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Résumé

Ce travail a pour but de décrire les états fondamentaux de l'opérateur de Schrödinger aléatoire associé au modèle des pièces, dans la limite thermodynamique et dans la statistique de Fermi-Dirac. Ainsi, nous considèrons les répartitions minimales, en terme d'énergie, de n électrons dans l'intervalle r0, Ls subdivisé en pièces par un processus de Poisson, lorsque le quotient n L tend vers ρ ą 0. Ce modèle-jouet unidimensionnel réunit certains critères essentiels à une modélisation réaliste d'un ensemble de particules quantiques, à savoir une densité de particules positive ρ et un milieu aléatoire (dû aux imperfections).

Nous cherchons à saisir le comportement de ses états fondamentaux en fonction de ρ, notamment via l'énergie fondamentale par particule. Nous essayons également de quantifier l'intrication spatiale de tels états, mesurée par l'entropie d'entrelacement.

Dans le cas d'une interaction répulsive à courte portée, nous remarquons que le nombre d'électrons dans une pièce donnée admet une majoration commune à tout état fondamental. Nous optimisons parmi les groupes de pièces pouvant contenir au plus 2 particules et majorons la contribution des électrons restants pour obtenir un développement de l'énergie fondamentale par particule jusqu'à l'ordre Opρ 2´δ q, pour tout δ P p0, 1q, dans la limite thermodynamique. Cette méthode améliore le résultat de F. Klopp et N. A. Veniaminov, sous une hypothèse plus forte cependant. Elle fournit également un facteur commun à tout état fondamental.

Par la suite, nous exprimons l'entropie d'entrelacement d'un état à répartition unique fixé, après scission en deux parties. Nous remarquons que celle-ci dépend uniquement du groupe de pièces où tombe la coupe. Nous calculons à Opρ 2´δ q près la moyenne de l'entropie d'entrelacement associé au facteur commun évoqué au-dessus. Nous conjecturons que, tout comme pour l'énergie fondamentale par particule, cette quantité est le terme principal de celle obtenue en considérant l'état fondamental à répartition unique tout entier.

Enfin, les résultats établis sur les systèmes de 2 particules pourraient, selon nous, s'adapter à d'autres situations. 7

Introduction

Until the early 20th century, elementary particle systems were studied at the microscopic level through classical mechanics and at the macroscopic level through thermodynamics. However, quantum mechanics, which dates back to the 1920 1 s, turns out to be a more effective approach to describing these systems. Further, the modeling process should take into account the impurities of the background in which particles live. Such considerations led to the development of a branch of mathematical physics called the spectral theory of random Schrödinger operators. The discipline began in the 1950's with the work of the physicist P. Anderson who sought to understand the behavior of a single particle in a disordered medium [START_REF] Anderson | Absence of diffusion in certain random lattices[END_REF].

In the following, one should interpret the random background as being an inert (no time dependency), irregular structure. Two major examples of one-particle models are presented below.

The continuous Anderson model describes the propagation of a particle within a randomly perturbed crystal. The atoms of the crystal are distributed in an infinite lattice, say Z d . Each of them produces a repulsive potential whose intensity is modulated by a random variable. Using the paradigm of quantum mechanics, the electron is represented by a wave function ψ that satisfies the Schrödinger equation iB t ψ " h ω ψ where h ω is a random Schrödinger operator given by (A)

h ω " ´∆d `ÿ iPZ d a i pωqup ¨´iq on L 2 pR d q with ´∆d the d´dimensional Laplacian operator, ´pa i q iPZ d a family of independent identically distributed nonnegative random variables with a bounded and compactly supported density g, ´u some nonnegative function whose conditions will be fixed later.

The Poisson model describes the path of a particle in an amorphous structure (such as glass). This time the atoms are randomly placed on R d and each repulsive potential has the same intensity. Then, the electron satisfies the Schrödinger equation, as above, where h ω is a random Schrödinger operator given by (B)

h ω " ´∆d `ÿ e PXpωq up ¨´eq on L 2 pR d q where

´X is a Poisson process on R d with intensity λ ą 0, which means that pP 1q for any borel set B Ă R d of volume |B|, for any k P N, the probability of the event ω, #pXpωqX B q " k ( is |B| k k! e ´λ|B| , pP 2q for any borel set B 1 , B 2 Ă R d , the random variables #pX X B 1 q and #pX X B 2 q are independent.

11 Since the time evolution of the particle in both examples is given by ψpt, xq " e ´ithω ψp0, xq, for any t P R and x P R d , we are interested in the spectral properties of the operator h ω . Let us assume that u is a non-negative bounded measurable function on R d with compact support and lower bounded in the neighborhood of the origin. Then, a phenomenon called spectral localization holds at the bottom of the spectrum for both models: there exists δ ą 0 such that, almost surely, on r0, δs, the operator h ω has only a pure point spectrum with exponentially decaying eigenfunctions. Both quantum systems also exhibit dynamical localization on r0, δs, that one can interpret as the particle (which starts with an energy below δ) being trapped within a bounded region, at all times t ą 0. For d " 1, there is spectral localization and dynamical localization for the entire spectrum. In the case of the continuous Anderson model, these results are stated by [AEN `05] (and with weaker assumptions by [START_REF] Germinet | A comprehensive proof of localization for continuous Anderson models with singular random potentials[END_REF]), whereas in the case of the Poisson model, they are provided by [START_REF] Germinet | On localization for the Schrödinger operator with a Poisson random potential[END_REF]. The proofs are based on previous works dealing with discrete random operators (see e.g [START_REF] Stolz | An introduction to the mathematics of Anderson localization. Entropy and the quantum II[END_REF], [START_REF] Bourgain | On localization for lattice Schrödinger operators involving Bernoulli variables[END_REF]). Concerning the pre-requisites of functional analysis and spectral theory, we recommend the book by M. Reed and B. Simon [START_REF] Reed | Methods of Modern Mathematical Physics, I: Functional Analysis[END_REF].

This localization phenomenon should be compared with what happens in the case of a particle in an ideal solid. For the latter, the atoms occupy each vertex of an infinite lattice, say Z d , and they are perfectly identical. So, the corresponding Schrödinger operator h is given by (C)

h " ´∆d `ÿ iPZ d upx ´iq on L 2 pR d q.

The operator h has only an absolutely continuous spectrum [START_REF] Reed | Methods of Modern Mathematical Physics, IV: Analysis of Operators[END_REF]. By the RAGE theorem (e.g [START_REF] Teschl | Mathematical methods in quantum mechanics : with applications to Schrödinger operators[END_REF]), it implies that the particle escapes any compact of R d when t goes to `8. This illustrates that disorder, as modeled in the examples (A) and (B), changes the behaviour of a single particle.

A follow-up question is what happens for many indistinguishable particles in the same disordered medium. Such models should take into account a possible interaction between particles (see e.g [START_REF] Fleishman | Interactions and the anderson transition[END_REF]). In the paradigm of quantum physics, a many-body system is also represented by a wavefunction that satisfies a Schrödinger equation. For n particles and a one-particle operator h, our n´particle operator H U pnq has the following form (D) H U pnq "

n ÿ i"1 1 b ¨¨¨b 1 looooomooooon i´1 times b h b 1 b ¨¨¨b 1 looooomooooon n´i times `ÿ iăj U px i ´xj q
where U is a radial nonnegative potential which models the pairwise repulsive interaction. The nature of the particles, also called statistics, determines the domain of the n´particle operator. The states should be symmetric for bosons (such as photons), while they should be antisymmetric for fermions (such as electrons). For example, the eigenstates of a system of n non-interacting fermions are given by the Slater determinants (E) Ψ a px 1 , . . . , x n q " ´n ľ

i"1 ψ a i ¯px 1 , . . . , x n q " 1 ? n! det ´`ψ a i px j q ˘1ďi,jďn ˘where pψ i q iPI are the eigenstates of the one-particle operator h, the n´tuple a " pa 1 , . . . , a n q belongs to I n and any two coordinates of a are differents.

Using inductively the methods of the single particle case, one can retrieve the localization at the bottom of the spectrum, for a given number of particles and weak interactions. For instance, if U decays exponentially then there exists δ n ą 0 such that the multi-particle continuum Anderson model H U ω pnq has a pure point spectrum on r0, δ n s and it exhibits spectral and dynamical localization on r0, δ n s (see [START_REF] Chulaevsky | Dynamical localization for a multi-particle model with an alloy-type external random potential[END_REF] [START_REF] Fauser | Multiparticle localization for disordered systems on continuous space via the fractional moment method[END_REF]). V. Chulaevsky and Y. Suhov [START_REF] Chulaevsky | Wegner bounds for a two-particle tight binding model[END_REF][CS09a] [START_REF] Chulaevsky | Multi-particle Anderson localisation: Induction on the number of particles[END_REF] and M. Aizenman and S. Warzel [START_REF] Aizenman | Localization bounds for multiparticle systems[END_REF] previously addressed the issue of localization in the multi-particle discrete Anderson model. However, in the context of condensed matter physics, infinite-sized models with a finite number of particles are not realistic. The amount of particles per unit of volume, also called the density of particles, should be positive. The common process is to define the quantum system of n interacting particles in a finite-sized region LΩ, for L ą 0 and Ω a bounded convex set in R d . Again, it is described by some operator (F) H U pL, nq "

n ÿ i"1 1 b ¨¨¨b 1 looooomooooon i´1 times b hpLq b 1 b ¨¨¨b 1 looooomooooon n´i times `ÿ iăj U px i ´xj q
with hpLq the restriction of a one-particle operator on LΩ and U an even nonnegative potential. Then, we consider the spectral properties of H U pL, nq as the parameter L and the number of particles n satisfy the following limits

L Ñ `8 and n L d Ñ ρ ą 0.
This regime is called the thermodynamic limit. Veniaminov proved that, for a large class of disordered quantum systems, almost surely, the ground state energy per particle converges to a unique real number E U pρq in the thermodynamic limit [START_REF] Nikolaj | The Existence of the thermodynamic limit for the system of interacting quantum particles in random media[END_REF]. Unfortunately, such general results are rare.

The above mathematical definitions of localization become obsolete for a positive density of particles. For condensed matter physicists, many-body localization refers to the remaining at long times of initial conditions within local observables of the quantum system. Such a phenomenon violates the eigenstate thermalization hypothesis of J. M. Deutsch [START_REF] Deutsch | Quantum statistical mechanics in a closed system[END_REF] and M. Srednicki [START_REF] Srednicki | Chaos and quantum thermalization[END_REF]. These theoretical postulates, as well as the transition between localized states at low energy and thermal states at high energy, are discussed by D. A. Huse and R. Nandkishore in [START_REF] Nandkishore | Many-body localization and thermalization in quantum statistical mechanics[END_REF]. In parallel, several experimental observations exhibit signatures of many-body localization in some disordered quantum systems (see e.g [SHB `15][yCHZ `16]). From a mathematical perspective, many-body localization is essentially an open topic.

A hint to discriminate the localized states from the thermal ones might be the estimation of the entanglement between given parts of the medium. Quantum mechanics violates Bell's inequality, named after J. S. Bell [START_REF] Stewart | Speakable and Unspeakable in Quantum Mechanics[END_REF]. It implies that, in general, one cannot decompose a quantum system into independent subsystems. This phenomenon is called entanglement and it can be quantified through the entanglement entropy. For instance, even in the case of distinguisable particles, correlations may exist between the physical properties of several particles. Let H be an Hilbert space that admits the decomposition H " H A bH B and let ψ be a state of H. The entanglement entropy S A pψq is defined as the von Neumann entropy of η A , meaning that (G) S A pψq " ´tr `ηA ln η A ˘.

where ´ηA is the reduced density matrix on the subspace H A of the state ψ, given by η A " tr H B P ψ " ÿ iPI ˇˇxe i , ψy ˇˇ2

for P ψ the orthogonal projector on ψ and any ONB pe i q iPI of the subspace H B .

Note that S A pψq " 0 if and only if ψ admits a factorization ψ " ψ A b ψ B , with ψ A P H A and ψ B P H B . One can define similar quantities from the bipartition of the background. For a bounded convex set Ω Ă R d and a parameter L ‹ ą 0, the entanglement entropy S L‹ , measures how far a state is from being the product of a state on the convex set L ‹ Ω and a state on its complementary (with respect to the correct statistics).

Formally, it is given by the von Neumann entropy of η L‹ , the reduced density matrix on L ‹ Ω of the state Ψ, meaning that (H) S L‹ pΨq " ´tr `ηL‹ ln η L‹ ˘.

As the notion of reduced density matrix varies with the nature of the particles, one should adapt it from the above definition provided for distinguishable particles. Note that a single-particle state ψ is not entangled (i.e S L‹ pψq " 0) if and only if it is localized (in the common sense) in either L ‹ Ω or its complementary. Physics papers conjecture that, in the case of many-body disordered quantum systems with short-range interactions, the entanglement entropy on a convex set of the ground state would scale with the boundary area of that convex set rather than its volume (see e.g [START_REF] Nandkishore | Many-body localization and thermalization in quantum statistical mechanics[END_REF][Laf16] [START_REF] Alet | Many-body localization: An introduction and selected topics[END_REF]). Mathematical results on entanglement entropy are mostly derived for non-interacting particles, because one can express it using the infinite one-particle operator and its restrictions. For instance, A. Elgart and L. Pastur dealt with free fermions in a random medium described by the discrete Anderson model [START_REF] Elgart | Large block properties of the entanglement entropy of free disordered fermions[END_REF]. For 0 ă L ‹ ă L and Γ a bounded subset of Z d , they proved that, in the thermodynamic limit, the mean entanglement entropy on L ‹ Γ of the ground state Ψ 0 ω pL, nq of the operator H 0 ω pL, nq (see (F) for U " 0) may follow an area law, as

(I) lim LÑ`8 n L d Ñ ρ E ´SL‹ `Ψ0 ω pL, nq ˘¯" L‹Ñ`8 C Γ, ρ L d´1 ‹ .
The Fermi energy E ρ of a system of non-interacting fermions is equal to the maximum amount of energy produced by a particle in the ground state for a density of particles ρ ą 0. The asymptotic (I) holds if E ρ belongs to the localized part of the spectrum of the one-particle random operator. From the previous discussion, it includes ρ small enough for d ě 2 and any ρ for d " 1. Yet, area laws are also observed for the entanglement entropy of the ground state of some quasi-free models on the lattice Z d (that generalize bosonic harmonic chains or fermionic spin chains for d " 1), provided that there is a gap beyond the ground state energy and the interactions are restricted to nearest neighbors [ARS15] [START_REF] Eisert | Area laws for the entanglement entropy[END_REF]. On the other hand, D. Gioev and I. Klich [START_REF] Gioev | Entanglement entropy of fermions in any dimension and the Widom conjecture[END_REF] and R. Helling, H. Leschke, A. V. Sobolev and W. Spitzer [START_REF] Helling | A special case of a conjecture by Widom with implications to fermionic entanglement entropy[END_REF][LSS14] dealt with the free Fermi gas that describes non-interacting fermions that are not subjected to any external potential, so that the one-particle operator is just h " ´∆d on L 2 pR d q. For 0 ă L ‹ ă L and Ω a bounded convex of R d with a piece-wise C 1 ´smooth boundary, they proved that, in the thermodynamic limit, the entanglement entropy on L ‹ Ω of the ground state Ψ 0 pL, nq of the operator H 0 pL, nq satisfies a logarithmic enhanced area law, as

(J) lim LÑ`8 n L d Ñ ρ S L‹ `Ψ0 pL, nq ˘" L‹Ñ`8 C Ω, ρ L d´1 ‹ ln L ‹ .
Such a logarithmic correction is expected for the entanglement entropy of the ground state of some quasifree models, provided that there is no gap above the ground state energy and/or the interactions are long-range [START_REF] Eisert | Area laws for the entanglement entropy[END_REF].

Our works focus on a specific one-dimensional disordered quantum system: the pieces model. The associated one-particle random operator h ω has a quite simple structure. It acts as a Dirichlet-Laplacian on subintervals, the so-called pieces, whose extremities are given by a Poisson point process. Equivalently, one could consider a one-dimensional Poisson model, as in (B) for d " 1, whose potential u coming from each atom is a δ´Dirac distribution of infinite intensity. This description was originally derived by J. M. Luttinger and H. K. Sy [START_REF] Luttinger | Low-lying energy spectrum of a one-dimensional disordered system[END_REF]. Note that the spectrum of h ω is pure point and it is given by

σph ω q " !´j π l ω ¯2, D pieces of length l ω , j P N ‹ ) .
Since each eigenstate of h ω lives on a single piece, localization holds trivially. J. M. Luttinger and H. K. Sy computed N , the integrated density of states of h ω . The spectrum σph ω q is almost surely a non-random set equal to the support of N . Using this complete knowledge of the one-particle operator, J. M. Luttinger and H. K. Sy [START_REF] Luttinger | Bose-Einstein condensation in a one-dimensional model with random impurities[END_REF], and more recently O. Lenoble and V. Zagrebnov [START_REF] Lenoble | Bose-Einstein condensation in the Luttinger-Sy model[END_REF], studied the pieces model in the case of non-interacting bosons and derived Bose-Einstein Condensation, which can occur at the macroscopic level when a large proportion of bosons occupies the ground state. Interacting bosons are also investigated (for e.g [START_REF] Kerner | Bose-Einstein condensation in the Luttinger-Sy model with contact interaction[END_REF], [START_REF] Kerner | On the effect of repulsive pair interactions on Bose-Einstein condensation in the Luttinger-Sy model[END_REF]). Following the footsteps of F. Klopp and N. A. Veniaminov [START_REF] Klopp | Interacting electrons in a random medium: a simple one-dimensional model[END_REF], we explore the case of fermions (or Fermi-Dirac statistics), we disturb the free system by adding a repulsive interaction between particles and we place ourselves in the thermodynamic limit. So, fixing the convex Ω " r0, 1s, for a parameter L ą 0 and a number of particles n ě 1, we define the random operator H U ω pL, nq, as in (F), on Ź n L 2 pRq the space of n´antisymmetric square-integrable functions. We assume that only nearby particles may interact one to another, meaning that the support of the potential U coincides with a compact of length that is independent from the density of particles ρ. By previous discussions, one would like p‹q to describe how the ground state(s) of H U ω pL, nq behaves in the thermodynamic limit, in terms of the density of particles ρ; p‹‹q to confirm that the mean of the entanglement entropy on r0, L ‹ s of the ground state(s) of H U ω pL, nq does not increase with the length L ‹ , in the thermodynamic limit, and to expand it in terms of the density of particles ρ.

By Pauli exclusion principle, the ground state for n non-interacting fermions is given by the Slater determinant (see (E)) of the n first eigenstates of the one-particle random operator h ω . It yields that almost surely, in the thermodynamic limit, the pieces with length below l ρ " πE ´1{2 ρ are empty in the free ground state, where E ρ is the Fermi energy of h ω . F. Klopp and N. A. Veniaminov [START_REF] Klopp | Interacting electrons in a random medium: a simple one-dimensional model[END_REF] use this argument to build an approximate state Ψ opt for interacting fermions, under weaker assumptions on the potential U . Starting from the free ground state, they separated the most energy-contributing pairs of particles by moving one particle into an empty piece. They optimize between the energy produced by the interaction of two particles in the same piece and the energy given by the particles in the new pieces. The total contribution of other interactions is proven to be negligible. Their theorem states that, for a potential U in L p pRq (p ą 1), such that x 3 ş `8

x U ptqdt Ñ `8 0, the thermodynamic limit of the ground state per particle satisfies

(K) E U pρq " E 0 pρq `π2 γ U ‹ ρ | ln ρ | ´3`1
`op1q where γ U ‹ ą 0 depends only on U and op1q refers to ρ Ñ 0. They also measure how close the approximate state is to any ground state using the distance between the respective 1´and 2´particle density matrices, namely γ p1q Ψ and γ p2q Ψ , which are defined as the reduced density of the state Ψ on the one-particle space L 2 pRq, and on the two-particle space L 2 pRq ^L2 pRq. In particular, when U is compactly supported, they get that, for ρ small enough, (La) lim sup

LÑ`8 n L Ñρ 1 n › › γ p1q Ψ U ω pL,nq ´γp 1q Ψopt › › tr ď Cρ | ln ρ | ´1, (Lb) lim sup LÑ`8 n L Ñρ 1 n 2 › › γ p2q Ψ U ω pL,nq ´γp 2q Ψopt › › tr ď Cρ | ln ρ | ´1.
where Ψ U ω pL, nq is a ground state of H U ω pL, nq.

We will now explain our contribution to issues p‹q and p‹‹q. For short-range interactions and a density of particles ρ small enough, there exists a minimal length l ρ,U such that pieces with length below l ρ,U are empty for any ground state. So, the random background reduces to a compilation of groups of pieces, that we call chains, such that a particle belonging to a chain cannot interact with a particle living outside this chain. This structure is, therefore, similar to the one of the non-interacting system if the chains replace the pieces. Expressing the ground state(s) turns into finding the minimizing distribution(s) of n particles among the chains. But, due to the nature of the Poisson process, large and/or overcrowed chains do not contribute much to the total energy. The ground state energy per particle is mostly, up to an error Opρ 2´δ q, δ P p0, 1q, given by isolated particle and isolated pairs of particles lying in one or two pieces. By induction, we build an approximate state Ψ test . We refer to Theorem 1.2.1 for the expansion of the thermodynamic limit E U pρq. We state here the results on the 1´and 2´particle density matrices: for δ P p0, 1q, for ρ small enough, (Ma) lim sup

LÑ`8 n L Ñρ 1 n › › γ p1q Ψ U ω pL,nq ´γp 1q Ψtest › › tr ď Cρ 2´δ , (Mb) lim sup LÑ`8 n L Ñρ 1 n 2 › › γ p2q Ψ U ω pL,nq ´γp 2q Ψtest › › tr ď Cρ 2´δ .
where Ψ U ω pL, nq is a ground state of H U ω pL, nq. So, the state Ψ test approximates any ground state of H U ω pL, nq better than the state Ψ opt of F. Klopp and N. A. Veniaminov. In fact, our induction gives a common factor between all ground states of H U ω pL, nq. It is unclear if one can improve the expansion of E U pρq up to Opρ p´δ q for any p ě 3, with our method. Through the choice of some p ě 2, we eliminate the chains that all together produce an energy of order at most Opρ p´δ q. Our strategy requires to prove the convexity with respect to the number of particles of the ground state energy for each remaining chain. This convexity is trivial for one or two particles, and unknown for three or more particles, because we do not have an a priori lower bound for the contribution of the interaction. Otherwise, our approximation of the ground state energy of H U ω pL, nq, in the case p " 2, relies on knowledge of the ground state energy of small 2´particle systems. For a given p ě 3, one could consider the available systems one-by-one. The techniques that we use for the 2´particle systems may be applied for more complicated systems. But it seems tedious and we would prefer a common derivation.

Concerning the entanglement entropy, the idea is to define our quantities in the Fock spaces as in [START_REF] Helling | A special case of a conjecture by Widom with implications to fermionic entanglement entropy[END_REF]. This way, we remove both the issue of the indistinguishability of the particles, and the issue of the number of particles in each sub-interval. As discussed above, we know that the data of a minimizing distribution of n fermions among the chains is equivalent to a ground state of the operator H U ω pL, nq. Such a state Ψ U ω pL, nq is a product of states lying in the chains, meaning that

Ψ U ω pL, nq " ľ Iω chain ψ U Iω .
If the parameter L ‹ falls in the gap between two chains then Ψ U ω pL, nq is not entangled. Otherwise, for a parameter L ‹ that falls in a chain I ω,L‹ , we express the entanglement entropy on r0, L ‹ s of Ψ Again, due to the nature of the Poisson process, the larger the chains the less numerous they are. It confirms that, in the thermodynamic limit, the mean of the entanglement entropy on r0, L ‹ s of Ψ U ω pL, nq, namely E `SL‹ `ΨU ω pL, nq ˘˘, admits an upper bound as function of the parameter L ‹ . Moreover, it suggests that the main contribution to this expectation comes from small 1´or 2´particle systems. Our following statements will be based on a full contribution to the mean of the large and/or overcrowed chains of order at most Opρ 2´δ q, for δ P p0, 1q, which we do not prove in this thesis. Using the approximate ground state Ψ test , one may expand E `SL‹ `ΨU ω pL, nq ˘˘in terms of the entanglement entropies given by 1´and 2´particles systems up to Opρ 2´δ q. As for the ground state energy per particle (see (K)), the leading term in the difference between this mean and the one of the free case is determined by the interaction between two particles in the same piece. One could get a formula for

(O) E ´SL‹ `ΨU ω pL, nq ˘¯´E ´SL‹ `Ψ0 ω pL, nq ˘ūp to o `ρ | ln ρ | ´1˘,
in the thermodynamic limit.

Structure of the thesis

The manuscript is divided into three chapters. Chapter 1 is the main part. It covers the content of our article Thermodynamic limit of the pieces model, published in 2022 in Annales Henri Poincaré [START_REF] Ognov | Thermodynamic limit of the pieces' model[END_REF]. We give the description of the pieces model and our theorem on the thermodynamic limit of the ground state energy per particle. We add a section about the non-degeneracy of the ground state. Chapter 2 gathers recent works and conjectures on the entanglement entropy. Finally, Chapter 3 should be understood as a toolbox for the two others. We state the results on the ground state and ground state energy for two 2-particle systems. 

P ´#`X pwq X B ˘" k ¯" |B| k k! e ´|B|
and for two disjoints Borel sets B 1 , B 2 Ă R, the events tXpwq X B 1 " k 1 u and tXpwq X B 2 " k 2 u are independent.

We will drop the "w" index. Without loss of generality, we assume that mintk, x k ą 0u " 1 and we set x 0 " 0. We denote, for L ą 0, m L the random variable corresponding to the number of Poisson points in the box r0, Ls,

(1.1.1) m L " # `X X r0, Ls ˘.
By a large deviation principle, when L is large, with probability 1 ´OpL ´8q, m L " L `OpL 2 3 q. For i P 1, m L , the i-th piece is the interval ∆ i " rx i´1 , x i s.

For L ą 0, we define the following one-particle random operator

(1.1.2) hpLq " m L à k"1 ˆ´d 2 dx 2 D |∆ k ˙on L 2 `r0, Ls where 
d 2 dx 2 D
|∆ is the Dirichlet Laplacian on the interval ∆. Now, we consider n particles in the disordered background given by hpLq combined with a pairwise repulsive interaction. Using the statistic of Fermi-Dirac, the n-particle space on the box r0, Ls is

(1.1.3) H n pLq " n ľ i"1 L 2 pr0, Lsq.
Then, for n ě 2, the pieces model is the random operator given by (1.1.4)

H U pL, nq " n ÿ i"1 ˆi´1 â j"1 1 L 2 pr0,Lsq ˙b hpLq b ˆn´i â j"1 1 L 2 pr0,Lsq ˙`W n on H n pLq
where W n is the multiplication operator (1.1.5) W n px 1 , . . . , x n q " ÿ iăj U px i ´xj q and U : R ÝÑ R satisfies the following assumption. In [START_REF] Klopp | Interacting electrons in a random medium: a simple one-dimensional model[END_REF], Klopp and Veniaminov proved that, even under weaker assumptions on U , the thermodynamic limit of n ´1E U pL, nq exists P-almost surely and in L 1 pPq. In this chapter, we give an expansion of this limit.

