or repulsive,
with only two energy levels, results in equilibrium aggregates that are not well-defined.
In Sec. 2.3.3, we show that assigning groups of face pairs with the same energy values is
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Figure 2.6: Aggregate sizes decrease when the number of incompatible interactions in-
creases. a) Two faces of a particles interact if both vertices in contact are the same color.
b) In the boxes, we enumerate all the different hexagons, classified by the number of colors
of their vertices (vertical axis) and by the type of aggregate they form upon self-assembly.
Equilibrium aggregates are shown for some particles. (1) is a crystal, (2) and (3) are
sponge, with different size of vacancies, (4) is a fiber, and (5) and (6) are tetramers and
trimers. Monomers are particles for which all interactions are repulsive.

a good design strategy for comparisons with experimental results. Finally, we suggest in
Sec. 2.3.4 that choosing the interaction maps randomly enables to sample the design space
systematically. In Sec. 2.3.5, we show that there is some redundancy in the 21-dimensional
design space.

2.3.1 Particles with patchy vertices
Similarly to the model of patchy rhombus dodecahedron introduced in Fig. ?? of Chap-

ter 1, we can color the vertices of the particle, such that two faces stick if all the colors of
the vertices match. We exhaustively explore all the aggregates that can be created from
those particles and show that the size of the aggregate decreases with the number of colors
of its vertices.

We enumerate all the hexagonal particles with colored vertices. Each of the six vertices
of the particle can be assigned one out of six colors, such that the vertices can be of identical
colors, or all have a different color. An example of a particle with blue and yellow vertices
is shown in Figure 2.6a. There are a lot of redundancies among those 66 particles. Indeed,
if we label y and b the yellow and blue vertices, and enumerate in a cyclic order, it is
straightforward that the particles bbbbyy (blue-blue-...) and ybbbby are identical: they are
the same up to a cyclic permutation of the vertices. Similarly, bbbbyy and yyyybb are
equivalent, up to an inversion of the colors. By removing those redundancies, we find only
38 non-equivalent hexagonal particles. All those particles are shown in Figure 2.6b. We
order the particles by the number of different colors of the vertices: there is only 1 particle
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with one color, 7 particles with two colors, etc.
Then, the interaction maps of those particles are defined as follows: if both pairs

of vertices in contact match, the corresponding pair of faces is assigned an attractive
interaction. If at least one of the two pairs of vertices in contact do not match, the
corresponding pair of faces is assigned with repulsive interactions. This is illustrated in
Figure 2.6a.

Then we determine the equilibrium state of numerous particles. Depending on the
number of colors, they self-assemble into aggregates that are less and less dense. We
show some examples of those aggregate in Figure 2.6b, labeled with a number. (1) is
a crystal where the orientation of the particle alternate. It is of infinite size: if there
were more particles in the system, the aggregate would be larger, and the size is only
limited by the number of particles in the simulation. When the number of colors increases,
more interactions are unfavored. As a consequence, particles can assemble into infinite
aggregates with some vacancies, which we call sponge: no particle could be put in the
vacancies without having an unfavored interaction with one of its neighbors. (2) and (3)
are sponge with vacancy sizes of respectively one and seven particles. Increasing the number
of colors also reduces the dimensionality of the aggregate: (4) is a fibrillar aggregate which
can only grow in one direction. The number of incompatible interactions can be such that
only aggregates of finite sizes can form, which we refer to as oligomers. (5) and (6) are
oligomers of four or three particles. When the number of colors is maximal, the particle
cannot bind to any other particle, and remains as a monomer.

In two dimension, the design of particles with colored vertices is useful to get a qualita-
tive understanding of how the interaction between particles work, and the type of aggregate
that can be achieved. We understand that the more complex the particles interactions are
(the number of colors here), the more difficult it is to assemble into aggregates of infinite
size. With this design, the parameter space is however very small (38 distinct particles).
Indeed, because two neighboring faces of the particle share one vertex, all the entries of the
matrix cannot be chosen independently. This reduces the amount of design possibilities
for individual particles.

2.3.2 Two level interactions
Because the model of particles with colored vertices is constrained by the fact that two

faces of the same particle share a vertex, we now consider particles for which each pair or
face can be either sticky or repulsive, with no correlation between faces sharing a vertex.
We show that this results in a broader diversity of aggregates, but that in some cases, we
observe two distinct shapes of aggregates resulting from the self-assembly with particles of
the same interaction map. Then, a systematic understanding of the relation between the
interaction map and the shape of the aggregate is difficult.

With this design, the parameter space is immediately much larger than before: there
are 221 interaction maps (221 ≈ 2 × 106 ≫ 66 ≈ 4 × 104). As in the case of the patchy
particles, there are many redundancies in this enumeration. After removing them (we give
more details about how in Sec. 2.3.5), we find respectively 4, 26 and 134 non-equivalent
interaction maps if there is one, two or three favored interactions.

Some examples of the matrices with three favored interactions are shown in Figure 2.7,
where the favored (resp. repulsive) interaction have energy −10kT (resp. +10kT ) and the
corresponding element in the interaction map is colored in blue (resp. red). The aggregates
shown in (a) and (b) could not be obtained with any of the patchy particles introduced in
Sec. 2.3.1. This confirms that the design space is increased by removing the constraint of
the patchy vertices.

However, these ways of choosing the interaction map is not convenient, as we under-
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Figure 2.7: Examples of aggregates of particles with three favored interaction. Interaction
maps are represented with the convention of Figure 2.3. Red interactions are unfavored
(+10kT ) and blue interactions are favored (−10kT ). Aggregates in (a) and (b) could
not have been obtained with particles of colored vertices. In (c) and (d), there is several
possible organizations of the particles with same energy.

stand with the examples (c) and (d) of Figure 2.7. In both situations, we observe two
different organizations of the particles within the same system: in (c), both sponges with
small (on the right) and large (on the left) vacancies are observed. In (d), both fibers
and hexamers are observed, and the curves on the fiber correspond to partially assembled
hexamers. Because there are only two levels of energy for the interactions, two competing
organization of the particles can have the same energy. However, this degeneracy would
be solved if the energy levels were shifted of a very small quantity.

In the specific situation where there are few energy levels, it is not always possible to
relate a given interaction map with a type of aggregate. This issue arises for three favored
interaction, and could be more dramatic for higher number of favored interaction, where
more competing organizations of the particles could be present at the same time in the
system. We want to avoid those pathological situations, and for this reason we choose not
to explore exhaustively the parameter space where the energy level can only take discrete
values, and rather choose continuous scales for the interaction energies.

2.3.3 Physical particles
In Sec. 2.3.2, we showed that we could fix the energy levels (attractive and repulsive)

and explore the design space by changing which interactions of the interaction maps are
of those energy levels (change the positions of the blue and red squares in the matrices of
Figure 2.14). Here, we consider an alternative exploration strategy: we fix which pair of
faces should interact, and we tune their relative energy. We show that this type of model
can be easily implemented in experimental studies.

We consider a colloidal particle with several lock-and-key mechanisms at its surface.
For instance, a triangular-shaped key somewhere on its surface interacts with a triangular-
shaped locks somewhere else, and a circular-shaped keys interacts with circular-circular
shaped locks somewhere else. If those lock-and-key mechanisms are distributed in a regular
way on the surface of the particle, we can predict its self-assembly with our model: each
lock-and-key interaction involves a pair of faces, and the strength of the interaction is
encoded as an interaction energy in our model.

In this example, the design space is much smaller, because there are only two attractive
interactions. Then, we can exhaustively tune the strength of each interaction and determine
the outcome of the self-assembly. This approach will be mostly tested in Chapter 5: we fix
which faces of the particle should interact together, and we explore the parameter space
corresponding to varying their relative energies.
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2.3.4 Random interactions
Finally, to explore the space continuously in 21 dimension, one can use statistical

approach and sample the parameter space, by drawing each of the 21 interactions randomly
in a chosen distribution.

Here, we explain why we can draw the contact energies in a Gaussian distribution. We
want to understand the interaction of particles with complex surfaces, such as proteins,
where amino-acids of the surface can bind to other amino-acids with an arbitrary binding
energy. The interaction between two faces is then the sum of the interaction between all
individual pairs of amino-acids that are in contact. If there is a large number of terms in
this sum (a large number of amino-acids in contact when two proteins are in contact), this
sum can be approximated by a Gaussian variable according to the law of large numbers.
Similar strategies to explore the parameter space has also been proposed in previous studies
of self-assembly of distinct isotropic particles [85, 103].

In Chapter 3, we see that this sampling of the parameter space enables to identify a
broad diversity of aggregates, and to relate specific characteristics of the interaction map
(the local properties of the particle) to the type of aggregate they form (the macroscopic
properties of the aggregate).

2.3.5 Permutation equivalence
In the example of the patchy hexagons, we saw that a 2D particle is defined up to a

cyclic permutation of its vertices, or alternatively, a cyclic permutation of its faces. Here
we generalize this principle. If we denote by a, b, c, d, e, f the six faces of the particles, a
particle with faces a, b, c, d, e, f is equivalent to a particle with faces b, c, d, e, f, a (cyclic
permutation). It is also equivalent to particle a, f, e, d, c, b (mirror permutation). These
permutations correspond to the symmetries of the system. Here, we formally introduce how
this permutation equivalence applies to the interaction maps. We write interaction maps as
matrices and perform matrix operations. We denote as equivalent, two interactions matrices
that will result in the same equilibrium configurations of the particles, after applying the
same cyclic (or mirror) permutation to all the particles in the system.

Two interaction maps J and J ′ are equivalent up to a cyclic permutation of the faces
of the particles if they verify

J ′ = P k · J · P−k with P =



0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0

 and k ∈ J0, 6K (2.10)

Similarly, two interaction matrices J and J ′ are equivalent up to a mirror transformation
of the particle if they verify

J ′ =M · J ·M−1 with M =



0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0

 (2.11)

Therefore, for a given matrix J , there is a set S(J) of 12 equivalent permutations of J
that give physically equivalent systems. We show an example of such 12 equivalent maps
in Figure 2.8, together with the equilibrium configuration of the system. All those 12

aggregates are different. For instance, aggregates (a) and (g) both have the purple face
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Figure 2.8: Equilibrium aggregates are equivalents up to a cyclic or mirror permutation
of the faces of the particles. All the aggregates are similar (they form a sponge, and
the position and number of the vacancies is the same in all aggregates), but the local
organization of the particles (the color of the faces in contact) are all different.

of the particle facing the vacancies, but a closer look at the organization of the particles
reveals that they are different.

In the rest of the thesis, we need to compare interaction maps. The permutation equiv-
alence makes the element-wise comparison of interaction maps an ill-defined measure of
their similarity. We will compare two interaction maps J and J ′ by exhaustively comparing
all the elements of S(J) with J ′.

2.4 Characterization of the aggregates at equilibrium

Our goal is to relate the interactions of individual particles with the shape of the aggre-
gate upon self-assembly, by using the interaction maps framework. In Sec. 2.3, we showed
how we could explore the parameter space of the interaction maps. Here, we show how
to characterize the macroscopic properties of an aggregate resulting from self-assembly. In
particular, we can look at the configuration of the system at a given time (Sec. 2.4.1),
measure the averaged occurrence of each type of bonds (Sec. 2.4.2) and compute geometric
descriptor to characterize the size and the shape of the aggregates (Sec. 2.4.3). All those de-
scriptions are complementary methods we use to characterize the outcome of self-assembly
in the rest of the thesis.

2.4.1 Visualization
We already made extensive use of the visualization of a system at equilibrium in the

previous figures of this chapter. Although very qualitative, visualization of the system
enables to get intuition of the characteristics of an aggregate, such as the fact that the
particles are organized in a regular way within an aggregate, or the fact that the particles
formed a dense aggregate or remained detached in a gas configuration. In practice, we use
the positions {xi(t)} and the orientations {φi(t)} of all particles measured at a given time
at the end of the simulated annealing described in Sec. 2.2.3. In the rest of the thesis,
the representation of an aggregate will vary, from particles where the faces are colored
differently, to particles with an arrow indicating its orientation. Because a visualization
of the system configuration is measured at a given Monte-Carlo step, it does not allow
estimating the fluctuation of the system.
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Figure 2.9: From a given interaction map, we characterize the equilibrium aggregate
by its density map, image, and values of the geometric descriptors. (Top) the particles
aggregate into a porous aggregate by only binding two pair of faces. (Bottom) the system
forms oligomers of on average 9 particles. In both cases, the interactions that are frequent
(blue in the density map) are also the one with low energy (blue in the interaction map).

2.4.2 Configuration averaging
In Sec. 2.1.2, we explained that the energy of the system is directly related to the

number Nab of occurrence of each pair of faces (a, b). Here, we show that the measure
of Nab in numerical simulations enables to measure the energy of the system, but also
qualitatively evaluate the frustration of the interactions.

After the simulated annealing, we run Naverage Monte-Carlo steps at finite temperature,
as explained in Sec. 2.2.3. At each step t, we measure the number of each pair of faces in
the system Nab(t). This number is then averaged for Nstatistics times step, and normalized
by the total number of bonds in the system. We thus define the averaged density of a face
pair ⟨cab⟩ as

⟨cab⟩ =
⟨Ns(t)⟩Nstatistics

Nbonds
(2.12)

There are as many values for the densities of full-full interactions as interaction energies.
The averaged energy of the system over different configurations at finite temperature is
then measured by the element wise product between ⟨Nab⟩ (or ⟨cab⟩) and Jab, as defined
in eq. 2.5.

As we did for the interaction map, we represent the density map as a matrix, where
the pair of faces corresponding to each of the entries are defined in Figure 2.3. We show
examples of such interaction maps and density maps in Figure 2.9 for two system with
random interaction maps. In this Figure, we verify that the pair of faces that are often
observed in the system correspond to the one with low interaction energy: the blue entries
in the density maps are also blue in the interaction map. This representation also shows
that there are some favored interactions (blue in the interaction map) that are never
observed (white in the density map). This suggests that the particles cannot satisfy all
their favored interactions, because of geometric constraints, which is how we introduced
frustration in Chapter 1. We introduce a quantitative measure of this frustration (the fact
that there are favored but unrealized interactions in the system) in Chapter 3.

The density map is useful to measure the energy of the system and evaluate frustration,
but it is not directly usable to characterize the shape and the size of the aggregates.
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Figure 2.10: The size, sphericity and porosity (defined in the text) of an aggregate are
measured by counting the number of outer surface bonds (pink) and the number of particles
and vacancies in the aggregate. Here, the cluster has 11 particles, 1 vacancy of size 2, 10
inner surface bonds and 26 outer surface bonds.

2.4.3 Geometric properties of the cluster
Finally, we measure the geometric properties of the aggregates, to characterize its size,

which can be infinite (all the particles in the system are within the same aggregate) or
finite, its shape, which can be more or less spherical, and its porosity (the number of
vacancies). We expect all those characteristics to be related to the interaction maps. Here,
we explain which geometric descriptors we measure from the result of the self-assembly of
a given interaction map.

In the simulations, we identify the particles in the same cluster, i.e. the particles that
are all connected through full-full bonds. For each cluster, we count the number of particles
np, the number of holes nh, the number of inner empty-full bonds (or inner surface) nin
and the number of outer empty-full bonds (or outer surface) nout. They are illustrated
with an example in Figure 2.10. It is necessary to make the distinction between outer and
inner surface to compute the aspect ratio of the aggregates.

From this, we can compute descriptors that are informative about the type of aggregates
we observe. For a given cluster, we measure its

• size np,

• volume v = np + nh,

• porosity p = nh/(np + nh),

• surface to volume ratio 1
2nout/(np + ns),

• sphericity n(max)
out (v)/nout.

The sphericity is the ratio between the number of surface of the aggregate, and a spherical
aggregate of the same size. This measure is thus independent of the size of the cluster. An
ideally spherical cluster thus has a sphericity equal to 1. A cluster of low sphericity is for
example elongated, because it has more surface than if it were a sphere. This measure is
more convenient than the surface to volume ratio, which scales as the size of the system.
The average are done over all cluster within the all simulations, and weighted by the size of
the cluster. Some of the descriptors can be seen in Figure 2.9. The top example emphasizes
the importance of running several simulations: the averaged size of the cluster performed
over 5 simulation is 77, while the total number of particles is 100. In the one image that we
show, the cluster has size 100. The average size is then more informative than one picture.

We now have the tools to characterize the equilibrium aggregates, and to understand
to which properties of the interaction map they are related.
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2.5 Generalization beyond two-dimensional hexagonal parti-
cles

In the examples we showed so far, and throughout the thesis, we mostly consider
hexagonal particles in two-dimensions. Here, we show that the framework of interaction
and density maps describes situations that are more generic than the self-assembly of one
type of two-dimensional particle that has the geometry of the Voronoï cell of a lattice.
In Sec. 2.5.1, we show how three-dimensional examples increases the design space of the
particle. In the simulation, the particles are the Voronoï cell of a lattice, which prevents the
exploration of the self-assembly of other particles, as the triangle. In Sec. 2.5.2, we explain
how to circumvent this limit and use the model also for triangular particles. Finally, we
only studied the case of self-assembly of one particle type. In Sec. 2.5.3, we see how the
framework of interaction map can also be generalized to more than one particle.

2.5.1 Generalization in 3D
The model we introduced for two-dimensional particles, like the square or the hexagon,

is also valid for three-dimensional particles. We show how the dimension of the interaction
maps, and therefore the design possibilities, are increased by considering 3D particles.

The orientation of a particle in 3D is not defined by one angle as before, but by
three angles, because the particle can be rotated around a different axis. For a given 3D
particle, we enumerate all the possible orientations. Each orientation is labelled with an
integer φ. In 2D, we identified the energy associated with a contact between two particles
by determining the faces (a, b) in contact. We introduced (a, b) = M(φi, φj ,vi→j). In
3D, this is not sufficient, and a configuration of a pair of particles depends on the faces a
and b that are in contact, but also on the relative orientations of the two faces. This is
illustrated in Figure 2.11. In all four situations in the figure, the purple and green face of
the particle are in contact. From situation (a) to situation (b) however, the particle i is
rotated, around the axis of the contact direction v3, and the relative orientations of the
green and purple faces changed. We assign a different energy to the interaction in both
situations. From (a) to (c), both particles are rotated together. The orientations of each
particle and the direction of contact change, but the way the two faces are in contact does
not, and both (a) and (c) are associated with the same interaction energy. (c) and (d) are
different for the same reason as (a) and (b). To take into account these differences, we
introduce the angle of contact, ψij which describes the relative orientations of two faces in
contact. Then, the mapping to determine the configuration of the face pairs is contact is
now

M(φi, φj ,vi→j) = (a, b, ψij) (2.13)

For a regular polyhedron, there are Nfaces × (Nfaces + 1)/2 couples of faces that can
be in contact. We also define nr, the number of relative orientations of two particles in
contact, such that they still occupy the Voronoï cell of the lattice. The total number of
ways two neighbor particles can be in contact is now

Npairs = Nfaces ×
Nfaces + 1

2
× nr (2.14)

In table 2.1, we reference for each lattice, the type of particle, the number of faces, the
number of orientations, the number of relative rotation between two faces, and the total
number of non-redundant pairs. The images corresponding to each geometry are also
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Figure 2.11: In 3D, the relative orientations of the faces in contact determines the energy
of the pair configuration. ((a) and (c)) and ((b) and (d)) are equivalent configurations
because the same faces are in contact with the same relative orientation. (a) and (b) are
different because the same faces are in contact, but not in the same relative orientation.

Square Hexagon 3D-hexagon Cube Dodecahedron Octahedron

Figure 2.12: Lattice particles are Voronoï cells of a lattice. The square and the hexagon
are two-dimensional and interact through their edges (that we call face throughout the
thesis because we mostly consider 2D systems). The 3D-hexagon, cube, dodecahedron,
and octahedron interact through their faces (each displayed a different color).

shown in Figure 2.12. This illustrates how large the dimension of the interaction map can
get for three-dimensional particles. For instance, for the rhombic dodecahedron, there are
144 interaction energies to define.

It is not surprising that self-assembly of three-dimensional objects such as proteins can
result in extremely broad diversity of aggregates, as we emphasized in the introduction
of the thesis. Hexagonal particles provided rich enough behavior, and we did not explore
the self-assembly of three-dimensional particles, but the tools to study such problem are
implemented for further studies. In particular, dimensionality reduction of the aggregates
could be investigated in more details. In 2D simulations, dimensionality reduction corre-
sponds to the equilibrium aggregate being a fiber. 3D simulations enable to distinguish
between a sheet (2D aggregate), and a crystal (3D aggregate), but also shapes like tubes
or spherical shells. Sheet, tubes, or shells are examples of dimensionality reduction that
are richer than the sole fiber example available in 2D simulations.
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Lattice Particle Nfaces Norientations nr Npairs

Square Square 4 4 1 10

Triangular Hexagon 6 6 1 21

Hexagonal 3D-hexagon 6+2 12 2 or 6 60

Cubic Cube 6 24 4 84

FCC Dodecahedron 12 48 2 144

BCC Octahedron 8 24 1 36

Table 2.1: Increasing the number of faces of the particles increases the number of pair
configurations, and the design space. BCC is Body Centered Cubic and FCC is Face
Centered Cubic

a b c

Figure 2.13: We use of implicit hexagons to simulate the self-assembly of lattice triangles.
a) Closed packing of regular triangle on a honey-comb set, which is not a Bravais lattice.
b) Implicit hexagons to model triangle interaction: some interactions between the hexagon
correspond to the interaction between two faces of the triangles, and they are assigned
with a physical energy. Other interactions between the hexagon correspond to interaction
between corner of the triangle, and they are assigned infinite energy. c) Distribution of the
implicit hexagons on the triangular lattice.

2.5.2 Self-assembly of triangles
Our numerical simulations could be used to model the self-assembly of colloidal particles

on a 2D-substrate. These particles can be 3D-printed, and have arbitrary shape. The most
simple polygon in 2D is the triangle, and we could study the self-assembly of triangular
colloids. However, the triangle is not the Voronoï cell of a Bravais lattice, and it is not
possible to implement this geometry in our code. Here, we show how to circumvent this
limitation.

The triangle is the regular two-dimensional polygon with the least faces, and it is the
Voronoï cell of the honeycomb set, that is not a Bravais lattice. Examples of honeycomb
set and triangular particles are shown in Figure 2.13a. To study the self-assembly of
triangles, we use the hexagonal particles as an implicit representation of the triangle. The
hexagons have some constraints: some interactions are infinitely repulsive, because they
correspond to interactions involving the corner of the explicit triangle. This is illustrated
in Figure 2.13b, the explicit triangles are in gray, and the implicit hexagon in black. Some
interactions between the hexagons are forbidden. The result of the packing of the triangle
is shown in Figure 2.13c. A dense aggregate of triangular particles corresponds to a porous
aggregate of the implicit aggregate of hexagonal particles.

We use this approximate representation of the problem to study the self-assembly of

38



triangular particles at the end of Chapter 3. We took advantage of the fact that only
the lattice and the interactions between particles are implemented in the simulation, not
the geometry of the particle. This enabled us to implicitly implement the self-assembly
of triangular particle. It is not clear whether this trick could be used to study other
particle geometries, like rhombi or pentagons. However, the possibility to assign infinite
energy value to some interaction enables to take into account geometric specificities of the
particle.

2.5.3 Several types of particles
We implemented a model of one particle with directional interactions. This model

enables to explore the diversity of aggregate that can arise from directional interactions.
Here, we show that we can also study the self-assembly of several particle types, each having
different interaction maps, and show that the different types of particles can self-assemble
in the same aggregate or not.

In the case of two particles, we need to define three interaction maps: that of particle
A with itself, that of particle B with particle A, and that of particle B with itself. We
show examples of the matrices and the simulation results in Figure 2.14. Particles A are
represented with the color code used before, while particles B are represented in pink and
orange colors. One should notice that the AA and BB interaction maps are symmetric
as before, but the AB map is not: the interaction of face a of particle A with face b of
particle B is not equivalent to that of face b of particle A with face a of particle B. For
two hexagonal particles, there are 21 + 36 + 21 interactions energies to define.

In Figure 2.14, we show two situations of self-assembly of 100 green and 100 pink
particles. On top, the green and pink particles assemble in the same aggregates. On the
bottom, the pink particles form fibers, and the green forms bulk. This can be observed
in the green-pink density map: a contact between the green and the pink particle almost
never occurs, and the density map is white. This suggests that directional interactions
between more than one particle gives rise to very diverse aggregate shape, as before, but
also a phenomenology associated to the ability of the two particles to mix or not.

This could also be generalized to a larger number of different particles. However, the
total number of energy values in the interaction maps grows as the square of the number of
particles type. This type of simulation would not be well-adapted to study the self-assembly
of particles that are all different, for instance, because there are too many parameters to
define.
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Figure 2.14: Two types of particles can either mix in the same aggregates (top) or form
separated aggregates (bottom). The interaction maps and the density maps are shown,
with the same conventions as in Figure 2.9 (we do not represent the color bar for clarity of
the representation). The particles on the top and left of the matrix indicates which pair of
particles the matrix corresponds to. We show the corresponding equilibrium configuration
of the system.
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3 - Anisotropic particles with random interactions
form aggregates of reduced dimensionality because
of frustration

We introduced a model of lattice particles with directional and arbitrary interactions.
In this chapter, we understand how the local properties of the particle interactions are
related to the type of aggregates they form upon self-assembly. We systematically explore
the design space of those particles by studying a large number of different equilibrium
configuration, resulting from the self-assembly of particles with random interactions. We
show that most of the aggregates resulting from the self-assembly of anisotropic particles
are frustrated, because there is no periodic organizations of the particles that tile the
plane with low energy. Then, the aggregates reduce their dimensionality by forming fibers
or micelles. We hypothesize that this reduced dimensionality is related to frustration.

In Sec. 3.1 we sample a large number of particles with a chosen affinity and anisotropy.
They self-assemble in very diverse aggregates. We see how the affinity and anisotropy of
the particle influence its self-assembly, on average. In Sec. 3.2, we provide an individual
classification of all the aggregates and confirm that anisotropic particles form aggregates of
reduced dimensionality. In Sec. 3.3, we show that the ability of the particles to assemble in
periodic motifs of low energy, that determines the type of aggregates it forms. Finally, in
Sec. 3.4, we propose preliminary interpretation of how these results extend when there are
two types of particles in the system, and show how they could be tested experimentally.

3.1 Affinity and anisotropy as parameters

Here, we draw the interaction map of the particle randomly, while choosing the affinity
and anisotropy of the particle and show that it leads to aggregates of very diverse shape,
and frustrated aggregates. In Sec. 3.1.1, we explain how we explore the parameter space
by drawing interaction maps in a Gaussian distribution. We then study the averaged
properties of an aggregate of particles with similar affinity and anisotropy. In particular,
we see that increasing particle anisotropy decreases the energy of the system (Sec. 3.1.2),
results in aggregates of non-trivial shapes (3.1.3), but that those aggregates are not more
frustrated than the aggregates of particles of low anisotropy (Sec. 3.1.4).

3.1.1 Random particles form aggregates of diverse shape
We recall that the particle is fully described by its interaction map, which, for the

hexagonal particle, has 21 independent parameters. We show why the average and standard
deviation of those parameters can be interpreted as the affinity and anisotropy of the
particles. We detail how we choose those parameters to sample the design space of the
particle. We show that the aggregates obtained by those design choices have very diverse
shapes.

We draw those 21 parameters independently of a Gaussian distribution of average µ
and standard deviation σ. µ determines the global affinity of the particle: if the interaction
energies are on average negative, the particle will tend to form dense aggregates. If it is
on average positive, the particle will be mostly repulsive. σ then describes the anisotropy
of the particle. If σ is small, all the interaction energies are similar, and the particle is
isotropic, it does not have preferred directions of binding. On the other hand, if σ is large,
some interactions are repulsive, some are attractive.

We explore the space by varying µ and σ. We choose µ ∈ {−4,−2, 0, 2, 4}kT and σ ∈
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{0.1, 1, 3, 5, 7, 9, 11, 15}kT. For each condition, we draw Ndata = 200 different interaction
maps. This corresponds to a total of 90000 different systems. We refer to the distribution
where the interactions are drawn as N (µ, σ). For each of them, the equilibrium states and
descriptors are computed according to Monte-Carlo simulation, as presented in Chapter 2.
We consider hexagonal particles on a two-dimensional lattice with Lx = Ly = 30 (Lz = 1),
Nparticles = 100. For a given interaction map J , the annealing is performed between the
temperatures T0 = max(|J |) and Tf = 1kT . This choice of T0 ensures that the largest
energy barriers are being sampled at the beginning of the annealing. We choose NT = 100

temperatures, and Nsteps = 100 × Nsites. The number of annealing Monte-Carlo steps
is therefore Nannealing = 9 × 106. The density of each structure is then averaged over
Nstatistics = 1000 × Nsites steps. For each interaction map, we perform Nsystems = 5

different annealing and measurements.

For each value of affinity and anisotropy, we show the result of the simulation for one
system in Figure 3.1. We also show the interaction map and density map. We can first
study the low anisotropy limit in the lowest part of this figure. If the affinity is negative,
the particles are isotopically attractive: on the bottom right, the interaction maps are
completely blue, and the particles form dense aggregates and have random orientations. If
the affinity is positive, the particles are repulsive: the interaction maps are red, and the
particles are not in contact. If the affinity is zero, it is a gas of non-interacting particles.
Upon increasing the anisotropy of the particles, the aggregates have less trivial shapes. We
retrieve the typical aggregates introduced in the Chapter 2, such as the dense crystal (for
instance at (µ = −4, σ = 5)), the sponge ((µ =, σ = 11)), or the fibers ((µ = 0, σ = 5)),
or the aggregates of small size ((µ = 2, σ = 9)). We also observe aggregates that were
not observed with the two level interaction maps, or the particles with colored vertices
introduced in the Sec. 2.3 of Chapter 2, such as branching fibers ((0, 7) or (4, 0)), dense
aggregates of intertwined fibers ((−2, 7)), or small aggregates with no clear motif ((0, 15),
(4, 11), (−4, 9)). Those aggregate images are not trivially related to the interaction maps.
This is also understood by looking at the density map: some favored face pairs are present
with high density in the system, but for almost all the examples of Figure 3.1, there are
some favored interactions in the interaction map (blue entry in the left matrix) that are
not observed (white in the right matrix).

From these examples, we conclude that the aggregates generated from particles with
random interaction are very diverse, as were the protein aggregated presented in the in-
troduction of the thesis. The exploration of the design space of the particles by choosing
a large number of random interaction maps thus appear as a reasonable method to draw
systematic conclusion on the relation between the interaction between the particles, and
the shape of the aggregate.

3.1.2 The energy of a system is governed by the values of the best
interactions

Here, we show that the aggregates are frustrated, because the system is not governed by
the interaction of lowest energy only. The energy of a particle depends on the interaction
it has with its neighbors, and is easily measured in the numerical simulation. The affinity
of the particles sets the global level of those interactions, and should influence the energy
of the system, but the influence of the anisotropy is not clear. Here, we determine this
influence and show that the energy of the system is governed by some of the interactions
of lowest energies, but not only the lowest one.

We recall that the energy of a particle is the sum of the interaction energies, weighted
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Figure 3.1: Particles with random interaction self-assemble in aggregates of diverse shape.
For a given value of affinity µ and anisotropy σ, we show an image of the system, and the
interaction (bottom left) and density maps (bottom middle). For the interaction map, red
is positive and blue is negative (the darkest colors correspond to 15 and −15kT ). For the
density map, white correspond to c = 0 and the darkest blue corresponds to c = 0.05.
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Figure 3.2: The energy per particle decreases linearly with the particle affinity and
anisotropy, on average. a) We fit the linear dependence of the expected energy per particle
with σ. We show that the slope does not depend on σ (b) and that the origin scales linearly
like µ (c), which verifies equation 3.2. The vertical (resp. horizontal) error bars correspond
to the standard error of the measured energy (resp. anisotropy) of the data (200 data per
points).

by how often they are observed at equilibrium.

E =
1

Nparticles

∑
s

NsJs (3.1)

We expect this energy to be negative: if the particles are repulsive (positive mean of the
interaction map), the system will remain in a gas configuration. Then, all the bonds in
the system are empty-full or empty-empty, which were assigned energy zero.

We also expect the energy of the system to depend both on the mean and the standard
deviation of the interaction map. To understand this dependence, let us consider two
extreme situations: the situation where the occurrence of each type of bond is independent
of their energy, and the situation where all the bonds are in the configuration of minimum
energy. Neither of this extreme cases are realistic. Indeed, because the system is at
equilibrium at kT = 1, the bonds with high energy will not be observed. Also, because
one particle always has six faces, the equilibrium organization of the particle will involve
a set of compatible favored faces, and not just the most favored one.

In the first situation, the occurrence of a face pair (a, b) = s is independent of its
energy, such that Ns = n. Then, the energy of a system would just proportional to E(Js),
the expected value for the bonds’ energy. E(Js) =

∑
s Js/21. There are 21 values for Js

in the case we study, and because of the law of large numbers applied to the values of Js,
we then expect E(Js) ≈ µ, with µ the average of the distribution where the interaction
map was drawn. Then, the expected energy of a system with interaction map drawn in
N (µ, σ), which we denote as E(E(µ,σ)) verifies E(E(µ,σ)) ≈ µ.

In the second situation, all the full-full bonds in the system are in the configuration
of the face pair of lowest energy, which we refer to as smin. Then Ns=smin = n and
Ns ̸=smin

= 0. The energy of a system would then be proportional to the expected value
of the minimum of the interaction map E(minJs). The expected value of the minimum of
21 randomly Gaussian variables depends both on µ and σ. Its expression is E(minJs) =

µ − ψ21σ, with ψn is the expectation of the maximum of n random variable drawn in
N (0, 1), and verifies ψn ∼ √

logn in the asymptotic limit [104]. For 21 variables, the
expected value of the minimum is ψ21 ≈ 1.7. Then, the expected energy of a system with
interaction map drawn in N (µ, σ) is E(E(µ,σ)) ≈ µ− 1.7σ.

We expect the situation to be in between both extreme cases we just described:

E(E(µ,σ)) ≈ µ−mσ (3.2)

44



0 10
0

25

50

75

100
Si

ze

0 10
0.00

0.02

0.04

0.06

Po
ro

sit
y

0 10

0.8

0.9

1.0

Sp
he

ric
ity

0 10
0

1

2

3

Su
rfa

ce
 to

 v
ol

um
e 

ra
tio

4

2

0

2

4
Affinity of the particle 

 (kT)

Anisotropy of the particle  (kT)

a b c d

Figure 3.3: Aggregates have less trivial geometry when the anisotropy of the particle
increases. (a) Increasing the anisotropy reduces (resp. increases) the size of aggregate of
attractive particle (resp. repulsive) particles. It increases the porosity of all aggregates
(b) and decreases their sphericity (c) and surface to volume ration (d), and reduces the
aggregates size. The error bars are the standard error of the measure (200 data per points)

with m between 0 and ψ21. For each interaction map drawn in N (µ, σ), we compute the
energy of the system with Eq. 3.1. We then average this quantity for all the Ndata = 200

interaction maps drawn in N (µ, σ). In Figure 3.2a, we plot E(E(µ,σ)) as a function of E(σ)
for all the values of µ (referenced in the color bar). We denote as m and p the slope and the
origin measured by the linear fit. As expected, the energy of the system decreases when
µ decreases and when σ increases. We fit the data with a linear function, for each value
of µ, and plot the slope (resp. the origin) of the curves in Figure 3.2b (resp. c). Because
the energy is necessarily lower than zero, the linear evolution of the energy is capped for
the lowest values of µ and σ. We only fit the curve in the linear regime (see the beginning
of the dashed lines in the figure). m appears independent of the value of µ in plot (b),
and p appears to scale linearly with µ in plot (c). We verified the expected scaling of the
equation 3.2. The measured value for the coefficient of the linear dependence of the energy
m on σ is around 0.9 < ψ21. This means that the energy of the system is not on average
governed by the energy of the lowest interaction, if the asymptotic limit of ψ is verified.
There is however a linear dependence in σ, which means that the energy of the system
is governed by some of the interaction of lowest energy. This measure however does not
provide information about the shape of the aggregates and its dependency on the particle
anisotropy.

3.1.3 Tendencies in the descriptors

We now show that increasing the anisotropy of the particles leads to less trivial ag-
gregates, i.e. porous and non-spherical aggregates of intermediate sizes. We observed
important variations of the aggregate shape in the examples shown in Figure 3.1: as the
anisotropy of the particle increases, the aggregates have more complex shapes than the gas
or the liquid. In Chapter 2, we introduced quantitative descriptors of the aggregate shapes:
the average size of the cluster in the system, their porosity (number of holes per particles),
their sphericity (between 0 and 1) and the surface to volume ratio. We compute those
shape descriptors for all the systems and measure their dependency on the anisotropy of
the particle.

For each interaction map, we measure the averaged size, porosity, sphericity and surface
to volume ratio of all the aggregates measured at equilibrium. We then average those
quantities for the Ndata = 200 maps drawn in the same distribution N (µ, σ). The average
values of the geometric descriptors as a function of σ for each values of µ (indicated by the
color bar) are plotted in Figure 3.3.
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For quasi-isotropic particles (σ = 0.1), we recover the trivial lattice gas model: ag-
gregates are either bulks when the particles are attractive, or monomers when they are
repulsive. Such aggregates are either of size 1 or 100 (the total number of particles) (left
points of panel a). They are never porous (left points of panel b). They are spherical
(left points of panel c), except for the case µ = 0 where small aggregates self-assemble for
entropic reasons, and they are not necessarily spherical (such aggregates can be observed
in Figure 3.1 for µ = 0 and σ = 0.1). The surface to volume ratio (left points of panel d) is
large for small aggregates (3 surface bonds per particle) and low for large aggregates (the
number of surface bonds scales like the square of the aggregate size).

When the particle anisotropy increases, the influence of its affinity is less important,
curves of different colors reach more similar values. Figure 3.3a shows that the aggregate
size increases with anisotropy for repulsive particles and decreases for attractive particles:
For highly anisotropic particles, there are too many constraints for the particles to form
an aggregate of infinite size when they are sticky on average. When they are repulsive
on average, the few attractive interactions enable the particles to form an aggregate of
bigger sizes. Figure 3.3b shows that the porosity of the aggregates always increases with
the anisotropy of the particle: dense aggregates cannot form when there are too many
unfavored interactions. Figure 3.3c shows that the shape of the aggregates becomes less
trivial: we recall that the sphericity decreases if the aggregate has more surface than a
spherical aggregate of the same size. The sphericity is around 0.8 for largest values of
anisotropy, which means that on average, the aggregates have 20% more surfaces than
their spherical equivalent. The surface to volume ratio Figure 3.3d is less informative,
because all its variations are governed by the size of the aggregate.

The anisotropy is a relevant measure of the particle interactions to characterize the
complexity of the aggregate they form. Indeed, upon increasing anisotropy, the particles
form aggregates that are more complex than dense aggregates or infinite sizes, or monomers.
From the examples of Figure 3.1, it is however clear that the averages we computed in
this section are not sufficient to characterize the diversity of aggregates observed with
our sampling of the interaction maps, and for the same value of affinity and anisotropy,
aggregates can still be very different.

3.1.4 Measure of frustration
Here, we show that aggregates are frustrated. A particle in an aggregate is in inter-

action with all its neighbors such that there are geometric constraints that do not allow
all the interactions to occur: the system can be frustrated. We expect the aggregates of
anisotropic particles to be frustrated, because the particles have more incompatible inter-
actions. Therefore, we are mostly interested in measuring the frustration of anisotropic
particles. By measuring the occurrence of each interaction (the density map introduced
in Chapter 2), we determine a quantitative measure of this frustration (Sec. 3.1.4.1). We
see that aggregates of anisotropic particle are not more frustrated than those of isotropic
particles, according to that measure (Sec. 3.1.4.2).
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3.1.4.1 Naive minimization of the energy
A system is frustrated when some favored interactions are unsatisfied, or when some

unfavored interactions are satisfied. Here, we introduce a measure of relative frustration
that does not depend on the averaged energy of the system. It measures how far the system
is from the composition that minimizes its energy if they were no geometric constraints for
the self-assembly of the particles.

The energy of the system is E =
∑

s csJs. Given an interaction map J , a naive
approach consists in finding the density map c that minimizes the energy: we expect that
the face pairs of low energy are often observed, and that of high energy are not observed.
However, the density cannot just be 1 for the most favored bond and 0 for all the others:
we showed in Sec. 2.1.3 of Chapter 2 that the number of bonds in a given structure Ns

respect some constrained because the number of particles (and therefore the number of
faces) in the system is fixed. The fraction of bonds in structure cs = Ns/Nbonds. We can
therefore determine a minimal density map, c(min) (or alternatively c(min) in the vectorized
form), which is the density map that minimizes the energy, subject to the constraint of
conservation of the number of particles. However, this measure does not take into account
the geometric constraint of the system, as it is done by the Monte-Carlo simulation. Indeed,
if there are loops of three particles involving contacts between the following faces (a, b),
(b, c) and (a, c), and if contacts (a, b), (b, c) are very favorable, but contact (a, c) is repulsive,
the idealized minimization will simply ensure that c(min)

ab and c(min)
bc are as large as possible,

and that c(min)
ac is zero, which is not possible geometrically.

Formally, we solve the following problem:

c(min) = min c · J (3.3)

subject to


cs ∈ [0, 1]∑

s cs = 1

c0a +
∑

b ̸=a cab + 2caa =
Nparticles

Nbonds

We write the third constraint of Eq. 3.3 with the reference of the faces a, b rather than
the label of the face pair s, for clarity of the meaning of this equation (conservation of the
faces), but each unique pair of face (a, b) corresponds to a face pair s. We solve Eq. 3.3
numerically for all interaction maps, and we can compare it to the measured density map
that result from the numerical Monte-Carlo (MC) annealing, which we denote by c(MC) to
distinguish it from c(min). In Figure 3.4, we show examples of such maps for three systems
for which (µ, σ) = (0, 13). For system (a), the system composition computed from the naive
minimization is very similar to that measured in the Monte-Carlo: the face pairs that are
observed often (colored in blue) are the same for both c(MC) and c(min). In situations (b)
and (c), they are different. Examples in panel (b) and (c) are frustrated in the sense that
they do not reach the lowest possible energy, because of geometrical constraints.

