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Résumé

Les fractures dans les roches constituent un chemin préférentiel pour les écoulements et
les transferts dans les milieux géologiques. Les roches poreuses fracturées se retrouvent
dans diverses applications comme par exemple l’ingénierie pétrolière et gazière, le stock-
age géologique du CO2 et l’extraction d’énergie géothermique. Cette thèse de doctorat
présente un ensemble d’analyses des propriétés géométriques, topologiques et hydrauliques
des réseaux de fractures dans une perspective d’homogénéisation et d’application à la sim-
ulation numérique des réservoirs géothermique.

La description des fractures planes en 3D, ou plus spécifiquement des réseaux de frac-
tures discrets (dénommés « DFN » pour « Discrete Fracture Networks »), leurs propriétés
statistiques et la façon de les modéliser sont étudiés. Comme la perméabilité joue un
rôle essentiel dans l’écoulement et le transport dans les roches poreuses fracturées, nous
avons dans un premier temps développé une procédure de changement d’échelle (upscal-
ing) pour déterminer le tenseur de perméabilité équivalente des milieux poreux fracturé
en 3D. Cette nouvelle approche est basée sur le principe de superposition, amélioré par
des facteurs de connectivité déterminés tout d’abord empiriquement. Ces facteurs correc-
tifs ont pour but de prendre en compte les propriétés de connectivité et de percolation
des réseaux de fractures. Malgré son efficacité à prédire la perméabilité équivalente, la
méthode proposée présente deux limitations dues essentiellement à la difficulté numérique
de capter la percolation et les détails des connections des réseaux de fractures. Pour sur-
monter ces difficultés et pour effectuer des analyses plus fines des réseaux de fractures, un
nouvel outil d’analyse des propriétés géométriques et topologiques des réseaux de fractures
3D a été développé. Dans cet outil, tous les attributs géométriques et topologiques (calcul
d’intersections, longueurs de traces, amas percolant, etc.) des réseaux de fractures sont
déterminés par un ensemble d’algorithmes. Ces algorithmes sont validés en détails, et leurs
efficacités computationnelles sont démontrées. La finalité de ces outils algorithmiques est
de donner une représentation des réseaux de fractures par graphes.

Avec ces nouveaux outils, les capacités à traiter des réseaux de fractures 3D sont forte-
ment améliorées. Ainsi, en utilisant la représentation en graphes, de nouvelles approches
ont été développées concernant trois aspects des réseaux de fractures : (i) la percolation,
(ii) le phénomène de groupement de fractures (Clustering) et (iii) la monté d’échelle de la
perméabilité par la méthode des graphes.

Un simulateur thermo-hydraulique a in fine été développé avec le code open source «
OpenFoam ». L’objectif est d’appliquer les techniques de changement d’échelle dévelop-
pées dans cette thèse à des problèmes de simulations des réservoirs géothermiques. Un
premier exemple prototype de système de deux puits d’injection-production dans un réser-
voir géothermique est simulé. D’autres cas sont en cours de traitement dans le cadre du
projet GEOTREF ( www.geotref.com ).
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Abstract

Fractures constitute major pathways for flow and transport in fractured porous rocks.
These types of rocks are encountered in a wide range of applications like for example gas
and petroleum engineering, CO2 sequestration and geothermal energy extraction.

The present thesis presents a framework to analyze geometrical, topological and hy-
draulic properties of 3D planar fracture networks with focus on upscaling these properties
to obtain an equivalent continuum, in view of application to simulations of geothermal
reservoir exploitation. The description of fractures and discrete fracture networks (DFN),
their statistical properties and their generation procedures are studied. As permeability
plays a key role in flow and transport in fractured porous rocks, we have developed a
fast upscaling approach for determining the equivalent permeability tensor of 3D fractured
porous media. This new approach is based on the superposition principle improved by em-
pirical connectivity factors in order to take into account the connectivity and percolation
properties of the fracture network.

Although efficient in predicting permeability, the proposed method presents a major
limitation due mainly to the difficulty in assessing the percolation and connectivity prop-
erties of the network. To overcome these limitations and for further insightful analyses of
DFN composed of planar fractures, an original framework of geometrical and topological
analysis of 3D fracture networks has been developed. In this framework, all the geometrical
and topological attributes (intersections, areas, trace lengths, clusters, percolating clusters,
etc.) of a DFN are explicitly calculated by a set of algorithms. These algorithms are vali-
dated in detail by comparison to commercial softwares, and their computational efficiency
is highlighted. The final purpose of this framework is to give a graph representation of the
DFN.

Given the newly developed tools, our capabilities of treating fracture networks have
drastically increased. Hence, using a graph representation of the DFN, new approaches
have been developed concerning two main issues with fracture networks: (i) percolation,
(ii) clustering phenomenon (i.e., the formation of clusters by groups of fractures) and (iii)
permeability upscaling.

A large scale thermo-hydraulic simulator has therefore been developed with the finite
volume open source code “OpenFoam”. The purpose is to apply the upscaling techniques
to large scale reservoir configurations with a full coupling with heat transfer. A typical
example of injection-production wells in a 3D geothermal reservoir is presented, and other
cases are being developed within the GEOTREF project ( www.geotref.com ).
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Introduction Générale (Français)

La géothermie consiste à exploiter la chaleur contenue dans le sous-sol, pour produire de
la chaleur et/ou de l’électricité. La géothermie peut être classée en trois types selon la
profondeur et la température de la ressource. Le premier type est la géothermie basse
énergie où la température de la ressource est inférieure à 90 °C , elle est accessible à des
profondeurs faibles à moyennes et permet généralement de produire de la chaleur (pour
des utilisations urbaines et/ou industrielles). Le deuxième type est la géothermie moyenne
énergie. Ce type ne peut être atteint qu’à des profondeurs élevées et à des températures
entre 90 et 150°C. La principale utilisation de ce type de géothermie est industrielle par
des procédés comme le séchage, la distillation etc. Le dernier type est la géothermie haute
énergie. Dans cette catégorie, la température de la ressource est supérieure à 150°C et
permet la production de vapeur en quantité suffisante pour des applications industrielles.
Elle est localisée en priorité dans des zones volcaniques et permet la production d’électricité.
La géothermie haute énergie peut être récupérée d’une façon directe (comme le cas de la
centrale de Guadeloupe, en DOM-TOM) ou par stimulation du sous-sol par la technologie
EGS (Enhanced Geothermal System), en injectant de l’eau sous pression dans la roche
pour réactiver le système de fractures comme à Soultz sous- Forêts, en Alsace, France.

A l’échelle nationale, la centrale de Bouillante en Guadeloupe, est la première centrale
géothermique électrique en France qui a été mise en production en 1986. Dans une per-
spective de transition énergétique, la France a développé un plan de transition énergétique
(rapport ADEME 2011), dans lequel deux chiffres clés peuvent être retenus: 23% d’énergie
renouvelable (toutes les filières confondues) et 80 MW d’électricité d’origine géothermique
en France à l’horizon 2020. En examinant cette feuille de route, nous pouvons retenir un ac-
cent particulier concernant la géothermie haute énergie pour la production de l’électricité.
Dans ce contexte, un projet novateur (GEOTREF) d’envergure nationale a été lancé en
2014.

Le projet GEOTREF (GEOThermie haute énergie dans les REservoirs Fracturés, http:
//www.geotref.com ) est un projet multi-laboratoires associant une dizaine de laboratoires
français et deux entreprises privées. Le projet, est financé par l’Agence de Développement
et de Maitrise de l’Energie (ADEME) pour un budget initial de 43M€ (Investissement
d’Avenir). L’objectif général du projet est l’amélioration de la compréhension des réservoirs
géothermiques et le développement d’outils innovants techniques et informatiques. C’est
dans le cadre de GEOTREF que s’inscrit le travail de cette thèse.

La caractérisation d’un réservoir géothermique fracturé à haute énergie nécessite, en
général, un découpage séquentiel de taches de la manière suivante (i) la caractérisation
des attributs géologique du réservoir, (ii) la simulation thermo-hydraulique, en régime
dynamique, du réservoir et (iii) le couplage avec la génération de l’électricité. La thèse se
situe à l’interface entre les deux premiers axes (caractérisation géologique du réservoir et
simulation thermo-hydraulique de la production de fluide et de chaleur).

11

http://www.geotref.com
http://www.geotref.com


CONTENTS

Le réservoir fracturé contient une masse rocheuse (perméable ou pas) dans laquelle
existe un système de fractures. Etant donné la profondeur des réservoirs géothermiques
fracturés, la caractérisation de la nature et des caractéristiques des réseaux de fractures
constitue un défi majeur. Malgré la technologie déployée dans cette caractérisation, les
connaissances exactes sur la nature des fractures dans le sous-sol restent très modestes.
Une revue générale sur la description des systèmes des fractures et leurs attributs a été
réalisée. Les méthodes utilisées pour décrire les systèmes de fractures et les techniques
déployées pour caractériser, sur le terrain, les roches fracturées sont brièvement étudiés
dans cette thèse.

Les fractures existent dans les roches à des échelles différentes et leurs propriétés présen-
tent une hétérogénéité à toutes les échelles d’observation. Ainsi, l’homogénéisation des
propriétés thermo-hydrauliques des roches fracturées est nécessaire. L’homogénéisation
est obtenue par des techniques de montée d’échelle, qui consistent à obtenir des propriétés
équivalentes (à grande échelle, de l’ordre de la taille de la maille de grille du réservoir) à
partir des propriétés locales (à petite échelle, de l’ordre de la taille d’une fracture ou d’une
carotte de roche poreuse).

La perméabilité d’une roche fracturée joue un rôle clé dans le transport de chaleur par
le fluide caloporteur (généralement de l’eau) à travers le système de fractures et la matrice
poreuse. Un intérêt particulier est montré, dans cette thèse, pour l’homogénéisation de la
perméabilité d’une roche fracturée (où la masse rocheuse elle-même peut être perméable).
L’homogénéisation de la perméabilité est ici obtenue par la technique de montée d’échelle.
Une technique rapide pour obtenir la perméabilité équivalente d’un volume de roche frac-
turée est présentée (Rajeh et al. 2019). La technique d’homogénéisation développée est
basée sur le principe de superposition avec des coefficients empiriques permettant de tenir
compte de la percolation et de la connectivité du réseau de fractures.

La spécificité de la géométrie de fractures rend l’homogénéisation en présence de frac-
tures plus compliquée que pour des roches perméables non fracturées. Les difficultés con-
cernent essentiellement la difficulté de capter la percolation et les détails des connections
des réseaux de fractures. La prise en compte de ces difficultés a conduit à une collaboration
avec Israel Cañamon (Ecole de Mines de Madrid) pour développer un nouvel outil algo-
rithmique d’analyse des propriétés géométriques et topologiques des réseaux de fractures
en 3D. Ces outils ont permis, par la suite, de réaliser des analyses plus fines de différentes
propriétés des réseaux de fractures telle que la percolation et le phénomène de Clustering,
entre autres. Ainsi, une représentation des réseaux de fractures par des graphes est ren-
due possible, ce qui ouvre de nouvelles perspectives pour la simulation et pour la montée
d’échelle dans les roches fracturées.

Le lien entre l’homogénéisation de la perméabilité et la tâche d’évaluation de la ressource
et du fonctionnement du réservoir géothermique est présenté par une application con-
cernant la simulation à l’échelle réservoir. Pour cela, un outil de simulation thermo-
hydraulique a été développé avec le code OpenFoam afin de réaliser des simulations des
scénarios d’exploitation géothermiques par des puits d’injection (d’eau froide) et de pro-
duction (d’eau chaude ou vapeur).

La thèse est ainsi organisée en cinq chapitres. Dans le premier chapitre, la description
et la caractérisation géologique et hydraulique des fractures et des réseaux de fractures
est présentée. Les détails de la génération des échantillons numériques synthétiques des
réseaux de fractures sont aussi précisés. Le chapitre 2présente ensuite la description et
l’implémentation des techniques numériques de changement d’échelle de la perméabilité.
La technique de montée d’échelle par superposition est developpée (Rajeh et al. 2019).
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Au chapitre3, les développements algorithmiques concernant le traitement de propriétés
géométriques et topologiques détaillées du réseau de fractures sont présentés. La validation
détaillée de ces algorithmes et leurs efficacités computationnelles sont mises en évidence.
Le chapitre 4 présente les nouvelles approches développées dans cette thèse concernant la
percolation, le regroupement de fractures (Clustering), la connectivité des réseaux de frac-
tures ainsi que la représentation en Graphes de l’écoulement dans les réseaux de fractures.
Le dernier chapitre présente le formalisme mathématique pour la modélisation thermo-
hydraulique à l’échelle du réservoir, l’outil de simulation numérique avec OpenFom, et un
exemple d’application à l’échelle du réservoir géothermique. Une conclusion générale et
des perspectives sont données à la fin de cette thèse.
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General Introduction (English)

Geothermal energy consists in exploiting the heat contained in the subsurface, to produce
heat and/or electricity. Geothermal energy can be classified into three types depending
on the depth and temperature of the resource. The first type is low energy geothermal
where the temperature of the resource is less than 90◦C, it is accessible at low to medium
depths and generally produces heat (for urban and / or industrial uses). The second type
is moderate geothermal energy. This type can only be achieved at high depths and at
temperatures between 90 and 150◦C. The main use of this type of geothermal energy is
industrial, for several processes such as drying, distillation, etc. The last type is high energy
geothermal energy. In this category, the temperature of the resource is higher than 150◦C,
allowing the production of steam in sufficient quantity for industrial applications. It is
located primarily in volcanic areas and allows the production of electricity. High energy
geothermal energy can be recovered in a direct way (as in the case of the Guadeloupe
power plant, in the DOM-TOM, France”) or by stimulation of the reservoir by the EGS
(Enhanced Geothermal System) technology, by injection of water under pressure in the
rock to reactivate the fracture system as in Soultz sous-Forêts, in Alsace, France.

On a national level, the Bouillante power plant in Guadeloupe is the first geothermal
power plant in France that has been put into production in 1986. In a perspective of
energy transition, France has developed an energy transition plan (ADEME 2011 report
with two main objectives: 23% of renewable energy (all sectors combined) and 80 MW
of geothermal electricity in France by 2020. By examining this roadmap, one can see the
special emphasis on geothermal energy for the production of electricity. In this context,
an innovative project (GEOTREF) of national scope was launched in 2014.

The GEOTREF project (GEOThermie haute énergie dans les REservoirs Fracturés,
http://www.geotref.com ) is a multi-laboratory project involving a dozen French labora-
tories and three private companies. The project is funded by the Agency for Development
and Energy Management (ADEME) for an initial budget of 43M e (in the scope of “In-
vestissement d’Avenir”). The main objective of the project is to improve the understanding
of geothermal reservoirs and to develop of innovative technical and computing tools. It is
within the framework of GEOTREF that the work of this thesis is inscribed.

The characterization of a high-energy fractured geothermal reservoir generally requires
sequential splitting of tasks in the following manner (i) characterization of the geological
attributes of the reservoir, (ii) thermo-hydraulic simulation, in dynamic regime, of the
reservoir and (iii) coupling with the generation of electricity. The thesis is located at
the interface between the first two axes (geological characterization of the reservoir and
thermo-hydraulic simulation of the production of fluid and heat).

The fractured reservoir contains a rock mass (permeable or not) in which there is a
system of fractures. Given the depth of fractured geothermal reservoirs, the characteriza-
tion of the nature and characteristics of fracture networks is a major challenge. Despite
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the technology deployed in this characterization, exact knowledge about the nature of frac-
tures in the subsurface remains very modest. A general review of the description of fracture
systems and their attributes has been carried out. The methods used to describe fracture
systems and the techniques deployed to characterize fractured rocks in the field are briefly
studied in this thesis.

Fractures exist in rocks at different scales and their properties show heterogeneity at
all scales of observation. Thus, the homogenization of the thermo-hydraulic properties of
fractured rocks is necessary. The homogenization is here obtained by upscaling techniques,
which consist of obtaining equivalent properties (at large scale, with a size of the order of
the reservoir) from the local properties (at small scale, a size of the order of a fracture or
a carrot of porous rock).

The permeability of a fractured rock plays a key role in the heat transport by the
fluid (usually water) through the fracture system and the porous matrix. A particular
interest is shown, in this thesis, for the homogenization of the permeability of a porous
fractured rock (where the rock mass itself can be permeable). The homogenization of
the permeability is obtained here by the upscaling technique. A rapid methodology to
obtain the equivalent permeability of a fractured rock volume is presented (Rajeh et al.,
2019). The homogenization technique developed is based on the superposition principle
with empirical coefficients allowing taking into account the percolation and connectivity
of the fracture network.

The specificity of the fracture geometry makes homogenization in the presence of frac-
tures more complicated than for non-fractured permeable rocks. The difficulties mainly
concern the detection of percolation and the details of the fracture network connections.
The taking into account of these difficulties have led us to collaborate with Israel Canamon
(Madrid School of Mines) in order to develop new algorithmic tools for analyzing the geo-
metric and topological properties of 3D fracture networks. These tools have subsequently
made possible to carry out finer analyzes of different properties of fracture networks such as
percolation and the Clustering phenomenon, among others. Thus, a graph representation
of fracture networks has been developed, which opens up new perspectives for simulation
and upscaling in fractured rocks.

The link between the homogenization of the permeability and the task of evaluating
the resource and the operational functioning of the geothermal reservoir is presented by
an application concerning reservoir scale simulation. For this purpose, a thermo-hydraulic
simulation tool called “GeothFoam” has been developed with the OpenFoam code in order
to simulate geothermal exploitation scenarios with injection (cold water) and production
(hot water or steam) wells.

The thesis is organized in five chapters. In the first chapter, the description of geological
and hydraulic characterization of fractures and fracture networks is presented. The details
of the generation of synthetic numerical samples of fracture networks are also specified.
Chapter 2 then presents the description and implementation of numerical permeability
upscaling techniques. The technique of upscaling by superposition is developed in detail
(Rajeh et al., 2019). In chapter 3, the algorithmic developments concerning the treatment
of detailed geometrical and topological properties of the fracture network are presented.
The detailed validation, by comparison with the commercial software Comsol Multiphysics,
of these algorithms and their computational efficiencies are highlighted. Chapter 4 presents
the new approaches developed in this thesis concerning percolation, clustering, fracture net-
work connectivity, and graph-based flow simulation in fractured rocks. The last chapter
presents the mathematical formalism for reservoir scale thermo-hydraulic modeling, the
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numerical simulation tool developed with OpenFom, and an example of geothermal reser-
voir scale application. A general conclusion and perspectives are given at the end of this
thesis.
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Chapter 1

Fractures and Fracture Networks:
Description and Generation

1.1 Introduction

Geologic formations, in general, are heterogeneous over a large range of scales. Fractured
rocks are even more heterogeneous because of the existence of fracture systems embedded
in the rock. Although our main interest in this thesis concerns the hydraulic and thermal
properties of the fractured rock at large scale (i.e., the reservoir scale), it is of great impor-
tance to gain sufficient knowledge about the geologic nature of fractures, the mechanisms
of their formation, their geometric and physical properties, etc. Hence, the aim of this
chapter is to give a description of the nature of fractures and of fracture networks and
the methodology of their identification. To realize this goal, this chapter is organized as
follows. Firstly (Sect. 1.2) , the interest is focused on the geometrical and physical prop-
erties of a single fracture: the type of fractures encountered in nature are briefly described
and a summary of the attributes of a fracture are listed. Secondly (Sect. 1.3), a review
of the methods used to describe and/or numerically generate fracture networks is given.
The methods are divided into three categories (geological, mechanical and stochastic) and
the advantages and the limitations of each method are also described. Thirdly (Sect. 1.4),
the method used in the present work is described. Finally, a conclusion about the topic of
fracture networks generation and its relation with the remaining of the thesis is given.

1.2 Geometrical and physical properties of a single fracture

In geology, the term fracture is attributed to a mechanical discontinuity in the rock mass
[National Research Council (1996)]. Generally, a fracture is viewed as two rough surfaces
separated by void or filled space. Based on the mechanical type of displacement that
creates the fracture, fractures are classified into three major groups: (i) dilating fractures,
(ii) shearing fractures and (iii) pressuresolution surfaces. The first two groups are also
called modes (mode I, mode II and mode III). The dilating fractures (mode I) result from
the displacement of the two surfaces away from each other in the direction perpendicular to
them. The shearing fractures (mode II) results from the displacement of the two surfaces
parallel to each other and perpendicular to the fracture front. Similarly modee III results
from the displacement of the two surfaces parallel to each other but parallel to the fracture
front. Figure 1.1 is a schematic representation of these three modes adopted from [Pollard
and Aydin (1988)].
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CHAPTER 1. FRACTURE DESCRIPTION AND GENERATION

Figure 1.1: The three modes of displacement (modes I, II and III) at the origin of the
creation and propagation of fractures (from [Pollard and Aydin (1988)])

These fractures can be found at all scales: from the microscopic scale to continental one.
Hence, one can also classify fractures based on their spatial extension. Usually, three scales
can be mentioned [Macé (2006)]: (i) microscopic scale fractures, (ii) mesoscale fractures
(metric scale) also known as joints and finally (iii) the large scale fractures commonly
known as faults.

Fractures, independently from the observation scale, share geometrical and physical
characteristics. The geometrical attributes of a single fracture are as follows:

• Fracture location

The first attribute of a fracture is its position in space. The fracture position can be defined
by the geometrical coordinates of its center (XF , YF , ZF ). The determination of a fracture
position remains a challenge in modeling fractured rocks due to underlying uncertainty.

• Fracture shape:

It is difficult to attribute a precise shape to a fracture embedded in a rock mass. Usually
fracture is considered to be a space between two surfaces. The topology of the two surfaces
is complex [Adler and Thovert (1999)]. Nevertheless, it is widely assumed, in fracture
models, that the two surfaces are planar which is a considerable assumption. The outer
contour of the fracture is also of complex shape. However, it can be modeled by some
standard shapes such as polygons, rectangles, circles, ellipses etc. [Adler et al. (2012)].

• Fracture aperture

The fracture aperture refers to the mean distance between the two surfaces. This space
can be totally open or can contain material (e.g., rock debris). The space could be totally
occupied by materials that have precipitated during past fluid circulation through the
fracture. In the latter case, the fracture is closed and fluid is not able to pass throw it.
Alternatively, the material filling the space between the surfaces of the fracture could be
permeable and hence enabling the circulation of fluids. In real cases, fracture aperture
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CHAPTER 1. FRACTURE DESCRIPTION AND GENERATION

should be modeled using a variable function inside each fracture. [Adler et al. (2012)]
present correlated distribution functions of aperture inside single fracture. Nevertheless, it
is widely assumed that a fracture has constant aperture; for example, the mean distance
between the two surface of the fracture.

• Fracture size:

The fracture size represents its spatial extension. This size is dependent on the fracture
shape. Along with the assumption of polygonal fractures, the assumption of disc shaped
or elliptical shaped planar fractures is also widely used. Here we focus on planar disc
fractures.For example, if the fracture is modeled as a planar disc (which is a widely used
assumption), the diameter of the fracture, DF , is a measure of its size.

• Fracture orientation:

The fracture orientation has its first definition from geologists for whom the dip direction
and the dip angle, with reference to the geographic north, are the measure of the fracture
orientation. A much simpler orientation definition can be adopted by defining the classical
polar angles of the normal vector to the fracture plane as illustrated in Fig. (1.2).

Figure 1.2: Representation of the two spherical angles ( θ, ϕ) defining the orientation of
the unit vector “n” (normal to a given planar fracture) with respect to the global frame of
the homogenization domain. Here the domain is parallelepipedic, and a single fracture is
shown for clarity.

The physical properties of a single fracture are as follow (here only properties directly
related to hydraulic are listed):

• Fracture porosity

The porosity θ of a material of volume V is generally defined as the fraction of void in
that volume (i.e., θ = Vvoid

V ). As mentioned earlier, fractures are not always totally open.
If the fracture is totally open, its porosity would be θF = 1. In reality and because of the
presence of filling material inside the fracture, the fracture porosity varies between 0 and
1. Hence, a closed fracture have no porosity (i.e., θF = 0).

• Fracture permeability

The fracture permeability kf is a measure of how easily fluid flow through the fracture.
More extended definition of fracture permeability and its derivation is given later in Chap-
ter 2.
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CHAPTER 1. FRACTURE DESCRIPTION AND GENERATION

1.3 Generation of fracture networks: a review

In order to understand flow and transport processes in fractured rocks, it is crucial to
possess minimum knowledge of fracture network properties. Fractures constituting the
network can either be natural or engineered. The description of fracture network prop-
erties is the aim of the concept of “Discrete Fracture Network” (DFN). A DFN refers to
a computational model that explicitly represents the geometrical properties of each indi-
vidual fracture (e.g. orientation, size, position, shape and aperture) [Lei et al. (2017)].
Typically, none of these fracture attributes is well known by available data. Usually, the
subsurface data about fractures are gathered directly from wellbore samples and analogues
outcrops or indirectly from seismic measurements. The direct measurement (i.e., wellbore
samples,) gives very limited information about fracture properties due essentially to the
restricted size and number of samples. The indirect technique (seismic) is also very limited
because of its indirectness. Hence, it is very difficult to give a precise three-dimensional
description of fractures and usually field data are collected from lower dimensional obser-
vations (2D description from outcrop mapping and 1D description from well logging).

Extensive researches have been conducted in recent decades to overcome the difficul-
ties related to fracture characterization. The detailed works can be found in a recent
review on the topic [Lei et al. (2017)]. It comes out from these works that there exist
three main methodologies for generating fracture networks. The three methods are (i) the
geologically-mapped fracture network, (ii) the stochastically-generated networks and (iii)
the geomechanically-generated fracture networks. Ideally, these three methodologies are
combined with each other in a single framework in order to reduce uncertainty and to take
into account the available data. A detailed description of the three methods is now given
in the following sub-sections.

1.3.1 Field-mapped fracture networks

A geologically mapped fracture network is a fracture network deduced from direct or in-
direct observations. Generating fracture networks from geological data is the most precise
way of characterizing fractured rocks. These geological data came from three main sources
[Macé (2006)]: (i) Well observations and core drilling, (ii) exposure outcrops and (iii)
seismic signal interpretations.

The first type of data (Core drilling) is obtained during drilling or excavation. Once
analyzed, these cores give precise informations about fracture characteristics except their
spatial extension and this is due to the small size of the cores (the order of magnitude of the
well diameter). However, recovering cores is very expensive and the analysis is complicated
and time consuming. Additionally, multiple imaging techniques (Borehole Televiewer,
Formation MicroImager FMI) has been used to extract images of the wellbore wall and
post process them in order to characterize fracture characteristics around the wells and
finally generate the corresponding 3D fracture networks by optimization techniques[Zhang
et al. (2000)]. Canamon (2006) analyzed trace maps from different boreholes in a granite
rocks in the southern part of the Central Massif and a 3D fracture network had been
generated accordingly. Recently, [Thovert et al. (2011)] studied the reconstruction of a
fracture network observed in an underground gallery of a tunnel buried in clay stones in
Switzerland, below Mont Terri.

The second type of data comes from direct observations on analogues exposures. Ana-
logue outcrops are emergent rock volumes considered to have similar properties as the
underground rock of interest [Hennings et al. (2000)]. If this similarity is demonstrated,
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which is a delicate demonstration; one can characterize the fracture system of the out-
crop and then conclude about the fracture system of the underground. However, these
outcrops give only two-dimensional representation of the fracture system. Hence, multiple
techniques and assumptions are needed in order to estimate the real 3D fracture network
[Wennberg et al. (2005)].

The third type of data (Seismic) concerns determining a fracture description in the
underground rock based on the interpretation of seismic signals. Seismic data are used to
build 3D maps of large-scale (Metric and above) faults. However, the limited resolution of
the signal does not enable to capture detailed features such as small cracks [Kattenhorn
and Pollard (2001)]. An example of geologically-mapped fracture system if presented in
Fig. (1.3).

Figure 1.3: Geologically-mapped DFN patterns based on (a) a limestone outcrop at the
south margin of the Bristol Channel Basin, UK, (b) sandstone exposures in the Dounreay
area, Scotland, and (c) fault zone structures in the Valley of Fire State Park of southern
Nevada, USA. From [Lei et al. (2017)]..

1.3.2 Stochastically-generated fracture networks

Due to the high difficulty of performing a complete identification of the 3D fracture systems
embedded in subsurface, stochastic approaches have been developed and widely used for
decades [Dershowitz et al. (1988)]. In the 1980s, number of works, using stochastically-
generated fracture networks, had been performed in order to study the percolation prop-
erties of 2D and 3D finite-size fracture networks [Balberg et al. (1983), Robinson (1983)].
Furthermore, many studies regarding fluid flow in fracture networks have been conducted
on 3D stochastic networks[Long et al. (1982), Long et al. (1985), Anderson et al. (1984)].