The free operator

We denote by H 0 pL, nq the free operator and by E 0 pL, nq its ground state energy. One can give quite explicitly the thermodynamic limit of the ground state energy per particle (1.1.7) E 0 pρq :" lim

LÑ`8 n L Ñρ E 0 pL, nq n .
The ground state energy E 0 pL, nq is exactly the sum of the n first eigenvalues of the one-particle operator hpLq. We know that the spectrum of hpLq is

(1.1.8) σphpLqq " ! j 2 π 2 |∆ i | 2 , j P N, i P 1, m L ) .
Since these eigenvalues only depend on the lengths of the pieces and the statistical distribution of these lengths is known, the one-particle operator hpLq admits an explicit integrated density of states where E ρ is given by Definition 1.1.2. We refer to Theorem 5.14 [START_REF] Nikolaj | The Existence of the thermodynamic limit for the system of interacting quantum particles in random media[END_REF] for the proof.

The approach in term of occupations

Unlike the free operator, one cannot express the ground state energy of the pieces model with interactions by using the spectral decomposition of the one-particle operator. However, in both cases, one can talk about the number of particles in a given piece.

Definition 1.1.3. An occupation is a multi-index Q " pq i q 1ďiďm L of norm equal to n. For a given occupation Q " pq i q 1ďiďm L , the Q´occupied space H Q pLq is given by

(1.1.12) H Q pLq " m L ľ i"1 ˆqi ľ j"1 L 2 p∆ i q ˙.
The n-particle space admits the decomposition (1.1.13)

H n pLq " à Q occupation H Q pLq.
In [START_REF] Klopp | Interacting electrons in a random medium: a simple one-dimensional model[END_REF], Klopp and Veniaminov proved that the decomposition by occupation (1.1.13) is invariant under the action of H U pL, nq. Indeed, for any two occupations

Q ‰ Q 1 , the corresponding states Ψ Q , Ψ Q 1 do not interact, meaning that @ Ψ Q , W n Ψ Q 1 D " 0.
Moreover, as explained in Section 1.3, the ground state energy of the restriction of the pieces model H U pL, nq to the Q´occupied space H Q pLq is simple.

Notation 1.1.2. For a fixed occupation Q, the operator H U pL, n, Qq designates the restriction of H U pL, nq to the Q´occupied space H Q pLq. We denote `ΨU pL, n, Qq, E U pL, n, Qq ˘its ground state couple.

By definition, for any occupation Q, the ground state Ψ U pL, n, Qq has exactly q i particles in the piece ∆ i for all i P 1, m . Furthermore, the ground state energy E U pL, nq of the operator H U pL, nq satisfies

(1.1.14) E U pL, nq " min Q occupation E U pL, n, Qq.
In the free case (U " 0), for any occupation Q, the ground state energy E 0 pL, n, Qq of the operator

H 0 pL, n, Qq satisfies (1.1.15) E 0 pL, n, Qq " m L ÿ i"1 F 0 p∆ i , q i q
where we denote F 0 p∆, kq the ground state energy for k non-interacting fermionic particles in the piece ∆. Each particle lies in a Dirichlet Laplacian background in ∆. The ground state energy F 0 p∆, kq is the sum of the k first eigenvalues of the operator ´d2 dx 2

D

|∆ . One notes that the map k Ñ F 0 p∆, kq is strictly convex on N. So, by (1.1.14) and Lemma 1.4.8, the ground state energy E 0 pL, nq is given by the sum of the n smallest elements of the set (1.1. 16)

Γ 0 " F 0 p∆ i , k `1q ´F 0 p∆ i , kq, i P 1, m L , k P N ( .
But one notes that Γ 0 " σphpLqq given by (1.1.8). Then the counting function of Γ 0 , (1.1.17) N 0 pEq :" lim LÑ`8 # ´Γ0 X p´8, Es L , is well-defined and it is equal to N pEq, where N is the integrated density of states of hpLq (see 1.1.9). Thus, we recover the formula (1.1.11).

From now on, we restrict to finite-range interactions. We assume that the length σ U (see Assumption 1.1.1) is independent of ρ. The following lemma is crucial for our analysis.

Lemma 1.1.1. Let Ψ U pL, nq be a ground state of H U pL, nq. For n and L large enough, with respect to the thermodynamic limit (see Definition 1.1.1) and with probability 1 ´OpL ´8q, there exists a minimal length l ρ,U " ´log `ρ 1`ρ ˘´p4σ U `6qρ such that if a piece ∆ i satisfies |∆ i | ă kl ρ,U , k P N, then, for every occupation Q,

´PQ Ψ U pL, nq ‰ 0 ¯ñ ´qi ď k ´1w here P Q is the orthogonal projector on H Q pLq.
So, given a piece, the number of particles in this piece is bounded uniformly for any ground state. In particular, the pieces of length up to l ρ,U are empty for any ground state.

We will use the term chain to refer to a group of pieces of length greater than l ρ,U with gaps of length smaller than σ U . Let P be the set of chains. Using the notations of Lemma 1.1.1, for any occupation Q such that P Q Ψ U pL, nq ‰ 0, the ground state energy of H U pL, n, Qq satisfies (1.1.18) E U pL, n, Qq " ÿ IPP F U `I, κ I pQq where κ I pQq is the number of particles in the chain I and F U pI, κq is the smallest energy produced by κ particles in the chain I. Each particle lies in a Dirichlet Laplacian background for some piece of I and it is eventually submitted to the repulsive pairwise interaction U .

One should think of Equation (1.1.18) as a counterpart to Equation (1.1.15) where each chain stands for an occupied piece in the free case. If one could prove the convexity of every map κ Ñ F U pI, κq then by Lemma 1.4.8, the ground state energy E U pL, nq would be given by the sum of the n smallest elements of the set Γ " tF U pI, κ `1q ´F U pI, κq, I chain, κ P Nu. Thus, we introduce, for κ ě 0, the pκ `1q-th energy level of the chain I given by

(1.1.19) f U pI, κ `1q " F U pI, κ `1q ´F U pI, κq.
It represents the smallest amount of energy that appears if one adds a particle to a minimizing configuration of κ particles in I.

From the above discussion, one would like to use that, for every chain, κ Ñ f U pI, κq is increasing. It is unclear in which cases such statement is true. Take for example three pieces in a row I " t∆ 1 , ∆ 2 , ∆ 3 u of lengths l 2 " l and l 1 " l 3 " al with a P p1, 2q. One can check that, in the free case (U " 0), for 3 particles the best occupation is p1, 1, 1q, for 4 particles it is p2, 1, 1q or p1, 1, 2q, and for 5 particles it is p2, 1, 2q. So f 0 pI, 5q " f 0 pI, 4q " F 0 p∆ 1 , 2q ´F 0 p∆ 1 , 1q.

In this pathological case, only the difference between the interaction inputs will determine the sign of f U pI, 5q ´f U pI, 4q. The upper bounds of the interaction of two particles (see Lemma 1.4.10) are not efficient to conclude on this sign. Of course, such symetric cases have null probability in our model. But, for non-negligeable probability, we have a triplet of pieces of lengths l 1 , l 2 , l 3 such that l 2 ă l 3 ď l 1 ă 2l 2 and l 1 ´l3 is small. For such a chain, the difference between the kinetic inputs, namely f 0 pI, 5q ´f 0 pI, 4q, is also small. The occupation given by the free case may no longer be the best one in case of interactions. Even so, if the kinetic difference f 0 pI, 5q ´f 0 pI, 4q is smaller than our upper bounds of the interaction inputs, then we cannot tackle the issue of the sign of f U pI, 5q ´f U pI, 4q.

Yet it seems relevant to search for results with the assumption of monotony for small chains and/or for few particles. More precisely, let p ě 2 and P p be the set of chains each of which carries at most p particles for any ground state, and Γ p be the set of the p lowest energy levels of every chain that belongs to P p , meaning that

(1.1.20) Γ p " ! f U pI, κq, I P P p , κ ď p ) .
Assume that

(1.1.21) @I P P p , @κ ď p ´1, f U pI, κq ă f U pI, κ `1q.

Set δ P p0, 1q. By Lemma 1.1.1 and by statistical distribution of the pieces (see Proposition 1.4.9), one proves that, for any ground state, the number of particles in c P p , the complement of P p , is of order Opnρ p´δ q. One also controls the contribution of these particles to the ground state energy with a bound of order Opnρ p´δ q. Then, up to an error Opnρ p´δ q, the ground state energy E U pL, nq is given by the sum of the n smallest elements of Γ p . Let N U p be the counting function of Γ p , meaning that

(1.1.22) N U p pλq :" lim LÑ`8 # ´Γp X p´8, λs L .
Using N U p as a counterpart to N 0 (see (1.1.17)), one should get an approximation of the thermodynamic limit of the ground state energy per particle E U pρq up to an error Opρ p´δ q.

Main Results

Since the interaction is repulsive, Assumption (1.1.21) is always true for p " 2. Following the above discussion, we study this case in depth. In the set P 2 , a chain is either a single piece with at most two particles, or a pair of pieces with at most one particle in each piece. These 2-particle systems are studied in more depth in Chapter 3. We state below the results on the first energy levels.

For two particles in a single piece, Klopp and Veniaminov proved the following result. 

f U `pr´al, 0s, rd, d `lsq, 1 ˘" π 2 palq 2 (1.2.6)
and f U `pr´al, 0s, rd, d `lsq, 2 ˘" e U `pr´al, 0s, rd, d `lsq, p1, 1q ˘´π 2 palq 2 .

We now state our theorem. Consider, on p0, `8q, the map

J pλq " `1 ´σU e ´lρ,U ˘2˜ż 
D 1 pλq f U pr0, us, 1qe ´u du `żD 2 pλq f U pr0, us, 2qe ´u du (1.2.7) `ż σ U 0 ˆżD 3 pλq 2e ´pu`vq f U `pr´u, 0s, rt, v `tsq, 1 ˘dudv ˙dt `ż σ U 0 ˆżD 4 pλ,tq 2e ´pu`vq f U `pr´u, 0s, rt, v `tsq, 2 ˘dudv ˙dt where f U pI, 1q (resp. f U pI, 2q) is the first (resp. second) energy level of the chain I (see (1.2.3) and (1.2.6)), D 1 pλq " " π ? λ , 3l ρ,U ı , D 3 pλq " " px, yq P " l ρ,U , 2l ρ,U ‰ 2 , y ě max ´x, π ? λ ¯* D 2 pλq " " 2π ? λ `γ 8π 2 , 3l ρ,U ı , D 4 pλ, tq " " px, yq P " l ρ,U , 2l ρ,U ‰ 2 , y ě x ě ´π ? λ `τ ptq 2y 3 ¯*.
and γ (resp. τ ptq) is given in Proposition 1.2.1 (resp. Proposition 1.2.2). These domains of integration come from the distribution of the first and second energy levels below λ for the chains in P 2 .

Theorem 1.2.1. Under Assumption 1.1.1, let l ρ,U " ´log `ρ 1`ρ ˘´p4σ U `6qρ be the minimal length from Lemma 1.1.1.

For δ P p0, 1q, there exists ρ δ ą 0 such that for every ρ P p0, ρ δ q there is a Fermi energy level λ ρ , depending only on ρ and U , such that, with probability 1 ´OpL ´8q, the thermodynamic limit of the ground state energy per particle satisfies

(1.2.8) E U pρq :" lim LÑ`8 n L Ñρ E U pL, nq n " 1 ρ J pλ ρ q `Opρ 2´δ q.
where J is defined in (1.2.7).

Our method also provides a description of the ground state itself. Recall that, in any chain of P 2 , there is at most two particles. They are either in the same piece (Proposition 1.2.1) either in two distinct pieces (Proposition 1.2.2). From λ ρ ą 0 a Fermi energy level given by Theorem 1.2.1, we build an occupation Q test such that the particles in P 2 fill all the energy levels below λ ρ . In other word, if one adds a particle into a chain of P 2 , then the corresponding amount of energy this addition produces would be above λ ρ . More precisely, we set (i) for a single piece

∆ i P P 2 , q test i " max q, f U p∆ i , qq ď λ ρ ( ;
(ii) for a pair p∆ j , ∆ k q P P 2 , assuming

|∆ j | ď |∆ k |, q test j " max ˆ0, max ! q, f U `p∆ j , ∆ k q, q ˘ď λ ρ ) ´1˙, q test k " min ˆ1, max ! q, f U `p∆ j , ∆ k q, q ˘ď λ ρ ) ˙.
We prove that one can complete Q test on c P 2 with respect to the condition on the number of particles in a piece, given by Lemma 1.1.1. Then, set the following state (1.2.9) Ψ test pL, nq " ˆľ I P P 2 ψ U ´I, pq test i q iPI ¯˙^ˆľ I P c P 2 ľ iPI ψ 0 ´∆i , q test i ¯ẇhere (i) ψ U `I, pq i q iPI ˘is the ground state for the interacting system with exactly q i particles in ∆ i ;

(ii) ψ 0 p∆, qq is the ground state for q non-interacting particles in ∆, given by the Slater determinant of the q first eigenfunctions of the operator ´d2

dx 2 D |∆ . Remark 1.2.1.
In Subsection 1.4.2.3, we prove that the Fermi energy level λ ρ given by Theorem 1.2.1 is greater than the Fermi energy E ρ of the operator hpLq (see Definition 1.1.2). It implies that, in the state Ψ test pL, nq, some single pieces of length below the Fermi length l ρ host one particle each, which used to be, in the free case, either in single pieces of length greater than 2l ρ , either in pairs of pieces of length greater than l ρ .

We compare the state Ψ test pL, nq to any ground state Ψ U pL, nq through the one-and two-particle density matrices, using trace norm } } tr . Definition 1.2.1. For φ P H n pLq, its 1-particle density matrix is the operator γ

p1q φ on H 1 pLq " L 2 pr0, Lsq with kernel (1.2.10) γ p1q φ px, yq " n ż r0,Ls n´1
φpx, Zqφpy, ZqdZ.

CHAPTER 1. GROUND STATE OF THE PIECES MODEL

The 2-particle density matrix of φ is the operator γ p2q φ on H 2 pLq with kernel

(1.2.11) γ p2q φ px 1 , x 2 , y 1 , y 2 q " npn ´1q 2 ż r0,Ls n´2 φpx 1 , x 2 , Zqφpy 1 , y 2 , ZqdZ.
Proposition 1.2.3. Let Ψ U pL, nq be a ground state of H U pL, nq. For δ P p0, 1q, ρ P p0, ρ δ q, set the state Ψ test pL, nq according to the above construction. Then, in the thermodynamic limit, with probability 1 ´OpL ´8q, one has

(1.2.12)

1 n › › ›γ p1q Ψ U pL,nq ´γp1q 
Ψ test pL,nq › › › tr ď 10ρ 2´δ .
We get an analogue of Proposition 1.2.3 for the 2-particle density matrix.

Proposition 1.2.4. Let Ψ U pL, nq be a ground state of H U pL, nq. For δ P p0, 1q and ρ P p0, ρ δ q, set the state Ψ test pL, nq as above. Then, in the thermodynamic limit, with probability 1 ´OpL ´8q, one has

(1.2.13) 1 n 2 › › ›γ p2q Ψ U pL,nq ´γp2q 
Ψ test pL,nq › › › tr ď 45ρ 2´δ .
Remark 1.2.2. The bounds given in Proposition 1.2.3 and Proposition 1.2.4 are better than the ones given in [START_REF] Klopp | Interacting electrons in a random medium: a simple one-dimensional model[END_REF].

Non-degeneracy

In this Section, we define the pieces model a bit differently. Indeed, it can be described as an operatorvalued random variable that depends on the random vector given by the length of the pieces. More precisely, let X be a Poisson point process on R of intensity 1. If #pX X r0, Lsq " m, we denote Λ " pl k q 1ďkďm the random vector with values in pR ‹ `qm and l k the length of the k´th piece. The probability law of Λ is absolutely continuous with respect to Lebesgue measure on R m [START_REF] Grenkova | On the basic states of onedimensional disordered structures[END_REF]. Let H U pn, Λq be the pieces model, meaning that

(1.3.1) H U pn, Λq " n ÿ i"1 ˆi´1 â j"1 1 L 2 pr0,xmsq ˙b hpx m q b ˆn´i â j"1 1 L 2 pr0,x msq ˙`W n on H n px m q
where x m " l 1 `¨¨¨`l m . We denote E U pn, Λq the ground state energy of H U pn, Λq.

Simplicity for a fixed occupation

We recall that the operator H U pn, Λq preserves the decomposition by occupation of the n´particle space H n px m q. For a fixed occupation Q, let H U pn, Λ, Qq be the restriction of H U pn, Λq to the subspace

H Q px m q. Proposition 1.3.1. [KV20] For any occupation Q, the ground state Ψ U pn, Λ, Qq of H U pn, Λ, Qq is non- degenerate.
Proof. We refer to Lemma 3.6 of [START_REF] Klopp | Interacting electrons in a random medium: a simple one-dimensional model[END_REF] for the details. But it seems worthy to give the method. They prove that H U pn, Λ, Qq is equivalent to the Schrödinger operator ´∆ `Wn with Dirichlet boundary conditions on an open connected subset of R n . Then, they apply a enhanced version of Perron Frobenius theorem (see XIII.43 and XIII.44 of [START_REF] Reed | Methods of Modern Mathematical Physics, IV: Analysis of Operators[END_REF]).

Remark 1.3.1. Since the 2-particle systems of Chapter 3 can be interpreted as special cases of H U pn, Λ, Qq, their respective ground states are non -degenerate.

Simplicity for a truncated analytic potential

Klopp and Veniaminov proved that, if U is real analytic, then, almost-surely, the ground state of the operator H U pL, nq is non-degenerate. It is unclear that the non-degenerancy of the ground state remains true for any potential U satisfying Assumption 1.1.1. Since the holomorphy is not compatible with the short-range condition, we will consider a truncated analytic function and we try to adapt the proof of Theorem 1.1 of [START_REF] Klopp | Interacting electrons in a random medium: a simple one-dimensional model[END_REF]. So, in this subsection, we assume that Assumption 1.3.1. The function U satisfies for any x P R, U pxq " upxq1 r´δ,δs pxq for some even analytic function u.

Lemma 1.3.1. Assume that #pX X r0, Lsq " m. Let Λ ‹ " `pl ‹ q i ˘1ďiďm P pR ‹ `qm be the lengths given by an outcome of the Poisson process X. For 1 ď ι ď m, we set

(1.3.2) U ι " ! Λ P pR ‹ `qm , l ι ą l ρ,U , @i ‰ ι l i " pl ‹ q i )
where l ρ,U is given by Lemma 1.1.1. Let Q be an occupation with coordinates equal to zero for the pieces of length less than l ρ,U . We denote by E U pn, Λ, Qq the ground state energy of the operator H U pn, Λ, Qq.

Then, under Assumption 1.3.1, the function Λ Þ Ñ E U pn, Λ, Qq admits an holomorphic extension r E U pn, ¨, Qq on r U ι given by

(1.3.3) r U ι " ! Λ P C m , |l ι | ą l ρ,U , @i ‰ ι l i " pl ‹ q i
) .

The method of the proof is to write the interaction on the basis of the eigenvalues of the free operator. We get a linear combination of integrals on domains given by Figure 3.1. Thanks to the shape of these domains and the regularity of u, each integral admit an analytic extension. It provides an analytic extension for the operator. We refer to the Appendix section for the details.

Remark 1.3.2. By Hartogs theorem, Lemma 1.3.1 also states that E U pn, Λ, Qq is analytic on Λ P pR ‹ `qm , l i ą l ρ,U if q i ‰ 0, and l i constant else ( .

We can now give our result.

Proposition 1.3.2. Under Assumption 1.3.1 and in the thermodynamic limit, almost surely, the ground state of the pieces model H U pL, nq is non degenerate.

Proof. The method is based on the proof of Theorem 1.1 of [START_REF] Klopp | Interacting electrons in a random medium: a simple one-dimensional model[END_REF]. By reducio ad absurdum, we assume that

(1.3.4) P `EU pL, nq is of multiplicity ě 2 ˘ą 0
It implies that, for some integer m ě 1,

(1.3.5) P ´EU pL, nq is of multiplicity ě 2 ˇˇ# `X X r0, Ls ˘" m ¯ą 0.
From now on, we place ourselves in the case of such an integer m and we use the description in terms of lengths of the pieces. For Λ P pR ‹ `qm , let E U pn, Λq be the ground state energy of the operator H U pn, Λq given by (1.3.1).

The decomposition by occupation of the n´particle space H n px m q gives a characterization of the degenerancy of E U pn, Λq.

Remark 1.3.3. For Λ P pR ‹ `qm , the followings are equivalent:

(i) the ground state of the operator H U pn, Λq is degenerate;

(ii) there exists at least two differents occupations Q and Q 1 such that the corresponding ground state energies are equal to the ground state energy of H U pn, Λq.

Yet, Lemma 1.1.1 gives a restriction on the available occupations.

Remark 1.3.4. If the occupation Q satisfies E U pn, Λ, Qq " E U pn, Λq then ´qi ‰ 0 ¯ñ ´li ą l ρ,U ¯.
Let Q, Q 1 be two differents occupations and ι be a piece such that

q ι ‰ q 1 ι . We consider the open O Q,Q 1 given by (1.3.6) O Q,Q 1 " ! Λ P pR ‹ `qm , pq i ‰ 0q _ pq 1 i ‰ 0q ñ pl i ą l ρ,U q
) .

We assume that there exists an open set U Ă O Q,Q 1 such that for any Λ P U, the evaluations in Λ of the ground state energies E U pn, Λ, Qq and E U pn, Λ, Q 1 q are equal almost surely. By Fubini, there exists

Λ ‹ P U and (1.3.7) U ι " ! Λ P pR ‹ `qm , l ι ą l ρ,U , @i ‰ ι l i " pl ‹ q i ) such that almost surely in Λ P U ι X U, (1.3.8) E U pn, Λ, Qq " E U pn, Λ, Q 1 q.
Using the notations of Lemma 1.3.1, we consider

(1.3.9) F :

# U ι ÝÑ C Λ Þ ÝÑ r E U pn, Λ, Qq and G : # U ι ÝÑ C Λ Þ ÝÑ r E U pn, Λ, Q 1 q .
We know that, (i) F pΛq " GpΛq almost surely in Λ P U ι X U by (1.3.8);

(ii) F and G are analytic on U ι by Lemma 1.3.1.

So,

(1.3.10) F pΛq " GpΛq @Λ P U ι .

On the other hand, one computes

(1.3.11) BF Bl ι pΛq " lιÑ8 C ˆqι l ι ˙3 and BG Bl ι pΛq " lιÑ8 C ˆq1 ι l ι

˙3

This contradicts (1.3.10). Thus, for any

Q, Q 1 two differents occupations, almost surely on O Q,Q 1 , E U pn, Λ, Qq ‰ E U pn, Λ, Q 1 q.
Combining Remark 1.3.3 and Remark 1.3.4, we get that almost surely the ground state energy E U pn, Λq is of multiplicity 1. This contradicts (1.3.5).

This concludes the proof of Proposition 1.3.2.

Proofs

1.4.1 Occupations and ground state energies

Necessary conditions on the occupations providing ground states

We recall that the Fermi energy and the Fermi length l ρ (see Definition 1.1.2) satisfy

(1.4.1)

N pE ρ q " ρ and E ρ " π 2 l 2 ρ
with N pEq the integrated density of states of hpLq (see (1.1.9)). By formula (1.1.11), in the thermodynamic limit, the ground state energy E 0 pL, nq is the sum of the eigenvalues of the one-particle operator hpLq that are smaller than E ρ . But the spectrum of hpLq is

(1.4.2) σphpLqq " ! j 2 π 2 |∆ i | 2 , j P N, i P 1, m L
) .

Since,

(1.4.3)

j 2 π 2 |∆ i | 2 ď E ρ ðñ j ď ∆ i l ρ
we get that no piece of a length strictly below kl ρ can carry more than k ´1 particles in the ground state of the free operator H 0 pL, nq. Due to Assumption 1.1.1 of finite-range interactions, in the case of the full operator H U pL, nq, we exhibit the same phenomenon for some minimal length l ρ,U ă l ρ . The following lemma is a reformulation of Lemma 1.1.1.

Lemma 1.4.1. Let Ψ U pL, nq be a ground state of H U pL, nq. For n and L large enough, with respect to the thermodynamic limit (see Definition 1.1.1) and with probability 1 ´OpL ´8q, there exists a minimal length l ρ,U " l ρ ´p4σ U `6qρ such that if a piece ∆ i satisfies |∆ i | ă kl ρ,U , k P N, then, for every occupation Q,

´PQ Ψ U pL, nq ‰ 0 ¯ñ ´qi ď k ´1w here P Q is the orthogonal projector on H Q .
Then, any ground state of H U pL, nq belongs to

À QPQ H Q pLq where H Q pLq is given in (1.1.13) and
(1.4.4) Q "

" pq i q P N m , m ÿ i"1 q i " n and for 1 ď i ď m q i ď Z |∆ i | l ρ,U ^*.
This is a slight improvement of Lemma 3.25 of [START_REF] Klopp | Interacting electrons in a random medium: a simple one-dimensional model[END_REF]. We use the same method of proof.

Proof. Let t ą 0 be a parameter that will be set later in order to get our contradiction. For the time being, l ρ,U is of the form l ρ ´tρ.

Assume that ∆ e is the smallest piece that does not satisfy the property of the lemma. Then, there exists k P N so that pk ´1ql ρ,U ď |∆ e | ă kl ρ,U and Q e an occupation so that ∆ e is occupied by j " k ´1`e particles in P Q e Ψ U pL, nq with e ě 1. Without loss of generality, we assume that Ψ U pL, nq " P Q e Ψ U pL, nq. Our goal is to prove that one can define a state Φ U pL, nq such that xΦ U pL, nq, H U pL, nqΦ U pL, nqy ă xΨ U pL, nq, H U pL, nqΨ U pL, nqy which would contradict the statement "Ψ U pL, nq is a ground state ".

By hypothesis, there are at most n ´j `1 pieces with some particle in the state Ψ U pL, nq. The idea is to find at least n `1 pieces longer than l ρ,U that are far enough of the others pieces longer than l ρ,U . If so, one could move the e extra particles into e of the n `1 ´pn ´j `1q " j empty such pieces without creating any interaction.

We call interaction range of a piece ∆ the set of pieces ∆ 1 such as the distance between ∆ and ∆ 1 is less than or equal to σ U . Note that if dp∆, ∆ 1 q ą 2σ U then the intersection of the interaction range of ∆ and the one of ∆ 1 is empty. This property means that no particle can interact with some particles of both pieces ∆ and ∆ 1 . We will estimate the number of pieces of type p‹q that satisfy the two following conditions (i) a length between l ρ,U and 2l ρ,U ;

(ii) no other piece of length greater than l ρ,U at a distance less than 2σ U `1.

For the count, we use Proposition 1.4.9 and Proposition 1.4.10. Let η P p 2 3 , 1q. Since l ρ " ´log `ρ 1`ρ ˘(see (1.1.2)) and, in the thermodynamic limit, L β´1 " opρ 2 q, we compute, with probability 1 ´OpL ´8q, # ∆, l ρ,U ă |∆| ă 2l ρ,U ( " Le ´plρ´tρq p1 ´e´plρ´tρq q `OpL β q (1.4.5)

" Lρ ´`1 `pt ´1qρ `opρq ˘`1 ´ρ `opρq ˘`opρq " Lρ `1 `pt ´1qρ `opρq ȃnd, similarly, # p∆, ∆ 1 q, |∆| ą l ρ,U , |∆ 1 | ą l ρ,U , dp∆, ∆ 1 q ď 2σ U `1( " 2p2σ U `1qLe ´2plρ´tρq `OpL β q (1.4.6) " 2p2σ U `1qLρ ´pρ `opρqq ˆ`1 `2tρ `opρqq ˘`opρq " 2p2σ U `1qLρ 2 p1 `opρqq.
Thus, combining (1.4.5) and (1.4.6), we get that there are more than Lρ `1 `pt ´1qρ ´2p2σ U `2qρ `opρq pieces of type p‹q. From now, we choose t " 4σ U `6 such that 1 `pt ´1qρ ´2p2σ U `2qρ `opρq " α ρ ą 1. So, in the thermodynamic limit, for L and n large enough, (1.4.7) #t pieces of type p‹qu ě Lρ α ρ ě n `1.