We now introduce a quantitative measure of frustration. We can first calculate the
difference between the energy of the system computed in the Monte-Carlo simulation, and
that of the idealized system.

∆Ef = J · c(MC) − J · c(min) (3.4)

This measure is however proportional to J and will directly scale like µ−mσ as was shown
in Sec. 3.1.2. Therefore, we rescale this measure by the energy of the system E(µ,σ). The
relative frustration δEf reads

δEf =
∆Ef

|E(µ,σ)| (3.5)
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Figure 3.4: A system is frustrated when the density maps are not a trivial minimization
of the interaction map. For each interaction map J , we show J , c(MC) and c(min), the
density maps measured in the Monte-Carlo simulation, or derived by minimizing the energy
without geometric constraints (equation 3.3) System (a) is not frustrated, and system (b)
and (c) are. The colors scale of the matrices were detailed previously. Here, the darkest
color correspond to −30 or 30kT for the interaction map, and 0.05 for the density. The
value of relative frustration (equation 3.5) is shown on each image. For all those examples,
the interactions were drawn in N (0kT, 13kT ).

We only measure this quantity when (E(µ,σ)) is non-zero (see Figure 3.2), i.e. when
σ ≥ 5. For the examples of Figure 3.4, the computed relative frustration are, respectively
0.04, 0.43 and 0.97. This confirms the observation of the interaction maps, system (a) is
not frustrated, and systems (b) and (c) are.

3.1.4.2 Aggregates of anisotropic particles are not more frustrated
We now look for a dependence of the relative frustration on the anisotropy of the

particle: anisotropic particles have more unfavored interactions, and they might be more
subject to geometric constraints.

We measure the relative frustration for each system, as introduced in Sec. 3.1.4.1 for
systems where the energy per particle is non-zero (see Figure 3.2). For simplicity, we focus
on the data for which σ ≥ 5. Because within each group of similar σ and µ, the values of
frustration are broadly distributed, we choose to represent the histogram of the values they
take, rather than the average, as was done in previous plots of this section. The results
are shown in Figure 3.5. We plot the histogram of the relative frustration for a given
particle anisotropy (σ) in each subplot, and the color reference the affinity of the particle.
The position of the histogram bars are identical in all plots. We do not observe a shift
of the distribution towards higher values of frustration. The average of the distribution is
always similar, and it even seems that the highest observed values of frustration (around
δEf = 2 are more frequent for particles where the values of anisotropy are medium (σ = 5

or σ = 7). There is no influence of the affinity of the particle (no separation between the
colors in a given histogram). The aggregates of particles with large anisotropy are not
more frustrated than the others, which is not what we expected.

With the measure of frustration that we introduced, which quantifies the relative extra
energy the system has compared to an equivalent system without geometric constraints,
most of the aggregates are frustrated: for most of the aggregates, the density map is
different from the result of the naive minimization, and there is an extra energy associated
with this difference (up to around 200% extra energy). We do not observe differences
between aggregates of medium and large anisotropy, which we interpret as follows: in our
systems, the particles are in a dilute system (only 10% of the sites are occupied) and for
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Figure 3.5: Distribution of relative frustration is independent of the affinity and
anisotropy of the particle. Each graph corresponds to the data measured from a given
value of the particle anisotropy σ. The colors correspond to the affinity of the particle µ.
The distribution does not seem to depend on the values of µ and σ.

this reason, when the interactions are anisotropic and not compatible, the system will avoid
frustration by adopting an aggregate morphology that is less densely packed (smaller, more
porous, less spherical). For this reason, the energy of the system will not be much smaller
than that of the idealized energy without geometric constraint.

In this section, we showed that anisotropic particle form aggregates with more complex
shapes, and the reason might be that a dense aggregate would be too frustrated. Forming
smaller aggregates, having vacancies, or being fibrillar would then be a way to escape
frustration. However, the analysis we proposed here depends on averages over aggregates
that are very different, even if the particles have the same values of affinity and anisotropy.

3.2 Classification of the aggregates

To understand the relation between the interaction map and the shape of the aggregate,
we need to obtain an individual characterization of each system. Indeed, the examples of
aggregates we gave in Figure 3.1 for a given affinity and anisotropy were one example
among 200 results of equilibrating, and they were not representative of the other 199 ag-
gregates of the same affinity and anisotropy. We observed in the images of aggregates that
there seemed to be some stereotypical characteristics common to several aggregates that
have different local organization of the particles. For instance, we identified as fibers any
aggregates of width 1, 2 or 3 particles, regardless of the arrangement of the fibers in the
aggregate, and of the fact that they are branching or not. Because the geometric descrip-
tors introduced in Sec. 2.4.3 of Chapter 2 are not sufficient to systematically characterize
individual aggregates, we will do it with supervised machine learning. In this section, we
classify all the aggregates we obtained by the random sampling introduced in Sec. 3.1,
and see that affinity and anisotropy are not determinant of a type of aggregate, but that
fibers and small aggregates are more often formed by anisotropic particles. In Sec. 3.2.1,
we introduce our categorization of the aggregates, and in Sec. 3.2.2, we explain which data
we use to categorize the aggregates. In Sec. 3.2.3, we detail the machine learning method
we use, and in Sec. 3.2.4, we give a phase diagram of which aggregates are observed for
which values of affinity and anisotropy, and we justify a posteriori why this classification
would not have been easily implemented without machine learning methods: there is no
simple criteria that enables to retrieve the machine-learning categorization.
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Figure 3.6: Labelling of the aggregates. Each column correspond to a label, and we give
four examples of aggregate per label.

3.2.1 Labeling of the aggregates

We classify the observed aggregates according to their geometrical properties into 8

distinct categories: monomer, oligomer, micelle, crystallite, fiber, sponge, crystal and liq-
uid. This is done manually by looking at the snapshot of the data. These labels will then
be used as the categories of the supervised learning classification. Here, we explain the
criterion that are used for the labelling, and give examples of aggregates in each categories
in Figure 3.6.

We first distinguish the aggregates were all the particles have aggregated (the size of
the clusters is typically close to 100, which we sometimes refer to as infinite size). This
corresponds to the three columns on the right of Figure 3.6. In that case, the particles
can be arranged in a periodic organization without vacancies, and it is a crystal, or with
vacancies, and it is a sponge. The crystals can be patterned in different ways, all the
particles are in the same orientation (example (25) in the Figure), or there is an alternation
of the orientations (26 − 28) in the figure. The vacancies in the sponge can be organized
in different ways (see difference between ((23) and (24)). Sometimes, a fraction of the
vacancies are filled with a particle (like in (22)), but we still label this as a sponge. The
aggregates of size 100 that are not organized in a periodic way are labelled as liquid. In
some cases there, is some parts of the aggregates that are organized, and some other that
are not (like examples (30) and (31)), but as long as the pattern is not present in the whole
aggregate, we still label it a liquid.

We can then distinguish between the aggregates of very small size. If there is an
elementary motif repeated in each aggregate, it is an oligomer, otherwise, the aggregates
are monomers. This corresponds to the two columns of the left of Figure 3.6. The monomer
correspond to both repulsive particles (1) or non-interacting particles that can be next to
each other because the dilution is not infinite (2). In cases like (4), where some particles
are aggregated and some are not, we still label it a monomer. Oligomers correspond to
cycles (8), trimers (7), dimers, tetramers, or objects or a mixture of those (5− 6).

Finally, we distinguish between the aggregates of large but finite size. This corresponds
to the middle columns of Figure 3.6. When the aggregates are elongated in one dimension,
we label them as fibers. Fibers can be of width one-particle (17), two-particles (19) or
more (20). They can also branch, such as in (18), and be there can be an alternation
of orientations within the fibers like in (17). When there is a crystalline pattern in the
aggregates, but it was not sufficient for the aggregate to be of infinite size, we label it
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crystallite. This encompasses porous (13) and dense (15) crystalline patterns. When
portions of the small crystals did not arrange correctly (14), we also label it crystallite.
Finally, the aggregates of finite sizes for which the size was limited because some faces of
the particle were preferentially at the surface are called micelle. Those surface effects are
clearly visible in situation (9) and (12). This last category also includes aggregates that
could not be classified in other categories. For instance, aggregates in (11) are not identical
enough to be classified as oligomers, and the local organization of the particles in (10) is
not identifiable enough for the aggregates to be classified as crystallites.

With those criteria, we label 408 of the 9000 results of equilibrating presented in
Sec. 3.2.2 manually. This corresponds to ≈ 7 data for all values of affinity and anisotropy.
We also labelled data that were initially mis-predicted by the classification algorithm (for
which we explain the method in Sec. 3.2.3). In the labelled data, there is 14% of monomers,
9% of oligomers, 20% of micelles, 13% of crystallites, 6% of fibers, 9% of sponge 16% of
crystals and 13% of liquids.

There are some situations where the aggregate in the image are at the limit between two
categories: some liquids are almost completely organized and could be classified as crystals,
some crystallites are almost completely crystallized and could be classified as crystals or
sponge, some micelles are a disordered arrangement of short fibers and could be classified
as fiber, or there seem to be a pattern, and they could be classified as crystallite. However,
the canonical examples of those categories, (such as those in the top line of Figure 3.6)
appeared too different to merge the categories they belong to.

3.2.2 The classification relies on measure of density map and geomet-
ric descriptors

For a given interaction map, we measured the composition of the system, as well as
geometric descriptors, which we introduced in Sec. 2.4.3 of Chapter 2. Here, we explain
how those measures are used to create an input vector X for each interaction map, that
can be used to classify the data.

For each data, we concatenate

• the interaction map J (21 values)

• the density map c, and the empty-full and empty-empty densities of bonds (a total
of 28 values)

• the average size of the clusters, volume, porosity, sphericity and surface to volume
ratio (details on how they are calculated were given in Chapter 2) (5 values)

• the total energy of the system (equation 3.1) and the measured average and standard
deviation of the interaction map (3 values)

We call those values features. The result of the equilibrating for a given interaction
map is therefore described by 21+28+5+7 = 57 features. There are some redundancies in
this information (the energy of the system is just the sum of the pairwise product between
the interaction map and the density map), and the average and standard deviation of
the interaction map are calculated from it. However, keeping those redundancies that
correspond to physical description of the system (average and standard deviation of the
interaction map correspond to the affinity and anisotropy of the particles, for instance)
improved the performance of the machine-learning classification.

Each vector X is normalized by the features: for each feature, we calculate the norm
of all the measures for all the data (labelled and unlabeled), and normalize each feature
by this quantity.
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In Sec. 2.3.5 of Chapter 2, we explained why some interaction maps are equivalent up
to a cyclic permutation of the lines and the column. This is because there is an arbitrary
convention that is chosen to order the faces of the particles. We want our classification
to be independent of this arbitrary convention. For this reason, for one given simulation,
there are 12 data in our dataset, which correspond to the 12 permutations of the interaction
and density maps. All other features are left unchanged. This is similar to adding rotation
and mirror images of cats and dogs in image recognition. This technique is called data
augmentation [105], and it improves the performance of our machine-learning classification.

Finally, the categories in the labeled data are not equally distributed, which could make
the algorithm learn better to recognize the most frequent categories. To avoid this, we use
a technique called up-sampling that simply consists in duplicating some data in the least
represented categories. We do this for the sponge and the fiber.

For each data, we determined in Sec. 3.2.1 a label that correspond to one of the eight
categories of aggregate. We encode this labels as integer c between 0 and 7: monomer is
c = 0, oligomer is c = 1, etc. We can now compute the vector Ytrue of dimension, 8 where
Ytrue[c] = 1 if c is the category of the corresponding data, and Ytrue[c] = 0 otherwise.

With all of those techniques, we now have an input vector {X} of dimension 5220× 57

(the number of data times the number of features), and a vector {Ytrue} of dimension
5220 × 8 (the number of data times the number of category), which corresponds to the
labels of the data.

3.2.3 Method
We now build a classifier that predicts the aggregate category for a given data. We use

a feed-forward neural network classifier to learn the aggregate categories from the labelled
data [106]. This corresponds to measuring an output {Ypred} from the input {X}, such
that {Ypred} is as close as possible to {Ytrue}.

Classification is a widespread application of machine learning. Each data is assigned
a label, and a neural network is fitted to correctly predict these labels. In our case, the
data is a list of information about the energy and composition of the system, and the
geometric features of the aggregates. The labels are the categories of aggregates described
in Sec. 3.2.1. In practice, the network computes a probability for a data to correspond to
each of the categories of aggregate. The output is just an array of dimension 8, the number
of categories.

Detailed explanations about on neural network can be found in [105]. Here we present
the main concepts. A network is composed of several layers that performs operations on
the input vector. One layer will transform a vector X0 of dimension n0 into a vector X1

of dimension n1 with the relation

X1 = σ(1)(W (1) ·X0 + b(1)) (3.6)

where W (1) and b(1) are respectively the matrix of the weights (of dimension (n0, n1)) and
the bias vector (of dimension n1) of the first layer. σ is a non-linear function. A network
is then composed of n layers, and for each layer k, there is a weight matrix W (k) and a
bias vector b(k). The initial input layers are passed through all the layers, by repeating
the operation of equation 3.6.

x0
σ(1),W (1),b(1)

−−−−−−−−−→ x1
σ(2),W (2),b(2)

−−−−−−−−−→ x2...
σ(n),W (n),b(n)

−−−−−−−−−→ xn (3.7)

We choose σ(k) to be a rectified linear unit function defined as

σ(x) = x if x > 0

= 0 otherwise
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For the last layer, the activation function is a softmax function: it rescales all the
entries of the vector such that Ypred[c] is the probability that the data belongs to the
category c of aggregates.

X0 and Xn are the input and output vectors, that we call X and Ypred. The principle
of machine learning is to determine the set of {W (k)} and {b(k)} that will minimize the
distance between Ypred and Ytrue. This is measured with a loss function L. We chose the
cross entropy loss function, which is the usual choice for categorization problem [105].

L(Ypred,Ytrue) = −Ytrue · log(Ypred) (3.8)

To prevent the values of the weight to take too large values, we add a regularization. In

practice, we add the term l1
∑(

W
(k)
ij

)2
+ l2

∑ |W (k)
ij | to the loss function [105].

On a given dataset, we can also measure the accuracy A of the prediction: it is the
number of correct prediction over the whole dataset

A =
∑

data i

δ(argmaxcY
i
pred = argmaxcY

i
true) (3.9)

where δ(x = 0) = 1, and δ(x ̸= 0) = 1.
The minimization is done with several successive gradient descent, over a subset of the

data called minibatch. Those successive minimizations are called epoch, and this technique
is called mini-batch gradient descent. This fastens the training process.

This method is implemented in the python API Keras, and the Dense Layer class.
The dataset is then divided between a training set and a test set : the neural network is

fitted to minimize the loss on the training set. We then evaluate the network by measuring
the accuracy of the predictions on the test set. This ensures that the network learned
general rules to relate the data and the labels, and that the classification is not specific
to the data the network was trained on. If the difference between the accuracy on the
training and test set is large, it means that the network overfitted : the network captured
trends that are specific to the dataset it was trained on, but not generic. We chose the
hyperparameters of the network (number of layers, size of each layer, learning rate, number
of epochs, the values for l1 and l2) such that the test accuracy is large, and the difference
between the train accuracy is small.

In our problem, we obtained 99% learning accuracy and 93% test accuracy with the
following hyperparameters: there are 5 hidden layers of size n1 = 100, n2 = 200, n3 =

400, n4 = 100, n5 = 30. There are 800 epochs for which the measure is performed on
minibatches of 128 data. l1 = 10−4 and l2 = 10−5. In Figure 3.7 a and b, we show
the accuracy and loss measured on the training set along the learning (one measure for
each epoch). The accuracy progressively increases towards its maximum as the network is
trained. We also count, for each category, the number of correct and mis-predictions on the
data that we did not use to train the network. This is shown in Figure 3.7c, as a confusion
matrix. The diagonal terms correspond to the correct prediction. All the categories are
correctly predicted, but there are some mis-predictions between micelles and crystallites.
This was expected since the limits between those two categories were difficult to identify,
as explained in Sec. 3.2.1.

Because the mis-predictions correspond to distinctions that were hard to make also
manually, we consider that the network now predicts with sufficient accuracy the category
of any unlabeled data, and we use it as a classifier.
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Figure 3.7: We train a neural network to classify the aggregates. (a) and (b) correspond
to the evolution of the accuracy of the prediction on the training set, and on the measure
of the loss, as a function of the number of epoch (the amount of training time). At the end
of the training of the neural network, the accuracy (resp. loss) converged to a maximal
(resp.) value. The loss and accuracy are defined in equations 3.8 and 3.9. c) Confusion
matrix: for each true label, we show the number of data that were predicted with that
label (in the diagonal) or with another label, for the data in the test set.

3.2.4 Phase diagram

With this classifier, we can determine more precisely the relation between the inter-
action maps and the category of aggregates. Here, we classify the whole dataset, which
correspond to 90000 data, 200 for each value of affinity and anisotropy of the particle. We
show that affinity and anisotropy are relevant parameters to predict the type of aggregates,
but that they are not sufficient.

We regroup the particles for which the affinity and anisotropy is similar, and we show
the occurrence of each category of aggregates within this subset in Figure 3.8. In this figure,
each pie-chart plotted at coordinates (µ, σ) correspond to statistics of data for which the
affinity (resp. anisotropy) of the particle, i.e. the measured average (resp. standard
deviation) of the interaction map is in [µ− 0.5, µ+ 0.5] (resp. [σ− 0.5, σ+ 0.5]). The pie-
chart thus correspond to between 21 and 256 interaction maps. The colors then show how
often each category is observed. We find again the isotropic limit (bottom of the diagram)
for which the particles either aggregate in liquids when the affinity is negative, or stay as a
gas if the affinity is positive. We can distinguish three main regions, delimited by the gray
dotted line. In the lower right region, µ−σ > 2kT , which suggests that the bond with the
lower interaction energy typically is of the order 2kT . The particles are mostly repulsive,
and the observed aggregates are mostly monomer or oligomers (green). In the bottom
right region, µ+ σ < 2kT , which means that the bond of highest energy is not repulsive.
The particles are mostly assembling in liquids, crystals, or sponges (blue). The rest of
the diagram is much more mixed, and almost all types of aggregates are observed for each
couple (µ, σ). In the regions where the anisotropy is large, we mostly observe aggregates of
lowered dimensionality (fiber, crystallite, micelles, and oligomers), or two-dimensional but
porous aggregates (sponge). The anisotropy of the interaction prevents the aggregate from
assembling into a trivial shape, like the liquid, but they still self-assemble (they do not
remain as monomers): dark blue and dark green slices are scarce in the upper regions of the
diagram. The effect of the particle affinity is also less and less important as the anisotropy
increases: no clear difference between the top left and the top right of the diagram. Indeed,
for high anisotropies, the self-assembly is governed by few of the most favored interactions
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Figure 3.8: We observe aggregates of reduced dimensionality for anisotropic particles.
Each pie-chart shows which categories of aggregates are observed for the aggregation of
random particles of given affinity and anisotropy. Each pie-chart represent statistics for
between 21 and 256 particles, and the whole diagram represents statistics for 9000 particles.
Aggregation categories are assigned with machine learning.
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only, as was suggested in Figure 3.5.
Now that each data is classified, we ask whether it would have been possible to achieve

such classification without machine learning, simply by using simple criterion on the in-
teraction map, the density map, or the geometric descriptors. For this, we use principal
component analysis (PCA) to project the data in the space where the variance is maximal
[107]. If there are some simple linear rules that could be applied to categorize the data,
they will appear well separated according to their category in the projection. We do this
for some features of the dataset {X} introduced in Sec. 3.2.2. We consider {X1}, for which
the features correspond to the normalized values of the interaction map only (dimension
9000 × 21), {X2}, for which the features correspond to the normalized values of the den-
sities only (dimension 9000× 28), and {X3}, for which the features are the size, porosity,
sphericity, and surface to volume ration of the aggregates (dimension 9000× 4). For {X1}
and {X2}, we augment the data as was done in Sec. 3.2.2, to take into account the 12 cyclic
permutations of the matrices. We do principal component analysis of {X1},{X2} and {X3}
and show the result in Figure 3.9 a, b and c. The colors correspond to the categories in-
troduced above and are referenced in Figure 3.8. This diagram shows that we could not
find a trivial projection of the interactions map that is related to the aggregate category.
The projection of the data points of density maps and of the geometric descriptors are on
the contrary well separated according to the aggregate categories, because those measures
refer to the equilibrium configuration of the system. There is no clear separation of the
points, however, and it is clear from this projection that the limits between two categories
are not uniquely defined. There is no trivial criterion that we could have decided to define
aggregate categories from the density map and the geometric descriptors.

We also verify that the aggregate categories are not related to their frustration. The
initial hypothesis of this chapter was that the aggregates of lower dimension, such as fibers
or micelles, emerge when there is frustration in the interactions, i.e., if some favored bonds
are not realized because of geometric constraints. We now have a tool to verify if there is
a relation between frustration and dimensionality reduction. In Figure 3.9d, we plot the
measure of relative frustration introduced in Sec. 3.1.4. We do not observe any correlation
between the relative frustration and the aggregate category. This confirms the conclusion
we draw in Sec. 3.1.4: particles may assemble into aggregates of lower dimensionality to
avoid frustration, and this is the reason they form fibers, or micelles. As a consequence,
these types of aggregates are not necessarily more frustrated.

In this section, we classified individually each of the 9000 aggregates of particles with
random interactions, and observed that for non-isotropic particles, all aggregate categories
could be observed. We also confirmed the tendency of anisotropic particles to self-assemble
in aggregates of lower dimensions, like fiber, micelles, oligomers, or crystallites. The
method we used to predict the category of aggregate did not however provide a ratio-
nal understanding of what specificities of the interaction maps are responsible for the
aggregation in one category or the other. Anisotropy and affinity are also not sufficient to
discriminate between the aggregate categories.
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Figure 3.9: The determination of the aggregate categories is not trivial. Principal com-
ponent analysis of the interaction maps (a), density maps (b) and geometric descriptors
(c), with the labels learned with neural network. The colors are the same as in Figure 3.8.
d) Histogram of the values of relative frustration measured with equation 3.5. We do not
observe a correlation between frustration and aggregates category.

3.3 Relation between particles interactions and aggregates
shapes

We now take advantage of the large dataset of interaction maps for which the aggre-
gates have been assigned with a label to rationalize the relation between both. We want
to determine how the properties of the local interactions between the particles are related
to the result of their self-assembly. In more technical terms, which characteristics of the
interaction maps are related to the aggregate category. We compute predictors from the
interaction map, and introduce a method to quantitatively measure the quality of a pre-
dictor (Sec. 3.3.1). We then test this method on different predictors, such as the averaged
value of some interactions (Sec. 3.3.2). This method also suggests that both the energy
level of the interactions and the relative orientation of the particles they correspond to
are necessary information to explain the equilibrium aggregates (Sec. 3.3.3). Finally, we
introduce a predictor that describes the ability of the particle to form periodic motifs, and
show that it is directly related to the shape of the aggregate (Sec. 3.3.4).

3.3.1 Test importance of the elements of the interaction map with
machine learning

We show how neural networks can be used to determine which information in the
interaction map is related to the aggregate category. We check that from the interaction
map (without adding the density map and the geometric descriptor, as in Sec. 3.2.2), we
can train a neural network to predict the category of the equilibrium organization of the
particles that have this interaction map. We show that we can also train a neural network
from partial information of the interaction map only, and compare how good the prediction
of the category is. This will bring insight on how important this partial information is.

Here we compare how the aggregate categories are learned over three datasets {X1},
{X2} and {X3}. The features of {X1} are all the values in the interaction map, and the
measured values of affinity and anisotropy (21 + 2 features). The features of {X2} is the
interaction map, from which we only keep the diagonal terms, and the measured values of
affinity and anisotropy (6+2 features). The features of {X3} are just the measured values
of affinity and anisotropy (2 features).

For each of those partial datasets, we train the network on 1300 data, and predict
the accuracy of the prediction on 300 other data. We repeat this process 20 times for
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Figure 3.10: The learning is more difficult for partial dataset ({X2}, only the diagonal
terms of the interaction map and {X3}, only the affinity and anisotropy), and there are
more errors of the prediction (more off-diagonal terms in the confusion matrices). The
information in {X2} is more relevant than the information in {X3} because the learning
is better.

different random seeds. The data are normalized as described in Sec. 3.2.2. The network
and hyperparameters are the same as described in Sec. 3.2.3. In Figure 3.10a we show the
evolution of the averaged training accuracy during the fitting of the network. When the
full interaction map is used for the training (blue curve), the maximal accuracy is reached.
When the data used to train contains only partial information, the maximal accuracy is not
reached (purple and pink curves). We see, however, that the learning is better when the
diagonal terms of the interaction maps are left (X2) rather than when the only information
is the average and standard deviation of the whole map (X3). This is also confirmed on
the confusion matrices of the test set shown in Figure 3.10b,c and d. These matrices show
how each category was predicted by the network on data for which it was not trained. The
numbers are averaged over the different training. In all cases, the information is sufficient
to achieve partial learning, and some aggregates are correctly categorized. However, the
number of mis-prediction is more important for {X2} than for {X1} and more for {X3}
than for {X2}. This is intuitive: the more information was removed from the dataset, the
more difficult it is to learn the aggregates categories.

The accuracy of the training of the neural network on partial data can be used as
a quantifier of the importance of those features to explain the category of the aggregate
[108]. The measured accuracy of the test set depends on several parameters of the learning,
such as the duration of the training (number of epochs) or the architecture of the network.
However, if the test accuracy is worse from training different datasets on identical networks,
we conclude that those datasets are worse predictors of the aggregate category. We expect
the neural network to learn better the aggregate categories from datasets where there is
more features, because more information is available. However, if the measured accuracy
on the test set is lower when the number of features used to train the network is lower, it
means that a good predictor was found: the aggregate category is accurately learned with
a small number of well-chosen features. We take as a reference point the learning accuracy
for a dataset with all the features of the interaction map. This is the dark blue plus-shaped
point in Figure 3.12. For this dataset, the accuracy of the prediction is 0.81.
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Figure 3.11: Depending on the angle of two neighboring particle orientations, the corre-
sponding interaction leads to aggregate lines, trimer, cycle, or dimers. This angle corre-
sponds to entries of the interaction map that are in the same diagonal (colored in grey).

3.3.2 Masking and averaging
Here, we compare the accuracy of the predictions on the modified interaction map

to determine which part of the interaction map is important to predict the aggregate
category. With the method in introduced in Sec. 3.3.1, we can test naive hypothesis, such
as whether the interactions of the first face of the particles (first column in the interaction
map) is more important than the interactions of its second face (second column). On this
specific case, it is clear that both should be equally important, because of the particles
symmetries. We introduce competing hypothesis on what is important in the interaction
map, and measure the accuracy of the predictions on the corresponding reduced interaction
matrix. Here, for instance, we test whether some groups of interactions in the interaction
maps are more important than others. We explain in Sec. 3.3.2.1 how the different entries
of the interaction map can be regrouped. We then train the network while masking some
of the group of interactions Sec. 3.3.2.2, or by averaging together the energies within the
same group of interaction Sec. 3.3.2.3. This will reveal that the ability of the particles to
form lines is a very important predictor of the aggregate category.

3.3.2.1 Angle of interaction or faces of the particle
There are two ways to regroup the entries of the interaction maps. We can first regroup

the entries that involve the same face of the particle, which are simply the lines (or columns)
of the interaction map. We can also regroup the entries that correspond to the same angle
of interaction that we define here.

In Figure 3.11, we show what are the possible angles between two neighboring particles,
and to what entries of the interaction map they correspond (colored in gray in the matrix).
The angle of the favored interaction is determinant for the type of aggregate it can lead
to. Favored interaction that align the particle (line interactions), such as in panel (a), will
favor the formation of fibers). Favored interactions that have angle 2π/3 or π/3, such as in
panel (b) and (c) will favor the formation of loops of three particles (trimer interactions)
or six particles (cycle interactions). Finally, the interactions for which the angle in π, panel
(d), can only favor an aggregate of two particles (dimer interactions).

59



L
C
T
D

TL
DL
CL

DT

DC
TC

DCL
DTL
TCL

DTC

DTCL

1F

2F

3F

4F
5F

Figure 3.12: The prediction of the neural network decreases when some features are
removed. The deviation to this linear evolution corresponds to good predictors of the
aggregate category. The letters in purple indicate which portion of the aggregate category
was masked: TL means that trimer and line interaction were masked, 4F means that the
interaction energies of four faces were masked. The error bars correspond to standard
errors over the training of 20 different random dataset (almost always invisible)

3.3.2.2 Masking
A simple way to reduce the information in the interaction map is to set to zero some

of its entries. This technique is called masking, and it is the one we used in Sec. 3.3.1. We
use masking of some values of the interaction map. We can for instance mask the value of
the interaction that involve the face a of the particle (one column of the matrix), or the
trimer interactions (some sub-diagonals of the matrix, as shown in Figure 3.11). We can
mask one or several groups of interactions.

The learning accuracy as a function of the number of features of the dataset is shown
in Figure 3.12 in purple triangles. The dark purple triangles pointing up correspond to
dataset where some interactions with the same angle have been masked, and the light
purple triangles pointing down to dataset where some faces of the particle have been
masked. The label next to the point references which part has been masked: the point
labeled DC corresponds to masking of the dimer and cycle interactions. The point label
3F correspond to masking the interactions of three faces. Because the interaction map is
equivalent upon cyclic permutation, it is equivalent to mask the three first and three last
faces, and we test only one of them.

We first recover the expected tendency for the prediction accuracy with the number of
features: the more features are used to train the network, the more accurate the prediction
is. There is however some deviation to this tendency. For instance, point L that correspond
to the training accuracy without the line interaction is lower than points C, T andD, where
one of the other group of interactions has been masked, even if there are more features.
The ability of a particle to form lines is more important to predict the aggregate category
than its ability to form dimers. Comparing points DTC and DTL leads to the same
results: the accuracy is better from the sole line interaction (DTC) than from the sole
trimer, dimer, or cycle interaction. There is no such non-monotonous effect observed upon
masking the interactions of the same face: if the interaction energies of fewer faces are
known, the accuracy is worse. In general, the prediction accuracy is better from masking
some interaction of same angle than by masking some interaction of same face (dark purple
triangles are above light purple triangles), which is hard to clearly relate to the importance
of the face features compared to the interaction angle feature.
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3.3.2.3 Averaging
Here, we test whether all the interaction energies are important, or if it would be

sufficient to only take the average of a group of interactions to predict the aggregate
category. This also enables to test the importance of a group of interaction: by averaging
all the interactions within one group of interaction. For instance, we replace the interaction
map by the six value of the averaged face interaction. We can also replace it by the four
values of the average for each angle of interaction introduced in the previous subsection.
This corresponds to the dark green (average of the angle) and light green (average of
the faces) triangle in Figure 3.12. Interaction maps with averages over the interaction
angle gives a good prediction of the aggregate category, while that with averages over
the faces do not. Again, averaging together interactions of the same angle conserves the
information about the ability of the particles to organize in large scale structure, while
averaging together the interactions of the same face only conserves information about the
local properties of the interactions.

By comparing the prediction accuracy with some partial interaction maps, we found
indication that the ability of the particle to align with its neighbors is a good predictor
of the shape of the aggregate it will form. The averaged ability of particles to form lines,
trimer, cycle and dimers, which we denote as the topology of the interactions, corresponds
to only four numbers (+2 with the averaged and standard deviation of the interaction
map). This measure is a less complex information than the full interaction map, and
it still enables to accurately predict the shape of the aggregate. This suggests that the
category of an aggregate depends on the topology of the interactions between the particles

3.3.3 Shuffling and taking sign
With the method of Sec. 3.3.1, we can also test whether it is the values of the inter-

actions that matter to predict the aggregate category, or their position in the interaction
map.

In simple examples in Chapter 2, we saw that favoring three interactions could lead
to very different aggregate, depending on the position of the favored interactions in the
interaction map (which pair of faces it corresponds to). We want to test whether this
generalizes to random interaction maps. For this, we shuffle the entries of each interaction
map randomly. If only the values of the interaction map matter, but not the position,
it should not lower the learning accuracy. Similarly, we can replace all the values of the
interaction map by their sign, which reduces the matrix to a two-level interaction map. If
the position of the favored and unfavored interaction in the matrix matter, but the values
do not, this should not lower the learning accuracy. These two tests correspond to the
orange (square and diamond points) in Figure 3.12. In both cases, the number of features
has not been lowered, but the entries were either shuffled or replace by +1 or −1. In both
cases, the algorithm is not able to predict the aggregate category after being trained on
the partial information (the training accuracy is around 0.5).

This is an indication that both the level of energies and the type of interaction they
correspond to are important. It suggests that designing the level of the interaction energy
and their directionality are two complementary design strategies to obtain a large diversity
of aggregates category.
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Figure 3.13: The best periodic motif is found by identifying the orientations of the gray
arrow that minimizes the energy per bond in the line

3.3.4 Propagability: the ability to form periodic patterns
Large-size aggregate are often built from periodic organizations of the particles. This

is also suggested by the fact that the ability of the particle to form lines is an accurate
predictor for the aggregate category: a crystal is composed of periodic lines of particles in
the three unitary directions of the triangular lattice, a fiber is a periodic line in one direc-
tion, and an oligomer is not composed of any periodic line. Here, we introduce a predictor
computed from the interaction map that measures the ability to form periodic structures,
and we call it propagability. A periodic organization of the particles can propagate and tile
the plane, while if the energy associated to the formation of a periodic motif is high, the
particles will rather assemble into micelles or oligomers. We first introduce the measure of
propagability in one dimension (Sec. 3.3.4.1), then extend the definition to two dimensions
(Sec. 3.3.4.2). We show that this measure is a good predictor of the aggregate category
with the method introduced above (Sec. 3.3.4.3)

3.3.4.1 Propagability in 1D

Let us first consider particles with two orientations in one dimension. There are sev-
eral sets of favored interactions that lead to periodic infinite aggregate: the sole (→→)
interaction is sufficient, but the combination of two dimeric interactions (→←) and (←→)
also works. To discriminate between those two organizations of infinite 1D aggregate ((1)
→→→... or (2) →←→..., see Figure 3.13a), we compare the average energy per particle
in the two organizations J1 = J→→ and J2 = 1

2(J→← + J←→). The effective coupling
Jeff = min(J1, J2) will determine the best organization for an infinite 1D aggregate. If Jeff

is positive, there is no way to assemble particles into infinite aggregates.
We generalize this concept in our problem with 6 particle orientations. For a given

initial orientation φ0, and a given periodicity n, we can consider all the possible set of n−2

orientations {φk} of the particles such that a line is in the configuration (φ0, φ1, ..φn−1, φ0),
which we refer to as a periodic motif. The values taken by φk are necessarily different from
φ0, because if it were not, the motif would be of periodicity lower than n. The effective
coupling for a given initial orientation φ0 and a given periodicity n, which we denote as
Jeff(n, φ0) is the minimal possible energy for a periodic motif.

Jeff(n, φ0) = min
φ1,...φn−1

1

n− 1
(Jφ0φ1 + Jφ1φ2 + ...+ Jφn−1φ0) (3.10)

From a given interaction map, the computation of the values of Jeff(n, φ0) is a straight-
forward operation on the entries of the matrix. Because of the rotation invariance of the
system, we only compute this value for φ0 = 0, π/3 and 2π/3. We also only compute
this number for n ≤ 6, because the particles only has six orientations, there should not be
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periodic motifs of more than 6 particles. Computing one value for Jeff is at maximum a
minimization over 64 configurations, which is accessible numerically.

3.3.4.2 Propagability in 2D
We generalize this concept in two dimensions. A periodic motif in 2D is a group of

particles such as the one drawn in Figure 3.13b, where the edges of the motif (the black
arrow) are fixed. This motif is then composed of three periodic lines, each with a different
value for φ0. For a given periodicity n, the organization of the other arrow (in gray) such
that the energy of the whole motif is minimum is then simply computed from the effective
interactions of equation 3.10:

Jeff(n) =
(
Jeff(φ0 = 0, n), Jeff(φ0 = π/3, n), Jeff(φ0 = 2π/3, n)

)
(3.11)

Here, we do not count the interactions with the particles inside the motif, that are poten-
tially empty. Indeed, for the largest possible cells, this would amount to considering the
organizations of the 12 particles in the extremities, the 6 particles in the middle, that can
all be in 7 configurations (6 orientation or empty site), which correspond to 718 configura-
tions, whereas we managed to reduce this computation to 3× 64 in our case. we see that
not taking into account the interior of the motif is already sufficient to predict aggregate
categories.

We then choose the best periodicity n∗ to be the one where the minimum of the three
line energies is the lowest. We could also have chosen n∗ to be the size of the cell of minimal
energy, but the accuracy of the prediction was less good. The optimal effective coupling
vector, Jeff(n∗) and the optimal periodicity n∗, which can be derived directly from the
interaction map, are now used to predict the aggregation category, aside with the particle
affinity and anisotropy. This is the propagability, and it has 4 + 2 features.

3.3.4.3 The propagability is a good predictor of the aggregate shape
We now train the neural network to predict the aggregate category from the propaga-

bility measured for each interaction map.
With the chosen network and with the chosen training conditions, the prediction of the

aggregate category from the propagability is 0.86, which is even better than the prediction
from the full interaction map. The reason for this better prediction is the following:
the propagability is independent of the permutation of the interaction map. For values
computed on the interaction map, one need to add the 12 invariants in the dataset, as was
explained in section 3.2.2. For the propagability, this is not necessary, and the algorithm
is therefore easier to train. We expect that the difference between the accuracy of the
prediction of the total interaction map and of the propagability will vanish by using a
more complex architecture of the network, and training it longer. However, this was not
feasible for us in reasonable computational time.

The quality of the prediction of the aggregate shape from the propagability is however
interesting: it suggests that this descriptor correctly captures the ability of the particle to
form large scale structures.
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We introduced the propagability, that is directly computed from the interaction map,
and that measures the energy of the best pattern of the particle. If this energy is low,
the aggregates will form large scale structure. If only one periodic line is possible, the
aggregate will be a fiber. Otherwise, it will be an aggregate of small scale. Because this
descriptor also takes into account the possible holes in the structure, and quantitative
information about the energy values, it is able to predict all the categories of aggregates,
and to distinguish more subtle characteristics like the distinction between a crystal and a
sponge, or an oligomer and a micelle. Here, we used machine learning as a tool to test the
relevance of an indicator. The measured accuracy then depend on the architecture of the
network and from the training protocol. Therefore, we emphasize that it is only relative
comparison of the predictions that enabled us to characterize a good and a bad predictor.

3.4 Discussion and extension to two particle types

In the last section, we showed that the ability to form periodic patterns is what relates
the local interactions of the particles and the result of its self-assembly. For this, we
introduced a method to test what information in the interaction map is related to the
macroscopic properties of the aggregate. Our results suggest that both the relative strength
of the interactions, and their angle, is determinant to build an aggregate with a periodic
pattern or not.

This finding also provides a better understanding of the consequences of frustration in
models of particles with directional interactions: we suggest that a particle is frustrated if
it cannot propagate a low-energy periodic organization of the particles in all the directions
of the space, i.e., if the particles cannot tile the plane.

We expect this results to be more generic than the self-assembly of two-dimensional
lattice particles: non-lattice particles, and three-dimensional particles, often assemble into
periodic aggregates, like the particles that form crystals. Then, the interactions are dis-
tributed as the elementary directions of a lattice. This is the case of proteins, for instance.
The interactions between particles in a protein fiber or a protein crystal are distributed in a
regular way. Then, the concept of propagability of the directional interactions holds: those
aggregates can have very large sizes in some directions of the space because there are no
geometric constraints that prevent their attractive interactions to be repeated periodically
in the aggregate. However, our model does not account for the self-assembly of deformable
particles: if the particles are deformable, the periodicity of the interactions is an ill-defined
measure. Indeed, it is not possible to compare the energy of different organizations of
the particles by enumerating how the particles can organize locally and through which
interactions.

We also emphasized that both the strength and the directionality of the interactions
are determinant for self-assembly. We also expect this result to hold in the case of non-
lattice particles, as long as they are not deformable. The fact that two interactions can
have different binding energies is indeed not specific to the study of lattice particles.

We only considered the self-assembly of one type of particles. In several cases, however,
different types of particles self-assemble. In Sec. 3.4.1, we will show how the diversity of
the self-assembly of several types of aggregate could be investigated. In particular, we
show that we do not expect the complexity of the shapes of the aggregate to increase by
adding another type of particles.

Finally, the generalization of our results to off-lattice particles could be tested exper-
imentally with the self-assembly of colloids. In Sec. 3.4.2, we show how this could be
implemented.

64



3.4.1 Self-assembly of two types of random particles
Here, we show examples of self-assembly of two types of particles with random inter-

action, and discuss qualitatively the extra complexity it brings to the one particle case.
If there is not one but two different types of particles within the system (A-B), we

need to define three interaction maps, to describe the interaction between the faces of A
and A (21 parameters), A and B (36 parameters), and B and B (21 parameters), as was
introduced in Sec. 2.5.3. There is now 78 interaction, that we can again draw randomly
and independently, with the same parameters as detailed in Sec. 3.1.1. The simulations are
now done with a system of 100 particles of each type, and we keep the same total density
of particles, which means the system is twice as large.