The general stochastic DFN approach assumes fractures to be straight objects in two
or three-dimensional space. Usually, fractures are modeled as straight lines in 2D. In 3D,
many fracture shapes have been adopted like discs, polygons, rectangles, ellipses etc... Once
the fracture shape fixed, the rest of geometrical properties (e.g. position, size, orientation,
aperture) are treated as random variables ( independent or not) obeying certain probability
distributions [Beacher (1983)]. These variables can either be totally random or obeying
specified distribution functions which are derived from field measurements such as borehole
imaging [Zhang et al. (2000)] as well as scan line [Priest (1981)] or window sampling
[Kulatilake (1984)] of outcrop traces or other mapping techniques as mentioned in the
previous section. For example, the orientation data can be processed using stereogram
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so that fractures can be grouped into different families with respect to their orientations.
[Einstein et al. (1983)] reported several distribution functions for the orientation like
uniform, normal or Fisher among other distributions. Fracture size is usually attributed
to the equivalent radius of the circumscribed circle of the fracture ([Adler et al. (2012)]).
Fracture sizes may exhibit several distributions such as log normal, gamma or power law
distribution as reported in [Davy (1993)].

The random nature of the stochastic DFN method may be regarded, at first view, as
a major inconvenient of stochastically-generated networks. However, this random nature
can be seen as an advantageous aspect, as explained in [Lei et al. (2017)], because un-
certainty is unavoidable when analyzing complex geological systems. For fractured rocks,
single-valued predictions from limited deterministic methods (e.g., geologically-mapped
methods (Sect.1.3.1)) may be even more risky [Herbert (1996)]. [Long et al. (1985)] have
highlighted the important difference between 2D and 3D fracture networks with respect to
connectivity and permeability. This difference renders another advantage of the stochastic
method, which has an intrinsic capability of generating 3D networks. However, it is still
very important to continue improving the realism and accuracy of stochastic DFN mod-
els because unrealistic DFNs may lead to systematically biased physical properties of the
fractured medium (e.g. permeability, connectivity, etc.). Hence, it is of critical importance
to understand and quantify the uncertainty while generating fracture networks. Current
efforts concern the combination of the three generation methods (i.e., geologically, mechan-
ically and stochastically) in a way to obtain the most realistic possible representation of
the fracture system in the subsurface. An example of a stochastic network is given in the
following figure (Fig. (1.4)) .

Figure 1.4: 3D Poissonian statistically isotropic fracture network with constant fracture
size: this network has been generated with an in-house e matlab code for fracture netwrok
generation.

1.3.3 Geomechanically-generated fracture networks

Extensive studies have been conducted to interpret the geological history and the me-
chanical processes that could explain the formation of natural fracture systems [National
Research Council (1996)]. The increased knowledge of fracture mechanics promoted the
development of geomechanically based DFN models that incorporate the physics of frac-
ture growth and simulate fracture network evolution as a geometrical response to stress
and deformation.[Renshaw and Pollard (1994)] were among the earlier to use numerical
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simulations based on a mechanistic model to predict the formation and propagation of
fractures and validated their results with experimental observations. Different numerical
methods have been used to generate DFN’s inspired from geomechanics and based on linear
elastic fracture mechanics. The process of fracture generation is performed in four main
steps in an iterative manner [Paluszny et al. (2009)]: (i) generation of initial mechani-
cal state of the rock to mimic the process by which natural fractures initiate from micro
cracks, (ii) calculation of the perturbed stress field in the rock under imposed boundary
conditions, (iii) derivation of the stress intensity factor at the tip of each fracture and (iv)
propagation of fractures which satisfy a growth criterion (e.g., the criterion of sub-critical
law [Atkinson (1984)]). Many studies used the mechanical approach to generate physically
coherent fracture networks and reviews on the subject can be found in the literature (see,
for instance, an extended review by [Jing (2003)]). Additionally, some pseudo-mechanical
procedures can be used. The pseudo-mechanical methods for fracture network generation
are constrained stochastic methods in which mechanical conditions for fracture formation
and propagation are integrated in the stochastic generator. For example, [Bonneau et al.
(2013)] developed a pseudo-genetic method to generate stochastic fracture models that are
consistent with patterns observed on outcrops and fracture growth principles (Fig. (1.5)).
More recently, [Bruel (2018)] has developed a geo-mechanically based approach aiming at
reproducing the fracture network developing in an extensional context by capturing some
pattern inherited from mechanical processes.

Figure 1.5: Geomechanically-generated 3D fracture network from [Bonneau et al. (2013)]

1.4 Fracture network generation in the present work

It comes out from the review presented in the previous section that describing the fracture
system in a given field (e.g., a subsurface reservoir) is a very complicated and human
resources consuming task. In engineering applications, this task (the description of the
fracture system) can either be dissociated or not from the rest of the reservoir evaluation.
As the present work is part of a multi-disciplinary project, we have the opportunity in
the framework of the project to work with experts in field studies of fractured rocks (e.g.,
geology, geophysics etc.). However, one should have in-house numerical tools to generate 3D
fracture networks, sophisticated enough to permit the study of the physical (hydraulic and
thermal) behavior of the fractured reservoir. In the present thesis, we use the stochastically-
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generated fracture networks as the main type of networks to consider in the remaining of
this work. This choice is justified by the efficiency and the fast implementation of this
method in one hand and by the lack of the available data (at least at the present state of
the project) on the other hand. The procedure of generation of the fracture networks used
along this thesis is now described. First, the domain size of the hypothetical mass rock is
defined in 3D. Usually, a parallelipipedic domain is adopted as illustrated by the red cube
in fig. (1.6).
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Figure 1.6: Poissonian 3D fracture network in a 10 × 10 × 10 [m] cubic domain (red).
The fracture size obeys a truncated Pareto law with Rmin = 0.5 [m] and Rmax = 2.5 [m].
The mean azimuth angle of the normal vector to fracture planes is 45 and the standard
deviation is 15. This network is generated with an in-home Matlab script.

Once, the 3D domain limits are fixed, the number of fractures to generate can be
calculated given the density of fractures which is a user input. At this stage, each attribute
of fractures is generated independently with various possibilities of distribution functions.
The generation of the different attributes is as follows:

• Distribution of fracture shape

Only two possible shapes are considered in the present work: circular and elliptic. The
extension to other fracture shapes studied in the literature (polygons, rectangles etc.) are
kept as extensions to this work.

• Distribution of fracture position

It is widely assumed that the fracture position (X, Y and Z coordinates of the fracture
center) obeys to Poisson distribution function. This assumption is adopted in the developed
fracture generator. The neutrality of the Poisson law is explained by the fact that the
probability of finding N1 fractures in a given region 1 is independent from the probability
of finding N2 objects in a disjoint region 2.

• Distribution of fracture orientation

A direction of a fracrture is determined by two angles of orientation by defining the classical
two polar angles of the normal vector to the fracture plane. In this work, fracture network
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is divided into families or sets. Each of them is defined by a mean principal directions and
the standard deviations around the mean values of the two polar angles. A 3D statistically
isotropic network corresponds to the case where the standard deviation is equal to 2π.
For example, Fig. (1.6) presents a poissonian network with anisotropic distribution of
orientation: a pole around the mean angle θ̂ = 45 and a standard deviation of 15 around
this mean value.

• Distribution of fracture size

As fractures are assumed to be planar objects in 3D, a measure of fracture size can be
modeled by the radius of the equivalent circle corresponding to the fracture contour (a
circle with same area as the actual fracture). Fracture networks can be mono disperse and
in that case the fracture radius RF is kept constant. Usually, fractures have different sizes
depending on the mechanical conditions of their formation and propagation (cf. previous
section). The cases of non-constant fracture size correspond to poly disperse networks. To
model the fracture size, many distribution function can be used depending on various field
observations [Davy (1993)]. For more details on various fracture size distributions, one can
refers to [Bonnet et al. (2001)]. In thiq work, fracture size in poly disperse networks is
modeled by truncated Pareto law. The general expression of a truncated Pareto law in a
fixed range of values [Rmin, Rmax] ,is given by Eq. 1.1

P (R) = C
Rα , if R ∈ [Rmin, Rmax]

P (R) = 0, if R /∈ [Rmin, Rmax]

(1.1)

where C and α are the parameters of the Pareto law and R is the the fracture radius.

• Distribution of fracture aperture

It is assumed in this work that aperture is left constant over the network. However, it
can be presented by a distribution and can be correlated to the fracture size. Beside the
previous stochastically generated fracture networks, it is possible to combine them with
deterministic fracture system. All the previous generation techniques are implemented in
an in-home Matlab scripts initially developed in (Canamon 2006).

1.5 Conclusion

Definitions and descriptions of fracture and fracture networks are given. The main conclu-
sions from the review of fracture and fracture network generation can be listed as follows.

• The identification of the geometrical and physical attributes of a single fracture
or a system of fractures in natural geologic formations is a very complicated task. It
needs interdisciplinary skills, adequate technical equipment’s and a considerable amount
of working time.

• The full three-dimensional description of the fracture system in subsurface reservoir
is impossible.

• The generation of fracture networks can be performed mainly using three major meth-
ods: geologically-mapped generation, stochastic generation and geomechanical generation.

• Ideally, for generating realistic fracture networks, a combination of the three methods
is needed. Stochastic simulation of fracture networks is generally required. Additionally,
the characteristics of the fracture sets and fracture network, i.e. fracture orientation, sizes
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and aperture, but also the interactions, repulsions, connections and other relationships
between fractures can be observed and described using geological maps, outcrops or ge-
omechanical models.

The generation procedure adopted in this work is the stochastic one. The main reasons
of this choice are: (i) available data on the fracture network description are limited, (ii)
as our focus is about hydraulic and thermal behavior of fracture rock at reservoir scale,
this task was attributed to more specialized team in the GEOTREF project and (iii)
the stochastic method is the more efficient and easy to implement in order to obtain
3D fracture networks and finally (iv) the stochastic method permit to have unlimited
networks enabling to test the validity of the methodologies and conclusions derived from
this thesis. To sum up, the fracture network generation is viewed as an upstream task
regarding our focus on deriving macro-scale properties of fractured rock at reservoir scale.
Although the method used to generate fracture networks is stochastic, the majority of the
numerical and theoretical tools developed in the framework of this thesis and the underlying
conclusions can be easily extended to more realistic networks generated by other teams
(geologists, geomechanists etc.). However, more constraint models of DFN’s taking into
account abutting, bed control, swarms etc., which are even more realistic, are not studied
in this work and are kept as perspectives.
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Chapter 2

Fast Upscaling of Permeability of a
Fractured Porous Rock

2.1 Introduction

This chapter is mainly constituted from the research paper of Rajeh et al. (2019)1. The
following is a short introduction to the published work.

Rock permeability presents one of the most important properties regarding flow and
transport processes. This aspect is very important for many applications like unconven-
tional gas and petroleum engineering, radioactive waste storage, carbon sequestration,
geothermal energy extraction, etc. Permeability of the fractured porous rock has to be
obtained at reservoir scale. As seen in the previous chapter, the permeability is a local
property that is assigned to a single fracture. To obtain permeability at larger scale (e.g.,
reservoir grid scale), one has to use homogenization or upscaling techniques. Usually, the
upscaling techniques are based on detailed flow simulations in the fractured porous me-
dia. These techniques are computationally expensive especially in three-dimensional cases
with dense fracture networks. Beside these flow simulation techniques, there exist other
approximate approaches to evaluate equivalent permeability. Although these methods are
approximate, they are generally much faster than the flow simulation-based techniques.The
determination of the equivalent properties of fractured rocks has been under important re-
search efforts in the past two decades (e.g., [Renard et al. (1997), Adler et al. (2012), de
Dreuzy et al. (2001)] to name a few). A review of these methods is given at the beginning
of this chapter ( the paper by Rajeh et al. 2019). We propose a fast upscaling approach
based on the superposition principle. This new method is, itself, based on previous works
(Snow (1969), Oda (1986), Canamon (2006)). The improvements given in the present work
concern essentially (i) a simplified approach to implement the superposition method, and
(ii) the introduction of empirical connectivity factors to take into account the percolation
properties and the connectivity of the fracture network.

1Addendum. One point has to be clarified concerning the published paper (Rajeh et al. 2019). In
section 4.2.2.2 of the paper, it was mentioned that in the work of [Mourzenko et al. (2005)], the critical
percolation density ρEX,C does not depend on the fracture size; however this was a false interpretation. In
fact, in the work of [Mourzenko et al. (2005)], the dependence of ρEX,C was revealed and an approximate
universal formula for ρEX,C was proposed in which ρEX,C is not dependent of fracture size (Eq.26 in
[Mourzenko et al. (2005)].
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2.2 Fast Upscaling of Hydraulic Conductivity of Fractured
Porous Rock: Rajeh et al. (2019)
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1 Introduction

Geologic formations are heterogeneous over a broad range of scales. Small-scale
heterogeneity must be represented at some coarser scale for feasible yet accurate simu-
lations of flow and transport phenomena in reservoirs. The key parameter for hydraulic
simulation, the hydraulic conductivity, is upscaled to a coarser grid by assigning an
equivalent conductivity KEQ to each cell of the coarse grid. The equivalent hydraulic
conductivity KEQ should be distinguished from the effective hydraulic conductivity
KEFF. The equivalent conductivity KEQ can be defined for any finite domain with spe-
cific boundary conditions, based on equivalence criteria (as done later in this paper).
The effective conductivity KEFF is usually defined theoretically for infinite domain. In
the case of a continuous heterogeneous porous medium, and assuming that the local
conductivity K(x,y,z) is modeled by a statistically homogeneous and ergodic random
function of space, the quantities KEQ and KEFF coincide in the limit of infinite upscal-
ing domain. In the remainder of this introduction, a brief literature review of basic
theoretical results on conductivity upscaling for heterogeneous porous media will be
presented. Secondly, some of the most common upscaling methods and algorithms
available in the literature will be presented. Finally, a summary description of the
organization of this paper will be provided.

Theoretical results on equivalent conductivity are found in the literature in two
forms, as bounds or as analytical relations. For heterogeneous porous media, the
equivalent hydraulic conductivity must satisfy two fundamental inequalities called
“Wiener bounds” (Wiener 1912). These bounds have been demonstrated in many
works (Wiener 1912; Cardwell and Parsons 1945; Matheron 1967; others). They are
given by

KH ≤ KEQ ≤ KA, (1)

where KA and KH represent respectively the arithmetic and the harmonic mean of
hydraulic conductivity.

Other narrower bounds (or tighter bounds)1 have been obtained in the literature
for the equivalent hydraulic conductivity, but their domain of applicability is usually
restricted to particular types of spatial distribution or probability distribution of the
heterogeneous conductivity. The most known are the “HS” bounds (Hashin and Shtrik-
man 1963), which are valid only for the case of isotropic binary media (as explained
further below). These bounds are given by

KA − f1 f0(K1 − K0)2

(1 − f0)K0 + f0K1
≤ KEQ ≤ KA − f1 f0(K1 − K0)2

(1 − f1)K1 + f1K0
, (2)

1 The terms “narrow bounds” and “tight bounds” both refer to the case where the lower and upper bounds
(KLOW and KUP) are relatively close to each other; obviously, the inequality becomes an equality in the
ideal case of equal bounds (KLOW � KUP).
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where the labels 0 and 1 refer to the two conductive media (“binary mixture”). Thus, K0
and K1 represent respectively the hydraulic conductivities of medium 0 and medium
1; f 0 and f 1 represent the volumetric fractions of the two media; and KA and KH are
the arithmetic and harmonic means of the binary conductivity distribution.

These HS bounds are theoretically relevant only for isotropic binary media. A frac-
tured porous medium may be modeled as a matrix/fracture binary medium; however,
the conductive porous matrix “0” and the conductive fractures “1” do not constitute
an isotropic mixture. In addition, even for the ideal case of isotropic binary mixtures,
the HS bounds in Eq. (2) may be far apart from each other. To sum up, keeping in
mind the objective of upscaling fractured porous media, the HS bounds have several
limitations: the assumed isotropy of the binary medium (a theoretical limitation), and
the possible lack of tightness of the bounds (a practical limitation).

Analytical expressions for the equivalent hydraulic conductivity have been obtained
in the literature, but only for some limited types of heterogeneous media (spatially
correlated heterogeneity), or only for special types of discontinuous fractured media.
Thus, Matheron (1967) obtained an analytical relation for the macroscopic permeabil-
ity of a continuous, randomly heterogeneous medium where the local permeability
K(x) is a random field, under additional hypotheses of statistical homogeneity, isotropy,
and ergodicity.2 More precisely, Matheron’s expression is theoretically valid under
several hypotheses: (i) Euclidean space is two-dimensional; (ii) the mean flow field
is uniform; (iii) the spatial distribution of K(x,y) is statistically invariant under π /2
rotations (which is implied by statistical isotropy); and finally (iv) the probability
distributions of K/KG and its inverse KG/K should be identical.3

In particular, as a special case, Matheron’s relation holds for two-dimensional
isotropic spatial distribution of K(x,y) in an infinite domain, provided that the proba-
bility density function (PDF) of ln(K) is symmetric (footnote 3). Matheron’s relation
is given by

KEQ � E(K )1/2
[
E(K −1)

]−(1/2)
, (3)

2 Homogeneity, ergodicity, isotropy. A random field, such as K(x) or lnK(x), is a random function of
position (x). The moments of a statistically homogeneous, or “stationary”, random field are invariant by
translation. Ergodicity refers to the convergence of spatial averages (spatial moments) to ensemble averages
(ensemble moments), in the limit of infinite spatial domain. In practice, only the 1st and 2nd order moments
are considered (2nd order stationarity and ergodicity). Finally, statistical isotropy refers to the case where
the moments of the random field are invariant by rotation.
3 Probability distribution of a random field F(x). One should distinguish the single-point probability law
of F(x), from its general multipoint probability law. In the case of a Gaussian random field, the one-point
and two-point moments suffice to entirely define its multipoint probability law. In the two-dimensional case
at hand, if F � lnK(x,y) is assumed Gaussian (in the sense “multi-Gaussian”), then K(x,y) is by definition
a “log-normal” random field. In that case, it can be shown that K/KG and its inverse KG/K both have
well defined multipoint laws (log-normal) with the same moments. Furthermore, the mean, variance and
two-point covariance of the log-normal K(x,y) can be explicitly related to those of the Gaussian lnK(x,y).
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where E(K) is the mathematical expectation of K . If K is log-normal (that is, if lnK
Gaussian, i.e., multi-Gaussian) then Eq. (3) specializes as: KEQ � exp{E(lnK )} � KG,
which is the geometric mean of K . This relation is also applicable to two-dimensional
networks of conductors (Marchant 1977). For more discussions on the probability
distribution of K and its consequences, one can refer to Matheron (1967), Ababou et al.
(1989) and Zinn and Harvey (2003), as well as the previous footnote. Note also that
for a layered medium or for a porous medium containing a parallel set of fractures, the
infinite domain equivalent conductivity is the arithmetic mean conductivity if the flow
is parallel to the layers and the harmonic mean conductivity if the flow is perpendicular
to layers. This classical result has been demonstrated and re-used by many authors
since Wiener (1912).

Except for a few results such as those mentioned above, there is no analytical
“formula” for determining the equivalent hydraulic conductivity of general three-
dimensional fractured porous media, with planar disc fractures. However, many studies
in recent decades have led to approximate methods for estimating the equivalent
(upscaled) conductivity of a heterogeneous medium. Approximate upscaling methods
do not require the direct numerical solution of the detailed equations governing flow
in the heterogeneous medium, which are computationally very demanding in terms of
CPU time and memory capacity. Indeed, direct numerical simulations require the dis-
cretization of the entire fractured porous domain (planar fractures and porous matrix),
which leads to a great number of grid nodes or cells, because fracture apertures are very
fine compared to porous matrix blocks or to fracture spacing. Among these approxi-
mate upscaling methods, the most popular are the self-consistent method (also known
as effective medium theory), power averaging methods, and renormalization methods,
among others.

The self-consistent method was introduced by Budiansky (1965) in a different
context. Dagan (1979) applied the method for upscaling hydraulic conductivity in
heterogeneous porous media. He considered a multiphase material made up of homo-
geneous blocks or “inclusions”, with conductivities Kj (j �1,…, N). The blocks are
distributed at random in a domain of infinite extent. The following expression was
obtained for the effective hydraulic conductivity (Dagan 1979)

KEFF + (m − 1) KM �
⎡
⎣

∞∫

0

f (K ) dK

(m − 1)KEFF + K

⎤
⎦

−1

, (4)

where the unknown quantity is KEFF, the effective conductivity of the random porous
medium; KM is the conductivity of the porous matrix; “m” is the dimension of
Euclidean space (m � 3 for a three-dimensional problem); and f(K) is the probability
density function (PDF) of the random conductivity variable K . Note that the implicit
relation in Eq. (4) must be solved or “inverted”, for a given f(K), in order to extract
from it the effective conductivity KEFF. This can be done analytically or numerically,
depending on the probability law of K. The validity of the self-consistent Eq. (4) is lim-
ited due to some restrictive hypotheses and approximations. This relation was obtained
by an approximate calculation of the pressure field around each “block”, assuming
that each block is spherical, and replacing the medium surrounding each block by a
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homogeneous matrix having the (unknown) conductivity KEFF. It is also assumed that
the averaging volume is large compared to the single block inclusion. Pozdniakov and
Tsang (2004) generalized the self-consistent method to ellipsoidal inclusions, which
could represent fractures. More recently Sævik et al. (2013) proposed three varieties
of the self-consistent formulation to ellipsoidal fractures. However, the self-consistent
method provides a good estimation of KEFF only in the case of poorly connected
fractures or inclusions (“diluted limit”).

On the other hand, several authors have proposed different types of power-averages
to estimate the equivalent or the effective hydraulic conductivity of a heterogeneous
medium. The power average is of the form: Kii,EFF �E(KPi)1/Pi. Thus, Ababou (1990),
Ababou et al. (1994) proposed a power average expression for the principal compo-
nents of the effective conductivity tensor Kij,EFF in an N-dimensional medium, where
the N exponents (powers Pi) were expressed in terms of N correlation scales (λi). Other
authors investigated various semi-empirical formulae for power average upscaling
(Journel et al. 1986; Deutsch 1989; Le Loc’h 1988; Dimitrakopoulos and Desbarats
1997; Desbarats 1992). Finally, let us mention some other approximate upscaling
methods which are usually implemented numerically, but can also be viewed as quasi-
analytical methods. Thus, Renard et al. (2000) proposed and implemented a heuristic
method to calculate the equivalent conductivity based on the renormalization method.
Their method is based on a combination of the bounds of Cardwell and Parsons. The
resulting equivalent conductivity takes into account the three-dimensional geomet-
ric anisotropy of the medium, and yields a diagonal equivalent conductivity tensor
(the principal directions of anisotropy are not computed, which is a limitation of the
method).

The superposition method of Snow (1969), Kiraly (1969) and Oda (1985, 1986),
yields equivalent conductivity of a fractured rock assuming impervious porous matrix.
The method can be considered as another type of “fast” quasi-analytical upscaling
method. The superposition method is exact only in special cases, such as parallel
fracture networks. It has been extended to three-dimensional porous media with planar
fractures and with non-negligible matrix permeability (Cañamón 2006; Ababou et al.
2011). For more details on this topic, see paragraph around Eq. (5) and the end of
Sect. 2.2, where the superposition method is further discussed and compared with
previous approaches. This paper will be essentially based on this type of method and
several improvements and extensions will be provided.

In summary, some theoretical and approximate results from the literature on the
upscaled conductivity of a heterogeneous medium have been presented. The review
included analytical bounds and analytical expressions for effective conductivity in
specific cases. Approximate methods have been also presented for numerically eval-
uating the equivalent conductivity of a finite sample numerically, but without solving
the detailed flow problem in the heterogeneous porous sample (renormalization-type
methods; superposition-type methods). These results can be applied not only to porous
medium flow (hydraulic conductivity), but also to various other physical phenomena
such as electrical conduction and heat diffusion.

In this paper, our focus is on fractured rock. The need for upscaling is motivated
by modeling issues concerning geothermal exploitation, where coupled flow and heat
transport occur in the porous rock matrix and also in many rock fractures that cannot
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all be represented in detail. Upscaling the hydraulic conductivity leads to an equivalent
continuum that is easier and less expensive to model numerically. This constitutes the
main motivation of this paper. Now, given the available results and methods in the
literature, it appears that the upscaling problem is particularly difficult for the case of
fractured porous media, due mainly to the discontinuous nature and the large aspect
ratio of the conductive fractures included in the porous matrix. To tackle this problem,
this paper focuses on a “fast” superposition method which has already been used in
various forms in the literature, and which can be viewed as quasi-analytical. Our aim
in the remainder of this paper is to develop a more general type of “fast” upscaling
method, which can treat correctly (accurately) the case of fractured porous media in
three dimensions. This new method, to be developed here, is basically a modification
of the three-dimensional flux superposition method of Ababou, Cañamon et al. (2011),
itself based on the original superposition method of Snow 1969 and others. The goal of
this paper is to explain the novel superposition method and to demonstrate its validity
and limitations.

The remainder of the paper is, therefore, organized as follows. In Sect. 2, the pro-
posed “fast” superposition method will be explained in detail. Sect. 3 describes how to
obtain numerically the equivalent conductivity by direct flow simulations (this numer-
ical Keq will serve as a reference to test the validity of the “fast” upscaling method).
The validation will be presented in Sect. 4 for different types of fracture networks: “in-
finite size” fractures (defined further below) (Sect. 4.1); finite size fractures (Sect. 4.2);
and finally, the more general case where both “infinite” and finite size fractures are
present in the domain (Sect. 4.3). The important parameters in these analyses are: the
fracture diameters; the density and connectivity of the fracture set (via the notion of
excluded volume); and the fracture/matrix conductivity contrast (KF/KM ). Discus-
sions and conclusions will be presented in Sect. 5.

2 The Semi-analytical Superposition Method

2.1 General Description of the Method

Snow (1969) and Kiraly (1969) independently proposed a formulation for the equiv-
alent conductivity of a fractured rock, with “infinite size fractures”4 embedded in an
impermeable matrix. This basic approach was later reproduced or extended by several
authors (Oda 1986; others). Thus, a general expression of the conductivity tensor Kij

for a two-dimensional medium traversed by infinite size fractures was developed, and
the final result Kij was shown to depend only on the specific area and volume fraction
of each individual fracture (Ababou et al. 1994). Defining an ensemble of M subsets
of planar fractures, each with hydraulic apertures, sizes, and geometric parameters

4 Infinite size fractures. It is understood in this paper that the term “infinite size fracture” or “infinite
fracture” refers to any planar fracture that entirely crosses the upscaling domain. More precisely, if the
upscaling domain is a convex region of finite volume (e.g., a three-dimensional parallelepiped), then an
“infinite fracture” is a planar object that completely crosses the domain: it separates the domain in two
subdomains, and its trace on the domain boundary is a closed curve. If the upscaling domain is infinite,
then an “infinite fracture” is simply a planar fracture of infinite diameter.
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(orientation angles of the normal to the fracture plane), they obtained the equivalent
conductivity tensor of an arbitrary set of infinite-length fractures where each subset
(labeled “m”) is composed of Nm parallel fractures. The equivalent tensor is expressed
as

Ki j � 1

12

g

ν

M∑
m�1

A3
m

Lm

[
δi j − ni,mn j,m

]
, (5)

where Am is the mean aperture of the parallel fracture subset “m”; Lm is the mean
interspacing between fractures in parallel subset “m”; (δij) is the Kronecker symbol;
(ni,m) is the ith component of the unit vector normal to fracture subset “m”; “g”
is the acceleration of gravity (g �9.8 m/s2); “ν” is kinematic viscosity [m2/s]. It
should be mentioned that the number Nm of fractures within each parallel subset
“m” does not appear in the above expression because averaging within each parallel
subset has already been performed, resulting in the mean aperture “Am” and mean
spacing “Lm” of parallel set “m”. This expression (Eq. 5) was later generalized to
an arbitrary set of planar fractures of finite diameters and arbitrary orientations in
three-dimensional space, taking also into account a permeable rather than impervious
porous matrix (Ababou et al. 2011). The present paper is a further extension to better
take into account the possible lack of connectivity of the set of finite diameter fractures
(percolation effects).