By the pigeonhole principle, there are at least j of pieces of type p‹q and for which the interaction area do not carry any particle in Ψ U pL, nq. Therefore one can move the e extra particles to these slots. We get a new state Φ U pL, nq. Before the exchange, the free energy of the piece ∆ e is e 0 p∆ e , jq " e 0 p∆ e , k ´1q `j ÿ

i"k i 2 π 2 |∆ e | 2
" e 0 p∆ e , k ´1q `6ek 2 `6epe ´1qk `p2e ´1qepe ´1q 6

π 2 |∆ e | 2
ě e 0 p∆ e , k ´1q `6ek 2 `6epe ´1qk `p2e ´1qepe ´1q 6

π 2 k 2 l 2 ρ,U ě e 0 p∆ e , k ´1q `e j k π 2 l 2 ρ,U
.

So, the e extra particles contribute to more than e j k π 2 l 2 ρ,U in Ψ U pL, nq. But in Φ U pL, nq, the free energy associated to these e particles is strictly less than e π 2 l 2 ρ,U and there is no interaction energy. So, xΦ U pL, nq, H U pL, nqΦ U pL, nqy ă xΨ U pL, nq, H U pL, nqΨ U pL, nqy Thus Ψ U pL, nq can not be a ground state and this completes the proof of Lemma 1.4.1.

Decomposition of r0, Ls into chains

From now on, we fix the minimal length l ρ,U " l ρ ´p4σ U `6qρ. According to Lemma 1.4.1, the pieces of length l ă l ρ,U are empty for any ground state. We divide the others pieces into undecomposable groups of pieces that may interact through U . For simplicity, we identify a piece ∆ k and its index k (position). The length of the piece i is denoted by l i and the distance between the pieces j and k by d j,k .

Definition 1.4.1. The r-tuple I " pi 1 , . . . , i r q, with i 1 ă ¨¨¨ă i r , is a chain of size r if

(i) for every k P 1, r , l i k ě l ρ,U , (ii) for every k P 1, r ´1 , d i k ,i k`1 ď σ U ,
(iii) for every j ă i 1 such that l j ě l ρ,U , d j,i 1 ą σ U (iv) for every j ą i r such that l j ě l ρ,U , d ir,j ą σ U .

We give an example of a chain of size 3 in Figure 1.1.

x 1 σ U ∆ 6 x 6 ă σ U ∆ 9 x 9 ă σ U ∆ 11 l ρ,U x 11 σ U Figure 1.1:
Example of a chain of size 3. The 3-tuple (6,9,11) is a chain because (i) the pieces ∆ 6 , ∆ 9 and ∆ 11 are longer than l ρ,U , (ii) the distance between x 6 and x 8 and the distance between x 9 and x 10 are shorter than σ U , and (iii)-(iv) there is no piece longer than l ρ,U at distance σ U below x 5 or above x 11 .

For a fixed occupation Q in the subset Q, given by (1.4.4), let H U pL, n, Qq be the restriction of the pieces model H U pL, nq to the Q´occupied space H Q pLq:

(1.4.8) H U pL, n, Qq " P Q H U pL, nqP Q on H Q pLq " m ľ i"1 ˆqi ľ j"1
L 2 p∆ i q ẇhere P Q is the orthogonal projector on H Q pLq. As chains do not interact one with another, H U pL, n, Qq can be written as a sum of operators each of which acting on a specific chain. We list the notations and definitions for these operators.

Definition 1.4.2. Fix I a chain. For pq i q iPI P N ‹ , the operator h U pI, pq i q iPI q rules the behaviour of each q i particles in the piece ∆ i of the chain I, meaning that (1.4.9)

h U pI, pq i q iPI q " κ I ÿ κ"1 ˆκ´1 â j"1 1 L 2 pr0,Lsq ˙b h I pLq b ˆκI â j"κ`1 1 L 2 pr0,Lsq ˙`W κ I on ľ iPI ´qi ľ j"1 L 2 p∆ i q
where (i) κ I " ř iPI q i is the total number of particles in I;

(ii) h I pLq is the one-particle operator defined by

(1.4.10) h I pLq " à iPI ˆ´d 2 dx 2 D |∆ i ˙on L 2 `r0, Ls ˘;
(iii) W k is the multiplication operator given by (1.1.5).

Let ψ U pI, pq i q iPI q and e U pI, pq i q iPI q be the ground state and the ground state energy of h U pI, pq i q iPI q. Set F U pI, 0q " 0 and for κ P N ‹

(1.4.11) F U pI, κq " min κ I "κ e U pI, pq i q iPI q.

For κ P N ‹ , the κ-th energy level of the chain I is defined by

(1.4.12) f U `I, κ ˘" F U pI, κq ´F U pI, κ ´1q.
We will now discriminate the chains by number of particles in any ground state. Fix p P N ‹ . We denote by (1.4.13)

P p " ! I chain, ÿ iPI Y l i l ρ,U ] ă pp `1q
) 

the
ľ I chain Ă Np ψ U pI, pq i q iPI q.
with ψ U pI, pq i q iPI q is the ground state of the operator h U pI, pq i q iPI q given by (1.4.9). Furthermore, the ground state energy of H U pL, n, Qq is written

(1.4.16) E U pL, n, Qq " E U Pp pQq `EU Np pQq
where (1.4.17)

E U Pp pQq "
ÿ IPPp e U pI, pq i q iPI q and E U Np pQq "

ÿ I chain Ă Np e U pI, pq i q iPI q.
with e U pI, pq i q iPI q is the ground state energy of the operator h U pI, pq i q iPI q given by (1.4.9). We study these two quantities in the next subsections.

Upper bound on the energy contribution of large and/or overcrowded chains

The following lemma gives an upper bound for the number of particles that one does not control when the occupation is known only for the chains of P p .

Lemma 1.4.2. For p P N ‹ , and δ P p0, 1q, there exists ρ p,δ ą 0 such that, for every ρ P p0, ρ p,δ q, in the thermodynamic limit

(1.4.18) ρ p`δ ď sup QPQ ˆ1 n ÿ iPNp q i ˙ď ρ p´δ .

PROOFS

Proof. We recall that the statement Q belongs to the subset

Q implies that (1.4.19) q i ď Z l i l ρ,U ^.
If i P N p , we have the following options. (i) Either l i ă l ρ,U , q i " 0;

(ii) Or l i ě pp `1ql ρ,U , then, using Proposition 1.4.9 and (1.4.19), one computes

ÿ i, l i ěpp`1ql ρ,U q i ď `8 ÿ k"p`1
kLpe ´kl ρ,U ´e´pk`1ql ρ,U q " pp `1qLe ´pp`1ql ρ,U p1 `Ope ´lρ,U qq (iii) Or i P I chain of size r ě 2 and ř jPI l j ě pp `1ql ρ,U and l i ă pp `1ql ρ,U ; in this case by (1.4.19), q i ď p. For r ď p, #tI chain of size r of total length ě pp `1ql ρ,U u ď #tr pieces of total length ě pp `1ql ρ,U with gaps of length

ď σ U u ď σ U r´1 Le ´pp`1ql ρ,U
and

#tI chain of size r ě p `1u ď #tpp `1q pieces of length ě l ρ,U with gaps of length ď σ U u ď σ U p Le ´pp`1ql ρ,U .
Then, for any Q P Q,

(1.4.20)

1 n ÿ iPNp q i ď pp `1q L n e ´pp`1ql ρ,U p1 `Ope ´lρ,U qq `p`1 ÿ r"2 p σ U r´1 L n e ´pp`1ql ρ,U .
As e ´pp`1ql ρ,U " opρ p`1´δ q, there exists ρ 1 p,δ ą 0 such that for ρ P p0, ρ 1 p,δ q in the thermodynamic limit (1.4.21)

1 n ÿ iPNp q i ď ρ p´δ .
This completes the proof of the right-hand side of the inequality (1.4.18). Concerning the left-hand side, let Q 0 " pq 0 i q 1ďiďm L be the occupation of the ground state for the free model. By (1.4.3), we have that for i P 1, m L if l i P rkl ρ , pk `1ql ρ q then q 0

i " k. Since l ρ,U ď l ρ , Q 0 P Q. So, ÿ iPNp q 0 i ě ÿ i, l i ěpp`1qlρ q 0 i " `8 ÿ k"p`1
kLpe ´klρ ´e´pk`1qlρ q " pp `1qLe ´pp`1qlρ p1 `Ope ´lρ qq As ρ p`1`δ " ope ´pp`1qlρ q, there exists ρ p,δ ď ρ 1 p,δ that gives the left part of the inequality (1.4.18).

Proposition 1.4.1. For a fixed p ě 1, δ P p0, 1q and Q P Q, there exists ρ p,δ ą 0 such that, for ρ P p0, ρ p,δ q, in the thermodynamic limit,

(1.4.22) E U Np pQq ď nρ p´δ
Proof. As in Definition 1.4.2, for any chain I, we denote ψ U pI, pq i q iPI q and e U pI, pq i q iPI q the ground state and ground state energy of the operator h U `I, pq i q iPI ˘given by (1.4.9). We use the notations ψ 0 `I, pq i q iPI ȃnd e 0 `I, pq i q iPI ˘for the free case. We have @ ψ U pI, pq i q iPI q , h U `I, pq i q iPI ˘ψ U pI, pq i q iPI q D ď @ ψ 0 `I, pq i q iPI ˘, h U `I, pq i q iPI ˘ψ0 `I, pq i q iPI ˘D so (1.4.23) e U pI, pq i q iPI q ď e 0 `I, pq i q iPI ˘`@ ψ 0 `I, pq i q iPI ˘, W κ I ψ 0 `I, pq i q iPI ˘D.

Then, we compute

E U Np pQq " ÿ IĂ Np chain e U `I, pq j q jPI (1.4.24) ď ÿ IĂ Np chain ˆe 0 `I, pq j q jPI ˘`@ ψ 0 `I, pq i q iPI ˘, W κ I ψ 0 `I, pq i q iPI ˘Dď max QPQ jPNp ˆe 0 `r0, l j s, q j qj ˙ÿ jPNp q j `ÿ IĂ Np chain @ ψ 0 `I, pq i q iPI ˘, W κ I ψ 0 `I, pq i q iPI ˘D
where we use that e 0 `I, pq j q jPI ˘" ÿ jPI e 0 `r0, l j s, q j ˘.

For any Q P Q and j P N p , by Lemma 1.4.1, we have q j l ρ,U ď l j . So,

(1.4.25) e 0 `r0, l j s, q j ˘"

q j ÿ k"1 k 2 π 2 l 2 j ď C q 3 j l 2 j ď C q j l 2 ρ,U ď q j 3
for ρ small enough. Combining Lemma 1.4.2 and (1.4.25), there exists ρ 1 p,δ ą 0 so that, for ρ P p0, ρ 1 p,δ q, in the thermodynamic limit, (1.4.26) max QPQ jPNp ˆe 0 `r0, l j s, q j qj ˙ÿ jPNp q j ď n 3 ρ p´δ .

We deal with the remaining sum in (1.4.24) using the results of Lemma 1.4.10. By skew-symmetry, we have

(1.4.27) @ ψ 0 `I, pq i q iPI ˘, W κ I ψ 0 `I, pq i q iPI ˘D " κ I pκ I ´1q 2 ż r0,Ls κ I
U py ´xqψ 0 `I, pq i q iPI ˘2px, y, ZqdxdydZ.

For a chain I, the ground state ψ 0 pI, pq i q iPI q is the Slater determinant of `φ∆ i j ˘iPI 1ďjďq i

where, for i P I, j P N, φ ∆ i j is the state on L 2 p∆ i q given by (1.4.28)

φ ∆ i j pxq " ? 2 ? l i sin ´π l i jpx ´xi q ¯1∆ i pxq.
So, ψ 0 pI, pq i q iPI qpx 1 , . . . , x κ I q " ˆľ iPI

q i ľ j"1 φ ∆ i j ˙px 1 , . . . , x κ I q (1.4.29) " 1 ? κ I ! ÿ σPSκ I εpσq κ I ź k"1 φ ∆ i σpkq j σpkq px k q 1.4. PROOFS with i k " inf ! i P I, k ď ÿ rPI, rďi q r ) and j k " k ´ÿ rPI, rďi k ´1 q r .
By orthogonality of pφ ∆ i j q i j , we know that for σ, τ P S κ I

(1.4.30)

ż r0,Ls φ ∆ i σpkq j σpkq pzqφ ∆ i τ pkq j τ pkq pzqdz " # 1 if σpkq " τ pkq 0 else.
Then (1.4.27) becomes

@ ψ 0 `I, pq i q iPI ˘, W κ I ψ 0 `I, pq i q iPI ˘D " κ I pκ I ´1q 2pκ I !q ÿ σ,τ PSκ I σpkq"τ pkq @kě3 εpσqεpτ q ˆżr0,Ls 2 U py ´xq (1.4.31) φ ∆ i σp1q j σp1q pxqφ ∆ i τ p1q j τ p1q pxqφ ∆ i σp2q j σp2q pyqφ ∆ i τ p2q j τ p2q pyq dxdy " ÿ iPI ÿ 1ďjăkďq i ż r0,Ls 2 U py ´xq ˇˇφ ∆ i j ^φ∆ i k ˇˇ2px, yqdxdy `ÿ h,i PI, h‰i q h ÿ j"1 q i ÿ k"1 ż r0,Ls 2 U py ´xq ˇˇφ ∆ h j ^φ∆ i k ˇˇ2px, yqdxdy.
We apply Lemma 1.4.10,

@ ψ 0 `I, pq i q iPI ˘, W κ I ψ 0 `I, pq i q iPI ˘D ď C ÿ iPI ÿ 1ďjăkďq i j 2 `k2 l 3 i `C ÿ h,i PI, h‰i q h ÿ j"1 q i ÿ k"1 j 2 k 2 l 3 h l 3 i (1.4.32) ď C ÿ iPI q i l 3 ρ,U `C ÿ h,i PI, h‰i q h q i l 6 ρ,U ď C l 3 ρ,U ÿ iPI q i `C l 6 ρ,U ´ÿ iPI q i ¯2
where C depends on U and σ U . Again by Lemma 1.4.2, there exists ρ 2 p,δ ą 0 so that for ρ P p0, ρ 2 p,δ q, in the thermodynamic limit

(1.4.33) C l 3 ρ,U ÿ iPI q i ď n 3 ρ p´δ
For the part with squares in 1.4.32, we adapt the proof of (1.4.18). A chain I Ă N p of size r ě p `1 of total length l P rkl ρ,U , pk `1ql ρ,U q with k ě r may contain at most k particles. Otherwise, the chains I Ă N of size r ď p and of total length l P rkl ρ,U , pk `1ql ρ,U q with k ě p `1 may contain at most k particles. So,

ÿ IĂNp ´ÿ iPI q i ¯2 ď `8 ÿ r"p`1 σ U r´1 8 ÿ k"r k 2 Le ´kl ρ,U `p ÿ r"1 σ U r´1 `8 ÿ k"p`1 k 2 Le ´kl ρ,U . We claim that, if σ U e ´lρ,U ă 1, (1.4.34) DC ą 0 ÿ IĂNp ´ÿ iPI q i ¯2 ď C maxt1, . . . , σ U p upp `1q 2 Le ´pp`1ql ρ,U .
So, there exists ρ 3 p,δ ą 0 so that for ρ P p0, ρ 3 p,δ q, in the thermodynamic limit

(1.4.35) C l 6 ρ,U ´ÿ iPI q i ¯2 ď n 3 ρ p´δ
Then, if ρ is small enough, combining (1.4.26), (1.4.33) and (1.4.35), the inequality (1.4.24) becomes in the thermodynamic limit

(1.4.36)

E U Np pQq ď nρ p´δ .
It concludes the proof of Proposition 1.4.1.

Remark 1.4.1. If one replaces ψ U Np pQq by Ź IĂNp ψ 0 `I, pq i q iPI ˘then the same bound holds for the energy.

Estimation of the energy contribution of short chains

The following proposition states that, when the number of particles in P p is known, E U Pp is the sum of the smallest energy levels. But it requires a strong hypothesis on the monotony of the energy levels.

Assumption 1.4.1. For a fixed p ě 1, using the notations of Definition 1.4.2, the application

(1.4.37) f U pI, .q : # 0, p ÝÑ R κ Þ ÝÑ f U `I, κ ȋs
increasing for every chain I in P p .

Let Γ p be the set whose elements are the first p energy levels for each chain

I in P p , (1.4.38) Γ p " ! f U `I, κ ˘, I P P p , 1 ď κ ď p ) .
We define a lexical order ď p on Γ p such that (1.4.39) @I,

J P P p , 1 ď k, l ď p f U pI, kq ă p f U pJ, lq ðñ $ ' & ' % f U pI, kq ă f U pJ, lq else last index of I ă first index of J else k ă l
From now on, we denote n p,Q is the number of particles in P p for the occupation Q.

Proposition 1.4.2. For a fixed p ě 1, let ta k P Γ p , a k´1 ă p a k u be the ordered set given by (1.4.38) and (1.4.39). Under Assumption 1.4.1, for r ď minpn, #Γ p q, any occupation

Q that minimizes E U Pp when n p,Q " r and q i ď Y l i l ρ,U ]
for each piece ∆ i in P p , satisfies

(1.4.40) E U Pp pQq " r ÿ k"1 a k .
Proof. Fix r ď minpn, #Γ p q. Take an occupation Q that minimizes E U Pp when n p,Q " r and q i ď

Y l i l ρ,U ]
for each piece ∆ i in P p . Then, by reductio ad absurdum, using the notations of Definition 1.4.2,

E U Pp pQq " ÿ IPPp e U pI, pq i q iPI q " ÿ IPPp F U pI, κ I q " ÿ IPPp κ I ÿ j"1 f U pI, jq 1.4. PROOFS with ř IPPp κ I " r and κ I ď ř iPI Y l i l ρ,U ] ď p. In particular, (1.4.41) r ÿ k"1 a k ď E U Pp pQq.
For the reverse inequality, we build by induction an appropriate occupation Q 1 . Set Q 1 p0q " p0, . . . , 0q. For k from 1 to r, assume that the multi-index Q 1 pk ´1q " `q1

i pk ´1q ˘1ďiďm satisfies

E U Pp `Q1 pk ´1q ˘" k´1 ÿ s"1 a s and m ÿ i"1 q 1 i pk ´1q " k ´1.
We know that a k " f U pI, jq meaning a k is the j-th energy level of the chain I. Since f U pI, .q is increasing, we have tf U pI, 1q, . . . , f U pI, j ´1qu " ta i 1 , . . . , a i j´1 u for 1 ď i 1 ă ¨¨¨ă i j´1 ď k ´1 and for every i ą j, f U pI, iq ą a k . In particular,

k ÿ s"1 a s " ÿ sRti 1 ,...,i j´1 ,ku a s `j ÿ i"1 f U pI, iq " ÿ sRti 1 ,...,i j´1 ,ku a s `F U pI, jq.
We set q 1 i pkq for i P I so that e U pI, pq 1 i pkqq iPI q " F U pI, jq and for every i R I, q 1 i pkq " q 1 i pk ´1q. Then,

E U Pp `Q1 pkq ˘" k ÿ s"1 a s and m ÿ i"1 q 1 i pkq " k.
We fill the coordinates in N p so that Q 1 is an occupation with n p,Q " r.

It concludes the proof of Proposition 1.4.2.

Remark 1.4.2. We don't know yet how to prove that Assumption 1.4.1 holds when p ě 3. The following lemma gives a partial result for chains of size 1.

Lemma 1.4.3. Using the notations of Definition 1.4.2, if l ă l 3 2 ´ε ρ,U for ε P p0, 1 2 q then for ρ small enough (1.4.42) @r P 1, p ´1 f U `r0, ls, r `1˘ą f U `r0, ls, r where p " t l l ρ,U u.

Proof. Assume that l " πβ ´1l ρ,U and r ě 1. Using the notations of Definition 1.4.2, let F prq " F U `r0, ls, r ˘be the smallest energy produced by r particles in the piece r0, ls and ψprq a corresponding eigenfuntion. Also set F 0 prq and ψ 0 prq in the free case U " 0. We know that

ψ 0 prq " r ľ i"1 ϕ i
where ϕ i pxq "

? 2 ?

l sin `π l ix ˘1r0,ls pxq. We compute xW r ψ 0 prq, ψ 0 prqy " rpr ´1q 2 ż r0,Ls r U px 1 ´x2 qψ 0 prqpx 1 , x 2 , Zq 2 dx 1 dx 2 dZ by skew-symmetry

" rpr ´1q 2 1 r! ÿ σ,σ 1 PSr εpσqεpσ 1 q ż U px 1 ´x2 q r ź i"1 ϕ σpiq px i qϕ σ 1 piq px i qdX " ÿ păqďr ż U px 1 ´x2 q ˇˇϕ p ^ϕq ˇˇ2 px 1 , x 2 qdx 1 dx 2
by skew-symmetry and orthogonality of pϕ i q iě1 . Hence, by Lemma 1.4.10,

(1.4.43) xW r ψ 0 prq, ψ 0 prqy ď ÿ păqďr Cl ´3pp 2 `q2 q ď Cl ´3r 4 .

Since, 0 ď F prq ´F 0 prq ď xW r Ψ 0 prq, Ψ 0 prqy.

we have

(1.4.44) F prq " F 0 prq `Opl ´3r 4 q " r ÿ i"1 pπl ´1iq 2 `Opl ´3r 4 q Then, (1.4.45) F pr `1q ´2F prq `F pr ´1q " 2πl ´2r `1 `Opl ´2ε ρ,U q ȃs r ă l.l ´1 ρ,U and l 2 l ´3 ρ,U ď l ´2ε ρ,U . Thus one gets that for ρ small enough the r.h.s is positive. This concludes the proof of Lemma 1.4.3.

Combining Lemma 1.4.3 and Lemma 1.4.8, we get that Assumption 1.4.1 holds when one cancels the interaction between pieces and p is less than | logpρq|. Without restriction on the form of the interaction, the issue occurs when the growth in the free energy is less or of the order of the interaction between two pieces. More precisely, we don't know yet how to deal with the cases where the lengths of a pair of pieces t∆ i , ∆ j u satisfy

(1.4.46) D k i , k j P 1, p ´1 ˇˇ´k i l i ¯2 ´´k j l j ¯2ˇˇˇ" Opl ´6 ρ,U q.
Otherwise, the proof of Proposition 1.4.2 gives an approximation by induction of the restriction to P p of any occupation of the ground state. To state the following corollary, we introduce a notation for the chains that produce the same element in pΓ p , ďq where ď is the usual order. We set for 1 ď r ď #Γ p (1.4.47) G p prq "

! I P P p , D 1 ď k ď p, f U pI, kq " the r-th smallest element of pΓ p , ď p q ) .
Corollary 1.4.1. Under Assumption 1.4.1, there exists a sequence of occupations `Qprq ˘rďn such that 1. the number of particles in the chains of P p for the occupation Qprq is n p,Qprq " r;

2. the restrictions of Qprq |Pp and Qpr `1q |Pp are equal except for one chain;

3. if Ψ U is a ground state of H U and Q is an occupation that satisfies

P Q Ψ U ‰ 0 then (1.4.48) Q |PpzGppn p,Q q " Qpn p,Q q |PpzGppn p,Q q ,
where G p pn p,Q q is given by (1.4.47) and Q |B " pq i q iPB the restriction of the multi-index to B.

The issue of the cardinal of G p prq, for any r P 1, #Γ p , looks as hard to solve as the issue of order of degeneracy of the ground state of H U pL, nq. However, it seems relevant to assume that, except for some pathological Poisson point processes, one should get only few cases of equality for the energy levels of Γ p .

Assumption 1.4.2. For 1 ď r ď #Γ p , #G p prq ď nρ p´δ .

PROOFS

The next proposition states that if Assumption 1.4.1 and Assumption 1.4.2 are true for some p ě 1 then the number of particles in each piece of P p , except for at most 2nρ p´δ chains, stays the same for any ground state.

Proposition 1.4.3. Set p P N ‹ , δ P p0, 1q and ρ P p0, ρ δ q. Under Assumption 1.4.1 and Assumption 1.4.2, there exist a subset F p of P p and, for each piece i in F p , an integer q Fp i such that 1. the number of chains in P p zF p is less than or equal to 2nρ p´δ ; 2. if Ψ U is a ground state of H then it admits the decomposition Ψ U " Φ U,Fp ^ΩU,F c p with

(1.4.49) Φ U,Fp " ľ IPFp ψ U `I, pq Fp i q iPI ˘and Ω U,F c p " ÿ QPQ λpQq ľ IRFp ψ U `I, pq i q iPI ˘.
Proof. Let F p be the set of chains I in P p such that the function r Þ Ñ Qprq |I is constant on n´2nρ p´δ , n . By Corollary 1.4.1, for r ď n ´1, there is a unique chain I P P p for which Qprq PpzI " Qpr `1q PpzI . So, by induction on r ě n ´2nρ p´δ , F p is not empty and the numbers of chains in P p zF p is less than or equal to 2nρ p´δ . Then, for any piece i in F p , let q Fp i be the common value. Let Ψ U pL, nq be a ground state of the operator H U pL, nq. By Lemma 1.4.1 and Definition 1.4.2, we have the decomposition

(1.4.50) Ψ U " ÿ QPQ λpQq ľ I chain ψ U pI, pq i q iPI q
where ψ U pI, pq i q iPI q is a normalized wave function of H q I pU I q with q I " ř iPI q i and U I " because the left term, gathers all the chains that match with any r-th smallest element in pΓ p , ď p q for r P n ´nρ p´δ , n (see (1.4.47)) while the right term gathers all the chains that match with any element of pΓ p , ď p q between the pn ´2ρ p´δ q-th and the n-th ones.

Ť iPI ∆ i . Using Lemma 1.4.2, if an occupation Q satisfies P Q Ψ U ‰ 0 then
Using the third point of Corollary 1.4.1, one shows that, for every chain I P F p , the restriction map We recall that P 2 is the set of chains each of which carries at most two particles for any ground state:

pq i q iP 1,m L Þ Ñ pq i q iPI is constant on tQ P Q, P Q Ψ U pL, nq ‰ 0u, equal to pq Fp i q iPI . So
(1.4.53)

P 2 " ! I chain, ÿ iPI Y l i l ρ,U ] ď 2 
) .

Note that a chain that belongs to P 2 is either a unique piece or a pair of pieces. We also recall that pΓ 2 , ď 2 q is the ordered set of energy levels given by (1.4.54) Γ 2 " ! f U `I, κ ˘, I P P 2 , κ P t1, 2u

) and

(1.4.55) @I, J P P 2 , k, l P t1, 2u

f U pI, kq ă 2 f U pJ, lq ðñ $ ' & ' % f U pI, kq ă f U pJ, lq else last index of I ă first index of J else k ă l .
Lemma 1.4.4. With probability 1 ´OpL ´8q, for ρ small enough, in the thermodynamic limit

2n ă #Γ 2 ă 2n `1 `p3σ U `6qρ ˘.
Proof. Using e ´lρ,U " ρ `1 `p4σ U `5qρ `opρq ˘, Proposition 1.4.9 and Proposition 1.4.10, we compute

#Γ 2 " 2# ! ∆ i P P 2 ) `2# ! `∆j , ∆ k ˘P P 2 ) " 2Lp1 ´σU e ´lρ,U q 2 ´`e ´lρ,U ´e´3l ρ,U ˘`σ U `e´l ρ,U ´e´2l ρ,U ˘2" 2L `1 ´2σ U ρ `opρq ˘ρ`1 `p4σ U `5qρ `opρq ˘`1 `σU ρ `opρq " 2Lρ `1 `p3σ U `5qρ `opρq Ȋt
concludes the proof of Lemma 1.4.4.