Examples of equilibrium configurations for each value of affinity and anisotropy are
shown in Figure 3.14. The isotropic limit is the same as for one particle: attractive particles
self-assemble in bulks and where they have random orientations, and repulsive particles
do not self-assemble. We also recover stereotypical formed with one aggregates (liquids
((µ, σ) = (−4, 15), crystals (−2, 7), sponge (−4, 15), fibers (2, 7), crystallites (4, 15), mi-
celles (−2, 5), or oligomers (0, 13)). Having two types of particles however, introduces a
major difference: the particle can either mix (−4, 1), or phase separate (−2, 7. There is
however no trivially binary distinction between those two extreme cases, and the situation
in (2, 11) is a good example: pink particle occupy the porosity of the sponge of green
particles, but also form fibers outside those aggregates. Sometimes, the particles phase
separate but still form one dense aggregate (−2, 7), and sometimes each of them form ag-
gregates of lower dimensions, like (4, 13) where the green particles form fibers and the pink
particles form trimer. Sometimes, both particles form an aggregate where each particle
has an equivalent role (like the fibers of (0, 15) or the crystal of (−2, 9), and sometimes
one particle acts as a surfactant to the other (like fibers of (2, 7) or micelles of (4, 11)).

It would be hard to use the geometric descriptors we introduced in this chapter to
study these problems: the average size or sphericity of all the aggregates in the system
would not mean much when the particles form distinct types of aggregate, like in (4, 13).
It is also difficult to assign one category of aggregates to one system and do classification.
One could use classification with multiple categories [105]. In future studies, we could
however measure the propagability of the interactions. In particular, we could measure the
propagability of the individual particles, and the effective propagability resulting of the
two types of particles. It is not clear however, how those quantities could be compared to
the measured propagability for the aggregates of one type of particles.

Apart from the 78 interaction energies of the particle, we could also tune the ratio
between the number of both particle. This might influence the size of the aggregates when
one particle acts as a surfactant.

From the examples of Figure 3.14, it is not clear however that adding another type
of particles enables to introduce new categories of aggregates. The additional complexity
arises from the combinatorics of the aggregates (several categories in the same system),
but there is no aggregate shapes that were not already observed in Figure 3.1.
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Figure 3.14: Diversity of aggregates formed by two types of particles. We show one
snapshot per value of affinity and anisotropy
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3.4.2 Experimental applications with triangular particles
It would be interesting to test whether the diversity of aggregate shapes observed

numerically would also emerge in experimental system, with colloids for instance. Here,
we explain how directional interactions can be set up for colloidal particles, and show how
studying two types of particles could provide a large enough design space to observe how
particles accommodate frustration.

A preferential set-up for this could be to study the self-assembly of 3D printed colloids
on a substrate. This technique is developed by our collaborators at ESPCI, O. du Roure, J.
Heuvingh and Mayarani M. The colloid are printed with a resolution of 150 nm, and interact
through depletion interaction. In Figure 3.15a, we show electron microscope images of such
3D printed colloids, and in (b) we show images of two colloids interacting: on the left, the
particles are far apart, then they interact by increasing the surface contact between their
flat faces, and remain attached to reduce the excluded volumes of the depletants (small
solutes) in the solution. This is the depletion interaction. It is then possible to modify the
face of the colloids with complementary notches, to make the interaction specific. This is
illustrated in Figure 3.15c and d: the particle has complementary notches on its faces, such
that it will preferentially interact when their relative orientation is that of example (1).
Examples (2), (3) would also interact, with lower interaction energy, because less surface
are in contact. Interaction (4) would be forbidden, because of steric hindrance of the two
particles.

There is then a size trade-off to consider: the smaller the particles, the faster they
will diffuse on the substrate, and the faster they will self-assemble. On the other hand,
there is a low limit to the size of the face of the particle for the notch to be printed with
sufficient precision. For this reason, triangular particles are more promising than hexagonal
particles, because they can be smaller with the same precision for the notch of the face.
We showed in Chapter 2 how we could implement self-assembly of triangular particles,
even if the triangular shape is not the dual of a regular lattice. Those simulations can then
be used in parallel of experiments, to explore the design space and select examples worth
testing in experiments.

Triangles have three faces, and only 3× 4/2 = 6 distinct pairs of faces, i.e. 6 different
values in the interaction map. This might not be enough to achieve complex enough
aggregates, such as aggregates of reduced dimensionality. It is for this reason that we
consider the self-assembly of two types of triangle together. This enables both to have small
enough particle that will equilibrate in short times, and to reach a sufficient complexity in
the interactions (21 pair of faces).

In Figure 3.15e and f, we show simulation results of two pairs of particles, where the
colors for the faces of the triangle correspond to Figure 3.15b: yellow is the flat face that
interact to itself, and light blue and dark blue are the lock and key faces that interact with
each other. In (e), the particles have respectively flat-lock-key faces, and lock-lock-key
faces. There is a dense organization of aggregate where both particles are together. In
(f), the particles have flat-flat-lock and lock-lock-key faces. Then, there is no such dense
packing of the particles anymore, the first particle form oligomers surrounded by the second
particle, while the second particle mostly form aggregates alone.

Considering a pair of triangular particles with notches enables to explore an important
design space (particles can have any combination of the three types of faces), and the
strength of the interaction could be tuned by increasing or decreasing the size of the notch.
The work is still in progress, but the goal is to examine how those triangular particles
would avoid frustration by forming aggregates of lower dimensions, or porous aggregates,
in experiments. In this chapter, we found that aggregates of particles with incompatible
interactions avoid frustration by reducing their dimensionality. If such aggregates were
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Figure 3.15: Self-assembly of two triangular particles, for experimental implementation.
3D printed colloids can interact through depletion interaction (a,b, courtesy of Mayarani
M), and triangular particles could be designed with notches to enable directional interac-
tions (c,d). We show simulation results for the self-assembly of two pairs of particles in
(e) and (f). In (e), the two types of particles are mixed in a dense aggregate, and in (f)
they are separated. For each simulation, there are 20 particles of each type in a 30 × 30
lattice, and the interactions energy are, in units of kT , Jflat−flat = −8, Jlock−key = −10,
Jflat−lock = 2, Jlock−lock = 2, Jkey−key = 10 and Jflat−key = 10.
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observed experimentally for triangle colloids with incompatible interactions, it would be
an indication that our findings describes a phenomenology that is more generic than the
self-assembly of lattice particles in numerical simulation. There might be several limitations
arising from these experiments, such as kinetic limitations of the assembly, or aggregates
emerging from partial interactions between regions of the particles that were not designed
to interact. If self-limitation of the assembly arises, it would require cautious verification
that these limitations are not driven by kinetic effects.
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4 - Renormalization of anisotropic particles self-assembly
models

In Chapter 3, we explored the diversity of self-assembly resulting from a lattice model
of anisotropic particles. We discovered the appearance of non-trivial structures such as the
sponge or the micelles. The definition of categories of aggregates relied on their macroscopic
characteristics, such as the size and dimensionality of the aggregates, and on the level
of local order in the particles. We used machine-learning, which is a phenomenological
method, to identify interaction maps that would lead to similar aggregates. In this chapter,
we aim at understanding what are the typical aggregates with real-space renormalization
group. We expect that some canonical aggregates described in Figure 2.4, such as the
liquid or the crystal, are representative of broader universality classes, and that aggregates
within this class have the same properties, from a coarse-grained view. We call basin
of attraction of a fixed-points the ensemble of interaction maps that are renormalized to
that fixed-point. In this chapter, we identify the fixed-points of the renormalization, and
the common features of the interaction maps within the same basin of attraction. We
use renormalization as an exploration tool of the 21-dimensional parameter space. This
is illustrated in the schematic of Figure 4.1: the fixed-points are specific points in the
parameter space, and all the interaction maps within the basin of attraction of a fixed-point
are renormalized to this fixed-point. Here, we explain the principles of renormalization and
show how we set a numerical decimation procedure that conserves the shape of an aggregate
(Sec. 4.1). This renormalization rely on solving the inverse problem of determining the
interaction map for a given density map numerically. We explain how this is implemented
in Sec. 4.2. We then sample the parameters space with random interaction maps to identify
3 types of fixed points: the interaction maps of isotropic non-interacting particles, isotropic
attractive particle, and particles that form crystals (Sec. 4.3). We show that the interaction
maps in the basin of attraction of the gas lead to very diverse aggregates, while that in the
basin of attraction of the liquid and the crystalline fixed-points all correspond to aggregates
of infinite size. We also show that the fiber is an unstable fixed-point of our renormalization
scheme (Sec. 4.4). Finally, we show that liquid, gas, and crystalline fixed-points are stable,
by a measuring small deviations in the interaction map at the vicinity of the fixed-points
(Sec. 4.5).

4.1 Renormalization: from Ising to anisotropic lattice models

Real space renormalization was originally introduced for lattice spin systems, with
the aim to compute the critical exponents of a phase transition, using the system scale
invariance. The objective of this study is different: we aim at exploring the phase diagram,
relying on the same ideas of scale invariances. The model we study is less trivial than the
Ising model, and we have very little prior knowledge about the critical points of the system.
Therefore, we do not use real-space renormalization to study the behavior of the system
near the critical point, but to discover what the critical points are, and which portions of
the parameter space will renormalize to a given fixed-point. We recall the main concepts
of real-space renormalization (Sec. 4.1.1), and show how our model of lattice particles with
directional interactions can be renormalized according to the same ideas (Sec. 4.1.2).
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Figure 4.1: Renormalization can be a tool to explore complex phase diagram. f1 and
f2 are functions of the interaction map. We identify the fixed-points and some features of
their basins of attraction. We did not manage to identify a two-dimensional projection of
the 21-dimensional where the boundaries of the different basin of attractions is identifiable.
We expect the fiber to be an unstable fixed-point, such as the ferromagnetic phase in Ising
model, in one dimension. Trajectories will be slowed down near this fixed-point, before
renormalizing to the gas.

4.1.1 Traditional and modern use of the renormalization group

In the context of spin systems, the goal of renormalization was to derive critical expo-
nents, i.e. to determine with which scaling of the temperature the macroscopic properties
of the system vary near the phase transition. In Sec. 4.1.1.1, we recall which principles the
renormalization procedure relies on, and emphasize why this cannot be trivially applied to
the model we study in this thesis. It is possible to take advantage of numerical simulation
to implement a renormalization transformation that cannot be solved analytically. We
show examples of such study in Sec. 4.1.1.2. Finally, renormalization was used to study
systems that are not Ising models, which requires determining precisely what quantities
are expected to be conserved upon renormalization (Sec. 4.1.1.3).

4.1.1.1 Origins of the renormalization

The renormalization group is a statistical physics tool initially introduced to study the
behavior of a system near its phase transition. It relies on scale invariance close to the
critical point: some characteristics of the system are the same at different length scales.
Because of this, it is possible to apply a series of transformation on the system that will
integrate out degrees of freedom over the irrelevant short length scales, while conserving
some statistical properties unchanged. Renormalization was first introduced by Wilson
in 1975 [109], based, among others, on the ideas developed by Kadanoff on the Ising
model [110].

If a system is described by its Hamiltonian H, the renormalization transformation is
H ′ = R(H) where H ′ is applied on a new set of coarse-grained variables. For example,
in the one-dimensional Ising model, the Hamiltonian reads H = K

∑N
i=1 sisi+1, where the

si describes the state of spin i (−1 or 1), and the coupling between the nearest neighbors
depends on K. One can then average over every second site (the gray sites in Figure 4.2a)
and describe the system with a new Hamiltonian H ′ = K ′

∑N/2
i=1 σiσi+2. The new coupling

K ′ is chosen such that the partition function Z(K,N) = e−H/kT of the new system is
proportional to that of the initial system: Z(K,N) = A× Z(K ′, N/2). We introduce the
variables σ for the spins with pair indices that will be decimated (gray spins of Figure 4.2a).
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Figure 4.2: Renormalization scheme of the one-dimensional Ising model. a) Decimation
procedure: the gray sites are decimated, and J ′ is the coupling of the new variables (which
are in red). b) Renormalization flow, there are two fixed-points, J∗ = 0 is unstable and
J∗ = −∞ is stable. The gray arrow indicates the direction of the renormalization flow.

The partition function is computed by summing over all the possible spins configuration.

Z(K,N) =
∑
{s}

∑
{σ}

exp[−K(s1σ2 + σ2s3)]... (4.1)

Z(K,N) =
∑
{s}

exp[−K(s1 + s3)] + exp[+K(s1 + s3)]...

AZ(K ′, N/2) =
∑
{s}

exp(−K ′s1s3)... (4.2)

We then solve (4.1) = (4.2) for the possible values of the pairs (si, si+2) we get the
following renormalization relations

K ′ =
1

2
ln (cosh(2K)) and A = 4 cosh(2K) (4.3)

The fixed-points of the renormalization are such that K∗ = R(K∗), and they corre-
spond to the physical critical point of the system (in that case, K∗ = 0, or K∗ = −∞, see
Figure 4.2b).

For a two-dimensional Ising model, there is no exact renormalization transformation.
For example, the new spins are chosen by a majority rule on a group of three spins called
plaquette [111]. The new spins interact through two-body interactions, such as the initial
spins, but also through interactions of a larger order, that need to be approximated. Setting
a renormalization transformation then requires the following choices:

• identifying the variables to renormalize. In the spin systems, one can choose a
model with energy assigned to single particles (K1), a pair of neighbor particles
(K2, denoted K in the example above), groups of three interacting particles (K3),
etc. The variables to renormalize is then the set of coupling parameters Kp, with
p the number of spins in interactions. In practical implementation, this is often
limited to K2 [111]. In our model on the triangular lattice with particles of n = 6

orientations, we limit our study to the interaction map K of the first-neighbors of
pairs of particles, which already has n(n+ 1)/2 independent parameters

• expressing the new variables as a function of the old ones: in a 2D spin system, a
block of 2n+1 spins is chosen, and it is assigned with value ±1 with a majority rule.

The renormalization transformation then results from the conservation of a chosen
statistical property. Typically, the partition function Z is conserved. This leads to a

73



relation between the old and the new coupling, such as the one we derived in eq. 4.3 for
the one-dimensional Ising model.

In our case, the second item is particularly difficult. We explained in Chapter 2 that
the particles’ orientation of the particles is not well-suited to study the model of anisotropic
particles. For this reason, it is not clear that the new variables should be the orientations of
the particles that were not decimated. We cannot use the majority rule on the orientations
of a group of particles.

4.1.1.2 Monte-Carlo renormalization group
Because renormalization is in general not solvable in two dimensions, numerical sam-

pling of the configurations of the system is a useful complementary tool to perform its
renormalization transformation. We illustrate how it was beneficial for spin systems.

In the 70s, several studies were dedicated to the evaluation of critical exponents of
lattice models with real-space renormalization ideas. The burning question was to establish
a relation between µ = (K1,K2,K3...) and µ′ = R(µ) = (K ′1,K

′
2,K

′
3...), where Kn is the

coupling between n spins. Along with analytical studies where the Hamiltonian were
manipulated to isolate negligible quantities [111], some studies used a sampling of the
configuration space with Monte-Carlo simulation to directly estimate the relation between
µ and µ′ [112, 113].

In [112], the states of both individual spins and blocks of spins are sampled, under a
given set of couplings µ. µ is then evaluated from the sampling of the configuration of
the individual spins, as a consistency check, while µ′ is evaluated from the sampling of the
configuration of the block spin. Those evaluations are performed very close to the fixed-
point. The relation between µ and µ′ then leads to an evaluation of the critical exponents,
close to the exact solution derived by Onsager [114].

Three years later, Swendsen conducted similar numerical renormalization, but without
running simulations precisely at the fixed-point [113]. Instead, the behavior at the fixed-
point was linearized from measures done at its vicinity. Indeed, since the typical length
diverges at the fixed-point, direct simulation of the fixed-point requires large systems, or
a severe truncation of the number of coupling constants n.

Our renormalization transformation will be quite different from that of the Ising models
that uses blocks of spins. Yet, we will follow the idea of estimating the new couplings from
a numerical evaluation of the renormalized variable. In particular, we take advantage of
the fact that numerical simulations allow to measure the correlations between particles
that are very far, which is not easy in analytical study.

4.1.1.3 Examples of recent use of renormalization
The renormalization group concepts have reached fields beyond the usual statistical

physics lattice models. In those systems, one difficulty is to identify how to regroup the
new variables such that the properties of the system are conserved, but the local details are
averaged. We show an example of those difficulties with the renormalization of complex
networks. We also emphasize the difference between real space and momentum space
renormalization.

Renormalization group transformation of complex real networks (such as internet, or
the airports network) has been performed to identify interactions between different scales.
This transformation requires regrouping the nodes of the network while conserving some
of the graph’s properties, such as the average number of neighbors of the nodes. In [115],
placing the nodes of the network on an underlying geometry enabled the authors to intro-
duce a measure of physical distance between the nodes, and use it to regroup the nodes
that are close upon renormalization. An alternative approach to graph renormalization
regroups the nodes between which the information travels fast [116]. The challenges of
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applying real-space renormalization to a new type of problem thus does not only rely on
the control of the approximations as before, but also on determining what properties of
the system should be conserved, and how to transform the variables while ensuring this
conservation.

Finally, it is important to mention that most of the current work using renormalization
do the decimation in momentum space (as opposed to real space renormalization). Mo-
mentum space renormalization has found applications in recent physical problem that can
be characterized with a field theory, such as the collective behavior of natural swarms [117],
or epidemiological model [118]. Our lattice model cannot be trivially described by a field
theory, and we only use real-space renormalization in this study.

4.1.2 Numerical implementation of the renormalization on lattice
anisotropic particles

In this section, we propose a renormalization transformation for the model of directional
interactions between lattice particles introduced in Chapter 2. In Sec. 4.1.2.1, we recall the
main results derived on the renormalization of this model with analytical method by F.
Benoist in his PhD thesis [119]. They suggest that particles with isotropic attractive inter-
actions, and without interactions are expected to be fixed-points of the renormalization of
the model, and that the shape of the aggregates should be conserved upon renormalization.
In Sec. 4.1.2.2, we propose to choose the density map as the quantity to conserve upon
renormalization. In Sec. 4.1.2.3 we give details on how our renormalization transformation
will be implemented.

4.1.2.1 Analytical results and limit
In [119], F. Benoist studied the grand-canonical equivalent of the model of particle

with directional interaction. In this case, the interactions between the face of a particle
and an empty site (which we denoted by Ja0) cannot be chosen to be zero, as we showed
in Sec. 2.1.3 of Chapter 2. Indeed, the number of particles in the system is not conserved.
The one and two-dimensional analytical study of the model emphasized that the infinitely
attractive particles and non-interactive particles are expected to be fixed-points of the
renormalization, and that the choice of the decimation procedure can influence the result
of the renormalization.

In the one-dimensional version of the model, the renormalization was performed ana-
lytically by decimating half of the sites, as described for the Ising model in Sec. 4.1.1.1.
The particles have n possible orientations. Several types of fixed-points of the renormal-
ization were found, with different values of the empty-full interaction. If the cost of all the
empty-full interactions (Ja0) is infinite, it was shown that the system is either completely
full (all the sites are occupied by a particle) or completely empty (none of the sites are
occupied), depending on the full-full interactions values. The fixed-points for which the
system is full corresponds to the situation where the full-full interactions are infinitely
strong: Jab = −∞ for all values of a and b. In our numerical model, there is a fixed num-
ber of particles and the interactions take finite values. As a result, the situation described
above corresponds to interactions that are strong enough for all the particles in the system
to aggregate. Therefore, we expect that interactions maps leading to aggregates with the
maximal number of particles are fixed-points of the renormalization. If the cost of all the
empty-full interactions is finite, the only fixed-point is Jab = 0, which corresponds to a gas
of non-interacting particles. Therefore, we also expect that Jab = 0 will be a fixed-point
in the canonical ensemble.

In the two-dimensional version of the model, it was not possible to determine the fixed-
points analytically. However, F. Benoist showed, using stereotypical aggregate geometries,
that the choice of the renormalization procedure is decisive for the conservation of the ag-
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Figure 4.3: Possible choices of decimation on the triangular lattice. Old variables and
couplings are represented in black, new variable and coupling in red. The new coupling is
determined upon summing of the black and red variables. Figure inspired from [119]

gregate shape upon renormalization. More precisely, the new interaction between particles
in orientation φ and ψ is determined as follows: particles in orientations φ and ψ occupy
the red sites in one of the plaquettes shown in Figure 4.3. Then, the possible configurations
of all the black sites are enumerated (a black site can be empty, or occupied with a particle
in any orientation), and the corresponding energies of the plaquette (i.e. the sum of the
energy of the bonds) is summed, and determines the energy of the new interaction. The
choice of the plaquette can be decisive. Let us consider the interaction maps that leads
to a sponge aggregate (such as the one presented in Figure 4.4b). When the plaquette
is too small, like the diamond plaquette in 4.3, the renormalized interaction maps of the
sponge is that of non-interacting particles J = 0 (gas configuration) within one step. On
the contrary, with the hexagonal plaquette (also shown in Figure 4.3), the renormalized
interaction maps of the sponge leads to the aggregation of the particles. Finally, for some
specific aggregate geometry, as the fiber, the hexagonal plaquette is still not sufficient to
conserve the geometry of the aggregate upon renormalization.

The analytical renormalization could not be performed exhaustively in two-dimensions,
but its solving in 1D and the renormalization of some interaction maps in 2D sets some basic
requirement for the renormalization procedure: we expect that non-interaction particles,
and attractive isotropic particles will be fixed-points of the renormalization. We also expect
the renormalization to conserve some geometric properties of the aggregate, if the plaquette
on which we sum the configurations is large enough.

4.1.2.2 Decimation of the bonds and infinite plaquette
Here, we explain our chosen decimation procedure, and how the interaction map and

density map variables introduced in Chapter 2 are well suited to perform this decimation.
We also discuss the approximation that we make in this procedure.

We decimate 3/4 of the sites, and conserve the couplings shown on the hexagonal
plaquette in Figure 4.3. In Figure 4.4, we show how this work for three examples of
aggregates, the sponge, the fiber, and the micelle. We decimate the first neighbors of a
particle, while conserving its relative orientation with its second neighbors. As a result of
this decimation, the sponge is renormalized to a crystal where all the particles have the
same orientation as their neighbors. A fiber of width 2 is renormalized to a shorter fiber
of width 1. A micelle is renormalized to a smaller micelle. Those examples show that the
geometric properties of the aggregates, are conserved upon renormalization. The exact
organization of the particles is not conserved, but a periodic organization of the particles
(such as for the sponge) will remain periodic after renormalization, while a non-periodic
organization (such as the micelle), will remain non-periodic.

To perform this transformation, we rely on the density map introduced in Chapter 2,
that counts the average occurrence of each pair of faces in the system. We can also count the
average occurrence of each pair of second-neighbors. In the sponge example in Figure 4.4b,
there are two pairs of faces that are in contact in the initial equilibrium aggregate: the
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Figure 4.4: In one renormalization transformation, the second neighbors of the particles
become the first neighbors. a) The second neighbor contacts are in the same direction as
the first, but the distance between the particles is 2 lattice sites. b) We show an example
of the renormalization for a sponge, a fiber of width 2, and a micelle. The initial aggregate
(left) is renormalized to the new aggregates (right) by conserving the interactions between
the second neighbors.

yellow is in contact with the green, and the blue is in contact with the light violet. We
can also count the pair of faces that are in a second neighbor contact, i.e. for bonds in
the lattice direction of length 2 (see the schematic in Figure 4.4a). There are three type of
second-neighbor contact with the sponge: yellow with blue, green with light purple, and
dark purple with dark green. We ensure that the renormalized aggregate has the same first
neighbors contacts as the second neighbor contacts of the initial aggregate. For a given
interaction map J , the first neighbor density map ⟨c⟩J counts the first neighbor contacts.
We now introduce the second neighbor density map, ⟨d⟩J which counts the second neighbor
contacts. The renormalization transformation consists in finding a new interaction map J ′

such that
⟨d⟩J = ⟨c⟩J ′ (4.4)

We show that unlike the Niemeijer-Van Leeuwen procedure [111], we do not need
to make approximations on the size of the plaquette to evaluate the new variables. In
Niemeijer-Van Leeuwen renormalization of an Ising model, the new variables are computed
by defining a plaquette of for example three spins, and by determining a new variable
associated to it, with a majority rule. This is illustrated on top of Figure 4.5a and b, the
old spins are +1 or −1 (black or gray) and the new spins are the sign of the three spins
in the plaquette (red or pink). In our model of particles with directional interaction, there
is no meaning of taking the majority rules of the six possible orientations of the particles.
Instead, we conserve the bonds’ statistics. The old variables are the first neighbor contacts
(in levels of gray in Figure 4.5c) and the new variables are the second neighbor contact
(in levels of red in Figure 4.5d). The old and new variables are then a list of 28 numbers
(we count the full-full (21), empty-full (6) and empty-empty (1) contacts). The Ising
renormalization, performed analytically, requires defining a plaquette of finite size, and
to neglect the interactions between spins that are not in the same plaquette. In our
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renormalization procedure, which we perform numerically, we do not need to make such
an approximation and to truncate the range over which the orientations can be correlated:
the density map ⟨d⟩J measures the occurrence of each of the 28 possible configuration of
a bond averaged on the whole system, and over a large number of Monte-Carlo steps. In
this sense, the plaquette we consider is of the system size.

Similarly to the Niemeijer-Van Leeuwen procedure, we make the approximation that
no new types of couplings that emerge after one renormalization step. In the Ising renor-
malization, Niemeijer and Van Leeuwen considers that both the old and the new variables
are solely coupled through the same type of coupling as the old variables: both are coupled
through a two-body first neighbor interactions. The other type of couplings, such as those
involving more than one particle, or long-range couplings are neglected. Likewise, we as-
sume that the interactions between the particles in the renormalized system only depends
on the interaction map J ′, and that there is no new type of couplings that emerge.

Here and in the rest of the chapter, we call second neighbors of a particle the set of
particles that are at a distance of two lattice sites, in the direction of the unit vectors of the
lattice. They correspond to the dark gray particles in Figure 4.4a). Technically, those are
the third-neighbors of the central particle, while the next-nearest neighbors are the white
particles on Figure 4.4a. We choose to conserve the statistics of the contact between the
dark gray particles for two reasons. First, the contact between the central particle and its
next-nearest neighbors (white particle in the schematic) is ill-defined: they are in contact
through a corner of the particle, not a face. Determining the configuration of this contact
would require to perform a rotation of both particles, and make the visual interpretation
less intuitive. Second, the white next-nearest neighbors are not in the direction of the
lattice unit vectors, and because of that, a fiber will necessarily be renormalized to a
monomer within one step of renormalization: in the example of the fiber of width 1 on the
right of Figure 4.4b, we see that the next-nearest neighbors of a particle in the fiber are all
empty site. Instead, our chosen decimation do conserve the fiber upon renormalization.

We defined a numerical renormalization transformation that seem to conserve the geo-
metric properties of the aggregates, and does not require approximation on the size of the
plaquette.

4.1.2.3 Renormalization procedure
We describe how the renormalization procedure will be implemented numerically, and

show that it ensures that the infinite size of an aggregate will be conserved by the renor-
malization transformation.

To perform one renormalization transformation of on interaction map J , we follow two
steps:

(i) Determine the equilibrium configuration of the system, using a Monte-Carlo simula-
tion, as explained in Chapter 2. Measure the average second neighbor density ⟨d⟩J
at equilibrium.

(ii) Determine the renormalized interaction map J ′ for which the average first neighbor
density at equilibrium, ⟨c⟩′J is equal to ⟨d⟩J , in a system four times smaller, with
four times less particles.

This gives us the renormalization transformation J ′ = R(J), which we also illustrate
in Figure 4.6 for the sponge aggregate. The initial system is shown in panel (a), and the
renormalized system in panel (b). The second neighbor density map of the initial system
is identical to the first neighbor density map of the renormalized system. The interaction
map is chosen to verify this relation. The key challenge of this renormalization process is
step (ii): finding the interaction map that results in a chosen density map.

78



Initial system Decimated system

Is
in

g 
m

od
el

An
is

ot
ro

pi
c 

pa
rti

cl
es

 
m

od
el

Old variables New variables

a b

dc

Figure 4.5: In our renormalization process, we do not need to define a truncation of
the number of the correlations between two spins to evaluate the new couplings. a) Ising
model where each site is either up (gray) or down (black). b) The new variables are the
average orientation on a block of three spin, chosen by majority rule. They are either
up (pink) or down (red). This is the decimation procedure of the Niemeijer van Leeuwen
procedure [111]. c) Anisotropic particles models, particle have different orientation, and
a bond is associated with a state that depends on the two particles composing it. Bonds
with different levels of gray are in different states. d) The new variables are bonds between
particles more distant in the lattice. They also depend on the relative orientations of the
particles composing it.
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Figure 4.6: The second neighbor density of the initial system is equal to the first neighbor
density of the renormalized system. In red, we show the lattice over which the statistics
are collected, and the corresponding density matrix is framed in red.

Here, we explain why the density of particles is conserved upon renormalization, as
it was verified analytically in the one-dimensional grand-canonical study derived in [119].
In Chapter 2, we showed that the density of particles is proportional to the sum of the
empty-full contacts, because the number of particles is conserved. This is also true for the
second neighbor density map d. Then, conserving the composition amounts to keeping a
fixed density of particles.

We show why the size of the renormalized system should be four times smaller than
that of the initial system. This is not intuitive: if the density of particles is conserved, the
system size should not be important. Let us consider a system for which the attractive
interactions are strong enough that there is only one aggregate in the system, such as the
one in Figure 4.6. There, the number of particles in the bulk is Nparticles, and the number of
particles at the surface of the aggregate scales like

√
Nparticles. The density map c counts

the occurrence of each type of contact relative to the system size. For this reason, the
number of full-full contacts scales like the density of particles Nparticles/Nsites, (eq. 4.5),
and the number of surfaces scales like

√
Nparticles/Nsites (eq. 4.6).

∑
0<a<b

cab ∼ Nparticles/Nsites (4.5)∑
a>0

ca0 ∼
√
Nparticles/Nsites (4.6)

With our chosen decimation, the number of second-neighbor surfaces is twice that of the
number of surfaces:

∑
da0 ∼ 2

∑
ca0. If we choose the number of particles in the decimated

system as N ′particles = Nparticles/4, and the system size to be N ′sites = Nsites/4 (conservation
of the density of particles), we get∑

a>0

da0 ∼
√
N ′particles/N

′
sites = (

√
Nparticles/2)/(Nsites/4) ∼ 2

∑
a>0

ca0 (4.7)

A system of infinite size (i.e. all the particles are in the aggregate), will conserve its number
of surfaces upon renormalization, and will be renormalized to a system of infinite size. On
the contrary, a system of finite size, such as a micelle, does not verify the scaling stated
above, and the renormalization will increase the number of surfaces of the aggregate. For
this reason, we expect the size of finite aggregates to decrease along the renormalization
process.
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In this section, we introduced a renormalization procedure that decimates a fraction
of the particles, and thus their local organization (the faces in contact in the equilib-
rium aggregates), but conserves some large-scale properties of the aggregates, such as its
geometry (spherical or fibrillar) and the fact that is of finite or infinite size. The renormal-
ization is performed numerically, such that there is no need to make approximations on
the length-scale over which the particles are correlated. However, it requires determining
the interaction map that will lead to a chosen density map at equilibrium.

4.2 Determination of the renormalized interaction map with
gradient descent

To perform one interaction step, we need to determine the interaction map J that
gives a given density map c at equilibrium. J and c are of dimension 21. If the Monte-
Carlo simulation is a function g such that g(J) = c, we need to solve the inverse problem
and determine g−1(c). We showed in Chapter 2 that the relation between J and c is non-
trivial, and non-linear. We cannot hope to solve this problem analytically. Each evaluation
of the function g is also costly, because it requires to run a Monte-Carlo simulation. For
those reasons, sophisticated optimization methods such as conjugate gradients are not well
suited: they require knowing the full profile of the function in one direction to determine the
optimal step size [120]. Instead, we solve the problem numerically with gradient descent,
that is a well adapted algorithm for multi-variables non-linear optimization problem [121].
It requires evaluating the gradient of f at each optimization step. We show in Sec. 4.2.1
how we can take advantage of the fluctuation-dissipation theorem valid on the system to
evaluate the gradient of g at a given value of J . In Sec. 4.2.2, we then explain how the
gradient descent algorithm is implemented. In particular, it required to resort to several
optimization tools to ensure the convergence of the algorithm in all cases.

4.2.1 We evaluate the gradient by measuring the fluctuations at equi-
librium

We need to compute the multivariate gradient ∂cα
∂Jβ

, which describes how a small change
in the energy level of the face pair α affects the number of bonds in the face pair β. We recall
that a face pair corresponds to one value in the interaction map. Instead of computing this
number with finite differences, which can be very noisy, we use the fact that our system is at
equilibrium at finite temperature, and that it verifies the fluctuation-dissipation theorem:
the thermodynamic fluctuations predict the response to a change in the energies. This
relation is generic to a large class of statistical physics problem [122] and reads as follows
in our situation:

∂⟨cα⟩J
∂Jβ

= −Nbonds ⟨(cα − ⟨cα⟩J)(cβ − ⟨cβ⟩J)⟩J (4.8)

The left-hand term corresponds to the dissipation, and the right-hand term to the
fluctuations. The brackets stand for averages over the thermal fluctuations of the system.
We showed in Chapter 2 how we could sample the fluctuations of the system at finite
temperature. We can then easily measure the right-hand term in the numerical simulation,
and evaluate the resulting gradient. We prove that this relation is verified in our model in
Sec. 4.2.1.1 and verify that the measure of the fluctuations provide a better evaluation of
the gradient than finite differences in Sec. 4.2.1.2.
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Figure 4.7: The difference between two equilibrium compositions is related both to the
fluctuations and the dissipation of the system. We plot a 1D representation of the free-
energy FJ and FJ+δJ, and the Taylor expansion of FJ around its minimum ceq.

4.2.1.1 Proof
We prove eq. 4.8 by introducing the free energy of the system, and evaluating it for two

interaction maps J and J+ δJ around their equilibrium configuration. In this discussion,
we only refer to interaction and density maps as vectors.

In Chapter 2, we showed that the energy of the system is simply the scalar product
between the density map and the interaction map. We can now write the free energy, F
which also depends on the entropy of the system S(c). The entropy counts the configura-
tions that are compatible with the occurrence of bonds measured in c. Here, we are still
using the formalism introduced in [93].

FJ(c) = Nbonds (J · c− TS(c)) (4.9)

where T is the temperature of the system. We not try to evaluate S(c), which encompasses
all the geometric constraints of the particles, but we use the fact that the dependency of
F in J is linear.

We now relate the second derivative of the free-energy to small variations of the coupling
and the composition. This is illustrated in Figure 4.7. The equilibrium composition of a
system for an interaction vector J is ceq = ⟨c⟩J. It is the value that minimizes FJ(c) (see
blue curve in Figure 4.7). We can Taylor expand the expression of the free energy around
this minimum:

FJ(c) = FJ(ceq) +∇cFJ(ceq).(c− ceq) +
1

2
(c− ceq)

T .ĤF (ceq).(c− ceq) +O(∥c− ceq∥3)
(4.10)

where ∇cFJ(ceq) = 0 by definition of ceq. ĤF is the Hessian of F . Because the
dependence of F on J is linear, the Hessian does not depend on J. We introduce δc =

c − ceq. From eq. 4.10, we obtain the quadratic expansion of FJ around its minimum,
represented with the dashed dark blue line in Figure 4.7.

FJ(ceq + δc) ≈ FJ(ceq) +
1

2
δcT · ĤF (ceq) · δc (4.11)

We now compute the free energy associated with an interaction vector J + δJ (pink
curve in Figure 4.7). From eq. 4.9, it is straightforward that

FJ+δJ(c) = FJ(c) +NbondsδJ · c (4.12)

We evaluate this new free energy FJ+δJ around the equilibrium concentration for the
initial free energy FJ, ceq(J) in eq. 4.13. We then replace in eq. 4.14) the evaluation of FJ
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Figure 4.8: Fluctuations provide a more accurate evaluation of the gradient than finite
differences. The fluctuation Cαβ (blue) is measured directly in the simulation. The dissi-
pation ∂cα

∂Jbeta
(green) is evaluated by finite differences. We compute the averaged value for

cα and Cαβ over 5 systems and 104 Monte-Carlo steps per sites. The error bar correspond
to the standard error. For the sponge, α = 11, β = 23, for the fiber α = 21, β = 7, for the
micelle α = 12, β = 12.

near its equilibrium value with the development introduced in eq. 4.11.

FJ+δJ(ceq + δc) = FJ(ceq + δc) +NbondsδJ · (ceq + δc) (4.13)

FJ+δJ(ceq + δc) ≈ FJ(ceq) +
1

2
δcT · ĤF (ceq) · δc+NbondsδJ · ceq +NbondsδJ.δc (4.14)

We differentiate eq. 4.14 with respect to c and evaluate it for δc such that ceq + δc is the
equilibrium concentration for the new free energy FJ+δJ. By definition of the equilibrium
concentration, this vanishes.

∇cFJ+δJ(ceq + δc) = 0 = 0 + ĤF (ceq).δc+ 0 +NbondsδJ (4.15)
δc

δJ
= −NbondsĤ

−1
F (ceq) (4.16)

Finally, we relate the Hessian of F to the measure of the fluctuations. We compute the
average of the fluctuations around the equilibrium composition ceq: ⟨δcαδcβ⟩. Here, we
drop the index J for F . We also replace F by its expansion around ceq, defined in eq. 4.11.
We are left with a multivariate Gaussian integral, for which the solution is well known.

⟨δcαδcβ⟩ =
1

Z

∫
c
δcαδcβe−F(c)dc with Z =

∫
c
e−F(c)dc (4.17)

=
1

Z

∫
δc
δcαδcβe−F(ceq)− 1

2
δcT .Ĥ(ceq).δcdδc (4.18)

= (H−1)αβ(ceq) (4.19)

We have a relation between the Hessian of the free energy at equilibrium and the
dissipation on the one hand (eq. 4.16) and the fluctuation on the other hand (eq. 4.19).
We proved relation 4.8.

4.2.1.2 Verification
We check that this relation is verified numerically. In particular, we want to verify

that we sample fluctuations during a sufficient number of Monte-Carlo steps to obtain a
reliable evaluation of the gradient. For this, we compare the gradient measured with the
fluctuation with that evaluated using finite differences, and verify that the former is less
noisy.
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For three examples systems we considered in Figure 4.6 (sponge, micelle, and fiber)
that are associated with a given interaction map J, we choose a face pair β that had high
concentration at equilibrium, and we vary Jβ (Figure 4.8). For each value of Jβ , we measure
the composition cα, and the covariance Cαβ = ⟨(cα − ⟨cα⟩J)(cβ − ⟨cβ⟩J)⟩J (blue curve on
Figure 4.8). We then evaluate ∂cα

∂Jβ
by finite differences (green curve on Figure 4.8). We

see that those curves match.
The measure of the gradient with fluctuation dissipation theorem is less noisy than

that with finite differences. We use the former method to evaluate the gradient at each
step of the gradient descent algorithm.

4.2.2 Gradient descent implementation
We want to determine the interaction map J that would give a chosen density map d

at equilibrium. For any candidate interaction map J, we can evaluate the gradient ∇J(c)

numerically by measuring the fluctuation of the system. In Sec. 4.2.2.1, we present the
generic ideas of the gradient descent algorithm that relies on the introduction of a cost
function. We explain our implementation choices and modifications of the algorithm to
ensure its convergence: choice of the learning rate (Sec. 4.2.2.2), addition of momentum
(Sec. 4.2.2.3) and regulation with the rate with the second moment (Sec. 4.2.2.4). Along
these subsections, we show how the cost function evolves along the optimization, for dif-
ferent sets of hyperparameters, and for different objective density maps. We determine
the hyperparameters that allow convergence of the algorithm in all the examples situation,
that will then be used in the rest of the study.

4.2.2.1 Method for gradient descent
The gradient descent method relies on the definition of a cost function. The gradient

of that function is then used to gradually update the variable from which it is calculated
(here J). We denote by f the cost function. f is a function of the variable J, it is positive,
and it vanishes when the equilibrium density map c of an interaction map J is equal to
the objective density map d. In practice, we choose

f(J) =
1

2

∥∥∥∥⟨c⟩J − d

c0

∥∥∥∥2 (4.20)

c0 = ⟨c⟩J=0 is the composition of a system of identical size and density with no interactions.
The normalization by c0 ensures that we measure relative variations in the density map,
and that f will not be dominated by variations in the face pair that are sampled the most.
The gradient of f , ∇Jf is then trivially computed from the multivariate gradient ∇J(c)

introduced in the previous section.
In its simplest form, the gradient descent algorithm corresponds to an update of the

parameter J at each optimization step by the opposite value of the gradient, multiplied by
a coefficient η. In this section, the optimization steps are denoted with the letter t. We
choose to initiate the gradient descent at J = 0. The value of the interaction vector is
then updated by the following recursion:

Jt+1 = Jt − η∇Jf(Jt) (4.21)

This technique is extensively used to train neural networks, in which case η is called
the learning rate. As shown in a one-dimensional example in Figure 4.9, the choice of
the learning rate highly influences the convergence and the speed of the gradient descent
algorithm. If the function f is known and harmonic, an optimal learning rate ηopt can be
computed such that the gradient descent will take one step to reach the minimum of f
(Fig 4.9a). If the learning rate is too small, the algorithm will converge, but the number
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Figure 4.9: Gradient descent success and efficiency depends on the choice of the learning
rate. Figure adapted from [105].

of optimization steps will be high (Fig 4.9b). If it is too high, it will oscillate around the
minimum (Fig 4.9c). Above a certain limit for ηopt, the algorithm will never converge and
escape away from the local minimum (Fig 4.9d). In the following subsections, we explain
our method for choosing the learning rate.

4.2.2.2 Increasingly smaller learning rate
We choose a time dependent learning rate η(t), that will decrease along the optimization

process:
η(t) = η0 × η1 × ηt2 (4.22)

Here, we explain this choice, and how we determine η0, η1 and η2. In particular, η0 is the
order of magnitude of the gradient, while η1 is a correction to this value. We explain our
choice of η0 and test different values of η1 and η2.

