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Résumé

Cette thèse propose des algorithmes pour résoudre des problèmes de géométrie computa-
tionnelle non linéaire liés aux courbes paramétriques. Elle se concentre spécifiquement sur
le calcul de la topologie des courbes dans Rn et de l’enveloppe convexe des courbes dans
R2 et R3, sans avoir recours à l’implicitation. Les algorithmes effectuent des calculs exacts
avec des nombres réels grâce à des bornes de séparation et à l’arithmétique des intervalles.

Pour le calcul de la topologie, l’algorithme proposé fonctionne pour des courbes de
n’importe quelle dimension et calcule un graphe abstrait qui est isotopique à la courbe
dans l’espace de plongement. La complexité binaire est analysée et trouvée pour être
linéaire dans la dimension de l’espace ambiant.

Pour le calcul de l’enveloppe convexe, la thèse présente des algorithmes pour les courbes
planes et les courbes spatiales. L’enveloppe convexe est un ensemble semi-algébrique et
une représentation exacte de sa frontière est obtenue par une combinaison de segments de
droite et d’arcs de la courbe pour le cas en 2D, et de triangles et de patchs de surface
pour le cas en 3D. La description de la frontière est calculée pour chaque cas ainsi que
des estimations de la complexité binaire. Le calcul se réduit à la résolution univariée et
bivariée et à l’isolement des racines d’un polynôme univarié avec des coefficients dans une
extension de corps multiple.

Pour fournir des bornes supérieures asymptotiques pour le problème de l’enveloppe
convexe, la thèse fournit des bornes de complexité binaire pour l’isolement des racines
d’un polynôme F ∈ L[Y ], où L est une extension algébrique multiple de Q. Des bornes
amorties sur la séparation des racines de F sont utilisées et deux solutions algorithmiques
sont présentées; une formelle, qui est basée sur la représentation rationnelle univariée, et
une solution numérique, qui est également certifiée.

Mots-clés

Courbe paramétrique, topologie, enveloppe convexe, système polynomial, isolation de
racines, corps d’extension, complexité binaire.
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Abstract

This thesis proposes algorithms for solving non-linear computational geometry problems
related to parametric curves. Specifically, it focuses on computing the topology of curves in
Rn and the convex hull of curves in R2 and R3, without resorting to implicitization. The
algorithms perform exact computations with real algebraic numbers through separation
bounds and interval arithmetic.

For the topology computation, the proposed algorithm works for curves in any dimen-
sion and computes an abstract graph that is isotopic to the curve in the embedding space.
The bit-complexity is analyzed and found to be linear in the dimension of the ambient
space.

For the convex hull computation, the thesis presents algorithms for plane and space
curves. The convex hull is a semi-algebraic set and an exact representation of its boundary
is obtained through a combination of line segments and arcs of the curve for the 2D case,
and of triangles and surface patches for the 3D case. The boundary description is computed
for each case along with bit-complexity estimates. The computation reduces to univariate
and bivariate solving and to isolating roots of a univariate polynomial with coefficients in
a multiple algebraic field extension.

To provide asymptotic upper bounds for the convex hull problem, the thesis provides
bit-complexity bounds for the root isolation of a polynomial F ∈ L[Y ], where L is a
multiple algebraic extension of Q. Aggregate bounds for the separation of the roots of F
are employed and two algorithmic solutions are presented; a formal one based on Rational
Univariate Representations and a numerical one that is also certified.

Keywords

Parametric curve, topology, convex hull, polynomial system, root isolation, extension field,
bit-complexity
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Chapter 1

Introduction

Since its development, computational geometry focused on solving geometric and com-
binatorial problems involving linear objects such as points, line segments, polygons and
polyhedra [PS85, Ede04, dBCvKO08]. However, curved objects play a crucial role in real-
world applications and in science and engineering as well; in addition, these traditional
methods are inadequate for addressing the complex, algebraic nature of contemporary
challenges in fields such as geometrical modeling [JP08, CRE01], computer-aided design
[Sal06, PLH+05], robot motion planning [PASM17, STM19], reverse engineering [VMC97]
and learning theory [BBL+17, OA21].

Linearization is a commonly used method to effectively address problems involving
non-linear geometric objects. For, example, one approach is to discretize the objects into
meshes [HDPS11, DLLP08a, DLLP08b, DLLP08c]. However, this method often results in a
considerable loss of accuracy, which may cause issues depending on the specific application.
Furthermore, meshing can lead to a combinatorial explosion, which can decrease efficiency
compared to directly solving the problems on the non-linear geometric objects themselves.

