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Jeux d’appariement stables

Le problème de l’appariement stable
Le problème d’appariement de marché un-à-un à deux côtés de Gale et Shapley [53],
connu sous le nom de problème de mariage, consiste à trouver un appariement stable
entre deux ensembles finis différents D et H, étant donné que chaque agent de chaque
côté a un ordre exogène (total) strict de préférence sur les agents de l’autre côté.
Formellement, chaque agent k ∈ D∪H est doté de >k tel que, pour tout deux agents
` et `′ du côté opposé,

`>k`
′

représente que k préfère être couplé avec ` plutôt qu’avec `′.
Le problème du mariage se concentre sur le calcul d’un appariement µ qui associe

chaque agent d’un côté à au plus un agent de l’autre côté. Le couplage µ est stable
si aucune paire d’agents non couplés ne préfère être associée à l’autre plutôt qu’à son
partenaire dans µ. Formellement, un appariement µ est bloqué s’il existe une paire
d’agents (d, h) ∈ D ×H telle que,

h >d µ(d) et d >h µ(h)

où µ(k) représente le partenaire de k dans l’appariement µ. L’appariement est stable
si aucune paire ne le bloque. Gale et Shapley ont utilisé un algorithme acceptation-
différée pour prouver l’existence d’un appariement stable pour chaque instance. Leur
algorithme prend l’un des côtés du marché, appelé le côté proposant, et demande à
ses agents de proposer à leur option la plus préférée qui ne les a pas encore rejetés.
Les agents qui reçoivent plus d’une proposition acceptent la meilleure et rejettent
toutes les autres. L’algorithme se poursuit jusqu’à ce que tous les agents du côté des
proposants aient été acceptés par quelqu’un. Bien que le modèle de Gale et Shapley
considère deux ensembles de même taille et des préférences strictes, leur algorithme est
facilement étendu à des ensembles de tailles différentes où les agents ont la possibilité
de rester sans partenaire (également appelés ordre des préférences incomplet) et des
préférences non strictes. Le calcul de l’appariement stable est exact et prend au plus
O(N2) itérations avec N étant la taille de l’ensemble le plus grand.

De nombreuses propriétés de l’ensemble des appariements stables et de l’algorithme
d’acceptation-différée de Gale et Shapley ont été prouvées. John Conway a prouvé une
structure de lattice sur l’ensemble des appariements stables Γ (revendiquée par Gale et
Shapley [53] et rapportée par Knuth [75]), c’est-à-dire que le maximum et le minimum
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Le problème de l’appariement stable

de deux appariements stables pour les préférences de l’un des côtés restent stables.
Formellement, si µ et µ′ sont deux appariements stables dans Γ, nous définissons,

µ∨(d) := max
>d
{µ(d), µ′(d)},∀d ∈ D

µ∧(d) := min
>d
{µ(d), µ′(d)},∀d ∈ D

Les appariements µ∨ et µ∧ sont bien définis et appartiennent à Γ. L’appariement
µ∨ correspond au maximum entre µ et µ′ pour les préférences des agents dans D.
De manière analogue, µ∧ correspond au minimum. Une propriété de dualité tient
puisque le maximum de deux appariements stables pour l’un des côtés correspond au
minimum entre les deux mêmes appariements stables pour l’autre côté. En d’autres
termes, si

ν∨(h) := max
>h
{µ(h), µ′(h)},∀h ∈ H

ν∧(h) := min
>h
{µ(h), µ′(h)},∀h ∈ H

sont l’appariement maximum et minimum pour les agents dans H, il tient,

µ∨ = ν∧ et µ∧ = ν∨

L’élément le plus élevé du lattice pour un côté, c’est-à-dire l’appariement stable le
plus préféré pour lui, est l’appariement stable le moins préféré pour le côté opposé.

Dubins et Freedman [43] mais aussi Gale et Sotomayor [54] ont étudié les inci-
tations des joueurs à mentir lorsqu’ils déclarent leurs préférences et ont prouvé que
l’algorithme d’acceptation-différée de Gale et Shapley est résistant aux comportement
stratégique pour le côté proposant, car l’algorithme produit le meilleur appariement
stable pour eux, c’est-à-dire l’élément le plus élevé du lattice.

Gusfield et Irving [60] étudient le mariage stable et ses variantes comme une riche
source de problèmes et d’idées qui illustrent, à la fois, la conception et l’analyse
d’algorithmes efficaces. Roth et Sotomayor [89] ont étudié la structure de l’ensemble
des mariages stables et son Core. Vande Vate [100] a caractérisé l’ensemble des ap-
pariements stables dans le problème un-à-un comme des points extrêmes d’un polytope
lorsque |D| = |H|. Rothblum [91] a étendu ce résultat au cas |D| 6= |H|.

Balinski et Ratier [24, 25] ont proposé une approche élégante du problème par des
graphes dirigés et, comme Rothblum, ils ont caractérisé le polytope d’appariement
stable dans le problème un-à-un par des inégalités linéaires, prouvant que tout point
réalisable du polytope est un appariement stable et vice-versa.

Roth et Vande Vate [90] ont étudié un processus aléatoire pour trouver un ap-
pariement stable à partir d’un appariement arbitraire. Ma [79] a prouvé que l’algorith-
me de Roth et Vande Vate ne trouve pas tous les appariements stables. Récem-
ment, Dworczak [45] a introduit une nouvelle classe d’algorithmes appelés algorithmes
d’acceptation-différée avec chaînes de compensation (DACC)1 dans laquelle les deux

1Une classe similaire d’algorithmes a été introduite par McVitie et Wilson [80]
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Jeux d’appariement stables - Résumé

parties du marché peuvent faire des offres et a prouvé qu’un appariement est stable
si et seulement s’il est le résultat d’un algorithme DACC. Plus précisément, les al-
gorithmes DACC choisissent un ordre de proposition aléatoire σ sur tous les agents
D ∪ H qui est modifié chaque fois qu’un agent est remplacé en lui permettant de
proposer le suivant. En indexant les algorithmes DACC sur σ, Dworczak a prouvé
qu’un appariement est stable si et seulement s’il est le résultat d’un algorithme DACC
pour un certain ordre σ.

Une approche en point fixe a été faite par Fleiner [52] en formulant une générali-
sation matroïdal du problème du mariage stable et en étudiant la structure de lattice
du modèle généralisé.

L’une des premières extensions du problème du mariage au cadre des préférences
endogènes est le jeu d’assignation de Shapley et Shubik [93] dans lequel les agents
d’un même couple peuvent effectuer des transferts monétaires. L’exemple principal
est un marché du logement où les acheteurs et les vendeurs ont des utilités quasi-
linéaires. Les acheteurs d ∈ D ont des évaluations différentes ((vd,h)d∈D,h∈H) pour
les maisons des vendeurs h ∈ H, et les vendeurs ont des coûts différents ((ch)h∈H)
sur leurs propres maisons. Chaque vendeur h ∈ H est disposé à vendre sa maison à
un certain prix ph ≥ ch, et chaque acheteur d ∈ D est intéressé à acheter la maison
de h à un certain prix pd,h ≤ vd,h. Une allocation est une paire (µ, p) avec µ étant
un appariement entre vendeurs et acheteurs, et p = (pd)d∈D étant un vecteur de
transferts monétaires, où pd est le prix offert par d ∈ D à µ(d) ∈ H. Les allocations
dans le modèle de Shapley-Shubik sont stables s’il n’existe aucune paire non appariée
(d, h) et aucun prix de transaction q de d à h tel que les deux agents se retrouvent
strictement mieux lotis en échangeant. En exploitant la linéarité des fonctions de gain
sur les transferts monétaires, Shapley et Shubik ont trouvé des solutions stables π =
(µ, p) pour leur problème en utilisant la programmation linéaire où une paire primal-
dual donne, respectivement, l’appariement µ et le vecteur de prix p. Remarquons
la complexité polynomiale de la résolution du jeu d’affectation grâce à l’approche de
programmation linéaire.

Le jeu d’affectation appartient à la classe des jeux coopératifs à utilité transférable
car les agents d’un même couple (d, h) doivent partager leur valeur vd,h + ch de telle
sorte que personne ne préfère changer de partenaire. De plus, Shapley et Shubik ont
prouvé que l’ensemble des allocations stables pour leur jeu d’affectation est exactement
le Core du problème du marché du logement vu comme un jeu coopératif à utilité
transférable.

Demange et Gale [39] ont considéré des fonctions d’utilité plus générales sur les
transferts monétaires (non-quasi-linéaires), ont autorisé les transferts monétaires des
deux côtés (de l’acheteur au vendeur et vice-versa), et ont prouvé que l’ensemble des
allocations stables a une structure en lattice (la non-vacuité de cet ensemble a été
prouvée dans [37, 87]). Demange et al. [40] ont conçu deux mécanismes de prix
ascendants pour calculer les allocations stables du modèle d’appariement avec des
transferts dans [39]. Pour des utilités entières, le premier algorithme converge en
un nombre borné d’itérations vers une solution exacte. Pour des paiements conti-
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Le problème de l’appariement stable

nus, le second algorithme converge vers une allocation ε-stable en un nombre borné
d’itérations. Malgré l’abondante littérature réalisée au cours des années, le problème
du calcul d’allocations stables exactes pour les marchés d’appariement avec des utilités
continues est toujours ouvert.

Les modèles avec transferts monétaires comme ceux présentés ci-dessus apparti-
ennent à la classe des marchés d’appariement avec utilité transférable. Une com-
paraison claire entre les modèles à utilité transférable et non transférable a été faite
par Echeñique et Galichon dans [47]. Galichon et al. [55] ont étudié un modèle
d’appariement stable avec utilité transférable imparfaite, dû par exemple à la présence
de taxes dans les transferts, et ont prouvé algorithmiquement l’existence de solutions
stables. Dupuy et al. [44] ont étudié plus loin les effets de la taxation dans les
marchés d’appariement à deux côtés, fournissant un lien continu entre les modèles
d’appariement avec et sans transferts.

D’autres extensions du modèle de mariage stable au cadre des préférences en-
dogènes considèrent préférences aléatoires lorsque les agents les tirent de distributions
de probabilité. Gimbert et al. [57] ont étudié le nombre de paires stables, c’est-à-dire
les paires (d, h) qui apparaissent dans un certain appariement stable, trouvant de nom-
breux résultats asymptotiques dépendant des distributions considérées. Les mêmes
auteurs dans [59] ont étendu leur étude aux effets d’avoir des préférences aléatoires et
aux manipulations possibles des agents sur la sortie des algorithmes d’appariements
stables.

Marchés d’appariement un-à-plusieurs à deux côtés sont la généralisation des mod-
èles expliqués ci-dessus au cas où les agents d’un des côtés peuvent être appariés avec
plusieurs partenaires en même temps. De nombreuses applications intéressantes dé-
coulent de ces modèles. Gimbert et al. [58] ont étudié un problème de choix d’école
avec information imparfaite dans lequel les étudiants ne révèlent qu’une version par-
tielle de leurs préférences en raison du nombre limité de candidatures autorisées.
Correa et al. [36] ont étudié un mécanisme centralisé pour répartir équitablement
les élèves dans les écoles au Chili en donnant la priorité à l’attribution de frères et
sœurs jointes. En France, des études approfondies ont été menées pour développer le
mécanisme d’allocation des étudiants aux universités Parcoursup2.

Les premiers à avoir introduit ce problème ont été, comme pour les marchés
d’appariement un-à-un à deux côtés, Gale et Shapley dans leur article fondateur
[53]. Ils ont prouvé que leur même algorithme d’acceptation-différée pouvait être ap-
pliqué au cas d’un-à-plusieurs. Baïou et Balinski [21, 23] ont généralisé l’approche de
la théorie des graphes dans [24, 25] aux marchés d’appariement un-à-plusieurs et la
caractérisation du polytope des appariements stables dans ce nouveau cadre. Comme
Shapley et Shubik dans le cas un-à-un, Crawford et Knoer [37] ont étendu le modèle
des marchés d’appariement un-à-plusieurs au cadre des transferts monétaires linéaires.
Kelso et Crawford [71] sont allés plus loin dans cette extension en considérant tout
type d’utilité transférable. Leur modèle d’appariement des emplois considère des tra-

2Un document français sur Parcoursup peut être trouvé ici.
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Jeux d’appariement stables - Résumé

vailleurs et des entreprises qui s’apparient et déterminent simultanément les salaires
à verser aux travailleurs. Les auteurs ont prouvé l’existence d’allocations stables
pour toute situation dans laquelle les travailleurs sont des substituts bruts pour les
entreprises: l’augmentation du salaire d’un ensemble de travailleurs ne peut jamais
amener une entreprise à retirer une offre d’un travailleur dont le salaire n’a pas été
augmenté.

Hatfield et Milgrom ont rédigé un article fondamental sur les marchés d’appariement
un-à-plusieurs [66], le modèle d’appariement avec des contrats, qui étend le modèle
de Kelso et Crawford en permettant aux médecins et aux hôpitaux (au lieu des tra-
vailleurs et des entreprises) de signer des contrats à partir d’un ensemble fini de con-
trats possibles X sur le marché. Les contrats sont bilatéraux de sorte que chaque
x ∈ X relie un médecin xD ∈ D avec un hôpital xH ∈ H. Les agents sont dotés
d’ordres de préférence qui définissent des fonctions de choix (Cd, Ch : d ∈ D, h ∈ H).
Étant donné un ensemble de contrats possibles X ′ ⊆ X, les fonctions de choix pro-
duisent le contrat le plus préféré pour chaque médecin, et le sous-ensemble de contacts
le plus préféré pour chaque hôpital. Formellement,

Cd(X ′) = arg max
>d

{x ∈ X ′ : xD = d}

Ch(X ′) = arg max
>h

{X ′′ ⊆ X ′ : ∀x ∈ X ′′, xH = h, et ∀x, x′ ∈ X ′′, xD 6= x′D}

Hatfield et Milgrom ont prouvé que l’ensemble des allocations stables est un lattice
non vide et qu’un mécanisme d’offre cumulative atteint les extrêmes du lattice grâce
au théorème du point fixe de Tarski. L’hypothèse principale qui sous-tend ce résultat
est la substituabilité des hôpitaux.
Définition. Les éléments de X sont substituables pour l’hôpital h si pour tous les
sous-ensembles X ′ ⊆ X ′′ ⊆ X, il s’avère que X ′ \ Ch(X ′) ⊆ X ′′ \ Ch(X ′′)

En d’autres termes, les contrats sont des substituts de h si aucun contrat rejeté ne
peut être choisi en raison de l’élargissement de l’ensemble des contrats. Il a été prouvé
que la substituabilité est suffisante mais pas nécessaire pour l’existence d’allocations
stables dans le modèle d’appariement avec contrats et de nombreux auteurs ont tra-
vaillé pour trouver des hypothèses plus faibles [16, 63, 64, 65]. Hatfield et Milgrom ont
prouvé un deuxième résultat dans leur modèle, le théorème de l’hôpital rural: chaque
hôpital embauche le même nombre de médecins à chaque appariement stable. Les
hypothèses clés de ce résultat sont la substituabilité et la loi de la demande agrégée.
Définition. Les préférences de l’hôpital h satisfont la loi de la demande agrégée
si pour tout X ′ ⊆ X ′′ ⊆ X, |Ch(X ′)| ≤ |Ch(X ′′)|.

En d’autres termes, l’hôpital h satisfait à la loi de la demande agrégée si, chaque
fois que l’ensemble des contrats possibles s’étend, le nombre total de contrats choisis
par l’hôpital h augmente faiblement.

Aygün et Sönmez [16] ont exposé que des modèles différents sont obtenus si les
fonctions de choix des agents sont traitées comme des primitives ou si elles sont
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induites à partir des classements de préférences dans le modèle d’appariement avec
des contrats. Le modèle de Hatfield et Milgrom appartient au deuxième type, mais ils
ont traité leurs fonctions de choix comme des primitives. Pour garantir véritablement
l’existence d’allocations stables, une hypothèse supplémentaire, à savoir l’insignifiance
des contrats rejetés, est également requise.
Définition. La fonction de choix de l’hôpital h satisfait à l’insignifiance des con-
trats rejetés si pour tout X ′ ⊆ X, et tout x ∈ X ′, si x /∈ Ch(X ′ ∪ {x}), alors
Ch(X ′) = Ch(X ′ ∪ {x}).

En d’autres termes, la fonction de choix de h n’est pas pertinente pour les contrats
rejetés si les contrats choisis ne changent pas en raison de la suppression des contrats
rejetés de l’ensemble des contrats. La bonne nouvelle pour le travail de Hatfield et
Milgrom est que l’insignifiance des contrats rejetés est satisfaite en présence de la
substituabilité et de la loi de la demande agrégée.

Des extensions plus complexes, telles que le modèle de marché d’appariement
plusieurs-à-plusieurs, ont également été étudiées. Un article pionnier dans l’extension
du modèle de Gale-Shapley au cadre plusieurs-à-plusieurs a été réalisé par Blair [29],
étudiant le cas où les travailleurs et les entreprises doivent former des partenariats (les
travailleurs peuvent travailler dans plusieurs entreprises en même temps), obtenant
une structure en lattice de l’ensemble des allocations stables avec salaires, étendant
[71] et [75]. Baïou et Balinski [20] ont étendu des résultats connus dans les domaines
un-à-un et un-à-plusieurs au domaine plusieurs-à-plusieurs. Dans [22], les mêmes au-
teurs sont allés plus loin dans l’extension en considérant un problème d’allocation entre
fournisseurs et acquéreurs dans lequel de nombreuses copies du même bien peuvent
être allouées des fournisseurs aux acquéreurs.

Un troisième problème a été introduit dans l’article fondateur de Gale et Shapley
[53]: le problème de colocataires. Le problème des colocataires consiste en un ensemble
fini pair d’agents D, chacun d’entre eux ayant un ordre exogène strict de préférence >d

sur le reste des agents, et cherchant à s’apparier par paires. La partition de l’ensemble
des agents en paires doit être stable, c’est-à-dire qu’aucune paire d’agents ne peut à
la fois préférer abandonner ses partenaires et s’apparier ensemble. Formellement, un
appariement µ (une partition de D en paires) est stable s’il n’existe pas de (d1, d2) ∈
D ×D tel que d2 >d1 µ(d1) et d1 >d2 µ(d2).

Contrairement au problème du mariage stable, le problème du colocataires n’a
pas toujours une solution stable, comme l’ont déjà observé Gale et Shapley dans
leur article: Considérons quatre agents D = {1, 2, 3, 4}, chacun d’entre eux ayant les
préférences strictes suivantes sur son partenaire possible,

Préférences

Agents

1 2> 3> 4
2 3> 1> 4
3 1> 2> 4
4 Arbitraire
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Il n’est pas possible de faire une partition stable des quatre joueurs en deux paires car
l’agent apparié avec 4 trouvera toujours quelqu’un d’autre à appairer, qui préférera
également changer.

Knuth a posé la question de la conception d’un algorithme permettant de calculer
une répartition stable chaque fois qu’elle existe. Irving [68] a répondu par un algo-
rithme polynomial permettant de calculer une solution si elle existe ou de signaler la
non-existence d’allocations stables pour les instances sans solution. Son algorithme
comporte deux phases, une première dans laquelle les agents proposent et disposent,
comme dans l’algorithme d’acceptation-différée de Gale et Shapley, et une seconde
dans laquelle les couples potentiels sont bannis du système jusqu’à ce qu’une solution
soit trouvée ou que l’infaisabilité de l’appariement stable soit découverte (pouvant
également être découverte pendant la première phase).

Tan [97] a étudié les conditions nécessaires et suffisantes pour l’existence d’apparie-
ments stables dans le problème des colocataires car il a fait valoir que l’algorithme
d’Irving, bien qu’il signale la non-existence d’une solution stable, n’en illustre pas
clairement la raison. Il a prouvé qu’une instance du problème des colocataires pos-
sède un appariement stable si et seulement si elle ne permet pas l’existence de parti-
tions stables avec des parties de taille impair. Une partition stable est une partition
de l’ensemble D en coalitions de taille quelconque telle qu’aucune paire d’agents de
coalitions différentes ne préfère être ensemble. Les partitions stables peuvent être vues
comme des partitions de D en cycles (parties) où chaque agent indique son partenaire
le plus désiré.

De nombreuses extensions du problème des colocataires au cadre utilité transférable
ont été réalisées. Comme Balinski et Ratier, Eriksson et Karlander [49] ont exploré
une méthode de théorie des graphes pour étudier l’existence d’allocations stables du
problème des colocataires avec utilité transférable. Comme Shapley et Shubik, Talman
et Yang [96] ainsi que Chiappori et al. [34], ont utilisé l’approche de programmation
linéaire pour résoudre leurs problèmes. Comme Demange et al. dans leur premier
algorithme, Andersson et al. [10] ont conçu un processus d’ajustement des prix qui
calcule, sous paiements intégraux, une allocation stable ou réfute son existence en
temps fini.

Shioura [94] a fait le lien entre les colocataires à utilité transférable et le jeu
d’affectation de Shapley et Shubik [93]. Plus précisément, Shioura a réduit son prob-
lème à un jeu d’affectation particulier dans un graphe biparti auxiliaire et a proposé
une extension de l’algorithme d’Andersson et al. [10] pour calculer une allocation
stable en cas d’existence.

A notre connaissance, la seule extension du problème de colocataires au domaine
utilité non transférable a été réalisée par Alkan et Tuncay [9]. Dans leur modèle,
chaque couple d’agents (d1, d2) possède une fonction de partenariat décroissante et
continue u1,2 qui, étant donné le gain de l’un des agents f1 ∈ R, produit le gain du
partenaire f2 = u1,2(f1). Les auteurs ont prouvé que l’ensemble des allocations stables
est soit vide, soit équivalent à l’ensemble des aspirations équilibrées réalisables. Les
aspirations équilibrées sont des profils de gain f ∈ R|D| pour lesquels aucun agent du

7



Le problème de l’appariement stable

marché n’est surdemandé. Formellement, nous définissons l’ensemble de demande de
l’agent d à f comme,

Pd(f) := {d′ ∈ D : fd = ud,d′(fd′)}

Alors, f est une aspiration équilibrée si aucun agent n’appartient à plus d’un ensem-
ble de demande. L’aspiration équilibrée existe toujours. Alkan et Tuncay ont conçu
une procédure de marché (un mécanisme analogue à celui d’Andersson et al. pour
le cadre non-transférable continu) qui, en temps polynomial, produit une aspiration
équilibrée ε3. Chaque fois qu’une aspiration équilibrée f est réalisable par une allo-
cation, c’est-à-dire qu’il existe un appariement µ tel que fd = ud,µ(d)(fµ(d)) si d est
apparié, et égal à f

d
sinon, où f

d
est le gain rationnel individuel de l’agent d (son

utilité d’être célibataire), la paire (allocation, aspiration) est stable. Cependant, ce
n’est pas toujours le cas et les aspirations équilibrées peuvent devoir être mises en
œuvre par des semi-allocations, c’est-à-dire des appariements relaxés dans lesquels les
agents peuvent être appariés avec deux partenaires et leur gain final est la moyenne
de ceux reçus de chaque partenaire (probablement lié au fait d’avoir des partitions
stables avec des parties impaires de taille au moins égale à trois).

Les problèmes de colocataires avec préférences ordinales, utilité transférable et util-
ité non-transférable peuvent être vues comme des cas particuliers de jeux hédoniques
[32, 42] dans lesquels les agents d’un ensemble D cherchent à créer des coalitions de
taille quelconque et les joueurs reçoivent une utilité dépendant des agents de leur
même coalition. Les préférences peuvent être considérées de plusieurs façons. Les
agents peuvent avoir des préférences booléennes [19], soit ils aiment ou n’aiment pas
la coalition; préférences orientées vers les amis [72], chaque agent divise l’ensemble
des autres agents en amis, ennemis et neutres, et obtient un gain de 1,−1 et 0 respec-
tivement, pour chacun de ces agents dans sa coalition; ou préférences orientées vers
l’ennemi où les agents classés comme ennemis donnent une utilité de −n lorsqu’ils
sont présents dans la coalition; entre autres. Les utilités peuvent également être de
plusieurs types. Les agents peuvent avoir des utilités additives séparable [18], frac-
tionnel additive séparable [17], ou fonctions de paiement basées sur le rôle [95], entre
autres.

D’autres extensions dans la littérature de l’appariement stable concernent la tem-
poralité du problème. Des applications pratiques comme l’allocation de reins [27, 103]
ou le conavettage [8, 26, 101] ont montré que les agents (ou les articles) au sein du
marché peuvent ne pas être présents en même temps car ils peuvent arriver à des
moments différents. De nombreuses années ont passé jusqu’à ce que le problème du
mariage stable de Gale et Shapley obtienne enfin ses premières extensions dynamiques.
Damiano et Lam [38] ont défini un modèle fini à temps répété dans lequel les agents
peuvent changer de partenaires entre les périodes. Tous les agents sont présents sur
le marché dès le début et les utilités dépendent de celles obtenues à chaque période.

3Rappelez-vous que pour les problèmes d’appariement avec des utilités continues, trouver des
solutions exactes est toujours un problème ouvert.
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Caldentey et al. [31], Adan et Weiss [6], Bušić et al. [30], et Adan et al. [5], entre
autres, ont travaillé dans un modèle d’appariement stochastique dans lequel les agents
(ou articles) arrivent sur le marché dans un processus en temps discret suivant des
distributions de probabilité. Les articles de chaque côté ont des types différents et
un graphe biparti fixe donne les liens de compatibilité entre les articles des différents
côtés.

Un problème particulier se pose dans les modèles de marché d’appariement dy-
namique. Dans de nombreux cas, les agents ne peuvent pas décider quand ou avec qui
ils sont appariés car ils doivent suivre des politiques d’appariement prédéfinies. Par ex-
emple, dans l’attribution de reins, les patients sont classés selon un système de points
et, dès qu’un organe arrive, il est attribué au patient le mieux classé, sous réserve de
compatibilité. Dans le cas du conavettage, dès qu’un usager arrive au marché, le con-
ducteur le plus proche lui est attribué afin de minimiser le temps d’attente du client.
L’une des politiques d’appariement les plus étudiées est le premier arrivé, premier
servi (FCFS) [5, 6, 30, 31, 35, 82] dans lequel les agents qui arrivent sont appariés à
l’agent compatible le plus ancien de l’autre côté. Les politiques d’appariement qui ap-
parient les agents dès leur arrivée sont appelées politiques gourmandes et les modèles
d’appariement stochastiques avec des politiques gourmandes peuvent être associés à
Markov processes. Adan et Weiss [6] et Adan et al. [5] ont défini plusieurs chaînes de
Markov à temps discret, trouvé des conditions d’ergodicité et dérivé leurs distributions
stationnaires.

Jeux d’appariement
Dans les marchés à deux côtés réels, pour être attractif, un agent peut prendre des
mesures qui ne peuvent être modélisées par des transferts monétaires. Lorsqu’une
entreprise embauche un travailleur, elle peut combiner le transfert monétaire avec
des avantages sociaux: assurance médicale, salle de sport, congés supplémentaires,
horaires flexibles, aide à la garde d’enfants et jours de travail à distance. Le travailleur
peut promettre d’être flexible, de travailler dur, d’apprendre de nouvelles technologies
et de respecter le code de conduite de l’entreprise. Lorsqu’une université engage un
professeur, il peut réduire ou augmenter ses tâches d’enseignement, exiger un nombre
minimum de publications de premier plan, demander certaines responsabilités dans le
département, etc. Le professeur peut promettre de publier dans les meilleures revues,
d’être un excellent enseignant, de demander des subventions, d’accepter certaines
responsabilités, d’organiser un séminaire et de superviser des doctorants. Toutes ces
actions sont des décisions individuelles qui peuvent être inscrites explicitement ou
implicitement dans un contrat, mais chaque agent est responsable de sa part. Chaque
agent fera ce qui est nécessaire pour être accepté par l’autre partie et refusera de
s’engager s’il juge la proposition de son partenaire insuffisante.

Dans cette thèse, nous présentons un nouveau modèle de marché d’appariement
en supposant que les membres individuels d’un couple ou d’une coalition obtiennent
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leurs gains à l’issue d’un jeu stratégique, joué simultanément avec l’appariement.
Nous étudions trois modèles, généralisation des trois problèmes présentés par Gale et
Shapley dans leur article fondateur [53]:

1. Jeux d’appariement un-à-un,
2. Jeux d’appariement un-à-plusieurs, et
3. Jeux d’appariement entre colocataires.

Pour chacun d’entre eux, nous présenterons le modèle, les défis et les résultats. En-
suite, nous étudierons un quatrième modèle, un marché d’appariement dynamique en
temps continu dans lequel les agents arrivent et partent en suivant des distributions
de probabilité.
1. Jeux d’appariement un-à-un considère deux ensembles finis d’agents D et H, re-
spectivement médecins et hôpitaux, qui cherchent à s’apparier par couples. Étant
donné un couple (d, h) ∈ D ×H, nous les dotons d’un jeu stratégique à deux joueurs

Gd,h = (Xd, Yh, fd,h, gd,h)

où Xd est l’ensemble action/stratégie de d, Yh est l’ensemble action/stratégie de h,
et fd,h, gd,h : Xh × Yh → R sont les fonctions d’utilité de d et h, respectivement.
Remarquons la dépendance du jeu à l’identité du couple: s’apparier avec un partenaire
différent peut impliquer de jouer un jeu différent. Les agents peuvent préférer rester
célibataires car ils seront dotés de bénéfices rationnels individuels f ∈ R|D| et g ∈ R|H|.

Définition. Un jeu d’appariement est tout tuple Γ donné par,

Γ = (D,H, (Gd,h : d ∈ D, h ∈ H), f , g)

Si un couple (d, h) est apparié, le joueur d choisit xd ∈ Xd et le joueur h choisit
yh ∈ Yh, les utilités finales des agents dans l’allocation sont fd,h(xd, yh) et gd,h(xd, yh),
respectivement. Une allocation du jeu d’appariement un-à-un est un triplet π =
(µ, ~x, ~y), avec µ un appariement (un-à-un) entre D et H (laissant éventuellement
certains agents non appariés), ~x = (xd)d∈D ∈

∏
d∈DXd un profil de stratégie pour tous

les agents dans D, et ~y = (yh)h∈H ∈
∏
h∈H Yh un profil de stratégie pour tous les agents

dans H. Étant donné une allocation π, nous définissons le utilité des joueurs par,

fd(π) :=
{
fd,µ(d)(xd, yµ(d)) si d est apparié

f
d

sinon

Ngh(π) :=
{
gµ(h),h(xµ(h), yh) si h est apparié

g
h

sinon

La première propriété que nous allons demander pour nos allocations est la rationalité
individuelle.
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Définition. Une allocation π est individuellement rationnelle si aucun agent ne
reçoit moins que son gain individuellement rationnel.

Exemple 1. Considérons un jeu d’appariement avec un seul agent d et un agent h,
tous deux ayant des IRP strictement positifs f

d
= g

h
= δ > 0. Supposons que, s’ils

acceptent de s’apparier, ils jouent au dilemme des prisonniers G suivant,

Agent h

Agent d
Coopérer Trahir

Coopérer 2δ, 2δ −δ, 3δ
Trahir 3δ,−δ 0, 0

Remarquez que l’appariement et le jeu de l’équilibre de Nash de G sont dominés
par Pareto par le fait de rester célibataire. En d’autres termes, l’allocation dans laque-
lle les agents correspondent et jouent l’équilibre de Nash n’est pas individuellement
rationnelle. Intuitivement, pour avoir une allocation stable dans laquelle les agents
s’accordent, les joueurs doivent coopérer avec une certaine probabilité positive.

Exemple 2. Un problème d’appariement avec transferts linéaires, comme le jeu
d’affectation de Shapley et Shubik, peut être représenté par une famille de jeux à
somme constante où l’ensemble des stratégies sont Xd = Yh = R+, et les fonctions de
gain sont fd,h(xd, yh) = −xd + yh + ad,h et gd,h(xd, yh) = xd− yh + bd,h, avec ad,h et bd,h
représentant l’utilité d’être avec le partenaire lorsqu’il n’y a pas de transfert4.

Supposons qu’un certain processus (centralisé ou décentralisé) mène à une alloca-
tion où les agents sont appariés par paires et où chaque joueur apparié est destiné
à jouer une certaine action. Nous voulons formuler les conditions nécessaires pour
que cette allocation soit durable. Deux concepts de solutions peuvent être définis
en fonction du niveau de engagement des joueurs avant qu’ils ne jouent leur partie.
L’engagement peut être lié à la capacité des agents à signer des contrats contraignants
au moment où ils sont appariés. De plus, l’engagement est une hypothèse clé dans la
littérature sur l’appariement stable avec des utilités endogènes (comme l’appariement
avec transferts et l’appariement avec contrats). La littérature sur l’appariement ne
décrit pas le processus précis d’engagement mais définit plutôt une notion statique
de stabilité et prouve, en utilisant par exemple un algorithme de acceptation-différée,
l’existence d’une telle allocation stable. En suivant cette idée, nous étudions les ré-
sultats algorithmiques pour les deux sous-modèles.

Le premier concept de solution étudié est celui des couples appariés qui ne peuvent
pas s’engager, c’est-à-dire qu’ils ne peuvent pas signer un contrat contraignant avant
de jouer leur partie. Dans ce cas, pour que les joueurs ne s’écartent pas des actions
prévues, ces dernières doivent constituer un équilibre de Nash de leur jeu.

4Le jeu des transferts est un jeu à somme constante car la somme des gains fd,h(xd, yh) +
gd,h(xd, yh) = ad,h + bd,h ne dépend pas de xd ou yh. Stratégiquement, ceci est équivalent à un
jeu à somme nulle et c’est une instance particulière d’un jeu strictement compétitif.
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Définition. Une allocation individuellement rationnelle π = (µ, ~x, ~y) est,

1. Stable à la Nash si tous les couples appariés jouent un équilibre de Nash,
2. Stable par paires s’il n’existe aucune paire d’agents (d, h) et aucun équilibre de

Nash (x′d, y′h) de Gd,h tels que,

fd,h(x′d, y′h)>fd(π) et gd,h(x′d, y′h)>gh(π)

La stabilité par paires est l’extension naturelle de la condition de stabilité de Gale-
Shapley aux jeux d’appariement sans engagement. En utilisant un nouvel algorithme
d’acceptation-différée avec concours, on prouve que chaque fois que tous les jeux Gd,h

admettent un ensemble non vide et compact d’équilibres de Nash, il existe une al-
location stable par paires et stable à la Nash. De plus, une structure semi-lattice
existe: le maximum entre deux allocations stables (par paire et à la Nash) pour les
préférences de chaque partie est stable. Lorsque tous les jeux Gd,h ont un unique
paiement d’équilibre de Nash (comme dans les jeux à somme nulle ou, plus générale-
ment, les jeux strictement compétitifs), le modèle devient un problème classique de
mariage stable et ainsi, la structure complète du lattice est retrouvée. De plus, la
dualité entre le maximum pour un côté et le minimum pour l’autre côté est également
obtenue.

Il est important de remarquer que les jeux avec transferts monétaires, comme
les travaux de Shapley-Shubik [93] et Demange-Gale [39], sont des jeux à somme
constante où l’unique équilibre de Nash est (x∗d, y∗h) = (0, 0), car le transfert nul est
une stratégie strictement dominante. Pour que des transferts positifs se produisent,
les joueurs doivent être capables de s’engager. Ceci est implicitement supposé dans
la littérature de l’appariement avec transferts. En d’autres termes, le modèle des
jeux d’appariement sans engagement, bien que naturel, ne parvient pas à capturer les
modèles classiques d’appariement de la littérature. Illustrons cela.
Exemple 3. Considérons un jeu d’appariement avec seulement deux joueurs d et h,
ayant tous deux une utilité fixe et positive δ > 0 pour rester célibataire (leur option
extérieure), de sorte que, si les agents décident de s’apparier, ils jouent un jeu à somme
constante comme dans l’exemple 2, Gd,h = (R+,R+, fd,h, gd,h) avec des fonctions de
gain données par,

fd,h(xd, yh) = −xd + yh + 10δ, gd,h(xd, yh) = xd − yh,∀xd, yh ≥ 0

Le seul équilibre de Nash du jeu de transfert Gd,h est le transfert nul (xd, yh) = (0, 0),
car tout transfert positif est une stratégie dominée. Par conséquent, une allocation
dans laquelle les agents sont appariés est stable à la Nash si et seulement s’ils ne font
pas de transferts. Pour un profil de transfert nul, l’agent h reçoit une utilité de 0.
Cependant, il est préférable pour lui d’être célibataire car il obtient δ. Par conséquent,
une allocation stable à la Nash est individuellement rationnelle si et seulement si les
agents ne sont pas appariés.
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Le deuxième concept de solution étudié correspond à celui dans lequel les joueurs
peuvent s’engager (par exemple en signant des contrats contraignants). En faisant
un abus de notation, nous appelons aussi stable par paire l’extension de la stabilité de
Gale-Shapley au modèle sous engagement. En effet, les notions de stabilité des deux
contextes, avec ou sans engagement, seront capturées par une notion plus générale.
Définition. Une allocation rationnelle individuelle π = (µ, ~x, ~y) est stable par
paire si aucune paire d’agents (d, h) ne peut conjointement dévier vers un certain
profil de stratégie (x′d, y′h) dans leur jeu Gd,h qui améliore de façon parétoïste leurs
gains, c’est-à-dire,

fd,h(x′d, y′h)>fd(π) et gd,h(x′d, y′h)>gh(π)

Remarquez que les agents ne sont plus limités à jouer dans leur ensemble d’équilibre
de Nash. La définition précédente est l’extension naturelle de la stabilité de Gale-
Shapley au cadre avec engagement. Un algorithme similaire à celui utilisé dans le
cadre sans engagement nous permet de prouver que, pour tout cadre dans lequel tous
les jeux stratégiques Gd,h ont des ensembles de stratégies Pareto-optimales compactes
et des fonctions de gain continues, il existe une allocation stable par paire. Une
structure de semi-lattice existe également pour l’ensemble des allocations stables par
paire: le maximum entre deux allocations stables par paire pour les préférences de
chaque partie reste stable. La structure de lattice complète est retrouvée lorsque
tous les jeux Gd,h sont des jeux à somme constante (ou, plus généralement, des jeux
strictement compétitifs).

Contrairement au modèle sans engagement, les jeux d’appariement avec engage-
ment capturent avec succès les modèles d’appariement de la littérature. Par exemple,
les modèles de Shapley-Shubik et de Demange-Gale sont des instances particulières
des modèles de jeux d’appariement avec engagement où tous les jeux stratégiques sont
strictement compétitifs. La stabilité par paires coïncide avec leurs notions de stabilité
et notre algorithme d’acceptation-différée avec compétitions calcule des solutions sta-
bles pour leurs modèles. De plus, nous retrouvons la structure en lattice du modèle
de Demange et Gale.

Les joueurs sont rationnels et choisissent leurs actions de manière optimale. Comme
les agents peuvent s’engager, jouer de manière optimale n’implique pas nécessairement
de jouer en équilibre. Dans un cadre avec engagement, les agents maximisent leurs
utilités sous réserve de satisfaire les options extérieures des partenaires: les utilités po-
tentielles qu’ils peuvent obtenir avec quelqu’un d’autre. Par exemple, une entreprise
doit s’aligner sur le salaire du marché d’un travailleur afin de le garder. D’un autre
point de vue, avoir une option extérieure (donnée par le salaire du marché ou par le
salaire offert par une entreprise concurrente) permet au travailleur de négocier son
salaire avec l’entreprise. Nous prouvons qu’une condition équilibre de Nash con-
traint doit naturellement exister.
Définition. Une allocation stable par paire π = (µ, ~x, ~y) est résistante aux négo-
ciations si pour tout couple (d, h) ∈ µ et tout (sd, th) ∈ Xd × Yh, elle tient,
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1. Si fd,h(sd, yh) > fd(π) alors, (µ, (~x−d, sd), ~x) n’est pas stable par paire,
2. Si gd,h(xd, th) > gh(π) alors, (µ, ~x, (~y−h, th)) n’est pas stable par paire.

Une allocation π = (µ, ~x, ~y) est résistante aux négociations si toute déviation
profitable d’un joueur dans son jeu diminue le payment du partenaire en dessous de
son option extérieure de marché. Dit autrement, en fixant yh, xd doit maximiser le
payment du joueur d sous la contrainte de participation du joueur h, et vice-versa.
Nous définissons ce type de profil de stratégie comme équilibres de Nash sous contrainte
(voir ci-dessous pour la définition formelle).

En résumé, notre concept de solution combine une notion coopérative (la stabilité
par paire de Gale-Shapley) avec une notion non coopérative (une condition d’équilibre
de Nash généralisée). Un concept de solution similaire est utilisé dans les jeux de
formation de réseaux: en fixant le réseau, les actions des joueurs doivent maximiser
leurs gains, et pour chaque lien dans le réseau, les deux joueurs doivent être d’accord
pour former ce lien (voir Jackson et Wolinsky [69] ou Bich et Morhaim [28]). Le modèle
des jeux d’appariement un à un peut être considéré comme un modèle particulier de
jeu en réseau où seuls les graphes bipartis sont possibles et où un lien est formé si les
deux joueurs extrêmes acceptent de s’apparier.

Le concept de résistant aux négociations a fait l’objet d’un intérêt particulier dans
les jeux répétés à l’infini et dans la conception de mécanismes [2, 3, 12, 51, 86, 92, 99].
Notre notion est plus étroitement liée à celle de Dewatripont [41] qui considère un
cadre dans lequel les agents peuvent parvenir à un accord sur les contrats en raison
de l’existence de tiers.

Nous prouvons qu’une allocation est résistante aux négociations si et seulement si
tous les couples jouent des équilibres de Nash contraints pour leurs prix de réservation.

Définition. Soit (d, h) un couple dans une allocation et supposons que f0 et g0
représentent les gains minimums que d et h, respectivement, sont prêts à accepter afin
d’être appariés avec l’autre. En d’autres termes, f0 et g0 sont les prix de réservation
ou options de sortie des agents. Alors, leur profil stratégique (xd, yh) est un (f0, g0)-
équilibre de Nash contraint si,

fd,h(xd, yh) = max{fd,h(s, yh) : gd,h(s, yh) ≥ g0, s ∈ Xd}

Ngd,h(xd, yh) = max{gd,h(xd, t) : fd,h(xd, t) ≥ f0, t ∈ Yh}

Nous définissons une classe de jeux stratégiques (appelés jeux faisables (Définition
3.4.1)) comme les jeux qui admettent l’existence d’équilibres de Nash contraints et
prouvons que: (a) lorsque tous les jeux Gd,h sont faisables, un nouveau processus
de renégociation, s’il converge, atteint une allocation stable par paire et résistante
aux négociations, et (b) ce nouvel algorithme converge lorsque tous les jeux sont à
somme constante, strictement compétitifs, potentiels ou infiniment répétés. Comme
les jeux strictement compétitifs sont faisables, les résultats de Shapley-Shubik et de
Demange-Gale sont récupérés et affinés.
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La preuve qu’un jeu est faisable utilise les propriétés du jeu. En d’autres termes, la
preuve dépend du jeu. Par exemple, pour les jeux potentiels, nous prouvons l’existence
d’équilibres de Nash contraints en maximisant la fonction potentielle sur un ensemble
approprié. Pour chacun des quatre jeux réalisables mentionnés, nous concevons un
oracle pour calculer les équilibres de Nash contraints (par exemple en maximisant la
fonction potentielle) qui garantissent les convergences du processus de renégociation.

Pour la plupart des jeux, les algorithmes conçus pour calculer des allocations
résistantes aux négociations et stables par paires, en plus, trouvent des allocations
dans lesquelles tous les couples jouent des profils stratégiques Pareto-optimaux. Pour
l’algorithme d’acceptation-différée avec concours, il suffit de restreindre les profils
stratégiques des agents à leurs ensembles Pareto-optimaux. Pour le processus de
renégociation, il suffit de considérer des oracles qui choisissent des équilibres de Nash
contraints Pareto-optimaux. Pour des jeux tels que les jeux à somme nulle, les jeux
strictement compétitifs ou les jeux répétés à l’infini, notre oracle parvient à sélec-
tionner un équilibre de Nash contraint Pareto-optimal. Cependant, ce ne sera pas
la règle générale car pour de nombreux jeux, la Pareto-optimalité et la stabilité sont
incompatibles, par exemple, des jeux potentiels tels que le dilemme du prisonnier.

Un cadre intéressant est obtenu pour les jeux d’appariement un-à-un avec en-
gagement dans lesquels les couples jouent des jeux non-dégénérés infiniment répétés.

Définition. Nous disons qu’un jeu infiniment répété est non-dégénéré si l’ensemble
des gains d’équilibre uniformes E a un intérieur non vide.

Expliquons mieux ce point. Considérons deux jeux, un matching pennies G1, et
un dilemme du prisonnier G2, tous deux exprimés par les matrices de gains suivantes,

Joueur 2

Joueur 1
G1 A B
A 1 -1
B -1 1

Table 1: Matching pennies

Joueur 2

Joueur 1
G2 Coopérer Trahir

Coopérer 2, 2 −1, 3
Trahir 3,−1 0, 0

Table 2: Dilemme du prisonnier

L’appariement des centimes est un jeu à somme nulle avec une valeur w = 0
obtenue lorsque chaque agent joue A et B avec la même probabilité. Le dilemme du
prisonnier est un jeu potentiel avec un gain d’équilibre de Nash (0, 0) obtenu lorsque
les deux joueurs trahissent. Supposons que nous répétons ces jeux une infinité de fois.
Pour chacun d’entre eux, nous pouvons définir les ensembles de profils de gain faisable
et non puni E1 et E2, respectivement comme,

E1 := {(f, g) ∈ co((−1, 1), (1,−1)) : f ≥ 0, g ≥ 0} ⊆ R2

E2 := {(f, g) ∈ co((2, 2), (−1, 3), (3,−1), (0, 0)) : f ≥ 0, g ≥ 0} ⊆ R2

où co(·) indique l’enveloppe convexe. Figure 1 montre les ensembles E1 et E2.
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Figure 1: Ensembles de profils de gain faisable et non puni

L’ensemble E1 correspond à un point unique dans R2. En particulier, E1 a un
intérieur vide. Par contre, l’ensemble E2 a un intérieur non vide comme on peut
l’observer sur la figure. Par le théorème de Folk d’Aumann-Shapley [15], nous savons
que les ensembles E1 et E2 correspondent aux ensembles des gains d’équilibre uni-
formes de chaque jeu. Par conséquent, nous obtenons que la version infiniment répétée
de la correspondance des centimes est un jeu dégénéré, tandis que la version infiniment
répétée du dilemme des prisonniers est non dégénérée.

L’aspect dynamique des jeux répétés permet aux couples d’oublier l’engagement
initialement imposé par le modèle car les agents peuvent punir leurs partenaires pour
leurs déviations d’actions. Pour être plus précis, pour les jeux non dégénérés comme
la version répétée du dilemme des prisonniers ci-dessus, les gains d’équilibre de Nash
contraints sont toujours (faiblement) dominés par Pareto par un gain d’équilibre uni-
forme. En particulier, nous pouvons toujours remplacer les équilibres de Nash con-
traints des couples par des équilibres uniformes sans affecter la stabilité par paire
et la résistance aux négociations de l’allocation. Par conséquent, les jeux infiniment
répétés (non dégénérés) satisfont la notion la plus forte de stabilité possible dans notre
modèle: Pareto-optimalité, stabilité par paire et stabilité à la Nash.

L’exemple 3 ci-dessus a montré les limites du modèle de jeux d’appariement un à un
sans engagement, à savoir qu’il ne parvient pas à capturer les modèles d’appariement
classiques de la littérature comme celui de Shapley et Shubik. Ce n’est pas le cas pour
un modèle avec engagement car tous les modèles discutés au début de ce chapitre sont
capturés avec succès. Pour cette raison, les deux modèles suivants étudiés dans cette
thèse considèrent l’engagement comme une hypothèse clé.
2. Jeux d’appariement un-à-plusieurs avec substituts (et engagement), la généralisa-
tion du problème des admissions à l’université, le deuxième problème présenté par
Gale et Shapley dans [53], ainsi que la généralisation des jeux d’appariement un à
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un avec engagement, considèrent que les agents d’un côté, les hôpitaux H à par-
tir de maintenant, peuvent être appariés avec plusieurs partenaires en même temps.
Formellement, étant donné un ensemble I ⊆ D alloué dans h ∈ H, et étant donné des
profils stratégiques ~xI ∈

∏
d∈I Xd, ~yh,I = (yh,d)d∈I ∈ Y

|I|
h , les gains des joueurs sont

donnés par,

fd,h(xd, yh,d),∀d ∈ I, et gI,h(~xI , ~yh,I)

c’est-à-dire que la fonction de gain de l’hôpital h dépend de l’identité de l’ensemble
des médecins I, des stratégies jouées par tous ces médecins et du profil stratégique
~yh,I joué par h, où chaque yh,d représente la stratégie particulière jouée par h contre
le médecin d. Les fonctions de gain des médecins sont les mêmes que dans le modèle
un-à-un.

La stabilité par paires pour les jeux d’appariement un-à-un n’a pris en compte que
les paires bloquantes, car seuls les couples étaient autorisés. Puisque les agents de H
peuvent maintenant être appariés avec de nombreux partenaires, nous considérons la
stabilité du Core (faible).
Définition. Une allocation π = (µ, ~x, ~y) est bloquée par une coalition de médecins
I ⊆ D et un hôpital h s’il existe (~wI , ~zh,I) ∈ XI × Y |I|h , tels que,

∀d ∈ I, fd,h(wd, zh,d) ≥ fd(π),
∃d ∈ I, fd,h(wd, zh,d)>fd(π),

gI,h(~wI , ~zh,I)>gh(π),

où fd(π) et gh(π) sont les gains de d et h, respectivement, dans π. π est Core stable
s’il est individuellement rationnel et s’il n’est pas bloqué.

Les modèles d’appariement avec des préférences strictes (comme celui de Hatfield
et Milgrom) ont la propriété que le Core et le Core faible coïncident. En raison du
continuum de gains dans notre modèle, cette propriété ne se vérifie pas nécessaire-
ment. Pour obtenir l’existence d’allocations Core stables, nous dotons les hôpitaux de
fonctions de gains additives séparables et de quotas. Formellement, nous disons que
h ∈ H a un fonction de gain additive séparable et un quota qh ∈ N, si,

gI,h(~xI , ~yh) =

∑
d∈I

gd,h(xd, yh,d) si |I| ≤ qh

−∞ sinon
où gd,h : Xd × Yh → R,∀d ∈ I

Une généralisation de l’algorithme d’acceptation-différée avec concours proposé
pour les jeux d’appariement de un à un prouve l’existence d’allocations stables de
Core pour tout jeu d’appariement de un à plusieurs dans lequel les agents de H ont
des fonctions de gain séparables additives et des quotas, et tous les agents ont des
ensembles de stratégies compacts et des fonctions de gain continues. L’avantage de
la séparabilité additive est que la Core stabilité et la stabilité par paires (comme
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celle des jeux d’appariement un-à-un) deviennent équivalentes. En particulier, nous
n’avons pas besoin d’utiliser un mécanisme d’offre cumulative comme celui de Hatfield
et Milgrom mais seulement un algorithme d’acceptation-différée. Deux avantages
importants découlent de ce changement de mécanisme: (1) les mécanismes d’offre
cumulative ne donnent pas une manière constructive de calculer des allocations stables
car ils ont besoin de théorèmes de point fixe pour garantir la convergence et (2)
grâce à leur simplicité, la complexité des algorithmes d’acceptation-différée peut être
correctement étudiée.

La séparabilité des fonctions de paiement des hôpitaux nous permet d’appliquer
directement la notion de résistance aux négociation telle que définie pour les jeux
d’appariement un-à-un au modèle un-à-plusieurs, affinant ainsi les modèles de Kelso-
Crawford et Hatfield-Milgrom, entre autres. En effet, le même processus de renégoci-
ation peut être utilisé. En particulier, nous pouvons prouver l’existence d’allocations
Core stables et résistantes aux négociations pour tout jeu d’appariement à somme
nulle, strictement compétitif, potentiel ou infiniment répété.
3. Roommates matching game est la généralisation du troisième problème présenté par
Gale et Shapley. Formellement, nous considérons un ensemble d’agents D et dotons
chaque joueur d ∈ D d’un ensemble stratégique Xd, et tout couple (d1, d2) ∈ D ×D
du jeu stratégique Gd1,d2 = (Xd1 , Xd2 , fd1,d2 , fd2,d1).

Une allocation dans ce cadre est une paire π = (µ, ~x) où µ est un appariement
un-à-un et ~x ∈ ∏

d∈DXd est un profil de stratégie. Notre notion de stabilité par
paire capture la stabilité du problème des colocataires dans ses nombreuses variantes:
préférences ordinales, utilité transférable et utilité non-transférable.

Nous nous appuyons sur les travaux d’Alkan et Tuncay sur les colocataires avec
utilité non transférable pour étudier l’existence d’allocations stables par paire. Nous
utilisons la procédure de marché conçue dans [9] pour calculer un profil de gain f ∈ R|D|
qui, chaque fois qu’une allocation π peut implémenter celle-ci, c’est-à-dire, pour tout
d ∈ D, π satisfait fd(π) = fd, avec,

fd(π) :=
{
fd,µ(d)(xd, xµ(d)) si d est apparié

f
d

sinon

où f
d
est le gain individuel rationnel du joueur d, π est stable par paire.

Comme seuls les couples sont autorisés dans le modèle, notre notion de résistance
aux négociation peut être directement appliquée, en raffinant les concepts de solution
de la littérature. En particulier, notre processus de renégociation fonctionne dans
n’importe quel jeu réalisable avec un oracle qui réalise la convergence de l’algorithme.

Nous terminons l’introduction du modèle des jeux d’appariement par l’observation
suivante. Il existe différentes façons d’associer un jeu stratégique à un modèle de
Shapley-Shubik [93], de Demange-Gale [39], ou de Hatfield-Milgrom [66], entre autres.
Nos notions de Core stabilité et par paire coïncident toujours avec leur stabilité, mais
chaque modélisation de jeu stratégique induit, grâce à la résistance aux négociations,

18



Jeux d’appariement stables - Résumé

une sélection différente parmi les résultats stables. Par exemple, supposons que dans le
modèle de Shapley-Shubik, il n’y a qu’un seul vendeur et un seul acheteur, le vendeur
a un coût c pour la maison et l’acheteur a une valeur v pour celle-ci. Si v < c, il n’y
a pas de possibilité d’échange. Sinon, le surplus v − c est positif et tout prix p entre
c et v correspond à une allocation stable par paire. Si l’interaction stratégique entre
l’acheteur et le vendeur est un jeu de négociation ultimatum [1] où le vendeur est le
premier proposant (resp. l’acheteur est le premier proposant), le résultat stable par
paire et résistant à la renégociation choisi est p = v (resp. p = c). D’autre part, si
l’interaction stratégique est modélisée par le jeu de négociation des offres alternées
de Rubinstein [84] avec des joueurs également patients, le résultat est la solution de
négociation de Nash p = (v − c)/2. Par conséquent, différents jeux de négociation
entre acheteurs et vendeurs induisent, en raison de la résistance aux négociations, un
partage différent du surplus. Ceci n’est pas modélisé dans la littérature standard sur
les transferts et constitue l’une des principales contributions de notre travail.