To evaluate η0, we determine the typical scale of the fluctuations of the density map δc,
and deduce the corresponding scale of the fluctuation of the interaction map δJ. On the
other hand, we determine the typical values of the gradient of f for a zero interaction map,
∇J(0). Fluctuations of the interaction map the gradient are related by eq. 4.21, which
sets the typical scale of η0: η0 = ∥δJ∥/∥∇J(0)∥. The learning rate should ensure that the
steps to update the gradient are not much smaller or much larger than the fluctuations
at zero temperature. This sets an order of magnitude for the learning rate. In practice,
η0 ≈ 10−2.

The exact value for the learning rate then depends on η1, which is of order 1, and
η2 < 1, which ensures that the step size will decrease along the optimization process, such
that the steps are small close to the minimum of f . The exploration of the hyperparameters
η1 and η2 on three specific example is shown in Figure 4.10a and b. When the optimization
process is easy, (panel (a) for the sponge), the algorithm converges faster for larger values of
η1, because the steps are large, as shown in the qualitative picture of Figure 4.9. However,
for less trivial optimization, a small learning step is required to ensure the convergence of
the algorithm (in panel (a) for the micelle, the algorithm does not converge for η1 = 4).
Additionally, when the learning rate is not decreased along the learning process (η2 = 1),
the algorithm does not converge for the micelle. From the comparison of the evolution of
the cost function for different values of η1 and η2, we choose η1 = 0.5 and η2 = 0.97. This is
not always the set of parameters that finds the most precise solution, but it guarantees that
the total rate is small enough for the algorithm to converge given any target composition.
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Figure 4.10: Influence of the learning rate on the optimization to solve the renormal-
ization equation. We plot the cost function along the optimization process, to find the
renormalized interaction vectors corresponding to sponge (left), fibers (left) and micelles
(right). In all optimization process, the default parameters are η1 = 0.5, η2 = 0.97, γ = 0.1
and β = 0.8. a) We vary η1. When η1 is large, the initial steps of optimization are faster,
but large oscillations of the cost function f can occur later. b) We vary η2. When η2 < 1,
the learning rate decreases with optimization step, allowing for less fluctuations of the cost
function f . η2 = 1 corresponds to the limit case where the learning rate is independent of
the optimization step. c) We vary γ. The influence of gamma is not very important. d)
We very β. For the micelle, the optimization converges only for small enough values of β.
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4.2.2.3 Gradient descent with momentum
In order to limit the time taken for the optimization process, we measure the equilibrium

density map at a given optimization step ⟨c⟩J(t) with a precision that is smaller than the
one we use to measure the objective density map d. Typically, a measure at optimization
step t is done on the result of the annealing of Nsystems = 2 different random initial
conditions. This causes the measures to be more affected by fluctuations. To address this
limitation, a technique often used is to perform a running average on the value of the
measured gradient. This corresponds to the step vt used to update the interaction vector
Jt [105].

vt = γvt−1 + η(t)∇Jf(Jt) (4.23)

Jt+1 = Jt − vt (4.24)

The momentum parameter γ controls the characteristic time scale over which this average
is done ((1 − γ)−1). We test the influence of γ on some specific optimization process as
shown in Figure 4.10c. It seems that the choice of γ is not decisive. We choose γ = 0.1.

4.2.2.4 Regulation from the second moment of the gradient
The density and interaction maps have large dimensions. The behavior in each direction

of this 21 dimensional space can be very different: some face pairs show very large density,
which will lead to large variations during gradient descent (this is a steep region of the
parameter space), while others have low densities (they are never observed) and their
corresponding interaction do not vary too much (this is a flat region of the parameter
space). To ensure the algorithm convergence, we want the gradient descent to perform
large steps in the flat regions, and small steps in the steep regions.

This can be done by rescaling the gradient by its second moment in every direction.
This technique is called Root Mean Squared Propagation (RMSprop) [123], and it is used
to ensure convergence of the training of a neural network. In practice, the rule to update
the interaction vector is now the following (the parameter γ was discussed in the previous
subsection).

gt = ∇Jf(Jt) (4.25)

st = βst−1 + (1− β)g2
t (4.26)

vt = γvt−1 + η(t)
gt√
st + ϵ

(4.27)

Jt+1 = Jt − vt (4.28)

In those equations, the vector division and square are taken element-wise.
We used this method because it leads to spectacular improvement of the convergence

of our algorithm, as shown in Figure 4.10d: if β = 1, this is equivalent to not performing
RMSprop. In that case, the gradient descent does not converge in the situation of the
micelle. When β is lower than, 1 however, the algorithm converges. In the following, we
choose β = 0.8.
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The size of the learning steps (η0 and η1) their decrease along the learning process
(η2), their dependence on the value of previous learning steps (γ) and their dependence
on a rescaling by the second moment of the learning step (β) were chosen such that the
algorithm converges (the cost function is of order 1) in three typical situations.

In this section, we successfully implemented a gradient descent algorithm that, for a given
averaged density of each 21 contact, recovers which set of interactions leads to this density
at equilibrium. This was possible because the gradient of the density with the interactions
was measured from the fluctuations of the system rather than for finite differences. The
implementation of a gradient descent algorithm that converges in all cases required to
resort to methods used in the machine learning community. For a given interaction map
J , associated with an equilibrium density map of the second neighbors ⟨d⟩J , we now
determined a way to compute J ′ = R(J): J ′ is the minimum of the cost function f

(eq. 4.20) which ensures that the equilibrium density map of the first neighbors of J ′,
⟨c⟩J ′ is approximately equal to ⟨d⟩J . Because the initial candidate interaction map for the
optimization is J = 0, and all the entries are increased or decreased of small quantities along
the optimization, until the cost function is small enough, the energies in the renormalized
interaction map will never be very large: if the strength of the interactions of J ′ are
sufficient to ensure ⟨c⟩J ′ ≈ ⟨d⟩J , the optimization steps and the energies of J ′ will not
increase further. For this reason, the typical scale of the energies of an interaction maps
chosen manually and of the interaction maps resulting from the optimization process can
be different.

4.3 Fixed-points identification with random sampling

We introduced a renormalization procedure: for a given interaction map J , we compute
a renormalized interaction map J ′ = R(J), such that the equilibrium configuration asso-
ciated with J ′ is a coarse-grained version of the equilibrium configuration associated with
J . We now identify the fixed-points of this renormalization, i.e. the interaction maps J∗

such that J∗ = R(J∗). In Chapter 3, we explored the 21-dimensional space of interaction
map by sampling random interaction maps in a Gaussian distribution. Here, we use a set
of random interaction maps as initial steps of the renormalization process. For a given
interaction map J (0), we repeat the renormalization process and determine J (1), J (2), ...,
such that J (t+1) = R(J (t)). We call this set of {J (t)} a renormalization trajectory, and t

is referred to as the renormalization step. We identify the fixed-points as the interaction
maps towards which the renormalization trajectories converge. In Sec. 4.3.1, we explain
how to study a renormalization trajectory, and its convergence. Then in Sec. 4.3.2, we
show that a broad diversity of initial random interaction maps all converge towards only
a few-fixed-points, that we characterize. We see that there are three types of fixed-points
of the model: the non-interacting isotropic particle (which leads to a gas), the attrac-
tive isotropic particles (which leads to a liquid), and particles that assemble into periodic
crystals.
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4.3.1 Renormalization trajectory
Studying the convergence of the renormalization trajectories is difficult for two rea-

sons. First, an interaction map is a 21-dimensional vector, and it is difficult to visualize.
Second, the interaction maps are defined up to a cyclic permutation of the vertices of the
particle it corresponds to, as was explained in Sec. 2.3.5 of Chapter 2. For this reason,
the Euclidean distance is an ill-defined measure of the similarity between two interaction
maps. Indeed, two interaction maps can correspond to equivalent equilibrium configura-
tion, but the element-wise difference will be very large. In this section, we explain the
choices we made to circumvent those limitations. We first illustrate the problematic of the
permutation-equivalent interaction maps with one example in Sec. 4.3.1.1, and introduce a
distance measurement between interaction maps that is independent of the permutation of
the interaction map 4.3.1.2. Because this still does not solve the difficulty to visualize tra-
jectories, we introduce a projection way of projecting interaction maps in a two-dimensional
graph in 4.3.1.3.

4.3.1.1 We repeat the renormalization step until reaching a fixed-points

Here, we show an example of renormalization trajectory, and explain why some tra-
jectories can be periodic, unless we apply a well-chosen permutation to the interaction
maps.

In Figure 4.11, we show the interaction map at successive steps of the renormalization
process. At each renormalization step t, we show the interaction map J (t), and the first-
neighbor and second neighbor density map ⟨c⟩J(t) and ⟨d⟩J(t) a with the convention defined
in Chapter 2. These maps are the equilibrium density map measured with Monte-Carlo
simulation. We also plot one image of an equilibrium configuration at each step. We can
first verify that the second-neighbor density map at step t, ⟨d⟩J(t) is approximately equal
to the first-neighbor density map at step t + 1: on the Figure, the second matrix in a
column is identical to the third matrix in the previous column.

The organization of the particles in the aggregate in each image appear similar, however
these similarities are not easily identifiable in the interaction maps. Looking at the density
maps, however, it seems that the first neighbor composition at step t = 0 is similar to the
first neighbor composition at step t = 3, and similarly between t = 1 and t = 4. There
seem to be a periodicity in the measured renormalization trajectory.

We consider a one-dimensional example to understand the origin of periodicity in the
renormalization process. Consider a chain of particles that can be in three states, which we
denote a, b and c. We renormalize it by conserving the statistics of the second neighbor.
Initially, the particles can be arranged with the following motif abcabcabc. Upon renor-
malization, the organization of the particles will be acbacbacb (every second particle in the
previous motif). After one extra renormalization step, the organization of the particles is
again abcabcabc. In this situation, we measure a periodicity in the equilibrium motifs at
successive steps of the renormalization, but the physical rules that dictate the equilibrium
organization of the particles at each of the steps are similar.

In Chapter 2, we introduced a permutation matrix M such that, two interaction ma-
trices J and J̃ are equivalent through a transformation of their lines and columns: J and
J̃ =MkJM−k. For the example of Figure 4.11, we perform such a permutation of the in-
teraction, and first and second-neighbor density maps. For steps t = 1, 4, 7, we take k = 2

and for steps t = 2, 5, 8, we take k = 4. We plot the permuted interaction and density
maps in Figure 4.12. Now, the interaction maps at different steps of the renormalization
are comparable, and we can follow how each individual interaction is renormalized. For
instance, the first diagonal term (top left entry) of the matrix corresponds to an interaction
that is more and more repulsive along the renormalization process (from t = 3) and the
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Figure 4.11: Similar pattern arise periodically along the renormalization trajectory. The
organization of the particles, and the density map are identical at renormalization step
t = 0 and t = 3 and t = 1 and t = 4. We verify that the density matrix of the second
neighbors at step t is approximately equal to the density matrix of the first neighbors at
step t+ 1. The color scales for the interaction map (in unit of kT ) and the density maps
are plotted on the right. The initial interaction map is drawn in a Gaussian distribution
of mean 0kT and standard deviation 3kT . The snapshots are zoomed in on the aggregate,
the systems density is 1/9.

second diagonal term is a more and more attractive interaction.
In this example, we found manually which permutation should be applied at which step

of the renormalization to make the renormalization trajectory understandable. However,
such method cannot be used on a large number of renormalization trajectories.

4.3.1.2 Distance between two interaction maps

Here, we introduce a pseudo-distance between two interaction maps J and J̃ . We
explain why it serves our purposes of identifying fixed-points, but does not verify all the
requirements for a distance.

We define the distance function D such that

D(J, J̃) = min
k∈J−6,6K

∥(MkJM−k)− J̃∥ (4.29)

We recall that M is the 6×6 matrix that performs one cyclic permutation of the lines and
the columns of J . We compare all the permutations of J and choose the one such that J
is closest to J̃ . In this definition, we choose the matrix representation of the interaction
maps: J and J̃ are matrices.

This distance is positive, the distance between two identical interaction maps is zero,
and it is symmetric (it is equivalent to permute the entries of J or J̃). However, it does
not verify the triangular inequality, which we show now. Consider three interaction maps
J , L and N . We define kl (respectively kn) as the number of permutation of J to make
its distance with L (respectively N) minimum. Similarly, k0 is the number of permutation
of L that minimizes the distance between L and N . We then write the distance between
L and M , and introduce the term MknJMkn that is the permutation of J with minimal
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Figure 4.12: After doing a permutation of the interaction and density maps at certain
steps, we observe the convergence of all the entries of the interaction map towards an
attractive or a repulsive interaction. At steps t = 3n + 1 (respectively t = 3n + 2),
we performed two (respectively, four) cyclic permutation of the interaction matrices of
Figure 4.11. At the end of the renormalization process, all the interactions are either
repulsive or attractive with the same strength (only two colors in the interaction map at
t = 9).

distance to N .

D(L,N) = ∥Mk0LM−k0 −N∥ (4.30)

D(L,N) = ∥Mk0LM−k0 −MknJMkn +MknJMkn −N∥ (4.31)

We use the triangular inequality on the norm of matrices, and rewrite the first term of
eq. 4.32 by permuting both matrix −k0 times (in the other direction of cyclic permutation).

D(L,N) ≤ ∥Mk0LM−k0 −MknJMkn∥+ ∥MknJMkn −N∥ (4.32)

D(L,N) ≤ ∥Mkn−k0JM−(kn−k0) − L∥+D(J,N) (4.33)

Here, we see how the triangular inequality could not be verified: there are no guarantees
that kn − k0 = kl. In words, the permutation of J that minimizes its distance to N is not
the same as the permutation that minimizes its distance to L.

This measure is not relevant to compare interaction maps that are very different, how-
ever, it gives a good quantitative prediction of the proximity between similar interaction
maps. Moreover, there is no ambiguity on the measure of a very small distance between
J and J̃ . A measured small distance means that both matrices are almost equal, up to a
permutation. Upon studying convergence of the renormalization trajectories towards the
fixed-points, we measure the evolution of the distance between the interaction map and
the fixed-points along the successive steps of the renormalization.

4.3.1.3 Spectrum of the interaction maps
We also need an absolute representation of the renormalization trajectories, that does

not require defining a reference point, as the distance introduced in 4.3.1.2. The eigen-
values of a matrix are independent of the permutation of its entries. Here, we show how
the eigenvalues of a pseudo-transfer matrix computed from the interaction map can be
interpreted. Therefore, their measure will provide a relevant space of lower dimensional-
ity to plot the renormalization trajectories. We compute the spectrum of some canonical
examples.

Here, we introduce the pseudo-transfer matrix T , because it is possible to give a physical
interpretation of its eigenvalues and eigenvectors. Instead of comparing the spectrum of
the matrix Jab where a and b refer to the faces of the particle in contact, we study the
spectrum of the transfer matrix Tφψ = e−Jφψ where φ and ψ refer to the orientation
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of the particle if the contact is in the horizontal direction. We also consider the case
where there are no particles: T00 is associated with the energy of a contact between two
empty sites, and Tφ0 to a contact between a particle in orientation φ and an empty site.
We also normalize T by the sum of its terms, such that Tφψ can be interpreted as the
probability of observing a particle in orientation φ next to a particle in orientation ψ.
We call this matrix a pseudo-transfer matrix, because transfer matrices are usually only
defined in one-dimension, though with the same conventions. We denote by (pm)

i
m=0...7

the vector of probabilities of each particle orientation at site i. Then pj = T̃pi is the
vector of probabilities of each orientation at site j knowing the orientation of a particle
at a neighbor site i, if there is no third particles in contact with both i and j. We can
now diagonalize the matrices T . Contrarily to the interaction matrix for the faces (J),
the interaction matrix for the orientations are not symmetric, and they are diagonalized
in C. If a probability of state p is associated with zero eigenvalues, it means that if a
site has probabilities p of having each orientation, its neighbor site cannot have the same
probabilities. Inversely, a vector of probability associated with a non-zero eigenvalue can
be observed for two neighboring particles.

We give examples of this interpretation for two simple examples, the isotropic particles
without interaction, i.e. the gas configuration (all the entries of Jgas are zero) and the
isotropic sticky particle, i.e. the liquid configuration (all the entries of Jliquid are −ϵ)
with ϵ the strength of the attractive interactions. We compute the corresponding pseudo-
transfer matrices Tgas and Tliquid. Tgas has only one non-zero eigenvalue, associated with
the probability vector, where all the configuration of the particle have the same probability
(including the empty configuration). There is only one way the particles can be ordered
locally, and it is the gas configuration. Tliquid has also one non-zero eigenvalues, which we
interpret as follows: the sites are either all occupied or all empty, and therefore there is
also only one way the particles can be organized. In the numerical simulation, because the
number of particles is fixed, we observe both the dense and the empty phase in the same
system.

In the following, we represent renormalization trajectories in the space of the norm
of the eigenvalues of the pseudo-transfer matrix. For instance, we plot renormalization
trajectories in the (|λi|,|λj |) space with λi the norm of the ith eigenvalue of the pseudo-
transfer matrix. In this projection, the coordinates of a point will not depend on the
permutation of the interaction map. It is also possible to give a partial interpretation of
a coordinate being zero in these plots: an eigenvector associated with a zero eigenvalue
is a set of probabilities of the orientations of the particles that two neighboring particles
cannot have.

In this section, we emphasized the difficulties of comparing renormalization trajectories,
and we identified two complementary strategies to tackle the question: we can project the
renormalization trajectories in the space of the eigenvalues of the pseudo-transfer matrix,
and we can measure distances between two interaction maps by enumerating all the per-
mutations of a transfer matrix and choose the one that minimizes the Euclidean distance.
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Figure 4.13: The renormalization trajectories seem to converge towards a few fixed-
points when plotted in the projected space of the eigenvalues of the transfer matrix. The
initial point of each trajectory is indicated with a gray square, and the final point with
a white circle. a) All trajectories are plotted with a different color. b) and c) Colors
correspond to a fixed-point that is assigned as described in eq. 4.34. b) We plot the
trajectories renormalizing towards the J∗gas and J∗liquid. c) We plot the other trajectories.
In this projection, initial interaction maps can be close and final interaction maps far, and
vice-versa.

4.3.2 We identify fixed-points from statistical sampling
In this section, we identify stable fixed-points of the renormalization. We see that

the renormalization trajectories starting from a large set of initial random interaction
maps converge towards a few points J∗. These interaction maps correspond to aggregates
with stereotypical shapes. In particular, the isotropic infinitely attractive particle and the
isotropic non-interacting particle are fixed-points of the renormalization. The interaction
map of some crystal aggregates with periodic organization of the particles are also fixed-
points. With our statistical approach, we also show that some characteristics such as the
affinity and anisotropy of the particles are partially conserved by the renormalization. In
Sec. 4.3.2.1, we detail what are the stable fixed-points of the model and how we found
them. In Sec. 4.3.2.2, we characterize the basin of attraction of those fixed-points with the
measure of distance between interaction map introduced in Sec. 4.3.1.2. In Sec. 4.3.2.3,
we show that the renormalization method is complementary with the machine learning
method developed in Chapter 3 to classify the aggregates.

4.3.2.1 The trajectories converge towards a few fixed-points
We identify the stable fixed-points of the renormalization as the interaction maps to-

wards which a large number of renormalization trajectories converge. Here, we explain
what initial interaction maps we choose to renormalize, and show to which fixed-point
they converge upon renormalization.

We sample 375 initial conditions by drawing the interaction map in a Gaussian dis-
tribution of average µ and standard deviation σ. We choose µ ∈ [−4,−2, 0, 2, 4](kT ),
σ ∈ [3, 5, 7, 9, 11](kT ), and we draw 15 interactions maps per couple (µ, σ). We consider
systems of size 30 × 30 with 100 particles. The annealing protocol is similar to the one
described in Chapter 3. We perform 10 successive numerical renormalization steps between
t0 = 0 and tf = 9. If we find J (t) = J (t+1), we stop the computation before reaching the
10th step (tf < 9). The hyperparameters of the optimization process are the one chosen in
Sec. 4.2.2. We can plot the renormalization trajectories in the space of the eigenvalues of
the pseudo-transfer matrix introduced in 4.3.1.3. In Figure 4.2, we showed the renormal-
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ization trajectory of the 1D Ising model: it was converging towards the fixed-points K = 0.
Here, we expect something similar: the trajectories in the parameter space should converge
towards the fixed-point of the renormalization, even for the two-dimensional projection of
a 21-dimensional space. Some examples of such trajectories are plotted in Figure 4.13a.
The initial point of each trajectory is a gray square, and the final point is a white circle.
We observe the expected convergence of the trajectories towards some fixed-points. In
Figure 4.13b, we plot only the trajectories for which the final renormalization step verifies
λ2 = 0. The inset shows that they converge towards two well distinguishable points, the
yellow and the purple star. Here, we only show the projection in the subspace (λ1, λ2/λ1).
By looking at the projection of the trajectories along the other eigenvalues, we identify 9

fixed-points of the renormalization. This identification is done manually, but we justify
it a posteriori. Some trajectories converging towards the other fixed-points are shown in
Figure 4.13c, and the position of the identified fixed-points in this projection are blue and
green stars.

We first characterize the identified fixed-points in Figure 4.14. For each of them, we
show the interaction map, the first, and second neighbor density maps, the eigenvalues of
the transfer matrix, and snapshots of an equilibrium configuration. We first see that there
are two fixed-points for which the interactions take only one value, i.e. isotropic particles.
When all the interaction are zero, the equilibrium configuration is a gas. We call this the
gas fixed-point J∗gas. When all the interaction are attractive, the equilibrium configuration
is a dense aggregate in which particles have random interactions. We call these aggregates
liquid in the previous chapter. This corresponds to the liquid fixed-point J∗liquid. The seven
other fixed-points correspond to aggregate with periodic organization of the particles. We
recover some stereotypical aggregates of the Chapter 3, such as the crystal where all the
particles are aligned (J∗1 ) or the sponge (J∗4 ). J∗2 is the interaction map of particles that
aggregate in a periodic crystal of period 3, and J∗3 is a sponge for which the holes are
filled with a particle of random orientation. The equilibrium configuration for J∗5 and J∗6
are not easily identified in the image, but from the interaction and density map, it is very
clear that these correspond to particles with only two types of interactions, the favored
and the repulsive ones. J∗7 is a crystalline structure where there is a favored disclination
line. This disclination line is sampled for both the first and second-neighbors density, and
is conserved upon renormalization.

We check that those points verify J∗ = R(J∗): the density matrix of the first and the
second neighbor should be equal. We see in Figure 4.14 that this is true for the fixed-points
we identified, up to a permutation of the second-neighbor density matrix corresponding
to J∗2 , J∗3 and J∗4 . This can also be understood from the snapshots: the orientations of
the first and the second neighbors of a particle in the aggregates are on average identical
(again, up to a rotation of the second neighbors in situation 2, 3 and 4).

The projection in the subspace of the eigenvalues of the transfer matrix enables us to
identify the fixed-points. However, from that representation, it is not possible to identify
which regions of the parameter space should converge to one fixed-point or the other. In
particular, some trajectories start very close and converge towards different fixed-points,
while some other start very far and converge towards the same fixed-point.

This method enables to find some fixed-points, and to identify a posteriori that they
have the correct behavior. However, it does not guarantee that we identified all the fixed-
points of the model. Indeed, we identified only the one towards which the measured tra-
jectories converge. We try to sample the initial interaction maps to renormalize as broadly
as possible, by resorting to random interaction maps drawn in a Gaussian distribution. All
the 375 trajectories converged towards only 9 fixed-points. We found that the fixed-points
are either interaction maps of isotropic particles (gas and liquid) or anisotropic particles
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Figure 4.14: Fixed-points of the renormalization have identical first and second neighbor
densities. Most of them correspond to periodic organization of the particles. The color
scale for the interaction map is such that red corresponds to positive coupling, blue to
negative coupling, and the darkest colors correspond to ±6kT . For the density matrix,
blue correspond to non-zero measured densities, and darkest blue is 0.04. The scale of
the eigenvalues is linear, with the highest eigenvalue scaling around 0.1 for all the fixed-
point. For fixed-points 2,3 and 4, the second-neighbor density matrix has been permuted
as described in 4.3.1.2 to be comparable to the first-neighbor density matrix
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that tile the plane in a periodic way. In the case of the crystalline fixed-points, the interac-
tion maps are such that there are only two or three levels in the interaction energies, even
if the interaction energies at the beginning of the renormalization were random number
drawn in a continuous distribution. Beyond those three types of fixed-points, we cannot
think of other stereotypical behavior that should lead to an equality between the first and
the second neighbor density, yet, we cannot prove it.

4.3.2.2 Basin of attraction
We identified fixed-points of the model. We now characterize their basins of attraction.

We recall that the basin of attraction of a fixed-points J∗ corresponds to a subspace of
the parameter space in which all the points will renormalize to J∗. The projection of
Figure 4.13 is not well adapted to characterize the basin of attraction of the fixed-points,
because it did not show separations between the trajectories converging towards different
fixed-points. Here, we show how we can use the measured renormalization trajectories to
get a list of interaction maps that are in the basin of attraction of the fixed-points. We
expect this list of interaction map to be representative of the basin of attraction, because
they were sampled starting from a large number of different random interaction maps.

We recall that a trajectory in the renormalization space is a list of interaction maps
{J (t)} such that J (t+1) = R(J (t)). We assign all the interaction maps in the same trajectory
to the fixed-point it converges to. Given a trajectory {J (t)}, we assign it to the fixed-point
J∗k by determining to which fixed-point the final step of the trajectory is the closest. This
also requires that this distance is below a threshold Dmin. We choose to be Dmin = 1kT ,
which we justify below.

J∗k = argmin
J∗

(
D(J (tf ), J∗)

)
if D(J (tf ), J∗k ) < Dmin (4.34)

In Figure 4.13b and c, the trajectories are colored as the fixed-point they converge to,
determined by eq. 4.34.

For each trajectory, we can now plot the evolution of the distance between the inter-
action map at each step t of the renormalization to the fixed-point: D(J (t), J∗). If the
fixed-points we identified manually in Sec. 4.3.2.1 are correct, we expect the trajectory to
converge to the fixed-point, i.e. we expect that the distance to the fixed-point will decrease
with t and converge to zero. If the fixed-points were just arbitrary interaction maps iden-
tified because of an artifact of the projection, we would rather observe large measures of
distance to the fixed-point along all the trajectory, except for the last step, which is below
Dmin because of eq. 4.34. The evolution of the distances are plotted in Figure 4.15. We
do not plot the evolution of the distance towards J∗5 , J∗6 and J∗7 , because there is less than
5 trajectories attracted towards these fixed-point. In each panel, we show the evolution
of the distance of the trajectories to the fixed-point they are attracted to. We do observe
the expected convergence of the trajectory towards the fixed-point. We also observe that
this convergence is often fast: after a few renormalization step, the interaction map is
very similar to that of the fixed-point. This also confirms that the choice of Dmin is not a
fine-tuned optimization: the measured distance is well below Dmin = 1kT for several steps
before reaching the fixed-point.

With our method of numerical simulation, we cannot identify boundaries in the param-
eter space that separate the region that will converge to the same fixed-point, because this
space is 21-dimensional. However, we can sample this space by drawing random interaction
maps. For each trajectory, we are ensured that all the interaction maps J (t) within this
trajectory are in the basin of attraction of the fixed-point J∗ it converges to. Indeed, there
is no memory involved in the computation of the renormalization process: if J (t) belongs
to a trajectory that converges to J∗, it is in the basin of attraction of J∗ independently
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Figure 4.15: The distance to the fixed-point decreases along the renormalization trajec-
tory. The distance is measured from the formula 4.29, and one panel shows the distance
evolution of the trajectories that renormalize towards the same fixed-point.

of the initial point J (t0). Therefore, for each fixed-point, we now have a list of interaction
maps that are in their basin of attraction.

4.3.2.3 The renormalization partially conserves the affinity and anisotropy
We can now study the common characteristics of the interaction maps in the same basin

of attraction. In Chapter 3, we introduced two ways to characterize an interaction map:
the affinity and anisotropy of the particles, and the category of aggregates it belongs to
(liquid, crystal, sponge, fiber, micelle, crystallite, oligomer, and monomer). Here, we show
that affinity and anisotropy are not sufficient to discriminate in which basin of attraction
a given interaction map is.

We first determine how often a random interaction map will renormalize to each fixed-
point. We expect this to depend on the affinity and anisotropy of the initial random
particle. The expectation in the low anisotropy case is simple: attractive particles ag-
gregate in dense bulks with unordered orientations of the particle, and we expect them
to renormalize to the liquid fixed-point J∗liquid where all the interactions have the same
energy. Similarly, repulsive particle do not aggregate, and we expect them to renormalize
to the gas fixed-point J∗gas where all the interactions are zero. We show the statistics on
our dataset of 375 initial interaction maps in Figure 4.16. The gas is the fixed-point of 243
trajectories, the liquid of 73 trajectories, while the crystalline fixed-point together attract
221 trajectories. Only 11 trajectories were unclassified with our method, and they seem
to correspond to crystalline structures, but there were not several trajectories converging
towards them, and we did not include them in our list of fixed-points. The affinity and
anisotropy projection was not sufficient to discriminate between aggregates of different
categories in Chapter 3, and it is not sufficient either to discriminate between aggregates
in different basin of attraction. Yet, it enables to verify the expected tendency for particles
with low anisotropy (bottom of the diagram), that renormalize to a gas when repulsive,
and to a liquid when attractive. From anisotropic particle (top of the diagram), the affinity
of the particle seem to be important: anisotropic repulsive particles mostly renormalize to
a gas, and anisotropic attractive particle either renormalize to crystals or liquid. When
the particle is attractive (left of the diagram), the more anisotropic it is, the more it renor-
malizes to a crystalline structure instead of a gas (less and less dark violet while going
up). Those observations suggest that the shape and size of the aggregate is decisive of the
fixed-points it will renormalize to.
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Figure 4.16: Repulsive particles are more renormalized as gas, attractive particles more
as liquids. For a given affinity and anisotropy of a random particles, we plot how often the
renormalization to each of the fixed-point was observed. Each pie in (a) corresponds to the
initial step of 15 renormalization trajectory. The gray color corresponds to unidentified
fixed-points. b) The total distribution of the fixed-points (375 trajectories).

4.3.2.4 The renormalized aggregates only fall into a few categories

Here, we see that aggregates in the same basin of attraction have common geomet-
ric properties. The renormalization provides a new classification procedure that we can
compare to the machine-learning classification introduced in Chapter 3. We can use the
classifier trained on the data of Chapter 3 for these new dataset of interaction maps, den-
sity maps, and geometrical descriptors. The interaction maps and descriptors measure at
the initial step of the renormalization are exactly comparable: the interaction map was
drawn in the same distributions (Gaussian) and the annealing protocol was the same, such
that the density map and geometric descriptor measured on the equilibrium configuration
should be comparable. It is less clear that we can use this classifier on the interaction maps
computed as a result of the optimization process: mathematically, they are comparable
objects, but we did not train the neural network on this type of interaction map.

We first discuss the classification of the random matrices that are the initial points of
the renormalization trajectories. We expect dense aggregates such as crystals and liquids
to renormalize towards the liquid fixed-point, or one of the crystal fixed-point. Indeed, if
the particles can assemble in an aggregate of infinite size, the first, and second neighbors
of a particle are occupied (unless they are at the boundary of the aggregates, which we
discussed in section 4.1.2.3). Similarly, the aggregates that have finite size have too many
boundaries, and they should renormalize to the gas fixed-point. More qualitatively, an
aggregate of finite size, from a coarse-grained view, is a single particle without interaction.
The fibers should also renormalize to a gas fixed-point. We show the occurrence of each
category of aggregate for the initial step of renormalization in each basin of attraction
in Figure 4.17, top. The main trend is the one we expected: liquid, crystal and sponge
are mostly in the basin of attraction of the liquid and the crystalline fixed-points, while
aggregates of small sizes, and fibers are mostly in the basin of attraction of the gas. The
case for the micelle and the crystallite are less clear, and they are spread in the basins
of attraction of all the fixed-points. This is because the aggregates in those categories
are very heterogeneous, and sometimes have large sizes, but they are two different of
crystals or liquids to be classified as such. Except for those aggregates that are hard to
classify, the renormalization behaves as expected: infinite aggregates remain infinite along
the renormalization, and small aggregates renormalize to aggregates of size 1. Most of
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the crystals conserve their crystalline organization upon renormalization, and the liquids
mostly remain unorganized.

We can also determine the occurrence of the aggregate categories among the interaction
maps that are the final step of the renormalization process. The results are plotted Fig-
ure 4.17, bottom. The aggregates within the same basin of attraction belong to the same
category, which confirms that the renormalization selects features relative to the shape of
the aggregates. All the final steps of renormalization for the trajectories in the basin of the
liquids, are liquids, those in the basin of the crystalline fixed-points J∗1 and J∗2 are crystals,
and those in the basin of the gas fixed-point are monomers. The results are unexpected for
J∗3 and J∗4 : those are crystalline structures (with holes for J∗4 ) and we would expect them
to be classified as crystals or sponge.

We explain the unexpected classification of the interaction and density maps in the
basin of attraction of J∗3 and J∗4 . As can be seen in the images of Figure 4.14, the aggre-
gates at equilibrium are at the limit of crystallization, and the energy of their attractive
interaction is just enough for the aggregate to form, but some monomers remain detached
from the aggregates. This comes from the way we determine the renormalized interaction
map with gradient descent. We change the interaction map by small quantities in the
opposite direction until the cost function is low enough. For this reason, as soon as the
interaction energy is strong enough for the particles to interact, the optimization process
will stop. In that sense, the interaction maps are fine-tuned. The training of the neural
network was not done on such fine-tuned interaction maps at the limit of the crystallization
process. This is why those aggregates are classified as micelles, crystallite, or liquids: they
do not correspond to stereotypical aggregates of the dataset, and are rather assigned labels
of the categories where the aggregates are very heterogeneous.

The fixed-points that correspond to most of the sampled random trajectories, J∗gas,
J∗liquid, J

∗
1 and J∗2 , correspond to stereotypical examples of the aggregate categories we

determined in Chapter 3. However, the classifier we trained on the dataset of Chapter 3 is
not well adapted to classify the interaction maps resulting from the optimization process,
and the characterization of the interaction maps within the same basin of attraction is
limited with this method.
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In this section, we found that the isotropic attractive particle, the particle without
interaction, and particles that organize in periodic patterns, are fixed-points of the renor-
malization. We could not identify which regions of the phase diagram correspond to the
basin of attraction of each fixed-point, but we looked at interaction maps within the basins
of attraction. From this statistical sampling, it seems that particles that form dense and
unorganized aggregate will renormalize to the liquid fixed-point J∗liquid, while the aggre-
gates of small sizes will renormalize to the gas fixed-point J∗gas. We identified 7 patterns
of organization of the particles that correspond to a crystal fixed-point, but we have no
guarantees that they are the only ones. Increasing the number of sampled trajectories
will not guarantee the exhaustiveness of the fixed-point identification. This method only
enables us to identify stable fixed-points: unstable fixed-points are repulsive in at least
one dimension of the space, and we do not expect renormalization trajectories to converge
towards it.

There seem to be important overlaps between the phenomenological classification of
the aggregates we introduce in Chapter 3, that relied on a manual labelling of images of
aggregates, and the renormalization classification, that rely on scale invariance properties
of the particle organization. This is an indication that the classification we proposed in
Chapter 3 relies on physical principles of the particle organization. The classification with
renormalization however misses important features of the aggregates: all the aggregates
of small sizes will renormalize to a gas, regardless of their dimensionality, or size, and it
is not possible to introduce distinctions between them. Specifically, we can not systemat-
ically distinguish between the interaction maps leading to fibers or micelles, which have
interesting properties (size and dimensionality reduction) with renormalization.

4.4 The fixed-points basin of attraction correspond to stereo-
typical aggregates

In this section, we go beyond the statistical characterization of the initial interaction
maps within the same basins of attraction proposed in Sec. 4.3, and look in details at the
common properties of the interaction maps within one basin of attraction. For the liquid
and the gas fixed-points, there is a large amount of data within each basin of attraction,
and the interaction maps are very diverse at the initial step of renormalization, and very
homogeneous at the final step. We use this data to see how the affinity and anisotropy
of the particles vary along the renormalization process. We show that the anisotropy of
the particle progressively decreases for both, and that the affinity reaches a fixed value,
zero for the trajectories in the basin of attraction of the gas, and around −2kT for the
basin of attraction of the liquid. The basin of attraction of the gas will be studied in
Sec. 4.4.1, and that of the liquid in Sec. 4.4.2. We also study the interaction maps in the
basin of attraction of the crystals, and show that each trajectory converges very fast to an
interaction maps with only two type of interactions, one attractive and one repulsive, upon
renormalization (Sec. 4.4.3). We show why this indicates that the gas, liquid and crystal
fixed-points are stable. Finally, in Sec. 4.4.4, we show that the renormalization trajectories
of stereotypical fibers suggest that the fiber is an unstable fixed-point of the model.

To study how some characteristics of the interaction maps of the aggregates are renor-
malized, we plot their measure at step t + 1 of the renormalization as a function of their
measure at step t, and compare this evolution with the first bisector. If f is a function
that measures a characteristic of the renormalization map J , such as its average or stan-
dard deviation, we plot at each renormalization step of each category f(J ′) as a function
of f(J). The position of the data compared to the first bisector is an indication of the
stability of the fixed-point, as illustrated in Figure 4.18. If the values of f(J) are below

100



<latexit sha1_base64="d0l3SMgloJl9gEp8w+OGcFlSSIs="></latexit>

f(J)

<latexit sha1_base64="Xiw6ZJ99Kg4158/FhbQB73fT/ws="></latexit> f
(J

0 )

<latexit sha1_base64="d0l3SMgloJl9gEp8w+OGcFlSSIs="></latexit>

f(J)

Stable 
fixed-point <latexit sha1_base64="4jaSjE06vy26+6cG1aCptlHk1wQ="></latexit>y = x

Measured data

Evolution

Fixed-point

Unstable 
fixed-point 

<latexit sha1_base64="Xiw6ZJ99Kg4158/FhbQB73fT/ws="></latexit> f
(J

0 )

Figure 4.18: The position of a measure quantity along the renormalization with respect
to the first bisector indicates whether the fixed-point is stable or not. This is a schematic
of the expected behavior for any measure performed on the interaction map J , such as the
affinity and anisotropy.

the first bisector, it means that the quantity of interest is supposed to converge towards
its value for the fixed-point. On the left plot, the red arrows show how a measure at step
t is renormalized at step t + 1 closer to the fixed-point. On the contrary, if the data is
above the first bisector, this quantity will increase away from the value of the fixed-point
along the renormalization process. The slope of the data close to the fixed-points is also
an indication of how fast this characteristic is renormalized. If the blue curve is completely
flat, the system is renormalized in one step to the fixed-point value. If it is steep and close
to the bisector, it is renormalized slowly. In this section, we choose specific functions f
that are relevant characteristics of the interaction maps or the aggregate, and observe their
evolution in this type of plot (f(J ′), f(J)).

4.4.1 Diverse aggregates of finite size renormalized fast to a gas
Here, we determine common characteristics to the interaction maps in the basin of at-

traction of the gas fixed-point: they correspond to aggregate with possibly large anisotropy
and large sizes, that will be renormalized in only one or two steps in small spherical ag-
gregates, that are the equilibrium configuration of particles with both low affinity and
anisotropy.

The interaction map of a gas has zero affinity and anisotropy, and the typical cluster size
in a system with no interactions is around one. Here, we study how those characteristics
(anisotropy, affinity, and size) behaves along renormalization for the random trajectories
in the basin of attraction of the gas. At each renormalization step, we plot (Figure 4.19)
µ′ = average(J (t+1)) as a function of µ = average(J (t)) (panel a), σ′ = std(J (t+1)) as a
function of σ = std(J (t)) (panel b), and ⟨s⟩(J (t+1)) as a function of ⟨s⟩(J (t)), where ⟨s⟩
is the average size of the aggregate at equilibrium for a given interaction map J (panel
c). We explained how the aggregate sizes were computed in Chapter 2. The measured
data are mostly below the first bisector, and they cross the first bisector at µ = 0, σ = 0

and ⟨s⟩ ≈ 1. This shows that the gas fixed-point is attractive, and that the affinity and
anisotropy of the particle decreases along the renormalization, and so does the equilibrium
size of the aggregate.

Our data suggest that the renormalization is very fast at the first step for most of
the systems. The colors of the points in Figure 4.19 a and b indicates the relative step
of renormalization: because some trajectories are shorter than other, the initial step of
renormalization is colored in dark purple, the last one in yellow, and the intermediate
steps in intermediate colors. At the initial step, the anisotropy of the particle can be large.
After one step, however (blue and orange points), the anisotropy is low. The situation is
not as clear as that of the schematic of Figure 4.18, but if we were to plot a line to explain
the behavior of the data, its slope would be low close to the fixed-point, suggesting a fast
renormalization.

We suppose that the points for which the anisotropy is large at the initial step concern
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Figure 4.19: When interaction maps are renormalized to that of a gas, the anisotropy and
affinity of the interactions, and the size of the aggregate, decrease fast. We plot the data
for the trajectories introduced in Sec. 4.3 in the basin of attraction of the gas fixed-point.
Panels (a) and (b) share the same color code that indicates the step of renormalization,
and the color in (c) refers to the sphericity of the aggregate.

fibrillar aggregates. Indeed, such aggregates can have a well-defined dense organization,
but the number of surface bonds per particle is such that this organization is lost in one
renormalization step. This is confirmed in Figure 4.19c. For highly non-spherical aggre-
gates (red points far below the bisector), the aggregate is diluted in one step, whereas
spherical aggregates are renormalized slowly (orange points close below the bisector). The
few data points above or on the bisector concern unreliable trajectories: at a given renor-
malization step, a dense aggregate renormalizes to an aggregate of larger sizes in a specific
case where the optimization process did not converge.

Our data also suggest that repulsive particles renormalize to a gas very fast (Fig-
ure 4.19b, if µ > 0, µ′ ≈ 0). This was expected: we consider a model with short range
interactions only, such that there is no cost for the repulsive particle to be a second neigh-
bor. Repulsive particles on the renormalized lattice behave exactly like a gas.

