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INTRODUCTION

Indeed it is probable [...] that
stellar astronomy and atomic
physics are the only sciences
which stand higher in popular
estimation.

G.H. Hardy, A Mathematician’s
Apology.

Experimental atomic physics is an excellent ground for proof-of-principle investigations.

Atoms allow us to push the boundaries of our understanding of fundamental properties of

nature. Also, they often represent an ideal platform for the first tests of a new technology.

In this work, we examine some fundamental properties of the circular Rydberg states with

high principal quantum number of an alkaline-earth atom, with the long-term goal to use them

as the qubits of a Rydberg quantum simulator. More specifically, this work presents three main

results. First, we prepare the circular Rydberg states of Strontium (chapters 1,2). Second, we

prove that these circular states are impervious to the autoionization effect when the ionic core of

the two-electron atom is excited to a metastable |4d3/2〉 state (chapter 3). Third, we show that the

energy difference between the |4d3/2〉 states of the ionic-core electron depends upon the state of

the circular electron (chapter 4). These experiments pave the way to non-destructive experiments

with the Rydberg atoms. Ultimately, we discuss how these three experiments enable us to control

the state of the Rydberg electron with a laser pulse.

As an introduction to the dissertation, we briefly go through the recent use of alkaline-earth

atoms in many experiments. Next, we explain how our own experiment is connected to that

playground and how it brings us closer to the final goal of our research group, being the realization

of an efficient Rydberg quantum simulator.

Alkaline-earth Rydberg atoms

Rydberg atoms have remarkable properties. Due to their dipole-dipole interactions and lifetime,

both scaling very fast with the principal quantum number n, they have attracted a strong interest.
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As a consequence, many research groups started to exploit Rydberg atoms to build quantum

technologies [1-5].

Following this intense activity, a number of Rydberg experiments, typically using alkali atoms,

achieved important results. Most importantly, those investigations established the Rydberg atoms

as front-runners in the realization of quantum technologies within the network of the atomic-

molecular-optical (a.m.o.) physics community. However, the strategy to push the boundaries set by

those results was soon understood to be the full and precise quantum control of as many individ-

ual degrees of freedom of the atoms as possible. Therefore, the a.m.o. physics community looked

for ways to improve the control of the atoms, for instance via some quantum control algorithms

like the Krotov [6,7] method or dCRAB [8], or for ways to increase the atomic degrees of freedom to

be manipulated, resulting in an escalating interest for more complex atoms as compared to Alkali.

Following this evolution, alkaline-earth Rydberg atoms are now the focus of an intense ex-

perimental activity [9]. Calcium [10,12] and Strontium [13,17] are the ones that inspired most

experiments. Also more complex atoms, Ytterbium [18,19] and Erbium [20] above all, attracted

a lot of attention. In the context of alkaline-earth-based optical atomic clocks, dressing with or

excitation to Rydberg states open promising perspectives for noise reduction by the preparation

of non-classical states of an atomic ensemble [21,22]. The spectroscopy of Rydberg states also

provides accurate methods to estimate the systematic shift of these clocks induced by the black-

body radiation or by residual electric fields [23,25]. More importantly, once in the Rydberg state,

alkaline-earth atoms feature an optically active ionic core that makes it possible to image [26,27]

or trap [28,29] them, opening interesting perspectives for quantum simulation [30,32].

Note that most alkaline-earth experiments exploiting Rydberg atoms so far access low angular-

momentum Rydberg states [33,35], for which an excitation of the ionic-core electron quickly

leads to autoionization [36,37]. In order to overcome this limit, it is instrumental to increase the

angular momentum of the Rydberg electron [28]. Up to now, moderately large-l states have been

produced using microwave transfer [38] or Stark switching methods [39,42]. These early studies

have evidenced the reduction of the autoionization rate when increasing the principal quantum

number of the Rydberg electron but extending these techniques to n > 10 is challenging [43].

In contrast with these techniques, the "circularization" would allow us to prepare a "circular"

Rydberg state [44,45] with both high principal quantum number n and maximum angular and

magnetic quantum numbers, l = m = n−1. Historically, circular states were used extensively

to manipulate the microwave fields of superconducting cavities [46]. More recently, they have

attracted a broader interest, from cold atom physics [47] to quantum metrology [3,48] or quan-

tum simulation [49]. This enthusiasm for the circular states is motivated by their remarkable
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Figure 0.1: Scheme of the quantum simulator [49]. Each Rydberg atom occupies a site of the
trapping potential.

properties. For instance, they possess a very long intrinsic lifetime, evolving as n5 (30 ms for

n ∼ 50). Also, their wavefunction is localized at a large distance from the nucleus. Thus, the

outer electron of an alkaline-earth circular state has a very small overlap with the ionic core

and the autoionization rate is expected to be extremely low. Consequently, the circular states of

alkaline-earth atoms are expected to offer the best protection against autoionization. An early

study of the n = 21 circular state of Barium has already exhibited reduced autoionization for a

core in one of its metastable levels [50]. Their low autoionization rate, combined with their unique

properties, explains the interest for circular states of alkaline-earth atoms in recent proposals

[30,51].

Our research group shares this interest for alkaline-earth atoms. This is why we recently

started a new experiment on Strontium. The perspective is to use this atom as a "workhorse"

of a programmable Rydberg quantum simulator, whose realization is the long-term goal of our

research group. The choice of Strontium is due to the relatively simple laser excitation of this atom

to the Rydberg states. In general, Strontium presents a number of atomic transition frequencies

[9, 52, 53] laying within the visible range of the electromagnetic spectrum of light, making it

possible to manipulate the atoms with laser beams whose sources are commercially available.

The route towards a Rydberg quantum simulator

The ideal tool to address many-body physics is an analog ‘quantum simulator’ [54, 56], transcrib-

ing the dynamics of the system of interest into another one that is under complete experimental

control. A number of research groups are pursuing the realization of such a machine [57, 59],

some already achieved very interesting results [60, 61].

In our research group as well, we plan to build a quantum simulator based on a chain of
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single atoms (figure 0.1) confined close to an axis by a Laguerre-Gauss ‘hollow beam’ and held in

a periodic atomic lattice in the longitudinal direction. The atoms are first excited to the Rydberg

states and then circularized. The trapped circular states will ultimately be the qubits of this

simulator [62]. Their suitability as qubits is well established by their long lifetimes, that can

even be improved in a cryogenic environment by two parallel plates, inhibiting the dominant

spontaneous decay channel, the microwave emission towards the lowest circular state. Moreover,

the large dipole matrix element between circular levels makes them particularly sensitive to

dipole-dipole interactions.

This simulator would allow us to study a spin-1/2 XXZ chain Hamiltonian, where the role of

spin-up and spin-down states would be played by two circular states with n ∼ 50. Their energy

difference is within decades of GHz (∼ 105.3 GHz between |51c〉 and |49c〉) and accessible via

commercially available microwave sources.

An important advantage of the quantum simulator exploiting circular states would be the full

tunability of its parameters. The Ising coupling Jz between the spins would be set by moderate

applied electric and magnetic fields, the Rabi frequency Ω between the circular states would

depend on the frequency of a microwave field driving the transition between the two circular

states. Governing these parameters would allow us to tune the spin chain so as to emulate the

behaviour of several "exotic" phases of matter (figure 0.2), like Neel phases (Ny,z), Luttinger

liquids, ferromagnetic structures (F) or long-range-order phases (Px) and thus to explore, with

this atomic physics system, some fundamental problems of condensed matter physics.

However, a quantum simulator using Rubidium would suffer from a destructive detection of the

Rydberg states. This is usually performed by ionizing all the atoms together and associating

the ionization field to the quantum state of the atoms. Even accepting a destructive detection,

the simulator would still be strongly limited by two heating mechanisms of the spin chain, both

potentially causing a leak of the atom from its trap. One derives from the coupling between the

spin exchange of an atom and its motion in the trap. When flipping the spin state of an atom, its

interaction with its neighbours, hence its position of equilibrium in the trap, changes and the

atom starts oscillating in the trapping potential. When extending this mechanism all over the

spin chain, a heating process arises. The second heating mechanism is parametric heating. This

is caused by the intensity noise of the laser beams forming the trapping potential that confines

the atoms in the optical lattice, which becomes relevant at a timescale comparable with the

lifetime of the circular states.

Both the problem of the destructive detection of the Rydberg state and that of heating can

be overcome when working with an alkaline-earth atom as a platform for the qubits. One can

then exploit the two electrons in the outer filled shell. With one electron excited to a circular
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Figure 0.2: Phase diagram of the chain Hamiltonian dressed by the MW [49].

Rydberg state with large enough radius, the physics of the remaining valence electron can be

well approximated with that of the Sr+ ion, hence the chance to work on the ionic core as on

a simple ion. One can therefore import the experimental techniques [10, 63] developed for the

manipulation of ions into the Rydberg community, like cooling or detection protocols.

As for detection, for instance, the ionic-core electron can be used as a fluorescent, non-

destructive probe of the circular state of the other valence electron. The fluorescence is a con-

sequence of the spontaneous decay between two quantum states of the ionic core. The non-

destructive nature of this experiment is based on the fact that the optical excitation of one

valence electron preserves the circular Rydberg state of the other valence electron, due to the

weak autoionization of the electron-electron system. The optical resonance of the ionic core would

also allow one to apply standard laser cooling schemes and thus fight efficiently the heating

sources of the spin chain.

The implementation of all these improvements for the Rydberg quantum simulator must

overcome some difficulties. First, there is that of preparing the circular Rydberg states of Stron-

tium. Second, one must prove that the circular states are impervious to the autoionization effect.

Finally, before the implementation of Strontium in the quantum simulator, it is of paramount

importance to have a full understanding of the physics of two-electron atoms. It is therefore

critical to study the electron-electron interaction between the valence electrons when one is

circularized. All these challenges are tackled and solved in this work.
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The organization of this work

This work is organized in four chapters, six appendixes, a conclusion and a bibliography.

Chapter 1 is about the theory behind the physics of Rydberg atoms. The dissertation starts

from the simple case of Hydrogen. We first discuss the structure of its energy levels and how

they are affected by the interaction with a static electric field or a radio-frequency field. Next, we

formally introduce the technique of "circularization", being the transfer from a low-l Rydberg

state to the circular state of the same manifold. As a second step, we study Rubidium, which

presents a more complex core. This last fact requires that we adapt the Hydrogen model in order

to understand the energy levels of the Alkali atom. We also explain the extension of the circular-

ization process, introduced for Hydrogen, to Rubidium. Finally, we increase again the complexity

of the problem by discussing the Rydberg-excited Strontium atom. Its energy-level structure

displays a stronger discrepancy with respect to that of Hydrogen. Moreover, the presence of two

electrons requires the introduction of the physics of spins, thus the distinction between singlet

and triplet Rydberg states.

Chapter 2 is about the preparation of the circular Rydberg states of Strontium. We first

discuss the experimental set-up and next present the experimental results. The circularization is

explained step-by-step, starting from the three-photon Rydberg excitation of Strontium to a low-l

state, passing through the transfer of the population from a low-l state to the circular state by a

radio-frequency pulse and arriving to the detection of that circular state via microwave probes.

Chapter 3 discusses the autoionization effect for a Rydberg-excited Strontium atom. We prove

that this effect does not take place if one of the two valence electrons is excited to the circular

Rydberg state and the other valence electron is in a metastable |4d3/2〉 or |4d5/2〉 state.

Chapter 4 explains some optical manipulations enabling us to quantify the energy difference

between the sub-levels of the |4d3/2〉 states of the ionic core and to show that that energy differ-

ence depends on the principal and magnetic quantum numbers of the Rydberg electron. We show

that the degeneracy lifting among the |4d3/2〉 states is caused by the electric-quadrupole term of

the multipole expansion of the electron-electron potential governing the interaction between the

valence electrons. This experiment leads us to a Ramsey experiment where we control the state

of the Rydberg atom with a laser pulse.

The appendices of this work complement the experiments presented in the four chapters.

Appendix A shows that our Rydberg excitation concerns only the isotope 88Sr, with zero nuclear

spin, so that we work with quantum states whose angular momenta are not affected by the

hyperfine coupling with the nuclear spin. Appendix B presents the preparation of a circular
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state via an adiabatic passage. Appendix C is an insight on a laser spectroscopy experiment

aimed at identifying the resonance frequencies of the laser beams exciting the ionic-core electron.

Appendix D complements chapter 3 by showing how to calibrate some microwave pulses enabling

us to distinguish between singlet and triplet states of Strontium. Appendix E attaches to chapter

4 the calibration of a short optical pulse exciting the ionic-core electron. Appendix F presents

an experiment allowing us to associate an elliptical Rydberg state with the duration of the

radio-frequency pulse which leads to its preparation.

The conclusion summarizes the main results of this work, explains why the achievements

presented in this doctoral thesis will be important for the realization of the next generation

quantum simulator and also presents some short-term perspectives for the experiment to be

pursued in the next years.

Note on the outreach activity

This Ph.D. program has received full support from the European Union’s Horizon 2020 grant

agreement (QuSCo project). Following the guidelines of the project, an intense outreach ac-

tivity, aiming to encourage young students to join the STEM community during their careers,

complemented the experimental results exposed in this work. A portfolio of the outreach items

produced under the supervision of the experts from Aarhus University, Denmark, is available

here: https://qusco-itn.eu/outreach-3/.
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1
RYDBERG ATOMS

Mathematics is the art of
assigning the same name to
different realities.

Prof. Henri Poincaré

The Rydberg states of an atom are electronically, highly excited states where the electron

perceives only a Coulomb potential from the core. The name derives from Johannes

Rydberg, who finds, in 1888, a formula describing the energies of Hydrogen,

(1.1)
1
λ
= RH

(
1
n2

1
− 1

n2
2

)
, n2 > n1,

where λ is the wavelength of the radiation emitted in vacuum, RH indicates the Rydberg constant

for the same atom and n1, n2 are the principal quantum numbers of two given energy levels.

In general, we address as Rydberg atoms those with the most hydrogenic structure. For them,

this formula can be applied as a very first approximation to calculate the energy of the quantum

states with very high principal quantum number n. This motivates the definition of Hydrogen as

the ideal Rydberg atom. Besides this, the alkali atoms are also suitable candidates for such a

title, since they all present one valence electron only. Another fitting choice is an atom belonging

to the alkaline-earth set, if one of the two outer electrons is in its ground state and the other is

promoted to a very excited one. Given the similarities with Hydrogen, the physics of Rydberg

atoms is tackled through the Hydrogen model [64].

In this chapter, we present the Hydrogen model and its extension to the more intricate physics

of the Rydberg-excited Strontium. The exposition of such an apparently long jump proceeds grad-

ually throughout the text. After investigating the picture of the Hydrogen atom, we step on the
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CHAPTER 1. RYDBERG ATOMS

simpler case of the alkali atoms, with particular attention devoted to Rubidium, and use such a

passage as a basis of the analysis pursuing Strontium.

This chapter is therefore split in three sections. Sec. 1.1 presents the model of the Hydrogen

atom. We first introduce the wavefunction Ψnlm and the set of discretized energies En predicted

by the Schrödinger equation. Next, we study the action of a static electric field on these energy

levels, the "DC Stark effect" (paragraphs 1.1.1 - 1.1.2) [65, 66]. Finally, we detail the picture

of spin-coherent-states to describe the set of energy levels and introduce a general method of

preparation of circular Rydberg states (paragraphs 1.1.3 - 1.1.7). Sec. 1.2 discusses the extension

of the Hydrogen model to the alkali atoms. We present a correction term to the Hydrogen energies

to model the energy levels of Rubidium with high-n (paragraph 1.2.1). We use this model to

briefly investigate the Stark effect and the circularization of Rubidium (paragraphs 1.2.2 - 1.2.3).

Sec. 1.3 concludes the chapter. There, we broaden our vision to the physics of Strontium. We

describe its Hamiltonian and the implications of working with an alkaline-earth atom, featuring

two electrons in the last filled shell. This leads us to include the spin in the treatment of the

Hamiltonian. We therefore discuss the exchange energy and the spin-orbit coupling (paragraphs

1.3.1 - 1.3.5) terms of the spin Hamiltonian and see how they affect the energy levels. A brief

analysis of the Stark effect for Strontium concludes the section (paragraph 1.3.6).

1.1 The Hydrogen atom

1.1.1 The wavefunction Ψnlm and the eigenvalues En

We begin this work with a brief discussion of the Hydrogen model. For the Hydrogen atom, the

stationary Schrödinger equation reads

(1.2) Ĥ0Ψ= EΨ,

where Ĥ0 is the Hamiltonian of the atom and E the eigenvalues of the equation, i.e. the set of

available energies for the electron. Among these, we ignore those laying in the continuum. We

express Ĥ0 as

(1.3) Ĥ0 = P̂2

2µ
+ V̂ (r).

Here, P̂2/2µ indicates the kinetic term, with P̂ being the momentum and µ the reduced mass of

the electron, whereas V̂ represents the Coulomb potential governing the interaction between the

proton and the electron. It is a function of the space vector r describing the distance between the

two. The solution Ψnlm is factorized as

(1.4) Ψnlm = Rnl(r)Ylm(θ,φ),
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1.1. THE HYDROGEN ATOM

where Rnl(r) indicates the radial component and Ylm(θ,φ) stands for the spherical harmonics

defining the angular component and dependent upon the spherical coordinates θ,φ. Here, n, l,m

are the principal, angular and magnetic quantum numbers respectively. They obey the well-

known selection rules

(1.5) 0≤ l ≤ n−1, −l ≤ m ≤+l.

These wavefunctions are eigenstates of {L̂2, L̂z}, where L̂ is the operator of the angular momentum

and L̂z is its component along the z axis. The discretized set En of energies available for the

electron reads

(1.6) En =−µc2α2

2n2 =−hcRH

n2 ,

where c is the speed of light, α∼ 1/137 is the fine structure constant and h indicates the Planck’s

constant. Notably, the energy levels depend only on the positive integer n.

1.1.2 The interaction with a static electric field

We consider the perturbation induced when applying a static electric field. This is taken into

account by an additional term in the Hamiltonian,

(1.7) ĤSt = d̂ ·F,

where d̂ is the electric-dipole operator and F is the electric field vector. In this context, the

Hamiltonian is unsolvable but with perturbation theory. This technique yields a set of eigenvalues

(1.8) E = E0 +E(1)
st +E(2)

st + o(F3),

where E0 is the energy of an unperturbed atom and E(i)
st are the correction factors describing the

effect of the electric field. They are named linear and quadratic Stark effects respectively,

(1.9) E(1)
St =−3ea0

2
n(n1 −n2)F, E(2)

St =− (ea0F)2

32ERH

n4(17n2 −3(n1 −n2)2 −9m2 +19),

where ERH is the ground state energy of the Hydrogen atom, F is the amplitude of the electric

field, e > 0 is the elementary charge and a0 the Bohr radius. To describe such a new energy level

set, we make use of a parabolic basis |n,n1,n2〉, where n1 and n2 are the parabolic quantum

numbers. Another equivalent choice may be |n,n1,m〉. Note that, unlike l, m is still a good

quantum number. We have the relations

(1.10) n = n1 +n2 +|m|+1, 0≤ n1 ≤ n−1, 0≤ n2 ≤ n−1.

From (1.9), we infer that a static electric field lifts the degeneracy of the quantum states with

different m. The separation between these levels increases with the amplitude of the electric
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CHAPTER 1. RYDBERG ATOMS

Figure 1.1: Manifold of Rydberg states sharing the same principal quantum number n and
undergoing the interaction with a static electric field. All levels are organized from left to right
according to the magnetic quantum number m, ranging from 1−n to n−1. The number of levels
associated to the same m is n−|m|. The distinction between them is performed either by n1 or
n2 depending on the choice of the preferred basis. This image is taken from [67].

field.

Figure 1.1 shows the Stark diagram for a given manifold, i.e. the distribution of the en-

ergy levels with same n but different n1, n2 and m, when they undergo the interaction with a

static electric field. Each quantum state is labelled via the set of quantum numbers |n,n1,m〉 or

|n,n1,n2〉. The manifold has a diamond shape and contains n2 states. Among these, the set of

states with n1 = 0, composing the lowest-right diagonal, are of particular interest for us. They

are equidistant between each other and coupled via σ+ polarized photons. We define the angular,

Stark frequency ωSt as the spacing, in units of ℏ= h/2π, between two of these consecutive states.

This quantity is in the radio-frequency domain for the range of values of n under interest (n ∼ 50).

More precisely, around ωSt/2π= 100 MHz for an electric field of 1 V/cm.

At the end of the ladder, we find the state with maximum m. Due to the peculiar, toroidal

shape of its wavefunction, we refer to it as the "circular" Rydberg state. We use the notation |nC〉
to express the circular state of the manifold with principal quantum number n. Given its very

high |m|, this state cannot be prepared by laser excitation only. A possible strategy is to access

by laser a low-m Rydberg state and to apply a radio-frequency field to transfer the quantum

population to the circular state of the same manifold.
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1.1. THE HYDROGEN ATOM

1.1.3 The Laplace-Runge-Lenz labelling of Stark states

We define here an alternative representation of the parabolic basis: the Laplace-Runge-Lenz

(LRL) representation. This is of particular interest to model the interaction of Hydrogen with

a static electric field in a more intuitive way, but also completely equivalent from a physical

point of view. On top of that asset, the LRL representation also allows one to efficiently study the

interaction between the atom and a radio-frequency field.

The LRL representation makes use of the so-called "ladder operators", Ĵ1 and Ĵ2, defined as

(1.11) Ĵ1 = L̂− â
2

, Ĵ2 = L̂+ â
2

.

where L̂ is the angular momentum operator and â is the the normalized Laplace-Runge-Lenz

operator,

(1.12) â=
√
−2µEn

(
1
2

[
p̂× L̂− L̂× p̂

]
−µK

r̂
r

)
=

√
−2µEn Â.

Here, K is the strength of the central force, equal to e2/4πϵ0 for the Coulomb force, where ϵ0 is

the dielectric constant in vacuum, and Â is the un-normalized LRL operator. This is associated to

the classical LRL vector A, which is a conserved physical quantity for a particle interacting with

a potential of symmetry 1/r. Furthermore, inside a given manifold, it is related to the position

operator r̂ through the Pauli replacement

(1.13) r̂= −3πa0n
h

â.

This is an instrumental result to mathematically relate the ladder operators with the Cartesian

components of the position operator. For example, it allows us to express the Stark Hamiltonian

in terms of the ladder operators, as

(1.14) ĤSt =
hωSt

2π

(
Ĵ1,z − Ĵ2,z

)
.

Here, we have used Ĵi,z to indicate the component of the i th ladder operator along the z axis.

The mathematics of the ladder operators is very insightful. Inside a given manifold, {Ĵ2
1 , Ĵ1,z,

Ĵ2
2 , Ĵ2,z} form a complete set of independent observables. Also, Ĵ2

1 and Ĵ2
2 are constant, for a

given n, and equal to (n−1)/2. Basing on this, we can use the ladder operators as our preferred

representation of the parabolic basis, which is equivalent to that presented in sub-section 1.1.2

but provides a more geometric visualization of the eigenstates of the Hydrogen atom. Thus,

the energy levels of Hydrogen can be represented as | j1,m1, j2,m2〉, where ℏm1 and ℏm2 are

the eigenvalues of Ĵ1,z and Ĵ2,z respectively. Mathematically, the passage from |n,n1,n2〉 to

|n,m1,m2〉 is done by imposing

(1.15)

n1 = n−1
2 +m1 i f m ≤ 0

n2 = n−1
2 +m2
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J1z

J2z

Figure 1.2: Manifold of Rydberg states labelled by use of the Laplace-Runge-Lenz representation.

n1 = n−1
2 −m2 i f m ≥ 0

n2 = n−1
2 −m1

and solving such a system to find m1 and m2. Figure 1.2 shows the same manifold already

presented in figure 1.1 but with the energy levels labelled via the new set of quantum numbers

|n,m1,m2〉.

1.1.3.1 Conversion from the parabolic to the spherical basis

It is instrumental to define the passage from the parabolic basis |n,m1,m2〉 to the spherical

basis |n, l,m〉. This conversion is done by using the algebra of coupling of angular momenta via

Clebsch-Gordan coefficients as,

(1.16) |n, l,m〉 =∑
m1

∑
m2

|n,m1,m2〉〈 j1m1 j2m2| j1 j2lm〉

1.1.4 Interaction with a radio-frequency field

We include in the analysis the interaction with a radio-frequency field of frequency ωr f and phase

φ. This is modelled in the Hamiltonian by the term V̂r f . We express it in the form

(1.17) V̂r f =−eFr f ·r,
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1.1. THE HYDROGEN ATOM

where Fr f describes the electric field vector of the radio-frequency field. It is decomposed into the

sum of a σ+ and a σ- polarized component,

(1.18) Fr f (t)=F+
r f (t)+F−

r f (t),

where we have used t to indicate the time parameter and

(1.19) F±
r f (t)= 1

2
A±

r f

[
(ux ∓ iuy)ei(ωr f t+φ) + (ux ± iuy)e−i(ωr f t+φ)

]
.

We have used the notation ui to indicate the unit vector along the i axis and the letters A±
r f

for the amplitudes of the field. When we insert the two components F±
r f (t) into (1.18) and next

include Fr f (t) into (1.17), we obtain two contributions to the Hamiltonian term V̂r f , being

(1.20) V̂r f = V̂+
r f + V̂−

r f ,

where

(1.21) V̂±
r f =

1
2

eA±
r f

[
(x̂∓ iŷ)ei(ωr f t+φ) + (x̂± iŷ)e−i(ωr f t+φ)

]
.

We can express V̂±
r f in terms of the Cartesian components of the ladder operators Ĵ±

1 = Ĵ1,x ± Ĵ1,y,

Ĵ±
2 = Ĵ2,x ± Ĵ2,y via the Pauli replacement, as

(1.22) V̂±
r f =

1
2
Ω±

r f

[
(Ĵ−

1 − Ĵ−
2 )e±i(ωr f t+φ) + (Ĵ+

1 − Ĵ+
2 )e∓i(ωr f t+φ)

]
,

where we define Ω±
r f as the Rabi frequencies associated to the radio-frequency field

(1.23) Ω±
r f =

3πea0n
h

A±
r f .

In the condition of resonance between states with same n and consecutive m numbers and the

radio-frequency field, thus ωr f =ωSt, equation (1.22) is simplified,

(1.24) V̂+
r f =

1
2
Ω+

r f

[
Ĵ+

1 e−i(ωr f t+φ) + Ĵ−
1 e+i(ωr f t+φ)

]
,

V̂−
r f =

1
2
Ω−

r f

[
Ĵ+

2 e+i(ωr f t+φ) + Ĵ−
2 e−i(ωr f t+φ)

]
,

from which it is clear that a σ+ (σ-) polarized, radio-frequency field couples neighboring states

with ∆m = +1 (∆m = −1) (figure 1.3). The radio-frequency field therefore needs to satisfy two

requirements to successfully transfer the population from one quantum state to another: the

resonance with the Stark frequency of the ladder and a σ+ (σ-) polarization.
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σ+

σ+

σ+

σ+

ωSt

ωSt

ωSt

ωSt

σ- ωSt

m

Figure 1.3: Coupling between the ladder of Rydberg states and a resonant radio-frequency field.
The polarization σ+ enables to couple neighboring states of the ladder, whereas a σ- polarization
allows to couple a given m state with the upper neighbor with lower m.

1.1.5 Spin-coherent-states

The complete Hamiltonian of the Hydrogen atom is the sum of all the terms presented to this

point,

(1.25) Ĥ = Ĥ0 + ĤSt + V̂+
r f + V̂−

r f .

In the latter expression, we distinguish two components of the Hamiltonian, Ĥ1 and Ĥ2, and

express them in the rotating frame at the radio-frequency ωr f . We write

(1.26) ˜̂H1 = h∆
2π

Ĵ1,z +
Ω+

r f

2π

[
i Ĵ+

1 eiφ− i Ĵ−
1 e−iφ

]
.

The term ˜̂H2 is similarly defined by use of the ladder operator Ĵ2. We have introduced the

detuning ∆ between the radio-frequency field and the spacing of consecutive m states of a given

manifold. Notably, the terms ˜̂H1 and ˜̂H2 depend on the ladder operators Ĵ1 and Ĵ2 respec-

tively. They therefore act on different Hilbert spaces and are independent from each other. In

this work, we consider, from now on, the only term Ĥ1, which couples to σ+, radio-frequency fields.

We set ∆ to zero to the obey the resonance condition. This simplifies (1.26) into

(1.27) ˜̂H1 =Ω+
r f

[
−sin(φ1)Ĵ1,x +cos(φ1)Ĵ1,y

]
.

The evolution operator corresponding to this Hamiltonian, after a certain interaction time Tint

between the radio-frequency field and the atom, is the rotation operator

(1.28) R̂1 = e−
i
ℏ

˜̂H1 t = e
i
ℏθiĴ1·n1 = e

−iθi
ℏ

[
−sin(φ1)Ĵ1,x+cos(φ1)Ĵ1,y

]
,
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a)

b)

Figure 1.4: a) Spin-coherent-states on the Bloch sphere. We have spin-coherent-states with higher
m components when proceeding from left to right. The one on top right is centered on the circular
Rydberg state. b) Wavefunction associated to the spin-coherent-state represented in the upper
panel. This image is taken from [68].

where θ1 =Ω+
RF Tint is the rotation angle and n1 = (−sinφ1,cosφ1,0) is the rotation axis. When

applied on a state | j1,m1〉, the rotation operator produces a spin-coherent-state |θ1,φ1〉 composed

by a a superposition of independent states | j1,m1〉, each weighted by the coefficient cm1 ,

(1.29) |θ1,φ1〉 =
j1∑

m1=− j1

cm1 | j1,m1〉 , cm1 =
√√√√(

2 j1

j1 +m1

)
cos

[θ1

2

] j1+m1
sin

[θ1

2

] j1−m1
ei( j1−m1)φ1

1.1.6 The preparation of the circular Rydberg state

The action of R̂1 on a quantum state can be visualized through the "generalized Bloch sphere"

model. This derives from the common Bloch sphere picture. There, the state of a two-level system

is indicated by a Bloch vector. The ground state of such a system is located at the south pole, the

excited state at the north pole.