We now prove that Assumption 1.4.1 holds when p " 2.

Lemma 1.4.5. For I P P 2 , f U pI, 2q ą f U pI, 1q.

Proof. If I P P 2 , then we have two cases.

(i) Either I " piq is a unique piece of length l i P rl ρ,U , 3l ρ,U q. The first energy level of ∆ i is

f U p∆ i , 1q " π 2 l 2 i
For the second energy level of ∆ i , we use Proposition 1.2.1.

(1.4.56)

f U p∆ i , 2q " 4π 2 l 2 i `γ l 3 i ´1 `op1q ¯ą f U p∆ i , 1q.
(ii) Or I " pj, kq is a pair of pieces of length l j , l k P rl ρ,U , 2l ρ,U q separated by a gap of length

d jk ď σ U .
The first energy level of the pair t∆ j ,

∆ k u is (1.4.57) f U ´t∆ j , ∆ k u, 1 ¯" min ´π2 l 2 j , π 2 l 2 k ¯.
Concerning the second energy level of this pair, we use Proposition 1.2.2.

(1.4.58)

f U ´t∆ j , ∆ k u, 2 ¯" max ´π2 l 2 j , π 2 l 2 k ¯`τ pd jk q l 3 j l 3 k ´1 `op1q ¯ą f U ´`∆ j , ∆ k ˘, 1 ¯.
This completes the proof of Lemma 1.4.5.

Combining Lemma 1.4.5 and Proposition 1.4.2, we get the following corollary.

Corollary 1.4.2. For r ď n, the minimum of E U P 2 when there are exactly r particles in the chains of P 2 is equal to the sum of the r smallest elements of Γ 2 .

1.4.2.2 Distribution of the energy levels among 2´particle systems By Corollary 1.4.2, we need to understand the distribution of the energy levels in Γ 2 . For λ ą 0, we define (1.4.59)

N U 2 pL, λq :"

1 L # x P Γ 2 , x P p´8, λs ( and N U 2 pλq :" lim LÑ8 N U 2 pL, λq.
The application N U 2 is called the counting function of Γ 2 . We evaluate it in the following proposition. Proposition 1.4.4. Define the application J by, for λ ą 0, Jpλq :" p1 ´σU e ´lρ,U q 2 ˜żD 1 pλq e ´u du `żD 2 pλq e ´u du (1.4.60)

`ż σ U 0 ˆżD 3 pλq 2e ´pu`vq dudv ˙dt `ż σ U 0 ˆżD 4 pλ,tq
2e ´pu`vq dudv ˙dt ¸.

where

D 1 pλq " " max ´lρ,U , π ? λ ¯, 3l ρ,U ı , D 3 pλq " " px, yq P " l ρ,U , 2l ρ,U ‰ 2 , y ě max ´x, π ? λ ¯* D 2 pλq " " max ´2l ρ,U , 2π ? λ `γ 8π 2 ¯, 3l ρ,U ı , D 4 pλ, tq " " px, yq P " l ρ,U , 2l ρ,U ‰ 2 , y ě x ě ´π ? λ `τ ptq 2y 3 ¯*.
and γ (resp. τ ptq) is given in Proposition 1.2.1 (resp. Proposition 1.2.2). Then, with probability 1 ´OpL ´8q, for every β ą 1, the counting function

N U 2 of Γ 2 satisfies (1.4.61) @λ ą 0 N U 2 pλq " Jpλq `Rβ with R β " Opρ β q.
Proof. A chain of P 2 is either a single piece ∆ i or a pair t∆ i , ∆ j u. In the first case, the energy levels of ∆ i are functions of a single parameter, the length l i P rl ρ,U , 3l ρ,U s. When I " t∆ i , ∆ j u, the energy levels of I are given by the triplet of parameters pl i , l j , d ij q P rl ρ,U , 3l ρ,U s ˆrl ρ,U , 3l ρ,U s ˆr0, σ U s. Fix β ą 1. We set a discretization of the above parameters with a constant step ρ β . We get a sequence of approximated energy levels Γ β 2 . We prove that the Hausdorff distance between Γ 2 and Γ β 2 is of order Opρ β q. So it is sufficient to compute the counting function of Γ β 2 at order Opρ β q. Since the Poisson process fix the statistics of pieces, one knows how many times each approximated energy level appears in Γ β 2 . We will use the expansion of the energy levels given by Proposition 1.2.1 and Proposition 1.2.2 to replace the condition "below λ" by some conditions on the parameters.

We now give the details. For I P P 2 , we distinguish two cases.

(i) If I " t∆ i u then l i P rkρ β , pk `1qρ β q for some k and for a P t1, 2u, we approximate the a-th energy level of the piece ∆ i by (1.4.62)

f a pkq " f U `r0, kρ β s, a ˘.
The parameter k goes from K 1 " tl ρ,U ρ ´β u to K 3 " t3l ρ,U ρ ´β u. For a P t1, 2u, we define

(1.4.63) p a pkq " # ! t∆ i u P P 2 , l i P rkρ β , pk `1qρ β q ) ;

(ii) if I " `∆j , ∆ k ˘then l j P rrρ β , pr `1qρ β q, l k P rsρ β , ps `1qρ β q and d j,k P rdρ β , pd `1qρ β q for some r, s and d and, for a P t1, 2u, we approximate the a-th energy level of the pair p∆ j , ∆ k q by

(1.4.64)

g a pr, s, dq " f U ´ r´rρ β , 0s, rdρ β , dρ β `sρ β s ( , 1 

¯

Here the parameters r, s go from K 1 to K 2 " t2l ρ,U ρ ´β u and the parameter d goes from 0 to D " tσ U ρ ´β u. For a P t1, 2u, we set (1.4.65) q a pr, s, dq " # ! `∆j , ∆ k ˘P P 2 , l j P rrρ β , pr `1qρ β q, l k P rsρ β , ps `1qρ β q, d j,k P rdρ β , pd `1qρ β q

) .

Let Γ β 2 be the set of approximated energy levels

(1.4.66) For β ą 1, there exists C ą 0 such that

Γ β 2 " ! f a pkq, a P t1, 2u, k P K 1 , K 3 ) Y ! g a pr,
d 8 pΓ 2 , Γ β 2 q ď Cρ β .
Proof. (of Lemma 1.4.6) By construction of Γ β 2 , from x P Γ 2 we compute x β P Γ β 2 . We study the cases separately.

(i) Either x β " f 1 pkq, then x belongs to rf 1 pk `1q, f 1 pkqs. Note that (1.4.67)

f 1 pkq ´f1 pk `1q " 2π 2 k 3 ρ 2β `O´1 k 4 ρ 2β ¯,
(ii) Or x β " f 2 pkq, then x belongs to rf 2 pk `1q, f 2 pkqs. Using (1.4.56), one computes that (1.4.68) f 2 pkq ´f2 pk `1q "

8π 2 k 3 ρ 2β `O´1 k 4 ρ 2β ¯,
(iii) Or x β " g 1 pr, s, dq. Without lost of generality, assume that r ă s. Then x belongs to rg 1 pr, s 1, dq, g 2 pr, s, dqs. Using (1.4.57), one computes that (1.4.69) g 1 pr, s, dq ´g1 pr, s `1, dq "

2π 2 s 3 ρ 2β `O´1 s 4 ρ 2β ¯,
(iv) Or x β " g 2 pr, s, dq. Without lost of generality, assume that r ă s. Then x belongs to rg 2 pr 1, s, dq, g 2 pr, s, dqs. Using (1.4.58), one computes that (1.4.70) g 2 pr, s, dq ´g2 pr `1, s, dq "

2π 2 r 3 ρ 2β `O´1 r 4 ρ 2β ¯, So inf b PΓ β 2 |x ´b| ď C 1 r 3 ρ 2β
Since k (resp. r and s) is of order Opl ρ,U ρ ´β q, we conclude

@x P Γ 2 inf b PΓ β 2 |x ´b| ď Cρ β .

PROOFS

By Lemma 1.4.4 and Lemma 1.4.6, for β ą 1,

1 L ˇˇˇˇ# " x P Γ 2 , x P p´8, λs * ´#" x P Γ β 2 , x P p´8, λs * ˇˇˇˇď #Γ 2 L d 8 pΓ 2 , Γ β 2 q (1.4.71) ď Cρ β`1 .
As for (1.4.59), let N U 2,β be the counting function of

Γ β 2 (1.4.72) @λ ą 0 N U 2,β pλq :" lim LÑ8 1 L # " x P Γ β 2 , x P p´8, λs * .
Then, for β ą 1,

(1.4.73) N U 2 pλq " N U 2,β pλq `Opρ β`1 q.
We will estimate N U 2,β . Set λ P pmin Γ β 2 , max Γ β 2 q. We translate the condition "energy level smaller than λ" in term of bounds for the parameters of the discretization.

For k P K 1 , K 3 ´1 , (1.4.74) f 1 pkq ď λ ô k ě π ? λ ρ ´β
Using the asymptotic (1.4.56), for large k, we compute that

(1.4.75) f 2 pkq " 4π 2 ´k ´γ 8π 2 ρ β ¯2ρ 2β `Rk with R k " op 1 k 3 ρ 2β q.
The remainder R k is negligible with respect to the gap between f 2 pk `1q and f 2 pkq (see (1.4.68)). It yields 

f 2 pkq ď λ ô 4π 2 ´k ´γ 8π 2 ρ β ¯2 ď λρ 2β (1.4.76) ô k ě ´2π ? λ `γ 8π 2 ¯ρ´β For r, s P K 1 , K 2 ´1
k 1 pλq :" R π ? λ ρ ´β V , k 2 pλq :" R ´2π ? λ `γ 8π 2 ¯ρ´β V , Bpλq :" " pu, vq P K 1 , K 2 ´1 2 , v ě max ´u, π ? λ ρ ´β ¯*,
Cpλ, dq :"

" pu, vq P K 1 , K 2 ´1 2 , v ě u ě ´π ? λ `τ pdρ β q 2v 3 ρ 3β ¯ρ´β * ,
εpr, sq :" 2 if r ‰ s and εpr, sq :" 1 otherwise.

By Lemma 1.4.9, for η P p 2 3 , 1q, with probability 1 ´OpL ´8q, we have for a P t1, 2u and for k, r, s, d p a pkq " L `1 ´σU e ´lρ,U ˘2e ´kρ β p1 ´e´ρ β q `ra pkqL η (1.4.81) q a pr, s, dq " L `1 ´σU e ´lρ,U ˘2e ´pr`sqρ β ρ β `1 ´e´ρ β ˘2 `sa pr, s, dqL η with r a pkq and s a pr, s, dq bounded for every k, r, s and d.

Using dominated convergence theorem, we get where J is given by (1.4.60). It concludes the proof of Proposition 1.4.4.

N U 2,β pλq " lim LÑ8 1 L # " x P Γ β 2 , x P p´8, λs * (1.4.82) " ´1 ´σU e ´lρ,U ¯2ˆK 3 ´1 ÿ k"k 1 pλq e ´kρ β p1 ´e´ρ β q `K3 ´1 ÿ k"k 2 pλq e ´kρ β p1 ´e´ρ β q `D´1 ÿ d"0 ÿ pr,
The following corollary states that Assumption 1.4.2 is true for p " 2.

Corollary 1.4.3. Set δ P p0, 1q. For every x P Γ 2 and in the thermodynamic limit,

(1.4.88)

1 n # y P Γ 2 , y " x ( " Opρ 2´δ q
Proof. Note that each domain of integration in the RHS of (1.4.60) is smooth for λ P p0, `8q. So, J is continuous on pmin Γ 2 , max Γ 2 q. By Proposition 1.4.4, we compute for β ą 1, h ą 0 and x P Γ 2 So J is continuous and increasing on pmin Γ 2 , max Γ 2 q. Note also that, by Lemma 1.4.4, we have, for λ ą max Γ 2 , N U 2 pλq ą 2ρ and, for 0 ă λ ă min Γ 2 , N U 2 pλq " 0.

1 n # ! y P Γ 2 , y " x ) ď L n ˇˇN U 2 pL,
Definition 1.4.3. For β ą 2, the β´Fermi energy level λ β ρ is the unique preimage of ρ ´Rβ`1 by the function J, with J and R β`1 defined in Proposition 1.4.4. We call β´Fermi length δ β ρ the length of a piece ∆ for which the ground state energy of the Dirichlet Laplacian ´d2 dx 2

D

|∆ is equal to the β´Fermi energy level λ β ρ .

By Definition 1.4.3 and Proposition 1.4.4, we have for any β ą 2

(1.4.92) N U 2 pλ β ρ q " ρ and δ β ρ "

π b λ β ρ .
Fix β ą 2 and consider all energy levels of Γ 2 below the β´Fermi energy level λ β ρ and fill the chains by induction following the proof of the Proposition 1.4.2. Then, by definition, we get an occupation Q β " pq β i q iP 1,m L for which the number of particles in P 2 is equal to n 2,Q β " min `n, LN U 2 pL, λ β ρ q ˘with N U 2 pL, .q given by (1.4.59). For L large enough (that depends on ρ and β),

(1.4.93) |N U 2 pL, λ β ρ q ´NU 2 pλ β ρ q| ď ρ β`1 .
So, using (1.4.92), in the thermodynamic limit, the number of particles in the chains of N 2 is less than Cnρ β for some constant C ą 0. Remembering β ą 2 and the left inequality of (1.4.18), for ρ small enough, one can change pq β i q iPN 2 so that the occupation Q β belongs to Q. Using Proposition 1.4.4 and more specifically the R.H.S of (1.4.60), one can get an approximate description of Q β in term of the pieces' lengths and δ β ρ . Disregarding Opnρ β q particles, it means that ‹ for a piece

∆ i P P 2 (a) if l i ă δ β ρ , then q β i " 0 (b) if l i P " δ β ρ , 2δ β ρ `γ 8π 2 ¯then q β i " 1 (c) if l i ě 2δ β ρ `γ 8π 2 then q β i " 2;
‹ for a pair p∆ j , ∆ k q P P 2 , assume l j ď l k (a) if l k ă δ β ρ then q β j " q β k " 0,

(b) if l j P " δ β ρ , δ β ρ `τpd j,k q 2l 3 k ¯then q β j " 0 and q β k " 1 (c) if l j ě δ β ρ `τpd j,k q 2l 3 k then q β j " q β k " 1
We can compare the occupation Q β with the occupation of the free operator Q 0 . Recall that in Q 0 there are k particles in pieces of length between kl ρ and pk `1ql ρ where l ρ is given by (1.1.10). We compute

ż D 1 pEρq e ´u du
`żD 2 pEρq e ´u du " e ´lρ ´e´3l ρ,U `e´2lρ´γ 8π 2 ´e´3l ρ,U (1.4.94)

" ρ ´1 ´ρ `Opρ 2 q ¯´1 `e´γ 8π 2 ρ `Opρ 2 q ¯, ż σ U 0 ż D 3 pEρq 2e ´pu`vq dtdudv " 2σ U ż lρ l ρ,U ż 2l ρ,U lρ e ´pu`vq dudv `2σ U ż 2l ρ,U ěvěuělρ
e ´pu`vq dudv (1.4.95)

" σ U ρ 2 `1 `Opρq ˘, ż σ U 0 ż D 4 pEρ,tq 2e ´pu`vq dtdudv ď 2σ U ż 2l ρ,U ěvěuělρ e ´pu`vq dudv (1.4.96) " σ U ρ 2 `1 `Opρq ˘.
So, N U p pE ρ q ď ρ ´1 ´2σ U ρ `Opρ 2 q ¯ˆ´1 ´ρ `Opρ 2 q ¯´1 `e´γ 8π 2 ρ `Opρ 2 q ¯`2σ U ρ ´1 `Opρq ¯(1.4.97)

" ρ ´1 `ρ`e ´γ 8π 2 ´1˘`O pρ 2 q ă ρ.

Thus, E ρ ă λ β ρ meaning that l ρ,U ă δ β ρ ă l ρ . For ρ small enough, 2l ρ,U `γ 8π 2 ě 2l ρ so 2δ β ρ `γ 8π 2 ě 2l ρ . It means that when interactions are on, we remove one particle from pieces of length close to 2l ρ but larger and put it in empty pieces of length close to l ρ but smaller. Similarly, for pair of pieces of length close to l ρ , one takes one particle out of the pair to fill a smaller piece that does not interact.

Hence, using (1.4.14) and (1.4.15), we define the approximated ground state (1.4.98)

Ψ β pL, nq " Ψ U pL, n, Q β q.
Proposition 1.4.5. Using the notations of Proposition 1.4.4, define the map J by J pλq " Lp1 ´σU e ´lρ,U q 2 ˆżD 1 pλ β ρ q f U pr0, us, 1qe ´u du `żD 2 pλ β ρ q f U pr0, us, 2qe ´u du (1.4.99)

`ż σ U 0 ż D 3 pλ β ρ q 2e ´pu`vq f U `pr´u, 0s, rt, v `tsq, 1 ˘dtdudv `ż σ U 0 ż D 4 pλ β ρ ,tq 2e ´pu`vq f U `r´u, 0s, rt, v `tsq, 2 ˘dtdudv ˙.
For β ą 2, for λ β ρ and Ψ β pL, nq defined as above, for δ P p0, 1q and 0 ă ρ ă ρ δ small enough, then, in the thermodynamic limit, with probability 1, (1.4.100) lim

LÑ`8 n L Ñρ @ H U pL, nqΨ β pL, nq, Ψ β pL, nq D n " 1 ρ J pλ β ρ q `Opρ 2´δ q.
Proof. Fix β ą 2. By construction of Ψ β pL, nq and using (1.4.16), we write

(1.4.101) @ H U pL, nqΨ β pL, nq, Ψ β pL, nq D " E U pL, n, Q β q " E U P 2 pQ β q `EU N 2 pQ β q
By Proposition 1.4.1, we know that, for δ P p0, 1q and ρ P p0, ρ 2,δ q,

(1.4.102)

E U N 2 pQ β q ď nρ 2´δ
It gives the amount of energy produced by particles we do not control precisely. One can check that it fits with the remaining part in (1.4.100). Otherwise, we compute E P 2 pQ β q using Γ β 2 , the approximate sequence of levels of energy for the good pieces that we introduced in the proof of Proposition 1.4.4. Following the method and the notations of Proposition 1.4.4, one derives the next formula. With probability 1 ´OpL ´8q and η P p 2 3 , 1q,

E P 2 pQ β q " Lp1 ´σU e ´lρ,U q 2 ˆżD 1 pλ β ρ q f U pr0, us, 1qe ´u du `żD 2 pλ β ρ q f U pr0, us, 2qe ´u du (1.4.103) `ż σ U 0 ż D 3 pλ β ρ q 2e ´pu`vq f U `pr´u, 0s, rt, v `tsq, 1 ˘dtdudv `ż σ U 0 ż D 4 pλ β ρ ,tq
2e ´pu`vq f U `pr´u, 0s, rt, v `tsq, 2 ˘dtdudv ˙`OpLρ β`1 q `OpL η q. Thus, in the thermodynamic limit, one derives

lim LÑ`8 n L Ñρ @ H U pL, nqΨ β pL, nq, Ψ β pL, nq D n " 1 ρ J pλ β ρ q `Opρ 2´δ q (1.4.104)
It concludes the proof of Proposition 1.4.5.

Remark 1.4.3. One could also set

(1.4.105) Ψ β pL, nq " ˆľ I P P 2 ψ U ´I, pq β i q iPI ¯˙^ˆľ I P N 2 ľ iPI ψ 0 ´∆i , q β i ¯ṁeaning
that, outside of P 2 , it behaves like a free state. By Remark 1.4.1, both states (1.4.98) and (1.4.105) give, up to the order Opρ 2´δ q, the same amount of energy per particle in the thermodynamic limit.

Comparison to the ground state energy

We compare our approximate ground state energy to the ground state energy, in the thermodynamic limit.

Proposition 1.4.6. For L ą 0, let Ψ U pL, nq be a ground state of H U pL, nq. For δ P p0, 1q and β ą 3, there exists ρ δ ą 0 such that, for ρ P p0, ρ δ q, the approximated ground state Ψ β pL, nq, given in Subsection 1.4.2.3, satisfies in the thermodynamic limit, with probability 1 ´OpL 

ě min Q E U P 2
Fix β ą 3 and δ P p0, 1q. Let Ψ β " Ψ U pQ β q be the state given by the construction of Subsection 1.4.2.3 and ρ 2,δ ą 0 given by Proposition 1.4.1. For ρ P p0, ρ 2,δ q, in the thermodynamic limit, we compute

0 ď xH U Ψ β , Ψ β y ´xH U Ψ U , Ψ U y ď E U P 2 pQ β q `EU N 2 pQ β q ´min Q E P 2 (1.4.109) ď E U P 2 pQ β q ´min Q E U P 2 `nρ 2´δ .
If Q is an occupation that minimizes E P 2 on Q then, by Proposition 1.4.2,

(1.4.110)

E U P 2 pQ β q ´EU P 2 pQq " n 2,Q β ÿ k"n 2,Q a k
where n 2,Q is the number of particles in P 2 for the occupation Q. So,

(1.4.111) pmin Γ 2 q n 2,Q β ´n2,Q L ď E U P 2 pQ β q ´EU P 2 pQq L ď pmax Γ 2 q n 2,Q β ´n2,Q L .
By Lemma 1.4.2,

(1.4.112)

0 ď n 2,Q β ´n2,Q L ď n ´n2,Q L ď nρ 2´δ L
for ρ P p0, ρ 2,δ q. Combining (1.4.111) and (1.4.112) we get

(1.4.113) lim LÑ`8 n L Ñρ E U P 2 pQ β q ´min Q E U P 2 n " Opρ 2´δ q.
Thus, using (1.4.109) and (1.4.113), one proves that, in the thermodynamic limit,

(1.4.114) lim

LÑ`8 n L Ñρ xH U Ψ β , Ψ β y ´xH U Ψ U , Ψ U y n " Opρ 2´δ q
It concludes the proof of Proposition 1.4.6.

Combining Proposition 1.4.5 and Proposition 1.4.6, we get Theorem 1.2.1.

1.4.2.5 Distance to the 1´particle and 2´particle density matrices of ground states

We recall that for Ψ P H n pLq, we define its 1-particle density matrix γ p1q Ψ (resp. 2-particle density matrix γ p2q Ψ ) as the operator on H 1 pLq (resp. H 2 pLq) given by (1.2.10) (resp. 1.2.11). The following lemma deals with the case of a vector Ψ P H n pLq which factorizes with respect to a given partition of r0, Ls.

Lemma 1.4.7. [KV20] Consider pU i q 1ďiďr a family of closed sets of R where U i X U j " H holds for every i ‰ j and |U i | is finite. Set, for pq i q 1ďiďr P N r , (1.4.115) Ψ "

r ľ i"1 ψpi, q i q
where ψpi, kq is a state that belongs to H k pU i q, the k-particle space on U i . Then the 1-particle γ p1q Ψ and the 2-particle γ p2q Ψ admit the following decompositions

(1.4.116) γ p1q Ψ " r ÿ i"1 γ p1q ψpi,q i q

and

(1.4.117)

γ p2q Ψ " r ÿ i"1 ˆγp2q ψpi,q i q ´1 2 γ p1q ψpi,q i q b γ p1q ψpi,q i q `1 2 ´γp1q ψpi,q i q b γ p1q ψpi,q i q ¯˝τ ˙`1 2 γ p1q Ψ b γ p1q Ψ ´1 2 ´γp1q Ψ b γ p1q Ψ ¯˝τ
with τ px 1 , x 2 , y 1 , y 2 q " px 1 , x 2 , y 2 , y 1 q.

We compare the 1-particle and 2-particle density matrices of our approximate ground state with those of any ground state. The following Proposition is a reformulation of Proposition 1.2.3 and Proposition 1.2.4. Proposition 1.4.7. Let Ψ U pL, nq be a ground state of H U pL, nq. For δ P p0, 1q, ρ P p0, ρ δ q and β ą 3, set the approximate ground state Ψ β pL, nq given in Subsection 1.4.2.3. Then, in the thermodynamic limit, with probability 1 ´OpL ´8q, one has

(1.4.118) 1 n › › ›γ p1q Ψ U pL,nq ´γp1q 
Ψ β pL,nq › › › tr ď 10ρ 2´δ and (1.4.119) 1 n 2 › › ›γ p2q Ψ U pL,nq ´γp2q 
Ψ β pL,nq › › › tr ď 45ρ 2´δ .
Proof. Let Ψ U pL, nq be a ground state of H U pL, nq for large n and L. We drop the indices "L" and "n". The proof uses that both Ψ U and Ψ β admit a factor that fixes all but Opnρ 2´δ q particles. Indeed, by Lemma 1.4.5 and Corollary 1.4.3, both Assumption 1.4.1 and Assumption 1.4.2 hold for p " 2. So, we apply Proposition 1.4.3. There exist a subset F 2 of P 2 and, for each piece i in F 2 , an integer q F 2 i such that the ground state Ψ U admits the following factorization (1.4.120)

Ψ U " ˆľ IPF 2 ψ U `I, pq F 2 i q iPI ˘˙^Ω U,F c 2 where (1.4.121) Ω U,F c 2 " ÿ QPQ λpQq ľ IRF 2 ψ U pI, pq i q iPI q 1.4. PROOFS
and ψ U pI, pq i q iPI q the ground state of h U `I, pq i q iPI ˘given by (1.4.9). Set

(1.4.122)

n F 2 " ÿ IPF 2 ÿ iPI q F 2 i
the number of particles in F 2 . Let Ψ β be our approximated ground state given by (1.4.98). By construction, we know

(1.4.123) @I P F 2 @i P I q β i " q F 2 i .

We denote

(1.4.124) Ω β,F c 2 " ľ IRF 2 φ U pI, pq β i q iPI q so that (1.4.125) Ψ β " ˆľ IPF 2 ψ U `I, pq F 2 i q iPI ˘˙^Ω β,F c 2 .
We deal with the 1-particle density matrix and 2-particle density matrix separately.

(i) By Lemma 1.4.7, the 1-particle density matrix of

Ψ U satisfies (1.4.126) γ p1q Ψ U " ÿ IP F 2 γ p1q ψ U `I,pq F 2 i q iPI ˘`γ p1q Ω U,F c 2 .
For any φ P H n pLq, |φ ąă φ| is a rank one projector and Since Ω U,F c 2 is a normalized wave function of H n´n F 2 pLq, we compute (1.4.129)

› › ›γ p1q Ω U,F c 2 › › › tr " n ´nF 2 ď max QPQ ÿ iPN q i `2#P 2 zF 2 ď 5nρ 2´δ
using Lemma 1.4.2 and the first point of Proposition 1.4.3 in the last inequality.

Thus,

› › ›γ p1q Ψ U ´γp1q Ψ β › › › tr " › › ›γ p1q Ω U,F c 2 ´γp1q Ω β,F c 2 › › › tr (1.4.130) ď › › ›γ p1q Ω U,F c 2 › › › tr `› › ›γ p1q Ω β,F c 2 › › › tr ď 10nρ 2´δ (1.4.131) (ii)
We expand the 2-particle density matrix of Ψ U according to Lemma 1.4.7.