In the present paper, each fracture is assumed a priori to have an anisotropic
hydraulic conductivity, which is expressed in the local coordinate frame of the fracture
as follows

KF �
⎛
⎝

K ||
F 0 0

0 K ||
F 0

0 0 K ⊥
F

⎞
⎠ , (6)

where K ||
F and K ⊥

F are, respectively, the parallel and orthogonal components of the
fracture conductivity tensor. These principal components could be obtained, in prin-
ciple, from direct measurements. Alternatively, the parallel fracture conductivity K ||

F
can be obtained theoretically by invoking the classical cubic law for flow between two
parallel plates (planar Poiseuille flow): in this approach, the fracture walls are viewed
as smooth parallel plates, flow is laminar (low Reynolds number), and the fracture
is opened (not filled with porous material). This approach yields a parallel fracture
permeability K ||

F [m2] proportional to the squared aperture, and therefore, a parallel

fracture conductivity K ||
F [m/s] also proportional to the squared aperture. The parallel

fracture transmissivity T ||
F [m2/s] is then proportional to the cubic aperture, hence the

name “cubic law”, (Tsang 1984; Brown 1987), among others. Finally, the orthogo-
nal conductivity component is interpreted as infinite in this case (K ⊥

F → ∞), based
on the fact that viscous dissipation due to fluid/solid friction is null in the transverse
direction orthogonal to the fracture plane (in the absence of filling material between
the fracture walls). Another possible representation of fracture flow is that each frac-
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ture behaves, hydraulically, like a Darcian porous material with isotropic conductivity
labeled “KF”. In the remaining of the paper, it will be assumed that K ||

F � K ⊥
F �KF

in the fracture conductivity tensor of Eq. (6). Therefore, KF is now scalar. Usually, the
porous medium in the fracture is coarser and more permeable than the surrounding
rock matrix and, therefore, KF >KM . Finally, in all cases, it is assumed that the porous
rock matrix surrounding the fractures behaves according to the isotropic version of
Darcy’s law (scalar hydraulic conductivity KM ).

In the present superposition approach, the three-dimensional fractured porous
domain is considered as the upscaling domain or “homogenization” domain of volume
Vhom. This domain contains Nf fractures (or pieces of fractures) embedded in the per-
meable porous matrix. The first step of the superposition approach consists in disjoint
partitioning of the domain into Nf “single-fracture” blocks (also named “unit blocks”).
Each unit block contains a single fracture surrounded by a portion of the permeable
matrix (the unit block in the upper right part of Fig. 1). The volume of each unit block
is then calculated as

Vblock, f � π R2
f b, (7)

where Rf is the lateral size of the block “f ”, equal to the equivalent radius of the
fracture (this is the radius of the planar disc with the same area as the portion of the
planar fracture located inside the homogenization domain). The transverse size “b” is
the same for all unit blocks, and it is calculated by imposing volume conservation for
the homogenization domain, as follows (Eq. 8)

f �N f∑
f �1

Vblock, f �
f �N f∑
f �1

π R2
f b � Vhom, (8)

where Rf is the equivalent radius of the fracture “f ”, and b is the thickness of unit
block “f ”. Equation 8 is essentially a volume conservation law.

Based on this decomposition of the fractured domain into unit blocks, two volume
fractions are defined and will serve later for the implementation of the superposition
method towards conductivity upscaling. First, the volume fraction of each discrete
fracture “f ”, with respect to its corresponding block is defined in Eq. (9). Then, the
volume fraction of each unit block “f ”, with respect to the homogenization domain is
introduced in Eq. (10). The two volume fractions are given by

Φ f � V f

Vblock, f
� π R2

f a f

π R2
f b

� a f

b
, (9)

Φbloc, f � Vblock, f

Vhom
, (10)

where af is the aperture of fracture “f ”.
The direction of the normal vector “n” is represented, for each fracture “f”, by

a rotation matrix Rot f . This matrix converts the coordinates of the local coordinate
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Fig. 1 Illustration of the superposition method for upscaling the hydraulic conductivity in two major steps:
(1) upscaling over the single-fracture block, and (2) superposition over all unit blocks

Fig. 2 Representation of the two spherical angles (polar angle ϕ and the azimuthal angle θ ) defining the
orientation of the unit vector “n” (normal to a given planar fracture) with respect to the global frame of the
homogenization domain. Here the domain is parallelepipedic, and a single fracture is shown for clarity

frame (fracture “f”) to those of the global coordinate frame (homogenization domain).
The rotation matrix is given by

Rot f �
⎛
⎝

cos θ cos φ sin θ − cos θ sin φ

− sin θ cos φ cos θ sin θ sin φ

sin φ 0 cos φ

⎞
⎠ , (11)

where θ and ϕ are the spherical angles defining the orientation of the unit vector “n”
normal to the fracture plane. The two angles are illustrated in Fig. 2 for a single planar
disc fracture.
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2.2 Implementation Steps of the Quasi-Analytical Superposition Method

After the domain decomposition step (leading to a discrete number of “unit blocks”),
hydraulic upscaling is implemented in two major steps, as illustrated in Fig. 1. In
step (1), a first upscaling is performed at the scale of each single-fracture block and
then in step (2), a second upscaling is implemented by superposing the fluxes over all
unit blocks.

2.2.1 Step1: The Equivalent Conductivity of a Single-Fracture Block (First
Upscaling)

First, a preliminary upscaling is performed on each “single-fracture” block, viewed
as a composite medium comprising three “layers” (two matrix layers and one fracture
layer). An analytical solution was obtained for flow through this sample by setting
appropriate boundary conditions (piecewise linear pressure), calculating the volume
averages of the resulting pressure gradient and flux vector fields, and finally, expressing
the “exact” equivalent hydraulic conductivity of each “unit” block (Kbloc). The details
are shown in Cañamon (2006) and in Ababou et al. (2011). The final result is

Kbloc �
⎛
⎝

K A 0 0
0 K A 0
0 0 KH

⎞
⎠ , (12)

where KA and KH are the weighted arithmetic and harmonic means of K over the
block and are given by

⎧
⎨
⎩

K A � (1 − Φ f ).KM + Φ f .K
||
F

KH � 1
(1−Φ f )

KM
+

Φ f
K

F⊥

. (13)

At this stage, each “single-fracture block” (unit block) is viewed as a new “fictitious”
fracture with conductivity Kbloc. Note also that Kbloc is a tensorial conductivity and is
expressed in the local coordinate frame of the fracture. The conductivity tensor Kbloc
can then be expressed more generally in the global coordinate frame, using the rotation
matrix Rot f (Eq. 11).

2.2.2 Step2: Superposition of Fluxes Over All Unit Blocks (Second Upscaling)

Having calculated the equivalent tensorial conductivity of each unit block, the flux con-
tribution of each block is calculated under a given fixed pressure gradient. The flux
contributions of all unit blocks are then superposed to obtain the total flux through
the domain. This superposition takes into account orientations, diameters, and aper-
tures of all fractures. It finally leads to a linear Darcy-type relation between flux and
pressure gradient, with a tensorial equivalent conductivity (KEQ), at the scale of the
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homogenization domain. The resulting equivalent hydraulic conductivity takes the
form

KEQ �
⎧⎨
⎩
∑

f

Φbloc, f Rot f Kbloc, f Rottf

⎫⎬
⎭ , (14)

where KEQ is the equivalent conductivity tensor of the porous fractured domain (“ho-
mogenization” domain); Fbloc,f is the volumetric fraction of each unit block “f ” and
Kbloc,f is the equivalent conductivity tensor of unit block “f ” (expressed in the local
coordinate frame of the block).

The expression given by Eq. (14) is an improved variant of the previous one pro-
posed by Ababou et al. (2011). It takes into account, more directly, the volumetric
fractions of fractures. Furthermore, it greatly simplifies the algorithm in the imple-
mentation of the method. Note that the resulting tensorial “KEQ” takes into account
the geometric anisotropy of the fracture set, and at the same time, incorporates the
permeability (KM ) of the porous matrix. The fact that the hydraulic conductivity of
the matrix is taken into account here is an important point because in real geologic
formations, the rock matrix may contain finer fractures that are not seen explicitly,
and hence, matrix permeability should not be neglected. The connectivity structure of
the fracture set is not directly taken into account by the above superposition approach
(Eq. 14). This is true as well for earlier types of superposition methods (except for a
tentative corrective factor proposed by Oda 1986). The present paper proposes (further
below) an empirical method with corrective factors to take into account the effect of
fracture set connectivity on the equivalent hydraulic conductivity of the fractured rock
(Sects. 4.2 and 4.3).

3 Numerical Upscaling (Direct Simulations and Averaging)

To validate and test the superposition method, computational experiments have been
developed in order to determine numerically (rather than theoretically) the equiva-
lent hydraulic conductivity KEQ of synthetic samples of three-dimensional fractured
porous rocks. To determine numerically a macroscale equivalent hydraulic conduc-
tivity KEQ for a heterogeneous medium (fractured porous medium), it is necessary to
perform detailed numerical simulations of flow inside the porous matrix and the frac-
tures (Sect. 3.1). In this work, the numerical simulations have been carried out in the
steady state regime. Several simulations (at least three) are necessary for each fractured
sample. Based on the detailed flow field obtained from the numerical experiments, an
equivalence criterion (essentially some form of averaging) has been applied to deter-
mine numerically the equivalent hydraulic conductivity tensor KEQ (Sect. 3.2). The
choice of suitable conditions to be imposed at the boundaries of the three-dimensional
domain is also important: this is discussed and analyzed in Sect. 3.3.

The subject of numerical upscaling in heterogeneous and fractured porous media
has been an intensive area of research in recent decades. Numerical upscaling has been
widely used to calculate block conductivities in hydrogeology and petroleum engineer-
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ing. Earlier works on this topic include Warren and Price (1961) and Bouwer (1969),
among others. Studies on numerical upscaling for heterogeneous and fractured media
can be found in Wen and Gomez-Hernandez (1996), Renard and De Marsily (1997),
Farmer (2002), Pouya and Fouché (2009), Ababou and Renard (2011) and Lang et al.
(2014), among others. In particular, several approaches have been proposed in the
literature regarding two essential aspects of numerical upscaling: (i) The equivalence
criterion; and (ii) The boundary conditions (or other forcing conditions such as pump-
ing). As will be seen below, our chosen equivalence criterion for numerical upscaling is
essentially based on volume averaged flux and head gradient (Sect. 3.2). Furthermore,
several possible types of boundary conditions for the numerical flow experiments will
be discussed in detail (Sect. 3.3).

3.1 Direct Numerical Simulations of Darcy Flow

In this section, the numerical modeling (then numerical upscaling) of steady state
flow in a saturated fractured porous medium is considered. Darcy’s law is assumed
to be valid inside the porous matrix (with hydraulic conductivity Km), as well as
inside the fractures (with hydraulic conductivity Kf). The areal flux density vector V
[m3/s/m2] (also called Darcy velocity) is governed by Darcy’s law. Combining it with
mass conservation for steady flow, leads to the system of flow equations to be solved
numerically

⎧⎨
⎩

�∇ • �V � 0
�V � −KM �∇H in ΩM
�V � −KF �∇H in ΩF

, (15)

where ΩM , ΩF are, respectively, the porous matrix and the fractured domain, V is the
Darcy velocity and H is the total hydraulic head (also known as piezometric head).

To solve this system of Darcy flow equations, two different tools have been used: the
commercial software Comsol Multiphysics (Finite Elements), and the free software
BigFlow3D (Finite Volumes). In BigFlow3D (Ababou et al. Ababou and Bagtzoglou
1993), the flux density vector (V ) is inserted in the flux divergence equation, div(V) �
0, and the resulting elliptic equation is solved for the hydraulic head H. The flux vector
field V is then retrieved numerically from Darcy’s head gradient law. The two tools
present two complementary advantages: Comsol Multiphysics can handle adaptive
meshing, which is very useful if high resolution is needed locally (e.g., at fracture
intersections), and BigFlow code can handle much larger grids, with millions of cells
or more, but without adaptive meshing. The choice of these two numerical software
packages allows one to benefit from the short computation time (BigFlow3D) on the
one hand, and customized adaptive meshing available in Comsol Multiphysics on the
other hand. The use of each code will be indicated case by case in the sequel. For
example, Fig. 3 displays graphically some computational IO’s (Inputs and Outputs).
The fractured porous medium is projected onto a three-dimensional cartesian grid of
voxels (as shown at left). The iso-surfaces of hydraulic head H obtained by solving
the flow equations (Eq. 15) are shown at right. In this example there are N �125
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Fig. 3 Left: structured 3D Finite Volume Mesh (FVM) display of the fractured porous domain, with N �
125 planar disc fractures, and Ncells ≈ N1×N2×N3 ≈ 106 cells. Right: numerical flow simulation using
the Finite Volume BIGFLOW 3D code (iso-surfaces of hydraulic head are shown)

planar disc fractures in the domain, and the fracture/matrix conductivity contrast is
one million (KF /KM �106). The three-dimensional domain was discretized into one
million finite volume cells (Ncells ≈ N1 ×N2 ×N3 ≈ 106).

A toolbox has been developed (in Matlab®) for numerically upscaling the hydraulic
conductivity of the porous fractured medium based on the numerical flow field (H, V ).
For this purpose, the numerical tools mentioned above (FEM in Comsol, Finite Vol-
umes in BigFlow3D) are used to solve the flow PDEs for each three-dimensional
heterogeneous porous sample. These tools are combined with a “Live-Link” with
Matlab in order to facilitate the numerical upscaling procedure (computing flux aver-
ages, etc.).

3.2 Averaging and Equivalence Criteria (Equivalent Darcy Law)

At the macroscale (homogenization scale), it is assumed here (by choice) that there
exists an equivalent Darcy’s law relating the volume average flux to the volume aver-
age gradient. This equivalence criterion is called VAF (volume average flux). As a
consequence, at the homogenization scale, the laws governing the flow are

⎧⎨
⎩

∇ ·
〈→
V
〉
� 0

→
V � −Keq

〈→∇ H
〉 , (16)

where
⎧⎨
⎩

〈→
V
〉
� 1

Vhom

∫
Vhom

−→
V dVhom〈→∇ H

〉
� 1

Vhom

∫
Vhom

(→∇ H
)

dVhom

. (17)
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The angular brackets< •> in Eqs. (16, 17) indicate the volumetric average of the
quantity “•”. The “VAF” approach is widely used in the literature Pouya and Fouché
(2009), Renard and Ababou (2009), Ababou and Renard (2011) and Lang et al. (2014)
and others. It is worth mentioning here that other types of averaging have also been
defined and used in the literature, such as “NSF” for net surface flux, among others.
In addition, other criteria can be invoked, such as upscaling the mechanical work (or
viscous dissipation work) rather than the flux (Ababou and Renard 2011).

A fully three-dimensional KEQ tensor must be identified. Since each numerical
simulation yields three scalar equations, the nine components of the KEQ tensor (i �
1,2,3 and j �1,2,3) can be determined with three numerical simulations corresponding
to three different directions of the imposed head gradient. Therefore, in each of the
three numerical experiments (m �1, 2, 3), it is assumed that

V (m)
i �

〈
∂ H (m)

∂ X j

〉
KEQi j (m � 1, 2, 3) , (18.a)

where implicit summation have been used on repeated indices. Finally, the following
9×9 linear system (Eq. 18.b) is obtained, which allows the determination of the nine
components of the equivalent KEQ tensor (presumed to be non-symmetric a priori) as
follows

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈∇H1
X

〉 〈∇H1
Y

〉 〈∇H1
z

〉
0 0 0
0 0 0

0 0 0〈∇H1
X

〉 〈∇H1
Y

〉 〈∇H1
z

〉
0 0 0

0 0 0
0 0 0〈∇H1

X

〉 〈∇H1
Y

〉 〈∇H1
z

〉
〈∇H2

X

〉 〈∇H2
Y

〉 〈∇H2
z

〉
0 0 0
0 0 0

0 0 0〈∇H1
X

〉 〈∇H2
Y

〉 〈∇H2
z

〉
0 0 0

0 0 0
0 0 0〈∇H2

X

〉 〈∇H2
Y

〉 〈∇H2
z

〉
〈∇H3

X

〉 〈∇H3
Y

〉 〈∇H3
z

〉
0 0 0
0 0 0

0 0 0〈∇H3
X

〉 〈∇H3
Y

〉 〈∇H3
z

〉
0 0 0

0 0 0
0 0 0〈∇H3

X

〉 〈∇H3
Y

〉 〈∇H3
z

〉

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K11

K12

K13

K21

K22

K23

K31

K32

K33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈
V 1

x

〉
〈
V 1

y

〉
〈
V 1

z

〉
〈
V 2

x

〉
〈
V 2

y

〉
〈
V 2

z

〉
〈
V 3

x

〉
〈
V 3

y

〉
〈
V 3

z

〉

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(18.b)

This 9×9 linear system is easily solved numerically for the nine unknown con-
ductivity components, given the flow data from the three numerical simulations. The
flow data in this system are: the mean velocity components (right hand side vector
9×1) and the mean head gradient components (9×9 matrix). The previous linear
system (Eq. 18.a–b) is solved, initially, for the non-symmetric KEQ tensor, and then a
symmetric tensor is obtained by taking the symmetric part ((KEQ+ KT

EQ)/2). In most
cases presented in this paper, the anti-symmetric part was negligible.

3.3 Boundary Conditions (BC) at the Homogenization Scale (Macroscale)

To solve the upscaled equations of flow at the macroscale, the boundary conditions have
to be specified. There are various possible types of boundary conditions studied here:
(i) permeameter conditions; (ii) linearly distributed head (constant gradient boundary
conditions); and (iii) constant head conditions. (Note: in this subsection, the simulation
results were obtained with Comsol Multiphysics).
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3.3.1 Permeameter Boundary Conditions (PBC)

These conditions consist in imposing fixed heads on two opposite boundaries of the
three-dimensional domain (H0 and H1) and setting the remaining boundaries to be
impermeable (i.e., zero normal flux). These boundary conditions are simple and prac-
tical (for numerical, as well as physical laboratory experiments), especially if the
purpose is only to determine the equivalent isotropic or diagonal hydraulic conductiv-
ity tensor in the frame of the sample. However, more generally, Kfoury et al. (2006)
applied permeameter conditions to determine the full tensorial permeability on a two-
dimensional sample, and later on, Li et al. (2011) determined the full three-dimensional
tensor with the same permeametric conditions. The full tensor determination from
these boundary conditions (PBC) requires more complicated averaging procedures:
cross-differentiation (Kfoury et al. 2006); skin technique (Li et al. 2011). In this study,
the purpose is determining the full equivalent tensor for a given averaging criterion
“VAF” under various types of boundary conditions. The permeametric boundary con-
ditions (PBC) will be used only in Sect. 4.2.1 to compare the sensitivity of percolation
phenomena to the type of boundary conditions.

3.3.2 Immersion Boundary Conditions (IBC)

“Immersion” boundary conditions (IBC) are implemented by imposing a linearly dis-
tributed head H(x,y,z) on the boundary of the sample (that is, on all six faces of the
boundary, if the sample is parallelepipedic). These boundary conditions are called
“immersion” boundary conditions, because the sample appears to be “immersed” in
an infinite domain with a “far field” hydraulic gradient imposed everywhere outside
the rock sample. The resulting boundary condition (IBC) can be expressed as a linear
head profile (H

(−→x ) � H0 − −→
J0 • −→x ), where H0 is the hydraulic head at the origin,

and
−→
J0 is a spatially imposed constant hydraulic gradient.

In the literature, the linear head or linear pressure boundary condition has been
widely used for studying PDE problems of the form div(K grad u)� f for constant
and variable K . Earlier mathematical references include Bamberger (1977). This type
of boundary condition has also been used by Long et al. (1982), and more recently
by Pouya and Fouché (2009), Ababou and Renard (2011), and others, for theoretical
and numerical upscaling of permeability in heterogeneous and/or fractured media.
The IBC flow condition seems to be consistent with the physics of flow in natural
rocks: the homogenized sample (sub-domain) is not isolated from the rest of the flow
domain, and it is affected by the far field head gradient of the surroundings. By the
same token, the IBC gives a large degree of freedom to flow: for instance, under steady
flow, water can circulate between any two boundary faces of the three-dimensional
domain, and it can also flow out at one point and re-enter at another point of the
same boundary face. Indeed, there may exist a flow re-entry at the intersection of
one isolated finite size fracture with the domain boundary (Fig. 4). Such boundary
re-entry effects, caused by “IBC”, can be quite significant, as can be seen in Fig. 4
(zoom insert): the small isolated fracture intersecting a boundary face participates
significantly to the volumetric average of velocity, even though the fracture is not
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Fig. 4 Left: representation of the Darcy velocity field (arrows) in the case of “IBC”. There are nine fractures
of radius R � 2 [m]. Domain size is 10×10×10 m3. Conductivity contrast is KF/KM �106. Right: zoom
on an isolated fracture intersecting one boundary face, illustrating the re-entry effects

connected to any percolating cluster inside the domain. The consequences will be
examined in Sect. 3.4, where it will be concluded that other boundary conditions are
more suitable for studying percolation effects.

3.3.3 Constant Heads Boundary Condition (CHBC)

The previously described immersion boundary conditions (labeled “IBC”) could be
replaced by other boundary conditions in order to avoid the effects of flow re-entry at
boundary/fracture intersections (described above), while still allowing the full determi-
nation of an equivalent conductivity tensor KEQ. One such method consists in imposing
constant heads, rather than linearly distributed heads, on all boundary faces: H0 and
H1 are imposed on two opposite boundary faces, and (H0 +H1)/2 is imposed on all the
other “lateral” boundary faces. For this reason, this method is labelled “constant heads
boundary conditions” (CHBC). This choice of boundary conditions comes at a price:
the discontinuity of boundary heads at corners and edges. However, the comparison
just below reveals the possible advantages of CHBC.

3.4 Comparison of Different Types of Boundary Conditions (IBC Versus
CHBC)

This section presents a comparison of the numerical upscaling method based on two
types of boundary conditions: “immersion boundary conditions (IBC)” and “constant
heads boundary conditions (CHBC)”. The comparisons are made for the case of a three-
dimensional set of statistically isotropic, “infinite size” planar fractures (in practice
these are generated as planar disc fractures with diameters much greater than domain
size, as explained in footnote in Sect. 2.1). Matrix conductivity (KM �10−5 m/s) is
chosen much lower than fracture conductivity (KF �10 m/s), in order to emulate
the case of a discrete fracture network (here the fracture/matrix conductivity ratio is
very high: one million). The numerical KEQ tensors obtained with IBC and CHBC
are relatively close, but not identical, as shown in Fig. 5. Nevertheless, it can be
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Fig. 5 Left: fracture network composed of “infinite” fractures (all factures completely intersect the homog-
enization domain). Right: equivalent hydraulic conductivity tensor KEQ obtained for the two boundary
conditions [immersion (IBC) and constant heads (CHBC)]

considered that the two results are similar, given the high contrast KF/KM , and given
the discontinuity effects due to CHBC at corners and edges are weak in this case.

However, the conclusions are quite different for a case involving a non-percolating
network of finite size fractures. The case considered here is a fracture set comprising
nine planar disc fractures, such that the fractures do not traverse the domain boundaries
individually and do not form a percolating cluster of fractures collectively (Fig. 6 on
the left). The equivalent conductivity tensors KEQ obtained numerically with the two
different types of boundary conditions (IBC, CHBC) are very different, as shown in
Fig. 6 (on the right). In this example, it can be clearly seen (because there are very
few fractures in the domain) that there does not exist a percolating cluster of fractures.
Therefore, one would expect the equivalent hydraulic conductivity KEQ to be very

close to the conductivity of the porous matrix (here KM �10−5 m/s). As can be seen,
the resulting KEQ obtained with the constant Heads boundary conditions (CHBC)
yields values much closer to those expected. The conductivity tensor from IBC over-
estimates the equivalent hydraulic conductivity by two orders of magnitude (~600).
This overestimation due to IBC boundary conditions is explained by a flow re-entry
phenomenon at the intersection of one isolated fracture with a boundary face (as in
Fig. 4, zoom insert). For this reason, “constant heads boundary conditions (CHBC)”
has been chosen for the numerical experiments to be presented in the remainder of this
paper. The previous comparison justifies the choice of CHBC, particularly for poorly
percolating fracture sets, even if these conditions could generate discontinuities at the
borders (while IBC maintains continuity at the borders).

4 Comparisons, Validation Tests, and Extension of Upscaling Method

This section deals with comparison of the upscaled conductivity obtained with the
“fast” superposition method developed earlier, with the one obtained numerically.
The numerical simulation results are exploited for several different fracture network
configurations (in terms of fracture size, density, connectivity, and fracture/matrix con-
ductivity ratio). The objective is to validate the fast upscaling method (superposition
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Fig. 6 Left: fracture network composed of finite size fractures. Right: equivalent hydraulic conductivity
tensors KEQ obtained for the two boundary conditions, immersion (IBC) and constant heads (CHBC)

method), to improve it and propose possible extensions. Because the behavior of the
equivalent hydraulic conductivity greatly depends on the size of fractures, the follow-
ing types of fracture networks are treated separately: infinite size fractures (Sect. 4.1);
then finite size fractures (Sect. 4.2); and finally a mixture of infinite and finite size
fractures (Sect. 4.3). Most of the numerical tests are conducted for a large contrast of
fracture/matrix conductivity.

4.1 Comparisons and Validation Tests: Case of Infinite Size Fractures

Several cases have been tested, involving two-dimensional and three-dimensional sets
of infinite size fractures: parallel fractures; inclined set of parallel fractures; Cartesian
network, which implies that the fracture orientations are aligned with spatial frame
axes (X, Y and Z directions); random set of three-dimensional Poissonian fractures
with statistically isotropic orientation among other cases. A fracture set is Poissonian if
the fracture centers (X , Y , Z) are distributed according to a three-dimensional Poisson
point process; the positions X , Y , Z are uniformly distributed (Vanmarcke 1983). A
fracture set is statistically isotropic in the following sense: consider the intersection
points of their unit normal vectors with the unit sphere; these points must be distributed
uniformly on any spherical cap on the surface of the unit sphere.5 Reminder: the term
“infinite” indicates that each fracture has a diameter larger than the diameter of the
rock sample domain (Sect. 2.1). In that case, each individual fracture is percolating
“on its own”, which means that each individual fracture connects at least two boundary
faces. Obviously, the network is also fully percolating as well.

As expected, for fully connected and percolating fracture networks, the results
obtained by numerical experiments show that upscaled permeability tensors KEQ
obtained by the present fast superposition and by numerical experiments are in good

5 The consequence in three-dimensional space is that the longitude angle º must be distributed uniformly
in [0, 2π ], and (independently) the latitude angle ϕ has its cosine distributed uniformly in [−1, +1].
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Table 1 Detailed results of the comparison between numerical upscaling and superposition upscaling for
the fracture set of Fig. 7 (parallel inclined fracture set)

Numerical upscaling Upscaling by fast superposition method

Knumerical �
⎛
⎝

0.00235 0 0.00312
0 0.0109 0

0.00312 0 0.009806

⎞
⎠ Ksuperposition �

⎛
⎝

0.00226 0 0.00576
0 0.01249 0

0.00576 0 0.01483

⎞
⎠

Eigen values:

K ∗
numerical �

⎛
⎝

0.00121 0 0
0 0.0109 0
0 0 0.0109

⎞
⎠

Eigen values:

K ∗
superposition �

⎛
⎝

0.0019 0 0
0 0.0124 0
0 0 0.0170

⎞
⎠

Eigen vectors:⎛
⎜⎜⎝

V1
0.939

0
−0.341

V2
0

−1
0

V3
0.341

0
0.939

⎞
⎟⎟⎠

Eigen vectors:⎛
⎜⎜⎝

V1
0.931

0
−0.362

V2
0

−1
0

V3
0.362

0
0.931

⎞
⎟⎟⎠

Fig. 7 Left: Finite element mesh of a fractured porous medium containing a set of inclined fractures. Right:
results of a numerical flow simulation used for numerical upscaling for the same fracture set: iso-surfaces
of piezometric heads and velocity vector arrows

agreement both in terms of norm and principal directions. As an example, it is shown
in Table 1 the detailed results for a set of inclined fractures, depicted in Fig. 7, with
KF �0.1 [m/s] and KM �0.0001 [m/s]). There is an excellent agreement between the
superposition method and the numerical upscaling. The eigenvalues and eigenvectors
of the equivalent conductivity tensor KEQ are also shown in the table, in order to verify
that the superposition method is in agreement with the numerical upscaling for the full
anisotropic conductivity tensor (The matrix KEQ is non-diagonal due to the inclined
fractures).

Additionally, the results of numerical upscaling for different fracture densities have
been analyzed. First, the equivalent Keq tensor obtained either numerically or by super-
position, is diagonalized. This serves several purposes: examining the eigenvalues and
eigenvectors qualitatively, and also calculating the trace of the tensor. Because Keq is
symmetric definite positive, the trace of Keq is equivalent to the Frobenius norm of the
square root B of the matrix Keq such that BBT �Keq. More precisely, the square-root
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Fig. 8 Plot of the norm of
equivalent hydraulic
conductivity tensor, as a
function of volumetric fracture
density ρ0,3 (blue symbols for
the superposition method, red
symbols for numerical
upscaling)

matric B is given by B �PD1/2 where P is the passage matrix containing column
eigenvectors, and D is the diagonal eigenvalues matrix. Hereafter, the term “norm” of
the conductivity tensors refers to the following expression

‖K‖ �
∥∥∥∥∥∥

K ∗
xx 0 0
0 K ∗

yy 0
0 0 K ∗

zz

∥∥∥∥∥∥
� 1

3
(K ∗

xx + K ∗
yy + K ∗

zz), (19)

where the stars * refer to the principal components of Keq.
Figure 8 shows the norm of the equivalent hydraulic conductivity tensor as function

of the volumetric density of fractures ρ0,3 [m−3] for a three-dimensional Poissonian
network with statistically isotropic orientation. The fractures in this figure are “infinite”
(percolating fractures). The volumetric fracture density ρ0,3 is defined as the number
of fractures per unit volume ([number of fractures/m3] or [m−3]). As it can be seen in
that plot, there is a good agreement between the equivalent hydraulic conductivities
obtained by the superposition method and by numerical upscaling. A slight difference
can be observed however, especially with high fracture densities, and it is generally
attributed to numerical errors. The effect of the conductivity contrast (KF/KM ) in the
upscaling values has also been analyzed. Figure 9 shows the numerically upscaled
and quasi-analytical (superposition) values of equivalent hydraulic conductivities for
different fracture/matrix conductivity contrasts (from one to one million), for a three-
dimensional Poissonian fracture network. The diameters in this case are larger than
domain size (“infinite” fractures). Here, the density is ρ0,3 �20.0 [m−3].