The generalized Bloch sphere can be used for systems with multiple excited states, each

associated to an horizontal layer. Within this playground, we consider an atom initially prepared

in the quantum state located at the south pole of the sphere, noted as | j1,m1 =− j1〉, and apply R̂1

on it. Its action makes the Bloch vector perform a rotation, thus producing a spin-coherent-state

|θ1,φ1〉. Notably, a rotation of θ1 = 2π returns the population to the initial state, whereas, when
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m

cm

τ1 = T
τ2 = 3T/4
τ3 = T/2
τ4 = T/4

Figure 1.5: Evolution of the population, initially laying in a low-m state of a given manifold,
as a function of the duration of a σ+, rf pulse. Each radio-frequency pulse is associated to a
duration τi, determining the composition of the spin-coherent-state produced. Here, we sketch
the preparation of four spin-coherent-states, each centered on a different point of the ladder and
associated to a different radio-frequency event. The optimal circularization, associated to an
optimal duration T of the rf pulse (π pulse), is given by the green arrow.

θ1 =π, the operator R̂1 centers the resulting spin-coherent-state on the north pole of the Bloch

sphere, where the circular Rydberg state lays. This case is of special interest for us. We refer to it

as "circularization" (figure 1.4).

The action of the rotation operator can be observed also when discussing the evolution of

the population on a manifold of states with same n. We consider a purely σ+ polarized, pulsed,

radio-frequency field and the population concentrated on a low-m state of preference. The action

of R̂1 is mediated by the radio-frequency field, which moves the atoms away from the given level

along the ladder (figure 1.5). The duration and the amplitude of the radio-frequency pulse impose

the range of m states present in the final spin-coherent-state, as it determines the rotation

angle when considering the Bloch sphere model. Hence, the circularization involves dragging the

population until the end of the ladder, where the atoms acquire the maximum magnetic quantum

number. This happens for a specific duration of the radio-frequency pulse. A longer pulse causes

the atoms to leave the circular state, descending the ladder while revisiting the same states they

encountered during the climb.

1.2 Alkali atoms: the Rubidium atom

The Hydrogen model provides us with a very elementary version of the Hamiltonian of more

complex, Rydberg-excited atoms. We focus here on its extension to the alkali atoms. The price to

pay is taking into account a more complex core than one composed by a single proton. This is
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done by introducing a correction factor, named quantum defect, in the formula for the atomic

energies at zero electric field. Among the alkali atoms, the case-of-study concerned in this section

is Rubidium. Both experiments and theoretical studies solidly confirmed the suitability of the

quantum defect theory to model its quantum states.

1.2.1 The quantum defect

The quantum defect is introduced as a dimensionless term δ(n, l, J) in the denominator of En,

representing the discrepancy between the energies of a given Rydberg-excited atom and the

counterparts in Hydrogen. The equation (1.6) is therefore transcribed in

(1.30) En,l,J =− RH(
n−δ(n, l, J)

)2 .

As a first approximation, the quantum defect depends on l. It follows that the degeneracy between

l states belonging to the same manifold is lifted. Then, it is also sensitive to the fine structure

of the atom, hence the dependency on the quantum number J. This derives from the operator

Ĵ= L̂+Ŝ, where Ŝ is the spin operator and Ĵ is the total angular momentum operator, for an atom

with one valence electron only in the outer shell. An approximate expression of the quantum

defect reads

(1.31) δ(n, l, J)= δ0 + δ2

(n−δ0)2 .

The term δ0 is a constant in first approximation, whereas δ2 accounts for the small variation

of δ as a function of n. For the Rubidium atom, these parameters are measured for the levels

characterized by l < 7. All the other Rydberg states, with higher angular quantum numbers, are

considered as degenerate at zero electric field. Table 1.1 reports the state-of-the-art quantum

defect of the Rydberg states of Rubidium [69].

Table 1.1: Quantum defects of the Rubidium atom for the Rydberg states with n > 20.

l δ0 δ2 l δ0 δ2
0 3.131145 0.195 3 (J = 5/2) 0.0165192 -0.085

1 (J = 1/2) 2.65486 0.280 3 (J = 7/2) 0.0165437 -0.086
1 (J = 3/2) 2.64165 0.318 4 0.004 0
2 (J = 3/2) 1.34807 -0.603 5 0.001 0
2 (J = 5/2) 1.34642 -0.545 6 0.0006 0

1.2.2 The numerical simulation of Stark diagrams

We discuss here the method to evaluate numerically the Stark effect of the Rydberg levels of

Rubidium [70]. This is based on the numerical diagonalization of the Rubidium Hamiltonian.
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Figure 1.6: Stark diagrams of the n = 51 manifold of Rydberg states for Hydrogen (a) and
Rubidium (b). We plot the states with m = 2 only. All energies are scaled so as to have the energy
of the circular Rydberg state with n = 51 as zero. This image is taken from [71].

We are interested in the Stark effect of a given manifold of states, with n = 51. We set a

minimum nmin = 30 and a maximum nmax = 70 for the principal quantum numbers, in order to

assign a finite dimension to our Hilbert space and the Hamiltonian matrix. Also, we implement

a list of quantum defects for all values of l < 7 and a frequency window ∆ f . We consider the

contribution of the only states within ±∆ f around the central manifold with n = 52. We choose

∆ f large enough so that the Stark effect becomes independent of ∆ f , thus that the calculated

energies vary by less than 1 MHz if we increase ∆ f further. Typically, we need to consider eight

manifolds (four above, four below) around the one whose Stark effect is simulated. This implies a

final value of ∆ f ∼ 200 GHz.

The Hamiltonian at zero electric field, in matrix form, is defined as H0. Its diagonal entries are

computed via the implementation of (1.30). The Stark component HSt is computed by multiplying

the dipole matrix D, expressed in atomic units, with the vector of the electric field F= (0,0,Fz).

The quantity Fz spans from 0 V/m to an arbitrary value Fmax, representing the highest electric

field of interest. The dipole matrix is obtained by the product of a radial and a spherical harmonic

component. The matrix elements of the radial component are computed via the Numerov method.

The spherical harmonic component is implemented via the 3j formalism. The Hamiltonian is

then obtained by summing the two components,

(1.32) H=H0 +HSt =H0 −D ·F,

and finally diagonalized.

Figure 1.6 shows the Stark diagrams for Hydrogen and Rubidium for n = 51. For Hydrogen,

at zero electric field, all the levels are degenerate. When the Stark effect is active, those energy
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levels characterized by different m are distanced from one another. The same manifold in the

Rubidium atom appears different. At zero electric field, the energies of the |G〉, |F〉, |D〉, |P〉 and

|S〉 states differ from the energies of those belonging to the manifold. Also, when the Stark effect

is considered, those energy levels with different m split and the |G〉, |F〉, |D〉, |P〉 and |S〉 states

tend progressively to join the manifold.

Understanding the Stark effect for the Rydberg states matters in the perspective to access

the circular state of a given manifold. The Stark diagram can indicate the electric field where the

energy differences between neighboring m states become independent from m, thus where the

coupling of the energy levels with an external, σ+ polarized, radio-frequency field is efficient to

circularize.

1.2.3 The state-of-the-art preparation of a circular Rydberg state of Rubidium

Here, we briefly present the sequence of events applied to access the circular Rydberg state of

Rubidium (figure 1.7). A detailed insight on this matter is presented in [68].

The experimental sequence of events used to prepare the circular Rydberg state is made of

three steps. To start, the laser preparation of a low-m Rydberg state takes place. Three infrared

photons (780 nm, 776 nm and 1258 nm) are employed to that end. The level |52F,m =+2〉 is

chosen to avoid the anharmonicity of the lowest levels (|m =+1〉 and |m = 0〉) due to the quantum

defect (figure 1.8). Second, the electric field is increased to 235 V/m so as to make the |F〉 levels

join their respective manifold and set the energy difference between neighboring levels of the

ladder around 230 MHz. We name this step "Stark switching". Third and last, a radio-frequency

pulse at 230 MHz is applied to the atoms to transfer the population along the ladder until

reaching the circular Rydberg state at its top. The polarization of such a pulse is calibrated to be

σ+ and its frequency matches the spacing between neighboring states of the ladder.

This strategy allows us to prepare the circular Rydberg state with > 80% of efficiency.

1.3 The Strontium atom

1.3.1 The notation for the physics of two-electron atoms

We define here the notation for the physical quantities in use when we discuss the physics of

the Rydberg-excited Strontium. Unless otherwise specified, we are using lower case letters to

indicate the quantum numbers of an individual electron between the two populating the outer

shell of Strontium. The index of the quantum number indicates which electron we refer to. The

number 1 refers to the Rydberg electron, the number 2 to the ionic core. For instance, the angular

momenta of the two electrons are associated to the operators l̂1 and l̂2, whereas the spins of the

two electrons to ŝ1 and ŝ2. Also, we use capital letters to indicate the operators and the quantum
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Figure 1.7: Sequence of events to access the circular Rydberg state of Rubidium with n = 52.

Figure 1.8: Energy difference between neighboring m states along the Rydberg ladder. The colors
of the solid lines correspond to the transitions depicted in the inset. The quantum defect drags
the lowest energy levels out of resonance with the upper ones, hence the necessity to prepare the
atoms in a |m =+2〉 state before applying the radio-frequency field to circularize. The |m =+2〉
state involved in this circularization protocol belongs to the |52F〉 set of Rydberg states. This
image is taken from [67].

26



1.3. THE STRONTIUM ATOM

numbers referring to the collective, two-electron system. For instance, L̂= l̂1 + l̂2 represents the

angular momentum of the two-electron system and Ŝ= ŝ1 + ŝ2 indicates the total spin.

We report a modification of the notation of the magnetic quantum number. We name m as ml i ,

to label the magnetic quantum number associated to the angular momentum l i, and introduce

msi to indicate the magnetic quantum number associated to the projection of the spin along

the z axis for the i th electron. Also, following the rule of before, mL = ml1+ml2 and mS = ms1+ms2 .

The same rules are applied to the position vector of each electron. The number 1, used as

an index of r̂, x̂, ŷ and ẑ, indicates the Rydberg electron. The number 2 refers to the ionic-core

electron.

1.3.2 The Hamiltonian

We are going to adapt the mathematics of the Hydrogen atom, the quantum defects theory and the

technique of circularization to Strontium. The latter atom presents a more complex energy-level

structure than Alkali, due to the presence of two electrons in the outer shell.

A possible first approach to investigate this physics requires first to extend the Hamiltonian of

the Hydrogen atom by including the potential describing the interaction between the two valence

electrons, as

(1.33) Ĥ = P̂1
2

2µ
+ P̂2

2

2µ
+ V̂Sr2+(r1)+ V̂Sr2+(r2)+ V̂12,

and next to solve the Schrödinger equation. In (1.33), V̂Sr2+(r) is the potential of the Sr2+ ion and

V̂12 is the term governing the interaction between the two electrons and inducing the well-known

process of autoionization in alkaline-earth atoms,

(1.34) V̂12 = 1
4πϵ0

e2

|r1 −r2|
.

This strategy is hard to pursue already at zero electric field without the assistance of pertur-

bation theory. This enables to solve the Hamiltonian for two non-interacting particles and to

consider V̂12 as a mere perturbation to that scenario. In the context of Rydberg atoms only, an

alternative approach is provided by the Multichannel Quantum Defect Theory (MQDT) [73-76],

which generalizes the quantum defect approach introduced for alkali atoms. There, the outer

electron, prepared in a given Rydberg state |Ψ1〉, penetrates the core and exits in a different

Rydberg state |Ψ′
1〉, expressed in a complicated basis. The initial state of the atom therefore

evolves from |Ψ1,Ψ2〉 to |Ψ′
1,Ψ′

2〉, where Ψ2 and Ψ′
2 represent the state of the core before and

after the interaction. Different couplings |Ψ1,Ψ2〉 → |Ψ′
1,Ψ′

2〉 of the active electron and the core

are referred as "channels".
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Our strategy is simpler and more empiric but works for the range of Stark manifolds we

are interested in. Those gather the Rydberg states with 48 < n < 54. Their evolution is well

understood via our picture.

We assume that the ionic-core electron remains in the ground state and we compute the energy

level of the Rydberg electron in the effective potential created by the core Sr2+ and the ionic-

core electron. Since the Rydberg electron is far away, we have |r1 −r2| ∼ r1 and the potential

V̂Sr2+(r1)+ V̂12 ∼−1/(4πϵ0|r1|). The potential of the Sr2+ core, screened by the ionic core, is very

close to the Hydrogen atom potential. We thus expect the dynamics of the Rydberg electron of

Strontium to be described by the model based on single quantum defects, in the same way as for

the Rydberg states of alkali atoms. However, the price to pay is that the quantum defects are

larger, since the interaction between two valence electrons is stronger than that among Rydberg

filled shells. Also, we need to take into account the spin degrees of freedom of the two valence

electrons. The energy of the quantum states of the spin ("spin states") is influenced by two more

contributions to the Hamiltonian, being the exchange energy and the spin-orbit coupling.

The exchange energy represents the energy difference between two families of states with

equivalent set of quantum numbers but different total spin states ("singlet" and "triplet" states).

Both obey the Pauli principle. When diagonalizing (1.33), the exchange energy is accounted as

the off-diagonal term deriving from the presence of (1.34) in the Hamiltonian. It reads

(1.35) Eex = 〈n1l1,n2l2| 1
|r1 −r2|

|n2l2,n1l1〉 .

On the contrary, the spin-orbit coupling is not included in the electron-electron potential of (1.33).

However, we can define a new Hamiltonian component, describing the spin-orbit coupling, of the

form

(1.36) Ĥso = A(1)
n,l1

l̂1 · ŝ1 + A(2)
n,l1

l̂1 · ŝ2,

where A(i)
n,l1

are the spin-orbit constants. Notably, the terms including the angular momentum of

the core electron are not reported, since that electron is considered, at this stage, in the ground

state |5S, l2 = 0〉.

1.3.3 The uncoupled, spin eigenstates

The competition between the exchange energy and the spin-orbit coupling term in the Hamil-

tonian make us distinguish among three situations. If we assume the spin-orbit coupling to be

zero and the exchange energy to represent the only spin-dependent term of the Hamiltonian,

we can distinguish two classes of energy levels, differentiated by the total spin of the electronic

system, the singlet (S = 0) and triplet states (S = 1). For the singlet states, the wavefunction

Ψ of the entire electronic system is composed by a symmetrical spatial component ψ and an

anti-symmetrical spin component χ. Note that Ψ must be anti-symmetrical, given the fermionic
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nature of the electrons. In this case, the anti-symmetry of the final wavefunction is inherited

from its spin component,

(1.37) Ψ(S)
A =ψS(r1,r2)χA(1,2).

For the triplet states, the final anti-symmetrical wavefunction of the electronic system is composed

by an anti-symmetrical spatial component and a symmetrical spin component.

(1.38) Ψ(T)
A =ψA(r1,r2)χS(1,2).

For what concerns this work, the exchange energy is taken into account as a contribution to the

quantum defect. Table 1.2 reports a table of the quantum defects for some Rydberg series [72].

There, the quantum states are reported by use of the common notation

(1.39) n2S+1XJ ,

where the letter X is replaced by S,P,D,F,G,H, if L = 0,1,2,3,4,5 respectively.

Table 1.2: Quantum defects of the Strontium atom.

Serie δ0 δ2 Serie δ0 δ2

5sns1S0 3.26896 -0.138 5snp3P0 2.8866 0.44
5snp1P1 2.7295 -4.67 5snd3D3 2.63 -42.3
5snd1D2 2.3807 -39.41 5snd3D2 2.636 -1
5snf 1F3 0.089 -2 5snd3D1 2.658 3
5sns3S1 3.371 -0.5 5snf 3F4 0.12 -2.4
5snp3P2 2.8719 0.446 5snf 3F3 0.12 -2.2
5snp3P1 2.8824 0.407 5snf 3F2 0.12 -2.2

Note that if the spin-orbit coupling is symmetrical (i.e A(1)
n,l1

= A(2)
n,l1

) it is possible to write (1.36)

as

(1.40) Ĥso = An,l1L̂ · Ŝ.

This Hamiltonian commutes with the total spin operator. The spin orbit coupling does not mix

a singlet and a triplet level, it only lifts the degeneracy between the triplet states, hence the

different quantum defect for 3P2, 3P1, 3P0 or 3D3, 3D2, 3D1 for instance.

1.3.4 The asymmetrical spin-orbit coupling

We consider here the opposite scenario, where the exchange energy is zero and the spin-orbit

coupling is asymmetrical. We need to introduce a new basis to diagonalize the Hamiltonian of

Strontium taking into account the spin-orbit coupling. Therefore, we define the total angular

momentum operator ĵ1 for the Rydberg electron, as

(1.41) ĵ1 = l̂1 + ŝ1.
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Figure 1.9: Classes of eigenstates of the Strontium Hamiltonian when the exchange energy is
the only spin dependent term considered (a) and when the asymmetrical spin-orbit coupling is
included in the analysis (b).

Its projection along the z axis and its square commute between each other and with the Hamilto-

nian. We therefore choose the { ĵ2
1, ĵ1,z} as a basis for the new energy levels.

In this context, the distinction between singlet and triplet levels is irrelevant: the absence of

the exchange energy implies no shift of one class with respect to the other. Instead, we make the

distinction between two states, one with j1 = l1 +1/2, the other with j1 = l1 −1/2.

1.3.5 General case: exchange energy and spin-orbit coupling

In the most general case, the exchange energy and the spin-orbit coupling term are both non-zero.

To model such a case, we define the total angular momentum of the second electron as ĵ2, as

previously done for the first electron, and, following our notation, the total angular momentum

operator associated to the entire electronic system as

(1.42) Ĵ= ĵ1 + ĵ2.

To model the physics of two, coupled spins, we choose the basis {Ĵ2, Ĵz}. At this stage, we keep

the distinction between singlet and triplet states. Contrary to the case where the only exchange

energy is considered, here, we can make two points. First, we have no degeneracy of the triplet

states sharing the same n but different J. However, the triplet states with same n, J but different

mJ are still degenerate. Second, states with identical J are distanced between one another,

regardless of the singlet or triplet nature (figure 1.9). Notably, this mutual displacement ∆Eso is

a function of n, l and derives from the spin-orbit coupling. We anticipate that for |F〉 states, the

spin-orbit coupling is low enough to make the displacement ∆Eso between states with identical

n, J negligible. It becomes larger for |G〉 states and then completely dominant over the exchange

energy term for the |H〉 states, where we cannot distinguish anymore an internal structure for

the states located in the energy range of the were-triplets (figure 1.10).
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Figure 1.10: Structure of the spin states undergoing the asymmetrical spin-orbit coupling. When
the coupling is weak but not negligible, the triplets (blue lines) are not degenerate. This is the
case for the Rydberg states of Strontium with l1 = 3 (|F〉 states). Next, with increasing strength
of the asymmetrical spin-orbit coupling, the J states start to mix and loose their singlet (violet
lines) or triplet character. This is the case for the Rydberg states with l1 = 4 (|G〉 states). Finally,
when it is completely dominant over the exchange energy, we distinguish just two states (pink
lines) at zero electric field. This is the case for the Rydberg states with l1 = 5 (|H〉 states).

1.3.6 Interaction with a static electric field

The discussion of the two-electron atom physics has so far considered the only scenario where no

static electric field interacts with the atom. We briefly discuss here the opposite case, where the

interaction with a static electric field is taken into account.

At low electric field, the Stark effect lifts the degeneracy of each J state into mJ sub-levels,

as it happened for the Hydrogen atom when considering l and m. Here, mJ is

(1.43) mJ = mL +mS,

and represents, in this context, a good quantum number. In the most general case, where both

the exchange energy and the spin-orbit coupling are taken into account, the admitted values of

mJ are in the [−J, J] range for both the singlet and triplet branch. In the case where the only

exchange energy is entirely neglected, the level with j1 = l1 +1/2 ( j1 = l1 −1/2) ramifies into its

m j1 sub-levels, where m j1 = [− j1,+ j1].

At higher electric field, mJ is still a good quantum number. The Stark splitting among the mJ

levels increases. Finally, the levels with same mL gather. We therefore pass from a description in

terms of mJ to one in terms of mL, in use for Rubidium and Hydrogen.
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1.4 Discussion

In this chapter, we present the basic elements of the physics concerning the Rydberg-excited

Strontium. To that end, we initially generalize the description of Hydrogen to alkali atoms

by introducing the quantum defect, a dimensionless parameter accounting for the discrepancy

between the Hydrogen energy levels with their counterpart for alkali atoms at zero electric field.

In the same section, we also describe the process of circularization, being the transfer of the

population from a low-l1 Rydberg state to that with maximum l1 and ml1 of a given manifold.

The latter state is named as the circular Rydberg state, due to its toroidal wavefunction.

The formalism and the mathematics already used for alkali atoms is then adopted, as a first

approximation, to describe the eigenstates of the Rydberg-excited Strontium. We then include

the spins of the two valence electrons of Strontium in our analysis. This is done by defining

the exchange energy, deriving from the Coulomb potential governing the electric interaction

between the two electrons, and the spin-orbit Hamiltonian, coupling spins and angular momenta.

Overall, we see two classes of states resulting from the diagonalization of the complete Stron-

tium Hamiltonian: singlet and triplet states. We conclude by analysing the interaction between

the Rydberg-excited Strontium and a static electric field. The Stark effect is showed to lift the

degeneracy between states with different mJ .

All the elements presented so far come together in the next chapter, where we are going to

present the experimental preparation of the circular Rydberg states of Strontium.
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2
THE PREPARATION OF THE CIRCULAR RYDBERG STATE OF

STRONTIUM

In the study of nature, as in the
practice of art, it is not given to
man to achieve the goal without
leaving a trail of dead ends he had
pursued.

Baron Louis Bernard Guyton de
Morveau

The former chapter introduced the Hydrogen model and outlined its extension to the

physics of multi-electron atoms excited to Rydberg states.

In this chapter, we present the procedure to prepare and manipulate the circular Rydberg

state of Strontium for the first time. The chapter is split in three parts. We first introduce the

experimental set-up. Next, we detail the sequence of laser, microwave (MW) and radio-frequency

(rf) pulses used to prepare and detect the circular states. Once we have explained the experimental

sequence, we focus on the results of the circularization. Finally, as a conclusion, we discuss some

optimisations performed by use of the circular Rydberg state.

2.1 Experimental set-up

2.1.1 Overview

We detail here the experimental set-up used to prepare the Rydberg atoms of Strontium. A

scheme of its main mechanical components is presented in figure 2.1. We start by discussing the
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Strontium oven (paragraph 2.1.2) and next the cryogenic environment (paragraph 2.1.3) where

the experiment takes place. At that point of the discussion, we explain our detection method

and its limitations. Next, we present the radio-frequency source (paragraph 2.1.4) and the laser

diodes at 461 nm, 767 nm, 896 nm performing the Rydberg excitation (paragraph 2.1.5).

The cryogenic environment, the detector and the radio-frequency source were inherited from a

former series of experiments on the circular Rydberg states of Rubidium. On the contrary, the

oven and the laser beams are specific for Strontium and were built from scratch to obtain the

results exposed in this work.

2.1.2 The oven

The oven is a 132 mm stainless tube with a built-in CF40 flange (figure 2.2a). A sample of

metallic Strontium is heated into its main chamber at 582oC and converted into vapor. At that

temperature, the sample of Strontium is not yet liquid. The melting point of Strontium is at

777oC at the standard atmospheric pressure. The Strontium vapor thus exits the oven as an

atomic beam. Its minimal divergence of ∼ 70 mrad is guaranteed by some microtubes with 130

µm and 300 µm of internal and external diameters (figure 2.2b), cut by the manufacturer in 8 mm

pieces with a pulsed high power laser. They collimate and align the beam towards the cryostat.

They are heated at 639oC to prevent the deposition of the Strontium atoms on their walls.

The oven is a attached to a CF40 chamber provided with two windows parallel to the

propagation axis of the atoms and internal diaphragms further refining the collimation of the

beam. The windows allow us to perform laser spectroscopy to verify the presence of an atomic

beam ejected from the oven. Finally, a valve separates the chamber from the cryostat, enabling

us to vent them independently and facilitating the refilling of the oven.

2.1.3 The cryogenic environment

We are provided with a cryostat kept at 4 K by liquid Helium 4 (figure 2.3). It uses liquid Nitrogen

for thermal shielding. This low temperature environment aims to protect the Rydberg atoms from

black-body radiation. It is pumped by a turbo-molecular pump to 10−7 mbar, enough to prevent

some residual gas inside the cryostat from scattering against the atomic beam. We estimate the

internal pressure to be further reduced by the cryo-pumping in the inner part of the cryostat. It

is however hard to predict the exact value of the pressure reached via this mechanism.

The experiment itself takes place in a structure named "core of the cryostat". It is located

at the bottom of the cryogenic environment and aligned in-axis with the oven. The walls of

this structure are four ring-shaped electrodes, which are used to apply electric fields along the

horizontal axis and rf pulses to the atoms, whereas the floor and the roof are composed by two
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a)

b)

(1) (2)

Figure 2.1: a) Photography of the main mechanical components, the oven (1) and the cryostat (2),
of the experimental set-up. b) Scheme of the main mechanical components of the cryostat.
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1 2 3

b)a)

(1) (2) (3)

Figure 2.2: a) Photography of the oven (1). the CF40 cube (2) and the valve (3). b) Photography of
the transversal section of the microtubes of an oven built following the same design. This panel
is taken from [77].

parallel, plane electrodes, allowing us to set electric fields along the vertical axis.

The cryogenic environment holds the detector. In our set-up, the Rydberg atoms are detected

by ionization. This is accomplished by use of two horizontal plates whose spacing varies along

the trajectory of the atomic beam. We set an ionization voltage on these two plates and count

the atoms ionizing at that value of the voltage by collecting the electrons expelled. They are

accelerated to a channel electron multiplier (CEM) by use of some electrostatic lenses. Next, the

CEM acts as the amplifying stages in a photomultiplier tube, producing a signal when hit by an

electron. A set of amplifiers enhances the signal before its transmission to the computer.

We relate the input voltage V (det)
n,l1,ml1

applied on the plates of the detector with the electric

field F (det)
n,l1,ml1

ionizing the atoms by use of a simple formula,

(2.1) F (det)
n,l1,ml1

= Kdet

V (det)
n,l1,ml1

ddet
,

where Kdet = 50 is a calibration factor taking into account the amplification stage and ddet = 3.74

mm is a parameter approximating the distance between the two plates by use of a constant value.

The ionization field of a given state is a function of its set of quantum numbers. Rydberg

states with high-n are farther from the nucleus and therefore easier to ionize. They consequently

have lower ionization thresholds. On the contrary, low-n states feel a stronger attraction from

36



2.1. EXPERIMENTAL SET-UP
Chapter 2. The Experiment

(a) 

(b) 

(c) 

Figure 2.1: Experimental set-up. (a) The sketch of the electrode structure shows the atomic
beam (blue) that intersects with the laser beams (green and red) in the center of the ex-
perimental zone made up of two round plane electrodes (blue) and four ring electrodes
(yellow, only two shown in the sketch) before it enters the detector (brown) where the state
of the atom is read out by ionisation. (b) A picture of the electrode structure shows the ring
electrodes as well as the plane electrodes holders made of sapphire (transparent). (c) The
whole set-up is placed in a cryogenic environment at 4 K.

Rydberg state. All electrodes are made of copper and coated by a thin layer of gold (see
Fig. 2.1b).

The ring electrodes are separated by a gap of 1 mm to limit capacitive coupling between
the electrodes and to reduce cross-talk. They are mounted on insulating blocks made of
Araldite and are held in place by brass screws and springs. The springs ensure that the
ring electrodes do not become loose when the insulating blocks contract slightly more
than the brass screws in the cryogenic environment.

Finally, the plane capacitor electrodes are mounted on sapphire discs, insulated elec-
trically from the ground plates. The choice of sapphire is due to the material’s hardness
and good thermal conductance.

During this work we implemented several modifications to the experimental set-up.
In the initial version of the experimental set-up [112, 154], the radio-frequency field
was generated by eight ring electrodes that were connected to pairs by short copper
wires. In this work, we replaced the pairs of electrodes with four ring electrodes in
order to limit electrical resonances in the radio-frequency circuit. Also, initially, all
electrodes were made of gold coated copper to avoid the patch effect due to the copper
oxidation. However, covering the electrodes with graphite is known to reduce stray
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Figure 2.3: a) Sketch of the experiment, illustrating the "core of the cryostat", where the path
of the atoms (blue arrow) intersects that of the lasers (red and green arrow for the 461 nm and
the infrared lasers respectively). The walls of the structure are the electrodes employed to the
generation of the horizontal component of the electric field and the radio-frequency fields (yellow
electrodes in panel a)). The roof and the floor are the electrodes employed to produce electric fields
along the vertical axis (blue electrodes in panel a)). b) Photography of the core of the cryostat,
where the experiment takes place. c) Photography of the cryostat. This image is taken from [67].

the core and the valence electron requires a higher field to be extracted.

