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French Abstract 

Chapitre 1 : Introduction 

La fabrication additive (AM) fait référence à une grande variété de processus de fabrication pour le 

prototypage rapide et la production de produits finis et semi-finis. La classification des différentes 

techniques de fabrication additive est définie selon différents critères. Ces critères sont :  la source 

d’énergie (faisceau d’électron, laser, résistance chauffante, …), la famille de matériaux (polymères, 

métaux, céramiques, …), le conditionnement des matières premières (filament, poudre, résine, …). Les 

procédés de fabrication additive des polymères regroupent principalement les technologies de dépôt de 

filament, frittage de poudres et stéréolithographie. Malgré un intérêt croissant des industries et un public 

nombreux ces cinq dernières années, ces procédés de fabrication ne sont toujours pas bien maîtrisés, en 

particulier pour les polymères non fabriqués en série. En effet, lorsque les matériaux polymères 

présentent des propriétés spécifiques, le contrôle de leur traitement est plus délicat. Des efforts 

supplémentaires sont nécessaires pour élargir les connaissances sur le phénomène physique impliqué au 

cours de ces processus.  

L’industrie a besoin de polymères à hautes performances, c’est-à-dire de matériaux résistants exposés à 

un environnement hostile : atmosphère thermo-oxydante, résistance aux solvants chimiques et hautes 

résistances mécaniques telles que le frottement ou la compression. L'émergence de thermoplastiques 

hautement stables depuis les années 1980, tels que le PAEK (polyaryléthercétone), ouvre la voie à une 

utilisation généralisée. Ainsi, les thermoplastiques hautes performances sont des candidats potentiels 

pour la fabrication de pièces structurelles destinées aux industries de l'aérospatiale, de l'automobile et 

du médical. Cependant, contrairement aux polymères conventionnels, le traitement des thermoplastiques 

hautes performances reste un défi en raison de leurs propriétés spécifiques. Le procédé FFF (Fused 

Filament Fabrication) est basé sur la fusion d’un fil ou d’un filament polymère dans une extrudeuse ; ce 

dernier est ensuite déposé couche par couche pour fabriquer les pièces finales. Ces défis sont plus 

difficiles à relever en cas de dépôt couche par couche où la liaison des couches déposées détermine les 

propriétés mécaniques des pièces imprimées. Le dépôt de polymère fondu couche par couche conduit à 

l’échauffement des couches empilées.  

 

Figure 1: schématique représentation du procédé dépôts de filament couche par couche 

Les pièces 3D souffrent de faibles propriétés mécaniques et d'une faible qualité de surface par rapport 

aux pièces fabriquées selon les techniques de traitement conventionnelles. Les propriétés mécaniques et 

la rugosité de surface des pièces 3D fabriquées par FFF sont contrôlées par l'adhérence des filaments et 

le taux de porosité. Les deux proviennent principalement de la capacité d'écoulement et de la tension 

superficielle du polymère. De plus, l'adhérence des filaments dépend de l'interdiffusion des chaînes 

polymères. Les propriétés du polymère telles que le comportement rhéologique, les propriétés 

thermiques, la tension superficielle et la cristallisation jouent un rôle crucial dans la compréhension de 
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l’effet des conditions d’impression sur la qualité des pièces finales. À notre connaissance, aucune étude 

du procédé FFF appliqué aux polymères semi-cristallins hautes performances n'était disponible lorsque 

ces travaux ont commencé en 2015. Depuis, des travaux de recherche similaires ont été lancés dans le 

monde entier. 

Nos études visent à optimiser la qualité des pièces imprimées en comprenant le lien entre les paramètres 

d’impression, les propriétés du polymère et les propriétés mécaniques des pièces finales 3D. Notre étude 

porte principalement sur le PEEK (polyétheréthercétone). Les relations entre les paramètres 

d'impression et les propriétés du matériau (viscosité élongationnelle, viscoélasticité, coefficient de 

dilatation thermique, capacité thermique, conductivité thermique, cinétique de cristallisation ...) sur le 

flux de polymère et l'adhésion des filaments ont été clarifiées. Parallèlement, l'objectif était de mettre 

en place une simulation numérique des phénomènes impliqués dans ce processus. Le flux visqueux du 

polymère lors de son dépôt à l'état fondu a été modélisé et simulé en prenant en compte le transfert de 

chaleur et la cristallisation. Dans notre procédure, nous combinons des approches expérimentales, 

analytiques et numériques. 

La première étape exposée au chapitre 2 afin d’étudier l’impression 3D du PEEK a consisté à caractériser 

le PEEK. Pour mieux comprendre les propriétés du PEEK et les difficultés de son impression 3D, nous 

avons comparé les propriétés rhéologiques, la cinétique de cristallisation et les propriétés thermiques du 

PEEK à celles du PLA. 

Dans ce même chapitre, la coalescence du PEEK a été étudiée par étude expérimentale, par modèle 

analytique et par simulation numérique.  Cette étude met en évidence le rôle central de la viscosité aux 

faibles déformations et de la tension superficielle sur la cinétique de coalescence. 

Dans le troisième et dernier chapitre, l’influence des paramètres d’impression sur les propriétés 

rhéologiques tel que le taux de cisaillement, la viscosité de cisaillement et élongationnelle ainsi que le 

gonflement et la stabilité de l’extrudat a été quantifiée. Ce chapitre est clôturé par une étude numérique 

sur l’évolution de la température et du taux de cristallinité au cours du dépôt de matière sur la plateforme 

d’impression en fonction des températures environnementales et de la plateforme d’impression. 
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Chapitre 2 : Caractérisation polymère et étude de la coalescence 

Dans le procédé FFF, la vitesse de refroidissement dépend fortement des conditions d'impression telles 

que la température d'impression, la température ambiante et la vitesse de dépôt matière. Par ailleurs, la 

vitesse de refroidissement influence directement la cinétique de cristallisation, la coalescence et le taux 

de porosité du produit final. Au cours du procédé FFF, le polymère fondu de la première couche est 

refroidi plus rapidement à la température du substrat par rapport aux couches supérieures pour lesquelles 

la vitesse de refroidissement du polymère diminue en raison de l'accumulation de couches dans la 

direction Z. 

Par conséquent, la détermination des températures de transition du PEEK et l’influence de la vitesse de 

refroidissement sur la cinétique de cristallisation est très importante. Dans ce chapitre et le chapitre 

suivant, on va déterminer la transition vitreuse, la température de fusion et la cristallisation isotherme et 

non-isotherme du PEEK. Les essaies DSC (Figure 2) non-isothermes ont été effectués sur le grade PEEK 

450G.  

Afin d'éliminer l'historique thermique, les échantillons ont été chauffés à 10 °C.min-1 jusqu'à la 

température de fusion. Ensuite, ils ont subi le deuxième cycle de chauffage de 2 °C.min-1 et le cycle de 

refroidissement de 2 °C.min-1. 

 

Figure 2: Courbe DSC du PEEK 450G, avec vitesse d’échauffement 2 ° C.min-1 au cours du deuxième cycle de 

chauffage et vitesse de refroidissement de 2 ° C.min-1 

Au cours de la rampe de refroidissement représentée à la Figure 2, la transition vitreuse est mesurée à 

149 ± 1 °C. Durant la rampe de chauffe, la transition vitreuse observée à la même température est suivie 

d'un pic de fusion commençant à 300 °C et se terminant à 360 °C, centrée à 344 ± 3 °C sans apparition 

de cristallisation à froid, comme prévu. Dans la première étape, à partir de l’enthalpie de fusion de  

37 ± 0,5 J.g-1, le rapport de cristallinité a été déterminé à 40%. La cinétique de cristallisation du PEEK 

a été déterminée sous plusieurs vitesses de refroidissement. Avec une vitesse de refroidissement à 25 

°Cmin-1, la cristallisation a lieu de 295 ± 2 °C à 250 ± 5°C et le début aux alentours de 289 ± 1 °C. 

0 50 100 150 200 250 300 350 400 450 500

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

H
ea

t 
fl

o
w

 (
m

W
)

Temperature (C)

 First heating rate 10 (°C/min)

 Cooling rate 2 (°C/min)

 Second heating rate 2 (°C/min)



 

iv 

 

L'enthalpie de cristallisation est de 41 ± 1 J.g-1, conduisant à un rapport de cristallinité de 31%. Par 

conséquent, le polymère atteint son rapport maximal de cristallinité à 2 °C.min-1. 

Les propriétés rhéologiques influencent fortement la qualité des pièces fabriquées par FFF. La 

coalescence entre les couches et les segments déposés, la déformation des segments, le gonflement de 

l’extrudat en sortie de la buse sont directement liés aux propriétés rhéologiques. 

Pour déterminer la viscosité de PEEK nous avons utilisé un rhéomètre en configuration plan-plan pour 

les basses fréquences et la filière élongationnelle pour les hautes fréquences. 

Les tests de balayage en fréquence à différentes températures ont été réalisés en configuration plan-plan, 

sur la plage de fréquences [0,05 à 100 rad.s-1] sous 1% de déformation, pour quatre isothermes: 350 °C, 

366 °C, 383 °C et 400 °C. 

 

Figure 3: Viscosité complexe du PEEK  (η*) déterminée par la  Rhéomètre 

Le PEEK présente logiquement un comportement Rhéo-fluidifiant avec un plateau newtonien aux 

fréquences les plus basses. La viscosité complexe à 1 rad.s-1 est de 5841 Pa.s à 350 °C, 5144 Pa.s à 366 

°C, 4413 Pa.s à 383 °C et finalement 3292 Pa.s à 400 °C. Les résultats pour différentes températures 

montrent que l’augmentation de la température conduit à une diminution de la viscosité. En augmentant 

la fréquence, la viscosité de la PEEK diminue. Pour les températures élevées et les basses fréquences, 

la viscosité du PEEK augmente considérablement. Pour les températures les plus élevées, les chaînes 

moléculaires de la PEEK subissent par dégradation, une recombinaison des liaisons moléculaires et des 

ramifications sur le squelette principal de la chaîne. 

La coalescence de deux filaments en contact est le principal processus influençant les propriétés 

mécaniques des pièces fabriquées par FFF. En effet, une bonne coalescence entre les filaments déposés 

réduit le taux de porosité dans les pièces fabriquées et augmente la liaison de deux filaments déposées, 

puis la cohésion structurelle des pièces. 
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La cinétique de coalescence entre deux filaments déposés a été déterminée expérimentalement, selon le 

modèle analytique modifié de Frankel et par simulation numérique. Les résultats obtenues avec les trois 

méthodes sont représentées en Figure 4. 

 

Figure 4: Evolution de la coalescence des filaments en fonction de la température 

La Figure 4 montre la coalescence du PEEK. Le temps de coalescence est relativement long dû à la 

haute viscosité et la faible tension de surface du PEEK aux environs de 350 °C d’après la formule de 

Parachor. 

La comparaison de l'étude expérimentale avec le modèle prédictif montre que les résultats sont proches 

malgré quelques écarts attribués principalement à la cristallinité du PEEK et la présence des forces de 

gravité non représentées dans le modèle analytique et la simulation numérique. 
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Chapitre 3 : Simulation numérique de dépôt de matière et cristallisation 

L'influence du taux de cisaillement sur la forme des extrudés a été déterminée entre 1200 s-1 et plus de  

5000 s-1. Les observations optiques ont révélé que, pour les taux de cisaillement les plus bas, la forme 

de l’extrudat reste cylindrique avec une surface lisse, alors qu’à des vitesses de cisaillement et des 

vitesses d’entrée plus élevées, des déformations étaient observées à la surface. La limite semblait être 

d'environ  

4000 s-1. En dessous de cette valeur, la forme de l'extrudat reste régulière, alors que lorsque le 

cisaillement dépassait 4000 s-1, le forme de l’extrudat présentait des défauts. À 4100 s-1, une instabilité 

macroscopique a été observée sur l'extrudat.  

Les résultats des simulations numériques du TPF (Two-Phase Flow) ont révélé qu’à des vitesses d’entrée 

et des taux de cisaillement plus élevés, une certaine instabilité du flux de polymère était observée. Ce 

résultat est cohérent avec les observations expérimentales. Lorsque la vitesse d'entrée était inférieure à 

145 mm.s-1, le flux de polymère était stable et aucune déformation de l'extrudat n'était observée. 
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Figure 5: Influence de la vitesse d'entrée et taux de cisaillement sur la forme de l'extrudat sortant de la buse avec un 

diamètre de 0.5 mm 

La détermination le taux de gonflement dans le procédé d’extrusion (et le procédé de FFF) peut 

améliorer la qualité des pièces fabriquées. Pour déterminer le taux de gonflement il est nécessaire de 

connaitre le spectre des temps de relaxation et la viscosité élongation en sortie de filière. Des mesures 

rhéologiques en configuration plan-plan ont permis la mesure de la viscosité dynamique aux basse 

fréquences de 0,01 s-1 à 100 s-1 dans le domaine viscoélastique linéaire. Pour les taux de cisaillement les 

plus élevés, compris entre 100 s-1 et 10 000 s-1 ainsi que pour la viscosité élongationelle, une filière jonc 

a été positionnée en sortie d’extrudeuse. 

La Figure 6 illustre les résultats de viscosité déterminée par les deux méthodes expérimentales à 383 °C. 

La viscosité complexe est représentée par les points bleus et la viscosité au cisaillement déterminée par 

la filière en extension est représentée par les points roses. De plus, la viscosité en extension déterminée 

par la filière est représentée en points rouges. 
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Figure 6: Viscosité de PEEK à 383 °C déterminée par Rhéomètre et la filière élongationnelle 

Les termes du modèle de Carreau ont été déterminés avec interpolation de la courbe de viscosité sur les 

résultats obtenus avec le rhéomètre et la filière élongationelle. Le tableau 1 présente les valeurs des 

termes du modèle de Carreau déterminées par interpolation des points. 

Dans la simulation numérique du TPF, la viscosité est insérée dans le modèle de Carreau, ce qui pourrait 

permettre de déterminer la viscosité en fonction du taux de cisaillement et de la température. 

Les données de viscosité en fonction du taux de déformation suivent une loi de carreau implémentée 

dans le modèle numérique. Le Tableau 1 présente les valeurs des termes du modèle de Carreau 

déterminées par interpolation des points. 

Tableau 1: Les termes de la modèle Carreau à 383 °C 

Polymère PEEK 

Température 655 K 

𝜼𝟎 7071∓153 

𝜼𝒊𝒏𝒇 0 

𝝀 1.45∓0.6 

a 0.78∓0.12 

n 0.59∓0.06 

 



 

ix 

 

La Figure 7 représente le temps de relaxation à 350 °C, 366 °C, 383 °C et 400 °C déterminé à partir des 

données de viscosité et de complaisance. Comme prévu, les temps de relaxation sont plus courts pour 

les températures les plus élevées et répondent à une loi d’Arrhénius. 

 

Figure 7: Le temps de relaxation en fonction de la température détermine étude expérimentale  et loi d’Arrhenius 

Le taux de gonflement de l’extrudat en sortie de la buse a été déterminé selon l’hypothèse :  

 Le Capillaire est court  

Notre mesure sur le taux du gonflement montre que lorsque la température augmente, le taux de 

gonflement du PEEK diminue légèrement. Ceci est dû à la réduction du temps de relaxation. En FFF, le 

taux maximum de gonflement du PEEK sera d'environ 3,5 dans ces conditions. 

 

Figure 8: Influence de la vitesse d'entrée sur le taux de cisaillement et le gonflement de l’extrudate en PEEK à 383 °C 
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Comme prévu, l'augmentation de la vitesse d'entrée entraîne une augmentation du taux de gonflement 

du PEEK. Pour les paramètres d’impression du procédé FFF, le taux de cisaillement est inférieur à 1000 

s-1 et le taux de gonflement maximal du PEEK sera inférieur à 2,5 dans ces conditions. 

La Figure 9 montre le coefficient de cinétique d'Avrami déterminé par l'approche d'Avrami et le modèle 

prédictif. Le coefficient de cinétique d'Avrami montre l’évolution des phases amorphes et des phases 

cristallines. Les résultats expérimentaux ont été interpolés par l’équation de Hoffman-Lauritzen afin de 

déterminer la cristallisation à mi-temps à différentes températures allant de la température de fusion à la 

transition vitreuse. Le modèle prédictif est en accord avec les résultats expérimentaux. Pour des 

températures proches de la température de fusion, l’exposant d’Avrami tend vers 4 alors que pour les 

basses températures, il tend vers 3.  Ce résultat est cohérent avec nos observations sur l'existence de 

deux structures cristallines pendant la fusion du PEEK représentée dans Figure 2 par un épaulement du 

pic de fusion. Selon les résultats de DSC de la Figure 2, la température de transition de la première 

structure cristalline à la deuxième structure cristalline a lieu à environ 315 ℃. 

La Figure 9 montre que la cinétique de cristallisation du PEEK 450G est à sa valeur maximale autour 

de 243 ℃. Cependant, au voisinage de la température de fusion et de la transition vitreuse, la cinétique 

de cristallisation est plus lente. 

 

Figure 9: Détermination de la cinétique d'Avrami de la transition vitreuse jusqu’à la température de fusion 

La simulation numérique du dépôt de polymère sur le substrat a été réalisée par COMSOL Multiphysics. 

L’écoulement du polymère, la distribution de la température et le taux de cristallinité lors du procédé 

FFF ont été déterminés par simulation numérique. En ajoutant un terme de convection à la cristallisation 

non isotherme de Nakamura, nous sommes en mesure de déterminer l'évolution du champ de 

cristallisation lors du refroidissement de polymères semi-cristallins en tenant compte de l'écoulement du 

fluide. 

425 450 475 500 525 550 575 600

1E-14

1E-12

1E-10

1E-8

1E-6

1E-4

0,01

1

 Experimental study

 Prediction theory

n=3.55

n (Avrami exponent) determined 

experimentally

Assumed n (Avrami exponent) = 3

k
 A

v
ra

m
i 

(s
-n

)

Temperature (K)

Assumed n (Avrami exponent) = 4

n=3.18



 

xi 

 

Sur la Figure 10, la légende représente la fraction volumique du fluide dans le système : le bleu (ce qui 

équivaut à 0 dans la légende de la couleur) représente l'air dans le système et le rouge (1 dans la légende 

de la couleur) représente le polymère. 

 

Figure 10: Simulation numérique de première couche sur platine mobile 

La Figure 11 illustre la répartition cristalline à différents moments pour la température environnementale 

TEnv.= 160 ℃ et la température du substrat TSub.= 160 ℃. Le taux de cristallinité au centre de l’extrudat 

lorsque la température est encore élevée est très faible, tandis qu’en début d’extrudat où la vitesse de 

refroidissement est élevée, la cristallinité atteint 23 %. D'autre part, près de la surface lorsque la surface 

de l'extrudat est soumise à un transfert de chaleur avec l'air, la cinétique de cristallisation est plus lente 

qu'au centre du cordon. Par conséquent, près de la surface, la cristallisation n'a pas pu atteindre sa valeur 

maximale. 

Par conséquent, la température de l’environnement proposée pour favoriser l’interdiffusion est comprise 

entre 285 ℃ et 300 ℃. Le choix des températures dépend également de la vitesse d’impression. À une 

vitesse d'impression plus élevée, lorsque le dépôt du second cordon sur le premier cordon est 

relativement rapide, nous pourrions utiliser une température encore plus basse. Contrairement à 

l'impression rapide, lorsque la vitesse d'impression est lente, la température d’environnement doit être 

augmentée. 
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Figure 11: Distribution de la cristallinité de PEEK  pour T substrat =160°C and Tenv. =160°C 

 

Conclusion 

Nos études ont visé à optimiser la qualité des pièces imprimées en comprenant le lien entre les 

paramètres d’impression, les propriétés du polymère et les propriétés mécaniques des pièces finales 3D. 

Notre étude porte principalement sur le PEEK (polyétheréthercétone). Les relations entre les paramètres 

d'impression et les propriétés du matériau (viscosité élongationnelle, viscoélasticité, coefficient de 

dilatation thermique, capacité thermique, conductivité thermique, cinétique de cristallisation ...) sur le 

flux de polymère et l'adhésion des filaments ont été clarifiées. Parallèlement, l'objectif était de mettre 

en place une simulation numérique des phénomènes impliqués dans ce processus. Le flux visqueux du 

polymère lors de son dépôt à l'état fondu a été modélisé et simulé en prenant en compte le transfert de 

chaleur et la cristallisation. Dans notre procédure, nous combinons des approches expérimentales, 

analytiques et numériques. 

Sur la base de la revue de la littérature, les paramètres d’impression les plus influents ont été identifiés 

: la température du filament, la température de l’environnement, la vitesse de dépôt et l’orientation du 

raster. Les études existantes soulignent le manque de connaissances sur le lien entre les paramètres 

d’impression et les propriétés des polymères dans le procédé FFF. Dans la plupart des études sur le 

procédé FFF, les auteurs font varier les paramètres d’impression pour imprimer des spécimens, ces 

derniers étant caractérisés par des tests mécaniques. Cependant, les propriétés du matériau ne sont pas 

prises en compte. Parmi ces propriétés, le comportement viscoélastique, la tension superficielle, le taux 

de cristallisation (pour les polymères semi-cristallins) et les propriétés thermiques sont les propriétés 

déterminantes qui influent sur la qualité des pièces fabriquées. De plus, les phénomènes physiques tels 
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que la coalescence, la coulée du matériau, le transfert de chaleur et la cristallisation sont les éléments 

les plus importants pour optimiser le processus FFF. 

Après avoir identifié les propriétés du polymère impliquées dans ce processus, le polymère PEEK a été 

caractérisé au chapitre 2. Le PLA est utilisé comme polymère comparatif pour comprendre le 

phénomène physique, avec un point de fusion inférieur. Pour les deux, leurs transitions thermiques, leur 

cinétique de cristallisation et leur sensibilité à la dégradation ont été clarifiées. Contrairement à la PEEK, 

la cinétique de cristallisation du PLA est lente. Dans le cas du PLA, la cristallisation pourrait être évitée 

dans le procédé FFF en appliquant une vitesse de refroidissement élevée, tandis que dans le cas du 

PEEK, le polymère cristallisait quelle que soit la vitesse de refroidissement étudiée. En pratique, la 

vitesse de refroidissement dépend de la température du polymère fondu sortant de la buse, de la 

température de la plate-forme (substrat) et de la température ambiante. 

Les propriétés thermiques telles que la conductivité thermique, la diffusivité et le coefficient de 

dilatation ont été déterminées. Contrairement à la conductivité thermique, la diffusivité thermique 

diminue lorsque la température augmente. Les propriétés rhéologiques ont été déterminées pour des 

vitesses de cisaillement inférieures à 100 s-1 en mode oscillatoire. La comparaison du PEEK avec le 

PLA montre que la viscosité du PEEK est beaucoup plus élevée que celle du PLA. De plus, les deux 

polymères sont sensibles à la dégradation thermique. En conséquence, la plage de température de 

traitement est limitée pour empêcher leur dégradation. Le PLA et le PEEK subissent un mécanisme de 

dégradation différent, ce qui entraîne une diminution de la viscosité du PLA en raison du mécanisme de 

scission de la chaîne. Au contraire, le mécanisme de dégradation de la PEEK se produit par 

recombinaison moléculaire, conduisant à une augmentation de la viscosité. La tension superficielle du 

PEEK et du PLA à l'état solide a été déterminée par un appareil de mesure de l'angle de contact. En 

outre, la tension superficielle du PLA à l'état liquide à 200 °C a été déterminée par une étude 

expérimentale. Comme la mesure n'était pas possible pour le PEEK à l'état fondu, la tension superficielle 

du PEEK en fonction de la variation de température a été calculée à l'aide de l'équation de Parachor. 

Toutes ces propriétés sont utilisées ultérieurement dans la modélisation analytique et numérique. Dans 

la deuxième partie de ce chapitre, la coalescence de deux gouttelettes de glycérol et de deux filaments 

polymères adjacents a été étudiée, par approche expérimentale, équation analytique et simulation 

numérique. 

La simulation numérique en 2D de la coalescence du fluide dans l'air a été réalisée à l'aide des équations 

CFD et TPF-LS. Nos résultats numériques sur la coalescence du glycérol montrent une grande 

concordance avec ceux expérimentaux. L'étude expérimentale du phénomène de coalescence appliquée 

au PEEK confirme que la viscosité influence fortement le collage des polymères. Cette liaison aurait un 

impact sur les propriétés mécaniques des pièces imprimées : si l'interdiffusion et la liaison n'étaient pas 

terminées, l'adhérence entre les couches serait faible, ce qui entraînerait une faible résistance à la rupture 

des pièces. La longueur de liaison entre deux filaments de PEEK adjacents a été enregistrée avec le 

temps et la température. Ces résultats ont été comparés à un modèle prédictif : les résultats démontrent 

un bon accord de la température de fusion. En effet, la coalescence commence lorsque le polymère est 

complètement à l'état fondu. Cela signifie que la phase cristalline empêche la mobilité des chaînes 

polymères, ce qui signifie que la coalescence des polymères adjacents n'est pas possible avant la 

température de fusion. Par conséquent, il existe un écart entre les résultats expérimentaux et le modèle 

prédictif avant la température de fusion. 

Notre approche de la simulation numérique donne une très bonne compréhension de la simulation TPF-

LS. Les investigations montrent que les maillages locaux influencent la convergence de la simulation. 
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γ, le paramètre de ré-initialisation et le 휀𝑙𝑠  paramètre contrôlant l’interface dans la série LS sont les 

paramètres numériques majeurs qui influencent les résultats de la coalescence. Ces paramètres modulent 

la précision de la simulation numérique et la convergence des résultats obtenus. 𝜺𝒍𝒔 doit être petit pour 

avoir une meilleure interface entre les phases. De la même manière, la sélection du paramètre de ré-

initialisation est très délicate. Le paramètre de réinitialisation doit être proche de la vitesse maximale du 

système. Le pas de temps doit être minimisé afin de rapprocher la simulation numérique de l'étude 

expérimentale. 

Au chapitre 3, nous nous sommes concentrés sur la simulation numérique du dépôt de polymère sur le 

substrat. La simulation est divisée en plusieurs étapes afin de modéliser le dépôt du matériau sur un 

substrat, le dépôt sur un substrat en mouvement, la détermination du transfert de chaleur et la variation 

de la viscosité dans le système. Enfin, le dépôt d'une couche de polymère sur une couche précédemment 

déposée a été effectué. Le comportement de l'extrudat après la sortie de la buse a été étudié, ainsi que le 

matériau s'écoulant de la buse, la stabilité à l'écoulement, le transfert de chaleur et la cristallisation non 

isotherme. 

Afin de déterminer le transfert de chaleur lors du dépôt du matériau, nous avons intégré l'équation de 

transfert de chaleur sous la forme d'une PDE dans le logiciel COMSOL afin de conjuguer le TPF-LS au 

transfert de chaleur. Au cours de l'extrusion de forme libre, la fraction volumique, la distribution de 

température et la variation de la viscosité ont été déterminées. L'influence de la viscosité sur le flux de 

polymère et les effets sur le comportement de l'extrudat ont été déterminés. Notre modèle initial montre 

que l'interface des deux phases (air et polymère) est large (environ 2 mm). Dans cette bande, la viscosité 

du polymère varie en fonction de la viscosité de l'air en fonction de la fraction de phase (loi des additifs). 

Afin d'améliorer la précision de notre modèle numérique, la largeur de cette zone de transition a été 

réduite. 

L'influence de la viscosité du polymère sur le comportement de l'extrudat a été étudiée par simulation 

numérique. Nos études montrent que, pour les viscosités élevées, la forme de l'extrudat ne change pas 

tellement, tandis que pour les viscosités faibles, la forme est totalement différente. La même variation 

est observée lorsque l'influence de la température est prise en compte. 

Afin de valider notre modèle à la première étape, le processus FFF appliqué au PLA a été étudié via des 

expériences, des équations analytiques et une simulation numérique. Les effets des paramètres 

d'impression (diamètre de la buse, vitesse d'alimentation et hauteur de couche) et des propriétés 

physiques du polymère (transitions thermiques et comportement rhéologique) sur la vitesse d'entrée, la 

vitesse de cisaillement et la viscosité dans le liquéfacteur ont été déterminés. La vitesse maximale 

d'entrée du filament dans le liquéfacteur a été déterminée en fonction de paramètres d'impression, tels 

que le diamètre de la buse, le débit d'alimentation et les dimensions du segment déposé. Ensuite, le 

comportement rhéologique du PLA, tel que le champ de vitesse, le taux de cisaillement et la distribution 

de la viscosité dans la buse, a été étudié via un modèle analytique et une simulation numérique. 

Augmenter la vitesse d'entrée ou diminuer le diamètre de la buse augmente le taux de cisaillement et 

diminue la viscosité du PLA. Pendant ce temps, la réduction de la viscosité a amélioré l'adhésion entre 

les billes et les couches déposées et une viscosité trop basse a pour résultat une précision faible. De plus, 

à des vitesses de cisaillement supérieures à 4000 s-1, les extrudats de PLA ont subi une déformation 

importante due à l’effet « peau de requin ». La déformation de l'extrudat influence la forme des billes 

déposées et réduit par conséquent le contrôle de la rugosité et de la fiabilité de la pièce fabriquée. 

La cristallisation isotherme et non isotherme du PEEK a été déterminée par des expériences de DSC. 

De plus, le dépôt de matière au cours du processus FFF appliqué au PEEK a été modélisé par simulation 
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numérique. À partir de la simulation numérique, nous avons déterminé les propriétés d'écoulement du 

polymère fondu, le transfert de chaleur, ainsi que les variations de viscosité et de cristallinité au cours 

de l'étape de dépôt. 

La cristallisation à mi-temps du PEEK a été déterminée expérimentalement entre 310 °C et 322 °C. Les 

résultats expérimentaux ont été interpolés par l’équation de Hoffman-Lauritzen afin de déterminer la 

cristallisation à mi-temps à différentes températures allant de la température de fusion à la transition 

vitreuse. La vitesse de cristallisation est maximale à 512 K (240 °C) pour le PEEK. En ajoutant un terme 

de convection à la cristallisation non isotherme de Nakamura, nous sommes en mesure de déterminer 

l'évolution du champ de cristallisation lors du refroidissement de polymères semi-cristallins en tenant 

compte de l'écoulement du fluide. Une simulation numérique TPF a été réalisée pour modéliser le dépôt 

de matériau et le flux de fluide, avec les équations de Navier-Stokes, de continuité et de niveau. Le 

transfert de chaleur a été déterminé en implémentant une équation différentielle partielle dans le modèle. 

En utilisant l'approche de simulation TPF, nous avons déterminé le flux de matériau, le transfert de 

chaleur et la cristallisation dans le processus FFF. Les résultats montrent le gradient de vitesse de 

cristallisation le long du filament au cours du dépôt. Le taux de cristallinité du PEEK atteint sa valeur 

maximale (environ 22%) au cours du dépôt. En outre, la cristallisation libère de la chaleur dans le 

système, ce qui augmente progressivement la température de la perle déposée jusqu'à 20 K. Alors que 

la température du substrat influence fortement la cinétique de cristallisation du centre des billes, la 

température ambiante n’influence que la cristallisation de la surface. Afin de favoriser l'interdiffusion 

de la chaîne moléculaire des couches et des billes déposées (et d'augmenter les propriétés mécaniques), 

la température de l'environnement et de la plate-forme de dépôt doit être comprise entre 285 °C et 300 

°C. Notre proposition de température de fusion et de construction de la température de la plateforme est 

conforme à la proposition de la température de la plateforme et du liquéfacteur déterminée 

expérimentalement par d’autres auteurs. Bien que de nombreuses simulations numériques de processus 

de fabrication additive soient basées sur l’approche par activation de maillage en tant que dépôt pas à 

pas, nous avons proposé ici un nouveau modèle d’approche du dépôt de matériau réel dans un système 

à deux phases pour simuler le processus FFF. Notre approche pour déterminer la cristallisation non 

isotherme en tenant compte de l'écoulement du fluide pourrait être appliquée à d'autres procédés de 

fabrication de polymères. À ce jour, cette approche semble n'avoir jamais été utilisée. 

Ensuite, nous avons déterminé les temps de relaxation pour le PEEK à partir des mesures rhéométriques 

de 350 à 400 °C. Les temps de relaxation du PEEK sont relativement élevés: à 350 °C, il faut 3,1 s et à 

400 °C, il est réduit à 1,6 s. Quelle que soit la température dans cette plage, les temps de relaxation sont 

suffisamment bas pour assurer une interdiffusion et des enchevêtrements de chaînes polymères avant la 

cristallisation. 

Enfin, le gonflement des matrices se produisant dans le processus FFF a été prédit. Le taux de 

gonflement de la matrice dépend fortement de la géométrie du liquéfacteur et des paramètres 

d'impression. Le taux de gonflement des matrices pour PEEK dans le processus FFF dépend des 

paramètres d’impression : il passe de 1 (pas de gonflement) à 2,5. Afin de réduire le gonflement de la 

matrice, il est conseillé d'augmenter la température, de diminuer la vitesse d'entrée ou d'adapter la 

géométrie de la buse (diamètre du capillaire, longueur du capillaire, angle de convergence et diamètre 

du réservoir). 

Ces résultats sont essentiels pour optimiser la résistance mécanique des pièces imprimées et ne peuvent 

pas être facilement déterminés par des mesures expérimentales. C'est la première fois que la simulation 

numérique est appliquée de cette manière au processus FFF afin de prédire le taux cristallin de pièces 
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fabriquées par le processus FFF. Cependant, des études complémentaires sont nécessaires dans l'axe 

suivant : 

Nous avons précédemment expliqué l'importance de mesurer la tension superficielle des polymères en 

fonction de la température et spécialement à l'état de fusion. La détermination de la tension superficielle 

à haute température et spécialement pour les polymères à haute viscosité et sensibles à la dégradation 

thermique nécessite davantage d'études et d'innovations. Une nouvelle méthode mériterait d'être 

développée. 

Dans ce travail, nous avons étudié en détail le dépôt d’une seule perle sur la plate-forme d’impression. 

Le dépôt de plus de deux couches alourdit considérablement la simulation numérique et prend plus de 

temps. Par conséquent, pour modéliser le dépôt de plusieurs couches, de nombreux serveurs de calcul 

puissants sont nécessaires. Cependant, la modélisation de plusieurs couches de dépôt répondra à d’autres 

points obscurs pour comprendre les propriétés des pièces imprimées. De plus, en ajoutant le 

comportement mécanique au modèle de dépôt, nous pourrions modéliser la contrainte résiduelle et 

l’influence de différents paramètres d’impression sur la déformation sous refroidissement. 

L'étape suivante consiste à imprimer des échantillons PEEK dans un environnement contrôlé à 

différentes températures et paramètres d'impression et à comparer les propriétés mécaniques des pièces 

imprimées en 3D dans différentes conditions. En outre, la détermination de la température et du champ 

thermique à l'aide de la thermographie infrarouge serait nécessaire pour valider le transfert de chaleur 

prévu par notre modèle numérique. 

Nous avons étudié le mécanisme d’interdiffusion des chaînes macromoléculaires et la relaxation à une 

température supérieure à la température de fusion. Cependant, l'interdiffusion commence au-dessous de 

la température de fusion à une vitesse lente. Déterminer les temps de relaxation à une température plus 

basse pourrait donc aider à optimiser la vitesse d'impression. En outre, l’influence des conditions 

d’impression sur la résistance au soudage (liaison) de quelques filaments est un pas en avant vers 

l’amélioration de la résistance. Pour cela, un test mécanique spécifique serait développé pour quantifier 

l'adhérence entre filaments. 

Enfin, lorsque l’utilisation du procédé FFF sera maîtrisée pour les thermoplastiques hautes 

performances, des composites à base de polymères pourraient également être utilisés. Les composites 

biosourcés, les composites à longues fibres de carbone et de carbone et les mélanges de métaux / 

polymères pourraient être utilisés comme matières premières pour atteindre de nouvelles propriétés. 

Pour tous ces matériaux, le procédé FFF nécessite un contrôle minutieux des propriétés du matériau 

pendant le dépôt afin d'assurer la meilleure qualité des pièces imprimées en 3D. 
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General introduction 

Additive Manufacturing (AM) applied to polymers, commonly known as 3D printing, includes mainly 

filament deposition, powder sintering and stereolithography technologies. These technologies rely on 

the accumulation of material by stacking successive layers until the generation of a 3D part. These 

manufacturing machines (printers) are computer-controlled, with a file from a computer-aided design 

(CAD) software. Additive manufacturing allows both the creation of unique pieces at a lower cost and 

access to complex shapes. 

Launched in the 1980s, the craze for 3D printing is palpable for both the general public and industry, as 

shown by numerous articles and studies published by the media in the five last years. In France, the 

Midi-Pyrénées region was a pioneer, with the first FabLab open to the public in Toulouse in 2009. 

FabLabs are associative digital fabrication workshops, where everyone can design and build custom 

objects. The interest in AM was perceived very early by companies for manufacturing of prototypes or 

small series. The company VOLUM-e was in 1993, the first French company which invested in the 

acquisition of production capacity in additive manufacturing for rapid prototyping [1]. Not too long ago, 

the printing speed and limited output of 3D printers made them suitable only for rapid prototyping. 

Since, many companies gamble on additive manufacturing to be at the heart of full-scale production 

capabilities from aerospace to automotive to healthcare [2] [3]. 

Though, the "industrial revolution" as presented by some media is still far away. Indeed, the 

improvement of processes, rates and suitable materials would open prospects for innovation in the 

industry. Among the technologies applied to polymeric materials, FFF (Fused Filament Fabrication), 

also named FDM (Filament Deposition Modeling) seems the most promising, because of its simplicity 

of use and storage of the raw material. Similar to other types of AM processes, FFF enables free-form 

fabrication and optimized structures by using polymeric filaments or pellets as raw material. Another 

point to consider is the absence of powders or liquid resins that can release VOC (volatile organic 

compound) and require special safety equipment.  

The type of materials suitable today for AM constitutes another obstacle to overcome: they are mainly 

mass-produced polymers, i.e. with low mechanical properties and durability, such as polylactic acid 

(PLA), acrylonitrile butadiene styrene (ABS) or polyesters. The industry requires high-performance 

polymers, that is to say, thermal resistance greater than 200 °C in continuous use, some GPa moduli and 

low sensitivity to thermo-oxidative aging. The behavior of these polymers, which have been on the 

market since the 1990s, is still little known. The study of their durability has shown that PAEK 

(polyaryletherketone) polymers family are the most durable, they keep longer their mechanical 

properties during exposure to a temperature close to their glass transition [4]. Generally, processing 

these PAEK materials while controlling their final properties are difficult, as proved by many research 

works in the last five years [5] [6] [7]. Identically for AM, these processes are still not well mastered for 

high-performance polymers. More efforts are needed to enlarge the knowledge about the physical 

phenomenon involved during these processes. 

Indeed, 3D parts suffer from low mechanical properties and low surface quality, compared to injection 

molded parts. The mechanical properties and the surface roughness of 3D parts manufactured by FFF 

are controlled by the adhesion of filaments and the porosity rate. The both mainly stem from the flowing 

ability and surface tension of the polymer. Moreover, the adhesion of filaments depends on the 

interdiffusion of polymeric chains. The interdiffusion of macromolecular chains at the interfaces has 
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been studied for amorphous thermoplastics: from the reptation theory [8], models make it possible to 

predict the kinetics of diffusion of entangled chains. The interdiffusion is less mastered for semi-

crystalline polymers, for which the crystalline phase slows down the motion of the macromolecules of 

the amorphous phase. 

To our knowledge, no study of the FFF process applied to high-performance semi-crystalline polymer 

was available in 2015. Since, some similar research works have started worldwide.  

The aim of this Ph.D. thesis consists in clarifying the relations between the printing parameters such as 

filament temperature, temperature of the previous layer, deposition rate and the properties of the material 

(elongational viscosity, viscoelasticity, coefficient of thermal expansion, thermal capacity, thermal 

conductivity, kinetics of crystallization ...) on the polymer flow and the adhesion of filaments. Our study 

focuses mainly on PEEK (polyetheretherketone), but the results could be transferred to any other 

polymer. At the same time, the objective is to set up a numerical simulation of the phenomena involved 

in this process. The viscous flow of the polymer during its deposition in the molten state is modeled and 

simulated while considering heat transfer and crystallization. The material properties are temperature-

dependent; that is why our simulation considers the evolution of the physical properties with temperature 

until the solidification of the material during cooling.  

This project, named 3D-TPHP, standing for : « Impression 3D des ThermoPlastiques Hautes 

Performances : Etude expérimentale et modélisation numérique du procédé par dépôt de filament » 

received a funding from APR Occitanie Region/Université Fédérale de Toulouse. The work was carried 

out in collaboration with two research laboratories: Laboratoire Génie de Production (EA1905) at Ecole 

Nationale d’Ingénieurs de Tarbes (ENIT) in the team Interfaces and Functional Materials, and Institut 

Clément Ader (UMR-CNRS 5312) at IUT Tarbes, in the research group Materials and Composite 

Structures. 

This manuscript is divided into three chapters. The first chapter is a literature review on the FFF process: 

After defining the FFF process; the process parameters affecting the properties of 3D printed parts are 

presented as well as the properties of the polymeric materials playing a crucial role in the properties of 

the final parts.   

The second chapter is concentrated on two topics: the first one is the characterization of the PEEK 

properties, the second one is the study of the coalescence of filaments. We have focused on the 

determination of the material properties which influence the properties of the parts manufactured by the 

FFF process. The studied properties are the thermal transitions and the crystallization kinetics, the 

thermal properties including thermal diffusivity, thermal conductivity and coefficient of thermal 

expansion, the surface tension and dynamic thermomechanical properties. These properties are the basic 

ones to study the FFF process properly. They are required to study the coalescence in the following part, 

in which, the coalescence of two adjacent filaments have been carried out by experimental study, 

analytical study and numerical simulation.  