To effectively tackle problems with non-linear objects without resorting to linear ap-
proximations, we must turn to real and complex algebraic geometry as the natural frame-
work for analyzing these objects [Buc88, BT06, Tei06]. In recent years, there has been
a surge in research towards algorithmic algebraic geometry, which aims to transform the
insightful concepts of unconstructive algebraic geometry into practical algorithms for ge-
ometric reasoning [BT06]. Since non-linear objects are often described as the (real) zero
set of polynomials, finding the roots of polynomial systems is of particular interest and
it can provide valuable information on their structure and properties [CCC+05, CLO05,
Stu02]. Advancements in computation facilitated the development of effective algorithms
for problems related to Voronoi diagrams [ELLED07, ETMT06], robot-motion planning
[Can88, Mou93, Buc87], curve topology [DDR+22, BT06], geometric modelling [Emi05],
geometric optimization [HDLP22, Baj88, Las01] and many others.

11



12 INTRODUCTION

Parametric curves

The focus of this thesis is on computational geometry problems related to rational para-
metric curves. A rational curve in Rn is parametrized by

ϕ : R→ Rn

t 7→
(
ϕ1(t), . . . , ϕn(t)

)
=

(
p1(t)

q1(t)
, . . . ,

pn(t)

qn(t)

)
,

where pi, qi are univariate polynomials. We call ϕ(t) a parametrization of the curve. Para-
metric curves have long been an important subject in computational algebra and geometry
[SW99] and continue to receive attention in current research [Sed86a, CKPU11, BLY19,
SWPD08, RSS13, SWPD08]. Efficient algorithms for working with parametric curves are
of particular interest because parametric representations are frequently used in different
fields such as computer modeling and computer-aided geometric design [FGS10], control
theory [Kur12], machine learning [SMC20] or chemical engineering [CKLS18].

The parametric representation is to be juxtaposed to the implicit representation of a
curve, where it given as the zero set of several polynomials. The implicit representation is
more general since every rational parametric curve can be implicitly represented, but the
converse is not true [SAG84]. To work with parametric curves, one common approach is to
convert them to implicit form using implicitization algorithms that have been extensively
studied, such as those described in [SC95, BLY19] and the references therein. However, it
is also important to be able to manipulate parametric curves directly, without converting
them to implicit form. This allows for instance, for easier visualization and identification
of points on the curve, especially for high-dimensional curves.

In what follows, we will introduce the two geometrical problems that are addressed in
this thesis.

Topology. Computing the topology of a parametric curve in Rn refers to the computa-
tion of an abstract graph that is isotopic [BT06, p. 184] to the curve in the embedding
space. The vertices of the embedded graph correspond to points on the curve and they are
connected with straight line segments that can be continuously deformed into the curve
without any topological changes (Fig. 1.1). The graph must include vertices that corre-
spond to self-intersections, cusps and other important points on the curve, such as extreme
points with respect to the coordinate directions. All these points are essential for precisely
capturing the curve’s geometry and producing a certified visualization of plane and space
curves.

The computation of the topology of an implicit plane curve has been extensively studied
([DDR+22, KS15] and references therein), but in higher dimensions, where the curve is the
zero locus of several polynomials, there does not exist general methods (see [CJP+21] for a
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Figure 1.1: A plane curve (in black) and a graph isotopic to it (in red).

recent result on space curves). In contrast, working directly with the parametrization of the
curve allows for a general algorithm for any dimension but on the same time presents unique
challenges. Arcs of a parametric curve are described by the corresponding intervals of the
parameter t and, for instance, choosing an appropriate parameter interval that includes
all the important topological features, such as singular and extreme points, is not always
straightforward [ADT10]. Additionally, visualizing the curve using symbolic computational
tools may result in missing points and branches, which need to be addressed [AR07, Sen02].

Convex hull. For any subset of Rn, where n ≥ 1, its convex hull is defined as the
smallest convex set that contains it, or in other words, as the intersection of its supporting
halfspaces [Brø83, Thm.4.5]. We focus on parametric curves in R2 and in R3; in particular,
we consider the problem of computing an exact description of the boundary of the convex
hull. Note that the boundary is a semi-algebraic set (since it is the boundary of the
intersecting halfspaces that define the convex hull) and thus it cannot be described by
polynomial equations.