States with different magnetic quantum numbers also ionize differently. A semi-classical

interpretation of this fact derives from a simple analysis of the electric potential perceived by the

atoms at the detection stage. The detector adds a eFz term to the Coulomb potential (figure 2.4)

and creates a saddle point in the overall potential perceived by the atom. When increasing the

electric field, the state of the electron adiabatically evolves in another Rydberg state, sharing

the same n and ml1 with the original one but different parabolic quantum number n1. This

new state has a wavefunction partially localized in the z < 0 region, where the saddle point lays.

This fact allows the electron to escape the core, if the electric field of the detector overcomes the

binding energy. Note that the wavefunction of the Rydberg state produced after increasing the

electric field of the detector explores an area of space in the z < 0 region which depends on the

quantum number ml1 . As a result, once set n, the Rydberg states in the highest positions of the

ladder need a higher electric field to be ionized with respect to those located in the lowest positions.
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Figure 2.4: a) Electric potential applied on the atoms, made up by a Coulomb component and
a linear electric field imposed by the detector [67]. b) Ionization signal (black points) of atoms
prepared in a low-ml1 Rydberg state (left, bell-shaped signal) and of atoms in a high-ml1 state
(right, bell-shaped signal). The solid line is a guide for the eye.

Such a method to measure the Rydberg atoms production is not immune to drawbacks. In a

first place, it is a destructive technique. Secondly, Rydberg atoms belonging to the same level

distribute over a bell-shaped curve as a function of the detection field. This may involve a non-

negligible overlap between the bells of two states and consequently cause background counts

when measuring one of the two.

2.1.4 The radio-frequency synthesizer

The rf pulses are produced by a synthesizer H provided with four channels, noted H1, H2, H3, H4,

each connected to one of the four ring-shaped electrodes inside the cryostat. The free parameters

of each channel are the frequency ωr f , power Pr f and phase φr f of the output radio-frequency

field. Notably, varying ωr f makes the instrument lose the calibration of φr f . Therefore, ωr f

cannot be scanned but must be set by hand before each sequence.

The pulse envelope is chosen via a programmable, high-resolution, arbitrary wave generator

(AWG) connected to the synthesizer. If not otherwise specified, all the rf pulses mentioned in this

work have a square shape.

Figure 2.5 presents a basic scheme of the electronic connections of each channel to the corre-

sponding electrode inside the cryostat.

2.1.5 The laser beams for the Rydberg excitation

Rydberg states have a high principal quantum number. This involves an atomic transition fre-

quency of the order of several hundreds of THz with respect to the ground state. Such a massive
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Figure 2.5: Scheme of the radio-frequency set-up. We use a synthesizer connected to an arbitrary
wave generator to produce rf, single frequency, square pulses. The connections between the
two are made by coaxial cables. Each channel of the synthesizer is connected to a ring-shaped
electrode in the cryostat (H1, H2, H3, H4), here sketched from above.

frequency step can be accomplished by lasers only. Therefore, once inside the cryostat, the atoms

are excited by three laser beams at 461 nm, 767 nm and 896 nm (figure 2.6).

All the laser sources are placed on top of an optical table preventing the vibrations from the

environment from affecting the stability of each beam. The preparation of every laser features

four steps: the beam shaping, the adjustment and lock of the frequency, the selection of continuous

wave mode or pulsing mode and the definition of the intersection geometry with the atomic beam.

Each laser is prepared as a collimated Gaussian beam by a telescope made up of cylindrical

lenses. We use two plano-convex lenses to fine-tune the shape of a given laser beam and a final

plano-concave lens to collimate it. The 461 nm laser beam uses a combination of lenses with

100/150/-50 mm as focal lengths. Instead, the 767 and 896 nm use a combination with 200/75/-50

mm as focal lengths. After the telescope, the beam is split. One branch goes to a wave-meter, a

second one is directed to an ultra-stable cavity and a third one reaches a small board, placed

in the proximity of the cryostat, via a polarization-maintaining optical fiber. There, the 461 nm

beam goes through a selection of the polarization. The 767 nm and 896 nm beams are overlapped

through a beam-splitter. Also, for this last laser only, we have a last plano-convex lens, with 400

mm as a focal length, to focus the 896 nm beam at the intersection with the atomic beam. After

these last refinements, each beam enters and exits the core of the cryostat through round holes

made on the ring-shaped electrodes. Figure 2.7 presents the optical paths of all laser beams,
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Figure 2.6: Three-photon laser excitation to the Rydberg states of Strontium. The first step is
performed by a laser beam at 461 nm and σ+ polarized, the other two by laser beams at 767 nm
and 896 nm respectively. We make use of the σ+ and π components of their polarizations. We
ultimately access the |521F3,ml1 =+2〉 Rydberg state.

figure 2.8 displays the optical path of those branches which are brought to the cryostat.

The frequency of every beam is individually adjusted to meet the resonance of the correspond-

ing transition. The 461 nm is brought to 650.5024 THz to excite the ground state |5s5s1S0〉 to

|5s5p1P1〉, the 767 nm to 390.6000 THz to prepare |5s5d1D2〉 and finally the 896 nm to 334.6883

THz to ultimately access the state |521F3,ml1 =+2〉. The ultra-stable cavity (finesse ∼ 10000)

enables us to lock these frequencies by the standard Pound-Drever-Hall (PDH) method. Notably,

the combination of laser frequencies reported here works well for the Rydberg excitation of the

only isotope 88Sr. While our experiment does not use an isotopically pure sample, we focus our

experimental activity on the only 88Sr. We leave to appendix A the proof of this statement via

standard laser spectroscopy of the atomic beam.

The treatment of the 461 nm beam differs. The portions of this beam arriving to the ultra-

stable cavity and to the wavelength meter have a wavelength of 922 nm. This is because the 461

nm beam is produced by frequency-doubling a 922 nm laser beam. Our strategy involves using

a branch of this last infrared beam, not undergoing the frequency-doubling stage, to lock the

frequency of the 461 nm laser. This choice is motivated by the coating of the cavity mirrors, which

work only for wavelengths within the infrared range, and by a band-pass effect of the wave-meter.

The 461 nm and 767 nm laser beams work in continuous wave mode. On the contrary, the 896

nm laser is pulsed. The pulse production requires the laser beam to cross an AOM whose power

supply is connected to a fast switch. The power supply is a rf source emitting a single-frequency

wave with few dBm of power, which is then increased by an amplifier to reach around 33 dBm.
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Figure 2.7: a) Optical path of the 461 nm laser beam. b) Optical paths of the 767 nm (right) and
896 nm (left) laser beams.
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The interaction of each laser with the atomic beam depends on the direction of the laser

propagation, its power and Gaussian diameter. All these parameters are kept stable throughout

the experiments. The power is recorded by a light sensor working within the 400 nm - 1100 nm

range. The diameter is measured by deviating the laser path with a pair of mirrors and next

placing a camera at a distance which matches that between the last mirror and the intersection

point of the laser beam with the atoms.

The 461 nm laser arrives to the cryostat with an angle of incidence of 135o with respect to

the direction of the atomic beam and 90o with respect to the infrared lasers. The direction of

propagation of this beam is parallel to the quantization axis, defined by a small, horizontal

electric field at this stage of the experiment. The 461 nm beam has a Gaussian diameter of ∼ 900

µm at the atomic beam position and an optical power of ∼ 0.9 mW. The polarization is selected to

be σ+ by a beam-splitter cube and a λ/4 wave-plate placed before the window of the cryostat.

The 767 nm and 896 nm lasers are parallel and collinear. The anti-reflection coating of the

cryostat windows motivates a different entry path for these two beams. The respective Gaussian

diameters on the atoms are ∼ 1100 µm and ∼ 490 µm whereas their optical powers are ∼ 7.3

mW and ∼ 34 mW. We make use of the σ component of the 767 nm laser polarization and the π

component for the 896 nm laser.

2.1.5.1 The ultra-stable cavity

We use a high-finesse cavity, characterized by a free-spectral-range (FSR) of 1.5 GHz in vacuum,

to lock the frequency of the lasers by standard PDH method. The cavity is made up of two mirrors

10 cm away from each other, both protected by a cylindrical, metallic shield. This has two holes

on its walls, enabling the beams to enter the cavity from one side and exit from the other. The

closest mirror to the entry is plane, the opposite one is convex. The cavity is kept under vacuum

(P ∼ 10−7 mbar) by an ionic pump.

Each laser beam is brought to the cavity through an optical fiber equipped with an electro-

optical-modulator (EOM). By applying a sinusoidally varying potential voltage on the EOM, we

generate sidebands to the frequency of the laser entering the fiber. In this way, we are able to

control and sweep the frequency of the beam going to the cavity independently from the main line

going to the cryostat. After the EOM, at the exit of the fiber, the diameter of each beam directed

to the cavity is 900 µm. Next, each laser goes through a mode-matching stage and is then aligned

with the cavity. We are interested in the reflections, produced after that the beams bounce off the

plane mirror at the cavity entry. Each reflection is first separated from the others by dichroic

mirrors or polarizing beam-splitters and next recorded via a fast photo-diode. The photo-diodes

and the cavity require low optical power for the beams under use. We therefore tune the power of

each laser line to be < 1 mW for safety. Figure 2.9 shows the optical path.
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Figure 2.8: a) Optical path of the laser beams in the proximity of the cryostat. The two infrared
lasers overlap. The blue laser undergoes a polarization selection via a beam-splitter and a wave-
plate λ/4. b-c-d) Gaussian profiles of the 461 nm, 767 nm, 896 nm laser beams at the point of the
intersection with the atomic beam. Panel b) reports the profile of an additional laser beam at 422
nm, used for the core excitation. We leave the description of the core excitation and the 422 nm
laser beam to chapter 3.
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Figure 2.9: Optical path of the 767 (dashed, red line), 896 (solid, red line), 922 nm (dashed-dotted,
red line) laser beams in the proximity of the ultra-stable cavity. Every laser beam undergoes a
mode-matching lens, a dichroic mirror (a cubic beam-splitter alternatively) and a fast photo-diode
to obtain its reflection from the first mirror of the cavity following the optical path.

2.2 Experimental results

2.2.1 Overview

In this section, we discuss the procedure to access the circular Rydberg states of Strontium.

We decompose this procedure into its main events, graphically summarized in figure 2.10. We

begin by accessing |521F3,ml1 =+2〉 (paragraph 2.2.2) and discussing the selection of the velocity

class (paragraph 2.2.3). Next, we transfer the population to |511G4,ml1 =+2〉 (paragraph 2.2.4)

and investigate the harmonicity of the |n = 51,n1 = 0,ml1 > 0〉 ladder (paragraph 2.2.5). Once

identified the Stark frequency, we prepare a σ+ polarized, single-frequency, radio-frequency pulse

(paragraph 2.2.6) allowing us to climb the ladder and prepare a superposition of high-l1 states

(paragraph 2.2.7). We measure the population of its components by use of microwave pulsed

probes. The probe for the circular state is also used to determine the optimal duration of the

rf-driven Rabi pulse that maximizes the circular population (paragraph 2.2.8). Notably, we also

achieve the preparation of |51c〉 via an adiabatic passage from the |511G4,ml1 =+2〉 state. It

is a complementary result which is not used to get the results of chapters 3 and 4. Therefore,
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l1

Figure 2.10: The principle of the experimental circularization of Strontium.

we leave the explanation of the adiabatic circularization to appendix B. In Sec. 2.3, we present

some further optimisations on the circular Rydberg state. We start from the fine-tuning of the

σ+ polarization of the rf pulse (paragraph 2.3.1) and conclude by showing how to use a Ramsey

experiment to compensate for the gradient of the electric field perceived by the atoms (paragraph

2.3.2).

2.2.2 The preparation of the |521F3,ml1 =+2〉 Rydberg state

In our group, most previous experiments on circular states of Rubidium used principal quantum

numbers n ∼ 50. Those states are well suited for our purposes, since the atomic transitions be-

tween such neighboring manifolds are in the 44−60 GHz range by one- or two-photon transitions.

These frequencies are easily accessible via our MW sources. We aim for the manifold with n = 52

by scanning the frequency of a 1 µs long 896 nm laser pulse. The duration of the pulse derives

from a compromise between saving enough time for the next MW, rf or laser pulses and having a

large enough atomic sample to get a satisfactory signal-to-noise-ratio.

The extension of the frequency sweep is set to include the theoretical values of the atomic

transition frequencies between the |5s5d1D2〉 state and the |521F3〉 levels. The electric field is

horizontal and imposes the quantization axis along the laser propagation. Its amplitude is of

60 V/m. We want it high enough so as to lift the degeneracy among the ml1 levels of the |521F3〉
group and to resolve the transitions leading to their preparation. We finally detect the Rydberg

atoms by initially setting as a threshold for the detector the ionization voltage of the same states

45



CHAPTER 2. THE PREPARATION OF THE CIRCULAR RYDBERG STATE OF STRONTIUM

334,6880 334,6885 334,6890 334,6895 334,6900 334,6905 334,6910
0

20

40

60

80

100

120

140

160

180

200

A
to

m
ic

 c
o

u
n

ts

Laser frequency (THz)

a) b)

     ml1
 = +2

     ml1
 = +3

n = 52 manfifold

     ml1
 = 0 

       and 
     ml1

 = +1

Figure 2.11: Laser spectrum of the Rydberg excitation to the |521F3〉 states. The highest
peak represents the transition to the |521F3,ml1 =+2〉 state. There are the |521F3,ml1 = 0〉,
|521F3,ml1 =+1〉 transitions on its left (unresolved by our laser) and the |521F3,ml1 =+3〉 on the
right. At very high frequency, we see the manifold of states with n = 52. We lock the frequency of
our laser at the top of the |521F3,ml1 =+2〉 transition. The solid line is a guide for eye. b) Atomic
counts as a function of the time-of-flight. We repeat the measurement for different Doppler cor-
rections of the 896 nm laser frequency (black: 474 MHz, red: 479 MHz, green: 469 MHz, blue: 464
MHz, pink: 484 MHz). We set the Doppler correction in correspondence of the maximum atomic
count recorded, centered upon a time of flight of (143.910±0.057) µs from the Rydberg excitation.
The 461 nm and 767 nm laser frequencies are both kept locked throughout the measurement.

for Rubidium. This ionization voltage is then optimized for Strontium.

Figure 2.11a shows the laser spectrum around the frequencies of the |5s5d1D2〉 → |521F3〉
atomic transitions. We notice multiple peaks and attribute the highest to the |521F3,ml1 =+2〉
state, since the combination σ+/σ+/π for the polarizations of the lasers performing the Rydberg

excitation is set to maximize its population. The minor peak on its left is associated the transitions

leading to the |521F3,ml1 =+1〉 and |521F3,ml1 =+0〉 states. The Doppler width of the atoms,

together with the electric field inhomogeneity, does not allow us to resolve them individually. The

peak on the right is attributed to the transition to the |521F3,ml1 =+3〉 state. At higher laser

frequencies, we excite the n = 52 manifold. We lock the laser to the frequency of the maximum

transfer to |521F3,m =+2〉.

2.2.3 The selection of the velocity class

The oven ejects a flux of atoms, with very broad thermal distribution, which undergo the Doppler

effect. This is a combination of the individual Doppler effects, each related to a laser beam

contributing to the Rydberg excitation. To select the velocity class, we fine tune the 896 nm

frequency. We do this by scanning the frequency of the EOM, which acts on the portion of the
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beam directed to the cavity, and by recording a time-of-flight experiment for each laser frequency.

Thus, we set the |521F3,ml1 =+2〉 ionization field on the detector and measure the amount of

Rydberg atoms as a function of a time window. We repeat this experiment and draw a curve for

various frequency corrections of the EOM to study the velocity profile (figure 2.11b). We finally set

the Doppler correction so as to work with a velocity class with a time-of-flight of (143.910±0.057)

µs from the Rydberg excitation. Counting 61 mm of distance from the lasers crossing point to the

detector, this time-of-flight corresponds to a velocity of the atom of around v0 = 423.87 m/s along

the direction of propagation of the atomic beam.

2.2.4 The preparation of the |511G4,ml1 =+2〉 Rydberg state

The |F〉 levels of Strontium join the manifold at very high electric field. This is an important com-

plication with respect to the circularization of Rubidium. The solution to this problem would be

to access, by use of laser pulses, a state which joins the manifold at lower electric field. Since the

number of lasers at our disposal enables us to prepare |F〉 states only (it is possible to perform only

a step of ∆l1 = 1 for each beam), we optically access |521F3,ml1 =+2〉 and transfer the population

via a MW pulse to another class of states which joins the manifold at lower electric field. Given

the accessible frequency range of our MW sources, we can only produce one-photon transitions to

n = 51 or n = 53 states or two-photon transitions to n = 50 or n = 54. There is no reason to prefer a

two-photon transition. The logical choice is therefore to transfer the atoms from |521F3,ml1 =+2〉
to the n = 53 or n = 51 manifold via a one-photon transition. We risk to slightly exit the range of

available frequencies if we opt for n = 53, either at this stage of the experiment or when other

MW transitions between the same manifolds are induced. We therefore go for the n = 51 manifold.

To understand the Stark effect of the n = 51 manifold and consequently find our route

to the circular Rydberg state, we record some MW spectra of the atomic transitions having

|521F3,ml1 =+2〉 as an initial state and the n = 51 manifold as a target. The MW spectra

are collected in the Stark diagram reported in figure 2.12. Around 48 GHz of distance from

|521F3,ml1 =+2〉, we find the |511F3〉 set of states, at around 46 GHz we see the |511G4〉 states

and finally between 44 and 45 GHz, we detect the |511H5〉 states.

We aim to access a |G〉 state. The selection rule narrows down the choice to |511G4,ml1 =+1〉,
|511G4,ml1 =+2〉 or |511G4,ml1 =+3〉. We opt for |511G4,ml1 =+2〉 since it presents an excellent

transfer when prepared from |521F3,ml1 =+2〉. To access |511G4,ml1 =+2〉, we apply a MW pulse

after the lasers. Its duration is 0.2 µs only, so as to mitigate the effect of the electric field noise

that broadens the peaks. The detector is set at an ionization threshold slightly increased with

respect to that of |521F3,ml1 =+2〉, since we expect a state with n = 51 to be harder to ionize.

We record the spectrum of the MW driving the transition between |521F3,ml1 =+2〉 and
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Figure 2.12: Data of spectroscopy experiments (black points) and calculations (lines) on the atomic
transition frequencies from |521F3,ml1 =+2〉 to the n = 51 manifold. The set of states whose
position at zero field is at a distance around 48 GHz from |521F3,ml1 =+2〉 is the |F〉 set. Above,
we have first the |G〉, around 46 GHz, and finally the |H〉 states close to 45 GHz. The experimental
points unfitted by the calculations are consistent with the expected frequency distance between
the |521F3,ml1 =+2〉 Rydberg state and some energy levels of the n = 53 manifold.

the |511G4〉 states (figure 2.13). We associate the peak to the transition |521F3,ml1 =+2〉 →
|511G4,ml1 =+2〉, following the indications given by the simulations of the same Stark diagram

for Rubidium and after verifying the ionization voltages of all the other accessed levels (not

displayed here) appearing in the MW spectrum. We set the frequency of the MW to the transfer

peak. This yields around 87.3% of transfer efficiency. This value is retrieved as the simple ratio

between the atomic counts detected at the ionization threshold of |511G4,ml1 =+2〉 after the MW

pulse and the atomic counts detected at the ionization threshold of |521F3,ml1 =+2〉 before the

MW pulse.

Up to this point, all laser and MW manipulations were performed in a horizontal electric

field. Yet, the polarization of the rf field is defined as σ+ with respect to the vertical axis of the

system. The horizontal electric field is therefore ramped down in 1 µs while the vertical electric

field is raised in 0.5 µs. The latter duration is a compromise between saving enough time for next

events and make the atoms follow adiabatically the rotation of the quantization axis. When this
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Figure 2.13: MW spectrum of the |521F3,ml1 =+2〉 → |511G4,ml1 =+2〉 transition. Colored points
are the data, the lines are Gaussian fits. We repeat the experiment for various MW powers to
maximize the transfer. The power of the MW source is lowered by 2 dBm from the black curve
to the red curve and again from the red and green one. The MW pulse duration is 0.2 µs. This
explains the large width of the transition.

transformation is accomplished, the quantization axis will have the same direction of the vertical

electric field. It will be maintained this way for the rest of this work. After the ramp, the final

amplitude of the vertical electric field depends on the manipulation we want to do on the atoms:

the circularization requires an electric field which makes the Rydberg ladder resonant with the

rf pulse we are going to apply. Our next step is therefore selecting this value for the amplitude of

the electric field.

2.2.5 The harmonicity of the |n = 51,n1 = 0,ml1 > 0〉 ladder

Our goal is to have a rf field with single frequency that couples neighbouring Rydberg states with

ml1 ≥ 2 along a ladder. It needs a pure σ+ polarization and a frequency resonant with the same

ladder. Therefore, we look for an electric field which satisfies two conditions. First, the atomic

transition frequency between the Rydberg state with magnetic quantum number |ml1〉 and that

with number |ml1 +1〉 must be always the same for all values of ml1 ≥ 2. Second, the rf field

should not induce the transition from |n = 51,n1 = 0,ml1 =+2〉 to |n = 51,n1 = 0,ml1 =+1〉. We
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Figure 2.14: Energy difference between the |511G4〉 states and the |521F3,ml1 =+2〉 state as a
function of the electric field. The points are experimental data (red: |511G4,ml1 =+1〉, green:
|511G4,ml1 =+2〉, blue: |511G4,ml1 =+3〉, orange: |511G4,ml1 =+4〉), whereas the lines indicate
parabolic fits. At 112.2 V/m, the energy difference between neighboring states is similar for all
states from |ml1 =+2〉 on.

thus select an electric field for which, due to the quantum defects of the lowest-ml1 states, that

transition is out of resonance with respect to the transitions between all the other neighbouring

states of the ladder.

The easiest way to obtain the electric field of interest is to study the spacing between neigh-

bouring ml1 states of the Rydberg ladder of the n = 51 manifold as a function of the electric field

amplitude. We do this by first preparing the state |521F3,ml1 =+2〉, next scanning the frequency

of a MW pulse and finally detecting the atoms prepared in any of the |511G4〉 states as a function

of the MW frequency. The sequence is repeated for several values of the vertical electric field

applied by the electrodes in the cryostat.

Figure 2.14 reports the atomic transition frequencies of those transitions observed when

recording the spectrum of a MW pulse transferring the atoms to the |511G4〉 states. According to

the selection rule, we detect the atoms arriving in the only |511G4,ml1 =+1〉, |511G4,ml1 =+2〉,
|511G4,ml1 =+3〉 states. The data on |511G4,ml1 =+4〉 are instead retrieved after preparing

|521F3,ml1 =+3〉 instead of |521F3,ml1 =+2〉 via the laser beams and next scanning the MW

pulse frequency.

Overall, we see that the spacing between neighboring ml1 levels becomes similar around 110
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Figure 2.15: Rotation (dashed line) of the horizontal electric field (solid, black line) applied on the
atomic beam, starting from a parallel (a) or anti-parallel (b), horizontal orientation of the electric
field with respect to the direction of the 461 nm laser beam (solid, blue line). Case a) leads to the
preparation of a |ml1 > 0〉 state, case b) to the preparation of a |ml1 < 0〉 state. For the purpose of
our experiment, we are interested in accessing |521F3,ml1 =−2〉.

V/m. Next, we fine-tune the electric field so as to optimize the hamornicity of the Rydberg ladder

from |ml1 =+2〉 on. Following this, the selected value of the electric field is 112.2 V/m. The Stark

frequency at that value of the electric field is 110 MHz. When resonant at that frequency, the

rf field can now couple the levels from |ml1 =+2〉 on, until the highest point of the same ladder,

which is the circular state |51c〉. We have now a candidate for the electric field and one for the rf

frequency.

2.2.6 The optimization of the σ+ component of the polarization for the
radio-frequency field

Obtaining the resonance frequency of the ladder is not sufficient to circularize, we also need to

optimize the polarization of the rf pulse. Only an ideal σ+ pulse guarantees the preparation of

the circular states. This subsection discusses this aspect of the experiment. To make the notation

simpler, we omit the parabolic quantum number when we report the quantum states. Also, the

principal quantum number of the states mentioned in this section is always n = 52.

To have a pure σ+ rf field, we need to minimize the σ- component. To that end, we look for a

two-level system coupled to a σ- field. Unfortunately, all energy levels accessible from |ml1 =+2〉
along the ladder can be coupled with a σ+ field only. However, all transitions from |ml1 =−2〉
need a σ- field. Therefore, our strategy is to laser excite |ml1 =−2〉 and set the electric field so

that the |ml1 =−2〉 → |ml1 =−3〉 transition frequency is 110 MHz.

Thus, we invert the electric field with respect to the direction of the 461 nm laser propagation

and apply the laser beams. In this way, we prepare |521F3,ml1 =−2〉 (figure 2.15). Next, we ramp
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Figure 2.16: Energy levels scheme of the |ml1 < 0〉 Rydberg states on use for the calibration of
the rf polarization. We need the |521F3,ml1 =−2〉 → |521F3,ml1 =−3〉 transition resonant at 110
MHz. To that end, we vary the electric field until finding the value making the spacing between
the two Rydberg states equal to 110 MHz. Then, we are ready to work on the power and phase of
the rf pulse to suppress the σ- component of its polarization. b) Sequence of events applied for
the optimization of the polarization of the rf pulse. b1) indicates the horizontal component of the
electric field, b2) the vertical component, b3) the MW pulse, b4) the rf pulse and b5) the time axis.

down (up) the horizontal (vertical) component of the electric field. We set a rf pulse to induce the

|521F3,ml1 =−2〉 → |521F3,ml1 =−3〉 transition (figure 2.16) and record, for several values of the

electric field, the Rabi oscillations. They evolve in time at a frequency equal to
√
Ω2

r f +∆2
r f (F) ,

where ∆r f (F) is the detuning of the rf pulse. Our goal is to identify the minimum frequency

of the Rabi oscillations, yielding the optimal electric field that makes the atomic transition

|521F3,ml1 =−2〉 → |521F3,ml1 =−3〉 resonant at 110 MHz (figure 2.17). That optimal electric

field has 41 V/m as amplitude. The duration of the rf pulse is chosen long enough so as to isolate

a two-level system out of the |521F3,ml1 =−2〉, |521F3,ml1 =−3〉 levels. This duration is 200 ns.

We can now work with the two-level system composed by the |521F3,ml1 =−2〉, |521F3,ml1 =−3〉
levels. We set the electric field at 41 V/m, apply a 200 ns long, rf pulse, produced by the ring

electrodes H1 and H2, and measure the transfer efficiency of the pulse as a function of the power

or phase imposed by one electrode. The power and phase of the other are varied synchronously

with the same step and number of steps. The population |521F3,ml1 =−3〉 is minimized when

the rf field has the minimal σ- component. Therefore, we set the power and phase of the two rf

channels in use at the minimum transfer between the two Rydberg levels (figure 2.18a). In this

way, we achieve an optimal σ+ polarization of the rf field.
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In principle, H1 and H2 are sufficient to provide a satisfactory σ+ polarization. However,

the amplitude of the rf field depends on the distance between the electrodes on use and the

atoms. Since the atoms propagate from left to right in the Cartesian reference of the experiment,

the rf field produced by H1 and H2 becomes less efficient as a function of the space travelled

by the atoms, whereas that produced by H3 and H4 becomes more efficient. For the sake of

homogeneity of the rf field perceived by the atoms in each position of the trajectory, we repeat

the procedure with H4 and H3 and balance the power of the pairs H1, H2 and H3, H4 to have

the most homogeneous rf field along the trajectory of the beam. Ultimately, the atoms perceive

a total, homogeneous rf field resulting from the constructive interference between the two rf

pulses. To verify this, we switch back to the preparation of |521F3,ml1 =+2〉, apply a rf pulse

exciting the atoms to |521F3,ml1 =+3〉 and measure the Rabi frequency of the |521F3,ml1 =+2〉
→ |521F3,ml1 =+3〉 transition as a function of the application time of the rf field. This is done

when all four ring electrodes producing the rf pulse are switched on simultaneously (figure 2.18b).

The measured Rabi frequency now shows a steady behaviour as a function of time. We conclude

that we can work with a homogeneous rf field when exciting the atoms along the Rydberg ladder.

2.2.7 The preparation of a high-l1 state

The rf pulse, if properly polarized and resonant with the ladder, prepares the circular state.

Unfortunately, it also populates other Rydberg states with high l1 and similar ml1 to that of the

circular state. Since the circular state and the undesired elliptical states with high-l1 share a

similar range of ionization voltages, we are unable to distinguish them at the detection stage

(figure 2.19a). To do that, we make use of MW pulsed probes.

The principle of a MW probe is to transfer the population from a state ψin to another one ψtg,

ionizing at a quite different electric field. This technique is useful when the detection threshold

of ψin is too close to that of other states to measure its population independently.