Finally, we confirm what was observed in Figure 4.17: the basin of attraction of the
gas is not only composed of repulsive particles or oligomers. Indeed, there is a significant
amount of aggregate of sizes larger than 10 particles that renormalize to a gas: aggregates
of large but finite size. This result, already derived in Chapter 3 with other method,
emphasizes the rich phenomenology of self-assembly of particles with simple geometry and
anisotropic interactions.

The projection of the data in the (f(J ′), f(J)) space shows that the interaction maps
leading to different phenomenology (fibrillar aggregate, oligomers, repulsive particles) all
renormalize to the gas-fixed-point in a few renormalization steps.

4.4.2 Similar aggregates of infinite size, and no long-range order of
the particles orientation, renormalize slowly to a liquid

The trajectories in the basin of attraction of the liquid correspond to aggregates of
infinite size, for which the particle anisotropy can be initially large, but decreases slowly
along the renormalization process.

The liquid fixed-point corresponds to attractive isotropic particles. However, from the
classification of the initial points of Figure 4.17, we observed that the aggregates within the
basin of attraction of the liquid were very diverse. We confirm this observation by plotting
the data in the ((µ′, µ), (σ′, σ) and (⟨s′⟩, ⟨s⟩) projection in Figure 4.20, as was done for
the gas fixed-point in Sec. 4.4.1. These plots confirm that the liquid fixed-point has zero
anisotropy, the affinity is around −2kT , and the size is 100 particles, i.e. the maximal
possible size. If the aggregate in the basin of attraction of the liquid are all large (panel c),
the anisotropy of the interaction can be around 5kT , which is not negligible. This means
that the aggregate have all have infinite size, but the particles can be arranged in a non-
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Figure 4.20: When interaction maps are renormalized to that of a liquid, the anisotropy
and affinity of the interactions, decreases slowly and the aggregate remain spherical and
of infinite size along the renormalization process. We plot the data for the trajectories
introduced in Sec. 4.3 in the basin of attraction of the liquid fixed-point. Panels (a) and
(b) share the same color code that indicates the step of renormalization, and the color in
(c) refers to the sphericity of the aggregate.

random way in the aggregate. However, this non-randomness of the particle organization,
which is measured with the particle anisotropy, will decrease to zero.

Contrarily to the gas fixed-point, the renormalization towards the liquid is slow because
all the points are close to the first bisector, in the anisotropy and affinity projection. Within
one renormalization step, the anisotropy of the interaction decreases of a small amount.
We give the following interpretation to this observation: the aggregates in the basin of
attraction of the liquid have some favored organization of the particles due to favored
directional interactions. Those interactions are not strong enough for this organization to
be long-ranged. After some renormalization step, the orientations of the particles in the
aggregate will be completely random.

Finally, this plot enables us to evaluate the energy of the attractive interactions of the
liquid fixed-point. We saw in Figure 4.14 that the density map of the liquid fixed-point
is such that all the interactions are equal to a negative energy value. This is confirmed
here by the fact that the anisotropy converges to zero. The value of all the attractive
interactions then corresponds to the measured affinity, which is around −2kT .

We interpret the interaction anisotropy as an indicator of the long-range order of the
particles orientations. This interpretation would need further verification, but it is not
clear how one could measure this long range order from the 21-dimensional density map.
We also determined an approximation of the exact interaction map of the liquid fixed
points: J∗liquid is such that all the interactions are around −2kT .

4.4.3 Two-level interactions allowing periodic organization of the par-
ticles renormalize to a crystal

We now study the renormalization trajectories for which the long-range organization of
the particle was kept along the renormalization process, i.e. the crystalline fixed-points, J∗1 ,
J∗2 , ...,J∗7 . In the interaction maps plotted in Figure 4.14, we see that it is straightforward
to identify the favored (blue) and unfavored (red) face pairs (or a pair of faces). Our goal
is to study how each the strength of the favored and unfavored interaction evolve along
the renormalization. We show that this evolution is very similar for all the crystalline
fixed-points, and that the strength of the favored and unfavored interaction necessarily
converge to well define values.

From one fixed-point to the other, the indices of the favored and unfavored face pairs
are different. For each fixed-point k, we determine the list of indices {α(k)} that correspond
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Figure 4.21: Renormalization of the crystalline structures. Averaged crystalline inter-
action is plotted as a function of its renormalized measure for each renormalization step
above t, t ≥ 1 a) Measures from the random trajectories of Sec. 4.3.2 in the basin of
attraction of the crystalline fixed-points. The crystalline interaction is the average of the
energy of the crystal contacts in the permuted interaction map. The color refers to the
basin of attraction (as defined in Figure 4.14). b) Measures from idealized interaction map
with crystal interactions of energy J0 with J0 between −2 and −10 kT , and all the other
interactions of energy J∞ = −J0, 0kT , or 10kT . The color refers to the renormalization
step.

to favored interactions in the interaction map, which we call crystalline interactions. There
is Nk such favored interaction for the fixed-point k. From Figure 4.14, we see that N1 = 3

and, N5 = 9 for instance: there are respectively 3 and 9 blue squares in the triangular
inferior matrix of J∗1 and J∗5 . We see how the strength of the crystalline interactions vary
along the renormalization process. For an interaction map in the basin of attraction of J∗k ,
we define the averaged crystalline interaction J0 as,

J
(t)
0 =

∑Nk
i=0 J

(t)

α
(k)
i

Nk
(4.35)

Note that the set of crystalline interaction {α}(k) is defined solely from the assigned fixed-
point. J

α
(k)
i

is not necessarily negative at all steps of the renormalization. For instance, in
Figure 4.12, the interaction in the upper corner of the matrix is negative (red) at the end
of the renormalization process, but is positive (blue) at t = 2.

It is expected that J (t)
0 will converge towards J∗0,k for the trajectories in the basin of

attraction of the kth fixed-point. In Figure 4.21a, we plot J (t+1)
0 for each trajectory as

a function of J (t)
0 for the random trajectories in the basin of attraction of the crystalline

fixed-points. At the initial step of the renormalization, the interactions can have arbitrarily
high values, because the interactions maps are drawn randomly, and not the result of the
optimization process. The value for J0(t = 0) is then hard to compare with J0(t > 0).
We only plot the data for renormalization steps larger than zero. We observe that all
the values of J0 fall in the same region: around −2kT on the first bisector. The average
crystalline interaction is stable along the renormalization, and it converges to the same for
all the crystalline fixed-points. By introducing J0, we identified a transformation of the
interaction maps that enables to compare the trajectories in different basin of attraction,
provided that the fixed-point is crystalline. This shows that all the crystalline fixed-points
rely on the same physical principles, even if the organization of the particles is different:
there is a few favored interaction that lead to a periodic organization of the particles in a
dense aggregate.

A crystal has some favored interaction of strength J0 and some repulsive interactions,
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and the favored interaction lead to a periodic organization of the particles. We call J∞
the strength of the unfavored interaction. We show that if J0 is negative enough, all the
interaction maps that verify this description will renormalize to the same fixed-point, where
the repulsive and attractive interactions are of strength J∗0 and J∗∞. For this, we consider
interaction maps for which the favored interactions are at indices α(1). Those matrices
are similar to J∗1 , but we vary the strength of the attractive and repulsive interactions.
We take J0 in [−1kT,−2kT,−3kT, ... − 10kT ] and J∞ between 0kT , 10kT and −J0. We
perform the renormalization of those interaction maps with our numerical procedure. When
J0 = −1kT , the fixed-point is the gas. For all the other interaction maps, we plot the
evolution of J0 along the renormalization in the (J ′0, J0) space in Figure 4.21b. We plot the
data from the second renormalization step only, because the initial values for J0 take very
different and potentially large value, and we want to observe the convergence of J0 close to
the fixed-point. The points for t = 1 are all gathered in the same region of the parameter
space (dark purple points), and so are they after the second (pink point) and third step of
renormalization (yellow points). The position of the points does not depend on the value
of J∞ (indicated by the symbols) or J0 of the initial interaction map. The trajectories
converge towards a crystal with J∗0 = −2.294 ± 0.007kT and J∗∞ = 1.823 ± 0.008kT . We
conclude that the difference of interaction strength between matrices that correspond to a
crystal vanishes after one step of renormalization.

Here, we introduced a partial definition of the basin of attraction of the crystal: it
encompasses all the interaction maps with two levels of interaction energies, one attractive
and one repulsive, for which the favored interactions are such that there is a periodic
organization of the particles. Upon renormalization, the favored interactions will remain
the same, and the strength of the interaction will renormalize to well-defined values J∗0 and
J∗∞. There are interaction maps that do not verify those criteria and still renormalize to a
crystal fixed-point. We did not find an explanation for the measured values of J∗0 and J∗∞.

4.4.4 Fibers are unstable fixed-points
Here, we show that fibers are unstable fixed-points of the renormalization.
We expect fibers to be fixed-point of the renormalization procedure. Indeed, the second

neighbors of a particle within a fiber are the same as its first neighbors. This is illustrated
in Figure 4.22a, the particle labeled 1 is first-neighbor with the particle labelled 2 and
second neighbor with the particle labelled 3. The interaction between 1 and 2 and 1 and
3 are identical. Therefore, an infinitely long fiber will be identical after renormalization.
An infinitely long fibers corresponds to an infinitely negative interaction energy. We call
Jfib the interaction strength between particles along the fibers (dark blue interaction in
the schematic). It seems that the interaction map for which Jfib = −∞ and all the other
interactions are zero is a fixed-point of the renormalization, which we call J∗fiber.

We expect this fixed-point to be unstable. Indeed, if the fiber interaction is finite, the
fiber is of finite length. As a consequence, it has extremities. Particles at the extremities of
the fiber are neighbors with empty sites. If the fiber is of width n (n = 2 in the schematic),
2n particles have an empty first neighbor in the fiber direction, and 4n particles have an
empty second neighbor in the fiber direction. Therefore, the number of fiber contacts will
decrease as the system is renormalized. The interaction strength of the fiber Jfib is then
expected to increase to zero along the renormalization process.

A stable direction dJ in the interaction space is attractive around a fixed-point J∗ if
an interaction map J∗ + δ dJ is renormalized to J∗ + δ′ dJ , with |δ′| < |δ|. A variation
along this direction will vanish after a few renormalization step. Alternatively, an unstable
direction around the fixed-point is such that |δ′| > |δ|. Here we study the renormalization
of interaction maps around the fibrillar fixed-point J∗fiber by considering two directions of
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Figure 4.22: The direction of longitudinal interaction is attractive for fibers of width 1
and repulsive for fibers of width 2. a) Schematic of a double fiber, that depends on both
the longitudinal interaction (dark blue, of energy Jfib) and transversal interaction (light
blue, of energy Jdim). b) Renormalization of fibers all follow the same trajectories in the
projection in a subspace of the eigenvalues. c) Fit (purple) of the dependence of the first
or second neighbor density with the longitudinal interaction for a fiber, were Jdim = 0
measured on system of size 30× 30 (squares) or 15× 15 (circles). d) J ′fib as function of Jfib
from the numerical renormalization (blue points) and the fit of first and second neighbor
densities (purple line). The points are above the first bisector when Jdim = 0, the fixed-
points is repulsive, and below when Jdim < 0, the fixed-point is attractive.

interaction, which we call longitudinal and transversal to the fiber, and which we describe
below.

We perform renormalization of the interaction maps associated with fibers of width 1

and 2. Fibers of width 1 only rely on one head-to-tail interactions, whereas double fibers,
rely on one head-to-tail interactions interaction (longitudinal to the fiber director) and two
head-to-head interactions (transversal to the fiber director). The longitudinal interaction
has strength Jfib as discussed above (darkblue on the schematic) and the transversal inter-
action has strength Jdim (light blue in the schematic). An increase or decrease of one of this
parameters corresponds to a variation in the directions around the fiber fixed-point. We
show that both interactions vanish upon renormalization, but that Jfib decreases slowly,
and Jdim vanishes in only one renormalization step. We vary Jfib in −10,−7,−6, ...,−1kT

and we consider the case where Jdim = 0, Jfib/2 or Jfib. All the other interactions have en-
ergy zero. We compute two renormalization trajectories per initial condition that we plot
in Figure 4.22b. Those renormalization flow are computed with more optimization steps
than that of Sec. 4.2.2 (400 optimization step and η2 = 0.995 to ensure a precise measure
of the renormalized fiber interaction). We choose to plot the trajectories in the space (λ2,
λ3), with λ the norm of the eigenvalue of the transfer matrix defined in Sec. 4.3.1.3. The
trajectories start from different initial points but all follow the same evolution: λ3 increases
then decreases and λ2 slowly decreases. Because λ2 decreases slowly, we expect that it is
associated with Jfib. The interpretation of λ3 is less straightforward. This representation
hints that the renormalization trajectories of fiber interaction maps are similar.

We now measure and predict the evolution of Jfib along the renormalization process,
and show that it corresponds to the expectation: it slowly vanishes. We first predict
the evolution of Jfib along the renormalization for a fiber of width 1. In that case, we
can assume that J (t+1)

fib only depends on J
(t)
fib : if the system is diluted enough, the first

and second neighbor density only depend on Jfib. Under this assumption, we can solve
the renormalization relation (eq. 4.4) by measuring the dependency of ⟨cfib⟩J ′

fib
(N/4) and

⟨dfib⟩Jfib(N) with Jfib (N and N/4 refer to the system size). We show those dependencies
in Figure 4.22b. The measured density saturates towards a finite value while Jfib → −∞
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because the system is of finite size and fixed number of particles. We fit those curves with
tanh functions (in purple in Figure 4.22b), and plot the dependency of J ′fib with Jfib in
Figure 4.22c. We compare this expected relation with the data of the numerical renormal-
ization flows plotted in Fig. 4.22a). For fibers of width 1, the numerical renormalization is
in agreement with the predicted evolution of Jfib. This means that the fibrillar interaction
is the one that matter. We also see from this plot that the fiber is unstable, the points lie
above the first bisector, and Jfib vanishes along the renormalization process. The points
are however close to the first bisector, which means that the renormalization is slow.

We now look at the numerical renormalization of double fibers, i.e. the interaction
maps for which Jdim < 0. This is the blue and light blue points in Figure 4.22c. After
one step of renormalization, the relation between Jfib and J ′fib is the same for the fibers of
width 1 and 2. During the first renormalization step, Jfib becomes more negative (points
below the first bisector) and Jdim becomes zero: the fiber of width 2, is renormalized into
a fiber of width 1 in one step. When there is another interaction (Jdim < 0) the direction
of longitudinal interaction is attractive. Then, it becomes repulsive, and the strength of
the longitudinal interaction decreases.

We could not sample the basin of attraction of the fiber because it is an unstable
fixed-point. However, we studied the evolution of the fibrillar interaction by considering
interaction maps with only two directions, that of the longitudinal and transversal inter-
actions. The longitudinal direction is repulsive only when there is no interaction in the
transversal direction, i.e. when the fiber has width 1.

In this section, we studied independently the four types of fixed-points. For each basin of
attraction, we determined some observables f(J) that can be measured on the interaction
maps, and we studied their evolution in graphs of the type (f(J ′), f(J)). With this method,
we gained indication that the gas, the liquid, and the crystals fixed-points are stable fixed-
points, while the fiber is an unstable fixed-point. This method also enabled to identify
shared properties of the aggregates within the same basin of attraction. It revealed that
the basins of attraction of the liquid and the crystal were homogeneous, both concerning
aggregates of infinite size, that either have a periodic organization (crystal) or where the
particles have random orientations (liquid). On the contrary, the aggregates in the basin
of attraction of the gas are very different, because it concerns all the aggregates of finite
size, including the fibers.

4.5 Fixed-points stability

We identified a set of fixed-point by randomly sampling the parameter space, and stud-
ied their stability by measuring the evolution of some observable along the renormalization
trajectories. Here, we propose a method to study the stability of the fixed-point in a sys-
tematic way, by identifying the stable directions (Sec. 4.5.1). We then use this method to
show that the gas, liquid and crystal fixed-points are stable fixed-points, and emphasize
that we cannot use this method to study the fiber unstable fixed-point (Sec. 4.5.2).
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4.5.1 The linearization of the density around the fixed-points enable
its stability analysis

Here, we show how to study the stability of a fixed-point by linearizing the evolution
of the density map at the vicinity of the fixed-point, and by computing a stability matrix
at the vicinity of the fixed-point, of which the eigenvectors are the stable directions around
the fixed-points, and the eigenvalues a measure of their stability.

We can perturb the interaction map of a fixed-point J∗, by increasing or decreasing
one of the direction of a quantity δ. We denote as ei the ith direction of the interaction
map (i is between 1 and 21, and ei is the 21 dimensional vector for which all values are 0,
except the ith coordinate.

cj(J
∗ + δ(t+1)ei) = cj(J

∗) +Mijδ
(t+1) (4.36)

dj(J
∗ + δ(t)ek ) = dj(J

∗) +Njkδ
(t) (4.37)

where the numbers Mij and Njk are the coefficient of the linearization. If δ is small, Mij =
∂cj
∂Ji

, and Mjk =
∂dj
∂Jk

. By definition of the renormalization, c(t+1)
j = d

(t)
j ((4.36)=(4.37)).

Because cj(J∗) = dj(J
∗), by definition, we get Mijδ

(t+1) = Njkδ
(t). Moreover, by chain

rule
∂J ′i
∂Jk

∣∣∣
J∗

=
∂J ′i
∂cj

∂dj
∂Jk

= (M̂−1N̂)ik (4.38)

We call ∆̂ the stability matrix M̂−1N̂ . It is a matrix of dimension 21 × 21. ∆̂ contains
all the information about the stability of the fixed-points. We diagonalize this matrix
and study the norm of its eigenvalue. If an eigenvalue has its norm above one, it means
that a deviation from the fixed-point in the corresponding eigen-direction of a value δ

will be amplified. This is a repulsive direction. The eigenvalues below one correspond to
directions for which a deviation will be renormalized to a smaller deviation: this is an
attractive direction. A fixed-point is stable if all its eigen-directions are attractive.

4.5.2 The gas, liquid and crystal fixed-points are stable
We now explain how the values of the energies in the interaction maps of the fixed-

points are approximated, show the results of the linearization at the vicinity of the gas,
liquid and crystal fixed-point, and conclude that they are stable from the stability analysis.

Here, we explain why the values of J∗ are only approximations. In the previous sections,
we identified the interaction maps that were fixed-points of the renormalization. As can
be seen in Figure 4.14, in most cases, a fixed-point is an interaction map with two levels
of interactions, one attractive and one repulsive. We denote as J0 and J∞, the energy of
the attractive and repulsive interactions. The set of face pairs corresponding to attractive
interactions for a given fixed-point is {α}, as was defined in Sec. 4.4.3. The numerical
identification of the sampling enables to identify without ambiguity the values of {α} for
each fixed-points. However, there are some uncertainties in the value of the exact strength
of the attractive and repulsive interaction, J0 and J∞. We observed this along this chapter:
the measure of the distance between the interaction maps and the fixed-points was of the
order of 10−2kT in Figure 4.15. In Figures 4.20 and 4.21, the averaged attractive interaction
converges towards a zone around −2kT , but the points are scattered around that value.
The numerical renormalization therefore only enables to make an estimation of the values
for J0 and J∞.

We perform the linearization described above around the fixed-points J∗liquid, J
∗
gas and

the crystal fixed-point J∗1 , in order to measure the stability matrix for those three fixed-
points. The corresponding matrices are shown on top of Figure 4.23 with the usual color
code: blue is attractive, red is repulsive, white is neutral. For both J∗liquid and J∗1 , we set
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9

Figure 4.23: The gas, liquid and crystal fixed-points are stables, because the norm of
the eigenvalues of the stability matrix measured by linearization are below one. (a-f) c8,
d8, c9 and d9 depend on the extra energy δ of the interaction 8 (position of the 8th and
9th interactions are shown in the interaction map J∗gas on top of the figure. We measure
the slope of the curves around δ = 0. The measures for the first-neighbor (light blue) and
second-neighbor (dark blue) densities are respectively measured of systems of size 15× 15
and 30× 30. (g-i) the measured norm of the eigenvalues are less or equal to one.
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the attractive interaction to be of value J0 = −2kT . For J∗1 , we also set the value of the
repulsive interaction to be J∞ = 1.8kT . These values were determined in Sec. 4.4. J∗gas
is the interaction map where all the couplings are zero. We expect that upon an increase
or a decrease of the ith interaction of the matrix of a value δ, the first-neighbor density
ci(J

∗+ δei) will decrease or increase. Indeed, if interaction i is more attractive, we expect
more of the bonds to be in that configuration. The variation of the density of bonds in
another face pair is not simple to predict, and so is the variation of the second neighbor
densities di and dj . We also expect that ci(δ = 0) = di(δ = 0), because this is how the
fixed-point was defined.

In Figure 4.23, we show the evolution of c8 and d8 (panels a, b, c) and c9 and d9 (panels
d, e, f) upon a variation δ of the 8th interaction of the interaction map for the gas, liquid
and crystal fixed-points. We observe the expected decrease of c8 with δ. For the crystal,
however, we do not observe ci(δ = 0) = di(δ = 0) for i = 8 and i = 9. This might be
because the chosen value of J0 and J∞ are not the exact values of the fixed-point. The
difference ci(δ = 0) − di(δ = 0) is of the order 5 · 10−6 (measured on panels c and f)
and the interactions 8 and 9 are not among the favored interactions of the crystal. For
comparison, the measured density of the favored interactions in the crystal is 0.026. This
difference is therefore negligible. ci(δ = 0) = di(δ = 0) is also not verified for the i = 9

for the gas fixed-point (panel d). In the case of J∗gas however, there is no ambiguity on the
value of the fixed-point. This is instead an artifact of the finite number of particles: when
the particles do not have interactions, the probability of observing any pair of particles as

neighbors is not
(
Nparticles

Nsites

)2
but rather Nparticles

Nsites
× Nparticles−1

Nsites−1 , which does not only depend
on the density of particles but also on the system size.

We measure the slope of c and d around δ = 0. For this, we fit the curve with a
quadratic function (purple line on Figure 4.23, and we deduce the derivative at δ = 0.
We can then measure the stability matrix ∆̂ with eq. 4.38, diagonalize it and measure
its eigenvalues. ∆̂ is not diagonalizable in general, and we therefore measure the norm of
the complex eigenvalues. It is not clear for us what meaning we should give to complex
eigenvalues in the space of interaction maps. The norm of the gas, liquid and crystal
fixed-points are plotted in Figure 4.23(g-i). For the gas and the liquid, the fixed-point is
attractive, which confirms the observation of the previous sections: those fixed-points are
stable.

For the crystal, we measure two eigenvalues of norm one, and all the other of norm lower
than one. The eigenvalues of norm one correspond to a deviation to the fixed-point, which
will remain identical after one step of renormalization. The corresponding eigenvector are
such that the crystalline interactions are 1, and the other interactions are zero. It means
that if the crystalline interactions are J0+δ, their renormalized strength will remain J0+δ.
This is in disagreement with what we measured in Sec. 4.4.3, where any initial crystalline
interaction was renormalized to J0 = −2kT . However, the measure we are making in this
section is very local, and concerns variations of a few decimals of kT , while the observations
of Sec. 4.4.3 concerned variations of the initial crystalline interaction of a few kT . This
might also be due to the approximated evaluation of the crystalline interaction of the
fixed-point.

110



From the linearization of the density maps at the vicinity of the fixed-points for which
the interaction energy were determined numerically, we conclude that the gas, liquid, and
fiber fixed-points are stable: all their stable directions are attractive (or neutral in the case
of the crystal). It is not possible to use this technique for the fiber fixed-point. Indeed,
we showed in 4.4.4 why this fixed-point is expected to have infinitely strong attractive
interaction J0 = −∞. We cannot measure the evolution of the first and second-neighbor
density maps closed to this value in the numerical simulation. This result also needs to be
taken with caution, because the linearization was performed around a point that did not
exactly verify c = d for all the interactions, because of the approximated measure of the
energies in the interaction maps of the fixed-points, and because of the fixed number of
particles.

Discussion

In the Chapter 2 and 3, we introduced a model of lattice particles with directional interac-
tions, for which the interactions energy depend on the relative orientations of the particles.
This model shares similarities with the isotropic lattice gas model, where the only coupling
parameter is the nearest neighbor coupling. With the real-space renormalization transfor-
mation that we designed in this chapter, we emphasized that this extension of the lattice gas
model is non-trivial, because it gives rise to new fixed-points of the renormalization. Aside
from the attractive isotropic particle (liquid fixed-point) and the non-interacting particle
(gas), we showed here that there are several anisotropic fixed-points of the renormalization.
In those cases, the anisotropy of the particles is conserved upon renormalization. It means
that the anisotropy of the interactions is a long-range property of this class of parameters.
Those new fixed-points, that we called crystalline fixed-points, correspond to aggregates
where the local organization of the particles is identical at all length scales. Our renormal-
ization transformation enabled us to identify 7 crystalline fixed-point, though this number
depends on the geometry of the particle, and on the chosen decimation procedure. Despite
the uncertainties in the evaluation of the number of crystalline fixed-point, the existence
of such fixed-points suggest that the directionality of the interactions is a key feature of
the model.

In Chapter 2, we showed that there are at least two ways to explore the parameter
space of interaction maps: one can change which interactions vary together (the entries
of identical colors in the representation of the interaction maps), and the energy of each
of those group of interactions. Our results suggest that the fixed-points of the renormal-
ization are mostly interaction maps with only two groups of interaction: the attractive
(blue) and repulsive (red) ones. We showed that our numerical renormalization transfor-
mation is well suited to identify the groups of identical interactions in the density maps
of the fixed-point. However, the evaluation of the value of the energy of the repulsive and
attractive interactions is an approximation. Our results suggest that the energy of the
attractive interaction is finite, while we would have expected them to be infinite, as in
the analytical renormalization of the same model in the grand canonical ensemble. This is
because the energy of interactions are the result of an optimization procedure. Combining
a numerical identification of the groups of interactions of the fixed-points and an analytical
renormalization of the interaction energies, such as the one in [119] would also enable to
compensate the limits of both approaches.
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Here, we explored the 21 dimensional space of the couplings by studying the renormal-
ization trajectories of random initial couplings. This approach already used in Chapter 3
enabled us to identify a large diversity of behaviors. However, this is not a dense explo-
ration of the space (in the mathematical term). The random sampling of the phase space
is the best accessible method we could realistically implement, but it prevents us from
drawing universal conclusions from our study. Because of the high dimension of the phase
space, we were also not able to determine the boundaries between the basin of attractions
of the fixed-points. In other terms, we did not find a projection of the space where the
basin of attractions of the fixed-points are well separated. The eigenvalue of the transfer
matrix were a reliable way to identify the fixed-points, but not the boundaries of their
basins of attractions. However, we were able to determine common characteristics of the
interaction maps within the same basin of attraction: the interaction maps that result in
an aggregate of finite size are in the basin of attraction of the gas. The interaction maps
resulting in aggregates of infinite size are either in the basin of attraction of the liquid or
the crystal, depending on the local organization of the particles in the aggregate.

In this work, we made the assumption that the couplings of the decimated system are
the same as the initial set of couplings, and we neglected the emergent couplings of higher
orders. This approximation is not controlled. A possible way of testing it is would be
to compare the results of a decimation that would conserve the statistics of the fourth
neighbors, with one two successive decimation that conserve the statistics of the second
neighbors (the one we implemented). This will be done in future studies. On the other
hand, a great asset of the numerical renormalization is that it does not require to define a
small plaquette on which the configuration should be summed. The size of the plaquette is
the size of the simulated system, which in our case is 30× 30 sites and 100 particles. This
enabled us to successfully renormalize a dense aggregate with periodic organization of the
particle, where the typical period was large, such as the sponge, or with effective surface
tension, such as the micelle.
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5 - Topological defects as a size-limiting mechanism
for self-assembly

The exploration of the design parameters for lattice particles with directional interac-
tions in the previous chapters suggested that aggregates of limited size can arise at equilib-
rium, because of frustration. In this Chapter, we examine a specific type of particle that
has two favored and incompatible interactions. In the resulting aggregate, the organization
of the particles maximizes the number of each type of interactions. Then, upon tuning
the strength of those two interactions, the size of the aggregate can be controlled. This
introduces a mechanism of self-limited assembly complementary to the ones introduced in
Chapter 1, that rely on the individual design of each particle, on their deformability, or
on the self-closing of the assembly. The fact that directional attractive interactions give
rise to large aggregates of finite size at equilibrium is not-trivial, as shown in Figure 5.1
with the example of a particle (in gray) with attractive patches (in blue). The choice of
distribution of the patches on the surface of the particle enables to form oligomers (panel
a), fibers (panel), or aggregates of infinite size (panel c). It is not clear, however, how such
direction interactions could give rise to aggregates of finite and controlled-size. Changing
the temperature or the strength of the interaction could break an infinite aggregate in
smaller aggregates, yet the size of such aggregate would not be controlled in that case.

In Sec. 5.1, we introduce the anisotropic particle that can lead to the limitation of the
aggregate through the introduction of energetically favored disclination lines in a crystalline
aggregate. The aggregate relies on two types of interaction, which we call line interaction
and crystal interaction. In Sec. 5.2, we show how the energy of both interactions are
expected to control the geometry and the size of the aggregate, and we derive a phase
diagram at zero temperature. In Sec. 5.3, we retrieve the expected phase diagram with
numerical simulation at finite temperature, but not the quantitative prediction of the
equilibrium size of the aggregates. In Sec. 5.4 we show that kinetic and entropic effect
also influence the equilibrium size of the aggregate. The proposed design of particles
can also be adapted to self-assemble into fibrillar aggregates, which we show and test
numerically in Sec. 5.5. In Sec. 5.6, we show how this mechanism could also be implemented
experimentally with DNA-origami.

?a) b) c) d)

Figure 5.1: Self-limited assembly with directional interaction is non-trivial. gray particles
have attractive interaction between the blue patches. Particles can be designed to assemble
into oligomers (a), fibers (b), or infinite crystals (c). Self-assembly into large but finite
aggregate (d) remains a difficult task.
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5.1 Camembert aggregates have favored disclination lines

Here, we show that by designing a particle with incompatible favored interaction can
lead to the formation of crystalline aggregates that are stabilized by disclination lines. In
Sec. 5.1.1, we explain how to design such a particle and its expected self-assembly. In
Sec. 5.1.2, we show why we expect the relative strength of the incompatible interactions
to control the size of the aggregate.

5.1.1 Camembert geometry
Here, we introduce a design of a particle that has two incompatible favored interactions,

and we explain that we expect it to self-assemble into a specific geometry which we call
camembert, that has a finite number of disclination lines. We also explain the origin of this
terminology.

We introduce a hexagonal particle that has different types of directional short-range
interaction. We call crystal interaction an interaction between two faces of the particles
such that two particles bind if they are in the same orientation. There can be three such
interactions for an hexagonal particles, which is illustrated in Figure 5.2a: the three crys-
tal interactions result from three lock-and-key mechanism, shown in light blue. There are
three types of lock (triangular, square and round) that bind with shape complementarity.
Particles with such interactions are expected to self-assemble into a crystal (Figure 5.2b).
We now introduce two other types of interaction, that make the particle bind with a neigh-
bor in a different orientation. These interactions are illustrated in dark blue in Figure 5.2
with another shape complementarity mechanism. Note that two patches bind if they are
the same color and if their shape is complementary. If there are two pairs of patches in
contact between two neighboring particles, we consider that they bind with an attractive
interaction if at least one of the two pair of patches has complementary shape. There
are no dense packing of particles, only relying on the dark blue interaction. If both types
of interactions are favored, a possible self-assembly is that presented in Figure 5.2b: the
particles mostly organize in a crystal configuration, but there are some disclination lines
within the crystal where the particles are in contact through the dark blue interaction. For
this reason, we call it the line interaction. Note that the disclination line is a topological
defect of the crystalline organization of the particle, but it is favored energetically.

We call this aggregate camembert. Because of the hexagonal geometry of the particle,
there cannot be more than 6 disclination lines within the same aggregate. This reminds
of the Trivial Pursuit board game, where the round pieces are filled with 6 little triangles.
Since the pieces of the trivial pursuit game are called camembert in French, we chose this
terminology to refer to the geometry of that aggregate.

5.1.2 Size limitation
We show why the camembert aggregate can be of limited size at equilibrium. Camem-

bert aggregates of small sizes can be more stable than those of large sizes if the line
interaction is strong: there are more disclination lines per particle in a small aggregate
than in a large one. This can be understood by writing the energy per particle in an aggre-
gate as a function of its size. We denote by Jcrystal the energy of the crystalline interaction
and Jline that of the line interaction. In a camembert aggregate of size n, the energy per
particle scales as e(n) ∼ (Jcrystaln

2 + Jlinen)/n
2. If Jline < 0, the energy per particle has a

minimum at finite size n∗. This design seems to fulfill the requirements that could not be
achieved with the previously existing size-limitation mechanisms: the camembert particles
are rigid, they interact with first neighbor local interactions, and a large number of copies
of this particle will self-assemble into an open-ended shape.

For this discussion to be exact, we also need to compare the line and crystal interactions
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crystalline interaction
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Figure 5.2: Directional interactions are designed such that the particle will form a cluster
with disclination lines, that can have equilibrium finite size. a) If the local interactions
are such that all particles are aligned, it will form a crystal. b) Decreasing the strength
of this interaction will dissolve the crystal, without any regime where the crystal is of
small sizes. c) On the contrary, combining competing crystal (light blue) and line (dark
blue) interactions leads to competing interaction. d) This should result in a camembert
geometry, which could reach finite size if the crystal interaction is low enough.

to the surface interaction of the particle, which we call σ. We also need to compare the
energy per particle in a camembert geometry, with that of the energy per particle in a
crystal and with that of a monomer, shown in Figure 5.2b.

5.2 Competing interactions control the aggregate size and sta-
bility

If the particle has the three types of interaction described above (crystal, line, and
surface interaction), there are three possible geometries of aggregate: the particle self-
assemble into a crystal, a camembert or remain as monomers, depending on the relative
strength of each type of interaction. Here, we will predict the phase diagram, i.e. determine
for which values of the interactions the camembert is the most stable geometry. For each
type of aggregates, we will determine the energy per particle e(r) in an aggregate of radius
r. This is the right quantity to consider because it does not depend on the size of the
system, and it enables to compare aggregates of different sizes: the crystal is more stable
than the monomer if the energy per particles in the crystal is lower than the energy of a
monomer. In this section, we only minimize the energy of the particle, not its free-energy,
therefore deriving the ground-state of the system, at zero temperature. We will then
minimize this energy with respect to r to determine the equilibrium size and energy of the
aggregate in a given geometry. We do this in Sec. 5.2.1 for the crystal, in Sec. 5.2.2 for the
camembert seed, and in Sec. 5.2.3 for the camembert. For a given set of interactions Jline,
Jcrystal and σ, the equilibrium aggregate will correspond to the aggregate with the lowest
equilibrium energy. In Sec. 5.2.4, we compare the equilibrium energies of each aggregate
and determine the phase diagram.

Along this section, we will mostly consider the rescaled line and crystal interaction
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Figure 5.3: We compute the energy of the cluster by counting each the occurrence of
each type of interactions for the crystal geometry of radius r (a), a camembert seed of N
particles (b) and camembert seed of radius r (c).

energies, xl and yc, and the monomer energy, that has 6 surface bonds, e1:

xl = Jline − 2σ (5.1)

yc = Jcrystal − 2σ (5.2)

e1 = 6σ (5.3)

xl is negative when it is more favored to bind two particles with a line interaction locally:
one line interaction replaces two surface interactions. Similarly, yc is negative when it is
more favored to bind two particles with a crystal interaction locally. e1 sets the level of
the energies: an aggregate will be stable if the energy per particle is lower than the energy
of a monomer e1.

5.2.1 Crystal
Here, we compute the energy per particle in a crystal geometry, and we show that

the crystal is only stable when yc < 0, i.e., when it is more favored for two particles to
bind with a crystal interaction than to remain detached. When the crystal interaction
is negative, the equilibrium radius of the aggregate is infinite. This is trivial: there is
no mechanism limiting the size of aggregates formed by attractive particles. This simple
demonstration will however enable us to introduce the framework that will be reused for
the camembert geometry. Here, we do not consider the line interaction, because it is not
observed in the crystal.

We first compute the energy per particle of the crystal. The energy of the total ag-
gregate is determined by the number of crystal bonds and surface bonds in the aggregate,
which we call ncrystal and nsurface and by their energy Jcrystal and σ. Both ncrystal and
nsurface depend on the radius of the aggregate r. Note that this notation will remain the
same also for the camembert aggregates. We compute the energy of a triangular slice,
which correspond to the particles in dark gray in Figure 5.3a. We also assume that the
total number of particles in the crystal is such that the radius is an integer and the crystal
is perfectly symmetric. The energy of a triangular slice of a crystal of radius r is E(cry)(r),
and the energy of the crystal is 6E(cry)(r).

E(cry)(r) = ncrystal(r)Jc + nsurface(r)σ (5.4)

We determine ncrystal(r) and nsurface(r) from the drawing of Figure 5.3. The surface
bonds are represented in pink and the crystal bonds in light blue. The number of crystal
bonds scales like the volume of the aggregate, r2 and the number of surface bonds like its
radius r.

ncrystal(r) = 3r(r − 1)/2 + 2r (5.5)

nsurface(r) = 2r + 1 (5.6)
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The total number of particles in the crystal aggregate is

N (cry)(r) = 3r(r + 1) + 1 (5.7)

We now compute the energy per particle in a crystal and its derivative, expressed with the
rescaled variables yc an e1 defined in equations 5.2 and 5.3:

e(cry)(r) =
6E(cry)(r)

N (cry)(r)
=

(3yc + e1)r
2 + (yc + e1)r + e1/3

r(r + 1) + 1/3
(5.8)

∂re
(cry)(r) = 3yc

6r2 + 6r + 1

(3r2 + 3r + 1)2
(5.9)

For large values of r, e(r) scales like 3yc + e1 = 3Jcrystal: there are three crystal
interaction per particles, and the surface energy is a linear correction to the quadratic
dependence of the energy on the size of the aggregate. The derivative has the same sign
as yc for r > 0, which means that a crystal is of infinite size for yc < 0, and of size 1

(the minimal possible size for an aggregate) for yc > 0. It confirms that there cannot
self-limited aggregate of regular particles in two-dimension.

5.2.2 Camembert seed
If the line interaction is favored, we expect the camembert to form. Before considering

the total camembert geometry (which we will do in Sec. 5.2.3), we will compare the different
stages of assembly of a hexamer where the particles interact through a line interaction,
and show that there is no stable intermediate between the monomer and the hexamer, if
the line interaction is stable. Here, we do not consider the crystal interaction, because it is
not observed in the hexamer. We call camembert seed the geometry of an aggregate that
is a partially assembled hexamer, as the one shown in Figure 5.3b.

The total hexamer has 6 line interactions, 6 × 4 surface interactions, and 6 particles.
As a consequence

e(seed)(N = 6) = Jl + 4σ = xl + e1 (5.10)

We also compute the number of line and surface contacts in a camembert seed of size
N . Here, N is between 1 and 5.

nline = N − 1, nsurface = 4N + 2 (5.11)

The energy per particles of a camembert seed for sizes smaller than 6 is

e(seed)(N) =
nlineJl + nsurfaceσ

N
=
N − 1

N
xl + e1 (5.12)

If the line interaction is more favored than the surface interaction, xl < 0, and
e(seed)(N = 6) < e(seed)(1 < N < 6): the hexamer is more stable than any partially
assembled hexamer. If xl > 0, e1 < e(seed)(1 < N < 6): the monomer is more stable than
any partially assembled hexamer, and then the full hexamer.

5.2.3 Camembert
For the camembert, the determination of the stability is less trivial and the energy of

the aggregate depends both on xl and yc. In Sec. 5.2.3.1, we first determine the energy
per particle in a camembert, and the regions of the parameter space where it is stable.
For a specific range of line and crystal interactions, the camembert is the most stable
for a radius r1 that is larger than one, and finite. We will show how r1 depends on the
interaction energies in Sec. 5.2.3.2.
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5.2.3.1 Energy of the camembert
Here, we show that the energy per particle in the camembert has a non-trivial depen-

dence in r, such that it can reach its minimum for values r1 that are not 1 or +∞, as the
other geometries presented before.

We first write the energy of a triangular slice in a camembert aggregate as a function
of its radius, as we did for the crystal geometry. The triangular slice is shown in dark gray
in Figure 5.3c.

E(cam)(r) = ncrystal(r) Jc + nline(r) Jl + nsurface(r) σ (5.13)

N (cam)(r) = 3r(r + 1) (5.14)

We determine the number of crystal, line, and surface bonds in a triangular slice as
before, with the example shown in Figure 5.3c. The number of crystal bonds (light blue)
scales like r2, and the number of line and surface bonds scales (dark blue and pink) scale
like r.

ncrystal(r) = 3r(r − 1)/2 (5.15)

nline(r) = 2r − 1 (5.16)

nsurface(r) = 2r + 2 (5.17)

We deduce the energy per particle in a camembert, and its derivative with r. The depen-
dence of the energy in xl and yc is non-trivial.

e(cam)(r) =
6E(cam)(r)

N (cam)(r)
=

(3yc + e1)r
2 + (−3yc + 4xl + e1)r − 2xl

r(r + 1)
(5.18)

∂re
(cam)(r) = 2

(3yc − 2xl)r
2 + xl(2r + 1)

r2(r + 1)2
(5.19)

We verify that e(cam)(r = 1) = e(seed)(N = 6) = xl + e1. The energy per particle of the
camembert is such that it has a finite minimum in some regions of the parameter space.
The derivative of the energy is a quadratic function. If 3yc−2xl > 0, ∂re(cam)(r) is negative
when r → ∞, and the energy will be increasing. Then, if the larger root of ∂re(cam)(r)

is larger than one, the energy has a minimum for a value of r that is finite and larger
than one. It means that the camembert has a finite size. We call it self-limited : its size
is limited for thermodynamic reasons. If 3yc − 2xl < 0, the energy will be decreasing for
r → ∞ and the geometry is always stable for r = ∞. The size of the aggregate can be
finite if the smaller root of ∂re(cam)(r) is larger than one, and if the corresponding energy
is lower than the energy at infinity.