For plane curves, the boundary of the convex hull consists of a combination of smooth
arcs of the curve and line segments joining two points on the curve (Fig. 5.1a). For space
curves, it is a combination of triangles and parts of a ruled surface that is also developable
(Fig. 5.1b), meaning that it can be flattened on the plane in a way that the length of any
curve drawn on the surface is preserved [SF00].

Convex hull computations are fundamental in computational geometry with direct ap-
plications in motion planning [ZST11, YLLF11], computer vision [dFT90], geometric mod-
eling systems [EMP10, GVNPD+04]; to mention few of them. Convex hull of non-linear ob-
jects arise naturally in optimization [Las09, BPT12] and learning theory [CS01b, SNW11]
because they are useful, among other things, in optimizing a linear function over a nonlin-
ear object.

This thesis tackles these two problems: computing the topology of parametric curves
in general dimension, and computing the convex hull of plane and space parametric curves.
The algebraic formulation of these problems involves polynomial systems and finding their
solutions is a pivotal issue for the effectiveness of our algorithms. We design algorithms that
are certified to produce accurate numerical, geometrical, and combinatorial results. We also
take into consideration the structure of the input to ensure that our solutions are tailored
to the specific problem at hand. To this scope, we use state-of-the-art techniques for
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(a) (b)

Figure 1.2: (a) A plane curve and its convex hull; the boundary consists of the red line
segments and the blue arcs of the curve. (b) A curve in R3 (in bold black) and its convex
hull; the visible part of the boundary consists of the blue triangle and the ruled surface
patches in purple and green.

computing resultants and solving polynomial systems and equations, but we also develop
our own algebraic tools that are customized to the special structure of the problems. In
particular, we put efforts into designing an efficient algorithm for isolating the roots of a
univariate polynomial that has coefficients within a multiple algebraic field extension.

Before explaining in detail our contributions (see Sec. 1.1), since we aim for methods
that always return the correct result for all types of input, we give a synopsis on how exact
computations can be performed.

Exact computations

The fact that computers cannot represent all real numbers and can only provide approxima-
tions can lead to significant errors in computational geometry [KMP+08]. These errors may
result in incorrect decisions, crashes, and other algorithm failures. Therefore, algorithms in
computational geometry must take measures to ensure the correctness of geometric results
and avoid any inconsistencies.

One common source of error is evaluating the sign of an expression with real numbers
using naive computer arithmetic. This evaluation can be wrong due to numerical errors,
especially when the expression is zero or close to zero, where even a small error can produce
the wrong sign. To guarantee correct results in computations with real numbers, one
approach is to perform exact computation; for example by relying on separation bounds
and/or interval arithmetic. Under the exact computation paradigm computations are done
with numbers of arbitrary precision and the algorithm never makes errors in its decisions
during computation [YE94].

In the exact computation paradigm, we can compute exactly using algebraic numbers.
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An algebraic number is the root of a univariate polynomial with integer coefficients. One
way to represent algebraic numbers is using Thom encoding [CR88]. Here, we represent an
algebraic number α ∈ C by the isolating interval representation. When α ∈ R (resp. C),
its isolating interval representation includes a square-free polynomial which vanishes at α
and a rational interval (resp. Cartesian products of rational intervals) containing α and no
other root of this polynomial [Yap99]. For example

√
2 is represented as (X2 − 2, [1, 2]).

The endpoints of the isolating intervals in the representation of algebraic numbers are
rationals or multiprecision numbers. Then, computing exactly with algebraic numbers is
done by providing algorithms for the different operations (such as sign computation or
comparison) using interval arithmetic, combined with separation bounds, e.g. [BFM+01].
As an illustration, if an algebraic expression’s sign needs to be evaluated, interval approx-
imations of its value are computed iteratively. If the interval includes zero, then the sign
cannot be decided and the computation is retried with greater precision. This iteration
continues until the resulting interval either does not include zero or has width smaller than
a separation bound. This bound is a minimum estimate of the smallest non-zero value (in
absolute terms) that the expression can attain. One drawback of this approach is that it
can be slow when the expression to be evaluated is equal to zero.

Efficiency

Obtaining efficient implementations in the exact computation paradigm is challenging,
especially when dealing with curved objects. Curved objects trigger algebraic operations
such as solving systems of polynomials, which makes certifying results more involved. Of
central interest is determining the computational complexity of our algorithms. For this
reason, we describe briefly the computational model considered in this thesis.