Le dernier modèle discuté dans cette thèse correspond à un marché d’appariement
dynamique en temps continu, et c’est un travail conjoint avec Marco Scarsini. Nous
considérons un marché biface de type one-to-one avec des côtés A et B, où les agents
arrivent suivant des processus de Poisson avec des taux λA et λB, respectivement. Les
agents peuvent naturellement quitter le marché pour cause de décès ou de fatigue à
des taux respectifs de µA et µB. Les agents au sein du marché sont appariés selon
une politique d’appariement Φ fixe, et les agents couplés quittent le marché et ne
reviennent jamais. Étant donné l’état du marché à un moment donné t> 0, à savoir
(At, Bt), un agent arrivant k tire utilité aléatoire uniforme dans [0, 1] sur tous les
agents présents à ce moment-là de l’autre côté, représentant l’utilité que k obtient en
s’appariant avec chacun d’eux. De même, les agents de l’autre côté tirent des utilités
aléatoires uniformes dans [0, 1] pour être avec k.

Les agents sont dotés de gains individuels rationnels (IRP) ρk ∈ [0, 1],∀k ∈ A∪B,
c’est-à-dire leur utilité d’être célibataire, et n’acceptent jamais un appariement dont
l’utilité est inférieure à ρ.

Nous étudions algorithmes d’appariement gourmand, c’est-à-dire les politiques
d’appariement qui sont déclenchées à chaque arrivée, comme first-come-first-served.
Étant donné une politique d’appariement gourmande fixe Φ, nous considérons la
chaîne de Markov à temps continu donnée par (Zt = (|At|, |Bt|)t≥0) qui suit le nombre
d’agents sur le marché à chaque instant t ≥ 0. Les chaînes de Markov à temps continu
peuvent être étudiées en considérant leur chaîne de saut (Wn)n≥0 indexée uniquement
sur les temps de saut, c’est-à-dire à chaque arrivée ou départ naturel d’un agent.

Les agents proposés pour être appariés avec un partenaire n’acceptent que si
l’utilité obtenue est au moins leur gain rationnel individuel. Par conséquent, si a
est un agent arrivant à A au temps de saut n, la probabilité qu’il soit apparié est
donnée par,

pa := P(a est apparié) =
(1− ρa) · (1−

∏
b∈Bn ρb) si Bn 6= ∅,

0 sinon.
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Les probabilités (pa, pb)a∈A,b∈B ne peuvent pas dépendre de l’identité des agents présents
sur le marché au temps n si l’on veut obtenir une chaîne de Markov homogène en
temps.

Définition. On dit que les agents ont des IRPs anonymes lorsque les probabilités
(pa, pb)a∈A,b∈B ne dépendent pas de l’identité des joueurs mais seulement du nombre
d’agents de l’autre côté du marché.

En prenant des gains rationnels individuels anonymes, la chaîne de Markov (Wn)n
devient une marche aléatoire dans N2. La probabilité de passer à un état supérieur est
toujours inférieure à celle de passer à un état inférieur puisque la marche aléatoire ne
peut pas exploser: les agents peuvent quitter le marché de deux manières, soit parce
qu’ils sont partis naturellement, soit parce qu’ils ont été appariés. Les appariements
se produisent à un rythme similaire à celui des arrivées (en fonction des valeurs des
IRP); par conséquent, la marche aléatoire diminue ses valeurs plus souvent qu’elle ne
les augmente. Ainsi, notre marche aléatoire est non-homogène dans l’espace.

En utilisant le critère de Foster, nous prouvons que (Wn)n est à récurrence pos-
itive (donc, en prouvant que (Zt)t est également à récurrence positive). Ensuite, en
imposant le réversibilité, à savoir que pour tout (i, j) ∈ N il doit être maintenu,

π(i)P (i, j) = π(j)P (j, i)

où π est unemesure stationnaire de (Wn)n et P samatrice de transition, nous trouvons
une expression récursive pour π et déduisons que la distribution stationnaire de (Zt)t
a une forme-produit.

Enfin, des expériences empiriques montrent que les politiques d’appariement avide
de acceptation-différée, c’est-à-dire l’exécution de l’algorithme de Gale-Shapley à chaque
arrivée, surpassent les autres politiques d’appariement avide comme le premier arrivé,
premier servi et l’allocation aléatoire.

Nos contributions
Dans cette thèse, nous présentons le nouveau modèle de jeux d’appariements dans
lequel un nombre fini d’agents s’apparient et reçoivent des utilités comme résul-
tats de jeux stratégiques. Deux sous-modèles sont obtenus en fonction du niveau
d’engagement des agents. Nous avons étudié plus en profondeur les jeux d’appariement
avec engagement car ils sont plus difficiles mathématiquement mais ils capturent et
raffinent également un grand nombre de modèles dans la littérature tels que: le prob-
lème du mariage stable, le problème des admissions à l’université, et le problème
des colocataires de Gale et Shapley [53], le jeu d’affectation de Shapley et Shubik,
le problème d’appariement avec des transferts de Demange et Gale [39], le marché
d’appariement des emplois de Kelso et Crawford [71], l’appariement avec contrats de
Hatfield et Milgrom [66], le colocataires avec utilité transférable [10], et le colocataires
avec utilité non transférable [9]. Nos notions de Core stabilité et stabilité par paire
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sont équivalentes aux notions de stabilité considérées dans chacun de ces problèmes, et
notre nouvelle notion de résistance aux négociations permet de raffiner leurs solutions
stables.

Chapitre 2 conçoit un algorithme d’acceptation-différée avec concours (DAC) pour
les marchés d’appariement un-à-un afin de calculer des allocations stables par paires
sous des hypothèses classiques de la théorie des jeux. De plus, l’algorithme s’exécute
en un nombre limité d’itérations de temps polynomial pour de nombreux jeux bien
connus de la littérature de la théorie des jeux. Nous étendons à notre nouveau cadre
les résultats classiques des marchés d’appariement un-à-un, comme le structure de
lattice de l’ensemble des allocations stables et l’optimalité de l’algorithme DAC pour
le côté proposant.

Parmi les contributions les plus importantes, Chapitre 3 définit une nouvelle notion
de stabilité, résistance aux négociations: Les agents d’un même couple sont rationnels
et doivent joueur leur meilleure réponse à leur partenaire. Cependant, comme les
agents peuvent s’engager dans des actions, les meilleures réponses sont contraintes
de garantir un certain seuil de gain aux partenaires, leur option extérieur de marché
(gain minimum que les partenaires peuvent accepter pour être appariés). La résistance
aux négociations est définie par rapport à la stabilité par paire, en raffinant tous les
concepts de stabilité de la littérature que le modèle capture.

Chapitre 3 caractérise la résistance aux négociations comme une condition d’équi-
libre de Nash sous contrainte (CNE) et conçoit un processus de renégociation pour
calculer les allocations stables par paire et résistantes aux négociations chaque fois
que les jeux stratégiques permettent l’existence de CNE et que le processus converge.
De plus, la convergence de l’algorithme est garantie pour de nombreux jeux bien
connus, dont les modèles de Shapley-Shubik et de Demange-Gale. De plus, pour les
mêmes jeux que l’algorithme DAC, le processus de renégociation a un nombre borné
d’itérations de temps polynomial.

Chapitre 4 présente un nouveau modèle de jeux d’appariement un-à-plusieurs à
deux côtés dans lequel les agents de l’un des côtés, l’ensembleH, peuvent être appariés
avec de nombreux agents en même temps, capturant avec succès le modèle séminal
de Hatfield et Milgrom d’appariement avec des contrats. [66].

L’appariement avec contrats considère un marché d’appariement un-à-plusieurs
dans lequel les agents sont dotés de fonctions de choix. Les fonctions de choix pro-
duisent le ou les contrats les plus préférés de chaque agent, étant donné un ensemble
de contrats possibles sur le marché. Les auteurs ont prouvé l’existence d’allocations
stables lorsque les agents de H ont des contrats substituables.

Aygün et Sönmez [16] ont exposé que différents modèles sont obtenus si les fonc-
tions de choix des agents sont traitées comme des primitives du modèle ou si elles
sont induites à partir des classements de préférences. Bien que le modèle de Hat-
field et Milgrom appartienne au deuxième type, ils ont traité leurs fonctions de choix
comme des primitives. Par conséquent, pour garantir véritablement l’existence d’une
allocation stable, une hypothèse supplémentaire, l’insignifiance des contrats rejetés,
est également requise. L’une des principales contributions de Chapitre 4 est le fait
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que notre modèle de jeux d’appariement un-à-plusieurs fonctionne directement avec
les primitives du problème (les fonctions de gain), ce qui nous permet: (1) de mieux
comprendre les raisons de l’existence d’allocations Core stables, (2) de comprendre la
relation entre la stabilité par paire et Core, (3) de raffiner le modèle avec des contrats
en appliquant la notion de résistance aux négociations, (4) de considérer un nom-
bre infini de contrats sur le marché, et (5) d’étudier la complexité des algorithmes
proposés.

Le point (2) est particulièrement intéressant. Chaque fois que les agents dans H
ont des fonctions de gain additives séparables, nous prouvons que la Core stabilité
peut être réduite à la stabilité par paire. En particulier, le mécanisme d’offre cu-
mulative, comme celui utilisé par Hatfield et Milgrom, peut être remplacé par des
algorithmes d’acceptation-différée. Par conséquent, dans le Chapitre 4, nous éten-
dons l’algorithme DAC proposé pour les jeux d’appariement un-à-un afin d’obtenir
l’existence d’allocations Core stables dans le cadre un-à-plusieurs. Sous la même con-
dition de séparabilité additive, nous étendons la résistnce aux négociations au cadre
un-à-plusieurs dans Chapitre 4 en réalisant le point (3) avec la même efficacité de
calcul que pour les jeux d’appariement un-à-un (point (5)).

Un troisième nouveau modèle est introduit dans Chapitre 4, le jeu d’appariement
de colocataires, une extension du modèle de colocataires à utilité non transférable
au cas où des couples d’agents obtiennent leurs utilités comme résultats d’un jeu
stratégique. Comme pour l’appariement avec des contrats, notre jeu d’appariement de
colocataires raffine les concepts de solution de la littérature en étudiant les allocations
résistantes aux négociations.

Enfin, Chapitre 6 présente un travail conjoint avec Marco Scarsini, un modèle
de marché d’appariement dynamique en temps continu où les agents peuvent arriver
et quitter le marché en suivant des processus stochastiques. Nous comparons dif-
férentes politiques d’appariement gourmandes et étudions les conditions nécessaires
pour l’existence de distributions stationnaires avec une forme-produit.

La thèse est structurée comme suit. Chapitre 1 introduit le modèle des jeux
d’appariement sans engagement et étudie l’existence et le calcul des allocations sta-
bles par paire et stable à la Nash. Chapitre 2 introduit le modèle d’appariement avec
engagement et étudie l’existence et le calcul d’allocations stables par paire. Chapitre
3 introduit résistance aux négociations, notre nouveau raffinement des notions de
stabilité dans la littérature, et étudie l’existence et le calcul des allocations résis-
tantes aux négociations. Chapitre 4 introduit deux modèles supplémentaires de jeux
d’appariement: les jeux d’appariement un-à-plusieurs et les jeux d’appariement en-
tre colocataires. Pour chacun de ces modèles, l’étude de l’existence et du calcul
d’allocations Core stables et résistantes aux négociations est menée. Chapitre 5 est
consacré à l’étude de la complexité de tous les algorithmes proposés dans les chapitres
précédents, en prouvant leur efficacité computationnelle. Chapitre 6 introduit un
modèle de marché d’appariement dynamique dans lequel les agents peuvent arriver
et partir au cours du temps. Le dernier chapitre conclut la thèse, donne les lignes de
recherche futures, et discute des problèmes ouverts.
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The stable matching problem
The Gale and Shapley [53] one-to-one two-sided market matching problem, known
as the marriage problem, consists in finding a stable pairing between two different
finite sets D and H, given that each agent on each side has an strict exogenous (total)
preference ordering over the agents on the other side. Formally, each agent k ∈ D∪H
is endowed with >k such that, for any two agents ` and `′ on the opposite side, `>k `

′

represents that k prefers to be matched with ` rather than with `′.
The marriage problem focuses on computing a coupling µ that associates each

agent on one side to at most one agent on the other side. The coupling µ is stable
if no uncoupled pair of agents both prefer to be paired together rather than with
their partners in µ. Formally, a coupling µ is blocked if there exists a pair of agents
(d, h) ∈ D ×H, not matched between them, such that,

h >d µ(d) and d >h µ(h)

where µ(k) represents the partner of k in the matching µ. The matching is stable if
no pair blocks it. Gale and Shapley used a deferred-acceptance algorithm to prove the
existence of a stable matching for every instance. Their algorithm takes one of the
sides of the market, called the proposer-side, and asks its agents to propose to their
most preferred option that has not rejected them yet. Agents receiving more than
one proposal accept the best one and reject all the others. The algorithm continues
until all agents on the proposer side have been accepted by somebody. Although the
model of Gale and Shapley considered two sets of the same size and strict preferences,
their algorithm is easily extended to sets of different sizes where the agents have the
option to remain single (also referred to as having incomplete preference orderings)
and non-strict preferences. The computation of the stable matching is exact and takes
at most O(N2) iterations with N being the size of the largest set.

Many properties of the set of stable matchings and the deferred-acceptance algo-
rithm of Gale and Shapley have been proved. John Conway proved a lattice structure
over the set of stable matchings Γ (claimed by Gale and Shapley [53] and reported
by Knuth [75]), namely, the maximum and the minimum of two stable matchings for
the preferences of one of the sides remain stable. Formally, if µ and µ′ are two stable
matchings in Γ, we define,

µ∨(d) := max
>d
{µ(d), µ′(d)},∀d ∈ D
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µ∧(d) := min
>d
{µ(d), µ′(d)},∀d ∈ D

The matchings µ∨ and µ∧ are well defined and belong to Γ. The matching µ∨ corre-
sponds to the maximum between µ and µ′ for the preferences of agents in D. Anal-
ogously, µ∧ corresponds to the minimum. A duality property holds as the maximum
of two stable matchings for one of the sides corresponds to the minimum between the
two same stable matchings for the other side. In other words, if

ν∨(h) := max
>h
{µ(h), µ′(h)},∀h ∈ H

ν∧(h) := min
>h
{µ(h), µ′(h)},∀h ∈ H

are the maximum and minimum matching for the agents in H, it holds,

µ∨ = ν∧ and µ∧ = ν∨

In particular, the highest element in the lattice for one side, that is, the most preferred
stable matching for them, is the least preferred stable matching for the opposite side.

Dubins and Freedman [43] but also Gale and Sotomayor [54] studied the incentives
of the players to lie when reporting their preferences and proved that the deferred-
acceptance algorithm of Gale and Shapley is strategy-proof for the proposer side, as
the algorithm outputs the best stable matching for them, that is, the highest element
in the lattice.

Gusfield and Irving [60] probe the stable marriage and its variants as a rich source
of problems and ideas that illustrate both the design and analysis of efficient algo-
rithms. Roth and Sotomayor [89] studied the structure of the set of stable matchings
and its core. Vande Vate [100] characterized the set of stable matchings in the one-to-
one problem as extreme points of a polytope when |D| = |H|. Rothblum [91] extended
this result to the case |D| 6= |H|.

Balinski and Ratier [24, 25] proposed an elegant directed graph approach to the
problem and, like Rothblum, they characterized the stable matching polytope in the
one-to-one problem through linear inequalities, proving that any feasible point of the
polytope is a stable matching and vice-versa.

Roth and Vande Vate [90] studied a random process to find a stable matching
from some arbitrary matching. Ma [79] proved that the Roth and Vande Vate al-
gorithm does not find all the stable matchings. Recently, Dworczak [45] introduced
a new class of algorithms called deferred acceptance with compensation chains algo-
rithms (DACC)5 in which both sides of the market can make offers and proved that
a matching is stable if and only if it is the outcome of some DACC algorithm. More
precisely, DACC algorithms choose a random proposing order σ over all the agents
D ∪H which is modified every time that an agent is replaced by allowing her to pro-
pose next. Indexing the DACC algorithms over σ, Dworczak proved that a matching
is stable if and only if it is the output of a DACC algorithm for some order σ.

5A related class of algorithms was introduced by McVitie and Wilson [80]
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Adachi [4] characterized the set of stable matchings as the fixed points of an
increasing function through Tarski’s fixed point theorem whenever agents have strict
preferences. Another fixed-point approach was made by Fleiner [52] by formulating
a matroid generalization of the stable marriage problem and studying the lattice
structure of the generalized model.

One of the first extension of the marriage problem to the endogenous preferences
setting is the assignment game of Shapley and Shubik [93] in which agents within the
same couple can make monetary transfers. The leading example is a housing market
where buyers and sellers have quasi-linear utilities. Buyers d ∈ D have different
evaluations ((vd,h)d∈D,h∈H) for the sellers’ houses h ∈ H, and sellers have different
costs ((ch)h∈H) over their own houses. Each seller h ∈ H is willing to sell her house
at some price ph ≥ ch, and each buyer d ∈ D is interested in buying h’s house at
a certain price pd,h ≤ vd,h. An allocation is a pair (µ, p) with µ being a matching
between sellers and buyers, and p = (pd)d∈D being a vector of monetary transfers,
where pd is the price offered by d ∈ D to µ(d) ∈ H. Allocations in the Shapley-
Shubik model are stable if there is no unmatched pair (d, h) and no transaction price
q from d to h such that both agents end up strictly better off by trading. Exploiting
the linearity of the payoff functions on the monetary transfers, Shapley and Shubik
found stable solutions π = (µ, p) for their problem using linear programming where
a pair primal-dual gives, respectively, the matching µ and the vector of prices p.
Remark the polynomial complexity of solving the assignment game thanks to the
linear programming approach.

The assignment game belongs to the class of cooperative games with transferable
utility as agents within the same couple (d, h) have to split their worth vd,h + ch in
such a way nobody prefers to change their partner. Moreover, Shapley and Shubik
proved that the set of stable allocations for their assignment game is exactly the Core
of the housing market problem seen as a transferable utility cooperative game.

Demange and Gale [39] considered more general utility functions on monetary
transfers (non-quasi-linear), allowed monetary transfers on both sides (from buyer
to seller and vice-versa), and proved that the set of stable allocations has a lattice
structure (non-emptiness of this set has been proved in [37, 87]). Demange et al. [40]
designed two ascending price mechanisms to compute stable allocations of the match-
ing with transfers model in [39]. For integer utilities, the first algorithm converges in a
bounded number of iterations to an exact solution. For continuous payments, the sec-
ond algorithm converges to an ε-stable allocation in a bounded number of iterations.
Despite the broad literature achieved during the years, the problem of computing
exact stable allocations for matching markets with continuous utilities is still open.

Models with monetary transfers as the ones above belong to the class of match-
ing markets with transferable utility. A clear comparison between the models with
transferable and non-transferable utility was made by Echenique and Galichon in [47].
Galichon et al. [55] studied a model of stable matching with imperfect transferable
utility, due for example to the presence of taxes in the transfers, and algorithmically
proved the existence of stable solutions. Dupuy et al. [44] studied further the effects of
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taxation in two-sided matching markets providing a continuous link between models
of matching with and without transfers.

Other extensions of the stable marriage model to the endogenous preferences set-
ting consider random preferences as agents draw them from probability distributions.
Gimbert et al. [57] studied the number of stable pairs, i.e., the pairs (d, h) that
appear in some stable matching, finding many asymptotic results depending on the
distributions considered. The same authors in [59] extended their study to the effects
of having random preferences and the possible manipulations of the agents over the
output of stable matchings algorithms.

One-to-many two-sided matching markets are the generalization of the models ex-
plained above to the case in which agents on one of the sides can be matched with
many partners at the same time. Many interesting applications arise from these mod-
els. Gimbert et al. [58] studied a school choice problem with imperfect information
in which students reveal only a partial version of their preferences due to a limited
number of applications allowed. Correa et al. [36] studied a centralized mechanism
to fairly allocate students to schools in Chile giving priority to joined siblings alloca-
tion. In France, extensive studies have been done to develop the students’ allocation
mechanism to universities Parcoursup6.

The first ones to introduce this problem were, as for one-to-one two-sided matching
markets, Gale and Shapley in their seminal paper [53]. They proved that their same
deferred-acceptance algorithm could be applied to the one-to-many setting. Baïou and
Balinski [21, 23] generalized the graph-theoretic approach in [24, 25] to one-to-many
matching markets and the polytope characterization of stable matchings in this new
setting. Echenique and Oviedo [48] characterized the set of core stable allocations as
fixed points of a map. In their model, agents are endowed with strict preferences and
their characterization gives an efficient algorithm to compute stable allocations. No
extra assumption is required for their characterization, but substitutability is required
for the non-emptyness of the core.

As Shapley and Shubik in the one-to-one case, Crawford and Knoer [37] extended
the model of one-to-many matching markets to the linear monetary transfer setting.
Kelso and Crawford [71] went further in the extension by considering any kind of
transferable utility. Their job matching model considers workers and firms that get
matched and simultaneously determine salaries to be paid to the workers. The authors
proved the existence of stable allocations for any setting in which workers are gross
substitutes for the firms: increasing the salary of a set of workers can never cause a
firm to withdraw an offer from a worker whose salary has not been risen.

A seminal paper in one-to-many matching markets was written by Hatfield and
Milgrom [66], the matching with contracts model, that extends the model of Kelso
and Crawford by allowing doctors and hospitals (instead of workers and firms) to
sign contracts from a finite set of possible contracts X in the market. Contracts are
bilateral so every x ∈ X relates one doctor xD ∈ D with one hospital xH ∈ H.

6A french document about Parcoursup can be found here.
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Agents are endowed with preference orderings that define choice functions (Cd, Ch :
d ∈ D, h ∈ H). Given a set of possible contracts X ′ ⊆ X, the choice functions output
the most preferred contract for each doctor, and the most preferred subset of contacts
for each hospital. Formally,

Cd(X ′) = arg max
>d

{x ∈ X ′ : xD = d}

Ch(X ′) = arg max
>h

{X ′′ ⊆ X ′ : ∀x ∈ X ′′, xH = h, and ∀x, x′ ∈ X ′′, xD 6= x′D}

Hatfield and Milgrom proved that the set of stable allocations is a non-empty
lattice and that a cumulative offer mechanism reaches the extremes of the lattice
thanks to Tarski’s fixed point theorem. The main assumption behind this result is
substitutability for hospitals.
Definition. Elements of X are substitutes for hospital h if for all subsets X ′ ⊆
X ′′ ⊆ X, it holds, X ′ \ Ch(X ′) ⊆ X ′′ \ Ch(X ′′)

In words, contracts are substitutes for h if no rejected contract can be chosen
because of the broadening of the set of contracts. Substitutability has been proved to
be sufficient but not necessary for the existence of stable allocations in the matching
with contracts model and many authors have worked to find weaker assumptions
[16, 63, 64, 65]. Hatfield and Milgrom proved a second result in their model, the rural
hospital theorem: every hospital hires the same number of doctors at every stable
matching. The key assumptions behind this result are substitutability and the law of
aggregated demand.
Definition. The preferences of hospital h satisfy the law of aggregated demand
if for all X ′ ⊆ X ′′ ⊆ X, |Ch(X ′)| ≤ |Ch(X ′′)|.

In words, hospital h satisfies the law of aggregated demand if every time that the
set of possible contracts expands, the total number of contracts chosen by hospital h
weakly rises.

Aygün and Sönmez [16] exposed that different models are obtained if agents’ choice
functions are treated as primitives or they are induced from preference rankings in the
matching with contracts model. Hatfield and Milgrom’s model belongs to the second
type, however, they treated their choice functions as primitives. To truly guarantee
the existence of stable allocations, an extra assumption, namely, the irrelevance of
rejected contracts, is required as well.
Definition. The choice function of hospital h satisfies the irrelevance of rejected
contracts if for any X ′ ⊆ X, and any x ∈ X ′, if x /∈ Ch(X ′ ∪ {x}), then Ch(X ′) =
Ch(X ′ ∪ {x}).

In words, h’s choice function is irrelevant to rejected contracts if chosen contracts
do not change due to deleting rejected contracts from the set of contracts. The good
news for Hatfield and Milgrom’s work is that the irrelevance of rejected contracts is
satisfied when having substitutability and the law of aggregated demand.
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More complex extensions such as the many-to-many matching market model have
been studied as well. A pioneering article in the extension of Gale-Shapley’s model
to the many-to-many setting was made by Blair [29], studying the case in which
workers and firms must form partnerships (workers can work in several firms at the
same time), obtaining a lattice structure of the set of stable allocations with salaries,
extending [71] and [75]. Baïou and Balinski [20] extended known results in one-to-one
and one-to-many to the many-to-many setting. In [22], the same authors went further
in the extension by considering an allocation problem between suppliers and acquirers
in which many copies of the same good can be allocated from suppliers to acquirers.

A third problem was introduced in the seminal article of Gale and Shapley [53]:
roommates. The roommates problem, part of the non-two-sided matching market
models, consists of an even finite set of agents D, each of them having an exogenous
preference ordering >d over the rest of the agents, and seeking to match in pairs.
The partition of the set of agents into pairs has to be stable, that is, no pair of
agents, not already together, can both prefer to abandon their partners and match
together. Formally, a matching µ (a partition of D in pairs) is stable if there is no
(d1, d2) ∈ D ×D, d1 6= µ(d2), such that,

d2 >d1 µ(d1) and d1 >d2 µ(d2)

Unlike the stable marriage problem, the roommates problem does not always have a
stable solution, as Gale and Shapley already observed in their article: Consider four
agents D = {1, 2, 3, 4}, each of them with the following strict preferences on their
possible partner,

Preferences

Agents

1 2> 3> 4
2 3> 1> 4
3 1> 2> 4
4 Arbitrary

It is not possible to make a stable partition of the four players into two pairs as the
agent paired with 4 will always find somebody else to get matched, who will also
prefer to change.

Knuth asked the question of designing an algorithm to compute a stable allocation
whenever it exists. Irving [68] answered with a polynomial algorithm to compute
a solution if it exists or to report the non-existence of stable allocations for those
instances without a solution. His algorithm has two phases, a first one in which agents
propose and dispose, as in the deferred-acceptance algorithm of Gale and Shapley, and
a second one in which potential couples are banned from the system until a solution
is reached or the infeasibility of the stable matching is discovered (also possible to be
discovered during the first phase).

Tan [97] studied necessary and sufficient conditions for the existence of stable
matchings in the roommates problem as he argued that Irving’s algorithm, despite
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reporting the non-existence of a stable solution, does not clearly illustrate the reason.
He proved that an instance of the roommates problem has a stable matching if and
only if it does not allow the existence of stable partitions with odd parties. A stable
partition is a partition of the set D in coalitions of any size such that no pair of agents
from different coalitions both prefer to be together. Stable partitions can be seen as
partitions of D in cycles (parties) where each agent points to her most desired partner.

Many extensions of the roommates problem to the transferable utility setting have
been done. As Balinski and Ratier, Eriksson and Karlander [49] explored a graph-
theoretic method to study the existence of stable allocations of the roommates with
transferable utility problem. As Shapley and Shubik, Talman and Yang [96] as well as
Chiappori et al. [34], used the linear programming approach to solve their problems.
As Demange et al. in their first algorithm, Andersson et al. [10] designed a price
adjustment process that computes, under integral payments, a stable allocation or
disproves its existence in finite time.

Shioura [94] made the connection between roommates with transferable utility and
the assignment game of Shapley and Shubik [93]. More precisely, Shioura reduced his
problem to a particular assignment game in an auxiliary bipartite graph and proposed
an extension of the algorithm of Andersson et al. [10] to compute a stable allocation
in case of existence.

Up to our knowledge, the only extension of the roommates problem to the non-
transferable utility domain has been made by Alkan and Tuncay [9]. In their model
each couple of agents (d1, d2) has a decreasing and continuous partnership function u1,2
that, given the payoff of one of the agents f1 ∈ R, it outputs the payoff of the partner
f2 = u1,2(f1). The authors proved that the set of stable allocations is either empty
or equivalent to the set of realizable balanced aspirations. Balanced aspirations are
payoff profile f ∈ R|D| at the ones no agent in the market is overdemanded. Formally,
we define the demand set of agent d at f as,

Pd(f) := {d′ ∈ D : fd = ud,d′(fd′)}

Then, f is a balanced aspiration if no agent belongs to more than one demand set.
Balanced aspiration always exists. Alkan and Tuncay designed a market procedure
(an analogous mechanism to the one of Andersson et al. for the continuous non-
transferable setting) that, in polynomial time, outputs an ε-balanced aspiration7.
Whenever a balanced aspiration f is realizable by an allocation, that is, there exists
a matching µ such that, fd = ud,µ(d)(fµ(d)) if d is matched, and equal to f

d
otherwise,

where f
d
is the individually rational payoff of agent d (her utility for being single),

the pair (allocation, aspiration) is stable. However, this is not always the case and
balanced aspirations may need to be implemented by semi-allocations, i.e., relaxed
matchings in which agents can be matched with two partners and their final payoff
are the average of those received from each partner (probably related to the fact of
having stable partitions with odd-parties of size at least three).

7Recall that for matching problems with continuous utilities finding exact solutions is still an
open problem.
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Roommates with ordinal preferences, transferable utility, and non-transferable
utility can be seen as particular cases of hedonic games [32, 42] in which agents
within a set D seek to create coalitions of any size and players receive a utility de-
pending on the agents in their same coalition. Preferences can be considered in many
ways. Agents may have Boolean preferences [19], either they like or dislike the coali-
tion; friend-oriented preferences [72], each agent partitions the set of other agents
into friends, enemies, and neutral agents, and gets payoff 1,−1, and 0 respectively,
for each of those agents in her coalition; or enemy-oriented preferences where agents
ranked as enemies give utility −n when they are present in the coalition; among oth-
ers. Utilities can be of many ways as well. Agents can have additive separable [18],
fractional additive separable [17], or role-based payoff functions [95], among others.

Other extensions in the literature of stable matching concern the temporality of
the problem. Practical applications as kidney allocation [27, 103] or ride-sharing
[8, 26, 101] have showed that agents (or items) within the market may not be present
at the same time as they may arrive at different moments. Many years passed until the
stable marriage problem of Gale and Shapley finally got its first dynamic extensions.
Damiano and Lam [38] defined a finite repeated-time model in which agents can change
partners between periods. All agents are present in the market from the beginning
and utilities depend on the ones obtained at each period.

Caldentey et al. [31], Adan and Weiss [6], Bušić et al. [30], and Adan et al.
[5], among others, worked in a stochastic matching model in which agents (or items)
arrive to the market in a discrete-time process following probability distributions.
Items within each side have different types and a fixed bipartite graph gives the
compatibility links between items from different sides.

A particular issue raises in dynamic matching market models. In many settings,
agents cannot decide when or with who get matched as they have to follow predefined
matching policies. For example, in kidney allocation patients are ranked according
to a point system and, as soon as an organ arrives, it is assigned to the highest
ranked patient subject to compatibility. In ride-sharing, as soon as a rider arrives at
the market, the closest driver is assigned to her in order of minimizing the waiting
time of the customer. One of the most studied matching policies is first-come-first-
served (FCFS) [5, 6, 30, 31, 35, 82] in which arriving agents get matched to the oldest
compatible agent at the other side. Matching policies that match agents as soon
as they arrive are called greedy policies and stochastic matching models with greedy
policies can be associated with Markov processes. Adan and Weiss [6] and Adan et al.
[5] defined several discrete-time Markov chains, found conditions for ergodicity, and
derived their stationary distributions.

Matching games
In real-life bilateral markets, to be attractive, an agent can take actions that cannot
be modeled by monetary transfers. When a firm hires a worker, it can combine
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the monetary transfer with employee perks: medical insurance, gym, extra time-off,
flexible schedule, childcare assistance, and days of remote work. The worker can
promise to be flexible, work hard, learn new technologies, and be respectful of the
company code of conduct. When a university hires a professor, it can reduce or
increase its teaching duties, require a minimum number of top publications, ask for
some responsibilities in the department, etc. The professor can promise to publish in
top journals, be an excellent teacher, apply for grants, accept some responsibilities,
organize a seminar, and supervise Ph.D. students. All those actions are individual
decisions that can be put explicitly or implicitly in a contract but each agent is
responsible for her part. Each agent will do what is needed to be accepted by the other
party and will refuse to engage if she judges the partner’s proposition as insufficient.

In this thesis, we present a novel matching market model by supposing that in-
dividual members of a couple or coalition obtain their payoffs as the output of a
strategic game, simultaneously played with the matching. We study three models,
generalization of the three problems presented by Gale and Shapley in their seminal
paper [53]:

1. One-to-one matching games,
2. One-to-many matching games, and,
3. Roommates matching games

For each of them, we will introduce the model, challenges, and results. Then, we will
study a fourth model, a dynamic matching market in continuous time in which agents
arrive and leave following probability distributions.
1. One-to-one matching games considers two finite sets of agents D and H, doctors
and hospitals, respectively, who seek to match in couples. Given a couple (d, h) ∈
D ×H, we endow them with a strategic two-player game

Gd,h = (Xd, Yh, fd,h, gd,h)

where Xd is d’s action/strategy set, Yh is h’s action/strategy set, and fd,h, gd,h :
Xh×Yh → R are the utility functions of d and h, respectively. Remark the dependence
of the game on the couple’s identity: matching with a different partner may imply
playing a different game. Agents may prefer to remain single as they will be endowed
with individually rational payoffs f ∈ R|D| and g ∈ R|H|.
Definition. A matching game is any tuple Γ given by,

Γ = (D,H, (Gd,h : d ∈ D, h ∈ H), f , g)

If a couple (d, h) gets matched, player d chooses xd ∈ Xd and player h chooses
yh ∈ Yh, the agents’ final utilities in the allocation are fd,h(xd, yh) and gd,h(xd, yh),
respectively. An allocation of the one-to-one matching game is a triplet π = (µ, ~x, ~y),
with µ a (one-to-one) matching between D and H (possibly letting some agents
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unmatched), ~x = (xd)d∈D ∈
∏
d∈DXd a strategy profile for all agents in D, and

~y = (yh)h∈H ∈
∏
h∈H Yh a strategy profile for all agents in H. Given an allocation

π, we define the players’ utilities by,

fd(π) :=
{
fd,µ(d)(xd, yµ(d)) if d is matched

f
d

otherwise

gh(π) :=
{
gµ(h),h(xµ(h), yh) if h is matched

g
h

otherwise

The first property that we will ask for our allocations is individual rationality.
Definition. An allocation π is individually rational if no agent receives less than
her individually rational payoff.
Example 1. Consider a matching game with only one agent d and one agent h, both
having strictly positive IRPs f

d
= g

h
= δ > 0. Suppose that, if they agree to match,

they play the following prisoners’ dilemma G,

Agent h

Agent d
Cooperate Betray

Cooperate 2δ, 2δ −δ, 3δ
Betray 3δ,−δ 0, 0

Notice that matching and playing the Nash equilibrium of G is Pareto-dominated
by remaining single. In other words, the allocation in which agents match and play the
Nash equilibrium is not individually rational. Intuitively, to have a stable allocation
in which agents match, players should cooperate with some positive probability.
Example 2. A matching problem with linear transfers, as the assignment game of
Shapley and Shubik, can be represented by a family of constant-sum games where
the set of strategies are Xd = Yh = R+, and the payoff functions are fd,h(xd, yh) =
−xd + yh + ad,h and gd,h(xd, yh) = xd − yh + bd,h, with ad,h and bd,h representing the
utility of being with the partner when there is no transfer.8

Suppose that some (centralized or decentralized) process leads to an allocation
where agents are matched in pairs and each matched player is intended to play some
action. We want to formulate the necessary conditions for that allocation to be
sustainable. Two solutions concepts can be defined depending on the players’ level
of commitment before they play their game. Commitment can be related to the
capacity of the agents to sign binding contracts at the moment of getting matched.
Moreover, commitment is a key assumption in the literature of stable matching with

8The game of transfers is a constant-sum game as the sum of payoffs fd,h(xd, yh) + gd,h(xd, yh) =
ad,h + bd,h does not depend on xd or yh. Strategically, this is equivalent to a zero-sum game and it
is a particular instance of a strictly competitive game.
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endogenous utilities (such as matching with transfers and matching with contracts).
The literature on matching does not describe the precise commitment process but
rather defines a static notion of stability and proves, using for example a deferred-
acceptance algorithm, the existence of such a stable allocation. Following this idea,
we study the algorithmic results for both submodels.

The first solution concept studied is when matched couples cannot commit e.g.
they cannot sign a binding contract before they play their game. In this case, for the
players not to deviate from the intended actions, these last must constitute a Nash
equilibrium of their game.
Definition. An individually rational allocation π = (µ, ~x, ~y) is,

1. Nash stable if all matched couples play a Nash equilibrium,
2. Pairwise stable if there is no pair of agents (d, h) and Nash equilibrium (x′d, y′h)

of Gd,h such that,

fd,h(x′d, y′h)>fd(π) and gd,h(x′d, y′h)>gh(π)

Pairwise stability is the natural extension of Gale-Shapley’s stability condition to
the matching games without commitment setting. Using a novel deferred-acceptance
with competitions algorithm, it is proved that whenever all games Gd,h admit a non-
empty and compact set of Nash equilibria, a Nash stable and pairwise stable allocation
exists. In addition, a semi-lattice structure holds: the maximum between two Nash
stable and pairwise stable allocations for each side’s preferences is stable. When all
games Gd,h have a unique Nash equilibrium payoff (as in zero-sum games or, more
generally, strictly competitive games), the model becomes a classical stable marriage
problem and so, the full lattice structure is recovered. Moreover, the duality between
the maximum for one side and the minimum for the other side is obtained as well.

It is important to remark that games with monetary transfers, such as the works
of Shapley-Shubik [93] and Demange-Gale [39], are constant-sum games where the
unique Nash equilibrium is (x∗d, y∗h) = (0, 0), as the null transfer is a strictly dominant
strategy. For positive transfers to occur, players must be able to commit. This is
implicitly assumed in the literature of matching with transfers. In other words, the
model of matching games without commitment, although natural, fails to capture the
classical models of matchings from the literature. Let us illustrate this.
Example 3. Consider a matching game with only two players d and h, both having
a fixed and positive utility δ > 0 for remaining single (their outside option), such that,
in case the agents decide to match together, they play a constant-sum game as in
Example 2, Gd,h = (R+,R+, fd,h, gd,h) with payoff functions given by,

fd,h(xd, yh) = −xd + yh + 10δ, gd,h(xd, yh) = xd − yh,∀xd, yh ≥ 0

The only Nash equilibrium of the transfer game Gd,h is the null transfer (xd, yh) =
(0, 0), as any positive transfer is a dominated strategy. Therefore, an allocation in
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which the agents are matched is Nash stable if and only if they do not make transfers.
For a null transfer profile, notice agent h gets utility 0. However, she is better off
being single as she gets δ. Therefore, a Nash stable allocation is individually rational
if and only if the agents are not matched.

The second solution concept studied corresponds to the one in which players can
commit (e.g. by signing binding contracts). Making an abuse of notation, we call as
well pairwise stable to the extension of Gale-Shapley’s stability to the model under
commitment. Indeed, the stability notions of both settings, with or without commit-
ment, will be captured by a more general.
Definition. An individually rational allocation π = (µ, ~x, ~y) is pairwise stable if
no pair of agents (d, h) can jointly deviate to some strategy profile (x′d, y′h) in their
game Gd,h that Pareto improves their payoffs, i.e.,

fd,h(x′d, y′h)>fd(π) and gd,h(x′d, y′h)>gh(π)

Notice that agents are not restricted to play in their Nash equilibrium set anymore.
The previous definition is the natural extension of Gale-Shapley’s stability to the
setting with commitment. A similar algorithm to the one used in the setting without
commitment allows us to prove that, for any setting in which all the strategic games
Gd,h have compact Pareto-optimal strategy sets and continuous payoff functions, there
exists a pairwise stable allocation. A semi-lattice structure holds as well for the set of
pairwise stable allocations: the maximum between two pairwise stable allocations for
each side’s preferences remains stable. The full lattice structure is recovered when all
games Gd,h are constant-sum games (or, more generally, strictly competitive games).

Unlike the model without commitment, matching games with commitment success-
fully capture the matching models from the literature. For example, Shapley-Shubik’s
and Demange-Gale’s models are particular instances of matching games with commit-
ment models where all the strategic games are strictly competitive. Pairwise stability
coincides with their notions of stability and our deferred-acceptance with competi-
tions algorithm computes stable solutions for their models. In addition, we recover
the lattice structure of Demange and Gale’s model.

Players are rational and choose actions optimally. As agents can commit, playing
optimally does not necessarily imply playing in equilibrium. In a setting with commit-
ment agents maximize their utilities subject to satisfy the partners’ outside options:
the potential utilities they can obtain with somebody else. For example, a firm has
to match the market salary of a worker in order to keep her. From another point of
view, having an outside option (given by the market salary or by the salary offered
by a competitor firm) allows to the worker to negotiate her salary with the firm. We
prove that a constrained Nash equilibrium condition must naturally hold.
Definition. A pairwise stable allocation π = (µ, ~x, ~y) is negotiation proof if for
any couple (d, h) ∈ µ and any (sd, th) ∈ Xd × Yh, it holds,

1. If fd,h(sd, yh) > fd(π) then, (µ, (~x−d, sd), ~x) is not pairwise stable,
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2. If gd,h(xd, th) > gh(π) then, (µ, ~x, (~y−h, th)) is not pairwise stable.

An allocation π = (µ, ~x, ~y) is renegotiation proof if any profitable deviation of a
player in her game decreases the partner’s payoff below her market outside option.
Said differently, fixing yh, xd must maximize the payoff of player d under the constraint
of participation of player h, and vice-versa. We define this kind of strategy profile as
constrained Nash equilibria (see below for the formal definition).

Putting all together, our solution concept combines a cooperative notion (Gale-
Shapley’s pairwise stability) with a non-cooperative notion (a generalized Nash equi-
librium condition). A similar solution concept is used in network formation games:
fixing the network, players’ actions must maximize their payoffs, and for each link in
the network, both players must agree to form that link (see Jackson and Wolinsky
[69] or Bich and Morhaim [28]). The one-to-one matching games model can be seen
as a particular network game model where only bipartite graphs are possible and a
link is formed if the two extreme players agree to match.

The concept of renegotiation-proofness has received particular interest in infinitely
repeated games and mechanism design [2, 3, 12, 51, 86, 92, 99]. Our notion is more
closely related to Dewatripont [41] who considers a setting in which agents can achieve
agreement on contracts due to the existence of third parties.

We prove that an allocation is renegotiation proof if and only if all couples play
constrained Nash equilibria for their reservation prices.

Definition. Let (d, h) be a couple in an allocation and suppose that f0 and g0
represents the minimum payoffs that d and h, respectively, are willing to accept in
order of being matched with the other one. In other words, f0 and g0 are the agents’
reservation prices or outside options. Then, their strategy profile (xd, yh) is a (f0, g0)-
constrained Nash equilibrium if,

fd,h(xd, yh) = max{fd,h(s, yh) : gd,h(s, yh) ≥ g0, s ∈ Xd}
gd,h(xd, yh) = max{gd,h(xd, t) : fd,h(xd, t) ≥ f0, t ∈ Yh}

We define a class of strategic games (called feasible games (Definition 3.4.1)) as
those games that admit the existence of constrained Nash equilibria and prove that:
(a) when all games Gd,h are feasible, a novel renegotiation process, if it converges,
reaches a pairwise-strategy-proof stable allocation and (b) this new algorithm con-
verges when all games are constant-sum, strictly competitive, potential or infinitely
repeated. As strictly competitive games are feasible, Shapley-Shubik’s and Demange-
Gale’s results are recovered and refined.

The proof that a game is feasible uses the properties of the game. In other words,
the proof is game dependent. For example, for potential games, we prove the ex-
istence of constrained Nash equilibria by maximizing the potential function over an
appropriated set. For each of the four feasible games mentioned we design an oracle to
compute constrained Nash equilibria (e.g. maximizing the potential function) which
guarantee the convergences of the renegotiation process.
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For most of the games, the algorithms designed to compute pairwise-renegotiation-
proof allocations obtain, in addition, allocations in which all couples play Pareto-
optimal strategy profiles. For the deferred-acceptance with competitions algorithm,
it is enough to restrict the strategy profiles of the agents to their Pareto-optimal sets.
For the renegotiation process, it is enough to consider oracles that choose Pareto-
optimal constrained Nash equilibria. For games such as zero-sum, strictly compet-
itive, or infinitely repeated games, our oracle manages to select a Pareto-optimal
constrained Nash equilibria. However, this is not the general rule as for many games,
e.g. potential games such as the prisoners’ dilemma, Pareto-optimality and stability
are incompatible.

An interesting setting is obtained for one-to-one matching games with commitment
in which couples play non-degenerated infinitely repeated games.
Definition. We say that an infinitely repeated game is non-degenerated if the set
of uniform equilibrium payoffs E has a non-empty interior.

Let us better explain this point. Consider two games, a matching pennies G1, and
a prisoners’ dilemma G2, both of them expressed in the following payoff matrices,

Player 2

Player 1
G1 A B
A 1 -1
B -1 1

Table 3: Matching pennies

Player 2

Player 1
G2 Cooperate Betray

Cooperate 2, 2 −1, 3
Betray 3,−1 0, 0

Table 4: Prisoners’ dilemma

Matching pennies is a zero-sum game with value w = 0 achieved when each agent
plays A and B with equal probability. Prisoners’ dilemma is a potential game with
Nash equilibrium payoff (0, 0) achieved when both players betray. Suppose we repeat
infinitely many times these games. For each of them we can define the sets of feasible
and non-punished payoff profiles E1 and E2, respectively as,

E1 := {(f, g) ∈ co((−1, 1), (1,−1)) : f ≥ 0, g ≥ 0} ⊆ R2

E2 := {(f, g) ∈ co((2, 2), (−1, 3), (3,−1), (0, 0)) : f ≥ 0, g ≥ 0} ⊆ R2

where co(·) states the convex envelope. Figure 2 shows the sets E1 and E2. Set E1
corresponds to a single point in R2. In particular, E1 has an empty interior. On the
other hand, the set E2 has a non-empty interior as we can observe in the figure. By
the Folk theorem of Aumann-Shapley [15], we know the sets E1 and E2 correspond to
the sets of uniform equilibrium payoffs of each game. Therefore, we obtain that the
infinitely repeated version of the matching pennies is a degenerated game, while the
infinitely repeated version of the prisoners’ dilemma is non-degenerated.

The dynamic aspect of repeated games allows the couples to forget the commit-
ment initially imposed by the model as agents can punish their partners for their
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Figure 2: Feasible and non-punished payoff profiles sets

deviations in actions. To be more precise, for non-degenerated games as the repeated
version of the prisoners’ dilemma above, constrained Nash equilibrium payoffs are al-
ways (weakly) Pareto-dominated by a uniform equilibrium payoff. In particular, we
can always replace the constrained Nash equilibria of the couples with uniform equi-
libria without affecting the pairwise stability and strategy proofness of the allocation.
Therefore, infinitely repeated (non-degenerated) games satisfy the strongest notion of
stability able in our model: Pareto-optimality, pairwise stability, and Nash stability.

Example 3 above showed the limits of the one-to-one matching games model with-
out commitment, namely, it fails to capture classical matching models from the lit-
erature as the one of Shapley and Shubik. This is not the case for a model with
commitment as all the models discussed at the beginning of this chapter are success-
fully captured. Due to this, the following two models studied in the thesis consider
commitment as a key assumption.
2. One-to-many matching games with substitutes (and commitment), the generaliza-
tion of the college admissions problem, the second problem presented by Gale and
Shapley in [53], as well as the generalization of one-to-one matching games with com-
mitment, consider that agents within one side, the hospitals H from now on, can be
matched with many partners at the same time. Formally, given a set I ⊆ D allocated
in h ∈ H, and given strategy profiles ~xI ∈

∏
d∈I Xd, ~yh,I = (yh,d)d∈I ∈ Y |I|h , the players’

payoffs are given by,

fd,h(xd, yh,d),∀d ∈ I, and gI,h(~xI , ~yh,I)

that is, the payoff function of hospital h depends on the identity of the entire set
of doctors I, the strategies played by all these doctors, and the strategy profile ~yh,I
played by h, where each yh,d represents the particular strategy played by h against
the doctor d. Doctors’ payoff functions are like in the one-to-one model.
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Pairwise stability for one-to-one matching games considered only blocking pairs
as only couples were allowed. Since agents in H can be matched with many partners
now, we consider Core stability.
Definition. An allocation π = (µ, ~x, ~y) is blocked by a coalition of doctors I ⊆ D

and a hospital h if there exist (~wI , ~zh,I) ∈ XI × Y |I|h , such that,

∀d ∈ I, fd,h(wd, zh,d)>fd(π),
gI,h(~wI , ~zh,I)>gh(π),

where fd(π) and gh(π) are the payoffs of d and h, respectively, in π. π is Core stable
if it is individually rational and it is not blocked.

To obtain the existence of Core stable allocations we endow hospitals with additive
separable payoff functions and quotas. Formally, we say that h ∈ H has an additive
separable payoff function and quota qh ∈ N, if,

gI,h(~xI , ~yh) =

∑
d∈I

gd,h(xd, yh,d) if |I| ≤ qh

−∞ otherwise
with gd,h : Xd × Yh → R,∀d ∈ I

A generalization of the deferred-acceptance with competitions algorithm proposed
for one-to-one matching games proves the existence of Core stable allocations for
any one-to-many matching game in which agents in H have additive separable payoff
functions and quotas, and all agents have compact strategy sets and continuous payoff
functions9. The advantage of additive separability is that Core stability is reduced
to pairwise stability (as the one for one-to-one matching games). In particular, we
do not need to use a cumulative offer mechanism as the one of Hatfield and Milgrom
but only a deferred-acceptance algorithm. Two important benefits come from this
change of mechanism: (1) Cumulative offer mechanisms do not give a constructive
way to compute stable allocations as they need fixed point theorems to guarantee
convergence and (2) thanks to their simplicity, the complexity of deferred-acceptance
algorithms can be properly studied. Our characterization of core stable allocations
(called stable* in [48]) through pairwise stable allocations is in line with the work of
Echenique and Oviedo [48] (called stable in [48]). However, our algorithm does not
require fixed points theorem to obtain its convergence as we do not iterate a mapping
but run a deferred-acceptance like algorithm.

The separability of hospitals’ payoff functions on one payoff function per doctor
allows us to directly apply the renegotiation proofness notion as defined for one-to-
one matching games to the one-to-many model, refining the models of Kelso-Crawford
and Hatfield-Milgrom, among others. Indeed, the same renegotiation process can be
used. In particular, we can prove the existence of Core stable and renegotiation proof

9The discontinuity of hospitals’ payoff functions due to quotas does not present issues for the
deferred-acceptance with competitions algorithm.
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allocations for any matching game with zero-sum, strictly competitive, potential, or
infinitely repeated games.
3. Roommates matching game is the generalization of the third problem presented by
Gale and Shapley. Formally, we consider a set of agents D and endow to each player
d ∈ D with a strategy set Xd, and to any couple (d1, d2) ∈ D ×D with the strategic
game Gd1,d2 = (Xd1 , Xd2 , fd1,d2 , fd2,d1).

An allocation in this setting is a pair π = (µ, ~x) where µ is a one-to-one matching
and ~x ∈ ∏d∈DXd is a strategy profile. Our pairwise stability notion captures the sta-
bility of the roommates problem in its many variants: ordinal preferences, transferable
utility, and non-transferable utility.

We leverage the work of Alkan and Tuncay in roommates with non-transferable
utility to study the existence of pairwise stable allocations. We use the market proce-
dure designed in [9] to compute a payoff profile f ∈ R|D| that, whenever an allocation
π can implement it, that is, for any d ∈ D, π satisfies fd(π) = fd, with,

fd(π) :=
{
fd,µ(d)(xd, xµ(d)) if d is matched

f
d

otherwise

where f
d
is the individually rational payoff of player d, π is pairwise stable.

As only couples are allowed in the model, our renegotiation proofness notion can
be directly applied, refining the solution concepts of the literature. In particular, our
renegotiation process works in any feasible game with an oracle that achieves the
convergence of the algorithm.

We finish the introduction of the matching games model with the following obser-
vation. There are different ways of associating a strategic game to a Shapley-Shubik’s
[93], Demange-Gale’s [39], or Hatfield-Milgrom’s [66] model, among others. Our Core
and pairwise stability notions always coincide with their stability, but each strategic
game modeling induces, thanks to renegotiation proofness, a different selection among
the stable outcomes. For example, suppose that in Shapley-Shubik’s model, there is
only one seller and one buyer, the seller has cost c for the house and the buyer has
a value v for it. If v < c, there is no possibility of trading. Otherwise, the surplus
v − c is positive and any price p between c and v corresponds to a pairwise stable al-
location. If the strategic interaction between the buyer and the seller is an ultimatum
bargaining game [1] where the seller is the first proposer (resp. the buyer is the first
proposer), the pairwise stable and renegotiation proof selected outcome is p = v (resp.
p = c). On the other hand, if the strategic interaction is modeled by the Rubinstein
alternating offers bargaining game [84] with equally patient players, the outcome is
the Nash bargaining solution p = (v − c)/2. Therefore, different bargaining games
between buyers and sellers induce, due to renegotiation proofness, different sharing of
the surplus. This is not modeled in the standard literature with transfers and is one
of the main contributions of our work.

The last model discussed in this thesis corresponds to a dynamic matching market
in continuous time, and it is a joint work with Marco Scarsini. We consider a one-
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to-one two-sided market with sides A and B, where agents arrive following Poisson
processes with rates λA and λB, respectively. Agents can naturally leave the market
due to death or tiredness at rates µA and µB, respectively. Agents within the market
get matched following a fixed matching policy Φ, and coupled agents leave the market
and never return. Given the state of the market at some time t> 0, namely (At, Bt),
an arriving agent k draws uniform random utilities in [0, 1] over all the agents present
at the time on the other side, representing the utility that k gets by matching with
each of them. Similarly, the agents on the other side draw uniform random utilities
in [0, 1] for being with k.

Agents are endowed with individually rational payoffs ρk ∈ [0, 1],∀k ∈ A∪B, i.e.,
their utilities for being single, and never accept a matching with utility lower than ρ.

We study greedy matching policies, that is, matching policies that are triggered
with every arrival, as first-come-first-served. Given a fixed greedy matching policy
Φ, we consider the continuous-time Markov chain given by (Zt = (|At|, |Bt|)t≥0) that
follows the number of agents in the market at every moment t ≥ 0. Continuous-time
Markov chain can be studied by considering their jump chain (Wn)n≥0 indexed only
on the jump times, that is, whenever an agent arrives or naturally leaves.

Agents proposed to be matched with a partner accept only if the utility obtained
is at least their individually rational payoff. Therefore, if a is an agent arriving to A
at the jump time n, the probability that she gets matched is given by,

pa := P(a gets matched) =
(1− ρa) · (1−

∏
b∈Bn ρb) if Bn 6= ∅,

0 otherwise.
The probabilities (pa, pb)a∈A,b∈B cannot depend on the identity of the agents presented
on the market at time n if we want to obtain a time-homogeneous Markov chain.
Definition. We say that agents have anonymous IRPs whenever the probabilities
(pa, pb)a∈A,b∈B do not depend on the identity of the players but only on the number
of agents at the other side of the market.

Taking anonymous individually rational payoffs the Markov chain (Wn)n becomes
a random walk in N2. The probability of passing to a higher state is always lower
than passing to a lower state since the random walk cannot explode: agents can
leave the market in two ways, either because they naturally left or because they got
matched. Matchings occur at a similar rate to arrivals (depending on the IRPs values)
therefore, the random walk decreases its values more often than increases them. Thus,
our random walk is non-homogeneous in space.