Based on Fig. 9, it can be concluded that the superposition method yields a good
estimation of the equivalent hydraulic conductivity of three-dimensional fracture net-
works with “infinite” fractures for different conductivity contrasts (KF/KM ). This
influence of the conductivity contrast can be important, because the matrix may con-
tain finer fractures that are not seen explicitly, and hence, its permeability must not be
neglected. These results confirm so far that the quasi-analytical superposition method
is a correct method for upscaling “infinite” fractures regardless of their orientation

123 50



Math Geosci

Fig. 9 Log-log plot of the norm of the equivalent hydraulic conductivity tensor as a function of the con-
ductivity contrast (KF /KM ) for the previous example

or aperture distributions, and without the need for detailed numerical solution of the
matrix/fracture flow equations.

4.2 Extension to Finite Size Fractures

The aim of this section is to provide an expression based on the superposition method
[i.e., an extension of Eq. (14)], in order to estimate the equivalent conductivity ten-
sor for a large three-dimensional domain (the entire reservoir domain for example)
containing only finite size “non-crossing fractures”. The term “non-crossing fracture”
refers to the case where the fracture diameter is not large enough (compared to the
domain diameter) to connect two boundary faces of the parallelepipedic domain. How-
ever, depending also on fracture density, it is possible to obtain a percolating cluster
formed by the intersection of several finite size “non-crossing” fractures. Generally,
with finite size fractures, it is expected that connectivity effects are important for the
equivalent hydraulic conductivity, and particularly when the fracture/matrix conduc-
tivity contrast (KF/KM ) is high. In this subsection, the simulation results were obtained
with the BigFlow code (unless indicated otherwise). Finally, it should be emphasized
that only networks with Poissonian and isotropic spatial distributions are tested for
the validation of the proposed extensions in this section and the next (Sect. 4.3).

4.2.1 Introduction to “Finite Size” Fracture Networks Characteristics (Critical
Density and Percolation)

Our objective is to study connectivity effects by conducting numerical flow exper-
iments in a finite fractured domain, with high conductivity contrast KF/KM . Under
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these conditions, the hydraulically conductive medium is a network of “finite size”6

planar disc fractures with negligible matrix permeability. In order to reduce border
effects as much as possible, the fracture network has been preprocessed prior to flow
experiments, by eliminating all the isolated fractures that intersect at least one edge
or one corner of the three-dimensional parallelepipedic domain. This procedure elim-
inates any single isolated fracture connecting two or more boundary faces.

In this type of configuration (i.e., with a large computational domain containing
only small size fractures), it is useful to consider a critical density ρEX,c by anal-
ogy with percolation theory. This quasi-percolation density, or critical density, can be
defined, in general, as the fracture density above which the first cluster of fractures
connecting two different boundary faces of the domain is formed (initiation of per-
colation). However, this “critical density” takes here a somewhat different meaning.
Mathematical percolation theory deals with infinite domains, while here the com-
putational domain is of finite size. In addition, percolation theory deals essentially
with two possible types of conducting networks (site networks, and bond networks),
while this work deals with planar disc conductors embedded in a three-dimensional
porous matrix. Sahimi (1995) gives a review of percolation theory. Conduction and
percolation in fractured media have been studied in Sahimi (1995), Berkowitz and
Adler (1998), Mourzenko et al. (2005) and Adler et al. (2012), and others. Finite size
effects on percolation phenomena were studied, more recently, by Adler et al. (2012).
To sum up, the above-mentioned critical percolation density (ρEX,c ) can be a useful
concept for extending the superposition method to finite size fracture networks. ρEX,C

will be defined more precisely below, and then it will be used it to take into account
two different behaviors of the fractured medium, depending on fracture density. If the
fracture density is less than the critical density, the fracture network is not percolating;
it does not connect any two different boundary faces of the upscaling domain. If the
fracture density is greater than the critical density, it exists one or several percolating
clusters connecting two or more boundary faces of the upscaling domain. The use of
this critical percolation density (ρEX,c ) in the new formulation of the superposition
method will be explained below in Sects 4.2.2 and 4.3. Let us focus here on the def-
inition of the appropriate density “ρEX“ via the notion of “excluded volume”. The
excluded volume is defined, in the general case, as the averaged volume around one
object within which a second object must have its center in order for the two objects to
intersect (Charlaix et al. 1984). First the “excluded volume” VEX,f of a given fracture
“f ” is defined. The total excluded volume VEX is then the sum VEX,f calculated
over all fractures (f � 1,2,…,N). Finally, the fracture density “ρEX,C” is obtained by
dividing VEX by the volume Vhom of the upscaling domain: ρEX �VEX/Vhom.

Let us focus now on determining the excluded volume VEX,f of a single fracture
“f ”. The definition of the excluded volume can be illustrated more easily, as shown
in Fig. 10, for the case of a set of fracture segments in two-dimensional space. The
equivalent of an excluded volume in three dimensions is the excluded area in two
dimensions. Fracture diameters in three dimensions are replaced by fracture lengths
“L” in two dimensions, and the two orientation angles (θ ,ϕ) in three dimensions are

6 A “finite size” fracture is any planar fracture which does not entirely cross the upscaling domain: the
opposite of “infinite sire” fracture mentioned in Sect. 2.
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Fig. 10 a Representation of two arbitrary fracture segments and of their excluded area, delimited by the
black dashed parallelogram (two-dimensional space). b Representation of a statistically isotropic network
of fracture

replaced by the single angle (θ ) in two dimensions. Figure 10a illustrates the calculation
of the excluded area for a given fracture “Fi” with its given fracture length “L” and its
given orientation θ i. A second fracture segment Fj is selected, with its given length
“L” and its given orientation θ j. The relative orientation between the segments Fi and
Fj is θ ij �θ i–θ j. The excluded area is obtained, as explained in Balberg et al. (1984),
by translating the second segment Fj to all positions such that Fj intersect Fi (relative
orientations are not changed). The resulting excluded area of the pair of fractures
(Fi,Fj) is the area of the dotted parallelogram (AEX � L2sinθ ij) shown in Fig. 10a. A
statistically isotropic network of fracture segments is now considered, with random
angle θ uniformly distributed in [0, 2π ] and deterministic length “L”, as illustrated in
Fig. 10b. The mean excluded area of this statistical network is calculated by averaging
over all possible orientations θ ij of the random fracture segments. The result, AEX �
2L2/π , was obtained by Balberg el al. (1984).

In three dimensions, Adler et al. (1999) studied the excluded volume of planar
convex polygonal fractures,7 each with a given area “A”, a given perimeter “P”, and
orientation angles (º,Φ) defined by its normal. Let us consider two such fractures Fi

and Fj, with their respective areas, perimeters, and angles. These two planar fractures
have a relative angle “ϕij” with respect to each other. Charlaix (1984) and Adler et al.
(1999) obtained the excluded volume for two fractures of different sizes; in the special
case where A and P are the same for the two fractures, the result is

VEX (i, j) � 2 sin ϕi j

π
AP. (20.a)

For statistically isotropic networks in three dimensions, the average<sin ϕij> is equal
to π /4, and then, the mean excluded volume is

VEX � 1

2
AP. (20.b)

7 The planar disc fractures studied in this work are a special limit form of planar convex polygons as the
number of edges goes to infinity.
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Finally, the last formula (Eq. 20.b) is used to calculate fracture by fracture the excluded
volume, and then to deduce a dimensionless fracture density ρEX as follows

⎧⎪⎨
⎪⎩

VEX, f � 1
2 A f Pf

VEX � ∑
f VEX, f

ρEX � VEX
Vhom

, (21)

where ρEX,C is the dimensionless fracture density, VEX and Vhom are respectively the
total excluded volume of all the fractures, and the total volume of the homogenization
domain (upscaling domain). It was demonstrated that for isotropic fracture networks,
ρEX,C is also equal to the mean number of intersections per fracture (Charlaix et al.
1984): this indicates the importance of ρEX,C is a measure of the degree of connectivity
of the fracture network. The critical excluded volume VEX,C is then defined as the
excluded volume above which a percolating cluster appears. The corresponding critical
percolation density ρEX,C is finally computed as the critical excluded volume VEX,C

divided by the total volume of the domain (Eq. 22)

ρEX,C � VEX,C

Vhom
. (22)

It is important to highlight here that the latter expressions of ρEX (Eq. 21) and
of ρEX,C (Eq. 22) are the same as the ones used by Mourzenko et al. (2005) where
they found that ρEX,C was not very sensitive to fracture size in predicting percolation.
Finally, this dimensionless density ρEX,C was found to be only “slightly” sensitive
to the orientation distribution of the network in predicting percolation (Mourzenkou
et al. 2009). After the presentation of the critical density ρEX,C and other related quan-
tities, the next part will explain how this critical density ρEX,C has been numerically
determined (Sect. 4.2.1), and how it was used for a new extension of the superposition
method that can account for the degree of connectivity of the fracture set (Sect. 4.2.2).

4.2.2 Determination of the Critical Density

The critical density in this work is defined statistically and determined numerically
because there are no theoretically exact methods allowing its unique determination in a
finite fractured domain (again, recall that this work is not dealing with infinite domain
percolation theory). The numerical procedure to determine the critical percolation
density consists in conducting a series of numerical flow experiments for a single
replicate of the fracture porous medium with increasing fracture density (and a fixed
high contrast KF/KM ). The different densities are obtained by adding fractures from
a pre-set of random fractures: N � 1000 disc fractures are first generated, the number
of fractures are, therefore, increased by sampling into this pre-set of 1000 random
fractures. This numerical procedure is equivalent to generating several independent
realizations of fractures sets. For instance, in a sequence of 1000 generated fractures,
the first subset of 100 fractures is independent from the 2nd subset (fractures N°101 to
N°200). The equivalent hydraulic conductivity is then determined for each density by
numerical upscaling from the computed flow using CHBC. The critical “percolation”

123 54



Math Geosci

Fig. 11 Plot of KEQ (norm) as a function of fracture density (ρEX) for a single realization of a three-
dimensional fracture network. A sudden jump of the norm of KEQ by 3 orders of magnitude is observed;
the corresponding density to the jump is the critical density (ρEX,C )

density is detected by a sudden increase of the equivalent hydraulic conductivity with
respect to density. The determination of ρEX,C for a single realization of a three-
dimensional fracture network is shown in Fig. 11.

To obtain values of ρEX,C representative of the percolation behavior of three-
dimensional fracture networks, multiple realizations of the network are generated,
with constant fracture radius (non-random). For example, N ×M �30,000 statisti-
cally independent planar disc fractures (isotropic Poissonian) are initially generated.
Then, the N ×M fractures are divided into M �30 networks, each containing N �
1000 fractures. The previously described procedure to determine the critical density
ρEX,C is then applied to each of the 30 realizations. Finally, the “ensemble mean”
critical density E(ρEX,C) is determined over the M realizations of the fracture network
(Fig. 12). Note: from now on, the mean E(ρEX,C) will be denoted as “ρEX,C” for short.

As shown in Fig. 12, the mean critical density calculated by the previous procedure
is ρEX,C ≈ 0.75. However, Mourzenko et al. (2005) have shown that there exists a
universal critical density, independent of fracture size: the critical density for disc
fractures was found to be ρEX,C �2.31. To understand this difference, other possible
definitions of percolation can be considered. For example, a cluster is counted as
“percolating” only if it relates two opposite boundary faces of the three-dimensional
parallelepipedic domain. This definition corresponds physically to the application of
PBC for the numerical determination of the equivalent hydraulic conductivity tensor.
In that case (PBC), the obtained critical density values are found to be close to the
value 2.31 obtained by Mourzenko et al. (2005). More specifically, a typical numerical
simulation (with Comsol Multiphysics) with permeameter boundary conditions (PBC)
is presented in Fig. 13, in which the permeable boundaries are only the top and bottom
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Fig. 12 Determination of the critical density of percolation (ρEX,C ) over multiple realizations (M=30). The
ensemble mean value of ρEX,C is retained as the final critical density of percolation. Here ρEX,C ≈ 0.75

Fig. 13 Left: a 3D isotropic Poissonian fracture network with finite size fractures. Right: representation of
the hydraulic head on selected planes (color shading) and of the Darcy velocity (arrows) simulated under
PBC. The percolating cluster connects top and bottom faces of the domain

ones. It can be seen clearly, by observing the velocity field represented by arrows, that
a percolating cluster of fractures relates the two opposite permeable sides. However,
determining the critical percolation density using permeameter boundary conditions
(PBC) seems to be very limiting because it considers only the largest clusters of
fractures (i.e., the clusters connecting two opposite sides). In fact, other types of
clusters can connect faces that are not necessarily opposed (Fig. 14 shows an example
of a percolating cluster linking two adjacent sides of the three-dimensional domain).
These types of clusters can be detected by using instead the “constant heads boundary
conditions (CHBC)” as demonstrated in Fig. 14.

To illustrate these differences, concerning the definition of percolation and the types
of boundary conditions, the same three-dimensional fracture network of Fig. 14 has
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Fig. 14 Left: 3D isotropic network of Fig. 13. Right: an (XY ) plane view of a detailed simulation on of flow
under CHBC: hydraulic head (color shading) and the Darcy velocity (arrows). The percolating clusters are
visible from the velocity field. The percolating clusters connect two adjacent faces

been re-used. The equivalent conductivity tensor has been determined numerically,
for an increasing fracture density of this same network under two different types of
boundary conditions: (1) PBC and (2) CHBC. The results are presented in Fig. 15. As
explained before, percolation can be detected as a sudden increase of KEQ. The critical
fracture density ρEX,C was significantly different for the two boundary conditions
ρEX,C≈0.6 for the CHBC, and ρEX,C≈1.9 for the PBC (Fig. 15). The example of
Fig. 15 concerns a single realization of the three-dimensional fracture network. These
observations confirm the fact that constant heads boundary conditions (CHBC) permit
the detection of clusters relating any two boundaries of the domain, and therefore,
percolation is observed early for non-opposite boundaries (small fracture density). On
the other hand, permeameter boundary conditions (PBC) detect only the large clusters
relating the two opposite faces of the domain, and therefore, percolation is detected
at much larger densities (compared to CHBC).

The identification of the critical density of percolation is a relatively sensitive com-
putational process, and the resulting critical density may be qualified itself as a random
variable (over the ensemble of finite domain fracture networks of a given type). This
uncertainty has been analyzed qualitatively in two ways:

1. How variable is the critical density ρEX,C?

As can be clearly seen from Fig. 16 (left), the degree of variability of the critical
percolation density ρEX,C is not negligible. This variability can be explained by the fact
that percolation (under CHBC) can occur in different ways. For example, percolation
can occur if two adjacent boundary faces are connected by a small cluster. This case
will be the more frequent for “finite size” fractures (otherwise, percolation could also
occur as the consequence of a larger cluster connecting two opposite faces). Hence,
when one calculates the critical density, the corresponding critical number of fractures
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Fig. 15 Example of calculation of ρEX,C by imposing PBC (red) and CHBC (blue). ρEX,C corresponds to
the density at which a sudden jump of the KEQ is observed (by 3 orders of magnitudes in this example).
The resulting ρEX,C are different for the two boundary conditions: 0.6 for CHBC and 1.9 for PBC

Fig. 16 Critical density (ρEX,C �VEX,C/V tot) for multiple realizations of a three-dimensional isotropic
Poissonian fracture network. Left: all realizations combining the 3 radii R=1.0, R=1.5, R=2.0 [m]. Right:
same realizations grouped in three sets corresponding to the three fracture radii (with 3 different symbols
for R=1.0, R=1.5, R=2.0 [m])

is usually small, and, therefore, a high variability is expected across replicates of the
network.

2. Does the critical density ρEX,C depend on fracture radii?

Figure 16 (right) presents a qualitative analysis of the sensitivity of the critical den-
sity with respect to fracture size (radii). The results (Fig. 16 right) were obtained by
performing, for different fracture radii, the same procedure for determining ρEX,C as
described earlier at the beginning of this section (Sect. 4.2.2). It can be seen that the
critical density increases with fracture radius. This dependence was not revealed on
the previously cited results found in the literature, where the critical density of percola-
tion ρEX,C is stated to be a universal quantity, independent of fracture size distribution
(Mourzenko et al. 2005). This size sensitivity is not studied further in the present
work; and this topic is kept as a perspective for future investigations. Finally, in the

123 58



Math Geosci

remainder of this paper, the critical density is assumed to be the mean value obtained
from all the realizations in the present work. In conclusion, the critical density to be
retained here is found to be ρEX,C ≈ 0.75.

4.2.3 Extension of the Superposition Formula for Finite Size Fractures

As mentioned earlier, the hydraulic behavior of the fracture network is radically
dependent on the fracture density when fracture diameters are significantly smaller
than domain diameter (finite size fractures). Therefore, the critical percolation density
(ρEX,C) should play a significant role in the estimation of equivalent hydraulic con-
ductivity. More precisely, it was seen that the increase of fracture density ρEX does
not drastically affect the equivalent hydraulic conductivity as long as fracture density
remains smaller than ρEX,C because, at low density, fractures do not yet form a per-
colating cluster. When ρEX reaches the critical density ρEX,C , a percolating cluster of
fractures is formed. The increase of fracture density beyond this critical value increases
the equivalent conductivity. The fast superposition method, as implemented so far, did
not include this critical hydraulic behavior. For this reason, a novel semi-empirical
superposition formula is proposed, which would be able to handle a set of finite size
fractures for a broad range of fracture density and connectivity. This proposed formula
is based on the critical percolation density (ρEX,C) defined in Sect. 4.2.1.

The “fast superposition method” is accordingly modified and extended as follows:
for density ρEX below the critical percolation density (ρEX,C), the fractures do not
form percolating clusters. The superposition method is therefore modified to compute
the equivalent hydraulic conductivity KEQ as a harmonic mean over all mono-fracture
blocks. This harmonic averaging procedure permits to take into account the hydraulic
conductivity of the porous matrix, particularly for non-percolating fracture sets. For
density ρEX over the critical percolation threshold (ρEX,C), a numerical fit between the
equivalent hydraulic tensor obtained by numerical upscaling and the one obtained by
the initial superposition method of Eq. (14) has been performed, over a large range of
fracture densities. Finally a semi-empirical analytical expression for KEQ is obtained,
where the critical density plays an important role.

The procedure is implemented following three steps:

1. First, the equivalent KEQ, tensor obtained either numerically or by superposition,
is diagonalized as explained earlier (below Table 1).

2. Then, a search (by a fitting procedure) of an empirical correction factor f(ρEX)
that can calibrate the superposition method for densities ρEX larger than the crit-
ical density ρEX,C is performed. A linear relation is proposed for the empirical
correction factor f(ρEX) by

f (ρex ) � ‖Knumerical‖∥∥Ksuperposition
∥∥ � Aρex � 0.68ρex , (23)

where the fitting was performed by linear regression over a large range of fracture
densities (Fig. 17). The result of this linear regression was of the form
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Fig. 17 Linear fit of the correction factor f (ρEX) as a function of fracture density ρEX. The linear behavior
of f (ρEX) is roughly the same for different fracture radii (R �1.0 m, 1.5 m, 2.0 m). Determination factor:
R2 �0.97

f � AX + B with B ≈ 0. (24)

The determination factor is R2 �0.97, which yields a relative root mean square
error ε � sqrt(1–R2) �0.173 or 17.3%. This fitting was performed over fracture
sets having different fracture radii (constant within each set). It was observed
clearly that the correction factor f (ρEX) depends linearly on fracture density ρEX
in a unique way for all fracture radii (Fig. 17). This confers a “generic” character
to the correction factor. In other words, the proposed semi-empirical correction
factor is relatively robust. It is worth to note that the linear dependence of f (ρEX)
was observed only for the range of densities studied here

0 ≤ ρex � Vex

Vtot
≤ 7. (25)

Although bounded, this range of density is still relatively large, because it goes
from very poorly connected networks to well-connected networks. Larger fracture
densities would need more computational capacities and are not studied here.

3. Finally, the “extended” fast superposition expression is, therefore, reformulated
(for finite size fractures) as

KEQ � f (ρex)

f �N f∑
f �1

Φbloc Rot f Kbloc Rott
f if ρex ≥ ρex,c

KEQ �
⎧⎨
⎩

f �N f∑
f �1

(
Φbloc Rot f Kbloc Rott

f

)−1
⎫⎬
⎭

−1

if ρex < ρex,c, (26)

where Nf is the total number of fractures in the homogenization domain.
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Fig. 18 Comparison of the
results of the equivalent
hydraulic conductivity as
function of the dimensionless
fracture density ρEX. Numerical
upscaling (red), initial
superposition method of
Eq. (14) (blue), and extended
superposition method of
Eq. (26) (green)

The validity of the above “extended” expression of the superposition method is
tested for Poissonian fracture network with isotropic orientation in three dimensions.
The size distribution follows a truncated Pareto distribution with lower and upper
bound radii, Rmin �0.5 m and Rmax �2.5 m, respectively. The domain size is 10×
10×10 [m3]; therefore, even the largest fractures are significantly smaller than domain
size. The results (Fig. 18) show the relevance of the proposed extended superposition
model (Eq. 26) for the range of fracture density studied. The upscaled conductivity
results from Eq. (26) represent a very clear improvement of the method compared to the
initial version given by Eq. (14). The errors E1 and E2 for both superposition methods
(the initial version, and the new extended version) have been calculated. The errors
are calculated as the mean absolute difference between the norm of KEQ of reference
(obtained numerically) and the KEQ calculated by the superposition method. Error E1
corresponds to the initial superposition method (Eq. 14) and E2 corresponds to the
extended superposition (Eq. 26). Here, the errors are E1 �0.140 KF and E2 �0.019
KF . The error of the extended method is about seven times smaller than the initial
superposition method, for finite non-percolating fractures. Plotting the same results
with a logarithmic scale for equivalent conductivity (Fig. 19) allows appreciating the
jump in hydraulic conductivity due to the percolation effect on equivalent conductivity.
It occurs at a density of 0.51 for the numerical upscaling, and 0.75 for the extended
superposition method (Eq. 26). This difference is probably due to the uncertainty on
the determination of the critical percolation density, as discussed earlier (Sect. 4.2.2).

4.3 Extension to Mixed Type Networks (Broad Distribution of Fractures Radii)

This section treats a more realistic representation of the porous fractured rock, where
both “infinite” and finite size fractures are present. More precisely, the fracture network
contains at the same time two types of fractures. The first type of fracture intersects
at least two different boundary faces of the homogenization domain, typically, large
diameter fractures or faults (labelled “CB” for “connecting boundaries”). The second
type of fracture does not connect more than one boundary face of the homogeniza-
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Fig. 19 Semi-log representation of the norm of the equivalent conductivity tensor, as a function of dimen-
sionless fracture density: numerical (red symbols), initial superposition method (blue symbols) and extended
superposition method (green symbols). For comparison, matrix and fracture conductivities are also shown:
the solid curve represents KM (matrix conductivity) and the dashed curve represents KF (fracture conduc-
tivity)

Fig. 20 Representation of the two types of fractures in a mixed network. The red cube is the homogenization
domain. The large green fracture belongs to the “CB” type, and its crossing index is Cf �3. The smaller
red fracture belongs to the “NCB” type, and its crossing index is Cf �0

tion domain; this includes fractures that do not intersect any boundary at all (this
second type is labelled “NCB” for “non-connecting boundaries”). A crossing bounds
index, “Cf ” is introduced. For each fracture f , “Cf ” is the number of intersections of
fracture “f ” with the boundaries of the homogenization domain. Since the domain is
parallelepipedic, “Cf ” is a number between 0 and 6 for each fracture. Figure 20 is a
schematic representation of the distinction between the two types of fractures (“CB”
and “NCB”). The union of CB and NCB constitutes the complete set of fractures.

The aim of this section is to propose a new extended version of the superposition
method that can also handle this type of mixed configuration. The new extension
works as follows. In the case of a CB fracture (Cf ≥ 2), this fracture is added to

123 62



Math Geosci

Fig. 21 Plot of g(ρEX) as a function of the density ρEX. The linear behavior of g (ρEX) is nearly the same
for three different fracture radii: R=1.0, R=1.5, R=2.0 [m]. The determination coefficient is R2 �0.965

the superposition algorithm (without any correction factor). In the case of a NCB
fracture (Cf ≤ 1), this fracture is added to the superposition algorithm multiplied by a
correction factor f (ρEX) obtained empirically in a manner similar to Sect. 4.2.3. The
new correction factor f (ρEX) is defined, taking into account differently the CB and
NCB type fractures, as follows

∥∥KEQ
∥∥ � ‖KCB‖ + f (ρex) ‖KNCB‖ ⇒ f (ρex) �

∥∥KEQ
∥∥ − ‖KCB‖

‖KNCB‖ , (27)

where KCB and KNCB are, respectively, the equivalent conductivity tensor of the “CB”
fractures and of “NCB” fractures, respectively, and KEQ is the equivalent conductivity
tensor of the entire fracture network. Let us now define another connectivity index
“ρEX,NCB” (Eq. 28), which represents the connectivity between the non-crossing frac-
tures (NCB),

ρex,NCB � Vex,NCB

Vtot
, (28)

where VEX,NCB is the excluded volume of the “NCB” subset of fractures. The former
correction factor of Eq. (27) divided by (ρEX,NCB)2 as a function of ρEX, plotted in
Fig. 21, is given by

g(ρex) � f (ρex)

(ρex,NCB)2
� Aρex + B. (29)

A linear behavior is observed for all the fracture sizes studied here, and this is
confirmed by a linear regression fit, as shown in Fig. 21. The relative independence of
this linear fit with respect to fracture radius confers a generic character to this linear fit.
It is relatively robust, and it can be applied with confidence to various fracture radius
distributions, at least in the range of radii investigated here (from 1/10 to 1/5 the size

12363



Math Geosci

of the homogenization domain). Hence, the final extended superposition expression
for the equivalent conductivity tensor that takes into account the two types of fractures
“CB” and “NCB” is

(30)

KEQ(ρex) �
f �NCB∑

f �1

Φbloc Rot f Kbloc, f Rot t
f

+ g(ρex) . (ρex,NCB)2 .

f �NNCB∑
f �1

Φbloc Rot f Kbloc, f Rot f
t ,

where NCB and NNCB are the number of fractures in the homogenization domain
belonging respectively to “CB” and “NCB” types (as shown in Fig. 20), and g(ρex) is
a correction factor that depends linearly on fracture density ρex, and finally, ρex,NCB is
the density of the subset of NCB fractures that do not intersect more than one boundary
face.

In order to validate Eq. (30), a three-dimensional fracture network with Poisso-
nian distribution of fracture position and with isotropic orientation has been chosen.
The radius distribution is a truncated Pareto law with Rmin �0.5 [m] and Rmax �
3 [m]. The domain of homogenization is a parallelepiped of size 10×10×10 [m].
The results (Fig. 22) demonstrate a clear improvement in comparison with the initial
superposition method (Eq. 14) for the whole range of fracture density studied. The
extended superposition method (Eq. 30) predicts the equivalent conductivity tensor
with considerable accuracy, at least in terms of its norm. The errors E1 and E2 are
calculated for both superposition methods: the initial version (Eq. 14), and the new
extended version (Eq. 26). The errors are E1 �0.16 KF for the initial version of the
superposition method, and E2 �0.02 KF for the extended version. Here, the extended
method (Eq. 30) yields an error 8 times smaller than the initial superposition method,
for a mixed type of network with both percolating and non-percolating fractures.

Finally, it was observed that the typical computation time to obtain the equivalent
conductivity tensor KEQ by the quasi-analytical superposition method of the synthetic
samples studied in this paper (all samples evoked in Sect. 4) was only a few seconds. In
comparison, to obtain KEQ numerically (by direct simulations and numerical upscal-
ing), the typical computation time was of the order of 30 min. Furthermore, direct
numerical simulations are very limiting in practice: (i) the meshing procedure can fail
if fracture aperture is very small, and (ii) the CPU time for solving very large algebraic
systems may become impractical (typically, the three-dimensional grids may have to
involve hundreds of millions of cells).