In our experiment, we often make use of probes transferring the population of a quantum

state by two manifolds. To prepare a probe accomplishing this task, we need to settle a frequency,

a starting time and a duration for our MW pulse. For the frequency, we start by preparing the

|n = 51,n1 = 0,ml1〉 Rydberg state via a rf pulse of duration τ. Next, we sweep the frequency of a

MW pulse and detect the Rydberg atoms transferred to the n = 49 manifold. We finally set the

frequency of the MW at the transfer peak. This is chosen after fitting the transition line by a

Gaussian curve. Note that the MW frequency sweep takes place at an electric field of 144.6 V/m

since the Rydberg-to-Rydberg transitions between the n = 51 manifold and the n = 49 manifold

are well known at this field. Afterwards, we work on the starting time tP of the probe. This

parameter is determined by a map, recorded when the MW pulse is in resonance with the atomic
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Figure 2.17: a) Rabi oscillations between the |521F3,ml1 =−2〉, |521F3,ml1 =−3〉 states. Black
squares indicate the result of the experiment at the guess value of the electric field whereas the
red circles when the resonant field is found. Solid lines are sinusoidal fits. For each of them, we
extract the Rabi frequency. b) Rabi frequency as a function of the electric field. We fit the data
with a parabolic lineshape for simplicity. The minimum frequency yields the optimal electric field.

transition frequency of interest, of the spatial structure of the mode produced by the MW source.

As a last optimization, we perform a Rabi experiment by sweeping the MW pulse duration at

constant power. We choose the duration which maximizes the transfer.

Figure 2.19b presents the results of this experiment for several values of τ. We identify the two-

photon transitions between the ladder of Rydberg states in the n = 51 and that of the n = 49 man-

ifold. Notably, each detected transition between |n = 51,n1 = 0,ml1〉 and |n = 49,n1 = 0,ml1 −2〉
is a good candidate to calibrate a MW probe for the Rydberg state |n = 51,n1 = 0,ml1〉. For the

moment though, we are interested only in those transitions useful to prepare the probes of the

circular state and the elliptical states with ml1 ∼ n. Table 2.1 summarizes the specifics of each

probe calibrated for the transitions of interest. We also report that for |n = 51,n1 = 1,ml1 = 49〉,
which is the first level met along the Rydberg ladder above the circular state. It will be useful in

the final section of this work.

Table 2.1: Specifics of the probes for high-l1 Rydberg states of Strontium.

Transition MW Frequency (GHz) Pulse duration (µs)

|51c〉 → |49c〉 52.67877376 1.05
|n = 51,n1 = 0,ml1 = 49〉 → |n = 49,n1 = 0,ml1 = 47〉 52.67600493 1.06
|n = 51,n1 = 0,ml1 = 48〉 → |n = 49,n1 = 0,ml1 = 46〉 52.67321504 1.23
|n = 51,n1 = 1,ml1 = 49〉 → |n = 49,n1 = 1,ml1 = 47〉 52.68154241 1.05
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a) b)

Figure 2.18: a) Transfer from |521F3,ml1 =−2〉 to |521F3,ml1 =−3〉 as a function of the phase
(black squares) or the power (red squares) of the rf pulse produced by the Hi channel. b) Test of
the homogeneity of the rf field perceived by the atoms after the calibration, as a function of the
position along their trajectory. Green data are recorded for a rf pulse produced by H1 and H2, red
data when produced by H3 and H4. Black data are recorded when all the electrodes are switched
on at the same time. Blue data are an arithmetical sum of green and red data, to check for the
consistency of the black data.

2.2.8 The preparation of the circular state by Rabi pulse

It is time to make use of the probes. We use that of the circular state to optimize the duration

of the rf field transferring the population from |ml1 =+2〉 to the high-l1 state. We sweep the

duration of this rf pulse and measure the population of |51c〉 and the elliptical states with the

closest ml1 via the respective probes. The timing of the sequence is presented in figure 2.20.

Figure 2.21a shows the result of this experiment. Increasing the duration of the rf pushes the

population away from the level |n = 51,n1 = 0,ml1 = 2〉 to higher ml1 states progressively. The

optimal rf duration, 189 ns, allows us to arrive close to the north pole of the Bloch sphere where

we prepare the circular state. The estimated efficiency of the Rabi passage at its best is 85%.

Note that, even at the optimized duration, some undesired elliptical components with ml1 close to

that of the circular state still perturb the circularization. The presence of |n = 51,n1 = 0,ml1 = 48〉
is an example of these resilient, elliptical components. We estimate the population left in

|n = 51,n1 = 0,ml1 = 48〉 to be around 5%. A further increase of the rf duration pushes the

population in the direction of the south pole, visiting the same elliptical levels already ac-

cessed during the climb, reversely. This explains the two side-peaks for the elliptical states

|n = 51,n1 = 0,ml1 = 49〉 and |n = 51,n1 = 0,ml1 = 48〉.
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Figure 2.19: a) Ionization signal showing the preparation of a superposition of high-l1 Rydberg
states (red points), from a low-l1 state (black points). The preparation is not optimal given the
amount of population not transferred by the rf pulse. Solid lines are guides for the eye. b) Naviga-
tion in the Hilbert space following our laser, MW and rf events for the calibration of the probes.
c) Two-photon MW transitions from the |n = 51,n1 = 0,ml1〉 states to the |n = 49,n1 = 0,ml1 −2〉
states. The experiment is performed for several values of the rf pulse duration (black data: 190
ns, red data: 160 ns, green data: 140 ns, blue data: 120 ns, light blue data: 100 ns, pink data: 90
ns, yellow data: 80 ns, dark yellow data: 60 ns, dark blue data: 40 ns, violet data: 30 ns).
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Figure 2.20: The sequence enabling the circularization of Strontium. At 60 V/m, a 1 µs 896
nm π polarized pulse c) prepares the atoms in a low-l1 state. Next, the horizontal field a) is
ramped down while the vertical component b) is switched on. A 200 ns MW pulse d) transfers the
population in the n = 51 manifold and finally a rf pulse e) finalizes the preparation of the circular
state. We apply a MW probe to measure the population of |51c〉.
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b)

Figure 2.21: a) Circularization by Rabi π pulse. We measure the population of |51c〉 (black points),
|n = 51,n1 = 0,ml1 = 49〉 (red points) and |n = 51,n1 = 0,ml1 = 48〉 (green points) by use of MW
pulsed probes. b) Ionization signals. Black data indicate the starting level of the circularization
|511G4〉. Red data show the preparation of |51c〉. Note that the remaining ionization signal at
low voltage indicates both the atoms not transferred by the MW pulse at 2.1 µs and those not
transferred by the rf pulse to |51c〉. Violet data display the effect of the MW probe on |51c〉: the
population is transferred to |49c〉, at higher ionization fields. Solid lines are Gaussian fits
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Figure 2.21b displays the effect of a probe applied on the circular state. The rf field prepares

a superposition of high-l1 states dominated by the circular component. Such a state ionizes

at a threshold of (131.86±0.11) V/cm. The probe transfers the |51c〉 population to the |49c〉
state, which ionizes at (154.11±0.12) V/cm where none of the other levels of the superposition

ionize. The remaining atoms at (126.34±1.28) V/cm belong to the elliptical components of the

superposition not affected by the probes.

2.3 Final optimizations

Before switching to the core manipulation experiments reported in the next chapter, we perform

some final optimizations on the experiment. The next section presents the fine-tuning of the rf

polarization, this time optimized by suppressing the efficiency of preparation of a high-l1 Rydberg

state, and the compensation, via a Ramsey experiment, of the electric field gradient perceived by

the atomic packet.

2.3.1 The suppression of the |n = 51,n1 = 1,ml1 = 49〉 signal

We perform a fine tuning of the rf polarization. This is now done while recording the popula-

tion of a high-ml1 state instead of a low-ml1 state. As before, we scan phase and power of H2

and H4 together. The difference between the phase of H2 and that of H4, as well as the ratio

between the powers, is maintained constant throughout the scan. We record the population

of |n = 51,n1 = 1,ml1 = 49〉, which we prepare by use of a 189 ns long rf pulse and detect with

a probe (figure 2.22a). The state |n = 51,n1 = 1,ml1 = 49〉, as all the energy levels of the upper

diagonal, couples to the residual σ- component of the rf pulse. This implies that, as the phase

moves away from the optimal value (∼ 152.7 oC) during the scan, eventually the polarization

of the Rabi pulse is so wrong that the rf field starts populating the energy levels of the upper

diagonal (figure 2.22b). We set the phases of our electrodes at the value corresponding to the

minimum amount of atoms prepared in |n = 51,n1 = 1,ml1 = 49〉.

Figure 2.22c presents an evidence of the improvement of the circular-to-circular transfer once

the rf pulse is finely tuned. The transfer, at the atomic transition frequencies corresponding to

the transitions |n = 51,n1 = 1,ml1 = 49〉 → |n = 49,n1 = 1,ml1 = 47〉, |n = 51,n1 = 1,ml1 = 48〉 →
|n = 49,n1 = 1,ml1 = 46〉, is suppressed since no important amount of atoms is pushed by the rf

pulse on the upper ladder when the σ- component is minimized. This MW scan is a valid check of

the fulfillment of the optimization of the rf field.

2.3.2 The gradient field compensation

To have a good transfer efficiency from |511G4,ml1 =+2〉 to |51c〉, one needs to have a homoge-

neous electric field at the position of the atomic beam.
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The circular Rydberg state is insensitive to the linear Stark effect. On the contrary, the state

|n = 52,n1 = 0,ml1 = 50〉 presents a non-zero linear dependency upon the electric field amplitude

along the quantization axis. This fact suggests to use the atomic transition frequency between

|51c〉 and |n = 52,n1 = 0,ml1 = 50〉 via a Ramsey experiment to measure if the electric field per-

ceived by our atomic packet of finite size presents any inhomogeneity.

We model the two-level system by a Bloch sphere with the south and north poles occupied by

|51c〉 and |n = 52,n1 = 0,ml1 = 50〉 respectively. We apply a MW π/2 pulse between these levels at

a moment t0 and a second one at t0 +∆t. Let τ1 and τ2 be their lengths. The first pulse prepares

the atom in a quantum, balanced superposition of |51c〉 and |n = 52,n1 = 0,ml1 = 50〉. Its phase

Φ precesses around the z axis of the Bloch sphere during ∆t. The precession frequency, in the

rotating frame, is δω=ωSt(F)−ωMW , thus the difference between the atomic transition frequency

between the two Rydberg levels, which depends on the electric field, and the MW frequency. If the

number of phase cycles around the equator is an integer, the second π/2 pulse finalizes the prepa-

ration of |n = 52,n1 = 0,ml1 = 50〉. If it is instead a half-integer, the atoms go entirely back to |51c〉.

If the field is homogeneous, the phases of all the atoms precess at the same frequency. They

do not accumulate any phase difference between one another before the second π/2 pulse, hence

all producing the same superposition α |51c〉+β |n = 52,n1 = 0,ml1 = 50〉, eventually with α= 0 or

β= 0 if the phase is set accordingly, at the end of the sequence. What we measure is the average

T of the transfers of all the atoms. In this ideal case, this quantity evolves between 0 and 1.

If the field is not homogeneous, each atom perceives a slightly different value of the electric

field, adjusts its energy accordingly, resulting into a different transition frequency between its

two Rydberg levels and therefore a different precession frequency. The ith atom thus oscillates

around the equator at frequency ωi, ending up with a corresponding phase Φi, and produces a su-

perposition α(Φi) |51c〉+β(Φi) |n = 52,n1 = 0,ml1 = 50〉. Next, we apply the second MW pulse. We

measure again the average of the transfers. This time, T is not ideally spanning the range [0,1]

but is reduced. The contrast of T is proportional to the dispersion of the precession frequencies,

thus determined by the discrepancy between the electric field perceived by one atom and the other.

We approach as close as possible to the first situation of a homogeneous electric field. To that

end, we repeat the Ramsey experiment for several values of the DC voltage applied on the ring

electrodes, in order to make the electric field as homogeneous as possible along the horizontal

axis, until reaching the maximum Ramsey contrast.

We prepare two π/2, MW pulses. By construction of our set-up, it is easier for us not to scan
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Figure 2.22: a) Population of |51c〉 (empty, red points) and |n = 51,n1 = 1,ml1 = 49〉 (full, black
points) as a function of the phase of the rf produced by H2 and H4. The states are prepared
via a rf pulse performing a Rabi passage. b) Coupling of the energy levels with the σ+ and σ-
components of the rf field. c) Evidence of the improvement of the circular-to-circular MW transfer
after fine tuning the rf polarization. Black points indicate the data on the transfer before the
optimization, red points after. Solid lines are Gaussian fits.
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Figure 2.23: a) MW spectrum of the |51c〉 → |n = 52,n1 = 0,ml1 = 50〉 transition (black squares).
We set the MW frequency at ∼ 47.962 GHz, i.e. the maximum of the transfer fitted by a Gaussian
lineshape (solid line). b) Rabi experiments performed at the arrival time of the π/2 pulses of the
Ramsey experiment. Black squares refer to the Rabi oscillations performed with the first MW
pulse, red data to those performed with the second one. Solid lines are a guide for the eye.

∆t but the frequency of the MW source producing the pulses in order to scan the phase values. We

therefore perform the Ramsey experiment with these two pulses at fixed positions and separated

by 6.5 µs. We set their lengths to be 0.43 µs and 0.59 µs respectively (figure 2.23). These values

are chosen so as to broaden the transition enough not to make the transfer between the Rydberg

levels considerably diminished when the frequency of the pulse is scanned over ±0.25 MHz across

the resonance. The MW source we use is the same for both pulses.

Figure 2.24 provides an evidence of the improvement on the contrast of the fringes before and

after the field gradient compensation. It is easy to access the coherence time of our experiment by

repeating the Ramsey sequence for different ∆t values after properly adjusting the second π/2-

pulse duration for all the delay values. We fit the contrast with a Gaussian lineshape centered in

zero and with null offset (figure 2.25). Its width indicates that the coherence time is (24.66±0.72)

µs.

The choice of a Gaussian fit derives from the mathematics of the Ramsey fringes contrast C,

after assuming a Gaussian distribution of the electric field noise. The contrast of the Ramsey

fringes is formulated as

(2.2) C = Re
(
ei(ω−ωSt)∆t

)
.

What we measure is the average of the contrast of all the atoms, i.e.

(2.3) C = Re
(
ei(ω−ωSt)∆t

)
= Re

(
ei(ω−ωSt)∆t

)
.
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Figure 2.24: a) Ramsey oscillations before (red points) and after (black points) the gradient
field compensation. Solid lines are guides for the eye. b) Amplitude of the Ramsey fringes as a
function of an offset applied on H1 (black points) and next on H2 (red points) to compensate for
the undesired gradient of the electric field. The maximum value of the amplitude is an indication
of the quality of the gradient compensation. The solid lines are Gaussian fits.

We write the Stark frequency as the sum of a term ωSt,0 indicating the Stark frequency when the

electric field is homogeneous and a term δωSt(F) indicating the broadening of the Stark frequency

when the electric field is not homogeneous.

(2.4) ωSt =ωSt,0 +δωSt(F),

The term accounting for the broadening is written as

(2.5) δωSt(F)=αSδF,

where αS is ∆ωSt/∆F and δF comes from the inhomogeneity of the electric field. We can therefore

write C as

(2.6) C = Re
(
ei(ω−(ωSt,0+δωSt(F)))∆t

)
= Re

(
ei(ω−ωSt,0)∆te−iαSδF∆t

)
.

The first exponential is not dependent on the electric field. We can therefore apply the average

operation to the second one only,

(2.7) C = Re
(
ei(ω−ωSt,0)∆te−iαSδF∆t

)
.

The term e−iαSδF∆t is now cast, assuming a Gaussian dispersion of the field distribution, as

(2.8) e−iαSδF∆t = 1
N

∫
d(δF)e−iαSδF∆te

− δF2

σ2
F = e−

1
2α

2
Sσ

2
F∆t2 = e

2∆t2

t2coh .
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Here, σF indicates the dispersion of the electric field and N is a normalization factor. We can

infer σF from the coherence time tcoh as

(2.9) σF = 2
αS tcoh

.

In this work, for simplicity, we use the theoretical value of αS = 3ea0n/2ℏ. By use of this, the

calculation leads us to estimate a standard deviation of the electric field noise of σF = (12.86±0.37)

mV/m

2.4 Discussion

In this chapter, we present the experimental circularization of Strontium. We begin with the

presentation of the experimental set-up. This is composed by a high temperature oven, a cryogenic

environment and three laser diodes producing the beams for the Rydberg excitation. The oven

produces a vapour of Strontium atoms, which is then collimated and directed to the cryostat.

Inside this environment, protecting the atoms from black-body radiations, we can safely prepare

and manipulate the Rydberg states. The preparation is performed via three optical photons

whose frequencies are locked on an ultra-stable cavity. The manipulations are done via static

electric fields, MW and rf pulses. We have four ring-electrodes able to apply horizontal electric

fields and radio-frequency pulses on the atoms, two plane electrodes allowing us to set vertical

electric fields and four MW sources. After the manipulations, the atoms arrive to the detector.

This works by simple ionization of the Rydberg atoms. The measurement by ionization allows us

to infer the quantum state of the atoms ionized in a destructive way.

Next, we switch to the discussion of the experimental circularization of Strontium. We first

prepare the Rydberg state |521F3,ml1 =+2〉, by use of three σ+/σ+/π polarized optical photons.

Unfortunately, any |F〉 level is known to join the manifold of states with same n at very high

electric field. Therefore, we decide to transfer the population to |511G4,ml1 =+2〉 via a short MW

pulse exploiting a one-photon transition. The |G〉 states are known to reach their manifold at a

lower electric field. They are thus a suitable entry point to the Rydberg ladder of the circulariza-

tion.

We design a single-frequency, σ+ polarized, rf pulse to climb the n1 = 51, Ĵ1 ladder. As for

the frequency, we retrieve the spacing between neighboring levels of the ladder by use of MW

spectroscopy, which suggests to work at 112.2 V/m. At this value, the ladder is resonant. Next,

we discuss the optimization of the polarization of the rf pulse. We minimize its σ- component

on the transfer between two low-ml1 Rydberg states. We finally apply the rf pulse on the atoms

and climb the ladder until preparing the circular state. We determine the optimal duration, 189

ns, of the rf pulse maximizing the circular population. We use MW pulsed probe to measure the

64



2.4. DISCUSSION

Figure 2.25: Contrast of the Ramsey fringes for different values of the delay between the π/2
pulses (black squares). The solid line is a Gaussian fit with set null offset and center. The width
returns a coherence time of (24.66±0.72) µs, corresponding to a standard deviation of the electric
field noise of σF = (12.86±0.37) mV/m.

population of any high-l1 Rydberg state featuring in the calibration of the rf duration. The probes

target the n1 = 49 manifold and guarantee an optimal signal-to-noise-ratio for our measurements.

The circularization presented in this work is estimated to be 85% effective.

Before addressing the core electron, we perform a few more optimisations. First, we fine-

tune the rf polarization by detecting the population of |n = 51,n1 = 1,ml1 = 49〉 as a function of

the rf phase and power. Next, we make use of the outer electron states to perform a Ramsey

experiment across the |51c〉 → |n = 52,n1 = 0,ml1 = 50〉 transition. This technique enables us to

compensate for the gradient of the electric field perceived by the atoms and obtain a coherence

time of (24.66±0.72) µs, corresponding to a standard deviation of the electric field noise of

σF = (12.86±0.37) mV/m.

It is now time to switch to the description of those experiments where both the Rydberg

electron and the ionic-core electron are manipulated. They are the focus of the experimental

activity to be presented in chapters 3 and 4. There, we are going to show the advantages of

working with circular states of an alkaline-earth atom with respect to those of an alkali atom,

starting from the absence of autoionization effect and arriving to the possibility of optically

manipulating the ionic-core electron while preserving the circular states.
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3
THE AUTOIONIZATION EFFECT

An atom with two electrons has
one electron too many.

Prof. Jean-Michel Raimond,
adapting a quote from Prof. Arthur

Schawlow.

We have established a protocol to prepare the circular Rydberg states of Strontium. As for

Rubidium, the circularization of Strontium involves the manipulation of one valence

electron only. However, Strontium possesses two electrons in the last filled shell. With

one excited to the Rydberg state, there is still a remaining electron at our disposal to be optically

manipulated. In principle, this fact provides a broader range of physical investigations. Unfor-

tunately, doubly-excited states of alkaline-earth atoms are well known to autoionize, since the

excitation energy of the ionic-core electron exceeds the ionization energy of the Rydberg electron.

Fortunately though, the autoionization effect depends on the overlap between the wavefunc-

tions of the two valence electrons. Where there is overlap (figure 3.1a), a scattering event between

the two particles takes place, followed by an electron expulsion, turning the neutral atom into an

ion. On the contrary, in absence of any overlap (figure 3.1b), the electrons do not scatter against

each other. The whole system does not consequently present any autoionization effect. This is the

case of the circular state.

We are interested in the few excited states of the core electron depicted on figure 3.2. When

the first electron is excited to a high-n Rydberg state, the structure of the core electron energy

levels is, at very good approximation, that of the Sr+ ion. We consequently have the state |5p1/2〉
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a) b)

Figure 3.1: a) Collision between the excited core electron and the Rydberg electron prepared in a
low-l1 state. The scattering event is caused by the overlap of the wavefunctions. b) Absence of
collision between the excited core and the circular state, due to the absence of overlap between
the wavefunctions.

(|5p3/2〉) at 422 (408) nm above the |5s1/2〉 ground state, the |4d3/2〉 metastable states at 1092 nm

below the |5p1/2〉 state and similarly the |4d5/2〉 metastable states at 1033 nm below the |5p3/2〉
state.

With a 1/17 branching ratio, the |5p1/2〉 state decays into the |4d3/2〉 state, which is metastable.

The spontaneous emission lifetime of the |5p1/2〉 states is 7 ns only, whereas the lifetimes of the

|4d3/2〉 states are in the milliseconds range. Thus, in a few tens of nanoseconds only, a resonant

illumination on the |5s1/2〉 → |5p1/2〉 transition results in the atom being optically pumped in the

|4d3/2〉 states. Similarly, the |5p3/2〉 state decays into |4d3/2〉, with rate r, and |4d5/2〉, with rate

r0. The branching ratio r0/r is 8.4. Therefore, an analogous optical pumping process allows one

to populate the |4d5/2〉 state from the ground state.

When the core electron is excited to any of these states, its wavefunction can potentially

overlap with that of the Rydberg electron and cause autoionization. In this chapter, we are going

to explore this physics. In particular, we are interested in studying the absence of autoionization

for the circular state for the core excited to |4d3/2〉 or |4d5/2〉 states (paragraphs 3.3.2 - 3.3.5

for the first case, paragraph 3.3.6 for the second case), and the presence of autoionization for a

Rydberg state with low angular momentum. We are therefore going to prepare the Rydberg state

of interest, excite the core and test whether the amount of Rydberg atoms drops when the core is

in any of the |4d〉 states.
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| �5s1/2

| �5p1/2

408nm

| �5p3/2

| �4d5/2

| �4d3/2
422nm

1092nm

Figure 3.2: Diagram of the energy levels of the Sr+ ion which we consider in this work.

3.1 The optical set-up for the ionic core manipulation

Here, we go through the technical details of the optical set-up used for the manipulations of

the ionic-core electron. We first describe the optical path of each laser, from the initial beam

shaping to the optical branch directed to the experiment. Then, we discuss the geometry of the

intersection between the lasers and the atomic beam. Finally, we give the parameters of the laser

beams: the optical power, the Gaussian diameter and the resonance frequency.

We use a 422 nm laser beam to perform the |5s1/2〉 → |5p1/2〉 excitation (figure 3.3a). As the

lasers performing the Rydberg excitation, the 422 nm beam is first shaped as a Gaussian beam

by a telescope made up of three cylindrical, plano-convex lenses with 150 mm, 75 mm and 75 mm

of focal lengths respectively. After the beam shaping, the laser is split in four branches.

The first branch addresses a transfer cavity. Notably, for this laser only, we cannot use the

ultra-stable cavity for the frequency locking, due to the coating of its internal mirrors. Therefore,

to achieve a stable frequency locking, we lock the length of the transfer cavity on the signal of a

767 nm beam, itself locked on the ultra-stable cavity. We tune the frequency of the 422 nm laser

by changing the frequency of the 767 nm beam on which the cavity is locked by use of an EOM.

A second branch makes the 422 nm laser do a double-pass across a Rubidium cell. Historically,

we performed standard saturated-absorption spectroscopy on the Rubidium vapor to detect the

hyperfine transitions of Rubidium between |5s〉 and |6p〉 (coincidentally close to the resonance

frequency between |5s1/2〉 and |5p1/2〉 of Strontium) and used them as an initial reference for the

frequency of the laser.

A third branch leads the laser beam to the wave-meter, which is now the main reference for the

wavelength.

Finally, we prepare a fourth branch of the 422 nm beam, collecting the majority of the light power.

This portion of the laser is pulsed, sent in the direction of the cryostat via an optical fiber and
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Figure 3.3: a) Optical set-up of the 422 nm and b) 1092 nm laser beams [78].

ultimately aligned towards the experiment. Note that the laser crosses the same beam-splitter

and wave-plate already used for the 461 nm laser. These two beams consequently have orthogonal

polarizations when meeting the atoms.

We use a 1092 nm laser acting as a repumper, emptying the |4d3/2〉 states when they are

populated via the spontaneous decay from the |5p1/2〉 state (figure 3.3b). Again, the 1092 nm

beam is shaped as a Gaussian beam by a telescope made up of cylindrical, plano-convex lenses

with 75 mm, 50 mm and 75 mm as focal lengths. Next, it is split in three lines. One goes to the

wave-meter, another to an ultra-stable cavity, identical to that presented in chapter 2, for the

frequency lock via standard PDH method.

A last branch is further divided in two linearly and orthogonally polarized beams by a wave-

plate and a beam-splitter and finally directed to the cryostat. Note that we pulse both beams
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Figure 3.4: Crossing paths of the laser beams with the atomic beam.

independently. Each of them uses an electronic set-up (rf source + coaxial cable + amplifier +

AOM) similar to that of the 896 nm and 422 nm beams. The two orthogonal beams are frequency

shifted via a pair of AOMs by 3 MHz, to efficiently empty the |4d3/2〉 states [79], then overlapped

and finally coupled within the same polarization-maintaining optical fiber directing them to the

experiment. The need of two optical branches derives from the energy levels structure of the

Sr+ ion. When exciting the atoms from a set of states with j2 = 3/2 to a set with j2 = 1/2, one

always runs into atomic dark states for the laser driving the transition. This happens if the laser

has a pure polarization, either σ or π. The solution to this problem is detuning the two σ and π

components of the laser beam with respect to each other so that their phases change rapidly. In

this context, when the laser is applied on the atoms, there is no state which is dark all the time.

The 422 nm and 1092 nm laser beams cross each other orthogonally on the atoms but do not

share the same crossing point with the Rydberg lasers. The 422 nm and 1092 nm beams meet the

atoms later along their trajectory, so as to be able to first produce the Rydberg states and only

next act on the core. The 422 nm beam runs parallel but shifted by ∼ 2 mm with respect to the

461 nm beam. The 1092 nm beam is built with a analogous arrangement, as displayed in figure

3.4.

The 422 nm laser reaches a maximum light power of ∼ 20 mW on the atoms and has a broad

Gaussian diameter, ∼ 850 µm. The 1092 nm laser has a maximum power of ∼ 20 mW on the atoms

as well but a larger Gaussian diameter, 1500 µm, on the position of the atoms (figure 3.5). The

resonance frequencies of both the 422 nm and 1092 nm laser beam are determined via a series of

laser spectroscopy experiments, which are presented in appendix C. The resonance frequencies

are 710.9618 THz and 274.5894 THz at 206.6 V/m (we want the electric field to be high enough so

as to lift the degeneracy of the states composing the Rydberg ladder) for the 422 nm and 1092 nm

laser beams respectively. The Doppler corrections are already taken into account in these values.
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a) b)

Figure 3.5: a) Profiles of the 422 nm and 461 nm laser beams. b) Profile of the 1092 nm laser
beam.

The last laser used to manipulate the core is a beam at 408 nm, able to drive the transition

|5s1/2〉 → |5p3/2〉. This beam is produced by a free-running frequency doubled Ti:Sa laser. Its power

is on the order of a mW, sufficient to optically pump the atoms in the metastable state |4d5/2〉.
Notably, the 408 nm beam is not pulsed. It does not interact with the atoms in low-l1 states since

this laser beam crosses the atomic beam when the atoms have already been circularized. This

laser is the only one borrowed from another experimental set-up for a short period and not built

from scratch.

3.2 Principle and technical tools of the experiment

3.2.1 Overview

The principle of the experiment consists of three steps. We circularize, excite the core electron

with a 422 nm laser pulse and observe if the optical pumping in the |4d3/2〉 states involves any

loss of circular states. We are going to see that no variation in the atomic counts is detected,

therefore that the circular state is not perturbed by the excitation of the core (sections 3.3.2 -

3.3.4). Note that the absence of a drop in the atomic counts is obviously observed also if the laser

beam never meets the atoms or is off-resonant. We therefore need to perform the experiment

while checking that we indeed excite the core in its metastable level. To that end, we make use

of low-l1 states. We rely on them to verify that we have changed the state of the core. Thus, we

perform the same experiment with an additional rf pulse after the excitation of the core, therefore

reducing the angular momentum of the Rydberg electron, and monitoring the population in the

final low-l1 state. We are going to see that, in this context, the atomic counts drop, since the two

electrons scatter and one of the two is expelled.
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In the second part of the chapter (sections 3.3.5 and 3.3.6), we are going to include the

singlet-triplet nature of the quantum states into the discussion. Due to the spin-orbit coupling of

the ionic-core electron in the |5p1/2,nl1〉 state, scattering photons at 422 nm may flip the spin of

the ionic-core electron, thus inducing a transition from |5p1/2,nl1〉 to the |5s1/2,nl1〉 triplet state.