Computational model. We consider the Turing machine model of computation, which
is essentially a multitape Turing machine in which binary strings encode the input objects.
The main complexity measures in this model are the number of steps of a computation
and also the space occupied on the tape for the computation. The latter is determined by
size of representation of the objects involved in the computation, i.e., the bitsize (cf. next
paragraph). The Turing machine model can be contrasted to the real Random Access Ma-
chine (real RAM) model in which the size of representation is not a measure of complexity;
the complexity of an algorithm is then given by summing up the number of steps needed
to execute the algorithm, and computations with real numbers are exact and of unit cost.
We refer to [Yap99, BCSS98, Pap07, AB09] for more details on computational models.

Bitsize. The bitsize of an integer p is the number of bits needed to represent it, that
is ⌊log p⌋ + 1 (log denotes the logarithm of base 2). If p is a rational number, then its
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bitsize is the maximum bitsize of its numerator and denominator. We define the bitsize of
a polynomial with integer or rational coefficients as the maximum bitsize of its coefficients.

We use the O (big-O) notation for asymptotic upper bounds. For the complexity
analysis of algorithms, we differentiate between the arithmetic and the bit-complexity. The
arithmetic complexity is complexity in the real RAM model and is equal to the number of
arithmetic operations, assuming that each operation has unitary cost, regardless the size
of the operands. When the operands are integers or rationals, the bit-complexity takes
into account the growth of the coefficients in the operations, by considering the number of
bit-operations performed. For asymptotic upper bounds in the bit-complexity model, we
use the notation OB. We use Õ, resp. ÕB, to ignore (poly-) logarithmic factors.

For deterministic algorithms, the complexities are worst-case complexities. There are
also two types of randomized algorithms [MR95] considered in this thesis. A Las-Vegas
algorithm is a randomized algorithm that always produces the correct result or it informs
about the failure. The run time of a Las Vegas algorithm is probabilistic and it differs
depending on the input. We refer to it as expected run time. Contrastingly, a Monte-Carlo
algorithm is a randomized algorithm that has deterministic run time but produces output
that may be incorrect with a certain (typically small) probability. It is possible to turn a
Monte Carlo algorithm into a Las Vegas algorithm by additionally providing a way to test
the algorithm.

1.1 Related work and Contribution

This thesis makes contributions in three directions: root isolation of a polynomial with
coefficients in a multiple field extension, topology computation of parametric curves, and
computation of the convex hull of plane and space parametric curves.

In the sequel, we discuss each of the problems addressed in this thesis and provide a
thorough summary of our contribution to them. For an extended bibliography review, we
refer the reader to the corresponding chapters.

1.1.1 Root isolation in a multiple field extension

In Ch. 3, we consider the following system of polynomials with integer coefficients:

F1(X1) = 0 ,

...

Fn(Xn) = 0 ,

F (X1, . . . , Xn, Y ) = 0 .

(1.1)
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Let d be the maximum of the degrees of these polynomials and τ the maximum bit-
size of coefficients. Solving the previous system can be seen as isolating the roots of
F (a1, . . . , an, Y ) ∈ L[Y ] where L = Q(a1, . . . , an) is an extension of Q and ai, for i =

1, . . . , n, have minimal polynomials Fi(Xi), respectively. "Solving" a polynomial system
usually means computing isolating boxes for its roots, i.e., disjoint boxes in Cn such that
each one of them contains one root and their union covers all roots. There also exist other
representations of the roots, as for instance the Rational Univariate Representation (RUR)
[Rou99] or the representation through triangular systems (cf. Sec. 2.5 for a short review).
Notably, the RUR establishes a bijection between the roots of a zero-dimensional system
and the roots of a univariate polynomial. The coordinates of the roots of the system are all
expressed as rational polynomial functions evaluated at the roots of the same univariate
polynomial.

An efficient algorithm specifically designed for isolating the roots of the system in
Eq. (1.1), under no assumptions, lacks from literature. However, partial results do exist
[DDR+22, KS12, ST19, MSW15, KS15, Rum77, JK97]. Notably, in the simple extension
case, the state-of-the-art result is from Diatta et al. [DDR+22]. They provide precise amor-
tized separation bounds for the polynomial, i.e., bounds on the minimum distances between
the roots, and bit-complexity estimates for isolating the roots. In a multiple extension, the
only complete algorithmic result concerns the case where F does not have multiple roots
[ST12]. Algorithms for solving zero-dimensional polynomial systems of n+ 1 equations in
n + 1 variables could also be employed to solve the system Eq. (1.1), but it would be ex-
cessive as we are not utilizing the particular structure of our problem. The state-of-the-art
algorithm for zero-dimensional square systems is given by Brand and Sagraloff [BS16] and
it is a Las Vegas algorithm. Employing this algorithm to isolate the roots of the system
in Eq. (1.1) has expected complexity in ÕB

(
(n+ 1)n(ω+1)+2d(ω+2)n+1τ

)
, where ω denotes

the exponent in the complexity of matrix multiplication.