Using Foster’s criterion we prove that (Wn)n is positive recurrence (therefore,
proving that (Zt)t is positive recurrent as well). Then, imposing reversibility, namely,
that for any (i, j) ∈ N it must hold,

π(i)P (i, j) = π(j)P (j, i)
where π is a stationary measure of (Wn)n and P its transition matrix, we find a
recursive expression for π and deduce that the stationary distribution of (Zt)t has a
product-form.
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Finally, empirical experiments show that deferred-acceptance greedy matching
policies, that is, running Gale-Shapley’s algorithm at every arrival, outperform other
greedy matching policies as first-come-first-served and random allocation.

Our contributions
In this thesis, we present the novel matching games model in which finitely many
agents match and receive utilities as the outputs of strategic games. Two submodels
are obtained depending on the level of commitment of the agents. We studied more
extensively matching games with commitment as they are more challenging mathe-
matically but also capture and refine a broad number of models in the literature such
as: the stable marriage problem, the college admissions problem, and the roommates
problem of Gale and Shapley [53], the assignment game of Shapley and Shubik, the
matching with transfers problem of Demange and Gale [39], the job matching mar-
ket of Kelso and Crawford [71], the matching with contracts of Hatfield and Milgrom
[66], the roommates with transferable utility problem [10], and the roommates with
non-transferable utility problem [9]. Our notions of Core and pairwise stability are
equivalent to the stability notions considered in each of these problems, and our novel
renegotiation proofness notion refines their stable solutions.

Chapter 2 designs a deferred-acceptance with competitions (DAC) algorithm for
two-sided matching markets to compute pairwise stable allocations under classical
game theory assumptions. Moreover, the algorithm runs in a bounded number of
polynomial-time iterations for many well-known games from the literature of game
theory. We extend classical results in two-sided matching markets as the lattice struc-
ture of the set of stable allocations and the optimality of the DAC algorithm for the
proposer side to our new setting.

Among the most important contributions, Chapter 3 defines a novel notion of
stability, renegotiation proofness: Agents within the same couple are rational and must
best-reply to the partner. However, as agents can commit in actions, best replies are
constrained to guarantee some threshold payoff to the partners, their outside market
option (minimum payoff that partners may accept to get matched). Renegotiation
proofness is defined over pairwise stability, refining all the stability concepts from the
literature that the model captures.

Chapter 3 characterizes renegotiation proofness as a constrained Nash equilibrium
(CNE) condition and designs a renegotiation process to compute pairwise stable and
renegotiation proof allocations whenever the strategic games allow the existence of
CNE and the process converges. Moreover, the convergence of the algorithm is guar-
anteed for many well-known games, including Shapley-Shubik’s and Demange-Gale’s
models. In addition, for the same games as the DAC algorithm, the renegotiation
process has a bounded number of polynomial-time iterations.

Chapter 4 presents a novel two-sided one-to-many matching games model in which
agents within one of the sides, namely the set H, can be matched with many agents
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at the same time, successfully capturing the seminal model of Hatfield and Milgrom,
matching with contracts [66].

Matching with contracts considers a one-to-many matching market in which agents
are endowed with choice functions. The choice functions output the most preferred
contract/contracts of each agent, given a set of possible contracts in the market.
The authors proved the existence of stable allocations whenever agents in H have
substitute contracts.

Aygün and Sönmez [16] exposed that different models are obtained if agents’ choice
functions are treated as primitives of the model or they are induced from preference
rankings. Although Hatfield and Milgrom’s model belongs to the second type, they
treated their choice functions as primitives. Therefore, to truly guarantee the existence
of stable allocation, an extra assumption, namely the irrelevance to rejected contracts,
is required as well. One of the main contributions of Chapter 4 is the fact that our one-
to-many matching games model works directly with the primitives of the problem (the
payoff functions) allowing us to: (1) better understand the reasons for the existence
of Core stable allocations, (2) understand the relationship between pairwise and Core
stability, (3) refine the model with contracts by applying the notion of renegotiation
proofness, (4) to consider infinitely many contracts in the market, and (5) to study
the complexity of the proposed algorithms.

Point (2) is particularly interesting. Whenever agents in H have additive separa-
ble payoff functions, we prove that Core stability can be reduced to pairwise stability.
In particular, cumulative offer mechanism, as the one used by Hatfield and Milgrom,
can be replaced by deferred-acceptance algorithms. Therefore, in Chapter 4 we extend
the DAC algorithm proposed for one-to-one matching games to obtain the existence
of Core stable allocations in the one-to-many setting. Under the same additive sep-
arability condition, we extend renegotiation proofness to the one-to-many setting in
Chapter 4 achieving point (3) with the same computational efficiency as the one for
one-to-one matching games (point (5)).

A third novel model is introduced in Chapter 4, namely, the roommates matching
game, an extension of the model of roommates with non-transferable utility to the
case in which couples of agents get their utilities as the outcomes of a strategic game.
As for matching with contracts, our roommates matching game refines the solution
concepts from the literature by studying renegotiation proof allocations.

Finally, Chapter 6 introduces a joint work with Marco Scarsini, a dynamic match-
ing market model in continuous-time where agents can arrive and leave the market
following stochastic processes. We compare different greedy matching policies and
study the necessary conditions for the existence of stationary distributions with a
product-form.

The thesis is structured as follows. Chapter 1 introduces the model of match-
ing games without commitment and studies the existence and computation of Nash-
pairwise stable allocations. Chapter 2 introduces the model of matching with com-
mitment and studies the existence and computation of pairwise stable allocations.
Chapter 3 introduces renegotiation proofness, our novel refinement of the stability
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notions in the literature, and studies the existence and computation of renegotiation
proof allocations. Chapter 4 introduces two extra models of matching games: one-to-
many matching games, and roommates matching games. For each of these models,
the study of the existence and computation of Core stable and renegotiation proof
allocations is conducted. Chapter 5 is dedicated to the complexity study of all the
algorithms proposed in the previous chapters, proving their computational efficiency.
Chapter 6 introduces a dynamic matching market model in which agents can arrive
and leave during the time. The last chapter concludes the thesis, gives future research
lines, and discuss some open problems.
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Chapter 1

1-to-1 Matching games without
commitment: Nash stability

This chapter is devoted to studying the model of one-to-one matching games without
commitment. One-to-one matching games, from now on, matching games, consider
two finite sets of agents and match them in couples in such a way that no agent or
pair of agents will have incentives to deviate. Matched agents receive utilities given by
the outcome of a strategic game played against the partner. Therefore, deviations can
occur in two ways: (1) couples of agents leaving their partners and matching together
or (2) agents changing of strategy in their game.

The first kind of deviations recalls the pairwise stability of Gale and Shapley [53].
We will define a pairwise stability notion for our model capturing Gale-Shapley’s one.

The second kind of deviations recalls us Nash equilibria. Agents cannot commit
due to, for example, the non-existence of bilateral contracts or the incapability of
the agents to punish (in utility) their partners. Thus, agents do not have any guar-
antee that partners will not deviate in strategies if they have profitable deviations.
Therefore, for the allocation to be stable in actions, all couples will have to play Nash
equilibria within their games.

We will establish the existence of allocations satisfying both notions of stability
at the same time through a deferred-acceptance with competitions (DAC) algorithm
and under classical game theory assumptions. Structural properties such as the lattice
structure of the set of stable allocations will be then studied.

Many models can be mapped into a matching game, e.g. the stable marriage
problem of Gale and Shapley [53], the assignment game of Shapley and Shubik
[93], or the matching with transfers problem of Demange and Gale [40]. We will
see how accurate is our model of matching games without commitment to capture
these models.

The chapter is structured as follows. Section 1.1 presents the model of matching
games and states many examples. Section 1.2 defines the notions of stability of the
model. Section 1.3 studies the existence of stable allocations. Section 1.4 studies
the lattice structure of the set of stable allocations. Section 1.5 shows a numerical
example of the deferred-acceptance with competitions algorithm designed to compute
stable allocations. Finally, Section 1.6 concludes the chapter.
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1.1. Matching games model

1.1 Matching games model
We consider two finite sets of agents D and H that we refer to as doctors and hospi-
tals1. The cardinalities of D and H are denoted |D| and |H|, respectively, and typical
elements are denoted d ∈ D and h ∈ H.

Definition 1.1.1. A matching µ is a mapping between D and H where each agent
on one side is matched to at most one agent on the other side. If d ∈ H and h ∈ H
are matched in µ, we will denote indistinctly h = µ(d) or d = µ(h).

When a couple (d, h) ∈ D × H forms, they get their payoffs as the output of a
strategic game Gd,h := (Xd, Yh, fd,h, gd,h), where Xd, Yh are the strategy sets of doctor
d and hospital h, respectively, and fd,h, gd,h : Xd × Yh → R are their payoff functions.
Denote by X := ∏

d∈DXd and Y := ∏
h∈H Yh the spaces of strategy profiles. Further

assumptions (such as compactness and continuity) over the strategy sets and payoff
functions will be specified later.

Definition 1.1.2. A doctors action profile (resp. hospitals action profile) is a
vector ~x = (x1, ..., x|D|) ∈ X (resp. ~y = (y1, ..., y|H|) ∈ Y ). An allocation is a triple
π = (µ, ~x, ~y) in which µ is a matching, ~x is a doctors action profile and ~y is a hospitals
action profile.

Given an allocation π = (µ, ~x, ~y), the players utilities are defined by,

fd(π) := fd,µ(d)(xd, yµ(d)),∀d ∈ D,
gh(π) := gµ(h),h(xµ(h), yh),∀h ∈ H,

as basically, the payoff obtained in the game played against the partners.
It is natural to suppose that each agent has a utility of being single and that this

utility is her/its individually rational payoff (IRP): she/it accepts a partner only
if the payoff of their game is at least her/its IRP. Formally, each doctor d ∈ D (resp.
hospital h ∈ H) will be attributed a value f

d
∈ R (resp. g

h
∈ R), which constitutes

the utility of being single.
We extend the agent sets D and H by adding to each of them the so-called empty

players d0, h0 who, in our future algorithms, will be respect the following rules:
(1) empty players have empty strategy sets and null payoff functions, (2) they can
be matched with as many agents as needed, but never between them, and (3) any
player matched with an empty player receives her/its IRP as payoff. We denote
D0 := D ∪ {d0} and H0 := H ∪ {h0}.

Definition 1.1.3. A tuple Γ = (D0, H0, {Gd,h : (d, h) ∈ D ×H}, f , g) will be called
a matching game.

1Unlike Gale and Shapley who considered men and women, we prefer to use the notation of
doctors and hospitals of Hatfield and Milgrom [66] to be consistent with the more general model
presented in Chapter 4.
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1-to-1 Matching games without commitment: Nash stability

To illustrate our model, we consider the following leading examples.

Example 1.1.4. Consider a matching game with only one agent d and one agent h,
both having strictly positive IRPs f

d
= g

h
= δ > 0. Suppose that, if they agree to

match, they play the following prisoners’ dilemma G,

Agent h

Agent d
Cooperate Betray

Cooperate 2δ, 2δ −δ, 3δ
Betray 3δ,−δ 0, 0

Notice that matching and playing the Nash equilibrium of G is Pareto-dominated
by remaining single. Intuitively, to have a stable allocation in which agents match,
players should cooperate with some positive probability.

Example 1.1.5. Consider a matching game with only one agent d and one agent h,
both having strictly positive IRPs f

d
= g

h
= δ > 0. Suppose that, if they agree to

match, they play the following game G:

Agent h

Agent d
A B

A 4δ, δ/2 0, 0
B 0, 0 δ/2, 4δ

With the same intuition as in Example 1.1.4, notice that none of the pure Nash
equilibria of G should be stable. Indeed, in both pure N.E. there is a player that is
worst off than being single, and therefore, she should not prefer to be matched.

Example 1.1.6. Consider a matching game with only one agent d and one agent h,
both having strictly positive IRPs f

d
= g

h
= δ > 0. Suppose that, if they agree to

match, they play a constant-sum game

G = (R+,R+, fd,h, gd,h), such that for any x, y ≥ 0,
fd,h(x, y) = 10δ − x+ y

gd,h(x, y) = x− y

Game G corresponds to a transfer game in which each player increases her payoff
thanks to the transfer of the partner, and decreases it due to her transfer. Since
positive transfers are always strictly dominated by the null transfer, the only Nash
equilibrium of G is (x, y) = (0, 0). However, h is better off being unmatched than
matching and receiving a null transfer. Thus, matching and playing the Nash equi-
librium of the game is unstable.

Notice that being single is Pareto-dominated by agent d offering a money transfer
x ∈ [δ, 9δ] to agent h and h accepting to be matched.
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Example 1.1.7. Consider a market with a set of n buyers N = {1, ..., n}, and one
seller h of an indivisible good. Buyers in N have strictly positive values for the good,
(vd)d∈N ⊆ R+. The seller has a reservation price c, strictly positive as well. Let us set
the IRPs of the agents equal to 0. Since the good is indivisible, only one buyer can
be matched with the seller. If a couple buyer-seller (d, h) is created and the monetary
transfers (xd, yh)2 is agreed, the item is sold from h to d at the price p = xd − yh.
In particular, the utilities of the players are fd(xd, yh) = vd − p = vd − xd + yh,
gh(xd, yh) = p − c = xd − yh − c, and fd′ = 0 for any other buyer d′ ∈ N \ {d}. If
c>max{vi : i ∈ N}, notice no buyer is willing to pay for the good as they are better
off being unmatched.

1.2 Nash and pairwise stability
The first condition we will ask to any allocation is individual rationality.

Definition 1.2.1. An allocation π = (µ, ~x, ~y) is individually rational if for any
d ∈ D and any h ∈ H, fd(π) ≥ f

d
and gh(π) ≥ g

h
.

Suppose d and h agree to match and intend to play, respectively, the actions xd and
yh. If no specific reason forces them to respect that agreement (no binding contracts,
no possibility of future punishment in repeated interaction, etc) then, for (xd, yh) to
be stable, it must constitute a Nash equilibrium of Gd,h.

Definition 1.2.2. An allocation π = (µ, ~x, ~y) is Nash stable if for any matched
couple (d, h) ∈ µ, (xd, yh) ∈ N.E(Gd,h), i.e, (xd, yh) is a Nash equilibrium of Gd,h.

As players can remain single or match a better partner, a pairwise stability con-
dition à la Gale-Shapley must also be satisfied for an allocation to be stable.

Definition 1.2.3. An individually rational allocation π = (µ, ~x, ~y) is pairwise stable
if there is no (d, h) ∈ D×H and no Nash equilibrium (x′d, y′h) ∈ N.E(Gd,h) such that
fd,h(x′d, y′h) > fd(π) and gd,h(x′d, y′h) > gh(π).

Pairwise stability asks for the non-existence of (Nash)-blocking pairs, i.e., there is
no pair (d, h) ∈ D×H, that can be paired and play a Nash equilibrium in their game
strictly improving their payoffs in π. A Nash stable and pairwise stable allocation is
called Nash-pairwise stable.

1.3 Existence and computation of Nash-pairwise
stable allocations

The next theorem proves, under the usual Nash equilibrium existence conditions, that
a Nash-pairwise stable allocation exists and can be computed algorithmically.

2xd ≥ 0 means buyer pays to the seller, yh ≥ 0 means the seller pays to the buyer.
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1-to-1 Matching games without commitment: Nash stability

Theorem 1.3.1. If for any couple (d, h) the set of Nash equilibria of the game Gd,h

is non-empty and compact,3 and the payoff functions are continuous, then the set of
Nash-pairwise stable allocations is also non-empty and compact.

Instead of directly proving Theorem 1.3.1, we prove a more general one as it will
be useful for the model with commitment studied in Chapter 2 as well. Suppose
that each potential couple (d, h) is restricted to choose their contracts from a set
Cd,h ⊆ Xd × Yh.

Definition 1.3.2. An individually rational allocation will be pairwise stable with
respect to the family C := (Cd,h : d ∈ D, h ∈ H), if no pair (d, h) can match
together, play a strategy profile in their set Cd,h, and strictly increase their payoffs.

Theorem 1.3.3. Suppose that all the sets in the family C are non-empty and compact,
and the agents’ payoff functions are continuous. Then, there exists a pairwise stable
allocation with respect to the family C.

Theorem 1.3.1 is a corollary of Theorem 1.3.3 when considering Cd,h = N.E(Gd,h),
∀(d, h) ∈ D×H. Indeed, pairwise stability is guaranteed by Theorem 1.3.3, while Nash
stability holds as all couples are restricted to play only Nash equilibria. Theorem 1.3.3
is proved in two steps:

1. We design a deferred-acceptance with competitions (DAC) algorithm to compute
an ε-approximation of a pairwise stable allocation (Definition 1.3.8).

2. As the sets Cd,h are compact and the payoff functions are continuous, accumulation
points as ε→ 0 exist and any of them will be a pairwise stable allocation.

The pseudo-code of the algorithm used in step 1 (Algorithm 1.1) is similar to the
first of the two algorithms proposed by Demange, Gale, and Sotomayor [40]. Our
deferred-acceptance with competitions algorithm takes one of the sides (the doctors
for the rest of the chapter) and asks its unmatched agents to propose, one by one, a
contract from the family C to their most preferred option. The proposal is computed
such that the proposed agent is always better off by accepting it. If the proposed agent
is already matched a competition between the two agents is triggered. The winner
remains and the loser proposes again. Therefore, each iteration of Algorithm 1.1
has two phases: a proposal and a competition. For a numerical example, check
Section 1.5.

Let us explain the two phases that compose an iteration of the DAC algorithm.
Proposal phase. Let d ∈ D′ be the proposer. Given the current allocation π (ini-
tially empty) that generates a hospitals’ payoff vector g(π) = (gh(π))h∈H , d computes
his optimal proposal as,

(h, x, y) ∈ arg max {fd,h(x, y) : gd,h(x, y) ≥ gh(π) + ε, h ∈ H0, (x, y) ∈ Cd,h} (1.1)
3Whenever a game Gd,h has convex and compacts strategy sets, and utility functions are own-

quasi concave and continuous, or discontinuous but better-reply-secure [88], the set of Nash equilibria
is non-empty and compact.
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Algorithm 1.1: Deferred-acceptance with competitions algorithm
1 Input: Γ = (D0, H0, (Gd,h : (d, h) ∈ D ×H), f , g) a matching game, ε> 0
2 Set D′ ← D as the set of single doctors, and gh(π)← g

h
,∀h ∈ H

3 while D′ 6= ∅ do
4 Let d ∈ D′. Compute his optimal proposal

(h, x, y) ∈ arg max{fd,h(x, y) : gd,h(x, y) ≥ gh(π)+ε, h ∈ H0, (x, y) ∈ Cd,h}

5 if h is single then
6 d is automatically accepted
7 end
8 else
9 d and µ(h) compete for h as in a second-price auction. The winner

passes to be the new partner of h and the loser is included in D′
10 end
11 end

The solution of Problem (1.1) consists in h, the most preferred hospital of doctor d,
and (x, y) ∈ Cd,h, the strategy profile that d proposes to h to play. As an abuse of
notation, we may call optimal proposal only to (x, y), omitting the proposed hospital
h. Problem (1.1) is always feasible as d can always propose to h0. If h is single, d is
automatically accepted and the algorithm picks a new proposer in D′.
Competition phase. If the proposed agent h is matched, namely with an agent d′, a
competition between d and d′ starts. In the stable marriage problem, the competition
is the simple comparison between the places that d and d′ occupy in h’s ranking.
In our case, as agents have strategies, a competition is analogous to a second-price
auction. Let βd be the reservation price of d, solution to the following problem,

βd := max {fd,h′(x, y) : gd,h′(x, y) ≥ gh′(π) + ε, h′ ∈ H0 \ {h}, (x, y) ∈ Cd,h′} (1.2)

Analogously, we compute βd′ . Reservation prices are the highest payoff that d and
d′ can get by matching with somebody else. In other words, these values represent
the lowest payoffs that each agent is willing to accept to be with h. d’s bid λd (and
analogously for d′) is computed by,

λd := max {gd,h(x, y) : fd,h(x, y) ≥ βd, (x, y) ∈ Cd,h} (1.3)

The winner is the doctor with the highest bid. Finally the winner, namely d, pays
the second highest bid. Formally, d solves,

max {fd,h(x, y) : gd,h(x, y) ≥ λd′ , (x, y) ∈ Cd,h} (1.4)

The loser is included in D′ and a new proposer is chosen.
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Remark 1.3.4. A defeated doctor cannot propose right away to the same hospital as
she is unable to increase the hospital’s payoff in ε. This is crucial for the convergence
of the DAC algorithm.

Remark 1.3.5. The output of the DAC algorithm (Algorithm 1.1) corresponds to an
ε-approximation. This is in line with the matching literature with transfer [40, 66, 71].
The problem of computing a 0-stable allocation remains open, in our case as well as
in the literature with transfers.

We focus in proving that our DAC algorithm (Algorithm 1.1) ends in finite time
and its output corresponds to an ε-pairwise stable allocation (Definition 1.3.8).

Theorem 1.3.6. The DAC algorithm ends in finite time.

Proof. Since the strategy sets are compact and the payoff functions are continuous,
they are bounded. By construction, hospitals’ payoffs strictly increase with every
proposal. Thus, the algorithm ends in a finite number of iterations.

Remark 1.3.7. Due to the monotonicity of hospitals’ payoffs, once a doctor matches
with h0, she leaves the market and remains single forever.

Forcing the doctors to increase hospitals’ payoffs by (at least) ε with every proposal
guarantees the finiteness of the algorithm. However, we lose accuracy as the algorithm
outputs an ε-pairwise stable allocation.

Definition 1.3.8. Let π = (µ, ~x, ~y) be an allocation and ε> 0 fixed. A pair (d, h) ∈
D×H is an ε-blocking pair if there exits a strategy profile (x′d, y′h) ∈ Cd,h such that

fd,h(x′d, y′h) > fd(π) + ε and gd,h(x′d, y′h) > gh(π) + ε

An allocation is ε-pairwise stable with respect to the family C if it is ε-individually
rational (no agent gets ε less than her/its IRP) and does not have any ε-blocking pair.

To prove the correctness of the DAC algorithm (Algorithm 1.1) we need some
technical results.

Lemma 1.3.9. Let d be a doctor proposing to a hospital h, currently having a payoff
gh. Let λd be d’s bid. Then, it always holds that λd ≥ gh + ε.

Proof. Since d proposed to h, there exists a strategy profile (x, y) such that the triple
(h, x, y) is solution to Problem (1.1). Therefore, the triple (x, y, gh + ε) is a feasible
solution of Problem (1.3). Thus, λd ≥ gh + ε.

Lemma 1.3.10. Let (x, y) be the solution of Problem (1.4). Then, gd,h(x, y) is always
upper bounded by λd, d’s bid during the competition.
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Proof. Let d (proposer) and d′ (current partner) be two doctors competing for h and
suppose, without loss of generality, that d wins. Let (x∗, y∗) be d’s optimal proposal
and (λd, x̂, ŷ) be the solution of Problem (1.3) for player d. Then, the pair (x̂, ŷ) is a
feasible solution of d’s Problem (1.4), as gd,h(x̂, ŷ) = λd>λd′ . Consider any strategy
profile (x′, y′) such that gd,h(x′, y′)>gd,h(x̂, ŷ). If (x′, y′) satisfies fd,h(x′, y′) ≥ βd, we
obtain a contradiction as (λd, x̂, ŷ) is solution of Problem (1.3) for player d. Therefore,
the solution (x, y) of Problem (1.4) satisfies gd,h(x, y) ≤ gd,h(x̂, ŷ) = λd.

We are ready to prove the correctness of the DAC algorithm (Algorithm 1.1).

Theorem 1.3.11. The allocation π, output of the DAC algorithm, is ε-pairwise stable
with respect to the family C.

Proof. Let π := (µ, ~x, ~y) be the output of Algorithm 1.1 and suppose it is not ε-
pairwise stable. Let (d, h) be an ε-blocking pair of π, and suppose, without loss
of generality, that h 6= µ(d). Let T be the last iteration at which d proposed. In
particular, at time T , doctor d proposed to µ(d) and not to h, and for any posterior
proposal to µ(d), d won the competition. Since d won all the posterior competitions,
in particular, by Lemmas 1.3.9 and 1.3.10,

fd(π) ≥ max{fd,h′(x̄, ȳ) : gd,h′(x̄, ȳ) ≥ gh′(π) + ε, h′ ∈ H0, (x̄, ȳ) ∈ Cd,h′}

as fd(π) cannot be lower than any of the reservation prices computed by d during
each of her competitions. Since (d, h) is an ε-blocking pair, there exists (x̄, ȳ) ∈ Cd,h
such that fd,h(x̄, ȳ)>fd(π) + ε and gd,h(x̄, ȳ)>gh(π) + ε. Then

fd(π)<max{fd,h′(x̄, ȳ) : gd,h′(x̄, ȳ) ≥ gh′(π) + ε, h′ ∈ H0, (x̄, ȳ) ∈ Cd,h′}

which is a contradiction.

From the existence of ε-pairwise stable allocations, we are finally able to prove
the existence of 0-pairwise stable allocations (Theorem 1.3.3) passing through the
compactness of the Nash equilibrium sets, continuity of payoff functions, and the
finiteness of players.

Proof. 0-Pairwise stable allocations existence (Theorem 1.3.3). Consider ε> 0.
Let πε := (µε, ~xε, ~yε) be the output of the DAC algorithm (Algorithm 1.1). Thus, πε
is an ε-pairwise stable allocation with respect to the family C (Theorem 1.3.11). Con-
sider a sequence of these profiles (πε)ε with ε going to 0, and a subsequence (πεk)k
such that (~xεk , ~yεk)k converges to a fixed strategy profile (~x, ~y), which exists as the
sets (Cd,h : (d, h) ∈ D ×H) are compact sets.

Since there is a finite number of possible matchings, consider a subsubsequence
(πεkl )l such that µεkl = µ,∀l ∈ N, with µ a fixed matching. As (~xkl , ~ykl) → (~x, ~y)
when l → ∞, the sequence πkl converges to π := (µ, ~x, ~y), with µ a matching and
(~x, ~y) a strategy profile. Moreover, as εkl goes to 0, as for each l the allocation πkl
is εkl-pairwise stable, as the payoff functions are continuous, and as the definition of
pairwise stability only includes inequalities, π is pairwise stable.
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1.4 Lattice structure
In Gale-Shapley’s model, whenever each player’s preferences are strict, the set of pair-
wise stable matching is a lattice4. In our model, a semi-lattice structure is satisfied
whenever Nash equilibrium payoffs are different across games, i.e., if w and
w′ are two Nash equilibrium payoffs of any player with two different partners, then
w 6= w′. This is generically satisfied, i.e., when all games Gd,h are generic independent
bimatrix games.

Theorem 1.4.1. Let Γ be a matching game where all Nash equilibrium payoffs are
different across games. Then, the set of Nash-pairwise stable allocations Π is a semi-
lattice. Moreover, whenever all games have a unique Nash equilibrium payoff, the set
Π is a full lattice.

Proof. Let π = (µ, ~x, ~y), π′ = (µ′, ~x′, ~y′) ∈ Π be two Nash-pairwise stable allocations.
Consider the new triple π∨ := (µ∨, ~x∨, ~y∨) defined by

µ∨d = arg max
{
fd,µ(d)(xd, yµ(d)) ; fd,µ′(d)(x′d, y′µ′(d))

}
,∀d ∈ D,

with the corresponding Nash equilibrium (x∨d , y∨µ∨(d)). As Nash equilibrium payoffs
are different, partner and Nash equilibrium are uniquely defined when considering the
maximum, so µ∨ is well defined. Even more, it is Nash stable as all couples play a
Nash equilibrium of their game. Regarding pairwise stability, suppose that an agent
k ∈ D ∪ H gets less than her/its IRP in π∨. Then, the respective matching could
not be individually rational either, which is a contradiction. Let (d, h) /∈ µ∨ be a
(Nash) blocking pair of π∨, i.e., there exists a Nash equilibrium (x̄, ȳ) ∈ N.E(Gd,h)
such that fd,h(x̄, ȳ)>fd(π∨) and gd,h(x̄, ȳ)>gh(π∨). From the first inequality, it holds
that fd,h(x̄, ȳ)>fd(π), therefore gd,h(x̄, ȳ) ≤ gh(π), as π is pairwise stable. Remark
that gh(π∨) is either equal to gh(π) or to gh(π′). Since gd,h(x̄, ȳ)>gh(π∨), it must
be that gh(π∨) = gh(π′). Then, as π′ is pairwise stable, fd,h(x̄, ȳ) ≤ fd(π′), which
contradicts that fd,h(x̄, ȳ)>max{fd(π), fd(π′)}.

Finally, suppose that all games have a unique Nash equilibrium. In this case,
finding a Nash-pairwise stable allocation is equivalent to finding a stable allocation of
Gale-Shapley’s problem using the Nash equilibrium payoffs to determine the prefer-
ences of the agents, hence a full lattice holds.

Observe that constant-sum, and more generally strictly competitive games, when-
ever they have a Nash equilibrium, the equilibrium payoff is unique.

As in Gale-Shapley’s model, our DAC algorithm in which doctors propose and
hospitals dispose converges to the best Nash-pairwise stable matching for doctors.
We state this result without proof as it will be proved later in a more general case.

Theorem 1.4.2. If all Nash equilibrium payoffs are different across games and ε is
small enough, the output of Algorithm 1.1, when Cd,h = N.E(Gd,h),∀(d, h) ∈ D ×H,
is the highest element (with respect to the proposer side) of the semi-lattice.

4John Conway was the first to prove this result, which was reported by Knuth in [75]
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Proof. It follows from Theorem 2.5.3 as the identification property (Definition 2.3.1)
holds when Nash equilibrium payoffs are all different.

Exchanging the roles of doctors and hospitals when computing the maximum be-
tween two Nash-pairwise stable allocations, also outputs a Nash-pairwise stable allo-
cation. Even more, when all games have a unique Nash equilibrium, the minimum
between two elements in Π can be computed and the result, (µ∧, ~x∧, ~y∧) for doctors
and (ν∧, ~x∧, ~y∧) for hospitals, also belongs to Π. In addition, as in Gale-Shapley’s
model, the duality property (µ∨, ~x∨, ~y∨) = (ν∧, ~x∧, ~y∧) and (µ∧, ~x∧, ~y∧) = (ν∨, ~x∨, ~y∨)
holds.

We finish the model without commitment by examining the Nash-pairwise stable
allocation of our examples.

Example 1.1.4. The only Nash equilibrium of the prisoners’ dilemma is to play
(B,B). Then, as both players are better off being single than playing the equilibrium,
the only Nash-pairwise stable allocation is the one in which players do not match.
Example 1.1.5. The coordination game has three Nash equilibria: two pure ones
(A,A), (B,B), and one mixed ((8/9, 1/9), (1/9, 8/9)), with (δ/9, δ/9) as payoff profile.
As for the three Nash equilibria at least one of the agents is worst off than being single,
once again, the only Nash-pairwise stable allocation is the one in which players remain
single.
Example 1.1.6. The only Nash equilibrium of the constant-sum game is x = y = 0,
as any positive transfer x > 0 (resp. y > 0) is a strictly dominated strategy for d
(resp. for h). Thus, for any Nash stable allocation π in which the players are matched,
their payoffs are fd(π) = 10δ and gh(π) = 0. As this allocation is not individually
rational for h, the only Nash-pairwise stable allocation is the one in which agents do
not match.
Example 1.1.7. Similarly to the previous example, the only Nash equilibrium is
to pay 0 for the good. However, as the seller has a null IRP, it is not individually
rational for her to sell the good without receiving a positive payment. Therefore, the
only Nash-pairwise stable allocation is the one in which nobody buys the good.

The Nash-pairwise stable allocations found in these examples are not Pareto-
optimal. In Example 1.1.4 players can match, cooperate, and end up both better
off. In Example 1.1.5 agents can match, play each strategy with equal probability,
and end up both better off. In Example 1.1.6 d can propose x ≥ δ to h and both
agents end up better off. In Example 1.1.7, the buyer with the higher valuation can
pay any price between her valuation and the one of the seller, and both, buyer and
seller, end up better off. These predictions are possible only if both agents believe that
the other one will honor her promise, which is assumed in the matching with transfer
and matching with contract literature. The following chapters study the model where
players can commit (for example by signing binding contracts).
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1.5 A numerical example
Consider a matching game with three doctors D = {d1, d2, d3} and three hospitals
H = {h1, h2, h3}, with the following preferences,

A =
83 85 99
74 13 15
58 49 54

B =
69 6 28
88 2 70
72 18 9

A(d, h) (resp. B(d, h)) represents the fixed utility that d ∈ D (resp. h ∈ H) receives
if she (resp. it) matches with h (resp. d). Suppose that all agents have null IRPs,
i.e., (f

d
, g

h
) = (0, 0),∀(d, h) ∈ D ×H. Suppose, in addition, that if a couple (d, h) is

created, as in Example 1.1.6, they play a constant-sum game. Formally, if xd, yh ≥ 0
are d and h respective monetary transfers, their utilities are,

fd,h(xd, yh) = A(d, h)− xd + yh

gd,h(xd, yh) = B(d, h) + xd − yh

As already discussed, Nash stable allocations for matching with transfer prob-
lems are those in which no agent makes a positive transfer. Due to this, computing
a Nash-pairwise stable allocation is equivalent to computing a Gale-Shapley’s pair-
wise stable allocations, where ordinal preferences are deduced from the matrices A
and B. The DAC algorithm (Algorithm 1.1) becomes equivalent to Gale-Shapley’s
deferred-acceptance algorithm in which doctors propose and competitions are reduced
to preference comparisons. We summarize the DAC algorithm in Algorithm 1.2.

Algorithm 1.2: Deferred-acceptance with competitions algorithm
1 Set D′ ← {d1, d2, d3} as the set of unmatched doctors and gh(π) = 0,∀h ∈ H
2 while D′ 6= ∅ do
3 Let d ∈ D′ and h ∈ H such that

A(d, h) = arg max{A(d, ·) : B(d, h)>gh(π)}

4 if h is single then
5 d is automatically accepted
6 end
7 else
8 h chooses

arg max{A(d, h);A(µ(h), h)}
and the loser is included in D′

9 end
10 end

Let us run Algorithm 1.2 iteration by iteration.
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Iter 1. Suppose d1 is the first proposer. Looking at the first row of matrix A, d1
prefers to propose to h2, who accepts her.
Iter 2. Suppose d3 is the second proposer. From A(d3, ·), d3 proposes to h1, who
accepts her.
Iter 3. Finally, d2 proposes as she is the only remaining doctor. From the payoff
matrix, d2 proposes to h1 and has to compete against d3. From the first column of B,
the winner is d2. d3 becomes single and proposes again.
Iter 4. d3 computes her optimal proposal. As B(d3, h1) ≤ gh1(π), d3 proposes to her
second best option, h3. As h3 is already matched with d1, they compete. h3 prefers
to d1 so d3 is rejected.
Iter 5. Finally, d3 proposes to h2 as this is her only feasible proposal. d3 is accepted
and the algorithm ends.

The output is µ = ((d1, h3), (d2, h1), (d3, h2)). We see that d1 and d2 are matched with
their best possible options, so they will never prefer to change to another partner.
Regarding d3, although she would prefer to change to another partner, neither h1 nor
h3 would accept her, as each of them prefers their actual partners. We conclude that
π = (µ,~0,~0) is a Nash-pairwise stable allocation.

1.6 Conclusions
In this chapter, we have studied the model of one-to-one matching games without
commitment. Due to the inability of the agents to commit in actions, Nash stability
(Definition 1.2.2) rises as a natural desired property for allocations. In addition,
extending the work of Gale and Shapley, we have defined pairwise stable allocations
(Definition 1.2.3) as those allocations if which no pair of agents can abandon their
partners, matching together, playing a Nash equilibrium of their game, and end up
both strictly better off. We have designed a deferred-acceptance with competitions
(DAC) algorithm (Algorithm 1.1) to compute ε-Nash-pairwise stable allocations under
classical game theory assumptions. Even more, we are able to prove the existence
of 0-Nash-pairwise stable allocations under the same assumptions (Theorem 1.3.1).
Following the results of Conway and Knuth [75], we have proved that the set of Nash-
pairwise stable allocations is a lattice.

Regardless the positive results obtained for the matching games without commit-
ment model, Examples 1.1.4 to 1.1.7 show its inability to capture classical stable
matching models from the literature due to the incapacity of the agents to commit
in actions. Commitment is a classical assumption in models such as matching with
transfers [39, 93] and matching with contracts [66]. Therefore, the rest of this thesis
and, in particular, Chapters 2 and 3, will be devoted to study the model of one-to-one
matching games under commitment.
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Chapter 2

1-to-1 Matching games with
commitment: Pairwise stability

Chapter 1 studied the model of matching games without commitment, proved the
existence of stable allocations for this setting, and studied the lattice structure of
their set. However, many examples showed how the model fails to capture classical
models of stable matching from the literature. Motivated by this, and being in line
with the literature on matching with transfers [39, 93] and matching with contracts
[66] in which agents commit, this chapter is devoted to studying the model of one-to-
one matching games with commitment.

As the model in Chapter 1, one-to-one matching games with commitment consider
two finite sets of agents and match them in couples. Potential couples are endowed
with strategic games and agents’ utilities within an allocation are the outputs of the
corresponding game. Agents can deviate in two ways, either changing of partner or
changing strategy.

Making an abuse of notation, the extension of Gale-Shapley’s stability to the set-
ting with commitment will be called pairwise stability, exactly as in the setting without
commitment. Pairwise stability will deal with agents abandoning their partners and
matching together. To prove their existence we will use the same deferred-acceptance
with competitions (DAC) algorithm presented in the previous chapter. Properties
such as the lattice structure or the optimality of the DAC algorithm will be proved.

Unlike pairwise stability without commitment, pairwise stability under commit-
ment will capture the stability notions in the literature of stable matching and there-
fore, it will recover the solutions of the classical models as the stable marriage
problem of Gale and Shapley [53], the Assignment game of Shapley and Shubik
[93], or the matching with transfers problem of Demange and Gale [40].

Agents’ deviations on actions will require a novel theoretic framework, which is
delegated to Chapter 3.

This chapter is structured as follows. Section 2.1 presents the model of matching
games with commitment. Section 2.2 introduces the notion of pairwise stability and
algorithmically proves the existence of pairwise stable allocations. Properties such as
the lattice structure of the set of pairwise stable allocations or the proposer-optimality
of the DAC algorithm are studied in Sections 2.3 to 2.5. Section 2.6 formally shows
how to map the assignment problem of Shapley-Shubik [93] and the matching with
transfers of Demange-Gale [39] to matching games under commitment. Section 2.7
shows a numerical example of the DAC algorithm designed to compute pairwise stable
allocations. Finally, Section 2.8 concludes the chapter.
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2.1. Matching games model

2.1 Matching games model
We briefly recall the model of matching games presented in Chapter 1. We consider
two finite sets of agents D and H, called doctors and hospitals, respectively. Each
couple (d, h) ∈ D ×H is endowed with a strategic game Gd,h = (Xd, Yh, fd,h, gd,h).
Agents have individually rational payoffs (IRPs) (f, g) representing the personal
valuation for being single. We extend the sets D and H to D0 and H0, respectively,
by adding to each of them an empty player such that any agent matched with one of
these empty players gets her IRP as payoff.

A matching game is any tuple

Γ = (D0, H0, {Gd,h : (d, h) ∈ D ×H}, f , g)

and allocations in Γ are any triplet π = (µ, ~x, ~y) where µ is a matching, ~x ∈ ∏d∈DXd

is a doctors’ strategy profile, and ~y ∈ ∏h∈H Yh is a hospitals’ strategy profile.
Given an allocation π, agents’ payoffs are given by,

fd(π) =
{
fd,µ(d)(xd, yµ(d)) if d is matched

f
d

otherwise

gh(π) =
{
gµ(h),h(xµ(h), yh) if h is matched

g
h

otherwise

where µ(k) states the partner of k in µ, for any k ∈ D ∪H.

2.2 Pairwise stability and its existence
Suppose that partners within a couple can commit to playing a specific action profile
before playing their game. This allows them to enlarge their set of feasible contracts
well beyond their set of Nash equilibria. This leads to the following stability notion.

Definition 2.2.1. An individually rational allocation π = (µ, ~x, ~y) is pairwise stable
if there are no blocking pairs, i.e., there is no (d, h) ∈ D ×H and (x′d, y′h) ∈ Xd × Yh
such that

fd,h(x′d, y′h) > fd(π) and gd,h(x′d, y′h) > gh(π)

Notice that a matched couple can block a coalition in Definition 2.2.1. In partic-
ular, in a pairwise stable allocation couples cannot play Pareto-dominated strategy
profiles of their game. In models with strict preferences or monetary transfers this is
not an issue as only agents not already matched between them can be blocking pairs.
In our model, as payoffs are continuous, we need to make the distinction. This will
become important when mixing pairwise stability and renegotiation proofness later
on the thesis.

Pairwise stability in the setting with commitment corresponds to pairwise stability
with respect to the family C = (Cd,h = Xd × Yh, ∀d ∈ D, ∀h ∈ H) (Definition 1.3.2).
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1-to-1 Matching games with commitment: Pairwise stability

Compared to the pairwise stability without commitment (Definition 1.2.3) defined in
Section 1.2, Definition 2.2.1 allows the players to choose any feasible strategy profile
without being restricted to a Nash equilibrium (or to a non-dominated strategy). Let
us see the impact of such a change in our leading examples.

Example 1.1.4. Recall the prisoners’ dilemma matching game in which two agents
d and h with positive IRPs δ can match and play,

Agent h

Agent d
Cooperate Betray

Cooperate 2δ, 2δ −δ, 3δ
Betray 3δ,−δ 0, 0

Matching and playing the Nash equilibrium of the game is not individually rational.
However, notice that not matching is not pairwise stable as matching and cooperating
blocks it. Suppose that players get matched and play a mixed strategy (x, y) =
((p, 1− p), (q, 1− q)). Their expected payoffs are,

fd,h(x, y) = 2δpq + 3δ(1− p)q − δp(1− q) = δ(3q − p)
gd,h(x, y) = 2δpq + 3δp(1− q)− δ(1− p)q = δ(3p− q)

Imposing individual rationality we get the condition,

q ∈
[1 + p

3 , 3p− 1
]
, such that p, q ∈ [0, 1]

q

p

1

2/3

1/2

1/2 2/3 1

Figure 2.1: Pairwise stable allocations Example 1.1.4
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2.2. Pairwise stability and its existence

Figure 2.1 shows the possible values that p and q can take such that matching together
and playing the strategy profile ((p, 1 − p), (q, 1 − q)) is pairwise stable (represented
by the light blue region). Notice that we obtain a continuum of solutions.

Example 1.1.5. Recall the coordination matching game in which two agents d and
h with positive IRPs δ can match and play,

Agent h

Agent d
A B

A 4δ, δ/2 0, 0
B 0, 0 δ/2, 4δ

Matching and playing a pure Nash equilibrium, or remaining unmatched, are both
individually irrational. Taking mixed strategies (x, y) = ((p, 1− p), (1− q, q)) (notice
the order of the mixed strategies), the expected payoffs of the agents are,

fd,h(x, y) = 4δp(1− q) + δ

2(1− p)q = 4δp+ δq

2 −
9δ
2 pq

gd,h(x, y) = 4δ(1− p)q + δ

2p(1− q) = 4δq + δp

2 −
9δ
2 pq

Imposing individual rationality we obtain,

q ∈
[

2− p
8− 9p,

8p− 2
9p− 1

]
, such that p, q ∈ [0, 1]

Once again, we obtain a continuum of solutions.

Example 1.1.6. Recall the transfer matching game in which two agents d and h
with positive IRPs δ can match and play,

G = (R+,R+, f, g), such that for any x, y ≥ 0,
fd,h(x, y) = 10δ − x+ y

gd,h(x, y) = x− y

As we already intuited, not matching, or matching and playing null transfers are
not stable. Imposing individual rationality we find that any allocation in which agents
match and the transfer profile satisfies x−y ∈ [δ, 9δ], is pairwise stable. This is exactly
the prediction of Shapley-Shubik’s and Demange-Gale’s models.

Example 1.1.7. Recall the auction example in which a seller sells an indivisible
good to a set of n buyers. Buyers have valuations for the good and let us assume that
they satisfy v1 > v2 ≥ ... ≥ vn. The seller has valuation c for the good as well and
everybody has null IRP. If a couple buyer-seller (d, h) is created and the monetary
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transfers (xd, yh) is agreed, the item is sold from h to d at the price p = xd − yh. In
particular, the utilities of the players are,

fd,h(xd, yh) = vd − p = vd − xd + yh,

gd,h(xd, yh) = p− c = xd − yh − c,

Finally, let us assumed v1 ≥ c (otherwise no buyer has incentive to buy the item).
An allocation in this problem is pairwise stable if and only if the first buyer and the
seller decide to trade at some price p1 ∈ [max(c, v2), v1]. Notice that no other buyer is
willing to pay a price higher than p1 as this is not individually rational. Due to this,
the seller has no incentive in abandoning buyer 1 and matching with somebody else.
As, in addition, the allocation is individually rational for buyer 1 and the seller, the
allocation is, indeed, pairwise stable.

As for the no commitment setting, the general deferred-acceptance with competi-
tions algorithm (Algorithm 1.1) can be used to compute ε-pairwise stable allocations
for the model with commitment. Algorithm 2.1 recalls the DAC algorithm. For a
numerical example, check Section 2.7.

Algorithm 2.1: Deferred-acceptance with competitions algorithm
1 Input: Γ = (D0, H0, (Gd,h : (d, h) ∈ D ×H), f , g) a matching game, ε> 0
2 Set D′ ← D as the set of single doctors, and gh(π)← g

h
,∀h ∈ H

3 while D′ 6= ∅ do
4 Let d ∈ D′. Compute her optimal proposal

(h, x, y) ∈ arg max{fd,h(x, y) : gd,h(x, y) ≥ gh(π) + ε, h ∈ H0, (x, y) ∈ Cd,h}

5 if h is single then
6 d is automatically accepted
7 end
8 else
9 d and µ(h) compete for h as in a second-price auction. The winner

passes to be the new partner of h and the loser is included in D′
10 end
11 end

We recall as well the two results that allow us to conclude the existence of pairwise
stable allocations.

Theorem 2.2.2. The DAC algorithm ends in finite time.

Theorem 2.2.3. The allocation π, output of the DAC algorithm, is ε-pairwise stable
with respect to the family C.
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The existence of pairwise stable allocations in the model with commitment is
obtained by taking Cd,h = PO(Gd,h), where PO(Gd,h) is the set of Pareto-optimal
strategy sets of game Gd,h, for any d ∈ D and h ∈ H.

Theorem 2.2.4. For any matching game with non-empty compact Pareto-optimal
strategy sets and continuous payoff function there always exists a pairwise stable allo-
cation (Definition 2.2.1).

2.3 Semi-lattice structure
As for the stable allocations of the model without commitment, a partial lattice
structure is also satisfied by the set of pairwise stable allocations under commitment.
However, to be able to define a proper order between allocations, an identification
property is needed.

Definition 2.3.1. Let π = (µ, ~x, ~y) and π′ = (µ′, ~x′, ~y′) be two pairwise stable alloca-
tions (Definition 2.2.1). We say that π and π′ satisfy the identification property
if whenever a doctor/hospital has the same utility in both matchings, she/it has the
same partner in both. That is,

∀d ∈ D, if fd,µ(d)(xd, yµ(d)) = fd,µ′(d)(x′d, y′µ′(d)) =⇒ µ(d) = µ′(d),

and analogously for h ∈ H.

The identification property is satisfied by any matching model with strict prefer-
ences. In our model this is not necessarily true as we have continuum payoff functions.
However, it can be satisfied “generically” speaking, in the sense that discretizing the
strategy spaces and perturbing the payoff functions, Definition 2.3.1 holds for any pair
of allocations and, therefore, for any pair of pairwise stable allocations. In particular,
it is satisfied by the model without binding contracts when all games have different
Nash equilibrium payoffs.

The identification property is also satisfied by Demange-Gale’s [39] model with
transfers and it is crucial in their lattice structure proof. Indeed, given two allocations
π1, π2, consider the sets of agents that prefer matching 1, matching 2, or are indifferent,
respectively by,

P 1 := {d ∈ D : fd(π1)>fd(π2)}, Q1 := {h ∈ H : gh(π1)>gh(π2)}
P 2 := {d ∈ D : fd(π2)>fd(π1)}, Q2 := {h ∈ H : gh(π2)>gh(π1)}
P 0 := {d ∈ D : fd(π1) = fd(π2)}, Q0 := {h ∈ H : gh(π1) = gh(π2)}

Demange and Gale proved that, in their setting, agents in P 1 are assigned with agents
in Q2, and those in P 2 with the ones in Q1. This property holds in their model as
every time an agent increases its payoff, its partner’s payoff decreases (see Sections
2.4 and 2.6 below).
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1-to-1 Matching games with commitment: Pairwise stability

Consider the new triple π∨ := (µ∨, ~x∨, ~y∨) defined by

µ∨d = arg max
{
fd,µ(d)(xd, yµ(d)) ; fd,µ′(d)(x′d, y′µ′(d))

}
,∀d ∈ D,

with the corresponding strategy profile (x∨d , y∨µ∨(d)) (which is uniquely defined when a
doctor is not matched to the same hospital and can be chosen arbitrarily otherwise).

Theorem 2.3.2. Under the identification property, (µ∨, ~x∨, ~y∨) is an pairwise stable
allocation.

Proof. The proof has two steps. We first prove that µ∨ is a well defined matching
and then, that the triple (µ∨, ~x∨, ~y∨) is pairwise stable. For the first part, let d, k ∈ D
be two doctors such that µ∨d = µ∨k = h, with h 6= h0. Suppose h = µ(d) = µ′(k). It
follows that

arg max
{
fd,h(xd, yh) ; fd,µ′(d)(x′d, y′µ′(d))

}
= arg max

{
fk,µ(k)(xk, yµ(k)) ; fk,h(x′k, y′h)

}
as both are equal to h. By the identification property, as since h 6= µ(k), it holds,

fk,µ(k)(xk, yµ(k)) < fk,h(x′k, y′h)

Since π′ is pairwise stable, it must hold that gk,h(x′k, y′h) > gd,h(xd, yh), otherwise
(d, h) would block π′ using (xd, yh) (observe that gk,h(x′k, y′h) 6= gd,h(xd, yh) by the
identification property). Consequently, as π is pairwise stable, it must hold that

fk,h(x′k, y′h)<fk,µ(k)(xk, yµ(k)),

otherwise (k, h) blocks π using (x′k, y′h). This contradicts that

h = arg max{fk,µ(k)(xk, yµ(k)); fk,h(x′k, y′h)}

Thus µ∨ is a well-defined matching.
Regarding pairwise stability, suppose (d, h) is a blocking pair for (µ∨, ~x∨, ~y∨), using

some strategy profile (s, t). In particular, it holds

fd,h(s, t)>max{fd,µ(d)(xd, yµ(d)); fd,µ′(d)(x′d, y′µ′(d))} (2.1)

Suppose h = h0. If µ(d) 6= h0 (resp. if µ′(d) 6= h0) then µ (resp. µ′) is not individually
rational, which is a contradiction. Otherwise, µ(d) = µ′(d) = h, which is also a
contradiction with Equation (2.1). Hence h 6= h0. Let d′ be the partner of h in π∨.
Then, (d′, h) are together in one of the matchings µ or µ′, and (d, h) can block it using
the strategy profile (s, t): a contradiction. Thus (µ∨, ~x∨, ~y∨) is pairwise stable.

If µ∧ denotes the min operation matching in which each doctor is coupled with
her worst hospital between π and π′, the output is not necessarily a pairwise stable
matching. In that sense, we only have a semi-lattice structure. The semi-lattice
structure remains valid if we exchange the roles of doctors and hospitals: if ν∨ gives
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to each hospital its best doctor between µ and µ′, the output is an pairwise stable
allocation. Finally, note that the classical equality between the max for doctors/min
for hospitals operations in the Gale-Shapley model does not hold in our model (µ∧ 6=
ν∨). Quite the opposite can be true. For example, if all strategic games are common-
interest games, the max for doctors coincides with the max for hospitals (ν∨ = µ∨).

A full lattice structure can be recovered by taking extra assumptions on the strat-
egy games. The following section presents the formal results.

2.4 Lattice structure & Strictly competitive games
The set of pairwise stable allocations Π results to be a semi-lattice whenever the
identification property holds. This structure can be extended to a full lattice whenever
players play constant-sum games or, more generally, strictly competitive games, i.e.,
games in which whenever a player’s payoff increases (resp. decreases), the partner’s
payoff decreases (resp. increases).

Aumann [13], who introduced monotone games, considered the class S of strictly
competitive games in which payoff functions are obtained via monotone transforma-
tions of a zero-sum game. Although he conjectured that S covers all strictly compet-
itive games, the proof is only known for finite games [7] (see Section 5.3). Along this
section, we will use Aumann’s conjecture.

Definition 2.4.1. A two-person game Gd,h = (Xd, Yh, fd,h, gd,h) is a strictly com-
petitive game, that we denote Gd,h ∈ S, if there exists a zero-sum game G′d,h =
(Xd, Yh, ud,h) and two monotone increasing1 functions φ and ϕ such that,

fd,h(·, ·) = φ(ud,h(·, ·)) and gd,h(·, ·) = ϕ(ud,h(·, ·))

In other words, whenever a game is strictly competitive, we can always transform
the game into a zero-sum game. This will be allow us to reduce the study of strictly
competitive games to zero-sum games in the following sections.

Remark 2.4.2. The identification property is obtained for free when games are
strictly competitive games.

Theorem 2.4.3. Let Γ be a matching game in which all games are strictly competitive
games. Then, the set Π of pairwise stable allocations is a full lattice.

Proof. From Theorem 2.3.2, Π is a semi-lattice as the maximum of two pairwise stable
allocations is well defined. To finish the proof, it is enough with checking that the
minimum between two allocations is well defined as well. Let π, π′ ∈ Π be two pairwise
stable allocations and define π∧ := (µ∧, ~x∧, ~y∧) as,

µ∧d := arg min{fd,µ(d)(xd, yµ(d)); fd,µ′(d)(x′d, y′µ′(d))},∀d ∈ D
1We consider increasing functions in order to apply these results in the following section. However,

the same results hold when considering monotone decreasing functions.
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with the respective strategy profile. Given d ∈ D, notice that (we omit the strategy
profiles to simplify the notation),

µ∧d = arg min{ϕ−1(ud,µ(d)(·, ·));ϕ−1(ud,µ′(d)(·, ·))}
= ϕ−1(arg min{ud,µ(d)(·, ·)); (ud,µ′(d)(·, ·))})
= ϕ−1(arg min{−φ(gd,µ(d)(·, ·));−φ(gd,µ′(d)(·, ·))}),
= ϕ−1(arg max{φ(gd,µ(d)(·, ·));φ(gd,µ′(d)(·, ·))}),
= ϕ−1 ◦ φ(arg max{gd,µ(d)(·, ·); gd,µ′(d)(·, ·)}),
= arg max{gd,µ(d)(·, ·); gd,µ′(d)(·, ·)}
= ν∨d

As ν∨ is always well defined (under the identification property), µ∧ is a proper match-
ing. Moreover, π∨ remains pairwise stable, recovering the duality of ν∨ and µ∧.