We determine the sign of the roots of ∂re(r) in all regions of the parameter space,
to determine in which regions the energy has a positive local minimum. We distinguish
between the case where this minimum is at infinity or not. The expression for the roots of
∂re

(cam)(r), which we call r1 and r2, is

r1
2
=

−xl ±
√
∆

3yc − 2xl
and ∆ = −3xl(yc − xl) (5.20)

The stability of the camembert and the value of the minimum then depends on the sign
of three quantities: 3yc − 2xl, which determines the monotonicity for r → ∞, and xl and
yc − xl, which determines the sign of the discriminant ∆. The sign study is summarized
in table 5.1.

Therefore, the energy of a particle in the camembert geometry is minimum for a positive
finite value of r if xl < 0 or if xl > 0 and yc < 2/3xl. Furthermore, there is only one region
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3yc − 2xl + + + - - -
xl + + - + - -

yc − xl + - + - + -
∆ - + + + + -

−xl +
√
∆ - + + +

r1 - + - -
−xl −

√
∆ - - - +

r2 - - + -
min
r>0

(e(r)) 0 0 r1 > 0 +∞ +∞ +∞
Camembert stable no no yes yes yes yes

Table 5.1: Determination of the regions of camembert stability

of the parameter space where this minimum is reached for finite values of r, which is when
xl < 0 and yc > 2/3xl: it is more favored for two particles to bind with the line interaction
than to stay apart, and the crystal coupling is weaker than the line coupling, of a factor
2/3.

5.2.3.2 Equilibrium size of the camembert
In the region where the camembert is of finite size, we can determine its equilibrium

size from the expression of r1 (eq. 5.20). In particular, we determine the regions of the
parameter space for which the equilibrium radius of the camembert is an integer k. We
solve r1 = k. It corresponds to a straight line in the phase diagram, of equation

yc =
2k2 − 2k − 1

3k2
xl = a(k)xl (5.21)

If yc and xl are such that yc < a(k) and yc > a(k+1), it means that the equilibrium radius
of the aggregate is between k and k+1. In Figure 5.4, we plot in the same color the regions
where the rounding of the equilibrium radius is identical. Larger sizes of camembert are
observed for decreasing values of yc. All the lines yc = a(k)xl, which correspond to the
radius being a finite number, cross at xl = yc = 0, and the slope increases with k (as
1/k) to the limit yc = 2/3xl which corresponds to the infinite size. It means that the
lines where r1 = k in the phase diagram are closer and closer as k increases: the region
of identical colors are more and more narrow in Figure 5.4. Therefore, the larger the size
of the camembert, the finer the coupling have to be tuned to reach that size. This has
also been observed for self-assembly of deformable tiles governed by shape geometrical
frustration [124]. We showed in 5.2.2 that it is not necessary to consider the case where
r1 < 1, i.e. when the first hexamer is not assembled. Indeed, we showed that when
xl < 0, the full hexamer (r = 1) is more assembled than any partially assembled hexamer
(r < 1). The approximate size of the camembert is then one above and below the line
of equation yc = α(1)xl = −xl/3. The radius of the camembert is larger than 2 when
yc = α(2)xl = xl/4. The region of the parameter space where the camembert is of radius
larger than 2, and less than +∞, which we consider as the non-trivial case, is between the
boundaries yc = α(2)xl = xl/4 and yc = 2/3xl. The region in the parameter space where
the size of the camembert is limited is not narrow.
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Figure 5.4: The size of the camembert finite and larger than one when yc > 2xl/3 and
xl < 0. The gray zone corresponds to the region where the camembert is unstable.

The energy of a camembert depends on both the energy of the line and the crystalline
interaction. When the line interaction is larger than the crystalline interaction, the energy
of an aggregate is smaller when its size is smaller, because there are more line interac-
tions per particles in the whole aggregate. A fine-tuning of the relative strength of both
interactions then enables to control the equilibrium size of the aggregate.

5.2.4 Phase diagram
We now determine the phase diagram of the camembert particle, i.e., in which regions

of the parameter space each of the three geometries described above is the most stable.
In a system at zero temperature, the geometry of lowest energy is the ground state of
the system. We compare the energy per particles in the camembert, the crystal, and
the monomer, two by two. In Sec. 5.2.4.1, we compare the camembert and the crystal,
in Sec. 5.2.4.2 the crystal and the monomer, and in Sec. 5.2.4.3 the camembert and the
monomer.

5.2.4.1 Crystal-camembert boundary
For both the crystal and the camembert, the asymptotic energy for infinite size is

e(r = ∞) = 3Jc. To determine which of the camembert or the crystal is most stable, we
compare the correction to this limit, which scales as r−1, as seen in equations 5.8 and 5.18.

e
(cry)
min = 3Jc +

1

r
(Jc + 4σ) +O(

1

r2
) (5.22)

e
(cam)
min = 3Jc +

1

r
(−3Jc + 4Jl + 4σ) +O(

1

r2
) (5.23)

The sign of Jc − Jl is thus sufficient to determine the most stable geometry: it is the
camembert for Jl < Jc (or equivalently xl < yc) and the crystal otherwise. Near that
boundary, the camembert is of infinite size, as was shown above (if is infinite when yc <

2xl/2). For this reason, it is sufficient to compare the crystal energy with that of the
camembert at infinite r. We obtain the first boundary of the phase diagram, which is in
the lower left part in Figure 5.5a. Above the line yc = xl, this corresponds to the set of
parameter (3) plotted in (b): both the crystal and the camembert have decreasing energy
as r increases, but the camembert energy (solid line) is below the crystal energy (dashed
line). Below the line yc = xl, this corresponds to plot (4), and the crystal energy is below
the camembert energy.
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Figure 5.5: Camembert are stable if the crystal interaction is attractive (xl < 0), and if
the line interaction is stronger than the crystal interaction (xl < yc). They are self-limited
for a large range of parameters. a) Phase diagram. The boundaries of the stability of each
geometry is in black. The red zone corresponds to camembert of radius larger than one
and smaller than ∞. b) For some specific set of parameters (purple points in (a), we plot
the energy per particle for the camembert (solid line), crystal (dashed line) and monomer
(dotted line). The most negative energy sets the stable geometry and the stable size. In
(2), the camembert energy is minimum for a size larger than one.
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5.2.4.2 Crystal-monomer boundary
The boundary between the crystal and the monomer geometry is computed easily. The

minimum of the crystal energy is e(cry)min = 3Jc, and that of the monomer is e1 = 6σ. We
recover the fact that the crystal is more stable than the monomer if Jc < 2σ (yc < 0),
if it is locally more favored to bind two particles with a crystalline interaction than leave
them unbound. This can be verified by comparing plots (6) and (7) of Figure 5.5b, which
corresponds to a set of parameter that are apart to the boundary between the monomer
and the crystal geometry in Figure 5.5a. In (6), the energy of the crystal (solid line) is
above the energy of the monomer (dotted line), as the opposite in (7).

5.2.4.3 Camembert-monomer boundary
We compare the energy of a monomer with that of a camembert. The camembert is

unstable when xl > 0 and 3yc > 2l. In this region, the crystal is also less favored than
the monomers. As a consequence, the most favored geometry is the monomer. We also
determined in Sec. 5.2.2 that the camembert of radius 1 is always more stable than a
partially assembled hexamer. The energy of the smallest camembert (when r = 1) is then
e(r = 1) = xl + e1. We now show that for xl < 0 the camembert is always more stable
than the monomer.

We compute the minimal energy of a camembert in the region where its size is finite,
e(cam)(r1), and compare it to the energy of a monomer, e1. e(cam)(r1) is computed by
injecting the value of r1 (eq. 5.20) in the energy per particle of a camembert (eq. 5.18).
To simplify the equations, we introduce the variable α (eq. 5.24), which simplifies the
expression of r1 (eq. 5.25).

α = −xl/(3yc − 2xl) > 0 (5.24)

r1 = α(1 +
√

1 + α−1) (5.25)

With this new variables, we can compute the numerator (eq. 5.26) and the denomina-
tor (eq. 5.27) of e(cam)(r1), and deduce a simplified equation of e(cam)(r1) (eq. 5.28 =
(5.26)/(5.27)). We deduce the energy difference between the stable camembert and the
monomer for any set of parameters where the size of the camembert is finite (eq. 5.29).

r1(r1 + 1) = 2α2(1 +
√

1 + α−1) + α(2 +
√
1 + α−1)

(5.26)

(3yc + e1)r
2
1 + (−3yc + 4xl + e1)r1 − 2xl = (3yc + e1)(r1(r1 + 1))− 2(3yc − 2xl)r1

(5.27)

e(r1) = (3yc + e1)− 2
3yc − 2xl
r1 + 1

(5.28)

e(r1)− e1 = 3yc +−2
3yc − 2xl
r1 + 1

(5.29)

If yc < 0, this is always negative and the camembert is always more stable than the
monomer. If yc > 0, the stable radius is also of value 1 as was shown in Sec. 5.2.3.2, and
the camembert is then more stable than the monomer. Therefore, in the regions where the
camembert is stable, and more stable than the crystal (xl < 0, yc > xl), it is also always
more stable than the monomer. We identified the last boundary of the phase diagram:
when xl < 0, the camembert is more stable than the monomer, which corresponds to the
set of parameters at position (1) in the phase diagram of Figure 5.5a. The corresponding
energies plotted in Figure 5.5b show that the camembert is more stable than the crystal
(solid line below dotted line). When xl > 0 (panel (5) or (6)), the monomer is more stable
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than the camembert (solid line above dotted line). In Figure 5.5a, we also show in red the
region where the camembert is self-limited, i.e. of radius larger than 2 and less than +∞.
This region of interest is within the boundaries where the camembert is the most stable
geometry.

In panel (2) of Figure 5.5b, we see that the energy per particle in the camembert has a
minimum, but that this minimum is very shallow. We remind that this is the pure energetic
computation, and that there are no entropic effects taken into account in this discussion.
We expect the free-energy to be slightly shifted from the energy when the temperature is
above zero. Because the minimum of the energy is shallow, a small entropic effect might
result in an important shift of the equilibrium size of the aggregate.

We identified the region in the parameter space of the particles with line and crystalline
interactions where the camembert is the most stable: it requires that the line interaction
is more favored than the surface interaction, and that the line interaction is more favored
than the crystal interaction. We also showed that there is a large part of the stability region
of the camembert where they are self-limited, i.e. when the equilibrium radius is larger
than 2 and finite. This suggests that we identified a relevant mechanism for self-limiting
assembly that only rely on directional short range interaction of the particles. However,
we only compared the energies of three geometries in this section, because they were the
only one that we could think of. We are not yet guaranteed that there is no alternative
organization of the particles of lower energy than the camembert in the region of interest.

5.3 Lattice simulations validate the stability and size control
of camembert aggregate

To verify that there is no alternative organization than the one we enumerated in the
previous section for the anisotropic particles with competing line and crystal interactions,
we use the interaction map model and numerical simulation introduced in Chapter 2. We
show that for an interaction map that corresponds to the interaction of the particle in-
troduced in Sec. 5.1, the equilibrium configuration determined numerically corresponds to
the camembert aggregate, in the expected parameter regime. We run numerical simulation
at temperature one, which enables to confirm that the camembert aggregate are not only
observed at zero temperature. In Sec. 5.3.1, we explain our simulation choices to guaran-
tee that the aggregates we observe in the simulations are at equilibrium. In Sec. 5.3.2, we
explore the parameter space and show that the phase diagram determined in Figure 5.5
correctly predicts the equilibrium geometry of the aggregates. In Sec. 5.3.3, we quantita-
tively compare the prediction of the size and of the energy per particle in the aggregate,
and show that while the energy is well predicted by the analytical computation of Sec. 5.2,
it is not the case of the size of the aggregates.

5.3.1 Simulation method
In this section, we show how to implement the ideas of competing energy in the in-

teraction map model of Chapter 2. Because we want to measure effects of size-limitation
at equilibrium, we need to carefully choose the parameters of the simulated annealing to
guarantee that the measured aggregates are equilibrated, and that their size-limitation is
due to thermodynamic effects only and are independent of the annealing protocol.

From the design of the particle proposed in Sec. 5.1.1, which we show again in Fig-
ure 5.6a, it is straightforward to identify the corresponding interaction map. There is 3 pair
of faces that correspond to the crystal interaction and two pair of faces that correspond
to the line interaction. The interaction map is shown in Figure 5.6c. The crystal inter-
actions are colored in light blue, and correspond to an interaction energy Jcrystal and the
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a) Anisotropic particle b) Expected camembert
aggregate

c) Interaction matrix
used in simulation

d) Result of
simulated annealinga Anisotropic particle d Result of the annealingc Interaction mapb Expected aggregate

Figure 5.6: We define the interaction map of the anisotropic particle with directional in-
teractions, and it assembles in the expected aggregate geometry in numerical simulations.
a) The particle has two types of interactions, and b) is expected to aggregate in a camem-
bert geometry. c) The interaction maps are chosen such that the dark blue entries have
energy Jline, the light blue entries have energy Jcrystal, the surface interactions (pink) have
energy σ. All the other interactions (dark red) have energy J∞. d) Result of numerical
simulation where the interactions are shown with the same color code. Jcrystal = 0.5kT ,
Jline = −8kT , σ = 6kT and J∞ = 15kT )

line interaction are shown in dark blue and correspond to an interaction energy Jline. The
other possible interactions between two faces of the particles are repulsive, they are shown
in dark red, and correspond to an interaction energy J∞. In Chapter 2, we explained that
the interaction of the particle could always be set to zero if the number of particle is fixed.
Here, however, we set the interaction energy to be σ, because it makes the connection
between the design of the particle and the interaction map easier to interpret. The line
and crystal interactions (Jline and Jcrystal) were always compared to 2σ in the analytical
study of the section 1, and this will be similar in the numerical simulation during the
energy comparison in the elementary steps of the Monte-Carlo simulation (see Sec. 2.2 of
Chapter 2). Note that the colors in the interaction maps do not refer to the level of the
energies as in previous chapters, but to the type of interaction.

We show the result of the simulated annealing for such an interaction map in Fig-
ure 5.6d. We give details about the parameters chosen for the simulation below. The
equilibrium configuration of the particles are represented with a different convention than
in previous chapters: the orientation of the particle is indicated with an arrow, and the
bonds between two particles are shown with the same color code as that of the interaction
map. We see that the aggregates simulated numerically is a camembert (Figure 5.4b).

Here, we explain our choices for the size of the system, number of particles, and an-
nealing protocol. We run simulations of 270 particles on a triangular lattice of size 50×50.
We choose the number of particles such that the radius of a camembert with that many
particles is an integer: if r = 9, N(r) = 270 (eq. 5.14). This large number of particles also
ensure that size limitation can be observed. For instance, if the equilibrium size of the
aggregate is r = 4, there should be around 4 aggregates in the equilibrium configuration.
The density of particles is low (Nparticles/Nsites = 0.108) which guarantees that the system
is diluted and that the particles will not aggregate because of crowding effects.

To ensure that the aggregates studied in the next sections are at equilibrium, we com-
pare different temperature protocol (see Sec. 2.2 of Chapter 2), and we choose the initial
temperature of the annealing and the number of Monte-Carlo steps such that the energy
of the system at the end of the annealing is independent of the chosen protocol. We expect
that if the number of annealing step is too low, the system is not well equilibrated, and
there is a dependence of the energy in the number of step. Beyond a given number of
steps, we expect the final energy to be independent of the number of annealing step: if the
system reaches its equilibrium configuration, more Monte-Carlo steps should not make a
difference. In Figure 5.7, we show the final energy of the system for different equilibrating
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Figure 5.7: We choose the number of Monte-Carlo step and the initial temperature of the
annealing such that an increase of the number of step and a change of intial temperature
does not decrease the energy. We anneal a system of size 50×50, 270 particles, and binding
energies (Jcrystal, Jline, σ, J∞ =0.5kT,−8kT, 6kT, 15kT )

time and different initial temperature, and for a chosen interaction map, for an anneal-
ing with 100 temperature steps. The final energy decreases with the number of steps up
to ≈ 20 millions of steps, and converges after. We choose to perform 25 millions steps
for each annealing procedure. This number of steps can be performed in a reasonable
computational time (one simulation is a few minutes). It corresponds to 1000 steps per
temperature and per site of the system. There is also a small dependence in the initial
temperature of the annealing, which is not monotonous. Indeed, for a fixed number of
step, there might be more or less steps within the range of temperature where the particles
aggregate. We choose kBT0 = 6, which leads to the minimum equilibrium energy for the
chosen interaction map.

We choose interaction maps such that the equilibrium configuration leads to the camem-
bert geometry predicted in Sec. 5.1.1. We determined the optimal temperature protocol for
a given set of parameters. However, we did not perform such calibration of the annealing
protocol for each interaction map, because it would require too much computational time.

5.3.2 Verification of the phase diagram
We now explore the parameter space of the interaction energies in the numerical sim-

ulation and compare it to the phase diagram predicted in Figure 5.5, and show that the
camembert aggregate is the most stable geometry in the expected region. We however
show that there are some fluctuations of the organization of the particle at the surface of
the aggregates.

For different values of Jline and Jcrystal, we perform the simulated annealing with the
parameters described in Sec. 5.3.1 and compare the geometry of the aggregate (by looking
at the snapshot) with the predicted geometry. We choose J∞ = 15kT and σ = 6kT . We
choose the different values of Jline and Jcrystal in order to collect several images in the
region of interest colored in red in Figure 5.5a, for which the camembert are expected to
have a finite size at equilibrium. We show the results in Figure 5.8. There is a direct
correspondence between the analytical prediction and the simulation results. The points
in orange correspond to trivial situations: (u) and (v) are such that the crystal interaction
is unfavored, and the stable configuration is a hexamer (i.e. a camembert or radius r = 1).
(x) and (y) are such that the line interaction is unfavored, and the stable configuration is
crystal. (w) is such that both interactions are unfavored, and the stable configuration is a
monomer.

Most of the green points are in the region where the camembert are expected. We do
observe aggregates of finite but large size with disclination line in the region above the
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r = ∞ line. Camembert aggregates of infinite size are observed below this line (e, j, m).
The set of interactions (n) corresponds to a point very close to the boundary: there are
only two disclination lines in the aggregate. For the points in the upper left region (a, f,
k, p, b, g), the disclination lines are longer than the radius of the aggregate. We call those
particles extrusions. We did not predict such extrusion for the camembert geometry in the
analytical study.

As predicted, the size of the equilibrium aggregates also increases when the effective
crystal energy decreases (from top to bottom), and when the line energy increases (from
left to right). This suggests that the mechanism at stake is the decrease of the amount
of defect lines per particle when the line interaction become less favored than the crystal
interaction. This evaluation is not yet quantitative.

With the numerical simulation, we addressed the limitation of the analytical compu-
tation of the phase diagram, which was constructed only by comparing a few geometries.
Here, the equilibrium configuration of lattice particles verifies the expected phase dia-
gram. The non-zero temperature do not seem to shift the boundaries of the phase diagram
predicted at zero temperature. We derived the phase diagram by considering symmetric
aggregates, i.e. for which the radius of the aggregate is an integer. It did not lead to mis-
predictions of the regions of the phase diagram when the aggregates can be non-symetric.

5.3.3 Energy and size comparison
We predicted the equilibrium size of the camembert in the analytical derivations. This

prediction resulted from the assumption that the aggregate are in the configuration for
which the energy per particle is minimal. There was no consideration of entropic or kinetic
effect in the determination of the equilibrium radius. Here, we show that the equilibrium
energy of the aggregate measured for kBT = 1 is well predicted by the analytical com-
putations, but that there are important differences between the camembert sizes in the
simulation and in the analytical computation.

We compute the averaged equilibrium size of the clusters in the system by performing
a pondered average of the size of all the cluster within one system and within different
simulated annealing for the same interaction map, as was explained in Chapter 2. If the
aggregates of the simulation k are of sizes {N (k)

i }, where N (k)
i is the size of the ith aggregate

in the kth simulation, the average size of the aggregate is:

⟨N⟩ =
∑

k

∑
i

(
N

(k)
i

)2

∑
k

∑
iN

(k)
i

(5.30)

The pondered average ensures that this is the average size of a cluster upon drawing one
random cluster, and not upon drawing one random particle. This measure is equivalent to
the weight average molecular weight used in polymer chemistry (and not the number aver-

age molecular weight). We also measure the standard deviation of the values of
(
N

(k)
i

)2
,

which is used to compute the error bars on the Figure shown below. We also compute the
energy of the system, as explained in Chapter 2, by performing the scalar product between
the density map and the interaction map. Here it corresponds to the following operation

e(Jcrystal, Jline, J∞, σ) =
1

Nparticles
(⟨ncrystal⟩Jcrystal + ⟨nline⟩Jline + ⟨nsurface⟩σ + ⟨n∞⟩J∞)

(5.31)
where Nparticles is the total number of particles in the box, and ⟨nline⟩ is the average
number of interactions between two neighboring particles that are in a line configuration
(and similarly for the crystal, surface, or forbidden configuration), measured duringNaverage
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Figure 5.8: We observe camembert in numerical simulation at finite temperature within
the parameter range where they were predicted to be stable at zero temperature. a)
Theoretical phase diagram and positions of the parameters for which we run the simulation,
b) Snapshot obtained in numerical simulation. Aggregates of finite size are observed above
the limit r = ∞. σ = 6kT and J∞ = 15kT .
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Figure 5.9: The analytical calculation (solid line) predicts the energy per particles in
the simulation, but not the size of the aggregates (points). For each set of parameter, we
compute the analytical minimal energy per particle and equilibrium radius, with formulas
for the crystal (5.8) when xl > yc or the camembert (5.18) when xl > yc. The points
correspond to the simulation results of Figure 5.8.

Monte-Carlo steps. Here Naverage is 1000 times the number of sites in the lattice. Both
the size and the energy are averaged over 200 simulated annealing. We compare those
quantities to the analytical energy of the camembert (or crystal, depending on the region
of the diagram) predicted in Sec. 5.2.3.1 and 5.2.1 and to the equilibrium size of the
camembert predicted in Sec. 5.2.3.2. The size is capped to the total number of particles in
the system. Both comparisons are plotted in Figure 5.9. We plot the radius r corresponding
to an aggregate size N(r) (eq. 5.14). The interaction parameters for which we perform
simulations correspond to the one of Figure 5.8.

The measure of the energy per particle is in agreement with the analytical result (left
plot): the dots (measure in the simulation) are on the solid lines (analytical results). How-
ever, there is some quantitative disagreement between both (right plot): large aggregate
tend to be smaller than predicted and vice versa.

There are two possible explanations for these discrepancies: the size of the aggregate
was predicted from the minimization of the energy per particle, which assumes that the
system is at zero temperature. Since the simulations are performed at temperature kBT =

1, there might be a shift of the equilibrium size because of entropic effects. This would
explain that the energies are in agreement, and not the sizes. Another possibility is that
the numerical simulations are not well equilibrated, despite the precautions we took to
ensure that the energy of the system did not depend on the annealing protocol.

5.4 Entropic and kinetic effects

The camembert geometry of the aggregate is observed in the numerical simulation
when the analytical simulation predicted that it was the most stable geometry. However,
the size of the aggregate is not correctly predicted. Here we show that both insufficient
equilibration time and entropic effect could explain these differences. In Sec. 5.4.1, we
show that increasing the annealing time changes the equilibrium size of the cluster without
completely explaining the difference with the analytical prediction. In Sec. 5.4.2, we show
taking into account the translational entropy of the aggregates in the analytical prediction
of the size does not predict the aggregate size measured in the simulation. In Sec. 5.4.3,
we also take into account the entropy due to fluctuations of the number of particles at
the surface of the aggregate, and show that it only shifts the equilibrium size of small
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aggregates.

5.4.1 Equilibrium is not completely reached in simulation
In this section, we choose a set of interaction energies leading to the camembert ge-

ometry for which the average size measured in the simulation is different from that of the
analytical prediction. We vary the initial temperature of the annealing, the size, and num-
ber of particles in the system, and the number of annealing steps. The initial temperature
and size of the system do not have a clear influence on the equilibrium size of the aggregate,
but the size of the aggregate increases with the number of annealing step in this situation.

We consider the system labelled (d) in Figure 5.8 (xl = −20, yc = −11.5) for which the
measured equilibrium radius is around 4, and the predicted equilibrium radius is around
7. We vary the initial temperature of the annealing while keeping the total number of
Monte-Carlo step constant. If the initial temperature is too low, the system might be
trapped in the local minimum of the configuration space, because the temperature is never
sufficient to jump above energy barriers. If the initial temperature is too large, a large
number of Monte-Carlo steps are performed at high temperature for which the particles
do not aggregate because the system is dominated by entropic effect. Therefore, there
should be an optimal intermediate temperature for which the energy is the lowest. We
vary the initial temperature of the annealing between kBT = 4 and kBT = 20 and show
the averaged equilibrium size of the aggregates in each case in the left panel of Figure 5.10:
the size of the aggregate is maximal when the initial temperature of the annealing is around
kBT = 6, which we chose.

The numerical simulation are performed at finite sizes and finite number of particles.
This might affect the equilibrium size of the aggregates as follows: if the equilibrium size
of the cluster is 80 particles, and there is 100 particles in the system, the equilibrium
configuration in the system should be such that there is 50 particles in per aggregate,
which is below the equilibrium size. However, this effect should vanish upon varying the
number of particles in the system. Here, we vary the number of particles such that the
radius of the aggregate where all the particles are aggregated is between rmax = 4 and
rmax = 12. We remind that the relation between the number of particles in a cluster N
and its radius r is N(r) = 3r(r + 1). We also increase the number of sites in the system
such that the density of particles is kept constant. We show the result in Figure 5.10
middle. Except for the small sizes, we do not observe an effect of the number of particles.

Finally, we vary the total number of Monte-Carlo steps for the annealing. As explained
in Sec. 5.3.1, we expect the energy of the system (or the size of the aggregate) to reach a
plateau after a certain number of steps. We show the results in Figure 5.10 right. While
the number of steps did not seem to have an influence on the final energy of the system
beyond 1000 steps per temperature and per lattice sites (Figure 5.7), the averaged size of
the cluster keeps increasing after that limit. After 1600 Monte-Carlo steps per temperature
and per lattice site, the clusters have an average size of 4.4 (which correspond to around
70 particles). This is still far below the expected equilibrium size which is around r = 7,
i.e. 170 particles).

The size and initial temperature do not influence the averaged size of the aggregate for
the set of parameters we chose, but the number of Monte-Carlo step does. With our code,
we were not able to push the computation of Figure 5.10c further than 1600 Monte-Carlo
steps per lattice site and per temperature. Indeed, each data point corresponds to 200

different annealing, each of them lasting around one hour. From this results, it is not clear
whether the measured equilibrium radius would plateau at r = 6 in this case, as predicted
by the analytical computation, or below.
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Figure 5.10: The averaged radius of the aggregate varies with the initial temperature of
the annealing, the number of Monte-Carlo step, but not with the size of the system. It
suggests that the system is not well equilibrated. We measure the equilibrium radius of the
system for which xl = −20, yc = −11.5 (system ’d’ of Figure 5.8) as a function of varying
hyperparameters, and standard error. By default, kBT0 = 7, the radius of an infinite
aggregate is rmax = 9 (which corresponds to 270 particles in a system with a number of
sites Nsites = 50× 50), and we run nsteps = 200 Monte-Carlo steps per system site and per
temperature. Each data point is an average over 200 realisations.

5.4.2 Size distribution
A possible explanation for the discrepancies between the theoretical equilibrium size

of the camembert aggregate (at zero temperature) and the one measured in simulation
(measured at temperature one) is some entropic contribution that could shift the equilib-
rium size. To test this hypothesis, we compute the free-energy per particle of the system,
which is the sum of the energy per particle computed in Sec. 5.2.3, and of the entropic
contribution. Here, we take into account the translational entropy of each cluster of size
n, which scales as ln 1/n [79]. We then compute the expected size distribution of the ag-
gregates, and show that taking into account this entropic effect does not explain the size
of aggregates measured in the simulation for large but finite sizes.

We consider an ideal gas of aggregates where there are Nn aggregates of size n. Without
interaction between the aggregates, the partition function of the total system Z is the
product of the partition function of the individual aggregates zn, weighted by their number
of configurations.

Z =
∏
i

1

Nn!
(zn)

Nn (5.32)

The partition function of an individual aggregate counts all the possible positions of the ag-
gregate in the system. There are Nsites possible positions. It reads zn = Nsitese

−βne(cam)(n),
where e(cam)(n) is the energy per particle in a camembert aggregates, computed in eq. 5.18
(β = kBT ). With the Stirling approximation for the factorial, we obtain the free energy

F = − 1

β
lnZ =

∑
n

[
− 1

β
Nn ln

eNsites

Nn
+Nnne

(cam)(n)

]
(5.33)

If we now introduce the concentration of cluster of size n, cn = Nn/Nsites, we obtain for
the free energy per unit volume

f =
F

Nsites
=

∑
n

ncn

[
1

nβ
(ln cn − 1) + e(cam)(n)

]
. (5.34)

The total concentration of particles being fixed, we differentiate f with the constraint that
the number of particle is fixed:

∑
n ncn = c(0) =

Nparticles

Nsites
. The thermodynamic potential

associated to this constraint is µ, and reads

µ =
∂f

∂cn
=

1

β

(
ln cn + ne(cam)(n)

)
= e1 + ln c1 (5.35)
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Figure 5.11: The size of aggregates of intermediate sizes in numerical simulation is not
well predicted by the minimization of the free energy, taking into account the translational
entropy of the aggregates (eq. 5.36). The top-left letters on each figure corresponds to the
references of the images in Figure 5.8.

At equilibrium, ∂f
∂cn

= 0. From this, we obtain the general expression for the equilibrium
concentration of aggregates of size n:

cn =
(
c1e−β(e

(cam)(n)−e1)
)n

(5.36)

This expression depends on c1 which can be determined by solving the equation on the
particle concentration

∑
n kcn = c(0).

For a given set of line, crystal and surface interaction (related to the rescaled line
interaction xl, the rescaled crystal interaction yc and the energy of a monomer e1), we
derive the theoretical equilibrium concentrations of aggregates of size n, and compare it to
the size distribution of the aggregates measured in the numerical simulations. With this
measurement, we can compare the equilibrium average size of the aggregate, as we did in
Figure 5.9, with the entropic correction. We can also compare the distribution of sizes
around this average, between the numeric and analytic computation. We show the results
in Figure 5.11, for some set of parameters chosen in Figure 5.8, and indicated with the
same letters.

When the equilibrium size is small (the equilibrium radius is between r = 1 and r = 3),
the numerical computation and theoretical prediction are in agreement (panels a, c and l
of Figure 5.11). For a very large but finite aggregate (plot d of Figure 5.11), the measured
size is far below the expected size. For the aggregates of infinite size (panel j), we see
that the system is not completely equilibrated, because several smaller sizes of aggregates
are observed, but peak of concentrations around a smaller size. For intermediate sizes of
aggregate (panel d), it seems that the equilibrium is shifted towards intermediate size, with
measured distribution that are clearly peaked around an average which is lower than the
one expected.

For aggregates of intermediate sizes, we measure a shift in the size distribution. If the
simulation is at equilibrium (which is not completely sure from the results of Sec. 5.4.1),
there might be another entropic contribution than the translational entropy, which stabi-
lizes the aggregate of smaller sizes at finite temperature.
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5.4.3 Entropic contribution are negligible
Another hypothesis to explain the mis-prediction of the equilibrium radius is the en-

tropic gain that arises from fluctuations of the surface of the aggregate. In some examples
of camembert aggregates shown in Figure 5.15 (such as panels b and g), there are some
extrusions at the surface of the aggregate: the defect line is longer than the radius of the
bulk. The energetic cost of displacing a particle in one extrusion and placing it in another
extrusion is zero, and the entropic cost is large (there are a lot of possible extrusions where
to displace the particle). This effect might stabilize the smaller aggregates: in a system
where the aggregates are smaller, there are more possible extrusions, and more entropic
gain of displacing a particle from one extrusion to the other. This qualitative phenomenon
is also true for the displacement of the particle from any spot of the surface to any other
spots. There is an energetic price to pay to remove or add a particle at the surface of the
aggregate, but also an entropic gain, that is increased if the number of surface particles
is increased. Here we evaluate the free energy correction associated to the displacements
of particles from one spot of the surface of the aggregate to the other, and show that this
correction to the equilibrium distribution of the aggregate sizes is negligible in our range
of parameters.

We call a defect pair a missing particle (hole) and an extra particle (bump) at the
surface of the aggregate, as illustrated in Figure 5.12. If the number of defect pair is low
compared to the number of particles at the surface of the aggregate, there are as many
holes as bumps in the system. To enumerate analytically the number of configurations
associated to a given number of defect pairs, and the corresponding energetic cost, we
need to make some approximations. We first consider that the defects are not interacting,
i.e. we neglect the energetic gain of having two holes or two bumps next to each other. We
also neglect the fact energy gain associated to having a bump on the defect line is larger
than that of having a bump elsewhere on the surface. We refer to this set of approximation
as model A. We can then take into account the fact that a bump on the defect line can
be energetically favored. Then, we assume that the bumps are necessarily on a defect line,
and the holes necessarily elsewhere. This is model B. Finally, we will take into account the
interactions between the defects: two bumps next to each other are less costly energetically
than two bumps not in contact. This is model C. The distinctions between the three models
is summarized in Figure 5.12.

We first evaluate the energetic cost of the defects. We compute the cost of having
an extra particle or a hole in the bulk surface, η+ and η−, the cost of having a bump
on the defect line ϵ+. We also call η(2)+ and η

(2)
− the cost of having a pair of bumps or

holes. Finally, we call j, the cost of having a step of height 1 on the surface. Then
2j = η

(2)
+ − 2η+ = η

(2)
− − 2η− = yc. All those coefficients depend on the values of the line,

crystal and surface interactions (Jline, Jcrystal and σ), and we compute them by counting
the number of each types of interaction in the schematics of Figure 5.12. η+ and η− are
computed by measuring the energy difference between situation A and the flat surface. ϵ+
is computed by comparing situation B with the flat surface. η(2)+ and η

(2)
− are computed

by comparing the situation C and C’ with the flat surface.

η+ = 2Jc + 2σ = 2yc + e1 (5.37)

η− = −4Jc + 2σ = −4yc − e1 (5.38)

ϵ+ = Jl + Jc + 2σ = xl + yc + e1 (5.39)

η
(2)
+ = 5Jc + 2σ (5.40)

η
(2)
− = −7Jc + 2σ (5.41)

The number of particles at the surface of the aggregates is M = 6r, with r the radius of
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Figure 5.13: The correction to the equilibrium distribution of sizes taking into account
the surface fluctuation of the aggregate does not predict the sizes measured numerically
when the aggregate size is intermediate

the aggregate.
If the defect pairs are not on the blue lines, and do not interact (model A), we computed

the associated shift in the free energy. The number of defect pair is n0. Then

ZA =
+∞∑
n0=0

M2n0e(−η−−η+)n0 (5.42)

η+ + η− = −2yc. Then, if M2e2yc ≪ 1, we can simplify this sum.

lnZA = − ln(1−M2e2yc) (5.43)

The free energy per unit volume is the one computed in Sec. 5.4.2, corrected with the
entropic contribution of surface fluctuation per particle:

fA(r) = e(cam)(r)− lnZA
3r(r + 1)

(5.44)

We compute the equilibrium distribution associated with this free-energy from eq. 5.36, for
the same set of parameters chosen in the plots of Figure 5.11, and show it in Figure 5.13
in yellow. The new distribution is indistinguishable from the one computed previous (in
green) without the fluctuations: the energetic cost of forming defect pairs is too large.

We now consider the case where bumps are necessarily on a defect line, which is lower
in energy (ϵ+ is smaller than η+ in the set of parameters we consider). This is model B.
We treat each site on the surface independently, and count the number k of extra particle
at this site. A site can have an extra particle on a defect line with cost ϵ+ (k = 1) or a
hole in the crystalline part with cost η− (k = −1). We associate the conjugate variables
λ to the created holes or particles. Then ⟨k⟩ = ∂ lnZ

λ = 0, because the algebraic number
of defects is 0 (there are as many holes as bumps). A site on a line is associated with the
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partition function zline =
∑∞

k=0 e−k(ϵ++λ) (the lines can grow indefinitely), and a site in
the crystalline bulk with the partition function zbulk = 1+ e−η−+λ (there is maximum one
hole per bulk-site). If there is L line spots, we obtain the following free energy, and after
finding the value of λ we obtain the final expression.

ZB = (zline)
L (zbulk)

M−L (5.45)

lnZB = −L ln(1− 2
M − L

M
(1 +

√
1 + α)−1) + (M − L) ln(1 +

M

2(M − L)
e3yc−xl(1 +

√
1 + α))

(5.46)

with α = 4
L(M − L)

M2
exl−3yc (5.47)

We compute the free-energy fB(r) = e(cam)(r) − lnZB
3r(r+1) for a given set of parameters,

and the corresponding distribution of aggregate size. This is plotted in orange line in
Figure 5.13. For aggregates of small sizes (panel a), there is a shift of the equilibrium
distribution towards larger sizes, which seem to match better the numerical computation.
For larger sizes, however, this correction is again negligible.

We now consider that the defects can interact (model C). As it has been studied for
roughening problems, we introduce hi, the absolute difference in the number of defects
between particle at sites i and i+1, as it has been done to study the roughening transition
of crystals (Chaikin Lubensky - chapter 10.6) [125]). If the number of bumps is larger on
site i than on site i+ 1 of hi particles, there are hi particles with exposed surfaces. Then
the partition function associated to a site is simply zi =

∑∞
h=0 e

−hij with j = −yc/2 the
unit cost of the interface. With this notation, the sites can then be treated independently:

ZC = (zi)
M (5.48)

lnZC = −M ln
(
1− eyc/2

)
(5.49)

We compute the free-energy fC(r) = e(cam)(r)− lnZC
3r(r+1) for a given set of parameters, and

the corresponding distribution of aggregate size. This is plotted in blue line in Figure 5.13.
Once again, this correction of the free energy does not shift the equilibrium configuration.

The free energy correction due to surface fluctuation is negligible in the parameter
regime where large aggregates are observed, and it does not explain the average size of
aggregates measured in the simulation. The computation relied on the hypothesis that
the number of defect at the surface of the particle is low. This approximation appears
reasonable: the energetic cost of a defect is low compared to the entropic gain, and we do
not expect our computations to be dependent on this approximation.

5.5 Design of fibrous aggregate of controlled width

In sections 5.2, 5.3 and 5.4, we discussed a specific particle design for which favored
defect lines within the crystalline packing could limit the size of the assembly. This size-
control results from the competition between interactions of an anisotropic particle. This
concept could be used more broadly than the specific camembert design we described.
Here, we introduce a minor change in the way the designed particle interact locally, so
that they will self-assemble into fibers of controlled width which depend on the relative
strength of the local interactions. We present the fiber design (5.5.1) and show that fibers
of finite and large width are observed in simulation (5.5.2).
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Figure 5.14: The line directional interaction is chosen such that the particle assemble
into a fiber of finite width. a) The energy of an aggregate is measured by counting each
type of interaction in a triangular slice (dark gray) b) The chosen interaction map leads
to fibers of large width in the numerical simulation for Jcrystal = 2kT , Jline = −4.625kT .

5.5.1 Design principles of a fiber stabilized by geometrical defects
In the camembert geometry, the size-limitation mechanisms come from the competition

between the line and the bulk interaction within one triangular group of particles (in dark
gray in Figure 5.3), with the number of line contacts scaling as the size of the triangle and
the number of crystal contacts scaling as the square of its size. Here, we show that we can
generalize this concept to another geometry.

We illustrate in Figure 5.14a how we can design an anisotropic particle that has both
a crystal and a line interaction, but for which the relative orientation between the line
interactions are such that the triangular portions of the crystal (dark gray in the figure)
will alternate instead of forming a hexamer of triangle. We also show in 5.14b, the corre-
sponding interaction map, and the result of a numerical simulation, which is in agreement
with the predicted aggregate. The fiber is not infinitely long, because the energetic cost
of having several smaller fibers instead does not scale like the number of particles in the
aggregate.

The same calculations derived before holds, with slight changes in the coefficients in
eq. 5.18. However, in that case we need to make the assumption that the fiber is of infinite
size, and therefore we do not count the energy cost of the surface of the tips of the fiber.

The number of crystal, line, and surface interactions per gray triangle is

ncrystal = 3r(r − 1)/2 + 1 (5.50)

nline = 2r − 1 (5.51)

nsurface = 2r (5.52)

The energy per particle is the total energy of a gray triangle, divided by the number of
particles in the triangle. With the change of variable introduced in equations (5.1, 5.2,
5.3), we find

e(fib)(r) =
(3yc + e1)r

2 + (−3yc + 4xl + e1)r + 2(yc − xl)

r(r + 1)
(5.53)

This expression is similar to that of the camembert, with a few changes in the coeffi-
cients. By minimizing this function with respect to r, we determine the stability region of
the fiber, as we did for the camembert in Sec. 5.2.3. We find that it is the fiber is more
stable than the crystal and of finite site in the same region as the camembert (xl < 0,
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yc > xl for stable fibers, yc > 2/3xl for fibers of finite size). The equilibrium size of the
triangle is given by r1, while the width of the fiber is r1 + 1

r1 =
yc − xl +

√
(yc − xl)(4yc − 3xl)

3yc − 2xl
(5.54)

The lines where the stable size is an integer number k are again straight lines in the phase
diagram, of equation. The larger the size of the desired aggregate, the narrower the region
in the parameter space.

yc =
2k2 − 2k − 1

3k2 − 2k − 1
xl. (5.55)

This computation suggests that it is possible to assemble fibers of finite width that
depend on the value of the interaction energies of single particles, at zero temperature.