Chapter 3 is mainly based on the numerical simulation of the filament flowing and deposition, and the 

polymer crystallization. In the first part, we have studied the rheological properties such as velocity 

field, shear rate and viscosity of the melted polymer flowing in the liquefier. Also, the flowing instability 

after exiting from the nozzle is explained, from experiments and numerical simulation with the aim to 

define the onset (limit of shear stress, as a result of shear rate and temperature) from which the extrudate 

undergoes instabilities and surface defects. Then, in the following part of chapter three, we have modeled 

the material deposition on the substrate during the FFF process, considering heat transfer and non-

isothermal crystallization. In this part, we aim to determine the optimal environment temperature and 
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substrate temperature to enhance the coalescence and the interdiffusion of deposited beads by keeping 

them longer in the amorphous state after deposition. Before including the crystallization kinetics in our 

model, we have determined the isothermal crystallization of PEEK at temperatures ranging from glass 

transition up to melting temperature. The isothermal crystallization data have been transferred to non-

isothermal crystallization kinetics by using Nakamura non-isothermal crystallization equation. Then, 

Nakamura non-isothermal crystallization has been conjugated with heat transfer and polymer flow to 

model the crystallization kinetics after the material deposition.  

Lastly, from the results presented, several points may be highlighted in conclusion. Some perspectives 

are drawn for the direction in which this work should be extended.  
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Chapter 1: Literature review
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Introduction 

Additive manufacturing (AM) refers to a wide variety of manufacturing processes for rapid prototyping 

and production of final and semi-final products. Despite a growing interest from industries and a large 

audience in the last five years, these manufacturing processes are still not well mastered, especially for 

not mass-produced polymers. Indeed, when the polymeric materials display specific properties, 

controlling their processing is trickier. More efforts are needed to enlarge the knowledge about the 

physical phenomenon involved during these processes. In this chapter, the literature review is presented 

in three parts, as the background to introduce the work presented in this thesis. The first paragraph 

defines the FFF process; the second one focuses on the process parameters affecting the properties of 

the printed parts. In the last one, the properties of the polymeric materials playing a crucial role in the 

properties of the final parts are highlighted. 

1.1 What is additive manufacturing? 

In opposite to conventional or subtractive processes, in additive manufacturing, the material is gradually 

added layer by layer to form the parts. Indeed, in these processes, a material is assembled or solidified 

under computer control to create a three-dimensional object. AM enables the fabrication of complex 

parts which were impossible or not cost-effective to manufacture until now with the traditional and 

subtractive processes. Starting from about 2000 [9], technical development and research studies have 

enabled the growth of additive manufacturing as a feasible alternative to subtractive and formative 

techniques [10]. Indeed, additive manufacturing processes reduce the lead time and processing costs for 

parts in small series and prototypes. Moreover, the parts are worthy of being re-design doing a 

topological optimization. The topological optimization is a mathematical method that optimizes the 

material layout within a given design space, for a given set of loads, boundary conditions and constraints 

with the goal of maximizing the performance of the system, such as the mechanical resistance and 

weight reduction of the structures. 

Early additive manufacturing processes were developed in the 1980s. In 1981, Hideo Kodama invented 

the additive manufacturing process of 3D models. The invented method is based on the hardening of a 

liquid resin under ultra-violet exposure. In 1984, Chuck Hull of 3D System Corporation© developed a 

prototype system based on a process known as stereolithography, in which the layers are added by curing 

photopolymers with ultraviolet light lasers. Chuck Hull defined the process as a “system for generating 

three-dimensional objects by creating a cross-sectional pattern of the object to be formed.” Kodama has 

already introduced this processing concept, however, the contribution of Chuck Hull in additive 

manufacturing is mainly because of creating the STL (STereoLithography) format which is widely used 

by 3D printing software as well as the digital slicing and infill strategies common to many processes 

today [11]. 

The first commercially available machine in the world was the “SLA‐1” in 1987, the precursor of the 

once popular SLA 250 machine, with SLA standing for Stereo-Lithography Apparatus. The Viper SLA 

machine from 3D Systems replaced the SLA 250 many years ago [9]. 

In 1988, at the University of Texas, Carl Deckard brought a patent for the SLS technology, another 3D 

printing technique in which powder grains are melted together locally by a laser. 

In 1991, three other technologies were commercialized, different than stereolithography, including 

Fused Deposition Modeling (FDM) from Stratasys [12], solid ground curing (SGC) from Cubital, and 
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laminated object manufacturing (LOM) from Helisys. FDM extrudes thermoplastic materials in filament 

form to produce parts layer by layer. SGC used a UV‐sensitive liquid polymer, solidifying full layers in 

one pass by flooding ultraviolet light through masks created with electrostatic toner on a glass plate. 

LOM bonded and cut sheet material using a digitally guided laser. 

Selective laser sintering (SLS) from DTM (part of 3D Systems) and the Soliform stereolithography 

system from Teijin Seiki became available in 1992. Using heat from a laser, in SLS, the material in 

powder is melted to stick the grains together. The Soliform technology was initially developed by 

DuPont under the name Somos and was subsequently licensed to Teijin Seiki for exclusive distribution 

rights in parts of East Asia. Also in 1992, Allied Signal introduced vinyl ether Exactomer resin products 

for SL [9].  

Additive manufacturing processes are sub-divided into several processing technologies according to 

different criteria: Power source (electron beam, laser, heating resistance, etc..), materials (polymers, 

metals, ceramics or their composites) and raw materials shape (liquid resins, powders, wires) [13].  

Among various classifications, these processes are divided into three different sub-processes, according 

to Hernandez et al. [14], as illustrated in Figure 1: 

 Liquid based processes 

 Solid based processes 

 Powder based processes 

 

Figure 1: Three different additive manufacturing groups according to Hernandez et al. [14] 

Besides, another example of classification is proposed by Jasiuk et al. [15]. For him, all the additive 

manufacturing processes using polymers as raw materials are a sub-division of one of the following 

categories:  

 Binder jetting 

 Directed energy deposition 

 Material extrusion (fused deposition modeling of fused filament fabrication, 3D bioprinting) 

 Material jetting (inkjet printing) 

 Powder bed fusion (selective laser sintering, selective laser melting, electron beam melting) 

 Sheet lamination (laminated object manufacturing, ultrasonic additive manufacturing) 

 Vat photopolymerization (stereolithography, digital light processing, two-photon 

polymerization) 

Advantages and drawbacks of these polymeric based processes are summarized in Annex I for each of 

the above mentioned  [15]. 
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The work presented in this Ph.D. thesis focuses on the “Fused Filament Fabrication” (FFF) also called 

“Fused Deposition Modeling” (FDM). FDM was developed by S. Scott Crump, co-founder of Stratasys, 

in 1988. With the 2009 expiration of the patent on this technology, people could use this type of printing 

without paying Stratasys for the rights to do so, opening up commercial open-source (RepRap) 3D 

printer applications. This has led to a two-orders-of-magnitude price drop since this technology's 

creation. Stratasys still owns the trademark on the term "Fused deposition modeling" [12].  

In the whole manuscript, the term FFF is preferably used to name the additive manufacturing by layer 

by layer deposition of a polymeric filament. FFF is the most used process to form polymeric parts from 

thermoplastic polymers in filaments. The principle and applications are described below. 

1.2 FFF: Fused Filament Fabrication 

FFF is based on the melting of a polymeric wire or filament in an extruder; the latter is then deposited 

layer by layer to manufacture the final parts [16] [17]. 

1.2.1 Evolution of the machines 

In 1996, Stratasys introduced the Genisys machine, which used an extrusion process similar to FDM but 

based on a technology developed at IBM’s Watson Research Center. After eight years of selling 

stereolithography systems, 3D Systems sold its first 3D printer (Actua 2100) in 1996, using a technology 

that deposits wax material layer by layer using an inkjet printing mechanism. In July 2000, Stratasys 

introduced Prodigy, a machine that produces parts in ABS (acrylonitrile butadiene styrene) plastic using 

the company’s FDM technology. In September 2001, Stratasys began the commercial shipment of its 

FDM Titan, a machine capable of producing parts in polycarbonate (PC), ABS, polyphenylsulfone, and 

PC+ABS blend. In early 2002, Stratasys introduced its Dimension product for $29,900. The Dimension 

machine, which deposits ABS plastic, is based on the former Prodigy product. In March 2004, Stratasys 

introduced the “Triplets,” which consisted of three variations of the FDM Vantage machine. Prices 

ranged from $99,000 to $195,000. These machines are capable of processing both ABS and PC 

materials. In March 2005, Stratasys dropped the price of the Dimension SST from $34,900 to $29,900. 

The machine offers a soluble support removal system that automates the process. Stratasys unveiled a 

biocompatible FDM material, ABS‐M30i, in March 2008.  

Then, Stratasys announced that it would offer ULTEM 9085 (polyetherimide from Sabic Innovative 

Plastics) for its FDM 900mc and 400mc machines. This material is widely used in aircraft interiors for 

its flame retardancy and low smoke emissions. Also in December 2008, Stratasys introduced a vapor‐

honing product called Fortus Finishing Stations for finishing FDM parts made in ABS. 

When a key FDM patent expired, inexpensive equipment in the form of kits and fully assembled 

machines based on the RepRap open‐source project became available. Since their introduction, these 

low‐cost “personal” systems have experienced substantial growth. Also, Bits from Bytes of England 

released the RapMan 3D printer kit ($1100) based on the RepRap open‐source system launched at Bath 

University of England. 

In April 2009, MakerBot Industries introduced its Cupcake CNC product based on the RepRap open-

source system in April 2009. Stratasys announced the compatibility of its large‐frame Fortus 900mc 

machine with ULTEM 9085, PC‐ABS, PC‐ISO, and ABS‐M30i in August. 

In 2011, BotMill (Boca Raton, Florida) released the Axis 2.1 kit for $1,065 and a preassembled, 

extrusion‐based machine Glider 3.0 for $1,395. The both are single extruder head machines based on 
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the RepRap open‐source work. Buildatron Systems (New York, New York) announced the availability 

of its RepRap‐based Buildatron 1 3D printer in September 2011. The single material and machine is 

sold as a kit for $1,200 and as an assembled system for $2,000. In May 2012, Stratasys acquired 

Solidscape, a company that offers high-resolution 3D printers for creating wax patterns for investment 

casting, particularly for the jewelry and dental markets. Solidoodle (Brooklyn, New York) introduced 

its RepRap‐based Solidoodle 3D printer for $699 [9]. 

When this Ph.D. thesis started in 2015, none of the machines was suitable to print high-performance 

thermoplastics such as PEEK (polyetheretherketone). Indeed, PEEK is a high-performance semi-

crystalline thermoplastic with a melting temperature above 340 °C and a higher viscosity compared to 

other conventional polymers which are typically used in FDM (FFF) process. A high viscosity combined 

with a high melting temperature increases the difficulties to process this kind of material. Because of 

these properties, the use of PEEK as raw material for 3D printing is limited. However, in June 2015, 

INDMATEC launched the PEEK 3D Printer as the first FDM 3D Printer for high-temperature polymers. 

This new 3D printer, which features a build volume of 155 x 155 x 155 mm, is equipped with a hotend 

that reaches up to 420 °C. It can 3D print objects out of PEEK [18]. 

The evolution of the FFF (FDM) printers from 1990 until now shows that their ability to print a broader 

range of polymers with higher precision increases while their price is reduced. 

1.2.2 Characteristics of the current machines 

The FFF machines differ from various criteria. Their differences are mainly: 

- The printing volume (the maximum size of the printable part),  

- The accuracy,  

- The range of materials (from the simplest mass-produced and low-cost materials like ABS and PLA 

(polylactic acid) to high-performance polymers such as PEI and PEEK)  

- The possibility of printing complex parts (3-axis and more axis)  

- The possibility of controlling the printing environment (temperature, vacuum and nitrogen chamber). 

In 2019, more companies propose 3D printers with the characteristics mentioned above. In Table 1, 

some of the companies selling 3D printers for high-performance thermoplastics are presented [19]. As 

we could conclude, these printers vary from different characteristics such as build volume, maximum 

extruder temperature, maximum printing bed temperature, maximum environment temperature, and 

price. Furthermore, the geographic distribution of the manufacturers all around the world shows the 

strategic importance for the industry, specially for high-performance thermoplastic. The number of 

manufacturers of 3D printers has significantly increased in 2019 compared to 2015, when the first printer 

for PEEK was introduced. This corroborates the emergence of this technology. 

Table 1: List of professional 3D printers trademark for printing PEEK and high-performance thermoplastics in 2019 

[19] 

PEEK 3D printer Price 

(€) 

Build volume 

(in mm) 

Max. extruder 

tem. 

( °C ) 

Max. 

print bed 

tem. 

(°C) 

Max. build 

chamber tem. 

(°C) 

Country 

3D PrinterWorks HT-

5800 

 15.950 457 x 457 x 

457 

420  160  - US 

3DGence Industry 

F340 

20K-

25K 

260 x 300 x 

340 

500 160  85  Poland 
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AON 3D AON-M2 47,000 454 x 454 x 

640 

470  170  120  Canada 

Apium P220 30K-

40K 

205 x 155 x 

150 

540  160  180  Germany 

Hyrel 3D Hydra 16A 13,000 600 x 400 x 

500 

450  200  55  US 

IEMAI Magic-HT-

PRO 

22,000 310 x 310 x 

480 

450  170  120  China 

INTAMSYS 

FUNMAT PRO 410 

23,000 305 x 305 x 

406 

450  160  90  China 

Machina Corp X30 

HT 

8,000 300 x 300 x 

280 

500  150  90  Canada 

miniFactory Ultra 49,000 330 x 180 x 

180 

480  250  250  Finland 

Roboze One+400 

Xtreme 

70,000 300 x 200 x 

200 

500  180  - Italy 

SpiderBot 4.0 HT 7,495 200 x 200 x 

180 

470  240  350  France 

Tractus3D T850P 11,900 300 x 300 x 

380 

450  175  65  Netherlands 

VeraShape 

VSHAPER MED 

11K-

55K 

450 x 450 x 

450 

450  150  70  Poland 

 

1.2.3 Materials used in FFF 

The FFF process is applied to most of the materials including metals and thermoplastic polymers. In a 

glance, the thermoplastics used in FFF are divided into two categories:  

The initial version of the FDM printer was intended to print wax. By improvement in FFF technologies, 

new materials such as ABS and PC were used as raw materials. Furthermore, ABS loses its popularity 

because of the emission of toxic gas (styrene derivatives) during printing. Then, by the introduction of 

the RepRap project in 2008, PLA has replaced ABS and PC as a low-cost and easy to use polymer.  

Also, PLA has a lower environmental impact because it is a biosourced, biodegradable and compostable 

material. The blends of different polymers such as PC+ABS are also used in FFF. 

Later, thermoplastics for printing higher performances parts appeared. These polymers are relatively 

expensive materials with performances suitable for high added value products. For this category, we 

could mention polyetherimide (PEI) known as the brand ULTEM from Sabic Innovative Plastics, PAEK 

(polyaryletherketone) polymers such as PEEK and PEKK.  

1.2.4 Adhesion of the part to the platform 

FFF is based on the melting of a polymeric wire or filament in an extruder; the latter is then deposited 

layer by layer to manufacture the final parts. The layer thickness is generally less than 0.4 mm. The 

principle of the FFF process is shown in Figure 2. As it is represented, the first layer is deposited on a 

building platform, in most cases made of toughened glass.  

The deposition of the first layer on the substrate is the most critical step to print the parts without any 

defaults. Because of the temperature of the platform, the cooling rate of the first layer is faster compared 

to the following layers deposited on the previous layers. When the cooling rate of the first bead is too 

fast, it causes deformation of the printed part. If the part is not correctly attached to the deposition 

platform, the part will be taken off. For this reason, a toughened glass surface is principally used as the 

building platform to maintain the adhesion of the part to the substrate during printing. Also, the glass 

facilitates the removing of the part at the end of the manufacturing. Furthermore, empirical tests made 
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by users of FFF and RepRap suggest that using polyvinylpyrrolidone (a component of hairspray) could 

improve the adhesion of the part to the platform.  

1.2.5 Principle of RepRap 

As mentioned previously, when this thesis started in 2015, no commercial machine in the world was 

suitable to print PEEK. However, to begin the study of the physical phenomenon occurring during 

printing of semi-crystalline polymers, we choose to work with a RepRap machine available at ENIT 

with PLA (Polylactic acid).  

The RepRap project started in England in 2005 at the University of Bath as an initiative to develop a 

low-cost 3D printer that could print most of its own components. The project is now made up of 

hundreds of collaborators worldwide. RepRap is the abbreviation of “replicating rapid prototype” [20]. 

Among available machines on the market, RepRap is an open source project to use the FFF process at 

low-cost fabrication to “home manufacturing,” Fablabs as well as towards education [21] [22]. Because 

of the simplicity of use and cost-effectiveness of the process, FFF is one of the most popular additive 

manufacturing processes. 

 

Figure 2: Illustration of the layer by layer deposition during FFF  

Furthermore, to remain cheap and easy to achieve, these machines are simply made of a frame as shown 

in Figure 3, a liquefier and open-source developed software.  

 

Figure 3: Picture of a basic RepRap printer [23] 

 

 

Last deposited layer 

First deposited layer 

Extruder or liquefier 
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The liquefier is composed of several parts such as a heating block, a nozzle, and a cooling sink. The 

Figure 4 shows a scheme of the liquefier assembly typically used in RepRap printers. 

The liquefier is the most important part of the RepRap printers. The polymeric filament is melted 

through the liquefier before deposition. The liquefier is composed of three parts: 

 Nozzle: The polymeric filament passes through the nozzle and changes from the solid state to 

the melted state. The melted polymer exits through the nozzle to be deposited. The diameter of 

the nozzle is from 0.25 mm to 0.6 mm. The diameter of the nozzle influences the accuracy of 

the manufactured part. 

 Heating block: This part of the liquefier is mainly a heating resistance. The heating block 

provides the energy required to melt the polymer. This block is equipped with a thermocouple 

in order to control the temperature. 

 Cooling sink: The cooling sink is made of aluminium to cool the upper part of the liquefier.  In 

the liquefier, the polymeric filament is pushed into the liquefier by the gears or the drivers. If 

the filament is not rigid enough, in case the temperature is above the glass transition the polymer, 

the drive could not push the filament into the liquefier. 

 

Figure 4: Used extruder in RepRap FFF machine 

Although these open-source printers provide robustness and low-cost manufacturing, however, the parts 

manufactured with these printers still suffer from different problems. Stress concentration resulting in 

distortion [15], high porosity rate and lack of adhesion between the layers, the both decreases the 

mechanical properties of the parts [24], surface roughness and lack of dimensions’ accuracy are the main 

drawbacks of the parts manufactured by FFF process.  

The origin of these problems mainly comes from the lack of mastering the properties of materials and 

the influence of the printing parameters on the material properties. Indeed, the plentiful users all around 

the world bring “rule of thumb” experimental practice. As an example, selecting high temperature and 

high printing speed leads to harsh deformation and discontinuity of the printed layers while low 

temperature leads to uncompleted melting of the filament and lack of adhesion between deposited 

filaments. Consequently, understanding the flow properties of the used polymers for printing and also 

the influence of the printing parameters on the flow properties is crucial to improve the quality of the 

printed parts. 
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1.3 Parameters and physical phenomena influencing the quality of the 

manufactured parts 

1.3.1 Raster orientation and deposition strategy 

In parallel to the experience gained by household users, the first scientific studies which aim to improve 

the quality of the parts manufactured by the FFF process were done by Yardimici et al. in 1999 [25]. 

They have studied the FFF process from different points of view: their studies cover the structure design 

of the machines and the deposition raster orientation. Also, they provided an extensive study of thermal 

and flow analysis of the process. According to the equations of viscosity for non-Newtonian fluids, they 

proposed a relationship to determine the pressure drop in the liquefier [26]. The same authors have 

suggested the thermal equations to determine the temperature distribution in the liquefier and the 

extruder [25] [26]. 

Most of the studies on FFF focus on the deposition orientation and the influence of different deposition 

strategy and raster orientation on the mechanical properties of the parts printed by FFF such as tensile 

strength [27] [28] [29] [30], compression [31], and flexural properties [27] [32] [33]. The numbers of 

studies on the deposition strategy show the importance of the printing parameters for controlling the 

properties of the parts manufactured by FFF. However, many studies combine several parameters at the 

same time, so that the results do not lead to an incontestable conclusion about the effect of parameters. 

Fatimatuzahraa et al. [27] studied the influence of the raster orientation 90°/0° and 45°/-45° on the 

flexural strength, tensile strength and impact strength. According to them, the raster orientation does not 

highly influence the mechanical properties, however, for the 45°/-45° orientation, the flexural and 

impact strength is slightly higher than for 90°/0°. De Ciurana et al. [28] have studied the influence of 

the raster orientation, the thickness of the deposited beads and the distance between each deposited bead 

on the Young’s modulus of the printed parts. Their results show that the specimens with 45°/-45° have 

a higher Young’s modulus than other raster strategies. On the other hand, they have shown that a higher 

bead thickness leads to higher Young’s modulus. Most of the studies on the printing parameters propose 

the raster orientation of 45°/-45° to get the best mechanical properties.  

Furthermore, from our practical experience and literature, the layer thickness must not exceed 0.4 mm 

and not below 0.2 mm. A higher nozzle diameter (higher than 0.4 mm) highly decreases the accuracy 

and surface roughness of the printed parts. On the other hand, a small nozzle diameter (less than 0.2 

mm) although increases the accuracy and surface roughness of the printed parts, however it reduces the 

mechanical properties of the printed part. 

Gomez et al.[34] studied the influence of the printing strategy on the fatigue properties of the printed 

parts. The influence of four factors: layer height, fill density, nozzle diameter and velocity reveal that 

the fill density is the most influential parameter on the fatigue life, followed by the layer height. A higher 

fill density improves the mechanical properties of the printed parts by reducing their porosity.  

However, many contradictions are revealed in the above-mentioned studies to select the optimum raster 

strategy. One of our hypothesis to explain these contradictions could be the lack of knowledge of the 

properties of polymers. Indeed, some authors attribute the variability of results in terms of diversity of 

colors [35] or supply companies. Bell et al.[36] studied the influence of the specimen size on the 

mechanical properties of printed parts with acrylic polymer. Their study shows that the mechanical 

properties of the printed parts are size dependent. Another hypothesis is that the authors use different 

types of printers with different design structures such as diameter of the nozzle, heat transfer and so on. 

Also, the stability of the printer structure from vibrational point of view could be different for each study 
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and so it could influence the quality of the parts. Furthermore, the geometry of the nozzle is different in 

all these studies, that could be another source of deviation of the results when comparing different 

studies.  

Concerning printing of high-performance polymers, only a few studies worth to be cited. In the first 

one, the influence of the printing strategy and orientation and the processing temperature of PEEK on 

mechanical properties have been carried out by Rahman et al. [37]. They have determined the influence 

of raster orientation on the tensile strength, flexural strength, and impact strength. They have studied 

three different raster orientations (0°, 90°, and 0°/90°). Among them, 0° shows the best impact 

resistance, tensile and compression strength and flexural strength. Arif et al. also studied the influence 

of raster orientation on mechanical properties [38]. Their results on a biocompatible grade of PEEK 

agree with those obtained by Letcher: In both studies, the raster orientation must be selected as 0° to 

have the best mechanical properties. Then, Xiaoyong [39] studied the influence of the printing 

conditions such as the printing speed, temperature, layer thickness and filling ratio and environment’s 

temperature on the tensile strength of PEEK parts. Their studies indicate that the optimal combination 

of tensile strength is the printing speed of 60 mm.s-1, the layer thickness of 0.25 mm, the printing 

temperature of 370 °C and the filling rate of 60 %. However, the influence of each parameter has not 

been studied separately.  

Worth to be mentioned, the parts manufactured by FFF could be used directly as a final product with or 

without post-processing treatments. Moreover, many studies have been conducted to measure and 

decrease the surface roughness of the parts manufactured by FFF [40] . Indeed, most of the parts need a 

surface treatment to minimize their roughness. Ahn et al. [40] have developed a theoretical model to 

express the surface roughness distribution according to changes in the surface angle of the printed parts. 

They concluded that the most important parameter influencing the surface quality of the printed parts is 

the cross-section of the deposited beads. The cross-section of the beads mainly depends on the diameter 

of the nozzle and the height of the deposited beads. The comparison of their model with experiments 

shows a good agreement. The influence of the process variables such as layer thickness, road width and 

deposition speed on the surface quality of parts manufactured by FFF [41] [42] have been investigated. 

The studies on the process variables reveal that the layer thickness is the most important parameter 

influencing the surface quality. The road width and speed look to have less impact on the quality of the 

surface of the printed parts. 

1.3.2 Experimental studies and modeling of the coalescence phenomenon 

When the filaments are deposited one next to the other, they bond together to form the layers: this 

physical phenomenon is called coalescence. Controlling the coalescence is crucial in many processes 

[43] such as foaming [44], sintering and rotomolding [45]. The coalescence is usually described as the 

mechanism when two fluid droplets or two particles meet and bond together to form a single droplet or 

particle as represented in Figure 5. Modeling the coalescence is a step towards the optimization of 

processes to control the void growth in the plastic parts [46]. Indeed, this phenomenon has been 

extensively studied for thermoplastic powders in case of rotomolding process.  
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Figure 5: Coalescence of 2 droplets or 2 particles to form a single one  [47] 

For FFF, the improvement of the coalescence of filaments is a step forwards to print parts with optimized 

resistance [48]. The filaments coalesce and bond together in order to form the layers and the parts. The 

mechanical properties of the printed parts highly depend on the coalescence and bonding. Nevertheless, 

because of poor coalescence between the layers and deposited beads, the mechanical properties of the 

parts manufactured by FFF do not meet the requirements for functional parts. Indeed, the low 

mechanical strength comes mostly from the lack of coalescence between the filaments. The lack of 

coalescence generates weak filaments bonding and high porosity rate. 

The coalescence phenomenon has been specifically applied to the FFF process by Bellehumeur et al. 

[49] as shown in Figure 6. The coalescence is mainly governed by the viscosity and the surface tension 

of polymers. Understanding the influence of the temperature on the rheological properties of the polymer 

is necessary to control and improve the coalescence of the deposited beads. Abbot et al. [50] studied the 

influence of the process parameters on the bonding conditions of ABS parts. They studied the effect of 

the extruder temperature, printing speed, and layer height. Their observations show that the printing 

speed has a large impact on the tensile strength, the latter depends on the coalescence of filaments. 

Printing at high speed generally yields lower mechanical strength.  

 

Figure 6: Levels of analysis for FFF prototypes [49] 

Several analytical models have been developed to describe the kinetics of coalescence. Frankel [51] 

derived the first analytical model, which was subsequently corrected by Eshelby [52]. Frankel’s model 

is based on the balance of the work of the surface tension and the viscous dissipation. The modified 

Frankel’s model by Eshelby is represented in eq. 1. 

𝒙

𝒂
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eq. 1 
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Where 𝑎  is the particle radius changing with time, 𝑎0 is the initial particle radius, t is the time, 𝑥  is the 

sintering neck radius, г is the surface tension and 𝜂 is viscosity.  Frankel’s model has been used by many 

authors to describe the kinetics of sintering of Newtonian fluids. Despite its simplicity, it gives insight 

on the effect of material properties on the coalescence rate. The validity of Frankel’s model is limited 

to Newtonian flow for the description of early stage sintering when the particle diameters remains 

relatively constant. Hopper [53] proposed an exact analytical solution of the Navier-Stokes equations 

for two-dimensional viscous flow driven by capillary forces acting on the free-surface. Hopper’s theory 

is limited to two-dimensional and Newtonian flow problems. 

Pokluda et al. [47] developed a sintering model using as approach similar as Frankel’s one: in their 

model, they take into account the variation of the particle radius. The Frankel’s modified model 

developed by Pokluda is represented in eq. 2. 

𝜽′ =
г

𝝁𝒂𝟎

𝟐
−𝟓
𝟑 𝒔𝒊𝒏𝜽𝒄𝒐𝒔𝜽 (𝟐 − 𝒄𝒐𝒔𝜽)

𝟏
𝟑

(𝟏 − 𝒄𝒐𝒔𝜽)(𝟏 + 𝒄𝒐𝒔𝜽)
𝟏
𝟑

 

 

eq. 2 

 

 

In which θ′ is the rate of angle evolution with time and θ is the angle between intersecting lines from 

the center to the neck of the coalescence. The initial value for the angle between the two spheres (θ) is 

zero. 

For the experimental studies of the coalescence of spheres and filaments, the protocol is always the 

same. They are mainly based on the optical observation of the neck grow evolution by camera or under 

a microscope. As it is represented in Figure 7, for two filaments in ABS (0.74 mm diameter and 0.3 mm 

length) at 200 °C, in the primary step (t = 0) two filaments meet together. With time, the length of the 

neck between the two filaments increases and finally at t = 840 s, the length of the neck is close to the 

initial diameter of the filaments [54].  

 

 

Figure 7: Neck growth evolution for ABS P400 at constant temperature [54] 

Most of the studies reported in the literature are carried out at isothermal temperature. Nevertheless, in 

most polymer processes including FFF, the temperature is not constant. For instance, the coalescence of 

two thermotropic polymers in the air was investigated by Scribben et al. [55]. They have used the same 

methodology in order to integrate the viscoelastic behavior to the model. The viscous neck growth model 
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using the upper convected Maxwell constitutive equation (UCM) was extended to the transient stress 

case in order to incorporate the slow growth of viscosity at the startup of flow.  

In the same manner, Bellehumeur et al. [56] showed the importance of  the viscoelastic behavior of the 

polymers in the coalescence phenomenon. Based on Frankel’s approach [57], Eshelby [52] and the 

model proposed by Pokluda [47], Bellehumeur with the integration of the UCM, introduced the effect 

of the viscoelastic behavior for the sintering. 

The majority of the studies on the coalescence combine experimental study and numerical modeling. 

As, it is explained in the following parts, the numerical simulations are limited to low viscosity fluids 

such as water and gas.  

Chen et al. [58] studied the coalescence and breakup of gas bubbles with an axisymmetric numerical 

simulation of two-phases (gas/liquid) transient flow. Their numerical simulation approach is based on 

multiphasic flow algorithm and finite-volume method. Verdier [59] studied the coalescence of 

polymeric particles. He proposed a new method to study the collision of droplets of various viscosities 

under a microscope. They have shown that under the action of van der Waals forces only, two spherical 

droplets get closer and eventually meet. Another experimental study has been carried out by using a 

polarized light optical microscope (POM) combined with a hot stage by Aid et al. [60]. They have 

investigated the influence of the temperature and particle size on the coalescence. They also proposed a 

predictive modeling for the coalescence of polymeric particles including PVDF (Polyvinylidene 

fluoride) and PMMA (Polymethylmethacrylate) [60]. In this research, a numerical model based on 

Bellehumeur’s approach is suggested to predict the coalescence phenomenon between two particles of 

different polymers. This model aims to generalize the Bellehumeur’s relation commonly used to 

describe the coalescence between identical grains in the case of different polymers. High-speed particle 

image velocimeter has been used by Betton et al. [61], who observed the impact and coalescence of 

droplets on a solid surface.  

The same authors [61] modeled the coalescence of low viscosity fluids: glycerol and water. Their 

experimental studies have been compared with analytical simulation by lattice Boltzmann method. The 

simulations slightly overpredict the coalescence kinetics. The numerical simulation of the coalescence 

of inviscid drops (fluids with zero or near zero viscosity) on a solid surface was modeled by boundary 

element method in which the free surface of the drop is represented by a moving grid [62]. In the same 

idea, Laurent et al. [63] modeled the coalescence of liquid spray coalescence and evaporation. They 

used the direct quadrature method of moments (DQMOM) to model the coalescence of spray. 

Mohammadi et al. [64] modeled the coalescence of water droplets in oil by using Computational Fluid 

Dynamics (CFD) techniques. Their numerical simulation was carried out by finite volume numerical 

method and by solving the Navier–Stokes equations in conjunction with the Volume of Fluid (VOF) 

approach for interface tracking.  

B. Sirkarwar et al. [65] used COMSOL Multiphysics software and Level-set equation for modeling the 

coalescence of water droplets. These studies are based on a comparison of the numerical simulation and 

experimental study: the kinetics by numerical simulation are five times slower than the experimental 

results. In opposite, J. Zheng et al. [66] using COMSOL Multiphysics found a good agreement between 

experimental results and numerical modeling for the coalescence of glycerol. Their experimental 

apparatus is based on two sessile droplets resting on an organic glass substrate. Furthermore, M. Sellier 

et al. [67] made the numerical simulation of a sessile droplet by COMSOL Multiphysics. Their 

numerical simulation for low viscosity sessile droplet agrees with their experimental study.  
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The influence of electric field on the coalescence of two water droplets has been investigated by Q. Li 

[68]. With experimental study and numerical simulation, they have shown that the electric field could 

boost the coalescence rate.  

Some other studies were carried out with commercial softwares for modeling the coalescence of 

droplets. However, only a few studies relate to polymers, most of them are for droplets of low viscosity 

fluids at isothermal temperature. 

Among studies on polymeric droplets, W. Du et al. [69], used the volume of fluid (VOF) equations and 

Fluent software for modeling the coalescence of PVDF grains. In their study, they have considered that 

the viscosity of PVDF is 4000-4500 Pa.s. Their observation shows that the kinetics of coalescence 

determined by the numerical simulation is faster than the one determined experimentally. M. Asgarpour 

[70] by using VOF and Fluent software worked on the sintering of polymeric particles. He determined 

the porosity of the parts manufactured by rotomolding by stationary simulation. 

Subsequently, our literature review shows that there is no adequate study on the coalescence 

phenomenon for high viscosity polymers. Moreover, only a few experimental works report the 

coalescence of filaments applied to FFF. From our knowledge, none of these works deals with the 

numerical simulation of the coalescence of filaments taking place during the FFF process. Existing 

studies are mainly based on isothermal coalescence while in FFF process, the coalescence takes place 

in non-isothermal conditions. 

1.3.3 Fluid flow and heat transfer during material deposition 

Modeling the fluid flow and heat transfer is the primary concern in the study of polymer processing and 

especially in the FFF process [71]. The heat transfer and the temperature of the deposited beads is one 

of the most crucial issues which influence the quality of parts manufactured by FFF. Indeed, heat transfer 

is the factor governing the coalescence of the filaments as well as the crystallization of the polymer on 

cooling after deposition. However, measuring the heat fields during the FFF process is tough, as it 

requires non-destructive techniques such as infrared thermography. To our knowledge, this kind of in-

situ monitoring has been published only once until now for FFF. Seppala et al. in 2016, studied the heat 

transfer of the FFF process using infrared (IR) imaging [72]. Their study shows that the cooling rate of 

the deposited filament is relatively fast during the process. Depending on the printing speed and the 

number of layers, the cooling rate changes from 60 to 180 °C.s-1: For the third layer and a printing speed 

of 10 mm.s-1 the cooling rate is 60 °C.s-1 , while for the same layer and a printing speed of 90 mm.s-1 the 

cooling rate is 180 °C.s-1. The cooling rate for the eighth layer at the same speeds are respectively 50 

°C.s-1 and 10°C.s-1 [72]. 

This lack of measurements of heat fields could be explained by the cost of this equipment and also by 

the issues to access the view of the filaments during deposition through the frame of the machine. For 

these reasons, the numerical simulation would be useful to access the heat transfers that are not 

experimentally accessible. In this case, the numerical simulation is cost-effective to achieve reliability 

and to improve the quality of printed products.  

Similarly to the extrusion process, during the FFF process, the filament goes through a liquefier before 

the deposition. Despite many works on the experimental point of view, only a few works dealing with 

the numerical simulation of the flow when the polymer exits the liquefier are reported. However, the 

existing approaches are generally based on the Finite Element Methods (FEM) study of the one phase 

flow and they are applied to extrusion and injection molding [73]. 
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Concerning specifically our case (numerical simulation of material deposition) only a few works worth 

to be cited: Lirvani [74] using numerical simulation and Navier-Stokes equations modeled the extrusion 

process of a fluid with a viscosity of about 20 Pa.s. Kopplmayr [75] used OpenFOAM software and 

Volume Of Fluid (VOF) equations for modeling the extrusion of polyethylene, polypropylene and 

polyethylene terephthalate. The comparison of their numerical modeling with experimental studies 

shows a good agreement. Comminal [76] by VOF equations modeled the free-form extrusion of the 

polymer by taking into account its viscoelastic behavior. He noticed the deformation and instability of 

the extrudate from a value of shear rate. Bot [77] studied the impact and solidification of a metal droplet 

on a substrate using VOF and TVD (Total Variation Diminishing) method. Nevertheless, his study 

consists of a segregated droplet and the impact of this isolated droplet on the substrate and not a 

continuous deposition of a filament on a substrate. Amico et al. [78] using adaptable finite element 

analysis determined the heat transfer in the FFF process. In the case of this model, the material flow was 

not directly simulated and instead, the material deposition was approached as a uniform change in height 

across the part. They have taken an insight into the influence of feed rate on the cooling rate of the 

deposited bead. Additionally, the thermal behavior of a RepRap 3D printer liquefier was studied by 

Jerez-Mesa et al. [79]. They have modeled the fluid flow and the temperature in the liquefier by 

continuity equations. The closest work to our study is done by Comminal in 2015 [80] in which he 

modeled the behavior of the extrudate of a viscoelastic material. He also considered streamlines due to 

the elastic instabilities in the die. It is known that a sharkskin phenomenon is related to elastic instability 

in the die. His numerical approach takes into account the viscoelasticity to model the flow behavior. For 

that, he used VOF and log–conformation tensors. In 2018, the same authors [81] modeled the material 

deposition on the substrate while taking into account the fluid flow. They have shown the influence of 

the geometry and inlet velocity on the shape of the cross-section of the deposited bead, using CFD 

simulation. 

Still in 2018, Peng et al. [82] studied the material flow in the FFF process by an experimental study. 

Using pigments distribution, they have revealed the velocity distribution in the liquefier. Osswald et al. 

in 2018 [83] developed an analytical model for the polymer melting during FFF process. The model 

presented in this paper solves a coupled mass, momentum and energy balance to predict the flow into 

the nozzle, as well as the melting rate in a polymer extrusion in the FFF process. The model includes 

the effects of initial temperature of the filament, heater temperature, applied force, nozzle tip angle, 

capillary diameter and length as well as rheological and thermal properties of the polymer. Their 

predictive model shows a relatively good agreement with experimental studies. The model predicts quite 

well the melting rates at forces up to 40 N. However, at higher forces, the melting rate is over-predicted 

[83]. 

According to our bibliography study, there is a lack of studies on numerical modeling of the material 

deposition during FFF. To our knowledge, when I started my Ph.D., no study existed, most of them have 

been published last year.  

 1.3.4 Surface roughness and accuracy 

The main flaw in FFF is the high surface roughness of the printed parts. Indeed, the surface roughness 

is directly linked to the nozzle diameter. Several post-processing treatments are proposed to decrease 

the surface roughness of the printed parts. Using chemical post-processing treatment [84] [85] [86], 

modifying the generated code and slicing [86] [87] [88] and using post-processing machining [89] are 

the effective approaches to reduce the roughness. Percoco et al. [84] made a surface treatment with a 

solution of 90 % dimethylketone and 10 % water for ABS parts. Their results show that the quality of 

the surface has been improved up to 90 %. Also, they noted an improvement in mechanical properties. 
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Their hypothesis is that the solvent diffuses inside the parts, which results in chemical changes 

influencing the mechanical behavior. In our opinion, the chemical treatment reduces the number of the 

micro-cracks onto the part surface. Consequently, there is less possibility to initiate and to propagate the 

cracks. That is reason why they observed an improvement in mechanical properties. 

Moreover, optical observations proved that the curved zones do not have the same accuracy of flat 

geometries: their roughness and porosity rates are higher than on flat surfaces. An adequate procedure 

of slicing is required to improve the quality of the curved regions [87] [88] [90].  

1.4 Polymer properties influencing the quality of printed PEEK parts 

1.4.1. Polymer definition and conformation 

The modern concept of polymers as covalently bonded macromolecular structures was proposed in 1920 

by H. Staudinger. A polymer is a large molecule composed of repeated units called monomers. The 

length of a macromolecular chain is quantified by the degree of polymerization, which is the number of 

monomers into the chain.  

In polymer melt or in amorphous phase, the ideal chain can be described as random walk statistics. A 

random walk denotes a path of successive steps in which the direction of each step is uncorrelated with 

or independent of the previous steps: Steps forward and backward, left and right, up and down do all 

have the same probability. Figure 8 describes two possible states of a chain with 10 segments [91]. 

 

Figure 8: Two possible conformation of a polymer chains composed of 10 monomers [91] 

The flexibility of the chain is mainly due to torsion angles: the chain adopts gauche and trans bond 

conformations along the backbone, it means a single chain can adopt many different conformations. 

When describing an ideal chain of N+1 atoms, the average end-to-end vector of a random walk of N 

steps, taken over many possible conformations, is zero because of the equal probability to step in 

opposite directions: 

<R>=0 eq. 3 

 

The root-mean-square end-to-end distance is finite, and it characterizes the average spatial dimension 

traversed. If the length of each step is l, the root-mean-square end-to-end distance is expressed as 

following: 

<R2>1/2 = N1/2 l eq. 4 
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Fig. 2 – Illustration of conformations for a polymer with 1010 bonds of length 1cm.5 

 

Polymer Melts 

 

We will focus here on the case where there is no interaction between monomers.  This ideal 

chain can be described using a random walk statistics (also called ideal chain statistics).  A random 

walk denotes a path of successive steps in which the direction of each step is uncorrelated with or 

independent of the previous steps: Steps forward and backward, left and right, up and down are all 

equally probable.  Figure 3 describes two possible states of a chain with 10 segments. The flexibility 

of the chain is mainly due to torsion angles: the chain adopts gauche and trans bond conformations 

along the backbone (a single chain can adopt many different conformations).  