(1.4.132)

γ p2q Ψ U " γ p2q Φ U,F 2 `γp2q Ω U,F c 2 `1 2 ´γp1q Φ U,F 2 bγ p1q Ω U,F c 2 `γp1q Ω U,F c 2 bγ p1q Φ U,F 2 ´`γ p1q Φ U,F 2 bγ p1q Ω U,F c 2 ˘˝τ ´`γ p1q Ω U,F c 2 bγ p1q Φ U,F 2 ˘˝τ ¯.
For φ P H n pLq, the corresponding 2-particle γ p2q φ is trace class and it satisfies (1.4.133)

› › ›γ p2q φ › › › tr " ż r0,Ls γ p2q φ px 1 , x 2 , x 1 , x 2 q dx
Then,

(1.4.134)

› › ›γ p2q Ω U,F c 2 › › › tr " `n ´nF 2 ˘`n ´nF 2 ´12 ď 25 2 n 2 ρ 4´2δ
and

(1.4.135)

› › ›γ p1q Φ U,F 2 b γ p1q Ω U,F c 2 › › › tr " › › › ´γp1q Φ U,F 2 b γ p1q Ω U,F c 2 ¯˝τ › › › tr " n F 2 `n ´nF 2 ˘ď 5n 2 ρ 2´δ .
The same inequalities hold for Φ β,F 2 and Ω β,F c 2 . So,

(1.4.136)

› › ›γ p2q Ψ U ´γp2q Ψ β › › › tr ď 45n 2 ρ 2´δ .
It concludes the proof of Proposition 1.4.7. Lemma 1.4.8. Let pF i q 1ďiďp be nonnegative functions defined on N, with F i p0q " 0. Define (1.4.137) F :

Appendix

# N p ÝÑ R px 1 , . . . , x p q Þ ÝÑ ř p i"1 F i px i q
and G :

# N ÝÑ R r Þ ÝÑ min x 1 `¨¨¨`xp"r F px 1 , . . . , x p q
Assume that, for every i, F i is strictly convex. Then, 1. the function G is convex;

2. for r ě 1, Gprq is exactly the sum of the r smallest elements of Γ " F i pk `1q ´Fi pkq, i P 1, m , k P N ( , taken with multiplicity.

Proof.

1. For r ě 1, choose px r 1 , . . . , x r p q P N p so that

Gprq " F px r 1 , . . . , x r p q.

We prove that one can set px r`1 1 , . . . , x r`1 p q P N p satisfying (1.4.138)

D!j r`1 P 1, p `xr`1 j r`1 " x r j r`1 `1˘a nd `@i ‰ j r`1 x r`1 i " x r i ˘.
Pick py 1 , . . . , y p q P N p with ř p i"1 y i " r `1. Assume that there is y i 0 ą x r i 0 `1. Without loss of generality we consider i 0 " 1. Then F py 1 , . . . , y p q ´F px r 1 `1, x r 2 . . . , x r p q "F py 1 ´1, y 2 , . . . , r `1 ´p´1 ÿ i"1 y i q ´F px r 1 , . . . , r ´p´1 ÿ i"1

x r i q `F1 py 1 q ´F1 py 1 ´1q `F1 px r 1 q ´F1 px r 1 `1q ą0 1.4. PROOFS Lemma 1.4.9. Fix β P p 2 3 , 1q and refer to the specific terminology in Definition 1.4.1. For L large and a, b, c, d, f, g P rl ρ,U , logpLq log logpLqs, with probability 1 ´OpL ´8q, 1. the number of chains of size 1 with length contained in ra, bs is Lp1 ´σU e ´lρ,U q 2 pe ´a ´e´b q `SL L β where |S L | is bounded; 2. the number of chains of size 2 such that the length of the left piece is contained in ra, bs, the length of the right piece is contained in rc, ds and the distance between the pieces is contained in rf, gs, is equal to

Lp1 ´σU e ´lρ,U q 2 pg ´f qpe ´a ´e´b qpe ´c ´e´d q `SL L β

where |S L | is bounded.

Proof.

1. Let P a,b :" ti P 1, m , l i P ra, bsu. Then,

tchain of size 1u X P a,b " P a,b z ´ti P P a,b , Dj ą i, l j ě l ρ,U , d i,j ď σ U u Y ti P P a,b , Dj ă i, l j ě l ρ,U , d j,i ď σ U u
We use Proposition 1.4.9, Proposition 1.4.10 and #pA Y Bq " #A `#B ´#pA X Bq to conclude.

2. Let R a,b,c,d :" tpi, jq P 1, m 2 , i ă j, l i P ra, bs, l j P rc, dsu. Then,

tchain of size 2u X R a,b,c,d " R a,b,c,d z ´tpi, jq P R a,b,c,d , Dk ą j, l k ě l ρ,U , d j,k ď σ U u Y ti P R a,b,c,d , Dk ă i, l k ě l ρ,U , d k,i ď σ U u
We conclude as for (1). with C ą 0 that only depends on U .

PROOFS

Proof. We derive with changes of variables ż U py ´xq ˇˇφ r0,ls p ^φr0,ls q ˇˇ2px, yqdxdy " ż U py ´xq ˆφr0,ls p pxq 2 φ r0,ls q pyq 2 ´φr0,ls p pxqφ r0,ls q pyqφ r0,ls p pyqφ r0,ls q pxq ˙dxdy " 4l ´1 ż l ´l ż 1 0 U puq ˆsin 2 pπqpul ´1 `vqq sin 2 pπpvq ´sinpπppul ´1 `vqq sinpπqpul ´1 `vqq sinpπpvq sinpπqvq ˙dudv 

" 4l ´3 ż l ´l ż 1 0 U puqπ 2 u 2 ˆq2
ż l 1 0 ż l 0 U pr `s `dq sin 2 pπprl 1´1 q sin 2 pπqsl ´1qdrds " 4l ´1l 1´1 ż `8 0 ż u 0 U pu `dq sin 2 `πppu ´vql 1´1 ˘sin 2 `πqvl ´1qdudv " 4π 4 l ´3l 1´3 p 2 q 2 ż `8 0 ż u 0 U pu `dqpu ´vq 2 v 2 dudv `Opl ´4l 1´3 `l´3 l 1´4 q ď 8π 4 l ´3l 1´3 p 2 q 2
ż `8 0 U pu `dqu 5 du.

Proof of Lemma 1.3.1

For any Λ P U ι , there exists a unique chain I such that ι belongs to I. Since

(1.4.141)

E U pn, Λ, Qq " ÿ J chain
e U `J, pq j q jPJ ˘" e U `I, pq i q iPI ˘`constant,

we have to give an holomorphic extension of e U `I, pq i q iPI ˘on r U ι . Set, for Λ P U ι ,

(1.4.142) S I pΛq " h U `I, pq i q iPI ˘.

If one gets an holomorphic extension Ă S I of the operator-valued function S I on r U ι then, by analytic perturbation theory (see II.1.8 of [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF]), it yields that the ground state of Ă S I , namely r e I , is an holomorphic extension of e U `I, pq i q iPI ˘on r U ι . So the problem reduces to the study of the operator-valued function S I given by (1.4.142), or more precisely the operator-valued function R I where, for t ă 0 and Λ P U ι , (1.4.143)

R I : # R ´ˆU ι ÝÑ B `Hκ I px m q pt, Λq Þ ÝÑ `t ´SI pΛq ˘´1 .
We recall that (1.4.144)

h U pI, pq i q iPI q " κ I ÿ κ"1 ˆκI ´1 â j"1 1 L 2 pr0,xmsq ˙b h I b ˆκI â j"κ`1 1 L 2 pr0,xmsq ˙`W κ I on ľ iPI ´qi ľ j"1
L 2 p∆ i q where (i) κ I " ř iPI q i is the total number of particles in I;

(ii) h I is the one-particle operator defined by

(1.4.145)

h I " à iPI ˆ´d 2 dx 2 D |∆ i ˙on L 2 `r0, x m s ˘;
(iii) W k is the multiplication operator given by (1.4.146)

W k px 1 , . . . , x k q " ÿ iăj U px j ´xi q.
So, for any t ă 0 and Λ P U ι ,

(1.4.147)

R I pt, Λq " R 0 I pt, Λq `1 ´Wκ I R 0 I pt, Λq ˘´1 
with R 0 I p¨, Λq the resolvant of the free operator h 0 `I, pq i q iPI ˘. We denote (1.4.148)

N q " pn 1 , . . . , n q q P N q , 0 ă n 1 ă ¨¨¨ă n q (

The eigenstates of the free operator h 0 `I, pq i q iPI ˘are given by (1.4.149)

ψ ν " â iPI q i ľ j"1 φ ∆ i ν i j where (1.4.150) ν " pν i j q iPI 1ďjďq i P ź iPI N q i and φ ∆ i k pxq " ? 2 ? l i sin ´πk x ´xi l i ¯1∆ i pxq.
Remember that pφ ∆ i k q kě0 is an orthonormal basis of L 2 p∆ i q and, for i P I,

(1.4.151)

q i ľ j"1 φ ∆ i ν i j px 1 , . . . , x q i q " 1 ? q i ! ÿ σPSq i εpσq q i ź k"1 φ ∆ i ν i σpkq px k q.
First, we prove that for t ă 0, R 0 I pt, ¨q admits an holomorphic extension on r U ι . We compute xR 0 I pt, Λqψ ν , ψ µ y for any µ, ν P ś iPI N q i and Λ P U ι .

(1.4.152)

xR 0 I pt, Λqψ ν , ψ µ y " 1 t ´řiPI ř q i j"1 ´νi j π l i ¯2 δ ν,µ " 1 t ´constant ´`π lι ˘2´ř qι j"1 pν ι j q 2 ¯δν,µ .
So, xR 0 I pt, ¨qψ ν , ψ µ y has an holomorphic extension, namely Č R 0 I pt, ¨qpψ ν , ψ µ q, on r U ι . We also note that

sup ν,µ P ś iPI N q i
ˇˇČ R 0 I pt, ¨qpψ ν , ψ µ q ˇˇis uniformly bounded on Ă U ‹ . Then, there is a unique operator valued application

Č R 0 I pt, ¨q : Ă U ‹ ÝÑ B `Hκ I px m q ˘ 1.4. PROOFS such that x Č R 0 I pt, ¨qψ ν , ψ µ y " Č R 0
I pt, ¨qpψ ν , ψ µ q for any ν, µ P ś iPI N q i . We deduce from above discussion that Č R 0 I pt, ¨q is holomorphic on U ‹ .

On the other hand, for any µ, ν P ś iPI N q i , we compute

@ W κ I ψ ν , ψ µ D . One notices that # pi, jq, ν i j ‰ µ i j ( ą 2 ñ @ W κ I ψ ν , ψ µ D " 0.
We enumerate the other cases. Assume that I " pi 1 , . . . , i r q.

(i) If ν " µ then @ W κ I ψ ν , ψ ν D " r ÿ k"1 q i k pq i k ´1q 2 ż ∆ q i k i k U `x1 ´x2 ˘ˇˇˇq i k ľ j"1 φ ∆ i k ν i k j pXq ˇˇˇ2 dX (1.4.153) `r´1 ÿ k"1 q i k q i k`1 ż ∆ q i k i k ˆ∆q i k`1 i k`1 U `y1 ´x1 qi k ľ j"1 φ ∆ i k ν i k j pXq q i k`1 ľ j"1 φ ∆ i k`1 ν i k`1 j pY q ˇˇˇ2 dXdY " r ÿ k"1 ÿ 1ďaăbďq i k ż ∆ 2 i k U `x1 ´x2 ˘ˇˇφ ∆ i k ν i k a ^φ∆ i k ν i k b ˇˇ2px 1 , x 2 q dx 1 dx 2 `r ÿ k"1 q i k ÿ a"1 q i k`1 ÿ b"1 ż ∆ i k ˆ∆i k`1 U `y1 ´x1 ˘ˇˇφ ∆ i k ν i k a px 1 qφ ∆ i k`1 ν i k`1 b py 1 q ˇˇ2 dx 1 dy 1 " r ÿ k"1 ÿ 1ďaăbďq i k ż r0,1s 2 U `li k px ´yq ˘ˇˇφ ν i k a ^φν i k b ˇˇ2px, yq dxdy `r ÿ k"1 q i k ÿ a"1 q i k`1 ÿ b"1 ż r0,1s 2 U `li k`1 y `li k x `di k ,i k`1 ˘ˇˇφ ν i k a pxqφ ν i k`1 b pyq ˇˇ2 dxdy
with some changes of variables for the last equality and the notation φ k pxq " ? 2 sinpπkxq1 r0,1s pxq.

(ii) Else there is a unique couple pk ‹ , a ‹ q such that ν

i k‹ a‹ ‰ µ i k‹ a‹ then @ W κ I ψ ν , ψ ν D " q i k‹ pq i k‹ ´1q 2 ż ∆ q i k‹ i k‹ U `x1 ´x2 ˘qi k‹ ľ j"1 φ ∆ i k‹ ν i k‹ j pXq q i k‹ ľ j"1 φ ∆ i k‹ µ i k‹ j pXq dX (1.4.154) `ÿ kPtk‹´1, k‹u q i k q i k`1 ż ∆ q i k i k ˆ∆q i k`1 i k`1 U `y1 ´x1 qi k ľ j"1 φ ∆ i k ν i k j pXq q i k`1 ľ j"1 φ ∆ i k`1 ν i k`1 j pY q q i k ľ j"1 φ ∆ i k µ i k j pXq q i k`1 ľ j"1 φ ∆ i k`1 µ i k`1 j pY q dXdY " q i k‹ ÿ b"1 ż ∆ 2 i k‹ U `x ´y˘ˇˇˇφ∆ i k‹ ν i k‹ a‹ ^φ∆ i k‹ ν i k‹ b ˇˇpx, yq ˇˇφ ∆ i k‹ µ i k‹ a‹ ^φ∆ i k‹ µ i k‹ b ˇˇpx, yq dxdy `qi k‹´1 ÿ b"1 ż ∆ i k‹´1 ˆ∆i k‹ U `y1 ´x1 ˘φ∆ i k‹´1 ν i k‹´1 b px 1 qφ ∆ i k‹ ν i k‹ a‹ py 1 qφ ∆ i k‹´1 µ i k‹´1 b px 1 qφ ∆ i k‹ µ i k‹ a‹ py 1 q dx 1 dy 1 `qi k‹ ÿ b"1 ż ∆ i k‹´1 ˆ∆i k‹ U `y1 ´x1 ˘φ∆ i k‹ ν i k‹ a‹ px 1 qφ ∆ i k‹`1 ν i k‹`1 b py 1 qφ ∆ i k‹ µ i k‹ a‹ px 1 qφ ∆ i k‹`1 µ i k‹`1 b py 1 q dx 1 dy 1 " q i k‹ ÿ b"1 ż r0,1s 2
U `li k‹ px ´yq ˘ˇˇφ (iii) Else there is a unique pair of couple, pj ‹ , a ‹ q and pk ‹ , b ‹ q, such that ν 

i j‹ a‹ ‰ µ i j‹ a‹ and ν i k‹ b‹ ‰ µ i k‹ b‹ . (iii-i) If j ‹ " k ‹ then @ W κ I ψ ν , ψ ν D " q i k‹ pq i k‹ ´1q 2 ż ∆ q i k‹ i k‹ U `x1 ´x2 ˘qi k‹ ľ j"1 φ ∆ i k‹ ν i k‹ j pXq q i k‹ ľ j"1 φ ∆ i k‹ µ i k‹ j pXq dX (1.4.155) `ÿ kPtk‹´1, k‹u q i k q i k`1 ż ∆ q i k i k ˆ∆q i k`1 i k`1 U `y1 ´x1 qi k ľ j"1 φ ∆ i k ν i k j pXq q i k`1 ľ j"1 φ ∆ i k`1 ν i k`1 j pY q q i k ľ j"1 φ ∆ i k µ i k j pXq q i k`1 ľ j"1 φ ∆ i k`1 µ i k`1 j pY q dXdY " ż ∆ 2 i k‹ U `x1 ´x2 ˘ˇˇφ ∆ i k‹ ν i k‹ a‹ ^φ∆ i k‹ ν i k‹ b‹ ˇˇpx 1 , x 2 q ˇˇφ ∆ i k‹ µ i k‹ a‹ ^φ∆ i k‹ µ i k‹ b‹ ˇˇpx 1 , x 2 q dx 1 dx 2 `0 " ż r0,
(iii-ii) Else k ‹ " j ‹ `1 then @ W κ I ψ ν , ψ ν D " 0 `qi j‹ q i k‹ ż ∆ q i j‹ i j‹ ˆ∆q i k‹ i k‹ U `y1 ´x1 (1.4.156) q i j‹ ľ c"1 φ ∆ i j‹ ν i j‹ c pXq q i k‹ ľ c"1 φ ∆ i k‹ ν i k‹ c pY q q i j‹ ľ c"1 φ ∆ i j‹ µ i j‹ c pXq q i k‹ ľ c"1 φ ∆ i k‹ µ i k‹ c pY q dXdY " ż ∆ i j‹ ˆ∆i k‹ U `y1 ´x1 ˘φ∆ i j‹ ν i j‹ a‹ px 1 qφ ∆ i k‹ ν i k‹ b‹ py 1 qφ ∆ i j‹ µ i j‹ a‹ px 1 qφ ∆ i k‹ µ i k‹ b‹ py 1 q dx 1 dy 1 " ż r0,1s 2 U `li k‹ y `li j‹ x `di j‹ ,i k‹ ˘φν i j‹ a‹ pxqφ ν i k‹ b‹ pyqφ µ i j‹ a‹ pxqφ µ i k‹ b‹ pyq dxdy (iii-iii) Else |j ‹ ´k‹ | ě 2 then (1.4.157) @ W κ I ψ ν , ψ ν D " 0.
Thus, for any µ, ν P ś iPI N q i , the application (1.4.158) "

T I pψ ν , ψ µ q : Λ Þ ÝÑ @ W κ I ψ ν , ψ ν D is a linear combination of the maps (1.4.159) γ a,b,c,d : l Þ ÝÑ
ˆσU l ˙2 ż r0,1s 2 upσ U pt ´sqqφ a p σ U s l qφ b p σ U s l qφ c p σ U l tqφ d p σ U t l qdsdt `p1 ´σU qσ U l 2 ż r0,1s 2 upσ U p1 ´tqqφ a ´s `p1 ´sq σ U l ¯φb ´s `p1 ´sq σ U l φc ´s `pt ´sq σ U l ¯φd ´s `pt ´sq σ U l ¯dsdt " ˆσU l ˙2 ż r0,1s 2 upσ U pt ´sqqφ a p σ U s l qφ b p σ U s l qφ c p σ U l tqφ d p σ U t l qdsdt `p1 ´σU qσ U l 2 ż r0,1s 2 upσ U p1 ´tqqφ c ´s `p1 ´sq σ U l ¯φd ´s `p1 ´sq σ U l φa ´s `pt ´sq σ U l ¯φb ´s `pt ´sq σ U l ¯dsdt
Since pφ k q kě1 and u are holomorphic, the above computation yields that γ a,b,c,d admits a holomorphic extension r γ a,b,c,d on t|l| ą l ρ,U u. Similarly, we get, for 0 ď h ă σ U and l, l 1 ą 0,

δ a,b,c,d,h pl, l 1 q " ż σ U ´h l 1 0 φ a pxqφ b pxq ´ż ´l1 x`σ U ´h l 0 u `ly `l1 x `h˘φ c pyqφ d pyq dy ¯dx (1.4.162) " σ U ´h l 1 ż r0,1s 2 pσ U ´hqp1 ´sq l u `pσ U ´hqs `h˘φ a ´pσ U ´hqs l 1 ¯φb ´pσ U ´hqs l 1 φc ´pσ U ´hqtp1 ´sq l ¯φd ´pσ U ´hqtp1 ´sq l ¯dsdt
We expand δ a,b,c,d,h on tpl, l 1 q P C 2 , |l|, |l 1 | ą l ρ,U u, using the expression (1.4.162). We denote r δ a,b,c,d,h this extension. It is holomorphic on both variables separately.

By substituting r γ a,b,c,d (resp. r δ a,b,c,d,h ) instead of r γ a,b,c,d (resp. r δ a,b,c,d,h ), one proves that T I pψ ν , ψ µ q has an holomorphic extension Ă T I pψ ν , ψ µ q on U ‹ given by (??). From the points (i), (ii) and (iii), and using the expressions (1.4.161) and (1.4.162), we know that sup ν,µ P ś iPI N q i ˇˇĂ T I pψ ν , ψ µ q ˇˇis uniformly bounded on r U ι . Then, there is a unique operator valued application

Ă T I : r U ι ÝÑ B `Hκ I px m q such that x Ă T I ψ ν , ψ µ y " Ă T I pψ ν ,
ψ µ q for any ν, µ P ś iPI N q i . We deduce from above discussion that Ă T I is holomorphic on r U ι . Then, we combine the previous results with (1.4.147) to set an extension for R I . For t large enough,

} Ă T I Č R 0 I p´t, ¨q} ă 1, the serie of general term ´Ă T I Č R 0 I p´t, ¨q¯n is normally convergent. So, ´1´Ă T I Č R 0 I p´t, ¨q¯´1
is holomorphic on r U ι . Thus, for t large enough, we set on r U ι the holomorphic operator-valued Č R I p´t, ¨q given by

(1.4.163) Č R I p´t, Λq " Č R 0 p´t, Λq ´1 ´Ă T I Č R 0 I p´t, ¨q¯´1 @Λ P r U ι
Note that if l ι is real, we recover that Č R I pt, Λq is the resolvant of h U `I, pq i q iPI ˘. So, we get an holomorphic extension of S I on r U ι . It concludes the proof of Lemma 1.3.1.

Chapter 2

Entanglement entropy of the pieces model

Bipartite setting

For 0 ă L ‹ ă L, the one-particle space H " L 2 pr0, Lsq admits the following spatial decomposition (2.1.1)

H " L 2 `"0, L ‹ ‰˘' L 2 `"L ‹ , L ‰ q.
We denote H ‹ " L 2 `r0, L ‹ s ˘. Our definition of the entanglement entropy with respect to H ‹ will follow the steps of Helling, Leschke and Spitzer [START_REF] Helling | A special case of a conjecture by Widom with implications to fermionic entanglement entropy[END_REF]. For n ě 2, the spatial decomposition of the n-particule space H n " Ź n H does not give a product, as the number of particles in r0, L ‹ s is a variable. We bypass this issue using the Fock space description.

Definition 2.1.1. Let H be a one-particle Hilbert space. The corresponding fermionic Fock space Γ a.s pHq is the following graded algebra

Γ a.s pHq " C 8 à N "1 H N .
where H N " Ź N H.

Proposition 2.1.1. [AF01] Let H " K 1 ' K 2 be a bipartite decomposition in closed Hilbert spaces. The application ι, given by

(2.1.2) ιpe i 1 ^¨¨¨^e i k ^fj 1 ^¨¨¨^f j l q " e i 1 ^¨¨¨^e i k b f j 1 ^¨¨¨^f j l
for pe 1 , . . . q (resp. pf 1 , . . . q) an orthonormal basis of K 1 (resp. K 2 ), provides an isomorphim ι between Γ a.s pHq and Γ a.s pK 1 q b Γ a.s pK 2 q.

Then, we state Definition 2.1.2. Let H " K 1 ' K 2 be a bipartite decomposition in closed Hilbert spaces. Let η be a pure state in H, meaning that η is a positive trace-class operator on Γ a.s pHq with tr η " 1 and tr η 2 " 1.

The reduced density matrix of η in K 1 , denoted η 1 , is the unique bounded operator on Γ a.s pK 1 q such that (2.1.3) @O P B `Γa.s pK 1 q ˘tr BpΓa.spHqq `ηι

´1`O b 1 Γa.spK 2 q ˘ι˘" tr BpΓa.spK 1 qq pη 1 Oq.
where ι is the isomorphism of Proposition 2.1.1. The entanglement entropy of η with respect to the subspace K 1 , denoted S K 1 pηq, is given by the von Neumann entropy of the reduced density matrix η 1 , meaning that (2.1.4) S K 1 pηq " ´trpη 1 lnpη 1 qq.
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From now on, we consider a ground state Ψ U pL, nq of the pieces model H U pL, nq given by (1.1.4) that belongs to a unique Q´occupied space H Q pLq. We set (2.1.5)

Ψ U " ¨¨¨' 0 ' Ψ U pL, nq ' 0 ' . . . in Γ a.s pHq and (2.1.6) η U " x . , Ψ U y Ψ U on Γ a.s pHq.
The rank-one operator η U is a pure state in H.

Notation 2.1.1. η U ‹ designates the reduced density matrix of η U in H ‹ and S ‹ pη U q is the entanglement entropy of η U with respect to H ‹ .

Results and perspectives

Recall that, by Chapter 1, a ground state Ψ U pL, nq P H Q pLq admits the following decomposition (2.2.1)

Ψ U pL, nq " ľ IPP ψ U `I, pq i q iPI ˘.
where P designates the set of the chains. We claim that the entanglement entropy associated to a given realization of the point process depends only on the chain in which the bipartition falls. More precisely, the entanglement entropy of η U with respect to H ‹ is given by (2.2.2) S ‹ pη U q " ´κ‹ ÿ

k"1 tr `Ks ln K s with piq κ ‹ is the number of particles in the chain I ‹ that contains L ‹ , piiq K s is the operator of kernel K s px, yq " ˆκ‹ s ˙żrL‹,Ls κ‹´s ψ U I‹ px, zqψ U I‹ py, zq dz.

We would like to use this formula to express the expected value of the entanglement entropy S ‹ pη U q in the thermodynamic limit. Our intuition is that, as for the ground state energy, if one substract the expected value of the free case, the first correction would be given by the chains of P 2 . By Proposition 1.4.3, for δ P p0, 1q and ρ P p0, ρ δ q, a ground state ΨpL, nq factorizes as

Ψ U " Φ U,F 2 ^ΩU,F c 2 with F 2 a subset of P 2 , (2.2.3) Φ U,F 2 " ľ IPF 2 ψ U `I, pq F 2 i q iPI ȃnd the number of particles in F c 2 is of order Opnρ 2´δ q. We set (2.2.4) Ă η U " @ . , Φ U,F 2 D Φ U,F 2 .
We estimate the entanglement entropy for the 2´particle systems. For two particles in a single piece, we prove the following result.

Proposition 2.2.1. For l ą l ‹ ą 0, set t ‹ " l ‹ {l. Let s U l‹ `r0, ls, 2 ˘be the entanglement entropy corresponding to the ground state of h U `r0, ls, 2 ˘and with respect to L 2 `r0, l ‹ s ˘. Then, there exists δ P p0, 1q such that the entanglement entropy of the system with two particles in r0, ls satisfies s U l‹ `r0, ls, 2 ˘" s 0 l‹ `r0, ls, 2 ˘´2 ´żr0,t‹s 2 ψ 0 ψ l K ¯´1 `ln `}ψ 0 1 r0,t‹s 2 } 2 ˘(2.2.5)

´2xψ l K , ξ `y`1 `ln µ `˘´2xψ l K , ξ ´y`1 `ln µ ´2 ´żrt‹,1s 2 ψ 0 ψ l K ¯´1 `ln `}ψ 0 1 rt‹,1s 2 } 2 ˘¯`o `l´p1
`δq where (i) s 0 l‹ `r0, ls, 2 ˘designates the entanglement entropy associated to the non-interacting ground state;

(ii) ψ 0 " φ 2 ^φ1 and ψ l K are defined in Proposition 3.1.2;

(iii) µ `and µ ´are the eigenvalues of Ă K 0 with kernel @x, y P r0, t ‹ s Ă K 0 px, yq " 2 ż 1 t‹ ψ 0 px, zqψ 0 py, zq dz;

(iv) ξ ˘is given by

(2.2.6) ξ ˘" xu ˘, φ 2 y `u˘b φ 1 ˘´xu ˘, φ 1 y `u˘b φ 2 with pu `, u ´q the eigenstates of Ă K 0 .
By Corollary 3.3.1, the first non-trivial terms in formula (2.2.5) are bounded from above by O `l´1 ˘. We think that these terms are of order O `l´1 ˘. In the case of a pair of interacting particles in two distinct pieces, we get that the expansion of the entanglement entropy does not have term of such order. Proposition 2.2.2. For l ą 0, d ě 0 and a ě 1, we consider l ‹ P p´al, d`lq. Let s U l‹ `pr´al, 0s, rd, d`lsq, 2 be the entanglement entropy corresponding to the ground state of h U `pr´al, 0s, rd, d `lsq, p1, 1q ˘and with respect to L 2 `r´al, l ‹ s ˘. Then, the entanglement entropy of the system with one particle in each interval of the pair pr´al, 0s, rd, dl sq satisfies s U l‹ `pr´al, 0s, rd, d `lsq, 2 ˘" s 0 l‹ `pr´al, 0s, rd, d `lsq, 2 ˘`O `l´3 where s 0 l‹ `pr´al, 0s, rd, d `lsq, 2 ˘denote the entanglement entropy associated to the non-interacting ground state.