5.5.2 Phase diagram of zigzag fiber
We show that the predicted self-limitation of the width of zigzag fiber is confirmed in

lattice simulations at temperature one. We choose a set of parameters such that fibers of
variable width should be observed and show the result of the simulation in Figure 5.15. We
do observe fibers of finite width above the r = ∞ dashed gray line (panels d, m, c, g, l, ...).
In some cases, such as panel (c), the width of the fiber seem to be intermediate between
two integer values, resulting in the surface of the fiber not being straight, but having steps
of one particle (see the fiber in the bottom of panel (c)). When the individual triangular
slices are more stable than the crystal configuration, but of infinite size, this cannot be
considered a fiber (the width is infinite). The result is a bulky structure, with a zigzag
defect line of arbitrary pattern in the middle (panels r, i, n, e, j). When both line and
crystal interactions are repulsive, we recover the monomer geometry (w). When the line is
repulsive, we recover the crystal geometry (x, y). The equivalent of the hexamers for the
camembert is now a fiber of width one, where the particles alternate their orientation such
that their interaction is always that of the line (u, v).

With very little adaptation of the initial camembert design, and following the same
physical principles, we were able to design fibrillar aggregates for which the width is solely
controlled by the local interactions between particles.

5.6 Perspective of experimental realization

We now present our perspectives of experimental verification of the mechanism of
limited-assembly introduced above. Indeed, the numerical implementation is highly ide-
alized, the particles are on a lattice, and each pair of interactions can be adjusted with
high precision. The simulations also do not take into account the kinetic of the assembly
(we remind that a particle can be moved to a very far position on the lattice within one
Monte-Carlo move). We also do not account for displacement of a group of particles, which
might lead to aggregation of the individual camemberts. An experimental realization of
the self-assembly of this type of particle would enable to address these limitations. Here,
we show that the mechanism of camembert formation could be tested experimentally with
DNA-origami.

In Chapter 1, we described two widespread building blocks for self-assembly: colloids
and DNA origamis. The particle we imagined assembling into the camembert geometry
needs 5 types of specific interactions: 3 crystalline interactions and 2 line interactions that
would work as lock-and-keys (see Figure 5.2c). Coating the colloid surface with specific
chemical interactions is a difficult task [63], whereas DNA-origamis, because they interact
with strands coming out of their core that bind through base-pair interactions, can be
designed with highly specific and anisotropic interactions.
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Figure 5.15: We observe fibers of finite width in numerical simulations at finite temper-
ature in the region of the phase diagram where they were predicted analytically at zero
temperature. a) Predicted phase diagram and chosen interactions. b) Snapshots of the
system for σ = 5kT and J∞ = 25kT
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In collaboration with the group of Pr. F. Simmel in TUM [42], we plan to adapt
the barrel design of DNA origami proposed in [126] to fabricate camembert aggregates of
controlled size (Figure 5.16). A schematic of the DNA barrel is shown in Figure 5.16a.
Individual DNA strands can then be positioned on the surface of the barrel, at chosen
vertical coordinates, and distributed around the barrel with a periodicity 2π/6. We expect
that such distribution will ensure that the particles assemble in a triangular lattice, even
if the particle is not hexagonal. It is what is suggested by the preliminary crystalline
assembly of the barrel particles shown in Figure 5.16c. The 3D version of the 2D particle
that can be adapted to the barrel design is shown in Figure 5.16b. The particles are in
solution and bind to a substrate. Therefore, it is relevant to compare the self-assembly
process with the results of 2D simulations.

If the particles are 3D, they can be in both vertical orientations (see the bottom of
Figure 5.16b). Here, we show that it should not affect too much their self-assembly into
camembert geometry. We run numerical simulation of the 3D-hexagonal particle (intro-
duced in Chapter 2), on a lattice of size 50 × 50 × 1. As a consequence, the particles
can adopt each of the possible vertical orientation by flipping their orientation, but their
position is always at z = 0. In Figure 5.16c, we show the result of the simulation, with
the following color code: the particles are in green when they are in the upward verti-
cal orientation, and in gray when in the downward vertical orientation. This preliminary
result suggest that there is no camembert that can arise from a mixture of upward and
downward particles, and that the particles of similar vertical orientations will aggregate to-
gether in the camembert geometry. However, in some cases aggregates of two orientations
are merged (the aggregate on the right in the Figure).

We can experimentally fabricate a particle that has the directional interactions that we
considered in this Chapter. The work is in progress, and will reveal whether the predicted
camembert geometry will arise in from the self-assembly of such particles.

Discussion

In Chapter 1, we showed that the existing mechanisms of self-limiting assembly relied
on the independent design of each particle, on the self-closing of the assembly, or on
their deformability. Here, we showed that the competition between two incompatible
favored interactions, could lead to the size control of open-ended assembly of identical
rigid particles. We demonstrated the idea for two specific geometries in two-dimension :
a two-dimensional aggregate of controlled radius and a fiber of controlled width, where a
disclination line relied on an interaction more favored than the bulk interaction, but it was
not geometrically accessible for all the bonds between particles.

This mechanism relies on the directionality of the interactions between the particles.
Therefore, we expect that it could be implemented for other particle geometries, as long
as two favored directional interactions cannot be realized at the same time in a dense
aggregate. For instance, we expect this mechanism to be applicable to square particles, for
which the equivalent of the camembert aggregate would be a square aggregate with four
disclination lines. The particle also does not need to be hexagonal or square, as long as the
interactions are directional. We also expect this principle to work in three dimensions, with
defect planes instead of defect lines. However, we did not test it in numerical simulation.

The experimental implementation of such principle requires designing particles with
directional independent interactions. DNA-origamis appears well adapted to this require-
ment, because the DNA-strands can be chosen to bind only to another specific DNA strand
on the particle. This may enable to achieve the self-assembly of individual particles in ag-
gregate of several tens of particles. However, we showed that large sizes of aggregate
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Figure 5.16: We implement the camembert design in DNA origami experiments. a) We
use DNA-origami with a barrel shape. The surface can be patterned with strands that
interact. b) The three-dimensional cylindrical particle can be in two vertical orientations.
If the interactions are symmetric in z, it means that there are two ways to realize each
crystalline contacts: particle can have same or opposite vertical orientation. c) Prelimi-
nary images of experimental self-assembly of DNA barrels imaged with electron microscopy.
Courtesy of Christoph Karfusehr. d) Result of simulated annealing in two-dimension space
where the three-dimensional particle can flip vertical orientation, while keeping the anneal-
ing parameters presented above (Jc = 0.5kT , Jl = −8kT , σ = 6kT , e∞ = 15kT ).
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required a fine-tuning of the strength of the interaction: the range of parameters where
an aggregate of radius r is most stable is more and more narrow as r increases. It was
already difficult to achieve aggregate sizes of finite radius larger than 5 in the numerical
simulation, and we expect that the same kind of difficulties could arise in experimental
implementation.

If the camembert geometry mostly serves as a proof of principles that directional in-
teractions can limit the size of the aggregate formed upon self-assembly of the individual
particles, the fiber geometry could be used for biomedical implication. Indeed, in [38], the
author showed how to build bioreactors from tubes of controlled radius. Those tubes result
from the folding of two-dimensional fibers of controlled width. Here, we introduced a novel
mechanism to self-assemble fibers of controlled width.

In this study, we applied the concepts of frustration to short-range directional inter-
actions. The frustration arising from the fact that both the line and the crystal are not
compatible introduces non-local effects and enables to control the size of the aggregate.
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6 - Systematic identification of protein aggregate di-
mensionality in crystallographic data: methods
and preliminary results

This thesis and previous work suggested that self-assembly of objects with complex
shapes or interaction often leads to aggregates of self-limited size (like micelles) or re-
duced dimensionality (like fibers that are one-dimensional objects, and sheets that are
two-dimensional objects in three dimensions). Proteins are canonical examples of parti-
cles with complex interactions. Specifically, when in non-physiological condition, or after
mutation, they can exhibit aggregate of diverse shapes. We could test the hypothesis that
dimensional and size reductions are generic phenomenon experimentally if

• we study a large amount of protein samples, in diverse physicochemical conditions,

• and if we are able to detect the presence of fibers or small size aggregate within such
samples

Light interactions with matter are preferential tools to study matter at small scales. Par-
ticularly, small angle X-ray scattering is a technique used to investigate shape and size
of macromolecules, typically on the length scale of interest for us (between 10 and 1000 Å),
and is a solution to the second requirement. On the other hand, crystallography uses
the periodicity of the atoms within a material to measure diffraction peaks, and identify
the crystal structures. While we are not interested in measuring crystal diffraction, the
approach of protein crystallographers for sample preparation is interesting: obtaining a
protein crystal is hard, and proteins are aggregated in a large variety of physicochemical
conditions, and analyzed with X-rays, before a crystal is finally found. There is therefore a
large amount of scattering signals of protein aggregates available, including proteins that
did not crystallize, while the approach of SAXS experiments does not provide a system-
atic exploration of the physicochemical conditions. In this chapter, we will ask whether
it is possible to measure the dimensionality of protein aggregates, and detect dimension-
ality reductions, in the data collected by crystallographers, by using the analysis methods
of SAXS. In particular, there is a small range of length scale for which crystallographic
signals are collected, and for which information about the aggregate dimensionality can
be measured. In Sec. 6.1, we describe the principles of SAXS and crystallography, and
show that it is in principle possible to detect dimensionality reduction in crystallographic
experiments. We will mostly attempt to detect fibers, that are easily formed from protein
self-assembly, as was emphasized in Chapter 1. In Sec. 6.2, we analyze scattering signal
from protein aggregate constructed numerically and show that we can systematically de-
tect the dimensionality of the aggregate in those numerical data. This was the project
of M. Billoir master internship, which we co-advised. Finally, in Sec. 6.3, we analyze ex-
perimental crystallographic data collected with the help of our collaborators W. Shepard
(Synchrotron Soleil, Saclay), and M. Spano (Institute of Structural Biology, Grenoble).
We took part in the experiments by collecting the scattering signals in the synchrotron
beamline. This was the project of M. Garic master internship, which we co-advised. The
main challenge with experimental data was to isolate the scattering signal of the protein
from its background. For this reason, we suggest that the aggregate dimensionality can
be identified with statistical methods like machine learning, provided that enough data of
protein aggregates of known dimensionality are collected.
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Figure 6.1: The scattering angle of light is related to the organization of the atoms in
a sample. The incident light of wave vector k0 is scattered by atoms at positions O and
Oi. The light intensity measured at the scattering angle k results from the interference
between the two light rays. The phase difference is proportional to the path difference δ.
Figure adapted from [127]

6.1 Identifying dimensionality reduction in scattering signals
of crystallographic experiments

Both small angle X-ray scattering (SAXS) and crystallography rely on similar prin-
ciples, which we describe in Sec. 6.1.1: information about the spatial distribution of the
atoms is measured from the scattering of X-ray beams in the sample. We explain in
Sec. 6.1.2, that SAXS is a particularly well suited technique to study the size and the di-
mensionality of protein aggregates. On the other hand, the sample preparation techniques
in crystallography enable the collection of a large amount of scattering signals, which we
describe in Sec. 6.1.3. The use of SAXS methods on crystallographic data could then
be used to systematically identify dimensionality reduction and size reduction in protein
aggregates.

6.1.1 X-ray scattering gives information on the material
X-ray scattering is used to determine information about materials at very small scales [127].

Here, we show how the intensity of the scattering signal is related to the composition of
the sample it went through.

In most material, an X-ray beam is scattered by atoms and electrons in the sample, but
it conserves its frequency. For this reason, all the waves measured in direction k that have
been scattered for their initial direction k0 will interfere if they are coherent, or be added
otherwise (see Figure 6.1). The phase difference ϕ between the signals of two scatterers is
related to the distance between them OOi through the path difference δ: ϕ = 2πδ/λ and
δ = −OOi · (k−k0). Thus, the measured signal will carry information about the material
on a length scale of the order of its wavelength, i.e., between 1 pm and 1 nm.

The initial amplitude A0 of the light scattered by an atom at the position Oi in direction
k is decreased by a factor fi, called the scattering factor, such that its amplitude is A0fi.
It was shown that amplitude of the light in the direction k resulting of the contribution of
atoms at positions Oj [128]

A(k, t) = A0

∑
j

fje
iϕj (6.1)

We define the scattering vector as q = 2π(k − k0)/λ. The phase difference due to the
interaction between the scatterer at positions Oi and a reference O is ϕi = −ri.q. If all
scatterers are identical, so are the scattering factors (fi = f). Then, the light intensity at
angle q is

I(q) = AA∗ = A2
0f

2
∑
i,j

ei(ϕj−ϕi) = A2
0f

2
∑
i,j

ei(ri−rj)·q (6.2)

From this equation, both diffraction and scattering experiments can be understood. In
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diffraction experiments, the periodic distribution of the scatterer leads to constructive and
destructive interference, that will be detected as Bragg peaks [129]. This is the principle
used in crystallography experiments. When the scatterers are not periodically arranged,
waves of identical phases are regrouped, and eq. 6.2 can be written as a function of the
scattering length of the atoms per unit volume ρ(r). More precisely, it can be written
as a function of the excess scattering length density compared to the solvent ∆ρ(r) =

ρ(r)− ρs [128, 130].

I(q) =

∫
V
∆ρ(r)eiq·rdr (6.3)

Whether the scatterers are arranged in a periodic way or not, the scattered intensity
for a given scattering vector q carries information on the spatial organization of the atoms
and electrons in a sample. For this reason, we want to use measures performed during
crystallographic experiments, for which no crystal was observed, and analyze it with tools
of scattering techniques.

6.1.2 SAXS methods are adapted to describe the shape of the aggre-
gates

The intensity of the scattered light as function of the scattering angle gives information
about the spatial distribution of the molecules in the sample. Here, we show how scattering
signals are analyzed in different regime of q. For low q, the Guinier’s law enables to measure
the gyration radius of a particle. For large q, the Porod’s law gives a universal scaling of the
intensity, provided that the surface of the aggregate is flat. In intermediate regimes, the
dimensionality of the aggregate can be measured. This is the regime we are interested in.
In the following, we only give a summary of the scaling of the scattered intensity in different
ranges of the scattering vector. More details can be found in dedicated reviews [130, 131].
We also treat aggregates of proteins as the individual particle.

At low values of q, i.e. when measuring correlations on length scales that are larger
than the typical size of the aggregate, it is possible to neglect the geometric specificities of
the aggregate. The scattered intensity then only depends on the gyration radius. This is
the Guinier approximation [128].

I(q) ≈ I(0)exp

(
−1

3
R2
gq

2

)
(6.4)

for values of q below 1/Rg. Therefore, log I(q) can be fitted in the low q regime as a
function of q2 to obtain both the intensity at the origin and the gyration radius of the
aggregates. This is the region where the values of q in the phase space corresponds to
scales larger than the particle size in the real space, the left region in Figure 6.2.

At large values of q, it was shown by Porod [132] that

I(q) ∼ q−4 (6.5)

This is the region where the values of q in the phase space corresponds to scales much
smaller than the individual particle size in the real space, and information about the
surface of the particles are measured. A protein however has a rough surface, and it is not
clear that Porod’s law is valid. This corresponds to the right region in Figure 6.2.

We show that in the intermediate regime, the scattering intensity is related to distri-
bution of distances between the electrons within one aggregate. Eq. 6.3 can be simplified
knowing that ⟨eiq·r⟩Ω = sin(qr)/(qr). The average over Ω stands for an average over all
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Figure 6.2: Depending on the range of scattering vector (q), information on different
length-scales of the aggregates are measured. This is a highly idealized schematic. At
low q (left), variations at the scale of the whole aggregate are measured (red circle is
larger than the aggregate). I(q) follows Guinier’s law (eq. 6.4). At intermediate q, the
dimensionality D of the aggregate can be measured (the red circle is larger than a single
protein but smaller than the typical size of the aggregate, I(q) follows eq. 6.8. At large q,
only variations at the surface of the aggregate can be observed.

possible orientations of a particle.

I(q) = 4π

∫
r2γ(r)

sin(qr)

qr
(6.6)

with γ(r) =
〈
∆ρ(r0)∆ρ(r0 + r)du

〉
Ω

(6.7)

γ(r) describes how the excess scattering densities are correlated in a given particle. In
practice, p(r) = r2γ(r), which corresponds to the distance distribution in the particle,
is used to deduce information about geometrical properties of the scattering particle. At
intermediate values of q, i.e. in between the Guinier’s and the Porod’s law, this distribution
scales like p(r) ∼ rD, where D is the dimensionality of the aggregate. Then the integration
of eq. 6.6 is simply:

I(q) ∼ q−D (6.8)

This regime (in the middle in Figure 6.2), is the one of interest for us. If we are able to
measure scattering signal in that region, we can compute the aggregate dimensionality and
identify which protein self-assemble into aggregates of reduced dimensionality (sheets for
D = 2 or fibers for D = 1).

In those three regimes, we presented the scattered intensity for one particle. If the
solution of aggregate is diluted enough, we can assume that the aggregates do not interact.
Then the total scattered intensity is Naggregates × I(q), with Naggregates the number of
aggregates, and the scaling of eq. 6.4, 6.5 and 6.8 are still valid.

In the following study, we consider proteins that have gyration radius between 10Å
for insulin or 20Å for actin, which means that the upper bound to observe the scaling of
eq. 6.8 is around 0.1Å−1.

It is possible to determine the exact dependence of I(q) with the dimensionality D, for
which an approximate scaling is eq. 6.8. In particular, we can also consider an aggregate
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of proteins as the scattering signal of individual proteins in interaction. We then define,
the form factor P (q) as the scattering signal of individual proteins. The structure factor
S(q) describes the interactions of the Nprotein individual proteins in one aggregate, such
that the total scattering intensity is I(q) = NproteinP (q)S(q). This is the notations we will
use in the rest of the chapter.

This approach was extensively developed by supposing that a protein aggregates can
be modeled as a fractal aggregates of nanoparticles [133]. In particular, it was derived that

S(q) = 1 + (Nprotein − 1)

1 +
2
(
R

(protein)
g q

)2

3D


−D/2

(6.9)

At small values of q, S(q) = Nprotein: at very large scales, there are no interactions between
the proteins and the scattering signal is the sum of the scattering signal of each protein.
In the large q limit, S(q) = 1, the scale is too small to distinguish between the different
proteins, and the scattering intensity is that of individual proteins.

Being able to fit S(q) for any protein aggregate with such formula would then directly
lead to the information of interest: the dimensionality of the proteins and its size in terms
of number of particle. We could then detect the presence of self-assembled fibers of micelle
of proteins.

In the following, we will always call dimensionality the dimension of an aggregate (fiber
has dimension 1, sheet has dimension 2, and bulk has dimension 3), and size the length
dimensions of the aggregates. The term dimension will be kept for the dimension of an
array of numbers.

6.1.3 Crystallographic data are widely available
We explained how the scattering signal is used to determine aggregates size and dimen-

sionality, specifically in SAXS. We now explain why crystallographic experiments are more
interesting for the purpose of this project in terms of sample preparations, but less suitable
in terms of the range of scattering vectors for which a scattering intensity is measured.

The 3D structure of a protein can be determined by crystallography. If the protein
has crystallized, all its atoms are repeated in a periodic way and the light they scatter will
interfere. The spatial details of the protein can then be determined, as was explained in
Sec. 6.1.1. When an electron density map of a protein, and its 3D structure, is determined
experimentally, it is added to the Protein Data Bank (PDB) [134]. 85% of the protein
structures deposited in the PDB were determined by X-ray crystallography [135]. The
bottleneck of this method is the crystallization of the protein. The last decades witnessed
the development of in situ crystal harvesting: in each well of a crystallization plate (see
Figure 6.3), a protein droplet is mixed with a buffer solution containing different type of
precipitants. For each plate, a different buffer solution is chosen. From one well to the
other, the concentration of the buffer solution can also vary. X-ray is shone on all of those
samples, directly on the plate where they were prepared. The scattering signals exhibiting
Bragg peaks contain crystals, as explained in Sec. 6.1.1, and they are selected for further
study [136, 137].

These experiments are typically done in synchrotron facilities. In the synchrotrons
of the European Union [138], data of the experiments are made publicly available, and
stored, three years after it was collected. For this reason, there is a large amount of
publicly available data of X-ray experiments. Those data include the scattering signal of
protein solutions in variable conditions, because crystallization does not always occur. The
scattering signals of solutions where the proteins did not crystallize could then be analyzed
to determine the shape and size of the protein aggregates that might have self-assembled
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Figure 6.3: A crystallization plates enables to test a large variety of experimental condi-
tions. In each well, a droplet of protein is deposited. Each well has a size of around 0.5
cm.

in each sample. This would provide a systematic identification of protein aggregates with
reduced size or dimensionality, without having to perform those experiments for scratch,
which would be extremely costly and long.

In crystallography experiments, the range of scattering vector q is typically between
5× 10−2 and 5× 101 Å−1, corresponding to sub-nanometric length scales. In the previous
section, we determined that we should focus on scattering vectors below 0.1Å−1. There
is therefore a small range of q where (i) a large amount of data is available, and (ii) the
information about the aggregate size and dimensionality can be measured.

6.2 Dimensionality identification in scattering of numerical
aggregates

We estimated that the range of scattering vector where we could measure information
of aggregate shape is below 10−1Å−1, and that crystallographic data measures intensity
for scattering vectors above 5 × 10−2Å−1. Also, in the intermediate range of scattering
vector, the scaling of the intensity is directly related to the aggregate dimension. Here, we
go beyond those initial estimates and verify that an analysis of the scattering signal of very
diverse protein aggregate in this range is sufficient to deduce its dimensionality on idealized
data: we generate scattering signals of protein aggregates built numerically, and provide
methods to systematically identify their dimensionality. This study is therefore a proof of
principle of the idea of the broad project described above. Since analyzing experimental
data can be challenging for many other reasons, it is useful to develop an analysis method
on idealized data, which can then be adapted to account for the additional difficulties of
real data. We create a database of scattering signals of numerical protein aggregates of
known dimensionality in Sec. 6.2.1. We then show that the dimensionality of these idealized
aggregates can be automatically identified from the scattering signals with machine learning
methods, in the range of scattering vectors of crystallographic experiments (Sec. 6.2.2). All
this work was done together with M. Billoir during her master internship [139].
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Figure 6.4: The software Crysol models the scattering signals of density maps of pro-
teins from the PDB. The proteins we show here have the following reference in the PDB:
lysozyme(6lyz), α-synuclein(1xq8), insulin (2C8R), actin (2hf4). The proteins are visual-
ized with ChimeraX.

6.2.1 Build a database of protein aggregates numerically
Here, we will build a database of around 250 of scattering signals corresponding to

protein aggregates with variable characteristics. Our objective is to create scattering signals
of aggregates with predetermined dimensionality (0,1,2 or 3) that are as different as possible
in other aspect: the local organization of the proteins in the aggregate, the size, the protein
it is built of, and the geometry. We will present the methods and software we used in
Sec. 6.2.1.1. In Sec. 6.2.1.2, we build numerical protein aggregates from the density maps
in the protein data bank. In Sec. 6.2.1.3, we compute the corresponding scattering signals
and show that while the fibers (dimensionality 1) seem to be easily identifiable, there is no
trivial way to classify all the aggregates by their dimensionality.

6.2.1.1 Approach
We can use existing software used to analyze scattering data for our purpose of dimen-

sionality detection.
We use the software Crysol [140] to compute the scattering signal of a protein aggregate

in solution, from its electron density map. Examples of such signals are shown in Figure 6.4.
For each protein, we extract the protein density map from the PDB [134]. The program
then averages the scattered intensity over all orientations of the protein

We are interested in the scattering signal of aggregates of proteins, rather than single
proteins. To get the density map of gas, fibers, sheets or crystals of proteins, we concatenate
the density maps of the individual protein, i.e. we place each density map next to the other.
This is done with the software ChimeraX [141], and images of examples of such aggregates
are shown in Figure 6.5a. Each artificial aggregate is built from one of the four proteins of
Figure 6.4: insulin, actin, lysozyme and α-synuclein. We choose this set of proteins because
they have variable sizes and 3D structures.

To build each aggregate, we will thus follow these steps:

• collect the electron density map of the protein subunit in the PDB

• concatenate several density maps and observe the resulting protein aggregate with
ChimeraX

• compute the scattering signal of the designed aggregate with Crysol
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Figure 6.5: We build artificial aggregates of proteins of variable dimensionality by stack-
ing individual proteins in the software ChimeraX. a) Artificial aggregates of 0, 1, 2 and
3D. Aggregates are built by stacking lysozyme proteins. Implementation and visualization
are done with ChimeraX [141]. b) A protein in the aggregate is translated and rotated
from the position of its neighbor.
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6.2.1.2 Aggregate characteristics
We build aggregates of dimensionality 0, 1, 2 and 3, as shown in Figure 6.5a. For a

given dimensionality, we build aggregates that are as different as possible from the others,
by varying other characteristics of the aggregate, which we explain here.

Each monomer i is added at the position xi. In practice, the position is chosen relatively
to the position of the previous monomer. A translation vector di, an axis of rotation ai,
and an angle θi are chosen such that xi = xi−1 + di, the first monomer being at position
0. The monomer can then be rotated of θi around the axis ai. This is illustrated in
Figure 6.5b. We define four category of aggregates which share the same dimensionality:

• The gas is such that di, θi and ai are chosen randomly for each monomer. For the
gas of dimer, the translations, and rotation are applied to previously built dimers.
A gas is zero-dimensional (green in the following)

• The fibers are such that all the monomers are aligned: di = d1, with d1 the trans-
lation vector. For the straight fiber, the orientation does not change (θi is always
zero). For the other fibers, we introduce a constant rotation θi = iθ0 between two
monomers. If the axis of rotation ai is collinear to the direction of the translation
d1, the fiber is twisted. If the axis of rotation ai is orthogonal to the direction of the
translation d1, the fiber is bent. In the most generic case, the fiber is helical (see
images in Figure 6.5a). Fibers are one-dimensional (red in the following).

• The sheets correspond to monomers translated from d1 or d2 from their neighbors,
with d1 and d2 being orthogonal. Sheets are two-dimensional (light blue in the
following)

• Crystals corresponds to monomers translated from d1, d2, or d3 from their neighbors,
with d1, d2 and d3 being orthogonal. Crystals are three-dimensional (dark blue in
the following)

The norm of the translation vector d is chosen such that the proteins are not intertwined
(∥d∥ is between 1 and 1.2 times the size of the protein). We choose not to optimize the
relative positions of two monomers with the command implemented in ChimeraX (rigid
body local optimization of two density maps). This would make the contact between two
proteins more physical. However, it complexifies the building procedure, while introducing
only minor changes in the scattering signal, for large values of q (only above q = 30Å−1),
which corresponds to scale that are not relevant to determine the aggregate shape.

To broaden the database of aggregates while keeping its dimensionality well-defined,
we also build random versions of the fiber, sheets, and crystal: the positions of the subunits
are implemented as above, but their orientations are chosen randomly. Finally, we vary
the number of subunits in the aggregate. In practice, the side of each aggregate is between
3 and 40 proteins. We summarize the number of aggregates built from each category
in table 6.1. For each category, we indicate two quantities, the number of organized
aggregates and the number of random aggregates. For each protein, we build aggregates
of the different categories. There is 67 α-synuclein aggregates, 42 actin aggregates, 103

lysozyme aggregates and 70 insulin aggregates.
We achieved to create density maps of a large variety of protein aggregates, that have

a well-defined dimensionality, but vary in the other aspects, like the protein its built from,
the size of the aggregate, the geometry of the aggregate and the local organizations of the
particles.
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Categories of aggregates
Crystal Sheet Fiber Gas

Straight Twisted Helical Bent Dimer Monomer
3+19 18+10 26+10 0+9 37+27 43+25 0+10 0+45
22 28 177 55

Table 6.1: For each category of aggregate, we collect data of organized and random
aggregates. For instance, there is 3 organized and 19 random crystals in the dataset. The
last line indicates the total in each category.

6.2.1.3 Computation of the scattering signal
From the density maps of the proteins of Sec. 6.2.1.2, we build a database of scattering

signals for which the dimensionality of the aggregates is known. For each of the density
maps created in 6.2.1.2, we compute the corresponding scattering signal with the software
Crysol, introduced in 6.2.1.1. Here, we explain our choices of parameters for the use of
Crysol, how we extract the relevant information from the computed scattering signal, and
show that the dimensionality of the aggregate cannot be trivially identified from them.

We compute the scattering signal for scattering vectors in the interval [0.03, 0.35]Å−1.
The upper limit of q is chosen such that we do not measure signals for length scales below
2nm, which is smaller than the gyration radius of the protein we consider. The upper
bound is fixed by the typical range of scattering vectors in crystallographic experiments.
We are taking some margin compared to the range [0.05, 0.1]Å−1 identified in the intro-
duction. Scattering intensities for 2500 values of q within this range are measured, which
provides measurements as reliable as those with larger number of points, and reasonable
computational times.

As explained in 6.1.2, the scattering signal of the aggregate I(q) is then the product
of the form factor of the individual proteins P (q), the structure factor that describes the
interactions between subunits S(q), and of the number of proteins Np [133].

S(q) =
I(q)

NpP (q)
(6.10)

The form factor was also computed with ChimeraX and shown in Figure 6.4. We show the
computed signals of aggregates of chosen dimensionality, where the density map was built
as explained in 6.2.1.2 in Figure 6.6. The orientations of the particles in the aggregate
are regular (plots a-d) or random (plots e-h). The aggregates are of different sizes, and
built for different proteins in different. We also show the gyration radius of the individual
protein computed in Crysol. As explained in 6.1.2, we expect relevant information about
the dimensionality of the aggregate to be below this limit.

We first notice that the expected limits at low and large q for the structure factor is
not recovered from our measures with Crysol. Indeed, S(q) ̸= 1 when q → 1 [133]. This
is the expected behavior, because at large q, the scattering signal does only depend on the
number of constituents, and we expect I(q) ∼ Np(q)P (q). Even if the large q limit does
not converge to one, it does converge towards a finite positive value. A rescaling would
therefore be necessary, but we could not determine it within the limited range of q (typically
we do not measure scattering signal for q lower than 10−2, and cannot recover the I(q → 0)

limit). Thus, we could not find the correspondence between the normalization of structure
factors computed from Crysol [140], and that expected from protein aggregates [133].

From this preliminary visualization, however, it seems that almost all fibers share the
linear regime of relatively small slope (compared to other types of aggregates) as a common
characteristic, despite their difference in number of particles and local organizations. This
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Figure 6.6: Aggregates of identical dimensionality built from the same protein have
similar structure factors. The color represents the type of aggregate. (a-d) Subunits have
regular orientations in the aggregate. (e-g) Subunits have random orientations in the
aggregate. Aggregates are build from lysozyme (a, e), insulin (b, f), α-synuclein (c, g), and
actin (d, h). The black dot line corresponds to q = 1/Rg, Rg is the gyration radius of one
protein subunit.

suggests that the scaling of the scattering signal with the dimensionality of the aggregates
is a feature common to fibers with very different properties. The identification of the other
categories is not trivial.

6.2.2 Analysis of the numerical scattering signal
We computed the scattering signals of aggregates of well-defined dimensionality (gas

in 0D, fibers in 1D, sheets in 2D, and crystals or bulks in 3D). The aggregates of identical
dimensionality are very different in size, local organization, or built from different proteins.
We now investigate whether the identification of a linear regime that was observed quali-
tatively in the numerical scattering signals (Sec. 6.2.1.3), and the measure of its slope, is
enough to classify the aggregates according to their dimensionality. Because this method
does not work systematically, and does not allow identifying the other types of aggregates
(gas, sheets, and crystal) we propose alternative classification method based on the train-
ing of a neural network classifier and show that it enables to systematically identify all
types of aggregate (Sec. 6.2.2.2).

6.2.2.1 Fit segment to measure dimensionality

We propose a method to systematically detect the scaling of the scattering signal with
the dimensionality (S(q) ∼ q−D) introduced in Sec. 6.1.2. We show that this enables to
detect fiber aggregates in most cases in our dataset, but not the other types of aggregates.

To analyze the scattering signals, the most intuitive approach would be to fit the signal
with an expected structure factor like that of eq. 6.9, and deduce the dimension D, the
number N of subunits and a gyration radius Rg. Such approach were adopted in [133].
However, because we could not identify the correct rescaling of the measured scattering
signal, as explained in Sec. 6.2.1.3, we could not fit systematically fit them with eq. 6.9.

Here, we adopt a simpler approach, that consists in identifying a linear regime in
the scattering signal, and deduce the dimension of the aggregates. We expect the scaling
S(q) ∼ q−D, to be observed on a range of scattering vectors q that depend on the individual
proteins gyration radius, and on the aggregates gyration radii. Thus, we fit all the portion
of each signals in a log-log scale, and identify which will give the best linear fit. The slope
of the linear regime is then an approximation of −D. We fit the signal to a linear curve in
all portions of [log q0, log q0 +∆(logq))] with ∆(logq) ≈ 0.6, i.e., on a bit more than half a
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Figure 6.7: We detect a linear regime of slope −1 for the fibrillar aggregates, indepen-
dently of the protein it is built from. (a) For each form factor, we choose q0 such that the
linear fit is the best, and deduce the dimensionality D. (b-c), q0 as a function of D for the
organized (round dot) and random (cross dot) aggregates. We measure a dimensionality
of 1 for the fibers (red in b), regardless of the protein (other colors in Figure c). We show
only the data points for which the best linear fit has χ2 < 1.

decade. We choose the value of q0 such that the residual log I(q) +D log q is minimal. We
show the example of such a fit in Figure 6.7a on three scattering signals. The determination
of q0 is therefore simplistic, and rely on an arbitrary criterion, which could be refined in
further analysis. We expect the dimensionality D measured with this method to be the
dimensionality of the aggregates, i.e. 1 for the fibers, 2 for the sheets, etc.

The measured dimensionality D is plotted as a function of q0 in Figure 6.7b and c.
We confirm that we can measure the scaling of the signal with the dimensionality for most
of the fibers within the chosen range of scattering vectors q: the red points are all at the
abscissa D = 1. We count that 82% of the scattering signals of fibrillar aggregate 19%

of the scattering signal of non-fibrillar aggregates are fitted with an exponent between
−0.6 and −1.6 (dashed line in the Figure). If we set being in this range as a criterion to
recognize fibers, this simplistic method enables to identify a majority of fibers. The fit is
less successful for the other types of aggregates. But we still measure dimensionality 2 for
some sheets, and dimensionality 3 for some crystals. Moreover, it is important to notice
that this criterion to detect fiber is independent of the individual proteins of the aggregates:
signals of different proteins (points of different colors in Figure 6.6c) are detected with the
same criterion in Figure 6.6b). It is also independent of the local organization of the
proteins within the aggregate (round dots correspond to regular orientations, and cross
dots to random orientations of the proteins within the aggregate).

The approach of identifying the slope of the best linear regime, while not entirely sat-
isfactory, indicates that most of the fibers could be detected from the scattering signal,
independently of the aggregate size, protein building block, and local organization. With
this method, the gas aggregates are not well characterized. This is because Crysol is not
well adapted to deal with several aggregates within the same density map. Moreover, the
approach proposed in [133] was to average the scattering signal over aggregates of different
sizes that share the same characteristics, to better reproduce experimental scattering sig-
nals of a solution of proteins. This might also explain our difficulties to fit the data with
eq. 6.9, additionally to the normalization issues detailed in Sec. 6.2.1.3. It is also not clear
that this method could be reproduced on experimental data: without prior knowledge on
the size of the protein, the estimate of D strongly depends on q0 and ∆q, which are deter-
mined arbitrarily. However, if we know the range of q where the linear regime is expected,
and if this range is within the range measured in crystallographic experiments, this results
suggest that the dimensionality could be deduced from the experimental signals of protein
aggregates with very diverse characteristics.
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6.2.2.2 Statistical methods to learn dimensionality

Because the fit in the linear regime did not provide a systematic classification of the
aggregate according to their dimensionality, we now take advantage of the large amount
of data to train a neural network to classify the aggregates. Indeed, in Sec. 6.2.1, we
computed a dataset {X(i)

k } where X(i)
k refers to the scattered intensity measured at the kth

value of q and for the ith aggregate. Each aggregate i is also associated with a category
(fiber, gas, crystal, or sponge). This is a well-defined problem to use a feed-forward neural
network classifier, for which we introduced the basic principles in Sec. 3.2.3 of Chapter 3:
the network performs a series of non-linear transformation on each input data Xk which
has a large number of features: it is an array of dimension Nfeatures. This operation results
into an output of dimension 4, which gives the probability for this data to correspond
to each category of aggregate [105]. The network is optimized such that the predicted
categories are similar to the true categories, on a set of training data. Then, the quality
of the training is and evaluated on a new set of data, the test set. We consider that the
classifier works if the true and predicted categories on the test set are similar.

Here, the number of features is Nfeatures = 2500, which is the number of values of I(q)
measured values per signal. We also know the labels D(i) for each aggregate, which refers
to its dimensionality (between 0 and 3): this is directly deduced from the way each protein
aggregate (from which we computed the scattering signal) is constructed, as explained in
Sec. 6.2.1.2 and 6.2.1.3. There is 248 data of scattering signals. The input layer of the
neural network is of size Nfeatures and the output layer of dimension 4 (the probability
of the aggregate being of each dimension). We choose a network architecture with two
hidden layers, of dimensions 25 and 12. We divide the dataset into a training set (89%
of the data) and a test set, while ensuring that the training and test set have the same
distribution of each type of aggregates. The distribution of each category was shown in
Table 6.1. This distribution is uneven, because the database was initially built with the
intention to characterize the fibers. Yet, we will see that the amount of data in the other
categories is sufficient for the network to learn their common features.

The results of the prediction on the training and test set are given in Table 6.2a and
b. The diagonal terms of each matrices count the data that were predicted correctly
in each category. We see that most of the data are correctly predicted (92%) on the
training set, which means that the network was correctly trained. Most of the data are
also correctly predicted on the test set (90%), which mean that the network learned to
recognize characteristics of the signals within a category that are not specific to the signals
in the training set. We also tested aggregates of a protein that was not used to build the
aggregates and the signals used in the training set (tubulin), for which the dimension was
predicted correctly. Most of the incorrect predictions in the test set concern the gas. We
suggest that this is because we built the scattering signals of gas aggregates from density
maps containing several aggregates, which is not adapted for Crysol.

These results suggest that the dimensionality of a protein aggregate is a characteristic
that can be identified in the scattering signal, despite the fact that the protein aggregates
are different in many other aspects, like the protein it is composed of, its size, the or-
ganization of the aggregate, and the orientations of the proteins in the aggregate. The
amount of data used in this study is low, and these results would need confirmation on
larger dataset. Yet, despite the small amount of data, a very simple network reached
90% good predictions on the test set, which suggest that identifying the dimensionality is
not a complex task. Beyond the specificities of this dataset, this results suggest that the
machine-learning approach is efficient to identify the dimensionality of a protein aggregate
from its scattering signal, and that we could also use it on experimental data. Indeed, it
probably learns in which regions of the scattering vector q the linear regime which scales
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Gas 4 2 0 0

Fiber 0 19 1 0

Sheet 0 0 3 0

Crystal 0 0 0 2

b Test set.

Table 6.2: The neural network learns to classify the aggregate category. We observe
mostly correct predictions in both the training (a) and test (b) sets. Results taken
from [139].

.

as the dimensionality of the aggregate is predicted, which we could not do in Sec. 6.2.2.1.
Here, we attempted to make the aggregates within the same category as different as

possible. In experiments, besides the differences between the aggregates, the experimental
conditions might also vary from one measurement to the other for aggregates with the
same dimensionality. This adds an additional complexity to the identification of the di-
mensionality. Yet, we used a network with a very simple architecture, and it is possible
that a more complex architecture could help to classify more complex data.

6.3 Attempt of dimensionality identification on crystallographic
data

The preliminary numerical analysis confirmed that the signature of the dimensionality
of aggregates with different characteristics could be measured within the range of crystal-
lographic data. This suggests that it is possible to test the hypothesis that dimensionality
reduction is a generic phenomenon arising from the self-assembly of complex particles that
protein, by analyzing scattering signals collected by crystallographers for other purposes.
We now investigate the challenges inherent to the experimental measurements. For this,
we collected scattering signal of protein aggregates in different physicochemical conditions,
to identify the dimensionality of the protein aggregates in each sample. This was done in
collaboration with M. Spano (ISB, Grenoble) and W. Shepard (Synchrotron Soleil, Saclay).
In Sec. 6.3.1, we explain how we collected scattering signals of different protein aggregates
in different physicochemical conditions. The expected dimensionality of the aggregate was
known only in some cases. In Sec. 6.3.2 we show that we could not separate the signals
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of proteins from its background, which prevented us from detecting the aggregate dimen-
sionality with standard methods, such as the measure of the slope of the linear regime.
In Sec. 6.3.3, we use statistical methods such as machine learning or principal component
analysis. We show that when the expected aggregate dimensionality of a fraction of the
data is known, we can identify the dimensionality in other signals collected within the same
experimental conditions, but that it cannot be generalized to data collected in different
experimental conditions. Some experiments and analysis were done together with M. Garic
during his master thesis [142].

6.3.1 Presentation of experiments
Here, we show how we measured the scattering signals of different proteins in a large

variety of physicochemical conditions. As in Sec. 6.2, we aim at collecting data where
the aggregates have the same dimensionality, but they are different in other aspects. In
Sec. 6.3.1.1, we present the diversity of protein samples and experimental conditions for
which we collected a scattering signal. In Sec. 6.3.1.2, we show how the experimental
set-up enables a precise control of the part of the sample that scatters the X-ray. In
Sec. 6.3.1.3, we explain how the scattering signals are extracted from the scattering image
measured during the experiment, and show that the scattering signal highly depends on
the experimental set-up.