5 Conclusions

In this paper, a computationally efficient superposition method for upscaling the
hydraulic conductivity of a three-dimensional porous and fractured rock sample is
proposed. The proposed superposition method is used without recourse to detailed
flow simulations except for connectivity and critical density calculations.
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Fig. 22 Semi-log representation of the equivalent hydraulic conductivity norm as a function of the dimen-
sionless fracture density ρEX. Numerical (red), original superposition method (Eq. 14) (blue) and extended
superposition method (Eq. 30) (green)

The superposition method presented in this paper is based on a flux superposition
method (Ababou et al. 2011), which was a useful and efficient upscaling tool, but
had several limitations: (i) it did not explicitly formulate the conductivity as a vol-
ume weighted combination of fracture/matrix conductivities; (ii) the approximate flux
superposition yields essentially a weighted arithmetic mean conductivity tensor; and
(iii) it did not take into account the connectivity of the fracture network. This initial
upscaling method is improved as follows: (i) the volumetric contributions of each
mono-fracture block are now explicitly taken into account; (ii) in the case of non-
percolating network, the initial superposition is replaced by a volumetric weighted
harmonic mean of mono-fracture blocks; and (iii) semi-empirical connectivity factors
are introduced as a function of fracture density and of a critical percolation density. This
improved upscaling method yields a three-dimensional tensorial equivalent conduc-
tivity KEQ, which represents hydraulically the fractured porous rock as an equivalent
continuum. The present upscaling method only requires, for its implementation, the
geometry of the fractures (diameters, orientations, and apertures from probabilistic
models or fracture set data), and the hydraulic conductivities of the fractures KF and
of the surrounding porous matrix KM . In addition, approximate connectivity indexes
had to be determined semi-empirically by linear regression from numerical flow exper-
iments. These indexes improved the upscaling method for different types of fracture
networks embedded in a porous matrix.

For validation and verification of the upscaling by this enhanced superposition
method, detailed flow simulations were implemented on a parallelepiped domain (mil-
lions of cells). Our numerical upscaling was based on the volume averaged flux as an
equivalence criterion, and on particular boundary conditions called CHBC (constant
heads boundary conditions), which has been compared to other boundary conditions.
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Numerical upscaling, which is computationally demanding, yields an equivalent con-
ductivity tensor to be compared to the faster superposition methods.

Promising results were obtained for the equivalent hydraulic conductivities cal-
culated by the new superposition method in this paper (Sect. 4), for different
configurations of fracture networks. The results were in good agreement with those
obtained numerically for different fracture radius distributions. Also, these results
were obtained for a wide range of hydraulic conductivity contrasts KF/KM in the case
of “infinite” fractures. On the other hand, for finite size fractures or mixed networks,
our study focused on very high KF/KM contrasts, and this, for various configurations
in terms of fracture sizes and density of Poissonian isotropic networks. Overall, the
new extended methods (Eqs. 26, 30) yield an absolute error (E2) seven to eight times
smaller than the error (E1) of the initial superposition method (Eq. 14), relative to the
numerically upscaled conductivity used as the reference.

In summary, our partially validated superposition method provides a compu-
tationally efficient algorithm for determining the equivalent continuum hydraulic
conductivity tensor for a three-dimensional sample of porous fractured rock. This
equivalent tensor serves as input for reservoir flow simulation on larger scales in deep
geologic formations like geothermal reservoirs.

Several issues remain worth investigating based on the progress results presented
in this paper (ongoing work). The main issues are: (i) a more accurate statistical deter-
mination of the critical percolation density ρEX,c (its sensitivity to fracture diameters,
and its variability across replicates of random networks); (ii) investigation of denser
fracture networks (limited due to computational capacities); and finally, (iii) unify-
ing into a single formulation the various subcases of the new superposition method
with its semi-empirical density-dependent factors (finite/infinite fracture diameters;
percolating/non-percolating networks; etc.).
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2.3 Conclusion

This is an extended conclusion to the paper by Rajeh et al. (2019)2. A fast upscaling
approach based on the superposition principal is presented in this chapter. The proposed
approach presents an important improvement for this type of methods. The connectivity
of the fracture network is taken into account, in the superposition formulation, by multi-
plicative connectivity factors. These connectivity factors are determined empirically from
direct numerical simulation over various fractured porous synthetic samples. Although
these improvements, the superposition method still have strong limitations. The main two
limitations are related to two main issues: (i) the detection of percolation and (ii) the
connectivity of the fracture network.

Firstly, concerning the percolation detection, the method used in the previous work is
based totally on detailed flow simulations on the 3D fractured media. For the determination
of the fracture density, one has to add fracture by fracture to the 3D media and run detailed
flow simulation, for each iteration, until percolation. This methodology is computationally
very expensive and it is limited to low number of fractures in the DFN (1,500 fractures
was the maximum number of fractures treated in the previous paper). Hence, due to the
computational cost, the percolation detection was limited to several realizations of the
network.

Secondly, concerning the fracture network connectivity, the presented method is about
a general estimation of the number of intersections per fracture. Similar to the percolation
detection, the connectivity factor determination needs numerous detailed flow simulations
in 3D fractured media rendering this task very computationally expensive. Moreover,
the presented method is incapable of determining detailed interconnections analysis of the
networks: one cannot have insightful details about the connection between all the fractures
in the DFN.

Aware of these limitations and willing to improve our capabilities of treating more
dense and more connected 3D fracture networks, a set of numerical tools for geometrical and
topological analysis of DFN have been developed (the toolbox is in continuous improvement
and extension of its capabilities). The two previous issues (percolation and connectivity)
present the initial motivation to the development of the tools although more important
applications can be derived from it. The set of the geometrical and topological tools
are presented in details in the following chapter 3 and their uses regarding percolation,
connectivity and upscaling are presented in chapter 4.

2Erratum. Equation EQ.2 in the paper represents the Hashin and Shtrikman (HS) bounds in the one
dimensional case (1D). Hence, the general formula (for 1D, 2D and 3D) is obtained by replacing “1− f0”
by “m− f0” and “1− f1” by “m− f1” in equation ( EQ.2) where “m” is the dimension of space (m=1 for
1D, m=2 in 2D and m=3 in 3D).
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Chapter 3

Topological Analysis of 3D Fracture
Networks

3.1 Introduction

It can be understood from the previous chapters that fractures form the principal path-
way for flow in subsurface rocks with low matrix permeability. Using the discrete fracture
network (DFN) approach is the most accurate method to simulate flow and transport in
3D fracture networks as it incorporates explicitly all the attributes of 3D planar fractures
(aperture, size, permeability etc.). However, the DFN approach is numerically very expen-
sive (in terms of CPU time and memory). As an example, [Karra et al. (2018)] presented
some computational capabilities of a recently developed DFN flow simulation tools. In
their work, they presented a DFN containing 7,147 fractures of moderate density. The cor-
responding mesh of this DFN contains 15,178,277 elements and the CPU time for meshing
operations is about 81,392 [s] ( nearly a 1 day). The CPU times reported in [Karra et
al. (2018)] correspond to runs with 1 processor on a 32 core, 2 thread per core, AMD
Opteron(TM) Processor 6,272 with 528 GB RAM. One can note that the DFN of about
7,000 fractures is a very moderate network compared to real case applications. Addition-
ally, for quantifying uncertainty, through a probabilistic approach of the DFN, hundreds
of realizations of the DFN may have to be run. Hence, the DFN approach is generally
limited to moderate (in term of density) fracture networks.

The DFN approach has been studied since 2 decades [Adler et al. (2012)]. The ap-
proach was quickly found to be very limited due to computational capacities even with
the increasing of calculation power of modern computers. To increase the efficiency of the
DFN approach, important efforts have been devoted recently in improving DFN meshing
( [Fourno et al. (2019)] [Hyman et al. (2014)] among others). Recently, a graph approach
was used as an alternative to simulate larger DFN [Karra et al. (2018)]. However, ap-
proximations have to be made which reduce the accuracy of the DFN approach. There is
an increased need for frameworks capable of handling 3D DFN and extracting the exact
percolating clusters with the appropriate calculations of intersections and traces lengths.
[Huseby et al. (1997)] was among the first to propose such algorithmic methodology for
3D fracture networks. Recently, [Alghalandis (2017)], [Hyman et al. (2017)], separately
proposed a set of algorithms enabling this analysis in 2D and 3D configurations and have
constructed the equivalent graph of the DFN.

Motivated by the necessity of effecient tools to assess percolation and connectivity of the
3D fracture networks (as explained in the conclusion of the previous chapter), we propose
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in this chapter a complete algorithmic approach to pre-treat the 3D fracture network in
order to determine and analyze all its geometrical and topological features. It is worthy
to note, at this stage, that all the 3D fracture networks treated in the present chapter
are formed by 3D planar fractures with two shapes, discs and ellipses. The present set of
algorithms is capable of (i) calculating all possible intersections in the 3D network, lengths
of the resulting traces, fracture areas inside a parallelipipedic domain and other geometrical
attributes of the DFN, (ii) extracting the percolating clusters and eliminating dead end
clusters and (iii) constructing the corresponding graph of the 3D fracture networks. These
three aspects are detailed in separate sections of this chapter. A flowchart describing the
organization of the proposed tools is given in Fig.(3.1).

All the analytical calculations implemented in the algorithms have been validated by
various methods including direct numerical simulations, which increases the confidence
in our algorithm methodology. Additionally, examples of important applications (other
than the study of percolation and connectivity phenomena, which were the main initial
motivations for this work) are briefly mentioned in each part of the algorithms.

The present chapter is organized as follows based on the three major aspects of our
algorithmic approach. Firstly (Sect.1), the algorithms to calculate analytical intersections,
areas and traces lengths are described. These calculations allow the construction of the
Adjacency matrix (to be defined later) of the DFN. The set of algorithms of this section are
called, hereafter, “Connectivity Algorithms”. Secondly, original methods for cluster iden-
tification, percolating clusters extraction and dead-end clusters eliminations are explained
in Sect.2. The set of algorithms of the second section are called, hereafter, “Clustering Al-
gorithms”. Thirdly, the construction of the corresponding graph of the DFN is depicted in
Sect.3. The set of algorithms of the third section are called, hereafter, “Graph Algorithms”.

Figure 3.1: Flowchart of the topological analysis of DFN. The hierarchy of the algorithms
is indicated by directed arrows.
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3.2 Connectivity of 3D fracture networks

3.2.1 Description of the connectivity algorithms

The method developed in this part, denoted the “Connectivity algorithm”, is organized
as follows. The starting point is a DFN file. For example, a fracture network gener-
ated stochastically (as adopted in the present work) or generated by any other generation
method, as explained in chapter1, presents the input to this set of algorithms. To perform
the geometrical analysis of the DFN, the algorithm uses the geometrical attributes of the
fractures constituting the DFN as an input (location, size, orientation etc.) and calculates
(i) areas of the circular or elliptical planar fractures intersecting a 3D parallelipipedic do-
main, (ii) all the possible intersections between any pair of fractures in the network , (iii)
lengths of the intersecting traces ’Tij’ and the coordinates of the middle points (Nodes) of
the traces, and finally (iv) the adjacency matrix FF of the DFN which is a square matrix
of the size of the number of fractures NF where FF (i, j) = 1 indicates that fracture Fi
intersects fracture Fi and FF (i, j) = 0 indicates that the two fractures do not intersect.

At first, a domain have to be chosen ( e.g., the interior cubic domain with black frame,
shown in Fig.(3.2)). In a DFN with N planar fractures, there are N(N − 1)/2 possible
intersections. Intersections with boundaries are taken into account in the algorithm by
adding explicitly the six faces of the parallelipipedic domain. To reduce the computational
time (reminder: the number of operations is proportional to the square of the number of
fractures) and for efficiency gain, a filtering procedure has been performed at first. This
filtering has been implemented on three levels.

1. First filtering level: all fractures whose circumscribed sphere does not intersect the
3D domain are eliminated from the searching list of fractures. For example, fractures
F20 and F9 are eliminated from the search by this exclusion test (Fig.(3.2)).

2. Second filtering level: if the distance from the center of fracture Fi to the plane of
fracture Fj is bigger than fracture Fi radius or vice versa, then the fracture pair
formed by Fi and Fj is eliminated from the search. For example, in Fig.(3.2), the
pair of fractures formed by F13 and F2 is eliminated from the search by this exclusion
test.

3. Third filtering level: if fracture Fi plane intersects the fracture Fj but fracture Fi
is completely outside the sphere containing fracture Fj , then the pair (Fi, Fj) is
eliminated from the search. For example, in Figure 3.2, the pair of fractures( F5, F11)
is eliminated from the search by this exclusion test.

This preliminary filtering is computationally fast but does not account for all non-
intersecting fractures. A more explicit calculation of the intersections is then performed
over the remaining fractures. To obtain the adjacency matrix, the follwing six main steps
have to be realized ( for seek of clarity, the details of calculations of steps 1, 2, 3 and 4 are
not presented and only the important elements are highlighted):

• Step1. The intersection line Lij of the two planes containing the two fractures Fi and
Fj is calculated. The straight line Lij is obtained by solving the following system of
equations in the local frame of fracture Fi{

ax+ by + cz + d = 0

z = 0
(3.1)
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Figure 3.2: Example of filtering tests. The parellilepipedic domain is the inner black cube.
Fractures are in blue and their circumscribed spheres are presented in green.

where a, b, c, d are the coefficients of the plane containing fracture Fj , expressed in
the local coordinate frame of fracture Fi.

• Step2: the intersection points of the two fractures Fi and Fj with line Lij are calcu-
lated by solving the following system of equations in the local frame of fractures Fi
and Fj respectively:

x = −(d+ by)/a

y =
(
−bd±

√
b2d2 − e(d2 − a2R2

Fi
)
)
/e

z = 0

(3.2)

where e = (a2 + b2) for circular fractures and RFi is the radius of fracture Fi. Note
that parameters a, b, c, d, e are geometrical coefficients containing fracture coordinates and
orientations and the ellipsoidal shape factor (ratio of large to small radii). There are up
to four solutions (x, y, 0) to Eq. ( 3.2).

• Step3: Only the case with 4 real solutions of the previous system of equations (Eq.
( 3.2)) provides possible intersections. In all other cases, the two fractures do not
intersect. In the case of four real solutions, the relative positions of the four inter-
section points (P1, P2, P3, P4) determine whether the two fractures intersect or not
(Fig.(3.3)). If intersection occurs, the length of the corresponding trace Tij is then
calculated.

• Step4: Once all the traces of fracture-fracture intersections are calculated, the total
area of fractures intersecting the 3D domain is computed (The resulting contour of
a fracture inside the 3D cubic domain contains either discs or convex polygons with
both straight and/or curved sides). Straight sides are the intersections of the fracture
with the boundaries of the domain, and curved sides are parts of the fracture border
inside the domain. In the case of elliptical fractures, intersecting area is computed
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Figure 3.3: All possible configurations of the fractures regarding their intersection.

by means of the affinity relation between the area of an ellipse and its circumscribed
circle.

• Step5: The adjacency matrix (also called Fracture-Fracture matrix FF ) is finally
constructed. In graph theory, an adjacency matrix is a square matrix used to repre-
sent a finite graph. The elements of the matrix are zeros and ones, indicating whether
pairs of vertices (fractures) are adjacent or not (intersecting or not) in the graph.
FF (i, j) = 0 indicates that fractures Fi and Fj do not intersect.

• Step6: Given the adjacency matrix and the results of traces calculations, other topo-
logical matrices are derived. We present here the most two important ones for the
sake of clarity. (i) The first one is the trace to trace matrix (TT ) in which the value
of one means that two traces Ti and Tj are connected by a fracture and a zero value
means that Ti and Tj are not connected directly. The second important matrix is
the Link to Trace matrix (LT ). In each line i of LT matrix there are only two values
different from zero indicating that the two traces (Ti and Tj) correspond to the link
(Li). The TT matrix is square, and its size is the number of traces in the 3D DFN.
Example of such traces can be seen in Fig.(3.3): the pair of nodes (P1, P2) in the
upper left, and (P1, P4) in the lower left of the figure.

The main outputs of the Connectivity algorithms are illustrated on a simple illustra-
tive example in Fig.(3.4). In this example, a DFN composed of five fractures generated
randomly in a 3D domain of size 10 × 10 × 10[m] is presented. The principal outputs of
the Connectivity algorithm are depicted. Algorithm.(1) illustrates in a simplified manner
the geometrical analysis of the DFN. This algorithm was developed using vectorization
and pointers in Matlab (without “for” loops). The “worst case” computational cost of this
algorithm in terms of CPU time is TCPU ∝ N2/2 where N is the total number of fractures
of the network. Briefly, this worst case estimate is obtained by the following argument:
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the worst case scenario is where any fracture is connected to all the remaining fractures
in the network. Hence, N2 intersection calculations are needed. However, if Fi and Fj
intersection is calculated at a given step, then the intersection calculations for Fj and Fi
is not necessary and hence the division by 2 in the previous estimation of the CPU time.

Algorithm 1 Connectivity Algorithm

Load the DFN with N fractures

Initializing Adjacency matrix: FF=0

Preliminary Filtering: N←number of remaining fractures

For i=1 to N

Calculate the area inside the domain

For j= i +1 to N

Perform intersection steps (1, 2, 3, 4)

Perform step 5: if Fi intersect Fj then FF (i, j) = 1

End for

End for

Fill in the output matrices
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Figure 3.4: Output of the Connectivity Algorithm: the DFN containing five fractures, the
adajacency matrix (FF ), the trace-to-trace matrix (TT ), the links-to-traces matrix (LT ),
the traces mid-points coordinates (T ) and the traces vector (Tij)
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3.2.2 Validation and numerical performance of the connectivity algo-
rithm

3.2.2.1 Validation of the connectivity algorithm

The aim of this section is to perform a series of validation tests to verify the correctness and
the accuracy of the developed algorithmic methods in predicting the geometrical and/or
the topological properties of a DFN. Although all the mathematical relations implemented
in the Connectivity Algorithm are based on analytical solutions (except an approximate
relationship for the calculation of the perimeter of ellipses), the validation is always nec-
essary in such algorithmic approaches. Once validated, the outputs of the Connectivity
Algorithms can be used, with high degree of confidence, as inputs to the Clustering and
Graph algorithms (next sections 3.3 and 3.4). Specifically, geometrical calculations of inter-
sections (nodes) and trace lengths are of great importance as they are the building blocks
of the next algorithms.

This task has been performed over a large variety of examples with increasing complex-
ity. To validate the proposed algorithm, a numerical platform has been elaborated based
on a combination of the commercial software Comsol Multiphysics and Matlab. The com-
parison between the results of the Connectivity Algorithm and the results of the software
Comsol Multiphysics constitutes a benchmark test. It is worthy to note at this stage that
the software Comsol Multiphysics is usually used as a simulation toolbox; here only its
“Geometry” module is used for this benchmark.

The general idea behind validation is as follows: upon a variety of DFN, several topolog-
ical properties like “nodes”, “traces lengths”, etc. are calculated at first by the Connectivity
Algorithm and then verified numerically by Comsol Multiphysics. For the sake of clar-
ity, we choose to show two relevant examples of validations concerning the correctness of
calculation of nodes and traces lengths.

As mentioned in the description of the Connectivity Algorithm, the fracture intersec-
tions and trace lengths (Tij) are determined analytically and then implemented in the
algorithm. To verify the precision of the analytical calculations (intersections, traces and
areas) and the correctness of their algorithmic implementation, we have performed a com-
parison with numerical calculations upon meshed geometry in Comsol Multiphysics. A
typical result of comparison is presented in Fig.(3.5). For a network of N=30 fractures,
the intersections (nodes) and the traces lengths have been determined by the two meth-
ods; firstly by the analytical method implemented in algorithm and secondly by the exact
numerical calculations by Comsol Multiphysics. The results of ComsolMultiphysics are
taken here as reference. As it can be clearly seen from Fig.(3.5), the Connectivity Algo-
rithm detects any intersection in the DFN and calculates exactly the correct trace length.
For the sake of completeness, we note that some some pathological examples could be
wrongly detected by the algorithm. For example, extremely small intersections with the
domain corner could be imprecisely calculated. However, these cases are extremely rare
and their influence can be neglected. On the other hand, the algorithms are under constant
improvements.
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Figure 3.5: Fracture intersections and traces lengths calculations: each intersection is plot-
ted by a symbol (blue circle when an intersection is captured by the Connectivity Algorithm
and a red star if an intersection is captured by the Comsol software (our reference)). The
sizes of the symbols are proportional to the traces lengths.

3.2.2.2 Numerical performance of the connectivity algorithm

The numerical efficiency of the algorithm isimportant because the proposed method is
intended to sharply reduce the computational time for the simulation of flow and/or trans-
port in fractured media. A preliminary analysis of the CPU time can be easily developed
from the pseudo-codes (Algorithm.1). The number of operations for the Connectivity Al-
gorithm is proportional to N2 in the worst case scenario (i.e., very dense network in which
every fracture can intersect any other fracture). The computational performance can be
investigated regarding two essential parameters (i) the number of fractures and (ii) the
intersection density. Fig.(3.6) presents the evolution of the CPU time as function of the
intersection density (here is expressed as the mean number of intersections per fracture).
Three different regions can be distinguished from Fig.(3.6). At low intersection density,
fractures are so disconnected from each other that the three filtering procedures (described
earlier) will eliminate many fractures, and hence, the CPU time is relatively small. The
second region corresponds to an important increase in CPU time as function of intersection
density: the density is high enough that an increasing amount of pairs of fractures has to
be checked, and furthermore, the role of filtering decreases with increasing density. Finally,
at some point, the intersection density is high enough that the algorithm has to check the
possibility of intersection of all the pairs of fractures, and the filtering tests become roughly
unnecessary.
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Figure 3.6: CPU time needed for the Connectivity Algorithm as function of the mean
number of intersections per fracture.

Other benchmark tests could be considered, e.g., comparing our algorithms with similar
algorithms or tools described in the literature. However, only a few algorithms have been
published, and their numerical efficiency is not always highlighted. A recently published
work [Dong et al. (2018)] presents a new technique for calculating fracture intersections
in 3D called bounding box and sweeping line (BBSL) method. They tested their original
method and compared it with more classical methods for intersection calculation. An
example of 3D fracture network containing 10,000 fractures with specific density of 0.0625
[m−1] was tested and, the CPU time needed for the intersection detection was 2.63 [s]. The
same case is generated in the present work and treated for comparison. Our Connectivity
Algorithm takes 48 [s] to treat the same case. One should emphasize here that the CPU
time in the work of Dong et al. 2018 concerns only the intersection detection. However,
the CPU time of 48 [s] needed for the Connectivity Algorithm includes, other than the
intersection detection, all the related operations (Areas, Links, etc. as in Fig.(3.4)) as
explained in the description of the algorithm.

As conclusion, a benchmark exercise is needed to compare the Connectivity algorithm
to other similar algorithms with the aim of improvement. This task is kept as a perspective
to the actual work.

3.2.3 Application of the connectivity algorithm

In this section, some immediate applications of the Connectivity Algorithm are presented.
It is important to recall, at this stage, that the initial purpose of the Connectivity Algorithm
is to construct the inputs of the next numerical steps (Clustering algorithms (Sect.3.3) and
Graph algorithms (Sect.3.4)). The presented examples in this section are several appli-
cations of the connectivity algorithms concerning mainly the analysis of the geometrical
properties of DFN, in relation with the review presented in the first chapter. For the sake
of brevity and clarity, two applications are shown as follows.
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• Application 1: Traces and trace length distribution

In this study, traces are the lines resulting from the intersection of two planar fractures
in 3D. One has to distinguish between traces and nodes, as nodes are the midpoints of
traces. It is obvious that the distribution of traces and trace lengths are important in
characterizing the behavior of 3D fracture networks concerning flow and transport: the
longer the lengths of the traces are, the easier the fluid can flow throw the fracture network.
Hence, characterizing the traces and the trace length distribution is crucial in this context.
The Connectivity Algorithm is a very suitable tool to accomplish this analysis. To illustrate
this point, Fig.(3.7) depicts the histogram of the traces midpoint coordinates (the nodes)
and the histogram of the trace lengths (Tij). These results come from a statistically
isotropic DFN containing 30,000 disc fractures of equal radius RF = 0.7 [m] in a cubic
domain of size 10 × 10 × 10 [m]. As the fractures are distributed uniformally between
Xmin = −5[m] and Xmax = 5[m], the traces coordinates are also distributed uniformly
between Xmin and Xmax. Boundary effects can also be seen from the distribution (left of
Fig.(3.7)) as the probability to find an intersection at the domain boundary is low.
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Figure 3.7: Left: histogram of the x-coordinates of the trace’s midpoint (nodes). Right:
histogram of traces lengths. The results come from a statistically isotropic DFN containing
30,000 disc fractures of equal radius RF = 0.7 [m] in a cubic domain of size 10 × 10 × 10
[m]. This network has a density of 95 intersections per fractures (a very high density).

Another interesting application concerns the cumulative trace lengths of a fracture
network. The cumulative trace length is the sum of all the traces lengths in a network and
(after proper normalization) it represents a measure of the degree of interconnection of the
network. As an example, Fig.(3.8) depicts the relationship between the cumulative trace
length and the intersection density ρ (the mean number of intersections per fracture), for
the same network used in the previous Fig.(3.7). A linear trend is observed between the
intersection density ρ and the cumulative trace length. This relationship (ρ vs. cumulative
trace length) is interesting regarding the construction of the 3D fracture network from 2D
observations. The subject of DFN geometrical analysis is under recent extensive research ,
especially concerning the generation of 3D fracture networks from outcrops (2D) and well
observation (1D) observations [Weiwi et al. (2019)]. Hence, the developed Connectivity
Algorithm could be a suitable tool for more theoretical and practical investigations on the
subject.
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Figure 3.8: Evolution of cumulated trace length as a function of the intersection density ρ
(dimensionless). These results were obtained for the case of a statistically isotropic DFN
in a cubic domain of size 10× 10× 10.

• Application 2: Correlations between intersection density and excluded volume

In chapter 2 (Rajeh et al. 2019), the notion of excluded volume has been introduced and
its capability of measuring the connectivity of a fracture network has been detailed. The
relation Eq.21 in chapter 2 presents a calculation of the mean number of intersections
per fracture. However, two precautions have to be taken into account: (i) the number of
intersections of fractures in the domain is high enough to reduce statistical fluctuations,
and (ii) boundary effects due to the finite domain of study have to be taken onto account
correctly. However, in some situations, these two assumptions may not be verified. The
effect of the fracture to domain size ratio is, now, investigated using the Connectivity
Algorithm. Let us recall the definition of the intersection density as defined based on the
excluded volume:

VEX,f =
1

2
AfPf (3.3)

where Af and Pf are respectively the area and perimeter of the fracture. The effect
of fracture to the 3D domain size and of the statistical fluctuation on the prediction of
the intersection density ρ is depicted if Fig.3.9. As it can be shown in the figure, when
the 3D upscaling domain is equal to the generation domain (i.e. there is fractures that
are not entirely inside the upscaling domain), the exact intersection density as calculated
by the connectivity algorithm is over-estimated by the intersection density as calculated
by the excluded volume formula. Also, when the upscaling domain is small in comparison
with the generation domain (for ratios smaller than 0.4 in Fig.3.9), there exists a slight
difference between the two intersection densities which is due to the statistical fluctuations
as the mean is calculated over a realtively samll number of fracture intersections. Between
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the two extremes, the intersection density is exactly predicted by the excluded volume
formula. In general, to avoid boundary effects while using the excluded volume formula
(3.3) for intersection density , the upscaling domain should be at least smaller than the
generation domain minus the size (diameter DFmax) of the largest fracture in the DFN.
In terms of domain size and largest fracture diameter DFmax, this can be expressed as:
(Dupscaling = Dgeneration − DFmax). This caution is very important in order to ovoid
artificial effects due the domain size while studying percolation phenomena (Chapter4).
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Figure 3.9: The evolution of the intersection densityρ as function of the ratio between the
generation and the upscaling domain. The intersection density as calculated exactly by
the connectivity algorithm (red) and as predicted by the excluded volume formula (blue).

In some case for numerical studies, there would be some fractures that will intersect the
3D domain boundaries. In that case (a fracture intersecting the boundary), the previous
formula of the excluded volume could be modified to take into account the fact that only a
part of the area of the fracture is inside the domain. As the exact area of a fracture inside
the domain can be calculated by the Connectivity algorithm, the exact area of the part
of the fracture inside the domain can be used instead of the total area. So the excluded
volume formula can be modified as

VEX,f =
1

2
AExact,fPEQ,f (3.4)

where AExact,f is the exact area calculated by the Connectivity algorithm, and PEQ,f
is calculated using an equivalent radius REQ,f of the fracture area inside the domain:{

REQ,f =

√
AExact,f

π

PEQ,f = πREQ,f
(3.5)

The modified formula (Eq.3.4) of the excluded volume predicts more accurately the
intersection density (the mean number of intersections per fracture).

3.3 Search of clusters in 3D fracture networks

The second part of this set of algorithms consists on a suite of algorithms for clustering
and percolation analysis called “Clustering Algorithms”. A cluster is a group of fractures
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in which each fracture is connected to all the other fractures directly or indirectly. A
percolating cluster is a cluster that connects at least two opposed boundaries of the 3D
domain. We recall that in this thesis the term percolation is somehow different from the
more theoretical definition in percolation theory (this point has already been discussed in
chapter 2).