Using the notations of Proposition 2.2.1, Proposition 2.2.2 and, as for J (see (1.2.7)), we consider for λ P p0, `8q

Lpλq " `1 ´σU e ´lρ,U ˘2˜ż

D 1 pλq ż u 0 s U v pr0, us, 1qe ´u dudv `żD 2 pλq ż u 0 s U v pr0, us, 2qe ´u dudv `ż σ U 0 ˆżD 3 pλq ż v`t ´u 2e ´pu`vq s U w `pr´u, 0s, rt, v `tsq, 1 ˘dudvdw ˙dt `ż σ U 0 ˆżD 4 pλ,tq ż v`t ´u 2e ´pu`vq s U w `pr´u, 0s, rt, v `tsq, 2 ˘dudvdw ˙dt ¸. (2.2.7)
Applying a construction similar to Theorem 1.2.1, we get Theorem 2.2.1. In the thermodynamic limit, the expected value of the entanglement entropy S ‹ `Ă η U ˘, see (2.2.4), satifies for any δ P p0, 1q

(2.2.8) E " S ‹ `Ă η U ˘‰ " Lpλ ρ q `opρ 2´δ q
where λ ρ is given by Theorem 1.2.1 and L is defined in (2.2.7).

Following the above discussion, we conjecture that in the thermodynamic limit, for δ P p0, 1q,

(2.2.9)

E " S ‹ pη U q ‰ " E " S ‹ `Ă η U ˘‰ `o`ρ 2´δ ˘.
We already know that ' if L ‹ belongs to a piece that is not in the convex hull of any chain then S ‹ pη U q " 0;

' if L ‹ belongs to the convex hull of a given chain then, with probability Opρ 5{2 q, L ‹ is in the convex hull of a chain in PzP 2 ; in fact, Lemma 2.2.1. For r ě 1, let pa i q iďr , pb i q iďr , pα i q iďr , pβ i q iďr be positive sequences. Under conditions of comptatibility, the probability that L ‹ belongs to a chain of size 1 such that for every i ď r ' the distance to the left end of the i´th piece is contained in ra i , a t `αi s, ' the distance to the right end of the i´th piece is contained in rb i , b i `βi s,

is equal to `1 ´σU e ´lρ,U ˘2´ź iďr α i β i ¯exp ´´ÿ iďr `bi `βi ´pa i `αi q ˘¯.
So, we are looking for a uniform (in the variable ρ) bound for the entanglement entropy corresponding to the ground state of a k´particle subsystem. In fact, an exponential majoration in the variable k would be sufficient. Finally, one could also use the expansions given in Proposition 2.2.1 and Proposition 2.2.2 to compute the thermodynamic limit of (2.2.10) E " S ‹ pη U q ´S‹ pη 0 q ‰ up to an error o `ρ| ln ρ| ´p1`εq ˘for some ε P p0, 1q.

Proofs

Expression of the reduced density matrix

In this section, we fix a realization of the Poisson point process. Let Ψ U pL, nq P H Q pLq be a ground state of H U pL, nq so that (2.3.1)

Ψ U pL, nq " ľ IPP ψ U `I, pq i q iPI ˘.
where P designates the set of the chains. We assume that the cut L ‹ falls into the convex hull C `I‹ ˘of the chain I ‹ . We denote (i) P int the set of chains strictly included to r0, L ‹ q, and Ψ U P int " Ź IPP int ψ U `I, pq i q iPI ˘;

(ii) P ext the set of chains strictly included to pL ‹ , Ls, and

Ψ U Pext " Ź IPPext ψ U `I, pq i q iPI ˘; 2.3. PROOFS (iii) ψ U I‹ " ψ U `I‹ , pq i q iPI‹ ˘;
(iv) κ ‹ " ř iPI‹ q i the number of particles in the chain I ‹ .

Proposition 2.3.1. Using the above notations, we set, for 0 ď s ď κ ‹ , the kernel K s such that (2.3.2) @ x, y P ´CpI ‹ q X r0, L ‹ s ¯s K s px, yq " ˆκ‹ s ˙żrL‹,Ls κ‹´s ψ U I‹ px, zqψ U I‹ py, zq dz.

We write K s the corresponding self-adjoint operator on Ź s L 2 `CpI ‹ q X r0, L ‹ s ˘. Then, the reduced density matrix η U ‹ is the operator on Γ a.s `H‹ ˘defined by

(2.3.3) η U ‹ " ι ´1ˆ¨¨¨' 0 ' κ‹ à s"0 ´x . , ψ U P int y ψ U P int b K s ¯' 0 ' . . . ˙ι
where ι is the isomorphism of Proposition 2.1.1 with respect to the spatial decomposition

H ‹ " L 2 `r0, L ‹ szCpI ‹ q ˘' L 2 `CpI ‹ q X r0, L ‹ s ˘.
Proof. For r, s, u, v ě 0, let (i) pξ r,k q kPN be an orthonormal basis of Ź r L 2 `r0, L ‹ szCpI ‹ q ˘with ξ κ int ,0 " Ψ U P int ;

(ii) pe s,k q kPN be an orthonormal basis of

Ź s L 2 `CpI ‹ q X r0, L ‹ s ˘;
(iii) pf u,k q kPN be an orthonormal basis of Ź u L 2 `CpI ‹ q X rL ‹ , Ls ˘;

(iv) pς v,k q kPN be an orthonormal basis of

Ź v L 2 `r0, Lszpr0, L ‹ s Y CpI ‹ qq ˘with ς κext,0 " Ψ U Pext .
Set Φr,s,u,v i,j,k,l " ¨¨¨' 0 ' ξ r,i ^es,j ^fu,k ^ςv,l ' 0 ' . . . for pr, s, u, v, i, j, k, lq P N 8 . Then ´Φr,s,u,v i,j,k,l ¯is a orthonormal basis of Γ a.s pHq. Since Ψ U " ¨¨¨' 0 ' ξ κ int ,0 ^ψU I‹ ^ςκext,0 ' 0 ' . . . , we compute for O P BpΓ a.s pH ‹ qq tr `Ks ln K s with K s given by the kernel (2.3.2). We note that it only depends on the chain I ‹ that contains L ‹ , and, more precisely, the ground state of the associated subsystem.

tr BpΓa.spHqq `ηU ι ´1`O b 1 ˘ι˘" ÿ r, s,u,v ÿ i,j,k,l A Φr,s,u,v i,j,k,l , Ψ U 
L E A Ψ U L , ι ´1`O b 1 ˘ιΦr,s,u,v i,j,k,l E (2.3.4) " ÿ s`u"κ‹ ÿ j,k A Φκint,s,u,κext 0,j,k,0 , Ψ U L E A Ψ U L , ι ´1`O b 1 ˘ι Φκint,s,u,κext 0,j,k,0 E Using that (2.3.5) ι ´1`O b 1 ˘ι Φκint,s,u,κext 0,j,k,0 " `Op¨¨¨' 0 ' ξ κ int ,0 ^es,j ' 0 ' . . . q ˘^`¨¨¨' 0 ' f u,k ^ςκext,0 ' 0 ' . . . ȃnd (2.3.6) A Φκint,s,u,κext 0,j,k,0 , Ψ U E " @ e s,j ^fu,k , ψ U I‹ D we get (2.3.7) tr BpΓa.spHqq `ηU ι ´1`O b 1 ˘ι˘" ÿ s`u"κ‹ ÿ i,j,k @ e s,i ^fu,k , ψ U I‹ D @ e s,j ^fu,k , ψ U I‹ D @ Φκint,s 0,i
In the next subsection, we develop the case of the chains containing 2 particles.

Entanglement entropy for 2´particle systems

For each 2´particle system, we adapt the bipartite setting of Section 2.1. Using the results of Chapter 3, we prove the first order expansions of the associated entanglement entropies. with ψ U pr0, ls, 2q the ground state of the 2-particle system in r0, ls (see Definition 1.4.2). Set t " l‹ l ą 0. We use the notations of Section 3.1, Chapter 3. Using the isometry O l defined in (3.1.2), we note that the eigenvalues of K s are those of the operator F s acting on L 2 pr0, ts s q with kernel (2.3.19) @x, y P r0, ts s F s px, yq " ˆ2 s ˙żrt,1s 2´s ψ l 0 px, zqψ l 0 py, zq dz.

where ψ l 0 is the ground state of the 2-particle system h l . We recall that

(2.3.20) h l " ´B2 Bx 2 ´B2 By 2 `U l on L 2 `r0, 1s ˘^L 2 `r0, 1s ȃnd the decomposition (2.3.21) ψ l 0 " ψ 0 `ψl K b 1 `}ψ l K } 2 .
' First, we consider the scalar F 0 that satisifies

(2.3.22) F 0 " c l ´}ψ 0 1 rt,1s 2 } 2 `2 ż rt,1s 2 ψ 0 ψ l K `}ψ l K 1 rt,1s 2 } 2 with c l " `1 `}ψ l K } 2 ˘´1 . By Proposition 3.1.2, (2.3.23) }ψ l K } 2 ď C l 2 and ˇˇż rt,1s 2 ψ 0 ψ l K ˇˇ2 ď C l 2
So, (2.3.24)

´tr `K0 ln K 0 ˘" ´}ψ 0 1 rt,1s 2 } 2 ln `}ψ 0 1 rt,1s 2 } 2 ˘´2 ´żrt,1s 2 ψ 0 ψ l K ¯´1 `ln `}ψ 0 1 rt,1s 2 } 2 ˘¯`O ´1 l 2 ¯.
The term ş rt,1s 2 ψ 0 ψ l K is at most of order O `1 l ˘. We do not have proof of the corresponding lower bound.

' Simirlarly, we consider the rank-one operator F 2 that satisfies (2.3.25)

F 2 " c l `ψ0 `ψl K ˘1r0,ts 2 b `ψ0 `ψl K ˘1r0,ts 2 . Since }ψ l K } 2 ď C l 2 , we get (2.3.26) ´tr `K2 ln K 2 ˘" ´}ψ 0 1 r0,ts 2 } 2 ln `}ψ 0 1 r0,ts 2 } 2 ˘´2 ´żr0,ts 2 ψ 0 ψ l K ¯´1 `ln `}ψ 0 1 r0,ts 2 } 2 ˘¯`O ´1 l 2 ¯.
' Finally, we set, for x, y P p0, tq, prove that I 0 `Iˆi s a operator of rank at most 4. We show that ´tr `F1 ln F 1 ˘is given by the two highest eigenvalues of I 0 `Iˆu p to a controlled error. We state that, to prove (2.2.5), it is sufficient to get that ´tr `IK ln I K ˘is Opl ´p1`δq q.

I
For k ě 1, let φ k " ? 2 sinpπk . q be the k´th eigenstate of ´d2 dx 2 D }r0,1s . We have ψ 0 " φ 2 ^φ1 . We compute for any px, yq P r0, ts 2 , (2.3.28) I 0 px, yq " }τ 2 } 2 υ 1 pxqυ 1 pyq `}τ 1 } 2 υ 2 pxqυ 2 pyq ´2xτ We estimate the eigenvalues of I 0 `Iˆ. Let u `, u ´be the eigenstates of I 0 with respective eigenvalues µ `ą µ ´ą 0. If υ i " a i `u``a i ´u´t hen

I 0 `Iˆ" µ `u`b u ``µ ´u´b u ´`υ 2 b ω 1 ´υ1 b ω 2 `ω1 b υ 2 ´ω2 b υ 1 (2.3.31) " ´?µ `u``1 ? µ ``a 2 `ω1 ´a1 `ω2 ˘¯b ´?µ `u``1 ? µ ``a 2 `ω1 ´a1 `ω2 ˘?µ ´u´`1 ? µ ´`a 2 ´ω1 ´a1 ´ω2 ˘¯b ´?µ ´u´`1 ? µ ´`a 2 ´ω1 ´a1 ´ω2 ˘1 ? µ ``a 2 `ω1 ´a1 `ω2 ˘b 1 ? µ ``a 2 `ω1 ´a1 `ω2 1 ? µ ´`a 2 ´ω1 ´a1 ´ω2 ˘b 1 ? µ ´`a 2 ´ω1 ´a1 ´ω2
We note that, using Proposition 3.1.2, for k P t1, 2u

}ω k } 2 " ż t 0 ˇˇż 1 t ψ l K px, zqφ k pzq dz ˇˇ2 dz ď }φ k } 2 }ψ l K } 2 ď C l 2 .
So,

(2.3.32)

I 0 `Iˆ" v `b v ``v ´b v ´`R
where we have set

(2.3.33) v ˘" ? µ ˘u˘`1 ? µ ˘`a 2 ˘ω1 ´a1 ˘ω2 ȃnd
where R is a negative operator of norm Opl ´2q and of rank at most 2. The eigenvalues of v `b v ``v ´b v ´satisfies, for δ P p0, 1q,

λ ˘" }v `}2 `}v ´}2 ˘b`} v `}2 ´}v ´}2 ˘2 `4ˇˇ@ v `, v ´Dˇ2 2 (2.3.34) " µ ˘`2 @ u ˘, a 2 ˘ω1 ´a1 ˘ω2 D `o´1 l 1`δ ¯.
Since 

¯.

Let pe i q ią0 be an ONB of L 2 pr0, tsq and pe i q iă0 be an ONB of L 2 prt, 1sq. We decompose ψ l K as

(2.3.37) ψ l K " ÿ iăj a i,j pe i ^ej q.

(2.3.47)

1 ? 1 ´t ż 1 t ψ l K px, yq sin ´|i|π x ´t 1 ´t ¯dx " ´?1 ´t |i|π ż 1 t Bψ l K Bx px, yq ´1 ´cos ´|i|π x ´t 1 ´t ¯¯dx By Cauchy-Schwarz, ˇˇˇż 1 t ψ l K px, yqe i pxq dx ˇˇˇ2 ď 1 ´t i 2 π 2 ˆż 1 t ˇˇB ψ l K Bx px, yq ˇˇ2 dx ˙ˆż 1 t ˇˇ1 ´cos ´|i|π x ´t 1 ´t ¯ˇˇ2 dx ď 4 i 2 π 2 ż 1 0 ˇˇB ψ l K Bx px, yq ˇˇ2 dx
So, for any i ă 0,

(2.3.48) }χ i } 2 ď 4 i 2 π 2 › › › Bψ l K Bx › › › 2 ď C i 2 › › › b h 0 K ´el 0 ψ l K › › › 2 ď C i 2 ˆ1 l
where the last inequality is obtained from (3.3.16) and (3.3.22). On the other hand, we have by Proposition 3.1.2

(2.3.49)

}χ i } 2 ď }ψ l K } 2 ď C l 2 .
Thus, for any i ă 0 and θ P p0, 1q,

(2.3.50)

}χ i } 2 ď C l 2´θ i 2θ .
With θ P p 1 2 , 1q and β P `2p1 `2θq ´1, 1 ˘, we derive from Lemma 2.3.1 that there exists C ą 0 such that

(2.3.51) ´tr `Iβ K ˘ď C l p2´θqβ .
Let pλ k q kě1 be the decreasing sequence of the eigenvalues of the Hilbert-Schmidt operator v `b v `v ´b v ´`I K . Since 0 ď I K ď }ψ l K } 2 ď Cl ´2, one gets the following bounds:

(2.3.52)

λ `ď λ 1 ď λ ``C l 2 and λ ´ď λ 2 ď λ ´`C l 2 .
Otherwise, we shall apply twice a lemma resulting from the Courant-Fischer-Weyl min-max principle.

Lemma 2.3.2. [START_REF] Kirsch | An invitation to random Schrödinger operators[END_REF] Let K be a compact selfadjoint operator on an Hilbert space H with eigenvalues µ 1 ě µ 2 ě . . . , u P H and α P R. Then K `αx¨, uy u has eigenvalues pλ k q kPN with λ k ď µ k´1 for any k ě 2. We deal with these cases separately.

piq First, since the ground state ψ U `pr´al, 0s, rd, d `lsq, p1, 1q ˘px, yq is equal to zero if both x and y are in the same interval we have (2.3.64) K 2 " 0.

Set t " al´l‹ al ą 0. We will use the notations of Section 3.2, Chapter 3. Using the isometry O l,a given by (3.2.2), the eigenvalues of K s , s P t0, 1u, are equal to those of the operator F s on L 2 prt, 1s s q defined by kernel (2.3.65) @x, y P rt, 1s s F s px, yq " ż r0,ts 1´s ˆr0,1s ψ l,a 0 px, zqψ l,a 0 py, zq dz.

where ψ l,a 0 is the ground state of h l,a . We recall that (2.3.66)

h l,a " ´1 a 2 B 2 Bx 2 ´B2 By 2 `U l,a
and the decomposition (2.3.67) ψ l,a 0 "

ψ a 0 `ψl,a K b 1 `}ψ l,a K } 2 .
' For t P r0, 1s, the scalar F 0 is given by

F 0 " c l,a ´› › ψ a 0 1 r0,tsˆr0,1s › › 2 `2 ż t 0 ż 1 0 ψ a 0 px, yqψ l,a K px, yq dxdy `› › ψ l,a K 1 r0,tsˆr0,1s › › 2 (2.3.68)
with c l,a " `1 `}ψ l,a K } 2 ˘´1 . By Proposition 3.2.2, we know that

› › ψ l,a K 1 r0,tsˆr0,1s › › 2 ď C a 3 l 6 and ˇˇż t 0 ż 1 0 ψ a 0 px, yqψ l,a K px, yq dxdy ˇˇď › › ψ a 0 › › › › ψ l,a K › › ď C a 3{2 l 3
On the other hand, we apply Lemma 2.3.2 to F 1 . So, for β P p0, 1q, (2.3.77)

ÿ kě2 λ β k ď c β l,a tr `Ă F 1 β Ȋt
remains to prove for some β P p0, 1q

(2.3.78) tr `Ă F 1 β ˘" Opl ´3q.

We shall apply Lemma 2.3.1 and, thus, we estimate }γ j } 2 for j ą 0.

}γ j } 2 " ÿ ją0 ˇˇ@ ψ l,a K , f i b φ j Dˇˇ2 (2.3.79) " ż 1 t ˇˇˇż 1 0 ψ l,a
K px, yqφ j pyq dy ˇˇˇ2 dx.

Since ψ a 0 and ψ l,a 0 are in H 1 0 `r0, 1s 2 ˘so does ψ l,a K . Then, by integration by parts,

(2.3.80)

ż 1 0 ψ l,a K px, yq sinpπjyq dy " ´1 πi ż 1 0 Bψ l,a K By px, yq ´1 ´cospπjyq ¯dy
So, by Cauchy-Schwarz, for any j ą 0,

(2.3.81) }γ j } 2 ď 4 j 2 π 2 › › › Bψ l,a K By › › › 2 ď C j 2 › › › b h 0,a K ´el,a 0 ψ l,a K › › › 2 ď C j 2 ˆ1 a 3 l 4
where the last inequality is obtained from (3.3.16) and (3.3.86). We conclude to (2.3.78) using Lemma 2.3.1. Thus,

(2.3.82) ´trpK 1 ln K 1 q " }φ 1 1 rt,1s } 2 ln `}φ 1 1 rt,1s } 2 ˘`O `l´3 ˘.

piiq Each interval contains exactly one particle so (2.3.83) K 0 " 0 and K 2 " 0.

In fact, the case piiq, meaning with a cut in the gap is similar to the case piq if the cut is exactly at 0. We conclude that

(2.3.84)

´trpK 1 ln K 1 q " O `l´3 ˘.
piiiq We note that by definition of ψ U `pr´al, 0s, rd, d `lsq, p1, 1q ˘,

(2.3.85) K 0 " 0.

Set t " l‹´d l ą 0. Again, using the isometry O l,a given by 3.2.2, the eigenvalues of K s , s P t1, 2u, are eaqual to those of F s with respective kernel @x, y P r0, 1s F 1 px, yq " ż 1 t ψ l,a 0 px, zqψ l,a 0 py, zq dz (2.3.86) @x 1 , y 1 P r0, 1s, @x 2 , y 2 P r0, ts F 2 px 1 , x 2 , y 1 , y 2 q " ψ l,a 0 px 1 , x 2 qψ l,a 0 py 1 , y 2 q (2.3.87) where ψ l,a 0 is the ground state of h l,a given by (2.3.66).

Let pσ k q kě1 be the decreasing sequence of eigenvalues of 

F 1 . Since 0 ď F 1 " c l,
ÿ kě2 σ β k ď c l,a tr ´Ă F 1 β ¯.
It only remains to prove that for some β P p0, 1q

(2.3.100)

´tr Ă F 1 ln Ă F 1 " O `l´3 ˘.
We shall use Lemma 2.3.1. We set, for j ă 0, g j pxq " So, We conclude to (2.3.100) using Lemma 2.3.1. Thus, (2.3.103) ´trpK 1 ln K 1 q " ´}φ 1 1 rt,1s } 2 ln `}φ 1 1 rt,1s } 2 ˘`o `l´3 ˘.

}γ j } 2 " ÿ ią0 ˇˇxψ l,a K , φ i b g j ˇˇ2 (2.3.102) " ż 1 0 ˇˇˇż 1 t ψ l,a g j pyq dy ˇˇˇ2 dx ď 4 j 2 π 2 › › › Bψ l,a
' On the other hand, the operator F 2 is rank-one with positive eigenvalue λ given by λ " c l,a ´› › ψ a 0 1 r0,1sˆr0,ts

› › 2 `2 ż 1 0 ż t 0 ψ a 0 px, yqψ l,a K px, yq dxdy `› › ψ l,a K 1 r0,1sˆr0,ts › › 2 (2.3.104)
We know, by Proposition 3.

2.2, that › › ψ l,a K › › 2 ď C a 3 l 6 and ˇˇż 1 0 ż t 0 ψ a 0 px, yqψ l,a K px, yq dxdy ˇˇď › › ψ a 0 › › › › ψ l,a K › › ď C a 3{2 l 3 . So, (2.3.105) ´trpK 2 ln K 2 q " ´› › φ 1 1 r0,ts › › 2 ln ´› › φ 1 1 r0,ts › › 2 ¯`O `l´3 ˘.

PROOFS

As a conclusion, we prove that if the cut L ‹ lies in a pair of pieces then up to an error Opl ´3q, the entanglement entropy behaves similarly to the free case:

(2.3.106) s U l‹ `pr´al, 0s, rd, d `lsq, 2 ˘" s 0 l‹ `pr´al, 0s, rd, d `lsq, 2 ˘`O `l´3 ˘.

It concludes the proof of Proposition 2.2.2.

Chapter 3 2´particle systems

Interaction in a single piece

Let U : R Ñ R be nonnegative, even, bounded and compactly supported function, and let σ U be the diameter of its support. We consider two fermions in an interval r0, ls that repel one another because of the potential U , that is, on L 2 `r0, ls ˘^L 2 `r0, ls ˘, the following operator

(3.1.1) h U `r0, ls, 2 ˘" ˆ´d 2 dy 2 D |r0,ls ˙b 1 L 2 pr0,lsq `1L 2 pr0,lsq b ˆ´d 2 dx 2 D |r0,ls ˙`U px ´yq
with Dirichlet boundary conditions. We set

(3.1.2) O l : # L 2 `r0, 1s 2 ˘ÝÑ L 2 `r0, ls 2 φ Þ ÝÑ l ´1 φ ˝pθ l q ´1
where θ l px, yq " plx, lyq.

Then, the operator h U pr0, ls, 2q is unitarily equivalent, by action of O l , to the operator l ´2h l where

(3.1.3) h l " ´B2 Bx 2 ´B2 By 2 `U l on L 2 `r0, 1s ˘^L 2 `r0, 1s with 
Dirichlet boundary conditions and U l px, yq " l 2 U `lpx´yq ˘. The operator h l is essentially self-adjoint and its ground state is non-degenerate (see Proposition 1.3.1). We denote pe l 0 , ψ l 0 q the ground state couple of the operator h l .

One checks that the eigenvalues of the free operator h 0 are (3.1.4) e p,q " π 2 pp 2 `q2 q pe 0 :" e 1,1 q for p ą q ě 1, with the corresponding eigenfunctions (3.1.5) ψ p,q px, yq " ? 2 `sinpπpxq sinpπqyq ´sinpπpyq sinpπqxq ˘pψ 0 :" ψ 2,1 q.

Klopp and Veniaminov give the expansion of the ground state energy of h l .

Proposition 3.1.1. [KV20] For l ą 0, the ground state energy e l 0 of the operator h l , given by (3.1.3), admits the following expansion (3.1.6) e l 0 " 5π 2 `γ l `oplq with γ ą 0 when U ‰ 0.

We use their results to study the ground state itself.

Proposition 3.1.2. Let pe l 0 , ψ l 0 q be the ground state couple of h l given by (3.1.3). Decompose the ground state ψ l 0 on Spanpψ 0 q ' Spanpψ 0 q K , (3.1.7)

ψ l 0 " 1 b 1 `}ψ l K } 2 ´ψ0 `ψl K Then, (3.1.8) }ψ l K } 2 " C l 2 `o´1 l 2 ¯.
We also get an L 2 ´expansion of the ground state (see Corollary 3.3.1).

Interaction between two pieces

Let U : R Ñ R be nonnegative, even, bounded and compactly supported function, and let σ U be the diameter of its support. This time, we consider two fermions lying in separate pieces r´al, 0s and rd, d `ls. The corresponding operator is given by

h U ´pr´al, 0s, rd, d `lsq, p1, 1q ¯"ˆ´d 2 dy 2 D |r´al,0s ˙b 1 L 2 prd,d`lsq `1L 2 pr´al,0sq b ˆ´d 2 dx 2 D |rd,d`ls (3.2.1) `U px ´yq on L 2 `r´al, 0s ˘^L 2 `rd, d `ls ˘.
for l ą 0, d ě 0 and a ą 1, and with Dirichlet boundary conditions. We set

(3.2.2) O l,a : # L 2 `r0, 1s 2 ˘ÝÑ L 2 `r´al, 0s ˆrd, d `ls φ Þ ÝÑ a ´1{2 l ´1 φ ˝pθ l,a q ´1
where θ l,a px, yq " p´alx, ly `dq.

Then, the operator h U ´pr´al, 0s, rd, d`lsq, p1, 1q ¯is unitarily equivalent, by action of O l,a , to the operator

l ´2h l,a where (3.2.3) h l,a " ´1 a 2 B 2 Bx 2 ´B2 By 2 `U l,a
with Dirichlet boundary conditions and U l,a px, yq " l 2 U palx `ly `dq. Similarly, the operator h l,a is essentially self-adjoint and its ground state is non-degenerate (see Proposition 1.3.1). We denote pe l,a 0 , ψ l,a 0 q the ground state couple of the operator h l,a .