6.3.1.1 Protein samples
Here, we highlight the differences between the protein samples we analyzed. We per-

formed two series of experiments. In the first, we carefully chose the proteins and the
experimental conditions such that the expected protein aggregate was known. In the fol-
lowing, we refer to this as the labelled data. In the second series of experiments, we used
proteins samples already available because they were used for other projects by M. Spano.
In this case, the expected aggregates was not known, and we refer to this as the unlabeled
data.

The first experiments was conducted on actin, α-synuclein, tubulin and tau proteins, be-
cause those proteins are stable in both fibrillar aggregate (dimensionality 1) or monomeric
state (dimensionality 0), depending on the drugs added in the solution. Actin proteins
in physiological condition self-assemble into fibers. Upon addition of a toxin called la-
trunculin, it does not assemble [143]. Upon addition of fascin, the actin filament form
bundles [144]. α-synuclein forms fibrils or ribbons upon addition of Tris-HCl [145, 146].
It remains in a monomeric state in regular physiological conditions. Tubulin forms micro-
tubule upon addition of taxol [147]) and is in a monomeric state if nocodazole is added to
the solution [148]. Tau protein is also tubular or monomeric depending on the experimen-
tal conditions. Our collaborators prepared solutions of proteins in each of these conditions
(3 for actin, 3 for α-synuclein, 2 for tubulin and 2 for tau). The scattering signal was col-
lected for each of them, for different concentration of proteins. This corresponds to data
of scattering signals of proteins aggregates for which we know the dimensionality.

In the second series of experiments, we collected scattering signals of proteins samples
that were prepared by M. Spano to try to achieve crystallization. Because crystallization
is hard to achieve, the proteins were prepared in a large variety of physiological conditions.
Therefore, we did not have control over the expected aggregate dimensionality. The pro-
teins in these unlabelled aggregates are ispE, thaumatin and a protein for which we do not
give the name, as a request of M. Spano. In the following, we call it "NATA".

The maximum concentration of proteins is typically between 10 and 20 mg/mL. All
initial solutions of proteins are also diluted by a factor 2 or 3, depending on the sample.
For the unlabeled samples, the concentration of protein and of the precipitants in the
buffer was varied. The proteins we studied, and the corresponding aggregates, are listed in
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Date Protein Types of
aggregates Buffer #

plates # data

02-2021 actin
Filament,
bundles,
monomer

Yes 2 74

02-2021 α-
synuclein

Filament,
ribbons,
monomer

Yes 2 76

02-2021 tau Tubules,
monomer Yes 1 36

02-2021 tubulin Tubules,
monomer Yes 1 36

03-2022 ispE unknown No 1 132

03-2022 thaumatin unknown No 1 93

03-2022 NATA unknown No 2 678

04-2022 ispE unknown Yes 2 209

04-2022 thaumatin unknown Yes 1 168

Table 6.3: We collect experimental data of different types of aggregates from different
proteins in different experimental condition. The column Buffer indicates whether a droplet
of buffer alone was measured for each droplet of buffer+proteins. The column # plates
indicates in how many crystallization plates identical samples were measured. The last
column indicates the number of scattering signals measured for each protein.

Table 6.3. We therefore have a set of protein samples containing monomers, fibers, tubes,
or unknown aggregates.

6.3.1.2 Set-up

A droplet of each of the proteins samples described above are deposited on a 96-well
plate. Here, we show how the experimental set-up of the Proxima-2 synchrotron beam line
then enables to collect the scattering signal on precise positions of the droplet.

The droplets of protein solutions are deposited in each well of the plate with a robot that
precisely control the volume of the droplet. In the schematic of Figure 6.8, we represent
the plate in blue and the droplets of protein sample in yellow. For some data, a droplet of
the buffer without the protein were also deposited in the same well, next to the solution
of protein droplet. In Table 6.3, we summarize for which samples the buffer was collected
in the column called Buffer. The plate is then sealed and left for equilibrating. Several
droplets of the same protein samples were also deposited on different crystallization plates
of the same kind. In Table 6.3, we show, in the column called # plates, on how many
different plates a given sample was deposited. We therefore have data of proteins samples
in different experimental conditions.

The plate is placed under the X-ray beam as shown in Figure 6.8. The position of the
plate is controlled by a robotic arm. Live microscope imaging of the droplet enable to deter-
mine with precision the desired position of the shot in the droplet. Once the shot position
has been determined, the microscope is displaced away from the beam path, and the X-ray
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Figure 6.8: In the Proxima-2 beam line, the scattering signals are measured at precise
position of the droplet on the plate, and the scattering signal of all the droplets in the
plate is made faster with the automatic displacement of the plates.

is shot. All of these steps are controlled remotely with the software CRIBLEUR [149]. The
scattering signal is then measured on a detector, i.e. a screen that detects the intensity
of the light as a function of the positions, shown in black in Figure 6.8. The light that is
not scattered (in the center of the scattering image) is stopped by a beam-stop (in red in
Figure 6.8), because its intensity is much larger than the intensity of the scattered light,
and would damage the detector. The CRIBLEUR allows collecting several scattering sig-
nals on the same droplets, at precise positions. It is also possible to measure the scattering
signal in positions on the plate where there is no droplet. This enables to measure the
scattering signal of the plate only. This partially automated set-up enables the collection
of a large amount of data in a limited period of time. The combination of microscope and
scattering images also ensures control over the position of the shot.

6.3.1.3 Signal analysis

Here, we explain how the image measured on the detector is converted to a scattering
signal I(q) and we show that the scattering signal depends on the protein but also on the
buffer and the plate.

The intensity of the light on the detector depends on the angle it was scattered with.
This is shown in Figure 6.9a, where the levels of gray indicate different level of intensities.
In this image, we also see a white region in the center where no photons are detected: this
is the beam-stop. The black grid corresponds to the limits between different portions of
the detector. The scattering does only depend on the angle q, which is why we observe
rings around the central point. We average the signals at identical values of q. This is
called azimuthal integration and is done automatically from the detector properties with
the python library PyFAI [150].

The result of this integration is shown for some actin scattering signal in Figure 6.9b.
We plot measurements of solutions with actin in a monomeric state, or forming filaments,
on two different plates, that are referred to as (p1) and (p2). We also plot in dashed line the
corresponding buffer measurements. We notice that scattering signals of the same protein
solution collected on different plates are slightly different. Those signals are very different
from those of Figure 6.6, which we computed from numeric protein aggregates. Only the left
most part of panel (b) corresponds to the range of q used to compute the numeric protein
aggregates. The rest of the variations in the scattering intensity are due to the measure
of the background, and not of the protein: the dashed line and solid line have the same
variations. We also notice that for some values of scattering vector (q ≈ 3Å−1 for instance),
the intensity of the scattering light of the buffer (plate+buffer), is larger than that of the
scattering light of the protein solution (plate+buffer+proteins). This makes it difficult to
directly extract the protein scattering signal by subtracting the buffer scattering signal.
Despite the uncertainties due to the plate variability, the scattering signals of monomeric
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Figure 6.9: The scattering image is integrated, and the scattering signals mostly measure
the scattering of the plate. a) Scattering image measured on the detector. The vertical
black lines correspond to junctions between portions of the detector where no photons are
detected. The white vertical line in the center is the beam-stop. The scattering vector q⃗
corresponds to a given radius b) Result of the azimuthal integration at constant values of
the scattering vector q⃗. Measures on two different plates (p1 and p2). We show scattering
signal of actin in monomeric (green) and filament (red) state. The dashed lines correspond
to scattering signals of the buffer of the protein of the same color.

proteins can be distinguished from that of filaments of protein, because they have different
variations in the low q regions: in the inset, the red signals are distinguishable from the
green signals.

6.3.2 Extraction of the signal of the protein is difficult in crystallo-
graphic experiment

From the preliminary analysis of the scattering signals, it seems that the plate intro-
duces significant variabilities in the measures, and that the intensity of scattering signal of
the buffer is sometimes larger than the corresponding signal for the buffer and the protein.
This makes it challenging to extract the signal of the proteins itself, which is the quantity
of interest. In Sec. 6.3.2.1, we explain why the scattering intensity of the buffer can be
larger than that of the protein solution in crystallographic experiments. In Sec. 6.3.2.2 we
propose a method to subtract the buffer and plate scattering signal systematically with
statistical methods, and show that it works to subtract the signal of the plate, but not the
signal of the plate and the buffer.

6.3.2.1 Direct subtraction of the background is challenging
The measured scattering signal depends on the proteins in the solution, but also on the

buffer, and on the plate. Here, we explain why the scattering signal of the protein is easily
isolated in SAXS experiments, but not in crystallographic experiments. These differences
were not known in the onset of this project, and their consequences are one of the most
important challenges to the systematic analysis of scattering signal of protein aggregates.

Every molecule is a scatterer, this means also the plate, the air in the beam path, and
the solvent with the precipitant agents (which we refer as the salt). We can decompose
the total measured intensity as a sum of the individual intensities of the scatterers. The
scattering signal is proportional to the number of scatterers on the beam path. For these
reasons, the scattering signal of the air can be written as hplateIplate(q), where hplate is the
height of the plate at the position where the X-ray was shot, and Iplate(q) is the measure of
the scattering signal of the plate of unitary height. We similarly define hair, Iair(q), hsolvent
and Isolvent(q), for the scattering by the air and the solvent. Then the total scattering
signal Itot depends on those quantities, and on Iproteins(q), the scattering signal of the
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Figure 6.10: The volume of the buffer droplet and protein droplet are different in crys-
tallographic experiments, because this enables to obtain larger concentrations of protein,
and achieve crystallization.

protein, which contains the information about the aggregate dimensionality (the one we
are interested in).

Itot(q) = hairIair(q) + hplateIplate(q) + hsolventIsolvent(q) + Iproteins(q) (6.11)

In SAXS experiments, the scattering signal of the solute is evaluated with precision:
the scattering of a solution containing all molecules, but the solute of interest is measured,
and subtracted to the total signal [151]. This enables to subtract the solvent, the plate,
and the air on the beam path. The volume of buffer needs to be exactly the same as that
of the solution of interest, and the identical plate is reused for both measures.

In crystallographic experiment, the objective is to achieve crystallization and detect
Bragg peaks in the scattering image. Protein often crystallizes when the concentration
of protein in the solution is large. We describe how the protein droplets are prepared in
such experiments, and show that it complexifies the extraction of the protein scattering
signal. To increase the concentration of proteins in the sample a posteriori, two droplets
are deposited in a sealed compartment, as illustrated in Figure 6.10: the first droplet
contains protein and buffer (blue and red) and the second contains buffer only. Diffusion
of buffer solution from the protein droplet to the buffer droplet then enable the increase of
the concentration in the protein droplet. This process is detailed in [136, 152]. It is used
by the Proxima-2 beam-line in synchrotron. Because the two droplets do not have the
same volume, it is not possible to consistently subtract the scattering signal of the solvent
and the plate by measuring the scattering signal of the buffer.

The dependence of the scattering signal of the buffer on the volume of the droplet could
of course be measured independently, but the main idea of this project, which is to use
existing data, because they are numerous, would then be lost. Moreover, a precise control
over the buffer volume would not be sufficient, because the scattering signal of the plate
alone displays some variability, from a position to another on the plate.

6.3.2.2 Attempt to subtract background with signal processing

The direct subtraction of the buffer signal is not possible in our data. Here, we suggest
taking advantage of the large amount of data collected on the plate alone, and on the buffer,
to overcome this challenge. We propose a method to determine the separate contribution of
each element in the measured scattering signal that rely on an algorithm called non-negative
matrix factorization, which we will explain. We show that it enables to extract the plate
scattering signal from the buffer+plate scattering signal. We then show that this technique
is not sufficient to extract the buffer+plate scattering signal from the protein+buffer+plate
signal.

159



The scattering signals of the plate alone measured at different plate positions are not
equal. These differences are explained by small variations of the height of the plate,
which can vary from one position on the plate to the other. These variations could also
be due to difference of the volume of air in the beam path, which can vary with time,
because of temperature differences for instance. Based on eq. 6.11, we make this hypothesis
that these dependencies are linear. To remain generic, we decompose the signal into two
components, I(plate)0 (q) and I(plate)1 (q), which do not depend on the position of the measure.
The dependency of the position and time on the measure are encompassed in coefficients,
which we call ak and bk, that do not depend on the scattering vector q. Then a signal
measured on the plate I(plate)k (q) is decomposed as

I
(plate)
k (q) = akI

(plate)
0 (q) + bkI

(plate)
1 (q) + ϵk(q) (6.12)

ϵk(q) is a correction to this decomposition, which should be as small as possible. The
values of I(plate)0 (q), I(plate)1 (q), ak, bk and ϵk(q) are determined with non-negative matrix
factorization [153] of the plate data, such that the norm of ϵk is minimum. This method
ensures that I0, I1, ak and bk are all positive, which enables to interpret the two first terms
in eq. 6.12 as physical contributions of the scatterers to the scattering intensities.

Then, any scattering signal Ip(q) collected on a droplet of solution measures both the
scattering of the plate and the solution:

Ip(q) = I(plate)p (q) + I(sol)p (q) (6.13)

= apI
(plate)
0 (q) + bpI

(plate)
1 (q) + I(sol)p (q) (6.14)

By measuring ap and bp, we can separate the contribution of the plate and of the solution in
the measure of Ip(q), and isolate the scattering signal of the solution only. We will use this
method to isolate the buffer solution from the measures of plate+buffer, and the protein
solution on the measure of plate+buffer+protein. This is possible because a large amount
of data were collected on the same plate. Indeed, during one of series of experiments, we
collected 87 scattering signals of the plate alone, at different location on the same plate.
We also collected 88 (respectively 62) scattering signals of the buffer solution for ispE
(respectively thaumatin) proteins, at different concentrations and location on the same
plate. We consider a decomposition to be valid if the measure of ∥ϵk∥/∥Ik∥ is low, which
means that we did isolate the components that varied from one measure to the other, up
to a small correction.

We decompose the 87 plate data with this method. The relative error of this fit
∥ϵk∥/∥Ik∥, is between 0.001 and 0.04. Components I(plate)0 (q) and I(plate)1 (q) are shown in
Figure 6.11a. I(plate)1 is the most important contribution to the scattering signals, and we
recognize the shape of signal also observed in Figure 6.9, which confirms that most of the
scattering intensity is due to scattering of the plate. We similarly decompose the 68 and 62

signals of the plate+buffer for the ispE and Thaumatin bueffer. Here, we assume that there
are three components that explain the variations between the signals: the plate, the air,
and the volume of buffer. The 0th components for both decomposition are denoted I(ISPE)0

and I
(Thaum.)
0 . These components are shown in Figure 6.11b and c. The decomposition

was not as good for the buffer signals as for the plate signals: relative errors of the fit
could reach 0.19 (resp. 0.12) for the ispE (resp. thaumatin) buffers. As a consequence,
the components shown in the Figure do not seem to correspond to the scattering signal of
individual components, because they are very discontinuous.

We then extract the buffer signal from the decomposition of the plate signals computed
above and the measure of the plate+buffer signal, according to eq. 6.13. We plot the
extracted signals of the buffer solution of thaumatin and ispE proteins in Figure 6.12(a-b).
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Figure 6.11: The decomposition of the plate signals is physical, but not the decomposition
of the buffers signals. Results of the decomposition of eq. 6.12. a) Decomposition of the
plate alone signals in two components. (b-c) Decomposition of the plate+buffer signals in
three components for the ispE buffer (b) and thaumatin buffer (c)

Despite the fact that the extracted signal is not always positive, the intensity of the signal
at a given value of q seem to vary monotonously with the concentration of salt in the buffer
(coded with the colors in panels (a) and (b)). This is an indication that the signals we
extracted with this method correspond to the scattering of the buffer.

We also extract the protein signal from the decomposition of the plate+buffer (com-
puted from an equation similar to eq. 6.13). We show the extracted in Figure 6.12c and
d. Because the decomposition of the plate+buffer signal was not satisfactory, neither is
the extraction of the protein signals: the signals are also discontinuous. However, if these
signals only measure the contribution of the proteins, they should not depend on the con-
centration of the buffer where the proteins were. We do not observe a dependency of those
signals on the concentration of salt in the buffer: the intensity of the signal at a given value
of q is not proportionally related to the color coding for the salt concentration in panels
(c) and (d). This is an indication that the signals we isolated only contain information
relative to the proteins, and not to the buffer. Yet, the poor quality of the decomposition
of the buffer signals, the discontinuities of the extracted protein signals, and the fact that
they take negative values prevent us from attempting to analyze those signal further and
to identify the dimensionality of the protein aggregates.

We tried to take advantage of the large amount of data available to get around the
problem of the precise buffer measurements in crystallography experiments. The statistical
decomposition we used (non-negative matrix factorization) enabled us to measure a proxy
of the scattering signals of the protein buffers. Yet, we could not use this technique to
extract the scattering signal of the proteins themselves. Therefore, we could not extract the
dimensionality of the protein aggregates within the available data. These results suggest
that resorting to statistical methods and comparing a large amount of data collected in
variable experimental conditions (like different plates) could help distinguish the scattering
signals concerning different types of protein aggregates
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Figure 6.12: We can extract the buffer signal, but not the protein signals. We subtract
the plate components from the scattering signals of the buffer of ispE (a) or thaumatin (b),
according to eq. 6.13. We subtract the plate and buffer components from the scattering
signals of ispE solution (c) and thaumatin solution (d). The extracted buffer signals vary
monotonously with the concentration of salt in the buffer, but the extracted protein signals
do not.

6.3.3 Statistical analysis
In this section, we propose two statistical methods to identify the dimensionality of

aggregates within measured scattering signals for which the background (solvent, air, and
plate) were not subtracted. We use principal component analysis [107] on the labelled
dataset (for which the dimensionality of the aggregate is known) in Sec. 6.3.3.1, and show
that we can discriminate experimental measure of scattering signals according to the di-
mensionality of the aggregate. In Sec. 6.3.3.2, we show that this method was however not
sufficient on the unlabeled dataset, because most of the variability between the scattering
signals is caused by the proteins in the aggregate, and not by the dimensionality of the
aggregates they form. Because of this, we use machine-learning methods in Sec. 6.3.3.3
and show that it is partially sufficient to distinguish some macroscopic characteristics of
the aggregates.

6.3.3.1 PCA on labelled data enables to identify the dimensionality

Here, we remind on which concepts principal component analysis rely, and show that
it enables to distinguish scattering signal of aggregates of different proteins measured in
different experimental conditions, by the dimensionality of their aggregate.

For each scattering signal k, we measure a list of numbers 2000 numbers I(q)(k), one
for each value of q. We can project this high-dimensional lists on a two-dimensional space
in which the variability between the data is maximal. If two data are similar, they should
be closed to one another in this projection. We use this method on the labelled dataset
introduced in Sec. 6.3.1.1. If the data for similar aggregate categories are close, despite
differences in the protein it is composed of or in the crystallographic plate on which it was
measured, it means that the aggregate category can be systematically distinguished.

From the numerical analysis of the previous section on artificial aggregates of protein,
we identified that it was relevant to look at the signal for low values of q, in logarithmic
scale. Thus, we only do the decomposition of the scattering intensity within the range
[0.1, 0.34]Å−1. We also standardize the data such that each signal is of zero mean and unit
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Figure 6.13: We distinguish the dimensionality of the aggregates in the labelled dataset
with PCA. We plot the projection of the data in the plane of the first and second principal
components. a) The data points are colored according to the type of aggregate. b) The data
points are colored according to the protein. (a-b) data of same symbols (round, square,
triangle) were collected on the same plate. c) First and second principal components as a
function of the scattering vector.

variance. This ensures that the measured variability between signals is not due to a global
shift in the intensity.

The result of the PCA on the data of the labelled proteins is shown in Figure 6.13. In
panels (a) and (b), we show the same projection, but the data points are colored according
to the aggregate category in (a), and to the protein in (b). For the measures on actin
and α-synuclein, the data seem to be segregated according to the dimensionality of the
aggregate, rather than according to the proteins. Indeed, most of the red points are close in
the principal component projection (panel a), even if they correspond to signal of different
proteins (panel b). On the other hand, data collected on tubulin and tau are clearly
clustered according to the protein. However, within the data that correspond to tubulin
(pink points on the lower right on Figure 6.13b), the clustering then happen according to
the type of aggregate (see the same points on Figure 6.13a). Signals of the same solution
measured on two different plates (different symbols) are still well distinguishable in this
projection, which means that the plate still caries an important influence on the variability
between signals.

These results suggest that there is a trace of the dimensionality of the protein aggre-
gate within a raw scattered signal, but we cannot identify it systematically. Indeed, the
differences between the plate, or the type of protein accounts for too much variability in
the dataset. A possible solution to this problem would be to be more systematic in the
data collection, such that all categories of aggregates for all proteins are collected for all
plates. Then statistical techniques like PCA could isolate separately the influence of each,
and there might be a subspace where only the difference between the aggregate category
explain the differences between the signals. Another method is to train a neural network
to only isolate the features of the characteristics of the signals explained by the aggregate
category.
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Figure 6.14: We label the scattering signals of the unlabeled dataset according to ob-
servations with the microscope. The cross (or circle) indicates where the X-ray beam was
aimed, and the color indicates the label. One droplet can have different measures with
different droplet.

6.3.3.2 Unlabeled data are mostly separated according to the protein
with PCA

Here we use the same PCA decomposition as in Sec. 6.3.3.1, on the unlabeled data, i.e.
those for which we do not know the dimensionality of the protein aggregate (introduced in
Sec. 6.3.1.1). We introduce a classification based on visual characterization of the individual
droplets, that may be related to the aggregates formed in the protein samples, and show
that those visual differences do not explain variability between the scattering signals.

Even if we had no prior information on the dimensionality of the proteins aggregates,
we were able to visualize the droplet with a microscope, as explained in Sec. 6.3.1.2.
The droplets had visual characteristics that enabled us to classify them in a hopefully
relevant way. In Figure 6.14, we show examples of microscope images of those categories.
As explained in Sec. 6.3.1.2, we measure the scattering signals at different position on
the droplet. For instance, if there is a crystal in the droplet (see the right most image
in Figure 6.14), we can compute the scattering signal by shooting on the crystal, and
next to the crystal. We distinguish between four categories relative to the macroscopic
characteristics. The crystals are easily recognizable (dark blue on Figure 6.14). When
the droplet is homogeneous, we label the corresponding signals as solution (third drop,
pink on the Figure). When there are some heterogeneities, such as the ones on the two
first droplets, we label the corresponding signals as heterogeneous (dark purple). Finally,
we sometimes identify a precipitate on the droplet (first image, in blue), and label the
scattered signal measured on these precipitates accordingly. Several measures on a single
droplet can then have different labels. This categorization refers to macroscopic properties
of the protein solutions, like the fact that it crystallizes, precipitates, leads to heterogeneity
in the solution, or on the contrary, remains soluble. In the absence of further information
on the dimensionality of the protein aggregates, we test whether the scattering signals are
clustered on the PCA projection according to those categories, which we refer to as the
macroscopic properties of the aggregates.

In Figure 6.15, we show the projection of the data in the principal component space,
colored either by the characterization of the droplet (panel a), or by protein (panel b).
Here, it is clear that the protein and the plate is what influences the most the variance of
the data: we do not observe clustering according to the categories we defined (the points of
different colors are separated in panel (b) and mixed in panel (a)). It is not clear, however,
whether this is because the categories are ill-defined, because there is no information of
the categories in the scattering signals, or whether principal component is not the correct
tool to evaluate this contribution.
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Figure 6.15: We cannot distinguish the scattering signals of identical macroscopic prop-
erties (introduced in Figure 6.14) with PCA, and the variability is only explained by the
type of protein, or the plate. We plot the projection of the data in the plane of the first
and second principal components. a) The data points are colored according to the type
of aggregate. b) The data points are colored according to the protein. (a-b), the same
symbol indicates that the measures were collected on the same plate. c) First and second
principal components as a function of the scattering vector.

6.3.3.3 Machine learning to learn macroscopic characteristics of protein
solutions

Because the principal component analysis only separated the data according to the
plate of the measure or of the protein, on the unlabeled dataset, we train a neural network
classifier to identify the macroscopic categories defined in Sec. 6.3.3.2 on this dataset. We
show that it is partially possible to distinguish the scattering signals labeled as solution (no
heterogeneities) from a scattering signal of a heterogeneous solutions, which might result
from aggregations of the proteins in the sample.

We train a feed-forward neural network (which we defined in Sec.3.2.3 of Chapter 3
and used also in Sec. 6.2.2.2), to classify scattering signals according to their macroscopic
properties. For the network to learn that a large part of the variability between signals
is explained by the plate, we train it on data of all the signals, including those of plate
only (labeled plate) and of buffer+plate (labeled buffer). We label the scattering signals
of protein solutions with the categories introduces above, and we put under the same
label the category the heterogeneous and precipitate categories defined above. Indeed, it is
not clear from the observation of the microscope images of Figure 6.14 that heterogeneous
solutions are not caused by small precipitates. Moreover, we initially trained the algorithm
while keeping those categories separated, and the accuracy of the prediction between those
two categories was not better than a random prediction. This might suggest that this
categorization is physically irrelevant. Therefore, there are three categories for the signals
of protein solutions: solution, precipitate/heterogeneous and crystal. We also train the
algorithm on signals of the different proteins (thaumatin, ispE, and NATA), such that
it will recognize characteristics of the signal that are independent of protein specificities.
Finally, we either train the algorithm on the dataset of all the experimental results collected
in 2022 (four plates, three proteins, 396 data, see table 6.3 of Sec. 6.3.1.1), or on the one
plate where scattering signal of buffer solution was also collected (one plate, two proteins
and 168 data). If the macroscopic properties are related to the microscopic organization
of the proteins, they should have an influence on the scattering signals, and the neural
network should be able to learn what this influence is, and classify the data accordingly.

The network is composed of four layers of 25 neurons. The analysis is done for values
of the scattering vector in [0.06, 5]Å−1, which corresponds to ≈ 1800 values of q. We first
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Predicted label

Plate Buffer Solution Prec./Het. Crystal

Tr
ue

la
be

l Plate 20 0 0 0 0

Buffer 0 56 0 0 0

Solution 2 0 8 12 0

Prec./Het. 0 0 1 56 0

Crystal 0 0 0 8 5

a) Scattering signal collected on the same crystallization plate

Predicted label

Plate Buffer Solution Prec./Het. Crystal

Tr
ue

la
be

l Plate 25 0 0 0 0

Buffer 0 52 1 4 0

Solution 3 0 82 44 1

Prec./Het. 2 0 33 129 2

Crystal 0 0 1 0 45

b) Scattering signal collected on the different crystallization plates

Table 6.4: A neural network distinguishes the signals of buffer and plate from the signal
of proteins solutions, but makes some mis-predictions on the macroscopic properties of
the aggregates with proteins: a lot of solutions are labeled as precipitate/heterogeneous.
Results taken from [142]

project those 1800-dimensional data in the 30 dimensional principal components space,
and train the neural network on this data of reduced dimensionality, which is a usual and
effective method for real-data classification with machine learning [154]. The dataset is
divided between training and test set (80% and 20% of the data).

We show the prediction of the algorithm on the test sets, for a dataset containing only
data on the same plate (table 6.4a), and of different plates (table 6.4b). For the data
collected on one plate, the learning accuracy (the number of good prediction divided by
number of data) is of 86% (table 6.4a), and for the total dataset, it is 77% (table 6.4b).
In both cases, the buffer and plates signals are correctly classified: there are only diag-
onal terms in the table for those categories. The macroscopic properties of the data are
however not correctly identified by the neural network in both cases: there are almost
as many wrong predictions (solutions that are predicted as heterogeneous, for instance)
than good predictions (solutions that are predicted as solutions). It might be because
the macroscopic properties we identified by looking at the droplet in the microscope do
not correspond to feature of the protein organization that are measured by the scattering
signal. Another possibility is that the amount of data on different proteins and different
plates was insufficient for the network to learn that the differences from one signal to the
other because of those variations is irrelevant.
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Discussion

In this chapter, we explored whether it is possible to take advantage of the large
amount of data collected by crystallographers on protein solutions to measure occurrence
of dimensionality reduction of the aggregate of particles with complex interactions, like
proteins. To test this idea, we analyzed scattering signals of artificial and real protein
aggregates in the range of crystallographic length scale. We expected difficulties due to
the small range of length scale where information on aggregate dimensionality could be
measured in crystallographic data. This did not appear too problematic, and we were able
to detect aggregate dimensionality by fitting scattering signal of the protein.

However, in crystallographic experiments, the measured scattering signal is highly de-
pendent on the background, which cannot be subtracted in a straightforward way. We
could then take advantage of the large amount of data we collected to classify them ac-
cording to the dimensionality of the aggregate. This requires to train a neural network on
scattering signal of protein of known dimensionality. We showed that this approach enables
to identify aggregate categories, provided that the data used to train the classifier were
collected in different experimental conditions, and in particular, on different crystallization
plates.

These preliminary results suggest that it is possible to identify aggregates of reduced
dimensionality from crystallographic data with statistical methods. Yet, for this study
to be performed systematically on scattering signals collected in different beam lines, on
different plates, and for different protein, more scattering signals measured on aggregate
of known dimensionality would be needed. In particular, a training database should be
cautiously built such that protein aggregates of similar dimensionality are measured in
experimental conditions that are as broad as possible.
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7 - Synthèse en francais

Dans les cellules vivantes, les protéines s’auto-assemblent en agrégats de différentes
formes pour réaliser des fonctions biologiques [1]. La forme des agrégats est contrôlée par
les interactions locales entre les protéines individuelles. Ces interactions sont par exemple
des interactions attractives entre les résidus à la surface de la protéine, ou reposent sur la
complémentarité de forme entre les protéines. Malgré la diversité de ces interactions, il n’y
a que quelques catégories typiques d’agrégats de protéines : des oligomères de quelques
particules, des fibres, des capsides virales ou des micelles. Les protéines peuvent également
former des agrégats cristallins dans des conditions très spécifiques. La relation entre les
positions des résidus attractifs et la forme de l’agrégat est également non triviale : un con-
tact entre deux protéines en interaction fait intervenir plusieurs résidus, mais une mutation
d’un seul résidu peut modifier le résultat de l’auto-assemblage, d’un monomère à une fibre
par exemple [32]. En outre, des protéines très similaires provenant d’organismes différents
s’assemblent en différents agrégats [17, 18].

Les modèles de particules à patchs collants (patchy) sont utilisés pour comprendre
les principes génériques de l’auto-assemblage : les particules colloïdales avec des patchs
attractifs sont étudiées dans des simulations numériques et des expériences. Ces modèles
permettent de retrouver des agrégats fibrillaires, cristallins ou oligomères [51]. Cependant,
ils ne tiennent pas compte du fait que des variations subtiles de l’attraction des patchs
peuvent modifier radicalement la forme de l’agrégat. Ils ne fournissent pas non plus une
compréhension systématique de la relation entre les propriétés des interactions entre les
particules individuelles et la forme de l’agrégat. Enfin, la plupart d’entre eux ne permettent
pas des variations continues et indépendantes des différentes interactions attractives d’une
particule. Dans cette thèse, nous émettons l’hypothèse que des particules aux interactions
complexes, comme les protéines, peuvent avoir plusieurs interactions attractives qui sont
incompatibles à cause de contraintes géométriques : il y a de la frustration géométrique.
La frustration géométrique a été bien étudiée dans le contexte des systèmes de spin denses.
Cependant, les conséquences des interactions incompatibles à courte portée sur le résultat
de l’auto-assemblage ne semblent pas bien comprises.

Dans le Chapitre 2, nous introduisons un modèle de particules identiques, avec des in-
teractions locales, sur un réseau à deux dimensions. En modifiant la force des interactions,
nous retrouvons tous les agrégats stéréotypés issus de l’auto-assemblage des protéines. En

i j ( )J =

a b

Figure 7.1: La carte d’interaction J énumère les différentes manières dont deux particules
peuvent interagir. a) Les faces en contact dépendent de l’orientation des deux particules.
b) La carte d’interaction est représentée par une matrice symétrique (seulement la partie
grisée correspond aux interactions indépendantes)
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Figure 7.2: Des agrégats très divers sont obtenus en changeant la carte d’interaction.
Pour chaque image, la carte d’interaction est présentée, les interactions attractives sont
colorées en bleu (−10kT ) et les interactions neutres en blanc (0kT ). On observe des
agrégats amorphes (1), des cristaux (2), des cristaux poreux, appelés éponge (3), des fibres
(4), des oligomères (5) ou des monomères (7).

pratique, nous considérons des particules hexagonales qui sont en contact par leurs faces. Il
y a 6×6 paires de faces et 6×7/2 = 21 paires de faces distinctes qui peuvent être en contact
lorsque deux particules hexagonales occupent des sites voisins du réseau. Par conséquent,
nous définissons une carte d’interaction avec 21 interactions indépendantes, pour lesquelles
nous choisissons une force arbitraire, négative (interaction attractive) ou positive (interac-
tion répulsive). Nous présentons cette matrice d’interaction (Figure 7.1) et des exemples
d’agrégats stéréotypés dans la Figure 7.2. Nous étudions l’auto-assemblage de particules
avec une carte d’interaction choisie avec un recuit simulé de type Monte-Carlo vers une
température finie. Cela permet de faire varier la directionalité des interactions (lesquelles
sont attractives ou répulsives). Changer la force des interactions revient aussi à changer la
température du système. Pour une particule avec un ensemble donné d’interactions locales,
on peut alors déterminer la forme de l’agrégat résultant de l’auto-assemblage à l’équilibre
des particules.

Dans le Chapitre 3, nous comprenons la relation entre les interactions locales et la
forme de l’agrégat en tirant un grand nombre de cartes d’interactions aléatoires dans une
distribution gaussienne. La moyenne de la distribution correspond à l’affinité globale de la
particule et l’écart type de la distribution correspond à l’anisotropie de la particule. Nous
montrons que les particules avec des interactions anisotropes s’auto-assemblent en agrégats
de formes non triviales, tels que des agrégats poreux ou des agrégats de tailles grandes, mais
finies. Un exemple d’agrégat pour chaque valeur d’affinité et d’anisotropie est présenté en
Figure 7.3. Nous introduisons également une mesure de frustration : la différence d’énergie
entre la configuration d’équilibre du système, et une configuration du système sans con-
traintes géométriques des particules. Cette mesure révèle que la plupart des agrégats
sont frustrés géométriquement. Nous introduisons une classification des agrégats en huit
catégories (liquide, cristaux, éponge (agrégats poreux), fibres, cristallite (cristaux partielle-
ment assemblés), micelles (agrégats de taille importante, mais limitée à cause de l’effet de
surface), oligomères et monomères). Avec un algorithme d’apprentissage automatique su-
pervisé, nous classifions le résultat de 9000 auto-assemblage de particules avec une carte
d’interaction prédéfinie. La distribution de chaque catégorie d’agrégat pour une affinité et
une anisotropie fixée de la particule sont présentées en Figure 7.4. Ceci confirme que les
interactions anisotropes conduisent plus souvent à la formation de fibres, d’éponges et de
micelles, qui sont des agrégats non-triviaux. Enfin, nous utilisons l’apprentissage automa-
tique pour tester quelles quantités calculées à partir des cartes d’interaction permettent de
prédire la catégorie de l’agrégat. Nous constatons que l’énergie de l’organisation périodique
la plus stable des particules est un bon prédicteur de la forme de l’agrégat. Ces résultats
suggèrent que les particules avec des interactions anisotropes sont sujettes à la frustration,
et réduisent la taille de l’agrégat pour éviter cette frustration.
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Figure 7.3: Des particules avec des cartes d’interaction aléatoires résultent en des agrégats
de formes diverses. Pour chaque valeur d’affintité µ et d’anisotropi σ, on montre une image
du système, la carte d’interaction (en bas à gauche) et la carte de densité (en bas à droite).
Les énergies dans les cartes d’interactions sont répulsives (rouge) ou attractive (bleues).
La densité de lien est codée en nuance de bleu, de 0% des liens en blanc, à 5% des liens en
bleu foncé.
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Figure 7.4: Les particules anisotropes forment des agrégats moins triviaux. Chaque
diagramme indique la proportion de chaque catégories d’agrégats pour une valeur donnée
d’affinité et d’anisotropie.
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Figure 7.5: En un pas de renormalisation, les deuxièmes voisins de la particule deviennent
les premiers voisins. On montre des exemples d’une transformation de renormalisation pour
une éponge, une fibre et une micelle.

Dans le Chapitre 4, nous introduisons une transformation numérique de renormalisa-
tion dans l’espace réel de la carte d’interaction, qui garantit que le nombre d’occurrences de
chaque paire de particules est conservé dans un réseau de maille plus grande. Un exemple
de cette transformation pour quelques systèmes est montrée en Figure 7.5. Nous utilisons la
renormalisation comme outil pour explorer l’espace des paramètres de dimension 21 des in-
teractions des particules, plutôt que pour mesurer les exposants critiques au voisinage d’une
transition de phase. Nous identifions trois types de points fixes stables de la procédure de
renormalisation. Ces points fixes sont les cartes d’interactions vers lesquelles convergent les
trajectoires de renormalisation à partir de cartes d’interaction aléatoires. Ils sont présentés
en Figure 7.6. Ce sont les cartes d’interaction des particules attractives isotropes, celle des
particules isotropes sans interaction et celle des particules conduisant à un motif cristallin
périodique. Nous constatons également que la carte d’interaction d’une fibre est un point
fixe instable. Les points-fixes de la renormalisation correspondent donc à des agrégats
stéréotypés introduits au Chapitre 3. Nous montrons que le bassin d’attraction du point
fixe isotrope sans interaction comprend la plupart des agrégats de tailles finies, tandis
que les agrégats de taille infinie se renormalisent vers l’agrégat de particules isotropes, ou
l’agrégat de particules cristallines, selon la périodicité de l’organisation des particules. La
renormalisation permet donc de rationaliser l’existence de seulement quelques catégories de
formes d’agrégats, malgré le grand espace des paramètres et la complexité de l’interaction
des particules.

Dans le Chapitre 5, nous introduisons une carte d’interaction spécifique qui conduit à
un agrégat cristallin avec des lignes de défaut favorables, que nous appelons un agrégat
camembert. L’interaction cristalline et l’interaction conduisant à la ligne de défaut sont
incompatibles. Pour cette raison, l’agrégat camembert est frustré et peut avoir une taille
finie à l’équilibre. La taille de l’agrégat est contrôlée par la force relative de l’interaction
cristalline et de l’interaction de la ligne de défaut. Ces deux interactions sont illustrées en
bleu clair et bleu foncé sur la Figure 7.7, ainsi qu’un exemple d’agrégat camembert. Nous
établissons analytiquement le diagramme de phases à température nulle, et vérifions que les
agrégats de camembert sont observés dans les simulations numériques à température finie
dans le régime des paramètres où ils sont les plus stables. Les résultats numériques dans
différentes zones du diagramme de phase sont montrées en Figure 7.8. Nous montrons
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dans un agrégat dense.
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Figure 7.7: Les interactions directionnelles sont conçues pour que les particules forment
un cristal avec des lignes de défaut (en bleu foncé). a) Si les interactions locales alignent
les particules, elles forment un cristal. b) Diminuer la force de cette interaction dissout
le cristal, sans obtenir de tailles intermédiaires. c) Au contraire, combiner les interactions
cristallines (bleu clair) avec les interactions de ligne (bleu foncé), conduit à une compétition
des interactions. d) Elles conduisent à la formation d’agrégat camembert, qui peuvent être
de taille intermédiaire si l’interaction cristalline est faible
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Figure 7.8: On observe des camemberts dans les simulations numériques dans la région
du diagramme de phase où ils sont stables à température nulle. Pour un set de paramètres,
indiqué sur le graphe par une lettre, on montre le résultat de la simulation numérique (à
gauche ou à droite). Des camemberts de taille finie sont observés.
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également que ce mécanisme permet d’auto-assembler des fibres de largeur contrôlée et
finie. Ce mécanisme apparaît comme complémentaire des mécanismes d’assemblage auto-
limité à l’équilibre qui reposent sur le design individuel de chaque particule, sur le fait
que l’assemblage s’auto-ferme, ou sur la déformabilité des particules [79]. Les agrégats de
camembert ont des frontières ouvertes, et toutes les particules sont indéformables et iden-
tiques. Nous expliquons des idées préliminaires pour tester ce design dans une réalisation
expérimentale hors réseau à partir d’origami d’ADN [42].

Nos résultats et des études antérieures [155] suggèrent que l’une des caractéristiques
de l’agrégation de particules avec des interactions complexes est la formation d’agrégats
fibrillaires, qui ont une dimensionnalité réduite (ce sont des agrégats 1D dans un espace
2D ou 3D). Dans le chapitre 6, nous proposons une méthode pour tester cette hypothèse
et détecter systématiquement l’auto-assemblage en fibre de protéines avec des interactions
arbitraires. Nous proposons d’utiliser les signaux de diffusion collectés dans des expéri-
ences cristallographiques, où les protéines sont assemblées dans des conditions physico-
chimiques variables, qui modifient les interactions entre les protéines. Seules certaines de
ces conditions conduisent à la cristallisation, alors que la forme des agrégats dans les autres
conditions physico-chimiques n’est pas étudiée. Nous collectons des signaux de diffusion
d’agrégats de protéines, construits de manière numériques à partir des densités d’électrons
des protéines individuelles et montrons que nous pouvons reconnaître des agrégats fib-
rillaires. Nous collectons également des signaux expérimentaux de diffusion de protéines
dans des conditions variables, conduisant ou non à des agrégats fibrillaires. Bien qu’il soit
difficile d’extraire le signal de diffusion de la protéine de son arrière-plan dans de telles
expériences, il est possible de tirer parti de la grande quantité de données disponibles et
d’utiliser l’apprentissage automatique supervisé pour reconnaître les agrégats fibrillaires.
Cela suggère que la reconnaissance des fibres protéiques pourrait se faire parmi les sig-
naux de diffusion collectés dans des expériences cristallographiques avec un algorithme
d’apprentissage supervisé, à condition que le réseau de neurones soit entraîné sur une
grande variété d’agrégats protéiques de dimensionnalité connue, et dans différentes config-
urations expérimentales.
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