 

 

 

 

 

Fig. 3 – Two possible conformations of a 10-segment chain 

 

Random walk statistics are also used to describe Brownian motion.   
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Figure 9 :Scheme of the end-to-end distance of a polymeric chain 

This model is valid for freely jointed chains. In most polymers, there are restrictions of motion because 

of bond angles (typically for double and triple covalent bonds). To describe this limitation of motion, a 

characteristic ratio C is introduced. The root-mean-square end-to-end distance R0 for the polymer chain 

of N bonds is then: 

R0 = <R2>1/2 = N1/2 C1/2 l eq. 5 

 

 

The length of each step l is ~0.154 nm for a C-C bond. The characteristic ratio C depends on each 

polymer. As an example, a chain of N = 10,000 monomers with 2N C-C bonds : Its fully extended length 

would be 2.N.l = 3080 nm and its root-mean-square end-to-end distance would be Ro ≈ 72 nm in the 

melt or glassy state. 

A polymer chain has a characteristic size, which scales with N the number of monomers in the chain to 

the one-half power:  

Ro ~ N1/2 eq. 6 

 

Nevertheless, the average volume occupied by the coil is much greater than the volume of the chain 

itself, as seen in Figure 10. 

 
Figure 10 : Scheme of the volume occupied by polymer coil 

So that in the melt or in the glassy state, many other chains will be intermingled with a single chain. The 

volume of the coil is: 
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Vcoil Ro3 ~ N3/2 eq. 7 

 

The volume of a chain is: 

Vchain = N.vmonomer ~ N eq. 8 

 

So that the volume available for the other chains to enter the volume of a single chain and to create 

entanglements is: 

Vcoil/Vchain ~ N1/2 eq. 9 

 

The entanglement increases with N, the higher the molecular weight, the higher is the polymer melt 

viscosity. This volume N1/2 available to create entanglements leads to the unique rheological and 

mechanical properties exhibited by polymers. In the section 1.4.5, we describe the viscoelastic behavior 

of polymers resulting from this free volume. 

 1.4.2. Amorphous and semi-crystalline state 

When the polymers are cooled from the melting state or it is concentrated from a dilute solution, the 

chains attract to each other in order to form a solid structure. During cooling, two arrangements are 

possible: 

 The molecular chains randomly coil and entangle together without ordered structure. This solid 

and glassy (transparent) structure is called amorphous structure or amorphous phase. 

 The second structure is when the molecular chains create an organized structure. In this case, 

the molecular chains fold and pack themselves in a regular manner. These organized structures 

are called crystalline structures. 

 

 

(a) (b) 

Figure 11: Structure of the thermoplastics (a) Amorphous state (b) Semi-crystalline state [92] 

As defined in the previous part, polymers are constituted of long molecular chains. Because of 

polymolecularity (distribution of macromolecular length), defects and irregularities in the repetition of 

the chemical structure, some chains cannot fold themselves into crystals. Consequently, the polymeric 

structures are not fully crystalline. For this reason, the non-amorphous polymers are called semi-
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crystalline polymers. The crystalline rate is defined by the ratio of the mass (or volume) of the crystalline 

phase over the total mass (or volume). 

The liquid-solid phase transition is called crystallization. The crystallization is an exothermic transition. 

During crystallization, the polymeric material releases energy to return into an equilibrium state. The 

energy released by the crystallization increases the temperature inside the polymer. The existing models 

to describe the crystallization rate and crystallization enthalpy are presented in Chapter 3. 

 1.4.3. Printing of PEEK by FFF process 

Among high performance thermoplastics, polymers of PAEK (Polyaryletherketone) family is one of the 

most resistant in severe conditions. The various PAEK differ mainly in thermal properties, but not so 

much in the other characteristics. 250 °C is the maximum temperature of use in continuous operation, 

without mechanical stress, of the different PAEK without load or reinforcement. This high value, 

compared to 230 °C obtained by polyamide-imide (PAI) and liquid crystal polymers (LCP), shows the 

excellent heat resistance of PAEK compared to other competing technical polymers. These polymers 

are renowned for being the only ones which can be used as a last resort where all the others have turned 

out to be unsuitable. The development prospects of the PAEK are extremely favorable, as the growth is 

of around 15 % per year, with a strong presence in the aerospace, automotive, electronics and energy 

sectors. [91]. PEK (Polyetherketone) was introduced to the world market in 1982 by ICI, which then 

marketed PEEK (Polyetheretherketone) in 1987. The full description of PEEK is done in Chapter 2. 

Only a few articles report the printing of PEEK parts by FFF. They have been published in 2017 and 

2018. The first one is from Zhao et al. [93] who printed PEEK parts for medical applications. The nozzle 

temperature, platform temperature, and the deposited filament diameter were tightly controlled to 

improve the mechanical strength. Based on mechanical characterization of printed parts, they conclude 

that the nozzle temperature and the printing platform temperature are the most important parameters 

influencing the tensile strength. According to them, the environment temperature is relatively 

insignificant. Considering the difficulty of insulation and regulation of the temperature of the 

environment, they believe it is better to print PEEK at room temperature.  

Still for medical applications, Otero et al. [94], Deng et al. [95] and Rinaldi et al. [96] studied the fracture 

resistance of printed parts of PEEK. They have studied their mechanical properties with tensile tests, 

their thermal transition by differential scanning calorimetry (DSC), their microstructure by X-Ray 

diffraction (XRD) and their morphology by optical microscopy and computed-tomography. The results 

have been compared with the raw filament of PEEK. No difference was found in terms of thermal 

transition such as glass transition, melting temperature, and crystalline rate. However, the cold 

crystallization phenomenon, that is to say, the crystallization occurring from low temperature when the 

polymer has been quenched, was noticed in the printed samples. This indicates that the cooling rate after 

the deposition was so fast that the polymer had not enough time to crystallize on cooling. Also, they 

remarked that the printed samples evidence great differences in mechanical performances depending on 

the printing orientation and conditions. 

Yang et al. [97] studied the influence of the thermal conditions on the crystallization and the mechanical 

properties of PEEK printed parts. They show that the crystalline rate grows from 17 % to 31 % as the 

environment temperature increases from 25 °C to 200 °C. In opposite to Zhao et al. [93], these results 

indicate that the environment temperature has a large influence on the crystalline rate. Furthermore, the 

crystalline rate highly influences the mechanical properties of PEEK [98]. 
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Alternatively, because of high melting temperature and high viscosity of PEEK, Tseng et al. [99] 

proposed and designed a screw base liquefier to print with raw material in form of pellets instead of 

filaments. They have also studied the printability of PEEK with their own designed screw base liquefier. 

They have printed two series of PEEK parts: one of the batches was submitted to annealing (heat 

treatment). The second batch is the printed parts without heat treatment. When performing the 

mechanical tests, they measured identical mechanical properties. Their advice to optimize the 

mechanical properties is to set the temperatures for the liquefier at 370–390 °C and for the platform up 

to 280 °C. Furthermore, they have shown that in order to prevent the void formation and residual stress, 

the liquefier’s temperature must be 390 °C [99]. 

In most of the works reported in the literature, only the influence of the printing conditions of PEEK on 

the properties of parts are highlighted. Indeed, the authors do not consider the polymer properties such 

as viscoelasticity, thermal properties and crystallinity. However, PEEK is a semi-crystalline polymer. A 

deep understanding of the mechanisms influencing the crystallization in FFF process is necessary to 

improve the mechanical properties of the manufactured part. Definitely, printing PEEK is trickier than 

other thermoplastics because of its viscoelastic properties and crystallization kinetics. 

1.4.4 Crystallization of PEEK and its effect on mechanical properties 

Controlling the crystallization is a key point to optimize the properties of the parts printed with semi-

crystalline polymers. Furthermore, controlling the kinetics of crystallization and the parameters 

influencing the crystallization kinetics is essential to improve the FFF process.  

The kinetics of crystallization has an effect on the coalescence of filaments in FFF: the macromolecular 

interdiffusion, resulting in filament bonding, must occur faster than the crystallization. If the 

crystallization is faster, the filaments will solidify rapidly and they will not bond together. In opposite, 

when the crystallization takes place slowly, a cross-interfacial crystallization could appear like it has 

been shown for the study of the auto-adhesion of PEEK [98], that is to say, some of the macromolecules 

across two adjacent filaments are linked into a single crystalline structure. 

More generally, the crystalline rate influences the mechanical properties of printed parts. As an example, 

the elastic modulus increases with the crystalline phase [100]. Talbott et al. studied the influence of the 

crystalline rate on the mechanical properties of the parts manufactured with PEEK 150P [101]. Their 

observations show that increasing the crystallinity results in improving the tensile modulus and the 

tensile strength. As expected, a larger amorphous phase increases the toughness of the parts. The sum 

up of these results are presented in Table 2:  

Table 2: Mechanical properties of the printed parts with PEEK 150P from Victrex [101]: 

Properties Crystalline rate = 16% Crystalline rate = 40% 

Tensile Modulus (MPa) 3447 4688 

Tensile strength (MPa) 76 97 

Shear modulus (MPa) 1172 1448 

Shear strength (MPa) 48 70 

Compression strength (MPa) 152 193 

Mode I fracture toughness (MPa.m1/2 ) 11 2.75 

 

In order to determine the crystalline rate in the printed parts, an identification of the crystallization 

kinetics of PEEK is necessary. Atkinson et al. [102] show that the maximum crystallinity of PEEK is 

about 40%. They also showed the effect of crystallization on the glass transition temperature and 
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enthalpic relaxation in PEEK. Increasing the crystalline rates results in moving the glass transition 

towards higher temperatures [102]. Tardif et al. studied the crystallization of PEEK 150G over a large 

temperature range from the glass transition up to the melting temperature by using a nano-calorimeter 

[103]. The crystallization kinetics of PEEK is the fastest at 235 °C. Wei et al. [104] studied the kinetics 

of crystallization of PEEK 150P using temperature-modulated DSC (Differential Scanning Calorimeter) 

and isothermal DSC. The isothermal crystallization kinetics of PEEK was analyzed between 290 and 

320°C by Avrami equation. The Avrami equation is commonly used to model the kinetics of isothermal 

crystallization and also to predict the form of the crystalline phases. It works quite well for all the semi-

crystalline polymers. The corresponding Avrami constants n1 increased from 1.50 to 2.98, and n2 

changed from 0.52 to 1.37. Kumar et al. [105] identified the crystalline morphology of PEEK as 

spherulitic form. The spherulite crystal of PEEK is represented in Figure 12. They have also explained 

that the spherulite growth rate is faster at 300 °C than at 320 °C. Besset et al. [106] studied the 

morphology of PEEK; he shown that PEEK exhibits a double crystallization peak. Additionally, several 

authors studied this double peak crystallization which represents the first and secondary crystallization 

of PEEK, each of them is associated to a size of spherulites [107]. Sauer et al. by temperature-modulated 

DSC (TMDSC) characterized the melting and recrystallization of the polymers exhibiting multiple 

melting endotherms [108]. Lin et al. [109] studied the morphology of semi-crystalline PEEK; they 

investigated the morphology by various microscopy, thermal and spectroscopy techniques. By Flash 

DSC, they shown a “double melting” phenomenon of isothermally crystallized PEEK. Fougnies et al. 

[110] studied the cold crystallization of PEEK by X-ray scattering (SAXS). They studied the cold 

crystallization by heating PEEK from below the glass transition temperature to above the melting point. 

They have shown that the largest degree of entanglements of the high molecular weight samples impedes 

the reorganization mechanism with the consequence that the apparent melting temperature decreases 

with increasing the average molecular weight.  

 

Figure 12: The spherulites in PEEK [105] 

Although there are many studies on the crystallization of PEEK in isothermal conditions, there is no 

study on the non-isothermal crystallization of PEEK. During FFF, the polymeric filament is melted and 

deposited onto a previous layer. The filament occurs non-isothermal history during cooling from the 

melted state. For this reason, these studies are not suitable to FFF in order to determine the crystallization 

kinetics during printing. 
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 1.4.5 Definition of the viscoelastic behavior of melted polymers 

The viscoelasticity is the property that represents the elastic and viscous behavior of the materials under 

an applied strain or stress. Polymers always demonstrate a viscoelastic behavior because they consist 

out of long molecules entangled with their neighbors, as described in section 1.4.3. Below glass 

transition, the segment rotation time is very long. When a small stress is applied, the polymer chains can 

only bend a little. This gives the polymer a stiff behavior (mainly elastic). Above glass transition, the 

segment rotation time is faster, the macromolecular chains have more mobility and then, the viscous 

behavior overtakes the elastic one. 

A description of the principle of rheometers and the methods for measuring the viscoelastic behavior of 

the materials is given in Annex II.  

The behavior of viscoelastic materials is described by rheological models. A convenient representation 

is those using the images of a spring and a damper. The solid elasticity is modeled by a spring with E 

(or G) modulus as its rigidity and the fluid viscosity (η) is modeled as the damper. The elastic part is the 

capacity of the material for keeping and releasing the energy stored once the material is deformed. The 

viscous part of a material is the capacity of dispersing (losing) the energy under heat release, due to the 

friction of macromolecules. All polymers exhibit a viscoelastic behavior, with a various proportion of 

viscosity over elasticity: the ratio is called the loss factor. 

As it is represented in the eq. 10, the viscosity of a fluid is the measurement of its resistance to gradual 

deformation by shear stress or tensile stress [111].  

𝜼 =
𝝉

�̇�
 

eq. 10 

 

With η (Pa.s) is the viscosity, τ (Pa) is the shear stress and γ̇ (s-1) is the shear rate. The viscous behavior 

of a fluid either Newtonian or non-Newtonian is influenced by several parameters. The main parameters 

influencing on the viscosity are classified into two parts as following [112]: 

1. The flow conditions: 

 Shear rate 

 Temperature 

 Pressure 

 Time and thermomechanical history of the fluid 

2. The chemical structure, morphology and composition: 

 Chemical nature of the monomer 

 Molecular weight distribution 

 Presence of long chain branches 

 Nature and concentration of additives, fillers, etc. 

 

As the polymer is chosen in this thesis, the chemical structure, morphology and composition could not 

be changed. That is why we concentrate only on the flow conditions. The parameters are developed 

below: 

 

Shear rate 
Depending on the nature of the fluid, increasing the shear rate may decrease or increase the viscosity. 

The viscosity of the fluids is explained in the easiest form by the power law equation or with the Carreau-

Yasuda model which takes into account the Newtonian plateau at low shear rates. These models 
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determine the viscosity of a fluid according to the shear rate [112][113]. The power law viscosity 

equation and Carreau model are represented in eq. 11 and eq. 12 respectively. 

𝜼 = 𝑲|�̇�|𝒏−𝟏 𝒇𝒐𝒓 𝒔𝒉𝒆𝒂𝒓 − 𝒕𝒉𝒊𝒏𝒏𝒊𝒏𝒈 𝒇𝒍𝒖𝒊𝒅𝒔 (𝒏 < 𝟏) eq. 11 

 

𝜼 = 𝜼𝒊𝒏𝒇 + (𝜼𝟎 − 𝜼𝒊𝒏𝒇)[𝟏 + (𝝀�̇�)𝒂]
𝒏−𝟏
𝒂  

eq. 12 

 

 

Where n is the pseudoplasticity index, K is the consistency coefficient, η0 is the viscosity of the fluid at 

zero shear rate, ηinf is the viscosity of the fluid at infinite shear rate, λ is the relaxation time index, a is a 

dimensionless parameter describing the transition between the first Newtonian plateau and the power 

law zone and, γ̇ the shear rate. For the shear-thinning fluids n<1, the viscosity decreases by increasing 

the shear rate. Oppositely, the viscosity of shear-thickening fluids increases by increasing the shear rate, 

with n > 1. For Newtonian fluids, n = 1, it means that the shear rate does not influence on the fluid 

viscosity. All thermoplastics demonstrate a shear-thinning behavior: their viscosity decreases 

exponentially with the shear rate. A typical example of Newtonian fluid is water.  

Temperature 
Alongside with the shear rate, the temperature has much influence on the viscosity of the fluids [112]. 

It has been shown that increasing the temperature leads to decreasing the viscosity. In fact, the influence 

of the temperature is considered equivalent to increasing the shear rate. This is known as time-

temperature equivalence. Consequently, as it is represented in eq. 13 , the viscosity of the fluids could 

be written as a function of shear rate and temperature.  

The dependency of the viscosity with the temperature follows an Arrhenius law. From the viscosity at a 

specified temperature, the viscosity is determined at all the temperature range above the melting 

temperature.  

𝜼(�̇�, 𝑻) = 𝒂𝑻𝜼(�̇�𝒂𝑻, 𝑻𝟎) eq. 13 

 

 

In the eq. 13 , 𝑎𝑇(𝑇) is the Arrhenius coefficient which is determined by eq. 14.  

 

𝒂𝑻 = 𝒆𝒙𝒑 [
𝑬𝒂

𝑹
(
𝟏

𝑻
−

𝟏

𝑻𝟎
)] 

eq. 14 
 

 

where Ea is the activation energy [114] [115] and R is the gas constant [114]. At T = T0 , the Arrhenius 

coefficient is 1. The viscosity curve at T0 is known as the master curve. At this temperature 𝛼𝑇(𝑇) = 1 . 

For the shear-thinning fluids like thermoplastics, for T higher than T0, 𝛼𝑇(𝑇) > 1 means the viscosity 

decreases for these temperatures T. 

The time-temperature equivalence is not relevant for long chain branched polymers. Moreover, it cannot 

be applied close to thermal transitions such as glass temperature, crystallization and melting 

temperature. Identically, when the chemical structure of the polymer changes due to degradation, 

evaporation and so on, the equivalence is no longer appropriated.  

Pressure 
Increasing the pressure increases the viscosity of polymers. It is caused by the compression of the melt 

which decreases the free volume between macromolecules. The latter being closer, the macromolecules 

have less mobility to slide over each other. The pressure shift factors can be used to generate master 
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curves just as temperature shift factors are used in time–temperature equivalence. The Barus equation 

represented in eq. 15 is often found to describe the pressure dependency of viscosity : 

𝒍𝒏 (
𝜼𝟎(𝑷)

𝜼𝟎(𝑷𝟎)
) = 𝜷(𝑷 − 𝑷𝟎) 

eq. 15 

 

 

Which could be written as eq. 16: 

𝜼(𝒑) = 𝜼𝟎𝒆𝒙𝒑(𝜷𝑷) 

 

eq. 16 

 

Where 𝛽 is the compressibility coefficient. 

Time or history 
In the case of thixotropic materials for which the shear thinning property is time-dependent, the influence 

of the shear history must be considered [113]. Some gels or complex fluids that are viscous under static 

conditions will flow (less viscous) over time when shaken, agitated, sheared or otherwise stressed. These 

materials keep their shear history over a period of time. Consequently, in the case of viscosity 

measurement, the resting time before the viscosity measurement highly influences on the viscosity. 

Consequently, in order to measure the viscosity properly, an accurate time interval must be followed 

during the measurement [116]. 

1.4.6 Definition and determination of the surface tension 

As seen previously, one of the most important properties which conduct the coalescence of two particles 

or filaments (and consequently increase the bonding and reduce the porosity ratio in the printed parts by 

FFF) is the surface tension or surface energy. This term is stated by different symbols: г, ϒ and σ are 

normally use to describe the surface energy of the materials.  

Atoms and molecules of the materials are under cohesion forces on the interface, the existence of an 

interface, for example an air/fluid interface needs to compensate this force. The energy necessary to 

retain this surface is called “surface energy”. The surface energy is also defined as the sum of all 

intermolecular forces that are on the surface of a material, the degree of attraction or repulsion force of 

a material surface exerts on another material. The surface energy of the materials depends directly on 

the chemical composition of solids and liquids; however, the surface energy is independent on the 

molecular weight. 

There are several methods for measuring the surface tension; here is a brief list of methods for measuring 

the contact angle and energy surface of materials and liquids:  

• Capillary rise method 

• Stalagmometer method- drop weight method 

• Wilhelmy plate or ring method 

• Maximum bulk pressure method 

• Methods analyzing the shape of hanging or deposited liquid drop or gas bubble 

• Dynamic methods 

Depending on the measurement, each method has its advantages and flaws as well as its methodology 

and equations. 
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Several studies have been carried out in order to determine the surface energy of PEEK at room 

temperature. All these studies aim to improve the hydrophilicity of PEEK. However, the results obtained 

for the surface tension from the different studies show a large dispersion. 

S. Kluska and his colleagues [117] used helium/nitrogen and nitrous oxide plasma to modify the surface 

energy of PEEK. They obtained the value of 43.7 ± 0.8 mJ.m-2 for the total surface energy of unprocessed 

PEEK. On the other hand, Bhatnagar [118] used low-pressure plasma under radio frequency to modify 

the surface properties of PEEK, they measured 51.14 mJ.m-2 for the surface tension of PEEK at room 

temperature. The study of Dresier et al. shows the influence of different grades of PEEK and also the 

crystalline rate on the surface tension of PEEK [119]. They have shown that the surface energy changes 

according to the grade of polymer and also the crystalline rate. They have obtained: 33.2, 30.4, 40.6 

mJ.m-2 for different grades of PEEK. 

D. Rymuszka [120] also measured the value of the surface energy by the different devices after plasma 

treatment. The methods used in this study are contact angle hysteresis approach (CAH), Owens and 

Wendt theory (O-W) and Lifshitz-van der Waals acid-based approach (LWAB). Their measurement 

shows the value of 40, 42, 42 mJ.m-2 respectively for each approach. 

To sum up, the studies on the surface tension of PEEK, the value of 40 mJ.m-2 is the average of the 

measurements done with different methods. 

It has been shown that the surface energy of a polymer is highly influenced by the temperature and it 

could change up to 50% from its initial value at room temperature [121]. Because of the difficulties for 

measuring the temperature dependent surface tension, not many studies were conducted to determine 

the surface energy of polymers at high temperature.  

The other difficulties for determining the surface tension in the melted state is the degradation of the 

polymers when exposed a long time at high temperature. Moreover, thermoplastics have generally a 

high viscosity comparing to other fluids. This high viscosity is another issue to solve for the 

measurement of the surface tension, like it is for PEEK. Consequently, the measurement of the surface 

tension of PEEK in the melted state is even more difficult than for other thermoplastics.  

1.5 Conclusion 

This chapter makes an overview of the works carried out until now on the Fused Filament Fabrication 

(FFF) process, on an experimental and modeling point of view. Our interest focuses on FFF for high 

performances applications.  

In the first part, after presenting the principle of the process and the commercially available machines, 

we review the effect of process parameters on the quality of printed parts. In most of the studies on the 

FFF process, the authors vary the process parameters to print specimens, the latter are characterized by 

mechanical tests. Moreover, these studies are concentrated on the optimization of the strategy of 

deposition such as raster orientation, layer height and layer width of the deposited layer and feed rate 

during deposition. However, the properties of the materials are not considered in such studies. Similarly 

to any polymer processing, the effect of the properties of the material must be taken into account to 

optimize the processing conditions. Indeed, the material properties such as viscosity, surface tension and 

crystallinity are among properties influencing on the quality of printed parts by FFF. Understanding the 

rheological properties such as velocity field, shear rate and viscoelasticity is a step towards the 

optimization of the process to make FFF a reliable and robust process. The porosity rate and so the 

mechanical properties of the printed parts stem from the flow and the bonding of filaments in their 
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melting state, that is why the studies on the coalescence phenomenon have been reviewed. Our literature 

assessment shows that there is no adequate study on the coalescence phenomenon for high viscosity 

polymers but only on low viscosity Newtonian fluids. Moreover, only a few experimental works report 

the coalescence of filaments applied to FFF. From our knowledge, none of these works deals with the 

numerical simulation of the coalescence taking place during the FFF process. Existing studies are mainly 

based on isothermal coalescence while in FFF process, the coalescence occurs in non-isothermal 

conditions. 

In the second part, after giving some definitions of polymer conformation and the amorphous and semi-

crystalline phases, the review focuses on the use of PEEK (Polyetheretherketone) in Fused Filament 

Fabrication. Indeed, most of the polymers used in the FFF process are mass-produced thermoplastics 

such as PLA (polylactic acid), ABS (acrylonitrile butadiene styrene), PC (polycarbonate) and more. 

Although these polymers are easily printable for home-manufacturing and rapid prototyping, the 

industry needs materials with higher performances. However, the lack of works carried out on the 

printing of high-performance thermoplastics demonstrate that this field is emerging. PEEK is a 

thermoplastic polymer with high mechanical properties and resistance to chemicals and thermo-

oxidation aging. For these reasons, the demand in PEEK and PEEK composites is rising for structural 

parts and severe environment. Nevertheless, only a few studies on rheological properties of PEEK for 

using in FFF process are relevant. Furthermore, the crystallization of PEEK as a semi-crystalline 

polymer plays an important role in the processability of PEEK in the FFF process. The studies on the 

crystallization of PEEK are limited to isothermal crystallization whereas in the FFF process, the polymer 

undergoes non-isothermal crystallization. However, studying the non-isothermal crystallization of a 

semi-crystalline polymer during the process is tricky. Most of the studies on the kinetics of 

crystallization of PEEK has been carried out with a nano-DSC or modulated DSC or by temperature-

modulated DSC (TMDSC). Nevertheless, there is no crystallization study suitable to understand the 

crystallization occurring during the process. Consequently, because of the importance of crystallization 

on the mechanical properties, a part of this thesis is dedicated to non-isothermal study, as it is a step 

towards the optimization of the parts printed with semi-crystalline polymers in FFF process.  

Instead of experimental analysis, another method is to use numerical simulation to determine the flow 

behavior, the coalescence and the kinetics of crystallization. To our knowledge, no numerical study for 

modeling the deposition of the polymer on the substrate exists yet. The flow behavior in the liquefier is 

influenced by the printing parameters. The determination of the rheological properties such as velocity 

field, shear rate and viscosity in the FFF process and the influence of the printing parameters on the 

shape and flow stability of the extrudate when it exits from the nozzle is necessary to optimize the FFF 

process. The coalescence is highly influenced by the rheological properties and the surface tension of 

the polymer. The viscoelastic properties have been explained as well as the surface tension and the 

existing methods to measure it. The surface tension is a temperature dependent parameter. Accordingly, 

the variation of the surface tension with temperature must be determined. Although many studies give 

a value of surface tension at room temperature for PEEK at 40 mJ.m-2, however, there is no indication 

of its variation with temperature in the literature.   

The next chapter focuses on measuring the PEEK properties required for modeling its flow behavior, 

the coalescence and the kinetics of crystallization. Then, the coalescence of two adjacent PEEK 

filaments will be explored by experimental measurements, analytical analysis and numerical simulation. 
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2.1 Characterization of PEEK and PLA 

 2.1.1 Introduction 

In the previous chapter, the advantages and flaws of the FFF process are displayed. We have also 

explained the process parameters and the material properties influencing the quality of the printed part. 

The quality of the parts refers as mechanical properties, surface roughness, warpage and dimension 

accuracy. These notions are highly influenced by some fundamental material properties. Consequently, 

understanding these properties of raw polymers is required to enhance the quality of the parts. The 

transition temperatures, crystallization, viscosity, thermal properties (thermal expansion, thermal 

conductivity), surface tension are the fundamental material properties which must be quantified and 

measured in order to predict and improve the quality of manufactured parts. 

Table 3 gathers these fundamental properties, the techniques and the shape of the specimens to carry out 

the characterization of the polymer. 

Table 3: Fundamental properties, techniques and specimen shape for the tests 

Polymer properties Testing utility Specimen shape 

Transition temperatures DSC (Differential Scanning 

Calorimeter) 

Pellets  

Crystallization DSC Pellets  

Thermal conductivity Hot Disk Plate  

Thermal expansion TMA (Thermomechanical 

analyzer) 

Plate  

Surface tension Digidrop surface tensiometer Plate  

Thermomechanical properties Rheometer Plate  

 

These fundamental properties are necessary for our further studies on the process parameters and on the 

crystallization kinetics. After presenting the materials, we will study the thermal transitions of our 

polymers to propose an optimized cycle to manufacture the plate samples.   

PLA (polylactic acid) is chosen to study the physical phenomena occurring in FFF when PEEK is not 

convenient because of high temperatures. Hence, low viscosity and melting temperature about 160 

°C/190 °C, make the experimental study of PLA much easier than PEEK. In Chapter 1, we have seen 

that the use of PLA is common in the FFF process because it is relatively low-cost material and easy 

printable.  

2.1.2 Presentation of PEEK and PLA 

PEEK is high-performance thermoplastic of the PAEK (polyaryletherketone) family. PAEK is obtained 

by electrophilic substitution. Various polymers of this family are proposed according to the ether/ketone 

ratio groups, such as PEK, PEEK, PEEKK, PEKEKK and so on. The latter influences mainly the thermal 

transitions: adding ketone groups into the chemical structure increases the glass transition (Tg) and 

melting temperature (Tm) [122]. These polymers are semi-crystalline, rigid and impact resistant. 

Because of high resistance in severe environment, PAEK is used in chemical industry, automobile and 

aerospace [122]. Moreover, different grades reinforced with carbon and glass fibers are commercially 

available. 
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PAEK have a longer durability and thermal stability than other high-performance polymers [4]. 

Additionally, they are stable to UV irradiation. However, the drawbacks of PAEK are the high cost and 

the difficulty to process them, mainly because of high viscosity and high melting temperature. Then, 

studying the properties of PEEK will help us to improve the manufacturability of PEEK by selecting the 

best process parameters according to its properties. 

For our studies, PEEK 450G by VICTREX Company is selected. As it is represented in Figure 13, the 

chemical structure of PEEK consists of alternating aromatic, ether and ketone groups. 

 

Figure 13: Chemical structure of PEEK 

According to the datasheet provided by VICTREX Company, the typical value for the tensile strength 

of PEEK 450G is 98 MPa which is a high value compared to other polymers and especially conventional 

polymers using in the FFF process. The datasheet is presented in annex III. 

For all the experiments, the samples were dried during 24h at 120 °C in the heating furnace to eliminate 

all the moisture in the polymer structure [123]. After 24h, the pellets were cooled until the room 

temperature in the furnace. Then the pellets were kept in the desiccator in order to avoid water 

absorption. 

The density of PEEK 450G is 1.3 g.cm-3 [123]. PEEK is a semi-crystalline thermoplastic with a high 

melting temperature starting at 340 °C. This high temperature makes printing of PEEK very complicated 

compared to other thermoplastics which could be used for 3D printing and specially for the FFF process. 

That is why, in order to get better insights into the printability of PEEK, we will also study PLA. 

PLA is a biobased and biodegradable semi-crystalline thermoplastic. The chemical structure of PLA is 

presented in Figure 14 [124]. 

 

Figure 14: Chemical structure of PLA  

PLA (NaturePlast PLI 005) in pellets was dried for 3 h in an oven at T=60 °C to remove moisture before 

processing. The PLA pellets were cooled until room temperature in a furnace, then they were placed in 

a desiccator for storage. 

2.1.3 Thermal transitions and preparation of the samples 

2.1.3.1 Thermal transitions of PEEK by DSC 

In the FFF process, the cooling rate highly depends on the printing conditions such as printing 

temperature, environment temperature and inlet velocity of the polymer filaments. On the other hand, 

the cooling rate directly influences on the crystallization kinetics, bonding rate and porosity ratio of the 

final product. During the FFF process, the melted polymer of the first layer is more rapidly cooled to 
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the temperature of the substrate compared to the upper layers in which the cooling rate of the polymer 

decreases due to the accumulation of layers in the z-direction.  

In this chapter and the next one, we will study the isothermal and non-isothermal crystallization of 

PEEK. The tests were performed with a Q200 – TA instrument DSC apparatus under isothermal and 

non-isothermal conditions. The operational conditions of DSC are reported in Annex II.  

For each experiment, the glass transition, melting temperature and crystallization kinetics were 

measured. All experiments were carried out under nitrogen atmosphere in order to prevent oxidation. 

The crystalline ratio is calculated by eq. 17, the ratio of the crystallization enthalpy ΔHc to the 

crystallization enthalpy of the fully crystallized PEEK which is 130 J.g-1 [125][103]. 

%𝑪 = 𝟏𝟎𝟎 ∗
∆𝑯𝑪

∆𝑯𝟏𝟎𝟎%𝑪
 

 

 

eq. 17 

 

The crystallization enthalpy is the area under the peak of crystallization on non-isothermal DSC curves. 

Non-isothermal DSC tests were performed on dried PEEK 450G. In order to eliminate the thermo-

mechanical history, the samples were heated at 10 °C.min-1 up to melting temperature. Then, they 

underwent the second heating cycle at 25 °C.min-1 and the cooling cycle at 25 °C.min-1. 

 

 

 

 

 

 

 

 

 
Figure 15: DSC curves of PEEK 450G, sample undergoes 25°C.min-1 during the second heating cycle and 25°C.min-1 

cooling rate 

Tg 
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During the cooling ramp displayed in Figure 15, the glass transition is measured at 149±1 °C. At the 

heating ramp, the glass transition is observed at the same temperature and it is followed by a melting 

peak starting at 300 °C and finishing at 360 °C, it is centered at 344±3 °C without cold crystallization 

occurrence, as expected. In the first step, from the melting enthalpy of 37±0.5 J.g-1, the ratio of 

crystallinity was determined at 40%. The kinetics of crystallization of PEEK have been determined 

under several cooling rates. With a cooling rate at 25 °C.min-1, the crystallization takes place from 295±2 

°C to 250±5 °C and the onset around 289+1 °C. The enthalpy of crystallization is 41±1 J.g-1, leading to 

a ratio of crystallinity of 31 %. Hence, the polymer reaches its maximal ratio of crystallinity at 2 °C.min-

1. During the second heating ramp performed at 25°C.min-1, the glass transition is slightly shifted 

towards higher temperatures (155±2 °C). For both heating steps, no cold crystallization is measured, 

showing that the polymer has fully crystallized during the cooling step. Furthermore, the absence of cold 

crystallization at high cooling rate shows that the manufactured samples are stable and they will not 

undergo cold crystallization. 

The melting temperature for both ramps is measured within the same ranges; however, for the second 

heating rate (2 °C.min-1) two endothermic peaks are observed. This, lately, indicates the coexistence of 

two different crystalline structures in the polymer (Figure 16).  

 

Figure 16: DSC curve of the PEEK 450G, sample undergoes 2 °C.min-1 during the second heating cycle and 2 °C.min-1 

cooling rate 

To a better quantification of the crystallization kinetics of PEEK, the thermograms for different cooling 

rates are represented in Figure 17. The enthalpy of crystallization and ratio of crystallinity for each 

cooling rate are reported in Table 4. By increasing the cooling rate, the peak of crystallization is shifted 

towards the glass transition. As an example, for the cooling rate of 2 °C.min-1, the crystallization peak 

is close to 310 °C, while for the 25 °C.min-1 the crystallization peak is at 275 °C. The results highlight 

the ability of PEEK to crystallize. Even at very high cooling rate, PEEK undergoes crystallization.  
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Figure 17: Cooling curve determined by DSC according to different cooling rates 

For the cooling rate below 5 °C.min-1, the ratio of crystallinity remains at the maximum attainable value 

for PEEK, about 37 % close to the 40 % maximum ratio experimentally evidenced by Atkinson [102]. 

At 10 °C.min-1, it becomes 30±1 % and at 25 °C.min-1, it decreases to 23 %. Obviously, to promote the 

crystallization of manufactured parts in PEEK, the cooling rate must be kept lower than 5°C.min-1. 

Moreover, a slow cooling rate will benefit to the interdiffusion process. Before complete cooling of the 

manufactured parts, the macromolecules must have enough time to interdiffuse to create adhesion at the 

interface between the successive layers. Hence, the cooling rate of the PEEK during additive 

manufacturing must be minimized in order to allow motion of polymers, reorganization to 

entanglements in order to finally get the best adhesion. A thorough discussion of the interdiffusion times, 

related to the relaxation times are presented in the section 3.4.4. 

Table 4: Value of crystallization for different cooling rates 

Cooling rate 

(°C.min-1) 

Crystallization 

enthalpy (J.g-1) 

Crystallization 

percentage (%) 

Fusion 

enthalpy 

(J.g-1) 

Fusion 

crystallization 

percentage (%) 

2 (°C.min-1) 44 34 48 38 

5(°C.min-1) 43 33 44 34 

10(°C.min-1) 41 31 38 30 

25(°C.min-1) 41 31 30 23 

 

2.1.3.2 Thermal transitions of PLA with DSC 

In the previous section, we have studied the non-isothermal crystallization of PEEK by means of DSC. 

Hereby, we will study in the same way the crystallization of PLA.  
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Partial melt reorganization peak 

PLA Natureplast PLI 005 in pellets form has been used for the experimental study. The filaments of 

PLA for 3D printers are formulated with additives to tune their properties. Nevertheless, we choose to 

work with a PLA as pure as possible for a better understanding of the phenomena. The density of PLA 

in its melted state is 1.25 g.cm-3 according to the technical datasheet provided by the manufacturer [126] 

[127]. Figure 18 represents the first step (heating until the melting temperature) and second step (fast 

cooling until room temperature without crystallization). 

 

Figure 18: DSC curve of PLA at 30 °C.min-1 cooling rate 

The results in Figure 18 show the glass transition of PLA at 70±3 °C. The 100 % melting enthalpy of 

PLA when it is entirely crystallized is 93 J.g-1 [128]. At the first heating step, at 150±3°C, a peak 

corresponding to partial melting reorganization has been observed. The melting peak is observed at 

175±1 °C. The melting enthalpy is 41±2 J.g-1 which corresponds to 44 % of crystallinity. There is no 

crystallization during cooling from melting state to room temperature at 30 °C.min-1. 

 

Figure 19: DSC curve of PLA at 3 °C.min-1 cooling rate 
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At low cooling rate of 3 °C.min-1(Figure 19), PLA undergoes a crystallization broad peak between 107 

± 3 °C and 95 ± 3 °C. The enthalpy of crystallization is 19 ± 3 J.g-1 which is about 19% of crystallization 

ratio. At the second heating rate, PLA presents two cold crystallization peaks. The existence of two cold 

crystallization peaks during the second heating shows that the crystallization of the PLA was not 

completed at this cooling rate. The first cold crystallization peak takes place between 93 ± 2 °C and 97 

± 3 °C with an enthalpy of 23 ± 2 J.g-1 corresponding to 25 % of crystallization ratio. The second cold 

crystallization peak takes place right exactly before the melting peak. The enthalpy of the second cold 

crystallization is 2 ± 1 J.g-1, corresponding to 2 % of crystallization ratio. The existence of two cold 

crystallization peaks for PLA shows that PLA has two different mechanisms of crystallization. The 

melting of the crystalline phases starts right after the second cold crystallization peak at about 162 ± 2 

°C and ends around 180 ± 3 °C. The melting peak takes place at 174 ± 2 °C. At the second heating, the 

crystallization peak is shifted towards higher temperatures. The crystallization enthalpy during the 

second heating rate is 57 ± 2 J.g-1 which is 55 % of crystallization. The existence of the two crystalline 

phases in the PLA structure has been reported also in other studies for PLA[129] [130].  

The results for PEEK and PLA show a faster crystallization kinetics for PEEK compared to PLA. In the 

case of PLA, the crystallization could be avoided in the FFF process by applying a high cooling rate 

while, in the case of PEEK, the polymers crystallize whatever the cooling rate. Practically, the cooling 

rate depends on the temperature of the melt polymer exiting from the nozzle, the temperature of the 

platform (substrate) and also the environment temperature. The crystallization kinetics is then depending 

on the variation of the temperature (ΔT) and also on the printing parameters (specially the feed rate). 

Decreasing the (ΔT) by increasing the platform temperature and the environment temperature increases 

the crystallization kinetics and the final crystalline ratio by decreasing the cooling rate. Consequently, 

in order to control the kinetics of crystallization, we have to control the ΔT.  

Consequently, the determination of the crystallization kinetics in the FFF process for PEEK is necessary 

in order to control the properties of the manufactured parts by FFF. Moreover, the results for kinetics of 

crystallization of PEEK and PLA show the importance of controlling the cooling rate during the process 

for the PEEK, while the cooling rate does not highly influence on the crystallinity ratio for PLA. For all 

the reasons previously exposed, an in-depth study of the kinetics of crystallization of PEEK is necessary 

to assess the influence of the crystallization kinetics in the FFF process.  

2.1.3.2 Fabrication and preparation of the testing samples 

As it is mentioned previously, various characterization tests must be carried out on polymeric plate 

samples. These characterization tests are: 

 Thermal properties: thermal conductivity, thermal expansion coefficient  

 Surface tension 

 Viscoelastic properties in liquid state 

Consequently, in order to manufacture plates, an adequate fabrication process according to the polymer 

properties (crystallization kinetics and melting temperature) must be selected. To manufacture the PEEK 

plates, a hot compression press has been used. In hot compression press, the temperature and pressure 

applied on the specimens are controlled, as well as the heating and cooling rate of the sample. The hot 

compression press is from PEI Company. In order to decrease the surface roughness and protect the 

samples from any contamination, steel paper sheets were placed between the plateaus and the frame, as 

represented in Figure 20. 
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Figure 20: Schematic illustration of the hot compression press used to manufacture the polymeric plates 

The process cycle is selected according to the properties of polymers such as melting, glass transition 

and crystallization temperatures. The process cycle used to manufacture the PEEK plates is represented 

in Figure 21. 

 

Figure 21: Processing conditions used to manufacture the plates by hot compression molding 

The polymer initially in the form of pellets has been used as raw material. The pellets are placed in a 

150 x 75 x 2 mm3 mold (a metallic frame) and heated at 10 °C.min-1 until melting temperature (360 °C). 