One checks that the eigenvalues of the free operator h 0,a are (3.2.4) e a p,q " π 2 pa ´2p 2 `q2 q pe a 0 :" e a 1,1 q for p, q ě 1, with the corresponding eigenfunctions (3.2.5) ψ a p,q px, yq " 2 sinpπpxq sinpπqyq pψ a 0 :" ψ a 1,1 q.

As for the case of a single piece, we give an expansion of the ground state energy.

Proposition 3.2.1. For d ě 0, a ě 1 and large l ą 0, the ground state energy e l,a 0 of the operator h l,a 0 admits the following expansion (3.2.6) e l,a 0 " π 2 ´1 `1 a 2 ¯`τ pdq a 3 l 4 ´1 `op1q with τ pdq a positive function that vanishes for d ą σ U .

We also study the ground state itself.

Proposition 3.2.2. Let pe l,a 0 , ψ l,a 0 q be the ground state couple of h l,a given by (3.2.3). Decompose the ground state ψ l,a 0 on Spanpψ a 0 q ' Spanpψ a 0 q K , (3.2.7) ψ l,a 0 "

1 b 1 `}ψ l,a K } 2 ´ψa 0 `ψl,a K Then, (3.2.8) }ψ l,a K } 2 " C a 3 l 6 `o´1 l 6
¯.

Proofs

In this section, the index p˚q is empty or equal to paq. It refers to either the 2-particle system in single piece or the 2-particle system in two pieces.

Firsts observations

To begin with, one remarks that for both cases Since U is compactly supported (see Assumption ??), the interaction U l,p˚q is restricted to the grey areas given by Figure 3.1. As l Ñ 8, the area on the left square piq converges to the diagonal with speed Opl ´1q, but the area on the right square piiq goes to p0, 0q with speed Opl ´2q. Then, one sets for each case a partial isometry Γ l p˚q that emphasizes the grey area behaviour. More precisely, we define (i) for a single piece,

(3.3.2) Γ l : # L 2 `r0, 1s 2 ˘ÝÑ L 2 pR ˆr0, 1sq f Þ ÝÑ 1 ? l 1 Ω l pf ˝γ´1 q
where Ω l " ! pu, yq P R ˆr0, 1s, y `u l P p0, 1q

) and γ : # r0, 1s 2 ÝÑ R ˆr0, 1s px, yq Þ ÝÑ `lpx ´yq, y ˘;

(ii) for two pieces

(3.3.3) Γ l,a : # L 2 `r0, 1s 2 ˘ÝÑ L 2 pR 2 `‹q f Þ ÝÑ 1 l ? a 1 Ω l,a pf ˝pγ a q ´1q
where Ω l,a "

! pu, vq P R 2 `‹, u l P p0, 1q, v al P p0, 1q
) and γ a :

# r0, 1s 2 ÝÑ R 2 `‹ px, yq Þ ÝÑ plx, layq . 
One can use these partial isometries to get an upper bound for the perturbation of the ground state energy due to the interaction. For l ą 0

@ U l ψ 0 , ψ 0 D " @ Γ l U l ψ 0 , Γ l ψ 0 D (3.3.4) " 2l ż Rˆr0,1s
U puq ´sin `πpy `ul ´1q ˘sin `2πy ˘´sin `πy ˘sin `2πpy `ul ´1q ˘¯2 dudy

" 2l ´1 ż Rˆr0,1s
U puqπ 2 u 2 ´4 cos 2 p2πyq sin 2 pπyq `cos 2 pπyq sin 2 p2πyq ´4 cosp2πyq cospπyq sinp2πyq sinpπyq ¯dudy `Opl ´2q using Taylor expansions (3.3.5) ď Cl ´1 since U is compactly supported whereas l ą 0, d ą 0 and a ě 1

@ U l,a ψ a 0 , ψ a 0 D " @ Γ l,a U l,a ψ a 0 , Γ l,a ψ a 0 D (3.3.6) " 4a ´1 ż R 2 `‹ U pu `v `dq sin 2 `πul ´1˘s in 2 `πvpalq ´1˘d udv " 4a ´3l ´4π 2 ż R 2 
`‹ U pu `v `dqu 2 v 2 dudv `Opa ´2l ´5q using Taylor expansions ď Ca ´3l ´4 since U is compactly supported.

We recover orders in l ą 0 which are similar to those given in Proposition 3.1.1 and Proposition 3.2.1. We would like to change these inequalities into approximations.

Perturbation theory for the ground state and ground state energy

Following from above discussion, we apply the decomposition Spanpψ p˚q 0 q ' Spanpψ p˚q 0 q K to each system. Using Π The proofs of Proposition 3.1.2 and Proposition 3.2.2 focus on the estimation of the norm of the right-hand side.

We derive the resolvant

(3.3.11) R l,p˚q K pzq " Π p˚q K ´hl,p˚q K ´el,p˚q 0 ¯´1 Π p˚q K
that appears in both (3.3.9) and (3.3.10), using Krein's formula,

(3.3.12) R l,p˚q K pzq " b R 0,p˚q K pzq ´1 `bR 0,p˚q K pzqU l,p˚q b R 0,p˚q K pzq ¯´1 b R 0,p˚q K pzq.
Applying the following algebraic tool The following step of both proofs manages to understand the behaviour in l Ñ 8 of the L 2 ´function ? U l,p˚q ψ p˚q 0 and the bounded operator ˆ1 `T l,p˚q ´T l,p˚q

¯‹˙´1

. We rescale these quantities through the partial isometry Γ l,p˚q , given by 3.3.2 or 3.3.3, to amplify the impact of the interaction. Yet the methods to compute the rescaled datas differ depending on the cases. We develop the specificities below.

Case of a single piece

Proof. (of Proposition 3.1.1, see [START_REF] Klopp | Interacting electrons in a random medium: a simple one-dimensional model[END_REF])

We refer to Subsection 6.1 of [START_REF] Klopp | Interacting electrons in a random medium: a simple one-dimensional model[END_REF] for the technical details of this proof. Following from the discussion of the previous section, Klopp and 

`B? U l ψ 0 , ˆ1 `T l ´T l ¯‹˙´1 ? U l ψ 0 F (3.3.19) " e 0 `1 l B φ b χ 0 , ´`1 `K˘´1 b I ¯φ b χ 0 F `o´1 l " 5π 2 `1 l }χ 0 } 2 A φ, `1 `K˘´1 φ E `o´1 l ¯. They set γ " }χ 0 } 2 A φ, `1 `K˘´1 φ E .
It concludes the proof of Proposition 3.1.1.

We now give the details for the result on the ground state itself, which is inspired by the techniques of [START_REF] Klopp | Interacting electrons in a random medium: a simple one-dimensional model[END_REF].

Proof. (of Proposition 3.1.2)

From the discussion of the previous section, we apply (3.3.16).

(3.3.20)

› › ›ψ l K › › › 2 " › › ›R 0 K `el 0 ˘?U l ˆ1 `T l ´T l ¯‹˙´1 ? U l ψ 0 › › › 2
where we denote T l " ? U l b R 0 K pe l 0 q and R 0 K pzq is the resolvant of the restriction of the free operator to Spanpψ 0 q K . Using the basis of the eigenfunctions pψ p,q q pąqě1 , we expand

› › ›ψ l K › › › 2 " ÿ pąq pp,qq‰p2,1q ˇˇˇA ψ p,q , R 0 K pe l 0 q ? U l ˆ1 `T l ´T l ¯‹˙´1 ? U l ψ 0 E ˇˇˇ2 (3.3.21) " ÿ pąq pp,qq‰p2,1q 1 e p,q ´el 0 ˇˇAψ p,q , pT l q ‹ `1 `T l pT l q ‹ ˘´1 ? U l ψ 0 Eˇˇˇ2 .
With the notations (3.3.17) and (3.3.18) (or Subsection 6.1 of [START_REF] Klopp | Interacting electrons in a random medium: a simple one-dimensional model[END_REF]), one can notice that

› › ›T l‹ `1 `T l T l‹ ˘´1 ? U l ψ 0 › › › 2 " A ? U l ψ 0 , `1 `T l T l‹ ˘´1 T l T l‹ `1 `T l T l‹ ˘´1 ? U l ψ 0 E (3.3.22) " 1 l @ φ b χ 0 , " Kp1 `Kq ´2 b I ‰ φ b χ 0 D `opl ´1q ď C l .
On the other hand, we recall that the sequence ´`1 `Γl T l T l‹ Γ l‹ ˘´1 ¯lą0 is uniformly bounded by 1 and it converges to `1 `K˘´1 b I strongly (see subsection 6.1 of [START_REF] Klopp | Interacting electrons in a random medium: a simple one-dimensional model[END_REF]). Thus, the sequence `lκ l p,q ˘lą0 converges to (3.3.30)

A φ b χ p,q , "`1 `K˘´1 b I ‰ φ b χ 0 E " A φ , `1 `K˘´1 φ E xχ p,q , χ 0 y.
But the sequence p ? ls l q lą0 is uniformly bounded in L 2 pR ˆr0, 1sq. By Subsection 6.1 of [KV20], One may check that the same inquality holds for any ', ˝P t`, ´u:

› › s l › › 2 " A ? U l ψ 0 , `1 `T l T l‹ ˘´2 ? U l ψ 0 E " 1 l @ φ b χ 0 , " p1 `Kq ´2 b I ‰ φ b χ 0 D `opl ´1q ď C l . So, (3.3.38) ż R ÿ kPN ˇˇα l k puq ˇˇ2 du " ż R ż 1 0 ˇˇs l pu, yq ˇˇ2 
(3.3.50) ÿ j,kěiε ˇˇl @ f l,' j`k,j , s l D l @ g l,j `k,j , s l Dˇπ is uniformly bounded by ε, meaning that the left-hand side of (3.3.33) can be approximated by a finite sum. It concludes the proof of Lemma 3.3.2.

(see 3.3.6). Now, we prove that one can replace R l,a K pe l,a 0 q with R l,a K pe a 0 q in (3.3.66) for some negligible cost. Set δe " e l,a 0 ´ea 0 and remark that, as }R l,a K pe a 0 q} ď pe a 1,2 ´ea 0 q ´1, (3.3.68) R l K pe l,a 0 q ´Rl K pe a 0 q " ÿ ně1 R l K pe a 0 q n`1 pδeq n " Opδeq ď Cl ´4.

So, ˇˇxψ 0 , U l,a `Rl,a K pe l,a 0 q ´Rl,a K pe a 0 q ˘U l,a ψ a 0 y ˇˇď

› › › ? U l,a Π a 0 › › › 2 › › › ?
U l,a `Rl,a K pe l,a 0 q ´Rl,a K pe a 0 q ˘?U l,a › › › ď Cl ´6. Similarly to the proof of Proposition 3.1.1, we estimate the limit l Ñ 8 of the function Γ l,a ? U l,a ψ a 0 and the bounded operator Γ l,a ˆ1 `T l,a ´T l,a ¯‹˙´1 ´Γl,a ¯‹, where Γ l,a is the partial isometry given by (3.3.3).

First, one computes where g l,a is a bounded continuous function. So, by dominated convergence theorem, the sequence ´a3{2 l 2 Γ l,a ? U l,a ψ a 0 ¯lą0 admits the following limit in L 2 pR 2 `‹q when l Ñ `8:

l 2 Γ l
(3.3.73) ϕpu, vq " 2π 2 a U pu `v `dquv.

Otherwise, we use the eigencouples ´pe a p,q , ψ a p,q q ¯p,qě1 (see (3.2.4) and (3.2.5)) to compute the kernel of Γ l,a T l,a ´Γl,a T l,a ¯‹. If f P C 8 c pR 2 `‹q then, for l large enough, f P C 8 c pΩ l,a q and (3.3.74) Γ l,a T l,a ´Γl,a T l,a ¯‹f pu, vq " 4 al 2 ÿ pp,qq‰p1,1q

1 Ω l pu, vq π 2 p p 2 l 2 `q2 palq 2 q ´ea 0 l 2 a U pu `v `dq sin ´πu p l ¯sin ´πv q al ¯Gf ´p l , q al where G f pξ, ηq " ş R 2 `‹ a U pu 1 `v1 `dqf pu 1 , v 1 q sinpπu 1 ξq sinpπv 1 ηq du 1 dv 1 . By Riemann's summation, the limit for l Ñ `8 of (3. Proof. (of Lemma 3.3.3) We first prove that, for pu, vq P R 2 `‹, Lpu, vq, given by (3.3.76), is well-defined. We consider the singularities separately.

1. For pα, βq P R 2 , we have 1 x 2 `y2 sinpαxq sinpβyqF g px, yq " p0,0q xy x 2 `y2 αβF g p0, 0q

It gives the integrability in p0, 0q. 

By the

1 px 2 `y2 q 2 `ż U pu `v `dqu 2 v 2 ż r0,1s 2 x 2 y 2 px 2 `y2 q 2 ḑ C}h} 2 L 2 .
Since the Fourier transform is unitary and U is bounded, we get that S admits an extension on L 2 pR 2 `‹q.

It concludes the proof of Lemma 3.3.3. Thus, by Lemma 3.3.3, the sequence ˆΓl,a T l,a ´Γl,a T l,a ¯‹˙l ą0 converges strongly to some operator S.

So does ˆ1 `Γl,a T l,a ´Γl,a T l,a

¯‹˙´1

to ´1 `S¯´1 . The limit only depends on U and d.

For any positive self-adjoint operator A on a Hilbert space H, we know }p1 `Aq ´1} BpHq ď 1. Then, combining it with (3. where z Ñ R l,a K pzq is the resolvant of the restriction of the operator h l,a to Spanpψ a 0 q K As for the proof of Proposition 3.2.1, we prove that one can replace R l,a K pe l,a 0 q with R l,a K pe a 0 q for some negligible cost. Since }R l,a K pe 0 q} ď pe a 1,2 ´ea 1,1 q ´1 we have (3.3.80) R l,a K pe l,a 0 q ´R l,a K pe a 0 q " ÿ ně1 R l,a K pe a 0 q n`1 pe l,a 0 ´e0 q n " Ope l,a 0 ´ea 0 q ď Ca ´3l ´4.

So, using (3.3.6),

(3.3.81)

› › ›
`Rl,a K pe l,a 0 q ´Rl,a K pe a 0 q ˘U l,a Π a 0 › › › ď Cl ´4|xψ a 0 , U l,a ψ a 0 y| ď Ca ´6l ´8.

It yields that One computes, with the basis of the eigenvalues ´ψa p,q ¯p,qě1 ,

› › ψ l,a K › › 2 " ÿ pp,qq‰p1,1q
ˇˇˇA ψ a p,q , R 0,aq K `ea 0 ˘?U l,a ˆ1 `T l,a ´T l,a ¯‹˙´1 ? U l,a ψ a 0 E ˇˇˇ2 (3.3.85) " ÿ pp,qq‰p1,1q 1 e a p,q ´ea 0 ˇˇAψ a p,q , T l,a‹ `1 `T l,a T l,a‹ ˘´1 ? U l,a ψ a 0 Eˇˇˇ2 .

Using the notation(3.3.73) and Lemma 3.3.3, one can notice that › › ›T l,a‹ `1 `T l,a T l,a‹ ˘´1 ? U l,a ψ a 0 › › › 2 " A ? U l,a ψ a 0 , `1 `T l,a T l,a‹ ˘´1 T l,a T l,a‹ `1 `T l,a T l,a‹ ˘´1 ? U l,a ψ a Yet we get an upper bound that is not of the expected order (see Proposition 3.1.2). The factor a ´1l ´2 that is missing will come form the deformation of the basis pψ a p,q q p,q through the partial isometry given Γ l,a given by (3.3.3).

For p, q ě 1, set (3.3.88) κ l,a p,q " @ Γ l,a ? U l,a ψ a p,q , p1 `Γl,a T l,a T l,a‹ Γ l,a‹ q ´1Γ l,a ? U l,a ψ a ˇˇκ l,a p,q ˇˇ2 pe a p,q ´ea 0 q 2 .

From the proof of Proposition 3.2.1, we know that the sequence ˆˆ1 `Γl,a T l,a ´Γl,a T l,a ¯‹˙´1˙l ą0 converges strongly to ´1 `S¯´1 for some bounded operator S on L 2 pR 2 `‹q (see Lemma 3.3.3). We also have that the sequence `a 3 2 l 2 Γ l,a ? U l,a ψ a 1,1 ˘lą0 converges in L 2 pR 2 `‹q to the function (3.3.90) ϕ : pu, vq Þ Ñ 2π 2 a U pu `v `dquv.

Thus, (3.3.91) a 3 2 l 2 ˆ1 `Γl,a T l,a ´Γl,a T l,a ¯‹˙´1 Γ l,a ? U l,a ψ a 1,1 ÝÑ lÑ8 p1 `Sq ´1ϕ.

Let g l,a be the bounded continuous function that satisfies (3.3.92) 2 sinp πx l q sinp πy al q " 2π 2 xy ´1 al 2 `xy l 4 g l,a px, yq ¯.

We also set M l,a px, yq " ż R 2

`‹ ˆ1 `Γl,a T l,a ´Γl,a T l,a ¯‹˙´1 px, y, z, tqzt dzdt (3.3.93) and R l,a px, yq " ż R 2

`‹ ˆ1 `Γl,a T l,a ´Γl,a T l,a ¯‹˙´1 px, y, z, tqz 2 t 2 g l,a pz, tq dzdt.

Remark that the functions M l,a and R l,a are uniformly bounded on L 2 pR 2 `‹q. Given that, (3.3.94) @pp, qq Γ l,a ? U l,a ψ a p,q px, yq " a U px `y `dq sinp πpx l q sinp πqy al q sinp πpξ l q sinp πqσ al q a U pξ `σ `dq `π2 pp 2 `a´2 q 2 q ´ea 0 ˘2 .

Indeed, using (3.3.95), Equation (3.3.89) becomes (3.3.97) › › R l,a K pe a 0 qU l,a ψ a 0 › › 2 " 1 a 3 l 6 @ M l,a , Z l,a M l,a D `2 a 3 2 l 8 @ M l,a , Z l,a R l,a D `1 l 10 @ R l,a , Z l,a R l,a D .

We define (3.3.98) Zpx, y, ξ, σq " ż R 2 `‹ a U px `y `dq sinpπrxq sinpπsyq sinpπrξq sinpπsσq a U pξ `σ `dq π 4 pr 2 `s2 q 2 drds.

Let f, g be two functions of L 2 pR 2 `‹q. Applying Cauchy-Schwartz, we compute ˇˇAf, `Zl,a ´Za ˘gEˇˇˇď }f } L 2 }g} L 2 ´ż ˇˇZ l,a ´Zˇˇ2 ¯1 2 (3.3.99) Because of our assumption on U , the domain of integration of the last integral is some compact C that does not depend on l. But by Riemann's summations, for any px, y, ξ, σq P C, the limit of the sequence `Zl,a px, y, ξ, σq ˘lą0 is exactly Zpx, y, ξ, σq. So, (3.3.100) }Z l,a ´Z} L 2 pR 2 `‹qÑL 2 pR 2 `‹q ÝÑ lÑ8 0 We deal separately with the three terms of right-hand side of (3.3.97).

(i) For the first scalar product @ M l,a , Z l,a M l,a D , as pM l,a q lą0 is uniformly bounded on L 2 pR 2 `‹q and it converges to p1 `Sq ´1ϕ, we get (3.3.101) @ M l,a , Z l,a M l,a D ÝÑ lÑ8 @ p1 `Sq ´1ϕ, Zp1 `Sq ´1ϕ D

(ii) For the second scalar product, since pM l,a q lą0 and pR l,a q lą0 are uniformly bounded on L 2 pR 2 `‹q, we have that (3.3.102) @ M l,a , Z l,a R l,a D ď C

for some constant C ą 0.

PROOFS

(iii) Similarly one gets that (3.3.103) @ R l,a , Z l,a R l,a D ď C

for some constant C ą 0. Īt concludes the proof of Proposition 3.2.2.

Combining

Remark 3.3.1. Unlike the case of a single piece (see Corollary 3.3.1), the proof of Proposition 3.2.2 does not provide an approximation of the ground state when l Ñ 8. With κ l,a p,q given by (3.3.88), we express ψ l,a K " ´ÿ pp,qq‰p1,1q κ l,a p,q e a p,q ´ea 0 ψ a p,q .

But, for any pp, qq ‰ p1, 1q, the sequence `a2 l 3 κ l,a p,q ˘lą0 converges to 0.
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  1.4.3.1 Convex functions and discrete optimization Definition 1.4.4. A function F : N Ñ R is convex (resp. strictly convex) iff for every k ě 1, F pk `1q ´F pkq ě F pkq ´F pk ´1q(resp. F pk `1q ´F pkq ą F pkq ´F pk ´1q).

UU

  `li k‹ y `li k‹´1 x `di k‹´1 ,i k‹ ˘φν `li k‹`1 y `li k‹ x `di k‹ ,i k‹`1 ˘φν the same changes of variables.

ż r0,1s 2 Uu

 2 `lpx ´yq ˘φa pxqφ b pyqφ c pxqφ d pyqdxdy for a, b, c, d P N and (1.4.160) δ a,b,c,d,h : pl, l 1 q Þ ÝÑ ż r0,1s 2 U `ly `l1 x `hqφ a pxqφ b pxqφ c pyqφ d pyqdxdy for a, b, c, d P N and 0 ď h ă σ U . Set a, b, c, d P N. For l ą 0, using U pxq " upxq1 r´σ U ,σ U s , we have γ a,b,c,d plq " `lpy ´xq ˘φa pxqφ b pxqφ c pyqφ d pyqdxdy (1.4.161) ´xq ˘φc pyqφ d pyqdy ¯dx ´xq ˘φa pxqφ b pxqdx ¯dy.

Figure 2 .Figure 2 . 1 :

 221 Figure 2.1: Cases of cut l ‹ in a pair of pieces.

  a 3 l 4 using p3.3.16q and p3.3.86q.

Figure 3 . 1 :

 31 Figure 3.1: Locations of the interaction after the scaling to r0, 1s 2 . piq on the left the case of two particles in a single piece of length l; piiq on the right the case of two particles in two distinct pieces of lengths l, al with a ě 1 and at distance d ď σ U .

0 |E

 0 the orthogonal projection on Spanpψ p˚q 0 q, Π p˚q K the orthogonal projection on Spanpψ p˚q 0 q K and h l,p˚q K " h l,p˚q |Spanpψ a 0 q K , the operator becames, for e ą 0,(3.3.7) h l,p˚q ´e " ˜ep˚q 0 `Πp˚q 0 U l,p˚q Π p˚q 0 ´e Π p˚q 0 U l,p˚q Π state energy iff C l,p˚q " 0,The proofs of Proposition 3.1.1 and Proposition 3.2.1 focus on the estimation of this second term. On the other hand, using (3.3.7)

ψ p˚q 0 ,U l,p˚q ψ p˚q 0 F`

 00 (3.3.13) ap1 `ab 2 aq ´1ab " a 2 bp1 `ba 2 bq´1 ˆI ´T l,p˚q ´T l,p˚q ¯‹˙ˆ1 `T l,p˚q ´T l,p˚q¯‹˙´1˙a Ba U l,p˚q ψ p˚q 0 , ˆ1 `T l,p˚q ´T l,p˚q p˚q ˆ1 `T l,p˚q ´T l,p˚q

22

  `p2j `kq 2 `k2 ˘´e l 0 j , s l D l @ g l,j `k,j , s l Dˇπ 2 2 `p2j `kq 2 `k2 ˘´e l 3.39), (3.3.41), (3.3.46), (3.3.47), (3.3.48), (3.3.50) and (3.3.51), we get that for any ε ą 0 there exists i ε ě 1 such that (3.3.52) ÿ a, b P tf,gu ', ˝P t`,´uÿ j,kěiε l @ a l,' j`k,j , s l D l @ b l,j `k,k , s l D ´π22 `p2j `kq 2 `k2 ˘´e l 0 ¯2 .

`ea 0 ¯U l,a ψ a 0 EF

 00 using (3.3.6), (3.3.68) and }U l } ď l 2 }U } 8 . It implies that (3.3.69) e l,a 0 " e a 0 `Aψ a 0 , U l,a ´U l,a R 0,a K `O´l ´6T hus, we transformed the implicit equation (3.3.66) to an explicit equation plus a reminder which is negligible compared to the expected order Opl ´4q. Then, as in Section 3.3 (see (3.3.15), we derive (3.3.70) e l,a 0 " e a 0 `B? U l,a ψ a 0 , ˆ1 `T l,a ´T l,a ¯‹˙´1 ? U l,a ψ a 0

0 F.

 0 3.73) and (3.3.76), for l large, it yields(3.3.77) B a 3{2 l 2 Γ l,a ? U l,a ψ a 0 , ˆ1 `Γl,a T l,a ´Γl,a T l,a ¯‹˙´1 a 3{2 l 2 Γ l,a ? U l,a ψ a U l,a ψ a 0 , ˆ1 `T l,a ´T l,a ¯‹˙´1 ?U l,a ψ a It concludes the proof of Proposition 3.2.1.Proof. (of Proposition 3.2.2) We apply (3.3.10) from Section 3

  ´6l ´8q Thus, we transformed the implicit formula (3.3.79) to an explicit formula plus a reminder which is negligible compared to the expected order Opa ´2l ´3q.Then, as for (3.3.16)U l,a ˆ1 `T l,a ´T l,a

  4 xϕ, Sp1 `Sq ´2ϕy `opl ´4q ď C a 3 l 4 . Since the left-hand term of (3.3.86) is an upper bound of the right-hand side of (3.3.85), this last inequality implies that (3.3.87) }ψ l,a K } 2 ď Ca ´3l ´4
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  Assumption 1.1.1. The function U : R Ñ R is nonnegative, even, bounded and compactly supported. Let spU q be the support of the function U and For L, n ą 0, Ψ U pL, nq designates some ground state of H U pL, nq and E U pL, nq the ground state energy of H U pL, nq.

	(1.1.6)	σ U " sup	|x ´y|.
			x,y P spU q
	Under Assumption 1.1.1, the operator H U pL, nq is well-defined on DpL, nq given by
		DpL, nq " C 8 0	ˆ´m L ď	sx k´1 , x k r ¯n˙X	H n pLq
			k"1
	and it is nonnegative. Using perturbation theory (see e.g Chapter 6 [Tes14]), one proves that H U pL, nq is
	essentially self-adjoint on H n pLq and it has pure point spectrum. We tackle the issue of the non-degenerancy
	of the ground state of H U pL, nq in Section 1.3.	
	Notation 1.1.1. Definition 1.1.1. The limit L Ñ `8, n L Ñ ρ (	is called the thermodynamic limit. The constant ρ is
	the density of particles per unit of volume.	

  The Fermi energy E ρ of the one-particule operator hpLq is the unique preimage of ρ under the integrated density of states N . We call Fermi length l ρ the length of a piece ∆ for which

	Then, one deduces						
	(1.1.11)			E 0 pρq "	1 ρ	ż Eρ ´8 E dN pEq.
									N :
	R Ñ R `(see Proposition 2.6 [KV20] or Proposition 3.2 [LZ07]). One computes that almost-surely, for
	E P R,							
				!					)
	(1.1.9)	N pEq :" lim LÑ8	#	eigenvalues of hpLq in p´8, Es L	"	1	´π ? E e ´e´π ? E	1 Eě0 .
	Note that N is a bijection on R `.					
	Definition 1.1.2. the ground state energy of the Dirichlet Laplacian	´d2 dx 2	D |∆ is equal to the Fermi energy E ρ . By formula
	(1.1.9),							
	(1.1.10)			l ρ "	π a E ρ	" ´log	´ρ 1 `ρ ¯.