The adjacency matrix FF determined by the Connectivity Algorithm is now the input
of the Clustering Algorithm. A new efficient method is now presented for the search of
clusters and the determination of the percolating sub-network (percolating cluster). A
method for the search of dead-end clusters is also introduced.

3.3.1 Description of clustering algorithms

This algorithm computes the clusters in a given DFN composed of circular or elliptical
fractures (or both). It is based in the multiple labeling technique described in Hoshen and
Kopelman (1976). In the Hoshen-Kopelman algorithm, the connectivity of a 2D regular
mesh-grid of binary elements (e.g., pixels) was computed while minimizing the number of
operations. We propose an original adaptation of the Hoshen-Kopelman approach algo-
rithm as a way to determine the percolating clusters in a 3D fracture networks of planar
fractures.

The Clustering Algorithm consists of three main steps:

• Step 1: Clusters search

We have generalized the Hoshen-Kopelman Multiple Labeling Clustering (MLC) technique
to 3D planar objects (fractures) which do not lie onto a regular grid, but are irregularly
located in space. In addition, the neighboring criterion corresponds in our case to the
geometrical intersection of fractures in 3D (the adjacency matrix). Each new cluster ap-
pearing in the search is called “proper cluster”, and it is labeled using the lowest number of
all the fractures forming that cluster. Cluster classification information is summarized in
one vector of length equal to the number Nf of fractures in the DFN. The vector called “P”
is constructed as follows. If P (i) = a , where “a” is a positive value, then the fracture “i” is
a proper cluster that contains “a” fractures. If P (i) = −a, where “−a” is a negative value,
then the fracture “i belongs to the proper cluster number “a”. The following pseudo-code
gives a simple explanation of the cluster search by MLC technique. Algorithm.(2) illus-
trates the implementation of clustering calculations. This algorithm was developed using
vectorization in Matlab.
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Algorithm 2 MLC algorithm

Load the adjacency matrix FF from algorithm 1

Fracture “1” is chosen ⇒ it defines proper cluster “1”

For i=2 to N

If fracture “i” do not intersect “i-1” , then:

fracture “i” is a new proper cluster labeled “i”

else

fracture “i” belongs to proper cluster “i-1”

End if

End for

Fill into output matrices

• Step 2: Percolation detection

To define percolation, two opposite faces of the 3D domain have to be at first designated
([-X +X], [-Y +Y], [ -Z +Z] ). In this step any proper cluster intersecting any face of the
domain is checked. The result is saved in a matrix of size [NF ×6], in which a positive value
“1” in row i and column j indicates that cluster “i” intersects the corresponding boundary
face j, according to [-X +X -Y +Y -Z +Z] column format.

• Step 3: elimination of dead-end fractures and dead-end clusters

A dead-end fracture of the percolating cluster is identified if it only intersects one other
fracture. The search of dead-end clusters starts by finding fractures of the percolating
cluster with only two intersections: this is obtained by inspection of the adjacency matrix.
Then, successive intersecting fractures are pursued until intersection with boundaries is
reached. If no boundary is reached, this set of fractures will define a dead-end cluster, which
is then eliminated from the percolating cluster. The following pseudo code (Algorithm.3)
illustrates the algorithm of dead-end clusters elimination. This algorithm was developed
using vectorization in Matlab.
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Algorithm 3 Dead-end Clusters Elimination algorithm

Eliminate fractures intersecting only one other fracture (dead-end fractures)

Identify fractures intersecting only two other fractures NF2

For i=1 to NF2

For j=1 to 2

Identify set of fractures Sj intersecting fracture j

While Sj is not empty

If any fracture in F touches frontiers Then

Not a dead-end cluster

End if

Update Sj with set of fractures intersecting fractures in F

End while

Eliminate dead-end cluster found if any

End for

To summarize the main outputs of the proposed Clustering Algorithm, Fig.(3.10) shows
an example of the input DFN (a), the resulting percolating cluster (b) and the final cluster
without dead-ends (c).
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Figure 3.10: Example of fractured medium with Nf=200 fractures in a domain of 8× 8× 8
m3: (a) the initial DFN; non-percolating clusters and isolated fracture are in yellow. (b)
blue: fractures forming the percolating cluster corresponding to [-Z,+Z]; the black points
(•) represent the nodes and black segments (— ) represent the links.(c): The percolating
cluster after the elimination of the dead-end clusters.
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3.3.2 Validation and numerical performance of the clustering algorithm

3.3.2.1 Validation of the clustering algorithm

The aim of this section is to a perform series of validation tests to verify the correctness
and the accuracy of the Clustering algorithm in predicting the clusters formation and
the percolation. The validation is carried out by comparing the percolation density as
predicted by the Clustering Algorithm (more precisely Algorithm3.2) and the percolation
density calculated numerically by detailed flow simulation performed on the software Com-
sol Multiphysics (as in chapter 2). One of the procedures of validation is as follows: at
each realization of the 3D fracture network, the critical density of percolation is calculated
in the 3 directions by the Clustering Algorithm. Once the number of fractures necessary
to reach percolation is obtained, the numerical flow simulation is performed twice: the
first time, with the predicted percolating network diminished by one fracture (just before
percolation) and the second time with the predicted percolating network. If the Clustering
algorithm calculates exactly the critical density of percolation, we expect that the flow
rate in each realization will present a jump from zero in the first simulation (one fracture
before percolation) to a positive non-zero flow rate in the second simulation (at percola-
tion). As illustrated from Fig.(3.11), the jump of the flow rate is observed, indeed, for
each realization of the 3D DFN and for all the three directions (X, Y and Z) as expected.
This important accuracy of the results demonstrates the ability of the Clustering algorithm
proposed in this section to calculate “exactly” the critical density of percolation for various
3D fracture networks (many other tests have been performed over various fracture sizes
and shapes and similar positive results have been obtained).
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Figure 3.11: Flow rate calculated in the opposed permeable faces: the discontinuous lines
represent the flow rate just one fracture before percolation as predicted by the algorithm,
and the continuous lines represent the flow rate at percolation. The 3 colors refer to the
three directions (X, Y, and Z)
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3.3.2.2 Numerical performance of the clustering algorithm

The numerical performances of the Clustering Algorithm are investigated now.
A preliminary analysis of the CPU time can be easily seen from the two pseudo-codes

(Algorithm.2 and Algorithm.3). The number of operations for cluster search algorithm is
proportional to NF . It is seen that the computation time depends on both the number of
fractures NF in the DFN and more importantly on the number of intersections (Nodes)
in the system. To check out this point, Fig.(3.12) shows the CPU time of the clustering
algorithm (Algorithm.2) as function of the number of fractures in the DFN (X axis) and
the mean number of intersection per fracture (Y axis). In most of the cases, below the
percolation density (around 2 intersections per fracture) and for less than 5,000 fractures,
all the computation times stay below one second. Even for very dense and large fracture
networks (100,000 fractures with 10 intersections per fracture, which presents a very dense
and large networks typical for engineering applications), CPU time does not surpass 100
seconds (in a personal compuet of 32 G of RAM, 2.2 GHz) for the clusters search and for
percolation detection.
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Figure 3.12: CPU time for the cluster search as a function of the number of fractures (X
axis) and the mean number of intersections per fracture(Y axis).

Parallel to the MLC method originally developed in this work, we have implemented
another algorithm for clusters search called “Deep First Search (DFS)”. The DFS algorithm
is not detailed here as it can be found in the literature [Macé (2006)]. A benchmark
is performed using the two methods (MLC Versus DFS). This task can be seen as (i)a
validation test and (ii)a computational efficiency comparison. This comparison highlights
the numerical efficiency of the MLC method because in all tested cases the CPU time of
the MLC was smaller than the CPU time of the DFS algorithm. A typical benchmark test
is presented in Fig.3.13. The SpeedUp (CPUDFS/CPUMLC) was calculated for various
DFN (Nf=1000; 10,000; 100,000 fractures) with increasing intersection density.
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Figure 3.13: SpeedUp (CPUDFS/CPUMLC)) as a function of intersection density for
various sizes of the DFN. The number of fractures NF is one thousand, ten thousands, and
one hundred thousands, respectively.

3.3.3 Applications of the clustering algorithm

In this subsection we explore possible applications of the Clustering Algorithms in DFN’s.
Let us at first remind that the initial motivation of the development of theses tools was
the two issues highlighted in the conclusion of chapter.2 (i.e,. connectivity of the DFN and
percolation detection). It is obvious now that the Clustering algorithm developed in this
section is very suitable to address the second issue (Percolation). The Percolation in DFN
will be addressed in more details in the next chapter. Here, some other interesting uses of
the Clustering algorithm have arisen while developing the tool are presented.

Flow simulations in DFN are a crucial task for modeling the hydraulic behavior of
a fractured rock. Flow in the fractured medium will pass only through the percolating
clusters from source to target in a typical simulation. With the Clustering algorithms, the
percolating clusters can be easily and quickly determined. Hence, the Clustering algorithm
is used as a pre-processing before flow simulation. Without this pre-processing, each flow
simulation has to be performed upon the total DFN containing NF fractures which leads
rapidly to great difficulties in meshing and/or flow simulation. However, when using the
pre-processing, the number of fractures and the number of intersections are drastically
reduced. Note that the meshing difficulties are mostly related to treating fracture intersec-
tions. We explore the usefulness of the Clustering algorithm in the following manner. Given
an initial DFN, we perform a numerical simulation of flow between two opposite boundary
faces of the 3D domain,(e.g., [-X,+X]). The Clustering algorithms are used to check only
the percolating clusters and eliminating all the rest of the DFN (isolated fractures, isolated
clusters, dead-end fractures , dead end clusters). Then, the same flow simulation between
the two domain boundaries is performed on the “cleaned” DFN (only percolating clusters).
One can expect to see that the flow rate resulting from the two simulations will be the
same (as the non percolating clusters do not participate in flow). The important point to
highlight here is that the pre-processing of the DFN by the Clustering Algorithms permits
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a considerable reduction in meshing and flow computational efforts while keeping the same
flow rates results. Fig.(3.14) presents an example of this CPU reduction expressed as the
gain in the number of fractures and in CPU time. In this example a DFN is generated in
a domain of size 10 × 10 × 10[m] and the fracture radius is changed from 2[m] to 0.6[m].
Flow simulations are performed over each of these DFNs and the gains (in Fracture number
reduction and in CPU time speedup) are reported. One can note that for high density of
the DFN, the speed up in CPU time for flow simulations surpasses 100.
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Figure 3.14: Left : fracture reduction factor vs. fracture radius, showing the reduction in
the number of DFN fractures gained by the Clustering Algorithms. speed up vs. fracture
radius ; this shows the CPU time gained in the numerical flow calculations (meshing and
flow simulations). SpeedUp = CPUAll,DFN/CPUPercolatingclusters.

3.4 Graph of the DFN

3.4.1 Introduction to graphs and graph theory

As a concept, a graph is formed by vertices and edges connecting the vertices. A rigorous
formal definition of a graph can be stated as a pair of sets (V,E), where V is the set
of vertices and E is the set of edges, formed by pairs of vertices. Fig.(3.15) depicts an
example of the graph structure taken from Entryphone (2013). The graph theory is used
as a new approach [Valentini et al. (2007)] to treat fracture networks, which allows us
to move beyond complicated direct description of geometric parameters of the DEN (e.g.
orientation, size, position etc.).

The vertex set of a graph V(G) is

V (G) = {v1, v2, v3, ..., vm}

where m represents the vertices number. Usually, vi is represented by its spatial coor-
dinates (X, Y, Z). The edges set of a graph E(G) is

E(G) = {e1, e2, e3, ..., en}

A graph is associated to an adjacency matrix M [mxm] defined as follows

M(i, j) =

{
1 if vi is connected to vj

0 otherwise

Introductory textbooks to graph theory can be found in the literature [Wallis (2007)].
Graph theory finds its applications in different domains like urban engineering, social
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networks, natural networks, economy etc. Our aim in this section is to give a graph
representation of the 3D fracture networks. The final motivation of this approach is to
benefit from the theorems and algorithms well established by graph theory and to apply
them for insightful analysis of DEN with focus on flow and transport through fractured
rocks.

Figure 3.15: The structure of a graph. Vi represent the vertices (dots) and Ei represent
the edges (lines).

3.4.2 Graphs of fracture networks

To construct the corresponding graph of a 3D fracture network, the two matrices trace-trace
(TT ) and Link-trace (LT ), introduced in the description of the Connectivity Algorithm
(Sect.3.2) are used. Given NN and LN matrices, one can easily deduce a graph repre-
sentation of the DFN. The nodes (the mid-points of the traces) correspond to the vertices
in a graph representation. The link (a link is the fracture that relates two nodes) is the
edges in a graph representation of DFN. The adjacency matrix FF of the first illustrative
example given in Sect.1 (Fig.(3.4)) is given by

FF =



0 1 1 1 0 0 0 0 0
1 0 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 0
0 0 0 0 1 0 1 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0


Note that a graph based on the TT matrix is similarly defined. The difference between
graphs based on the FF matrix and the TT matrix is used in the next chapter while
resolving the flow problem on the graph. An example of the calculation of FF the graph
representation is given in Fig.(3.16).

Given the previous graph representation, one has all the tools, theorems, algorithms of
the graph theory that can be used for insightful analysis of the fracture network and its
geometrical,topological and physical properties. An interesting example of application of
graph theory to DFN is given in the next subsection.
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Figure 3.16: Graph representation of DFN of 200 fractures. Left: the DFN; the isolated
fractures and the non-percolating clusters in yellow and the percolating cluster in blue.
Right: the corresponding graph; the red dots present the intersections (nodes) and the
black straight lines represent the links.

3.4.3 Shortest path in a DFN based on graph theory

The shortest path algorithm determines the shortest way to connect two vertices (source
“S” and a target “T”). The shortest path is determined by the Dijkstra algorithm. The
Dijkstra algorithm is implemented but not described here. More details on the Dijkstra
algorithm can be find in Wallis (2000). Fig.(3.17) depicts the shortest path between the
sources (here we have chosen to present the flow between the two opposite faces X- and
X+). The method consists on searching all the nodes that intersect the face X- and consider
them as sources and searching all the nodes intersecting the face X+ and consider them as
targets. The procedure is applied on the previous network (200 fractures) and the result
is the following (Fig.(3.17)).
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Figure 3.17: Graph representation of DFN of 200 fractures. Left: representation of the
complete graph as in Fig.(3.16). Right: the shortest path for flow between faces X- and
X+. Here, a single source is found: only one node intersects X- (in green) and 17 targets
(17 nodes are intersecting the face X+ yellow).
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3.5 Conclusion

In this chapter, a numerical framework for geometrical and topological analysis of three-
dimensional fracture networks is presented. The numerical framework is composed of three
main sets of algorithms:

• Connectivity Algorithms capable of calculating all the geometrical attributes of the
DFN (e.g., areas, intersections etc.)

• Clustering Algorithms capable of determining all the clusters in the DFN, detecting
the percolating clusters and eliminating dead end clusters.

• Graph Algorithms capable of constructing the corresponding graph of the DFN and
allowing the application of several interesting algorithms from graph theory, like the
determination of the shortest path between sources and targets in the DFN. Other
algorithm like the maximum flow algorithm are also of important interest for graph
representation of DFN.

The algorithms have been validated in detail and their originality and their computational
efficiencies have been highlighted. Furthermore, possible interesting uses of each set of the
developed algorithms are given and some examples of applications are presented.

As a conclusion, this set of algorithms is a response to an initial motivation mentioned
in the conclusion of chapter two concerning two issues (percolation and connectivity in
DFNs). However, while developing these tools a lot of other interesting applications have
arisen concerning wide range of aspects of DFN like trace analysis, graph theory etc. These
tools changed drastically our view of DFN as our capabilities of analyzing such networks
are now much more stronger than at the beginning of this thesis. Some of the new way
of treating DFN regarding connectivity, percolation and upscaling are addressed in the
following chapter. Other ideas regarding DFN analysis are kept as perspectives to the
present thesis.
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Chapter 4

New Approaches on Percolation,
Clustering and Upscaling Based on
DFN’s Topology

4.1 Introduction

This chapter presents new approaches on the analysis of 3D fracture networks concerning
three main issues: (i) the percolation, (ii) the geomorphological description of the clustering
process and (iii) the equivalent permeability estimation of the DFN based on the graph
approach. As mentioned in the conclusion of the previous chapter, the developed tools
concerning the connectivity, clustering and graph of the DFN provide new capabilities for
treating the percolation, clusters identification, connectivity and flow in a computationally
efficient way.

This chapter could be viewed as a response to the limitations of the superposition
method mentioned in the conclusion of chapter 2. We remind here the two limitations
mentioned in that conclusion. The first limitation concerns the determination of the crit-
ical percolation density ρEX,C , because it is a computationally expensive task and the
methodology used can lead to non-accurate values due to the relatively large standard
deviations observed around the mean value of ρEX,C . The second limitation concerns the
difficulty to assess the degree of connectivity of the network which leads automatically
to an inaccuracy on the determination of the equivalent permeability of the 3D fractured
medium. Using the toolbox described in chapter three (Connectivity, Clustering and Graph
algorithms), these and other issues will now be addressed addressed more efficiently leading
more insightful analysis and conclusions. This constitutes the purpose of this chapter.

The dimensionless density based on the concept of excluded volume is a key parameter
in analyzing fracture networks as it gives to the analysis a universal character. The equiva-
lence between the dimensionless density based on the excluded volume ρEX and the exact
intersection density ρ (as calculated by the Connectivity algorithm) has been examined in
the previous chapter where the effects of finite domain and of statistical fluctuations have
been highlighted.

In Sect. (4.2), the percolation phenomenon in DFN is studied and the critical perco-
lation density is determined for mono-disperse isotropic networks. Then, in Sect. (4.3),
the geomorphological description of the process of clustering (i.e., the formation of clusters
of fractures) in a DFN is analyzed and a modified Rayleigh law is proposed as a unifying
law for the clustering in DFNs. In Sect. (4.4), new approaches for flow and equivalent
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permeability estimation of fractured rocks are proposed based essentially on the graph rep-
resentation of DFN and the topological properties determined by the topological analysis
of Chapter 3.

4.2 Percolation in DFN

4.2.1 Methodology

The methodology of determining the critical percolation density is similar to the one used
in chapter 2. It consists on generating numerous realizations of 3D fracture networks.
The parameters of the network (orientation distribution, size distribution etc.) are unique
for each critical density determination and hence are the same for all the realizations.
For example, if the sensitivity of the critical percolation density on the fracture size is
investigated, a determination of critical density has to be performed for each fracture size.

The different realizations are obtained by adding fractures from a pre-set of random
fractures: N=1000 disc fractures are first generated, the number of fractures being therefore
increased by sampling into this pre-set of 1000 random fractures. This numerical procedure
is equivalent to generating several independent realizations of fractures sets. For instance,
in a sequence of 1000 generated fractures, the first subset of 100 fractures is independent
from the 2nd subset (fractures N=101 to N=200).

The numerical procedure to determine the critical percolation density consists in con-
ducting a series of Connectivity analysis for a single replicate of the fracture network with
increasing fracture density.

For each density, the Clustering algorithm is used to determine if a percolating cluster
do exist. As fracture density of the DFN increases, a percolating cluster relating two
opposite faces of the 3D domain will be formed. This density corresponds to the critical
percolation density. This procedure is repeated for several realizations and the mean value
of the critical percolation density is retained.

This procedure of determination of the critical percolation density is different from
the one used by [Mourzenko et al. (2005)]. In their work, the percoaltion is calculated in
fracture networks with fixed number of fractures (fixed density of the network) for multiple
realizations. However, in the present work ,the percolation is viewed as a dynamic process
where the density of the network gradually increases (either by adding new fractures to
the network or by increasing the radius of the existing fractures in the network).

4.2.2 Results of critical percolation density

In this subsection, the determination of the critical percolation density using in a sequential
manner the Connectivity and the Clustering algorithms is addressed.

Our aim is to replicate, in the objective of comparison, the studies of [Mourzenko et
al. (2005)] in terms of critical percolation density for a Poissonian isotropic mono disperse
(constant radius) fractured network. An analyzing domain of 8×8×8m3 has been used, and
radius of the fractures has been varied from R=1 m to R=0.3 m (i.e., for each radius, the
procedure of the determination of the critical percolation density is applied over multiple
realizations). The number of realizations that have been performed is different for each
radius. The number of realizations increases as the radius increases. For the smallest
radius RF = 0.3m, the number of realizations is 50. For the maximum radius RF = 1, the
number of realizations is 1000. Figure 4.1 shows the average and the standard deviation
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of the critical percolation density ρC , as function of the fracture to domain size ratio,
calculated with Connectivity and Clustering algorithms (exact calculations).
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Figure 4.1: Evolution of the critical density ρC (dimensionless) as function of the fracture
to domain size ratio (D/DHom).

It can be concluded from the results the following.

• The variation of the critical percolation density with respect to the fracture to domain
size ratio is very small. The difference between the two extreme points is ∆ρ ≈ 0.05.

• The standard deviation around the mean value of the critical percolation density is
explained by (i) the statistical fluctuation, especially if the number of fractures at
percolation is small and (ii) the finite size effects of the domain of study (Dhom).

• If we take the value of ρC for the smallest fracture to domain size ratio (Fig. 4.1, we
obtain ρC ≈ 2.35 which is close to the value of ρEX,C ≈ 2.41 found in [Mourzenko
et al. (2005)]. The slight difference between the results can be attributed to the
fact that the circular fracture shape in [Mourzenko et al. (2005)] is approximated by
polygons with numerous sides. In the present work, the circular shape of the fracture
is analytically taken into account in the calculation of intersections.

On another side, an interesting quantity, at the percolation, is the ratio of the area of the
percolating cluster to the total area of DFN. In the previous critical percolation study, we
have reported the area of the percolating cluster at the percolation (by the Connectivity
and Clustering algorithms). The results are shown in Fig. (4.2).

It can be seen that the percentage of the area of the percolating cluster at percolation
decreases when the fracture to domain size ratio decreases. In all cases, the area of the
percolating cluster is always less than half the area of the DFN. This quantity (the area
of the percolating cluster) is of considerable importance from a hydraulic point of view.
After percolation, only the percolating cluster is of interest for the fluid flow through the
fractured medium. Hence, the area of the percolation cluster presents an indication of the
amount of volume through which the fluid will circulate and hence gives an idea about the
permeability of the DFN. Furthermore, a linear decreasing of the ratio of the percentage of
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Figure 4.2: Area of the percolating cluster (APC = % of the total area of the DFN) as
function of the fracture to domain size ratio.

the area of the percolating cluster is seen from Fig. (4.2). One can expect from the linear
fitting that for an infinite domain, the area of the percolation cluster, at percolation, will
be only about 9.3%. However, the fluctuation of the values of the percentage of the area
percolating cluster is high and the linear fitting have to be taken with caution.

4.3 The clustering process in DFN

Given the Connectivity and the Clustering algorithm, the clustering process of 3D fracture
networks is now analyzed in details. It is meant by the clustering process the formation
of clusters from fractures. It consists on the agglomeration of fractures to form clusters
and then the agglomeration of clusters to form bigger clusters and so on. It is worthy to
notice at this stage that the clustering as addressed in this thesis is a geomorphological
observation and it does not take into account the mechanical aspects behind the formation
and the propagation of fractures and clusters.

Clustering can give insightful understanding of the connectivity of the fracture net-
work. If there exists a lot of independent clusters in the network, the network is weakly
interconnected. However, as the number of clusters decreases, the network become more
interconnected until a point where all clusters collapse into one big cluster spanning the
entire domain. This subject is important for the hydraulic behavior of the DFN (the main
subject of the present thesis). More generally, the clustering process is a research area es-
pecially for geo-mechanics trying to understand the evolution of natural and/or engineered
fractures and their clustering process. This section analyses two quantities of interest in
a DFN: (i) the evolution of the density of clusters in a DFN and (ii) the evolution of the
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size of the largest cluster in a DFN.

4.3.1 Evolution of the density of clusters in DFN’s

Let us start by defining the Cluster density

ρCL =
NCL

NF
(4.1)

where NCLis the total number of clusters in the DFN and NF is the total number of
fractures in the DFN. Note that if more than two fractures are connected together are
counted as a cluster and isolated fractures are not taken into account.

In order to study the evolution of ρCL, the following procedure has been implemented
based on the tools developed in chapter 3.

At first, 3D random fracture networks are generated with varying number of fractures
NF . Let us say, for example, NF=5,000; 10,000, 15,000 and 20,000. For each fixed number
of fractures in the DFN (fixed NF ), multiple realizations of the same DFN are generated
to realize statistically meaningful study. Then, for each realization of a DFN, the density
ρ (reminder: ρ is the mean number of intersections per fracture) is increased gradually by
increasing the radius of the fractures in the DFN. At each density ρ, the Connectivity and
Clustering algorithms are used to determine all the existing clusters in the DFN and their
proper sizes. A typical study involving a DFN with a fixed number of fractures NF needs
to run the Connectivity and Clustering algorithms about Nrun = 200. Hence, one can
imagine the amount of computational efforts needed to realize this study by multiplying
the number of runs by the CPU time of each run ( The CPU time corresponds to the
Connectivity and the Clustering algorithms on DFN’s containing NF fractures).

The following Fig. (4.3) presents the evolution of the density of clusters ρCL = NCL
NF

in the DFN as a function of the mean number of intersection per fracture ρ. Note that,
for fixed number of fractures NF , each curve (i.e., each color) is the mean value of 20
independent realizations and the standard deviations are marked in the figure. The size of
the DFNs used to obtain Fig. (4.3) are resp. NF =5,000; 10,000; 15,000 and 20,000.
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Figure 4.3: Evolution of the density of clusters ρCL = NCL/NF with respect to the density
ρ. The different colors correspond to different number of fractures in the DFN. The bars
correspond to the standard deviation at each density.

The evolution of the density of clusters depicted in Fig. (4.3) is roughly independent
from the number of fractures in the DFN. This result shows that when using ρ as a
measure of the density of the DFN, a “quasi-universal” behavior of the clustering process
can be easily deduced. Independently from the number of fractures in the DFN, the
clustering process is the same, when the density ρ increases, the fractures collapse together
forming small groups of fractures called clusters. The number of clusters rapidly increases
until a critical density σ (not to confound with the critical density of percolation ρC) is
attained, at which the clusters begin to agglomerate together and form larger clusters. For
densities smaller than the critical density σ, the formation of new clusters from isolated
fractures is the dominant mechanism of clustering. However, for densities larger than σ,
the agglomeration of existing clusters to form larger clusters is the dominant mechanism
and the formation of new clusters from isolated fractures begin to be a marginal process
. Hence, the number of clusters rapidly decreases until all the fractures belong to a single
large (or infinite) cluster.

Another important consequence from Fig.(4.3) concerns the shape of the curve of ρCL =
f(ρ). It can easily be seen that a Rayleigh law can describe this evolution.

The standard Rayleigh law is written as

ρCL =
ρ

σ
exp(

−ρ2

2σ2
) (4.2)

where σ is the parameter of the Rayleigh law and it should be a positive number. σ
can be easily determined from data (similar to Fig. (4.3)) by determining the coordinates
of the maximum value of ρCL = f(ρ). The robustness of the Rayleigh law to describe the
data came from the fact that a single parameter σ is needed to calibrate the Rayleigh Law.

The task of determining the coordinate of the critical point (σ , f(σ)) is performed over
a large number of DFNs with varying 2, 000 ≤ NF ≤ 30, 000. To do so, the same procedure
as in Fig. (4.3) has been performed for each DFN for several realizations. The step ∆ρ
by which the density is increased is set to ∆ρ = 0.01 enabling a precise determination of
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the coordinates of the critical points (σ , f(σ)) . Each determination of the critical point
is performed over 20 independent realizations. Then, the mean value is obtained and the
standard deviation is evaluated. The results of the determination of the critical point are
depicted in Fig. (4.4).
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Figure 4.4: Evolution of the coordinates of the critical point as function of the number of
fractures NF in the DFN. (a) the critical density σ and (b) the maximum cluster density
ρCL,max.

It can be seen that the variation of the coordinates of the critical point is small. One
can report the narrow range of variation of the coordinate of the critical point from the
previous analysis as

{
0.7657 ≤ σ ≤ 0.9294

0.1689 ≤ ρCL(σ) ≤ 0.1867
. (4.3)

More interestingly, Fig. (4.4) shows clearly that the coordinates of the critical point
converge toward a fixed value as the number of fractures in the DFN increases. This enforce
the possibility of using Rayleigh law to describe the process of clusters evolution in a DFN.

Finally, one can compare the ability of a Rayleigh law in describing the evolution of
clusters in a DFN by scaling the normalized Rayleigh law (Eq. (4.2)) by the coordinates
of the maximum point. An example of comparison is depicted in Fig. (4.5).
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Figure 4.5: Rayleigh law for describing the cluster evolution in a DFN. The DFN contains
10,000 fractures.