In the second step, the plate is maintained at 360 °C with a pressure of 70 kN for 10 minutes. In the last 

step, the sample has been cooled down until 140 °C with a cooling rate of 10 °C.min-1. At 360 °C, the 

melting of all crystalline phases of the PEEK is completed. The cooling rate of the sample is selected in 

a manner to maximize the crystallization kinetics during the cooling phase. Finally, the samples are 

cooled down below glass transition (150 °C). The samples manufactured by the above mentioned 

procedure are thermally stable, meaning no cold crystallization would occur. 

Contrary to PEEK, PLA has a relatively low melting temperature and low viscosity, thus we could 

manufacture the plate samples in a simple furnace. For that, the same compression principle represented 
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Tg Tm 
Cold 

Crystallization 

in Figure 20 was used. The pellets were heated higher than the melting temperature (200 °C) under 55 

N ensured by calibrated masses. When the melting process is completed, the samples were taken out 

from the furnace and quenched to the room temperature. By using this procedure, we obtain fully 

amorphous PLA samples. The DSC curve of the PLA samples manufactured by hot compression 

molding is represented in Figure 22. 

 

Figure 22: DSC curve of PLA sample manufactured by hot compression molding 

The DSC results in the Figure 22 confirm that the PLA samples are quasi- amorphous. Indeed, after the 

glass transition, the polymer exhibits two cold crystallization peaks with an exothermic enthalpy of 43 

J.g-1. The endothermic melting enthalpy is measured 47 J.g-1. 

2.1.4 Other characterizations of PEEK 

2.1.4.1 Thermal analyses 

The thermal properties of PEEK are among the most important properties influencing the quality of the 

printed part. The cooling rate and the temperature distribution of printed part highly depend on the 

thermal properties. Furthermore, the temperature distribution and the cooling rate highly influence on 

the viscosity, the crystallization kinetics and the residual stresses of the printed part.  

One of the main conventional problems between all types of additive manufacturing processes is the 

high thermal gradient along the manufactured parts. Indeed, because of the layer by layer manufacturing, 

the cooling rate and thermal gradient at different layers and different zones of the sample are different. 

This non-homogenous temperature distribution causes the internal and residual stresses, warpage and 

dimensional inaccuracy of the manufactured parts.  

The determination of the expansion coefficient is necessary for modeling the dimensional change in the 

FFF process. The expansion coefficient of PEEK is determined with a TM7 Thermomechanical analyzer 

by Perkin-Elmer. The operational conditions of TMA analyzer are reported in Annex II.  

The test is carried on under helium-controlled atmosphere in order to prevent oxidation of the sample. 

The sample is heated from 25 °C to 290 °C with a heating rate of 3 °C.min-1 and a cooling rate of 2 

°C.min-1 and 7 °C.min-1. The dimensions of the samples are 1.8 x 7.1 x 7.1 mm in height x thickness x 

width, respectively to ensure that the expansion is mainly effective in all directions. The force applied 

by the probe on the sample is 20 mN to maintain the contact. The samples were fully crystallized before 
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the tests in order to reduce the influence of crystallization on the TMA results. Furthermore, this method 

is suitable for the determination of the thermal expansion below the melting temperature. Consequently, 

the test were carried out from room temperature up to 290 °C to ensure the samples do not melt. 

As it is represented in Figure 23, the thermal expansion is determined for two different cooling rates. 

 

Figure 23: Thermal expansion of PEEK 450G versus temperature during heating and cooling at different rates 

The values of the coefficient of thermal expansion are determined by eq. 18 and they are gathered in 

Table 5. 

𝜶 =
𝒍(𝑻) − 𝒍𝟎
𝒍𝟎 ∗ 𝑻

=
𝜺𝑻𝒉𝒆𝒓𝒎

𝑻
 

 

 

eq. 18 

 

Where 𝛼 is the thermal coefficient of expansion, 𝑙0 is the initial length of the sample, l(T) is the length 

at temperature T and 휀𝑇ℎ𝑒𝑟𝑚 is the thermal induced strain during the temperature variation. 

Table 5: Coefficient of thermal expansion 

Cooling rate CTE - Zone 1 (x1.10-6) K-1 CTE - Zone 2 (x1.10-6) K-1 

2°C.min-1 59 ± 2 162 ± 1 

7°C.min-1 62 ± 2 161 ± 1 

 

The thermal expansion coefficient after the glass transition between 150 °C and 155 °C is about three 

times greater than its value before the glass transition. Then, during layer by layer manufacturing, the 

drastic change of the value of the thermal expansion coefficient of PEEK around the glass transition 

strongly reduces the macromolecular mobility, so causes the internal and residual stresses, warpage at 

different layers and different zones of the printed parts. 

Even if the cooling rate does not seem to influence the thermal expansion (Figure 23), other authors 

[124] have observed its effect on the residual deformation. At high cooling rate, the majority of the 

materials and specially the polymers undergo residual stress. Indeed, long chains of the polymer at 

melted state are in the equilibrium state. The chains in the amorphous state are randomly oriented. While 
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the solidification occurs, the chains have the tendency to reorganize into crystalline shape. If the polymer 

solidifies rapidly, the polymer chains could not be reorganized and consequently, flow-induced residual 

stress occurs. A lower cooling rate results in a lower residual deformation. Consequently, in order to 

reduce the residual stresses and further deformations, the cooling rate of the deposited beads must be as 

slow as possible. 

Moreover, the deposition of the polymer on the build platform acts as rapid quenching of the polymer 

during printing. Indeed, the first deposited layers onto the build platform cool rapidly while the 

following deposited layers are still at high temperature. The temperature gradient causes high residual 

stresses on the printed parts. Consequently, the manufactured parts undergo warpage and shrinkage 

because of the thermal gradient. 

Then, the thermal conductivity and thermal diffusivity of PEEK must be determined to supplement the 

analysis of the thermal expansion coefficient. The relation between the thermal diffusivity and the 

thermal conductivity is represented in eq. 19. 

𝜶 = (
𝒌

𝝆𝑪𝒑
) 

eq. 19 

 

 

k is the thermal conductivity, ρ is the density and Cp is the heat capacity of PEEK. The thermal 

conductivity and thermal diffusivity  have been determined using a Hot Disk TPS 2500S. The 

operational conditions of the Hot disk are reported in Annex II.  

Lamethe [131] has used the flash method in order to determine the thermal diffusivity of PEEK. In the 

flash technique, one surface of a sample with slab geometry is illuminated with a pulse of radiant energy, 

and the subsequent temperature transient is recorded at the opposite surface [132]. Using flash method, 

we could determine the thermal diffusivity, heat capacity, and thermal conductivity. Our results for the 

thermal diffusivity and thermal conductivity of the PEEK are represented in Figure 24 and Figure 25 

respectively with the comparison to the literature. 

 

 

Figure 24: Thermal diffusivity determined by experimental study and comparison with existing works [131] 
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Figure 25: Thermal conductivity determined by Hot disc apparatus and flash method 

The thermal diffusivity decreases while the temperature increases. This is in good agreement with the 

previous studies on the thermal diffusivity of PEEK. However, there is a wide dispersion. The variation 

of the results for different studies could be due to the different grades of PEEK, different crystallization 

ratios, different measuring methodologies and surface roughness. 

The thermal conductivity is calculated from the thermal diffusivity by using eq. 19. According to 

Lamethe [131], the thermal conductivity reduces from 0.28 W.(m.K)-1 at 25 ℃ to 0.22 at 300 ℃. That 

represents about 20 % reduction from the initial value. Contrary to Lamethe, our measurement by Hot 

disk method indicate that the variation of the thermal conductivity according to temperature is very small 

which could be neglected.  

Furthermore, Lamethe [131] has determined the specific heat from the melting temperature up to the 

room temperature by using MDSC (Modular Differential scanning calorimeter) Lamethe and Cogswell 

shown that the specific heat capacity of PEEK is temperature dependent and it follows a linear fonction 

represented in eq. 20. 

𝑪𝒑(
𝑱

𝒌𝒈. °𝑪
) = 𝟐. 𝟓 𝑻(°𝑪) + 𝟏𝟐𝟓𝟎 

 

eq. 20 

 

Furthermore, eq. 20 shows that increasing the temperature leads to linear increase of the heat capacity 

and also Figure 23 shows that increasing the temperature decreases the density of PEEK by increasing 

the thermal expansion. Considering both density and heat capacity are the denominator of the thermal 

diffusivity (eq. 19), the heat capacity is the most influential parameter on the thermal diffusivity of 

PEEK. 

As a summary, the thermal conductivity of the solid PEEK at room temperature is 0.32 W.(m.K)-1. The 

thermal diffusivity of PEEK at room temperature is about 0.24 mm2.s-1. Contrary to the thermal 

conductivity, the thermal diffusivity decreases while the temperature increases. The thermal diffusivity 

of semi-crystalline polymers also depends on its crystalline rate. We have shown in the Figure 15 that 

our samples are fully crystallized: It means that there is no futher variation of the crystalline rate in our 

samples during the test. 
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2.1.4.2 Surface tension 

In order to determine the surface tension of PEEK and PLA in the solid state and at the ambiant 

temperature, a GBX DigiDrop contact angle meter has been used. 

For solid PEEK at room temperature, the surface tension is 38.7 ± 3 mN.m-1 with 35.1 mN.m-1 and 3.6 

mN.m-1 for the dispersing and polar components respectively. The surface tension of PLA at room 

temperature is 42.1 ± 3 mN.m-1 with 38.2 mN.m-1 for the dispersing component and 3.9 mN.m-1 for the 

polar component. The higher surface tension of PLA shows that PLA would have more tendency to 

coalesce with the adjacent polymer and beads in FFF process than PEEK. 

The sessile drop method is a suitable method for determining the surface tension of the polymers at solid 

state and ambient temperature. The coalescence in the FFF process takes place when the polymer is at 

the melted state or at high temperature. However, the majority of the available methods for the 

determination of the surface tension is suitable for the solid state and room temperature. On the other 

hand, it is reported that the surface tension of the polymers changes according to the temperature, the 

chemical and physical state of the polymer, to reach up to 50 % of the initial value of the surface tension 

at room temperature [121]. Here in our laboratory, we do not have suitable apparatus in order to 

determine the surface tension at melted state. However, in order to determine the surface tension at the 

temperature above room temperature and also at melted state for the polymers, we have contacted 

external colleagues (Benoit Duchemin, research engineer, LOMC UMR CNRS 6294 at Université du 

Havre) who are able to determine the surface tension in the melted state. 

The method used to determine the surface tension at melted state is based on the deposition of the melted 

polymer on a substrate with known surface tension. The apparatus used in this method is a tensiometer 

equipped with a syringe and a camera to measure the profile of the droplet or the contact angle of a 

droplet on a substrate. The operational conditions of the apparatuses used for determination of surface 

tension are explained in Annex II. In our study we have selected glass slides, stainless steel and Teflon 

plates as the deposition substrates. The surface tension of PLA at melted state at 200 °C has been 

measured at 27 ± 3.2 mN.m-1. 

However, this method has its limitation: this method is suitable for the polymers with a viscosity less 

than about 800 Pa.s. Furthermore, we could not use this method for the polymers with higher melting 

temperature. PEEK has high melting temperature (about 340 °C) and its viscosity is relatively high 

comparing to PLA and other polymers. Consequently, we could not use the above-mentioned method 

for PEEK. 

For this reason, we have to find another method to determine or approximate the surface tension of 

PEEK at melting point. For this purpose, we use the Parachor equation to approximate the surface 

tension at the melted state. eq. 21 shows the Parachor model which have been used to estimate the 

surface tension at high temperatures [133]. 

𝜸 = (
𝑷𝒔

𝑽
)
𝟒

 

 

eq. 21 

 

Where V is the molar volume, Ps is the molecular Parachor, M is molecular weight and ρ is the density. 

𝑽 =
𝑴

𝝆
 

 

 

eq. 22 
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The molecular Parachor Ps is an additive, constitutive, property of the material [134]. The molecular 

Parachor is independent from the temperature [133]. Thus, we could determine Ps from the surface 

tension of the polymer at solid state and room temperature. By the determination of the molecular 

Parachor at room temperature, and considering that, mass, molecular weight and molecular Parachor are 

independent from the temperature, we could determine the variation of the surface tension from the 

variation of the density. 

In the first step, we will compare the results obtained by experimental study and the Parachor equation 

for PLA. The results for surface tension of PLA and PEEK determined by the Parachor equation are 

presented in Table 6.  

Table 6: Obtained values for the surface tension of PLA and PEEK by using the Parachor equation 

Polymer Molecular 

weight (g.mol-1) 

Density  

(g.cm-3) 

Molar volume 

(cm3.mol) 

Molecular 

Parachor  

Surface tension 

(mN.m-1) 

PLA 72 1.27 57.2 145.7 25±3 (150°C) 

PEEK 288.31  1.3  221.77  551.2 18±3 (360 °C) 

 

The comparison of the experimental results and predicted results by the Parachor equation for PLA 

shows that, the predicted value is close to the experimental value, respectively 25±3 mN.m-1 at 150 °C 

and 27 ± 3.2 mN.m-1 at 200 °C. Considering that the Parachor equation agrees well with the experimental 

results, the Parachor equation will be used to approximate the surface tension of PEEK in the melted 

state. 

2.1.4.3 Thermomechanical analyses in dynamic mode  

The viscoelastic behavior of the polymer highly influences on the printability and quality of the parts 

manufactured with PEEK. The coalescence and bonding of the deposited beads are driven by the 

viscosity and the surface tension. A deep understanding of the viscoelastic behavior of PEEK is a step 

towards the improvement of the manufacturability of PEEK in the FFF process. 

The complex viscosity of PEEK as a function of frequency has been studied by parallel-plate rheometry 

(Figure 26) in viscoelastic linear regime. The tests have carried out with an A.R.E.S rheometer from 

Rheometrics under air flow condition in melted state for PLA and PEEK. 

 
Figure 26: Schematic representation of the parallel plate configuration 

The rheometry in dynamic mode is a precious tool to understand the macromolecular dynamics. In the 

melted state, thermomechanical shear analyses have been carried out. The tests performed at 1 rad.s-1, 

from 340 °C to 400 °C at 3 °C.min-1 at 0.40 ± 0.01 % applied strain. A 25 mm diameter disk is used for 

the parallel-plate configuration test. The gap between the two plates is 2 mm. 
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In dynamic shear mode, the elastic and viscous behavior of the fluid can be separated in the shear 

elastic/storage modulus G’ and the shear viscous/loss modulus G’’ (eq. 23). The loss factor is defined 

as the ratio between G’’ and G’ (eq. 24). The complex viscosity is calculated from G’ and G’’ by eq. 

25: 

 

𝑮∗ = 𝑮′ + 𝒊𝑮′′ 
 

eq. 23 

 

𝑻𝒂𝒏𝜹 =
𝑮′′

𝑮′
 

 

 

eq. 24 

 

𝜼∗ =
√𝑮′𝟐 + 𝑮′′𝟐

𝝎
 

 

eq. 25 

 

2.1.4.4 Frequency sweep tests in oscillatory parallel-plate configuration 

The frequency sweep tests at different temperatures were performed by using parallel-plate 

configuration. The tests were carried out for the frequency range from 0.05 to 100 rad.s-1 at 1% strain, 

for four different temperatures: 350 °C, 366 °C, 383 °C, and 400 °C. 

As it has been mentioned previously, prior to the frequency test, strain sweeps have been carried out in 

order to define the linear viscoelastic domain of PEEK at each temperature. As it is represented in Figure 

27, at 1 % strain for 383 °C, the loss modulus which is the most suitable parameter in melt state is still 

within the linear viscoelastic domain. Consequently, for the determination of the complex viscosity at 

383 °C, no further correction is needed.  

    

Figure 27: Stress-strain curve in linear domain for PEEK at 383°C determined by strain sweep test 

As expected for melted polymers, PEEK demonstrates a shear-thinning behavior with a Newtonian 

plateau at the lowest frequencies as it is presented in Figure 28. The complex viscosity at 1 rad.s-1 is 

5841 Pa.s at 350 °C, 5144 Pa.s at 366 °C, 4413 Pa.s at 383 °C and finally 3292 Pa.s at 400 °C. The 

results for different temperatures show that increasing the temperature leads to decrease the viscosity. 

By increasing the frequency, the viscosity of PEEK decreases. For high temperature and low frequency, 

the viscosity of PEEK increases drastically. For the highest temperatures, the molecular chains of PEEK 

undergo recombination of molecular bond degradation and chain branching [135]. This structural 

modification has consequences on the properties of the polymer when the polymer is exposed at high 
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temperatures for a long time (hereby for frequencies below 0.1 Hz). Figure 28 shows the results of PEEK 

for the frequency sweep tests at different temperatures. 

 

 

Figure 28: Complex viscosity (η*) of the PEEK determined by the parallel-plate configuration 

In the polymer processing, in order to prevent polymer degradation, the time of exposure at high 

temperature must be reduced. However, in the case of the FFF process, maintaining the polymer melted 

above the melting temperature during deposition, promotes the coalescence and bonding of deposited 

beads. A better coalescence and bonding would increase the mechanical resistance. 

In order to increase the bonding and interdiffusion of the deposited layers, it is preferable to select the 

processing temperature well above the melting temperature where all the crystalline phase is melted. 

This is mainly because the existing crystalline phase in the polymer act like barriers for interdiffusion 

of the macromolecular chains in the deposited beads. An insufficient interdiffusion between the layers 

would cause cracks (or separation between the layers) in the printed parts. 

PEEK is a semi-crystalline polymer, in which the melting takes place above 340 °C. In order to make 

sure that the melting is completed, the printing must be carried out above 350 °C. On the other hand, the 

polymer degradation appears above 400 °C. Consequently, the printing range must be a compromise 

between 350°C and slightly above to get the best performances for the printed parts. 

When choosing the processing temperature, the printing frequency should be considered. Indeed, as the 

temperature increases, the polymer becomes more sensitive to the thermal degradation, but at low 

frequency, the same occurs. As an example, at 400 °C, PEEK undergoes thermal degradation at the 

frequency below 1.2 Hz, while at 350 °C the polymer degradation starts at frequency below 0.04 Hz. 

The frequency is equivalent to the shear rate, which is related to the printing velocity in the FFF process. 

At higher processing temperatures, the degradation frequency shifts towards higher frequencies, thus, 

we could increase the temperature until the frequency is above the degradation frequency. The printing 

shear rate for Reprap printers depends on the nozzle diameter of the liquefier. By increasing the nozzle 

diameter, the printing shear rate decreases. However, the value of the printing shear rate for Reprap 

printers and conventional nozzle diameters is not less than 30 s-1 [136]. 
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Similarly to PEEK, we have studied the thermomechanical properties of PLA. The study of the 

rheological properties of PLA could help us to compare PLA and PEEK properly. 

The thermomechanical tests on PLA have been carried out at the temperatures above its melting 

temperature from 175 °C to 220 °C from 0.5 Hz to 100 Hz with 5% applied strain. The results for 

complex viscosity of PLA at different temperatures are presented in Figure 29. 

 

Figure 29: Complex viscosity of PLA at different temperatures 

As expected, PLA demonstrates a shear-thinning behavior. Furthermore, at high temperature, for 

instance at 220 °C, the viscosity becomes linear versus frequency. At high temperature, the influence of 

the shear rate on the viscosity is negligible. Moreover, at lower frequency, the viscosity decreases. This 

is mainly because of the degradation of the polymer at high temperature and low frequency. These 

results show the sensitivity of PLA at these temperatures. At 185 °C, the viscosity at 0.5 Hz is 2500-

3000 Pa.s. At higher temperatures, the viscosity at the same frequency is reduced to about 100-200 Pa.s. 

The mechanism of polymer degradation for PLA is different than for PEEK: polymeric chain breakage 

occurs when exposed at high temperature. This mechanism leads to reduce the viscosity at low frequency 

[137]. In opposite to PLA, for PEEK, the macromolecular chains undergo recombination of molecular 

bond degradation and chain branching, which causes drastic increase of the viscosity at low frequency 

[138]. The comparison of the viscosity of PEEK and PLA shows that, PEEK has much higher viscosity 

than PLA. Furthermore, the shear rate has much influence on the viscosity of PEEK than PLA. For 

PEEK, the viscosity reduces up to 90 % of the initial value from 0.3 Hz to 100 Hz, while in the case of 

PLA, the influence of the shear rate on the viscosity is negligible. This lately shows that, controlling the 

shear rate during 3D printing of PEEK is crucial. The lower viscosity of PLA compared to PEEK shows 

that the printability of PLA is easier than for PEEK. Furthermore, the interdiffusion and coalescence 

kinetics of the deposited beads would be faster for PLA than for PEEK.  

To sum up, the polymer degradation highlights the importance of controlling the shear rate and 

temperature during printing in the FFF process. 
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2.2 Coalescence study 

2.2.1 Analytical study of coalescence 

Bonding by coalescence of two nearby beads is the main process influencing the mechanical properties 

of the parts fabricated by FFF. Indeed, a good coalescence between the deposited beads reduces the 

porosity rate in the manufactured parts and increases the bonding of two deposited beads, then the 

structural cohesion of the parts. 

There are several models to describe the coalescence of particles. Initially, these models were developed 

for ceramics and metals sintering, such as in SLS processes. As it is represented in Figure 30, the 

sintering of two particles consists of different stages [56]: 

 The particles adhere to each other (a). 

 A neck is formed but the particles remain as individuals. 

 The neck between the particles keeps growing, as the densification develops, the particles lose 

their identity (b). 

The first bonding model for crystalline structure and sintering of two spheres was proposed by Frankel 

[139][57]. Frankel assumed the particle radius to be constant. Frenkel’s model is based on the balance 

of the work or surface tension and the viscous dissipation. All other forces, including gravity or applied 

stresses, are neglected. Frankel has explained that sintering and coalescence takes place because of 

viscous flow under the effect of surface tension. Later, several bonding models were proposed to 

determine the coalescence of different materials such as ceramics and metals, the majority of these 

models are not applicable for thermoplastics. Therefore, Frankel’s model was modified by Vlachopoulos 

[56] [140].This model is based on the surface tension and viscous forces. This model developed for the 

sintering of thermoplastics looks the most suitable the FFF process. The main difference between the 

Frankel’s sintering model and modified Frankel’s model by is the approximation for small angles 

(cos(𝜃) = 1 −
𝜃2

2
). 

The modified Frankel’s model has been originally developed for the coalescence of spheres. 

Nevertheless, it has been applied to predict the coalescence of filaments of amorphous thermoplastics, 

such as ABS (Acrylonitrile Butadiene Styrene) by Bellehumeur in 2004 [141]. Bellehumeur has applied 

the sintering model to ABS cylinders of 0.47 mm diameter and 0.3 mm thickness. The modified 

Frankel’s model applied by Bellehumeur is represented by eq. 26. 

𝜽′ =
г

𝝁(𝑻)𝒂𝟎

𝟐
−𝟓
𝟑 𝒔𝒊𝒏𝜽 𝒄𝒐𝒔𝜽 (𝟐 − 𝒄𝒐𝒔𝜽)

𝟏
𝟑

(𝟏 − 𝒄𝒐𝒔𝜽)(𝟏 + 𝒄𝒐𝒔𝜽)
𝟏
𝟑

 

 

eq. 26 

 

 

 

In which θ′ is the rate of angle evolution with time, г is the surface tension, a0 is the initial radius of the 

particle (in our case radius of filament), μ is the viscosity depending on several parameters such as 

temperature and shear rate (in the case of our coalescence study depends only on temperature), θ is the 

angle between intersecting lines between the center and neck of the coalescence. The initial value for 

the angle between the two spheres (θ) is zero. 
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Figure 30: Schematic representation of the coalescence of two particles a) Initial state before coalescence b) Filaments 

undergoing bonding by coalescence [47] 

 

 

Solving eq. 26 leads to eq. 27: 

𝜽(𝒕) = (
г. 𝒕

𝝁. 𝒂𝟎
)

𝟏
𝟐
 

 

eq. 27 

 

Where t is the time. The evolution of the sintering neck radius with time is given by eq. 28. 

𝒔𝒊𝒏(𝜽) =
𝒙

𝒂
 

eq. 28 

 

eq. 26 must be initiated at a positive and finite value to prevent numerical instability. Because eq. 26 

and eq. 27 are ordinary differential equations (ODE), they cannot be solved analytically. For solving eq. 

26 and also eq. 27 which are unstable on θ = 0, we will use the 4th
 order Runge-Kutta method [140]. eq. 

29 to eq. 34 show the series of Runga-Kutta which has been used to solve the eq. 26 . 

𝜽𝒊+𝟏 = 𝜽𝒊 +
𝟏

𝟔
∆𝒕(𝒌𝟏 + 𝟐𝒌𝟐 + 𝟐𝒌𝟑 + 𝒌𝟒) 

 

 

eq. 29 

 

𝒕𝒊+𝟏 = 𝒕𝒊 + ∆𝒕 
 

eq. 30 

 

𝒌𝟏 = 𝒇(𝒕𝒊, 𝜽𝒊) 

 

eq. 31 

𝒌𝟐 = 𝒇(𝒕𝒊 +
𝟏

𝟐
∆𝒕 , 𝜽𝒊 +

𝟏

𝟐
∆𝒕𝒌𝟏) 

 

 

eq. 32 

𝒌𝟑 = 𝒇(𝒕𝒊 +
𝟏

𝟐
∆𝒕 , 𝜽𝒊 +

𝟏

𝟐
∆𝒕𝒌𝟐) 

 

eq. 33 

𝒌𝟒 = 𝒇(𝒕𝒊 + ∆𝒕 , 𝜽𝒊 + ∆𝒕𝒌𝟑) 
 

eq. 34 

The temperature effect is represented by the viscosity and the surface tension which are temperature 

dependent terms in eq. 26 and eq. 27.  

In our study, because in a real case of the FFF process, heat transfer into a filament must be considered 

at all stage of the process, the temperature dependency of viscosity and surface tension is applied to the 

eq. 26 in order to take it into account in the model.  

x 
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2.2.2 Numerical simulation of the coalescence phenomenon 

2.2.2.1 Theoretical basis 

The CFD (Computational Fluid Dynamic) is widely used in numerical simulation in order to solve the 

fluid flow problems. With CFD, we are able to determine the interaction of the fluids by considering the 

boundary conditions and environment. 

However, sometimes one phase flow CFD is not sufficient to solve the complex problems. In the cases 

where another phase influences on the system and there is more than one phase in the system, simple 

CFD is unable to solve the problem. As an example, we could mention the coalescence as a real problem 

which could not be solved simply by the one phase flow CFD problem. 

Consequently, an additional equation must be added to the CFD module to solve these complex systems. 

These additional equations could help to track the interface of several fluids (for example polymer and 

air in the case of coalescence). Tracking the interface of the fluids could be done with different methods 

such as: 

 Two-phase flow Level set 

 Two-phase flow Phase field 

 Two-phase flow moving mesh (ALE) 

 The volume of fluid (VOF) 

 

By adding these two-phase flow (TPF) equations to CFD, we are able to track the interface of two 

immiscible fluids and follow the interaction of this fluids. Level-set (LS) and Phase field (PF) are the 

most used approaches to track the interface of two fluids or three fluids (PF).  

While the level set and phase field methods are solved on a fixed mesh, the two-phase flow moving 

mesh method tracks the interface position with a moving mesh using the arbitrary Lagrangian-Eulerian 

ALE method. 

In our studies, we use the Two-phase flow (TPF), module of COMSOL Multiphysics in order to study 

the coalescence and the material deposition on the substrate. In the following section, we will explain 

briefly the Navier-Stokes equations which are used in the CFD simulation and also LS and PF series 

which are used for tracking the interface of the two phases. 

2.2.2.2 Navier-Stockes equations 

In the CFD numerical simulation and also TPF simulations for each phase, Navier-Stokes and continuity 

equations are solved for the conservation of the momentum and conservation of mass [77].   

eq. 35 shows the general form of the Navier-Stokes equation. 

 

 

 

𝝆
𝝏𝒖

𝝏𝒕
+ 𝝆(𝒖. 𝛁)𝒖 = 𝛁. [−𝒑𝑰 + 𝝁(𝑻)(𝛁𝒖 + (𝛁𝒖)𝑻) −

𝟐

𝟑
𝝁(𝑻)(𝛁. 𝒖)𝑰] + 𝝆𝒈 + 𝑭𝒔𝒕 + 𝑭 

 

 

 

 

 

eq. 35 

 

 

1 2 3 4 
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Where ρ is the density, u is the fluid velocity, P is the pressure applied to the fluid, μ is the dynamic 

viscosity of the fluid and g is the gravity field. Fst represents the force resulting from the surface tension 

and F represents all other external forces. The Navier-Stokes equations correspond to the contribution 

of different forces applied to the fluid: The first part of  

eq. 35, (1) refers to inertial forces of the fluid. The influence of the pressure forces by the terms (2) and 

viscous forces are integrated into the equation by the terms (3). And the last part (4) is the sum of other 

external forces applied to the fluid. Mass conservation in the study is solved by the continuity equation 

(eq.10): 

𝝏𝝆

𝝏𝒕
+ 𝜵. (𝝆𝒖) = 𝟎 

 

eq. 36 

eq. 37 shows the equation to determine the Reynolds number. The Reynolds number corresponds to 

the ratio of inertial forces (1) to viscous forces (3). It measures how turbulent the flow is. For a low 

Reynolds number, the flow is laminar, while for a higher Reynolds number, the flow is turbulent and 

for a really low Reynolds number, the inertia term, 𝜌(𝑢. ∇)𝑢, can be neglected and the Navier-Stokes 

equation become a Stokes equation (eq. 39). In our case, the Reynolds number is bellow 0.001 and 

effectively low enough to use the Stokes equation. 

𝑹𝒆 =
𝝆𝑼𝑳

𝝁
 

 

eq. 37 

 

 

In the case of coalescence and material deposition, the fluid could be considered as incompressible, thus 

the continuity equation (eq. 36) yields to eq. 38: 

𝜵. 𝒖 = 𝟎 eq. 38 

 

Because of the divergence of the velocity is equal to zero (linked to the incompressibility), consequently 

we could also omit −
2

3
μ(∇. u)I term in the Navier-Stokes equation. Finally, the Stokes equation is used 

in our study as eq. 39: 

𝝆
𝝏𝒖

𝝏𝒕
= 𝛁. [−𝒑𝑰 + 𝝁(𝑻)(𝛁𝒖 + (𝛁𝒖)𝑻)] + 𝝆𝒈 + 𝑭𝒔𝒕 + 𝑭 

 

 

eq. 39 

 

 

In the eq. 39, the influence of the surface tension on the fluid flow is determined by using eq. 40 : 

𝑭𝑺𝒕 = 𝝈𝑯𝜹𝒏𝒊 eq. 40 

 

Where σ is surface tension, H is mean curvature, δ is Dirac function and  𝑛𝑖 is the normal vector. Mean 

curvature H is described as: 

𝑯 =
𝟏

𝟐
(𝒌𝟏 + 𝒌𝟐) 

 

eq. 41 

 

Where k1 and k2 are the maximum and minimum curvatures of a surface. For the sphere and cylinder, 

the mean curvature is determined by eq. 42 and eq. 43 respectively: 
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𝑯 =
𝟏

𝒂
 

 

eq. 42 

 

𝑯 =
𝟏

𝟐𝒂
 

 

eq. 43 

 
 

Where 𝑎 is the radius. 

In two-phase flow simulation (TPF), the density and the viscosity of each mesh are determined using 

eq. 44 and eq. 45 according to the volume fraction. 

𝝆 = 𝝋𝝆𝒑𝒐𝒍𝒚𝒎𝒆𝒓 + (𝟏 − 𝝋)𝝆𝒂𝒊𝒓  eq. 44 

𝝁 = 𝝋𝝁𝒑𝒐𝒍𝒚𝒎𝒆𝒓 + (𝟏 − 𝝋)𝝁𝒂𝒊𝒓  eq. 45 

 

Where 𝜌𝑝𝑜𝑙𝑦𝑚𝑒𝑟 and 𝜌𝑎𝑖𝑟 are the densities of polymer and air respectively, 𝜇𝑝𝑜𝑙𝑦𝑚𝑒𝑟 and 𝜇𝑎𝑖𝑟 are the 

viscosities of the polymer and air respectively and 𝜑 is the volume fraction of the volume considered. 

The volume fraction is one of the outputs of TPF simulation which is used for determining the position 

of the interface of the two phases. The value of the volume fraction for LS equation varies from 0 to 1. 

The volume fraction in TPF is 𝜑 = 0 for air (or phase 1) and  𝜑 = 1 for polymer (or phase 2). That 

means when the value of 𝜑 is 1 (or the color is red) the mesh or the domain is filled by polymer and 

when the value of the volume fraction is 0 (or the color is blue) the domain is filled by air. 

2.2.2.2 LS, PF and VOF methods 

LS and PF methods are two well-known equations to track the interface of two immiscible fluids. LS 

and PF methods are two transport equations. These equations are added to Stokes equations (eq. 38 and 

eq. 39 ) in order to track the interface of two immiscible fluids.  

The main difference between the LS method and PF is that LS solves a transport equation in order to 

track the interface, while PF solves two transport equations. For the LS study, the color function varies 

between 0 and 1, while for the PF the color function is between -1 and 1. In these functions, the interface 

of the two fluids could be considered at 0 and 0.5 for PF and LS respectively. Figure 31 shows different 

notions in the two-phase flow. Normally, in the numerical simulation, solving two transport equations 

by PF method makes the calculation heavier than LS; however, the PF method is more accurate than the 

LS method. While the LS method is suitable for up to two-phase simulation, PF method could solve 

three phase problems. Moreover, the PF method could be used for structure interaction and phase 

separation simulations and is more recommended for micro-fluidic simulation [142]. Furthermore, in 

several articles, the comparison of the LS method with other interface tracking methods shows that 

during the numerical simulation of water collision on the surface by LS equation, there is mass 

dissipation [143]. This method is not conservative. 
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Figure 31: presentation of different phases in two-phase flow simulation by LS 

Considering the closed curve as 𝛼(𝑡), enclosing Ω- in Ω region, moving in two dimensions, the interface 

of the two phases for LS equation is defined as: 

𝜶 = {𝒙 ∈ 𝜴|𝝓((𝒙, 𝒕) = 𝟎. 𝟓} eq. 46 

 

The LS equation which is used in TPF simulation is represented in eq. 47. 

𝝏𝝋

𝝏𝒕
+ 𝜵. (𝒖𝝋) = 𝜸𝜵. (𝜺𝑰𝒔𝜵𝝋 − 𝝋(𝟏 − 𝝋)

𝜵𝝋

|𝜵𝝋|
) 

 

                                 eq. 47 

 

Where u is the flow velocity; 𝜑 is the volume fraction, γ is the re-initialization parameter and 휀𝑙𝑠 is the 

parameter controlling the interfacial thickness. The re-initialization parameter (γ) is considered as 

maximum or close to the maximum velocity of the fluid in the TPF system to ensure the consistency of 

the results with the whole simulations. Our empirical tests show that reducing the 휀𝑙𝑠 (interfacial 

thickness) value, influences the thickness of the interface between two phases, consequently, to get 

better accuracy between the phases. 

With, mass conservation, Stokes and LS equations, we have a system of 3 equations. The equations are 

eq. 38, eq. 39 and eq. 47. The unknowns are velocity in x and y directions and volume fraction (𝜑) and 

the known parameters are density, viscosity and inlet velocity (or pressure). The system of equations is 

solved at each time. 

In the PF, the TPF dynamics is governed by a Cahn-Hilliard equation. The equation tracks a diffuse 

interface separating the immiscible phases. The diffuse interface is defined as the region where the 

dimensionless phase field variable φ varies from -1 until 1. In COMSOL, the Cahn-Hilliard equation is 

split up into eq. 48 and eq. 49 [143]. 

𝝏𝝋

𝝏𝒕
+ 𝜵. (𝒖𝝋) = 𝜵.

𝜸𝝀

𝜺𝒑𝒇
𝟐

∆𝝍 

 

 

eq. 48 

 

𝝍 = −𝜵. 𝜺𝒑𝒇
𝟐 𝜵𝝋 + (𝝋𝟐 − 𝟏)𝝋 +

𝜺𝒑𝒇
𝟐

𝝀

𝝏𝒇

𝝏𝝋
  

 

 

eq. 49 

Where u is the flow velocity; φ is the volume fraction, γ is the mobility parameter (m3.s.kg-1), λ is the 

mixing energy density (N), εpf is the capillary width that scales with the thickness of the interface, 𝑥 is 
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the mobility tuning parameter (by default set to 1), which is typically 
ℎ𝑚𝑎𝑥

2
 , 

∂f

∂φ
 is the derivate of external 

free energy and ψ is PF help variable. λ and εpf are related to the surface tension by eq. 50 . 

𝝀 =
𝟑𝜺𝒑𝒇𝝈

√𝟖
  

 

eq. 50 

𝜸 = 𝒙𝜺𝒑𝒇
𝟐  eq. 51 

 

Too small values for the 𝑥 leads to numerical instabilities, too large values will not capture the interface 

movement correctly. A good initial assessment for the mobility tuning parameter is: 

𝒙 =
𝟐𝒖𝒎𝒂𝒙

𝟑√𝟐𝝈
𝒉𝒎𝒂𝒙
𝜺𝒑𝒇

 
 

eq. 52 

 

 

where umax is the expected maximum velocity magnitude, σ is the surface tension coefficient, hmax is the 

value of the parameter controlling the maximum element size. 

In the VOF method, the interface between the phases is followed by solving a continuity equation. The 

continuity equation for VOF is presented in eq. 53 [144] . 

𝝏𝝋𝒏

𝝏𝒕
+ �⃗⃗� 𝜵𝝋𝒏 =

𝑺𝒂𝒏

𝝆𝒏
 

 

eq. 53 

 

Where 𝑆𝑎𝑛
 is the source term of mass. 

2.2.3 Experimental study of the kinetics of coalescence 

To validate our models and numerical simulation, several experimental studies have been carried out. 

Firstly, with a drop of glycerol, which is a classical fluid with well-known properties and after with 

PEEK filaments. 

The coalescence test with glycerol has been carried out with a Digi-drop instrument. A glycerol droplet 

is deposited with a syringe, on another drop as it is represented in Figure 32. Images were captured by 

using a Photon Focus high-speed camera with a 35 mm diameter lens, with 1:1.4 magnification scale. 

The exposure time was selected at 5000 ms. Saving speed of the high-speed camera is 50 images per 

second.  

The coalescence experiment of PEEK is made with two adjacent filaments of 1.65 mm diameter. PEEK 

filaments were heated in a 200 cm3 oven in order to minimize heat losses. A thermocouple was placed 

between the two filaments in order to have an accurate measurement of the temperature and heating rate 

of the filaments. The temperature was recorded using a Graphtec-GL240 data logger. The average 0.019 

°C.min-1 slow heating rate was applied to the filaments to set quasi-isothermal conditions and 

homogenous temperature distribution inside the samples. These experiments were recorded with a high-

speed camera. The camera is set on the same axis of the filaments, thus only the cross sections are 

visible, like it is shown in Figure 33.  As it is represented in the Figure 34 the polymeric filaments have 

been placed between to two metallic blocs in order to maintain the contact between the filaments while 

applying a slight force by the blocs ( as matter of fact, when polymeric filaments pass the glass transition 

or melting point , they slightly move , probably because of stress relaxation. This movement leads to 

change the position of the filaments and consequently they get far from each other. The blocs by 
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applying a very slight force keep the filaments in contact during the test when the temperature pass the 

transitions of the polymer). 

 

Figure 32: High-speed camera and the syringe used for the deposition of glycerol 

 

 

Figure 33: Schematic representation of the experimental set up for the coalescence study  

 

 

 

Figure 34:Schematic representation of the experimental set up for the coalescence study of PEEK in heating furnace 

2.2.3.1 Coalescence of glycerol 

In the first step, we have selected glycerol in order to validate our TPF model with the LS method. The 

coalescence kinetics of glycerol is relatively slow compared to the coalescence kinetics of water. On the 

other hand, at room temperature, the viscosity and surface tension of glycerol is constant. According to 

these properties, glycerol is a good candidate to validate our TPF model. 

As we have presented in Figure 32, a Digidrop instrument and its syringe have been used to deposit a 

glycerol droplet. The numerical simulation of the coalescence was carried out by using TPF and LS 

equations in COMSOL Multiphysics. The model of the coalescence of glycerol has been implemented 
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as an axisymmetric model in the software. Figure 35a and b shows the meshed model used for the 

simulation and the dimensions of the numerical model respectively. Free triangular meshes and 

predefined finer meshes were used as the size of the meshes. 

The properties of air and glycerol such as density, viscosity and surface tension are listed in Table 7. 

Table 7: Properties of air and glycerol used in the numerical model 

Properties Value  

First phase Glycerol 

Second phase Air 

Air density  1.145 kg.m-3 

Glycerol density 1260 kg.m-3 

Air viscosity 1.8.10-5 Pa.s 

Glycerol viscosity 1.42 Pa.s 

Glycerol surface tension 0.062 N.m-1 

 

 

Figure 35: (a) Meshed model used in the numerical simulation, (b) initial conditions and dimensions of the numerical 

model 

The boundary conditions and dimensions of the models are presented in Table 8. 

Table 8: Boundary conditions used in the numerical model 

Boundary’s name Initial Condition  

a Symmetry  

b No-slip  

c Axisymmetric  

d Wetted wall  

e Wetted wall  

f Outlet Pressure : 0 

 

The images of the coalescence of glycerol with time are shown in Figure 36 (a). The glycerol takes 

200 ms for making a perfect coalescence (necking, neck growing, and separation from the nozzle). As 

it is represented in Figure 36, in the early stages of coalescence, two droplets touch each other. Then, in 

the secondary stage, a neck between two droplets takes place and gradually grows. Finally, at the final 
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stage of the coalescence, two droplets make a single sphere and the first droplet separate from the 

syringe.  