2.5 DAC algorithm’s optimality
The set of pairwise stable allocations Π may be an infinite semi-lattice depending on
the number of stable payoffs. For small enough values of ε, the identification property
handles this issue. Consider ε∗ defined by,

ε∗ = min
d∈D

{
|fd,µ(d)(xd, yµ(d))− fd,µ′(d)(x′d, y′µ′(d))| : (µ, ~x, ~y), (µ′, ~x′, ~y′) ∈ Π

}
(2.2)

Then, fixing ε ∈ (0, ε∗), if the identification property holds for any two ε-pairwise
stable allocations, Π can be endowed with the partial order >D,

∀π, π′ ∈ Π, π >
D
π′ ⇐⇒ fd(π) ≥ fd(π′),∀d ∈ D and ∃d ∈ D, fd(π) ≥ fd(π′) + ε

Whenever the identification property holds and ε ∈ (0, ε∗), all maximal elements
of (Π, >D) correspond to a unique allocation, denoted πD. Although strategy profiles
between two maximal elements may differ, the difference between each doctor’s utili-
ties is not greater than ε. Hence, considering equivalent all allocations where doctors’
utilities do not differ by more than ε, the best ε-pairwise stable allocation for doctors
is well defined and it is (ε-)unique. As in Gale-Shapley, we aim to prove that the
deferred-acceptance with competitions algorithm (Algorithm 2.1) outputs a maximal
element πD of (Π, >D).

To prove this property, given a doctor d ∈ D, we define her best stable hospital
h(d) ∈ H0 as,

(h(d), xd, yh) ∈ arg max{fd,h(x′d, y′h) : ((d, h), x′d, y′h) ∈ π, for some π ∈ Π} (2.3)

From the uniqueness of the maximal matching in Π, we obtain the following lemma.

Lemma 2.5.1. Under the identification property and for ε ∈ (0, ε∗), the following
two properties hold:
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1. For any two different doctors d, d′ ∈ D, h(d) 6= h(d′).
2. Given an allocation π = (µ, ~x, ~y), if fd(π)>fd(πD) + ε for some doctor d, then π

is not ε-pairwise stable.

Lemma 2.5.2. Let ε ∈ (0, ε∗) and suppose the identification property holds in Π. Let
t be an iteration of the DAC algorithm (Algorithm 2.1) and d ∈ D be the current
proposer doctor. Let h(d) ∈ H be d’s best stable hospital. Then, there always exists a
strategy profile (x, y) ∈ Xd × Yh(d) such that gd,h(d)(x, y) ≥ gth(d) + ε, with gth(d) being
the payoff of h(d) at time t.

Proof. Suppose there exist t ≥ 1 and d ∈ D, such that,

gd,h(d)(x, y)<gth(d) + ε,∀(x, y) ∈ Xd × Yh(d)

In particular, h(d) must be matched with someone as its current payoff is higher than
its IRP. Let k = µ(h(d)), that is, h(d)’s partner at time t. Since k is matched with
h(d), she is not matched with her best stable hospital h(k). Let r < t be the iteration
when k proposed to h(d). She did it either because she achieved a higher payoff
than with h(k), or because h(k) was not a feasible solution to the optimal proposal
problem (Problem 1.1). If the first case holds, by the identification property and as
ε< ε∗, there exists a contract (x′, y′) ∈ Xk × Yh(d) such that

fk,h(d)(x′, y′)>fk,h(k)(πD) + ε

Thus, any proposition made to h(d) between iterations r and t was won by k, as h(d)
continued being her best option (in particular better than h(k)), and it increased the
payoff of h(d). However, if (x′′, y′′) is the strategy profile played by k and h(d) at
iteration t, k gets a payoff ε higher than with h(k) by matching with h(d) and playing
(x′′, y′′), and for any (x, y) ∈ Xd × Yh(d),

gd,h(d)(x, y)<gk,h(d)(x′′, y′′) + ε

Therefore, (k, h(d)) is an ε-blocking pair of πD, a contradiction. Suppose that h(k)
was not a feasible solution for k at time r, as h(k) was matched with another doctor
and getting a payoff too high. Inductively, build a finite sequence of doctors {d1, ..., d`}
(chronologically ordered) such that none of them was able to propose her best stable
hospital. Consider the first of them, d1, and let k be the partner of h(d1) when d1
proposed. Then, k and h(d1) form a blocking pair of πD, a contradiction.

As a final result on the semi-lattice structure, we prove that our deferred-acceptance
with competitions algorithm (Algorithm 2.1), when Cd,h = PO(Gd,h),∀(d, h) ∈ D×H,
converges to the “best” ε-pairwise stable matching for doctors, for ε small enough.

Theorem 2.5.3. If the identification property holds and ε is small enough, the output
of the DAC algorithm, when Cd,h = PO(Gd,h),∀(d, h) ∈ D ×H, is doctors ε-optimal.
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Proof. Let d ∈ D be any doctor. From Lemma 2.5.2, along all iterations of the DAC
algorithm, d can always propose to h(d). Therefore, d’s final payoff is bounded from
below by the one she can get with h(d). Since this is also the maximum payoff that
doctors can get in an ε-pairwise stable allocation, we conclude the proof.

Let us end this section by observing that arguments similar to [43] allow us to
show that, under the identification property and for small enough values of ε, the
deferred-acceptance with competitions algorithm is strategy-proof on the doctors’
side: if doctors revealed their utility functions to a designer who runs the algorithm,
doctors’ ε-dominant strategy is to submit their true utility functions. In other words,
doctors cannot increase their payoff by more than ε by misreporting their utility
functions. Taking ε → 0, we obtain the existence of a strategy-proof pairwise-stable
allocation for doctors (and so, exchanging the roles, also for hospitals).

2.6 Shapley-Shubik and Demange-Gale models
Particular cases of strictly competitive matching games are the Shapley-Shubik as-
signment game [93] and the Demange-Gale matching with transfers model [39]. This
section is dedicated to formally establish the connection between their models and
ours. The Assignment game consists of a housing market with buyers and sellers.
Each seller has a house to sell and each buyer is interested in buying a house. A
solution to this problem is a pair (µ, ~p), with µ a matching between sellers and buy-
ers, and ~p a vector of positive monetary transfers from buyers to sellers. Each seller
h ∈ H, has a cost of her house ch, and each buyer d ∈ D, has a valuation vd,h for h’s
house. If seller h sells her house to d at price pd,h ≥ 0, their payoffs are,

fd,h(pd,h) = vd,h − pd,h, gd,h(pd,h) = pd,h − ch
respectively for buyer and seller. Demange and Gale generalized the problem by
considering that whenever two agents d and h are paired, their payoffs are given by
some strictly increasing and continuous payoff functions φd,h(t) for d, and ψd,h(−t) for
h, with t ∈ R being the net transfer from d to h (t ≥ 0 means that d pays t to h and
t ≤ 0 means that h pays −t to d).

This model can be mapped into a matching game in which all couples play strictly
competitive games. Formally, given (d, h) ∈ D × H, consider the strategic game
Gd,h = (Xd, Yh, fd,h, gd,h), with Xd = Yh = R+, and,

fd,h(xd, yh) = φd,h(yh − xd), gd,h(xd, yh) = ψd,h(xd − yh)
As Gd,h belongs to S, we can apply the results on Section 2.4 and recover the existence
of pairwise stable allocation and their lattice structure.

It is important to remark that, although the strategy sets in the Demange-Gale
matching game are not compact, as transfers are naturally bounded by players’ val-
uation or by the individually rational payoffs, the problem can easily be compacti-
fied, satisfying the assumptions for the existence of pairwise stable allocations (The-
orem 2.2.4).
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Remark 2.6.1. The unique Nash equilibrium of the strictly competitive games is
x∗ = y∗ = 0: no monetary transfers in the Demange-Gale’s problem (or zero prices
in the Shapley-Shubik housing market). Hence, Nash stability (Definition 1.2.2) is
incompatible with the solutions of the matching with transfer models. As will be seen
in the next section, this is not the case with our new notion of renegotiation proofness.

2.7 A numerical example
Consider a matching game with three doctors D = {d1, d2, d3} and three hospitals
H = {h1, h2, h3}, with the following preferences,

A =
83 85 99
74 13 15
58 49 54

B =
69 6 28
88 2 70
72 18 9

A(d, h) (resp. B(d, h)) represents the fixed utility that d ∈ D (resp. h ∈ H) receives
if she (resp. it) matches with h (resp. d). Suppose that all agents have null IRPs,
i.e., (f

d
, g

h
) = (0, 0),∀(d, h) ∈ D × H. Suppose, in addition, that if a couple (d, h)

is created, as in the transfer matching game example (Example 1.1.6), they play a
constant-sum game. Formally, if xd, yh ≥ 0 are d and h respective monetary transfers,
their utilities are,

fd,h(xd, yh) = A(d, h)− xd + yh

gd,h(xd, yh) = B(d, h) + xd − yh

Unlike Nash stability, as it will be seen now, the pairwise stability concept under
commitment will output an allocation in which (some) agents will do make a positive
transfer. We recall the DAC algorithm for this example.

Let ε = 1. The initial payoff profiles are,

f 0 = (0, 0, 0), g0 = (0, 0, 0)

Let us consider the same order that for Section 1.5:

Iter 1. Suppose d1 is the first proposer. She solves

max{A(d1, h)− xd1 + yh : B(d1, h) + xd1 − yh ≥ g0
h(π) + ε, h ∈ H}

⇐⇒max{A(d1, h) +B(d1, h)− (g0
h(π) + ε) : h ∈ H}

⇐⇒max{83 + 69− 1, 85 + 6− 1, 99 + 28− 1} = 151

The optimal proposal for doctor d1 is (h1, 0, 68)2, i.e. d1 proposes to h1 and takes the
highest possible profit from their transfer game by offering to h1 exactly its IRP plus

2Any transfer profile (xd, yh) satisfying −xd + yh = 68 is also an optimal proposal. Taking, in
particular, an optimal proposal in which one of the agents makes a null transfer will be useful for
the next section.
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Algorithm 2.2: Deferred-acceptance with competitions algorithm
1 Set D′ ← {d1, d2, d3} as the set of single doctors, and gh(π)← 0,∀h ∈ H
2 while D′ 6= ∅ do
3 Let d ∈ D′. Compute her optimal proposal (h, xd, yh) solving,

max A(d, h′)− xd + yh′

s.t. B(d, h′) + xd − yh′ ≥ gh′(π) + ε,

h′ ∈ {h0, h1, h2, h3}, xd, yh′ ≥ 0

4 if h is single then
5 d is automatically accepted
6 end
7 else
8 d and µ(h) compete for h: Each of them computes,

max{B(d, h) + xd − yh : A(d, h)− xd + yh ≥ βd}

with βd being d’s reservation price. The doctor with the highest bid
wins and pays the second price. The loser is included in D′

9 end
10 end

ε. Since h1 is single, d1 is accepted. The payoff profiles at the end of iteration 1 are,

f 1 = (151, 0, 0), g1 = (1, 0, 0)

Iter 2. Suppose d3 proposes next. Similarly, she solves the problem,

max{A(d3, h)− xd3 + yh : B(d3, h) + xd3 − yh ≥ g1
h(π) + ε, h ∈ H}

⇐⇒max{A(d3, h) +B(d3, h)− (g1
h(π) + ε) : h ∈ H}

⇐⇒max{58 + 72− (1 + 1), 49 + 18− 1, 54 + 9− 1} = 128

The optimal proposal for doctor d3 is (h1, 0, 70). Since h1 is already matched, d1 and
d3 compete. We compute their reservation prices β. Recall that reservation prices
correspond to the highest payoffs that each doctor can obtain with somebody else
different from h1 (the most preferred hospital of the doctors). Formally,

β1 = max{A(d1, h)− xd1 + yh : B(d1, h) + xd1 − yh ≥ g1
h(π) + ε, h ∈ {h2, h3}}

= max{85 + 6− 1, 99 + 28− 1} = 126

Analogously, β3 = 66. We compute the bids.

λ1 = max{B(d1, h1) + xd1 − yh1 : A(d1, h1)− xd1 + yh1 ≥ 126}
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⇐⇒λ1 = max{69 + xd1 − yh1 : 83− xd1 + yh1 ≥ 126}
⇐⇒λ1 = max{69 + xi1 − yj1 : −43 ≥ xd1 − yh1} = 26

Similarly for d3,

λ3 = max{72 + xd3 − yh1 : 58− xd3 + yh1 ≥ 66} = 64

Since d3’s bid is the highest, she wins the competition. Finally, she pays the second
highest price,

max{A(d3, h1)− xd3 + yh1 : B(d3, h1) + xd3 − yh1 ≥ λ1}
⇐⇒max{58− xd3 + yh1 : 46 ≥ −xd3 + yh1} = 58 + 46 = 104

Therefore, d3 decreases her bid until getting a payoff of 104. In other words, the final
transfer profile between d3 and h1 is (xd3 , yh1) = (0, 46). The payoff profiles at the
end of iteration 2 are,

f 2 = (0, 0, 104), g2 = (26, 0, 0)

Iter 3. Suppose d2 proposes next. Her optimal proposal is,

max{A(d2, h)− xd2 + yh : B(d2, h) + xd2 − yh ≥ g2
h(π) + ε, h ∈ H}

⇐⇒max{A(d2, h) +B(d2, h)− (g2
h(π) + ε) : h ∈ H}

⇐⇒max{74 + 88− (26 + 1), 13 + 2− 1, 15 + 70− 1} = 135

Thus, the optimal proposal of doctor d2 is (h1, 0, 61), and has to compete against d3.
The reservation prices of the doctors are β2 = 84 and β3 = 66. The bids are given by,

λ2 = max{B(d2, h1) + xd2 − yh1 : A(d2, h1)− xd2 + yh1 ≥ β2} = 78
λ3 = max{B(d3, h1) + xd3 − yh1 : A(d3, h1)− xd3 + yh1 ≥ βd3} = 64

Since λ2 is the highest bid, d2 is the winner of the competition. She decreases her
offer to match the one of d3,

max{A(d2, h1)− xd2 + yh1 : B(d2, h1) + xd2 − yh1 ≥ λ3} = 98

Therefore, the final transfer profile between d2 and h1 is (xd2 , yh1) = (0, 24). The
payoff profiles at the end of iteration 3 are,

f 3 = (0, 98, 0), g3 = (64, 0, 0)

Iter 4. Suppose d1 proposes next. She solves,

max{A(d1, h)− xd1 + yh : B(d1, h) + xd1 − yh ≥ g3
h(π) + ε, h ∈ H}

⇐⇒max{A(d1, h) +B(d1, h)− (g3
h(π) + ε) : h ∈ H}
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⇐⇒max{83 + 69− (64 + 1), 85 + 6− 1, 99 + 28− 1} = 126

Notice how h1 is not the most preferred option for d1 anymore, as h1’s payoff is too
high for her. Instead, she prefers to propose to h3 the transfer profile (0, 27). As j3 is
unmatched, d1 is accepted. The payoff profiles at the end of iteration 4 are,

f 4 = (126, 98, 0), g4 = (64, 0, 1)

Iter 5. Finally, d3 proposes again as she is the only single doctor. Her optimal
proposal is,

max{A(d3, h)− xd3 + yh : B(d3, h) + xd3 − yh ≥ g4
h(π) + ε, h ∈ H}

⇐⇒max{A(d3, h) +B(d3, h)− (g4
h(π) + ε) : h ∈ H}

⇐⇒max{58 + 72− (64 + 1), 49 + 18− 1, 54 + 9− (1 + 1)} = 66

Notice that d3 does not want to propose to h1 anymore, due to having lost the com-
petition against d2. d3 offers to h2 the transfer profile (0, 17). Since h2 is single, d3 is
automatically accepted and the algorithm stops. The final payoff profiles are,

f 5 = (126, 98, 66), g5 = (64, 1, 1)

The deferred-acceptance with competitions algorithm outputs π = (µ, ~x, ~y) where

µ = ((d1, h3), (d2, h1), (d3, h2))

and (~x, ~y) = ((0, 0, 0), (24, 17, 27)). The final payoffs of the players are,

(f(π), g(π)) = ((126, 98, 66), (64, 1, 1))

To check the ε-pairwise stability of π, we compute the reservation prices of one of
the sides and check that none of them is ε higher than the players’ payoff. Formally,
for d ∈ D, we compute βd by,

max{A(d, h)− xd + yh : B(d, h) + xd − yh ≥ gh(π) + ε, h ∈ H \ {µ(d)}, xd, yh ≥ 0}

and check if for every d ∈ D, βd ≤ fd(π) + ε, that is,

max{A(d, h) +B(d, h)− (gh(π) + ε), h ∈ H \ {µ(d)}} ≤ fd(π) + ε

We obtain that β = (βd1 , βd2 , βd3) = (89, 83, 65). Since doctors’ payoffs in π are strictly
higher than their outside options, none of them has the incentive to change partners.
We conclude that π is ε-pairwise stable, for ε = 1.

Remark 2.7.1. As the payoff matrices have integer values, the computed solution is
indeed a 0-pairwise stable allocation.
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2.8 Conclusions
The one-to-one matching games model with commitment is studied in this chapter and
the notion of pairwise stability (Definition 2.2.1) is extended to this setting, capturing
the solution concepts of Gale-Shapley [53], Shapley-Shubik [93], and Demange-Gale
[39], among others.

Using the deferred-acceptance with competitions algorithm (Algorithm 2.1) de-
signed in Chapter 1 the existence of ε-pairwise stable allocations is established under
classical game theory assumptions. Even more, as for Nash stable allocations, we are
able to prove the existence of 0-pairwise stable allocations under the same assumptions
(Theorem 2.2.4).

A semi-lattice structure (Section 2.3) of the set of pairwise stable allocations has
been established for any matching game in which an identification property (Defi-
nition 2.3.1) holds. Even more, we were able to obtain a full lattice structure for
zero-sum and strictly competitive matching games (Section 2.4), in particular recov-
ering the results of Demange and Gale.

Pairwise stability studies the deviations in which pairs of agents prefer to match
together abandoning their assigned partner. However, no stability in terms of strate-
gies has been covered so far. The following chapter is devoted to working on this issue,
defining the novel concept of renegotiation proofness, refining the literature solutions.
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Chapter 3
1-to-1 Matching games with commitment:

Renegotiation proofness

Chapter 1 showed that restricting agents’ deviations on actions by making them play
Nash equilibria is too demanding and we fail to capture the classical models of stable
matching. As agents can commit in actions we will be able to relax Nash stability to
the novel notion of renegotiation proofness in which agents will play constrained Nash
equilibria, i.e., strategy profiles in which both players within a couple best reply to
the partner subject to a participation constraint. Renegotiation proofnes will refine
pairwise stability (studied in Chapter 2). Thus, it will refine the solution concepts of
the literature as well.

Constrained Nash equilibria will result to be the solutions to quasi-variational
inequalities. Therefore, their existence cannot be always guaranteed. Due to this, a
new class of games, feasible games, is considered. We prove that many well-known
games from the literature on game theory are feasible. The proof of feasibility is game
dependent as it uses the properties of each of them.

We design a renegotiation process which, for any feasible matching game instance
and starting from any pairwise stable allocation, outputs a pairwise-renegotiation-
proof stable allocation if it converges. Finally, we prove the convergence of the algo-
rithm for many feasible games by designing game dependent oracles.

Renegotiation proofness of an allocation and Pareto-optimality in each game will
not always be compatible. For static games as constant-sum or strictly competitive
games, however, we will design oracles that will choose Pareto-optimal constrained
Nash equilibria for each couple.

Interesting properties will rise for matching games in which couples play infinitely
repeated games. Thanks to the ability of the agents to punish their partners in case of
deviation in actions, formal commitment between agents will not be required anymore
and the equivalence between renegotiation proofness and allocations in which agents
play only uniform equilibria (Nash stability (Definition 1.2.2)) will be obtained. In
other words, the model with commitment and without commitment will coincide.
Even more, we will show how to compute allocations in which agents play Pareto-
optimal uniform equilibria, obtaining the most powerful notion of stability in our
model: Pareto-optimality, pairwise stability, and Nash stability.

The chapter is structured as follows. Section 3.1 introduces the notion of renego-
tiation proofness and applies it to the examples considered in the previous chapters.
Section 3.2 characterizes the pairwise stable and renegotiation proof allocations for any
matching game in which all couples play the same game. Section 3.3 introduces con-
strained Nash equilibria and characterizes them as the solutions of a quasi-variational
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equation. Section 3.4 introduces the novel class of feasible games and proves that many
well-known games are feasible. Section 3.5 designs the renegotiation process algorithm,
shows that any output of the algorithm is pairwise stable and renegotiation-proof, and
proves its convergence for many feasible games. Section 3.6 shows the extra properties
satisfied by the allocations of matching games in which agents play infinitely repeated
games. Section 3.7 shows a numerical example of the renegotiation process. Finally,
Section 3.8 concludes the chapter.

3.1 Renegotiation proofness
We start by introducing the following useful notation: Given a strategy profile ~x ∈ XD,
and sd ∈ Xd a particular strategy of some fixed doctor d ∈ D, we write (~x−d, sd) to
the strategy profile obtained when replacing xd, the strategy of doctor d in ~x, by sd.

Definition 3.1.1. A pairwise stable allocation π = (µ, ~x, ~y) is renegotiation
proof if for any couple (d, h) ∈ µ and any (sd, th) ∈ Xd × Yh, it holds,

1. If fd,h(sd, yh) > fd(π) then, (µ, (~x−d, sd), ~y) is not pairwise stable,
2. If gd,h(xd, th) > gh(π) then, (µ, ~x, (~y−h, th)) is not pairwise stable.

Condition 1 says that no matched doctor d can profitably deviate in actions with-
out breaking the pairwise stability of the allocation or, in other words, without cre-
ating a blocking pair or violating the IRP of some agent. Condition 2 is the dual
property for hospitals.

In terms of contract theory, an allocation will be renegotiation proof if any prof-
itable deviation of an agent from the agreed strategy profile is rejected by the partner
as she will prefer her outside option or changing of partner.

Renegotiation proofness can be written as a generalized Nash equilibrium condition
subject to a participation constraint: players must choose contracts that maximize
their payoff under the constraint that the partners still agree to sign the contract
(Proposition 3.5.2).

An interesting family of strategic games in which the output of the deferred-
acceptance with competitions algorithm is not only pairwise stable but also renego-
tiation proof is the class of common interest games, in which fd,h = gd,h for any
couple (d, h) ∈ D ×H, as every time a doctor maximizes her payoff, she also does it
for her partner hospital. In general, however, the constructed pairwise stable alloca-
tion will not be renegotiation proof. We will see in the following sections how, under
some assumptions on the family of strategic games, one can, from any pairwise stable
allocation, construct a pairwise stable and renegotiaton proof one.

Let us see the impact on renegotiation proofness in our leading examples.

Example 1.1.4. Recall the prisoners’ dilemma matching game example with two
players, both with positive IRP δ, and payoff matrix,
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Agent h

Agent d
Cooperate Betray

Cooperate 2δ, 2δ −δ, 3δ
Betray 3δ,−δ 0, 0

We have found that any allocation in which agents match and play a mixed strategy
(x, y) = ((p, 1− p), (q, 1− q)) satisfying,

q ∈
[1 + p

3 , 3p− 1
]
, such that p, q ∈ [0, 1] (3.1)

is pairwise stable. An allocation is renegotiation proof if any profitable deviation in
actions of a player breaks its pairwise stability. Recall that the expected payoffs of
the agents are fd(x, y) = δ(3q − p) and gh(x, y) = δ(3p− q).

Since there are no other couples, the only way to break the pairwise stabil-
ity of the allocation is to decrease the payoff of the partner below δ by deviating.
Imposing the agents’ payoffs equal to δ, we obtain the strategy profile (x∗, y∗) =
((1/2, 1/2), (1/2, 1/2)) (the bottom-left vertex of the light blue region in Figure 2.1).
Let us prove that matching and playing (x∗, y∗) is pairwise stable and renegotiation
proof. First of all, since (x∗, y∗) satisfies Equation (3.1) the allocation is pairwise
stable. Take ε> 0 and suppose that player d deviates to x′ = (1/2−ε, 1/2+ε). Then,

fd(x′, y∗) = δ
(

3 · 1
2 −

1
2 + ε

)
= fd(x∗, y∗) + δε> fd(x∗, y∗),

so d has a profitable deviation. In general, agents profitably deviate if they decrease
the probability of cooperating. It follows that,

gh(x′, y∗) = δ
(

3 ·
(1

2 − ε
)
− 1

2

)
= g(x∗, y∗)− 3δε = δ(1− 3ε)<δ

Thus, any profitable deviation of player d from (x∗, y∗) decreases the payoff of player h
below δ violating its individual rationality. By symmetry, the same holds for any prof-
itable deviation of player h from (x∗, y∗). Therefore, matching together and playing
(x∗, y∗) is pairwise stable and renegotiation proof.
Remark 3.1.2. It is easy to check that matching and playing ((1/2, 1/2), (1/2, 1/2))
in the previous example is the only pairwise stable and renegotiation proof allocation.
In particular, from the continuum of pairwise stable allocations, there is only one that
is also renegotiation proof.
Example 1.1.5. Recall the coordination matching game example with two players,
both with positive IRPs δ, and payoff matrix,

Agent h

Agent d
A B

A 4δ, δ/2 0, 0
B 0, 0 δ/2, 4δ

75



3.1. Renegotiation proofness

We have found that any allocation in which agents match and play a strategy profile
(x, y) = ((p, 1− p), (1− q, q)) satisfying,

q ∈
[

2− p
8− 9p,

8p− 2
9p− 1

]
, such that p, q ∈ [0, 1]

is pairwise stable. As for the previous example, setting the agents’ payoff equal to their
IRPs, we obtain two possible solutions ((2/3, 1/3), (1/3, 2/3)) and ((1/3, 2/3), (2/3, 1/3)).
It is easy to check that any profitable deviation of an agent from these strategy profiles
reduces the partner’s payoff below δ, breaking the pairwise stability of the allocation.
Even more, these are the only strategy profiles with this property. Therefore, we
obtain (only) two pairwise stable and renegotiation proof allocations.

Example 1.1.6. Recall the transfer matching game with two agents, both with
positive IRPs δ, who play the constant-sum game,

G = (R+,R+, f, g), such that for any x, y ≥ 0,
f(x, y) = 10δ − x+ y

g(x, y) = x− y

Pairwise stability implies that players match and make a transfer profile (x, y) such
that δ ≤ x − y ≤ 9δ. If x − y > δ, decreasing slightly x increases d’s payoff without
violating h’s individual rationality. Thus, renegotiation proofness implies that x−y =
δ. If x − y = δ and y > 0, decreasing slightly y increases h’s payoff without inciting
d to leave the couple. Thus, an allocation is pairwise stable and renegotiation proof
if and only if d and h agree to match, x = δ and y = 0. We recover the competitive
price equilibrium of Shapley and Shubik.

Example 1.1.7. Recall the auction example in which a seller sells an indivisible good
to a set of n buyers. Buyers have valuations v1 > v2 ≥ ... ≥ vn for the good, the seller
has valuation c for the good, and everybody has null IRP. If a couple buyer-seller
(d, h) is created and the monetary transfers (xd, yh) is agreed, the item is sold from h
to d at the price p = xd − yh. In particular, the utilities of the players are,

fd(xd, yh) = vd − p = vd − xd + yh,

gh(xd, yh) = p− c = xd − yh − c,

Finally, recall we have assumed v1 ≥ c. We have found that pairwise stability implies
that the good is sold to buyer 1 for a price p1 ∈ [max(c, v2), v1]. In this continuum, the
unique renegotiation proof allocation is p1 = max(c, v2) (we recover the outcome of the
2nd price auction). Indeed, if p1>max(c, v2), decreasing slightly p1 increases buyer 1’s
payoff without breaking the pairwise stability as the seller still prefers to be matched
with her. If p1 = max(c, v2) and c> v2, decreasing slightly p1 turns seller’s payoff
negative making her to prefer to become unmatched. Similarly, if v2>c, decreasing
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slightly p1 creates a blocking pair as buyer 2 and the seller could match together and
increase strictly their payoffs by trading the good at some price between p1 and v2.

As another example, Section 3.2 discusses the particular case of symmetric
matching games, in which all couples play the same game, i.e when strategy sets
and payoff functions are couple independent.

3.2 Symmetric matching games
Along this section and to keep things simple, suppose that D and H have the same
size and that all agents have very low individually rational payoffs, so they prefer
to be matched rather than being single. The main conclusion is: in a large class
of situations, pairwise stable and renegotiation proof allocations exist and are those
where all couples get the same Pareto-optimal payoff.

Formally, suppose that fd,h = f , gd,h = g, Xd = S, Yh = T , for any couple
(d, h) ∈ D ×H, meaning that the game played in every couple is independent of the
identities of the players. Denote by G the two-player game with action sets S and T
and payoff functions f and g. Suppose in addition that S and T are convex sets and
that f and g are continuous and own-payoff q-concave (Definition 3.2.1).

Definition 3.2.1. A function f is q-concave if for any (s, s′, u), such that f(s) ≥ u
and f(s′) > u, then, f(s′′) > u, for any s′′ ∈ (s, s′).

Observe that if s 7→ f(s, t) is concave, linear, or strictly quasi-concave then, it is
q-concave. Thus, we cover the class of finite games in mixed strategies (§4.7.2 [77]).
Also, q-concavity implies quasi-concavity.

Definition 3.2.2. A game G satisfies the Pareto transfer property if for any pair
of Pareto-optimal payoffs (f1, g1), (f2, g2) such that f1<f2 and g2<g1, there exists a
Pareto-optimal strategy profile (s′, t′) satisfying,

f1<f(s′, t′)<f2 and g2<g(s′, t′)<g1

Expressed differently, a game satisfying the Pareto transfer property has a Pareto
frontier that allows to continuously transfer utility from one player to the other, which
is the case in many games. The following theorem characterizes the pairwise stable
and renegotiation proof allocations for symmetric matching games.

Theorem 3.2.3. Let (s, t) be Pareto-optimal in G. Let µ be any matching and sup-
pose that any matched couple (d, h) in µ plays (xd, yh) = (s, t). Then, (µ,~s,~t) is
pairwise stable and renegotiation proof. Conversely, if π = (µ, ~x, ~y) is pairwise stable
and renegotiation proof, then any matched couple, except at most one, plays Pareto-
optimally in its game. If moreover, the game satisfies the Pareto transfer property,
then all couples playing Pareto-optimally share the same payoff.
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Proof. Let (s, t) be Pareto-optimal in G and suppose that any matched couple (d, h)
in µ plays (xd, yh) = (s, t). It is not possible to find a blocking pair since any deviation
from (s, t) reduces the payoff of one of the agents. Therefore, the allocation is pairwise
stable. Regarding renegotiation proofness, consider an arbitrary matched couple (d, h)
and suppose that player d has a profitable deviation s′ in G. In particular, h’s payoff
strictly decreases when d deviates. Because of continuity,

∃α ∈ (0, 1) : g(s′, t) < g(αs+ (1− α)s′, t) < g(s, t)

Because of q-concavity,
f(αs+ (1− α)s′, t) > f(s, t)

Consequently, any d′ not matched with h increases her payoff, as well as h’s payoff,
by forming a couple and playing (αs + (1 − α)s′, t). Thus, the deviation of player d
creates the blocking pair (d′, h), breaking the pairwise stability.

Conversely, consider two matched couples (d1, h1) and (d2, h2) with payoffs (f1, g1)
and (f2, g2). Suppose that f1 ≤ f2. If (f2, g2) is Pareto-dominated, d1 can replace
d2 by proposing to h2 a Pareto-optimal improvement, so the pair (d1, h2) blocks the
allocation. A contradiction, thus (f2, g2) is Pareto optimal. Therefore, all couples,
except perhaps one, play Pareto-optimally in their game. Suppose now the game
satisfies the Pareto transfer property and that couples 1 and 2 are playing Pareto
optimally but their payoffs differ. Without loss of generality, suppose that

f1 = f(x1, y1) < f(x2, y2) = f2

Then, g1 = g(x1, y1) > g(x2, y2) = g2. By the Pareto transfer property, there exists a
Pareto-optimal strategy profile (s′, t′) such that

f2 > f(s′, t′) > f1 and g1 > g(s′, t′) > g2

Thus, (d1, h2) is a blocking pair of π, a contradiction. Consequently, all couples share
the same payoff.

Theorem 3.2.3 shows that pairwise stability and renegotiation proofness have the
feature to induce cooperation (e.g. Pareto optimality) but also some uniformity in
behaviors (couples share the same payoffs), in the case of symmetric matching games.

3.3 Constrained Nash equilibria
In this section the concept of constrained Nash equilibrium (CNE) is introduced and
expressed through a quasi-variational inequality formulation. The renegotiation proof-
ness characterization by constrained Nash equilibria is delegated to Section 3.5.

Constrained Nash equilibria are defined for any two-player game and do not depend
on the whole matching game Γ considered. Because of this, during Sections 3.3 and 3.4
we will only consider one strategic game G = (X, Y, f, g), where X, Y are compact
strategy sets and f, g are continuous payoff functions. We endow each player with an
outside option, f0, g0 ∈ R, respectively.
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Remark 3.3.1. Outside options will play a key role in the characterization of renego-
tiation proofness: When agents have outside options equal to their reservation payoffs,
an allocation will be renegotiation proof if and only if all couples of players play a
constrained Nash equilibrium. Further assumptions and how to compute these values
are studied in Section 3.5.

Definition 3.3.2. A strategy profile (x, y) ∈ X×Y is (f0, g0)-feasible if f(x, y) ≥ f0
and g(x, y) ≥ g0.

In words, a strategy profile is feasible for the players, for a given pair of outside
options, if they can achieve at least these payoffs when playing that strategy profile.

Definition 3.3.3. A (f0, g0)-feasible strategy profile (x′, y′) is a (f0, g0)-constrained
Nash equilibrium (CNE) if it satisfies:

f(x′, y′) = max{f(x, y′) : g(x, y′) ≥ g0, x ∈ X}
g(x′, y′) = max{g(x′, y) : f(x′, y) ≥ f0, y ∈ Y }

(3.2)

We denote the set of (f0, g0)-constrained Nash equilibria as CNE(f0, g0).

A strategy profile satisfies Equations (3.2) if any player’s profitable deviation de-
creases the partner’s payoff below her outside option. Equations (3.2) can be written
as a quasi-variational inequality (QVI) [50, 61, 83] with point-to-set mappings that
may fail to be lower semi-continuous. Due to this, the existence of constrained Nash
equilibria cannot be always guaranteed. The rest of this section is devoted to showing
this characterization, while the following section will deal with the existence of CNE.

Given a pair of outside options (f0, g0), consider the point-to-set mappings,

K1(y′) := {x ∈ X : g(x, y′) ≥ g0}, K2(x′) := {y ∈ Y : f(x′, y) ≥ f0} (3.3)

A strategy profile (x′, y′) is a (f0, g0)-constrained Nash equilibrium if it solves,

f(x′, y′) = max
s∈K1(y′)

f(s, y′),

g(x′, y′) = max
t∈K2(x′)

g(x′, t)
(3.4)

Remark 3.3.4. Note that, for a given strategy profile (x′, y′), the sets (3.3) are convex
if the strategy sets X, Y are convex as well and the payoff functions are own-concave.

Equations (3.4) can be easily rewritten as a quasi-variational inequality [61]. We
state this result without proof.

Proposition 3.3.5. Let X, Y be closed convex subsets of Rn and Rm, respectively. In
addition, suppose that the payoff functions f, g are concave and differentiable on the
player’s own strategy. Then, a strategy profile (x′, y′) satisfies Equation (3.4) if and
only if it satisfies,

∇xf(x′, y′)T · (x′ − s) ≥ 0, ∀s ∈ K1(y′)
∇yg(x′, y′)T · (y′ − t) ≥ 0,∀t ∈ K2(x′)

(3.5)
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Setting K(x′, y′) = K1(y′)×K2(x′), L = [∇xf,∇yg], a strategy profile (x′, y′) satisfies
Equations (3.4) if and only if it is solution to the QVI(K,L).

Proposition 3.3.5 states that any solution to the QVI(K,L) will satisfy Equations
(3.2), however, it is not direct that the solution will be a feasible strategy profile.

Proposition 3.3.6. Consider a strategy profile (x′, y′), solution of QVI(K,L) as
defined in Proposition 3.3.5. Then, (x′, y′) is a (f0, g0)-feasible strategy profile.

Proof. Let (x′, y′) be a solution of QVI(K,L). It holds, f(x′, y′) ≥ f0, as y′ ∈ K2(x′),
and g(x′, y′) ≥ g0, as x′ ∈ K1(y′). Therefore, (x′, y′) is (f0, g0)-feasible.

From Propositions 3.3.5 and 3.3.6, the constrained Nash equilibrium problem is a
generalized Nash equilibrium problem in which the point-to-set mappings K1 and K2
give the feasible deviations of each player.

Considering convex and compact strategy sets X, Y , and continuously differen-
tiable concave payoff functions f, g (standard assumptions on game theory), most of
the conditions on the existence of QVI solutions theorems are satisfied [50, 61, 83].
Even more, being X, Y convex sets, f, g continuous and own-payoff concave functions,
the applications K1 and K2 are closed and convex. By choosing outside options not
too restrictive, we can easily obtain the non-emptiness of the point-to-set mappings.
The upper semicontinuity is a consequence of the payoff functions’ continuity and the
fact that K1 and K2, for some given strategy profile, are polytopes. Indeed, consider
(yn) ⊆ Y , x ∈ X and xn ∈ K1(yn),∀n ≥ 0. Consider in addition that yn → y and
xn → x. In particular, for any n ≥ 0, g(xn, yn) ≥ g0, as xn ∈ K1(yn). Taking n→∞,
g0 ≤ g(xn, yn) → g(x, y), as g is a continuous function. Thus, x ∈ K1(y). The
only missing assumption for existence is the lower semicontinuity of the point-to-set
mappings. This cannot be guaranteed.

3.4 Feasible games
Constrained Nash equilibria are the key to obtaining renegotiation proof allocations.
Since CNE are not guaranteed to exist as the previous section explained, we will
consider the following class of games.

Definition 3.4.1. A two-person game G is feasible if for any pair of outside options
(f0, g0) ∈ R2, which admits at least one (f0, g0)-feasible strategy profile, there exists
a (f0, g0)-CNE.

Feasibility is a necessary condition for the existence of pairwise stable and renego-
tiation proof allocations. Let us illustrate it with an example.

Example 1.1.6. Recall the transfer matching game example in which two agents d
and h with positive IRPs δ can match and play,

G = (R+,R+, f, g), such that for any x, y ≥ 0,
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fd,h(x, y) = 10δ − x+ y

gd,h(x, y) = x− y

Taking (f0, g0) = (δ, δ), any transfer profile (x, y) satisfying x− y ∈ (δ, 9δ) is (f0, g0)-
feasible. The (f0, g0)-CNE of this game corresponds to the renegotiation proof allo-
cation found before: x = δ and y = 0.

Feasible two-player games are strongly related to the solution set of the quasi-
variational inequality formulation (Equations (3.5)). As we know that the non-
emptyness of the solution set cannot be guaranteed, we conjecture that not all two-
player games can be feasible. The following example1 proves this conjecture.

Example 3.4.2. Let G be the following finite game played in mixed strategies.

L M R
T 2,1 -10,-10 3,0
M 3,0 2,1 -10,-10
B -10,-10 3,0 2,1

Game G has only one Nash equilibrium, completely mixed, with payoffs −5/3
and −3 for players 1 and 2, respectively. Take null outside options, i.e., f0 = g0 =
0. The set of (f0, g0)-feasible strategy profiles is non-empty as, for example, (T, L),
(M,L), (M,M), (B,M), (T,R), and (B,R) belong to it. However, there is no (f0, g0)-
constrained Nash equilibrium. Let us prove this formally. Let Z1,2 be the set of feasible
contracts for players 1 and 2 and

(x, y) = ((x1, x2, x3), (y1, y2, y3))

be a mixed strategy profile that achieves some payoff (f ′, g′), in which each coordinate
corresponds to playing Top, Medium, and Bottom, respectively for player 1, and Left,
Medium, and Right, respectively for player 2.

If any of the players plays a pure strategy, the other player can improve her payoff
by a unilateral deviation, still respecting the outside option of the first player. For
example, consider that player 1 plays x = (1, 0, 0), i.e., she plays Top. Then, player
2 can deviate to play Left with probability 1, increasing her payoff and still giving to
player 1 a positive payoff, that is, respecting her outside option. In the same way, if
player 2 plays Left, player 1 can deviate to play Medium. Thus, no pure strategy can
be a constrained equilibrium.

The same holds if any of the players play a mixed strategy without full support.
Consider that player 1 plays (x1, x2, 0). Then, player 2 can deviate and play Left with
probability 1 if x1 is large enough, or a mixed strategy mixing only Left and Medium
if x2 is large enough. In any of the two cases, players converge to play pure strategies,
which we already saw cannot be a constrained Nash equilibrium.

1We want to thank Eilon Solan for having suggested this example.

81



3.4. Feasible games

Consider that both players play mixed strategies with full support. The Nash
equilibrium of the game not belonging to Z1,2, it cannot be the case that players play
(1/3, 1/3, 1/3). Without loss of generality, assume that x1> 1/3 ≥ x2. The expected
payoff of player 2 is given by,

g′ = g(x, y) = y1(12x1 + 21x2 − 11) + y2(−9x1 + 12x2 − 1) + (1− x1 − 11x2)

It holds that x1, x2, y1, y2 are strictly positive and x1 +x2< 1, y1 +y2< 1, since players
have full support. Then, −9x1 + 12x2 − 1< 0, so player 2 can deviate and increase
her own payoff by decreasing y2. The expected payoff of player 1 is,

f ′ = f(x, y) = y1(11x1 + 25x2 − 12) + y2(−14x1 + 11x2 + 1) + (x1 − 12x2 + 2)

It holds −14x1 + 11x2 + 1< 0, so player 1 increases her payoff if y2 decreases as well.
Therefore, there exists a profitable deviation for player 2 that still guarantees to player
1 her outside option. Intuitively, since player 1 is more likely to play Top, it makes
sense that both players improve their payoff if player 2 decreases the probability of
playing Medium, so they avoid getting −10. We conclude that (f ′, g′) is not the payoff
of a constrained equilibrium payoff, and therefore, the game G is not feasible.

Once stated that not all two-player games are feasible, we dedicate the rest of this
section to prove the following theorem, showing the richness of the class of feasible
games.

Theorem 3.4.3. The class of feasible games includes,

1. Constant-sum games with a value

2. Strictly competitive games with an equilibrium

3. Potential games

4. Infinitely repeated games

The proof that a game is feasible relies on the characteristic of the game. In other
words, the proof is game-dependent. Therefore, we prove Theorem 3.4.3 in several
subsections. In addition, we briefly recall each of the games mentioned in the theorem.

Infinitely repeated games, besides being feasible, will satisfy many interesting prop-
erties such as Nash stability (Definition 1.2.2) and Pareto-optimality in each game.
The formal study is done in Section 3.4.4.

Remark 3.4.4. Extensive form games with perfect information result to be feasible
as well. The proof is delegated to Appendix A.1 since we will not study these games
during the rest of the thesis.

82



1-to-1 Matching games with commitment: Renegotiation proofness

3.4.1 Zero-sum games with a value are feasible
A two-person game G = (X, Y, f, g) is a zero-sum game if players’ payoff functions
satisfy f(·, ·) = −g(·, ·) =: u(·, ·).

Definition 3.4.5. Given (f0, g0) player’s outside options, with f0 ≤ g0, a strategy
profile (x, y) ∈ X × Y is feasible if and only if it satisfies

f0 ≤ u(x, y) ≤ g0

A feasible payoff profile (x′, y′) is a (f0, g0)-CNE if for any (x, y) ∈ X×Y , it holds that,
if u(x, y′)>u(x′, y′) then, u(x, y′)>g0 and, if u(x′, y)<u(x′, y′) then, u(x′, y)<f0.

Proof. Zero-sum games with a value are feasible. Let G = (X, Y, u) be a zero-
sum game, with X, Y compact convex subsets of topological vector spaces and u
separately continuous. Suppose the game G has a value w and by continuity of u and
compactness of X and Y , players have optimal strategies (x∗, y∗). Let (x′, y′) be a
feasible contract (f0 ≤ u(x′, y′) ≤ g0). The analysis is split into three cases.
Case 1. f0 ≤ w ≤ g0. The optimal contract (x∗, y∗) is feasible. Since (x∗, y∗) is a
Nash equilibrium, it is a (f0, g0)-constrained Nash equilibrium.
Case 2. w<f0<g0. Consider the set A(f0) := {x ∈ X : ∃y ∈ Y, u(x, y) ≥ f0}. Since
(x′, y′) is a feasible contract, A(f0) is non-empty. Consider the optimization problem

sup [inf{u(x, y) : u(x, y) ≥ f0, y ∈ Y } : x ∈ A(f0)] (P)

For a given x0 ∈ A(f0), the set {y ∈ Y : g(x0, y) ≥ f0} is bounded and so, there exists
an infimum y0(x0). Thus, as the set A(f0) is also bounded, there exists a supremum
x0. Let (x0, y0(x0)) be the pair supremum-infimum solution of (P). It holds that
u(x0, y0(x0)) ≥ f0 by construction. Suppose that u(x0, y0(x0))>f0. Since w<f0,
it holds w<f0<u(x0, y0(x0)). Considering the optimal contract (x∗, y∗), it holds
u(x0, y

∗) ≤ u(x∗, y∗) = w<f0<u(x0, y0(x0)). By continuity of the function u(x0, ·),
there exists λ ∈ (0, 1) such that u(x0, yλ) = f0, with yλ = λy∗+(1−λ)y0(x0) ∈ Y . This
contradicts the fact that (x0, y(x0)) is the solution to (P). Thus, u(x0, y(x0)) = f0. If
this strategy profile is a constrained Nash equilibrium, the study of the second case
is done. If not, consider yt ∈ Y as the convex combination between y(x0) and y∗ with
t computed by,

t := sup{τ ∈ [0, 1] : yτ := (1− τ)y(x0) + τy∗ and ∃xτ ∈ X, u(xτ , yτ ) = f0} (3.6)

t exists as for τ = 0, there exists x0 such that u(x0, y(x0)) = f0. In addition, yt 6= y∗,
since the contract (x∗, y∗) is a saddle point, u(x∗, y∗) = w<f0 and any deviation
of player 1 decreases the payoff. Notice that any profitable deviation of player 2
decreases the payoff below f0, as u(xt, yt) = f0. Suppose there exists x̂ ∈ X such
that f0 = u(xt, yt)<u(x̂, yt) ≤ g0. As a summary, it holds: u(x∗, y∗) = w<f0 =
u(xt, yt)<u(x̂, yt) with yt in the interval (y(x0), y∗). Once again, by the continuity of
u and the convexity of X × Y , there exists an element z in the interval (yt, y∗) and
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some xz ∈ X, such that u(xz, z) = f0, contradicting the definition of t in (3.6). Thus,
(xt, yt) is a constrained Nash equilibrium.
Case 3. f0<g0<w. Analogous to case 2.

Zero-sum games with a value are not only feasible but for any (f0, g0)-CNE (x, y),
it is satisfied,

u(x, y) = median(f0, w, g0)

This equation will be particularly useful later. Let us illustrate the previous proof
with the following example.

Example 3.4.6. Consider the matching pennies game (Table 3.1) played in mixed
strategies,

Player 2

Player 1
A B

A 1 -1
B -1 1

Table 3.1: Matching pennies

−1 1w = 0
f

g

f0

u(x, y)

f ′
0

u(x′, y′)

g0g′0

Figure 3.1: Feasible payoffs region

Matching pennies is a zero-sum game of value w = 0 and optimal mixed strategies
(x∗, y∗) = (1/2, 1/2). Figure 3.1 represents the payoff function u (in red), the value w
(black dot), two pair of outside options (f0, g0) and (f ′0, g′0) for the players, and two
strategy profile payoffs u(x, y) (blue dot) and u(x′, y′) (green dot). It holds

w<f0<g0 and f ′0<g′0<w

being, respectively, the second and third cases studied during the previous proof. We
can observe that (x, y) ∈ CNE(f0, g0) and (x′, y′) ∈ CNE(f ′0, g′0). Indeed, if w<f0<g0
holds, any profitable deviation of player 2 from (x, y) makes the payoff of the game
lower than f0, so player 1 receives less than her outside option. Analogously, in the
case f ′0<g′0<w, if player 1 can deviate from (x′, y′) increasing her payoff, player 2
receives less than g′0.

Remark 3.4.7. From the nature of zero-sum games, we obtain that the constrained
Nash equilibrium selection is always Pareto-optimal.
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3.4.2 Strictly competitive games with an equilibrium are fea-
sible

Definition 3.4.8. A two-player game G = (X, Y, f, g) is strictly competitive if for
any strategy profile (x, y) ∈ X × Y , it holds,

∀x′ ∈ X : f(x′, y)>f(x, y), g(x′, y)<g(x, y), and,
∀y′ ∈ Y : g(x, y′)>g(x, y), f(x, y′)<f(x, y)

Recall the class S of strictly competitive games à la Aumann, that is, all strictly
competitive games obtained as monotone transformations of zero-sum games. To
prove Theorem 3.4.3 we will use Aumann’s conjecture that S covers the entire class of
competitive games, although we will restrict the analysis to finite strictly competitive
games (the most general case for the one Aumann’s conjecture has been proved so
far) at the moment of studying the complexity of our algorithms (Section 5.3).

Consider a strictly competitive game G = (X, Y, f, g), with X, Y compact sets
and f, g continuous payoff functions. Let ϕ, φ be increasing functions such that the
game G′ = (X, Y, u) is a zero-sum game where f = ϕ ◦ u and g = φ ◦ u. Nash
equilibria of G and G′ coincide, and Nash equilibrium payoffs are the image through
the increasing functions from one game to another. In particular, if w is the value of
G′, then (ϕ−1(w), φ−1(w)) is a Nash equilibrium payoff of G. Let (f0, g0) be outside
options of the players in G, and let (x∗, y∗) be a (f0, g0)-constrained Nash equilibrium.
Consider the corresponding outside options in G′ given by f ′0 := ϕ(f0), g′0 := −φ(g0).
Indeed, f ′0 and g′0 are outside options for the players in their zero-sum game as, for
any (x, y) ∈ X × Y such that f0 ≤ f(x, y) and g0 ≤ g(x, y), it holds

f ′0 ≤ ϕ(f0) ≤ ϕ(f(x, y)) = −φ(g(x, y)) ≤ g′0

Also, (x∗, y∗) is (f ′0, g′0)-feasible in G′, and it is direct that (x∗, y∗) is a (f ′0, g′0)-
constrained Nash equilibrium, as increasing functions preserve inequalities. From
the proof of zero-sum games’ feasibility, we conclude the following theorem.

Theorem 3.4.9. Let G = (X, Y, f, g) be a strictly competitive game, G′ = (X, Y, u) a
zero-sum game, and ϕ, φ increasing functions such that the game f = ϕ◦u, g = φ◦u).
Suppose that G′ has a value w (if and only if G has a Nash equilibrium). Then, given
f0, g0 outside options in G, which admit a feasible contract, there always exists a
(f0, g0)-CNE (x∗, y∗) of G. In addition, it holds

f(x∗, y∗) = median{f0, ϕ
−1(−φ(g0)), ϕ−1(w)}

g(x∗, y∗) = median{φ−1(−ϕ(f0)), g0, φ
−1(−w)}

Remark 3.4.10. As for zero-sum games, the selection of constrained Nash equilibria
is always Pareto-optimal for strictly competitive games.
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3.4.3 Potential games are feasible
A two-person game G = (X, Y, f, g) is a potential game if there exists a(n exact)
potential function φ : X × Y → R such that, ∀x, x′ ∈ X, y, y′ ∈ Y it satisfies,

φ(x′, y′)− φ(x, y′) = f(x′, y′)− f(x′, y), and
φ(x′, y′)− φ(x′, y) = g(x′, y′)− g(x′, y)

Proof. Potential games are feasible. Let G = (X, Y, f, g) be a potential game
with potential function φ. Let (f0, g0) be outside options and Z0, be the set of all
(f0, g0)-feasible contracts. Suppose Z0 6= ∅. We aim to prove that Z0 includes at least
one (f0, g0)-CNE. Consider

(x′, y′) ∈ arg max{φ(x, y) : (x, y) ∈ Z0}

Remark (x′, y′) always exists as Z0 is a non-empty compact set and φ is continuous.
It holds that (x′, y′) is (f0, g0)-feasible. Consider x ∈ X such that f(x, y′)>f(x′, y′)
and g(x, y′) ≥ g0. In particular, f(x, y′)>f(x′, y′) ≥ f0, so (x, y′) ∈ Z0. Moreover,
φ(x, y′)>φ(x′, y′) as f(x, y′)>f(x′, y′). This contradicts that (x′, y′) belongs to the
argmax of φ in Z0. The same holds for player 2. Thus, (x′, y′) is a (f0, g0)-CNE.

Unlike the previous feasible games studied, Pareto-optimality and constrained
Nash equilibria are not always compatible for potential games. Consider, for example,
the following prisoners’ dilemma,

Player 2

Player 1
Cooperate Betray

Cooperate 2, 2 −1, 3
Betray 3,−1 0, 0

Given outside options equal to 0 for both agents, the oracle designed in the pre-
vious proof selects the Nash equilibrium of the game, which is Pareto-dominated
by cooperating. Pairwise stability (Definition 2.2.1) considers that all couples play
Pareto-optimally as matched agents can also be blocking pairs. We recall this issue is
not present in models with strict preferences or monetary transfers.

For matching games where all games are potential games we will be able to com-
pute “weak” pairwise stable and renegotiation proof allocations where the only pos-
sible blocking pairs for the allocation will be matched couples not playing Pareto-
optimally.

3.4.4 Infinitely repeated games are feasible
Consider a two-person finite game in mixed strategies, G = (X, Y, f, g), called the
stage game, that is played in discrete time k = {1, ..., K, ...} after observing the past
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history of plays hk = ((x1, y1), ..., (xk−1, yk−1)). Given K ∈ N, consider the K-stages
game GK defined by the payoff functions

f(K, σ1, σ2) := 1
K

Eσ
[
K∑
k=1

f(xk, yk)
]
, g(K, σ1, σ2) := 1

K
Eσ
[
K∑
k=1

g(xk, yk)
]

where σ1 : ⋃(X × Y )∞k=1 → X and σ2 : ⋃(X × Y )∞k=1 → Y are the players’ behavioral
strategies. We define the uniform game G∞ as the game obtained by taking K →∞
in GK .

To state the definition of constrained Nash equilibrium for uniform games, we need
some preliminary concepts.

Definition 3.4.11. Consider the set of feasible payoffs

co(f, g) := co{(f(x, y), g(x, y)) ∈ R2 : (x, y) ∈ X × Y }

in which co stands for the convex envelope.

Definition 3.4.12. Given the punishment level of players 1 and 2,

α := min
y∈Y

max
x∈X

f(x, y) and β := min
x∈X

max
y∈Y

g(x, y) (3.7)

We define the set of uniform equilibrium payoffs (Folk theorem of Aumann-
Shapley [15]) as

E = {(f̄ , ḡ) ∈ co(f, g) : f̄ ≥ α, ḡ ≥ β}

Definition 3.4.13. Consider f0, g0 ∈ R outside options for player 1 and player 2,
respectively. The set of acceptable payoffs is defined as

E(f0, g0) := {(f̄ , ḡ) ∈ co(u, v) : f̄ ≥ f0 and ḡ ≥ g0}

We are ready to define the constrained Nash equilibria of a uniform game.