Thus, as a final result, we are going to quantify the decay of the |5p1/2,51c〉 state into the triplet

state of |5s1/2,51c〉 as a function of the 422 nm laser frequency.

In order to discuss this experiment, we detail in advance the preparation of the rf pulse

lowering the angular momentum of the Rydberg electron. We coin a term, the "decircularization",

to address this action on the atoms.

3.2.2 The decircularization

In principle, a simple application of the same rf pulse optimized for the circularization should

work to decircularize with the same efficiency. Notably, to produce this second rf pulse, we use the

same synthesizer already employed to prepare that performing the circularization. The second rf

pulse is therefore already produced with a pure σ+ polarization and a frequency of 110 MHz as

well. It is applied 11 µs after the first one to leave enough time between the two rf events for the

422 nm laser pulse manipulating the core. However, during that time, the atoms move inside

the cryostat. In the region of space where the decircularization takes place, the static electric

field has a different value than where the circularization occurs. In principle, this fact implies

that the second rf pulse, despite being at the same frequency of the first one, might not be effi-

cient to decircularize. Fortunately, the variation of the electric field is not expected to be very large.

We start by optimizing the duration of the decircularization on the transfer |51c〉→ |511G4,ml1 =+2〉
(figure 3.6a) by detecting the low-l1 population as a function of the duration of the second rf pulse

(figure 3.6b). This is optimal at 179 ns. On a second step, we carry out a fine tuning of the electric

field by repeating the decircularization for several electric field amplitudes and determining that

yielding the highest transfer. This is 112.4 V/m.

From the data, it is clear that the decircularization is not as efficient as the circularization

(figure 3.6c). The second rf field indeed leaves an amount of atoms in a Rydberg state ionizing

around 90 V/cm. However, the majority of the atoms returns to the |511G4,ml1 = 2〉 state where

the circularization process started.
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Figure 3.6: a) Navigation in the Hilbert space. b) Scan of the duration of the rf pulse decircu-
larizing the atoms and detection of the population brought back to the |511G4,ml1 =+2〉 state
for several values of the electric field (black points: 112.0 V/m, red points: 112.1 V/m, green
points: 112.2 V/m, blue points: 112.3 V/m, light blue points : 112.4 V/m, pink points : 112.5 V/m,
yellow points : 112.6 V/m). c) Ionization signal before the circularization (black data), after the
circularization (red data, with some atoms ionizing at around 50 V/cm, not transferred by the rf
field, but a vast majority are circularized) and after the decircularization (blue data). We also
record some atoms ionizing around 90 V/cm, therefore in intermediate ml1 states. Solid lines are
Gaussian fits.
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3.3 Experimental results

3.3.1 Overview

We present here the results proving that the circular states are unaffected by the autoionization

effect. We focus on this aspect when the core is either excited to the |4d3/2〉 state (paragraph

3.3.2) or to the |4d5/2〉 state (paragraph 3.3.7). For the first case, we present the numerical model

(paragraph 3.3.3 - 3.3.4) used to fit the data. Next, we discuss the decay from the |5p1/2,nl1〉 state

to the triplet state of |5s1/2,nl1〉, caused by the spin flip of the core following the interaction with

the 422 nm photons (paragraphs 3.3.5 - 3.3.6).

3.3.2 The absence of autoionization for the |4d3/2,51c〉 state

We discuss here the absence of autoionization effect for the |4d3/2,51c〉 state. The investigation

proceeds as follows. We apply a 5 µs long, 422 nm laser pulse at maximum power (∼ 16 mW)

after the circularization and sweep the laser frequency around the resonance (figure 3.7). The

circular population N c is measured and normalized by the amount of circular states N c
0 which

is recorded if the 422 nm laser beam is not applied on the atoms. The measurement shows that

the signal does not drop within error bars, whether the 422 nm is on or off resonance with the

|5s1/2〉 → |5p1/2〉 transition (figure 3.8). This implies that there is negligible autoionization for

the circular states. Such a conclusion is compatible with our initial expectations, which predict

the autoionization rate to decrease by one order of magnitude for each increase of l.

We repeat the same sequence but, this time, we add a decircularization pulse after the core

excitation and record the population of the |511G4,ml1 =+2〉 state (figure 3.9). Decircularizing

after the 422 nm pulse makes the outer electron get through levels with decreasing l1 quantum

numbers while the core is excited. Lowering l1 implies increasing the ellipticity of the Rydberg

electron’s orbital, hence the probability of scattering between the valence electrons. Consequently,

only very few atoms reach the lowest states of the ladder if the core is in the |4d3/2〉 metastable

state. We therefore expect a drop of the number of atoms N detected at the |511G4,ml1 =+2〉
ionization threshold when the 422 nm beam matches the |5s1/2〉 → |5p1/2〉 resonance and optically

pumps the core electron in |4d3/2〉.

Figure 3.10 presents the number N of atoms detected in |5s1/2,511G4ml1 =+2〉, normalized

by the amount N0 of atoms detected in the same level when the 422 nm laser is not applied. As

expected, we observe a dip around the resonance, with a depth increasing with the blue laser

power. The asymmetry of the signal detected is due to the Doppler effect induced at the moment

of the laser excitation of the atoms. As an additional check, we perform the same experiment

with the 1092 nm repumper laser resonant with the |4d3/2,51c〉 → |5p1/2,51c〉 transition. It

efficiently empties |4d3/2,51c〉. We then observe a flat signal, close to 100%, confirming the dip to
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Figure 3.7: Sequence of laser, MW, rf and static electric fields used to measure the absence of
autoionization for |4d3/2,51c〉 state.
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Relative frequency (MHz)

Ionic core manipulation

Figure 3.8: a) Navigation in the Hilbert space following the sequence of events designed to
test the absence of autoionization for the circular state. b) Survival probability of the circular
Rydberg state to the autoionization effect as a function of the 422 nm laser. The white points are
experimental data with statistical error bars. The shadow area corresponds to the 95% confidence
band of the fit of the survival probability.

be caused by the pumping in |4d3/2,51c〉. The data are in excellent agreement with the numerical

simulations, presented in the next paragraph, computing the population remaining in |5s1/2,51c〉
before the second rf pulse.

3.3.3 The numerical model

Until this point, we have discussed the physics of the autoionization effect without taking into

account the singlet or triplet nature of the quantum states. We did this since we could not

attribute a singlet or triplet character when the core is in the |p〉 and |d〉 states. For these states,

the fine structure component of the Hamiltonian is indeed dominant over the exchange energy.

On the contrary, it is possible to assign a spin class to the atoms whose core is in the ground

state |5s1/2〉. In the latter case, when the Rydberg electron is circularized, the exchange energy is

zero and the singlet and triplet states are degenerate. Therefore, if the Rydberg electron is in

the circular state, the distinction between singlet and triplets is formally valid but we have no

experimental way to discriminate the two spin classes even with the core in the ground state. All

these features on the spin nature of the quantum states are taken into account in our numerical

model fitting the data on the autoionization effect. The reason is that we use this same model

to fit also another set of data, to be presented later in this work, whose interpretation involves

explicitly the spin of the quantum states.
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Figure 3.9: Sequence of laser, MW, rf and static electric fields used to measure the autoionization
effect for a low-l1 Rydberg state.
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Figure 3.10: a) Navigation in the Hilbert space following the sequence of events designed to
test the presence of autoionization for |4d3/2,511G4ml1 = 2〉. b) Evidence of autoionization of a
low-ml1 Rydberg state, for several 422 nm laser powers (black: 16 mW , red: 9.5 mW , green: 4.0
mW, blue: 1.3 mW, cyan: 0.5 mW, pink: 0.3 mW). We plot the probability that the atom ends up
in |5s1/2,511G4ml1 =+2〉 after the decircularization, as a function of the laser frequency. Solid
lines indicate numerical simulations. c) Survival to the autoionization after the application of the
repumper.
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The model is based on the integration of the density matrix master equation under the action

of the 422 nm laser beam detuned by ∆/2π from the |5s1/2,51c〉 → |5p1/2,51c〉 transition frequency.

The energy levels, written in the uncoupled spin basis, and the couplings taken into account

are depicted in figure 3.11. The states of interest are

|5s1/2m j2 =−1/2,51c,↓〉 , |5p1/2m j2 =−1/2,51c,↓〉 ,

|5s1/2m j2 =−1/2,51c,↑〉 , |5p1/2m j2 =−1/2,51c,↑〉 ,

|5s1/2m j2 =+1/2,51c,↓〉 , |5p1/2m j2 =+1/2,51c,↓〉 ,

|5s1/2m j2 =+1/2,51c,↑〉 , |5p1/2m j2 =+1/2,51c,↑〉 ,

where the arrow depicts the spin of the Rydberg electron, with a quantization axis chosen along

the direction of the 422 nm laser. We also include a ninth state “|d3/2〉”, which formally represents

all the |4d3/2〉 levels in which the |5p1/2〉 sub-levels can decay with the same rate.

The decay rates from |5p1/2 ±m j2〉 to |5s1/2 ±m j2〉 and |5s1/2 ∓m j2〉 are named Γπ and Γσ
respectively. We have Γσ/2π= 13.6 MHz, Γπ/2π= 6.8 MHz. The decay rate γ accounting for the

decay from |5p1/2 ±m j2〉 into |d3/2〉 is set as γ/2π = 1.2 MHz. The Rabi frequencies Ω+ and Ω-,

associated to the |5s1/2〉 |51c〉 → |5p1/2〉 |51c〉 transitions with ∆m j2 = 1 or -1 respectively, depend

on the amplitude of the σ+ or σ- polarization component of the 422 nm laser at the position of

the atoms and on the square root of the local laser intensity I(x, z). They also vary along the

atomic trajectory. We measure Ω+ = Ω-/6. The 422 nm laser polarization is indeed selected to be

as pure σ- as possible. The ratio between the σ+ and σ- intensities is measured to be 1 : 36 via a

beam-splitter and a photo-diode temporarily set at the exit of the cryostat.

Next, we take into account the characteristics of the 422 nm laser beam driving the |5s1/2〉 to

|5p1/2〉 transitions. We assume that the dynamics of the atom crossing a beam with a Gaussian

width
p

2 wx = 580 µm can be approximated by that of an atom staying at the point of maximum

intensity I(0, z) for a time te f f . The factor
p

2 takes into account the angle between the atomic

beam and the laser. To determine the value of te f f , we first assume the Rabi frequency to have a

Gaussian dependence with respect to time and next compute the probability for the atoms to end

up in the triplet |5s1/2〉 state as a function of the Rabi frequency calculated at the maximum of

the Gaussian. This computation is done by numerical integration of the master equation. We set

a constant Rabi frequency for a given amount of time and compute the again the probability for

the atoms to end up in the triplet |5s1/2〉 state. The two probabilities, computed with two differ-

ent dependencies of the Rabi frequency with respect to time, match each other when the Rabi

frequency is set as a constant for an "effective" time of 1.8 µs, for a velocity class moving at 418 m/s.
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Figure 3.11: Decay trajectories from the |5p1/2〉 states. Blue arrows indicate the 422 nm laser
drive, black arrows indicate the decays from the |5p〉 states to the |5s〉 states, green arrows stand
for the decay from each |5p〉 level to the metastable |4d〉 states. We consider the same decay rates
for the same channel when the spin is oriented up or down.

Once all these parameters are set, we compute the probabilities Ps(I(0, z),∆) and Pt(I(0, z),∆)

for an atom initially in the singlet state

1p
2

[
|5s1/2m j2 =−1/2,51c,↑〉− |5s1/2m j2 =+1/2,51c,↓〉

]

to end up in a singlet or triplet state respectively, after interacting for at time te f f with a laser of

intensity I(0, z) and detuning ∆. For this calculation, we neglect the velocity dispersion of the

atomic beam, hence the associated dispersion of te f f . Instead, we take into account the profile

of the laser beam in the direction perpendicular to the atomic beam. To this end, we average

the result over the spatial extension of the atomic sample along the z axis. Next, we convolute

the result with the velocity distribution of the atoms. Such a step allows us to include in the

model the Doppler effect on the laser detuning ∆. We finally perform a convolution between

the frequency response of the atom and a Gaussian lineshape of 3 MHz width modelling the

frequency noise of the laser. This procedure allows us to compute the probability for the atom to

be stored in the metastable |4d3/2〉 level and the average probabilities Ps(I0,∆) and Pt(I0,∆) to be

in a singlet or triplet state before the decircularization pulse, as a function of the laser intensity

I0 at the center of the beam.

The numerical model matches very well with the data of figure 3.10. Still, the proportionality

factor between the peak intensity I0 and the power P of the laser beam is fitted to be 26% smaller

than the result of an ab initio calculation from the estimated size of the laser beam at the atomic

position. This proportionality factor is the only free parameter.
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CHAPTER 3. THE AUTOIONIZATION EFFECT

3.3.4 The autoionization lifetime of the |4d3/2,51c〉 state

It is possible to estimate a lower bound for the lifetime of the |4d3/2,51c〉 level from the experi-

mental data. The survival probability N c/N c
0 of the circular state is

(3.1)
N c

N c
0
= Ps1/2 +Pd3/2 e

−t
τd3/2

where Ps1/2 (Pd3/2) is the probability to find the atoms in the |5s1/2,51c〉 (|4d3/2,51c〉) state and

τd3/2 is the autoionization lifetime of the |4d3/2,51c〉 state. By considering Ps1/2 = 1−Pd3/2 , we get

(3.2)
N c

N c
0
= 1−Pd3/2

[
1− e

−t
τd3/2

]
.

We fit the data of figure 3.8b with the formula

(3.3)
N c

N c
0
= 1−βPd3/2

where Pd3/2 is computed via the numerical model. From the fitted 95% confidence band, we find

that

(3.4) 0.004<β< 0.028

providing a lower bound on the auto-ionization lifetime τd3/2 > 5 ms. We cannot do better than a

lower bound for the lifetime given the finite time-of-flight of the atoms of 140 µs. A cold circular

Rydberg state of Strontium would certainly allow us to measure more precisely the lifetime.

3.3.5 Probing the spin dynamics of the ionic-core electron

From the |5p1/2,51c〉 state, the atoms can decay in the |4d3/2,51c〉 states, in the triplet |5s1/2,51c〉
state or also back in the singlet |5s1/2,51c〉 state. To measure the amount of those decaying in

these two last states, we use the decircularization and two MW probes discriminating between

the singlet and triplet states. We leave to appendix D the description of the calibration of these

two probes.

The corresponding data are divided in two sections, one where the singlet-triplet dynamics is

investigated as a function of the laser power, the other where we set the laser power and vary the

laser detuning.

3.3.5.1 Singlet to triplet |5s1/2,51c〉 state transfer

The experiment is very similar to that performed to verify the survival of the circular states to

the autoionization effect. We circularize, excite the core, thus inducing the optical pumping from

|5p1/2,nC〉 to the |4d3/2,nC〉 states and to the triplet |5s1/2,nC〉 state, decircularize and finally
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apply the probes. The repumper is left on all the time.

The excitation of the core is done via a 5 µs pulse of the 422 nm laser with σ- polarization,

kept in resonance with the |5s〉 → |5p〉 transition. While the 422 nm laser power is scanned

from 0 to 10 mW, we measure the decircularized singlet and triplet populations by use of the

corresponding MW probes.

Figure 3.12a shows the results of this experiment. Up to P = 0.1 mW, the singlet |5s1/2,51c〉
state population decreases as a function of the laser power down to ∼ 25%, while the popula-

tion of the triplet state rises to ∼ 75%. The core electron is promoted from |5s1/2,m j2 =+1/2〉
to |5p1/2,m j2 =−1/2〉 and then optically pumped in the |5s1/2,m j2 =−1/2〉 sub-level after a few

absorption-spontaneous emission cycles only. |5s1/2,m j2 =−1/2〉 is almost a dark state, for the

selected configuration of the polarization (figure 3.12b). The result of this redistribution is there-

fore a 1 : 3 mixture of singlet and triplet states.

For P > 0.1 mW, the minor σ+ component of the 422 nm laser polarization becomes large

enough to have a sizable effect. The |5s1/2,m j2 =−1/2〉 state is no longer a dark state (figure

3.12c). Absorption and spontaneous emission cycles repeat until the atoms decay in the |4d3/2,51c〉
metastable state. The decircularization leads to the autoionization effect. Accordingly, both singlet

and triplet populations decrease as a function of the laser power.

The numerical model predicts very well the dependency of the singlet and triplet populations

as a function of the laser power, as showed by the solid lines of figure 3.12. Note that, to obtain a

good fit of the data, we have to compensate for the lower detection efficiency of the triplet probe.

Also, the transfer efficiency of the decircularization rf pulse is different for an atom in the singlet

or triplet state. This implies that an efficient -π pulse decircularizing the singlet population is less

efficient for the triplet population. The atoms belonging to that spin class are indeed accumulated

along the low-l1 states visited during the action of the second rf pulse. This explains the lower

number of triplets detected at low-l1. We calibrate the detection efficiency of the triplet probe

by assuming that, for a large 422 nm laser power and in the presence of repumper light, the

population of the triplet state is 75%.

3.3.5.2 Singlet-triplet dynamics as a function of the laser detuning

We now discuss the optical pumping in the triplet state of |5s1/2,51c〉 as a function of the 422 nm

laser detuning.

We first reduce the power of the 422 nm laser, to avoid transferring atoms to the |4d〉 levels,
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Figure 3.12: a) |5s1/2,51c〉 singlet and triplet populations (black and red points respectively),
detected after the decircularization, as a function of the laser power. The solid lines present
the predictions of the numerical model. b-c) Schemes of the dynamics following the interaction
between the laser beam and the atoms, for low and high laser power respectively.
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a)

c)

b)

Ionic core manipulation

Figure 3.13: a) Navigation in the Hilbert space. b) - c) Singlet and triplet populations (ρS,ρT ) as
a function of the 422 nm laser frequency, for different laser powers (orange points: 4 mW, red
points: 0.29 mW, pink points: 43 µW, blue points: 19 µW, green points: 9.6 µW). Solid lines are
the theoretical predictions made by the numerical model.
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and repeat the experiment demonstrating the autoionization for a low-l1 state. We detect the

singlet and the triplet populations returning in a low-l1 state by use of the respective probes

(figure 3.13a). We observe a dip in the singlet population when the 422 nm crosses the resonance,

which broadens when increasing the laser power, (figure 3.13b). This drop results from the decay

in the triplet state, whose population rises when the laser is resonant, (figure 3.13c). When the

singlet dip is sufficiently broad, it appears as the background of the autoionization dip evidenced

in figure 3.10b.

We then increase the laser powers. Initially, this results in a broadening of the singlet dip

and triplet peak. Around 4 mW instead, both signals present a central dip, around the |5s1/2〉 →
|5p1/2〉 resonance frequency. This is due to the fact that, from this laser power on, the atoms are

pumped in the |4d3/2,51c〉 states and the decircularization consequently causes the autoionization

of those atoms and a reduction of counts both for the singlet and the triplet populations. The

numerical model predicts again very well the evolution of the singlet and triplet populations (see

solid lines of figure 3.13), both when the laser power is not sufficient to excite the atoms in the

metastable |4d3/2,51c〉 levels (green, blue and pink points) and when we lose atomic counts for

the decay in those states (red and orange points).

3.3.6 The absence of autoionization for the |4d5/2,51c〉 state

We investigate the autoionization effect for |4d5/2,51c〉. We proceed as we did when performing

the experiment for the atoms in |4d3/2,51c〉.

We prepare a similar sequence (figure 3.14) to that displayed in figure 3.9. The only difference

is that we replace the 422 nm laser pulse with a 408 nm laser in continuous wave mode, exciting

the atoms into the |5p3/2,51c〉 level, from which the population spontaneously decays onto the

|4d5/2,51c〉 state and the |4d3/2,51c〉 state. We also perform analogous measurements to those

presented for |4d3/2〉. As there, we present the circular state survival probability, (figure 3.15a), as

well as the number of atoms detected in the low-l1 state after the decircularization, as a function

of the laser frequency (figure 3.15b). These two curves are recorded simultaneously to eliminate

the effect of the slow drift of the 408 nm laser frequency, which is not locked due to experimental

limitations. Results are analogous to the |4d3/2〉 case. We observe no significant variation on the

atomic signal for the circular state and a drop of the counts due to autoionization effect when we

return the atoms to the low-l1 state after the core excitation.

We estimate the population of the |4d〉 states from the dip in the N/N0 signal showed in

figure 3.15b. At the lowest point of the Lorentz fit, the ratio N/N0 is 8%. Part of the atom count

reduction can be due to a transfer of the atoms into the |5s1/2,51c〉 triplet state. 85% of the

population is instead optically pumped in the |4d〉 states. From the branching ratio, we deduce
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Figure 3.14: Sequence of laser, MW, rf and static electric fields used to measure the autoionization
effect for the |4d5/2,51c〉 state.
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Figure 3.15: a) Absence of autoionization effect for the |4d5/2,51c〉 state (blue, full points). b) Pres-
ence of autoionization effect for the |4d5/2,511G4,ml1 =+2〉 state accessed by decircularization
(blue, empty points).

that at least 76% of the population is in the |4d5/2〉 level and 9% is in |4d3/2〉. These amounts

derive from the branching ratio between the decay channels from the state |5p3/2〉. We then write

the survival probability of the circular state as

(3.5)
N c

N c
0
= Ps1/2 +Pd3/2 e

−t
τd3/2 +Pd5/2 e

−t
τd5/2 ,

where Pd5/2 is the probability to find the atoms in the |4d5/2〉 state and τd5/2 is the autoionization

lifetime of the same state. To get a lower bound on τd5/2 , we assume τd3/2 =∞ and that all the loss

is due to the population in the |4d5/2〉 state. With this assumption, we deduce from the Lorentz

fit N c/N c
0 > 0.946 at the minimum of the curve with more than 95% probability. This value leads

to τd5/2 > 2 ms. As for the measurement of the |4d3/2,51c〉 lifetime, we are strongly limited by the

time-of-flight of the atoms.

3.4 Discussion

In this chapter, we present our study on the autoionization effect for the Rydberg states of

Strontium. As a central result, we report the evidence of the survival of the circular Rydberg

states of Strontium to the autoionization effect, whether the ionic core is promoted to the |4d3/2〉
or |4d5/2〉 state. We check that we change the state of the core via the optical excitation by testing

the presence of autoionization for a low-l1 Rydberg state synchronously with the measurement
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on the circular state. Our data are first fitted via a numerical model of the optical pumping

and then used to estimate some lower bounds for the autoionization lifetimes of |4d3/2,51c〉 and

|4d5/2,51c〉, of 5 ms and 2 ms respectively. The main experimental limitation, preventing us from

measuring these quantities further, is the finite time-of-flight of the atoms.

As a second set of results, we observe a decay of the |5p1/2,nl1〉 in the |5s1/2,nl1〉 triplet state.

This dynamics is dominant for low 422 nm laser power whereas the spontaneous decay in the

|4d〉 states from the |5p〉 level governs at high laser powers. The measurements on the singlet

and triplet populations is achieved via individual, spin-sensitive, MW pulsed probes calibrated

between low-l1 Rydberg states.

The results on the autoionization effect described in this chapter pave the way to optical

cooling and trapping of long-lived circular state atoms with considerable, potential impact on

quantum metrology and quantum simulation. The interaction between the core and Rydberg

electron leads us to envision quantum logic operations between them. Importing optical manip-

ulation techniques developed for ion trap experiments makes it possible to use these quantum

gate operations to detect or manipulate the outer Rydberg electron. Following this research line,

we are going to present, in the next chapter, some optical manipulations on the atoms once the

Rydberg electron is circularized, thus preserving the atoms from autoionization.
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4
THE COUPLING OF THE IONIC-CORE ELECTRON WITH THE

CIRCULAR RYDBERG ELECTRON

Try again. Fail again. Fail better.

Samuel Beckett

We proved that the circular Rydberg states of Strontium are impervious to the autoion-

ization effect when the core electron is excited to the |4d3/2〉 or |4d5/2〉 states. The

absence of autoionization gives us the opportunity to optically manipulate the core

while preserving the circular state of the Rydberg electron. We focus on this aspect in this chapter.

We perform optical manipulations to measure the splitting between neighboring |m j2 | states

within the |4d3/2〉 set of energy levels of the core, while the Rydberg electron is prepared in the

circular state.

Note that, in the former chapter, the |4d3/2〉 states of the core electron were assumed de-

generate and equivalent to those of the Sr+ ion. Here, on the contrary, we distinguish two,

non-degenerate sets of sub-levels within the |4d3/2〉 states, differentiated by the quantum number

|m j2 |. The sub-levels with |m j2 | = 3/2 are now energy shifted by hundreds of kHz with respect

to those with |m j2 | = 1/2. The lift of the degeneracy results from the inclusion of the electric-

quadrupole term of the electron-electron interaction between the two valence electrons in the

Hamiltonian of the atom. Note that this electric coupling does not allow us to distinguish among

those states with +m j2 or −m j2 . Thus, the levels with opposite m j2 values are still degenerate.

We split this chapter in three parts. The initial section is a theoretical introduction to the

electric coupling between the ionic-core electron and the Rydberg electron (section 4.1). There,

we first show that the electric coupling is dominated by the electric-quadrupole term of the
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multipole expansion of the Coulomb potential. We then introduce some numerical calculations

of the splitting δ(12)
n,ml1

between the |4d3/2〉 core states resulting from the interaction with the

circular state of the Rydberg electron. The second part of the chapter discusses the principle of

two experiments and the respective experimental results (sections 4.2 - 4.3). One experiment

concerns the splitting δ(12)
n,ml1

between the |4d3/2〉 states of the core ("direct electric-quadrupole

effect"), the other is about the differential splitting ∆δ(12)
n,ml1

. The latter quantity is the difference

between the value of δ(12)
n,ml1

associated to a Rydberg state and that of another Rydberg state

("differential electric-quadrupole effect"). Initially, we show how to measure the differential

and direct electric-quadrupole effects, in this order, by manipulating the atoms after they are

circularized. Next, we perform the same experiments while the Rydberg electron is excited to an

intermediate Rydberg state along the ladder of the n = 51 manifold. Since we focus on the only

circularization ladder for this analysis, we are going to omit the quantum number n1 = 0 of the

parabolic basis to make the quantum states notations simpler.

As a conclusion, we show how these experiments lead us to a Ramsey experiment, performed on

a circular-to-circular transition, demonstrating that we can control the state of the Rydberg atom

with a laser pulse (section 4.4).

4.1 Theory

We detail here the mathematical tools needed to understand the coupling between the ionic-core

electron and the circular Rydberg electron. We start by discussing the multipole expansion of

the electron-electron potential. We then introduce the Hamiltonian associated to the electric-

quadrupole term of the multipole expansion and calculate its expectation value when the Rydberg

electron is circularized. This calculation proves that the contribution of the electric-quadrupole

Hamiltonian to the energy of the |4d3/2〉 core states is measurable in the experiment.

4.1.1 The multipole expansion

The Coulomb potential governing the interaction between the two valence electrons was already

presented in chapter 1 in equation (1.33). Here, we apply the multipole expansion to the Coulomb

potential. This allows us to decompose the coupling between the valence electrons in a series of

terms expressed by spherical harmonics [80] (we omit the term 1/(4πϵ0)),

(4.1)
e2

|r1 − r2|
= e2

∞∑
k=0

m=k∑
m=−k

4π
2k+1

rk
2

rk+1
1

Yk,m(θ2,φ2)Y ∗
k,m(θ1φr), r1 > r2,

The indexes 1 and 2 refer to the Rydberg and core electron respectively, the term Yk,m is the

spherical harmonic component of the kth term and θi,φi are the spherical coordinates of the ith

electron. The multipole expansion at order k is therefore a sum of 2k+1 terms. The zeroth-order

term (k = 0) is called the monopole moment, the first-order (k = 1) term is called the dipole

moment, the second-order (k = 2) is called the electric-quadrupole moment, the third-order term
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(k = 3) is called the octupole moment and so on. Equation (4.1) can be reformulated as a scalar

product of tensors of rank k of the form

(4.2) W =
∞∑

k=0

m=k∑
m=−k

(−1)mCk,−mQk,m,

where

(4.3) Ck,m =−e

√
4π

2k+1
r−k−1

1 Y ∗
k,m(θ1,φr) Qk,m =−e

√
4π

2k+1
rk

2Yk,m(θ2,φ2).

In (4.2) and (4.3), the parameter m indicates the component of a given tensor. The term with

k = 0 is the screening of the charge of the Sr2+ core by the ionic-core electron. It is the reason

why the Rydberg levels of Strontium are almost hydrogenoid. Instead, we are going to discuss in

detail the influence of other two terms, the electric-dipole term Wk=1 and the electric-quadrupole

term Wk=2, on the energy levels |4d3/2〉 of the core.