The results of the numerical simulation approach are represented in Figure 36 (b). The mechanism of 

coalescence modeled by numerical simulation is similar to the experimental study. The coalescence 

takes place during 200 ms from the contact of two droplets. At the first stage, two droplets make a 

contact with each other. The neck between the droplets increases until the separation from the syringe.  

The similarities between experimental study and numerical simulation show that we have properly 

developed our model and numerical simulation for the coalescence of glycerol. Thus, TPF numerical 

simulation could be used for modeling the coalescence of filaments. After validation of our numerical 

model, we will apply it for high viscosity fluids such as PEEK. 

Time Experimental study Finite element study 
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160 ms 

 
 

180 ms 

  
200 ms 

 
 

 (a) (b) 
Figure 36: Obtained results by (a) experimental study, (b) numerical simulation 

2.2.3.2 Coalescence of PEEK filaments 

In the previous section, we have modeled the coalescence of glycerol as low viscosity fluid. In this 

section, we will study the coalescence of PEEK as a high viscosity fluid. The evolution of the 

coalescence of filaments when exposed at temperatures above the melting temperature (355 °C for 

PEEK) were measured experimentally and estimated analytically and by numerical simulation.  

Analytical and experimental approaches have been explained previously. In the following section, we 

will explain the boundary conditions used for the modeling of the coalescence of filaments. Figure 37 

(a) shows the meshed model and Figure 37 (b) the boundary conditions used for the coalescence of the 

polymeric filaments by 2D TPF-LS model. 

 

 

 
(a) (b) 

Figure 37: (a) Meshed model used in the numerical simulation, (b) initial conditions and dimensions of the numerical 

model 

The PEEK properties used for the numerical simulation are shown in Table 9. The viscosity of PEEK 

have been determined previously by rheometry in the previous section (section 2.1) [49].  

Table 9: Properties of the fluids used for numerical simulation 

Properties Air  PEEK 

Density  1.145 kg.m-3 1320 kg.m-3 

Viscosity 1.8e-5 Pa.s eq. 54 

Surface tension - 0.018-0.015 N.m-1 

 

The variation of viscosity of PEEK with time has been determined in both analytical and numerical 

simulation by using eq. 54. Because it is not possible to define the temperature-dependent viscosity in 
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Wall (no slip) 
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the TPF-LS numerical simulation, viscosity has been fitted by following equation in order to define as 

time dependent equation. eq. 54 enable us to define the viscosity according to condition of the 

experimental study. 

𝝁𝑷𝑬𝑬𝑲 = 𝟏. 𝟔𝟒𝟒𝟏𝑬𝟐𝟖 ∗ 𝒕−𝟖.𝟔𝟓𝟓𝟕 
 

eq. 54 

 

Where t is time in s. The numerical simulation with CFD TPF is not heat transfer conjugated. As a 

consequence, we could not use directly a temperature-dependent viscosity in our numerical model. On 

the other hand, the viscosity changes according to the temperature in our model. Therefore, we have 

inserted a time-dependent viscosity in our model. The time-dependent viscosity is the variation of the 

viscosity in the experimental model according to time. The time corresponds to temperature changes 

during the heating rate. The time-dependent viscosity used for the numerical simulation is represented 

in eq. 54. It has been extracted from the results in Figure 39.  

PEEK at the melted state turns into black during degradation, consequently, the processing of images 

captured by high-speed camera is more complicated. Bonding of PEEK filaments starts at 350°C. 

Comparing with DSC results (Figure 16), the polymer is fully melted at this temperature. We consider 

that the influence of the gravity on the shape of the filaments is negligible. At 380°C, the filaments reach 

their maximum bonding length.  

During the experiments, the heat transfer is governed by convection with very low air flow. The air 

around the filaments act like an insulating media. Furthermore, the interface is between two polymers 

with low thermal conductivity and the air delays the heating of the interface. This shift the melting of 

the interface between the two filaments towards higher temperatures. For PEEK, the temperature range 

for the coalescence is relatively wide, 350°C to 380°C. The coalescence takes relatively a long time, it 

is due to high viscosity and low surface tension of PEEK. 

The evolution of the bonding length according to the different temperatures by experimental study and 

numerical simulation is represented in Figure 38. 

PEEK 

 
 

Figure 38: Evolution of the coalescence by experimental and numerical simulation for PEEK 

 

The coalescence takes place after the melting temperature of the polymer when the crystalline phase has 

turned into amorphous phase.  
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The experimental results have been compared to the modified Frankel’s [140] bonding model and 

numerical simulation. Figure 39 shows the coalescence of PEEK. The comparison of the experimental 

study with the predictive model shows that the results are close to each other. However, there is still 

several differences. According to the experimental study, the coalescence starts at around 350℃ which 

is mainly because there are still crystalline phases in the polymer. The analytical study and numerical 

simulation do not take into account the presence of crystalline phase and it is based only on surface 

tension and viscosity. For this reason, there is some deviation between the results below 350℃. 

Furthermore, we have to mention that in the analytical study, we have neglected the influence of external 

forces such as gravity and also applied forces from the metallic blocs on the evolution of the coalescence. 

Depending on the viscosity of the polymer, these external forces highly influence on the shape of the 

extrudate. Because of high viscosity of PEEK, the influence of these external forces on the variation of 

the filament (or particle) shape is not noticeable however, for the materials with lower viscosity these 

external forces must be considered. 

For the numerical simulation by TPF-LS equation for polymers, several important parameters must be 

considered to model properly the coalescence phenomenon. The initial numerical simulations mostly 

lead to numerical errors and high deviation of obtained results from the experimental studies. Several 

sources may explain the deviation of experimental study from numerical simulation. One of the main 

reasons for this deviation is the systematic errors which could occur during all the tests. For the 

systematic errors, we could mention the difference between the measured temperature and real 

temperature of the filaments, errors during the determination of the bonding length because of low 

quality of recorded images and also the influence of the crystallinity on the results. For PEEK, we have 

tried to reduce as much as possible the systematic errors in order to get better results, as close as possible 

to experimental study. Furthermore, selecting the parameters of LS specially γ (Re-initialization 

parameter) influences on the results. γ must be close to the boundary changing velocity (on kinetics of 

coalescence), however, the kinetics of coalescence is not constant during the test, which may influence 

on the results obtained numerically. The quality of the air/polymer interface is another important 

parameter which influences on the numerical simulation. As explained in eq. 44 and eq. 45 for the 

determination of the viscosity and the density in TPF-LS, we use the additive function of volume 

fraction. Thus, we have to reduce the interfacial thickness as much as possible. This lately is possible 

by reducing the size of the meshes and also 𝜺𝒍𝒔 (interfacial thickness) in the eq. 47. 
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(b) 
Figure 39: Evolution of the coalescence of the filaments according to temperature for PEEK 

 

The normalized bonding length in eq. 55 is the ratio of the bonding neck length to the initial diameter 

of the filament. 

𝑵𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆𝒅 𝒃𝒐𝒏𝒅𝒊𝒏𝒈 𝒍𝒆𝒏𝒈𝒕𝒉 =
𝑩𝒐𝒏𝒅𝒊𝒏𝒈 𝒏𝒆𝒄𝒌 𝒍𝒆𝒏𝒈𝒕𝒉

𝑰𝒏𝒊𝒕𝒊𝒂𝒍 𝒅𝒊𝒂𝒎𝒆𝒕𝒆𝒓
 

 

 

eq. 55 

 

2.2.4 Modifications on the numerical simulation model 

In order to reduce the percentage of deviation of the numerical simulation from the experimental and 

the analytical study, some modifications on the coalescence model have been made. 

These modifications are based on the refinement of the meshes, changing the meshes from tetrahedral 

to quadratic meshes and also the locally meshed model. Moreover, the influence of different 

axisymmetry plans has been determined by numerical simulation to optimize the time calculation. 

2.2.4.1 Modifications on the meshes 

Figure 40 shows the different types of meshes used for the model in order to reduce the deviation of the 

numerical simulation study from the experimental study. Figure 40 (a) and (b) show the different sizes 

of the meshes for the model. Figure 40 (c) and (d) shows locally refinement meshed models, in these 

models, the meshes of the interface between air and polymer have been reduced. 
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(a) (b) 

 

 

(c) (d) 
Figure 40: Different types of the meshes used for the simulation (a) Default meshes with pre-defined normal size (b) 

Default meshes with pre-defined extra fine size (c) Locally modified meshes on different regions (d) Modified meshes 

with finer mesh on the interface 

Our observations show that the size of the meshes highly influences on the thickness of the interface 

and the time of calculation. The time of the simulation changes from 3 hours to 48 hours according to 

size of the meshes. However, its influence on the deviation of the obtained results is not obvious. On 

the other hand, in the case of the locally meshes refinement, the thickness of the interface depends on 

the biggest mesh in the system. Moreover, using the local meshes makes the model harder to 

convergence. Consequently, for modeling the coalescence, our suggestion is to use homogenous meshes 

and not the local meshes. Although selecting the big size of meshes reduce the time of simulation, 

however, it makes the simulation harder for convergence. In the case of very fine size of meshes, we 

have the same problem for the convergence. As a consequence, the optimized size of the meshes is 

homogenous meshes with the medium size. 

2.2.4.2 Different symmetry plans 

The second approach to reduce the deviation of the numerical simulation from the experimental study 

was to model the system with different axisymmetric and symmetric plans. Figure 41 shows two 

different models used for the numerical simulation by taking into account several axisymmetric plans. 

In the case of using the axisymmetric simulation, we will model the coalescence of two spheres, which 

is different from our experimental case of two cylinders.  

 
 

(a) (b) 
Figure 41: Used model for the axisymmetric numerical simulation (a) Meshed model (b) Initial conditions of the 

model 
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The results by axisymmetric simulation represented in Figure 42 (a) also show a high deviation from 

the experimental study. The results obtained by taking into account the axisymmetric boundary 

condition and the experiments in Figure 36 are closed together, consequently adding axisymmetric 

boundary conditions to the model does not highly influenced on the deviation of numerical simulation 

from the experimental study. However, using symmetries and axisymmetries highly influence on the 

time of simulation. However, they have no influence on the kinetics of coalescence of the models.  

Furthermore, as it is represented in Figure 42 (b), symmetry in y-direction has been added to the model. 

The results of numerical simulation by considering the symmetry and axisymmetric plans are presented 

in Figure 42. 

 

Figure 42: Results of numerical simulation (a) Axisymmetric simulation (b) Axisymmetric simulation with symmetry 

on the contact region 

 

 2.2.4.3 Other parameters influencing the kinetics of coalescence 

In this part, we will study the influence of numerical parameters explained in section 2.2.2.2. In the LS 

equation, γ is the re-initialization parameter and 휀𝑙𝑠 is the parameter controlling the interfacial thickness. 

These parameters have the main effect on the kinetics of coalescence and also on the convergence of the 

results. γ must be close to the kinetics of coalescence to reduce the deviation of numerical results, 

furthermore, 휀𝑙𝑠 must be small enough to reduce the size of the interface of air and polymer and make 

the numerical simulation closer to the real situation. In order to select properly the value of γ we have 

determined the mean coalescence kinetics by experimental study. The average kinetics of coalescence 

by experimental study has been selected as re-initialization parameter.  

The influence of the 휀𝑙𝑠 on the interface of two phases is represented in Figure 43. As it could be 

concluded from Figure 43, a bigger value of 휀𝑙𝑠 makes the interface between air and polymer wider. 

While using a smaller value makes the interface narrower and increase the accuracy of the interface 

between two phases. 
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(a) (b) 

Figure 43: Influence of 𝛆𝐥𝐬 , the parameter controlling the interface on the clearance of the interface between two 

phases, (a) 𝐒𝐢𝐳𝐞 𝐨𝐟 𝒎𝒆𝒔𝒉 , (b) 
𝐒𝐢𝐳𝐞 𝐨𝐟 𝐦𝐞𝐬𝐡

𝟒
 

In the Figure 43 size of the mesh is the is the value of the parameter controlling maximum element size 

Or the maximum size of the mesh in the model. 

Previously we have explained the importance of the surface tension on the kinetics of coalescence. The 

sensitivity of the kinetics of coalescence to the surface tension is represented in Figure 44. In this figure, 

the results are presented for four values of surface tension at t = 500 s. and t = 1800 s. For the lowest 

surface tension, under the influence of gravity, the particle is spread onto the substrate. However, as the 

surface tension increases, the polymer particles are more attracted to each other. For the highest surface 

tension (more than 0.025 N.m-1), the absorption of the particles is relatively high. In this case, the 

influence of the gravity on the deformation of the polymers is negligible. Furthermore, for the low 

surface tension, the filaments or spheres have more tendency to spread onto the substrate, while at high 

surface tension the tendency of the filaments or spheres is more towards unification and making a bigger 

sphere. As a conclusion, the surface tension highly increases the kinetics of coalescence. Surface tension 

has been approximated by Parachor model represented in the section 2.1.4.2. Surface tension is 

considered constant for the temperature above melting temperature in both analytical model and 

numerical simulation. 
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Figure 44: Influence of the surface tension on the kinetics of coalescence 

2.3 Conclusion 

This Chapter focuses on two parts: the characterization of PEEK and the coalescence study. 

The polymer properties having a crucial influence on the quality of the FFF parts have been determined 

for PEEK and PLA. Their thermal transitions, kinetics of crystallization and sensitivity to degradation 

have been clarified. The glass transition of PEEK is 150 ℃. At higher heating rate, the glass transition 

is shifted towards higher temperatures. Depending on the heating rate, the melting temperature starts at 

300 ℃ and ends around 355 ℃. Same as for the glass transition, at higher heating rates, the melting 

temperature is shifted to higher temperatures. No cold crystallization has been observed because of fast 

crystallization of PEEK whatever the studied cooling rates. 

PLA has a glass transition at 65 ±5 ℃ and a melting temperature at 170 ± 5 ℃. Contrary to PEEK, the 

kinetics of crystallization of PLA is slow. Even at very low cooling rates, the polymer is not fully 

crystallized. Because of uncompleted crystallization, a cold crystallization peak is observed above the 

glass transition on heating. 

The results for PEEK and PLA show a faster crystallization kinetics for PEEK compared to PLA. In the 

case of PLA, the crystallization could be avoided in the FFF process by applying a high cooling rate 

while, in the case of PEEK, the polymer crystallizes whatever the cooling rate. Practically, the cooling 

rate depends on the temperature of the melt polymer exiting from the nozzle, the temperature of the 

platform (substrate) and also the environment temperature. 
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The thermal properties such as thermal conductivity and expansion coefficient have determined. The 

thermal conductivity of PEEK at room temperature is 0.32 W.(m.K)-1. The thermal diffusivity of PEEK 

at room temperature is about 0.24 mm2.s-1. Contrary to the thermal conductivity, the thermal diffusivity 

decreases while the temperature increases. The coefficient of thermal expansion coefficients have been 

determined below the glass transition at 59.10-6 °C-1 and above the glass transition at 162.10-6 °C-1.  

The rheological properties have been determined for the shear rates less than 100 s-1 in oscillatory mode. 

The complex viscosity of PEEK at different temperatures at its Newtonian plateau is between 7000 Pa.s 

and 11000 Pa.s. While at 100 s-1, the viscosity at 383 °C reduces up to 1000 ± 100 Pa.s. The comparison 

of PEEK with PLA shows that the viscosity of PEEK is much higher than those of PLA. The viscosity 

of PLA at its Newtonian plateau at different temperatures is between 700 Pa.s and 4000 Pa.s. Moreover, 

both polymers are sensitive to thermal degradation. As a consequence, the processing temperature range 

are limited to prevent their degradation. PLA and PEEK undergo different degradation mechanism, 

resulting in decreased viscosity for PLA due to chain scission mechanism. On the contrary, the 

degradation mechanism of PEEK occurs by molecular recombination, leading to viscosity increase. 

The surface tension of PEEK and PLA in the solid state has been determined by contact angle meter. 

38.7 mN.m-1 is the surface tension of PEEK and 42.1 mN.m-1 for PLA at room temperature. Furthermore, 

the surface tension of PLA at liquid state at 200 °C has been determined by experimental study about 

27±3.2 mN.m-1. As the measurement was not possible for PEEK in its melted state, the surface tension 

of PEEK according to the temperature variation has been calculated with the Parachor equation.  

All these properties will be used further in the analytical and numerical modeling.  

In the second part of this chapter, the coalescence of two glycerol droplets and two adjacent polymeric 

filaments have been studied, by experimental approach, analytical equation and numerical simulation. 

The 2D coalescence numerical simulation of the fluid in the air has been carried out by using CFD and 

TPF-LS equations. The advantage of TPF numerical simulation is that we are able to model the 

interaction between polymer and air. 

Before studying the coalescence of PEEK filaments, we have studied the coalescence of glycerol 

droplets as a low viscosity fluid by experimental study and numerical simulation. Our numerical results 

on glycerol show great accordance with the experimental ones. These results validate our coalescence 

model. Regarding the literature, the studies reported until now deal only with Newtonian fluids of low 

viscosity. These studies reveal that TPF simulation agree well with the experimental studies; however, 

for high viscosity fluids and polymers, no studies are reported. To our knowledge, our work is the first 

one on this topic. 

The experimental study of the coalescence phenomenon confirms that the viscosity highly influences 

the bonding of polymers. This bonding would impact the mechanical properties of the printed parts. 

Indeed, the mechanical strength of the printed parts stems from the interlayer adhesion. The latter is due 

to the interdiffusion of polymeric chains in adjacent filaments. This interdiffusion is directly linked to 

the viscosity of the polymer.  

The bonding length between two adjacent PEEK filaments has been registered with time and 

temperature. These results have been compared to a predictive model: the results demonstrate a good 

agreement when the melting of the crystalline phases are completed. Indeed, the coalescence starts when 

the polymer is completely in the melted state. This means that the crystalline phase prevents the mobility 

of polymeric chains that means, the coalescence of adjacent polymers is not possible before the melting 
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temperature.  From 350 ℃ until 365 ℃ obtained results by experimental study is slightly higher than 

numerical simulation and predicted model. While after 365 ℃, obtained results for coalescence by 

experimental study is slightly less than other methods. This deviation might probably be because of 

applying force from the metallic bloc to keep the filament in contact together. This external force 

increase coalescence of two filaments, while after 365 ℃, when the filaments are changes state from 

solid state to fusion, the effect of the forces from metallic bloc is less important. Which leads to decrease 

of the coalescence kinetics. However, by numerical simulation and predictive model we don’t take into 

account these external forces. 

Our numerical simulation approach results in very good understanding of TPF-LS simulation. Our 

investigations show that local meshes influence on the convergence of the simulation. Consequently, in 

order to get better convergence, we suggest the homogenous meshes. γ the re-initialization parameter 

and 휀𝑙𝑠 the parameter controlling the interfacial in the LS series are the most important parameters 

influencing the results of coalescence. These parameters, directly influence on the accuracy of the 

numerical simulation and the convergence of the obtained results. 휀𝑙𝑠 must be small to have a better 

interface between the phases. However, a very low 휀𝑙𝑠 leads to numerical instability, increases the time 

of calculation and false results. In the same manner, the selection of the re-initialization parameter is 

very delicate. The re-initialization parameter must be close to the maximum velocity of the system. High 

velocity and low velocity at the same time leads to instability of simulation and numerical errors. The 

time-step is also other important parameters during the coalescence study. The time-step must be 

minimized in order to get the numerical simulation close to the experimental study. 

Above mentioned steps must be taken into account in order to increase the accuracy of our numerical 

simulation and interface between air and polymer. The clearance of the interface is very important  

specially for assignment of the  thermal diffusivity of the phases.
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Chapter 3: Numerical simulation of material 

deposition and crystallization
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3.1 Introduction 

In Chapter 2, we have introduced the intrinsic properties of the polymers that influence on the quality 

of the manufactured parts. These material properties are highly dependent on the printing conditions. 

The properties of the deposited beads, the crystallization kinetics of the polymer, the cooling rate, the 

initial temperature, the environment temperature or also the thermal conductivity of the polymer are 

closely imbricated. Because of the dependency of the material properties to the printing conditions and 

also interdependency of the polymer properties to each other, the study of FFF process must include all 

of them. 

Previously, we have explained that the viscosity of the polymers is shear rate and temperature dependent. 

Furthermore, in Chapter 2 we have shown that the polymers undergo degradation at high temperature 

and at a certain shear rate. Consequently, the determination of available range of printing shear rate is 

necessary in order to avoid degradation during printing. Studying the shear rate in the process needs to 

take into account the printing conditions such as inlet velocity, the geometry of the deposited beads and 

the structure of the liquefier. This study allows the optimization of the quality of the manufactured parts 

by determining the optimum bead geometry and inlet velocity. Understanding the shear rate during the 

process allows the determination of the evolution of the viscosity but it requires a fine modeling of the 

fluid flow. Moreover, in order to determine the die swelling of the extrudate after exiting from the 

nozzle, determining the shear rate is necessary too. 

In this chapter we will use the material properties measured in Chapter 2 to make a numerical simulation 

in order to study the FFF process. The crystallization kinetics of semi-crystalline polymers influences 

on the mechanical properties and interdiffusion of the deposited beads and layers. The determination of 

crystallization kinetics and the time of structural evolution from amorphous to crystalline state at 

different environment conditions is necessary to optimize the mechanical properties of the printed parts. 

On the other hand, as we have explained in Chapter 2, the crystallization kinetics of PEEK is relatively 

fast and also the crystallization in FFF process is non-isothermal. As a consequence, firstly an adequate 

approach to determine the non-isothermal kinetics of crystallization of PEEK is required. And secondly, 

we have to model the non-isothermal conditions in order to determine the crystallization kinetics of 

PEEK. By modeling properly, the kinetics of crystallization in FFF process, it would be possible to 

determine the optimal exposure time and temperature of the deposited beads before crystallization. 

However, prior to modeling the crystallization kinetics, we have to determine the temperature 

distribution in the process. The determination of the temperature distribution required the thermal 

properties measured previously in Chapter 2. Additionally, to model the fluid flow, we have to insert 

viscosity as a shear rate and temperature dependent parameter. The viscosity determined in Chapter 2 

can be written as Carreau-Yasuda law in order to apply in the deposition model.  

The FFF process is based on the material deposition on a substrate. Polymer flow undergoes heat transfer 

and crystallization. Modeling the material deposition is the primary step towards the determination of 

heat transfer and crystallization. However, in this process, the material is gradually deposited on a 

substrate. That means, there is an interaction between the substrate, the air and the polymeric filament 

during this step. Thus, we had to develop a model to take into account these effects. Consequently, our 

model has to consider the air, the substrate and the polymer at the same time. Our numerical model is 

based on three different steps. These steps must be conjugated together: 

 First step: Deposition of the material on the substrate.  
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In this first step, we will carry on Two-Phase Flow (TPF) numerical simulation. For numerical 

simulation of the material deposition, we have used the Two-Phase Flow with LevelSet method to follow 

the polymer front in the TPF-LS module of COMSOL software. In the previous chapter, we have 

thoroughly explained the principals and presented the equations of the TPF-LS method. By TPF 

simulation, we are able to model the interaction of air and polymer flow during FFF process. Hereby, 

we could determine the velocity field, volume fraction and rheological properties (shear rate and 

viscosity). This is a crucial step during our numerical simulation. Because in the FFF process, the 

polymer exits from the nozzle continuously. 

In this step, the free-form extruder, deposition of a single bead on the substrate and deposition of the 

second layer upon the first layer has been investigated.  

 Second step: Determination of heat transfers and temperature field in the model. 

Heat transfer is the most influential effect during the FFF process because it directly influences the 

viscosity of the polymer in the liquefier and also the crystallization during cooling. Consequently, it is 

essential to understand and to optimize heat transfers during the material deposition to be able to 

determine the variation of the viscosity and also to model the non-isothermal crystallization. We will 

implement a Partial Differential Equation (PDE) to our TPF-LS model in order to analyze and determine 

the evolution of heat transfers during deposition. 

 Third step: Determination of non-isothermal crystallization. 

The final step is to determine and model the kinetics of non-isothermal crystallization. The 

Nakamura non-isothermal crystallization equation has been implemented into our model as a PDE, after 

Nakamura’s parameters had been determined. In this step, we could determine the kinetics of 

crystallization during the FFF process. 

 

Figure 45: Representation of the followed steps in the Chapter 3 
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These three steps are presented in Figure 45. At the end of the first step, to validate our model for this 

step and the numerical simulation, we have studied the shear rate and viscosity of PLA and also the 

influence of the printing parameters on the stability of the deposited beads. The numerical results are 

compared to the experimental results. 

After the third step, by integration of the heat transfer and non-isothermal crystallization equations in 

our model, we are able to determine the kinetics of crystallization resulting in solidification in the FFF 

process.   

For the numerical simulation of heat transfer and crystallization study we have used  

In the first part of this Chapter we will explain our approaches for modeling the fluid flow and the 

material deposition. In the second part, we will concentrate on the quality of the extrudate when it exits 

from the nozzle. In this part, we will determine the shear rate of the polymer flowing from the nozzle, 

we will also study the influence of the shear rate on the shape of the extrudate according to the printing 

conditions. And finally, in the last part, we will study the crystallization kinetics and the temperature 

distribution of PEEK in the FFF process. In the last part of this section, we also aim to find the optimal 

environment temperature in order to promote the interdiffusion of deposited beads. Lastly, a study of 

the effect of die swelling applied to the printing conditions is exposed. 

3.2 From material deposition to crystallization in the FFF process  

The material deposition on the substrate during the FFF process is a complex phenomenon, therefore, 

the material deposition represents the most important part of our numerical simulations. 

TPF numerical simulation is a relatively heavy simulation because of the property gaps of two 

considered fluids (polymer and air). Consequently, prior to model the material deposition on the 

substrate, we will model the free-form material extrusion. 

 3.2.1 Free-form material extrusion 

Our initial approach to model the free-form extrusion is to model the material flow from the nozzle 

under the effect of a given velocity and gravity. The outlet velocity of the polymer from the liquefier in 

the free-form simulation is a function of the printing parameters such as height of the layer and feed 

rate. As it is represented in Figure 46, the simulation is based on axisymmetric simulation and the 

polymer flow exiting from the nozzle. In our model, there are two phases air and polymer melt. 

We have used the axisymmetric model for the following reasons:   

 Axisymmetric model is more time effective than 3D modeling. 

 2D model does not properly represent the real extrusion process of a droplet. 

 3D model is not suitable for validation part of our model (too heavy, and generate numerical 

instabilities). 

For our numerical model, we have used axisymmetric module of COMSOL for modelling the TPF 

simulation. Furthermore, to implement the heat transfer and crystallization equations to the model, two 

PDE (Partial Differential Equation) have been added to the model. 

The boundary condition of the TPF simulation is represented in Figure 46. 
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Figure 46: The schematic representation of the boundary condition for TPF numerical of free-form extrusion 

In the first approach, the sensibility of free-form extrusion to viscosity has been carried out. 1 Pa.s, 

7000 Pa.s, 11000 Pa.s and shear rate-dependent viscosity have been selected. The evolution of volume 

fraction for different viscosities is represented in Figure 47. 

For the shear rate-dependent viscosity, the viscosity has been defined as a Carreau model (eq. 64) for 

PEEK (Table 12). 

Meshing of the model highly influences on the quality of the results. Primarily, the interface of 

polymer/air highly depends on the size of the meshes. Furthermore, non-uniform meshes with big size 

of the meshes also influence on the results of the simulation. In the Annex V we have represented some 

numerical errors generated by not-appropriate meshing. 

 

 

Figure 47: Influence of the viscosity on the behavior of the extruding polymer (a) Constant viscosity = 1 Pa.s (b) Shear 

rate-dependent viscosity (c) Constant temperature = 7000 Pa.s, (d) Constant viscosity =11000 Pa.s 
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As it is represented in Figure 47, the viscosity of polymer highly influences on the shape of extrudate 

exiting from the nozzle. While at the low viscosity, the fluid has the tendency to make a droplet around 

the nozzle due to surface tension; at higher viscosities, the polymer flows from the nozzle and makes 

the extrudate. At high viscosities (7000 and 11000 Pa.s), the variation of the shape seems negligible. 

After modelling the free-form extrusion, we will add the heat transfer equation to the model in order to 

determine the variation of temperature. 

3.2.2 Heat transfer of free-form material extrusion 

To determine the heat transfer in the flow simulation, a partial differential equation (PDE) [145] has 

been added to the model. eq. 56 shows the advection-diffusion equation for determining the variation of 

the temperature in our model considering the fluid flow in the system: 

𝝏𝑻𝑺

𝝏𝒕
+ (�⃗⃗� . 𝜵)𝑻𝑺 = 𝛀.𝜵𝟐𝑻𝑺 

 

 

eq. 56 

 

𝜴 = (
𝝀

𝝆𝑪𝒑
) 

 

 

eq. 57 

 

Where T is the temperature and �⃗�  is the fluid velocity field. Here, the fluid velocity is the term that links 

the heat transfer equation to TPF simulation, 𝜆 is the thermal conductivity, ρ is the density and Cp is the 

heat capacity of the fluid. The term Ω represents the thermal diffusivity of the material. 

To take into account the metallic parts of the nozzle and the substrate in the model, the velocity term in 

the eq. 56 is equal to zero. 

We have determined the thermal conductivity and thermal diffusivity of PEEK according to temperature 

in the range 25 °C to 225 °C. The results are presented in Figure 24 in Chapter 2. 

The boundary conditions used for modeling the heat transfer in free-form extrusion is represented in 

Figure 48. In the heat transfer numerical simulation the heat transferred by convection is neglected. 

 

Figure 48: Boundary conditions used for modeling the heat transfer during free-form extruder 

 

In the first approach to determine the heat transfer during free-form extrusion, we had to define a law in 

order to define the thermal diffusivity for each phase and mixed phases. A volume fraction (𝝋) 

dependent equation has been defined to clarify the properties of the interface between air and polymer.  

At the first time, the method based on the mixing law has been defined for the thermal diffusivity 

(density, conductivity and specific heat). Mixing law for the thermal diffusivity is described by eq. 58: 
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𝜴 = 𝝋𝜴𝒑𝒐𝒍𝒚𝒎𝒆𝒓 + (𝟏 − 𝝋)𝜴𝒂𝒊𝒓  

 

eq. 58 

Where φ is volume fraction and Ωpolymer and Ωair are the thermal diffusivity of polymer and air 

respectively. 

The results of simulation of heat transfer for the fluid with low viscosity (1 Pa.s) exiting from the nozzle 

is represented in Figure 49. 

 

Figure 49: The free-form extruder for relatively low viscosity fluid (a) volume fraction (b) temperature field 

The results for the heat transfer show that after 2 seconds, the center of the polymer extrudate is still at 

the melting temperature, while close to the interface the temperature of the extrudate is reduced.  

By adding the heat transfer to the free-form extruder model, we are able to determine the temperature 

dependent viscosity. Figure 50 shows the results of volume fraction for the temperature-dependent 

viscosity. 
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Figure 50: Determination of the temperature-dependent viscosity (a) Volume fraction, (b) Temperature field, (c) 

viscosity field 

Figure 51 shows the variation of volume fraction, temperature and viscosity of the polymer along the 

cutting line for extruding process at time t = 3 s. At the center point of the polymer, the viscosity is the 

viscosity of the melted polymer (about 104 Pa.s) and in the other extremity of the line (about at 5 mm), 

the viscosity of the system is the viscosity of the air. On the line, the increase of viscosity is visible, the 

source of this increase of viscosity is due to the cooling of polymer which occurred during the process. 

On the other hand, as it is represented in this figure, the interface, the polymer/air boundary, seems to 

be large which is far from the real condition. It has been already mentioned that the boundary of two 

phases in the LS method is where the volume fraction is 0.5. The theoretical boundary of the two phases 

is represented by the dash line in the graph and the arrow in the image (Figure 51). Obtained results for 

the temperature field in Figure 50 by mixing law thermal diffusivity seem that the cooling rate is too 

fast ( the cooling rate is more than 100 ℃.s-1).  

The results in Figure 51 for the volume fraction of free-form extruder shows that the interface of the air 

and polymer is relatively wide. A wide interface of the phases will influence on the precision of the 

simulation not only for the volume fraction but also for the heat transfer (mainly because we have 

defined the thermal diffusivity as an mixing law) and the viscosity estimation. Consequently, to make 

the simulation more accurate, we have to reduce this interface. For reducing the interface, we can use 

two options: 
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 Reducing the value of  휀𝑙𝑠 (the parameter controlling the interfacial thickness) in the LS equation 

(eq. 47 in chapter 2) 

Worth to mention, applying these approaches highly increases the calculation time of the simulation. 

 

 

Figure 51: The values of volume fraction, temperature and viscosity during the free-form extruder 

3.2.3 Deposition of the filaments 

After modeling the free-form extrusion, and determining the heat transfer in the model, we will study 

the material deposition on the substrate. In section 3.4, we point out the simulation of the material 

deposition on the substrate. The results for the deposition of the first layer on the substrate are 

represented in Figure 52, Figure 53 and Figure 87. As it could be concluded from the results, narrower 

is the interface between the two phases, more accurate are the results of simulation. 

In the FFF process, the part is manufactured layer by layer. Thus, being able to model the deposition of 

a layer material on the another layer just deposited is a step forwards modeling the FFF process.  

We have modeled the material deposition in 2D. In 2D simulation, the axis are x and y. In the model, 

the nozzle is fixed and the substrate is mobile, we impose a constant speed boundary condition. 

However, we have a problem for the movement in the vertical direction to model the deposition of the 

second layer. Consequently, we have to find another approach to deposit the second layer. For this 

reason, it has been decided to add another nozzle to perform the second layer deposition. Figure 52 

shows the deposition of the polymer on the substrate at different times. As it is represented in the image, 

the second nozzle lays down the second layer on the first layer from 2.60 s. This modified configuration 

enables us to observe the behavior of the first layer when we suppose to add another layer on it. 

However, adding another nozzle to model, make the model more complicated and heavier to build. 

Figure 53 shows the influence of the viscosity on the shape of the deposited layers. Different viscosities 

have been selected for this simulation: 100 Pa.s, 500 Pa.s, 1000 Pa.s and 5000 Pa.s. All of the 

simulations present 5 seconds of deposition. 
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Figure 52: Deposition of two consecutive layers  
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Figure 53: Deposition, at 5s, of the two layers for different viscosities 
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Figure 54: Detail view of two layer deposition 

The interface of two layers is represented in Figure 54. The results for the viscosities from 100 Pa.s up 

to 5000 Pa.s show that, increasing the viscosity increases the gap between the two layers. The 

interdiffusion of the two layers is more evident for the viscosity of 100 to 1000 Pa.s. As consequence, 

in order to increase interdiffusion of two layers together we have to reduce the viscosity. In order to 
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decrease the viscosity, we could increase the temperature or increase the inlet velocity of the filament 

in the liquefier. In both of the cases, we have to take into account the degradation of the polymer at high 

temperature and flow instability at higher inlet velocity (high shear rate).  

In all cases, the same amount of material is deposited on the layer. We have selected the inlet as inlet 

velocity (It is also possible to select the inlet as pressure).  

3.2.4 Determination of the heat transfer during deposition of two layers  

PDE equation has been added to the model in order to determine the heat transfer during the material 

deposition. Thermal diffusivity of air and polymer must be properly assign to each of them. For that 

reason, we have tried two other methods for describing the thermal diffusivity for the models. Hereby, 

we will explain our methodology to properly assign the thermal diffusivity to each phases: 

As we have explained in the  eq. 58 for the first approach as we have used the mixing law for thermal 

diffusivity.  

Our second approach for the thermal diffusivity is defining a step function (eq. 59). 

 

𝑰𝒇 𝝋 ≤ 𝟎. 𝟓 𝒕𝒉𝒆𝒏 𝜴 = 𝜴𝒂𝒊𝒓 𝒆𝒍𝒔𝒆 𝜴 = 𝜴𝒑𝒐𝒍𝒚𝒎𝒆𝒓  eq. 59 

 

 

By defining assignment of the thermal diffusivity as a step function, the thermal property sharply 

changes from on phase to the other phase which could generate numerical errors. 

And finally, the thermal diffusivity has been inserted as a combination of both methods. In this approach, 

the density and specific heat have been introduced as an mixing law and the thermal conductivity has 

been introduced in the model as the step function. The results for all the three approaches for the heat 

transfer at t=3s of the material deposition is represented in Figure 55. 

 

 

Figure 55: Heat transfer according to the different definitions of thermal diffusivity (a) additively law defined thermal 

diffusivity, (b) thermal diffusivity introduced as a step function, (c) thermal diffusivity introduced as a combination of 

additively law and step function. 
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The results represented in Figure 55 (a) for the additively defined law show that the cooling rate is very 

fast. For the mixing law defined thermal diffusivity, temperature decreases more than 100 ℃.s-1  Indeed, 

in this case, the thermal diffusivity does not assign properly to the desired phases (the thermal diffusivity 

of the air is slightly less than real value of the thermal diffusivity of the air and thermal diffusivity of 

the polymer is higher than real value. This means the thermal diffusivity of the two phases are close 

together and are not real value of the thermal diffusivity of air and polymer). Consequently, the obtained 

results do not represent the reality. The results in Figure 55 (b) show that contrary to the additively 

defined thermal diffusivity, in the case of the step function, the thermal diffusivity has been properly 

assigned to each phase. However, in this case, the numerical errors occur in the model. In order to reduce 

the numerical errors and properly define the thermal diffusivity of each phase, we have decided to 

combine both approaches together. The results obtained for the combined approach in Figure 55 (c) 

shows that, in this case, we have reduced the numerical errors and in the same time, we have properly 

assigned the thermal diffusivity to each phase. Furthermore, the obtained results, in this case, are very 

close to the case when we have defined the thermal diffusivity as the step function. Consequently, a 

combined method has been used to assign the thermal diffusivity to the phases.  

For the following numerical simulations of the material deposition on the substrate we will use the mixed 

method for the thermal diffusivity. However, we won’t apply this method for the previous numerical 

simulation on free-form extrusion as it takes very long time. 

3.2.5 Crystallization study 

After integration of the heat transfer equation to our deposition model, we could go to the third step 

which is the determination of the kinetics of crystallization in the FFF process. This step is crucial in 

the case of a semi-crystalline polymer because, there is non-isothermal crystallization during deposition. 

The gradual deposition of the material makes the numerical simulation more complicated. 

Our studies on the kinetics of crystallization is based on the non-isothermal crystallization equation of 

Nakamura [146]. According to Nakamura et al. [146], the percentage of the transformed phase from an 

amorphous state to the crystalline phase in a semi-crystalline polymer at non-isothermal condition could 

be obtained using eq. 60: 

𝒅𝜶

𝒅𝒕
= 𝒏𝑲(𝑻)(𝟏 − 𝜶) [𝒍𝒏 (

𝟏

𝟏 − 𝜶
)]

𝒏−𝟏
𝒏

 

 

 

eq. 60 

 

Where 𝛼 is the transformed fraction of the polymer into the crystalline state, t is time, n is Avrami 

exponent, the same as the Avrami exponent in the isothermal study and K(T) is the Nakamura kinetics 

of crystallization coefficient. K(T) is a temperature dependent term in Nakamura equation. 

Levy has applied non-isothermal crystallization equation of Nakamura to COMSOL [147]. Levy applied 

the Nakamura equation to determine the kinetics of crystallization of solid object in PEEK 150P and he 

proposed a COMSOL module in order to determine the kinetics of crystallization for the solid object.  

However, his module is not directly suitable for the FFF process because it does not consider the velocity 

of the fluids. In order to apply the model to the fluids, we have added the convection term (presented in 

eq. 103) to the Nakamura equation to include the velocity of the fluids. We have to clarify that hereby 

the convective term is the term that take into account the velocity of the fluid in the system (or transport 

of the crystalline phases during the fluid flow) and must not be confused with the conduction and 

convection notion in the heat transfer study. 
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The Nakamura equation presents a singular derivative at the vicinity of α = 0 and α = 1. Therefore, a 

modification of the Nakamura function is proposed by extrapolating it below αmin = 0.01 and above 

αmax = 0.99 (the influence of these values could be studied). These modifications ensure: 

(i) a robust numerical integration by forcing real values of G when α is not in the interval [0,1], and 

(ii) forces an artificial germination when α = 0. 

In the section 3.4, we will explain in more detail our approach to study the kinetics of crystallization in 

the FFF process. 

3.3 Influence of printing parameters on the stability of deposited beads in fused 

filament fabrication of poly (lactic) acid 

3.3.1 Importance of determining the shear rate and viscosity in the FFF process 

As we have explained previously, the determination of the rheological properties of polymers such as 

shear rates, viscosity and the density in the FFF process are very important in order to improve the 

quality of the printed parts.  

After achieving our initial studies on modelling the free-form extruder (presented in section 3.2) we will 

apply our model to the case of FFF in order to study the rheological properties and stability of the 

extrudate exiting from the nozzle. As explained in the diagram of Figure 56, the printing parameters (i.e. 

nozzle diameter, feed rate and layer height) affect the inlet velocity in the liquefier and therefore the 

shear rate. On the basis of the shear rate in the liquefier and the physical properties of the polymer 

(thermal transitions and rheological behavior), the viscosity field and the extrudate shape are predicted.  