Definition 3.4.14. A strategy profile σ = (σ1, σ2) is called a constrained uniform
equilibrium of G∞ if:

1. ∀ε> 0, σ is a (f0, g0)-ε-constrained equilibrium of any long enough finitely repeated
game, that is, ∃K0, ∀K ≥ K0,∀(τ1, τ2) :

(a) If f(K, τ1, σ1)>f(K, σ) + ε then g(K, τ1, σ2) < g0,
(b) If g(K, σ1, τ2)>g(K, σ) + ε then f(K, σ1, τ2) < f0, and

2. [(f(K, σ), g(K, σ))]K has a limit [f(σ), g(σ)] in R2 asK goes to infinity, with f(σ) ≥
f0, g(σ) ≥ g0.

The set of constrained uniform equilibrium payoffs is denoted as E∞(f0, g0).
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A uniform game will be feasible if every time that the set of acceptable payoffs is
non-empty, the set of constrained uniform equilibrium payoffs is non-empty as well.

Definition 3.4.15. G∞ is feasible if whenever E(f0, g0) is non-empty, E∞(f0, g0)
is non-empty as well.

By the Folk theorem of Aumann-Shapley [15], the following proposition holds.

Proposition 3.4.16. Any payoff in E ∩E(f0, g0) can be achieved by a uniform equi-
librium and so by a constrained uniform equilibrium.

We are ready to prove the feasibility of infinitely repeated games (Theorem 3.4.3).

Proof. Infinitely repeated games are feasible. Suppose E(f0, g0) is non-empty.
We aim to show that E∞(f0, g0) is non-empty as well. Recall the punishment levels
α and β of the players (Definition 3.4.12). The analysis is split into four cases.
Case 1. g0 ≥ β and f0 ≥ α. It holds that E(f0, g0) ⊆ E. Then, by Proposition 3.4.16,
E∞(f0, g0) = E(f0, g0). Since E(f0, g0) is non-empty, E∞(f0, g0) is non-empty as well.
Case 2. g0<β and f0<α. It holds that E ⊂ E(f0, g0). Thus, E∞(f0, g0) contains
E (by Proposition 3.4.16) and so, it is non-empty.
Case 3. g0<β and f0 ≥ α. If F := E(f0, g0)∩E is non-empty, by Proposition 3.4.16,
all elements on F belong to E∞(f0, g0). Otherwise, consider (f ′, g′) defined by

g′ := max{ḡ : ∃f̄ s.t. (f̄ , ḡ) ∈ E(f0, g0)}, f ′ ∈ {f̄ : (f̄ , g′) ∈ E(f0, g0)}

As E(f0, g0) is a non-empty closed set, (f ′, g′) indeed exists and it belongs to E(f0, g0).
Consider the strategy profile σ′ in which the players follow a pure plan which yields
the payoff (f ′, g′). If player 1 deviates, player 2 punishes her at the level α, and if
player 2 deviates, player 1 ignores the deviation and continues to follow the pure plan.

Player 1 cannot gain more than ε by deviating. Indeed, if she does, player 2
punishes her by reducing his payoff to α. Since (f ′, g′) ∈ E(f0, g0), it holds that
f ′ ≥ f0 ≥ α and so, this deviation is not profitable. For player 2, suppose there exists
K ∈ N and ε> 0 such that she can obtain a payoff g′′>g′ + ε by deviating at stage
K. Let f ′′ be the average payoff of player 1 at stage K after the deviation of player
2. Since (f ′′, g′′) is an average payoff of the K-stages game, it is feasible. It cannot
hold that f ′′ ≥ f0, since it would contradict the definition of g′, as the payoff (f ′′, g′′)
would be acceptable. Thus, f ′′<f0. We conclude that σ′ is a constrained equilibrium
and then, (f ′, g′) ∈ E∞(f0, g0).
Case 4. g0 ≥ β and f0<α. Analogously to case 3.

Remark 3.4.17. The constrained Nash equilibrium choice can always be donePareto-
optimally. Moreover, except for some ill cases, the existence of feasible uniform
equilibria holds. We study this in Section 3.6.
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3.5 From pairwise stable to renegotiation proof
Constrained Nash equilibria capture renegotiation proofness when considering the
appropriated outside options (the players’ reservation payoffs). Let Γ = (D,H, (Gd,h :
d ∈ D, h ∈ H, f, g) be a matching game.

Definition 3.5.1. Given π = (µ, ~x, ~y) an allocation and (d, h) ∈ µ an arbitrary
matched couple, we define their reservation payoffs by,

fπd := max{fd,h′(s, t) : h′ ∈ H0 \ {h}, gd,h′(s, t)>gh′(π), (s, t) ∈ Xd × Yh′},
gπh := max{gd′,h(s, t) : d′ ∈ D0 \ {d}, fd′,h(s, t)>fd′(π), (s, t) ∈ Xd′ × Yh},

(3.8)

Reservation payoffs are the best payoffs that d and h can get outside of their couple
by matching with a partner who may accept them.

We are finally ready to characterize the renegotiation proof allocations through
constrained Nash equilibria.

Proposition 3.5.2. A pairwise stable allocation π = (µ, ~x, ~y) is renegotiation proof if
and only if for any (d, h) ∈ µ, (xd, yh) is a (fπd , gπh)-constrained Nash equilibria, where
fπd and gπh are the agents’ reservation payoffs.

Proof. Suppose that all couples play constrained Nash equilibria. Let (d, h) ∈ µ be
an arbitrary matched couple and (xd, yh) be their (fπd , gπh)-CNE. Suppose there exists
s ∈ Xd such that fd,h(s, yh)>fd,h(xd, yh). In particular,

fd,h(s, yh)>max{fd,h(`, yh) : gd,h(`, yh) ≥ gπh , ` ∈ Xd}

Thus, gd,h(s, yh)<gπh . Let d′ be the player that attains the maximum in gπh . Then,
(d′, h) is a blocking pair of the pairwise stability of π. For h the proof is analogous.

Conversely, suppose π is renegotiation proof. Let (d, h) ∈ µ be an arbitrary couple
and (xd, yh) be their strategy profile. Then, for any s ∈ Xd such that fd,h(s, yh)>fd,h(xd, yh),
it holds that gd,h(s, yh)<gπh . Thus,

fd,h(xd, yh) ≥ max{fd,h(`, yh) : gd,h(`, yh) ≥ gπh , ` ∈ Xd}

For player h the proof is analogous.

Proposition 3.5.2 gives the first insight into the design of an algorithm to compute
renegotiation proof allocations: It is enough to modify the strategy profiles of each
couple by constrained Nash equilibria under outside options equal to their reservation
payoffs. A second insight will come from the following result.

Proposition 3.5.3. Let π = (µ, ~x, ~y) be an allocation. Then, π is pairwise stable if
and only if fπd ≤ fd(π) and gπh ≤ gh(π), for any (d, h) ∈ D ×H, where fπd and gπh are
agents’ reservation payoffs (Equations (3.8)).
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3.5. From pairwise stable to renegotiation proof

Proof. Suppose that π is pairwise stable and let d ∈ D be a doctor such that
fπd >fd(π). Thus, there exists h ∈ H0 \ {µ(d)} and (s, t) ∈ Xd × Yh such that

gd,h(s, t)>gh(π) and fπd = fd,h(s, t)

It is clear that (d, h) is a blocking pair of π, so we obtain a contradiction. The same
conclusion holds if for any h ∈ H, gπh >gh(π).

Conversely, suppose that for any (d, h) ∈ D×H, fπd ≤ fd(π) and gπh ≤ gh(π). Let
(d, h) ∈ D ×H be a blocking pair of π. Then, there exists (s, t) ∈ Xd × Yh such that

fd,h(s, t)>fd(π) and gd,h(s, t)>gh(π)

In particular, notice that fπd ≥ fd,h(s, t) and gπh ≥ gd,h(s, t), as each of player can offer
to the other one more than their current payoffs. We obtain a contradiction.

If π is a pairwise stable allocation, Proposition 3.5.3 implies that the reserva-
tion payoffs of all couples are never greater than their current payoffs. Therefore,
if (d, h) ∈ µ, (xd, yh) is always (fπd , gπh)-feasible and, if their game is feasible, there
always exists a (fπd , gπh)-constrained Nash equilibrium (x̂d, ŷh). Moreover, replacing
the current strategy profile with the CNE will not create blocking pairs. Thus, the
pairwise stability is always preserved. With this in mind, a renegotiation process is
designed. It will output a pairwise stable and renegotiation proof allocation for any
pairwise stable allocation used as an input. Intuitively, it will replace one by one
the strategy profiles of the couples by a CNE, using at each iteration the reservation
payoffs (Equation (3.8)) as outside options.

If at any iteration a couple replaces (xd, yh) by a (fπd , gπh)-feasible Nash equilibrium,
they will keep playing it during all posterior iterations. If couples cannot replace their
strategy profile with a Nash equilibrium, the choice of a constrained Nash equilibrium
is made by an oracle. Our renegotiation process is summarized in Algorithm 3.1. For
a numerical example, check Section 3.7.

The convergence of Algorithm 3.1 does not directly hold as the reservation payoffs
change at each iteration. Indeed, replacing a strategy profile with a constrained Nash
equilibrium may decrease the payoff of an agent. Therefore, her reservation payoff
may also change and the constrained Nash equilibrium may not be an equilibrium
anymore. Nevertheless, if after changing all strategy profiles of π, the reservation
payoffs remain invariant, the current allocation is indeed renegotiation proof and the
algorithm stops.

The proof of the convergence of the renegotiation process (Algorithm 3.1) is game-
dependent as the choice of the oracle is different for each class of games. First, we
state the proof of its correctness. Then, we state the proof that the renegotiation
process converges for each of the classes of games.

Theorem 3.5.4 (The renegotiation process is correct). If the renegotiation
process (Algorithm 3.1) converges, its output is pairwise stable and renegotiation proof.

90



1-to-1 Matching games with commitment: Renegotiation proofness

Algorithm 3.1: Renegotiation process
input : π = (µ, ~x, ~y) pairwise stable allocation

1 t←− 1, π(t)←− π
2 while True do
3 for (d, h) ∈ µ do
4 Compute the reservation payoffs fπ(t)

d and gπ(t)
h (Equation (3.8))

5 Choose (x∗d, y∗h) ∈ CNE(fπ(t)
d , g

π(t)
h ) and set (xt+1

d , yt+1
h )←− (x∗d, y∗h)

6 end
7 if ∀(d, h) ∈ µ, (xt+1

d , yt+1
h ) = (xtd, yth,d) then

8 Output π(t)
9 end

10 t←− t+ 1
11 end

Proof. Let π = (µ, ~x, ~y) be the input of Algorithm 3.1. By construction, whenever the
algorithm converges, the output is renegotiation proof. Concerning pairwise stability,
we aim to prove that if πt, the allocation before iteration t, is pairwise stable then, πt+1
is pairwise stable as well. Let (d, µ(d)) be a couple that changes of strategy profile at
iteration t. Let (xd, yµ(d)) be their strategy profile at iteration t and (x̂d, ŷµ(d)) at time
t + 1. Suppose there exists (i, j) a blocking pair of πt+1. If i 6= d (and analogously
if j 6= µ(d)) then fi,µ(i)(πt+1) = fi,µ(i)(πt). Thus, it cannot hold that both i 6= d and
j 6= µ(d), otherwise the pair (i, j) would also block πt. Without loss of generality,
suppose that i = d. In particular, j 6= µ(d) because i and j are not a couple. It holds,

gd,j(s, r)>gµ(j),j(πt+1) = gµ(j),j(πt)

where (s, r) ∈ Xd × Yj is the strategy profile used by (b, j) to block π. Then, if fπd is
d’s reservation payoff at iteration t (computed by Equation (3.8)), it holds

fπd ≥ fd,j(s, r) = fi,j(s, r)>fi,µ(i)(πt+1) = fd,µ(d)(x̂d, ŷµ(d))

This contradicts the fact that (x̂d, ŷµ(d)) is (fπd , gπh)-feasible.

The finiteness of the algorithm for zero-sum games needs a preliminary result.

Lemma 3.5.5. Let Γ be a matching game where all strategic games are zero-sum
games with a value. Let π = (µ, ~x, ~y) be a pairwise stable allocation and (d, h) ∈ µ
be a matched couple. Let wd,h be the value of their game. Consider the sequence
of reservation payoffs of (d, h) denoted by (fπ(t)

d , g
π(t)
h )t, with t being the iterations of

Algorithm 3.1. If there exists t∗ such that wd,h ≤ f
π(t)
d (resp. wd,h ≥ g

π(t)
h ), then the

subsequence (fπ(t)
d )t≥t∗ (resp. (gπ(t)

h )t≥t∗) is non increasing (resp. non decreasing).

Proof. Suppose there exists an iteration t in which wd,h ≤ f
π(t)
d ≤ g

π(t)
h , so couple

(d, h) switches its payoff to f
π(t)
d (recall that constrained Nash equilibrium payoffs
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are equal to the median between the value of the game and the players’ reservation
payoffs). Let (x̂d, ŷh) be the constrained Nash equilibrium played by (d, h) at iteration
t. Since (x̂d, ŷh) must be (fπ(t+1)

d , g
π(t+1)
h )-feasible, in particular it holds fπ(t+1)

d ≤
fd,h(x̂d, ŷh) = f

π(t)
d . Therefore, the sequence of reservation payoffs starting from t is

non-increasing.

Theorem 3.5.6 (Convergence renegotiation process zero-sum games). For
any oracle, the renegotiation process converges for zero-sum games with a value.

Proof. At the beginning of Algorithm 3.1, each couple (d, h) belongs to one of the
following cases: fπd ≤ wd,h ≤ gπh , wd,h ≤ fπd ≤ gπh , or fπd ≤ gπh ≤ wd,h. In the first
case, the couple plays a Nash equilibrium and never changes it afterward. In the
second case, as fπd is non increasing for d (Lemma 3.5.5) and bounded from below
by wd,h, her sequence of reservation payoffs converges. Analogously, the sequence of
reservation payoffs for h converges on the third case. Therefore, the renegotiation
process converges.

For strictly competitive games the convergence of the renegotiation process is a
corollary of the one for zero-sum games. We state it without proof.

Theorem 3.5.7 (Convergence renegotiation process strictly competitive ga-
mes). For any oracle, the renegotiation process converges for strictly competitive
games in S with an equilibrium.

Proof. Corollary of Theorem 3.5.6.

Shapley-Shubik’s and Demange-Gale’s models can be mapped into a matching
game in which all strategic games Gd,h are included in the class S of strictly com-
petitive games (see Section 2.6). Our results, therefore, apply directly to their works
proving the existence of allocations that are not only pairwise stable but also rene-
gotiation proof. The refinement induced by renegotiation proofness crucially depends
on the choice of the strategic games Gd,h. For example, if we model the game between
a buyer and a seller as an ultimatum game [1] where the buyer is the first proposer,
she gets all the surplus, while when the first proposer is the seller, she is the one who
gets all the surplus. However, if the game is an alternative offer bargaining game [84],
the surplus is shared equally.

Theorem 3.5.8 (Convergence renegotiation process potential games). There
exists an oracle for potential games such that the renegotiation process converges.

Proof. Consider a couple (d, h) ∈ µ and (x̂td, ŷth)t their sequence of constrained Nash
equilibria along the iterations. Since (x̂t−1

d , ŷt−1
h ) is always feasible for the following

iteration (Proposition 3.5.3), the sequence φd,h(x̂td, ŷth)t is non-decreasing over t. Then,
as the potential functions are continuous and the strategy sets are compact, the se-
quences (φd,h(x̂td, ŷth))t are converging for any couple (d, h). Thus, the renegotiation
process converges.
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Theorem 3.5.9 (Convergence renegotiation process infinitely repeated ga-
mes). There exists an oracle for infinitely repeated games such that the renegotiation
process converges.
Proof. Let π be a pairwise stable allocation, t an iteration, and (d, h) ∈ µ a cou-
ple. Let (fπ(t)

d , g
π(t)
h ) be their reservation payoffs at iteration t, and consider Ft :=

E∩E(fπ(t)
d , g

π(t)
h ). If Ft is non-empty, there exists a (fπ(t)

d , g
π(t)
h )-feasible uniform equi-

librium for (d, h), so they keep playing it forever. If Ft = ∅, without loss of generality,
assume that fπ(t)

d ≥ α and gπ(t)
h <β, where α and β are the punishment levels of d and

h, respectively. Consider the oracle used in the proof of the feasibility of infinitely
repeated games (Theorem 3.4.3). Let (f t, gt) be the (fπ(t)

d , g
π(t)
h )-constrained Nash

equilibrium payoff chosen at iteration t by the oracle, so

gt := max
{
ḡ ∈ R : ∃f̄ ∈ R such that (f̄ , ḡ) ∈ E(fπ(t)

d , g
π(t)
h )

}
If gt ≥ β, (f t, gt) ∈ E and then, Ft is non-empty, a contradiction. Thus, gt<β.
Let (fπ(t+1)

d , g
π(t+1)
h ) be the couple’s reservation payoffs at the following iteration,

and set again Ft+1 = E ∩ E(fπ(t+1)
d , g

π(t+1)
h ). If Ft+1 is non-empty, they play a uni-

form equilibrium. Otherwise, since gπ(t+1)
h ≤ gt<β (Proposition 3.5.3), in particular

it holds that fπ(t+1)
d ≥ α and g

π(t+1)
h <β. Let (f t+1, gt+1) be the new constrained

Nash equilibrium payoff found by the oracle. Since pairwise stability implies that
(f t, gt) ∈ E(fπ(t+1)

d , g
π(t+1)
h ) (Proposition 3.5.3), gt+1 ≥ gt. In addition, as Ft+1 is

empty, gt+1<β. Thus, h’s sequence of constrained Nash equilibrium payoffs (gt)t is
non-decreasing and bounded from above by β. Therefore, the sequence converges to
a fixed payoff, and then, the renegotiation process converges as well.

3.6 Pareto-optimality, pairwise stability, and Nash
stability.

Consider a couple who plays a two-player infinitely repeated game. For simplicity,
we omit the identity of the agents. Given a pair of reservation payoffs (f 0, g0), we
recall the oracle designed for the feasbility of infinitely repeated games proof. Let
F := E(f0, g0)∩E, where E(f0, g0) is the set of acceptable payoffs and E is the set of
uniform equilibrium payoffs. For any case in which F is non-empty, the oracle picks a
(f0, g0)-feasible uniform equilibrium as constrained Nash equilibrium. Otherwise, the
oracle computes a (f0, g0)-CNE. It is interesting to study in which cases F is empty.

Consider a matching pennies game played in mixed strategies (Table 3.2, also
studied in Example 3.4.6) repeated infinitely many times. The infinitely repeated
version of the matching pennies game has 0 as the only uniform equilibrium payoff.
Consider reservation payoffs (f0, g0) such that w<f0 ≤ g0, as in Figure 3.2. It follows
that E(f0, g0) is the continuum of values in the blue line. It holds F = {0}∩E(f0, g0) =
∅. The only constrained uniform equilibrium payoff corresponds to the limit point
between the red and blue line, that is, when player 1 gets exactly f0 as payoff.
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Player 2

Player 1
A B

A 1 -1
B -1 1

Table 3.2: Matching pennies

1

w = 0 f

g f0

E∞(f0, g0)

g0

Figure 3.2: Matching pennies

Any constant-sum game used as stage game for an infinitely repeated game will
present the same behavior as matching pennies. However, for most of the rest of the
stage games that we may consider, the intersection set F will be non-empty. Let
us illustrate this with another example. Let G be a prisoners’ dilemma (Table 3.3)
played in mixed strategies and repeated infinitely many times.

Player 2

Player 1
Cooperate Betray

Cooperate 2, 2 −1, 3
Betray 3,−1 0, 0

Table 3.3: Prisoner’s dilemma 0

v

u
32

2

3

E

Figure 3.3: Uniform equilibrium payoffs

The punishment levels of the agents being equal to (0, 0) (the unique Nash equi-
librium payoff), the set of uniform equilibrium payoffs (Figure 3.3) is,

E = {(f̄ , ḡ) ∈ co({(2, 2), (−1, 3), (3,−1), (0, 0)}) : f̄ ≥ 0 and ḡ ≥ 0}

Given a pair of reservation payoffs (f0, g0) such that there exists at least one feasible
contract, the following figures show the four possible cases studied in the proof of the
feasibility of infinitely repeated games.
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Thanks to the non-emptiness of the interior of E, given that for (f0, g0) there exists
at least one feasible contract, the intersection between E and E(f0, g0) gives a non-
empty set. Therefore, we can always find a (f0, g0)-feasible uniform equilibrium of the
repeated game in which no agent has incentives to deviate. This is not the case for
infinitely repeated games with constant-sum games as stage games. To an infinitely
repeated game that has a set of uniform equilibrium payoffs with a non-empty interior
we call it non-degenerated.

Consider next a matching game Γ = (D0, H0, {Gd,h : (d, h) ∈ D × H}, f , g). We
recall the notion of Nash stability given in Chapter 1.

Definition 1.2.2. An allocation π = (µ, ~x, ~y) is Nash stable if for any matched
couple (d, h) ∈ µ, (xd, yh) ∈ N.E(Gd,h), i.e, (xd, yh) is a Nash equilibrium of Gd,h.

The following theorem proves the equivalence between the models with and with-
out commitment when Γ is an infinitely repeated matching game.

Theorem 3.6.1. Let Γ be a matching game in which each strategic game Gd,h, for
(d, h) ∈ D×H, is a non-degenerated infinitely repeated game. Let π = (µ, ~σD, ~σH) be a
pairwise stable allocation, with ~σD and ~σH profiles of behavioral strategies. Then, there
always exists a pairwise stable (Definition 2.2.1) and Nash stable (Definition 1.2.2)
allocation π′ = (µ, ~τD, ~τH) that weakly Pareto-dominates π. In addition, an allocation
is renegotiation proof allocation if and only if it is Nash stable.
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Remark that π and π′ in the previous theorem have the same matching µ.

Proof. That renegotiation proof allocations and Nash stable allocations are equivalent
comes from the previous discussion. As the games are non-degenerated, for each
couple there always exists a feasible uniform equilibrium. Therefore, the allocation is
renegotiation proof if and only if the oracle can always choose a uniform equilibrium
as constrained Nash equilibrium.

Regarding the first point, consider a couple (d, h) ∈ µ and their behavioral strategy
profile (σd, σh) in π. The payoff profile (fd,h(σd, σh), gd,h(σd, σh)) ∈ R2 belongs to the
convex envelope of the stage game payoffs. Since the game is non-degenerated, there
exists a payoff profile (f ∗d , g∗h) ≥ (fd,h(σd, σh), gd,h(σd, σh)) that belongs to the set of
uniform equilibrium payoffs. Therefore, there exists a uniform equilibrium (τd, τh)
satisfying,

fd,h(τd, τh) = f ∗d ≥ fd,h(σd, σh) = fd(π) and gd,h(τd, τh) = g∗h ≥ gd,h(σd, σh) = gh(π)

We conclude the proof.

We have remarked that the oracle designed to compute constrained Nash equilib-
ria in infinitely repeated games selects a Pareto-optimal outcome (Remark 3.4.17).
Consequently, the pairwise stable and renegotiation proof allocations in matching
games with non-degenerated infinitely repeated keep the property that all couples
play Pareto-optimally within their games. In this setting, we achieve the strongest
stability criterion in our model: Pareto-optimality, pairwise stability, and Nash sta-
bility.

In the same setting, commitment loses its importance as mutually beneficial con-
tract can be reached via a uniform Nash equilibria (since, as observed above, renego-
tiation proofness is always possible).

For matching games with degenerated infinitely repeated games (for example,
when couples play infinitely repeated transfer games) commitment can still be removed
as deviations from a prescribed strategy path can be punished afterward. This is not
possible for static games.

In real-life applications (marriages, civil unions, professors and universities, doctors
and hospitals, workers and firms, etc) interactions are made in the long term and
contracts specify the actions to be made by each agent at each stage of the relationship.
Deviations in actions at some stage can be punished in two ways: partners can punish
using the game actions or they can just break the couple and match with another
agent. From this point of view, the pairwise stable and renegotiation proof allocations
that we have defined constitute stationary (on the matching) stable solutions. This is
the first insight into obtaining a dynamic model of matching games in which, at every
stage, a matching game is played, i.e., at every stage all agents decide which partner
to have and which strategies to play against that partner.

Pareto-optimality, pairwise stability, and Nash stability are solutions achievable
only in matching games with non-degenerated infinitely repeated games. In general,
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for any matching game in which the sets of Pareto-optimal payoffs of each strategic
game can be obtained as Nash equilibrium payoffs and the vector of individually
rational payoffs is Pareto dominated, the same arguments given for infinitely repeated
games can be applied. The following simultaneous Nash bargaining game example is
a static game in which the strongest stability notion can be obtained as well.

Example 3.6.2. Consider a matching game with only one agent d and one agent h,
both with null individually rational payoffs. If agents agree to match, suppose they
play a Nash simultaneous bargaining game: Let I be a pie of size 1. Independently and
simultaneously, both of them propose a split of the pie (x, 1−x) and (1− y, y). If the
proposals coincide, the split is implemented and the players get the proposed utilities.
Otherwise, I is wasted and both agents get 0. The individually rational payoffs are
Pareto-dominated by any split in which both agents get at least something. Moreover,
all strategy profiles in which the agents agree in the split are Nash equilibria and are
Pareto-optimal. As for non-degenerate infinitely repeated games, any pairwise stable
and renegotiation proof allocation achieves Pareto-optimality, pairwise stability, and
Nash stability.

3.7 A numerical example
Consider a matching game with three doctors D = {d1, d2, d3} and three hospitals
H = {h1, h2, h3}, with the following preferences,

A =
83 85 99
74 13 15
58 49 54

B =
69 6 28
88 2 70
72 18 9

A(d, h) (resp. B(d, h)) represents the fixed utility that d ∈ D (resp. h ∈ H) receives
if she (resp. it) matches with h (resp. d). Suppose that all agents have null IRPs,
i.e., (f

d
, g

h
) = (0, 0),∀(d, h) ∈ D × H. Suppose, in addition, that if a couple (d, h)

is created, as in the transfer matching game example (Example 1.1.6), they play a
constant-sum game. Formally, if xd, yh ≥ 0 are d and h respective monetary transfers,
their utilities are,

fd,h(xd, yh) = A(d, h)− xd + yh

gd,h(xd, yh) = B(d, h) + xd − yh

The pairwise stable allocation π found by the deferred-acceptance with compe-
titions algorithm (Algorithm 2.2) in the previous chapter (Section 2.7) is known to
be the most preferred stable allocation by the proposer side. However, there is a
continuum of strategy profiles that achieve the same payoffs that π. Indeed, for any
δ ∈ [0,min{yh1 , yh2 , yh3}], the shifted allocation πδ = (µ, ~x + δ, ~y − δ) gives the same
payoffs to the agents and, therefore, it remains pairwise stable. From this continuum
of solutions, there is only one that is renegotiation proof.
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Let us start this section by studying the constrained Nash equilibria. Recall that
(xd, yh) ∈ R2

+ is a (fπd , gπh)-CNE if and only if,

fd,h(xd, yh) = max{fd,h(s, yh) : gd,h(s, yh) ≥ gπh , s ≥ 0}
= max{A(d, h)− s+ yh : B(d, h) + s− yh ≥ gπh , s ≥ 0}

⇐⇒ xd = [gπh + yh −B(d, h)]+, and
gd,h(xd, yh) = max{gd,h(xd, t) : fd,h(xd, t) ≥ fπd , t ≥ 0}

= max{B(d, h) + xd − t : A(d, h)− xd + t ≥ fπd , t ≥ 0}
⇐⇒ yh = [fπd + xd − A(d, h)]+

where [·]+ = max{·, 0}. We state the pseudo-code of the renegotiation process for this
problem in Algorithm 3.2.

Algorithm 3.2: Renegotiation process
1 Input: π a pairwise stable allocation
2 repeat
3 for (d, h) ∈ µ do
4 Compute (fπd , gπh) and set,

xd = [gπh + yh −B(d, h)]+ and yh = [fπd + xd − A(d, h)]+

5 end
6 until Convergence;

Let us run the renegotiation process iteration by iteration.

Iter 1. Let (d1, h3) be the first couple. Since d1 is already playing a dominating
strategy, only h3 can have a profitable deviation. Then, as xd1 = 0, h3’s new transfer
is given by,

yh3 = [fπd1 − A(d1, h3)]+
We compute the reservation payoff of d1,

fπd1 = max{fd1,h(s, t) : gd1,h(s, t)>gh(π), h ∈ {h0, h1, h2}, s, t ≥ 0}
= max{A(d1, h)− s+ t : B(d1, h) + s− t> gh(π), h ∈ {h0, h1, h2}, s, t ≥ 0}
= max{A(d1, h) +B(d1, h)− gh(π), h ∈ {h0, h1, h2}}
= max{0; 83 + 69− 64; 85 + 6− 1} = 90

Therefore, yh3 = [90− 99]+ = 0 and the payoffs of the couple become,

(fd1(π), gh3(π)) = (99, 28)

Notice how the couple passes to play their Nash equilibrium, that is, none of the
agents makes a positive transfer. This is not a coincidence. Recall that d1 and h3
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play a strictly competitive game. Therefore, we have an explicit formula for the
constrained Nash equilibrium payoffs given the reservation payoffs of the players and
the Nash equilibrium payoff. In particular, whenever the Nash equilibrium of the
game is feasible, the couple plays it. Let us check this by computing h3’s reservation
payoff.

gπd3 = max{gd,h3(s, t) : fd,h3(s, t)>fd(π), d ∈ {d0, d2, d3}, s, t ≥ 0}
= max{B(d, h3) + s− t : A(d, h3)− s+ t> fd(π), d ∈ {d0, d2, d3}, s, t ≥ 0}
= max{A(d, h3) +B(d, h3)− fd(π), d ∈ {d0, d2, d3}}
= max{0; 15 + 70− 98; 54 + 9− 66} = 0

Thus, the Nash equilibrium being feasible for the agents, the oracle picks it as con-
strained Nash equilibrium. Remark that, as the couple plays a Nash equilibrium, they
will not change of strategy profile again.
Iter 2. Consider the second couple (d2, h1). Again, only h1 can deviate as d2 already
plays a dominating strategy. Since d1 and h3 modified their payoffs in the previous
iteration, the reservation payoffs of d2 and h1 maybe have changed. Due to this, we
need to recompute them. Formally,

fπd2 = max{f
d2

;A(d2, h2) +B(d2, h2)− gh2(π);A(d2, h3) +B(d2, h3)− gh3(π)}
= max{0; 13 + 2− 1; 15 + 70− 28} = 57

gπh1 = max{g
h1

;A(d1, h1) +B(d1, h1)− fd1(π);A(d3, h1) +B(d3, h1)− fd3(π)}
= max{0; 83 + 69− 99; 58 + 72− 66} = 64

Once again, notice that the Nash equilibrium (no transfers) between d2 and h1 is
feasible, as they achieve the payoff profile (74, 88). Therefore, the couple passes to
make null transfers.
Iter 3. Consider the last couple (d3, h2) and compute their reservation payoffs,

fπd3 = max{f
d3

;A(d3, h1) +B(d3, h1)− gh1(π);A(d3, h3) +B(d3, h3)− gh3(π)}
= max{0; 58 + 72− 88; 54 + 9− 28} = 42

gπh2 = max{g
h1

;A(d1, h2) +B(d1, h2)− fd1(π);A(d2, h2) +B(d2, h2)− fd2(π)}
= max{0; 85 + 6− 99; 13 + 2− 74} = −8

The Nash equilibrium of the third couple being feasible, they get as payoffs, (fd3(π),
gh2(π)) = (49, 18). As all couples switched to play the Nash equilibrium of their game,
the algorithm stops.
Remark 3.7.1. Starting from the best pairwise stable allocation for doctors and
applying the renegotiation process (Algorithm 3.2) we have found the best solution
for doctors in the model without transfers (i.e. the Gale-Shapley original model).
This result does not always hold. As seen in the transfer matching game example
(Example 1.1.6), the unique pairwise stable and renegotiation proof allocation is the
one in which the first player offers a positive transfer δ to the second player.
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3.8 Conclusions
We have introduced renegotiation proofness (Definition 3.1.1), a novel concept in the
literature of stable matching which refines the pairwise stability concept studied in
Chapter 2. We have characterized the renegotiation proof allocations as those allo-
cations in which all agents play constrained Nash equilibria (Definition 3.3.3, Propo-
sition 3.5.2), that is, best-reply strategy profiles subject to participation constrains,
and show them to be solutions to quasi-variational inequalities.

We have introduced the class of feasible game (Definition 3.4.1) as all the strategic
two-player games in which a constrained Nash equilibrium exists for any pair of reser-
vation payoffs that admits feasible strategies (Definition 3.3.2). The class of feasible
games is been proved to be rich enough to include many well-known games in the
literature on game theory (Theorem 3.4.3).

Leveraging the renegotiation proofness characterization through constrained Nash
equilibria we have designed a renegotiation process that, starting from any pairwise
stable allocation, outputs a pairwise stable and renegotiation proof one for any feasible
matching game whenever the process converges (Theorem 3.5.4). Moreover, we have
established the convergences for many feasible games.

For static games such as zero-sum games or strictly competitive games, the con-
strained Nash equilibrium selection is always Pareto-optimal, so pairwise stable and
renegotiation proof allocations are locally Pareto-optimal as well. This does not hold
for every static feasible game as potential games have shown. Interesting results are
obtained when considering matching games in which couples play infinitely repeated
games. The ability to punish the partners in case of deviations dismisses the need for
commitment in the couple making equivalent the models with and without commit-
ment as any pairwise stable and renegotiation proof allocation is Nash stable as well.
Moreover, the constrained Nash equilibrium selection for infinitely repeated games can
always be Pareto-optimal, obtaining the strongest notion of stability in our model:
Pareto-optimally, pairwise stability, and Nash stability.

Two research lines are followed from the work on Chapters 2 and 3. Chapter 4
extends the model of one-to-one matching games under commitment to one-to-many
matching games under commitment where hospitals can be matched to many doctors
at the time. Chapter 5 conducts the complexity study of the algorithms presented in
these chapters.
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Chapter 4

1-to-Many Matching games with
commitment

The previous chapters introduced and studied the model of one-to-one matching games
in which agents from two sets are paired and simultaneously play strategic games. Two
models were deduced depending on the level of commitment of the agents. For a model
without commitment (Chapter 1), Nash stability naturally raises. Although the non-
emptiness and the lattice structure of the set of Nash-pairwise stable allocations can
be guaranteed, we have observed the incapacity of this model to capture the classic
models in the literature of stable matching. In exchange, these model are successfully
captured by the matching games with commitment model. Similar results have been
established for the model with commitment such as the non-emptiness of the set of
pairwise stable allocations under classical game theoretical assumptions, the lattice
structure of the set of pairwise stable allocations, and the proposer-optimality of the
deferred-acceptance with competitions (DAC) algorithm designed to compute pairwise
stable allocations (Chapter 2).

A second and novel notion of stability was then considered for the model with com-
mitment, renegotiation proofness, which refines the set of pairwise stable allocations.
We have proved the non-emptiness of the set of pairwise stable and renegotiation
proof allocations for any matching feasible game in which the renegotiation process
converges (Chapter 3).

The present chapter is devoted to extending the work done in the previous two
chapters by studying the mathematical model of one-to-many matching games under
commitment in which hospitals are allowed to be matched with many doctors at the
same time.

One-to-many matching games present new challenges for the existence of stable
allocations and the design of algorithms to compute them. However, in addition to the
models already captured by one-to-one matching games, one-to-many matching games
get a much broader class of models in stable matching markets, being among the most
important, the matching job market model of Kelso and Crawford [71], the matching
with contracts model of Hatfield and Milgrom [66], hedonic games [42], the roommates
problem of Gale and Shapley [53, 68, 75], the roommates problem with transferable
utility [10, 34, 49, 74, 96], and the roommates problem with non-transferable utility of
Alkan and Tuncay [9].

This chapter is structured as follows. Section 4.1 presents the model of one-to-
many matching games and its notion of Core stability. Two submodels of one-to-many
matching games in which we can study the existence of Core stable allocations are
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then considered in Sections 4.2 and 4.3, respectively. Section 4.4 extends renegotiation
proofness to the same two submodels and uses the renegotiation process of Chapter 3
to prove their existence. Finally, Section 4.5 concludes the chapter.

4.1 One-to-many matching games
In this section, we present the mathematical model of one-to-many matching games,
the generalization of the one-to-one matching games model studied in the previous
chapters, give many examples of models that can be mapped into a one-to-many
matching game, and introduce the notion of Core stability.

4.1.1 Mathematical model
Consider two finite sets of agents D and H that we refer to as doctors and hospitals,
respectively. Simultaneously to get matched, agents may play actions from a given
set of actions and receive some utilities depending on the matching and the action
profiles chosen. Formally, every doctor d ∈ D and every hospital h ∈ H is endowed
with a set of strategies Xd ad Yh, respectively, subsets of a topological space. Given
I ⊆ D we denote XI := ∏

d∈I Xd and Y |I|h to h’s strategy power set. For the sick of
simplicity, we will omit the parenthesis | · | and write Y I

h to refer to the power set.
Doctors choose only one strategy from their strategy sets (e.g. the number of

weekly hours they want to work), while hospitals pick as many strategies as assigned
doctors have (e.g. the salary of each doctor). The payoff of a hospital depends on the
strategies played by all its doctors as well as the ones played by the hospital itself.
Doctors’ payoffs, in exchange, depend on their strategy, the particular strategy that
their hospital plays against them, and the strategies of all the other doctors allocated
in the same hospital (from now on, their colleagues). Formally, given a set of doctors
I allocated in a hospital h, the agents’ payoff functions are,

∀d ∈ I, fd,I,h : Xd ×XI × Yh → R,
gI,h : XI × Y I

h → R
(4.1)

Notice the redundancy on d’s payoff function as d belongs to I. To avoid the over-
charged but more accurate notation fd,I\{d},h, we prefer to make an abuse of notation.

Players are endowed with individually rational payoffs (IRPs). Formally, for
every doctor d ∈ D (resp. hospital h ∈ H), we consider a value f

d
∈ R (resp. g

h
∈ R),

representing the utility for being unmatched.

Definition 4.1.1. A (one-to-many) matching game is given by

Γ =
(
D,H, (Xd)d∈D, (Yh)h∈H , (fd)d∈D, (gh)h∈H

)
and payoff functions given as in (4.1).
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We extend the notion of allocation given in the previous chapters to the one-to-
many setting. In this new setting, a matching µ corresponds to any mapping between
D and H. We extend the sets D0 := D ∪ {d0} and H0 := H ∪ {h0} by adding the
empty players d0 and h0, such that any agent matched with one of them gets her IRP
as payoff.

Definition 4.1.2. An allocation corresponds to any triplet π = (µ, ~x, ~y) in which,

µ : D → H is a matching,
~x ∈ XD is a doctors’ strategy profile
~y := (~yh)h∈H is hospital h’s strategy profile, where each ~yh ∈ Y µ(h)

h

For a coalition (I, h) ∈ µ, where I ⊆ D and h ∈ H, we write indistinctly I = µ(h)
and µ(d) = h,∀d ∈ I. For a doctor d ∈ D allocated in hospital h, we use µ(h) to
denote d’s colleagues1.

Given an allocation π = (µ, ~x, ~y), h ∈ H and d ∈ µ(h), their utilities at π corre-
spond to,

fd(π) := fd,µ(h),h(xd, ~xµ(h), yd,h) = fd,µ(h),h(xd, (xd′)d′∈µ(h), yd,h),
gh(π) := gµ(h),h(~xµ(h), ~yµ(h),h) = gµ(h),h((xd′)d′∈µ(h), (yd′,h)d′∈µ(h))

Doctors’ utility depends on the identity of their hospital, the identity of their col-
leagues, their own strategy, the strategies of their colleagues, and the particular strat-
egy played by the hospital against them. Hospitals’ utility depends on the identity of
their doctors, the strategies of these doctors, and the strategies played by the hospitals
against each of their doctors. Let us illustrate the model with the following examples.

Example 4.1.3. Consider a set of 2n doctors D = {1, ..., 2n}, each of them with a
ranking rd ∈ N, and suppose that r1>r2> ... > r2n (the higher the ranking, the better
the doctor). Consider a set of two hospitals H = {h1, h2}, and that each of them has
a prestige ph ∈ N, with p1>p2 (the higher the prestige, the better the hospital). Take
all strategy sets empty. Given a matching µ, h ∈ H and d ∈ µ(h), agents’ payoffs are
given by,

fd(µ) := ph +
∑

d′∈µ(h)
rd′ and gh(µ) :=

{ ∑
d′∈µ(h) rd′ if |µ(h)| ≤ qh
−∞ otherwise

where q1, q2 ∈ N are fixed and known values. In words, doctors’ payoffs correspond
to the aggregated ranking of their colleagues and their own ranking (the higher, the
better) plus the prestige of their hospital. For hospitals, their utility is given by the
aggregated ranking of their doctors up to a capacity qh.

1Notice again the abuse of notation as we consider d inside of her colleagues set.
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Example 4.1.4. Consider a setD of n doctors, a setH ofm hospitals, withm>[n/2],
suppose that all strategy sets are empty (as in the previous example), and all agents
have null IRPs. Given I ⊆ D, d ∈ D, and h ∈ H, suppose the payoff functions are
given by,

fd,I,h =
{
vd,d′ if I = {d′}
−M if |I|> 1 and gI,h ≡ 0

where (vd,d′ , d, d′ ∈ D) are fixed positive real values andM � 1. In words, doctors re-
ceive a positive utility if they have only one colleague and a negative utility otherwise.
In addition, hospitals have null payoff functions independent of the doctors assigned
to them, and doctors’ utilities do not depend on the hospital they are assigned to.
Since there are more hospitals than half of the doctors, doctors in groups of more
than two agents can always opt by matching in couples in order to end up better
off. The resulting matching game corresponds to a classical roommates problem with
exogenous preferences.

Example 4.1.5. Consider a set of three doctors D = {1, 2, 3} and two hospitals
H = {a, b}, all agents with empty strategy sets. The following table shows the utility
of each doctor for belonging to each possible subset of doctors, independent of the
assigned hospital, (doctors get utility only in the coalitions they appear in)

Subset of doctors
{1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}

Doctors
1 0 - - 1 -2 - -1
2 - 0 - 1 - -2 -1
3 - - 0 - 1 2 3

Endow hospitals with null payoff functions. Remark that agents 1 and 2 prefer
to be together rather than being single, and none of them wants to be with 3. The
resulting matching game corresponds to an hedonic game.

4.1.2 Core stability
This section is devoted to extend the pairwise stability notion studied in Chapter 2
to the model of one-to-many matching games. Renegotiation proofness, studied in
Chapter 3, is delegated to Section 4.4. As pairwise stability for one-to-one matching
games, Core stability will generalize the stability notions from the literature on one-
to-many matching markets, in particular, the one of Hatfield and Milgrom [66].

Definition 4.1.6. An allocation π = (µ, ~x, ~y) is blocked by a coalition (I, h), with
I ⊆ D and h ∈ H, if there exist (~wI , ~zh,I) ∈ XI × Y I

h , such that,

∀d ∈ I, fd,I,h(wd, ~wI , zh,d)>fd(π),
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gI,h(~wI , ~zh,I)>gh(π),

π is core stable if it is individually rational (no agent gets less than her IRP) and
it is not blocked.

An allocation is core stable if (1) agents’ IRPs are satisfied, so nobody prefers to
abandon their partners and become single, and (2) we cannot find a set of doctors
and a hospital who prefer to abandon their assigned partners and matching together
as they end up better off. The coalition (I, h) in the previous definition is called a
blocking coalition.

Core stability captures stability in the matching with contracts and roommates
setting, pairwise stability in the stable marriage problem, and core stability in the
assignment game, matching with transfers, and hedonic games settings. In addition,
it extends pairwise stability for one-to-one matching games to the one-to-many setting.
Core notions from economy are also captured by our stability notion [67] when fixing
the matching µ.

Let us compute the core stable allocations of our examples.

Example 4.1.3. Recall the example with 2n doctors ordered by ranking and two
hospitals ordered by prestige. Suppose that hospitals have capacities q1 = q2 = n.
Let π be an individually rational allocation such that a doctor d ∈ {n + 1, ..., 2n} is
matched with h1. As the capacities of both hospitals are equal to n and agents have
low IRPs, there must be a doctor d′ ∈ {1, ..., n} matched with h2. Notice that the
coalition (I, h1), with I = {1, ..., n}, blocks π as all doctors in I increase strictly their
payoffs if they match with h1, as well as h1. Thus, for π to be core stable, it must
hold that the best n doctors are assigned to h1, and the n worst to h2. Therefore,
we obtain that the only core stable allocation for this matching game is the one that
segregates the doctors by their rankings.

Example 4.1.4. Recall the roommates example in which a set of n doctors seek to
get matched in couples. A matching µ is core stable if there is no pair of doctors
(d1, d2) ∈ D ×D, such that,

vd1,d2 >fd1(µ) and vd2,d1 ≥ fd2(µ)

In particular, as there are more hospitals than half of the doctors, any pair of doctors
can form a couple in case of being matched with a bigger group. A matching µ is core
stable if and only if it is stable for the roommates problem2.

Example 4.1.5. Recall the hedonic game example in which three doctors seek to
get matched in coalitions and get payoffs as shown in Table 4.1. A partition µ of
the set of doctors is core stable if there is no set of doctors I, not matched between
them, such that matching together, all of them end up weakly better off and at least

2Assume, without loss of generality, that vd,d′ 6= vd,d′′ , for any d, d′, d′′ in D.
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Subsets of doctors
{1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}

Doctors
1 0 - - 1 -2 - -1
2 - 0 - 1 - -2 -1
3 - - 0 - 1 2 3

Table 4.1: Hedonic game

one of them ends up strictly better off. Therefore, the core stable allocations are
the partitions µ1 = ({1, 2, a}, {3, b}) and µ2 = ({1, 2, b}, {3, a}), equivalent in terms
of utility, which correspond to the core stable partition of the hedonic game when
dropping the hospitals from the allocation.

Core stability has been extensively studied in the literature on stable matching (in
the context of each model). In one-to-one two-sided markets, Gale and Shapley [53]
proved that a pairwise stable allocation always exists for the stable marriage problem
(a result that still holds with sets of different sizes and non-strict preferences). Shapley
and Shubik [93] did the same for the case of linear monetary transfers through linear
programming. In Chapter 1 we proved the existence of Nash-pairwise stable alloca-
tions for any matching game without commitment with compact Nash equilibrium
sets and continuous payoff functions, while in Chapter 2 we did the same for pairwise
stable allocations in matching games with commitment. For one-to-many matching
markets Crawford and Knoer [37] proved the existence of stable allocations in the case
of matching with linear monetary transfers. Kelso and Crawford [71] defined a job
market in which workers and firms get matched and define wages to be paid to the
workers. They proved the existence of stable allocations under gross-substitute con-
ditions. Hatfield and Milgrom [66] extended this result to any finite set of contracts
also under a substitutability assumption3.

In non-two-sided markets in which a partition of the set of agents has to be found,
the existence of stable allocations becomes trickier. Gale and Shapley gave a small
instance in which the roommates problem fails to have a stable allocation (Exam-
ple 4.1.7) while Knuth [75] proved that roommates problems can have multiple ones.
Let us show Gale-Shapley’s example.

Example 4.1.7. Consider four players {1, 2, 3, 4}, each of them with the strict (ordi-
nal) preferences on their possible partner given in Table 4.2. It is not possible to make
a stable partition of the four players into two pairs as the agent paired with player 4
will always find somebody else to get matched, who will also prefer to change.

Knuth asked the question of designing an algorithm to compute a stable alloca-
tion whenever it exists. Irving [68] answered with an efficient algorithm to compute
a solution if it exists or to report the non-existence of stable allocations for those

3Aygün and Sönmez [16] remarked that the irrelevance of rejected contracts is also needed.
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Preferences

Players

1 2> 3> 4
2 3> 1> 4
3 1> 2> 4
4 Arbitrary

Table 4.2: Roommates problem

instances without a solution. Tan [97] found necessary and sufficient conditions for
the existence of stable matchings in the roommates problem: the non-existence of
stable partitions with odd parties.

Roommates with transferable utility has received attention lately [10, 34, 49, 74, 96].
Andersson et al. [10] designed a price adjustment process that computes, under inte-
gral payments, a stable allocation or disproves its existence in finite time. Shioura [94]
made the connection between roommates with transferable utility and the assignment
game of Shapley and Shubik [93]. More precisely, Shioura reduced his problem to a
particular assignment game in an auxiliary bipartite graph and proposed an extension
of the algorithm of Andersson et al. [10] to compute a stable allocation in case of
existence. Up to our knowledge, the only extension of the roommates problem to the
non-transferable utility domain has been made by Alkan and Tuncay [9].

For more complex problems such as hedonic games in which any size of coalitions
are allowed, the existence of core allocations becomes a much harder problem.

In this chapter we aim to design efficient algorithms to find core stable and rene-
gotiation proof allocations, if they exist, or to report the non-existence of these alloca-
tions when the problem does not allow them. In order to have any hope of designing
tractable algorithms, we will focus on two particular models: (one-to-many) additive
separable matching games and roommates matching games, being both submodels of
one-to-many matching games.

4.2 1st submodel: (1-to-many) Additive separable
matching games

The additive separable matching games submodel rises as a generalization to Hatfield
and Milgrom’s work [66]. Therefore, we begin this section by recalling their model
and results.

4.2.1 Matching with contracts model
Matching with contracts, defined by Hatfield and Milgrom (H&M) [66], considers two
finite sets D and H of doctors and hospitals, respectively, and a finite set of contracts
X. Contracts are bilateral, so each x ∈ X is related to only one doctor xD ∈ D and
one hospital xH ∈ H. Agents have choice functions (Cd, Ch,∀d ∈ D, ∀h ∈ H), such
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that, given a set of contracts X ′ ⊆ X, Cd(X ′) outputs the most preferred contract of
d among those in X ′, and Ch(X ′) outputs the most preferred subset of contracts of h
among those in X ′.

Due to the way that H&M treated the hospitals’ choice functions, these must sat-
isfy two assumptions for the existence of stable allocations: substitutability (Defini-
tion 4.2.1 or page 918 [66]) and irrelevance of rejected contracts (IRC) (Definition 4.2.1,
or page 6 [16]).

Definition 4.2.1. Contracts are substitutes for hospital h if for any X ′ ⊆ X and
any pair of different contracts x, x′ ∈ X, if x /∈ Ch(X ′), then x /∈ Ch(X ′ ∪ {x′}). The
choice function of hospital h satisfies the irrelevance of rejected contracts (IRC)
if for any Y ⊆ X, and any z /∈ Y , if z /∈ Ch(Y ∪ {z}) then Ch(Y ) = Ch(Y ∪ z).

A set of contracts is stable if no agent prefers to abandon her contract and no
coalition of doctors can get matched with a hospital weakly improving everybody’s
allocation with at least one doctor and the hospital ending up strictly better off.

Definition 4.2.2. A set of contractsX ′ ⊆ X is stable if, ⋃d∈D Cd(X ′) = ⋃
h∈H Ch(X ′) =

X ′ and there is no h ∈ H and X ′′ 6= Ch(X ′), such that, X ′′ = Ch(X ′ ∪ X ′′) ⊆⋃
d∈D Cd(X ′ ∪X ′′).

Using fixed-point techniques from lattice theory that allowed to guarantee the
convergence of a cumulative offer mechanism (COM), H&M proved that the set of
stable allocations is a non-empty lattice. We claim that an easier existence proof
can be conducted under substitutability, as a deferred-acceptance kind of algorithm
is enough to compute a stable allocation. Our claim lies in the following result,
unobserved in [66].

Proposition 4.2.3. Let X ′ ⊆ X be an allocation and suppose that contracts are
substitutes for hospitals and the IRC property is satisfied. X ′ is stable if and only if it
is individually rational and there is no doctor d, hospital h, and contract x ∈ X \X ′,
with xD = d, xH = h, such that x = Cd(X ′ ∪ {x}) and x ∈ Ch(X ′ ∪ {x}).

Remark that the second property of Proposition 4.2.3 corresponds to pairwise
stability, adapted to the matching with contracts setting.

Proof. Suppose X ′ is stable. Let d be a doctor and x, x′ ∈ X be two contracts related
to doctor d (xD = x′D = d), being x′ her contract in the allocation (x′ ∈ X ′) and
x any other contract (x ∈ X \ X ′), such that d prefers x to x′ (x = Cd(X ′ ∪ {x})).
Let h = xH be the hospital related to contract x. Set X ′′ = (X ′ \ {x′}) ∪ {x} as the
allocation obtained when replacing x′ by x and consider X ′′|h := {y ∈ X ′′ : yH = h}.
Notice that X ′′|h = X ′|h∪{x}. It follows that X ′′|h ⊆

⋃
d∈D Cd(X ′∪X ′′|h) as the only

change is the new contract x, the one is preferred by d over x′. Since X ′ is stable, it
follows that,

X ′′|h 6= Ch(X ′ ∪X ′′|h)⇐⇒ [X ′|h ∪ {x}] 6= Ch(X ′ ∪ {x})⇐⇒ x /∈ Ch(X ′ ∪ {x})
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Conversely, suppose X ′ is individually rational and there is no doctor d, hospital h,
and contract x ∈ X \ X ′, with xD = d, xH = h, such that x = Cd(X ′ ∪ {x}) and
x ∈ Ch(X ′ ∪ {x}). Suppose X ′ is not stable, so there exist h a hospital and a set
of contracts X ′′ 6= Ch(X ′) such that, X ′′ = Ch(X ′ ∪ X ′′) ⊆

⋃
d∈D Cd(X ′ ∪ X ′′). Let

x ∈ X ′′ \ Ch(X ′) and d the related doctor to x (xD = d). Since x ∈ Ch(X ′ ∪X ′′), we
have that x belongs to Ch(Z) for any Z ⊆ X ′ ∪X ′′, such that x ∈ Z (substitutability
+ IRC). In particular, x ∈ Ch(X ′ ∪ {x}). Since x = Cd(X ′ ∪ {x}) as doctors choose
only one contract among the proposed ones, we obtain a contradiction.

Pairwise stable allocations can be computed by a deferred-acceptance-like algo-
rithm, such as Algorithm 4.1. In the pseudo-code, we have extended the set of con-
tracts X to X0 = X ∪ {∅} where ∅ represents being unmatched. In addition, given
a set of contracts Y ⊆ X, and k an agent, we denote by Y |k the subset of contracts
in Y that are related to k.

Algorithm 4.1: Deferred-acceptance with contracts algorithm
1 Input: (D,H,X0) a matching with contracts instance.
2 Set D′ ← D as the set of unmatched doctors.
3 Set Y, Z ← ∅ as the sets of accepted and rejected contracts, respectively.
4 while D′ 6= ∅ do
5 Let d ∈ D′ and x ∈ arg maxCd(X0 \ Z).
6 If x = ∅, update D′ ←− D′ \ {d} and start again. Otherwise, let h = xH

be the concerned hospital.
7 Let W = Ch(Y ∪ {x}) and W = (Y |h ∪ {x}) \W . Update

Y, Z ← (Y \W ) ∪W,Z ∪W .
8 Update D′ as it corresponds.
9 end

10 Output Y

Algorithm 4.1 takes an unmatched doctor and asks her to propose her most pre-
ferred contract among all those that have not been already rejected. The concerned
hospital then chooses its most preferred subset of contracts among all the proposed
ones. The rejected contracts are stored, the set of unmatched doctors is updated
accordingly, and a new iteration starts. The algorithm keeps running until all doc-
tors have been allocated to a hospital or the non-allocated ones prefer to remain
unmatched.