As it can be seen, the Rayleigh law (in blue) is predictable in the increasing phase of
clustering. However, the Rayleigh law under-estimates the cluster density on the decreasing
phase (one can attribute this underestimation to the square exponential decreasing rate
of the Rayleigh law). It is always possible to perform a fitting in the decreasing phase of
clustering to obtain a modified Rayleigh law capable of precisely describing the clustering
process in all the phases. This task demands a considerable computational time and it
is, therefore, an ongoing work. Here, only the principles of the method of describing the
clustering process by a Rayleigh law (or a modified Rayleigh law) are being presented.

Moreover, the clustering process can result from two different mechanisms [McClure
and Horne (2014)]: (i) through induced slip on pre-existing fractures (shear stimulation:
increasing the size of existing fractures) and (ii) by creating new fractures using hydraulic
fracturing technique (opening mode: increasing the number of fractures in the DFN), or
by a combination of the two mechanisms. In the present work, beside the fact that our
analysis is purely geomorphological, it alos considers only the first mechanism (increasing
the size of fractures in a preexisting DFN). The second mechanism (adding new fractures
to the DFN to increase the density) is also under investigation and constitutes, with the
fitting procedure of the Rayleigh law, two main tasks in an ongoing work.

4.3.2 Size of the largest cluster in DFN

The distribution of the size of clusters is related to the previous analysis about the distri-
bution of the cluster number. Our focus here is on the size of the largest cluster. From a
hydraulical point of view, only the percolating larger clusters are of interest. In Fig. (4.6),
the evolution of the size of the largest cluster in the DFN as function of the mean number
of intersections per fracture ρ is presented.
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Figure 4.6: Evolution of the relative size of the largest cluster in a DFN with respect to
the density ρ of the DFN.

The DFNs used are the same as in Fig. (4.3). The size of the largest cluster is presented
as the percentage of the area of the largest cluster (ACL) over the total area of fractures
(ADFN ) in the DFN. Similar evolution have been observed for all DFN sizes (NF= 5000;
10,000; 15,000 and 20,000 fractures).

Several conclusions could be made while interpreting Fig. (4.6). The first one , and
the most obvious, concerns the fact that just as the density ρ become larger than the
critical point σ, the size of the largest cluster increases rapidly which is coherent with the
fact that the number of clusters is decreasing at similar rate (Fig. (4.3)): as the density
ρ increases, the clusters collapse to form larger clusters and hence the size of the largest
cluster increases. The second conclusion concerns the fast rate at which the area of the
largest cluster attain roughly 100% of the total area of the DFN. As it can be seen from
Fig. (4.6), at density ρ ' 3, the area of the largest cluster represents already 90% of the
total area. This observation indicates that just after percolation, (remind that the critical
percolation density was for mono-disperse network ρC ' 2.178) all the DFN will collapse
in a single large cluster. This fact has an important implication on the hydraulic behavior
of the DFN. It also implicates that just after percolation the majority of the network
participate to the flow and hence the superposition principle for permeability upscaling
could be used with the appropriate fitting.

An immediate perspective of this cluster area analysis concerns the possibility of using
the repartition function of Rayleigh law (or the modified Rayleigh law) to describe the
evolution of the size of the largest cluster. The idea is coherent with the previous results
concerning the capability of Rayleigh law to describe the evolution of the clusters in a
DFN. As mentioned earlier, these points constitute an ongoing work and only the idea and
the methodology are highlighted.
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4.4 Graph approach for flow simulations in DFN

Performing detailed flow simulations on the 3D fracture network is computationally very
expensive. [Adler et al. (2012)] give a detailed evaluation of the CPU time needed for
meshing DFNs. [Karra et al. (2018)], [Fourno et al. (2019)] also presented the computa-
tional limitations of their tools for meshing DFN. Due to these limitations, performing flow
simulation on the corresponding graph of the DFN is a promising option ([Hyman et al.
(2017)], [Alghalandis (2017)]). The objective of this section is to conceptualize and then
implement the flow simulation on the corresponding graph of a DFN. The final purpose is
to use the graph flow simulation as an alternative tool for upscaling permeability.

4.4.1 graph approach for flow: the principle of the method

The graph construction from DFN was explained in the previous chapter 3. As men-
tioned, two possible graph representations, corresponding to two adjacency matrices (TT
for trace-trace matrix and FF for fracture-fracture matrix), can be considered. In our case,
all the technical work needed to construct the corresponding graph of a DFN is already
accomplished as presented in the different tools of the previous chapter. Hence, the im-
plementation of flow simulation on the graph is presented here. The aim of the following
reasoning is to present a formulation of the flow problem on each graph representation
of the DFN. For clarity, the procedure is only explained for the TT graph and one can
extrapolate the same procedure to the FF graph type. The differences, regarding the graph
flow formulation, between the two types (TT and FF) are mentioned at the end of this
subsection.

For the TT type of graph, each intersection between two fractures is a vertex. Any two
vertices VT i and VTj belonging to the same fracture are connected and the the correspond-
ing fracture presents the edge Eij in a graph notations. Figure (4.7) presents an example
of three fractures in a DFN and their corresponding graph attributes.

The figure is printed from a flow simulation on a DFN under Comsol. The purpose
of presenting the graph attributes of a DFN in a flow simulation result is to relate the
abstraction of the graph approach to the realism of direct numerical simulations. The
central fracture has two intersections. The midpoint of each trace (the intersection line)
represents the vertices (VT1 and VT2). The Euclidean distance between VT1 and VT2 is the
length of the edge E12 relating the two vertices (VT1 and VT2). The same convention is
applied to all the vertices and edges of the TT graph.

Now, let N be the number of nodes in the TT graph. If a steady state flow is assumed
in the fracture network, the mass balance of fluid for any vertex VT i in the graph can be
written as: ∑

j

Qij = 0 (4.4)

where j is any vertex adjacent (connected) to the vertex i. Qij is the volumetric flow
rate [m3/s] between the vertices i and j. A Darcy law is used to relate the flow rate Qij
and the pressure gradient (Pi − Pj) between vertices VT i and VTj through the following
equation

Qij =
Kij Aij
µ

(Pi − Pj)
∆ij

(4.5)
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Figure 4.7: Schematic representation of the TT graph of a DFN containing only 3 fractures.
The schema was taken from real flow simulation of the DFN. The red arrows represent the
Darcy velocity field; the green lines represent the iso-pressures. The straight lines are the
traces (fracture intersections). Yellow circles present the vertices of the TT graph. Gray
discontinuous lines are the edges of the TT graph.

where Kij [m2] is the permeability of the fracture relating VT i and VTj , µ [Pa.S] is the
fluid viscosity, ∆ij is the Euclidean distance between VT i and VTj and Aij is the transverse
area throw which the fluid flows between vertices VT i and VTj . The choice of the area Aij
is assumed similar to [Karra et al. (2018)] by the following approximation

Aij = aij
(LT i + LTj)

2
(4.6)

where aij is the aperture of the fracture connecting the two vertices VTi and VTj , LT i
and LTj are the lengths of the traces Ti and Tj .

Now, combining Eq. (4.4) and Eq. (4.5), a unified equation relating the pressures at
the vertices of the graph is obtained as follow

∑
j
wij(Pi − Pj) = 0

where wij =
KijAij
µ∆ij

. (4.7)

The terms wij are the weights of the graph edges Eij . Now, one can define the weighted
adjacency matrix ATT of the TT graph as

ATT (i, j) = wij if VT i and VTj are connected

ATT (i, j) = 0 elsewhere

. (4.8)

To obtain an algebraic formulation of the flow problem, a diagonal matrix DTT con-
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taining the degrees of the vertices is defined as follow

DTT (i, i) =
∑
j

ATT (i, j) (4.9)

Now, an algebraic formulation of Eq. (4.7) is obtained by

(DTT −ATT )P = 0 (4.10)

where P is a [N X 1] vector presenting the pressures at the vertices of the graph (the
unknowns). The matrix (DTT − ATT ) of size [N X N ] is also called the Laplacian of the
graph. Finally, the resolution of the steady state flow problem on the TT graph consists
on the resolution of the previous linear system. To do so, one has to provide the boundary
conditions. For example, if a pressure gradient is imposed between two opposed faces of
the 3D domain, Dirichlet boundary conditions have to be imposed on all the vertices that
intersect these opposed faces. The assignment of boundary conditions is done by adding
the adequate value of pressures in the second member of Eq.(4.10). The flow on graph
procedure is implemented in a suit of scripts and has been linked to the set of algorithms
developed in chapter 2 for automatization purposes.

To resume the whole procedure of resolution of the steady state flow on the associated
TT graph of a typical DFN, the Fig. (4.8) depicts an example of a DFN containing
NF = 200 fractures, statistically oriented and randomly located in the 3D domain. The
results of steady state flow simulations on the DFN are presented and their analogy with
the TT graph flow simulation is presented.
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Figure 4.8: DFN and its corresponding TT graph. Top-Left: the DFN containing 200
fractures is meshed. Bottom-Left: The steady state flow simulation results: the color map
corresponds to the pressure field in the DFN. Top-Right: the corresponding TT graph of
the DFN (red dots represent the vertices and the black straight lines represent the edges of
the graph). Bottom-Right: the results of the flow simulation on the TT graph (the color
map represents the pressure field in the graph).
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Once the graph flow approach is implemented, one can evaluate the gain in CPU time
for flow simulations if the graph approach is used instead of the detailed flow simulation.
The gain in CPU time came essentially from the fact that the meshing procedure is a
very time consuming task as revealed in recent studies ([Adler et al. (2012)]; [Karra et al.
(2018)]; [Fourno et al. (2019)]). In fact, the CPU time for meshing the DFN is a power
function of the density of the DFN [Adler et al. (2012)], Eq.8.1). On the other hand, with
the graph approach, there is no need of meshing procedure as the vertices and the edges
of the graph are already determined by the Connectivity algorithm. Finally, the graph
approach results on a number of degrees of freedom (DOF) orders of magnitudes lower
than the DOF of the meshed DFN. The gain in CPU time by using graph approach is
discussed in [Karra et al. (2018)] and here we present a simple example of similar study
of CPU time gain. A 3D random DFN is generated with statistically isotropic orientation
and with constant fracture radius. At first, a steady state flow simulation with imposed
pressure gradient is run on a finite element simulator (ComsolMultiphysics). Then, the
equivalent graph is used to run the same steady state flow simulation. The speed up is
plotted in Fig.(4.9).
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Figure 4.9: Speed up from using graph flow instead of detailed simulations in DFN. The
CPU time for DFN simulation includes meshing and solving flow equation. The CPU
time of graph flow simulation includes the CPU time of the Connectivity and Clustering
algorithms and the resolution of the flow system.

One should emphasize at this stage that the speed up mentioned in the present study
do not reveal the strength of the graph approach as we are limited (due mainly to meshing
failure) to a small number of fractures (the maximum number of fracture used in the
example of Fig. (4.9) was NF = 400 fractures) and the maximum density was ρ = 10
[intersections per fracture]). We expect that the speed up will attain larger orders of
magnitudes if the meshing tool used in the present study is able to handle denser and
larger DFNs. The limitation of the meshing procedure in Comsol consists on a failing of
the mesh even for “moderate” densities.

After this detailed presentation of the flow on the TT graph, the implementation of the
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flow problem on the FF graph is now discussed with a focus on the fundamental differences
between the two graph approaches (TT .Vs. FF).

At first, one can remind the main limitations of the TT graph approaches due mainly
to some over simplifications. In the previous TT graph approach, the pressure is assumed
to be constant at the fracture intersection. This hypothesis is not verified as it can be seen
clearly from Fig.(4.7). At the vertex VT1, the pressure gradient is not zero (in contrast, a
large pressure gradient is observed in that intersection (see the iso-pressure green lines)).
This observation was also mentioned in the work of [Karra et al. (2018)] in the context
of tracer transport in graphs and they have mentioned that this under-estimation of the
pressure gradient at the intersections leads to order of magnitudes under-estimation of the
particle travel time in DFNs. To overcome this over-simplification, we propose a different
flow approach based on the FF graph. The concept of the present approach is similar to
the work of Cacas et al. (1990) with new definition of the coordinates of the vertices.

In the present version of graph (FF ), the vertices are no longer the midpoints of the
traces as in the TT graphs. Each fracture on the FF graph is presented by a single vertex.
The coordinate of the vertex VFi is the barycenter of the traces belonging to the fracture
Fi weighted by their respective trace lengths. Fig. (4.10) gives a schematic representation
of the location of the vertices VF .

Figure 4.10: Schematic representation of a FF graph for flow on the same DFN as in Fig.
(4.7)

The procedure for the implementation of the steady state flow in the FF graph is
exactly the same as the on the TT graph except for the flow equation (Eq.(4.5)). In the
FF graph, the new parameters of Eq.(4.5) are as follows:

• The distance ∆ij is defined as the distance between VFi and VFj passing throw the
midpoint of the trace Tij connecting the two fractures Fi and Fj . An example of
such distance ∆12 is presented in Fig. (4.10) with the dashed gray line.

• The permeability Kij is defined as the harmonic mean of the permeabilities of the
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corresponding fractures Fi and Fj weighted by the distances from the vertices (VFi
.resp.VFj) to the midpoint of the trace Tij .

• The flow area Aij is now the trace length LT ij multiplied by the arithmetic mean of
the apertures (ai and aj) weighted by the distances from the vertices (VFi .resp.VFj)
to the midpoint of the trace Tij .

The new approach of FF graph is, a priori, physically more coherent with the detailed flow
observation in the DFN. In contrast to the previous TT graph approach, the locations of
the vertices in the FF graph are far away from the important pressure gradient observed
at the fracture intersections. In this way, the hypothesis of a constant pressure at the
vertices is more realistic. This physical argument was our main motivation to implement
the FF graph approach to compare with the recently used TT graph approach [Karra et
al. (2018)]. Once the two approaches (flow on the graphs TT and FF ) are introduced and
implemented, the accuracy of each approach can be revealed by comparison with detailed
steady state flow simulations. This point will be highlighted in the following subsection
with a focus on the ability of the two approaches to predict the equivalent permeability on
the DFN in 3D.

4.4.2 Permeability estimation based on graph flow

The flow simulation on graph is performed under several approximations. These approx-
imations concern mainly the important reduction of the number of DOF in comparison
with the DFN: the pressure on each fracture in the DFN is now represented by a single
value (in the FF graph) or by a limited number of pressure values proportional to the
number of intersections per each fracture (in the TT graph). Approximations concern also
the weights of the edges used in the two graph approaches.

The aim of this section is to compare the capabilities of the two graph approaches in
estimating the equivalent permeability of 3D fracture network. To evaluate the accuracy
of the graph approaches, the equivalent permeability of synthetic DFNs are first computed
by direct numerical simulations using the finite elements software Comsol Multiphysics.
Then, the results of the equivalent permeability are compared to the upscaled permeabilties
obtained by the two variants of the graph flow approach. To obtain the upscaled equivalent
permeability of 3D fracture networks from detailed numerical simualtions under Comsol,
the same numerical procedure used in chapter 2 (Rajeh et al. 2019) is used. For the graph
approach, the velocity field is calculated in all the edges by assuming a Darcy law relating
the pressures difference between the vertices. The remaining of the upscaling procedure is
the same as in chapter 2. The results of the comparisons are depicted in Fig. (4.11).
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Figure 4.11: Comparing the equivalent permeability estimations: blue (DFN), red (graph
of traces: TT), green (graph of fractures: FF)

The evolution of the equivalent permeability with respect to density ρ depicted in Fig.
(4.11) shows that the comparison between TT and FF graphs can be separated into two
regions with respect to the densityρ.

• For low densities, the FF graph estimates equivalent permeability in a relatively
more precise way compared to the TT graph. This is due to the physical argument
presented earlier (i.e., the location of the vertices in the FF graph are far away from
the large pressure gradient zone (the intersections zone)).

• For more important densities, (ρ ≤ 5) in Fig. (4.11), the equivalent permeability
estimation by the TT graph is more accurate compared to the FF graph estimations.
This can be explained by the fact that the number of DOF in the TT approach is
proportional to the density ρ, however the number of DOF in the FF graph depends
only on the number of fractures. In this way, in large densities, the FF graph can
be seen as an over simplification of the DFN. For that reason, the values of the
permeability estimated by the FF graph begin to diverge from the permeability
estimated from detailed flow simulations.

• In all the density range studied here, the graph approach under-estimates the equiv-
alent permeability of the 3D fractured medium.

To sum up, the advantages of the FF graph approach seems to be limited to low to
moderate densities. However, for larger densities, the classical TT graph is more accurate
in estimating the equivalent permeability of DFN in 3D. A more insightful revision of the
FF approach has to be investigated in order to add more DOF to the FF graph. The
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analytical solutions presented by [Noetinger and Jarrige (2012)] could be a starting point
to this goal. This point is kept as perspective of this thesis.

4.5 Conclusion

As a conclusion of this chapter, topological and graph analysis are demonstrated to be
powerful tools for analyzing percolation and connectivity aspects of DFN. The important
conclusion can be listed as follows:

• The equivalence between the density of DFN based on the concept of excluded volume
ρEX and the exact DFN density ρ is investigated. It comes out from this investigation
that the equivalence (ρEX .versus.ρ) is sensitive to two parameters: (i) the number of
fracture in the the network NF and (ii) the fracture to domain size ratio DF /DHom).

• The critical density of percolation was determined for mono-disperse networks. The
effects of the 3D domain boundaries has been highlighted. Also, the value of the criti-
cal density ρEX,C for “infinite domain” is coherent with the value found in [Mourzenko
et al. (2005)] although the differences in the method of the determination of the per-
colaiton between their work and the present study. The difference is explained by
the fact that [Mourzenko et al. (2005)] approximate circular fractures with regular
polygons.

• A Rayleigh law is proposed to describe the evolution of the clustering process in
fractured rocks. The physical interpretation of the clustering process and its relation
to geomechanic process are highlighted.

• Steady state flow in DFN is now formulated and implemented on the equivalent
graphs of DFN. Two major graph representations of the DFN are used: (i) TT graph
where the vertices of the graph correspond to the traces of fracture intersections
in the DFN and (ii) the FF graph where the vertices correspond to the fracture
barycenters. The flow simulation on graph are used as a tool for upscaling the
permeability of DFN. The results are compared to detailed flow simulation and the
speed up is evaluated. It comes out that, although the graph approach is gaining
recently an important interest and it is under intensive research efforts, it under-
estimates the equivalent permeability of 3D fractured media. More efforts on the
formulation of the graph flow problem have to be adressed in the future.

Finally, one can reconfirm that the set of algorithms developed in chapter 2 present an
efficient tool for analyzing the topological aspects of the DFN and enable us to make more
insightful conclusion about the geometrical, topological, graph and hydraulic attributes of
3D fracture networks. The developed tools open more possibilities to investigate various
aspects of DFN (percolation, clustering etc.).
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Chapter 5

Application: Reservoir Scale
Thermo-Hydraulic Simulations

5.1 Introduction

This final chapter treats another separate aspect of fractured rock modeling: the reservoir
scale simulation. In real applications, the following consecutive tasks have to be addressed
in order to model a geothermal reservoir: (i) fractured rock characterization, (ii) upscaling
the physical properties of the rock and (iii) performing reservoir scale simulation to test
the availability of the resource and the production scenarios.

This chapter could be viewed as the upstream of the previous fractured porous rock
analysis (the consecutive analysis including the numerical generation of fractured rocks
samples (chapter1), percolation analysis and upscaling (chapters 2, 3, 4)). The objective,
here, is the preparation of a reservoir scale simulation toolbox (taking into account the
specificity of the upscaled properties: heterogeneity and anisotropy) with a future perspec-
tive of application to a realistic case presented by the ongoing GEOTREF project.

Reservoir simulation is a crucial task in the development of geothermal energy extrac-
tion projects. The most known tool and widely used in geothermal reservoir simulations
is THOUGH2 [Pruess et al. (1999)]. TOUGH2 is built on the base of a FORTRAN code
and the current version 2.0 dates to 1999. While the TOUGH2 is the principal industry
standard for geothermal energy simulations, many research groups have been developing
alternative tools to overcome many of the THOUGH2 limitations like the lack of a proper
well simulator. As an example, [Franz (2015)] proposes an alternative toolbox, called
OOMPFS, for reservoir and power plant simulation adopted for geothermal energy. More
recently, [Salimzadeh et al. (2018b)] published tools for modeling and simulating coupled
thermo-hydro-mechanical behavior for deformable fractured geothermal systems. [Pandey
et al. (2018)] have given a state of the art of the existing codes for reservoir simulation
adapted to geothermal energy. The methodology and the specifications of each code are
also presented.

There is a clear evidence for extreme structure heterogeneity and variations in thermo-
hydraulic properties in hydrothermal systems in general [Matthäi et al. (2007)]. Similarly,
in EGS (Enhanced Geothermal Systems) there is a great variability and heterogeneity
in permeability due to the fracturing process. Hence, there is a particular need for the
treatment of reservoir heterogeneity and anisotropy. Hence, the purpose of this chapter
is to develop a numerical code for reservoir thermo-hydraulic simulation capable of taking
into account these two aspects (i.e., heterogeneity and anisotropy). The code developed
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in the present work, called hereafter GeothFoam, is developed using the open source code
OpenFoam. The presentation of the code and its capabilities is the subject of a dedicated
section in this chapter.

In the previous chapters, our focus was on the analysis of the geometrical and topologi-
cal properties in the aim of obtaining equivalent properties of the fractured medium at large
scale (i.e., the reservoir scale). Before performing numerical simulation at reservoir scale
to describe the functionality of the geothermal reservoir, one have to address the math-
ematical formalism to model flow and heat transfer at reservoir scale with the upscaled
properties. The system of equations modeling the flow and heat transfer in equivalent frac-
tured porous media is obtained by the volume averaging theory [Whitaker (1986)]. The
details are not shown here as the theoretical derivation of these macroscale equations is
not the focus of this chapter.

This chapter is presented as follow. First (Sect. (5.2)), the macroscale (reservoir scale)
equations for modeling the flow and heat transport are presented. Also, a scale analysis is
presented in order to understand the physical mechanisms described by the mathematical
model. The “GeothFoam” thermo-hydraulic solver developed with the toolbox OpenFoam
is presented in Sect. (5.3) with several benchmark tests for validation. Finally (Sect. (5.4)),
a typical hypothetic example of geothermal system containing injection and production
wells is presented.

5.2 Macro-scale governing equations of flow and heat trans-
port

5.2.1 Mathematical model for flow and heat transport:

Before dealing with the governing equations, a scale separation has to be addressed. As it
is mentioned in the first chapter, fractures can be found at various scales from mm to km.
Two essential scales can be introduced: (i) the local scale and (ii) the macro scale. The
local scale (the green box in Fig. (5.1)) has a typical size of a single fracture including its
surrounding porous matrix. The large scale (the black box in Fig. (5.1)) corresponds to
the reservoir scale (i.e. all the fractured rock containing a large number of fractures (e.g.,
millions) and a large volume of the surrounding rock (∼ Km3).

Figure 5.1: Schematic representation of the different scales of the problem

5.2.1.1 At local scale:

The governing equations for flow are derived by applying the mass conservation principle
and the Darcy law for velocity. The resulting system of equations representing the two
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medium and local scale (porous and fractures) is the following
CM θM

∂PM
∂t = div

(
−KM

µ grad (PM )
)

+QM inΩM

CF θF
∂PF
∂t = div

(
−KF

µ grad (PF )
)

+QF inΩF

(5.1)

where

1. CM , CF are the compressibility coefficients [Pa−1] for matrix, resp. fracture.

2. θM , θF are the porosity [-] for matrix, resp. fracture.

3. PM , PF are the pressures [Pa]in matrix, resp. fracture.

4. KM ,KF are the permeabilities [m2] of matrix, resp. fracture. At this scale, the
permeabilities are scalar for the porous matrix and a diagonal tensor for the fracture.

5. µ is the fluid viscosity [Pa.s].

6. QM , QF are the source term [s−1] for matrix, resp. fracture.

In the previous equations, ΩM and ΩF represent the matrix and fracture domain respec-
tively.

The coefficients “C” are specific storage coefficients, or “capacities”. They express the
capacity of the media to store or drain due to a unit variation of pressure, caused solely
by compressibility effects. Thus, it is assumed that both media (“matrix” and “fractures”)
react like elastic isotropic continuum to pressure changes. An increase in pressure PM
allows storing more water in the matrix medium; and an increase in pressure PF allows
storing more fluid in the fracture system.

The governing equations for heat transport are derived from the energy conservation
principle in porous media formulated with the advection diffusion equation. The resulting
system of equation at local scale is the following


ρ θM CpM

∂TM
∂t = div (θM λM grad (TM ))− div (ρCpVM TM ) +HM inΩM

ρ θF CpF
∂TF
∂t = div (θF λF grad (TF ))− div (ρCpVF TF ) +HF inΩF

(5.2)

where

1. CpM , CpF are the specific capacity [ KJ
Kg.K ] of matrix, resp.fracture.

2. ρ is the fluid density [Kg
m3 ].

3. λM , λF are the thermal conductivity [ w
m.K ] of matrix, resp.fracture. At this scale,

the thermal conductivities are scalar for both media.

4. VM , VF are the darcy velocity [ms ] in matrix, resp. fracture.

5. TM , TF are the temperature [K] of the matrix, resp. fracture.

6. HM , HF is the heat source term in [ w
m3 ].

Note that, in the previous heat transfer formalism, only the heat conduction and the
advection mechanisms are taken into account. The hydrodynamic dispersion is therefore
not taken into account. Elaborated models for hydrodynamic dispersion in heat transfer
can be found, for example, in [Kaviany 1995].
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5.2.1.2 At macro scale (reservoir scale)

At macroscale, two superposed medium are represented by dual-medium models.
The dual model was first theoretically developed by [Barenblatt et al. (1960)] in the

context of flow in highly connected fracture network imbedded in a porous matrix of low
permeability (Fig. (5.2) on the left). [Warren and Root (1963)] were the first to introduce
the concept of dual-porosity models into petroleum reservoir engineering. Their idealized
model of a highly interconnected set of fractures which is supplied by fluids from numerous
small matrix blocks is shown in Fig. (5.2) on the right. Their model was later extended
by [Odeh (1965)]. [Kazemi et al. (1976)] has incorporated the dual-porosity concept into
a numerical model, with application to fluid flow on a large scale.

It is important to mention that the dual porosity-dual permeability models was pro-
posed initially in an empirically manner. It is later that theoretical development by
[Whitaker (1986)] established mathematically the dual model. Some simplified models
from this original expression are generally used. We can mention here the most known:
the Dual porosity-simple permeability model. In the latter one, the permeability of the
matrix KM is neglected.

Figure 5.2: The dual medium model of fractured porous rocks as represented initially by
[Barenblatt et al. (1960)] (left) and as idealized by [Warren and Root (1963)] (right)

To move from local to reservoir scale system of equations; an upscaling procedure has
to be performed. The theoretical procedure of upscaling can be found in the work of
([Whitaker (1986)] among others). Here, only the mathematical dual models at reservoir
scale are presented.

The governing equations for flow at reservoir scale are



CM,EQ θM,EQ Φm
∂{PM}
∂t = div

(
−KM,EQ

µ grad ({PM})
)

in {ΩM}
−αH ({PM} − {PF }) + {QM}

CF,EQ θF,EQ (1− Φm) ∂{PF }∂t = div
(
−KF,EQ

µ grad ({PF })
)

in {ΩF }
+αH ({PM} − {PF }) + {QF }

. (5.3)

The subscripts “EQ” mean that the concerned property is an equivalent property that
has been upscaled from local scale to reservoir scale. Specifically, the equivalent permabil-
ities are expected to be tensorial fields as a result of the upscaling
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Note that we have distinguished here volume fractions Φ from porosities θ. The pres-
sures “{P}” [Pa] in the matrix and fractures are averaged over the upscaled unit volume
or block. The intrinsic permeabilities “KEQ”[m2] are the equivalent upscaled permeabili-
ties for each continuum, defined over the same scales as pressure. They are here positive
second rank tensors. The new term αH [Pa−1s−1] represents the mass exchange coefficient
between fractured and porous medium. It quantifies how much volume of fluid is exchanged
between fractures and matrix blocks as a result of a unit pressure difference {PM}− {PF }
between the fractured and the porous medium.