  Then, for large l, the ground state energy e U `r0, ls, 2 ˘of the operator h U `r0, ls, 2 ˘admits the following expansion

	with γ ą 0 when U ‰ 0. The first and second energy levels of the interval r0, ls are given by
	(1.2.3)	f U pr0, ls, 1q "	π 2 l 2	and f U pr0, ls, 2q " e U pr0, ls, 2q	´π2 l 2 .
	For two particles in a pair of pieces, we prove the following result.
	Proposition 1.2.2. Under Assumption 1.1.1, for l ą 0, d ě 0 and a ą 1, consider the operator
	h U `pr´al, 0s, rd, d `lsq, p1, 1q ˘given by			
		h U ´pr´al, 0s, rd, d `lsq, p1, 1q	¯"ˆ´d 2 dy 2	D |r´al,0s	˙b 1 L 2 prd,d`lsq `1L 2 pr´al,0sq b	dx 2 ˆ´d 2	|rd,d`ls D	(1.2.4)
						`U px ´yq	on L 2 `r´al, 0s ˘^L 2 `rd, d `ls ˘.
	Then, for d ě 0 and large l ą 0, the ground state energy e U `pr´al, 0s, rd, d `lsq, p1, 1q ˘of the operator
	h U `pr´al, 0s, rd, d `lsq, p1, 1q ˘admits the following expansion
	(1.2.5)	e U `pr´al, 0s, rd, d `lsq, p1, 1q	˘" ´π2 l 2	`π2 palq 2	¯`τ pdq a 3 l 6 ´1 `op1q	with
	τ pdq a positive function that vanishes for d ą σ
	Proposition 1.2.1. [KV20] Under Assumption 1.1.1, for l ą 0, consider the operator h U `r0, ls, 2 ˘given
	by						
	(1.2.1)	h U `r0, ls, 2 ˘" ˆ´d 2 dy 2	D |r0,ls	˙b 1 L 2 pr0,lsq `1L 2 pr0,lsq b	ˆ´d 2 dx 2	|r0,ls D	˙`U px ´yq
	on L 2 `r0, ls ˘^L 2 `r0, ls ˘.					
	(1.2.2)		e U `r0, ls, 2	˘" 5π 2 l 2 `γ l 3 `opl ´3q

U . The first and second energy levels of the pair `r´al, 0s, rd, d `ls ˘are given by

  the number of particles in P p for Q belongs to n ´nρ p´δ , n .

	Under Assumption 1.4.2, we have
	(1.4.51)

n ď r"n´nρ p´δ G p prq Ă P p zF p

  s, dq, a P t1, 2u, r, s P K 1 , K 2 , d P 0, D Recall the definition of the Hausdorff distance d 8 on PpRq. For pA, Bq P PpRq 2 , d 8 pA, Bq :" sup

	)
	.
	Lemma 1.4.6.

aPA inf bPB |a ´b|.

  We use the counting function N U 2 (see (1.4.59) to build an approximate ground state for H U pL, nq. Note that, for d P r0, σ U s and min Γ 2 ă λ ă µ ă max Γ 2 ,

					x `hq ´NU 2 pL, x ´hq ˇ(1.4.89)
		ď	L n	ˆˇˇN U 2 pL, x `hq ´NU 2 px `hq ˇˇ`ˇˇN U 2 pL, x ´hq ´NU 2 px ´hq ˇˇJ
				px `hq ´Jpx ´hq ˇˇ`Opρ β q	ÑLÑ`8
	(1.4.90)		n L Ñρ	1 ρ	ˇˇJpx `hq ´Jpx ´hq ˇˇ`Opρ β´1 q
	Taking β ą 2 and h Ñ 0, we conclude the proof of Corollary 1.4.3.
	1.4.2.3 Construction of an approximated ground state
	(1.4.91)	@i P t1, 2, 3u D	

i pλq Ł D i pµq and D 4 pλ, dq Ł D 4 pµ, dq.

  We drop the indices "L" and "n". Let Ψ U be a ground state of H U . Using the notations of

	Subsection 1.4.1.2, we have			
	(1.4.107)	Ψ U "	ÿ	λpQqΨ U P 2 pQq ^ΨU N 2 pQq
			QPQ
	with λpQq P C, Ψ U P 2 pQq and Ψ U N 2 pQq given by (1.4.15). Then,
		xH U Ψ U , Ψ U y "	ÿ	|λpQq| 2 ´EU P 2 pQq `EU N 2 pQq (1.4.108)
				QPQ

´8q, (1.4.106) xH U pL, nqΨ U pL, nq, Ψ U pL, nqy n " xH U pL, nqΨ β pL, nq, Ψ β pL, nqy n `Opρ 2´δ q.

Proof.

  cos 2 pπpvq sin 2 pπqvq ´pq cospπpvq cospπqvq sinpπpvq sinpπqvq ˙dudv `Opl ´4q

						ż		
				ď 10π 2 l ´3pp 2 `q2 q	U puqu 2 du
						R		
	and						
	ż	U py ´xq ˇˇφ r´l 1 ,0s p	^φrd,d`ls q	ˇˇ2px, yqdxdy "	ż	U px ´yqφ r´l 1 ,0s p	pxq 2 φ rd,d`ls q	pyq 2 dxdy
				" 4l ´1l 1´1		

  " ¨¨¨' 0 ' ξ r,i ^es,j ' 0 ' . . . . We note that for 0 ď s ď κ ‹ s,j px A qf κ‹´s,k px A c qψ U I‹ pxq dx where x A " px i q iPA and εpAq is the signature of the partition A Y A c s,j px A qf κ‹´s,k px A c qψ U I‹ px A , x A c q dx A dx A c ' ξ κ int ,0 ^pK s e s,j q ' 0 ' . . . if r " κ int , 0 ď s ď κ ‹ and i " 0 0 else Then, for O P BpΓ a.s pH ‹ qq,

	with the notation Φr,s
	i,j
	, OΦκint,s 0,j I‹ py, vqf κ‹´s,k pvq dv D ψ U ȧnd I‹ , e s,j ^fκ‹´s,k y. ˆκ‹ s ˙żrL‹,Ls κ‹´s (see for example Appendix C of rKV20s I‹ px, zqψ U ψ U I‹ py, zq dz s ˙żrL‹,Ls κ‹´s s ˙żrL‹,Ls κ‹´s ˆκ‹ ÿ k ˆdˆκ ‹ ψ U I‹ px, uqf κ‹´s,k puq du ˙ˆd for any j, k K s px, yq " (2.3.8) " @ e s,j ^fκ‹´s,k , ψ U I‹ D " ż r0,Ls κ‹ `es,j ^fκ‹´s,k ˘pxqψ U I‹ pxq dx (2.3.9) " 1 b `κ‹ s ˘ÿ AĂ 1,κ‹ |A|"s εpAq ż r0,Ls κ‹ " 1 b `κ‹ s ˘ÿ AĂ 1,κ‹ |A|"s ż r0,Ls κ‹ by skew-symmetry of ψ U I‹ " d ˆκ‹ s ˙żr0,Ls κ‹ e s,j pyqf κ‹´s,k pzqψ U I‹ py, zq dydz so xK s e s,i , e s,j y " ż r0,L‹s s ż r0,L‹s s K s px, yqe s,i pyqe s,j pxq dxdy (2.3.10) " ÿ k xψ U I‹ , e s,i ^fκ‹´s,k y xψ U Thus, (2.3.11) tr BpΓa.spHqq `ηU ι ´1`O b 1 ˘ι˘" κ‹ ÿ s"0 ÿ i,j @ K s e s,i , e s,j D @ Φκint,s 0,i , OΦκint,s 0,j D On the other hand, we define the self-adjoint operator θ ‹ on Γ a.s `H‹ ˘by (2.3.12) θ ‹ " ι ´1ˆ¨¨¨' 0 ' κ‹ à s"0 ´x . , ψ U P int y ψ U P int b K s ¯' 0 ' . . . ˙ι that is (2.3.13) θ ‹ Φr,s i,j " # ˘" ÿ r,s ÿ i,j @ θ ‹ Φr,s i,j , OΦr,s i,j D (2.3.14) " κ‹ ÿ s"0 ÿ j,k @ K s e s,j , e s,k D @ Φκint,s 0,k , OΦκint,s 0,j D " tr BpΓa.spHqq `ηU ι ´1`O b 1 ˘ι( 2.3.15) using (2.3.11). We conclude that η U ‹ " θ ‹ by Definition 2.1.2. Then, the entanglement entropy of η U with respect to H ‹ satisfies (2.3.16) S ‹ pη U q " ´κ‹ ÿ ¨¨¨' 0 tr BpΓa.spH‹qq `θ‹ O k"1

e e

  1 , τ 2 yυ 1 pxqυ 2 pyq and (2.3.29) I ˆpx, yq " υ 2 pxqω 1 pyq ´υ1 pxqω 2 pyq `υ2 pyqω 1 pxq ´υ1 pyqω 2 pxq where we have set (2.3.30) υ k " φ k 1 r0,ts , τ k " φ k 1 rt,1s and ω k "

	ż t	
	0	ψ l K px, zqφ k pzq dz.

  , c l pλ k ´Cl ´2q ˘ď σ k ď c l λ k . , we get that if L ‹ is at distance greater than cl ρ,U then, with interactions, the entanglement entropy admits the following expansion: `pr´al, 0s, rd, d `lsq, p1, 1q ˘py, zq dz with ψ U `pr´al, 0s, rd, d `lsq, p1, 1q ˘the ground state of the 2-particle system in the pair pr´al, 0s, rd, d `lsq (see Definition 1.4.2).

	so				
	(2.3.59)	´σ1 ln σ 1 " µ `lnpµ `q `@ψ l K , ξ `D`1 `ln µ `˘`o	`1 l 1`δ	ȃnd
	similar formulas holds for σ 2 replacing `by	´.
	Thus, there exists δ P p0, 1q such that		
	(2.3.60)	´tr `K1 ln K 1 ˘"	´ÿ ˚Pt`,´u	´µ˚l npµ ˚q `@ψ l K , ξ ˚D`1 `ln µ ˚˘¯`o `1 l 1`δ	with
	ξ ˘given by (2.2.6).			
	Combining (2.3.24), (2.3.26) and (2.3.60)s U l‹ `r0, ls, 2 ˘" s 0 l‹ `r0, ls, 2 ˘´2	´żr0,t‹s 2	ψ 0 ψ l K ¯´1 `ln `}ψ 0 1 r0,t‹s 2 } 2 ˘(2.3.61)
		´2xψ l K , ξ `y`1 `ln µ `˘´2xψ l K , ξ ´y`1 `ln µ ´2
	Since x Ñ x β is increasing for any β P p0, 1q, we derive from Lemma 2.3.2 that ´żrt‹,1s 2 ψ 0 ψ l ρ,U K ¯´1 `ln `}ψ 0 1 rt‹,1s 2 } 2 ˘¯`o `l´p1`δq	Ȋt
	(2.3.53) concludes the proof of Proposition 2.2.1.	´ÿ kě3	λ β k ď ´tr `Iβ K	˘.
	Finally, we consider pσ k q kď1 the decreasing sequence of the eigenvalues of the Hilbert-Schmidt op-erator F 1 , defined in (2.3.19). Using (2.3.27) and (2.3.32), we have 2.3.2.2 Case of two pieces
	(2.3.54) Proof. (of Proposition 2.2.2) Set l ą 0, d ě 0, a ą 1 and l ‹ P r´al, d `ls. Applying Definition 2.1.2 and F 1 " c l ´v`b v ``v ´b v ´`I K `R¯. Proposition 2.3.1, the entanglement entropy s U l‹ `pr´al, 0s, rd, d `lsq, 2 ˘is given by
	with ´Cl ´2 ď R ď 0. So, for any k ě 1,	
	(2.3.55) max `0Combining it with (2.3.53), we get that for β P p0, 1q (2.3.62) s U l‹ `pr´al, 0s, rd, d `lsq, 2 ˘" 2 s"0 ÿ	tr `Ks ln K s	where
	(2.3.56) the operator K s admits the following kernel ´ÿ kě3	σ β k ď ´cβ l tr `Iβ K	So,
	using (2.3.51), there exists δ P p0, 1q such that @ x, y P r´al, l ‹ s s K s px, yq " ˆ2 s ˙żrl‹,l`ds 2´s	ψ U `pr´al, 0s, rd, d `lsq, p1, 1q ˘px, zq(2.3.63)
	(2.3.57)		´ÿ kě3	σ k ln σ k " o `l´p1`δq Ȏn ψ U
	the other hand, from (2.3.55), (2.3.52) and (2.3.36), we get
	(2.3.58)	K , ξ `y σ 1 " µ ``2xψ l	`o´1 l 1`δ	¯

  a pG 1 ´v b vq, we have (2.3.97) max `0, c l,a pλ k ´µ´q ˘ď σ k ď c l,a λ k .

	Using (2.3.93), (2.3.95) and Proposition 3.2.2, we get	
	(2.3.98)	σ 1 " }φ 1 1 rt,1s } 2 `Opl	´3˘.
	On the other hand, combining (2.3.97) and (2.3.96), it gives
	(2.3.99)		

  `y2 sinpπuxq sinpπvyqG f px, yq dxdy. 3.3. PROOFS 97 Using gps, tq " a U ps `t `dqf ps, tq and its Fourier transform F g pξ, ηq " ş R 2 `‹ gps, tqe isξ`itη dsdt, one computes G f px, yq " 1 4 ´´F g px, yq `Fg px, ´yq ´Fg p´x, ´yq `Fg p´x, yq ¯. `y2 sinpπuxq sinpπvyqF g px, yq dxdy. Lemma 3.3.3. Define S on C 8 c pR 2 `‹q such that Sf " L, given by (3.3.76). Then, the operator S is well-defined and is extended to a bounded operator on L 2 pR 2

	3.74) is Lpu, vq " 4 π 2 1 R 2 `‹ pu, vq x 2 Then, (3.3.75) becomes (3.3.75) a U pu `v `dq ż R 2 `‹ (3.3.76) Lpu, vq " ´1 π 2 1 R 2 `‹ pu, vq a ij U pu `v `dq R 2 x 2 `‹q. 1 1

  Paley Wiener theorem, as f P C 8 c pR 2 `‹q, F g is an entire function and |F g px, yq| ď C j p1`|y|q j for j ě 1. Then, ˇˇˇ1 x 2 `y2 sinpαxq sinpβyqF g px, yq ˇˇˇď C j px 2 `y2 qp1 `|y|q j . It gives the integrability at ˘8.

	So, S is well-defined on C 8 c pR 2 `‹q Take h P C 8 c pR 2 q. We compute				
	ż	R 2 `U pu `v `dq ˇˇż R 2	sinpxuq sinpyvq x 2 `y2	hpx, yqdxdy ˇˇ2dudv ď }h} 2 L 2	ż	U pu `v `dq	sin 2 pxuq sin 2 pyvq px 2 `y2 q 2
				ď }h} 2 L 2 ˜ż U pu `v `dq	ż r1,8q 2

  Then, we consider the following kernel on L 2 pR 2 `‹q ˆL2 pR 2

									? a	a	U px `y `dq sinp	πpx l	q sinp	πqy al	q,
	we expand								
	(3.3.95)	ˇˇκ l,a p,q	ˇˇ2 "	1 a 4 l 4	´żR 2 `‹ a U px `y `dq sinp	πpx l	q sinp	πqy al	qM l,a px, yq dxdy ¯2
					`2 a 5{2 l 6 ´żR 2 `‹ a U px `y `dq sinp	πpx l	q sinp	πqy al	qM l,a px, yq dxdy	¯ż
								R 2 `‹ a	U px `y `dq sinp	πpx l	q sinp	πqy al	qR l,a px, yq dxdy	1
						al 8	´żR 2 `‹ a U px `y `dq sinp	πpx l	q sinp	πqy al	qR l,a px, yq dxdy ¯2.
										`‹q
	(3.3.96) Z l,a px, y, ξ, σq "	l 2 a	ÿ pp,qq‰p1,1q	

  (3.3.97), (3.3.101), (3.3.102) and (3.3.103), we conclude that

	(3.3.104)		l 6 › › ψ l,a K	› › 2 "	1 a 3	@	ϕ, p1 `Sq ´1Zp1 `Sq ´1ϕ D	`op1q
	where Z is given by (3.3.98). Thus,		
	(3.3.105)						
	}ψ l,a K } 2 "	1 a 3 l 6	ż R 2 `‹ ´żR 2 `‹ a	U px `y `dq sinpπrxq sinpπsyq r 2 `s2	`p1 `Sq ´1ϕ ˘px, yq dxdy ¯2 drds	`o´1 l 6

Remerciements

by definition of px r i q 1ďiďp and because F 1 is strictly convex from 0 to r `1. So x r`1 i ď x r i `1 for all i. Since ř p i"1 x r`1 i " ř p i"1 x r i `1, there is j 0 so that x r`1 j 0 " x r j 0 `1. Without loss of generality we can consider j 0 " 1. Pick py 1 , . . . , y p q P N p with ř p i"1 y i " r `1 and y 1 " x r 1 `1. Then, the same calculus gives F py 1 , . . . , y p q ě F px r 1 `1, x r 2 , . . . , x r p q meaning px r 1 `1, x r 2 , . . . , x r p q is a minimizer of F . Thus we set px r i q rě1 by induction and we compute Gpr `1q ´Gprq " F 1 px r 1 `1q ´F1 px r 1 q ą F 1 px r 1 q ´F1 px r 1 ´1q

and for all j P 2, p Gpr `1q ´Gprq ě F j px r j q ´Fj px r j ´1q because ÿ iRt1,ju F i px r i q `Fj px r j q `F1 px r 1 q ď ÿ iRt1,ju F i px r i q `Fj px r j ´1q `F1 px r 1 `1q

Hence, Gpr `1q ´Gprq ě Gprq ´Gpr ´1q.

2. In particular, the sequence `Gpr `1q ´Gprq ¯rě0 is non decreasing and it belongs to Γ. By reductio ad absurdum, assume that there is a P Γ X Gpr `1q ´Gprq, r ě 1 ( c . Let r a be such that Gpr a q Ǵpr a ´1q ď a ă Gpr a `1q ´Gpr a q, and pi a , x a q such that a " F ia px a `1q ´Fia px a q. Then, x ra ia " x a and F px ra 1 , . . . , x a `1, . . . , x ra p q " Gpr a q `a ă Gpr a `1q. Contradiction. It concludes the proof of Lemma 1.4.8.

Statistical distribution of the pieces

We recall some results about the statistical distribution of pieces.

Proposition 1.4.8. [KV20] With probability 1 ´OpL ´8q, the largest piece has a length bounded by logpLq logplogpLqq.

Proposition 1.4.9. [KV20] Fix β P p 2 3 , 1q. For L large and a, b P r0, logpLq logplogpLqqs, with probability 1 ´OpL ´8q the number of pieces of length contained in ra, bs is equal to

3 , 1q and r ě 2. For L large and pa i q 1ďiďr , pb i q 1ďiďr , pc i q 1ďiďr´1 and pd i q 1ďiďr´1 some positive sequences, with probability 1 ´OpL ´8q, the number of pieces such that the length of i-th piece (from left to right) is contained in ra i , b i s, the distance with the pi `1q-th piece is contained in rc i , d i s, is equal to

The proofs of Propositions 1.4.8, 1.4.9 and 1.4.10 are in Appendix A of [START_REF] Klopp | Interacting electrons in a random medium: a simple one-dimensional model[END_REF]. From these propositions, we derive the following lemma.

Then, we compute for any x, y P r0, ts 

So, I K is the sum of the rank-one operator `χi b χ i ˘iă0 . We shall to use the following lemma.

Lemma 2.3.1. Let pu n q ně1 be a sequence in a Hilbert space H and let Σ " ř ně1 pu n b u n q. Assume that there exist σ ą 1, α ą 1 and C ą 0 such that for any n ě 1,

Then, for any β P `2p1 `αq ´1, 1 ˘, there exists C ą 0 such that

Proof. (of Lemma 2.3.1) Let µ n k be the k´th eigenvalue of Σ n " ř n j"1 u j b u j the n´th partial sum of Σ. We set µ n k " 0 for k ą n. There exists a sequence pα n k q such that (2.3.42)

This is an application of a Lidskii result (see Theorem 1.20 of [START_REF] Simon | Trace Ideals and Their Applications[END_REF])

The assumption (2.3.40) implies, for any N ě 1,

Using β P `2p1 `αq ´1, 1 ˘, we conclude that there exist σ ą 1 and C ą 0 such that for any N ě 1

Thus, by monotone convergence, we state that there exists C ą 0 such that

For any i ă 0,

We set e i pxq " 1 ? 1´t sin ´|i|π x´t 1´t ¯. Since ψ 0 and ψ l 0 are in H 1 0 `r0, 1s 2 ˘so does ψ l K . Then, by integration by parts, So,

' On the other hand, we denote (2.3.70)

in the basis pf i b φ j q iPZ,ją0 with pf i q ią0 an ONB of L 2 pr0, tsq, pf i q iă0 an ONB of L 2 prt, 1sq and, for j ą 0, φ j " sinpπj¨q. Then, we compute for any x, y P rt, 1s,

Thus,

(2.3.72)

where υ " φ 1 1 rt,1s `γ1 and Ă F 1 is the sum of the rank-one operators `γj b γ j ˘jě2 . The unique eigenvalue of the operator υ b υ is µ " }υ `γ1 } 2 . By Proposition 3.2.2,

We will prove that for δ P p0, 1q,

We state that it is sufficient to get that ´tr `Ă F 1 ln Ă F 1 ˘is Opl ´3q. Let pλ k q kě1 be the decreasing sequence of eigenvalues of F 1 . Since 0 ď Ă F 1 ď }ψ l,a K } 2 , we have, by Proposition 3.2.2,

' We denote (2.3.88) ψ l,a 0 "

in the basis pφ i b g j q ią0,jPZ with pg i q ią0 an ONB of L 2 pr0, tsq, pg i q iă0 an ONB of L 2 prt, 1sq and, for i ą 0, φ i " sinpπi ¨q. Then, for any x, y P r0, 1s,

c l,a ´αφ 1 pxqφ 1 pyq `φ1 pxqξpyq `ξpxqφ 1 pyq `ÿ γ j pxqγ j pyq where we have set

We define

By Proposition 3.2.2, we have

So, the eigenvalues of u b u and v b v, respectively µ `and µ ´, satisfy

(2.3.93) µ `" }φ 1 1 rt,1s } 2 `Opl ´3q and µ ´" Opl ´6q.

We will prove that for δ P p0, 1q,

Again, we state that it is sufficient to get that ´tr Ă

and, by Lemma 2.3.2, for β P p0, 1q,

(2.3.96)

Since the left-hand term of (3.3.22) is an upper bound of the right-hand side of (3.3.21), this last inequality implies that

Yet we get an upper bound that is not of the expected order (see Proposition 3.1.2). The factor l ´1 that is missing will come form the deformation of the basis pψ p,q q pąq through the partial isometry given Γ l given by (3.3.2). We define for p ą q ě 1

First, we prove that the sequence `lκ l p,q ˘lą0 admits a limit. For p ą q ě 1, we define the functions

Remark that χ 0 " χ 2,1 .

Lemma 3.3.1. For any p ě q ě 1, the sequence `lκ l p,q ˘lą0 converges to

with the notations (3.3.24), (3.3.17), (3.3.26) and (3.3.18).

Proof. (of Lemma 3.3.1) For pu, yq P Ω l , we use the formulas for sine and cosine to write (3.3.28) ´Γl ? U l ψ p,q ¯pu, yq " ? l a U puq ψ p,q ´y `u l , y ¯" f l,p ,q pu, yq `f l,ṕ ,q pu, yq `gl,p ,q pu, yq `gl,ṕ ,q pu, yq where f l,p ,q pu, yq " From this decomposition and some Taylor expansions, one gets that (3.3.29) ? l ´Γl ? U l ψ p,q ¯pu, yq " φpuqχ p,q pyq1 Ω l pu, yq `1 l u 2 a U puqε p,q pu, yq1 Ω l pu, yq where φ is given by (3.3.17), χ p,q by (3.3.26) and ε p,q is continuous and bounded on R ˆr0, 1s. So, the sequence ´?lΓ l ? U l ψ p,q ¯lą0 converges to φ b χ p,q on L 2 pR ˆr0, 1sq.

It concludes the proof of Lemma 3.3.1.

The next lemma shows that one can approximate the quantity

by a finite sum.

Lemma 3.3.2. For any ε ą 0, there exists r ε ě 1 such that

is uniformly bounded by ε.

Proof. (of Lemma 3.3.2) First we transform (3.3.31) by applying the change of variables pj " q, k " p ´qq, decomposing of the function Γ l ? U l ψ p,q into (3.3.28) from the proof of Lemma 3.3.1, and setting

We deal separately with each of the right-hand terms of (3.3.33). However we will develop the general idea during the estimation of the first term (that is a " f, b " g, ' " `, ˝" ´). Let ε ą 0 and i ε ě 1 such that (3.3.34)

(i) In this part, we consider the quadric term in

¯sin ´πky ¯sl pu, yq dudy.

Here, the idea is to interpret the integral in the second variable as k´th coefficient of the L 2 ´function h l pu, .q in the basis p ? 2 sinpiπ.qq iPN . So, we write the following bound.

( 

ˇˇ2

pe p,q ´el 0 q 2 " ˇˇAφ , `1

ˇˇxχ p,q , χ 2,1 y ˇˇ2 pe p,q ´e2,1 q 2 `D l ε with D l ε Ñ 0 as l Ñ 8 (for ε ą 0 fixed). We recall that χ p,q pxq " π ´pp `qq sin `πpp ´qqx ˘´pp ´qq sin `πpp `qqx ˘¯.

Remark that (3.3.54) xχ p,q , χ 2,1 y "

Then,

with |C l ε | ď ε uniformly in l by Lemma 3.3.2. Since ε ą 0 can be as small as wanted and by convergence of the sums of the right-hand side of (3.3.55), we conclude that (3.3.56)

It concludes the proof of Proposition 3.1.2.

In fact, the proof of Proposition 3.1.2 also provides a result on the expansion of the ground state ψ l 0 of h l . We define,

where (i) φ is the L 2 ´function given by φpuq " u a U puq for u P R;

(ii) K is the operator on L 2 pRq given by the kernel Kpu, vq " 1 2 ´aU puq `|u `v| ´|u ´v| ˘aU pvq ¯;

(iii) pψ p,q q pąq are the eigenfunctions of h 0 (see 3.1.5).

Since pψ p,q q pąq is an ONB of L 2 `r0, 1s 2 ˘and the coefficients in the right hand side of ?? are square summable, Θ is well defined.

Corollary 3.3.1. Using the notations of Proposition 3.1.2, we decompose the ground state ψ l 0 of h l on Spanpψ 0 q ' Spanpψ 0 q K as (3.3.58)

The orthogonal component ψ l K admits the following L 2 ´expansion (3.3.59) e p,q ´el 0 ψ p,q .

By Lemma 3.3.2, for any ε ą 0, there exists r ε ě 1 so that the vector Y ε , defined as q"2 3p2q `1q 2q 2 `2q ´5 ψ q`1,q ´r ÿ q"1 2q `3 2q 2 `6q `4 ψ q`3,q It concludes the proof of Corollary 3.3.1.

Case of two pieces

Proof. (of Proposition 3.2.1) From the discussion of Section 3.3, one would like to express the ground state energy e l,a 0 using (3.3.9), (3.3.66) e l,a 0 " e a 0 `Aψ a 0 , U l,a ´U l,a R 0,a K `el,a 0 ¯U l,a ψ a 0 E where z Ñ R l,a K pzq is the resolvant of the restriction of the operator h l,a to Spanpψ a 0 q K . We already got the upper bound (3.3.67) e l,a 0 ď e a 0 `C l 4