4.1.2 First-order perturbation theory

Due to the symmetry of the ionic-core wavefunction, the expectation value of Q1,0, therefore of

the first order of Wk=1, is zero. The first non-zero term in the first order perturbation theory is

thus the electric-quadrupole term. Therefore, we start by discussing its contribution to the energy

of the atom. We set k = 2 in our calculations and define the electric-quadrupole Hamiltonian as

(4.4) Ŵ2 =
m=2∑

m=−2
(−1)mĈ2,−mQ̂2,m,

which derives from (4.2) once passing from tensors to quantum operators. Following [81], expres-

sion (4.4) can be cast as

(4.5) ĤQ =∇F̂(2) · Θ̂(2),

where the tensor operator ∇F̂(2), representing the gradient field operator, plays the role of

Ĉ2,−m and the tensor operator Θ̂(2), being the electric-quadrupole moment operator, of Q̂2,m. The

components of ∇F̂(2) are

(4.6)


∇F̂ (2)

0 =−1
2
∂Fz
∂z ,

∇F̂ (2)
±1 =±

p
6

6 ( ∂
∂x ± i ∂

∂y )Fz,

∇F̂ (2)
±2 =−

p
6

12 ( ∂
∂x ± i ∂

∂y )(Fx ± iFy),

whereas those of Θ̂(2) ([82]) are

(4.7)


Θ̂(2)

0 =− e2

2 (3ẑ2
2 − r̂2

2),

Θ̂(2)
±1 =−e2

√
3
2 ẑ2(x̂2 ± i ŷ2),

Θ̂(2)
±2 =−e2

√
3
8 (x̂2 ± i ŷ2)2.
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mj2

-3/2 -1/2 +1/2 +3/2

Energy

δn, ml1

(12)

Figure 4.1: Lift of the degeneracy between the |4d3/2〉 quantum states of the ionic-core electron
due to the electric-quadrupole coupling with the Rydberg electron.

Here, F is the electric field at r = 0 created by the Rydberg electron in the position r1. The

first effect of the electric-quadrupole Hamiltonian on the energy levels is to lift the degeneracy

between the |4d3/2〉 states (figure 4.1). They are split in two sets, one with |m j2 | = 3/2 and the

other with |m j2 | = 1/2. When the Rydberg electron is in the state |n, l1,ml1〉, those two sets are

energy shifted by an amount

(4.8) V12 =
+ℏδ(12)

n,ml1
/2 i f |m j2 | = 3/2

−ℏδ(12)
n,ml1

/2 i f |m j2 | = 1/2
.

We use the term "splitting" to refer to δ(12)
n,ml1

. To calculate its value, we must compute the

expectation value of (4.5). The main complication is that all components presented in (4.6) have

non-zero contributions to the calculation of δ(12)
n,ml1

. Still, as a very first approximation, we perform

the calculation with the only operator ∇F̂ (2)
0 . We anticipate that this approximation leads to

reliable theoretical predictions for high-ml1 Rydberg states and that is gradually less efficient

when ml1 is lowered. Furthermore, it can be proven that the overall computation of δ(12)
n,ml1

comes

down to calculating the expectation value of the only gradient field operator, since the matrix

elements of the electric-quadrupole moment operator can be computed via the Wigner-Eckart

theorem. The next paragraph goes through this discussion.

4.1.3 The Wigner-Eckart theorem

The Wigner-Eckart theorem [80, 83] states that, given a tensor operator T̂k
q and two state sub-

spaces of angular momenta j and j′, there exists a constant 〈 j|∥T̂k
q∥| j′〉 such that for all m,m′, q,

the matrix elements of T̂k
q can be expressed as the product of 〈 j|∥T̂k

q∥| j′〉 and a scalar quantity,

(4.9) 〈 j,m|T̂k
q | j′,m′〉 = 〈 j′m′kq| jm〉〈 j|∥T̂k

q∥| j′〉 .

The term 〈 j′m′kq| jm〉 is the Clebsch-Gordan coefficient which couples j′ with k to get j. The

constant 〈 j|∥T̂k
q∥| j′〉 is the reduced matrix element of the tensor operator.
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We make use of this theorem to compute the matrix elements of the electric-quadrupole tensor

operator Θ̂(2). For a given j2, the tensor is diagonal with respect to |m j2 | and the elements along

the diagonal read

(4.10) 〈n2, j2,m j2 |Θ̂(2)
0 |n2, j2,m j2〉 = 〈 j2m j220| j2m j2〉〈 j2|∥Θ̂(2)

0 ∥| j2〉 .

where 〈 j2m j2 kq| j2m j2〉 is the Clebsch-Gordan coefficient and 〈 j2|∥Θ̂(2)∥| j2〉 is the reduced matrix

element of the electric-quadrupole moment operator. We set j2 = 3/2. Now, the Clebsch-Gordan

coefficient depends on the only magnetic quantum number of the |4d3/2〉 state. It is

(4.11) 〈 j2 = 3
2

,m j2 ,k = 2, q = 0| j2 = 3
2

,m j2〉 =
+ 1p

5
i f |m j2 | = 3/2,

− 1p
5

i f |m j2 | = 1/2.

Instead, the reduced matrix element of the electric-quadrupole moment operator is given in [84]

as

(4.12) 〈 j2 = 3
2
|∥Θ̂(2)

0 ∥| j2 = 3
2
〉 =

p
5Θ(4d3/2),

where Θ(4d3/2) is the electric-quadrupole moment. It is as well reported by [84] as

(4.13) Θ(4d3/2)= e
5
〈4d3/2| r2

2 |4d3/2〉

for an electron in a |4d3/2〉 state and outside a filled shell. Theoretical predictions give Θ(4d3/2) at

2.029(12)ea2
0 [85], for all |d3/2〉 states, very close to the values indicated by [84] (2.107ea2

0) or by

[86] (2.12ea2
0).

4.1.4 Calculation of the electric-quadrupole Hamiltonian expectation value

We have simplified the mathematics enough to tackle the computation of the expectation value

of the electric-quadrupole Hamiltonian. We must now multiply Θ(4d3/2)= 2.029(12)ea2
0 by the

expectation value of the gradient field operator to obtain δ(12)
n,ml1

(the factor
p

5 is simplified with

the Clebsch-Gordan coefficient). It can be proven that, in the specific case of the circular Rydberg

state, the only component of the gradient with a non-zero contribution to the expectation value is

the component ∇F̂ (2)
0 of the gradient field operator. Therefore, for the calculations on the circular

state presented in this paragraph, we have

(4.14) δ(12)
n,ml1

= 2
ℏ
〈Ψnl1ml1

|∇F̂ (2)
0 |Ψnl1ml1

〉Θ(4d3/2),

where Ψnl1ml1
is the wavefunction of the circular state. The electric field gradient is written in

spherical coordinates in the form

(4.15) ∇F̂ (2)
0 = 3cos2θ1 −1

2r3
1

,
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and its expectation value is computed by the triple integral

(4.16) 〈Ψnl1ml1
|∇F̂ (2)

0 |Ψnl1ml1
〉 =

∫ ∞

0
dr1

∫ 2π

0
dφ1

∫ π

0
dθ1Ψ

∗
nl1ml1

3cos2θ1 −1
2r3

1
Ψnl1ml1

r2
1 sin(θ1),

We express Ψnl1ml1
as a product of a spatial and an angular component and we insert them in

(4.14). We get

(4.17) 〈Ψnl1ml1
|∇F̂ (2)

0 |Ψnl1ml1
〉 =

∫ ∞

0
dr1

∫ 2π

0
dφ1

∫ π

0
dθ1R∗

n,l1
(r1)Y ∗,l1

ml1
(θ1,φ1)

3cos2θ1 −1
2r3

1
·

Rn,l1(r1)Y l1
ml1

(θ,φ)r2
1 sin(θ1),

which can be decomposed into two separate integrals Ir, depending on the spatial coordinate r1,

and Ia, depending on the angular coordinates.

The first integral reads

(4.18) Ir =
∫ ∞

0
dr1R∗

n,l1
(r1)

1
r3

1
Rn,l1(r1)r2

1,

and is solved via the standard formula

(4.19) Ir = 1

n3
[
l1(l1 + 1

2 )(l1 +1)
] .

The second integral is

(4.20) Ia =−
∫ 2π

0
dφ1

∫ π

0
dθ1Y ∗,l1

ml1
(θ1,φ1)

3cos2θ1 −1
2

Y l1
ml1

(θ1,φ1)sin(θ1).

The integrand is simplified via the mathematics of the spherical harmonics. We recall that

(4.21) Y ∗,l1
ml1

= (−1)ml1 Y l1−ml1
.

Next, we compute the spherical harmonic with l1 = 2 and ml1 = 0. This reads

(4.22) Y 2
0 =

√
5

4π
3cos2θ1 −1

2
.

The equations (4.21) and (4.22) allow us to express (4.20) as an integral of the product of three

spherical harmonics,

(4.23) Ia =−(−1)ml1

(√
5

4π

)−1 ∫ 2π

0
dφ1

∫ π

0
dθ1Y l1−ml1

(θ1,φ1)Y 2
0 Y l1

ml1
(θ1,φ1)sin(θ1).

This formulation of the integrand allows us to apply the formula

(4.24)
∫ 2π

0
dφ1

∫ π

0
dθ1 sin(θ1)Y lA

1
mlA

1
(θ1,φ1)Y lB

1
mlB1

(θ1,φ1)Y lC
1

mlC1
(θ1,φ1)=
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√
(2lA

1 +1)(2lB
1 +1)(2lC

1 +1)
4π

(
lA
1 lB

1 lC
1

0 0 0

)(
lA
1 lB

1 lC
1

mlA
1

mlB
1

mlC
1
,

)
,

to solve Ia by use of the 3j-symbols formalism. Here, lA,B,C and mlA,B,C are the angular momen-

tum and the magnetic quantum numbers associated to the spherical harmonic Y lA,B,C
respectively.

After computing the integrals Ir and Ia, multiplying the result by the electric-quadrupole

moment and converting the result in SI units, we obtain the splitting of the |4d3/2,51c〉 states

caused by the electric-quadrupole term of the coupling between the electrons. It is of 760 kHz.

We can make two points about this electric-quadrupole splitting. The first is that it is large

enough to be measured in the experiment. The second is that it depends on the principal quantum

number of the circular state, following a n−6 power law. This results from (4.19), showing that Ir

has a n−3 explicit dependency and a l−3 dependency deriving from the term l1(l1 +1/2)(l1 +1).

The quantum number l scales as n. Therefore, after writing (4.19) in terms of n only, we retrieve

a n−6 dependency. We are going to verify this dependency in the experimental data.

4.1.5 Extension of the numerical calculation to the Rydberg states of
circularization ladder

The electric-quadrupole coupling between the ionic-core electron and the Rydberg electron does

not concern the circular state only. Any elliptical Rydberg state can couple with the core electron.

Therefore, we can extend the numerical calculation of δ(12)
n,ml1

to the case of Rydberg states with

intermediate or low ml1 . Here, we focus on those states belonging to the circularization ladder.

Unlike the case of the circular state, the calculations now feature elliptical Rydberg states

which must be necessarily expressed in the parabolic basis |n,n1,ml1〉. The first step is therefore

to convert the latter basis in the spherical one |n, l1,ml1〉. We do this by use of two Clebsch-Gordan

coefficients, 〈nn1ml1 |nl1ml1〉∗ and 〈nn1ml′1 |nl′1ml′1〉, as discussed in chapter 1. As a consequence,

in the case of elliptical Rydberg states, we define the electric-quadrupole splitting of the ionic-core

electron states as

(4.25) δ(12)
n,ml1

=∑
l1

∑
l′1

〈nn1ml1 |nl1ml1〉∗ · 〈nn1ml′1 |nl′1ml′1〉 ·

〈Ψnl′1ml′1
Λn2l2s2m j2

| ĤQ |Ψnl1ml1
Λn2l2s2m j2

〉 ,

where Λn2l2s2m j2
is the wavefunction of the core electron. We then proceed as in the case of

the circular state, by first using the Wigner-Eckart theorem for the calculation of the matrix

elements of Θ̂ and next computing the expectation value of ∇F̂ (2)
0 as the product of two integrals.

Fortunately, the solution of Ir does not depend on ml′1 . Instead, the calculation of Ia does depend
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l1

δn = 51, ml1
(12)

1

(12)

(MHz)
1
(MHz)

Figure 4.2: Calculation of the electric-quadrupole splitting δ(12)
n=51,ml1

as a function of the magnetic
quantum number of the Rydberg electron. Our simulations concern only the Rydberg states of
the circularization ladder.

on the magnetic quantum number. This integral is therefore evaluated for all values of ml1 .

We calculate the splitting between the |4d3/2〉 states of the core for all the Rydberg states

belonging to the ladder of the n = 51 manifold. Figure 4.2 displays the result of this calculation.

The splitting is reported as a function of the magnetic quantum number of the Rydberg electron.

We will soon compare the results with the experimental data.

4.1.6 Dipole term contribution to the energy shift of the |4d3/2〉 states

The electric-quadrupole component of the multipole expansion of the Coulomb potential is not

the only term contributing to the energy shift of the |4d3/2〉 states. Here, we briefly explain the

influence of another term, the electric-dipole Hamiltonian Ŵ1 deriving from (4.2) when k = 1, for

the circular state case only. Due to the symmetry of the ionic-core wavefunction, the expectation

value of Q̂1,0, therefore of the first order of Ŵ1, is zero. However, the shift induced by Ŵ1 at second

order does not vanish. This component mostly comes from the coupling of the circular atom with

the core in |4d3/2〉 to the Rydberg states with the core in |5p1/2〉. However, it does not change very

much the relative energy between the sub-levels with |m j2 | = 3/2 and |m j2 | = 1/2. We numerically

estimate a shift of −3 kHz for |4d3/2|m j2 | = 1/2,51c〉 and −6 kHz for |4d3/2|m j2 | = 3/2,51c〉.

Another higher order contribution derives from the coupling between the circular state and
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e)
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189ns
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51c

5s1/2 5p1/2

521F3, ml1
 = 2 511G4, ml1

 = 2 49c51c

15us

HORIZONTAL
ELECTRIC FIELD

VERTICAL
ELECTRIC FIELD

LASER PULSES
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511G4, ml1
 = 2

521F3, ml1
 = 2 4d3/2 5p1/2
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t(us)

0 2.1 2.9 4.23.7 12.3 17.05.5

Figure 4.3: Sequence of laser, MW, rf and static electric fields used to measure the circular-
to-circular frequency shift. We add the repumper in continuous wave mode (dashed, orange
square in c)) to identify which frequency shift is associated to |4d3/2|m j2 | = 1/2〉 and which one to
|4d3/2|m j2 | = 3/2〉 (see subsection 4.3.3 for details).
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other Rydberg states of the same manifold. Note that, although the static electric field lifts the

degeneracy between the circular state and the Rydberg levels with ml1 = n−2 by more than 100

MHz, one of the Stark levels with ml1 = n−3 is a few kHz away from the circular state. However,

the coupling induced to this level by Ŵ2 is small and shifts the energy of the circular state by less

than a kHz. Thus, the electric-quadrupole effect is dominant within correction of the order of one

percent.

4.2 Principle of the experiment on the differential
electric-quadrupole effect

The theoretical introduction makes it clear that the electric-quadrupole coupling between the

ionic-core electron and the Rydberg electron governs the splitting between the |4d3/2〉 ionic-core

states. However, the splitting between the states of the core with the Rydberg electron in |n,ml1〉
is expected to differ from that between the same states when the Rydberg electron is instead in

|n−2,ml1 −2〉. The difference between the two values of the splitting is named here as ∆δ(12)
n,ml1

.

This quantity is expected to be in the 100 kHz range. We are going to measure it via MW spec-

troscopy of the Rydberg-to-Rydberg atomic transition.

The strategy is straightforward. We prepare the |n,ml1〉 Rydberg state, optically pump the

atoms in the |4d3/2〉 states and finally apply a MW pulse. We record the spectrum of the Rydberg-

to-Rydberg transition and show how the atomic transition frequency changes when the ionic

core is excited. We expect to observe a different atomic transition frequency for the Rydberg-to-

Rydberg transition depending on the state of the core, therefore three transfer lines in total. One

will be associated to the core in the ground state, the other two to the core in the metastable,

excited states.

4.3 Experimental measurement of the differential
electric-quadrupole effect

4.3.1 Overview

In this section, we present the measurements of ∆δ(12)
n,ml1

. First, we discuss the data concerning

the circular states. We measure ∆δ(12)
n,ml1

for the transition |51c〉 → |49c〉 and compare the result

with the value predicted by the theoretical model (paragraphs 4.3.2 - 4.3.3). Second, we focus

on the measurement of ∆δ(12)
n,ml1

for Rydberg states with intermediate ml1 . In particular, we are

interested in the values of ∆δ(12)
n,ml1

between states belonging to the lowest-right Rydberg ladder of

the n = 51 manifold and that of the n = 49 manifold (paragraph 4.3.4). After presenting the data,

we assess their consistency by comparing the measured ∆δ(12)
n,ml1

values with theory. Third and last,
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b)

a)

MS MD MD MD MD

-3/2 -1/2  3/2 1/2

MD MD

MS  

-

Figure 4.4: a) Scheme of the energy levels undergoing our manipulation with rf, laser and MW
pulses. b) MW spectra of the |51c〉 → |49c〉 transition without (black squares) and with the
excitation of the core (red circles).
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we briefly show an evidence of the electric-quadrupole coupling between the circular state and

the core in |4d5/2〉 (paragraph 4.3.5). This set of data leads us to evaluate the electric-quadrupole

moment of the |d5/2〉 states. We discuss the agreement between the value retrieved by fitting the

experimental data and the theoretical expectation in [87].

4.3.2 Measurements on the circular states

To measure the differential electric-quadrupole effect, we circularize, optically pump the atoms

in the |4d3/2,51c〉 states with a 7 µs pulse at 422 nm and apply a MW pulse (figure 4.3). Its

duration is set to be 15 µs long to resolve the |51c〉 → |49〉 transition line where the core is in

|4d3/2|m j2 | = 1/2〉 from that where the core is in |4d3/2|m j2 | = 3/2〉. The MW power is optimized on

the transfer between the two circular states. The time of the MW application is chosen via a map

of the MW mode along the atomic beam. We scan the frequency of the MW pulse over ±0.25 MHz

around the |5s1/2,51c〉 → |5s1/2,49c〉 transition, since the differential electric-quadrupole effect is

expected to be relatively small with respect to the circular-to-circular transition frequency. We

ionize the atoms transferred to the n = 49 manifold. The experiment is finally repeated without

the excitation of the core.

Figure 4.4a shows the navigation in the Hilbert space of the Rydberg electron during the

experimental sequence, together with the manipulation of the core. Figure 4.4b presents the

MW spectra. When the 422 nm laser is not applied, we detect only one peak, associated to the

|5s1/2,51c〉 → |5s1/2,49c〉 transition. On the contrary, when the 422 nm laser is applied, we ob-

serve two peaks, associated to the |4d3/2|m j2 | = 1/2,51c〉 → |4d3/2|m j2 | = 1/2,49c〉 transition and

to the |4d3/2|m j2 | = 3/2,51c〉 → |4d3/2|m j2 | = 3/2,49c〉 transition. They are (204.04±1.66) kHz far

from each other and equidistant from the |5s1/2,51c〉 → |5s1/2,49c〉 peak. The distance between

the two transfer peaks matches the difference between δ(12)
n,ml1

for the circular state of the n = 51

manifold and δ(12)
n,ml1

for the circular state of the n = 49 manifold. To verify that, we compare the

data with the theoretical expectation of the model. The calculated value for ∆δ(12)
n,ml1

(retrieved

by calculating δ(12)
n,ml1

for |51c〉 and |49c〉 and making the difference) is 205.6 kHz, in excellent

agreement with the value measured here.

Note that this measurement shows that the resonance frequency of the MW returns infor-

mation on the state of the core and therefore that the MW pulse is now core-selective. It means

that we have now a way to distinguish the circular atoms whose core lays in |4d3/2|m j2 | = 1/2〉,
|4d3/2|m j2 | = 3/2〉 or |5s1/2〉. We coin the term MS as a name for the MW pulse allowing us to

quantify the atoms in |5s1/2|m j2 | = 1/2,51c〉. We use instead MD as a general name for a MW

pulse measuring the atoms in any |4d3/2,51c〉 state.
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M-3/2   

MS  

M+3/2  
D D M-1/2   M+1/2  

D D
= =

Figure 4.5: a) Scheme of the energy levels undergoing our manipulations with rf, laser and MW
pulses aimed to identify the states of the core in the MW spectra. b) MW spectra of the |51c〉
→ |49c〉 transition without the excitation of the core (black squares), with excitation of the core
(red circles), with the repumper having an horizontal (blue triangles) or vertical (green triangles)
polarization.
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Figure 4.6: Effect of the laser polarization (a) vertical, b) horizontal) on the |4d3/2〉 sub-levels of
the ionic-core electron.

4.3.3 Identification of the |4d3/2〉 core sub-levels with the repumper

In the condition of an excited core, the former experiment does not yield any information on

which of the two transition lines is associated to the state with |m j2 | = 3/2 or with |m j2 | = 1/2. To

do this distinction, we make use of the 1092 nm repumper laser.

We perform the same experiment as that in subsection 4.3.2. while applying the repumper

at 1092 nm in continuous wave and at full power (figure 4.5a). The measurements are recorded

for both an horizontal and vertical polarization of the repumper beam. At this stage of the

experiment, the quantization axis is vertical.

Figure 4.5b presents the results of the experiment when the repumper is applied. When

the repumper polarization is horizontal, the population is transferred back from the |4d3/2,51c〉
states to the |5s1/2,51c〉 state (figure 4.6). In such a case, we detect one transfer peak correspond-

ing to the |5s1/2,51c〉 → |5s1/2,49c〉 transition. On the contrary, with a vertical polarization of

the repumper, we expect a depletion of the only |4d3/2|m j2 | = 1/2,51c〉 state. This is consistent

with our observations, since we see that, after exciting the core and recording the MW spec-

trum, only one peak of the two involving a core in a |4d3/2〉 state remains. The population of

|4d3/2|m j2 | = 1/2,51c〉 is transferred back to the |5s1/2,51c〉. Simultaneously, we leave the popula-

tion of |4d3/2|m j2 | = 3/2,51c〉 untouched. We can now associate each transfer peak to a state of

the core. Taking as a reference the circular-to-circular transition with unexcited core, the transfer

peak at lower frequencies corresponds to the |4d3/2|m j2 | = 3/2,51c〉 → |4d3/2|m j2 | = 3/2,49c〉 tran-

sition whereas that at higher frequencies accounts for the |4d3/2|m j2 | = 1/2,51c〉→ |4d3/2|m j2 | = 1/2,49c〉
transition. This fact is consistent with the theoretical predictions of paragraph 4.1.4.
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4.3.4 Measurements on elliptical Rydberg states

The effect of the coupling between the two valence electrons can be also observed when performing

the experiment with the Rydberg electron in an intermediate Rydberg state along the ladder of

the n = 51 manifold.

We apply a rf pulse on the atoms prepared in |5s1/2,511G4ml1 = 2〉. By adjusting the rf du-

ration τ, we can prepare a spin-coherent-state centered on any elliptical state |n,ml1〉 along

the circularization ladder. Next, we apply the 422 nm laser pulse, optically pumping the core

in the |4d3/2〉 states, followed by the frequency scan of a MW pulse across the |n = 51,ml1〉 →
|n = 49,ml1 −2〉 Rydberg-to-Rydberg transition. We are interested into the resonance frequency

of this MW. This is expected to shift depending on the state of the core as in the circular case. We

finally prepare a second sequence, where we omit the excitation of the core. For both sequences,

we measure the atoms transferred in the n = 49 manifold.

Figure 4.7 shows the MW spectra for six realizations of the experiment. We observe the

|n = 51,ml1〉 → |n = 49,ml1 −2〉 transitions for ml1 = {49,48,37,17,10,9} and the shifts of their

resonance frequencies when the core is excited. We note that the core excitation shifts the transi-

tion frequencies by a few hundreds of kHz, comparable to the case of the circular state.

Figure 4.8 collects the frequency shifts, when the core is either in |4d3/2|m j2 | = 3/2〉 or

|4d3/2|m j2 | = 1/2〉, as a function of the magnetic quantum number of the Rydberg state. The

graph is very insightful. First, we see the transfer peaks merging and then becoming separated

again, which we interpret as they invert their position (as expected from the theory). The cross-

point lays around ml1 = 25. Second, it is increasingly harder to detect the shift when lowering

the magnetic quantum number of the Rydberg state. The most evident reason for this is the

autoionization effect, that becomes more relevant for low-ml1 states. Below ml1 = 11, the atomic

counts become very low due to the autoionization of a majority of atoms. Below ml1 = 7, it is not

possible to detect a shift. Third, we see that our theoretical model succeeds in predicting the shift

of the Rydberg-to-Rydberg transition frequency both for intermediate-ml1 states and for high-ml1

states. However, it is less reliable for very low ml1 .

The reason behind the mismatch between data and numerical model for very low ml1 states is

that some components of the electric-quadrupole Hamiltonian are not included in the numerical

model. In the calculations, we have only used the m = 0 component of equation (4.4). We then

argued that the influence of the m = 2 term was not important, since it weakly coupled the

circular with only one Rydberg state with ml1 = n−2. The effect of the m = 2 term of the electric-

quadrupole Hamiltonian, as well as that of the m = 1 term, becomes instead important when

considering low-ml1 Rydberg states. Any Rydberg state with lower angular momentum than that
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Figure 4.7: Collection of MW spectra of the |n = 51,ml1〉 → |n = 49,ml1 −2〉 atomic transitions for
ml1 = {49,48,37,17,10,9}. For a-d) The frequency sweep is ±0.50 MHz with the center peak as a
center. The span is increased for e) to ±1.60 MHz and for f) to ±1.90 MHz. Panels a),b),e),f) refer
to a MW duration of 15 µs, whereas c) and d) to a MW duration of 10 µs. Black data refer to an
unexcited core, red data to an excited core. Solid lines are Gaussian fits.
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Figure 4.8: Differential electric-quadrupole effect measured on the atomic transition frequency
between the |n = 51,ml1〉 Rydberg state and the |n = 49,ml1 −2〉 Rydberg state, when the core is
excited to either |4d3/2|m j2 | = 1/2〉 (blue circles) or |4d3/2|m j2 | = 3/2〉 (green squares). Black and
red points are the predictions made by the theoretical model for all values of ml1 . Black and red
lines are guides for the eye.

of the circular state of the same manifold gets indeed coupled to multiple Rydberg states [88].

Alternatively, the discrepancy between data and simulations can be tracked to the effect of the

second-order dipole, which becomes larger when ml1 decreases.

The strategy to improve the match between data and simulations would therefore require us to

include the m =±2,±1 component of the electric-quadrupole Hamiltonian in the model.

4.3.5 Evidence of the electric-quadrupole coupling on the |4d5/2〉 states

In chapter 3, we verified the absence of autoionization for |4d5/2,51c〉. This makes it possible to

test the effect of the electric-quadrupole coupling between the two valence electrons also when

the core is excited to a |4d5/2〉 state.

We repeat the sequence applied to detect the shift of the |51c〉 → |49c〉 transition with a MW

spectrum when the core is excited. This time, after the circularization, we apply a continuous 408

nm laser instead of the 422 nm pulse. Thus, we optically pump the atoms in |4d5/2,51c〉 via the

spontaneous decay |5p3/2,51c〉 → |4d5/2,51c〉.

Figure 4.9a presents the navigation in the Hilbert space of the Rydberg electron, together
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with the manipulations of the core. Figure 4.9b presents the results. We detect three transfer

peaks when the 408 nm laser beam interacts with the atoms and one transfer peak only when

the laser beam is not applied. In the first case, we interpret the three peaks as the transfer

lines of the transitions |4d5/2|m j2 | = 1/2,51c〉 → |4d5/2|m j2 | = 1/2,49c〉, |4d5/2|m j2 | = 3/2,51c〉 →
|4d5/2|m j2 | = 3/2,49c〉, |4d5/2|m j2 | = 5/2,51c〉 → |4d5/2|m j2 | = 5/2,49c〉. In the second case instead,

we see the only transfer peak corresponding to |5s1/2,51c〉 → |5s1/2,49c〉.

We recall that the optical pumping from |5s1/2〉 via |5p3/2〉 populates both the |4d5/2〉 and

|4d3/2〉 states. In this context, the Rydberg electron couples with the core in |4d3/2〉 and with the

core in |4d5/2〉. We want to verify that we have truly observed a circular-to-circular frequency

shift due to the core in |4d5/2〉 and not again the shift due to the core in |4d3/2〉. The problem is

that the frequency shifts of the |51c〉 → |49c〉 transition due to the core in |4d5/2〉 or |4d3/2〉 are

comparable. Also, the |4d3/2,51c〉 and |4d5/2,51c〉 states are indistinguishable at the detection

stage. Fortunately, the distinction can be done via the repumper at 1092 nm. This is expected to

deplete the |4d3/2,51c〉 states only.

Figure 4.10 presents two MW spectra. One is performed after the core excitation with only

the 408 nm laser, the other is done when the 408 nm laser acts with a synchronous 1092 nm laser

pulse. We observe a depletion of the |4d3/2〉 states when the repumper is applied. Its limited effect

is due to the fact that the majority of the atoms are in the |4d5/2〉 states. However, the results

following the application of the repumper confirm that the circular-to-circular shift was mainly

due to the core in the |4d5/2〉 states. We can therefore deduce that the resonance between |51c〉
and |49c〉 shifts within a 140 kHz range due to the coupling with the core in the |4d5/2〉 states

(see Table 4.1).

Table 4.1: Frequency shift of the |51c〉 → |49c〉 transition due to the electric-quadrupole coupling
between the Rydberg electron and the core in |4d5/2〉.