The research of the suitable fracture-matrix exchange coefficient αh has been under
intensive research effort in recent decades. Several methods have been used and can be
classified in four major types, as suggested by [Landereau (2000)], depending on the method
used to estimate the exchange coefficient:

• Asymptotic analysis([Huyakorn et al. (1983), Dykhiusen (1990)],
[Ziemmerman et al. (1993), Lim and Aziz (1995)]etc.)
• Volume averaging([Whitaker (1986)],
[Quintard and Whitaker (1996), Landereau (2000)]etc.)
• Laplace transformation ([Van Genuchten et al. (1984), Barker (1985)],
[Gerke and Van Genuchten (1993)]etc.)
• Random walk [Noetinger et al. (2001)]
The governing equations for heat transport at reservoir scale can be written as

ρ θM,EQCpEQ Φm
∂{TM}
∂t = div (θM,EQ λM,EQ grad ({TM})) inΩM

− div (ρCpEQ {VM} {TM})− αT ({TM} − {TF }) + {HM}

ρ θF,EQCpEQ
∂{TF }
∂t = div (θF,EQ λF,EQ grad ({TF })) inΩF

− div (ρCpEQ {VF } {TF }) + αT ({TM} − {TF }) + {HF }

. (5.4)

Similarly to hydraulic system of equations, the subscripts “EQ” mean that the con-
cerned property is an equivalent property that has been upscaled from local to reservoir
scale. Specifically, the equivalent thermal conductivities are expected to be tensorial fields
as a result of the upscaling.The temperatures “{T}” [K] in the matrix and fractures are
averaged over the upscaled unit volume or block.

Note that the dual medium models (for flow or heat transport) are only possible math-
ematical models to describe the flow and transport phenomena at large scale. Their ap-
plicability’s are debatable. The dual models as presented here constitute the generalized
models and it is always possible to extract more simplified model by deleting the exchange
term in one or both systems and hence obtain an equivalent single medium model. The
choice of the model is dependent on a priori scale analysis.

5.2.2 Scale analysis

Given the systems of equations presented in the previous section, several dimensionless
numbers can be defined in order to perform a scale analysis. The scale analysis concerns
the comparison between different time and length scales corresponding to different physical
phenomena that may occur in geothermal problems. The scale analysis permits to differ-
entiate different competing phenomena. Here, two types of scale analysis are discussed:

• Hydraulic time scale
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In general, the hydraulic time scale can be expressed as tH = L
U , where L is a characteristic

length of the medium (fracture or matrix) and U is Darcy velocity (for fracture or matrix).
This time scale gives an idea about how fast the flow occurs in a particular medium. The
hydraulic time scale for both systems is expressed by the physical properties of the medium
as follow: 

tH,M =
µCM L2

M

K2
M

tH,F =
µCF L

2
F

K2
F

(5.5)

The importance of this time scales can be highlighted while addressing the applicability of
the dual medium model: the dual model is used under the three following hypothesis: (i)
the fracture network is highly connected (dense networks), (ii) the matrix blocks present
the quasi totality of the volume and (iii) the relaxation time scales for fracture (tF ) must
be very low compared to the relaxation time of matrix (tF ) (i.e., tF << tM ). Hence, the
comparison of the hydraulic time scales of fractured and porous media is a key factor in
order to use or not a dual medium model.

• Thermal time scale

The thermal time scale concerns the heat diffusion mechanism in the medium. The thermal
diffusion time scale can be expressed as{

tD = L2

D

D = λ
ρCp

(5.6)

where D is the thermal diffusivity [m2/s]. The previous coefficient is defined for the
fracture and the matrix domain respectively.

With the previous two time scale, a dimensionless Peclet number could be defined as a
ratio between the conduction time scale and the hydraulic time scale (which is effectively
the advection time scale),

Pe =
tD
tH
. (5.7)

As it can be easily seen, this number can evaluate the dominant heat mechanism of
transport (advection or diffusion). Similarly to the hydraulic time scale analysis, the
dimensionless Peclet number is an indicator of whether or not a dual medium model is
useful or not in heat transfer. If diffusion is the dominant mechanism, the diffusion time is
very fast compared to the advection time scale (i.e., tD << tH). In the latter case, and as
the thermal diffusivity in the two medium is generally not very different (i.e., DF ' DM ),
the dual medium model for heat transfer is not necessary. An example of thermal diffusion
dominant case is given at the end of this chapter.

5.3 Finite volume simulation in OpenFoam

5.3.1 Set-up of the model in OpenFoam

This section presents, how to code, compile, per-process, run and post-process a simu-
lation problem involving flow and heat transfer in a geothermal reservoir on OpenFoam.
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OpenFOAM ("Open source Field Operation And Manipulation") is a C++ suit of pro-
grams for the development of numerical solvers based on the finite volume method [Jasak
et al. (2007)]. The OpenFoam toolbox contains pre-/post-processing utilities helping to
customize the numerical stimulation of problem involving continuum mechanic, chemical
processes etc.. The code is released as free and open-source software under the GNU Gen-
eral Public License. The following figure presents the flowchart of the OpenFoam toolbox.

Figure 5.3: Flowchart of OpenFoam

To setup the model corresponding to the equations (Eqs. (5.3,5.4) established in Sect.
(5.2) a personalized solver called “GeothFoam” has been developed. The disctretization in
space and time and the solving of the resulting linear systems, is done in a single “main”
code in C++ language. The fact that a single main code is necessary for our personalized
solver is the major advantage from object-oriented code, which enables developers to work
at a high level of abstraction. However, the developer needs to be familiar with an impor-
tant amount of key-words and key-procedures proper to OpenFoam. Once the personalized
“GeothFoam” code is elaborated, it is compiled and examples of coupled thermo-hydraulic
problem can be run. In the following table, the properties involved in the system of
equations are listed with a specification of their heterogeneity and anisotopy. This table
corresponds to the present capabilities of “GeothFoam” solver at the moment of writing
this thesis.

Property Heterogeneous (Yes/No) Scalar/Tensor Time Dependent
C Yes Scalar No
θ Yes Scalar No
Φ Yes Scalar No
µ No Scalar No
ρ No Scalar No
Cp Yes Scalar No
K Yes Tensor No
λ Yes Tensor No
α Yes Scalar No

Table 5.1: The flexibility of GeothFoam regarding heterogeneity, anisotropy and time
dependent character of the physical properties of the medium.

For sake of clarity, the technical details of the implementation of the model in Open-
Foam are not shown here and the procedure can be found in the OpenFoam guide for
programmers. However, one can highlight the main advantages and limitations of the use
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of OpenFoam for reservoir simulation. The object orientation and operator overloading
of C++ has enabled us to work at a very high level of abstraction. Hence, it possible to
manipulate the set of partial differential equations that describe the geothermal problem
and customize the solver “GeothFoam” to each class of cases that needs to be solved. This
is the main motivation for using OpenFoam, rather than other existing tools. The main
limitations of the use of OpenFoam, in our point of view and also as revealed by OpenFoam
users (e.g., Soulaine (2013)), are (i) the amount of time needed to handle the procedure
and (ii) the difficulty to handle more deep layers of the C++ structure if it is needed.

Finally, one should note that OpenFoam is used as a geothermal reservoir simulator by
[Thorvaldsson et al. (2015)] taking into account two-phase flow among other capabilities.

5.3.2 Comparison finite elements (Comsol Multiphysics) .Vs. finite vol-
ume (OpenFoam)

Once the personalized code “GeothFoam” is compiled, its validation has to be done. The
validation step consists on a benchmark test with the finite element commercial solver
Comsol Multiphysics. The term “Benchmark” may be viewed as an over-qualification of
the comparison procedure as, in general; the benchmark tests are multi-laboratory exercises
in which different codes are compared for validation and efficiently comparison. Here, as
two different tools (Comsol and OpenFoam) are used in the present thesis, the comparison
is performed without involving external parts.

To do the benchmark, series of tests have been prepared in the two softwares. The
preparation procedure consists on building the geometry, setting the heterogeneous fields,
meshing etc. The necessary pre-processing tools are automatized by Matlab scripts. The
benchmark is done with an increasing degree of complexity of the cases: for example,
moving from homogeneous to heterogeneous media, from isotropic to anisotropic properties
etc. At the moment of writing this thesis, and although the thermo-hydraulic system of
equations has been implement in GeothFoam, only benchmarks on the hydraulic part have
been performed. In the following, three examples of hydraulic simulation at reservoir scale
are presented in three different cases in order to compare the two softwares in an increasing
degree of complexity. In all the case the mesh consists on 10,000 elements.

• Case 1: Homogeneous and Isotropic medium with No source-term

We begin by comparing the hydraulic results of the two solvers. At first, a 2D case with a
square domain (1x1[m]) is prepared for both solvers. The permeability of the medium is
homogeneous and isotropic K = 1e−12m2. Initially, the pressure in the medium is constant
P0 = 105[Pa]. The pressure at the boundary ”x = xmin” is fixed P (t, x = xmin) = 106[Pa].
The other boundaries are set to no-flow boundary conditions. Probes have been placed at
different locations in the medium and the evolution of the pressure with respect to time
is observed. The pressure evolution is recorded on the different probes and an example of
the results of the comparison is shown in Fig. (5.4).

The pressure evolution in the previous figure corresponds to a probe placed at the
location x = 0.2m, y = 0.2m. The pressure remains equal to the initial value until the
pressure diffusion attains the location of the probe. Then, the pressure will increase until
attain the imposed boundary value. The equivalence of the results of the two codes is
perfect. Thes results confirm the good set up of the numerical code in OpenFoam.

• Case 2: Homogeneous and Anisotropic medium with Source-term
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Figure 5.4: Pressure evolution comparison between GeothFoam and Comsol solvers. The
boundary conditions are of Dirichlet type in x=0 and no-flow elsewhere. There is no
source term in this case. The permeability of the medium is isotropic and homogeneous
K = 1e−12m2. The CPU times of the simulation is 9 and 10s for GoethFoam and Comsol
respectively.
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Once the isotropic case validated, anisotropic permeability cases have been tested. Remind
that the proposed code is intended to simulate large scale reservoirs where the properties
are expected to be heterogeneous and anisotropic due to the fact that they are the results of
the upscaling procedure. To test the capability of GeothFoam to handle anisotropic prop-
erties, a test case is designed to compare the hydraulic outputs of GeothFoam solver with
Comsol. The case is a similar two dimensional homogeneous medium but with anisotropic
permeability. All the boundaries of the domain are set to no-flow boundary conditions. A
source term is placed at the middle (S(x = 0.5, y = 0.5) = 1[s−1]). The permeability is
tensor of the form:

K =

(
Kxx Kxy

Kyx Kyy

)
(5.8)

We tested the pressure evolution in probes at different locations while varying the ratios
Kxx/Kyy and Kxx/Kxy . An example of results at probe (0.2, 0.2) with an anisotropy of
Kxx = 10−10,Kxy = 5.10−10, kxy = 10−11 is presented in Fig.(5.5).
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Figure 5.5: Pressure evolution comparison between GeothFoam and Comsol. The bound-
ary conditions are of now-flow type. A source term is presented at the center of the medium.
The permeability of the medium is anisotropic. Kxx = 10−10,Kxy = 5.10−10, kxy =
10−11m2

The results shown in Fig. (5.5) confirm the capability of the GeothFoam toolbox to
handle correctly the hydraulic problem with anisotropic properties. Other similar cases
have been addressed to further validate the developed tool. However, one has to mention
that the Comsol Multiphysics finite element solver is taken as a reference which can be
seen as a debatable statement. Ideally, the benchmark tests have to be performed with
different research groups to compare, in the aim of improvement, different codes.

• Case 3: Heterogeneous and Anisotropic medium with Source-term
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A more general case is now presented. The following example contains a 2D case of a
heterogeneous anisotropic medium with a source term placed at its center. Fig. (5.6)
presents the test case with four different regions in term of permeability.

Figure 5.6: Anisotropic permeability field for the benchmark test 3.

Two layers (layer1 and layer2) with a diagonal permeability tensor (i.e., Kxy = 0),
a fault with a full permeability tensor (Kxy 6= 0) and an isotropic porous matrix. The
benchmark results are shown in Fig. (5.7).
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Figure 5.7: Comsol. Vs. GeothFoam Benchmark for a heterogeneous field of anisotropic
permeability. Probe 1 corresponds to the location (0.4,0.4) and probe 2 corresponds to
(0.25,0.1) in a 2D domain of size [1x1 m]. Straight lines correspond to the results of
Geothfoam and discontinuous lines to Comsol.
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The pressure evolution at probe 2 (0.25, 0.1) depicts a perfect agreement between the
pressure evolution calculated by the two solvers (Comsol and GeothFoam) for all time
steps. For probe1 (0.4, 0.4), which is located between the source and the discontinuity of
the permeability tensor, a slight difference between the results of the two solvers can be seen
in earlier time steps. The discrepancy between the two solvers can be understood since,
at earlier times, the pressure gradient around the source is very important. Moreover, the
discontinuity of the permeability tensor has to be approximated in the finite volume or in
the finite element discretization. It has been observed that the difference in the results of
Fig. (5.7) reduces if the discretized time step ∆t is reduced and/or the mesh is refined.

To conclude this part, we can mention that many other benchmark tests are under
investigations and more improvements are ongoing. The already tested cases have made a
relative confidence on GeothFoam as a solver for flow and heat transport in heterogeneous
and anisotropic 3D media.

5.4 Application: example of injection-production system in
geothermal reservoir

As the aim of this thesis is to apply the developed theoretical and numerical tools presented
in the previous chapters to geothermal reservoir, an academic case of geothermal energy
extraction is addressed in this section. An example of a 3D domain containing two wells
is presented in Fig. (5.8). The colors refer to the permeability heterogeneity. The typical
well radius is between 10 cm and 20 cm. This small size of wells compared to the 3D
domain size induces several meshing problems. Meshing has to be refined near the well
in order to capture the important hydraulic and thermal gradients during injection or
production of fluid and heat. An example of mesh refinement is presented in Fig. (5.9).
The meshing procedure, in the present case, has been implemented in a manner to maintain
mesh conformity as it can be seen in the zoom of Fig. (5.9).

Figure 5.8: Example of two wells in a geothermal system. The mesh consists of 700,000
voxels.
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Figure 5.9: Mesh refinement near wells. The mesh is constructed in a manner to preserv
conformity which is an important point for computational efficiency.

A coupled thermo-hydraulic simulation has been run on the previous example. The
simulation was run in transient regime to see the transientevolution of pressure and tem-
perature in the reservoir. The energy extracted from the production well could therefore be
calculated a posteriori by calculating the evolution of enthalpy with time. In this simula-
tion, the initial pressure in the reservoir is (PF = PM = 105Pa) and the initial temperature
is (TM = TF = 480K). The pressure at the injection well was set to Pinj = 106Pa. The
pressure at the production well is maintained at Pprod = 105Pa. The injection temperature
is Tinj = 300K.

The interest of reservoir simulation is to have an access to relevant parameters to
the state of the reservoir at any time. The following figure depicts an example of the
evolution of temperature with respect to time. In this example, the parameters have been
chosen to results in a high Peclet number which results on advection dominant regime.
As the heterogeneity of the example studied in this section is a stratified heterogeneity,
the temperature at different layers is presented (Fig.(5.10)). The cooling of the reservoir
is very fast in the more permeable layers as the advection is the dominant mechanism of
transport in this example.
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Figure 5.10: Temperature near the injection well at different layers. The probes are placed
at positions (70, 70) in the (x, y) plane. The z coordinates of the probes are changed from
one layer to another.

The following figure depicts an example of the evolution of pressure (in fractured
medium and in the porous matrix) with respect to time. As the permeability of the
fractured medium is higher than the matrix permeability, one can see (Fig. (5.11)) a fast
stabilization of the pressure in the fractured medium compared to the porous matrix. Sim-
ilarly, the evolution of temperature in different location in the reservoir can be visualized
at each time step. In this example the Peclet number is very low which results on a conduc-
tion dominant regime. This can be seen in the temperature evolution at different locations
between the two wells. The evolution of the temperature in the fractured and the porous
media is approximately the same.
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Figure 5.11: Left: Pressure transient evolution between wells. Right: temperature tran-
sient evolution between wells.

5.5 Conclusion

In this final chapter, coupled thermo-hydraulic model at reservoir scale is presented. A
scale analysis has also been presented to enable analyzing the relative importance of key
physical phenomena in geothermal problems. The choice of the dual model is debatable
and dependent on the scale analysis of each particular problem. The double system of
equations (double medium model for flow and heat transport) is the more general case.
The resulting systems of equations are numerically solved in 3D by developing a solver
labelled “GeothFoam” which is being developed using the open source finite volume code
“OpenFoam”. Meshing and simulation setup are briefly presented. The main motivation
behind the development of GeothFoam is to have a solver capable of handling the anisotropy
and heterogeneity of the permeability and the conductivity fields. The permeability tensor
fields are the results of the upscaling procedure investigated in this thesis. This point is
important, regarding that the developed upscaling methodology in the previous chapters,
leads systematically to a tensor field of permeability. The solver GeothFaom has been
under a continuous benchmark tests to verify its validity as a tool for handling anisotropy
and heterogeneity in 3D. To do so, series of comparison tests with the finite element
solver Comsol Multiphysics have been performed. The results of the hydraulic benchmarks
confirm with confidence that GeothFoam is capable of resolving flow problems in a context
of heterogeneity and anisotropy. A typical example of a system of injection-production
wells is presented. The specific mesh refinement near wells has been successfully addressed.
Typical results of the evolution of pressure and temperature at different locations in a 3D
reservoir are presented and interpreted.

It comes out from the results of this chapter that OpenFoam is a suitable tool for
reservoir simulation as it handles in a flexible way the heterogeneity and the anisotropy of
the medium. Also, the well meshing problem can be addressed with the mesh refinement
capabilities of OpenFoam. It is important to mention that the reservoir simulation tools
using OpenFoam are under validation and improvement efforts. This ongoing works has
another perspective which is the link between the reservoir simulator and a well simulator
(W1D) developed in the context of the same project GEOTREF.

Finally, this chapter has to be placed in its context relative to the previous chapters
and relative to the GEOTREF project. The reservoir simulator under development with
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OpenFoam is the final step of a series of steps that begin with the numerical generation
of the fractured porous rock, then the procedure of upscaling (including the percolation
analysis) and finally an upscaled tensorial field of permeability will constitutes the input
of the reservoir simulator. Concerning the GEOTREF project, the reservoir simulator
and its solver GeothFoam are intended to be related to the geomodel of the geothermal
reservoir developed under the geomodeler (GOCAD) and to be applied to the real case of
Vieux-Habitant geothermal reservoir (France). The 3D geomodel has been developed by
several research group in the frame of the project. The following figure shows a conceptual
model of the reservoir.

Figure 5.12: Conceptual model for the Vieux-Habitants Reservoir (GEOTREF project),
adapted from [Garcia et al. (2018)].
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General Conclusion (English)

In a context of energy transition, geothermal energy is gaining more and more place in
the mix of energy solutions. The French GEOTREF project is part of this transition
perspective. This thesis is part of this project with the objective to provide theoretical
and numerical tools for insightful understanding of fractured geothermal reservoirs.

Two main aspects can be distinguished in the work of this thesis. The first one was
dedicated to the numerical development of a set of algorithmic tools allowing the anal-
ysis and the understanding of the thermo-hydraulic behavior of a geothermal reservoir
constituted of a fractured permeable rock. The second part concerns a set of proposals
and analysis concerning upscaling, percolation, Clustering and the use of graph theory to
simulate fractured rocks. The conclusions regarding these two main components can be
summarized as follows:

Regarding the development of numerical tools:
• A numerical upscaling platform using Comsol Multiphysics-Matlab (LiveLink) cou-

pling is now operational. This tool allows, as a main task, to obtain equivalent perme-
abilities of synthetic numerical samples of the fractured media by the detailed resolution
of the 3D flow problem (mesh, finite element resolution, averaging, determination of the
VER, etc.).

• A set of geometric and topological analysis algorithms for 3D fracture networks has
been developed. These tools make possible, given a network of 3D planar fractures, to
calculate all the geometric attributes of these networks (intersections between fractures,
lengths of traces, etc.), the clusters and the percolating clusters, dead-end clusters and
finally to build the equivalent graph of the 3D fracture network, among other features.

• The resolution of flow problems on the equivalent graphs of 3D fracture networks by
the construction and then the resolution of the Laplacian of the equivalent graph is now
functional, with a much lower computation time than in the classical methods.

• A GeothFoam reservoir simulator has been developed with OpenFoam open source
code. This tool allows the simulation of thermal-hydraulic coupling in single or double
media model at the scale of a geothermal reservoir in the presence of wells. GeothFoam
makes possible to take into account heterogeneity and anisotropy resulting from equivalent
properties upscaling of fractured porous media. A "Benchmark" exercise has been con-
ducted between GeothFoam and the commercial software Comsol Multiphysics to validate
the proposed numerical tool.

The main new results obtained at the end of this thesis are:
• The upscaling approach by superposition formulated in the present work is an effective

tool, in terms of computational efficiency, for predicting the equivalent permeability of a
3D fractured medium containing a permeable porous matrix. However, the superposition
must be calibrated by empirical coefficients to take into account the connectivity of the
fracture network.
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• Excluded volume notion is a key parameter in measuring the connectivity of a 3D
fracture network. The sensitivity of the equivalence between the excluded volume density
and the average intersection number per fracture is questioned in the present work. More
specifically, the sensitivity of this equivalence (Excluded density .Vs. Mean number of
intersections per fracture) to the size of the 3D domain has been highlighted, which can
therefore explain the sensitivity of the critical percolation density to the size of the domain.
Correlations have been proposed to link the density based on the excluded volume and the
intersection density computed in an exact way by the algorithms developed in this thesis.

• An empirically modified Rayleigh law can describe the geo-morphological phenomenon
of fractures grouping which form clusters (Clustering) by the simple knowledge of the av-
erage number of intersections per fracture.

• The resolution of the flow on the equivalent graphs of fracture networks is a highly
efficient advance from a computational point of view. However, this approach underesti-
mates the equivalent permeability. The offset is attributed to two main factors: (i) the
sharp reduction in the number of degrees of freedom (DOF) in the graph compared to the
actual fracture network and (ii) the choice of the weighting mode (nodes weight in the
graph).

In a more general conclusion, the numerical tools developed in this thesis are the basis of
the analyzes and interpretations that have been put forward. Since these tools have taken
a large part of the work done during this thesis, many of the conclusions obtained also
lead to short- and medium-term perspectives. Among the prospects that can be explored
in the short term (or are actually being explored), we can mention:

• Continuing the development of geometric and topological analysis tools to better
handle the graph approach for fractured rocks for flow and heat or mass transport problems.

• The clustering process analysis is a promising study that can help describing and
understanding the evolution of the fracture system under hydro-mechanical coupling.

• More detailed analysis of the connectivity of fracture networks is now made possible
by the algorithms implemented. In particular, topological indices can be explored and
proposed to calibrate the equivalent permeability calculated by the superposition method
or by the graph method.

• Coupling with two-phase flow with phase change in the wells is an immediate prospect.
The developed tool GeothFoam is designed to allow this coupling.

Finally, fractured porous reservoirs are an intensive and interdisciplinary field of in-
vestigation. Hydraulic-mechanical-thermal-chemical coupling is strong in the context of
geothermal energy. The results and advances explored in this field of application can be
directly extrapolated to other areas of application such as the geological storage of CO2
or oil and gas engineering, for example.
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Conclusion Générale (Français)

Dans un contexte de transition énergétique, la géothermie prend de plus en plus de place
dans le mix de solutions énergétiques. Le projet GEOTREF s’inscrit dans cette perspective
de transition. Cette thèse a fait partie de ce projet afin d’apporter des éclaircissements
et des outils numériques pour la compréhension et la simulation du fonctionnement d’un
réservoir géothermique fracturé.

Deux volets principaux peuvent être distingués dans le travail de cette thèse. Le premier
a été dédié aux développements numériques d’un ensemble d’outils algorithmiques perme-
ttant l’analyse et la compréhension du comportement thermo-hydraulique d’un réservoir
géothermique constitué d’une roche perméable fracturée. Le deuxième volet concerne un
ensemble de propositions et d’analyse concernant l’upscaling, la percolation, le Clustering
et l’utilisation de la théorie des graphes pour simuler les roches fracturées. Les conclusions
concernant ces deux volets principaux peuvent être résumées comme suit:

Concernant le développement d’outils numériques:
•Une plateforme numérique d’upscaling est maintenant opérationnelle à l’aide d’un

couplage (LiveLink) Comsol Multiphysics-Matlab. Cet outil permet, comme principale
tâche, d’obtenir des perméabilités équivalentes des échantillons synthétiques des milieux
fracturés par la résolution détaillée du problème d’écoulement en 3D (maillage, résolution
par éléments finis, prise de moyenne, détermination du VER etc.).

•Un ensemble d’algorithmes d’analyses géométriques et topologiques des réseaux de
fractures en 3D a été développé. Ces outils permettent, à partir d’un réseau de fractures 3D,
de calculer tous les attributs géométriques de ces réseaux (les intersections entre fractures,
les longueurs des traces, etc. . . ), les amas et les amas percolants, les amas en cul de sac
(Dead-End), et finalement de construire le graphe équivalent au milieu fracturé 3D, parmi
d’autre fonctionnalités.

•La résolution des problèmes d’écoulements sur les graphes équivalents des réseaux de
fractures 3D par la construction puis la résolution du Laplacien du graph équivalent est
fonctionnel.

•Un simulateur réservoir GeothFoam a été développé à partir du code open source
OpenFoam. Cet outil permet la simulation du couplage thermique –hydraulique en simple
ou double milieux à l’échelle d’un réservoir géothermique en présence de puits. GeothFoam
permet de tenir compte de l’hétérogénéité et de l’anisotropie, en de propriétés équivalentes,
des milieux poreux fracturés. Un exercice de « BenchMark » a été réalisé entre GeothFoam
et le logiciel commercial Comsol Multiphysics afin de valider l’outil numérique proposé.

Les principaux résultats nouveaux obtenus à l’issue de cette thèse sont :
•La montée d’échelle par superposition formulée dans le présent travail est un outil effi-

cace, en terme d’efficacité computationnelle, pour prédire la perméabilité équivalente d’un
milieu fracturé 3D contenant une matrice poreuse perméable. Cependant, la superposition
doit être calée par des coefficients empiriques pour tenir en compte de la connectivité du
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réseau de fractures.
•La notion de volume d’exclusion est un paramètre clé dans la mesure de la connectivité

d’un réseau de fractures 3D. La sensibilité de l’équivalence entre le volume d’exclusion et
le nombre d’intersection moyen par fractures est mise en question dans le présent travail.
Précisément, il a été mis en évidence la sensibilité de cette équivalence par rapport à la
taille du domaine d’étude qui peut à son tour expliquer la sensibilité de la densité critique
de percolation à la taille du domaine. Des corrélations ont été proposées pour lier la densité
basée sur le volume d’exclusion et la densité d’intersection calculée d’une façon exacte par
les algorithmes développés dans cette thèse.

•Une loi de Rayleigh modifiée peut expliquer le phénomène de groupement de frac-
tures pour former des amas (Clustering) à partir de la simple connaissance du nombre
d’intersections moyen par fracture.

•La résolution de l’écoulement sur des graphes équivalents aux réseaux de fractures est
une avancée très efficace d’un point de vue computationnel. Cependant, cette approche
sous-estime la perméabilité équivalente. Le décalage est attribué à deux facteurs principaux
: (i) la forte réduction du nombre de degrés de liberté dans le graphe par rapport au réseau
de fractures réel et (ii) le choix du mode de pondération (poids des nœuds dans le graphe).

En guise de conclusion plus générale, les outils numériques développés ont été à la
base des analyses et des interprétations qui ont été avancées durant cette thèse. Ces outils
ayant pris une grande partie du travail effectué durant cette thèse, beaucoup des conclu-
sions obtenues conduisent aussi à des perspectives à court et à moyen terme. Parmi les
perspectives qui ont la possibilité d’être explorées à court terme (ou qui sont effectivement
en cours d’exploration), nous pouvons citer :

En guise de conclusion plus générale, les outils numériques développés ont été à la
base des analyses et des interprétations qui ont été avancées durant cette thèse. Ces outils
ayant pris une grande partie du travail effectué durant cette thèse, beaucoup des conclu-
sions obtenues conduisent aussi à des perspectives à court et à moyen terme. Parmi les
perspectives qui ont la possibilité d’être explorées à court terme (ou qui sont effectivement
en cours d’exploration), nous pouvons citer :

• La continuation du développement des outils d’analyses géométriques et topologiques
afin de mieux maitriser l’approche graphe pour les roches fracturées pour les problématiques
d’écoulement ou de transport de chaleur ou de masse.

•L’analyse plus détaillée de la connectivité des réseaux de fractures est maintenant
rendue possible par les algorithmes mis en place. Des indices topologiques peuvent en
particulier être explorés et proposés pour caler la perméabilité équivalente calculée par la
méthode de superposition ou par la méthode des graphes.

•Le couplage avec l’écoulement diphasique avec changement de phase dans les puits est
une perspective immédiate. L’outil développé GeothFoam est conçu de façon à permettre
ce couplage.

Finalement, les réservoirs poreux fracturés constituent un champ d’investigations inten-
sif et interdisciplinaire. Le couplage hydraulique-mécanique-thermique-chimique est fort
dans le contexte de la géothermie. Les résultats et les avancées explorées dans ce do-
maine d’application du sous-sol peuvent directement être extrapolés à d’autres domaines
d’application comme le stockage géologique du CO2 ou l’ingénierie pétrolière et gazière par
exemple.
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