Algorithm 4.1 always converges as the set of contracts is finite and the set of
rejected contracts is increasing. Moreover, the output Y is always pairwise stable as
for any doctor d and any contract x ∈ X \ Y , with x = Cd(Y ∪ {x}), necessarily
x was rejected along the algorithm. Therefore, x /∈ Ch(Y ∪ {x}), where h = xH .
From Proposition 4.2.3, we conclude that Algorithm 4.1 outputs a stable allocation
whenever hospitals have substitute contracts and satisfy the irrelevance of rejected
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contracts property. Observe that even if one of the conditions fails to be satisfied, a
pairwise stable allocation always exists for any instance of the H&M model.

4.2.2 Additive separable matching games
Let Γ be a matching game (Definition 4.1.1) and relax the doctors’ payoff functions
dependence on colleagues, that is, redefine the payoff functions as,

fd,h : Xd × Yh → R, ∀d ∈ I, and gI,h : XI × Y I
h → R (4.2)

where I ⊆ D and h ∈ H. The relaxation from the general matching game model to
the additive separable matching game sub model corresponds to Kelso and Crawford’s
[71] main assumption.

We will endow hospitals with quotas, representing the maximum number of doc-
tors they can receive. Formally, we say hospital h ∈ H has quota qh ∈ N, if for any
I ⊆ D and strategy profiles ~xI ∈ XI , ~yh ∈ Y I

h , their payoff function becomes:

g̃I,h(~xI , ~yh) =
{
gI,h(~xI , ~yh) if |I| ≤ qh
−∞ otherwise

As individual rationality of the hospitals will exclude allocations that don’t respect
the quotas, by abuse notation, we denote g̃ also by g.

Remark 4.2.4. A model without quotas can be easily obtained by taking ~q ≡ |D|
for all hospitals. Similarly, taking ~q ≡ 1 we recover the one-to-one matching models
in the literature [53, 93, 40].

Next, we introduce the notion of additive separability.

Definition 4.2.5. Let h be a hospital. We say that h’s payoff function is additive
separable if for every doctor d ∈ D there exists a function gd,h : Xd × Yh → R, such
that

gh(π) =
{ ∑

d∈µ(h) gd,h(xd, yh,d) if |µ(h)| ≤ qh
−∞ otherwise

for π = (µ, ~x, ~y) any allocation.

Notice that in additive separable matching games, every tuple

Gd,h := (Xd, Yh, fd,h, gd,h)

defines a two-player game. In particular, we properly capture the model of one-to-one
matching games under commitment studied in Chapters 2 and 3. The next example
shows how a matching with linear transfer problem can be mapped to an additive
separable matching game (more precisely, poly-matrix constant-sum games).
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Example 4.2.6. A set of H buyers bid for the items offered by D sellers. Buyers are
allowed to buy as many items as they prefer while sellers have only one indivisible
item to sell. Buyers h ∈ H and sellers d ∈ D have non-negative valuations for the
items uh,d and vd, respectively. If a buyer h buys the items of a set of sellers J ⊆ D,
paying ~ph := (ph,d)h∈J , agents’ payoffs are,

fd,h(ph,d) = ph,d − vd,∀d ∈ J, and gJ,h(~ph) =
∑
d∈J

(uh,d − ph,d).

Remark that only buyers are strategic in this example while sellers only care about
the highest bidder.

4.2.3 Link between matching games and the H&M model
Now that we have some examples at hand, we can formally show the links between
our model to that of H&M and anticipate the advantages of working with our model
instead. Interestingly, there are many mappings to associate a H&M model to ours,
while the converse is unique.

Consider a matching with contracts model (D,H,X). Endow all agents with
strategy sets: for d ∈ D and h ∈ H, we let Xd = {x ∈ X : x|D = d} and Yh = {x ∈
X : x|H = h}. Under an extra assumption on the preferences in the H&M model (such
as the strong axiom of revealed preferences), there exists a utility representation [33]
for each agent over X: ud for a doctor d and vh for a hospital h, that we can w.l.o.g.
assume positive. Given I ⊆ D, h ∈ H, and strategy profiles (~wI , ~zh,I) ∈ XI × Y I

h ,
define the payoff function of a doctor to be,

fd,h(wd, zd,h) =
{
ud(wd) if wd = zd,h
−1 otherwise

The mapping means that if both parts agree on a contract that is available to
them, they get the (positive) utility of that contract; otherwise, they get -1. We do
similarly for the hospitals.

Conversely, given a matching game in which all agents are endowed with strategy
sets (Xd, Yh) and payoff functions, consider the set of contracts Z := ⋃

(d,h)∈D×H(Xd×
Yh) and associate the agents’ IRPs to an empty contract ∅, included in Z. Then, the
matching game can be uniquely mapped into a matching with contracts, where the
choice functions are defined, ∀Z ′ ⊆ Z as,

z = Cd(Z ′)⇐⇒ fd,h(z) = max{fd,h(z′) : z′ ∈ Z ′, h = zH}
Z ′′ = Ch(Z ′)⇐⇒ gI,h(Z ′′) = max{gI,h(Z ′′′) : Z ′′′ ⊆ Z ′, I = {zD ∈ D, z ∈ Z ′′′}}

Hence, computing the choice functions of hospitals may not be so easy, even in the
separable additive case (they are the Argmax of the utility functions), and requires
an exponential number of resources as we need to specify them for each coalition
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of doctors. In addition, choice functions are black boxes and do not allow us to
understand the incentives behind agents’ choices of contracts.

Working with strategies and utilities solves these issues. In addition, (1) the ir-
relevance to rejected contracts assumption is automatically satisfied (thanks to the
strong axiom of weak preferences) (2) we can work with infinitely many contracts
(finiteness is crucial in H&M), (3) we can refine the set of stable solutions using
renegotiation-proofness, (4) we can identify interesting matching problems where com-
puting renegotiation-proof stable allocations is polynomial.

4.2.4 Core stability: 1st submodel
The core is a classical solution concept from cooperative game theory and has been
widely studied [14, 56]. The non-emptyness of the core cannot be always guaranteed
without extra assumptions on the game. We aim to establish sufficient conditions for
the set of core stable allocations in our model to be non-empty.

Strict preferences over a finite set of contracts is a common assumption [62, 63,
64, 65, 66] in matching markets as it makes equivalent the concepts of core (Defini-
tion 4.1.6) and weak-core (all agents within a coalition must end up weakly better
off and at least one of them strictly better off to block an allocation). This equivalence
does not necessarily hold in our model due to the continuum of payoffs. Thus, we
focus in studying core stable allocations by proving that any pairwise stable allocation
is core stable under additive separability (Proposition 4.2.8).

Remark that, generically, the equivalence holds as we can discretize the set of
strategy profiles and perturb the players’ payoffs to get strict preferences. Moreover,
the DA algorithm (Algorithm 4.1) can be applied to construct core stable allocations
in matching games by (1) mapping the model to a matching with contracts model,
(2) discretizing with mesh ε our continuum set of strategy profiles, (3) perturbing the
payoffs up to ε to avoid ties in the preferences, (4) applying Algorithm 4.1 to find
a pairwise stable allocation, and finally (5) tending ε to zero. Clearly, this is too
costly. Additive separability will allow us to reduce the computational complexity
of this task by extending our deferred-acceptance with competition (DAC) algorithm
from the one-to-one matching games model. Then, the same assumption will allow
us to apply our renegotiation process to compute core stable and renegotiation proof
allocations.

The approach will be to reduce core stability to pairwise stability. Let Γ be a
matching game and suppose that all hospitals have additive separable payoff functions
and quotas (Definition 4.2.5).

Definition 4.2.7. An individually rational allocation π = (µ, ~x, ~y) is blocked by a
pair (d, h), if there exists (wd, zh,d) ∈ Xd × Yh, such that fd,h(wd, zh,d)>fd(π) and

gd,h(wd, zh,d)>


gd,h(xd, yh,d) if µ(d) = h,

mind′∈µ(h) gd′,h(xd′ , yh,d′) if |µ(h)| = qh, µ(d) 6= h,
0 if |µ(h)|<qh, µ(d) 6= h,
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π is pairwise stable if it is not blocked by any pair.
When d = µ(h), blocking means that the strategy profile used by (d, h) in π is not

Pareto-optimal in their game, so they can jointly deviate to a strictly better outcome.
Notice that for unit hospitals quotas q ≡ 1, we recover a one-to-one model where
pairwise stability and core stability coincide.

Example 4.2.6. Recall the multi-item auction example. For simplicity, con-
sider two buyers H = {α, β}, four sellers D = {a, b, c, d}, all sellers having the same
valuation v = 1 for their items, and all agents with a null IRP. In addition, sup-
pose that buyers α and β have valuations uα = (10, 10, 2, 2) and uβ = (2, 2, 10, 10),
respectively, for the sellers’ items. The core stable allocations corresponds to any
π = (µ, (pα, pβ)) with µ = ((α, a), (α, b), (β, c), (β, d)) and the buyers’ strategy pro-
files pα = (x1, x2, 0, 0) and pβ = (0, 0, x3, x4), with 2 ≤ xi ≤ 10 for i ∈ {1, 2, 3, 4},
meaning, for example, that α pays x1 monetary units to a and x2 to b. We obtain
a continuum of core stable allocations. Remark that the two extremes pα ≡ pβ ≡ 2
and pα ≡ pβ ≡ 10 correspond to the 2nd price auction outcome and 1st price auction
outcome, respectively.

We prove, first of all, that any pairwise stable allocation is core stable.
Proposition 4.2.8. Let Γ be an additive separable matching game Then, any pairwise
stable allocation π = (µ, ~x, ~y) is core stable.
Proof. Suppose π is pairwise stable but not core stable. Let (I, h) be a blocking
coalition, that is, there exist (~wI , ~zh,I) ∈ XI × Y I

h , such that,

∀d ∈ I, fd,h(wd, zh,d)>fd(π),
gI,h(~wI , ~zh,I)>gh(π)

Since h has an additive separable payoff function, it follows,∑
d∈I

gd,h(wd, zh,d)>
∑

d∈µ(h)
gd,h(xd, yh,d)

In particular, there must exist d ∈ I and d′ ∈ µ(h) such that

gd,h(wd, zh,d)>gd′,h(xd′ , yh,d′)

Since doctor d increases strictly her payoff with the deviation, (d, h) is a blocking pair
of π, which is a contradiction.

Proposition 4.2.8 states that in order to prove the non-emptyness of the set of core
stable allocations, it is enough with finding a pairwise stable allocation. The rest of
the section is devoted to prove the following theorem.

Our characterization of core stable allocations (called stable* in [48]) through
pairwise stable allocations is in line with the work of Echenique and Oviedo [48]
(called stable in [48]). However, our algorithm does not require fixed points theorem
to obtain its convergence as we do not iterate a mapping but run a deferred-acceptance
like algorithm.
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Theorem 4.2.9. Suppose that the matching game is additive separable with quota,
agents’ strategy sets are compact, payoff functions are continuous, and that for each
(d, h) the set of Pareto-optimal strategy profiles in the game between d and h is closed4.
Then, there exists a pairwise stable allocation.

The sketch of proof of Theorem 4.2.9 is the following.
1. Fixing ε> 0, we extend the deferred-acceptance with competitions (DAC) algo-
rithm to compute an ε-pairwise stable allocation in the one-to-many setting.
2. As the Pareto-optimal strategy profile sets are compact and the payoff functions
are continuous, taking ε→ 0 gives the existence of a 0-pairwise stable allocation.

The DAC algorithm (Algorithm 4.2) asks the unmatched doctors to propose, one
by one, a strategy profile to their most preferred hospital. The proposal is computed
such that a hospital is always better off by accepting it. As long as hospitals have not
reached their quota, we keep the empty doctor matched with them so proposer doctors
can always join the hospital if they desire it. Therefore, our DAC fills the hospitals
until one agent has to replace somebody to be able to enter. In case the proposal
includes replacing a real doctor (i.e. different from the empty one), a competition
(analogous to a second price auction) between the two doctors starts. The winner
stays at the hospital while the loser becomes unmatched. Unless a hospital has reached
its quota, we always suppose that d0 is allocated in the hospital and can be replaced.

Algorithm 4.2: Deferred-acceptance with Competitions algorithm
1 Input: Γ a matching game, ε> 0,
2 Set D′ ← D as the set of unmatched doctors and match each hospital to d0
3 while D′ 6= ∅ do
4 Let d ∈ D′ and (h, d′, xd, yh,d) be the solution of Problem (4.3).
5 if |µ(h)|<qh then
6 d is accepted
7 end
8 else
9 d and d′ compete for h as in a second-price auction. The winner

stays at h, goes out of D′, and the loser is included in D′
10 end
11 end

Two phases compose an iteration of the DAC algorithm. In the proposal phase
an unmatched doctor d, given the current hospitals’ payoff profile g(π) = (gh(π))h∈H ,
solves the following optimal proposal problem,

max
h∈H0

(w,z)∈Xd×Yh

[
fd,h(w, z) : gd,h(w, z) ≥ min

d′∈µ(h)
gd′,h(xd′ , yh,d′) + ε

]
(4.3)

4Although rare (non generic), there are games with non-closed Pareto-optimal strategy profiles
sets. Appendix A.2 includes an example.
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The solution to Problem (4.3) consists in h, d’s most preferred hospital, d′ the doctor
that d desires to replace (possibly d0), and (xd, yh,d) the strategy profile that d proposes
to play to h. The solution (h, d′, xd, yh,d) is called the optimal proposal of doctor d.
Making an abuse of notation, we may call optimal proposal as well to (h, xd, yh,d) or
even to (xd, yh,d). Ties are broken by favoring hospitals. When the optimal proposal
includes d′ = d0, the proposer joins the hospital without replacing d0 (except when a
hospital reaches its quota).

If the optimal proposal includes a doctor d′ 6= d0, the competition phase starts
and both doctors play a second-price auction. We define the reservation payoff of
doctor d, βd, (and analogously the one of d′) as the optimal value of the problem,

max
h′∈H0\{h}

(w,z)∈Xd×Yh′

[
fd,h′(w, z) : gd,h′(w, z) ≥ min

d′∈µ(h′)
gd′,h′(xd′ , yh′,d′) + ε

]
(4.4)

In the case of several solutions, ties are broken by favoring hospitals. Given βd the
reservation payoff of d, her bid λd (and analogously the one of d′) is computed by,

max [gd,h(w, z) : fd,h(w, z) ≥ βd, w ∈ Xd, z ∈ Yh] (4.5)

The winner is the doctor with the highest bid (in case of a tie the winner is the current
partner), who reduces her proposal to match the one of the loser. Formally, if d wins,
she solves,

max [fd,h(w, z) : gd,h(w, z) ≥ λd′ , w ∈ Xd, z ∈ Yh] (4.6)

Ties are broken by choosing the proposal that maximizes h’s utility. The loser is
included in D′ and a new proposer is chosen.
Theorem 4.2.10. The DAC algorithm ends in finite time.
Proof. Since the strategy sets are compact and the payoff functions are continuous,
they are bounded. By construction, hospitals’ payoffs strictly increase with every
proposal. Thus, the algorithm ends in a finite number of iterations.

Forcing the doctors to increase hospitals’ payoffs by at least ε with every proposal
guarantees the finiteness of the DAC algorithm. However, we lose accuracy as the
algorithm outputs an ε-pairwise stable allocation (Definition 4.2.12).
Definition 4.2.11. An allocation π = (µ, ~x, ~y) is ε-individually rational if for any
d ∈ D and h ∈ H, fd(π) ≥ f

d
+ ε and gh(π) ≥ g

h
+ ε.

Definition 4.2.12. An ε-individually rational allocation π = (µ, ~x, ~y) is ε-blocked
by a pair (d, h), if there exists (wd, zh,d) ∈ Xd×Yh, such that fd,h(wd, zh,d)>fd(π)+ε
and

gd,h(wd, zh,d)>


gd,h(xd, yh,d) + ε if µ(d) = h,

mind′∈µ(h) gd′,h(xd′ , yh,d′) + ε if |µ(h)| = qh, µ(d) 6= h,
ε if |µ(h)|<qh, µ(d) 6= h,

π is ε-pairwise stable if it is not ε-blocked by any pair.
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To prove the correctness of the DAC algorithm we need one last result.
Lemma 4.2.13. The optimal value of Problem (4.6) is strictly higher than the win-
ner’s reservation payoff.
Proof. Let d (proposer) and d′ (matched doctor) be two doctors competing for a place
in hospital h and suppose d is the winner. The result holds as the optimal solution of
Problem (4.6) is always a feasible solution of Problem (4.5) as λd ≥ λd′ .
Theorem 4.2.14. Let ε> 0 be fixed. Then, the DAC algorithm outputs an ε-pairwise
stable allocation.
Proof. Let π = (µ, ~x, ~y) be the output of Algorithm 4.2. By construction, π is ε-
individually rational. Suppose π is not ε-pairwise stable, so there exists (d, h) and
(wd, zh,d) ∈ Xd × Yh, such that,

fd,h(wd, zh,d)>fd(π) + ε, and gd,h(wd, zh,d)>gd′,h(xd′ , yh,d′) + ε

for some d′ ∈ µ(h). Let T be the last time that d proposed. Since hospitals’ payoffs
are increasing, in particular, (h,wd, zh,d) was a feasible solution of d’s Problem (4.3)
at time T . Therefore, the only way that (h,wd, zh,d) was not the optimal solution is
because d achieved a payoff strictly higher than fd,h(wd, zh,d). During any posterior
iteration, d was always able to propose to h and replace somebody. In particular, for
the last competition of d, βd ≥ fd,h(wd, zh,d), thus by Lemma 4.2.13, fd(π) ≥ βd ≥
fd,h(wd, zh,d), which contradicts that d belongs to the blocking pair.

The existence of 0-pairwise stable allocations is a consequence of Theorem 4.2.14,
passing through the compactness of the Pareto-optimal strategy sets, the continuity
of payoff functions, and the finiteness of players. Therefore, from Proposition 4.2.8,
we conclude the existence of a core stable allocation.

4.3 2nd submodel: Roommates problem
The roommates problem, defined by Gale and Shapley [53], consists of a set D of
agents, each of them having strict preferences for the rest of the agents in D, and
seeking to match in couples. Many authors [10, 34, 49, 74, 96] extended the model
to the transferable utility case and studied the existence of stable allocations. Up
to our knowledge, Alkan and Tuncay [9] is the only article to work roommates with
non-transferable utility. Their model will be the base for our extension. We start by
explaining more in detail the model in [9] keeping our language of doctors.

Let D be a finite set of doctors and f = (f
d
)d∈D ∈ R|D| be their individually ratio-

nal payoff profile. For every potential couple (d1, d2) ∈ D, we consider a partnership
function u1,2 : R→ R such that u1,2(fd2) is the utility that agent d1 achieves when her
partner d2 achieves fd2 . In particular, it holds u1,2 = u−1

2,1. The partnership functions
are assumed to be continuous, decreasing, and u1,2(f

d2
)<∞, for any d1, d2 ∈ D.

Unlike our approach in the previous chapters where we focused on the players’
strategies, Alkan and Tuncay focused on payoff profiles.
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1-to-Many Matching games with commitment

Definition 4.3.1. A payoff profile is a vector f = (fd)d∈D ∈ R|D|. A payoff profile
is blocked by a couple (d1, d2) if there exists (f ′d1 , f

′
d2) ∈ R2 such that f ′d1 >fd1 ,

f ′d2 >fd2 , and f ′d1 = u1,2(f ′d2). An individually rational payoff profile, i.e., fd ≥ f
d

for any doctor d, is stable if it cannot be blocked.

Given a payoff profile, we focus next on finding a matching that can implement it.

Definition 4.3.2. Amatching µ is a partition of D in pairs and singletons. A payoff
profile f is realizable by a matching µ if fd1 = u1,2(fd2), for any (d1, d2) ∈ µ, and the
pair (µ, f) is called an allocation. Finally, a stable allocation is any allocation in
which the payoff profile is stable.

Alkan and Tuncay characterized the stable allocations as any allocation (µ, f)
satisfying,

fd = max
{
f
d
,max
d′ 6=d

ud,d′(fd′)
}
,∀d ∈ D (4.7)

A payoff profile satisfying Equation (4.7) is called an aspiration. Therefore, to solve
the roommates with non-transferable utility problem the goal is to find an aspiration
realizable by some matching.

To study when an aspiration is realizable, the authors worked with demand sets.
Given a payoff profile f and d ∈ D, we define d’s demand set Pd at f as,

Pd(f) := {d′ ∈ D \ {d} : fd = ud,d′(fd′)}

that is, the set of all agents with who d can achieve the payoff fd. Notice d2 ∈ Pd1(f)
if and only if d1 ∈ Pd2(f).

We define a submarket at f as any pair of disjoint sets of doctors (B, S) ⊆ D×D
such that,

1. For any d ∈ B, fd>fd
2. The demand set of every B-player is in S
3. There exists a matching µ such that for every d ∈ S, µ(d) ∈ B ∩ Pd(f), or d is

unmatched.

Notice that a submarket (B, S) is not asked to be a partition of D, as there may be
doctors that do not belong to B nor S. By (3), it always holds |S| ≤ |B|. A market
in which |S| = |B| is called a balanced market. An aspiration f that generates a
balanced market is called a balanced aspiration. The following result states the
existence of aspirations with balanced markets (Theorem 1, page 10 [9]).

Theorem 4.3.3. The set of balanced aspirations is non-empty.

Moreover, Alkan and Tuncay designed a market procedure to compute balanced
aspiration that converges in a polynomial number of iterations. A second theorem
links balanced aspirations and stable allocations (Theorem 2, page 11 [9]).
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4.3. 2nd submodel: Roommates problem

Theorem 4.3.4. The set of stable allocations is either empty or equal to the set of
balanced aspirations.

To be precise, Alkan and Tuncay proved that whenever the set of balanced aspi-
rations does not coincide with the set of stable allocations, it coincides with the set of
semistable allocations. Semistable allocations are the relaxation of stable allocations
in which agents can be matched with two partners at the time and their final payoff
is the average payoff obtained with her two partners. Therefore, the set of stable
allocations is non-empty if and only if it coincides with the set of balanced aspirations
if and only if the set of semistable allocations is empty.

The market procedure in [9] designed to compute balanced aspirations starts from
any aspiration, generates a piecewise linear path of aspirations, and stops in a bounded
number of steps at a balanced aspiration. At every iteration, given the current aspi-
ration, the mechanism computes the demand sets of every agent. In case there exists
a balanced submarket, the mechanism stops. Otherwise, the mechanism identifies a
submarket (B, S) with |S|< |B| and alters the aspiration continuously along a suitable
direction. The direction is reset when the submarket changes.

Remark the analogy between the market procedure just explained and the in-
creasing price mechanism (IPM) of Andersson et al. [10]. The IPM computes the
demand sets of the agents given a payoff profile, computes an over-demanded set
(Definition 4.3.7), and increases in one unit the utility of its agents. In the market
procedure of Alkan and Tuncay, S is over-demanded by B.

The suitable direction used to alter the aspiration is computed by a second mecha-
nism, called the direction procedure. Starting from a submarket (B, S), with |S|< |B|,
the procedure computes λ> 0 such that increasing the payoffs of the agents in S by
λ, decreasing the payoff of the agents in B by λ, and letting unchanged the payoffs of
the agents outside the submarket, the shifted submarket and the original one remain
the same. The following result (Lemma 7, page 29 [9]) states the correctness of the
direction procedure.

Lemma 4.3.5. If (B, S) is a bipartite submarket at an aspiration f , then there exists
a direction ~e with,

ed< 0,∀d ∈ B,
ed> 0,∀d ∈ S,
ed = 0, ∀d /∈ B ∪ S,

such that (B, S) is a bipartite submarket at f + λ~e, for all sufficiently small λ> 0.

Finally, the following result (Theorem 4, page 22 [9]) states the correctness and
finiteness of the market procedure.

Theorem 4.3.6. The market procedure reaches a balanced aspiration in a bounded
number of steps.
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The remaining question is whether a balanced aspiration can be implemented.
Definition 4.3.7. Given an aspiration f and a set of doctors I, we define O(I) :=
{d ∈ D : Pd(f) ⊆ I} as the set of agents that demand I. I is overdemanded if
|O(I)|> |I|.

Notice that at a balanced aspiration f no set of doctors is over-demanded. There-
fore, considering the undirected graph Gr = (D,E), with D the set of doctors and
(d1, d2) ∈ E if and only if d2 ∈ Pd1(f), Gr can always be decomposed as a disjoint
union of cycles. Then, the aspiration f is implementable by a matching whenever
there exists a decomposition of Gr including only even-cycles, as for odd-cycles at
least one agent will need to be matched with two partners. We remark the connection
with Tan [97] works in the existence of stable matchings for the roommates problem
with endogenous preferences.

We finish this section by extending the model of roommates with non-transferable
utility to the setting of matching games. Consider a matching game (Definition 4.1.1),

Γ =
(
D,H, (Xd)d∈D, (fd,d′)d,d′∈D, (fd)d∈D

)
where we have taken null hospitals’ payoff functions, empty hospitals’ strategy sets,
hospitals’ quotas ~q ≡ 2, and we have relaxed the doctors’ payoff functions dependence
on the allocated hospital (as done in Example 4.1.4). Allocations become pairs π =
(µ, ~x) where µ is a partition of the set D into pairs and singletons and ~x ∈ XD is a
doctors’ strategy profile. Given an allocation π, doctors’ payoffs are given by,

fd(π) =
{
fd,µ(d)(xd, xµ(d)), if d is matched

f
d

otherwise

In case of no confusion, we will omit the set H from the matching game.

4.3.1 Core stability: 2nd submodel
Consider a roommates matching game as described above. We leverage the work
of Alkan and Tuncay to compute core stable allocations of our roommates matching
games. Remark that core stable allocations and pairwise stable allocations are trivially
equivalent in the roommates setting (with and without strict preferences).
Definition 4.3.8. Let π = (µ, ~x) be an individually rational allocation. We say
that π is pairwise stable if, there is no pair (d, d′) ∈ D × D, and strategy profile
(xd, xd′) ∈ Xd ×Xd′ , such that,

fd(xd, xd′)>fd(π) and fd′(xd′ , xd)>fd′(π)

Since an already matched couple can block a matching in case they do not play
weakly-Pareto optimally, we obtain the monotony of the partnership functions.

From the existence of balanced aspirations (Theorem 4.3.6) in [9] we can conclude
the following result.
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4.4. Renegotiation proofness 1-to-many matching games

Theorem 4.3.9. Given Γ a roommates matching game with continuous payoff func-
tions, let f ∈ R|D| be the balanced aspiration computed by the market procedure of
Alkan and Tuncay. Then, the set of pairwise stable allocations is non-empty if and
only if f can be implemented by an allocation (µ, ~x).

4.4 Renegotiation proofness 1-to-many matching
games

This section is devoted to extending renegotiation proofness to the two submodels
considered in the previous section. We recall the definition of renegotiation proofness
given in Chapter 3 for the one-to-one model.

Definition 4.4.1. A pairwise stable allocation π = (µ, ~x, ~y) is renegotiation proof
if for any couple (d, h) ∈ µ and any (sd, th) ∈ Xd × Yh, it holds,

1. If fd,h(sd, yh) > fd(π) then, (µ, (~x−d, sd), ~x)5 is not pairwise stable,
2. If gd,h(xd, th) > gh(π) then, (µ, ~x, (~y−h, th)) is not pairwise stable.

Definition 4.4.1 can be applied without issues to the roommates submodel as agents
are matched in couples and to the additive separability matching games submodel.

Being able to apply the same renegotiation proofness definition for one-to-one
matching games to our two submodels will allow us to use the renegotiation pro-
cess from Chapter 3 to compute pairwise stable and renegotiation proof allocations,
adapted to each submodel.

4.4.1 1st submodel: Additive separable matching games
Consider an additive separable matching game

Γ =
(
D0, H0, (Xd)d∈D, (Yh)h∈H , (fd,h, gd,h)d∈D,h∈H , f , g

)
such that, given an allocation π = (µ, ~x, ~y), agents’ payoffs are given by,

∀d ∈ D, fd(π) = fd,µ(d)(xd, yµ(d),d)

∀h ∈ H, gh(π) =
{ ∑

d∈µ(h) gd,h(xd, yh,d) if |µ(h)| ≤ qh
−∞ otherwise

We adapt the renegotiation process used for one-to-one matching games to com-
pute pairwise stable and renegotiation proof allocations of the additive separable
matching games submodel. Let us see first the notions of reservation payoff and
constrained Nash equilibrium in this setting.

5Given a strategy profile ~x ∈
∏

d∈D Xd, (~x−d, sd) denotes the strategy profile obtained when
player d replaces her strategy xd ∈ ~x by sd ∈ Xd.
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1-to-Many Matching games with commitment

Definition 4.4.2. Given π = (µ, ~x, ~y) an allocation, (I, h) ∈ µ an arbitrary matched
coalition, and d ∈ I, we define fπd , the reservation payoff of d, as the optimal value
of the problem,

max fd,h′(s, t)
s.t. gd,h′(s, t)> min

d′∈µ(k)
gd′,h′(xd′ , yh′,d′)

h′ ∈ H0 \ {h}, (s, t) ∈ Xd × Yh′

that is, the highest payoff that d can achieve by matching with another hospital.
Similarly, we define h’s reservation payoff gπh as the optimal value of the problem,

max gd′,h(s, t)
s.t. fd′,h(s, t)>fd′,µ(d′)(xd′ , yµ(d′),d′)

d′ ∈ D0 \ {µ(h)}, (s, t) ∈ Xd′ × Yh

that is, the highest payoff that h can achieve by replacing one of its doctors.

It may be intuitive to think that hospitals should have a reservation payoff for each
of their doctors. The intuition is correct. However, as reservation payoffs depend on
the agents outside of the coalition, the hospital has exactly the same reservation payoff
for each of its doctors. In particular, no doctor should decrease her contribution to
her hospital payoff below gπ as the hospital will have incentives to replace her.

As for one-to-one matching games, constrained Nash equilibria are strategy profiles
in which each agent is best-replying to the partner subject to offering her/it at least
the reservation payoff.

Definition 4.4.3. Let π = (µ, ~x, ~y) be an allocation and (fπd , gπh : (d, h) ∈ D × H)
be the agents’ reservation payoffs. Let (I, h) ∈ µ and d ∈ I. The strategy profile
(xd, yh,d) is (fπd , gπh)-feasible if fd,h(xd, yh,d) ≥ fπd and gd,h(xd, yh,d) ≥ gπh . We say
(xd, yh,d) is a (fπd , gπh)-constrained Nash equilibrium if it is (fπd , gπh)-feasible and,

fd,h(xd, yh,d) = max{fd,h(s, yh,d) : gd,h(s, yh,d) ≥ gπh , s ∈ Xd}
gd,h(xd, yh,d) = max{gd,h(xd, t) : fd,h(xd, t) ≥ fπd , t ∈ Yh}

We denote CNE(fπd , gπh) to the set of (fπd , gπh)-constrained Nash equilibria.

The following result was proved for one-to-one matching games (Proposition 3.5.2).
As it can be straightforwardly applied to the current setting, we state it without proof.

Proposition 4.4.4. A pairwise stable allocation π = (µ, ~x, ~y) is renegotiation proof
if and only if for any (I, h) ∈ µ and d ∈ I, the strategy profile (xd, yh,d) is a (fπd , gπh)-
constrained Nash equilibria, where fπd and gπh are the agents’ reservation payoffs.
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4.4. Renegotiation proofness 1-to-many matching games

Algorithm 4.3: Renegotiation process
input : π = (µ, ~x, ~y) pairwise stable allocation

1 t←− 1, π(t)←− π
2 while True do
3 for (d, h) ∈ µ do
4 Compute the reservation payoffs fπ(t)

d and gπ(t)
h (Definition 4.4.2)

5 Choose (x∗d, y∗h,d) ∈ CNE(fπ(t)
d , g

π(t)
h ) and set (xt+1

d , yt+1
h,d )←− (x∗d, y∗h,d)

6 end
7 if ∀(d, h) ∈ µ, (xt+1

d , yt+1
h,d ) = (xtd, yth,d) then

8 Output π(t)
9 end

10 t←− t+ 1
11 end

Algorithm 4.3 states the renegotiation process, adapted to the additive separable
matching games submodel.

From the correctness of the renegotiation process for one-to-one matching games
(Theorem 3.5.4) and the finiteness in zero-sum games (Theorem 3.5.6), strictly com-
petitive games (Theorem 3.5.7), potential games (Theorem 3.5.8), and infinitely re-
peated games (Theorem 3.5.9) we obtain the following result.

Theorem 4.4.5. Whenever Algorithm 4.3 converges, its output is a pairwise stable
and renegotiation proof allocation of the additive separable matching games submodel.
Moreover, the algorithm converges for zero-sum games with a value, strictly competi-
tive games with an equilibrium, potential games, and infinitely repeated games.

4.4.2 2nd submodel: Roommates problem
Consider a roommates matching game

Γ = (D0, H, (Xd)d∈D, (fd,d′)d,d′∈D, f)

The renegotiation proofness can be, without issues, adapted to our roommates
submodel. We formally explain the reservation payoff computation and the definition
of constrained Nash equilibria to then, announce the adapted version of the renegoti-
ation process.

Definition 4.4.6. Given π = (µ, ~x) an allocation and d ∈ D a doctor. We define fπd ,
the reservation payoff of agent d, by

fπd := max{fd,d′(s, t) : d′ ∈ D0 \ {µ(d)}, fd′,d(t, s)>fd′(π), (s, t) ∈ Xd ×Xd′} (4.8)
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Given a couple (d1, d2) ∈ µ and their reservation payoffs fπd1 and fπd2 , their strategy
profile (xd1 , xd2) is (fπd1 , f

π
d2)-feasible if,

fd1,d2(xd1 , xd2) ≥ fπd1 and fd2,d1(xd2 , xd1) ≥ fπd2

(xd1 , xd2) is a (fπd1 , f
π
d2)-constrained Nash equilibrium if it is (fπd1 , f

π
d2)-feasible and,

fd1,d2(xd1 , xd2) = max{fd1,d2(s, xd2) : fd2,d1(xd2 , s) ≥ fπd2 , s ∈ Xd1}
fd2,d1(xd2 , xd1) = max{fd2,d1(t, xd1) : fd1,d2(xd1 , t) ≥ fπd1 , t ∈ Xd2}

We denote CNE(fπd1 , f
π
d2) to the set of (fπd1 , f

π
d2)-constrained Nash equilibria.

We are ready to announce the renegotiation process adapted to the roommates
submodel.

Algorithm 4.4: Renegotiation process
input : π = (µ, ~x) pairwise stable allocation

1 t←− 1, π(t)←− π
2 while True do
3 for (d1, d2) ∈ µ do
4 Compute the reservation payoffs fπ(t)

d1 and fπ(t)
d2 (Equation (4.8))

5 Choose (x∗d1 , x
∗
d2) ∈ CNE(fπ(t)

d1 , f
π(t)
d2 ) and set (xt+1

d1 , xt+1
d2 )←− (x∗d1 , x

∗
d2)

6 end
7 if ∀(d1, d2) ∈ µ, (xt+1

d1 , xt+1
d2 ) = (xtd1 , x

t
d2) then

8 Output π(t)
9 end

10 t←− t+ 1
11 end

From the correctness and finiteness of the renegotiation process for one-to-one
matching games (Theorem 3.5.4), we obtain the following result.

Theorem 4.4.7. Whenever Algorithm 4.4 converges, its output is a pairwise stable
and renegotiation proof allocation of the roommates submodel. Moreover, the algo-
rithm converges for zero-sum games with a value, strictly competitive games with an
equilibrium, potential games, and infinitely repeated games.

4.5 Conclusions
In this chapter we have extended the model of one-to-one matching games under
commitment (Chapters 2 and 3) to the one-to-many setting in which hospitals can
be matched with many doctors at the time. Many models in one-to-many matching
markets can be captured by one-to-many matching games as the matching job market
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model of Kelso and Crawford [71], the matching with contracts model of Hatfield and
Milgrom [66], and hedonic games [42]. Moreover, one-to-many matching games also
capture non-two-sided matching market problems as the roommates problem of Gale
and Shapley [53, 68, 75], the roommates problem with transferable utility [10, 34, 49,
74, 96], the roommates problem with non-transferable utility [9].

We have studied the existence of core stable and renegotiation proof allocations for
two submodels of one-to-many matching games: additive separable matching games
(Section 4.2) and roommates (Section 4.3). For the additive separable matching games
submodel, we have designed a deferred-acceptance with competitions algorithm (Al-
gorithm 4.2) (extension of the one used for one-to-one matching games) that computes
a core stable allocation whenever all strategy sets are compact, payoff functions are
continuous and, in addition, the sets of Pareto-optimal strategy profiles are closed.

For the roommates submodel, we have leveraged the work of Alkan and Tuncay.
Using their market procedure we are able to compute payoff profiles that, whenever
an allocation π can implement them (Definition 4.3.2), π results to be core stable.
Moreover, the market procedure output f is realizable, i.e., we can ensure the existence
of core stable allocations, every time that the demand graph at f can be decomposed
in the disjoint union of even-cycles.

Regarding renegotiation proofness, we have managed to extend the results in Chap-
ter 3 for one-to-one matching games to the two submodel: additive separable matching
games and roommates matching games. For the first model the extension is a conse-
quence of the additive separability. For the second model, as agents keep matching in
couples, the extension of renegotiation proofness is straightforward. For both submod-
els we have studied how to compute the agents’ reservation payoffs, the constrained
Nash equilibria, and we have adapted the renegotiation process. As for one-to-one
matching games, we can compute renegotiation proof allocations whenever players
play zero-sum games with a value, strictly competitive games with an equilibrium,
potential games, and infinitely repeated games (Theorems 4.4.5 and 4.4.7).

The complexity study of the algorithms presented here is conducted in the follow-
ing chapter. We will show that for many well-known matching games our algorithms
are efficient as they have a bounded number of polynomial-time iterations.

A possible future research line is the mix between the two one-to-many matching
games submodels, roommates and additive separable matching games, studied in this
chapter. The mixed setting would define a model in which couples of doctors are
assigned to hospitals, and agents’ utilities within the same triplet depend on the
strategies and identities of the partners. Interesting applications may rise from this
mix, for example, the siblings’ schools allocation problem of Correa et al. [36].
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Chapter 5

Complexity study

The deferred-acceptance algorithm of Gale and Shapley [53] is guaranteed to converge
in at most O(N2) iterations, where N is the size of the biggest market side. Shapley
and Shubik [93] also achieved a polynomial complexity when computing their stable
allocations thanks to the linearity of the payoff functions over the payments, which
allowed them to solve their problem by linear programming. In the roommates prob-
lem, Irving [68] designed a polynomial algorithm to compute a stable matching of
the problem, in case of existence, or to report the non-existence of stable allocations.
The first of the two algorithms designed by Demange et al. [40], an increasing price
mechanism with integer payoffs, is also guaranteed to converge in polynomial time to
an exact stable allocation. The same holds for Andersson et al. who adapted this last
algorithm to roommates with (integer) transferable utility [10]

As we have mentioned in previous chapters, computing exact stable solutions for
matching problems with non-integer utilities is still an open problem. Therefore, au-
thors have designed approximation schemes for their problems. The second algorithm
of Demange et al. [40] converges in a bounded number of iterations T to an ε-stable
solution, with T ∝ 1

ε
. The same holds for the continuous market procedure of Alkan

and Tuncay [9] in the roommates with non-transferable utility setting.
In this chapter, we extend the literature results proving that our stable allocation

computation algorithms for matching games have a bounded number of polynomial-
time iterations whenever players play finite zero-sum games in mixed strategies, finite
strictly competitive games in mixed strategies, or infinitely repeated games with finite
stage games in mixed strategies. We will focus on the two submodels of one-to-many
matching games studied in Chapter 4: (1) additive separable (with quotas) matching
games and (2) roommates. First of all, we formalize the notion of bi-matrix (or finite)
game in mixed strategies.

Definition 5.0.1. A two-player game G = (X, Y, f, g) is called a bi-matrix game
in mixed strategies if there exist S, T finite strategy sets such that,

X := ∆(S) =
{
x ∈ [0, 1]|S| :

∑
s∈S

x(s) = 1
}

Y := ∆(T ) =
{
y ∈ [0, 1]|T | :

∑
t∈T

y(t) = 1
}

correspond to the simplex of S and T , respectively, and the payoff functions are,

f(x, y) := xAy =
∑
s∈S

∑
t∈T

A(s, t)x(s)y(t)
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g(x, y) := xBy =
∑
s∈S

∑
t∈T

B(s, t)x(s)y(t)

where x ∈ X, y ∈ Y , and A,B ∈ R|S|·|T | are payoff matrices. With this in mind, we
can define a bi-matrix matching game as any matching game in which all two-player
games are bi-matrix games in mixed strategies.
1. An additive separable bi-matrix matching game is any additive separable

matching game
Γ = (D0, H0, (Xd)d∈D, (Yh)h∈H , (fd,h, gd,h)d∈D,h∈H , (fd)d∈D, (gh)h∈H)

where each two-player game Gd,h := (Xd, Yh, fd,h, gd,h) is a finite game in mixed
strategies, i.e., there exist finite pure strategy sets Sd, Th such that Xd = ∆(Sd),
Yh = ∆(Th) and,

fd,h(xd, yh,d) = xdAd,hyh,d

gd,h(xd, yh,d) = xdBd,hyh,d

with Ad,h, Bd,h ∈ R|Sd|·|Th| payoff matrices for all d ∈ D and h ∈ H.
2. A roommates bi-matrix matching game is any roommate matching game

Γ = (D0, (Xd)d∈D, (fd,d′)d,d′∈D, (fd)d∈D)
where each two-player game Gd,d′ := (Xd, Xd′ , fd,d′ , fd′,d) is a finite game in mixed
strategies, i.e., there exist finite pure strategy sets Sd, Sd′ such that Xd = ∆(Sd),
Xd = ∆(Sd′) and,

fd,d′(xd, xd′) := xdAd,d′xd′

fd′,d(xd′ , xd) := xd′Ad′,dxd

with Ad,d′ , Ad′,d′ ∈ R|Sd|·|Sd′ | payoff matrices.
For examples of bi-matrix matching games, check Example 1.1.4, Example 1.1.5,

and Examples 4.1.4 and 4.1.5. The rest of the chapter is structure as it follows.
Section 5.1 recalls the algorithms in Chapter 4 and explains their complexity issues
related to the presence of quadratic constrained quadratic programming problems.
Section 5.2 makes the formal complexity study for matching games in which couples
play zero-sum matching games. Section 5.3 extends the results to the case in which
couples play strictly competitive games. Section 5.4 makes the formal complexity
study for matching games in which couples play infinitely repeated matching games.
Section 5.5 concludes the chapter.

5.1 Algorithms to compute stable allocations in
matching games

In this section, we recall the algorithms presented in Chapter 4 to compute stable
allocations in additive separable matching games and roommates matching games.
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5.1.1 Deferred-acceptance with competitions algorithm
Consider an additive separable bi-matrix matching game

Γ = (D0, H0, Gd,h = (Xd, Yh, fd,h, gd,h)d∈D,h∈H , (fd)d∈D, (gh)h∈H)

Algorithm 5.1 states the deferred-acceptance with competitions (DAC) algorithm
adapted to this model.

Algorithm 5.1: DAC algorithm: Additive separable case
1 Input: Γ a matching game, ε> 0,
2 Set D′ ← D as the set of unmatched doctors
3 while D′ 6= ∅ do
4 Let d ∈ D′ and (h, d′, xd, yh,d) be a solution to,

max wAd,hz
s.t. wBd,hz ≥ min

d′∈µ(h)
xd′Bd′,hyh,d′ + ε

h ∈ H0, (w, z) ∈ Xd × Yh

(5.1)

5 if |µ(h)|<qh then
6 d is accepted
7 end
8 else
9 d and d′ compete for h as in a second-price auction. The winner

stays at h, goes out of D′, and the loser is included in D′
10 end
11 end

As all the games are finite games played in mixed strategies, all agents have com-
pact strategy sets and continuous payoff functions. Therefore, the DAC algorithm is
guaranteed to converge to an ε-pairwise stable allocation (Theorem 4.2.14). Moreover,
the convergence is done in a finite number of iterations as we prove now.

Theorem 5.1.1. The deferred-acceptance with competitions algorithm converges in a
bounded number T ∝ 1

ε
of iterations.

Proof. For every hospital, h ∈ H, consider the value,

Gh := max{Bd,h(s, t)− gh : d ∈ D0, s ∈ Sd, t ∈ Th}

and let Gmax := maxh∈H Gh be the maximum of them. By construction, Algorithm 5.1
increases hospitals’ payoffs at each iteration by at least ε. Therefore, the number of
iterations is bounded by T := 1

ε
Gmax.

Notice that Gmax does not depend on the number of players nor the number of
pure strategies per player but only on the values of the payoff matrices. Therefore,
taking bounded payoff matrices, T only depends on the relaxation rate ε.
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We aim to study next under which assumptions the iterations of the DAC algo-
rithm have polynomial complexity. Let us recall the two phases that form an iteration
of our DAC algorithm.
Proposal phase. Let d ∈ D′ be the proposer. Given the current allocation π (ini-
tially empty) that generates a hospitals’ payoff vector g(π) = (gh(π))h∈H , d computes
his optimal proposal (h, d′, x, y) solving,

max
{
xAd,hy : xBd,hy ≥ min

d′∈µ(h)
xBd′,hy + ε, h ∈ H0, (x, y) ∈ Xd × Yh

}
(1.1)

Competition phase. If the optimal proposal includes a doctor d′ 6= d, a second-price
auction competition between d and d′ starts. Let βd be the reservation payoff of d,
solution to the following problem,

max
{
xAd,h′y : xBd,h′y ≥ min

d′∈µ(h′)
xBd′,h′y + ε, h′ ∈ H0 \ {h}, (x, y) ∈ Xd × Yh′

}
(1.2)

Analogously, we compute βd′ . Then, d’s bid (and analogously for d′) is computed by,

λd := max
{
xBd,hy : xAd,hy ≥ βd, (x, y) ∈ Xd × Yh

}
(1.3)

The winner is the doctor with the highest bid. Finally the winner, namely d, pays
the second highest bid. Formally, d solves,

max {xAd,hy : xBd,hy ≥ λd′ , (x, y) ∈ Xd × Yh} (1.4)

Remark that all the optimization problems solved during an iteration of Algo-
rithm 5.1 have a quadratically constrained quadratic programming (QCQP) struc-
ture1 [11, 46, 78]. Particular complexity issues will arise when solving this kind of
optimization problems (check Section 5.1.4).

5.1.2 Market procedure
The market procedure of Alkan and Tuncay [9] studied in Section 4.3 for roommates
with non-transferable utility computes a balanced aspiration f ∈ R|D|. f corresponds
to the payoff profile that players must have at any pairwise stable allocation. As their
existence theorem (Theorem 4.3.4) states, a pairwise stable allocation will exist if and
only the output of the market procedure is realizable by a proper allocation (and not
a semiallocation allowing half-partnerships).

In this chapter we will deal with the following complexity issue of the pairwise
stable allocations computation for the roommates submodel: Given a couple of doctors
(d1, d2) ∈ D ×D and strategy profiles (f1, f2) ∈ R2 such that,

fd1 = u1,2(fd2)
1Problem 1.1 can be decomposed in |H| QCQP sub-problems.
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we aim to compute (xd1 , xd2) ∈ Xd1 ×Xd2 such that,

fd1(xd1 , xd2) = f1 and fd2(xd2 , xd1) = f2

Being able to find the strategy profile that achieves the payoffs (f1, f2), for any payoff
profile, will allow us to solve two challenges of this model: (1) the computation of the
demand sets of the players at every iteration of the market procedure, and (2) given
a balanced aspiration f , the computation of the strategy profile ~x ∈ XD such that
(µ, ~x) implements f , whenever this can be done.

Consider a bi-matrix game G = (X, Y,A,B) with X = ∆(S) and Y = ∆(T ) being
simplex, and A,B payoff matrices. Given (u, v) ∈ R2, we aim to find x ∈ X, y ∈ Y ,
such that,

xAy = u⇐⇒
∑
s∈S

∑
t∈T

A(s, t)xsyt = u

xBy = v ⇐⇒
∑
s∈S

∑
t∈T

B(s, t)xsyt = v

The previous system of quadratic equations can be seen as a QCQP with a constant
objective function. Therefore, being able to solve QCQPs in polynomial time would
allow us to compute the strategy profile of a couple that achieves a given payoff profile.
We will come back to this problem later.

5.1.3 Renegotiation process
Chapter 3 presented a renegotiation process that, starting from any pairwise stable
allocation, outputs a pairwise stable and renegotiation process allocation whenever
players play feasible games and the algorithm converges. Moreover, it established
the convergence of the algorithm for zero-sum, strictly competitive, potential, and in-
finitely repeated matching games. Although the convergence is guaranteed, to obtain
an upper bound for the number of iterations, an ε-version of the renegotiation process
needs to be considered.

We present the notion of ε-renegotiation proofness, characterize it by ε-constrained
Nash equilibria, and define the class of ε-feasible games. Then, considering the ε-
version of the renegotiation process, we will prove its finiteness with an upper bound
T ∝ 1

ε
. All the results presented in Chapter 3 can be generalized to their ε-version.

For the sick of completeness, we present the formal proofs.
Along this section we will work with the additive separable matching games model,

however, all the results are straightforwardly applicable to roommates matching games.

Definition 5.1.2. An ε-pairwise stable allocation π = (µ, ~x, ~y) is ε-renegotiation
proof if for any pair (I, h) ∈ µ, any d ∈ I, and any (sd, th) ∈ Xd × Yh, it holds,

1. If fd,h(sd, yh) > fd,h(xd, yh,d) + ε then, (µ, (~x−d, sd), ~y)2 is not ε-pairwise stable,
2Given a strategy profile ~x ∈

∏
d∈D Xd, (~x−d, sd) denotes the strategy profile obtained when

player d replaces her strategy xd ∈ ~x by sd ∈ Xd.
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2. If gd,h(xd, td,h) > gd,h(xd, yh,d) + ε then, (µ, ~x, (~y−(d,h), td,h)) is not ε-pairwise stable.

Renegotiation proof allocations can be characterized as all those allocations in
which all agents play constrained Nash equilibria (Proposition 3.5.2). An analogous
version holds for ε-renegotiation proofness.

Definition 5.1.3. Let π = (µ, ~x, ~y) be am allocation, (I, h) ∈ µ be a matched
pair, and d ∈ I a fixed doctor. We define the ε-reservation payoffs of d and h,
fπd (ε), gπh(ε), respectively, as the optimal values of the problems,

max
k∈H0\{h}

(s,t)∈Xd×Yk

{
fd,k(s, t) : gd,k(s, t)> min

d′∈µ(k)
gd′,k(xd′ , yh,d′) + ε

}

max
k∈D0\{I}

(s,t)∈Xk×Yh

{
gk,h(s, t) : fk,h(s, t)>fk,µ(k)(xk, yµ(k),k) + ε

} (5.2)

We recall a previous discussion about hospitals’ reservation payoffs: It may be
intuitive to think that hospitals should have a reservation payoff for each of their
doctors. The intuition is correct. However, as reservation payoffs depend on the
agents outside of the couple, the hospital has exactly the same reservation payoff for
each of its doctors. In particular, no doctor d should decrease her contribution to the
hospital h’s payoff below gπh(ε), otherwise, the hospital will have incentives to replace
d. We give next, the definition of ε-constrained Nash equilibria.

Definition 5.1.4. Given an allocation π = (µ, ~x, ~y), a pair (I, h) ∈ µ, a doctor d ∈ I,
and their reservation payoffs (fπd (ε), gπh(ε)), a strategy profile (x′d, y′h,d) ∈ Xd × Yh is

1. ε-feasible if fd,h(x′d, y′h,d) + ε ≥ fπd (ε) and gd,h(x′d, y′h,d) + ε ≥ gπh(ε),
2. an ε-(fπd (ε), gπh(ε))-constrained Nash equilibrium (CNE) if it is ε-feasible and

it satisfies,

fd,h(x′d, y′h,d) + ε ≥ max{fd,h(s, y′h,d) : gd,h(s, y′h,d) + ε ≥ gπh(ε), s ∈ Xd},
gd,h(x′d, y′h,d) + ε ≥ max{gd,h(x′d, t) : fd,h(x′d, s) + ε ≥ fπd (ε), t ∈ Yh}

We denote the set of ε-(fπd (ε), gπh(ε))-CNE by ε-CNE(fπd (ε), gπh(ε)).

We extend the characterization of renegotiation proof allocations through con-
strained Nash equilibria (Proposition 3.5.2) to the ε-case.

Theorem 5.1.5. An ε-pairwise stable allocation π = (µ, ~x, ~y) is ε-renegotiation proof
if and only if for any pair (I, h) ∈ µ and d ∈ I, (xd, yh,d) is an ε-(fπd (ε), gπh(ε))-
constrained Nash equilibria, where (fπd (ε), gπh(ε)) are the agents’ reservation payoffs
(Equation (5.2)).

Proof. Suppose that all couples play constrained Nash equilibria. Let (d, h) ∈ µ be a
couple and (xd, yh,d) be their ε-(fπd (ε), gπh(ε))-CNE. Suppose there exists x′d ∈ Xd such
that,

fd,h(x′d, yh,d)>fd,h(xd, yh,d) + ε

130



Complexity study

It follows,

fd,h(x′d, yh,d)>max{fd,h(s, yh,d) : gd,h(s, yh,d) + ε ≥ gπh(ε), s ∈ Xd}

Thus, fd,h(x′d, yh,d) + ε< gπh(ε). Let d′ be the player that attains the maximum in
gπh(ε). Then, (d′, h) is an ε-blocking pair of π. For player h the proof is analogous.

Conversely, suppose π is ε-renegotiation proof. Let (d, h) ∈ µ be a couple and
(xd, yh,d) be their strategy profile. For any x′d ∈ Xd such that

fd,h(x′d, yh,d)>fd,h(xd, yh,d) + ε

it holds, gd,h(x′d, yh,d) + ε< gπh(ε). Thus,

fd,h(xd, yh,d) + ε ≥ max{fd,h(s, yh,d) : gd,h(s, yh,d) + ε ≥ gπh(ε), s ∈ Xd}

For player h the proof is analogous.

ε-Constrained Nash equilibria are not guaranteed to exist in every bi-matrix game.
Due to this, we extend the class of feasible games.

Definition 5.1.6. A two-person game is called ε-feasible if for any pair of reser-
vation payoffs which admits at least one ε-feasible strategy profile, there exists an
ε-constrained Nash equilibrium for the same pair of reservation payoffs.

The class of 0-feasible games contains all zero-sum games with a value, strictly
competitive games with an equilibrium, potential games, and infinitely repeated games
(Theorem 3.4.3). We will present the formal proof that zero-sum games with a value,
strictly competitive games with an equilibrium, and infinitely repeated games are ε-
feasible as well. Although we leave potential games out of the proof, we conjecture
they belong to the class of ε-feasible games too.

Theorem 5.1.7. The class of ε-feasible games includes zero-sum games with a value,
strictly competitive games with an equilibrium, and infinitely repeated games.

As for 0-feasible games, the proof of Theorem 5.1.7 is game dependent, and there-
fore, it has to be made for each class of games. Thus, we give the formal proofs with
the complexity study. Algorithm 5.2 shows the pseudo-code of the ε-renegotiation
process.