 

Figure 56: Diagram of the printing parameter effects and physical properties of the polymer on the mechanical 

properties of printed parts 

The temperature of the heater is also used as one of the printing parameters, but it is not mentioned in 

the diagram because it does not directly affect the inlet velocity field. The present section aims to link 

the printing parameters and the physical properties of the polymer to the viscosity and the shape of the 

filament at the exit of the nozzle. The originality of our study is to propose a time-dependent numerical 

approach that also addresses the changes in the rheological properties with respect to the changes in the 

shear rate and temperature. In this work, the poly(lactic) acid (PLA) was selected. In the first part, the 

physical properties (thermal transitions and rheological) of the PLA were determined. In the second part, 

a relation was proposed to determine the inlet velocity of the polymeric filament in the liquefier 

according to the printing parameters (i.e. nozzle diameter, feed rate and layer thickness). Then, the 
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velocity field, shear rate field and viscosity of the PLA for the printing parameters were determined via 

numerical simulation and analytical study. Finally, the influence of the shear rate on the extrudate shape 

was investigated via experiments and numerical simulation. 

3.3.2 Experimental set up 

Measuring the pressure and shear rate are not feasible in commercial 3D and RepRap printers. Therefore, 

a laboratory extruder was used to study experimentally the fluid flow in a printer as close as feasible. 

This experimental study was conducted using an extruder system from ThermoFisher Company. As 

shown in Figure 57(a), the extruder has three units: 

- The driver unit is a HAAKE PolyLab OS (not shown in Figure 57). 

- The extruder unit is HAAKE Rheomex OS equipped with a single screw with a maximum rotating 

speed of 150 rpm. 

- A gear pump, that is, HAAKE Melt pump OS with a maximum speed of 75 rpm. 

At the outlet of the extruder, a 0.5 mm diameter die is used to represent the nozzle; its geometry is shown 

in Figure 57(b). 

 

Figure 57: (a) Extruder system used for the experimental study. (b) Scheme of the 0.5-mm diameter nozzle 

3.3.3 Rheological investigation of the polymer flow in the liquefier via analytical study 

When the printing conditions, such as nozzle diameter and feed rate, vary, the inlet velocity and hence 

the shear rate change. Consequently, the viscosity of the fluid is also changed. Therefore, determining 

these properties and the influence of their variations on the quality of the manufactured part is important. 

The experimental observations have revealed that a higher viscosity results in liquefier clogging and a 

low viscosity causes inaccurate dimensions, low quality of the deposited filament and liquefier leakage. 

The filament undergoes temperature variations during the process and the temperature distribution 

directly influences the viscosity of the polymer.  

All melted thermoplastic polymers demonstrate a shear-thinning behavior. The viscosity of shear-

thinning fluids changes with temperature and shear rate, and the latter is related to the inlet velocity of 

the fluid in the liquefier. In the present section, the analytical equations for determining the variation of 

the viscosity in the liquefier for non-Newtonian fluids are explained. 

For non-Newtonian fluids, the viscosity can be expressed in the most convenient form of a power law 

or by using the Carreau–Yasuda model which considers the Newtonian plateau at low shear rates. The 
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viscosity according to the shear rate is expressed by eq. 61, following the power law equation 

[112][113]. 

𝜼 = 𝑲|�̇�|𝒏−𝟏 𝒇𝒐𝒓 𝒔𝒉𝒆𝒂𝒓 − 𝒕𝒉𝒊𝒏𝒏𝒊𝒏𝒈 𝒇𝒍𝒖𝒊𝒅𝒔 (𝒏 < 𝟏) eq. 61 

 

Where n is the pseudoplasticity index, K is the consistency coefficient and �̇� is the shear rate. By 

reversing the pseudoplasticity index, the fluidity constant 𝜑 is determined using eq. 62 and eq. 63. The 

parameter n, called ‘the pseudoplasticity index’, is the slope of the viscosity versus the shear rate curve. 

When the pseudoplasticity is above 1, the fluid exhibits a shear-thickening behavior. When the 

pseudoplasticity index is below 1, the fluid exhibits a shear-thinning behavior, where K is the viscosity 

at the shear rate of 1 s-1. The reciprocal of viscosity is generally called “fluidity”. 

𝒏 =
𝟏

𝒎
 

eq. 62 

 

𝑲 = 𝝋−
𝟏
𝒎 

eq. 63 

 

The fluidity constant 𝝋 represents the ability of the fluid to flow. Meanwhile, the viscosity of non-

Newtonian fluid can be expressed as the Carreau–Yasuda model, which is presented in eq. 64. 

𝜼 = 𝜼𝒊𝒏𝒇 + (𝜼𝟎 − 𝜼𝒊𝒏𝒇)[𝟏 + (𝝀�̇�)𝒂]
𝒏−𝟏

𝒂 , 
eq. 64 

 

where 𝜂0 is the viscosity of the fluid at zero shear rate, 𝜂𝑖𝑛𝑓 is the viscosity of the fluid at infinite shear 

rate, λ is the relaxation time index, n is the power index, a is a dimensionless parameter describing the 

transition between the first Newtonian plateau and the power law zone and �̇� the shear rate. Irrespective 

of whether the equation is based on the power law or the Carreau–Yasuda model, the viscosity decreases 

when the shear rate increases. The shear rate dependency varies with the nature of the polymer, the 

temperature and the velocity field in the geometry. Furthermore, the temperature is regarded as constant 

with time at a fixed point in the FFF system. 

For a shear-thinning fluid, the flow in the extruder is a Hagen–Poiseuille flow. Thus, the flow has a 

parabolic shape, implying that the velocity attains its maximum value at the center of the nozzle. 

Meanwhile, the value of the velocity field near the internal wall is zero. For non-Newtonian fluid, the 

fluid velocity can be determined using eq. 65 [148]. 

𝒖(𝒓) =
𝟑𝒏 + 𝟏

𝒏 + 𝟏
�̅� [𝟏 − (

𝒓

𝑹
)

(𝟏+𝒏)
𝒏

] 

 

eq. 65 

 

Where �̅� is the average inlet velocity of the fluid in the liquefier, r is the distance from the center of the 

nozzle, R is the nozzle radius and n is the power index in the Carreau–Yasuda model. The shear rate is 

determined by determining the velocity based on the radius of the internal nozzle diameter, which can 

be expressed in eq. 66. 

�̇� =
𝒅𝒖

𝒅𝒓
=

𝟑𝒏 + 𝟏

𝒏𝑹
�̅� [(

𝒓

𝑹
)

𝟏+𝒏
𝒏

−𝟏

] 

 

eq. 66 

Finally, the maximum shear rate, located at the internal wall of the nozzle, is obtained using eq. 67. 
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𝜸�̇� =
𝟖(𝟑𝒏+𝟏)𝑸

𝒏∗𝝅(𝟐𝑹)𝟑
=

(𝟑𝒏+𝟏)�̅�

𝒏𝑹
, 

eq. 67 

 

where 𝑄 is the volumetric flow rate and R is the maximum radius of the nozzle.  

The viscosity curves of PLA in Figure 29 in Chapter 2 were fitted with the Carreau–Yasuda equation 

by using Origin software. The terms of the Carreau–Yasuda equation for the investigated temperatures 

are presented in Table 10. The Carreau–Yasuda model with these terms was implemented in the software 

to determine the flow properties in the liquefier. 

Table 10: Values of terms of Carreau–Yasuda model for the viscosity curve fitting 

 175°C 185°C 195°C 205°C 
𝜼𝟎 5169  5 2480  14 1945  16 726  6 

𝜼𝒊𝒏𝒇 0 0 0 0 

𝝀 0.048  0.02 0.09  0.5 0.08  0.02 0.05  0.01 

a 0.82   0.3 1.6  0.8 1.931  0.5 2.60  0.01 

n 0.52  0.3 0.7  0.3 0.693  0.2 0.79  0.11 

3.3.4 Inlet velocity in the liquefier 

Our optical observations and empirical investigations of the shape of the deposited beads revealed that 

the shape of the section of the filament was changed from the initial circular to an elongated oval shape 

during printing depending on the printing parameters. Figure 58 shows the final cross section of a 

deposited bead. The height of a layer, h, is one of the printing parameters.  

 

Figure 58: Cross section of a deposited bead 

Considering the volume conservative law, the volume of the deposited bead was identical to that of the 

material exiting from the nozzle. Consequently, the inlet velocity of the polymer in the liquefier can be 

obtained as a function of the printing parameters, as expressed by equation eq. 68. 

𝒗 =
𝟒𝒇

𝝅𝑫𝟐
(𝒘𝒉 +

𝝅𝒉𝟐

𝟒
) 

 

eq. 68 

 

where v is the inlet velocity of the polymer in the liquefier, h is the height of the deposited segment, f is 

the feed rate, D is the nozzle diameter and w is the width of the deposited segment. In most printers, the 

nozzle diameter is 0.3 mm or 0.5 mm. A nozzle of 0.5 mm diameter was selected for our experimental 

study. The printing parameters selected for this study are presented in Table 11.  

Table 11: Values of the printing parameters 

Notations Printing parameters Values and units 

D Diameter of the nozzle  0.5 mm 
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H Height of the layer 0.7 mm 

F Feed rate 30 mm·s-1 

w Width of the bead 0.5 mm 

 

3.3.5 Shear rate and viscosity of the polymer in the liquefier 

The average inlet velocity (𝑣) was determined using eq. 68 according to the printing parameters 

presented in Table 11. The inlet velocity field, shear rate field and viscosity of the polymer in the 

liquefier were determined via numerical simulation and analytical study for T = 195 °C and a flow rate 

of 18.5 cm3·s-1 according to the average inlet velocity. 

The experimental study revealed that the PLA flows easily at temperatures higher than 200 °C. At lower 

temperatures (i.e. 175 °C), the PLA undergoes partial melting of the polymer pellets in the extruder 

screw, resulting in the blending of fluid and solid polymers. The DSC curve in Figure 19 in Chapter 2 

shows that PLA was completely melted at 180 °C. At 185 °C, the polymer was melted but the viscosity 

remains very high. Consequently, a high torque was applied to induce the PLA flowing, which exceeded 

the limit of the apparatus. Moreover, in the RepRap open-source printers, the printing temperature was 

commonly 195 °C. Hence, the printing temperature of 195 °C was selected for the experiment, as 

described in the present section. 

Figure 59 highlights the influence of the nozzle diameter (one of the printing parameters) on the inlet 

velocity, shear rate and viscosity in the liquefier at T = 195 °C. The results obtained via numerical 

simulation and analytical studies were consistent. For example, at a fixed flow rate and temperature, the 

inlet velocity and shear rate varied from 4 to 484 mm·s-1 and from 27 to 7800 s-1, respectively, when the 

nozzle diameter was changed from 2 mm to 0.3 mm. Similarly, the nozzle diameter highly influences 

the viscosity. The maximum value of the viscosity was determined to be 1850 Pa·s (nozzle diameter of 

2 mm), whereas the minimum value of the viscosity was 295 Pa·s (nozzle diameter of 0.3 mm). 

 

Figure 59: Influence of nozzle diameter on inlet velocity, shear rate and viscosity of the PLA at T = 195 °C 

Figure 60 shows the distribution of the inlet velocity, shear rate and viscosity fields for the nozzle 

diameter of 0.5 mm. The distribution of the velocity in the liquefier (assimilated to a tube) exhibited a 

large difference between the maximum at the center of the liquefier (160 mm·s-1) and minimum values 

near the internal wall (zero). The value zero was expected as it corresponds to the imposed condition of 
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adhesion at the wall of the tube (no slip condition). The shear rate changes from zero at the center of the 

liquefier to 1600 s-1 near the internal surface of the liquefier. Consequently, near the internal wall, the 

viscosity reaches its minimum value of approximately 400 Pa.s, whereas at the center of the tube, the 

viscosity is at its maximum value, that is, approximately 1900 Pa.s. Hence, the results obtained via 

numerical simulation are in good agreement with that obtained via analytical studies.  

The viscosity variation from the internal wall up to the center of the liquefier is rapid because the 

viscosity at the center of the liquefier was at its Newtonian plateau. Moreover, the profile of the shear 

rate of the material in the liquefier has a parabolic shape. The viscosity near the internal wall of the 

nozzle is at its minimum value, whereas at the center of the nozzle, the viscosity reaches its maximum 

value. The parabolic shape of the shear rate profile illustrates the shear-thinning behavior of the PLA 

according to equation eq. 67. 

 

Figure 60: Distribution of velocity field, shear rate and viscosity in the liquefier determined via numerical simulation 

and analytical study 

We now focus on the variation of the viscosity in the liquefier with respect to the distance from the 

center of the nozzle. The numerical simulation revealed that when the temperature increases, the 

maximum value of the shear rate value decreases. 
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Figure 61: Distribution of the viscosity along the radius in the liquefier at various temperatures 

Figure 61 shows the viscosity variation in the liquefier according to the distance from the center of the 

nozzle at various temperatures for an inlet velocity of 95 mm·s-1. Irrespective of the temperature, the 

fluid demonstrates a shear-thinning behavior. A comparison of the viscosity of the polymer at high 

temperature (205 °C) and at low temperature (175 °C) for the same inlet velocity and nozzle diameter 

revealed that when the temperature increases, the difference between the maximum and minimum values 

of the viscosity decreases. Hence, for T = 175 °C, the difference between the maximum and minimum 

viscosity was approximately 2800 Pa·s, whereas for T = 205 °C, this difference was approximately 

400 Pa·s. Interestingly, for temperatures higher than 200 °C, the variation of the viscosity according to 

the shear rate was weak, as shown in Figure 60. For example, at 205 °C, when the polymer flows easily, 

the maximum viscosity at its Newtonian plateau was approximately 700 Pa·s, whereas at very high shear 

rates (more than 1000 s-1), it was approximately 400 Pa·s. 

High fluidity of the polymer at very low viscosities directly influences the quality of the printed parts. 

Although at the low viscosity, the coalescence of the beads would be better because the macromolecules 

exhibit higher mobility required to diffuse and to create entanglements. However, high fluidity results 

in low accuracy during the deposition of the beads. A deposited bead undergoes creep phenomena under 

influence of its weight right after exiting from the nozzle at low viscosities, thereby causing low 

dimensional accuracy of printed parts, especially during creation of the holes and bridges. At high 

temperature, when the viscosity is excessively low, extra-supports of the parts are necessary to print 

complex shapes. 

3.3.6 Influence of shear rate on extrudate shapes 

The polymer flow from the nozzle was regulated by controlling the speed of the pump during the 

experimental tests. Consequently, to precisely determine the shear rate, the weight flow rate was 

measured by cutting the extrudates at a constant time lapse. Then, the extrudates were weighted. By 

using the density of the PLA (1.25 g·mm-3), the weight flow rate was converted to volumetric flow rate. 

Finally, the volumetric flow rate was converted to the shear rate and inlet velocity by using eq. 65 and 

eq. 67. 

An identical procedure was applied for various pump speeds. Thereafter, the extrudates were observed 

under an optical microscope. The images of the extrudates obtained at the different inlet velocities and 
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shear rates at an isotherm of 195°C are presented in Figure 62. The shape of the extrudates obtained via 

experimental study and numerical simulation were compared. 

The influence of the shear rate on the shape of the extrudates was determined from 1200 s-1 to more than 

5000 s-1. The optical observations revealed that for the lowest shear rates, the shape of the extrudate was 

cylindrical with a smooth surface, whereas at higher shear rates and inlet velocities, deformations were 

observed on the surface. The limit appeared to be approximately 4000 s-1. Below this value, the shape 

of the extrudate became regular, whereas when the shear exceeded 4000 s-1, the flow was unstable, and 

the extrudate displayed defects. At 4100 s-1, some macroscopic instability was observed on the 

extrudate. At high shear stresses, the contour of the stream changed abruptly from that of a cylinder to 

an irregular shape. As the shear rate increases beyond the critical rate, at which the change in shape 

occurred, the degree of irregularity of the emerging stream increases [149]. 

As shown in Figure 62, the numerical simulation presents the volume fraction field of the fluid in the 

system. Note that the value of the color function goes from 1 (i.e. red), the polymer, to 0 (i.e. blue), the 

air. The interface of the two fluids is considered to be 0.5. The results of the TPF numerical simulations 

revealed that at higher inlet velocities and shear rates, certain instability of the polymer flow was 

observed. This result is consistent with the experimental observations. When the inlet velocity was 

below 145 mm.s-1, the polymer flow was stable and no deformation of the extrudate was observed. When 

the inlet velocity was increased, some instabilities were observed. At the inlet velocity of 232 mm s-1, 

the maximum shear rate in the system attained 2763 s-1. At this shear rate, instabilities were observed, 

appearing under wavy flow. Therefore, the numerical simulation reliably recreated the experimentally 

observed instabilities. By comparing the instability and wavy shape of the extrudate at the maximum 

shear rate equal to 2763 s-1 with the shape of the extrudate at higher shear rates, these instabilities were 

apparently thinner than those at higher shear rates. Thus, increasing the inlet velocity and shear rate 

highly influenced the stability and wavy shape of the extrudates owing to the variation in the shear rate 

and viscosity of the polymer along the liquefier radius. The difference between the viscosity at the center 

and near the internal wall of the liquefier was high, thereby causing high extensional stress when the 

profile exits from the nozzle. This ‘sharkskin’ effect on the extrudate is typically observed for the 

extrusion of polymers [149] [150][151]. The ‘sharkskin’ is a defect that occurs as deep cracks on the 

surface of the extrudate. These cracks are forming during stress relaxation, causing a rough surface.  
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Figure 62: Influence of inlet velocity and shear rate on the shape of the extrudate exiting from the nozzle with a 

diameter of 0.5 mm 

 

Based on the previous results, the following conditions are recommended for printing PLA:  

The printing temperature must be higher than 190 °C to ensure a completely melted filament in the 

liquefier and prevent the clogging of the liquefier. However, the maximum temperature for printing must 

not exceed 210 °C. At temperatures higher than 210 °C, the viscosity of the polymer was excessively 

low, causing severe deformation during printing and degradation of the polymer. Moreover, the 

variation in the shear rate along the nozzle diameter should be reduced because it results in flow 

instabilities. We have observed that to achieve this condition, the temperature should be higher than 190 

°C. Therefore, the recommended temperature is 200 °C. 
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To reduce the flow instabilities and surface defects, the shear rate during printing must be below 4000 s-1. 

The nozzle diameter highly influences the shear rate. That is, increasing the nozzle diameter decreases 

the shear rate. However, the nozzle diameter influences the roughness (surface quality) and precision of 

the manufactured parts. Increasing the nozzle diameter reduces the precision of the printed part. 

Therefore, to reduce the fluid instability and maintain the precision of the printed parts, a nozzle diameter 

of 0.4 mm or 0.5 mm is recommended.  

The volume flow rate was determined on the basis of the feed rate and the geometry of the deposited 

bead, such as the height of the layer and width of the deposited bead. Therefore, the height of the 

deposited bead must not exceed 0.4 mm, and the feed rate must be below 30 mm·s-1.  

3.4 Determination of the die swelling for PEEK 

From experimental tests, the observations show that the diameter of the extrudate increases right after 

exiting from the nozzle. This phenomenon is commonly known as die swelling phenomenon or Barus 

effect. The die swelling phenomenon is related to the equilibrium of the velocity profile and the 

viscoelastic behavior of the polymer. 

3.4.1 Theoretical basis of the die swelling 

Tanner [152] has proposed an analytical equation in order to determine the die swelling in extrusion in 

the case of infinite capillary. His model is based on the imposed recoverable strain by normal stress. The 

swelling ratio according to Tanner for infinite capillary is represented in eq. 69.                                                                                                                                                                                            

𝑩 = [𝟏 +
𝟏

𝟐
(

𝑵𝟏

𝟐𝝉𝒘
)
𝟐

]

𝟏
𝟔

 

 

eq. 69 

Where B is the die swelling ratio, 𝑁1 is the normal stress and 𝜏𝑤 is the shear stress near the wall. B and  

𝑁1 could be determined using eq. 70 and eq. 71 respectively. 

𝑩 =
𝒅𝒆

𝒅
 

eq. 70 

 

𝑵𝟏 =
𝟐

𝟑
𝝉𝒘 [(𝑩)𝟒 +

𝟐

(𝑩)𝟐
]

𝟏
𝟐
 

 

eq. 71 

 

Where D is the diameter of the extrudate and d is the nozzle diameter. Determining 𝑁1 by eq. 71 is done 

by experimental study. 

 
𝑁1

2𝜏𝑤
 ratio is the Weissenberg Number. The Weissenberg number (Wi) is a dimensionless number used 

in the study of viscoelastic flows [153]. The Weissenberg number characterizes the ratio of the elastic 

stress to viscous stress. The Weissenberg number could be determined using eq. 72 [154]: 

𝑾𝒊 =
𝑬𝒍𝒂𝒔𝒕𝒊𝒄 𝒇𝒐𝒓𝒄𝒆

𝑽𝒊𝒔𝒄𝒐𝒖𝒔 𝒇𝒐𝒓𝒄𝒆
=

𝝈𝒙𝒙 − 𝝈𝒚𝒚

𝝉𝒙𝒚
=

𝜼𝝀�̇�𝟐

𝜼�̇�
= �̇�𝒕𝒘 

eq. 72 

 

Where 𝜎𝑥𝑥 and 𝜎𝑦𝑦 are the principal stresses, �̇� is the shear rate , 𝜏𝑥𝑦 is the shear stress, 𝜂 is viscosity 

and 𝒕𝒘 is the relaxation time of the polymer. 

The Tanner equation assumes that the length of the capillary nozzle is infinite (long capillary), which 

means when the polymer exits from the nozzle, it is fully relaxed. However, his assumptions are not 
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valid if the capillary is short. In this case, the entry flow is more complicated ( the molecular chains are 

still under effect of diameter changing) and the entry effect is more prominent [155]. Consequently, 

Liang has described the die swell for the short capillary as  eq. 73. 

𝑩 = (𝟏 + 𝝀𝒍𝑺𝑹)
𝟏
𝟐 

eq. 73 

 

Where 𝑆𝑅 is recoverable shear stress exists in the eq. 69 which could determine by Weissenberg Number 

and 𝜆𝑙 is the elastic strain induced by the stored energy in the capillary reservoir. 𝑆𝑅 and 𝜆𝑙 are 

determined by using eq. 74 and eq. 75. 

𝑺𝑹 = (
𝑵𝟏

𝟐𝝉𝒘
)
𝟏
𝟐 

eq. 74 

 

𝛌𝐥 = 𝟎. 𝟓 𝐭𝐚𝐧𝛂𝟎 eq. 75 

 

𝛼0 is the half-entry convergence angle. The convergence angle is the angle creates by the fluid flow and 

the nozzle wall, as shown in the scheme in Figure 63. 

 

Figure 63: Representation of the die swelling and convergence angle in the extrusion 

The half-entry convergence angle is dependent to the pressure loss, the viscoelastic behavior and the 

geometry of the reservoir. 𝛼0 is determined by eq. 76 and eq. 77. 

𝐭𝐚𝐧𝜶𝟎 =
𝟏

𝒆
[
𝟒(𝟏 −

𝟏
𝑩

𝟏.𝟓(𝒏+𝟏)

)

𝟑(𝒏 + 𝟏𝟎)
+

𝟐𝝃((𝑩)𝟏.𝟓(𝒏+𝟏) − 𝟏)

𝟑(𝟏 − 𝒏)
] 

eq. 76 

 

 

Where 𝐷 is the diameter of the reservoir, d is the capillary diameter, n is the pseudoplasticity index, 𝜉 is 

the pressure loss coefficient and e is the Bagley entrance correction factor. Bagley factor could be 

determined from the pressure loss during the process. 

𝟏

𝒆
=

∆𝑷

𝟐𝝉𝒘
 

eq. 77 
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According to Cogswell [156], the half-entry convergence for a laminar flow is a dependent function of 

viscosity and extensional viscosity (eq. 78) . 

𝐭𝐚𝐧𝜶𝟎 = √
𝟐𝜼(�̇�𝒘𝒓)

𝜼𝑬(�̇�𝒘𝒓)
 

eq. 78 
 

Where η is the viscosity near the wall of the reservoir, ηE is the extensional viscosity and �̇�𝑤𝑟 Maximum 

shear rate in reservoir. The term 
𝜂

𝜂𝐸
  is known as Trouton ratio which is about 3 for the Newtonian fluids 

and for the polymers at their Newtonian Plateau. At higher shear rate, for the polymers, the Trouton 

ratio could be obtained using eq. 79 [157]. 

𝑻𝒓 =
𝜼(�̇�𝒘𝒓)

𝜼(√𝟑�̇�𝒘𝒓)
 

eq. 79 

 

 

In the following in order to determine the Trouton ratio we will use eq. 78. 

3.4.2 Elongational viscosity 

The material flow in the TPF numerical simulation is viscosity dependent. In the TPF numerical 

simulation, the viscosity could be inserted as a power law or Carreau’s model. In our numerical 

simulation, we have inserted the viscosity as the Carreau model (eq. 64). The terms of the Carreau’s 

model for each temperature is determined by correlation with the viscosity curve obtained 

experimentally. 

The viscosity of the melted PEEK 450G has been determined with two different methods for low shear 

rates and high shear rates. A parallel-plate configuration was used to determine the viscosity at low shear 

rates with frequency sweeps test from 0.01 s-1 to 100 s-1 within the linear viscoelastic domain. The results 

of complex viscosity at different temperatures for PEEK are gathered in Chapter 2. For the highest shear 

rates, from 100 s-1 to 10 000 s-1, the extensional die from ThermoFisher Company and extrusion 

apparatus have been used to measure the extensional viscosity.  Figure 64 illustrates the results for the 

viscosity determined by the two experimental methods at 556 K (383 °C). The complex viscosity is 

represented by the blue points and the shear viscosity determined by extensional die is depicted by the 

pink points. At very high shear rates, the viscosity of PEEK drastically reduces up to 40 Pa.s. 

Furthermore, the extensional viscosity determined by the die is represented in red points. The results 

obtained with the extensional die below 10 s-1 show a good correlation with those obtained with the 

parallel-plate geometry. However, in the case of PEEK at 100 s-1, the viscosity of PEEK is close to 170 

Pa.s while at the same shear rate, the extensional viscosity reaches 7000 Pa.s. 
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Figure 64: Viscosity of the PEEK at 656 K (383°C) 

Linking the dynamic (complex) viscosity to the shear viscosity was done by Cox-Merz relation [158]. 

As it is represented in eq. 80, Cox et al. noticed that the steady state shear viscosity at a given shear rate 

is equal to the dynamic viscosity at the same frequency in the linear domain, using empirical studies. 

𝜼(�̇� = 𝝎) = |𝜼∗|(𝝎) 
 

eq. 80 

 

Whereas the shear viscosity is temperature and shear rate dependent as represented in eq. 81, the 

viscosity of shear-thinning fluids is well described with the Carreau model represented in  eq. 99. 

𝜼(�̇�, 𝑻) = 𝒂𝑻𝜼(�̇�𝒂𝑻, 𝑻𝟎) 
 

eq. 81 

 

𝑎𝑇 is expressed as the Arrhenius law presented in eq. 82 [153] . 

 

𝒂𝑻 = 𝒆𝒙𝒑 [
𝑬𝒂

𝑹
(
𝟏

𝑻
−

𝟏

𝑻𝟎
)] 

eq. 82 

 

 

Ea is the activation energy of PEEK at 82.8 kJ.mol-1, R is the gas constant at 8.314 J.K−1.mol−1, T is the 

temperature and T0 is the reference temperature in our case at 556 K (383 °C). 

The terms of the Carreau model have been extracted from the fitting of the viscosity curves for both 

polymers. Table 12 shows the values of the Carreau model terms determined by interpolating the points.  

In the TPF simulation, the viscosity is inserted as the Carreau model which could enable the 

determination of the viscosity according to shear rate and temperature. 
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Table 12: Terms of Carreau model for PEEK at 656 K 

Polymer PEEK 

Temperature 655 K 

𝜼𝟎 ( Pa.s ) 7071∓153 

𝜼𝒊𝒏𝒇 ( Pa.s ) 0 

𝝀 1.45∓0.6 

a 0.78∓0.12 

n 0.59∓0.06 

 

3.4.3 Determination of the pressure drop in the extruder’s nozzle 

When the polymer melt enters from a reservoir into a small channel, it is subjected to high shear stress. 

The shear is leading to form an entrance converging flow due to the melt viscoelasticity and the 

contraction of the channel. In general, entry converging flow consists of elongation flow and shear flow. 

Consequently, obvious entry pressure losses will be produced. The effect of entrance convergence is an 

important factor for inducing unsteady flow during extrusion of polymer melts under given conditions. 

Entry converging flow has been an interesting topic in polymer processing rheology because it 

influences directly the quality of extruded products and production rate of processing equipment [159] 

[153]. 

As it is represented in Figure 65 there are three different regions where the pressure drop occurs. As it 

is shown in eq. 83 total pressure drop in an extruder’s nozzle is the sum of the pressure drop in all regions 

of the extruder.  

∆𝑷𝑻𝒐𝒕𝒂𝒍 = ∆𝑷𝟏 + ∆𝑷𝟐 + ∆𝑷𝟑 + ∆𝑷𝒆𝒙 

 

eq. 83 

 

 

Figure 65: Illustration of different pressure drop region in an extruder's nozzle 

The term, ∆𝑃𝑒𝑥 refers to the pressure drop at the exit of the die. In the eq. 83 , the term ∆𝑃𝑒𝑥 is relatively 

small; consequently, the influence of the exit pressure drop could be neglected. ∆𝑃2 is the entry pressure 

drop in the extruder. As it is depicted in the eq. 84, [153] the pressure drop in the entry of the nozzle is 

geometry and polymer property dependent. 

∆𝑷𝟐 = 𝟐𝑲𝒍𝒏𝒁(𝟐𝑲𝟏�̇�𝒘
𝒏 +

𝟏

𝟐
𝑲𝑲𝟐�̇�𝒘

𝒎) +
𝑲𝟏�̇�𝒘

𝒏 [𝟏 − (
𝟏
𝒛)

𝟑𝒏

𝟑𝒏𝑲
 

 

 
eq. 84 

 

Where K is a function of the entry angle determined by eq. 87 and Z is the ratio of entry diameter to exit 

diameter (𝑍 =
𝐷

𝑑
). n and K1 are the properties for shear flow viscosity; m and K2 are the properties of 
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elongational (extensional) viscosity.  �̇�𝑤 and �̇�𝑎 are the shear rates near the wall and the apparent shear 

rate respectively. The shear rate near the wall and the apparent shear rate are obtained by eq. 85 and eq. 

86 respectively. 

�̇�𝒘 =
𝟑𝒏 + 𝟏

𝟒𝒏
�̇�𝒂 

 

eq. 85 

 

�̇�𝒂 =
𝟑𝟐𝑸

𝝅𝟑𝑫
 

 

eq. 86 

 

𝑲 =
𝟏

𝟐
𝒕𝒂𝒏 𝜶𝟎 

 

eq. 87 

 

Furthermore, ∆𝑃1 and ∆P3 are determined from the laminar Poiseuille flow pressure loss equation. for 

the laminar Poiseuille flow in a pipe, the pressure loss is determined by eq. 88. 

∆𝑷𝒍 =
𝟑𝟐𝜼𝒍𝑽𝒂𝒗𝒈

𝑫𝟐
 

 
eq. 88 

 

Where 𝑉𝑎𝑣𝑔 is the average velocity of the flow and l is the length of the nozzle or capillary [160] .  

The die swell ratio is calculated in the part 3.5.4 from the previous equations. 

3.4.4 Determination of the relaxation time for PEEK 

As it is represented in Figure 66, a macromolecular chain is symbolized in a fixed network of 

obstacles. The macromolecular chain length is more than the distance L’. 

between two close obstacles. Each contact between an obstacle and the chain forms an entanglement. 

We consider that the distance L between these obstacles is constant. The movement of the chain to 

release from these obstacles is called reptation, from de De Gennes theory [8]. 

 

Figure 66: A macromolecular chain in a network of fixed obstacles 

The relaxation time is the time associated with large scale motion in the structure of the polymer chain. 

The relaxation time typically refers to the time required by the chain to return to its equilibrium state. 

Self-bonding, also called auto-adhesion, autohesion or welding, is the bonding of two surfaces of an 

identical polymer. Autohesion takes place at a temperature above the glass transition temperature (Tg) 

and below or above the melting temperature (Tm), without an adhesive. Voyutskii [161] and Vanenin 

[162] studied in 1960s the autohesion mechanisms, based on the diffusion of macromolecules above Tg. 

Then, the theory of reptation exposed by De Gennes [163] and [8] and F.Brochard-Wyart [164] 

L’  
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described the motion of polymeric chains and was successful in predicting the molecular weight 

dependency of the self-diffusion. 

As it is represented in Figure 67 (a), when two surfaces (two layers in the case of the FFF process) are 

brought together, they form an interface. If the temperature during the process is above the melting 

temperature of the polymer, the macromolecular chains are in the amorphous state. In the amorphous 

state, the macromolecular chains are randomly coiled together. Under temperature and pressure, the 

macromolecular chains release from the obstacles (called entanglements) and pass through the interface 

to diffuse in the other layer as seen in Figure 67 (b). The time necessary for a chain to release from the 

obstacles is the relaxation time defined above. Right after diffusion, the macromolecules create new 

entanglements. 

 
(a) (b) 

Figure 67: Representation of the interdiffusion of the macromolecular chains (a) Initial state of the two layers before 

interdiffusion (b) after diffusion of the macromolecular chains 

In semi-crystalline polymers, the macromolecular diffusion is reduced because the crystalline phase acts 

as obstacles on the pathway of the macromolecules. In order to facilitate the interdiffusion of the two 

layers of semi-crystalline polymers, the processing temperature should be such that the polymer is in its 

melted state. On cooling from the melting state to room temperature, the time for which the 

macromolecules are able to interdiffuse must be equal to or higher than the macromolecular relaxation 

time. For the semi-crystalline polymers, the motion of the macromolecular chains are stopped or strongly 

reduced when the crystallization occurs. So that time available for interdiffusion is the time available on 

cooling from the melted state to the crystallization.  

The relaxation time can be determined from experimental data of oscillatory tests in the viscoelastic 

linear regime and the terminal relaxation zone. The average relaxation time is obtained by eq. 89. 

𝟏

𝒕𝒏
=

𝟏

𝜼𝟎𝑮𝑵
𝟎

 
eq. 89 

 

Where 𝜏𝑛 is the average relaxation time, 𝜂0 is the zero-shear rate viscosity, and 𝐺𝑁
0  is the plateau 

modulus. The values of 𝜂0 and and 𝐺𝑁
0   are obtained from experiments. 𝑡𝑛 can be obtained by 

experiments, it is the projection of the intersection of the tengent line on loss moduli and the tengent 

line of storage moduli at rubbery pateau (𝐺𝑁
0) on the frequency axis. At the terminal regyme the slop of 

the tengent line on the loss moduli and stiorage moduli must be 1 and 2 respectively. 

The weight-average terminal relaxation time (𝑡𝑤 ) is determined using eq. 90.  

𝟏

𝒕𝒘
=

𝟏

𝝎𝑾
=

𝟏

𝜼𝟎𝑱𝒆
𝟎
 

 

eq. 90 
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Where 𝐽𝑒
0 is the steady-state recoverable shear compliance and 𝜔𝑊 is the projection of the intersection 

of tengent line of loss moduli and storage moduli at the terminal regime on frequency axis. The shear 

compliance is also the projection of the intersection point on the moduli axis. The intersection point and 

the tengent lines is represented in the Figure 70. The breadth of the relaxation time distribution is the 

obtained using eq. 91. 

𝒕𝒘
𝒕𝒏

= 𝑮𝑵
𝟎 𝑱𝒆

𝟎 

 

eq. 91 

 

For nearly monodisperse polymers, the breadth of the relaxation time distribution is between 2 and 3 

[165]. The zero shear rate viscosity and the compliance of elasticity could be also determined using eq. 

92 and eq. 93 respectively. 

𝜼𝟎 = 𝒍𝒊𝒎
𝝎→𝟎

𝑮′′(𝝎)

𝝎
 

 

eq. 92 

 

𝑱𝒆
𝟎 =

𝟏

𝜼𝟎
𝟐
𝒍𝒊𝒎
𝝎→𝟎

[
𝑮′(𝝎)

𝝎𝟐
] = 𝒍𝒊𝒎

𝝎→𝟎
[

𝑮′(𝝎)

𝑮′′(𝝎)𝟐
] 

eq. 93 

 

 

It is convenient to model the linear viscoelastic response of polymers by rheological models. The 

simplest one is the Maxwell model, which has only one relaxation time. Then, all the relaxation times 

that can be determined from a frequency sweep response are identical [165]. 

Previously, we have explained that PEEK undergoes degradation by chain combination when exposed 

to thermo-oxidative environment for longer than a few minutes. The rheological measurements at low 

frequency takes a time long enough to induce this degradation. This makes the determination of the 

viscosity at Newtonian plateau impossible. For that, the Cole-Cole [166] [167] representation is a 

convenient way to extrapolate the viscosity curve up to Newtonian plateau.  

Figure 68 is the Cole-Cole representation of loss (η’’) viscosity versus storage (η’) viscosity obtained 

from frequency sweeps at various temperatures. The shape of the Cole-Cole curve is supposed to form 

a half-circle; the deviation from this circular predicted shape confirms that the polymer undergoes drastic 

degradation at high temperature and low shear rate. The zero-shear viscosity η0 is obtained by 

extrapolating the half-circle up to the x-axis. 
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Figure 68: Cole-Cole representation for the determination of η0 from frequency sweeps 

Furthermore, representation of the loss moduli toward storage modul in log graph leads to a straight line 

could be used in order to determine tan α. Deviation from this straight line representes the degradation 

of the polymer. 

 

Figure 69: Cole-Cole presentation of the loss moduli versus storage moduli for T=383 °C 
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Figure 70: Determination of shear compliance and relaxation time for T=383 °C 

Weight-average terminal relaxation time (𝑡𝑤 ) has been determined directly from the projection of the 

intersection point and also multiplication of the zero-sear rate viscosity.Variation of the obtained results 

by two methodologies show the importance of proper selection of the intersection point. Weight-average 

terminal relaxation time at T=383 °C is represented in Table 13. 

Table 13: Determination of relaxation time according to two methodologies 

Method 𝜼𝟎𝑱𝒆
𝟎 𝟏

𝝎𝑾

 

Relaxation time (𝒕𝒘) (s.) 1,75 ± 0,15 2,09 ± 0,15 

 

Figure 71 plots the weight-average relaxation time at 350 °C, 366 °C, 383 °C and 400 °C determined 

from the obtained results. As expected, the relaxation times are shorter for the highest temperatures. The 

Arrhenius law reminded in eq. 94, shows a good agreement with the relaxation times as it is represented 

in Figure 71 

𝝉𝒘 = 𝑨𝒆
−𝑬𝒂
𝑹𝑻  

eq. 94 

 

Where, Ea is the activation energy, T the temperature, R is the gas constant and A is the pre-exponential 

factor.  
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Figure 71: Relaxation time versus temperature for PEEK determined from loss (G'') and storage (G') moduli and, 

curve of Arrhenius law for relaxation times 

The Arrhenius law allows the determination of relaxation times at any temperature when the 

experimental data are not available. The relaxation times for PEEK are comprises between 1.5 and 3.5 

seconds at respectively 400 °C and 340 °C. These relaxation times are longer than those measured for  

other polymers. Indeed, the viscosity of PEEK is quite high compared to other melted polymers. This is 

due to the complex chemical structure of PEEK where the double bonds and aromatic cycles reduce the 

mobility of the chains.  

3.4.5 Die swelling for PEEK 

Prior to determine the die swelling for PEEK, we have determined the half-angle convergence according 

to extensional viscosity determined experimentally in section 3.4.2 and the Cogswell equation (eq. 78). 

Depending on the shear rate in reservoir the Trouton ratio and consequently the convergence angle 

change. The variation of the half-convergence angle according to shear rate in the reservoir is 

represented in Figure 72. 

 Considering the diameter of the reservoir and the inlet velocity is constant it is considered that the 

Trouton ratio is constant in our studies.The Trouton ratio has been calculated to be 19, with this Trouton 

ratio, the half-entry convergence angle is 𝛼0 = 18 ° (The convergence angle is 36 °). 
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Figure 72: Influence of the shear rate on the half convergence angle 

We have previously explained the numerical and analytical approaches in order to determine the shear 

rate in the FFF process in the section 3.3. In the same section, the shear rate during the process of PLA 

has been determined by COMSOL Multiphysics. In the following, we determine the shear rate for PEEK 

and the die swelling ratio is calculated by two different analytical studies developed previously for short 

capillary and infinite capillary.  

Firstly, the influence of the temperature on the die swelling for PEEK is represented in Figure 73. The 

selected temperatures are the same as those chosen for the determination of the relaxation times. For the 

calculation, the assumptions are the following ones: 

 The convergence angle of the extrudate is 36 °. 

 The velocity is constant at 99 mm.s-1. 

 The maximum shear rate is constant at 1562 s-1. This value is a consequence of the inlet velocity 

and the flow properties of the melted polymer. 

 

Figure 73: Influence of the temperature on the die swelling for PEEK 
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When the temperature increases, the die swelling ratio slightly decreases. This is due to a reduction of 

the relaxation time.  

Consequently, in order to reduce the die swelling (and increase the dimensional accuracy) a higher 

temperature should be selected as printing temperature. This is in line with the proposition made by 

Tseng et al. [99] concerning the selection of 390 °C as the liquefier temperature to reduce the residual 

stress. 

The influence of the inlet velocity on the die swelling at 383 °C is represented in Figure 74. 

 

Figure 74: Influence of the inlet velocity on the shear rate and die swelling for PEEK at 383 °C 

As expected, increasing the inlet velocity leads to increase the die swelling ratio. For the conventional 

parameters in the FFF process, the shear rate is below 1000 s-1 and so the maximum die swelling ratio 

will be less than 2.5 in these conditions. 