Relative position of the peak MW frequency (MHz) Resonance frequency shift (kHz)

Left 105357.38727±0.0016 −129.84
Central 105357.55275±0.00295 35.64
Right 105357.6516±0.00366 134.49

Figure 4.11 shows a comparison between the expected shift of the circular-to-circular atomic

transition frequency and our data. Reference [87] claims that the frequency shift, due to the

electric-quadrupole coupling to the |4d5/2〉 states, evolves as

(4.26) ∆ν= 1
2ℏ
Θ(4d5/2)

∂F
∂z

35−12m2
j2

40
,
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Figure 4.9: a) Navigation in the Hilbert space following our manipulations with rf, laser and MW
pulses. b) MW spectra of the |51c〉 → |49c〉 transition with (red data) and without (black data)
the excitation of the core to the |4d5/2〉 states.
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Figure 4.10: MW spectra of the |51c〉 → |49c〉 transition after the optical pumping in the |4d5/2〉
and |4d3/2〉 states performed by the 408 nm laser. Red data show the results when the repumper
at 1092 nm is not applied on the atoms, blue data when it is applied. Solid line is a Gaussian fit,
dashed lines indicate the transfer peaks.

where Θ(4d5/2) is the electric-quadrupole moment for the |4d5/2〉 states [84], defined as

(4.27) Θ(4d5/2)= 2e
7

〈4d5/2| r2
2 |4d5/2〉 .

Our experimental results obtained on the differential electric-quadrupole effect for the |4d5/2〉
states are in excellent agreement with the m2

j2
dependency predicted by equation (4.26) (see

figure 4.11). The data on the differential electric-quadrupole shift are well simulated when using

2.973(+0.026)
(−0.033) atomic units as a value of the electric-quadrupole moment for the |4d5/2〉 states [87].

4.4 Principle of the experiment on the direct
electric-quadrupole effect

We switch to our experimental study of the direct electric-quadrupole effect. The purpose of the

experiment is to measure the splitting δ(12)
n,ml1

between the |4d3/2〉 states of the ionic core. In this

section, we discuss the case of the circular state |51c〉. The principle of the measurement consists

in observing the time evolution of two coherent superposition states of |4d3/2|m j2 | = 1/2,51c〉 and

|4d3/2|m j2 | = 3/2,51c〉. These superposition states are initially prepared as dark states of the

repumper laser. They are produced by applying a short repumper pulse to the atoms prepared
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Figure 4.11: Circular-to-circular resonance frequency as a function of the magnetic quantum
number m j2 squared. Black squares indicate the experimental data, red circles are the theoretical
expectation made by use of (4.26) with Θ(4d5/2)= 2.973(+0.026)

(−0.033) atomic units, the red line is a linear
fit.

in |4d3/2,51c〉 by the 422 nm laser. Under the effect of electric-quadrupole splitting, these dark

states evolve in time and acquire a bright component, which we probe with a second repumper

pulse.

We go through this physics in more detail. We start by circularizing the atoms and optically

pumping the ionic-core electron in the |4d3/2,51c〉 states via the 422 nm laser. Next, we apply a

repumper pulse. This laser has a horizontal polarization, perpendicular to the quantization axis.

This is imposed by the vertical electric field generated by the plane electrodes of the experimental

chamber. The dynamics of the system now concerns two separate three-level systems, one

composed by |4d3/2m j2 =−1/2,51c〉, |4d3/2m j2 =+3/2,51c〉 and |5p1/2m j2 =+1/2,51c〉, the other

by |4d3/2m j2 =−3/2,51c〉, |4d3/2m j2 =+1/2,51c〉 and |5p1/2m j2 =−1/2,51c〉, as shown in figure

4.12a. There, we neglect the electric-quadrupole coupling. The two three-level systems belong to

two independent sub-spaces. It follows that we can discuss the physics of one of the two, the same

arguments holding for the other. We choose to discuss that composed by |4d3/2m j2 =−1/2,51c〉,
|4d3/2m j2 =+3/2,51c〉 and |5p1/2m j2 =+1/2,51c〉. Within this set of states, the repumper pulse
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Figure 4.12: Coupling of the repumper laser with the ionic-core states. a) Case of horizontal polar-
ization, distinguishing two three-level systems. b) Distinction of a dark and a bright component,
in the case of horizontal polarization of the repumper. c) Case of vertical polarization.
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defines a dark state Ψ(D) and a bright state Ψ(B) (figure 4.12b),

(4.28) Ψ(D) = 1p
N1

(
α |4d3/2m j2 =−1/2,51c〉+β |4d3/2m j2 =+3/2,51c〉

)
,

(4.29) Ψ(B) = 1p
N1

(
β∗ |4d3/2m j2 =−1/2,51c〉−α∗ |4d3/2m j2 =+3/2,51c〉

)
,

where N1 is a normalization constant and α,β weight the components. The repumper thus

optically pumps the atoms in the bright state Ψ(B) back to |5s1/2m j2 = 1/2,51c〉. On the contrary,

those in the dark state Ψ(D) are unaffected by the repumper. This implies that the only atoms left

in any |4d3/2,51c〉 state belong to the dark component. Notably, the dark state is not an eigenstate

of the electric-quadrupole Hamiltonian. Therefore, taking into account the electric-quadrupole

effect, it evolves in time as

(4.30) Ψ(D)(t)= 1p
N1

(
α |4d3/2m j2 =−1/2,51c〉+βe−i(2π·δ(12)

n,ml1
)t |4d3/2m j2 =+3/2,51c〉

)
,

where (2π ·δ(12)
n,ml1

)t is a phase factor evolving in time at frequency δ(12)
n,ml1

. The effect of the phase

factor is that the dark state periodically, at frequency δ(12)
n,ml1

, acquires a bright component. Next,

we apply a second repumper pulse. Again, this pulse transfers the atoms belonging to the

bright component in |5s1/2m j2 = 1/2,51c〉. Its population is then measured via the MW probe

MS to |5s1/2m j2 = 1/2,49c〉, as defined in section 4.3.2. When recording the atomic counts in

|5s1/2m j2 = 1/2,49c〉, as a function of the delay between the two repumper pulses, one expects

to detect the oscillations of the superposition state, periodically passing from a dark to a bright

state, and to directly deduce the electric-quadrupole splitting δ(12)
n,ml1

from their frequency. Note

that, to succeed in obtaining δ(12)
n,ml1

, the duration of the repumper pulses must be short enough so

that the electric-quadrupole coupling is negligible during these pulses. The same arguments and

the same conclusions hold for the other three-level subspace.

It is important to note that the dynamics of this process strongly depends on the repumper

polarization. If we work with a vertical polarization (figure 4.12c), instead of a horizontal one, the

first repumper pulse depletes the |4d3/2|m j2 | = 1/2,51c〉 states only. In this context, the dark states

are indeed the two |4d3/2|m j2 | = 3/2,51c〉 sub-levels. However, these dark states are eigenstates of

the electric-quadrupole Hamiltonian. It follows that they do not evolve in time. When applying a

second repumper pulse, we do not expect to see any modulation of the number of atoms repumped

in |5s1/2|m j2 | = 1/2,51c〉.
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Figure 4.13: Sequence of laser, MW, rf and static electric fields used to detect the oscillations of
the repumping efficiency when the Rydberg electron is in |51c〉.
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4.5 Experimental measurement of the direct electric-quadrupole
effect

4.5.1 Overview

We are now ready to measure the direct electric-quadrupole effect. The data on the circular state

|51c〉 are first presented (paragraph 4.5.2.1). Next, we are going to perform the experiment for

different circular states (49≤ n ≤ 52) and retrieve the dependency of δ(12)
n,ml1

as a function of the

principal quantum number of these circular states (paragraph 4.5.2.2). Finally, we perform a

similar experiment for several Rydberg states with different ml1 along the ladder of the n = 51

manifold (paragraph 4.5.3). The latter study allows us to get the dependency of the direct electric-

quadrupole effect with respect to the magnetic quantum numbers of the Rydberg states. At the

end of the section, we compare the experimental results with the theoretical predictions of our

model.

4.5.2 Measurements on the circular states

We gather here the details on the experimental sequence and on the results concerning the direct

electric-quadrupole effect, for the case of the circular states.

4.5.2.1 Measurements on |51c〉

Figure 4.13 presents the experimental sequence of events whereas figure 4.14a shows the cor-

responding navigation in the Hilbert space. We circularize, optically pump the atoms in the

|4d3/2〉 states via a short 422 nm laser pulse (see appendix E on this matter) and next use the

repumper pulses. They are both produced by the same AOM placed along one of the two optical

branches of the repumper going to the experiment. The other optical branch is switched off so as

to be able to prepare dark states for the repumper in the experiment. We design the sequence so

that one of these pulses ends at time t(end)
1 and the other starts at time t(start)

2 . The difference

between t(end)
1 and t(start)

2 is named tRR . The pulses are both 0.2 µs long, so as to be well below 1

µs, which represents the expected order of magnitude of the timescale for the electric-quadrupole

coupling. They also share the same polarization and are at maximum power. The sequence is

concluded by the long MW probe MS, transferring the atoms repumped in |5s1/2|m j2 | = 1/2,51c〉
to |5s1/2|m j2 | = 1/2,49c〉.

Figure 4.14b is a plot of the results. Green data refer to a realization of the experiment

where the second repumper pulse is omitted and the polarization of the first one is vertical. The

transfer |5s1/2|m j2 | = 1/2,51c〉 → |5s1/2|m j2 | = 1/2,49c〉, proportional to the repumping transfer,

is recorded as a function of tRR . It is constant and then drops when the atoms exit the region of

space where they interact with the laser. Note that the repumping efficiency is slightly larger
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than the expected 50%, probably due to some residual contribution of the electric-quadrupole

evolution during the repumper pulse. Blue data are recorded by applying the same sequence of

events, but for a horizontal polarization of the repumper. We see no difference between green

and blue data because in both cases we do not have a second repumper pulse applied on the

atoms. Red data describe the results of the experiment realized when using two repumper pulses

with a vertical polarization. As expected, we see no oscillations of the population transferred

back to |5s1/2|m j2 | = 1/2,51c〉 as a function of the delay between the two repumper pulses. Unlike

the former cases though, we always have two pulses acting on the atoms. It follows that the

transfer does not drop within the time window where we record the atomic counts. Finally, black

data show the results for a pair of horizontal-polarized pulses. Within the time interval of the

scan, we observe oscillations of the atoms repumped in |5s1/2|m j2 | = 1/2,51c〉. The frequency of

these oscillations is δ(12)
n,ml1

= (753.68±9.55) kHz, very close to the 760 kHz value predicted by the

theoretical model.

4.5.2.2 Measurements on |49c〉, |50c〉 and |52c〉

We repeat the same experiment for different circular Rydberg states. The sequence of events is

identical to that used for |51c〉 but for two events. The first difference is an additional MW pulse

taking place after the circularization and before the core excitation. This MW pulse transfers

the population from |51c〉 to another circular state. The MW power is calibrated to maximize the

transfer between the two circular states, the MW duration is kept very short, 0.5µs, to save time

for the core manipulation. The second difference is the MS probe of the circular state, which is

not anymore set on the |51c〉 → |49c〉 transition, but depends on the circular of interest.

For instance, to test the repumping oscillations while the Rydberg electron is in |52c〉 (|49c〉
or |50c〉), we circularize in the n = 51 manifold, transfer the population with a MW pulse from

|51c〉 to |52c〉 (|49c〉 or |50c〉 respectively), apply the 422 nm and 1092 nm pulses and finally

use a two-photon MW probe to measure the population repumped in |5s1/2,52c〉 (|5s1/2,49c〉 or

|5s1/2,50c〉 respectively). The MW probe transfers the population, in this case, to |50c〉 (|51c〉
or |52c〉 respectively). Note that, when performing the experiment on |49c〉, we measure the

population of |49c〉 by using a probe transferring the atoms back in |51c〉. The problem is that

|51c〉 is not an empty target state, since the circularization is always done in the n = 51 manifold

and the first MW pulse, transferring the population from |51c〉 to |49c〉, has not a 100% efficiency.

We risk to mix the population of |51c〉 with that not transferred by the first MW pulse. To solve

this issue, we use a rf pulse decircularizing the population in |51c〉 before using the latter state

as the target for the probe of |49c〉.

Figures 4.15a-c) gather the results for |49c〉, |50c〉, |52c〉. We record the data for the only

case of horizontal polarization of the repumper, when two repumper pulses are applied on the
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Figure 4.14: a) Navigation in the Hilbert space following our manipulations with rf, laser and MW
pulses, aimed to detect the oscillations of the repumping efficiency. b) Variation of the repumping
efficiency as a function of temporal distance between the two 1092 nm pulses. The measurements
are performed for an horizontal (black), vertical (red) polarization of the two repumper pulses
or in presence of only one repumper pulse. In the latter case, blue data refer to an horizontal
polarization, green data to a vertical polarization. The solid line is a sinusoidal fit.
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Figure 4.15: a-c) Oscillations of the repumping efficiency for different circular Rydberg states
(|49c〉 top left, |50c〉 top right, |52c〉 bottom left). All measurements are performed for an horizontal
polarization of the repumper. Black data refer to the experiments involving two repumper pulses.
Solid lines are sinusoidal fits. d) Frequency of the oscillations of the repumping efficiency as a
function of n. Solid line is a fit following a n−6 power law.
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atoms. The efficiency of the repumping process oscillates as a function of the delay between the

repumper pulses. The frequency of the oscillations is (964.17±6.77) kHz for |49c〉, (851.98±5.68)

kHz for |50c〉 and (672.39±4.22) kHz for |52c〉. Figure 4.15d) is a plot of the frequency of the

repumping oscillations, therefore of δ(12)
n,ml1

, as a function of the principal quantum number of the

circular states. This graph shows that the splitting δ(12)
n,ml1

decreases with the principal quantum

number of the circular following a power law n−6, as the theoretical model predicts.

4.5.3 Measurements on elliptical Rydberg states

We measured the differential electric-quadrupole effect for several Rydberg states along the

ladder of the n = 51 manifold and saw that the order of magnitude of the Rydberg-to-Rydberg

frequency shift was comparable to the circular case, as theory predicted. We are going to verify

that the same agreement holds when measuring the direct electric-quadrupole effect for the

|4d3/2,n = 51,ml1 > 7〉 Rydberg states.

The sequence applied in the experiment is presented in figure 4.16. We apply a rf pulse with

duration τ, so as to excite a spin-coherent-state along the ladder. Next, we optically pump the

core in the |4d3/2〉 states. Note that this optical pumping works for the atoms prepared in all

the Rydberg states composing the spin-coherent-state at the same time. Some atoms autoion-

ize since we deal with Rydberg states with intermediate ml1 . Afterwards, we apply two short,

horizontal polarized repumper pulses and vary their temporal distance. They repump the core

electron to the |5s1/2〉 state. Again, this optical pumping works for all the Rydberg states of the

spin-coherent-state. At this point, it would be sufficient to apply the probe to the n = 49 manifold

to observe the repumping oscillations.

Such a measurement would unfortunately suffer of a low counting rate, as we would detect

only one component of the spin-coherent-state. A better strategy is to set a second rf pulse after

the repumper pulses. The purpose of this second rf is to conclude the circularization starting

from the spin-coherent-state produced along the Rydberg ladder. We refer to this process as

"re-circularization". Its duration, in nanoseconds, reads τrec = 189−τ, where 189 ns is the optimal

duration of the full circularization. As a final step, after having reached the circular state with

the second rf pulse, we use the MW probe driving the transition |5s1/2,51c〉 → |5s1/2,49c〉 to

measure the amount of population "recircularized", which is proportional to the number of atoms

repumped in the |5s1/2〉 state of the core.

Figure 4.17a shows the navigation in the Hilbert space of the Rydberg electron and the

manipulations of the core when testing δ(12)
n,ml1

for a given spin-coherent-state. Figure 4.17b shows

the repumping oscillations for several values of τ. For each curve, we fit the oscillations via

a sinusoidal function and extract their frequency. Figure 4.17c reports the frequency of the
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Figure 4.16: Sequence of laser, MW, rf and static electric fields used to detect the oscillations of
the repumping efficiency when the Rydberg electron is prepared in different spin-coherent-states
along the Rydberg ladder.
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Figure 4.17: a) Navigation in the Hilbert space. b) Oscillations of the repumping efficiency for
several spin-coherent-states. Black data for: τ= 189 ns, red: τ= 169 ns, blue: τ= 159 ns, green:
τ= 129 ns, violet: τ= 89 ns, yellow: τ= 79 ns, light blue: τ= 75 ns, brown: τ= 70 ns, dark yellow
data: τ= 50 ns. Solid lines are sinusoidal fits. c) Frequency of the oscillations as a function of
〈ml1〉. Orange points are the theoretical values calculated via the model, orange line is a guide
for the eye.

121



CHAPTER 4. THE COUPLING OF THE IONIC-CORE ELECTRON WITH THE CIRCULAR
RYDBERG ELECTRON

repumping oscillations, as a function of 〈ml1〉, obtained from the fit. Here, the quantity 〈ml1〉 is

an average value of the magnetic quantum numbers associated to the Rydberg components of the

spin-coherent-state prepared by the rf pulse. The conversion τ → 〈ml1〉 is done via the formula

(4.31) 〈ml1〉 = 25
(
1+cos

(
π

189−τ
220

))
,

which derives from the experimental calibration of the recircularization (see appendix F for

details). In the same plot, we report the values predicted by our model. The agreement between

data and theory is good.

First, the contrast of the repumping oscillations is worse when investigating the electric-

quadrupole coupling for Rydberg states with intermediate or low 〈ml1〉 with respect to the circular

case. The drop of contrast motivates the larger error bar for δ(12)
n,ml1

at low magnetic quantum

numbers and makes it hard to detect any repumping oscillation below τ= 70 ns.

Second, it is clear that the frequency of the oscillations depends on 〈ml1〉. We deduce that δ(12)
n,ml1

as well varies with the magnetic quantum number. However, associating an individual value of

δ(12)
n,ml1

to each Rydberg component of the spin-coherent-state is hard, since the core manipulations

concern all the Rydberg states prepared by the rf pulse at the same time and not a single Rydberg

state. This is the major difference with respect to the case of the circular state presented in

subsection 4.5.2 and also the reason why we are forced to express the dependency of the splitting

in terms of an average value of the magnetic quantum number.

4.6 Further development: coherent core state manipulation

The experiments presented so far lead us to some Ramsey experiments where we control the state

of the Rydberg electron with a laser pulse. Here, we present this last experiment very briefly. A

more detailed description on its realization will be given in the Ph.D. thesis of my colleague Léa

Lachaud.

A first development of the electric-quadrupole experiment is a Raman transfer from one |4d3/2〉
state to another. After the circularization, a 422 nm pulse and a vertical-polarized repumper

pulse are applied to optically pump the atoms in the |4d3/2|m j2 | = 3/2〉 states. Next, two other

1092 nm pulses are used. They are detuned between each other, one π polarized and the other σ

polarized, and transfer by a Raman process the atoms from |4d3/2|m j2 | = 3/2〉 to |4d3/2|m j2 | = 1/2〉.
Note that the Raman experiment allows us to measure δ(12)

n,ml1
in a simpler way than the mea-

surement of the precession of the relative phase factor between the |4d3/2〉 states. The splitting

δ(12)
n,ml1

is measured as a function of the detuning between the last two 1092 nm pulses (figure 4.18).

Next, we map the state of the Rydberg electron onto that of the core. In this experiment,

the Raman pulse behaves as an optical switch controlling the final state of the Rydberg atom.
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Figure 4.18: Measurement of the Raman transfer between the |4d3/2|m j2 | = 3/2〉 and
|4d3/2|m j2 | = 1/2〉 states as a function of the detuning δ between the repumper pulses. The
experiment is realized while the Rydberg electron is in |51c〉 (black squares) or |49c〉 (red circles).

The sequence of events can be summed up as follows. First, the superposition of |51c〉 and |49c〉
is prepared. Next, the phase of the circular state coherent superposition is flipped in the time

interval between the MW pulses of the Ramsey experiment, by applying a long 2π Raman pulse

tuned on the |4d3/2|m j2 | = 3/2,49c〉 → |4d3/2|m j2 | = 1/2,49c〉 transition. Ideally, this pulse should

imprint a phase shift of π on the |4d3/2,49c〉 component of the superposition without affecting

the |4d3/2,51c〉 component. Finally, a second π/2 MW pulse closes the Ramsey interferometer.

Its phase is chosen so that the atom exits the interferometer in |51c〉 in absence of the Raman

pulse and in |49c〉 if the pulse is applied. This allows us to control the final state of the Rydberg

electron with the 1092 nm laser.

4.7 Discussion

In this chapter, we present our study on the electric interaction between the two valence electrons

of Strontium. The chapter is divided in two parts, a theoretical section, outlining the mathematics

needed to understand the experiment, and an experimental section. In the theory section, we

first introduce the electron-electron potential governing the electric interaction between the two

valence electrons of Strontium. The dominant term is the electric-quadrupole component of the

multipole expansion of that potential. This term causes the lift of the degeneracy between the
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|4d3/2〉 states of the core, which are now split in two sets, one with |m j2 | = 3/2 and the other with

|m j2 | = 1/2. We present a theoretical calculation of the energy difference δ(12)
n,ml1

between the two

sets of states. As a result, we see that δ(12)
n,ml1

is 760 kHz when the Rydberg electron is in the

circular state with n = 51. Moreover, the splitting δ(12)
n,ml1

exhibits a n−6 dependency.

Next, we discuss the experimental results. They are divided in two macro-sections, one dis-

cussing the shift of the circular-to-circular transition frequency after the core excitation (the

"differential electric-quadrupole effect"), the other investigating the energy difference between the

ionic-core states with |m j2 | = 3/2 and the states with |m j2 | = 1/2 (the "direct electric-quadrupole

effect").

First, we discuss the differential electric-quadrupole effect. We start with the circular states.

We record the MW spectra between two circular states and see that the resonance frequency

shifts if the core is excited. The measured shift agrees very well with the theoretical prediction

of our model. Next, we repeat the experiment after preparing a few spin-coherent-states along

the lowest-right Rydberg ladder of the n = 51 manifold instead of preparing the circular state.

This experiment shows that the Rydberg-to-Rydberg frequency shift varies as a function of the

magnetic quantum numbers of the spin-coherent-state components. Again, the data follow the

theoretical prediction very well. Yet, the mismatch between experiment and theory increase

for very low values of the magnetic quantum number. After completing the discussion on the

data concerning the |4d3/2〉 states, we focus on those about the |4d5/2〉 states of the ionic core.

We present an evidence of the electric-quadrupole coupling between the circular and the core in

|4d5/2〉. The results are consistent with the theoretical prediction of [87].

Second, we switch to the experimental measurement of the direct electric-quadrupole effect,

i.e. the splitting δ(12)
n,ml1

between |4d3/2|m j2 | = 3/2,51c〉 and |4d3/2|m j2 | = 1/2,51c〉. To start, we opti-

cally pump the atoms in a statistical mixture of |4d3/2|m j2 | = 3/2,51c〉 and |4d3/2|m j2 | = 1/2,51c〉.
Afterwards, we measure the amount of repumped atoms in |5s1/2,51c〉 following the application

of two, short repumper pulses. The measurement is performed via the core-sensitive MW probe

for |5s1/2,51c〉. In conclusion, the amount of repumped atoms is shown to oscillate as a function

of the temporal distance between the two repumper pulses. The frequency of the oscillations

is proven to be the splitting δ(12)
n,ml1

between the core states. We also perform the experiment

after preparing other circular Rydberg states, thus proving that δ(12)
n,ml1

depends on the principal

quantum number of the circular state and follows a n−6 power law, as theory predicts. Finally, we

realize the experiment for several spin-coherent-states along the lowest-right Rydberg ladder. We

see that the direct electric-quadrupole effect as well depends on the magnetic quantum number

of the Rydberg electron. Our theoretical model succeeds in predicting the evolution of the direct

electric-quadrupole effect as a function of ml1 .

124



4.7. DISCUSSION

Relative MW frequency (MHz)

Figure 4.19: Ramsey fringes on the |51c〉 → |49c〉 transition. Black data are taken in absence
of the repumper pulses. Red data are taken in presence of repumper pulses. Solid lines are
sinusoidal fits.

As a conclusion, we provide the reader with a brief outlook of the developments of the electric-

quadrupole experiment. We briefly discuss a Raman experiment, allowing us to measure the

splitting δ(12)
n,ml1

between the |4d3/2〉 for the circular state case, and a Ramsey experiment where

we control the state of the Rydberg electron with a laser pulse.

The electric-quadrupole effect paves the way to fascinating perspectives. For circular atoms

individually trapped in optical tweezers, the electric-quadrupole effect makes it possible to

individually address a circular atom in an array with tightly focused laser beams, an essential

tool for quantum simulation and quantum information, lacking with the usual MW addressing

of circular states. One can use the fluorescence emitted after the spontaneous decay |5p1/2,51c〉
→ |5s1/2,51c〉 to optically detect the circular states with remarkable spatial sensitivity and in a

selective way, therefore importing some techniques from the experimental research of ions. Our

experiment thus shows that alkaline-earth circular Rydberg states have the potential to combine

the best features of the ion traps and Rydberg atoms worlds. In the next section, we are going to

present these perspectives in more detail, together with other experiments, currently underway,

representing the "next generation" of manipulations on circular states of Strontium.

125





C
H

A
P

T
E

R

5
CONCLUSION

And that’s when I realize that, at
the end, we’d all wish for the same
thing. Just a little more time.

Marie Lu, Wildcard

This work has presented a series of experimental investigations concerning the physics

of alkaline-earth circular Rydberg states. In this last chapter, we are going to summarize

what this manuscript has added to the state-of-the-art of the atomic physics world.

The results presented to this point are to be seen as steps towards the realization of a

programmable Rydberg quantum simulator exploiting alkaline-earth circular states as platforms

for the qubits. However, while aiming for such an ambitious goal, the experiment also offers some

short-term, interesting perspectives. We shortly present them in the last part of this chapter.

5.1 Summary of the results

Chapter 2 discusses the experimental circularization of Strontium. This is realized on an atomic

beam leaving from a high-temperature oven, crossing a cryogenic environment at 4 K and reach-

ing a detector ionizing the atoms. First, we present the Rydberg excitation to |521F3,ml1 = 2〉 via

three optical photons. Unfortunately, the |F〉 states are known to join the respective manifold

at very high electric field. Therefore, we apply a MW pulse to transfer the atoms to a |G〉 state

joining the manifold at lower electric field (112.2 V/m). We opt for |511G4,ml1 =+2〉. Next, we

discuss the calibration of a square rf pulse able to transfer the population from |511G4,ml1 =+2〉
to the circular state. This rf pulse is at 110 MHz, 189 ns long and σ+ polarized. All in all, our
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circularization reaches 85% of efficiency.

Chapter 3 shows that the circular Rydberg states are impervious to the autoionization effect.

To prove this, we first present an optical pumping process allowing us to prepare the metastable

|4d3/2〉 states of the core electron. It involves the excitation of the core electron from |5s1/2〉 to

|5p1/2〉 via a 422 nm laser pulse and the fast, spontaneous decay from |5p1/2〉 to the |4d3/2〉 states.

The |4d3/2〉 states are considered as degenerate at this stage of the work, since we assume all

the energy levels of the core electron as equivalent to those of the Sr+ ion. We then measure the

amount of circular atoms when the core is in the ground state |5s1/2〉 or excited to any of the

|4d3/2〉 states. The number of circular states is showed not to vary as a function of the state of

the core, implying that the optical pumping from |5s1/2〉 to |4d3/2〉 preserves the population of the

circular Rydberg electron. On the contrary, when performing the experiment with the Rydberg

electron in a low-l1 state, the autoionization effect makes the amount of Rydberg atoms drop.

We verify in this way the dependency of the autoionization effect with respect to the angular

momentum of the Rydberg electron. The same conclusions hold in an analogous experiment

investigating the autoionization of the Rydberg atoms with the core in a |4d5/2〉 state.

Chapter 4 presents some optical manipulations on the Rydberg atoms via the coupling with

the second valence electron. We lift the approximation on the equivalence between states of the

core and states of the Sr+ ion and study the effect of the electron-electron interaction on the

energy levels of the core. We see that the electric-quadrupole term of the multipole expansion of

the electron-electron potential leads to a degeneracy lifting among the |4d3/2〉 states. They are

split in two sets, one with |m j2 | = 1/2 and the other with |m j2 | = 3/2, separated by an amount

δ(12)
n,ml1

. This quantity is 760 kHz for |51c〉. We then measure δ(12)
n,ml1

in the experiment. This is first

done via MW spectroscopy between the Rydberg states. More specifically, this experiment allows

us to measure the difference between the value of δ(12)
n,ml1

for a given Rydberg state of the n = 51

manifold and the value of δ(12)
n,ml1

associated to another Rydberg state of the n = 49 manifold. Next,

δ(12)
n,ml1

is measured by analysing the efficiency of the repumping process from the |4d3/2〉 states to

|5s1/2〉 as a function of time. The experiment confirms the predictions made by theory on the value

of δ(12)
n,ml1

and its dependency with respect to the principal quantum number of the circular states.

Indeed, we verify that δ(12)
n,ml1

rigorously follows a n−6 power law as indicated by theory. Finally,

we prove that δ(12)
n,ml1

is also dependent on the magnetic quantum number of the Rydberg states.

This is done by measuring δ(12)
n,ml1

after performing the experiment on several spin-coherent-states

prepared along the circularization ladder. The results show δ(12)
n,ml1

to increase as a function of the

rf duration preparing the spin-coherent-state, therefore as a function of ml1 . Our model presents

solid predictions of this dependency as well.
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5.2 Perspectives

There has been a long tradition of experiments concerning circular states of alkali atoms. While

they led to fascinating results, they also suffered from strong limitations. One of them is the

destructive detection of the Rydberg states, another is the impossibility to mitigate the heating

mechanisms arising in the spin chain studied via the simulator. Short-term experiments on

alkaline-earth circular states can help to tackle these constraints and establish new protocols

to work with the Rydberg atoms. In this conclusion, we shortly discuss two of these protocols,

concerning the cooling and the imaging of the circular states. Both are strongly inspired by the

experimental research of ions.