Theorem 5.1.8. If Algorithm 5.2 converges, its output is an ε-pairwise stable and
ε-renegotiation proof allocation.

Proof. By construction, the output of Algorithm 5.2 is ε-renegotiation proof (Theo-
rem 5.1.5). Regarding ε-pairwise stability, we prove that π always remains ε-pairwise
stable at every iteration T . For T = 0 it holds as the input of Algorithm 5.2 is
ε-pairwise stable. Suppose that for some T > 0, π(T ) is ε-pairwise stable but there
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Algorithm 5.2: Renegotiation process
input : π = (µ, ~x, ~y) ε-pairwise stable allocation

1 t←− 1, π(t)←− π
2 while True do
3 for (d, h) ∈ µ do
4 Compute the reservation payoffs fπ(t)

d and gπ(t)
h (Equation (5.2))

5 Choose (x∗d, y∗h,d) ∈ ε-CNE(fπd (ε), gπh(ε)) and set (xt+1
d , yt+1

h,d )←− (x∗d, y∗h,d)
6 end
7 if ∀(d, h) ∈ µ, (xt+1

d , yt+1
h,d ) = (xtd, yth,d) then

8 Output π(t)
9 end

10 t←− t+ 1
11 end

exists an ε-blocking pair (d, h) of π(T + 1). Then, there exists (x∗, y∗) ∈ Xd×Yh such
that

fd,h(x∗, y∗)>fd(π(T + 1)) + ε and gd,h(x∗, y∗)> min
k∈µT+1(h)

gk,h′(xT+1
k , yT+1

h,k ) + ε

Necessarily, d or h changed of strategy profile at T , otherwise (d, h) would also block
π(T ). Without loss of generality, suppose d did. It follows,

fd,h(x∗, y∗)>fd(π(T + 1)) + ε = fd,µ(h)(x′, y′) + ε ≥ f
π(T )
d (ε) ≥ fd,h(x∗, y∗)

where fπ(T )
d (ε) is d’s reservation payoffs at time T , (x′, y′) ∈ ε-CNE(fπ(T )

d (ε), gπ(T )
µ(h) (ε))

is the CNE chosen by (d, µ(d)) at time T , and the last inequality comes from Equa-
tion (5.2). We obtain a contradiction.

Section 3.5 proved the convergence of the renegotiation process (Algorithm 3.1)
for different feasible games. We extend these proofs to the ε-version of the algorithm
(Algorithm 5.2) during its complexity analysis. The next section discusses the issues
of having QCQP problems in our algorithms.

5.1.4 Quadratically constrained quadratic programs
The main issue in the complexity study of our algorithms is the presence of quadrat-
ically constrained quadratic programming (QCQP) problems [11, 46, 78]. As we
have already remarked, the optimization problems solved during an iteration of the
deferred-acceptance with competitions algorithm, the demand sets of the market pro-
cedure of Alkan and Tuncay, the allocation computation given a balanced aspiration,
the computation of the reservation payoffs during the renegotiation process, or even
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the constrained Nash equilibria computation, all of them have the following structure,

max xAy
s.t. xBy ≥ c

x ∈ X, y ∈ Y
(5.3)

where A,B are real-valued matrices, c ∈ R, and X, Y are simplex. For negative
semi-definite matrices A and B, Problem (5.3) corresponds to a convex problem and
can be solved in polynomial time. However, in its most general case, Problem (5.3)
is NP-hard. Luckily, for zero-sum games, strictly competitive games, and infinitely
repeated games we will manage to reduce these problems to a polynomial number of
linear programs.

Linear programming is one of the most useful tools to prove the polynomial com-
plexity of given problems. The first polynomial algorithms for linear programming
problems were published by Khachiyan [73] and Karmarkar [70]. For our analysis, we
will refer to the complexity result of Vaidya [98].

Theorem 5.1.9 (Vaidya’89). Let P be a linear program with m constraints, n vari-
ables, and such its data takes L bits to be encoded. Then, in the worst case, P can be
solved in O((n+m)1.5nL) elementary operations.

We split the complexity analysis into three sections, one per each kind of the
matching game mentioned: zero-sum, strictly competitive, and infinitely repeated.
The three algorithms recalled in the previous sections are studied in each setting.

5.2 Zero-sum matching games
Consider a matching game Γ in which all strategic games are finite zero-sum matrix
games in mixed strategies, from now on, a zero-sum matching game. Notice Γ can
be either a additive separable matching game or a roommates matching game. When
needed, we will specify the submodel considered.

We study the complexity of the three algorithms recalled in the previous section:
deferred-acceptance with competitions (Algorithm 5.1), market procedure, and renego-
tiation process (Algorithm 5.2), when the matching game Γ is a zero-sum matching
game (with the corresponding submodel). The following subsections will split the
analysis for each algorithm. All the presented results will use the following main
theorem.

Theorem 5.2.1. Let G = (X, Y,A,B) be a finite zero-sum game in mixed strategies,
where X = ∆(S), Y = ∆(T ) are simplexes with S, T pure strategy sets, and A,B are
payoff matrices. Given a vector c, the QCQP Problem (5.3),

max xAy

s.t. xBy ≥ c

x ∈ X, y ∈ Y
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can be solved in O(|S| · |T |) comparisons.

To prove Theorem 5.2.1 we need a preliminary result. Notice, first of all, that
since G is a zero-sum game, the QCQP Problem (5.3) can be rewritten as

max xAy
s.t. xAy ≤ c

x ∈ X, y ∈ Y
(5.4)

Therefore, solving the previous optimization problem is equivalent to finding a
strategy profile (x, y) such that xAy = min{c,maxA}3. Without loss of generality
it can be always considered minA ≤ c ≤ maxA since replacing c by min{c,maxA}
does not change at all Problem (5.4)) and for c<minA the problem is infeasible.

Lemma 5.2.2. Given a matrix payoff A and c ∈ R, with minA ≤ c ≤ maxA, there
always exists (x, y) ∈ X × Y , such that xAy = c, with x or y being a pure strategy.

Proof. Let s ∈ S be a pure strategy for player 1 in G, such that there exist t, t′ ∈ T ,
with A(s, t) ≤ c ≤ A(s, t′). Then, there exists λ ∈ [0, 1] such that λA(s, t) + (1 −
λ)A(s, t′) = c. Even more, λ is explicitly given by

λ = c− A(s, t)
A(s, t′)− A(s, t) (5.5)

Suppose that such a pure strategy s does not exist, so for any s ∈ S, either A(s, t) ≤
c, ∀t ∈ T , or A(s, t) ≥ c,∀t ∈ T . Let t ∈ T be any pure strategy of player 2. Then,
since minA ≤ c ≤ maxA, there exists s, s′ ∈ S such that A(s, t) ≤ c ≤ A(s′, t). Thus,
considering λ given by,

λ = c− A(s, t)
A(s′, t)− A(s, t) (5.6)

it holds that λA(s, t) + (1− λ)A(s′, t) = c.

We are ready to prove the complexity of solving the QCQP problem for a zero-sum
game (Theorem 5.2.1).

Proof of Theorem 5.2.1. The complexity of solving the QCQP Problem (5.4) corre-
sponds to the one of finding the pure strategies used in the convex combination of
Lemma 5.2.2’s proof and then computing the corresponding λ. Let

S+ := {s ∈ S : ∃t ∈ T,A(s, t) ≥ c} and S− := {s ∈ S : ∃t ∈ T,A(s, t) ≤ c}

These sets are computed in |S| · |T | comparisons, as in the worst case we have to check
all coefficients in A. As minA ≤ c ≤ maxA, both sets are non-empty. If S+∩S− 6= ∅,

3We introduce the notation max A := maxs,t A(s, t) and min A := mins,t A(s, t)
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there exist s ∈ S and t, t′ ∈ T such that A(s, t) ≤ c ≤ A(s, t′), so Equation (5.5)
gives the solution desired. Otherwise, there exists t ∈ T and s, s′ ∈ S such that
A(s, t) ≤ c ≤ A(s′, t), and Equation (5.6) gives the solution desired. Computing the
intersection of S+ and S− has complexity O(|S|). In either case (the intersection is
empty or not), finding the pure strategies needed for the convex combination takes at
most |T | comparisons. Finally, computing λ requires a constant number of operations
for the sizes of the strategy sets. Adding all up, we obtain the complexity result
stated.

5.2.1 Deferred-acceptance with competitions algorithm
Suppose Γ is a zero-sum additive separable matching game. We aim to prove the
following result.

Theorem 5.2.3 (Complexity). Let d ∈ D be a proposer doctor. Let h be the pro-
posed hospital and d′ be the doctor that d wants to replace. If d is the winner of the
competition, the entire iteration of the DAC algorithm (Algorithm 5.1) has complexity,

O

|H| · |D|+ (|Sd|+ |Sd′ |) ·
∑
h′∈H
|Th′ |

L


where L represents the number of bits required to encode all the data.

The proof of Theorem 5.2.3 is split in several results, each of them being a corollary
of the complexity result for the general QCQP problem (Theorem 5.2.1).

Corollary 5.2.4. d’s optimal proposal can be computed in

O

|H| · |D|+ |Sd| · ∑
h′∈H
|Th′ |


comparisons.

Proof. d’s optimal proposal is computed by solving,

max xAd,h′y
s.t xAd,h′y ≤ max

d′∈µ(h′)
xd′Ad′,h′yh′,d′ − ε

h′ ∈ H0, x ∈ Xd, y ∈ Yh′

(5.7)

Problem (5.7) can be solved by dividing it in |H| sub-problems (one per hospital)
and taking the best of the |H| solutions. Once computed the right-hand side of
each subproblem, they get the structure of the general QCQP Problem 5.4 so they
need a polynomial number of comparisons to be solved (Theorem 5.2.1). Computing
the right-hand side for each of them takes |D| comparisons in the worst case. The
complexity stated comes from putting it all together.
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Remark 5.2.5. d’s reservation payoff when competing for h can be computed by
solving Problem (5.7) leaving h out of the feasible region. Therefore, its complexity
is bounded by the one in Corollary 5.2.4.

Corollary 5.2.6. The computation of the reservation payoff βd of doctor d plus her
bid λd during a competition takes

O

|H| · |D|+ |Sd| · ∑
h′∈H
|Th′ |


comparisons.

Proof. d’s bid is computed by,

min xAd,hy

s.t xAd,hy ≥ βd

x ∈ Xd, y ∈ Yh
(5.8)

and takes O(|Sd| · |Th|) comparisons (Theorem 5.2.1). Adding this to the complexity
of computing βd, we obtain the stated result.

Finally, we study the optimization problem solved by the winner.

Corollary 5.2.7. The final strategy profile played by the winner of a competition can
be computed in O (|Sd| · |Th|) comparisons.

Proof. Let λd′ be the bid of d′. d solves,

max xAd,hy
s.t xAd,hy ≤ λd′

x ∈ Xd, y ∈ Yh
(5.9)

Problem (5.9) has the same structure of Problem (5.4). Therefore, we can solved it
in O(|Sd| · |Th|) comparisons.

The complexity of an entire iteration of the DAC algorithm (Theorem 5.2.3) is
obtained by adding up the complexity results given in Corollaries 5.2.4, 5.2.6 and 5.2.7.
We omit its formal proof.

Remark 5.2.8. If there are at most N players in each side and at most k pure
strategies per player, Theorem 5.2.3 proves that each iteration of the DAC algorithm
(Algorithm 5.1) takes O((N2+k2)L) number of elementary operations in being solved,
hence is polynomial. As the number of iterations does not depend on the size of the
problem but only on ε, we conclude that computing an ε-pairwise stable allocation
for a one-to-many zero-sum matching game is a polynomial problem
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5.2.2 Market procedure
Let Γ be a zero-sum roommates matching game. Computing the demand sets of the
doctors for a zero-sum roommates matching game becomes particularly easy. Consider
f ∈ R|D| and two doctors (d1, d2) ∈ D ×D. Notice that,

d2 ∈ Pd1(f)⇐⇒ fd1 = u1,2(fd2)
⇐⇒ fd1 = −fd2

⇐⇒ fd1 + fd2 = 0

In other words, to compute the demand set of a given doctor d, it is enough with
checking whether the sum of the payoff of both agents is equal to zero. We directly
state the following result.

Theorem 5.2.9. Computing the demand sets of all doctors during an iteration of the
market procedure, given the current payoff profile f ∈ R|D|, has complexity O (|D|2L),
where L is the number of bits required to encode all the data.

The previous theorem exploits that to compute the doctors’ demand sets, it is not
needed to compute the strategy profiles but only to compare the agents’ payoffs.

Theorem 5.2.10. Let f ∈ R|D| be the output of the market procedure and suppose
there exists a matching µ such that for any doctor d ∈ D, fd+fµ(d) = 0 if d is matched
and fd = f

d
if d is unmatched. Then, computing the strategy profile ~x ∈ XD such

that,

fd,µ(d)(xd, xµ(d)) = fd,∀d matched

has complexity

O

 ∑
(d1,d2)∈µ

|Sd1 | · |Sd2|L


where L is the number of bits required to encode all the data.

Proof. Given a couple (d1, d2) ∈ µ, we aim to find (xd1 , xd2) ∈ Xd1 ×Xd2 such that,

fd1,d2(xd1 , xd2) = fd1

fd2,d1(xd2 , xd1) = fd2

Since the strategic game of d1 and d2 is a zero-sum game, it is enough with computing
(xd1 , xd2) such that,

fd1,d2(xd1 , xd2) = fd1

⇐⇒ xd1Ad1,d2xd2 = fd1

⇐⇒
∑
s∈S1

∑
s′∈S2

Ad1,d2(s, s′)xd1(s)xd2(s′) = fd1
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which corresponds to a quadratic equation with |S1| + |S2| variables. Notice this
problem has the exact form xAy = c studied in Lemma 5.2.2 that, we have already
discussed, can be solved in O(|S1| · |S2|) comparisons. We conclude the proof by
considering the sum over all couples in µ plus the number of bits required to encode
the data.

Checking whether the output of the market procedure is realizable by an allocation
(and not a semiallocation) can be easily done in the case of zero-sum matching games.
Given f ∈ R|D| the output, divide the set of doctors D as,

D+ = {d ∈ D : fd> 0} ∪ {d0}
D− = {d ∈ D : fd< 0} ∪ {d0}
D∼ = {d ∈ D : fd = 0}

Then, find a correspondence µ between D+ and D− such that for any pair of matched
agents, the sum of their payoffs in f is zero, or the agents are matched with the empty
doctor in case their payoff in f was equal to their IRP. Notice the correspondence can
be computed in |D|2 comparisons by checking all possible combinations. Regarding
D∼, divide the set into two equal parts and match the agents between them, or the
empty doctor in case their IRPs are equal to zero and D∼ has an odd number of
doctors. In case this procedure outputs a proper matching µ, the matching game
has an pairwise stable allocation. Otherwise, the set of pairwise stable allocations is
necessarily empty as the outcome of the market procedure cannot be realizable by an
allocation.

Remark 5.2.11. If there are at most N doctors and k pure strategies per doc-
tor, computing all the demand sets during an iteration of the market procedure has
complexity O(N2L). Similarly, in case the outcome of the market procedure can be
implemented by an allocation, finding the strategy profiles of the agents within the
allocation has complexity O(Nk2L).

5.2.3 Renegotiation process
We focus now on the computation of renegotiation proof allocations. Since the same
algorithm can be used for both models, additive separable matching games and room-
mates matching games, we will only work on the first case. All results can be directly
applied to the second model.

Suppose Γ is an additive separable matching game in which each strategic game
Gd,h = (Xd, Yh, Ad,h) is a finite zero-sum game in mixed strategies with value wd,h,
where Ad,h is the payoff matrix. We aim to prove the following result.

Theorem 5.2.12 (CNE Complexity). Let (d, h) be a couple and Gd,h = (Xd, Yh, Ad,h)
be their bi-matrix zero-sum game with value wd,h. Let (fd, gh) be a pair of reservation
payoffs. Then,
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1. Gd,h is ε-feasible,
2. For any (x′, y′) ∈ ε-CNE(fd, gh), it holds

x′Ad,hy
′ = median{fd − 2ε, wd,h, gh + 2ε}

3. Computing an ε-CNE (x′, y′) has complexity

O
(
max{|Sd|, |Th|}2.5 ·min{|Sd|, |Th|} · Ld,h

)
,

where Sd, Th are the pure strategy sets of the players and Ld,h is the number of bits
required to encode the matrix Ad,h.

We will make use of the following lemma.

Lemma 5.2.13. Let s1, s2 ∈ Sd be two pure strategies for player d, (x∗, y∗) be the
optimal strategies of the players, and (x, y) ∈ Xd × Yh be a strategy profile such that
x only has s1, s2 in its support. Consider τ ∈ (0, 1) and define yτ := (1 − τ)y + τy∗.
Suppose that xAd,hyτ = fd but s1Ad,hyτ 6= fd 6= s2Ad,hyτ . Finally, suppose that
wd,h<fd. Then, there always exists τ ′ ∈ (τ, 1), and a pure strategy s ∈ Sd such that
sAd,hyτ ′ = fd.

Proof. It holds,
xAd,hyτ = xs1 · s1Ad,hyτ + xs2 · s2Ad,hyτ = fd

with xs1 +xs2 = 1, xs1 , xs2 ∈ [0, 1]. Since s1Ad,hyτ and s2Ad,hyτ are both different from
fd, we can suppose (without loss of generality) that s1Ad.hyτ >fd and s2Ad,hyτ <fd.
Then, as x∗Ad,hy∗ = wd,h<fd and (x∗, y∗) is a saddle point, s1Ad,hy

∗ ≤ wd,h<fd.
As y{τ=1} = y∗, by continuity, there exists τ ′ ∈ (τ, 1) such that, s1Ad,hy{τ=1}<fd =
s1Ad,hyτ ′ <s1Ad,hyτ .

Lemma 5.2.13 can be easily extended to mixed strategies of any finite support.

Proof of Theorem 5.2.12. Let (x∗, y∗) be the optimal strategies of the players, i.e.,
the strategy profile that achieves the value of the game x∗Ad,hy∗ = wd,h. We split the
proof into three cases.
1. Suppose that fd − 2ε ≤ wd,h ≤ gh + 2ε. In particular, the value of the game
is ε-feasible for both agents. Since it is also a saddle point so agents do not have
profitable deviations, (x∗, y∗) is an ε-(fd, gh)-CNE. From Von Neumann’s theorem, we
know that (x∗, y∗, wd,h) can be obtained from the solutions of the pair primal-dual
problems,

(P ) min〈c, x〉 (D) max〈b, y〉
xAd,h ≥ b Ad,hy ≤ c

x ≥ 0 y ≥ 0
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where the variables satisfy x ∈ Xd, y ∈ Yh, and the vectors c, d are given and are equal
to 1 in every coordinate. If (x′, y′) is the primal-dual solution and z is their optimal
value, the optimal strategies of player d and h are given by (x∗, y∗) = (x′/z, y′/z),
and they achieve the value of the game wd,h. From Vaidya’s linear programming
complexity result (Theorem 5.1.9), the number of elementary operations needed to
solve the primal-dual problem and computing (x∗, y∗) is

O
(
(|Sd|+ |Th|)1.5 max{|Sd|, |Th|}Ld,h

)
2. Suppose that wd,h<fd−2ε ≤ gh+2ε. Let (x0, y0) be an ε-feasible strategy profile.
Consider the set

Λ(fd) := {x ∈ Xd : ∃y ∈ Yh, xAd,hy + 2ε ≥ fd}

Notice Λ(fd) is non-empty as (x0, y0) belongs to it. Consider the problem,

sup [inf{xAd,hy : xAd,hy + 2ε ≥ fd, y ∈ Yh} : x ∈ Λ(fd)] (5.10)

Since the set {xAd,hy + 2ε ≥ fd, y ∈ Yh}, for a given x, is bounded, as well as the
set Λ(fd), there exists a solution (x, y) of Problem (5.10). Moreover, computing (x, y)
has complexity O(|Th| · |Sd|2.5L) as Problem (5.10) is equivalent to solve |Th| linear
programming problems, each of them with |Sd| variables and 1 constraint, and then
considering the highest value between them.

By construction, xAd,hy + 2ε ≥ fd. Suppose xAd,hy + 2ε> fd. It follows,

xAd,hy > fd − 2ε>wd,h = x∗Ad,hy
∗ ≥ xAd,hy

∗

where the last inequality holds as (x∗, y∗) is a saddle point. Then, there exists y′ ∈
(y, y∗) such that xAd,hy′ = fd−2ε. This contradicts that (x, y) is solution of Problem
(5.10). If (x, y) is an ε-(fd, gh)-CNE, the proof is over. Otherwise, consider the
problem,

t := sup{τ ∈ [0, 1] : yτ := (1− τ)y + τy∗ and ∃xτ ∈ Xd, xτAd,hyτ = fd − 2ε} (5.11)

t exists as for τ = 0, xAd,hy = fd − 2ε. In addition, yt 6= y∗ as x∗Ad,hy∗<fd − 2ε
and (x∗, y∗) is a saddle point. From Lemma 5.2.13, if xAd,hyτ = fd for some value
τ ∈ (0, 1), then there always exists a pure strategy s ∈ Sd and τ ≤ τ ′< 1 such that
sAd,hyτ ′ = fd. Thus, solving Problem (5.11) is equivalent to solve each of the next
linear problems,

ts := sup{τ ∈ [0, 1] : yτ := (1− τ)y + τy∗ and sAd,hyτ = fd − 2ε},∀s ∈ Sd,

and then, considering t := maxs∈Sd ts. Each ts can be computed in constant time over
|Sd| and |Th|, as the linear programming problem associated has only one variable and
one constraint. Finally, computing the maximum of all ts takes |Sd| comparisons. We
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claim that (xt, yt) is an ε-(fd, gh)-CNE. Let x′ ∈ Xd such that x′Ad,hyt ≤ gh + ε. We
aim to prove that x′Ad,hyt ≤ xtAd,hyt + ε. Suppose x′Ad,hyt>xtAd,hyt + ε. It holds,

x′Ad,hy
∗ ≤ wd,h = x∗Ad,hy

∗<fd − 2ε = xtAd,hyt<xtAd,hjyt + ε<x′Ad,hyt

Then, there exists z ∈ Xd and y′ ∈ (yt, y∗) such that zAd,hy′ = fd − 2ε, contradicting
that t is solution of Problem (5.11).

Regarding player h, let y′ ∈ Yh such that xtAd,hy′ + ε ≥ fd. We aim to prove that
xtAd,hy

′ ≥ xtAd,hyt − ε, which follows from,

xtAd,hy
′ ≥ fd − ε = fd − 2ε+ ε = xtAd,hyt + ε>xtAd,hyt − ε

We conclude that (xt, yt) ∈ ε-CNE(fd, gh).

3. Suppose that fd − 2ε ≤ gh + 2ε<wd,h. Analogously4 to case 2, there exists an
ε-(fd, gh)-CNE (x, y) satisfying xAd,hy = gh + 2ε.

Finally, the complexity given at the theorem’s state is obtained when taking the
maximum complexity between the three cases.

As a corollary of Theorem 5.2.12 we obtain the following result.

Corollary 5.2.14. Given an allocation π = (µ, ~x, ~y), computing all games’ values is
a polynomial problem and its complexity is bounded by

O

 ∑
(d,h)∈µ

(|Sd|+ |Th|)1.5 max{|Sd|, |Th|}Ld,h


Proof. Let (I, h) ∈ µ be a matched pair, d ∈ I a doctor, and Gd,h = (Xd, Yh, Ad,h) be
a zero-sum game. The proof of Theorem 5.2.12 in its first case proves that computing
wd,h takes at most O((|Sd|+ |Th|)1.5 max{|Sd|, |Th|}Ld,h) elementary operations, where
Sd, Th are the players’ strategy sets and Ld,h is the number of bits required to encode
the matrix Ad,h. Summing up all the couples, we obtain the stated complexity.

The complexity of one iteration of the renegotiation process corresponds to the
complexity of computing the reservation payoffs and a constrained Nash equilibrium
for each couple. As we can have at most |D| couples, the complexity of an entire
iteration of the renegotiation process (Algorithm 5.2) is bounded by,

O

∑
d∈D

|H| · |D|+ |Sd| · ∑
h∈H
|Th|+ max{|Sd|, |Tµ(d)|}2.5 ·min{|Sd|, |Tµ(d)|}

 · L


where L is the number of bits required to encode all the problem data.
4An analogous version of Lemma 5.2.13 has to be proved as well. As the proof follows exactly

the same arguments, we do not present this result.
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Remark 5.2.15. Considering N agents per side and k pure strategies per agent,
the complexity of an entire iteration of the renegotiation process (Algorithm 5.2) is
bounded by,

O
(
N4k3.5L

)
Hence, it is polynomial.

The renegotiation process in its original version is known to converge for zero-sum
matching games. However, no bound could be given to the number of iterations. For
the ε-version, in exchange, we are able to guarantee a bound T ∝ 1

ε
, with T not

depending on the problem size.

Theorem 5.2.16 (Convergence). Let Γ be a bi-matrix zero-sum matching game such
that each game Gd,h has a value wd,h. Let π = (µ, ~x, ~y) be an ε-pairwise stable allo-
cation, input of the ε-renegotiation process (Algorithm 5.2), the one defines a profile
of ε-reservation payoffs (fπd (ε), gπh(ε))d∈I,(I,h)∈µ. Then, the number of iterations of
Algorithm 5.2 is bounded by

1
ε

max
d∈I,(I,h)∈µ

{fπd (ε)− wd,h, wd,h − gπh(ε)}

To prove Theorem 5.2.16 we will make use of the following lemma.

Lemma 5.2.17. Let Γ be a matching game as in Theorem 5.2.16. Let π = (µ, ~x, ~y)
be an ε-pairwise stable allocation, (I, h) be a matched pair, and d ∈ I. Consider the
sequence of reservation payoffs of (d, h) denoted by (fπ(t)

d (ε), gπ(t)
h (ε))t, with t being

the iterations of the renegotiation process (Algorithm 5.2). If there exists t∗ such that
wd,h ≤ f

π(t)
d (ε) − 2ε (resp. wd,h ≥ g

π(t)
h (ε) + 2ε), then the subsequence (fπ(t)

d (ε))t≥t∗
(resp. (gπ(t)

h (ε))t≥t∗) decreases (resp. increases) at least ε at each step.

Proof. Suppose there exists an iteration t in which wd,h ≤ f
π(t)
d (ε)−2ε ≤ g

π(t)
h (ε)+2ε,

so couple (d, h) switches its payoff to fπ(t)
d (ε) − 2ε (Theorem 5.2.12). Let (x̂d, ŷh) be

the ε-(fπ(t)
d (ε), gπ(t)

h (ε))-CNE played by (d, h) at iteration t. Since (x̂d, ŷh) must be
ε-(fπ(t+1)

d (ε), gπ(t+1)
h (ε))-feasible5, in particular, it holds fπ(t+1)

d (ε) ≤ x̂dAd,hŷh + ε =
f
π(t)
d (ε) − ε. Therefore, the sequence of reservation payoffs starting from t decreases
at least in ε at each step.

Finally, we prove the convergence of the ε-renegotiation process in a T ∝ 1
ε
number

of iterations.

Proof of Theorem 5.2.16. At the beginning of the renegotiation process (Algorithm 5.2),
all couples (d, h) belong to one (not necessarily the same) of the following cases:
fπd (ε) − 2ε ≤ wd,h ≤ gπh(ε) + 2ε, wd,h ≤ fπd (ε) − 2ε ≤ gπh(ε) + 2ε or fπd (ε) − 2ε ≤
gπh(ε) + 2ε ≤ wd,h. In the first case, the couple plays their Nash equilibrium and

5ε-version of Proposition 3.5.3, seen in Theorem 5.1.8’s proof.
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never changes it afterward. In the second case, as fπd (ε) is strictly decreasing for d
(Lemma 5.2.17) and bounded from below by wd,h, the sequence of reservation payoffs
converges in at most 1

ε
(fπd (ε)−wd,h) iterations. Analogously, the sequence of reserva-

tion payoffs for h converges on the third case in finite time. Therefore, Algorithm 5.2
converges it at most 1

ε
max(d,h)∈µ{fπd (ε)− wd,h, wd,h − gπh(ε)} iterations.

Let T := max{maxAd,h − minAd,h : (d, h) ∈ D × H}. The following table sum-
marizes the complexity results found for zero-sum matching games.

Algorithms Complexity/It Max Nº It
DAC O((N2 + k2)L) T/ε

Market procedure: - p(N)
Demand sets O(N2L) -

Implementation O(Nk2L) -
Renegotiation process O(N4k3.5L) T/ε

Table 5.1: Complexity zero-sum matching games: N players per side, k strategies per
player, L bits to encode the data, and p(N) a polynomial on N .

5.3 Strictly competitive matching games
The class S of strictly competitive games, initially defined by Aumann [13], was fully
characterized by Adler, Daskalakis, and Papadimitriou [7] in the bi-matrix case.

Definition 5.3.1. A bimatrix game G = (S, T,A,−B), with S, T finite pure strategy
sets and A,−B payoff matrices, is called a strictly competitive game if for any
x, x′ ∈ ∆(S), y, y′ ∈ ∆(T ), xAy − x′Ay′ and xBy − x′By′ have always the same sign.

Definition 5.3.2. Given two matrices A,B ∈ Rm×n, we say that B is an affine
variant of A if for some λ> 0 and unrestricted µ ∈ R, B = λA + µU , where U is
m× n all-ones matrix.

Adler et al. proved the following result.

Theorem 5.3.3. If for all x, x′ ∈ X and y, y′ ∈ Y , xAy−x′Ay′ and xBy−x′By′ have
the same sign, then B is an affine variant of A. Even more, the affine transformation
is given by,

A = amax − amin

bmax − bmin
[B − bminU ] + aminU, with

{
amax := maxA, amin := minA
bmax := maxB, bmin := minB

If amax = amin, then it also holds that bmax = bmin (and vice-versa), in which case
clearly A and B are affine variants.
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Theorem 5.3.3 allows us to extend all the results obtained in the previous section
for zero-sum matching games to strictly competitive matching games. First of all, we
prove that computing the affine transformations is a polynomial problem.

Theorem 5.3.4. Let Γ be a matching game in which all strategic games Gd,h =
(Sd, Th, Ad,h,−Bd,h) are bi-matrix strictly competitive games. Let Γ′ be the affine
transformation of Γ in which all couples play zero-sum games. Then, computing Γ′
has complexity

O

|D|+ |H|+ ∑
d∈D

∑
h∈H
|Sd| · |Th|


Proof. In order to obtain Γ′, besides computing all zero-sum games, we also need to
compute all the new individually rational payoffs. Let (d, h) ∈ D ×H be a potential
couple that plays a strictly competitive game (Sd, Th, Ad,h,−Bd,h). The complexity
of computing their affine transformation to a zero-sum game (Sd, Th, Bd,h,−Bd,h) is
O(|Sd| · |Th|), as we need to compute amaxd,h , a

min
d,h , b

max
d,h , and bmind,h . Regarding the indi-

vidually rational payoffs (f
d
, g

h
), set αd,h := amaxd,h −a

min
d,h

bmax
d,h
−bmin

d,h
. We take αd,h so it is always

lower or equal to 1 (at least one of the two ways of taking the affine transformation
guarantees this). Given (x, y) ∈ Xd × Yh a strategy profile, notice that,

xAd,hy ≥ f
d
⇐⇒ xBd,hy ≥

f
d
− (amind,h − bmind,h αd,h)

αd,h
, (5.12)

x(−Bd,h)y ≥ g
h
⇐⇒ xBd,hy ≤ −gh (5.13)

where we have used that xUy = 1. Unlike a “standard” matching game in which each
player has a unique IRP that works for all possible partners, in the transformed game
Γ′ doctors will have one IRP per hospital, given by Equation (5.12). Formally, let

f ′
d,h

:=
f
d
− (amind,h − bmind,h αd,h)

αd,h
,∀d ∈ D, h ∈ H

Then, a doctor d accepts to be matched with hospital h if and only her payoff is
greater or equal than f ′

d,h
. Regarding hospitals, it is enough considering g′

h
:= −g

h
.

Computing each coefficient takes constant time on the size of the agent sets and
strategy sets. Thus, the complexity of transforming the IRPs is O(|D| + |H|) plus
some factor indicating the number of required bits.

5.3.1 Deferred-acceptance with competitions algorithm
The analysis of the DAC algorithm (Algorithm 5.1) complexity is not affected by the
fact that doctors may have personalized IRPs for hospitals. Thus, from the complexity
results of zero-sum games (Theorems 5.2.3 and 5.3.4) we conclude the following.
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Corollary 5.3.5. Computing ε-pairwise stable allocations in bi-matrix strictly com-
petitive matching games is a polynomial problem as the DAC algorithm has a bounded
number of iterations, each of them with complexity O((N2 + k2)L), where N bounds
the number of players in the biggest side, k bounds the number of pure strategies per
player and L is the number of bits required to encode all the data.

5.3.2 Market procedure
Let Γ be a roommates matching game such that for each couple (d, d′) ∈ D×D, their
game Gd,d′ belongs to the class of bi-matrix strictly competitive games in S.

The complexity results obtained for zero-sum games in the computation of the de-
mand sets (Theorem 5.2.9) and the mechanism to implement the output of the market
procedure (Theorem 5.2.10) can be extended to Γ thanks to the affine transformation
result (Theorem 5.3.3). We conclude directly the following result.

Corollary 5.3.6. Computing the demand sets of all agents during an iteration of the
market procedure has complexity O(N2L) where N bounds the number of doctors and
L is the number of bits required to encode all the data. In addition, the complexity of
computing an allocation π that implements the output f of the market procedure (if it
exists) is O(Nk2L), where k bounds the number of pure strategies per player.

5.3.3 Renegotiation process
As in the zero-sum case, we start with the complexity of computing a constrained
Nash equilibrium. Let Gd,h = (Xd, Yh, Ad,h,−Bd,h) be a bi-matrix strictly competitive
game in mixed strategies and (fd, gh) be a pair of reservation payoffs. Let (x, y) be
an ε-(fd, gh)-feasible strategy profile, that is,

xAd,hy + ε ≥ fd and x(−B)d,hy + ε ≥ gh ⇐⇒ xAd,hy + ε ≥ fd and xBy ≤ −gh − ε

It follows,

xAd,hy + ε ≥ fd ⇐⇒ x
(
αd,h[Bd,h − bmind,h U ] + amind,h U

)
y + ε ≥ fd

⇐⇒ αd,hxBd,hy + (amind,h − bmind,h αd,h)xUy + ε ≥ fd

⇐⇒ αd,hxBd,hy + (amind,h − bmind,h αd,h) + ε ≥ fd

⇐⇒ xBd,hy + ε ≥
fd − (amind,h − bmind,h αd,h)

αd,h
− ε · 1− αd,h

αd,h

Recall we have taken αd,h ∈ [0, 1]. Thus, in the zero-sum game G′d,h = (Xd, Yh, Bd,h),
considering the pair (f ′d, g′h) of reservation payoffs given by,

f ′d :=
fd − (amind,h − bmind,h αd,h)

αd,h
− ε · 1− αd,h

αd,h
and g′h := −gh, (5.14)

145



5.3. Strictly competitive matching games

the sets of feasible strategy profiles, as well as the sets of CNE of Gd,h and G′d,h,
coincide. Therefore, to compute an ε-(fd, gh)-constrained Nash equilibrium of the
strictly competitive game, we can use the following scheme:

1. Compute the transformation from Ad,h to Bd,h and define the zero-sum game G′d,h.
2. Consider the new reservation payoffs (f ′d, g′h) as in Equation (5.14).
3. Compute an ε-(f ′d, g′h)-CNE for the zero-sum game, namely (x′, y′).

Proposition 5.3.7. The scheme above computes an ε-(f ′d, g′h)-CNE of Gd,h.

Proof. Let (x′, y′) be an ε-(f ′d, g′h)-CNE of the zero-sum game G′d,h. It holds,

1. g′h + ε ≥ x′Bd,hy
′ ≥ f ′d − ε

2. For any x ∈ Xd such that xBd,hy
′ ≤ gh + ε, (x− x′)Bd,hy

′ ≤ ε

3. For any y ∈ Yh such that x′Bd,hy + ε ≥ fd, x′Bd,h(y′ − y) ≤ ε

From (1) we obtain that x′(−Bd,h)y′ ≥ −g′h − ε = gh − ε, and x′Bd,hy
′ ≥ f ′d − ε,

which implies that x′Ad,hy′ ≥ fd − ε, so (x′, y′) is (fd, gh)-feasible in the game Gd,h.
Let x ∈ Xd such that x(−Bd,h)y′ + ε ≥ gh. Then, xBd,hy

′ ≤ g′d,h − ε. From (2),
(x − x′)Bd,hy

′ + ε. Noticing that αd,h(x − x′)Bd,hy
′ = (x − x′)Ad,hy′, we obtain that

(x − x′)Ad,hy′ ≤ αd,hε ≤ ε, as αd,h was taken lower of equal than 1. Analogously,
suppose there is y ∈ Yh such that x′Ad,hy+ ε ≥ fd. Then, x′Bd,hy+ ε ≥ f ′d. From (3),
x′(−Bd,h)(y − y′) ≤ ε. Therefore, (x′, y′) is an ε-CNE of Gd,h.

From Proposition 5.3.7 and the complexity of computing a constrained Nash equi-
librium of a zero-sum game (Theorem 5.2.12), we obtain the following result.

Corollary 5.3.8. Let Gd,h = (Sd, Th, Ad,h,−Bd,h) be a bi-matrix strictly competitive
game and (fd, gh) be a pair of reservation payoffs. The complexity of computing an
ε-(fd, gh)-constrained Nash equilibrium is

O
(
max{|Sd|, |Th|}2.5 ·min{|Sd|, |Th|} · Ld,h

)
with Ld,h the number of bits required to encode the payoff matrices.

Finally, from the bounded number of iterations of the renegotiation process for
zero-sum games (Theorem 5.2.16) we deduce the following.

Corollary 5.3.9. The ε-renegotiation process (5.2) ends in a finite number of itera-
tions T ∝ 1

ε
in bi-matrix strictly competitive games.

Let T := max{maxAd,h − minAd,h : (d, h) ∈ D × H}. The following table sum-
marizes the complexity results found.
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Algorithms Complexity/It Max Nº It
DAC O((N2 + k2)L) T/ε

Market procedure: - p(N)
Demand sets O(N2L) -

Implementation O(Nk2L) -
Renegotiation process O(N4k3.5)L) T/ε

Affine
O(N2k2) -Transformation

Table 5.2: Complexity strictly competitive matching games: N players per side, k
strategies per player, L bits to encode the data, and p(N) a polynomial on N

5.4 Infinitely repeated matching games
For each potential pair (d, h) ∈ D × H, let Gd,h = (Xd, Yh, Ad,h, Bd,h) be a finite bi-
matrix game in mixed strategies, with Xd = ∆(Sd), Yh = ∆(Th), where all matrices
have only rational entries. Given K ∈ N, consider the K-stages game GK

d,h defined by
the payoff functions,

fd,h(K, σd, σh) = 1
K

Eσ
[
K∑
k=1

Ad,h(sk, tk)
]
, gd,h(K, σd, σh) = 1

K
Eσ
[
K∑
k=1

Bd,h(sk, tk)
]
,

where σd : ⋃(Sd × Th)∞k=1 → Xd is a behavioral strategy for player d and σh : ⋃(Sd ×
Th)∞k=1 → Yh is a behavioral strategy for player h. We define the uniform game G∞d,h
as the limit of GK

d,h when K goes to infinity.

Definition 5.4.1. A matching game Γ is a bi-matrix infinitely repeated match-
ing game if every strategic game is a uniform game as explained above.

To study the complexity of computing pairwise-renegotiation proof allocations in
infinitely repeated games, we start by studying the complexity of solving the general
QCQP Problem (5.3). We state the proof for a pair (doctor, hospital) although it can
be straightforwardly applied to roommates.

Proposition 5.4.2. Let (d, h) ∈ D × H be a pair, Gd,h = (Xd, Yh, Ad,h, Bd,h) their
finite stage game in mixed strategies and c ∈ R, such that c ≤ maxBd,h. The complex-
ity of solving the QCQP Problem (5.3) in G∞d,h is O ((|Sd| · |Th|)2.5Ld,h), where Ld,h is
the number of bits required to encode the stage game.

To prove Proposition 5.4.2 we will use the following result.

Lemma 5.4.3. Let (d, h) ∈ D×H be a pair and let (f, g) ∈ R2 be a payoff vector in
the set of feasible payoffs,

co(Ad,h, Bd,h) := {(Ad,h(s, t)Bd,h(s, t)) ∈ R2 : s ∈ Sd, t ∈ Th}6

6co(A) refers to the convex envelope of the set A.
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Then, there exists a pure strategy profile σ of G∞d,h that achieves (f, g). In addition, the
number of elementary operations used to compute σ is bounded by O((|Sd|·|Th|)2.5Ld,h),
where Ld,h is the number of bits required to encode the matrices Ad,h and Bd,h.
Proof. Consider the following system with |Sd| · |Th| variables and three linear equa-
tions, ∑

s,t

Ad,h(s, t)λs,t = f,

∑
s,t

Bd,h(s, t)λs,t = g, λ ∈ ∆(Sd × Th)
(5.15)

System (5.15) can be solved in O((|Sd| · |Th|)2.5Ld,h) elementary operations. Since ma-
trices Ad,h and Bd,h have rational entries, the solution has the form (λs,t)s,t = (ps,t

qs,t
)s,t

with each ps,t, qs,t ∈ N. Let Nλ = lcm(qs,t : (s, t) ∈ Sd × Th) be the least common
multiple of all denominators. The number of elementary operations to compute Nλ

is bounded by O ((|Sd| · |Th|)2). Enlarge each fraction of the solution so all denom-
inators are equal to Nλ, i.e. λ = (p

′
s,t

Nλ
)s,t. Suppose that Sd = {s1, s2, ..., sd} and

Th = {t1, t2, ..., th}. Let σ be the strategy profile in which players play (s1, t1) the first
p′s1,t1-stages, then (s1, t2) the next p′s1,t2-stages, then (s1, t3) the next p′s1,t3-stages and
so on until playing (sd, th) during p′sd,th-stages, and then they repeat all infinitely. By
construction, (fd,h(σ), gd,h(σ)) = (f, g).

Let us illustrate the previous result with an example.
Example 5.4.4. Consider the following prisoners’ dilemma G played infinitely many
times by a couple (d, h).

Agent h

Agent d
Cooperate Betray

Cooperate 2, 2 −1, 3
Betray 3,−1 0, 0

The following figure shows the convex envelope of the pure payoff profiles.

2, 2

3,−1

−1, 3

0, 0

∗
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Consider (f̄ , ḡ) = (1, 1) ∈ co(Ad,h, Bd,h), represented in the figure by the star. Notice
that (1, 1) can be obtained as the convex combination of 1

4(0, 0)+ 1
4(3,−1)+ 1

4(−1, 3)+
1
4(2, 2). Therefore, (d, h) can obtain (1, 1) in their infinitely repeated game by playing
(B,B) the first four rounds, (C,B) the second four rounds, (B,C) the third four
rounds, (C,C) the fourth four rounds, and cycling like this infinitely many times. As
every 16 rounds the couple obtains (1, 1), in the limit, their average payoff converges
to (f̄ , ḡ).

Finally, we prove the complexity result of solving the QCQP problem (Proposi-
tion 5.4.2).

Proof of Proposition 5.4.2. Consider the following optimization problem,

max
λ∈∆(Sd×Th)

∑
s∈Sd

∑
t∈Th

Ad,h(s, t)λs,t

s.t.
∑
s∈Sd

∑
t∈Th

Bd,h(s, t)λs,t ≥ c
(5.16)

Problem (5.16) is a linear programming problem with |Sd| · |Th| variables and two
constraints and its optimal value (f, g) coincides with the optimal value of the QCQP
Problem (5.3). Therefore, any strategy profile σ that achieves (f, g), is a solution of
the QCQP Problem (5.3). The stated complexity is obtained from solving Problem
(5.16) and applying Lemma 5.4.3 to compute σ.

5.4.1 Deferred-acceptance with competitions algorithm
The polynomial complexity of solving the QCQP general problem (Proposition 5.4.2)
allows us to prove the main result of this section.

Theorem 5.4.5 (Complexity). Let d ∈ D be the proposer doctor. Let h be the
proposed hospital and d′ be the doctor that d wants to replace. If d is the winner of the
competition, the entire iteration of the DAC algorithm (Algorithm 5.1) has complexity,

O

|H| · |D|+ |Sd|2.5 ∑
h′∈H
|Th′ |2.5Ld,h′ + |Sd′|2.5

∑
h′∈W

|Th′ |2.5Ld′,h′


where Li,j is the number of bits required to encode the payoff matrices of (i, j).

Proof. The optimal proposal problem is split into |H| problems. Each subproblem
needs |D| comparisons to compute the right-hand side and then, they have the com-
plexity stated in Proposition 5.4.2. Thus, the optimal proposal computation has
complexity,

O

|H| · |D|+ ∑
h′∈H

(|Sd| · |Th′ |)2.5Ld,h′


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Computing the reservation payoff and the bid of each competitor has exactly the
same complexity as the optimal proposal computation, considering the respective set
of strategies. Finally, the problem solved by the winner has complexity O((|Sd|·|Th|)2.5

·Ld,h). Summing up, we obtain the complexity stated in the theorem.

Remark 5.4.6. If there are at most N players in each side and at most k pure
strategies per player, Theorem 5.4.5 proves that each iteration of the DAC algo-
rithm (Algorithm 5.1) takes O(N2 +Nk5L) number of elementary operations in being
solved, hence it is polynomial. As the number of iterations is bounded by Y ∝ 1

ε

(Theorem 5.1.1), we conclude that computing an ε-pairwise stable allocation for a
infinitely repeated matching game is a polynomial problem.

5.4.2 Market procedure
Let Γ be a roommates matching game such that for each couple (d, d′) ∈ D×D, their
game Gd,d′ is an infinitely repeated game with a bi-matrix stage game. Consider a
payoff profile f ∈ R|D| and a fixed doctor d ∈ D. Notice that,

d′ ∈ Pd(f)⇐⇒ fd = ud,d′(fd′)
⇐⇒ (fd, fd′) ∈ co(Ad,d′ , Ad′,d)
⇐⇒ ∃λ = (λs,s′)s∈Sd,s′∈Sd′ ⊆ [0, 1],

∑
s,s′

λs,s′ = 1 :

fd =
∑
s,s′

Ad,d′(s, s′)λs,s′ and fd′ =
∑
s,s′

Ad′,d(s, s′)λs,s′

Therefore, to determine if a doctor belongs to the demand set of d, it is enough
with computing the coefficients of their convex combination which, we know, has a
polynomial complexity (Lemma 5.4.3). We can conclude the following result.

Theorem 5.4.7. The complexity of computing the demand sets of all doctors during
an iteration of the market procedure has complexity

O

 ∑
(d,d′)∈D×D

|Sd| · |Sd′|Ld,d′


where Ld,d′ is the number of bits required to encode the payoff matrices of the pair
(d, d′).

Remark the previous result can be refined as we only need to check once every
couple, since belonging to the demand set is a symmetric property. Therefore, once
determined that d′ ∈ Pd(f), we directly obtain that d ∈ Pd′(f).

Regarding the implementation of the market procedure’s output, once having the
good pairs of doctors given by a matching µ, it is enough with solving the linear
system of equations from Lemma 5.4.3 for each of the couples. In particular, we can
conclude the following result.
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Theorem 5.4.8. Let f ∈ R|D| be the output of the market procedure and suppose there
exists a matching µ such that for any doctor d ∈ D, (fd, fµ(d)) ∈ co(Ad,µ(d), Aµ(d),d), if
d is matched, and fd = f

d
, if d is unmatched. Then, computing the strategy profile

~x ∈ XD such that,

fd,µ(d)(xd, xµ(d)) = fd,∀d matched

has complexity

O

 ∑
(d,d′)∈µ

|Sd| · |Sd′ |Ld,d′


where Ld,d′ is the number of bits required to encode the data of the stage game Gd,d′.

Remark 5.4.9. If there are at most N doctors and k pure strategies per doctor,
computing all the demand sets during an iteration of the market procedure has com-
plexity O(N2k2L). Similarly, in case the outcome of the market procedure can be
implemented by an allocation, finding the strategy profiles of the agents within the
allocation has complexity O(Nk2L).

5.4.3 Renegotiation process
We recall some of the definitions of infinitely repeated games given in Chapter 3.
Let co(Ad,h, Bd,h) be the set of feasible payoffs (Definition 3.4.11), and αd,h, βd,h be,
respectively, the punishment levels7 (Definition 3.4.12) of players d ∈ D and h ∈ H.
We define the set of uniform equilibrium payoffs by,

Ed,h := {(f, g) ∈ co(Ad,h, Bd,h) : f ≥ αd,h, g ≥ βh}

From the Folk theorem of Aumann-Shapley [15], we know that Ed,h is exactly the
set of uniform equilibrium payoff of G∞d,h.

Definition 5.4.10. Let π = (µ, ~x, ~y) be an allocation. For every pair of reservation
payoffs (fπd (ε), gπh(ε)) and ε> 0, we define the ε-acceptable payoffs set as

Ed,h(fπd (ε), gπh(ε)) := co(Ad,h, Bd,h) ∩ {(f̄ , ḡ) ∈ R2 : f̄ + ε ≥ fπd (ε), ḡ + ε ≥ gπh(ε)}

Finally, we define ε-constrained Nash equilibria for uniform games.

Definition 5.4.11. A strategy profile σ = (σd, σh) is an ε-(fπd (ε), gπh(ε))-constrained
Nash equilibrium of G∞d,h if,

1. ∀ε> ε, ∃K0,∀K ≥ K0, ∀(τd, τh),

(a) if fd,h(K, τd, σh)>fd,h(K, σ) + ε then, gd,h(K, τd, σh) + ε< gπh(ε),
(b) if gd,h(K, σd, τh)>gd,h(K, σ) + ε then, fd,h(K, σd, τh) + ε< fπd (ε)

7The punishment levels depend on the partner’s identity.
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2. (fd,h(K, σ), gd,h(K, σ)) K→∞−−−→ (fd,h(σ), gd,h(σ)) ∈ R2 with fd,h(σ) + ε ≥ fπd (ε), and
gd,h(σ) + ε ≥ gπh(ε)

The set of ε-(fπd (ε), gπh(ε))-CNE payoffs is denoted E∞d,h(fπd (ε), gπh(ε)).

We begin the complexity analysis by studying the computation of ε-CNE.

Theorem 5.4.12 (CNE Complexity). Let G∞d,h be an infinitely repeated game as de-
fined above. Given any players’ reservation payoffs (fπd (ε), gπh(ε)) ∈ R2 such that
Ed,h(fπd (ε), gπh(ε)) is non-empty, the complexity of computing an ε-(fπd (ε), gπh(ε))-CNE
is at most, O((|Sd| · |Th|)2.5Ld,h), where Ld,h is the number of bits required to encode
the data of the stage game Gd,h.

We split the proof of Theorem 5.4.12 in the following three lemmas. First, from
the Folk theorem of Aumann-Shapley [15], the following holds.

Lemma 5.4.13. It holds in Ed,h ∩ Ed,h(fπd (ε), gπh(ε)) ⊆ E∞d,h(fπd (ε), gπh(ε)).

Whenever the intersection in Lemma 5.4.13 is non-empty, there exists a uniform
equilibrium payoff profile (f̄ , ḡ) that belongs to E∞d,h(fπd (ε), gπh(ε)). Combined with
Lemma 5.4.3 that states the complexity of finding a strategy profile that achieves a
given payoff profile, we obtain a uniform equilibrium that achieves (f̄ , ḡ) with the com-
plexity stated in Theorem 5.4.12. The following lemma provides sufficient conditions
for that intersection to be non-empty.

Lemma 5.4.14. Let (fπd (ε), gπh(ε)) be a pair of reservation payoffs such that the set
Ed,h(fπd (ε), gπh(ε)) is non-empty. Then, Ed,h∩Ed,h(fπd (ε), gπh(ε)) is non-empty if either
fπd (ε)− ε ≥ αd,h and gπh(ε)− ε ≥ βd,h, or fπd (ε)− ε<αd,h and gπh(ε)− ε<βd,h.

Proof. In the first case, Ed,h(fπd (ε), gπh(ε)) ⊆ Ed,h, thus the intersection between
them is equal to Ed,h(fπd (ε), gπh(ε)), which is non-empty. In the second case, Ed,h ⊆
Ed,h(fπd (ε), gπh(ε)) and therefore, the intersection is non-empty.

This yields the two following missing cases.

Lemma 5.4.15. Let (fπd (ε), gπh(ε)) be a pair of reservation payoffs such that the set
Ed,h(fπd (ε), gπh(ε)) is non-empty. Then, computing an ε-CNE has complexity O((|Sd| ·
|Th|)2.5Ld,h) either if fπd (ε) − ε ≥ αd,h and gπh(ε) − ε<βd,h, or fπd (ε) − ε<αd,h and
gπh(ε)− ε ≥ βd,h.

Proof. Suppose the first case, fπd (ε) − ε ≥ αd,h and gπh(ε) − ε<βd,h. Let F :=
Ed,h(fπd (ε), gπh(ε)) ∩ Ed,h. If F is non-empty, the result holds from Lemma 5.4.13.
Suppose F is empty and consider the payoff profile (f̄ , ḡ) ∈ co(Ad,h, Bd,h) given by

ḡ = max{g ∈ co(Ad,h, Bd,h) : ∃f ∈ R, (f, g) ∈ Ed,h(fπd (ε), gπh(ε))}

Computing (f̄ , ḡ) can be done in O((|Sd|·|Th|)2.5Ld,h) elementary operations by solving
the system of linear equations with (λs,t)s∈Sd,t∈Th variables (Problem (5.16)) exchang-
ing the roles of the matrices. Shift the payoff profile to (f̄ , ḡ + ε), assuming that
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increasing ḡ by ε does not take the payoff out of the convex envelope (if it does it, h
has reached its highest possible payoff, so it does not have any profitable deviation).
Let σ be a strategy in G∞d,h that achieves (f̄ , ḡ+ε), computable in O((|Sd| · |Th|)2.5Ld,h)
(Lemma 5.4.3). Consider next σ′ the strategy profile in which d and h play following
σ at every stage, such that if d deviates, h punishes her decreasing her payoff to αd,h,
and if h deviates, d ignores it and keeps playing according to σ. We claim that σ′ is
an ε-(fπd (ε), gπh(ε))-CNE. Indeed, it is feasible as their limit payoff profile is (f̄ , ḡ+ ε).
In addition, remark that s does not have profitable deviations as h punishes her and

f̄ ≥ fπd (ε)− ε ≥ αd,h

Finally, let K ∈ N and ε̄ > ε such that h can deviate at time K and get g′ ≥ (ḡ+ε)+ ε̄.
Let f ′ be the payoff of d until the stage K. Notice that (f ′, g′) ∈ co(Ad,h, Bd,h) since
(f ′, g′) is an average payoff profile of the K-stage game. Suppose that f ′ ≥ fπd (ε)− ε,
so (f ′, g′) ∈ Ed,h(fπd (ε), gπh(ε)). Then,

f̄ ≥ f ′ ≥ f̄ + ε+ ε̄ > f̄

which is a contradiction. Therefore, f ′<fπd (ε) − ε. Thus, σ′ is an ε-(fπd (ε), gπh(ε))-
CNE. For the second case in which fπd (ε)−ε<αd,h and gπh(ε)−ε ≥ βd,h, the argument
is analogous.