Moreover, the influence of the nozzle diameter on the die swelling has been determined at 383 °C. In 

all the cases, the inlet velocity is chosen at 99 mm.s-1. 
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Figure 75: Influence of the nozzle diameter on the shear rate and die swelling for PEEK at 383 °C 

The results show that increasing the nozzle diameter highly influences on the die swelling and the shear 

rate. Both equations for the die swelling give in very close results. For instance, the die swelling ratio is 

1.5 for a nozzle diameter of 2 mm. But for a nozzle diameter of 3 mm, which is the common diameter 

of filaments, the die swelling ratio would be about 1.2. 

The temperature is 383 °C and inlet velocity is 99 mm.s-1. The Tanner’s equation is independent from 

the converging angle, while the die swelling at short capillary highly depends on the converging angle. 

As it is represented in Figure 76, decreasing the convergence angle decreases the die swelling ratio. 

Consequently, in order to reduce the die swelling, the convergence angle of the nozzle should be 

decreased. 

 

Figure 76: Influence of the convergence angle on the die swelling for the short capillary die determined for PEEK at 

383 °C for 0.5 mm diameter nozzle 

Lastly, from the results presented, several points may be highlighted, to reduce the die swelling ratio:  
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- Modifications on the geometry of the capillary: the ratio of the length of the capillary to nozzle 

diameter (L/d) must be infinite or as big as possible. Higher ratio of the capillary lead to leads 

to better relaxation of the polymer melt when it is entering from the reservoir to the capillary. 

Furthermore, the nozzle diameter must be increase (or D/d ratio of the must be smaller possible). 

In the other word, the diameter of the nozzle and the length of the capillary must be biggest 

possible and the diameter of the reservoir must be close nozzle diameter. 

- The temperature should be high, while preventing degradation when polymers are sensitive to 

thermo-oxidative aging. 

- The inlet velocity should be decreased. 

- The pressure loss must be reduced. To reduce the pressure loss, we have to increase the 

temperature. Also in the case of the production extruder (not the case of FFF liquefier) we have 

to use the screen packs (or filters) or use screens with larger openings. Moreover, pressure drop 

occurs because of frictional forces. Reducing the frictional forces could reduce the pressure 

drop. 

In general cases, in the FFF process, the die swelling ratio will be between 1 (no swelling) and 2.5. 

 

3.5 Crystallization kinetics of PEEK in the FFF process  

Despite many studies on the crystallization of PEEK, none of them presents the non-isothermal 

crystallization of PEEK 450G. Additionally, there is no isothermal crystallization study on this grade of 

PEEK from its glass transition temperature up to the melting temperature. Furthermore, these studies 

are mainly focused on the morphology and the crystalline phase of PEEK. Consequently, a 

crystallization study of PEEK is necessary in order to model the crystallization in the FFF process 

applied to PEEK. 

As it is represented in Figure 77, the current section is composed of two steps towards the determination 

of the crystallinity ratio for PEEK in the FFF process. In the first step, which is represented in orange 

color, the isothermal and non-isothermal crystallization study of PEEK has been carried out by DSC for 

the temperature ranging from 595 K (322 ℃) to 585 K (312 ℃). The results obtained by the 

experimental study have been extended to the whole crystallization range from glass transition (400 K) 

up to the melting temperature (623 K) by Hoffman-Lauritzen equation. The non-isothermal 

crystallization of PEEK was determined using Nakamura equation. The second step represented in green 

color in Figure 77 consists of numerical simulation of the material deposition in order to determine the 

temperature and the crystallinity ratio. 

Worth to mention, determining the heat transfer in the FFF process experimentally requires special 

equipment such as infrared camera. Furthermore, the determination of the crystallinity ratio in the FFF 

process is usually difficult and not cost-effective. Consequently, a simulation approach is necessary and 

complementary to determine the crystallinity ratio. 

According to our bibliography study, it seems that there is no numerical simulation of material flow 

exiting from the nozzle. Simultaneously, there is no numerical study on heat transfer for an extrudate 

exposed to air.  
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Figure 77: Sequence of the works done in this study in order to determine the crystallization kinetics in the FFF 

process 

3.5.1 Isothermal crystallization 

As it is represented in eq. 95, crystallinity ratio of a semi-crystalline polymer is the ratio of endothermic 

crystallization enthalpy to the enthalpy of the same polymer at its fully crystalline state. The enthalpy 

of fully crystalline PEEK is 130 J.g-1 [125]. The enthalpy of crystallization is the area under the peak of 

crystallization determined by DSC test. Figure 78 shows the schematic presentation of the peak in the 

crystallization curve. 

𝜶(𝒕) =
∫ 𝜹𝒉

𝒕𝒊

𝒕𝟏

∆𝑯𝟏𝟎𝟎
 

 

 

eq. 95 

 

Where 𝛼(𝑡) is the crystallinity ratio at different times during isothermal crystallization, 𝛿ℎ is the 

crystallization enthalpy and ∆𝐻100% is the enthalpy of crystallization for the fully crystallized polymer. 
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Figure 78: Schematic presentation of the crystallization curve and its enthalpy at different temperatures 

For the polymers, the Avrami equation describes the kinetics of the transformation of the amorphous 

phase to the crystalline phase under isothermal condition [168][169]. As it is represented in eq. 96, using 

Avrami equation, we could determine the crystallization fraction at the isothermal temperature 

according to time. For each isothermal value, we have to determine the parameters of the Avrami 

equation separately. eq. 97 shows the logarithmic form of eq. 96. 

𝜶 = 𝟏 − 𝐞𝐱𝐩 (−𝒌𝒕𝒏) 
 

eq. 96 

 

𝒍𝒏(− 𝒍𝒏[𝟏 − 𝜶(𝒕)]) = 𝒍𝒏𝒌𝒂𝒗. + 𝒏𝒍𝒏𝒕 
 

eq. 97 

 

Where 𝛼(𝑡) is the fraction of the transformed phase from the amorphous state to the crystalline state, 

𝑘𝑎𝑣. is the Avrami kinetics of crystallization coefficient and n is the Avrami exponent. By plotting 

ln(− ln[1 − 𝛼(𝑡)]) versus 𝑙𝑛𝑡 for each isothermal temperature exclusively, n is the slope and 𝑘𝑎𝑣. the 

intercept with the ordinate axis. The Avrami equation shows that increasing 𝑘𝑎𝑣. with constant value of 

the n and α leads to increase of the kinetics of crystallization and consequently crystallization ratio. It 

could also have concluded that by increasing t and n, crystallization ratio will increase. 

As the matter of fact, Avrami study is a post-treatment on the results of the DSC tests. These terms could 

be obtained for the temperature range from glass transition to melting temperature. However, for a few 

polymers and specifically PEEK, the crystallization kinetics is too fast. Accordingly, determining the 

isothermal crystallization for some temperature is beyond the limits of a current DSC apparatus and 

applying the Avrami equation on these temperatures is impossible. This lately means, even at the very 

fast cooling rates, from the equilibrium melting state to the targeted isothermal temperature, the polymer 

undergoes crystallization during the cooling ramp. Consequently, the determination of the Avrami terms 

by DSC for these polymers, is only possible when its crystallization kinetics is relatively slow. 

Experimentally, it is observed that the crystallization kinetics close to glass transition and melting 

temperature is very slow. Slow crystallization kinetics makes the determination of the Avrami terms 

possible with conventional DSC machines. Figure 79 shows the peak of non-isothermal crystallization 

(cooling ramp) of PEEK by DSC under cooling rate of 30 K.min-1. According to Figure 79, although 

the cooling rate of the polymer is relatively high, the polymer undergoes crystallization starting at 583 K 

and finishing at 524 K. According to Figure 79, considering that there is no crystallization above 583 K, 

it is concluded that in the case of PEEK, we could isothermally study the crystallization for the 

temperature above 583 K by DSC. However, for determining the non-isothermal crystallization in the 
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FFF process, we have to obtain the Avrami terms for all the temperature range from the glass transition 

until the melting temperature. 

 

Figure 79: Crystallization of PEEK 450G with 30 K.min-1 cooling rates. Crystallization starts at T = 583 K 

Hoffman-Lauritzen equation has been used in order to determine the Avrami terms below 583 K. 

Extrapolating the Hoffman-Lauritzen equation on the results determined by experimental study and 

DSC test could help to predict the crystallization of PEEK in the whole crystallization range from 

melting temperature until glass transition. eq. 98 shows the Hoffman-Lauritzen equation which is used 

to predict the isothermal crystallization of PEEK below 583 K. 

Hoffman-Lauritzen equation is used to predict the Avrami kinetics of crystallization (𝑘𝑎𝑣.) or half-time 

isothermal crystallization. In this approach, it is considered that the crystallization of polymer is 

symmetrical from both sides of the half-time crystallization. 

(
𝟏

𝒕𝟏/𝟐
) = 𝑲𝟎𝒆𝒙𝒑(

−𝑼

𝑹(𝑻 − 𝑻∞)
) 𝒆𝒙𝒑(

−𝑲𝑮(𝑻 + 𝑻𝟎)

𝟐𝑻𝟐∆𝑻
) 

 

 

eq. 98 

 

Where 𝑡1/2 is the half-time crystallization. The first exponential term refers to the driving force of 

crystallization and the second exponential term refers to the mobility of the molecular chains. U is the 

diffusional activation energy for the transport of crystallizable segments at the liquid-solid interface 

[170][171], R is the gas constant, KG is nucleation characteristics which influence on the position of the 

axial peak of the kav.. 𝑇∞ is the temperature where motion associated with viscous flow ceases which is 

normally 30 K below the glass transition (Tg - 30 K) [172]. T0 is the equilibrium melting temperature 

which is obtained by the linear Hoffman-Week method for PEEK [173]. Table 14 shows the values of 

the constants used in the Hoffman-Lauritzen equation. KG and K0 will be determined by interpolating 

the Hoffman-Lauritzen equation on the experimental data obtained by DSC. 

Table 14: The value of the constants in the Hoffman-Lauritzen equation 

U 6300 J.mol-1 

R 8.314 J.mol-1.K-1 

𝑻∞ 400 K 

T0 663 K 
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3.5.2 Non-isothermal crystallization 

According to Nakamura et al. [146], the ratio of the transformed phase from an amorphous state to the 

crystalline phase in a semi-crystalline polymer at non-isothermal condition could be obtained using eq. 

99: 

𝜶(𝒕) = 𝟏 − 𝒆𝒙𝒑(−(∫𝑲(𝑻)

𝒕

𝟎

𝒅𝝉)

𝒏

) 

 

 

eq. 99 

 

Where 𝜶(𝒕) is the transformed fraction of the polymer into the crystalline state, t is the time, n is the 

Avrami exponent, the same as Avrami exponent in the isothermal study and K(T) is Nakamura kinetics 

of crystallization coefficient. eq. 99 could be explained as a differential form in eq. 100. 

𝒅𝜶

𝒅𝒕
= 𝒏𝑲(𝑻)(𝟏 − 𝜶) [𝒍𝒏 (

𝟏

𝟏 − 𝜶
)]

𝒏−𝟏
𝒏

 

 

 

 
eq. 100 

Nakamura kinetics of crystallization coefficient (𝐾(𝑇)) could be obtained from the Avrami isothermal 

kinetics coefficient or half-time crystallization.  

eq. 101 links the Nakamura kinetics of crystallization coefficient, half-time crystallization and Avrami 

kinetics of crystallization coefficient : 

𝑲(𝑻) = 𝒌𝒂𝒗.(𝑻)
𝟏
𝒏 = 𝒍𝒏 (𝟐)

𝟏
𝒏 ∗

𝟏

𝒕(𝑻)𝟏
𝟐

 

 

 

eq. 101 

 

Crystallization is an exothermic transition which leads to the increase of the temperature in the system. 

We have integrated the released heat due to the crystallization by using the specific heat capacity of 

PEEK. 

𝑪𝑷 =
∆𝑯

∆𝑻
∗
𝒅𝜶

𝒅𝒕
 

 

 

eq. 102 

 

Where Cp = 1800 J.kg-1.K-1[123] and ∆𝐻 is the crystallization enthalpy. In order to consider, the fluid 

flow in the system, the convection term has been added to the Nakamura crystallization. By adding the 

convective term to the Nakamura equation, we could take into account the fluid and transferred 

crystalline phase during the fluid flows. Finally, non-isothermal crystallization for a polymer fluid flow 

is determined as eq. 103. 

𝝏𝜶

𝝏𝒕
+ �⃗⃗� 

𝝏𝜶

𝝏𝒙
+ �⃗⃗� 

𝝏𝜶

𝝏𝒚
= �̇� 

 

 

eq. 103 

 

Where 𝛼 is the crystallinity and �⃗� , 𝑣  are the velocity of the fluid in x and y directions respectively. 

3.5.3 Numerical simulation 

For the material deposition on the substrate, Two-Phase Flow (TPF) module of COMSOL Multiphysics 

has been used. For determination of the heat transfer, advection-diffusion equation was implemented in 

the model as a Partial Differential Equation (PDE). TPF module has been combined with the PDE to 

determine the heat transfer of the deposited bead. After the temperature determination of the deposited 

bead, Nakamura non-isothermal crystallization equation has implemented the model as a PDE equation. 
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The thermal conductivity of PEEK at room temperature is 0.32 W.(m.K)-1. The thermal diffusivity of 

PEEK at room temperature is about 0.24 mm2.s-1. Contrary to the thermal conductivity, the thermal 

diffusivity decreases while the temperature increases. According to our measurements, the influence of 

the temperature on the thermal conductivity is negligible. However, the temperature highly influences 

on the thermal diffusivity. The decrease of the thermal diffusivity stems mainly from variations of 

density when the temperature increases. 

The density of PEEK is assumed at 1320 kg.m-3 [174] and the density of air is 1.225 kg.m-3. The 

properties of air and PEEK used in the TPF numerical simulation and eq. 57 are gathered in Table 15. 

 

Table 15: Thermal properties of air and PEEK for determining the thermal diffusivity (from [123] [115]) 

Phase Unit Air PEEK 

Thermal conductivity W.m-1.K-1 0.024 - 

Density kg.m-3 1.225 1320 

Heat capacity kJ.kg-1.K-1 1.005 1.7 

Thermal diffusivity 

Activation energy 

m2.s-1 

kJ.mol-1 

1.95.10-5 

- 

Figure 24 in chapter 2 

82.8 

Viscosity Pa.s 1.8.10-6 - 

 

 

Figure 80 shows the geometry of the model used for the numerical simulation of the material deposition 

on the substrate. Table 16 shows the boundary conditions used for the numerical simulation. 

 

Figure 80: Illustration of the model and the geometry model used for the numerical simulation 
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Table 16: Boundary conditions used for TPF simulation and PDE heat transfer simulation 

Boundary 
nomination 

TPF Simulation PDE Heat transfer simulation Value 

A Mobile wall - l = 122 mm,v = 25 mm.s-1 

B Outlet-Pressure Dirichlet boundary condition l=,T = 30 3K, P = 0 Pa 

C Symmetry Dirichlet boundary condition T = 303 K 

D No slip Dirichlet boundary condition Tm = 656 K 

E Initial interface - l = 3 mm 

F No slip – Zero Flux   

G No slip Dirichlet boundary condition T 

I Inlet velocity - L = 7.75mm, v = 5mm.s-1 

A Initial air phase : Phase1 Initial temperature Tenv =303 K 

N Nozzle (Iron) Initial temperature Tm = 656 K 

P Initial polymer phase: Phase 2 Initial temperature Tm = 656 K 

S Polymer substrate (PEEK) Initial temperature T 

3.5.4 Results of crystallization 

For the study of isothermal crystallization, the selection of the temperature range is very important. The 

crystallization of PEEK during isothermal study must be complete under isothermal condition. 

Therefore, finding the temperature at which the crystallization starts is necessary. In Chapter 2, we have 

presented the results for non-isothermal tests by DSC at different cooling rates.  

For the highest cooling rates, the crystallization temperature is shifted towards lower temperatures 

(towards glass transition) and at lowest cooling rates, towards melting temperature. Consequently, the 

cooling rate of 2 K.min-1 has been selected to determine the starting temperature of crystallization. We 

will study the isothermal crystallization of PEEK above the starting of crystallization at a cooling rate 

of 2 K.min-1. In the figure 17 in Chapter 2, during the cooling step with cooling rate of 2 K.min-1, the 

crystallization starts at about 583±3 K (310±3 °C). Accordingly, the isothermal test must be done at the 

temperature higher than 583 K. On the other hand, at the temperature higher than 596 K (323 °C) the 

crystallization of PEEK lasts a long time which makes the test longer. As a result, the isothermal tests 

have been carried out between 583 K and 596 K. 

According to Figure 16 in Chapter 2, during the second heating rate (2 K.min-1) two endothermic peaks 

are observed. This lately, indicates the coexistence of two different crystalline structures in the polymer. 

The first endothermic peak starts at 565 K (292±5 °C) and the second one is around 588 K (315±5 °C). 

The isothermal crystallization of PEEK 450G has been carried out from 595 K to 581 K. Figure 81 

shows the obtained results of the isothermal test at T = 588 K. As it is pointed out in Figure 81 and 

Figure 82, this analysis is composed of four steps, the sample is heated to 648 K at a heating rate of 

50 K.min-1 then it remains at this temperature for 240 s (4 minutes) in order to remove all the crystalline 

history of the polymer. Afterwards, the polymer is cooled at the rate of 30 K.min-1 until the targeted 

isothermal temperature. The polymer is kept at its isothermal temperature until the crystallization is 

completed.  

As it is represented in Figure 81, the glass transition of PEEK has been measured around 433K (160 ℃) 

and its melting peak occurs at 623K (350 ℃). 
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Figure 81: Isothermal study of PEEK 450G at T=588K 

Figure 82 shows the results obtained for the different isothermal studies of PEEK. The isothermal 

crystallization has been carried out at nine different isothermal temperatures.  

However, our observations for T = 581 K (308 ℃), T = 583 K (310 ℃), and T = 585 K (312 ℃) show 

that before starting the isothermal crystallization, a small fraction of amorphous phase undergoes non-

isothermal crystallization. As a consequence, in our study, we do not consider these isothermal 

temperatures. 

 

Figure 82: Isothermal study of PEEK 450G at the different temperature from 595K to 581K 

Table 17 presents the obtained results from the isothermal studies such as enthalpy, crystallinity ratio, 

and half-time crystallization. The variation of the crystallization enthalpy is between 25 J.g-1 and 30 J.g-
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1. The enthalpy is equivalent to 20 % to 23 % of crystallinity ratio. Respectively, the half-time 

crystallization increases while the temperature decreases which means at higher temperature, the time 

should be longer in order to crystallize the polymer.  

Table 17: Influence of different isothermal study on the enthalpy and half-time crystallization of PEEK 450G 

Isothermal 

temperature 

(K) 

Sample mass 

(mg) 

Enthalpy 

± 0,2 J.g-1 

Crystallinity 

± 0,2 % 

Half-time 

crystallization 

(s) 

588 10.4 30.1 23.1 98 

589 8.9 30.9 23.8 199 

590 10.9 28.8 22.2 230 

591 12.6 31.1 24.0 290 

593 9.2 30.2 23.0 404 

595 9.6 25.3 19.5 586 

 

For all the temperatures below 585 K, the crystallization point of Hoffman-Lauritzen equation has been 

fitted on the half-time determined experimentally, with Origin software©. As shown in Figure 83, the 

half-time crystallization obtained by DSC test and the analytically fitted Hoffman-Lauritzen curve agree 

well. 

 

Figure 83: Half-time crystallization determination and fitted Hoffman-Lauritzen on the experimental points 

Table 18 shows the values of the parameters of Hoffman-Lauritzen equation and its standard deviation 

for PEEK by fitting the curve on the experimental points. 

Table 18: Values of the parameters of Hoffman-Lauritzen equation determined for PEEK 

Parameter Value Standard error 

K0 7.68.108 1.09.107 

KG -8.87.106 5.9.105 
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Alongside with determining the Avrami kinetics by half-time crystallization in eq. 101, Avrami kinetics 

of crystallization coefficient and Avrami exponent have also been determined for PEEK by applying the 

Avrami approach.  

For each isothermal temperature from T = 595 K to 588 K, a curve of  ln(− ln[1 − 𝛼(𝑡)]) versus 𝑙𝑛𝑡 

was plotted. The curve is a straight line with the slope n and intercept of 𝑘𝑎𝑣. Figure 84 shows the Avrami 

curves and also the fitted straight lines for each isothermal temperature. Avrami kinetics and exponents 

for the isothermal temperatures are represented in Table 19. 

 

Figure 84: Plotting  𝐥𝐧(− 𝐥𝐧[𝟏 − 𝛂(𝐭)]) versus 𝐥𝐧𝐭 to determine Avrami kinetics and exponent 

As it is depicted in Table 19, the Avrami exponent varies from maximum 3.74 to minimum 3.18, while 

its tendency at the lower temperature is around 3 and at temperature higher than 595 K is around 4. The 

Avrami exponent explains the shape of the growing crystal formation during crystallization [175]. When 

the value of n is close to 3, it is concluded that the shape of the crystallization formation is 2D spherulites 

[125], while n = 4 is 3D spherulitic formation. The Avrami kinetics represents the crystallization kinetics 

of the polymer. Closer is the temperature to the melting temperature or glass transition, more the 

crystallization kinetics decrease. It is shown in Table 19 that at 588 K the kinetics of crystallization is 

faster than at 595 K when we are closet to the melting temperature. 

Table 19: The values of Avrami isothermal kinetics and exponent for different isothermal temperature 

Temperature (K) 595 593 591 590 589 588 

Avrami exponent (n) 3.55 3.63 3.74 3.49 3.35 3.18 

Avrami kinetics (s-n) 1,46E-11 2,97E-11 6,75E-11 6,2E-10 2,06E-9 1,06E-8 

 

Figure 85 shows the Avrami kinetics coefficient determined by Avrami approach and the predictive 

model of eq. 101. The predictive model agrees with the experimental results. At the temperature close 

to the melting temperature, the tendency of the Avrami exponent is towards 4 while for the lower 

temperatures, the tendency is 3. In the predictive model, for the range of 595 K until 588 K, the Avrami 
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exponent from the experimental study has been used, while for the temperature higher than 595 K, the 

assumed Avrami exponent is 4 and for the temperature below 588 K, the assumed Avrami exponent is 

3. This assumption is consistent with our observations about the existence of two crystalline structures 

during melting of PEEK represented in Figure 16. According to DSC results in Figure 16, the transition 

temperature from the first crystalline structure to the second crystalline structure, takes place at about 

588 K.   

Figure 85 shows that the kinetics of crystallization for PEEK 450G is at its maximum value around 

515 K. However, closer to melting temperature (360 ℃) and glass transition (160 ℃) the kinetics of 

crystallization is very slow.  

 

Figure 85: Determination of the Avrami kinetics along processing range near glass transition up to melting 

temperature 

Using Avrami kinetics of crystallization and Avrami exponent and applying eq. 101 enables us to 

determine the Nakamura kinetics of crystallization. Figure 86 shows Nakamura crystallization kinetics 

coefficient for PEEK 450G and PEEK 150G [103]. 

Comparing two different grades of PEEK demonstrates that the kinetics of crystallization for 150G is 

faster than 450G. For PEEK 450G, the value of the Nakamura crystallization kinetics at its maximum 

state is 0.87 while this value is 2.47 for PEEK 150G. For 450G, the maximum value occurs around 

T = 515 K while for 150G the peak is at T = 512 K. The result is consistent with the expectations: the 

ability to crystallize is higher for shorter macromolecules, and it is known that PEEK 150G is made of 

shorter macromolecular chains compared to PEEK 450G. 
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Figure 86: Nakamura Kinetics of crystallization for PEEK 450G in blue and PEEK 150G in red. PEEK 150G data are 

from [103] 

3.5.5 Numerical study of polymer deposition in FFF process 

The numerical simulation of the polymer deposition on the substrate has been carried out by COMSOL 

Multiphysics. By numerical simulation, the material flow, temperature distribution and relative 

crystallinity in the FFF process have been determined. As it is represented in Table 20, five different 

case studies have been selected. For three cases, the impact of the environment and substrate 

temperatures on the temperature field and crystallization field have been investigated. Furthermore, for 

the two other cases, we aim to optimize the process by finding the minimum crystallization temperature. 

In case 4, we will determine the environment temperature for which the crystallization starts at 4.7 s. 

4.7 s is the time of deposition of a single bead in our study. The non-existence of the crystalline phase 

during deposition of the second layer on the first deposited layer is a favorable condition in order to 

increase the interdiffusion of two layers or two beads. 

In case 5, we will determine the environment temperature for which the crystallization starts after 12 s. 

In this case, we have considered that, it takes more than 12 s to deposit the second layer on the first 

layer. 

All the temperatures for the case studies are synthesized in Table 20. The numerical simulation has been 

carried out for 12 s. The material deposition takes place from 0 s to 4.7 s, while from 0 s to 12 s, there 

is heat transfer and crystallization in the model. Figure 87 shows the fluid flow of the first layer 

deposition on the substrate.  
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Table 20: Case studies for the numerical simulation of temperature distribution and Crystallization rate 

 

 

 

 

 

 

 

 

 

 

Figure 87: Numerical simulation of first layer deposition on the moving substrate at the different moments 

In Figure 87, the legend represents the volume fraction of the fluid in the system: blue (which is 

equivalent to 0 in color legend) represents the air in the system and red (and 1 in the color legend) 

represents the polymer. 

The temperature distribution of the deposited bead on the substrate has been determined during the 

material deposition. Figure 88 shows the temperature distribution of the material deposition for case 3 

at different times. The results show that during the material deposition, while the cooling rate of the 

extrudate front is high, in the center of the extrudate the temperature is still at the melting temperature. 

 

Case studies: Tm T substrate TEnv. 

Case 1 656 K 

 (383 ℃)  

303 K 

(30℃) 

303 K 

(30℃) 

Case 2 656 K 

 (383 ℃) 

433 K 

(160 ℃) 

(Tg) 

303 K 

(160 ℃) 

Case 3 656 K  

(383 ℃) 

433 K 

(160 ℃) 

433 K 

(160 ℃) 

Case 4  Finding the minimum temperature for 

which the crystallization starts after the 

end of bead deposition (about 4 s) 

Case 5 Finding the minimum temperature for 

which the crystallization starts after 

12 s. 
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Figure 88: Temperature distribution for the Case 3 (T substrate =433K and Tenv. =433K) 

Figure 89 shows the temperature of the center line at different times for the case 3. Increasing the time 

leads to decreasing the temperature. However, the cooling rate of the extrudate center is relatively slow. 

At t=4.70 s, the deposition of the polymer on the substrate is completed and from t = 4.70 s up to t = 12 s, 

heat transfer and crystallization is modeled.  

 

Figure 89 : Temperature distribution at different moments for the case 3 for the center line of the extrudate 

The deposition of the first bead starts at t = 0 s and is completed at 4.7 s. The total length of the substrate 

is 105 mm. The mean moving velocity of the substrate is 25 mm.s-1 that is attributed to the substrate for 

the first 4.7 s of the simulation, after it stopes.  

The crystalline distribution at different times for case 3 is depicted in Figure 90. The crystalline ratio in 

the center of the bead when the temperature is still high is very low, while in the extrudate front where 

the cooling rate is high, the crystallinity reaches 23 %. On the other hand, near to the surface when the 

surface of the extrudate is subjected to heat transfer with air, the kinetics of crystallization is slower than 
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in the center of the bead. Consequently, near the surface, the crystallization could not reach its maximum 

value. The crystallinity ratio for the three cases at t = 12 s is illustrated in Figure 91. 

 

Figure 90: Distribution of the crystallinity for Case 3 (T substrate =433 K and Tenv. =433 K) 

The color legend in Figure 90 represents the crystallinity ratio of the deposited bead. Blue or zero 

demonstrates no crystallization or amorphous state of the polymer, while orange and red represents the 

crystallinity ratio. The air is also represented in blue. 

 
Figure 91: Non-isothermal crystallization of PEEK t=12s for different case studies 

Figure 91 shows the influence of the environment and the substrate temperature on the crystallinity ratio 

of the deposited bead for the three cases studied. As it is represented in Figure 91, at t=12s, the 

crystallization of the bead is divided into 4 different regions. 

1. Region 1 is the front part of the extrudate. This region is cooled rapidly after exiting from the 

nozzle. The cooling rate in this part of the extrudate is relatively fast. This region reaches its 

maximum value of crystallization during 12 s. Because of relatively fast cooling rate and 

crystallization of this region, during FFF process and layer deposition, the condition of this part 

of the deposited bead is not favorable for coalescence and interdiffusion. 
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2. Region 2 of the deposited bead is the region which undergoes crystallization. Kinetics of 

crystallization for the three cases studied show that the crystallization rate for case 1 is much 

faster than other cases. The maximum kinetics of crystallization for all the three cases in this 

region has been determined at 0.107, 0.215 and 0.325 %.s-1 respectively. However, close to the 

deposition substrate and close to the air where the cooling rate is high, the crystallization is 

relatively fast and reaches its maximum value.  

3. In region 3 and region 4 in all the 3 cases, the center of the extrudate is still at its melting 

temperature and there is no crystallization observed. This part of the bead is the part of the 

extrudate just after exiting from the nozzle. It does not have enough time for cooling and 

crystallization. Consequently, after 12 s, this part of the extrudate does not undergo 

crystallization. However, close to the substrate and close to the boundary, where the cooling 

rate is high, the crystallization of the polymer is observed. For the case 1, the kinetics of 

crystallization has been determined between 10-3 and 10-2 %.s-1 However, for the case 2 and 

case 3, the kinetics of crystallization is less than 10-5 %.s-1. 

For the case 1 and case 2, the thickness of non-crystalline phase from the surface is about 0.4 mm, while 

for the case 3, the crystalline phase starts close to the surface. The substrate temperature highly 

influences the crystallinity of the polymer in the contact region. For the Case 2 and Case 3, close to the 

substrate, the polymer reaches its maximum value of the crystallinity, while for the case 1 there is a 

layer about 0.1 mm non-crystallized zone. However, this zone is the interface of the two phases. At the 

interface, the determination of the thermal diffusivity is not accurate because we have used density, 

specific heat and viscosity as mixing laws. However, we could compare the cases qualitatively.  

 

Figure 92: Influence of the Substrate and environment temperature on the crystallinity percentage of the deposited 

bead 

Figure 93 shows the temperature distribution and crystallinity ratio for all of the three case studied at t= 

12 s at the center of the deposited bead when the deposition of the bead is completed. 
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Figure 93: Temperature distribution and crystallinity ratio in the center of the deposited extrudate for the three cases 

3.5.6 Determination of the optimal environment temperature in order to promote the 

interdiffusion of the beads and layers  

The interdiffusion between deposited layers and beads takes place when two deposited consecutive 

layers are still in the amorphous state. Consequently, determining the optimal environment temperature 

to promote the interdiffusion is necessary to improve the mechanical properties of the printed parts. At 

the optimal environment temperature, the deposition of the bead on the substrate is completed, however, 

the deposited beads are still in the amorphous state. Figure 94 shows two cases for which the 

crystallization starts at 4.7 s and 12 s.  

 

At 563 K (290 °C) and 4.75 s 

 

At 573 K (300 °C) and 12 s 

Figure 94: Crystallization of PEEK at 563K and 573K 

As it is represented in Figure 94, at 563 K, the crystallization starts at 4.75 s. Furthermore, at 573 K, the 

crystallization of the deposited bead starts at 12 s. The temperature ranges to keep the deposited bead in 

the amorphous state is relatively narrow. At the temperature below 558 K (285 °C), the kinetics of 

crystallization is relatively fast, which leads to the crystallization before the deposition of a second bead. 

Furthermore, at temperature higher than 573 K (300 °C), the kinetics of crystallization is relatively slow. 

Consequently, the proposed environment temperature to promote the interdiffusion is from 558 K to 

573 K. Worth to mention, the selection of the temperatures also depends on the printing velocity. At 

higher printing velocity, when the deposition of the second bead on the first beads is relatively fast, we 

could use even a lower temperature. Contrary to fast printing, when the printing velocity is slow, the 

temperature should be increased. 

Our results on crystallization by numerical simulation are in line with experimental studies carried out 

with Tseng et al. [99] and Rinaldi et al. [96]. Indeed, Tseng et al. [99] have printed two series of PEEK 

parts: one of the batch was submitted to annealing (heat treatment). The second batch is the printed parts 

without heat treatment. When performing the mechanical tests, they measured identical mechanical 



 

120 

 

properties. However, in their article they did not explain the reason of that issue. Their observation 

confirms our numerical results concerning the crystallization of PEEK. We have shown that because of 

fast crystallization of PEEK, the final crystallinity ratio of the final part is at its maximum level. It could 

be considered that the final crystallization ratio is almost independent on the cooling rate of the printed 

part. Even though the printed parts are subjected to heat treatment, there is no improvement in 

mechanical properties. 

Furthermore, their advice is to set the temperatures for the liquefier at 370–390 °C and for the platform 

up to 280 °C in order to optimize the mechanical properties. Their temperature proposition is also in line 

with our numerical measurement [99]. At this platform temperature, the polymer stays longer in the 

amorphous state, which increases the interdiffusion of the molecular chains. And consequently, the 

bonding of the deposited beads and layers is stronger. 

Rinaldi et al. [96] have printed PEEK samples according to different cooling rates. They have studied 

the mechanical properties of printed parts according different conditions with tensile tests. They have 

also studied the thermal transition by DSC and the microstructure by X-Ray diffraction (XRD) and 

optical microscopy. No difference was found in terms of thermal transition such as glass transition, 

melting temperature, and crystalline ratio. Their experimental results also confirm that the crystallinity 

ratio of the printed parts is independent from the cooling rate for PEEK. 

  

3.6 Conclusion 

The numerical simulation of the polymer deposition on the substrate has been carried out using TPF 

with Level Set (LS) method. The simulation is divided in several steps in order to model the deposition 

of the material on a substrate, the deposition on a moving substrate and the determination of heat transfer 

and the variation of the viscosity in the system. Finally, the deposition of a polymer layer upon a 

previously deposited layer was accomplished. 

In order to determine the heat transfer during the deposition of the material, we have integrated the heat 

transfer equation as a PDE in COMSOL software to conjugate TPF-LS with heat transfer. 

In the first approach of our numerical simulation, freeform extruder simulation has been done. During 

free-form extrusion, the volume fraction, temperature distribution and variation of the viscosity have 

been determined. The influence of the viscosity on polymer flow and effects on the behavior of the 

extrudate have been determined. Our initial model shows that the interface of the two phases (air and 

polymer) is wide (about 2 mm). In this band, the viscosity changes from the viscosity of the polymer to 

the viscosity of the air as function of phase fraction (mixing law). In order to improve the precision of 

our numerical model we had to reduce the width of this transition zone. We had proceeded in two steps, 

we have reduced the size of the meshes and also we have reduced the numerical value of the re-

initialization parameter (γ) in the LS equation (eq. 47). 

The influence of the polymer viscosity on the behavior of the extrudate has been studied by numerical 

simulation. Our investigations show that for high viscosities, the shape of the extrudate does not change 

so much while at low viscosities the shape is totally different. The same variation is observed when the 

influence of the temperature is considered. 

In order to validate our model to the first step, the FFF process applied to PLA was investigated via 

experiments, analytical equations and numerical simulation. The effects of the printing parameters (i.e. 
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nozzle diameter, feed rate and layer height) and the physical properties of the polymer (i.e. thermal 

transitions and rheological behavior) on the inlet velocity, shear rate and viscosity in the liquefier were 

determined.  

Firstly, the maximum inlet velocity of the filament in the liquefier was determined according to the 

printing parameters, such as the nozzle diameter, feed rate and dimensions of the deposited segment. 

Then, the rheological behavior of PLA, such as the velocity field, shear rate and viscosity distribution 

in the nozzle, was studied via analytical model and numerical simulation. The shear rate reached its 

maximum value near the internal wall of nozzle at a high inlet velocity and small nozzle diameters. 

Increasing the inlet velocity or decreasing the nozzle diameter increases the shear rate and decreases the 

viscosity of PLA. Meanwhile, reducing the viscosity enhanced the adhesion between the deposited beads 

and layers, and an excessively low viscosity results in low accuracy. Moreover, at the shear rates higher 

than 4000 s-1, PLA extrudates underwent severe deformation caused by the ‘sharkskin’ effect. The 

deformation of the extrudate influences the shape of the deposited beads and consequently reduces the 

control over the roughness and reliability of the manufactured part.  

In parallel, a Multiphysics TPF model was developed to determine the viscosity of the polymer and 

shear rate according to various inlet velocities. Moreover, the numerical simulation was used to model 

the shape of the extrudate when it exits from the nozzle. The results obtained via numerical simulation 

were validated through experimental study. The numerical simulation focused on the shape of the 

deposited filament before deposition on the substrate for different flow regimes. The validation of this 

part gives access to the next steps. 

The die swelling taking place in the FFF process has been predicted. The die swelling ratio highly 

depends on the liquefier geometry and the printing parameters. The die swelling ratio for PEEK in the 

FFF process depends on the printing parameters: it changes from 1 (no swelling) to 2.5. In order to 

reduce the die swelling, we advise to increase the temperature, decrease the inlet velocity or adapting 

the geometry of the nozzle (capillary diameter, capillary length, convergence angle and reservoir 

diameter). 

The rheological properties such as viscosity and shear rate have been determined by rheometry in 

parallel-plate configuration for the shear rates less than 100 s-1 and by extensional die for the shear rates 

higher than 100 s-1 up to 10000 s-1 at 383 °C. The results obtained by both methods show that the 

viscosity of PEEK at different temperatures at its Newtonian plateau is between 7000 Pa.s and 

11000 Pa.s, while at very high shear rates, the viscosity at 383 °C reduces up to 40 Pa.s. 

Then, we have determined the relaxation times for PEEK from the rheological measurements from 350 

°C to 400 °C. The relaxation times of PEEK are relatively high: At 350 °C, it is 3.1 s and at 400°C it is 

reduced to 1.6 s. 

Isothermal and non-isothermal crystallization of PEEK has been determined by DSC experiments on 

cooling for a large temperature range from melting temperature up to the glass transition. Furthermore, 

the material deposition during the FFF process applied to PEEK has been modeled by numerical 

simulation. From the numerical simulation, we have determined the flow properties of the melted 

polymer, heat transfer, as well as the variations of viscosity and crystallinity during the deposition step. 

These informations are essential to optimize the mechanical resistance of printed parts and they cannot 

be determined by experimental measurements. It is the first time that numerical simulation is applied to 

the FFF process to predict the crystalline rate of parts manufactured by the FFF process.  
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Half-time crystallization of PEEK has been determined experimentally by DSC for the temperatures 

between 310 °C and 322 °C. The experimental results have been interpolated by Hoffman-Lauritzen 

equation in order to determine the half-time crystallization at different temperatures from melting 

temperature to glass transition. The Avrami kinetics coefficient has been determined from half-time 

crystallization. Moreover, the Avrami kinetics coefficient and Avrami exponent have been determined 

for the temperatures between 315 °C and 322°C separately. The comparison of the results for the Avrami 

kinetics coefficient by the predictive Hoffman-Lauritzen equation and Avrami equation shows a very 

good agreement. Our results on the crystallization of PEEK shows that the crystallization rate is at its 

maximum value at 512 K (240 °C). By comparing the results obtained for PEEK 450G and existing 

results on PEEK 150G, the crystallization kinetics for 150G is much faster than for 450G. However, 

both grades reach their maximum crystallization kinetics around 240 °C. Finally, the Avrami kinetics 

has been applied to Nakamura equation in order to determine the non-isothermal crystallization for 

PEEK 450G.  By adding, convection term to the Nakamura non-isothermal crystallization, we are able 

to determine the evolution of the crystallization field during the cooling of semi-crystalline polymers 

with considering the fluid flow. The modified Nakamura crystallization equation with convection term 

has been implemented to the software in order to determine the crystallization. To our knowledge, this 

is the first time that the Nakamura equation has been applied to PEEK 450G in such way. 

In this study, in order to model the material deposition and fluid flow, TPF numerical simulation has 

been carried out. Navier-Stokes, continuity and Level Set equations were used to model the material 

deposition. Heat transfer has been determined by implementing a partial differential equation in the 

model. By using TPF simulation approach, we have determined the material flow, heat transfer, and 

crystallization in the FFF process. The results show the gradient of crystallization rate along the filament 

during the deposition. The crystallization for the PEEK 450G reaches its maximum value (about 22%) 

of crystallization during the deposition. Furthermore, the crystallization releases heat of about 28.6 J.g-

1 in the system that increases the temperature of the deposited bead gradually up to 20 K. While the 

substrate temperature highly influences the kinetics of crystallization of the center of the beads, the 

environment temperature influences only the crystallization of the surface.  

Although many numerical simulations of additive manufacturing approaches are based on mesh 

activation approach as a step by step deposition, hereby, we have proposed a new approach model of 

real material deposition in a two-phase system to simulate the FFF process. Our approach for 

determining the non-isothermal crystallization while taking into account the fluid flow could be applied 

to other polymer processes. To date, this approach seems to have never been used. 
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General conclusion 



 

124 

 

 

Additive manufacturing (AM) refers to a wide variety of manufacturing processes for rapid prototyping 

and production of final and semi-final products. Despite a growing interest from industries and a large 

audience in the last five years, these manufacturing processes are still not well mastered, especially for 

not mass-produced polymers. Indeed, when the polymeric materials display specific properties, 

controlling their processing is trickier. More efforts are needed to enlarge the knowledge about the 

physical phenomenon involved during these processes. 

The industry requires high-performance polymers, that is to say, resistant materials when exposed to the 

harsh environment: thermo-oxidative atmosphere, oxidative chemicals combined to mechanical loads 

such as friction or compression. The emergence of highly stable thermoplastics since the 1980s such as 

the PAEK (polyaryletherketone) open the way to widespread their uses. So, high-performance 

thermoplastics are potential candidates to manufacture structural parts for aerospace, automotive and 

medical industries. However, in opposite to conventional polymers, processing high-performance 

thermoplastics is still a challenge because of their specific properties. The FFF (Fused Filament 

Fabrication) process is based on the melting of a polymeric wire or filament in an extruder; the latter is 

then deposited layer by layer to manufacture the final parts. These challenges are harder to be reached 

in case of layer by layer deposition where the bonding of the deposited layers drive the mechanical 

properties of the printed parts.  