As for cooling, when working with an atomic beam, one can achieve the first laser cooling

of a circular Rydberg state. After the circularization, the in-axis scattering of the 422 nm laser

and the atomic beam can slow the atoms. They would receive a "kick" from the blue photon in

the direction opposite to that of the atomic beam. This event would result in a one-dimensional

slowing of the velocity class and therefore of the circular Rydberg state. This experiment is in

progress in our research group.

Within the cold atoms context, one can use the fluorescence of the core to optically detect the

circular state. After the circularization and the trapping of the Rydberg atoms, one can excite the

core with the 422 nm laser and produce fluorescence via the |5p1/2〉 → |5s1/2〉 spontaneous decay.

The process leading to the emission of fluorescence would be non-destructive for the Rydberg

electron, since the circular atoms do not present autoionization effect. Then, the blue photons

emitted by the core would be captured by a sensitive camera, enabling us to image the circular

state.

Both the cooling and the optical detection of the circular state will then come together in the

realization of a Rydberg quantum simulator. The use of Strontium, instead of Rubidium, would

make this machine more efficient. First, it would enable us to optically detect non-destructively

the circular states located in the optical lattice of the simulator and perform spatially selective

measurements with great sensitivity. Second, the laser cooling of the core would help us to

counterbalance the heating in the system during the long simulation times accessible with the

remarkable properties of circular states.
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THE HYPERFINE STRUCTURE OF THE STRONTIUM ATOM

The spin-orbit coupling is not the last degree of complexity for the Hamiltonian of an atom.

One can consider a further mechanism of coupling, this time between the total angular

momentum of the electrons and the nuclear spin. It is the hyperfine interaction [89, 90].

We are going through this physics shortly in this appendix.

A.1 The Hamiltonian

We model the hyperfine interaction via a new component of the atomic Hamiltonian. It reads

(A.1) Ĥhf = Ahf Î · Ĵ,

where Ahf is the hyperfine structure constant and Î is the nuclear spin operator. It is associated

to the nuclear spin quantum number I. This number depends on the amounts Z and A of protons

and neutrons of the atom, where each nucleon contributes with +1/2. As a general rule, if A and

Z are even, I = 0. If A is even but Z is odd, I is half-integer. If both A and Z are odd, I is integer.

The inclusion of Ĥhf in the total Hamiltonian makes J unsuitable as a quantum number. It

is replaced by the quantum number F, obeying the selection rule

(A.2) |J− I| ≤ F ≤ J+ I.

As a consequence, the degeneracy of the levels with equal J is lifted. Notably, the new set of

energy levels now depends on the isotopic species of the atom, since every isotope has its own

value of the nuclear spin (figure A.1).
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Figure A.1: Energy levels of 87Sr and 88Sr.

A.2 Experimental results

Natural strontium presents a broad diversity of isotope species. We count four in total, 84Sr, 86Sr,
87Sr, 88Sr, with natural abundances of 0.56%, 7.00%, 9.86%, 82.58% respectively. Our experiment

does not use isotopically pure Sr, but the excitation laser frequencies are set at resonance with

the transitions of 88Sr only [91].

The isotope shift of the |5s5p1P1〉 and |5s5d1D2〉 levels of 84Sr and 86Sr, with respect to
88Sr, is larger than 100 MHz. We verify this by sweeping the frequency of the 896 nm laser and

recording the number of Rydberg atoms produced. We repeat this experiment for different values

of the 767 nm laser frequency, driving the |5s5p1P1〉 → |5s5d1D2〉 transition, which is tuned by

varying the frequency of the EOM placed on the 767 nm laser line going to the ultra-stable cavity

(figure A.2a). We detect a peak in the atomic counts at around −90 MHz of detuning from the 896

nm laser frequency used for the Rydberg excitation of 88Sr. The atomic counts are maximized for

a frequency of the 767 nm laser shifted by −254 MHz with respect to the frequency used for the

Rydberg excitation. Ultimately, the distance between the spectral lines of 88Sr and 86Sr is large

enough so as to safely select 88Sr in our Rydberg excitation process.

As for 86Sr, the isotope 87Sr has a non-negligible natural abundance. The 461 nm and 767
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A.2. EXPERIMENTAL RESULTS

a) b)

Figure A.2: a) Laser spectra of the |5s5d1D2〉 → |521F3,ml1 =+2〉 transition of 86Sr for different
767 nm frequencies. The 767 nm frequency is shifted by −214 MHz (black data), −224 MHz
(red data), −234 MHz (green data), −244 MHz (blue data), −254 MHz (light blue data), −264
MHz (magenta data). b) Laser spectra of the |5s5d1D2〉 → |521F3,ml1 =+2〉 transition of 87Sr for
different 767 nm frequencies. The 767 nm frequency is shifted by −244 MHz (black data), −254
MHz (red data), −264 MHz (green data), −234 MHz (blue data), −224 MHz (light blue data),
−214 MHz (magenta data), −274 MHz (yellow data), −284 MHz (dark green data), −294 MHz
(dark blue data). The "zero" of the laser frequency is set at the 896 nm laser frequency exciting
the |521F3,ml1 =+2〉 state of 88Sr. Similarly, the zero for the EOM governing the 767 nm laser
frequency is set at that value used for the Rydberg excitation of 88Sr. Solid lines are Gaussian
fits.

nm laser frequencies are nearly resonant with the transitions |5s5s1S0〉 → |5s5p1P1,F = 7/2〉 →
|5s5d1D2,F = 7/2〉 of 87Sr. However, in 87Sr, the exchange energy in the |5snf 〉 level is smaller

than the core hyperfine interaction (the splitting between the |F = 4〉 and |F = 5〉 ground states of

the 87Sr+ ion is 5 GHz). We thus expect two lines for the |5s5d〉 to |5snf 〉 transition located at

approximately ±2.5 GHz from that of 88Sr. We verify this feature by scanning the 896 nm laser

and observing the line of the 87Sr isotope at +2.48 GHz (figure A.2b). As a result, this laser is not

resonant with the transition in 87Sr. Our conclusion is that only the isotope 88Sr with I = 0 is

concerned by the measurements.
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THE PREPARATION OF THE CIRCULAR RYDBERG STATE OF

STRONTIUM VIA AN ADIABATIC PASSAGE

The Rabi rf pulse is not the only technique allowing us to access the circular Rydberg state

of a given manifold. We briefly present here an alternative strategy, based on an adiabatic

passage accomplishing the same task and starting from the same starting level as the

Rabi rf pulse. However, the adiabatic passage is not in use to get the results mentioned in this

work, given the much shorter duration of the Rabi pulse. Unfortunately, the adiabatic passage

takes 11 µs, thus reducing the time available for the ionic-core manipulation.

The strategy to circularize via the adiabatic passage is detailed in [69] for the case of Ru-

bidium. The core of that technique is ramping the amplitude of the electric field applied to

the atoms across that value making the |511G4,ml1 =+2〉 → |51c〉 transition resonant with a

single-frequency, rf pulse. This pulse has a trapezoidal envelope and obviously share the same

starting time and duration as the electric field ramp.

Figure B.1 presents the sequence of our circularization to the |51c〉 state of Strontium via an

adiabatic passage. The beginning of the sequence emulates that of the Rabi passage. We first

laser excite |521F3,ml1 =+2〉 and transfer the population to |511G4,ml1 =+2〉. Next, we ramp

the vertical electric field while applying a long rf pulse. An adiabatic passage performed as for

Rubidium, with only one ramp of the vertical electric field, is not efficient. We opt for a triple

ramp (the first is 2 µs long, the intermediate one 5 µs and the last one 1 µs), which makes the

preparation of the circular state more adiabatic. The variation of the electric field is coupled with

a rf pulse long ∼ 8 µs, resonant at 110 MHz, switched on and off with two ramps of 1 µs each. As

a final step, we set the electric field back to that value used for the calibration of the probe for the
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VIA AN ADIABATIC PASSAGE

a)

b)
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Figure B.1: Sequence or laser, MW, rf and static electric fields used to prepare |51c〉 via an
adiabatic passage.
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 rf a

Figure B.2: Scan of the amplitude of the rf pulse transferring the atoms to |51c〉 with an adiabatic
evolution. We detect the populations of |51c〉 (black points) and |51,n1 = 0,ml1 = 49〉 (red points).

circular state. We apply the MW probe and measure the circular population transferred from

|511G4,ml1 =+2〉.

Figure B.2 presents the results of the circularization via the adiabatic passage. We measure

the populations of |51c〉 and |51,n1 = 0,ml1 = 49〉, by use of the respective probes, as a function of

the rf amplitude. This quantity is expressed in terms of the voltage delivered by the waveform

generator to the rf synthesizer. We normalize the atomic counts with respect to the population of

|511G4,ml1 =+2〉.
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LASER SPECTROSCOPY FOR THE IDENTIFICATION OF THE

RESONANCE FREQUENCIES OF THE CORE ELECTRON

The manipulations of the ionic-core electron require us to measure the atomic transition

frequencies between the |5s1/2〉, |5p1/2〉 states and between the |4d3/2〉, |5p1/2〉 states. We

perform laser spectroscopy in order to know the resonances of the transitions between all

these levels and lock accordingly the frequency of the 422 nm and 1092 nm laser beams.

C.1 The |5s1/2〉 → |5p1/2〉 resonance frequency of the core

We start by accessing the Rydberg state |511G4,ml1 =+2〉 and increase (decrease) the vertical

(horizontal) component of the electric field. The vertical component is set to an high value (> 200

V/m) to lift the degeneracy of the states composing the Rydberg ladder. Next, we apply the 422

nm laser beam and sweep its frequency via an EOM. We measure the number of Rydberg atoms

in |511G4,ml1 =+2〉 by direct ionization.

The interaction of the laser beam with the atoms, when it is resonant with the |5s1/2〉 →
|5p1/2〉 transition, causes autoionization. This event results in a reduction of the number of Ryd-

berg atoms recorded when the 422 nm laser in on resonance with the |5s1/2〉 → |5p1/2〉 transition.

The measurement shows the signal drop in correspondence with the resonance frequency of the

422 nm laser (∼ 710.9618 THz) (figure C.1). On the contrary, the interaction of the laser beam

with the atoms, when out of resonance, has no consequences on the atomic counts.
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APPENDIX C. LASER SPECTROSCOPY FOR THE IDENTIFICATION OF THE RESONANCE
FREQUENCIES OF THE CORE ELECTRON

a) b)

Figure C.1: a) Manipulation of the ionic-core electron. b) Scan of the 422 nm laser frequency on
the atoms prepared in the |511G4,ml1 =+2〉 state and drop of the atomic counts (black points)
due to autoionization. The solid line is a Gaussian fit.

C.2 The |4d3/2〉 → |5p1/2〉 resonance frequency of the core

The 422 nm laser beam brings the population to the |5p1/2,nl1〉 state. There, the atoms autoionize.

When considering a high l1 though, we expect some atoms to decay in the metastable |4d3/2,nl1〉
states. To remove the atoms from the metastable |4d3/2〉 trapping states, we can apply the 1092

nm repumper laser beam. To that end, we must know the resonance frequency of the |4d3/2,nl1〉
→ |5p1/2,nl1〉 transition to fix the frequency of the 1092 nm laser. Standard laser spectroscopy is

again applied to determine the resonance frequency of the transition.

We consider the situation where the core excitation to the |5p1/2〉 state is performed with the

outer electron in a low-ml1 Rydberg state. The application of the repumper brings the population

from |4d3/2,nl1〉 back to |5p1/2,nl1〉 only if the spontaneous decay to |4d3/2,nl1〉 took place. Since

we deal with low-l1 states, the autoionization is much faster than the decay, resulting in an

immediate autoionization of all atoms. This fact prevents the repumper from having any effect.

On the other hand, testing the autoionization effect on an high-ml1 state can be hard since there

is negliglible autoionization. Thus, it would be also hard to see an action of the repumper. Our

strategy is therefore to prepare the outer electron within an intermediate Rydberg state along

the ladder. This state is less likely to autoionize before the spontaneous decay between the |5p1/2〉
and the |4d3/2〉 states of the core occurs.

We apply a σ+, 52 ns long rf pulse producing a spin-coherent-state, centered on

|5s1/2,n = 51,n1 = 0,ml1 = 12〉. Next, we scan the frequency of a 0.7 µs, MW pulse across a span

including the frequencies of the two-photon transitions between the spin-coherent-state and the

Ĵ1 ladder of the n = 49 manifold (figure C.2a). The power of the MW source is calibrated so as

to maximize the transfer rate on these transitions. We set the MW frequency on the central

|5s1/2,n = 51,n1 = 0,ml1 = 12〉 → |5s1/2,n = 49,n1 = 0,ml1 = 10〉 transition. We have now a probe
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Figure C.2: Setting of the resonance frequency of the 1092 nm laser. a) MW spectrum of the
transition between a spin-coherent-state prepared along the circularization ladder and another in
the n = 49 manifold. b) Ionization signals of the atoms in the |5s1/2,n = 51,n1 = 0,ml1 = 12〉 state
(central, bell-shaped signal) and in the |5s1/2,n = 49,n1 = 0,ml1 = 10〉 state (right, bell-shaped
signal). Some atoms (left, bell-shaped signal) are not transferred by the rf pulse. c) Scan of
the 422 nm laser frequency on |5s1/2,n = 51,n1 = 0,ml1 = 12〉 (red points) and comparison of
the resonance frequency with that measured when working with |5s1/2,n = 51,n1 = 0,ml1 = 2〉
(black points). d) Scan of the 1092 nm laser frequency and detection of the atomic counts in
|5s1/2,n = 51,n1 = 0,ml1 = 12〉 (black points). All solid lines are Gaussian fits.
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FREQUENCIES OF THE CORE ELECTRON

for the |5s1/2,n = 51,n1 = 0,ml1 = 12〉 state (figure C.2b).

After accessing |5s1/2,n = 51,n1 = 0,ml1 = 12〉, we apply the 422 nm laser beam and scan its

frequency. We see the atoms autoionizing as already done for |511G4,ml1 = 2〉. We compare the

resonance frequency of the core |5s1/2〉 → |5p1/2〉 transition when the Rydberg electron is prepared

in two different ml1 states (figure C.2c). The experiment does not evidence a strong difference in

the resonance frequency when the Rydberg electron is in two different ml1 states. For a simplicity

of the laser frequency locking, we keep the same value of the resonance frequency used when

testing the autoionization for |511G4,ml1 = 2〉. Finally, we keep the 422 nm laser in resonance,

apply the repumper at maximum power, 19.2 mW, and scan its frequency while monitoring the

population of the |5s1/2,n = 51,n1 = 0,ml1 = 12〉 state by use of the probe. We observe an increase

of the number of atoms detected around 274.5894 THz. This is the laser frequency resonantly

driving the |4d3/2〉 → |5p1/2〉 core transition and preserving some atoms from the autoionization

(figure C.2d).
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CALIBRATION OF MW PROBES FOR THE DISCRIMINATION OF

SINGLET AND TRIPLET STATES

We need to determine the frequency of two MW probes enabling us to discriminate be-

tween the triplet and singlet states. Calibrating them by using two atomic transitions

between high-l1 states is not possible. Singlet and triplet states with high-l1 present

the same transition frequencies, since the exchange energy is zero. We must forcefully opt for

two atomic transitions between low-l1 states. On the other hand, populating a triplet state is

possible only by using the leak from the |5p1/2〉 state, which is accessed via a 422 nm pulse.

However, exciting the core when the outer electron is directly prepared in a low-l1 state causes

the autoionization of the atom. Therefore, the only option remaining is populating the triplet

states when the circular state is prepared, thus guaranteeing the survival of the Rydberg electron

to the autoionization effect, and only later diminishing its l1 by decircularization.

We prepare two sequences of events to be applied on the atoms. Both involve the circulariza-

tion and the decircularization. Only one of them (figure D.1) presents the excitation of the core be-

tween the rf pulses. We record the MW spectrum near the transition |5s1/2,n = 51,n1 = 0,ml1 = 2〉
→ |5s1/2,n = 49,n1 = 0,ml1 = 1〉. This scan is performed at 144.6 V/m, as for all the other probes.

Figure D.2a presents the navigation in the Hilbert space following the interaction of the atoms

with the sequence of events applied to calibrate the MW probes. Figure D.2b presents the number

of atoms detected in |5s1/2,n = 49,n1 = 0,ml1 = 1〉, as a function of the MW frequency. We observe

a single peak at νMW = 52.4678 GHz, when the 422 nm laser pulse is not applied. It corresponds

to the transition from the |5s1/2,n = 51,n1 = 0,ml1 = 2〉 to the |5s1/2,n = 49,n1 = 0,ml1 = 1〉 singlet

states. We observe an additional transfer peak at νMW = 52.4728 GHz, when the 422 nm laser
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Figure D.1: Sequence of laser, MW, rf and static electric fields used to calibrate the low-l1 probes.
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a) b)

c)

Figure D.2: a) Navigation in the Hilbert space. b) MW spectrum of the
|5s1/2,n = 51,n1 = 0,ml1 = 2〉 → |5s1/2,n = 49,n1 = 0,ml1 = 1〉 transition when the 422 nm
laser excites (red points) or not (black points) the core. Red data show two peaks and we interpret
the right one as that of the triplet state, the left one as that of the singlet state. Solid lines
are Gaussian fits of the data. c) Ionization signal before the circularization (black data), after
the circularization (red data, with some atoms ionizing at around 50 V/cm, not transferred
by the rf field, and some circularized), after the decircularization (blue data) and after the
decircularization followed by the MW probe for the singlet state (magenta data). Solid lines are
Gaussian fits.
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AND TRIPLET STATES

a) b)

Figure D.3: a) MW spectra of the |511G4,ml1 = 2〉 → |491G4,ml1 = 0〉 and |511G4,ml1 = 2〉 →
|491G4,ml1 = 1〉 transitions. Solid lines are Gaussian fits. b) Stark diagram for the |491G4〉
set of states (lines. Black: |491G4,ml1 = 0〉, red: |491G4,ml1 = 1〉, green: |491G4,ml1 = 2〉, blue:
|491G4,ml1 = 3〉) and experimental data (points). The zero is set at the energy of |511G4,ml1 =+2〉.

is applied on the atoms before the decircularization. We attribute it to the transition between

the |5s1/2,n = 51,n1 = 0,ml1 = 2〉 and |5s1/2,n = 49,n1 = 0,ml1 = 1〉 triplet states. The MW pulse

duration is set to 0.6 µs after a Rabi experiment (undisplayed here). It is too short to resolve the

atomic transition frequencies between the triplet states of the n = 51 manifold and those, chosen

as targets of the triplet probe, in the n = 49 manifold. Figure D.2c shows the decircularization

process and the transfer from the n = 51 to the n = 49 manifold, caused by the probe, on the

ionization signal. First, it proves that the decircularization brings back the atoms from the

circular state to a low-l1 Rydberg state (blue data). Second, it shows that the probe transfers

the decircularized population to another state, whose ionization field is far from that of the level

accessed after the decircularization (pink data).

The identification of the transfer peaks is done via the Stark diagrams. We record the fre-

quency of the singlet transition |5s1/2,n = 51,n1 = 0,ml1 = 2〉 → |5s1/2,n = 49,n1 = 0,ml1 = 1〉, to-

gether with the one of |5s1/2,n = 51,n1 = 0,ml1 = 2〉 → |5s1/2,n = 49,n1 = 0,ml1 = 0〉, (figure D.3a).

We do this for several electric fields. The dependencies of the two transition frequencies follow

those predicted by the Stark diagrams. Figure D.3b shows the simulations of the Stark effect for

the |49G〉 family of states and the experimental data.
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CALIBRATION OF THE DURATION OF A SHORT LASER PULSE

DEPLETING THE |5s1/2,51c〉 STATE

The 422 nm pulse used to study the autoionization effect and to calibrate the core selective

MW probes were 5 - 7 µs long respectively. The sequences presented in chapter 4 involve

the application of two repumper pulses and occasionally of a MW pulse at the electric

field amplitude where the 422 nm pulse is set. It is therefore important to reduce the duration of

the 422 nm pulse to save time for the repumper and the MW. On the other hand, we do not want

to lose the efficiency of the depletion of the |5s1/2,51c〉 state.

In order to have a good efficiency of depletion and a shorter pulse, we circularize, excite the

core with a 422 nm laser pulse at 9 mW and measure the amount of circular atoms with unexcited

core as a function of the duration of the 422 nm pulse.

Figure E.1 shows the result of this measurement. When the repumper is off, we see that the

amount of atoms in |5s1/2,51c〉 becomes low for a duration > 2 µs (and then saturates at 5%).

This is the duration that we choose for the 422 nm pulse to optically pump the atoms in the

|4d3/2〉 states. Note that, when the duration of the 422 nm pulse exceeds 2 µs, the transfer of

the atoms repumped in |5s1/2,51c〉 saturates. In the case of vertical polarization of the repumper,

this happens at a transfer of 0.4. It is close to 0.5, the expected value after that the optical

pumping distributes the population equally in |4d3/2|m j2 | = 1/2,51c〉 and |4d3/2|m j2 | = 3/2,51c〉
and the repumper acts on the only |4d3/2|m j2 | = 1/2,51c〉. The mismatch with such an ideal case

is due to the power of the repumper which was low due to experimental limitations. In the case of

horizontal polarization, we reach the saturation of transferred atoms at 0.65, away from the 1.00

ideal case due to the same problem of laser power at the moment of the experiment.
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Figure E.1: Scan of the duration of the 422 nm laser pulse, when the repumper is off (black
data) or on (red data are for an horizontal polarization of the repumper, green data for a vertical
polarization).
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IDENTIFICATION OF THE ELLIPTICAL RYDBERG STATE ACCESSED

VIA A RADIO-FREQUENCY PULSE OF DURATION τ

A σ+ polarized, resonant radio-frequency pulse prepares a spin-coherent-state along the

Rydberg ladder of a given manifold. Notably, the magnetic quantum numbers of the

elliptical Rydberg states composing the spin-coherent-state depend on the duration τ of

the radio-frequency pulse. We present here an experiment leading us to identify which is the

dominant elliptical component of the spin-coherent-state as a function of τ.

F.1 Principle of the experiment

When preparing the spin-coherent-state, the average magnetic quantum number 〈ml1〉 of the

Rydberg components reads

(F.1) 〈ml1〉 =
j1,max

2

(
1+cosΩt

)
,

where j1,max = 50 is the maximum j1 associated to the Rydberg ladder, as presented in chapter 1,

and Ω is the Rabi frequency. We need the experimental value of Ω to understand which elliptical

states compose the spin-coherent-state. A first indication on the value of Ω is given by the Rabi

passage presented in chapter 2. We extract Ω = 2π · (2.8832±0.0048) MHz from figure 2.21a.

Unfortunately, when inserting this value in (F.1), we cannot fit well the data of figure 4.17c.

We opt for another strategy to get the Rabi frequency. The main feature of this new method

consists of using two rf pulses, sharing the same power and frequency, instead of one. The first

pulse has duration τ, the other τrec = 189 ns −τ, where 189 ns is the optimal duration of the

Rabi pulse performing the circularization. We apply the first rf pulse on a low-ml1 state of the
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a)

τ

b)

Figure F.1: Phase-sweep experiment for the identification of the Rabi frequency. a) Phase sweep
of the second rf pulse and measurement of the circular state for τ= 25 ns and τrec = 164 ns. Black
squares are experimental data, the solid line is a Gaussian fit. b) Phase width w as a function of
τ (experimental points) and fit of the evolution (solid line).

circularization ladder. This implies to rotate the Rydberg state across the Bloch sphere via a

rotation operator R(θ,0). In this way, we prepare a spin-coherent-state. We let its phase evolve

for a certain amount of time and apply a second rf pulse, corresponding to a rotation operator

R(θ,φr f ), to conclude the circularization. Notably, the dispersion of the phase in the waiting time

between the two pulses depends on which spin-coherent-state is accessed via the first rf pulse only.

It is a function of sin(Ω(189−τ)). Our goal is recording that dispersion of phase by monitoring

the number of circular atoms prepared, as a function of φr f , at the end of the sequence. We do

this for several values of τ and extract the width w of the circular population distribution at

every repetition of the experiment. This reads

(F.2) w =
√√√√√(

2√
j1,max

2

· 180
πsin(Ω(189−τ))

)2

+ξ2 ,

where ξ takes into account the noise in our experiment. We are therefore going to measure w to

deduce the Rabi frequency.

F.2 Experimental result

The experiment is divided into three parts. We start by splitting the rf pulse performing the

circularization in two, σ+ polarized rf pulses with square envelopes. To produce them, we employ

two synthesizers, both connected to the same ring electrodes inside the cryostat. One pulse is

prepared by the synthesizer H, the other by the synthesizer N. Each synthesizer imposes a
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frequency (equal for the two pulses), a power and a phase to the rf pulse produced. The duration

of each pulse is assigned by us. The delay between the two pulses is 10 ns. Next, we apply the pair

of rf pulses on the atoms and prepare the circular state |51c〉. Finally, we measure the circular

population with a MW probe, while sweeping the phase of the second rf pulse. Note that, since

we use different synthesizers, the phase sweep of the second rf pulse does not affect the first one.

Figure F.1a presents the result of this experiment. We record the circular population as a

function of the phase of the second rf pulse and fit the signal via a Gaussian lineshape. We are

interested in the phase width of the fit. We want it to be as precise as possible to estimate the

width, so as to study its evolution as a function of τ to deduce a new value of the Rabi frequency.

This fact motivates the very thin phase step of the sweep and the high number of experimental

data recorded. The same procedure is repeated for different values of τ and τrec but always

keeping the same delay between the pulses. Figure F.1b shows the normalized phase width of the

circular state signal as a function of τ. The agreement between the data recorded when τ> 70 ns

and the theoretical formula of the phase width is met for Ω= 2π ·2.28 MHz. We insert this value

in equation (F.1) to obtain equation (4.31) and finally convert τ into 〈ml1〉.
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ABSTRACT 
 
Alkaline-earth Rydberg atoms are very promising tools for quantum technologies. They benefit from the remarkable properties of 
Rydberg atoms and, notably, a huge coupling to external fields and to other Rydberg atoms while the ionic core retains an 
optically active electron. However, low angular-momentum Rydberg states suffer almost immediate autoionization when the core 
is excited. Classically, the two electrons “collide” and one is expelled. However, this is not the case for circular states. Here, we 
demonstrate that Strontium circular Rydberg atoms with a core excited in a 4d metastable level are stable for more than a few 
milliseconds. We verify this property while the ionic core is either in a 4d, j = 3/2 state or a 4d, j = 5/2 state. Furthermore, we 
measure the energy difference between the Zeeman sublevels of metastable 4d states of the ionic-core electron, resulting from 
the electric-quadrupole coupling between the two valence electrons, with one prepared in a Rydberg state. We show that that 
the energy difference is a function of the principal and magnetic quantum numbers of the Rydberg electron. We show that this 
coupling between the two valence electrons leads to control the state of one depending on the state of the other. This opens the 
way to detect non-destructively the state of the Rydberg atom. Using the fluorescence emitted by the core electron allows us to 
envision a selective, optical detection of the circular states with remarkable sensitivity. The results presented in this work are 
important in the context of the realization of a Rydberg quantum simulator, exploiting the circular states of Strontium to build the 
qubits. 

 
 
MOTS CLÉS 
 
Rydberg, Strontium, autoionization, simulation quantique. 

RÉSUMÉ 
 
Les atomes de Rydberg alcalino-terreux sont des outils très prometteurs pour les technologies quantique. Ils profitent des 
propriétés remarquables des atomes de Rydberg et, notamment, un énorme couplage aux champs externes ou à d’autres atomes 
de Rydberg tandis que le noyau ionique conserve un électron optiquement actif. Cependant, les états de Rydberg de faible 
moment angulaire subissent une auto-ionisation presque immédiate lorsque le noyau est excité. Classiquement, les deux 
électrons « entrent en collision » et un est expulsé. Cependant, ce n’est pas le cas pour les états circulaires. Ici, nous démontrons 
que les atomes de Strontium où un électron est dans un état de Rydberg circulaire, avec un noyau excité dans un niveau 
métastable 4d sont stables pendant plus de quelques millisecondes. Nous vérifions cette propriété pour un noyau ionique soit 
dans un état 4d, j = 3/2, soit dans un état 4d, j = 5/2. Aussi, nous mesurons la différence d’énergie entre les états 4d métastables 
de l’électron du noyau ionique, résultant du couplage électrostatique entre les deux électrons de valence, avec l’un préparé dans 
un état Rydberg. Nous montrons que cette différence d’énergie est fonction des nombres quantiques principaux et magnétiques 
de l’électron de Rydberg. Nous montrons que le couplage électrostatique entre les deux électrons de valence amène à contrôler 
l’état de l’un par l’état de l’autre. Cela ouvre la voie à la détection non destructive de l’état de l’atome de Rydberg. L’utilisation de 
la fluorescence émise par l’électron du cœur permet d’envisager la détection optique selective des états circulaires avec une 
sensibilité remarquable. Les résultats présentés dans ce travail sont importants dans le cadre de la réalisation d’un simulateur 
quantique Rydberg, exploitant les états circulaires du Strontium pour construire les qubits. 

KEYWORDS 
 
Rydberg, Strontium, autoionization, quantum simulation. 
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