As all the possible cases are covered by Lemmas 5.4.14 and 5.4.15, we conclude
the proof of Theorem 5.4.12 regarding the complexity of computing constrained Nash
equilibria. Making a similar computation to the one for zero-sum matching games,
we can bound the complexity of an entire iteration of the ε-renegotiation process
(Algorithm 5.2) by,

O

∑
d∈D

|H| · |D|+ ∑
h∈H

(|Sd| · |Th|)2.5 + |Sd| · |Tµ(d)|2.5
 · L


where the first two terms come from the reservation payoffs computation, the last
one from the constrained N as equilibria computation, and L is the number of bits
required to encode the entire data.
Remark 5.4.16. Considering N agents per side and k pure strategies per player,
the complexity of an iteration of the ε-renegotiation process (Algorithm 5.2) can be
bounded by O (N3k5L).

Finally, we study the convergence of the algorithm for infinitely repeated games.
Theorem 5.4.17 (Convergence). Let π = (µ, σD, σH) be an ε-pairwise stable alloca-
tion. Let (fπd (ε), gπh(ε))(d,h)∈µ be the ε-reservation payoffs generated by π. Then, there
exists an oracle for computing ε-CNE such that, starting from π, the ε-renegotiation
process (Algorithm 5.2) converges in at most

1
ε

(
max

(d,h)∈µ
{max{αd,h − fπd (ε), βd,h − gπh(ε)}}

)
iterations, where αd,h, βd,h are the punishment levels of (d, h).

153



5.4. Infinitely repeated matching games

Proof. Let (d, h) ∈ µ be a couple and (fπd (ε), gπh(ε)) be their reservation payoffs at the
beginning of Algorithm 5.2. Notice that one of the following four cases must hold:

1. fπd (ε)− ε ≤ αd,h and gπh(ε)− ε ≤ βd,h,
2. fπd (ε)− ε ≥ αd,h and gπh(ε)− ε ≥ βd,h,
3. fπd (ε)− ε ≥ αd,h and gπh(ε)− ε<βd,h,
4. fπd (ε)− ε<αd,h and gπh(ε)− ε ≥ βd,h

Let Fd,h := Ed,h ∩ Ed,h(fπd (ε), gπh(ε)) and suppose it is non-empty. Then, there exists
a feasible uniform equilibrium for (d, h), so the couple changes only once of strategy
profile and never again. Suppose Fd,h is empty. Necessarily it must hold case (3) or
(4). Suppose fπd (ε) − ε ≥ αd,h and gπh(ε) − ε<βd,h and consider the oracle given in
the proof of Lemma 5.4.15. Then, the couple passes to gain (f̄ , ḡ + ε), where

ḡ = max{g : ∃f, (f, g) ∈ Ed,h(fπd (ε), gπh(ε))}
f̄ ∈ {f : (f, ḡ) ∈ Ed,h(fπd (ε), gπh(ε))}

Let (fπ(1)
d (ε), gπ(1)

h (ε)) be the couple’s reservation payoffs at the next iteration and
consider again Fd,h := Ed,h ∩ Ed,h

(
f
π(1)
d (ε), gπ(1)

h (ε)
)
. If Fd,h is non-empty, the couple

passes to play a feasible uniform equilibrium. Otherwise, the oracle computes a new
payoff profile (f̄ ′, ḡ′) such that

ḡ′ = max{g : ∃f, (f, g) ∈ Ed,h
(
f
π(1)
d (ε), gπ(1)

h (ε)
)
}

f̄ ′ ∈ {f : (f, ḡ′) ∈ Ed,h
(
f
π(1)
d (ε), gπ(1)

h (ε)
)
}

Since π(1) is ε-pairwise stable, it holds f ′d ≤ f̄ + ε, g′ ≤ (ḡ + ε) + ε. Therefore,
(f̄ , ḡ + ε) ∈ Ed,h

(
f
π(1)
d (ε), gπ(1)

h (ε)
)
and then, ḡ′ ≥ ḡ + ε. We conclude that at each

iteration, either the couple changes to play a feasible uniform equilibrium, or player
h increases its payoff in at least ε. Since its payoff is bounded by its punishment
level, the sequence converges in T ∝ 1

ε
iterations. If case (4) holds, the conclusion is

the same: at each iteration, either the couple plays a feasible uniform equilibrium or
player d increases by at least ε her payoff. Again, we obtain a T ∝ 1

ε
bound for the

number of iterations. Thus, we obtain the number of iterations given in the statement
of the theorem by considering the worst possible case.

Remark 5.4.18. Adding Theorem 5.4.17 to Remark 5.4.16, we can conclude that
computing an ε-renegotiation proof allocation for an infinitely repeated matching
game is a polynomial problem.

The following table summarizes the complexity results found.
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Algorithms Complexity/It Nº It Constants
DAC O(N3k5L) C1/ε C1 ≤ max

d,h
(maxAd,h −minAd,h)

Market procedure: - p(N) -
Demand sets O(N2kL) - -

Implementation O(Nk2L) - -

Renegotiation process O(N2k5)L) C2/ε
C2 ≤ maxd,h max{Dd, Dh}
Dd := maxAd,h −minAd,h
Dh := maxBd,h −minBd,h

Table 5.3: Complexity infinitely repeated games: N players per side, k strategies
per player, L bits to encode the data, p(N) polynomial on N , and Ad,h, Bd,h payoff
matrices of the stage games of (d, h) ∈ D ×H.

5.5 Conclusions
In this chapter we have provided the complexity study of the algorithms designed in
Chapter 4 for three classes of bi-matrix matching games: zero-sum, strictly compet-
itive, and infinitely repeated. For our additive separable matching games submodel,
we have proved that our algorithms converge to an ε-pairwise-renegotiation proof allo-
cation in the three classes of matching games in a bounded number of iterations, with
a bound only depending on ε. Each iteration of the algorithms having a polynomial
complexity, our deferred-acceptance with competitions algorithm and renegotiation
process are efficient algorithms.

For our roommates submodel we have used the work of Alkan and Tuncay [9] to
establish the existence of pairwise stable allocations whenever their market procedure’s
output can be implemented by an allocation. We have proved that for zero-sum
games, strictly competitive games, and infinitely repeated games, the computations
of the demand sets and the allocation that implements the output of the procedure
(if it exists), are polynomial problems over the number of doctors and their number
of pure strategies. Moreover, we have given a procedure to determine the existence
of an allocation implementing the output of the market procedure for zero-sum and
strictly competitive matching games.

Alkan and Tuncay’s proofs for the correctness and complexity of the market pro-
cedure and direction procedure have been given only in the quasi-linear case. Never-
theless, they claim their procedures achieve the same results in the general non-quasi-
linear setting. A deeper analysis of these results is in the list of incoming works.

The ε-renegotiation process works as well for the roommates submodel. More-
over, its complexity results hold for roommates matching games with couples playing
zero-sum, strictly competitive, and infinitely repeated games. Therefore, using the
complexity results claimed by Alkan and Tuncay together with our results, we con-
clude that the mechanism designed to compute pairwise stable and renegotiation proof
allocations for the roommates submodel is efficient as well.
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Chapter 6

Dynamic matching games

The last chapter of this thesis is devoted to studying a dynamic model of one-to-one
matching markets. This is a joint work with Marco Scarsini. Although it is not
directly related to the models seen in the previous chapters, this is the first attempt
to extend the matching games model to a dynamic setting in which initially not all
agents are present on the market but arrive with the time. In addition, we adopt a
different approach by developing a stochastic process model.

The problem of stable matchings in two-sided markets in its static version was
firstly presented by Gale and Shapley in their seminal paper [53]. Many applications
to their model have been established as matching schools and students, doctors and
hospitals, firms and workers, or patients and donors, among others. A solution to
Gale-Shapley’s problem is a matching from which no pair of agents prefer to abandon
their assigned partners and matching together. Such a pair, if it exists, is known as
a blocking pair. A matching that does not admit any blocking pair is called pairwise
stable (Definition 6.1.4).

Many years passed until dynamic versions of the stable matching problem ap-
peared. Damiano and Lam [38] defined a finite repeated-time model in which agents
can change partners from one period to another. All agents are present in the market
from the beginning and their final utilities depend on the ones obtained during each
period.

Closer to the work in this chapter, Caldentey et al. [31], Adan and Weiss [6], Bušić
et al. [30], and Adan et al. [5], among others, gave a different dynamic extension to
the stable matching problem, known as the stochastic matching model. In this model,
agents (or items) arrive on the market in a discrete-time process. Items within each
side have different types and a fixed bipartite graph gives the compatibility links
between items from different sides. In addition, at every period exactly one item
arrives on each side of the market.

We study a stochastic matching model in which agents arrive at the market fol-
lowing Poisson processes. Unlike the literature, we consider that agents can naturally
leave the market (e.g. due to the death of the patient, the task deadline, or the
tiredness of the agent). Agents have cardinal preferences (utilities) over the agents
on the other side of the market and utility thresholds (individually rational payoffs
(IRPs)) representing agents’ ability to reject possible partners proposed by the system.
Matched agents leave the market while unmatched agents remain on it.

Unlike Damiano-Lam’s model, in a stochastic matching model agents cannot
decide when or with who get matched as they follow a predefined matching pol-
icy. One of the most studied matching policies is first-come-first-served (FCFS)
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[5, 6, 30, 31, 35, 82] in which arriving agents get matched to the oldest compati-
ble agent at the other side. Matching policies in which agents get matched as soon as
they arrive (subject to availability/compatibility constraints) are called greedy match-
ing policies or simple greedy policies. Besides FCFS, in this chapter, we consider
two extra greedy matching policies: Random allocation, in which arrival agents are
allocated randomly among the already present agents on the market (subject to indi-
vidual rationality), and a deferred-acceptance allocation in which every arrival triggers
a Gale-Shapley’s algorithm run.

Stochastic matching models with greedy policies can be associated with Markov
processes. Adan and Weiss [6] found conditions for ergodicity and derived the sta-
tionary distribution of a discrete-time Markov chain, resulting to be of product form.
Adan et al. [5] defined other possible Markov chains for the same model, proved their
ergodicity, and derived their stationary distributions with a product form as well.
Finally, they computed the matching rates between the different types of agents.

We derive a continuous-time Markov chain (CTMC) from our stochastic model
given by the number of agents on the market whenever agents have anonymous IRPs
(Definition 6.2.3). Passing through the jump chain of the CTMC, we prove the positive
recurrence of the Markov chain (Theorem 6.2.8). Imposing reversibility we obtain a
recurrence expression for its stationary distribution (Theorem 6.2.9) which implies
that our stationary distribution also has a product form. We study further the extra
assumptions imposed due to the reversibility and show that everything is reduced to
agents’ IRPs (Theorem 6.2.11). Finally, we empirically measure the performance of
the three matching policies in terms of social welfare.

The model studied in this chapter differentiates from the ones in the literature as
(1) our dynamic occurs in continuous time with an infinite horizon, (2) agents can
naturally leave the market, and (3) our Markov chain follows the number of agents in
the market while others usually follow the whole sets of agents (including, for example,
the agents’ identity). Although not studied in this chapter, another difference will rise
from the agents’ ability to influence the possible matchings by lying in their IRPs.
This model will be an extension of ours in future works.

The chapter is structured as follows. Section 6.1 states the stochastic matching
model and explains the different greedy matching policies considered in this chapter.
Section 6.2 studies the continuous-time Markov chain obtained when considering the
number of agents per side, shows its positive recurrence, derives its stationary dis-
tribution, and deduces conditions on agents’ IRPs from imposing reversibility. Sec-
tion 6.3 makes empirical comparisons of the social welfare of the three greedy policies.
Section 6.4 concludes the chapter.

6.1 The model
To avoid confusion with the matching game models studied before, this chapter has
its own terminology and notation. We consider a two-sided market with sides A and
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B in which agents arrive according to a Poisson process and get matched according to
a fixed matching policy Φ. Matched agents leave the market while unmatched agents
remain on it. A-agents (those arriving to A) arrive at rate λA> 0. Analogously,
B-agents arrive at rate λB > 0. Only matchings between A-agents and B-agents are
allowed. Finally, unmatched agents leave the market at rate µA> 0 and µB > 0, re-
spectively. This is a continuous-time model with an infinite horizon.

For every time t ≥ 0, the market state is denoted by (At, Bt), where At is the
set of A-agents at time t and Bt is the set of B-agents at time t. The market starts
initially empty so (A0, B0) = (∅,∅). The full market will be denoted (A,B), and a
realization of it will be denoted (At, Bt)t≥0.

In the absence of a matching policy, standard results from the theory of birth-and-
death processes can be used to compute the expected number of agents in the market.
The number of agents in the market is a stable birth and death process1. Moreover,
taking NA(t) := |At| (and analogously NB(t)),

E [NA(t) | NA(0) = 0] = λA
µA

(
1− e−µAt

)
, ∀t ≥ 0,

E [NB(t) | NB(0) = 0] = λB
µB

(
1− e−µBt

)
, ∀t ≥ 0.

(6.1)

Figure 6.1 shows two examples of 300 average market realizations each with no
matching policy. We can observe how, on average, the number of agents per side
follows Equation (6.1).

Figure 6.1: Average number of agents in the market - 300 samples. Left: λB = 5,
µB = 2, λA = µA = 1, Right: λA = 2, µA = λB = µB = 1

To model matching, we assume that each agent, on each side, has a random
cardinal preference for each agent on the other side. Formally, ∀t ≥ 0, ∀a ∈ At,∀b ∈

1We say that a birth and death process is stable if the queue length defines a positive recurrent
Markov chain. For a detailed description of birth and death process, as well as M/M/∞ queues, we
refer the reader to Kulkarni [76] § 7.3.
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Bt, we define,

Xa,b ∼ U [0, 1] is agent a’s utility when matched with agent b,
Yb,a ∼ U [0, 1] is agent b’s utility when matched with agent a,

where U [0, 1] is the uniform distribution on [0, 1]. These utilities do not change over
time. Agents may prefer to remain single rather than matching with some of the
agents on the other side. For every k ∈ A∪B, the symbol ρk ∈ [0, 1] will denote agent
k’s utility for remaining single, i.e., k’s individually rational payoff.

Definition 6.1.1. Matching a pair of agents (a, b) ∈ A×B is individually rational
if and only if,

Xa,b ≥ ρa and Yb,a ≥ ρb. (6.2)

If Equation (6.2) holds, we say that b is acceptable for a and a is acceptable for b.

Individually rational payoffs represent the agents’ ability to reject partners pro-
posed by the matching policy or central planner. To capture this ability, we will focus
on computing individually rational allocations.

Remark 6.1.2. Along this chapter, individually rational payoffs will be fixed and
public (for the central planner). A natural extension to our model will be the strategic
setting in which agents announce their IRPs to the system when arriving and where
the goal is the design of strategyproof matching policies, i.e., the design of matching
policies that incentivize the agents to truthfully announce their values.

In a one-to-one static market, a matching is a correspondence between the two
sides of agents such that no agent can have more than one partner. For dynamic
markets, a matching is a mapping that gives, for every time t, a static matching of
the market (At, Bt). We state this formally.

Definition 6.1.3. Let (At, Bt)t be a realization of the market (A,B). A dynamic
matching γ = (γt)t≥0 is a continuous-time sequence of static matchings, i.e., for every
t ≥ 0, γt is a static matching of (At, Bt).

In addition to individual rationality, we are interested in matchings that are stable
à la Gale and Shapley. However, this stability notion needs also to be extended to
the dynamic case. First of all, we state Gale and Shapley’s definition in our context.

Definition 6.1.4. Let (A,B) be a static market. A static matching γ between A
and B is blocked by a pair of agents (a, b) ∈ A × B if (a, b) /∈ γ and Xa,b>Xa,γ(a),
Yb,a>Yb,γ(b), where γ(k) represents the partner of agent k in the matching γ. A
matching is pairwise stable if it is not blocked by any pair of agents.

Remark 6.1.5. Definition 6.1.4 corresponds to external stability in the matching
games model.
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Definition 6.1.6. Let γ = (γt)t≥0 be a dynamic matching. We say that γ is stable
if for every t ≥ 0, the matching γt is pairwise stable for the static market (At, Bt).

Gale and Shapley proved that for any static market with strict ordinal preferences
and sides of the same size, there always exists a pairwise stable matching. Even
more, such matching can be computed in polynomial time thanks to their deferred
acceptance algorithm. Their result is straightforwardly generalized to the case with
different side sizes and generic cardinal preferences. We can use Gale and Shapley’s
results to prove the following one.

Theorem 6.1.7. For any realization of the two-sided market (A,B), there always
exists a stable matching.

Proof. Consider a dynamic two-sided market (A,B). Let ` be the arrival time of
an agent to any of the sides. Fix the static market (A`, B`) and run Gale-Shapley’s
algorithm. Let γ` be its output. It holds that γ` is pairwise stable for (A`, B`). For
any t ∈ R+, define `(t) to be the largest arrival time (on either side) that is not larger
than t. Then, construct the sequence γ by defining γt := γ`(t). Thus, γ is a stable
matching of (A,B).

The proof of Theorem 6.1.7 constructs a stable matching by running Gale and
Shapley’s algorithm at every arrival time and then, extending the static pairwise
stable matchings to the rest of the times. Since matched agents get out of the market,
no matching can be blocked by future arriving agents.

6.1.1 Greedy matching policies
Running a matching policy at every arrival time defines a greedy (matching) policy,
since no foresight is considered. Depending on the matching policy run, a different
greedy policy is obtained. Greedy policies are observed in settings in which agents
do not have the ability to wait to be matched due to, for example, shortly expected
lifetimes, as in kidney allocation [27, 103]. In this chapter we will study three of these
policies:

1. First-come-first-served (FCFS): It corresponds to the most used policy in kidney
allocation due to its high fairness level. Kidneys are allocated to patients that have
been longer on the market (subject to individual rationality).

2. Fully-random (FR): The arrival agents are allocated randomly among the agents
that may accept them (individual rationality).

3. Deferred-acceptance (DA): Agents are matched at every arrival through a deferred-
acceptance algorithm as the one used to prove Theorem 6.1.7.

Although kidney allocation cannot be mapped into our model as organs do not
have utilities, the matching policies known in this context can be used as benchmarks
to test our deferred-acceptance policy.
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Dynamic markets with greedy policies define an interesting stochastic process when
considering the number of agents on each side of the market. The following section
will examine this process.

6.2 Greedy policy and its stochastic process
We consider a dynamic two-sided market as explained in the previous section together
with a greedy matching policy. Given fixed values of λA, λB, µA, µB > 0, the sequences
(|At|, |Bt| : t ≥ 0), corresponding to the number of A-agents and B-agents on the
market at every moment, define a continuous-time Markov chain

(Zt)t = {Zt = (|At|, |Bt|), t ≥ 0} ∈ N× N

Let (Wn)n = {Wn := (|Aτn|, |Bτn|) : n ∈ N} be its associated jump chain, where
τn indicates the time of the n-th natural event (arrival or departure of an agent).
For simplicity, we will omit the cardinality parenthesis | · | when referring to these
processes in the future. Similarly, we will write (An, Bn) for the discrete-time Markov
chain instead of (Aτn , Bτn).

To study (Zt)t we will focus on its jump chain (Wn)n. Four possible events can
happen for every n ∈ N: An A-agent arrives, a B-agent arrives, an A-agent natu-
rally leaves, and a B-agent naturally leaves. Arrivals increase the number of agents,
departures decrease them. However, arrivals trigger the matching policy, which may
match agents and therefore, decrease the number of agents in the market. Thus, the
number of agents in the market increases only if the matching policy produces no new
matchings. The following lemma details the possible outcomes of an arrival.

Lemma 6.2.1. Suppose that an agent k arrives at the market and a matching policy
is run. The possible outputs are:

1. One and only one matching is created, which necessarily includes agent k. In this
case, the total number of agents in the market decreases by 1.

2. No new matching is created. In this case, the total number of agents in the market
increases by 1.

Proof. Suppose, without loss of generality, that the arriving agent k is an A-agent. If
the B-side is empty, no new matching can be created and the number of agents in the
market increases by 1 (there is one new A-agent). Suppose the B-side is non-empty
and that a matching (a, b) ∈ A×B is created. If a 6= k, a and b were already present
on the market and therefore, we get a contradiction: they could have been matched
when the last of them arrived. Thus, necessarily, a = k. In particular, at most one
couple is created every time that we run the matching policy, and this couple includes
the arriving agent. Since k and b got matched, they leave the market, and the number
of B-agents decreases by 1. Finally, if k does not want to get matched with any of the
agents in the B-side, then the matching policy does not produce any new matching,
and the number of A-agents increases by 1.
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From Lemma 6.2.1 we observe that (Wn)n only increases or decreases by one unit
in one of its coordinates at every time. In particular, (Wn)n is a random walk in N×N.
We aim at computing the transition matrix of the jump chain. We will make use of
the following proposition.

Proposition 6.2.2. Let a be an A-agent arriving at the market at time n. Then,

P(a gets matched) =
(1− ρa) · (1−

∏
b∈Bn ρb) if Bn 6= ∅,

0 otherwise.

A similar result holds for B-agents.

Proof. If the B-side is empty when a arrives, the probability of getting matched is
zero. Suppose that Bn is non-empty. For a to get matched, there must exist at least
one B-agent b such that a and b are mutually acceptable. It holds that

P(∃b ∈ Bn s.t. a is acceptable for b) = 1− P(a is not acceptable for anybody)
= 1−

∏
b∈Bn

ρb,

where we have used the fact that utilities are drawn from a uniform distribution.
Finally,

P(a gets matched) = P(∃b ∈ Bn s.t. a and b are mutually acceptable)
= (1− ρa) · P(∃b ∈ Bn s.t. a is acceptable for b).

From this, we obtain the desired probability.

Remark that the term ∏
b∈Bn ρb depends on the players’ identity (through their

IRPs). To obtain a time-homogeneous Markov chain, we add the following assumption
to our model.

Definition 6.2.3. We say that agents have anonymous IRPs whenever the prob-
ability of getting matched when arriving at the market (and the matching policy is
run) does not depend on the identity of the players but only on the number of agents
at the other side of the market.

From now on, we consider anonymous IRPs. Notice that different greedy policies
can still have different matching probabilities even under anonymous IRPs.

To be able to simultaneously treat the cases of Bn non-empty and Bn empty,
we use the convention that ∏j∈J ρj = 1 if J = ∅ and all ρj are in [0, 1]. From
Proposition 6.2.2, we obtain the transition matrix of the jump chain.

Theorem 6.2.4. Let P be the transition matrix of the Markov chain (Wn)n. Let p(j)
denote the probability that an arriving A-agent gets matched when the B-side has j
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agents, and q(i) the probability that an arriving B-agent gets matched when the A-side
has i agents (see Proposition 6.2.2). Then, for any i, j, k, ` ∈ N,

P ((i, j), (k, `)) = 1
(λA + λB + iµA + jµB) ·



λA · (1− p(j)) if k = i+ 1, ` = j

λB · q(i) + i · µA if k = i− 1, ` = j

λB · (1− q(i)) if k = i, ` = j + 1
λA · p(j) + j · µB if k = i, ` = j − 1
0 otherwise

Proof. Given the current state Wn = (i, j), there are four possible events: an A-agent
arrives (with rate λA) (and, with probability p(j) gets matched and with probability
(1 − p(j)) does not get matched), a B-agent arrives (with rate λB) (and, with prob-
ability q(i) gets matched and with probability (1 − q(i)) does not get matched), an
A-agent naturally leaves (with rate i · µA), and a B-agent naturally leaves (with rate
j · µB). Notice that

P(an A-agent arrives) = λA
λA + λB + iµA + jµB

as this is the probability that the minimum of four independent exponential random
variables with parameters λA, λB, iµA, jµB, respectively, is the one with parameter
λA. It follows that

P ((i, j), (i+ 1, j)) = P(an A-agent arrives and does not get matched)
= P(an A-agent arrives)P(this agent does not get matched)

= λA
λA + λB + iµA + jµB

· (1− p(j))

The other cases can be obtained similarly.

Remark 6.2.5. The transition probabilities depend on the current state. In partic-
ular, the probability that the market size increases is decreasing with respect to the
number of agents. The random walk (Wn)n is naturally pushed back to the origin due
to the matching policy and the M/M/∞ queue behavior. Our Markov chain (Wn)n
is therefore, a non-homogeneous (in space) random walk [81].

From Theorem 6.2.4 we can easily identify the Q-matrix of our continuous-time
Markov chain.

Theorem 6.2.6. Let Q be the Q-matrix of the continuous-time Markov chain (Zt)t.
Taking p and q as in Theorem 6.2.4, it holds that for any (i, j) ∈ N2,

Q((i, j), (i+ 1, j)) = λA · (1− p(j))
Q((i, j), (i− 1, j)) = λB · q(i) + i · µA
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Q((i, j), (i, j + 1)) = λB · (1− q(i))
Q((i, j), (i, j − 1)) = λA · p(j) + j · µB

Q((i, j), (i, j)) = −(λA + λB + i · µA + j · µB)

and Q((i, j), (k, `)) = 0 otherwise.

6.2.1 Positive recurrence
We first compute the stationary distribution of the jump chain (Wn)n, and use the
Q-matrix to compute the stationary distribution of the continuous-time Markov chain
(Zt)t. We use Foster’s criterion [Theorem 2.6.4 [81]] to prove that (Wn)n is positive
recurrent.

Lemma 6.2.7 (Foster’s criterion). An irreducible Markov chain (Wn)n on a countable
state space Σ is positive recurrent if and only if there exist a positive function f : Σ→
R+, a finite non-empty set E ⊆ Σ, and ε> 0, such that

1. E[f(Wn+1)− f(Wn) | Wn = i] ≤ −ε,∀i ∈ Σ \ E,
2. E[f(Wn+1) | Wn = i]<∞,∀i ∈ E.

Theorem 6.2.8. The jump chain (Wn)n with transition matrix P given by Theo-
rem 6.2.4 is positive recurrent.

Proof. Consider the function f(x, y) = x2 + y2. Let (i, j) ∈ N× N and define

Λ(i, j) := λA + λB + iµA + jµB. (6.3)

Then,

E(f(Wn+1)− f(Wn) | Wn = (i, j)) = 1
Λ(i, j) · [λA + λB − 2i2µA − 2j2µB

+ i(2λA(1− p(j))− 2λBq(i) + µA) + j(2λB(1− q(i))− 2λAp(j) + µB)]

Λ(i, j) being always positive, we only need to care about the expression within the
squared parenthesis. Notice it can be split in the sum of two concave parabolas,

φ(i) := −2i2µA + i(2λA(1− p(j))− 2λBq(i) + µA) + λA

ψ(j) := −2j2µB + j(2λB(1− q(i))− 2λAp(j) + µB) + λB

Setting c := 2λA(1− p(j))− 2λBq(i) + µA, the zeros of φ are,

i1,2 = −c±
√
c2 + 8µAλA

4λAµA
In particular, one of them is positive and the other one is negative. Let i1 be the
positive zero. Then, there exists ī > i1 such that for any i > ī, φ(i) ≤ −1. Similarly,
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we can find j̄ ∈ N such that for any j > j̄, ψ(j) ≤ −1. Considering E = {0, 1, . . . , ī}×
{0, 1, . . . , j̄}, we conclude that the first condition of Foster’s criterion holds2.

We now check the second condition. Let i, j ∈ E. Then,

E(f(Wn+1) | Wn = (i, j)) ≤ j̄2īµA + ī2j̄µB
λA + λB

+ ī3µA + ī2(λA + λB + 2µA) + ī(2λA + 2λB + µA) + λA
λA + λB

+ j̄3µB + j̄2(λA + λB + 2µB) + j̄(2λB + 2λA + µB) + λB
λA + λB

where we have bounded all probabilities by 1 and took all signs to be positive. We
obtain that

E(f(Wn+1) | Wn = (i, j))<∞, ∀(i, j) ∈ E.

Thanks to Foster’s criterion we obtain that (Wn)n is positive recurrent.

6.2.2 Reversibility
A useful technique to compute the stationary distribution of a Markov chain is to
use its reversibility, i.e., to check if the reversed Markov chain and the original one
are in balance. Reversibility is a strong assumption and not all positive recurrent
Markov chains satisfy it (for a detailed explanation of reversibility, we refer the reader
to Pardoux [85], § 2.7 and § 7.7). In particular, our jump chain (Wn)n will not always
be reversible as we will need extra assumptions on agents’ IRPs (Theorem 6.2.11).

Before showing the reversibility assumption on agents’ IRPs, we use the detailed
balanced equations (Equation (6.6)) to deduce a stationary measure of the jump chain
and to show that the stationary distribution of (Wn)n has a product form as well.

Theorem 6.2.9. Let π be a stationary measure of (Wn)n. Then, π satisfies the
recursion,

π(i+ 1, j) = π(i, j) · Λ(i+ 1, j) · λA(1− p(j))
Λ(i, j) · (λBq(i+ 1) + (i+ 1)µA) , ∀i, j ∈ N (6.4)

π(i, j + 1) = π(i, j) · Λ(i, j + 1) · λB(1− q(i))
Λ(i, j) · (λAp(j + 1) + (j + 1)µB) , ∀i, j ∈ N (6.5)

where Λ(i, j) is given by Equation (6.3). In particular, π has a product form.

Proof. A Markov chain is said to be reversible if and only if the following detailed
balanced equations hold:

π(i)P (i, j) = π(j)P (j, i), ∀i, j ∈ N. (6.6)
2The fact that c depends on i and j is not a problem as we can bound p(j) and q(i) by 0 and

then find the highest ī that satisfies the first condition of Foster’s criterion.
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Recalling that P ((i, j), (k, `)) 6= 0 only for (k, `) ∈ {i ± 1, j ± 1}, Equation (6.6)
becomes,

π(i+ 1, j)P ((i+ 1, j), (i, j)) = π(i, j)P ((i, j), (i+ 1, j)), (6.7)
π(i, j + 1)P ((i, j + 1), (i, j)) = π(i, j)P ((i, j), (i, j + 1)). (6.8)

Equation (6.7) holds if and only if

π(i+ 1, j) · λBq(i+ 1) + (i+ 1)µA
Λ(i+ 1, j) = π(i, j) · λA(1− p(j))

Λ(i, j) .

From where we obtain Equation (6.4). Equation (6.5) is derived analogously.

The stationary distribution of the continuous-time Markov chain can be easily
obtained as a consequence of Theorem 6.2.9.

Corollary 6.2.10. The continuous-time Markov chain is positive recurrent and one
invariant measure of Π is given by,

Π(i, j) = π(i, j)/q(i, j),∀i, j ∈ N× N

where q(i, j) = −Q((i, j), (i, j)). In particular, normalizing Π we obtain the invariant
distribution of the continuous-time Markov chain.

Finally, we show the reversibility conditions for our Markov chain.

Theorem 6.2.11. The jump chain (Wn)n is reversible if and only if the probabilities
p and q satisfy,

(1− p(j)) · (1− q(i+ 1)) = (1− q(i)) · (1− p(j + 1)),∀i, j ∈ N (6.9)

Proof. Let i, j ∈ N. Using Equations (6.4) and (6.5) separately on π(i+ 1, j + 1), we
get

π(i+ 1, j + 1) (6.4)= π(i, j + 1) · Λ(i+ 1, j + 1) · λA(1− p(j + 1))
Λ(i, j + 1) · (λBq(i+ 1) + (i+ 1)µA)

π(i+ 1, j + 1) (6.5)= π(i+ 1, j) · Λ(i+ 1, j + 1) · λB(1− q(i+ 1))
Λ(i+ 1, j) · (λAp(j + 1) + (j + 1)µB)

We obtain
π(i, j + 1) · λA(1− p(j + 1))

Λ(i, j + 1) · (λBq(i+ 1) + (i+ 1)µA) = π(i+ 1, j) · λB(1− q(i+ 1))
Λ(i+ 1, j) · (λAp(j + 1) + (j + 1)µB)

Applying Equation (6.4) to π(i+ 1, j), the right-hand side becomes

π(i, j) · Λ(i+ 1, j) · λA(1− p(j))
Λ(i, j) · (λBq(i+ 1) + (i+ 1)µA) ·

λB(1− q(i+ 1))
Λ(i+ 1, j) · (λAp(j + 1) + (j + 1)µB)
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Similarly, the left-hand side becomes

π(i, j) · Λ(i, j + 1) · λB(1− q(i))
Λ(i, j) · (λAp(j + 1) + (j + 1)µB) ·

λA(1− p(j + 1))
Λ(i, j + 1) · (λBq(i+ 1) + (i+ 1)µA)

Equalizing the two sides, we obtain Equation (6.9). Therefore, satisfying the detailed
balanced equations is equivalent to satisfying Equation (6.9).

The three greedy policies considered in this chapter result to be reversible for
uniform IRPs, that is, whenever all agents have the same value ρ. Figure 6.2 shows
three stationary distributions for the continuous-time Markov chain obtained with a
deferred-acceptance matching policy, for fixed values λA = λB = 10, µA = µB = 1, and
variable values of ρ. On the left there is the full-rejection case i.e., ρk = 1,∀k ∈ A×B,
on the middle we have taken ρk = 0.66, and on the right, ρk = 0.33, for all agents
in the market. We observe how the stationary distribution moves to the origin as ρ
decreases, showing, on average, a market with fewer agents on it.

Figure 6.2: Stationary distribution CTMC. Left: ρ = 1, Middle: ρ = 0.66, Right:
ρ = 0.33

In the full-acceptance case, i.e., when ρk = 0 for every agent k, at every time t at
least one of the two sides (not always necessarily the same one) is empty. The station-
ary distribution can be projected in one dimension over the entire integer set, where
positive values correspond to a non-empty A-side, and negative values correspond to
a non-empty B-side. Figure 6.3 shows the stationary distribution of the jump chain
and the continuous-time Markov chain, when choosing λA = 10, µA = µB = 1, and
increasing λB from 1 to 10.

We can observe that for low values of λB the stationary distribution concentrates
on the positive side as it is more probable to see A-agents in the market, and goes
left for higher values of λB. In particular, it gets concentrated around 0 when both
sides have equal values of λ, as in the full-acceptance case, on average, we do not see
people in the market for equal rates of arrival and departure.

We end this section by giving an interpretation to Equation (6.9), represented in
Figure 6.4. The left-hand side (1− p(j))(1− q(i+ 1)) corresponds to the probability
that, given that the market state is (i, j), an A-agent arrives, does not get matched,
and then, a B-agent arrives, and does not get matched, either; therefore, the market

168



Dynamic matching games

Figure 6.3: Stationary distribution variable λB ∈ {1, ..., 10}, λA = 10, µA = µB = 1

passes to the state (i + 1, j + 1). The right-hand-side is the second way that the
market can pass from (i, j) to (i+ 1, j + 1). Namely, first a B-agent arrives and does
not get matched (which holds with probability 1− q(i)), and then an A-agent arrives
and does not get matched, either (which holds with probability 1− p(j+ 1)). For the
Markov chain to be reversible, we need these two transition probabilities to be equal.

(i, j) (i+ 1, j)

(i, j + 1) (i+ 1, j + 1)

1− q(i)

1− p(j)

1− q(i+ 1)

1− p(j + 1)

Figure 6.4: Possible ways for the market to pass from (i, j) to (i+ 1, j + 1)

Going further, imposing reversibility to our Markov chain forces to get equal
transition probabilities from (0, 0) to (i, j) ∈ N × N, by any trajectory of the kind
(k, `) −→ (k + 1, `) or (k, `) −→ (k, `+ 1) at each time.
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6.3 Social Welfare
Our three greedy matching policies define a similar continuous-time Markov chain
from the point of view of the number of agents on the market. However, the matched
couples differ and therefore, each policy achieves a different level of social welfare.

Definition 6.3.1. Let γ = (γn)n be a sequence such that, for each n ≥ 0, γn
is a static matching of (An, Bn). The social welfare of γ is defined as SW (γ) =∑
n≥0 [∑a∈An ua +∑

b∈Bn vb], where

ua =
Xa,γ(a) if a is matched in γ,
ρa otherwise,

vb =
Yb,γ(b) if b is matched in γ,
ρb otherwise.

It is interesting to remark that, unlike the static model of stable marriage in which
the proposer side is always better off with respect to the proposed side, as utilities are
drawn from a uniform distribution, this phenomenon does not appear in the dynamic
case. Figure 6.5 shows the average (per player and after 500 samples) welfare achieved
by each side with a DA matching policy with A-side proposing. On the left, there is a
symmetric market with equal arrival rates and equal departure rates, and variable (the
same for all agents) ρ ∈ [0, 1], while on the right there is a market in which A-agents
arrive in a higher rate and stay longer in the market than B-agents. In symmetric
markets, both sides achieve similar welfare, independent of the side that proposes. In
asymmetric markets, it is the thin side that achieves higher average welfare as the
DA matching policy benefits the agents that have more available partners with who
to get matched when arriving at the market.

Figure 6.5: Welfare comparison DA matching policy with A-side as proposers. Left:
Symmetric market, Right: Unbalanced market with more A-agents

As agents IRPs go to 1, the average social welfare goes to 1 as well as the rate of
unmatched agents over the total number of agents converges also to 1. In terms of
total social welfare, it is not difficult to see that a DA greedy policy outperforms the
random and FCFS policies, as DA is the only one that maximizes the utility of the
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agents at the moment of the matching. Figure 6.6 shows social welfare comparisons
between the three matching policies for variable rate values. As Figure 6.5, on the left
we have a symmetric market while on the right an unbalanced market, in both cases
taking lows values of ρ ∈ {0, 0.1, 0.2}, as the social welfare curves quickly converge to
similar values for higher IRPs.

Figure 6.6: Social welfare comparison. Left: Symmetric market, Right: Unbalanced
market with more A-agents

6.4 Conclusions
In this chapter, we have introduced a novel model of dynamic matching markets
in which agents arrive and leave following stochastic processes. Agents within the
market get matched by three possible greedy matching policies: first-come-fist-served,
fully-random, and deferred-acceptance. We have studied the evolution of the matching
market under anonymity (Definition 6.2.3) with respect to the number of agents per
side by using continuous-time Markov chains (CTMC). Our CTMC resulting to be
positive recurrent (Theorem 6.2.8), we have established conditions on agents’ individu-
ally rational payoffs to obtain a product-form stationary distribution (Theorem 6.2.9)
from imposing reversibility (Theorem 6.2.11). Finally, we have empirically compared
the matching policies in terms of social welfare and found that a deferred-acceptance
kind of policy outperforms the other two.

This model is the base to study strategic behavior in matching markets where
agents can affect the assignments by misreporting their individually rational payoffs
at the moment of entering the market. Allowing the agents to strategically behave
raises new challenges for the design of matching policies. As a future research line,
we plan to extend the model in this chapter to the design of strategyproof matching
policies and compare their performance against the state of the art in terms of social
welfare, computational efficiency, and/or fairness.

In the mid-term, we plan to extend the model to a matching game setting in
which agents do not only announce their individually rational payoffs at the moment
of entering the market but also get their utilities as the outcomes of a game played
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against the partner. The extension of internal stability and its relationship with
the strategic announcements when arriving at the market may raise new and useful
solutions concepts for real-life applications.
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Sixty years ago, David Gale and Lloyd S. Shapley wrote one of the most influential
articles in the literature of mathematics, economics, and computer sciences: College
admission and the stability of marriage. In their paper, the two authors introduced
the problem of allocating students to colleges, the college admission problem, and
pairing men and women, the stable marriage problem. In less than twenty pages
the authors presented their models, defined their solution concepts, algorithmically
proved the existence of stable outcomes for any instance, and discussed/proved several
important properties such as the structure of the set of solutions or the optimality
of their algorithm. The article does not present any equation and still, no one could
question its mathematical preciseness. The impact of the article was immediate as it
allowed to prove that the resident allocation system in the USA was favoring hospitals
over doctors.

The literature on stable matching has been developed in all possible directions,
passing by different kinds of allocations as one-to-one, one-to-many, or many-to-many,
different kinds of markets as two-sided, one-sided, or non-two-sided, different kinds of
preferences and utilities, different kinds of stable solutions, different kinds of tempo-
ralities, etc. In addition, each model uses its own methods to prove the existence of
the solutions sought.

Computer scientists have gotten interested in designing efficient algorithms to
compute stable allocations motivated by the broad number of applications of the
stable matching model. The work done in this thesis had as objective to centralize
many of the historical models of matching markets, refine their solution concepts,
and propose efficient algorithms to solve them. It considers a mix between matching
market models and game theory models. Game theory studies the strategic behavior
of the agents making it the perfect approach to study the strategic aspect of the agents
inside of a matching market.

We have presented fours models capturing different branches of matching markets:

1. One-to-one two-sided matching games,
2. One-to-many two-sided matching games,
3. One-to-one non-two-sided matching games and,
4. Dynamic one-to-one two-sided matching market.

The first three models endow the agents within the market with strategy sets and
payoff functions. Matchings consist, respectively, of a one-to-one mapping between
two sets D and H, a one-to-many mapping between two sets D and H, and a partition

173



into pairs and singletons of a set D. Allocations are then formed by considering
one strategy per player, determining utilities for all the agents within the market
depending on the identity of the partners in the matching, their own strategies, and
the strategies of the partners. Naturally, two stability notions rise for these models:
core stability, the generalization of Gale-Shapley’s stability to the setting in which
agents have strategies and deals with pairs or coalitions of agents abandoning their
partners and preferring to match together; and renegotiation proofness, that deals
with the deviations of the agents in actions within each strategic game.

Algorithmically we have proved the existence of core stable allocations for the first
two submodels. We have designed an efficient deferred-acceptance with competitions
algorithm, generalization of the one of Gale and Shapley, and proved its correctness
and finiteness under classical game theory assumptions. In particular, for the second
model, we have showed that simpler algorithms than the one proposed in the literature
can be used to compute the desired stable solutions. Leveraging literature results, we
have studied the existence of core stable allocations for the third model as well.

Considering a model with rational agents that play strategies shows its full po-
tential when considering the second notion of stability, renegotiation proofness, which
refines the stability notions captured from the literature. We have proved that when-
ever agents can compromise with their partners in the chosen strategies, a constrained
equilibrium condition rises: Agents cooperate enough to guarantee some minimum
threshold utility to the partners searching to maximize their own utilities.

We have defined a solid mathematical framework for renegotiation proof alloca-
tions by characterizing them as those allocations in which all matched pairs play
constrained Nash equilibria, that is, solutions to an appropriated quasi-variational in-
equality. Moreover, we have defined a new class of games, feasible games, to study
the existence of games admitting constrained Nash equilibria, and proved that many
well-known games are feasible. We have designed an efficient algorithm to compute
renegotiation proof allocations for the three first mentioned models. Finally, as a fur-
ther refinement of the literature solutions, we have shown how to obtain core stable
and renegotiation proof allocations in which all couples play Pareto-optimally.

Many future research lines start from the work done in this thesis for the three first
models. A mix between our second and third model, that is, a model in which couples
of doctors are assigned to hospitals and all agents are endowed with strategy sets, may
find interesting applications in real life as the allocation of siblings to schools.

A further understating of the set of feasible games is in the list of future works.
The proof that each studied game is feasible depends on the characteristics of the
game, making it a proof game dependent. It is in our interest to find a global theory
able to characterize all feasible games. Similarly, we are interested in finding a global
theory able to explain the convergence of our renegotiation process.

The general computation of constrained Nash equilibria is also an interesting line
to follow. Results from the quasi-variational inequalities domain may expose nice and
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interesting properties of them. Another idea3 is to study constrained Nash equilibria
as solutions to complementarity problems [102].

Regarding the non-two-sided model of roommates matching games, the results
of Alkan and Tuncay need a deeper understanding as they have only treated the
quasi-linear case (although they claimed their results hold for the non-quasi-linear
case). The extension of the roommates problem to the non-transferable utility setting
has not received much interest from the stable matching community. Following this
research line may produce fruitful results, both from a theoretical and practical point
of view. We aim to further develop this.

Before this thesis, the challenge of computing exact solutions for stable matchings
with continuous utilities was an open problem. Sadly, the problem will remain open
for now. Moreover, the efficient design of algorithms to compute exact solutions is
(ironically) a hard problem and needs further research.

Our fourth model4 studied a dynamic one-to-one two-sided matching market in
which agents from two sets arrive and leave the market following stochastic processes.
This model is the first attempt to extend matching games to the dynamic setting. We
have compared a deferred-acceptance kind of matching policy against two literature
benchmarks, first-come-fist-served, usually used because of its high fairness level, and
fully random. We have studied stochastic processes generated by the markets and
obtained many interesting properties as the existence of stationary distributions with
product form.

Two research lines are considered for this model. The first one is to endow the
agents with strategy sets and define a framework mixing dynamic versions of core
stability and renegotiation proofness. The work done in static matching games where
agents play infinitely repeated games may be a useful tool.

The second line is to allow the agents to announce their individually rational
payoffs when entering the market and to study the strategy-proof design of matching
policies to avoid strategic behaviors from the agents. Techniques from market design
may be useful for this challenge. Moreover, we could leverage literature results to
obtain strategy-proof and fair matching policies.

3We thank Alfred Galichon for having suggested this idea.
4Joint work with Marco Scarsini
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Appendix A

Complementary results

A.1 Extensive form games with perfect informa-
tion are feasible

Consider a finite set of players I and a set P of nodes of a tree. For each p ∈ P , we
define its set of successor nodes in the tree by S(p). For each i ∈ I we consider a set
P i of nodes of the tree where i has to play.

Definition A.1.1. A strategy σi for player i is an application on P i which associates
to each position p ∈ P i a successor node in S(p).

The set of terminal nodes or results is denoted by R, and the payoff of player i is
given by ui(r) with r ∈ R.

Consider outside options ui0 ∈ R for all players i ∈ I. For player i we consider the
set of terminal nodes Ri

0 such that her payoff is at least her outside option.

Definition A.1.2. We call the gameG admissible if there exists at least one strategy
σ such that F [σ], the final node reached by σ, belongs to ⋂i∈I Ri

0, so players can obtain
at least their outside options.

It is straightforward to prove (by induction on the length) that the game is ad-
missible if and only if ⋂i∈I Ri

0 is non-empty.

Definition A.1.3. Let G be an admissible game and let σ = (σi)i∈I be a strategy
profile such that F [σ] ∈ ⋂i∈I Ri

0. σ is a constrained equilibrium if for any i ∈ I and
for any strategy τ i of player i, if ui(F [τ i, σ−i])>ui(F [σ]) then F [τ i, σ−i] /∈ ⋂i∈I Ri

0,
that is, every time a player has a profitable deviation from σ, there is another player
for whom the terminal node is not feasible.

A strategy profile σ naturally induces a strategy in the subgames G[p], where p
is a node of the tree and G[p] is the game starting from p. As with subgame-perfect
equilibrium, we can define the notion of constrained subgame-perfect equilibrium.

Definition A.1.4. A strategy profile σ is a constrained subgame-perfect equi-
librium if for each position p such that G[p] is admissible, the continuation strategy
σ[p] induced by σ is a constrained equilibrium of G[p].

Definition A.1.5. A finite perfect information game G is called feasible if any time
that there exists a strategy profile σ such that F [σ] ∈ ⋂i∈I Ri

0, then there exists τ a
constrained subgame-perfect equilibrium such that F [τ ] ∈ ⋂i∈I Ri

0.

177



A.1. Extensive form games with perfect information are feasible

We are ready to prove the feasibility of extensive form games (Theorem 3.4.3).

Proof. Extensive form games are feasible. We present two proofs, one by forward
induction and another one by backward induction.
Forward induction. Let i be the player who plays at the first node r, the root
of the tree. For n = 1, note that G corresponds to a game where only i plays, and
then the outputs are announced. Player i will choose the action that maximizes her
payoff subject to choosing an ending node in ∩i∈IRi

0, obtaining a strategy σ in which
nobody can deviate without violating the constraint. Therefore, σ is a constrained
equilibrium that is subgame perfect because the game has no subgame.

Suppose that any perfect information game of length n is feasible, and let G be a
game of length n+ 1. Suppose G is admissible, so there exists a path from the root to
a terminal node that gives all players a payoff greater than or equal to their outside
options. We aim to prove that G has a constrained subgame-perfect equilibrium.

Let S(r) be the set of all possible nodes that i can choose when she plays for
the first time, that is, S(r) is the set of successors of the root of the tree. Since G
is admissible, there is at least one node p ∈ S(r) such that G[p] is also admissible.
Let S ′ ⊆ S(r) be the set of all nodes p in S(r) such that G[p] is admissible. By
induction, all subgames G[p] with p ∈ S ′ are feasible, so for each of them there exists
σ′p a constrained subgame-perfect equilibrium.

Consider the strategies σp := (p, σ′p) in which player i chooses a node p ∈ S ′ in her
first turn and then, in the subgame G[p], players follow the constrained equilibrium
σ′p. From all strategies σp with p ∈ S ′, consider the one that maximizes i’s payoff,
called σp∗ . We claim that σp∗ is a constrained subgame-perfect equilibrium of game
G. Indeed, for p∗ the induced strategy σp∗ [p∗] coincides with σ′p∗ so it corresponds
to a constrained subgame-perfect equilibrium. Moreover, since i chose the best node
p ∈ S ′ for her, she has no incentive to deviate to any other node in S ′. Therefore, the
strategy σp∗ is a constrained subgame-perfect equilibrium, since choosing any other
node in S(r) \ S ′ yields a non-admissible subgame.
Backward induction. Consider the longest path from the root r to some terminal
node t in R. Note that there is a unique path from r to t since the tree is an acyclic
graph. Let it be the last player to play in this path and consider the set Rit of all the
terminal nodes that it can choose. The set is non-empty since t ∈ Rit . Next, consider
the set of all nodes in Rit that belong to ⋂i∈I Ri

0. If the intersection ⋂
i∈I R

i
0 ∩ Rit

is non-empty, player it can choose a final node that gives all players at least their
outside option. If this is the case, it picks the one that maximizes her payoff. On the
other hand, if the intersection is empty, anyway player it picks a node maximizing
her own payoff. Note that, in the first case player it has no incentive to deviate to
any other node in ⋂i∈I Ri

0, so if she has a profitable deviation, there will be a player
who receives less than her outside option. In the second case, player it is playing in a
non-admissible game.

Once it has chosen her node, we erase all the nodes of Rit from the tree and replace
the node in which it had to play by the terminal node in which all players receive the
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payoff related to the choice of it. Once this is done, we come back to the first step
of finding the longest path from the root to some terminal node. We iterate until
reducing the tree to just the root r.

Since each time a player has to decide the final node to reach in the tree, either
she chooses a constrained equilibrium or a non-admissible game, the final result of
this procedure leads to either finding a constrained subgame-perfect equilibrium of
the game G, or proving that G is a non-admissible game, so we conclude that G is
feasible.

A.2 A non-closed set of Pareto-optimal payoffs
Consider a two-player game with a payoff sets as in Figure A.1, consisting in the
points A,B,C, and D, and the lines connecting them.

A

B

C D

g

f (0, 0)

Figure A.1: A non-closed set of Pareto optimal strategies

As the point C and the whole line connecting C and D is Pareto-dominated by
D, we obtain a non-closed and non-connected set of Pareto-optimal payoffs.
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MOTS CLÉS

Matching, Engagement, Stabilité, Équilibre de Nash sous contrainte, Temps polynomial, Jeux d’appariement

RÉSUMÉ

Les marchés d’appariement stables ont été l’un des domaines d’étude les plus importants en mathématiques, en
économie et en informatique au cours des soixante dernières années. Cette thèse vise à contribuer à la littérature
en définissant un nouveau cadre capable d’englober et d’affiner de nombreux travaux séminaux tels que Gale et Shapley,
Shapley et Shubik, Demange et Gale, Crawford et Knoer, Kelso et Crawford, Hatfield et Milgrom, Andersson et al., et
d’autres.

Les jeux d’appariement ajoutent une nouvelle dimension au problème de l’appariement stable en permettant aux agents
d’une coalition de jouer à des jeux stratégiques et de recevoir des paiements comme résultats. Deux modèles sont
obtenus en fonction du niveau d’engagement des agents. Bien qu’un modèle sans engagement puisse être le plus intuitif,
il ne parvient pas à capturer les modèles classiques mentionnés ci-dessus. En revanche, un modèle avec engagement
permet de le faire avec succès.

Le modèle avec engagement est naturellement confronté à deux notions de stabilité : stabilité par paire, la généralisation
des notions de stabilité classiques dans la littérature, et résistance aux renégociations, une nouvelle notion de stabilité
concernant les déviations des actions des agents dans chaque jeu, qui affine les solutions stables de tous les modèles
capturés.

Des algorithmes efficaces sont conçus pour calculer les allocations stables par paire et resistantes aux renégociations
sous des hypothèses classiques de la théorie des jeux. Premièrement, nous proposons une généralisation de l’algorithme
d’acceptation-différée de Gale et Shapley pour calculer des allocations stables par paire. Ensuite, un nouvel processus
de renégociation calcule une allocation résistante aux renégotiations lorsque les jeux stratégiques joués satisfont une
condition de faisabilité et que l’algorithme converge.

La faisabilité des jeux est une propriété nouvelle. Nous la caractérisons en utilisant les équilibres de Nash sous contrainte,
c’est-à-dire les meilleures stratégies de réponse soumises à des contraintes de participation, et nous prouvons que de
nombreux jeux bien connus de la littérature de la théorie des jeux satisfont la faisabilité.

La dernière partie de cette thèse porte sur un marché d’appariement dynamique biface dans lequel les agents arrivent
et partent en suivant des processus stochastiques. Différentes politiques d’appariement et les processus stochastiques
générés par le nombre d’agents sur le marché sont étudiés et les conditions d’existence d’une distribution stationnaire
avec une forme de produit sont trouvées.

ABSTRACT

Stable matching markets have been one of the most important studied domains in mathematics, economy, and computer
sciences, during the last sixty years. This thesis aims to contribute to the literature by defining a novel framework able
to encompass and refine many seminal works such as Gale and Shapley, Shapley and Shubik, Demange and Gale,
Crawford and Knoer, Kelso and Crawford, Hatfield and Milgrom, Andersson et al., and others.

Matching games add a new dimension to the problem of stable matching by allowing the agents within a coalition to play
strategic games and receive payments as outputs. Two models are obtained depending on the level of commitment of
the agents. Although a model without commitment may be the most intuitive one, it fails to capture the classical models
mentioned above. In exchange, a model with commitment achieves the capture successfully.

The model with commitment naturally faces two stability notions: pairwise stability, the generalization of the classical
stability notions in the literature, and renegotiation proofness, a novel stability notion concerning the agents’ deviations in
actions within each game, which refine the stable solutions of all the captured models.

Efficient algorithms are designed to compute pairwise stable and renegotiation proof allocations under classical game
theory assumptions. First, we propose a generalization of the classical deferred-acceptance algorithm of Gale and
Shapley to compute pairwise stable allocations. Second, a novel renegotiation process computes a renegotiation proof
allocation whenever the strategic games played satisfy a feasibility condition and the algorithm converges.

Feasibility in games is a novel property. We characterize it using constrained Nash equilibria, that is, best-reply strategies
subject to participation constraints, and prove that many well-known games from the literature of game theory are feasible.

The last part of this thesis works on a dynamic two-sided matching market in which agents arrive and leave following
stochastic processes. Different matching policies and the stochastic processes generated by the number of agents in the
market are studied and conditions for the existence of stationary distribution with product form are found.

KEYWORDS

Matching, Commitment, Stability, Constrained Nash equilibrium, Polynomial-time, Matching game
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