Indeed, 3D parts suffer from low mechanical properties and low surface quality, compared to parts 

manufactured by conventional processing techniques. The mechanical properties and the surface 

roughness of 3D parts manufactured by FFF are controlled by the adhesion of filaments and the porosity 

rate. The both mainly stem from the flowing ability and the surface tension of the polymer. Moreover, 

the adhesion of filaments depends on the interdiffusion of polymeric chains. The polymer properties 

such as rheological behavior, thermal properties, surface tension and crystallization play a crucial role 

in the understanding of the effect of the printing conditions on the quality of the final parts. To our 

knowledge, no study of the FFF process applied to high-performance semi-crystalline polymer was 

available when this work began in 2015. Since, some similar research works have started worldwide. 

Our studies aim to optimize the quality of the printed parts by understanding the link between the 

printing parameters, the polymer properties and the mechanical properties of the 3D final parts. Our 

study focuses mainly on PEEK (polyetheretherketone). The relations between the printing parameters 

and the properties of the material (elongational viscosity, viscoelasticity, coefficient of thermal 

expansion, thermal capacity, thermal conductivity, kinetics of crystallization ...) on the polymer flow 

and the adhesion of filaments have been clarified. At the same time, the objective was to set up a 

numerical simulation of the phenomena involved in this process. The viscous flow of the polymer during 

its deposition in the molten state was modeled and simulated while considering heat transfer and 

crystallization. In our procedure, we combine experimental, analytical and numerical approaches. 

Based on the literature review, the most influential printing parameters have been identified: the filament 

temperature, the environment temperature, the deposition rate and the raster orientation. The existing 

studies point out the lack of knowledge about the link between the printing parameters and the polymer 

properties in the FFF process. In the most of the studies on FFF process, the authors vary the printing 

parameters to print specimens, the latter are characterized by mechanical tests. However, the material’s 

properties are among the most important properties which have not considered. Among these properties, 

the viscoelastic behavior, the surface tension, crystallization rate (for the semi-crystalline polymers) and, 

the thermal properties are the crucial properties influencing the quality such as deformation and warpage 
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of the manufactured parts. Furthermore, the physical phenomenon such as coalescence, material 

flowing, heat transfer and crystallization are the most important issues to optimize the FFF process. 

After identifying the polymer properties involved in this process, the PEEK polymer has been 

characterized in Chapter 2. PLA is used as a comparative polymer to understand the physical 

phenomenon, with a lower melting point. For the both, their thermal transitions, kinetics of 

crystallization and sensitivity to degradation have been clarified. Contrary to the PEEK, the kinetics of 

crystallization of PLA is slow. In the case of PLA, the crystallization could be controlled in the FFF 

process by applying the high cooling rate while, in the case of PEEK, the polymer crystallizes whatever 

the cooling rate studied. Practically, the cooling rate depends on the temperature of the melt polymer 

exiting from the nozzle, the temperature of the platform (substrate) and also the environment 

temperature. 

The thermal properties such as thermal conductivity, diffusivity and expansion coefficient have been 

determined. Contrary to the thermal conductivity, the thermal diffusivity decreases while the 

temperature increases. The rheological properties have been determined for the shear rates less than 100 

s-1 in oscillatory mode. The comparison of PEEK with PLA shows that the viscosity of PEEK is much 

higher than those of PLA. Moreover, both polymers are sensitive to thermal degradation. As a 

consequence, the processing temperature range is limited to prevent their degradation. PLA and PEEK 

undergo different degradation mechanism, resulting in decreased viscosity for PLA due to chain scission 

mechanism. On the contrary, the degradation mechanism of PEEK occurs by molecular recombination, 

leading to viscosity increase. Degradation of the PEEK at low frequency and high temperature, shows 

the importance of the determination of shear rate in the FFF process. Considering that shear rate is 

depending on the printing parameters (i.e. nozzle diameter, feed rate and layer height), shear rate in the 

FFF process been determined in the liquefier according to printing parameters. 

The 2D coalescence numerical simulation of the fluid in the air has been carried out by using CFD and 

TPF-LS equations. Our numerical results on the coalescence of glycerol show great accordance with the 

experimental ones. The experimental study of the coalescence phenomenon applied to PEEK confirms 

that the viscosity highly influences the bonding of polymers.  

Although from one point of view, the increase of shear rate decreases the viscosity and consequently, 

increases the coalescence kinetics. However, from other point of view high shear rate highly impacts 

the quality of the printed part. Our observation has been shown that at the high shear rates, polymer flow 

from the nozzle undergoes the shark-skin phenomenon. Furthermore, the die swelling of the extrudate 

at high shear rate is more important than low shear rate.  

The die swelling ratio for PEEK in the FFF process depends on the printing parameters: it changes from 

1 (no swelling) to 2.5. In order to reduce the die swelling, we advise to increase the temperature, decrease 

the inlet velocity or adapt the geometry of the nozzle (capillary diameter, capillary length, convergence 

angle and reservoir diameter). Then, we have determined the relaxation times for PEEK from the 

rheological measurements between 350 and 400 °C. The relaxation times of PEEK are relatively high: 

At 350 °C, it takes 3.1 s and at 400°C it is reduced to 1.6 s. 

This bonding would impact the mechanical properties of the printed parts: if the interdiffusion and 

bonding is not completed, the interlayer adherence would be weak, resulting in low fracture resistance 

of the parts. The bonding length between two adjacent PEEK filaments has been registered according 

to temperature. The comparison of experimental study with numerical simulation of the coalescence 

shows that the coalescence starts when the polymer is fully melted. Then the importance of 

determination of the cooling rate and crystallization kinetics is highlighted. Consequently, in order to 
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study the kinetics of coalescence in the FFF process we have to determine the temperature variation and 

crystallization kinetics. For that reason, in the third chapter we have concentrated on the determination 

of crystallization kinetics and temperature variation in the FFF process. 

Half-time crystallization of PEEK has been determined experimentally between 310°C and 322°C. The 

experimental results have been interpolated by Hoffman-Lauritzen equation in order to determine the 

half-time crystallization at the different temperatures from the melting temperature up to the glass 

transition. The crystallization rate is at its maximum value at 512 K (240°C) for PEEK. By adding a 

convection term to the Nakamura non-isothermal crystallization, we are able to determine the evolution 

of the crystallization field during the cooling of semi-crystalline polymers with considering the fluid 

flow. TPF numerical simulation has been carried out to model the material deposition and fluid flow, 

with Navier-Stokes, continuity and Level Set equations. Heat transfer has been determined by 

implementing a partial differential equation in the model. By using TPF simulation approach, we have 

determined the material flow, heat transfer, and crystallization in the FFF process. The results show the 

gradient of crystallization rate along the filament during the deposition. The crystallinity ratio for PEEK 

reaches its maximum value (about 22%) during the deposition. Furthermore, the crystallization releases 

heat in the system that increases the temperature of the deposited bead gradually up to 20 K. While the 

substrate temperature highly influences the kinetics of crystallization of the center of the beads, the 

environment temperature influences only the crystallization of the surface. In order to promote the 

interdiffusion of the molecular chain of the deposited layers and beads (and increase the mechanical 

properties) the temperature of the environment and deposition platform must be between 285°C and 

300°C. Our melting temperature and also build platform temperature proposition is in line with the 

proposition of the platform temperature and liquefier determined experimentally by other authors. 

Although many numerical simulations of additive manufacturing processes are based on mesh activation 

approach as a step by step deposition. Hereby, we have proposed a new approach model of real material 

deposition in a two-phase system to simulate the FFF process. Our approach for determining the non-

isothermal crystallization while considering the fluid flow could be applied to other polymer processes. 

To date, this approach seems to have never been used. 

We have also determined the temperature evolution of a single bead on the substrate. In this first step, 

the influence of the increase of temperature because of deposition of the consecutive layer deposition 

on the first deposited layer is not taken into account. Indeed, the deposition of a second layer on the first 

layer leads to the temperature increase at the interface of the two layers.  The magnitude of this increase 

highly depends on the printing parameters such as printing speed and deposition strategy. Consequently, 

fine numerical simulation of the several layers’ deposition according to raster orientation and printing 

parameters is necessary.  

Raster deposition strategy of the second layer on the first deposited layer highly influence on the 

interdiffusion of two layers. When the passage of the second layer on the first layer takes place 

immediately after deposition of the first layer and before cooling and crystallization of the first layer, 

the interdiffusion two layers is more favorable than the cases with the deposition of the second layer 

after cooling and crystallization of the first layer. By modeling the second layer on the first layer we are 

able to determine the temperature at each point of the deposited filament.  

During selection of the printing parameters, raster strategy deposition and environment temperature, we 

have to take relaxation time into consideration. This lately means, the interface of two layers must 

remain above melting temperature more than its relaxation time. As an example, the interface of two 

layers in PEEK must remain at 400 °C for about 1.6 s.  



 

127 

 

 

However, some further studies are needed in the following axis: 

Previously we have explained the importance of measuring the surface tension of the polymers 

according to the temperature and specially at the melting state. The determination of the surface tension 

at high temperature and specially for the polymers with high viscosity and with sensitivity to thermal 

degradation needs more studies and innovations. A new method would worth to be developed. 

In this work, we have studied in detail the deposition of a single bead on the printing platform. The 

deposition of more than two layers makes the numerical simulation much heavier and it will take longer. 

Consequently, for modeling the deposition of several layers, much powerful calculating servers are 

necessary. However, modeling several deposition layers will answer other obscure points to understand 

the properties of the printed parts. Furthermore, the applied pressure during deposition of the layer upon 

the deposited layer promotes the interdiffusion of the two layers. Understanding the applied pressure 

will lead to quantify the depth of the interdiffusion of the molecular chains at the interface of two layers. 

Moreover, by adding the mechanical behavior to the deposition model, we could model the residual 

stress and the influence of different printing parameters on the deformation on cooling. 

The next step is to print PEEK samples under controlled environment at different temperatures and 

printing parameters to be mechanically tested. Furthermore, the determination of the temperature and 

the heat field by using infrared thermography would be necessary to validate the heat transfer predicted 

by our numerical model. 

Hereby, we have studied the mechanism of interdiffusion of the macromolecular chains and the 

relaxation at temperature above the melting temperature. However, the interdiffusion starts below the 

melting temperature at slow rate, so, determining the relaxation times at lower temperature could help 

to optimize the printing speed. Also, the influence of the printing conditions on the welding (bonding) 

strength of a few filaments is a step towards the improvement of the bonding strength. For that, a specific 

mechanical test would be developed to quantify the inter-filament adhesion. 

Lastly, when the use of the FFF process will be mastered for high-performance thermoplastics, 

polymeric based composites could be used as well. Bio-sourced composites, long carbon and glass fiber 

composites, and metal/polymer blends materials could be used as raw materials to reach new properties. 

For all these materials, the FFF process requires a fine control of the material properties during the 

deposition to insure the best quality of the 3D printed parts. 
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A1 Annex I: Advantages and drawbacks of the polymeric based processes 
 

Process Description Advantages Disadvantages 
Powder bed fusion 

(PBF) 

1. A roller or blade is used to deposit 

a thin layer of powder on a build 

plate. 

 

2. Laser fuses certain areas in the 

powder. 

 

3. Build plate is lowered by the height 

of the powder layer. 

 

4. Repeat steps 1–3 for height of part. 

 

5. Excess powder is removed 

Excess powder serves as 

support, so no support 

structures required. 

 

Superior mechanical 

properties. 

Expensive, high material 

Waste. 

 

Few compatible materials. 

 

Rough or grainy surface 

 

Typical materials Polystyrene, Polyester, Polyamide 11 and 12, Polypropylene, Polyurethane, 

Polyetheretherketone (PEEK) 

Material jetting 1. Liquid polymer is jetted onto a 

build plate in droplets. 

 

2. Ultraviolet (UV) source cures the 

polymer. 

 

3. Build plate is lowered or print head 

is raised by the height of the droplet 

layer. 

 

4. Repeat steps 1–3 for height of part. 

 

5. Support material is removed 

Manufacture multi-material 

parts 

 

Low residual stresses 

 

High dimensional accuracy 

Weak mechanical properties. 

 

Adverse environmental 

effects. 

Typical materials Acrylates, acrylics, Polylactic (PLA), Epoxies, Starch 

Vat 

photopolymerization 

1. Build plate is positioned on top of 

a vat of photopolymer. 

 

2. UV source below vat cures certain 

areas in thin layer contacting the build 

plate. 

 

3. Build plate is raised by thickness of 

cured layer. 

 

4. Repeat steps 1–3 for height of part. 

 

5. Support material is removed 

High resolution to build 

time ratio. 

 

Good durability. 

 

Can produce multi-material 

parts, but it is difficult. 

Relatively expensive due to 

requirement for vat Change 

Requires support material. 

 

Cannot create parts with 

enclosed volumes due to 

liquid environment. 

Typical materials Acrylates, acrylics, epoxies 

Material extrusion 1. Thermoplastic filament is passed 

through a heated print head as the 

print head moves over certain areas of 

a build plate. 

 

2. Once the layer is complete, either 

the print head or build plate moves by 

height of layer. 

 

3. Repeat steps 1 and 2 for height of 

part. 

 

4. Support material is removed. 

Can be optimized for strong 

material properties. 

 

Low costs of machines. 

Low resolution and poor sur 

face finish require significant. 

 

Post-processing. 

 

High residual stresses. 

Typical materials Acrylonitrile butadiene styrene (ABS), PLA, Acrylics, Polycarbonate (PC), Polyetherimide 

(PEI), high impact Polystyrene, PEEK 
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A2 Annex II: Methods for the characterization of polymers 

A2.1 DSC (Differential scanning calorimeter) 

Differential scanning calorimeter, or DSC, is a thermo-analytical technique to study the thermal 

transitions including glass transition, melting temperature and, crystallization of polymers. Polymer 

samples release or absorb heat during its transition temperatures and crystallization. The principle of 

this technique is based on the difference between the amounts of absorbed heat or released heat during 

transitions by the polymeric sample and the reference pan. As it is represented in Figure 1 the analyses 

are based on the comparison of the absorbed heat between the sample in an aluminum pan and an empty 

pan as the reference. The sample is placed in a pan in order to keep the analyses safe from contamination.  

 

Figure 1: The Principe of the Differential Scanning Calorimeter (DSC) 

A2.2 TMA (Thermo-mechanical analyzer) 

This technique is used to measure the expansion of a material over a temperature range. The sample is 

kept in a thermal furnace. This thermal furnace regulates the temperature of the sample during the test. 

A sensitive probe placed on the sample, measures the variation of the dimension of the sample according 

to the temperature to measure the thermal expansion coefficient. The principle is represented in Figure 

2. 

 

Figure 2: Schematic presentation of the TMA analyzer 
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A2.3 Hot-disk thermal conductivity measurement 

As it is represented in Figure 3 the probe is embedding between two samples. Probe is made of a two 

coils of nickel. The system is considered semi-infinite and isotropic. All of the system is placed in a 

fixture in order to get better contact between the samples and probe. 

 

Figure 3 : schematic representation of the probe embedded between two samples 

 

 

Figure 4: schematic representation of the sample holder used for testing the conductivity of the polymer by Hot Disk 

During the test, the electric power (P0) is delivered to the sample during a certain time (t). By Joule’s 

law, the probe emits some amount of heat. Heat emitted from the probe diffuse in the sample 

homogenously. 

By increasing the temperature, the electric resistance of the probe (R(t)) changes according to the time. 

Increase of the temperature and consequently, the variation of the electric resistance of the probe are 

dependent. The electric resistance of the probe according to time is determine by eq. 1. 

𝑹(𝒕) = 𝑹𝟎[𝟏 + 𝜶∆𝑻(𝝉)̅̅ ̅̅ ̅̅ ̅̅ ] eq. 1 

 

Where R0 is the electric resistance of the probe at the start of the test in ohm, α is the resistance 

coefficient of the probe and ∆𝑇(𝜏)̅̅ ̅̅ ̅̅ ̅ is the mean value of the temperature increase according to time. τ is 

the temporal data which could determine from the eq. 2. 

 

𝝉 = √
𝒂𝒕

𝒓𝟐
 

eq. 2 

 

Where a is the thermal diffusivity of the sample and, r is the diameter of the sample. 

A2.4 Surface tension measurement 

Contact angle meter uses the sessile drop technique for determining the contact angle of a liquid on a 

solid substrate. As it is represented in Figure 5, this method is based on the determination of the contact 

angle between the solid substrate and several liquids with known surface tension. A droplet of 6 μl of 
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water, diiodomethane, glycerol and, ethylene glycol has been deposited on a solid substrate of PLA and 

PEEK by using a special syringe. The surface tension of the liquids used for the tests are represented in 

the Table 1. The value of surface tension is measured using contact angle and Owens-Wendt-Rabel-

Kaelble (OWRK) method. The total value of the surface tension is the sum of polar and dispersive 

components Table 1. 

Table 1: Surface tension of the liquids used for the test 

Liquid г𝒍
𝒅 г𝒍

𝒑
 

Water 21.75 51.0 

Glycerol 37.0 26.4 

Diiodomethane 50.8 0 

Ethylene Glycol 29.3 19 
 

г = г𝑠
𝑑 + г𝑆

𝑝
 

 

eq. 3 

Where г𝑠
𝑑 is the dispersive component and г𝑆

𝑝
 is the polar component of the surface tension. Interactions 

caused by temporary fluctuations of the charge distribution in the atoms-molecules are called dispersive 

interactions (van der Waals interactions). Polar interactions comprise Coulomb interactions between 

permanent dipoles and between permanent and induced dipoles (e.g. hydrogen bonds). 

 

Figure 5: The deposed drop of water on the solid PEEK in the room temperature 

The used tensiometer is a Krüss DSA100 with DSA3 software and a heating furnace TC21, a high-

temperature DO3241 dosage system and a metallic syringe with the diameter of 1.8mm. 

For the surface tension measurement in the melted state, a pellet is melted in the syringe and deposited 

on the different substrates with thermally stable surface tension.  

A2.5 Extensional die for viscosity measurement 

The parallel-plate configuration of the rheometer is the suitable way to determine the viscosity of the 

fluids at relatively low frequencies (shear rates) from 0.01 Hz to 100 Hz. However, at higher frequencies 

(shear rates) the rheometers could not be used. Additionally, with this configuration of rheometer, 

determining the extensional viscosity of the polymers is not possible. For these reasons, we have used 

an extruder with the extensional die in order to determine the viscosity at high shear rates. In order to 

determine the viscosity by extensional die, the fluid is under extensional stress. In our studies, we have 

determined the viscosity of the polymer by parallel-plate configuration for low shear rates from 0.01 Hz 

to 100 Hz, and then, by an extruder equipped with a die for high shear rates up to 10 000 s-1. 

As it is illustrated in Figure 6, in this method, the viscosity is determined by an extruder implemented 

by a die and several heat and pressure sensors. 

α 
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Figure 6: Schematic representation of the die used to determine the viscosity at the high shear rate and extensional 

viscosity 

The die has three different regions to determine the viscosity. The first region which is between P1 and 

P2 sensors is used to determine the viscosity at low shear rate. The second region is between P2 and P3 

which is suitable to determine the extensional or elongation viscosity. The third part of the die is used 

to determine the viscosity at high shear rates between P3 and P4. 

  



 

vii 

 

A3 Annex III: VICTREX 450G datasheet 
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A4 Annex IV: Heating furnace and 3D stage design 
 

In chapter 2 and chapter 3, we have explained in detail the importance of controlling the environment’s 

temperature. Controlling the environment’s temperature is necessary to enhance the crystallization 

kinetics and the bonding of the deposited beads and layers. 

In our studies, we used an extruder from Thermo Fisher Company (Figure 7). This extruder is suitable 

for melting high temperature and high viscosity polymers. It is equipped with different heat and pressure 

sensors to make the control of the polymer flow and polymer properties possible. 

 
Figure 7: Extruder system 

 

At the beginning of the thesis, we planned to print PEEK samples to characterize their mechanical 

resistance. As no suitable printer existed at this time, we decided to extrude PEEK filaments with an 

extruder and to deposit them directly on a stage. For that, we had to design a 3D stage and a furnace 

compatible with the extruder. To vary the cooling rate of the polymer after exiting from the nozzle and 

so, to control the crystallization kinetics, the printing process must be done in a heating chamber. As a 

consequence, we have to design a printer and a 3D stage which could maintain the temperature at high 

temperature (up to 250°C) and also compatible with the extruder. In the following parts, we will present 

our design for the motorized 3D stage and heating furnace. 

A4.1. Motorized 3D stage 

In this section, we present our design for the motorized 3D stage. Considering that the extruder is fixed, 

the motorized 3D stage must be able to move in three directions the deposition plate. The 3D stage must 

be designed according to the criteria mentioned in the Figure 8 and Table 2. 
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Figure 8: Pieuvre diagram of the 3D stage 

PF 1: Movement of the support according to the nozzle of the extruder (the extruder nozzle is fixed). 

PF 2: Observation with IR camera. 

SF 1: Compatible to the extruder. 

SF 2: Compatible to the environment.  

SF 3: Resistance at the environment (high temperature). 

SF 4: Compatible to the source of energy. 

SF 5: Removing the samples must be easy for the user.  
SF 6: Must use maximum standard parts and less machining for fabrication of the 3D stage 
SF 7: Compatible to the heating furnace (platform inters in the heating furnace). 
SF 8: Adaptable to manufacture the tensile test samples. 
 

PF is the principal function and SF is the service function. 

Table 2: Designing criteria of the 3D stage 

Function Function name Criteria Level Flexibility 

 

 

PF 1 

Permit the printing 

of the tensile test 

sample of PEEK via 

extruder 

 

Minimum range in the x-

direction 

200 mm F1 

Minimum range in the y-

direction 

55 mm F1 

Minimum range in the z-

direction 

15 mm F1 

The precision of 3 axis 0.1 mm F0 

Articulation angles To determine F1 

Minimum velocity 30 mm.s-1 F0 

PF 1 Observation with IR 

camera 

Placing An IR transparent 

window for temperature 

measurement 

 F0 

 

SF 1 

Compatible to the 

extruder 

The distance between the 

extruder and the ground 

1 m F0 

The position of the 3D stage  Outside of 

heating furnace 

F0 

Easy assembly and disassembly 

of the 3D stage 

Easy F0 

SF 2 Compatible to the 

environment 

Wires and cablings No interference 

from different 

parts and wires 

of the extruder 

F0 
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SF 3 Resistance at the 

environment 

Resistance at the high 

temperature  

250°C -280°C F0 

SF 4 Compatible to the 

source of energy 

 Compatible to the EDF ( 

Electricity of France) 

230 V F1 

 

 

SF 5 

Easy to remove the 

printed sample  

Easy assembly and disassembly 

of a cohesive film on the 

printing platform 

Easy 

 

F0 

SF 6 Using standard 

components 

Reducing the machining and 

using maximum possible 

standard component for 3D 

stage 

 F1 

SF 7 Adaptive to heating 

chamber 

The printing platform of the 3D 

stage must be inside of a heating 

chamber. 

 F0 

SF 8 Compatible to the 

tensile test sample 

 

The maximum length of the 

sample 

70 mm F1 

Maximum width of the sample 15 mm F1 

The maximum height of the 

sample 

6 mm F1 

The extra margin for y and x 

directions 

5 mm -  10 mm F0 

 

There are two different configurations for the structure of the printers.  

 Cartesian movement structure: In these printers, the movement is based on three axes. Normally 

the head of the extruder is z-axis and the platform move in x and y directions. 

 Delta movement structure: In these movement structure, the platform of the deposition is fixed 

while the nozzle is mobile. The nozzle is linked to three arms, in order to satisfy the movement 

in three axes. Contrary to the Cartesian structure, the bars could only move vertically. 

Cartesian and Delta structures are represented in Figure 9. 

 

Figure 9: Illustration of the Cartesian and Delta movement structure of the printers 

Each of these structures has their advantages and disadvantages. Comparing these structures, we have 

decided to use a delta structure for the 3D stage. The main reason that we prefer the Delta structure than 

Cartesian structure is the complexity of the Cartesian structure in our case. The advantages and 

disadvantages of Delta structure and Cartesian structure are represented in Table 3 and Table 4. 
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According to our configuration and the fact that the 3D stage must be adapted to the extruder, and lack 

of free space under the extruder, we have selected the inverse Delta configuration. 

Table 3: Advantages and disadvantages of the Cartesian  structure 

Cartesian structure 

Advantages Disadvantages 

 

- The majority of the parts used for 

Cartesian structure are the standard 

components which are founded in the 

market 

 

- Distribution of the mass on the 

linkages components. The mass of the 

platform is properly spread on the 

shafts. 

 

-  Complex parts for machining. 

 

- The transition in z direction necessities replacement of all 

the structure. Which may cause the problems. 

 

- Cartesian system takes much space compared to the size of 

the sample. Considering the system must be adapted to the 

extruder and the small size of the sample the Cartesian 

system will be very big. 

 

Table 4: Advantages and disadvantages of the Delta structure 

Delta structure 

Advantages Disadvantages 

 
- Already existed design easy to 

implement. 

 

- Inversing the delta system will reduce the 

stress applied on the linkage. 

 

- The standard components for the Delta 

structure is more than Cartesian structure 

And we have less components to 

manufacture by machining. 

 

- Known precision for x and y axis, the 

verification is necessary for Delta 

structure. 

 

 

 

 
- The value of the applied force is unknown in the Delta 

structure. 

 

- Delta structure is more adapted for fast printing (not 

our case). 

 

- The angle of the ball joints become so small for the 

small moving distances. 

 

- Keeping the deposition surface flat is a major issue 

considering we are using the inverse Delta 

configuration 

 

 

In order to get the best design which confirming the desire criteria, several Delta configurations for the 

3D stage has been designed. During the design, we have tried to use as much as possible the standard 

parts in order to reduce the cost of machining and manufacturing the non-standard parts. Final assembly 

for the Delta 3D stage compatible with the extruder is represented in Figure 10. 
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Figure 10: 3D stage assembly designed for the printing of the PEEK compatible with the extruder 

In the Figure 11(a) and Figure 11(b), we will represent the sub-assembly of each part of the printer. 

 
Figure 11: Deposition platform marks as n. 1 in the 3D stage assembly  

  
(a) (b) 

Figure 12: Primary platform marks as n. 2 in the 3D stage assembly  
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Figure 13: Linear guide rail marks as n. 3 in the 3D stage assembly  

 

 

Figure 14: The assembly of the motors marks as n. 4 in the 3D stage assembly  

  
Figure 15: Guiding intermediate sub-assembly marks as n. 5 in the 3D stage assembly  

The standard parts used in the 3D stage are presented in Table 5. 

Table 5: The standard parts necessary for the 3D stage assembly 

Number The part’s name Quantity 

1 Linear rail MGN 12 3 

2 Linkage for Delta printers 6 

3 Plated linear shaft 8ϕ *  400mm 4 

4 Stepper motor NEMA 23 3 

5 Flexible coupler 6.35* 8 mm 3 

6 Trapezoidal 8mm lead screw and nut kit 2 

7 Electronic kit RUMBA 1 

8 Stepper driver PAP TB6600 3 
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9 NEMA 23 motor support 3 

10 Electric power 24V – 400 W 1 

11 Cooling fan 3 

12 Aluminum profile of the structure 1 ( 3m ) 

13 Nut for groove 1 

 

Although we have decided to use standard parts as much as possible, however, there are still some parts 

which must be manufactured separately. Table 6 shows the non-standard parts which must be 

manufactured separately. 

Table 6: The parts which must be manufactured 

Number The part’s name Manufacturing 

process 

Quantity 

1 Structure part Milling 6 

2 Printing platform Milling 1 

3 Primary printing platform Milling 1 

4 Lower centering bushing Lathe machining 1 

5 Guiding the intermediate part Cutting 3 

6 Supporting nut Milling  3 

7 Linkage fixation clevis Milling 3 

 

Furthermore, during the design phase of the 3D stage, we have decided to reduce as much as possible 

the price of manufacturing by using the standard parts and also designing the parts which do not need 

special machining process. 

A1.2. High-temperature furnace 

As we have explained previously, in order to control the kinetics of coalescence and cooling rate of the 

deposited beads, the printing environment must be controlled. To control the environment temperature 

of the beads, we have designed a heating furnace. The designed furnace must be adaptable to the extruder 

and designed 3D stage. Design criteria for the heating furnace are represented in Figure 16. 

 

Figure 16 : The Pieuvre diagram for heating furnace 
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PF 1: Permit the printing of the tensile test sample of PEEK via extruder and 3D stage 

SF 1: Compatible to the extruder 

SF 2: Compatible to the environment 

SF 3: Keeping maintaining the desired temperature inside the furnace while outside is cold 

SF 4: Compatible to the source of energy 

SF 5: Facility of use for the user (Easy to remove the printed sample) 

SF 6: IR transparent window for the thermography measurement 

SF 7: Temperature resistance IR window for the thermography measurement 

SF 8: Compatible to the 3D stage 

The detail of the design criteria for the heating furnace is represented in Table 7. 

Table 7: Designing criteria of the heating furnace 

Function Function name Criteria Level Flexibility 

 

 

PF 1 

Permit the printing 

of the tensile test 

sample of PEEK via 

extruder and 3D 

stage 

 

Minimum internal length of the 

furnace 

400 mm F1 

The minimum internal width of 

the furnace 

150 mm F1 

The minimum internal height of 

the furnace 

160 mm F1 

Maintaining the internal 

temperature 

250°C -280°C F0 

 

 

SF 1 

 

Compatible to the 

extruder 

The position of the heating 

furnace 

Under the nozzle F0 

Easy assembly and disassembly of 

the 3D stage 

Easy F0 

SF 2 Compatible to the 

environment 

Wires and cablings No interference 

from different 

parts and wires 

of the extruder 

F0 

SF 3 Resistance at the 

environment 

Keeping maintaining the desired 

temperature inside the furnace 

while outside is cold 

Bellow 50°C F0 

SF 4 Compatible to the 

source of energy 

Compatible to the EDF 

(Electricity of France) 

230 V F1 

 

SF 5 

Facility of use for 

the user 

Easy assemblage and 

disassembling of printed part. 

Taking the part of the printing 

platform  

Easy F1 

SF 6 Thermography 

measurement 

IR transparent window for the 

thermography measurement  

Transparent for 

the spectrum 

from 0.76 μm 

until 4 μm 

F0 

SF 7 Thermography 

measurement 

Temperature resistance IR 

window for the thermography 

measurement 

Resistance at 

high temperature 

up to 260°C 

F0 

SF 8 Compatible to the 

3D stage 

The heating furnace must be 

compatible with the 3D stage and 

has enough space for the 

movement in 3 axis 

 F0 

 

According to detailed criteria explained in Table 7, we have done our heating furnace. Heating furnace 

compatible with the extruder is represented in Figure 17. 
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Figure 17: Heating furnace designed according to the design criteria 

Figure 18 shows the exploded view of the heating furnace. As it is represented in Figure 18 and Figure 

19, the heating furnace is composed of three regions: Internal wall, external wall and the insulation 

between the internal and external walls. The temperature of the internal space of the heating furnace is 

until 250 °C. The heating of the furnace is done by heating resistance. 

 

 

Figure 18: Exploded view of the heating furnace 

 
Figure 19: Detail view of the heating furnace 

Extruder 

IR transparent window 

Furnace door 

Heating resistance 

External wall 

Thermal isolation 

Internal wall 

Printing platform 
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In order to measure the thermal field of the polymer during deposition by infrared (IR) thermal camera, 

an IR transparent window must be integrated into the design. Figure 20 shows the selected IR window 

for our heating furnace (https://www.flir.com/products/ir-windows/). This window is IR transparent, 

and temperature resistant up to 270°C. 

 

Figure 20: IR transparent window for the measurement of the temperature in the heating furnace 

Finally, by assembling the 3D stage, heating furnace, and the extruder we design the high temperature 

set up for printing PEEK. Figure 21 shows the 3D printer compatible with the extruder for printing 

PEEK. 

  
Figure 21: Final assembly of the 3D stage and heating furnace compatible to the extruder in order to print PEEK 

Heating and insulation of the heating chamber 

For the external walls, we have used stainless steel sheets of 0.3 mm diameter. In order to insulate inside 

of the heating furnace from the outside environment and control the temperature inside the furnace, we 

will use ceramic fiber as insulation. The ceramic fiber is heat resistant to up to 1400 °C. 

In order to control the temperature inside the heating furnace, we use the heating resistance in the 

chamber. The heating chamber will be accompanied by the thermocouple and the controllers in order to 

control precisely the temperature inside the heating chamber. No fan has been used in the configuration 

in order to reduce the air turbulence. The heating in the furnace is by conduction.  
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A5 Annex V: Encountered numerical errors during simulation 
 

During numerical simulation of the material deposition on the platform, we have encountered several 

numerical errors and problems. These errors are mostly because of non-homogenous meshes. 

During numerical simulation, there is a fluid flow from the outlet to the system. Figure 22 shows two 

numerical error occurring in our model. Although for these boundaries we have selected no backward 

flow, however, the external fluid flow enters in the model. One of the options in order to reduce this 

upward flow of material is to reduce the size of the meshes. However, using too fine meshes increases 

the time of the calculation. 

 

Figure 22: Entering unlikely flow in the system 

By using axisymmetric model and the appropriate size of the meshes, we could reduce this numerical 

error properly. 

Figure 23 shows the polymer deposition on a substrate. Close to the surface, the volume fraction must 

be 1, while as it represented in Figure 23 close to the surface, there is a fine layer where the volume 

fraction is not 1. 

For solving this problem, we have changed the meshes near the substrate to the boundary layer. Using 

boundary layer meshes could reduce this problematic; however, it is not solving the problem totally. 

 

Figure 23: Volume fraction close to the surface of the deposition 

During the simulation of material deposition, selecting the velocity of substrate and inlet velocity is very 

important. In the case, if the inlet velocity (velocity of material which exits from the nozzle) is high; 

there is material leakage on opposite side of the substrate velocity. Figure 24 shows material leakage 

during deposition.  

 
 

 

In detail 
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Figure 24: Material leakage during deposition of the polymer 

During the polymer extrusion, when the polymer exits from the nozzle, it swells. This means the 

diameter of the filament increases. Here, reducing the size of the meshes reduces the swelling of the 

filament. However, after a certain size of the meshes, it remains stable. Figure 25 shows the swelling of 

the filament when it exits from the nozzle. 

 

Figure 25: Swelling of the polymer filament when it exits from the nozzle 

We have to mention, the swelling represented here is due to numerical errors which is not related to the 

die swelling represented in the section 3.5.4 which is because by molecular chain relaxation. 

Figure 26 shows the cross-section of a deposited filament in the y-z plan on the substrate. In the case of 

deposing material, the shape of the deposited filament is the elliptical shape (Figure 26 (a). However, if 

the selected outlet debit of the polymer from the nozzle (or inlet velocity of the material in our numerical 

simulation) is very big, the height of the deposited bead exceeds the selected height (distance between 

the nozzle and deposition platform). In this case the elliptical shape of bead changes to the shape 

represented in Figure 26 (b). However, by 2D numerical simulation, the axes are x-z, which means it is 

not possible to model the cross section of the deposited material. Here, in the case of over deposition of 

the material, there will be leakage (Figure 24 ) which we could not see in experimental studies. 

 

Figure 26: The cross-section of the deposited material, (a) when the material is not over deposed, (b) in the case of 

over deposition of the material 
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A6 Annex VI: Temperature sweep tests by oscillatory test 
 

Rectangular torsion and parallel plate configurations of the rheometer have been used to determine the 

imaginary G” and real G’ modulus of PEEK from room temperature up to 400 ℃. 

Prior to temperature sweep test, the strain sweep test has been carried out in order to determine the linear 

viscoelastic domain of the PEEK. At 1 rad.s-1 the response of PEEK is still in the linear viscoelastic 

domain. 

In the solid state, oscillatory tests were performed at 1 rad.s-1, from 25°C to the melting temperature of 

PEEK (about 330°C) at 3°C.min-1 by means of rectangular torsion configuration. In the melting state, 

oscillatory test has been carried out by parallel-plate configuration. The test were performed at 1 rad.s-

1, from 340°C to 400°C at 3°C.min-1. 

For rectangular torsion, the sample is a parallelepipedic specimen where the dimensions are 

45x9.85x1.87 mm. A 25 mm diameter disk is used for the parallel-plate configuration test. The gap 

between two plates is 2 mm. The obtained results for the temperature sweep test of PEEK are represented 

in Figure 28. 

 

Figure 27: Schematic presentation of the (a) Rectangular torsion configuration (b) Parallel plate configuration, for 

Rheometer 

Figure 28  shows the complex modulus of PEEK composed of imaginary G” and real G’ part. Indeed, 

viscoelastic materials exhibit a behavior between totally elastic and totally viscous. G” which represents 

the loss modulus of the viscoelastic material is the dissipated energy during loading. G’ or the storage 

modulus is the real part of the complex modulus. The storage modulus characterizes stiffness of 

viscoelastic materials; it reaches the maximum value when the material is purely elastic. 

The results obtained from rectangular torsion rheometer show that PEEK has good mechanical 

resistance at the high temperature (until 300°C). In fact, PEEK keeps its storage modulus even at 300°C.  
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Figure 28: Loss (G'') and Storage (G') modulus of PEEK determined by frequency sweep test by rectangular torsion 

and parallel -plate configuration 
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Résumé : 

La fabrication additive (FA) fait référence à une grande variété de procédés de fabrication pour le prototypage 

rapide et la production de produits finis et semi-finis. Contrairement aux procédés classiques ou soustractifs, en 

fabrication additive, le matériau est ajouté progressivement couche par couche pour former les pièces. La 

fabrication additive permet la fabrication de pièces complexes impossibles ou peu rentables à fabriquer avec les 

procédés traditionnels. Le procédé FFF (Fused Filament Fabrication) est basé sur la fusion d'un filament polymère 

; le filament est ensuite déposé couche par couche pour fabriquer les pièces finales. Malgré l'intérêt croissant des 

industries et du grand public ces dernières années, ces procédés de fabrication ne sont toujours pas bien maîtrisés, 

en particulier pour les polymères qui ne sont pas de grande consommation. Dans cette thèse, nous allons nous 

intéresser à l’imprimabilité du PEEK (Polyétheréthercétone). 

Dans un premier temps, nous avons déterminé les propriétés du polymère influençant la qualité des pièces 

imprimées par FFF. Les propriétés rhéologiques, la tension superficielle, la conductivité thermique et la dilatation 

thermique ont été déterminées expérimentalement. Ensuite, le phénomène de coalescence des filaments polymères 

a été étudié par des mesures expérimentales, un modèle analytique et par simulation numérique. De plus, la stabilité 

du filament et ses propriétés d’écoulement lorsqu’il sort de l’extrudeuse dans le procédé FFF ont été déterminées 

expérimentalement puis par analytique et simulation numérique. Ensuite, nous nous sommes concentrés sur la 

détermination du gonflement des filaments de PEEK. Enfin, la cinétique de la cristallisation isotherme et non 

isotherme du PEEK a été étudiée expérimentalement. La cinétique de cristallisation a été appliquée au procédé 

FFF par simulation numérique afin de déterminer la température d’environnement optimale pour contrôler la 

cristallisation des pièces imprimées. La cristallisation du PEEK atteint sa valeur maximale (environ 22%) de 

cristallisation pendant le dépôt. En outre, la cristallisation libère de la chaleur dans le système, ce qui augmente 

progressivement la température du filament déposé jusqu'à 20 ℃.  

Mots clefs : Thermoplastiques hautes performances, Impression 3D, Fused Filament Fabrication (FFF), 

Cristallisation, Propriétés Rhéologiques, Simulation numérique 

Abstract: 

Additive manufacturing (AM) refers to a wide variety of manufacturing processes for rapid prototyping 

and production of final and semi-final products. In opposite to conventional or subtractive processes, in additive 

manufacturing, the material is gradually added layer by layer to form the parts. AM enables the fabrication of 

complex parts which were impossible or not cost-effective to manufacture with the traditional processes. Fused 

Filament Fabrication (FFF) is based on the melting of a polymeric filament in an extruder; the filament is then 

deposited layer by layer to manufacture the final parts. Despite growing interest from industries and a large 

audience in recent years, these manufacturing processes are still not well mastered, especially for not mass-

produced polymers. In this thesis, we will take an insight into the printability of PEEK (Polyetheretherketone). 

The aim is to find the printing conditions to obtain the best quality of the printed parts by FFF process. 

In the first step, we have determined the polymer properties influencing the quality of the printed parts by FFF. 

The rheological properties, the surface tension, the thermal conductivity and thermal expansion have been 

determined experimentally. Then, the coalescence phenomenon of the polymeric filaments has been studied by 

experimental, analytical and numerical simulation. Furthermore, the stability of the filament and its flow properties 

when it exits from the extruder in the FFF process has been determined by experimental, analytical and numerical 

simulation. Then, we have focused on the determination of the die swelling of PEEK extrudate. Lastly, the kinetics 

of isothermal and non-isothermal crystallization of PEEK has been studied by experimental study. The kinetics of 

crystallization has been applied to FFF process by numerical simulation in order to determine the optimum 

environment temperature to control the crystallization of printed parts. The crystallization of PEEK reaches its 

maximum value (about 22%) of crystallization during the deposition. Furthermore, the crystallization releases heat 

in the system that increases the temperature of the deposited bead gradually up to 20 ℃.  

Key-words: High-performance thermoplastic, 3D printing, Fused Filament Fabrication (FFF), 

Crystallization, Rheological properties, Numerical simulation. 
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