Contribution. We generalize the results of [DDR+22] concerning the geometry of the
roots of F , and notably their separation. We provide amortized bounds taking into consid-
eration the multiplicities of the roots. These bounds can be exploited for designing efficient
root isolation algorithms but are also of independent interest; for example we apply the ag-
gregate bounds of F on the ‘Sum of Square Roots of Integers’ Problem. This problem can
be formulated as the solution of smallest magnitude of a system in the form of Eq. (1.1).
Our approach is consistent with prior results using separation bounds [BFMS00, MS00],
and, even more, the proven bounds are aggregate.

For the root isolation of the system of Eq. (1.1), we design an algorithm that is based on
two ingredients: the amortized separation bounds for F and the univariate root isolation
algorithm of [MSW15] for polynomials with complex coefficients. The general idea is that
we isolate the roots of the n univariate polynomials F1, . . . , Fn and then, for every root
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in Cn we approximate the coefficients of F up to a certain precision (that is determined
by the separation bounds). After that, F is a univariate polynomial whose roots can be
isolated using the root isolation algorithm of [MSW15].

However, certain technical concerns need to be addressed. The root isolation algo-
rithm of [MSW15] for univariate polynomials, demands the number of distinct roots of the
polynomial to be known. This is because it uses this number in a termination criterion,
that the stops the computation when the correct number of roots has been found. This
means that, in our case, we should compute the number of distinct roots of F (x, Y ) for
every root x ∈ Cn of F1 = . . . = Fn = 0. We find that this operation dominates the total
bit-complexity of the algorithm, justifying the fact that the case where all the roots are
simple was only treated in literature so far [ST12].

To find the number of distinct roots we follow two approaches; a numerical (yet certi-
fied) and a formal one. The first one, uses numerical approximations of every x ∈ Cn that
is a root of F1 = · · · = Fn = 0, to determine the degree of the gcd of F (x, Y ) and ∂F

∂Y (x, Y )

through subresultant computations. This leads to a deterministic algorithm with worst
case complexity in ÕB

(
n2d3n+3τ + n3d2n+4τ

)
(Thm. 3.7(ii), Rem. 3.8).

The second approach is to compute a Rational Univariate Representation (RUR) of
the roots x of F1 = . . . = Fn (Thm. 3.35). We employ the algorithm of [Rou99] that uses
the traces of the multiplication matrices in Q[X1, . . . , Xn]/⟨F1, . . . , Fn⟩ and can be fast
due to their structure. Then, we use the RUR to transform the system of Eq. (1.1) into a
bivariate system in triangular form. The number of distinct roots of the original system is
then found through the bivariate system using gcd computations. We assemble everything
into a Las-Vegas algorithm for the root isolation that is of expected complexity

ÕB(n(n+ 2n)d3n−1(d+ τ) + n10) ,

when n ≥ 6 and ÕB(d2n+5(d+ τ)) otherwise (Rem.3.38).

1.1.2 Topology of parametric curves

In Ch. 4, we consider a curve in Cn, parametrized by

ϕ : C 99K Cn

t 7→
(
ϕ1(t), . . . , ϕn(t)

)
=
(p1(t)
q1(t)

, . . . ,
pn(t)

qn(t)

)
, (1.2)

where pi, qi are polynomials in Z[t] with maximum degree d and bitsize of coefficients at
most τ . The focus of this chapter is on computing the topology of the real trace, C, of the
curve, that is the Zariski closure of the image of ϕ intersected with Rn. Our objective is to
develop a general algorithm that can be applied to curves of any dimension. Computing the
topology, as also discussed in pg. 12, essentially suggests the computation of an abstract



1.1. RELATED WORK AND CONTRIBUTION 19

graph that, when embedded in Rn, is isotopic to the curve. For the graph’s vertices, one
has to compute the singular points on the curve, and other important points, such as the
extreme ones (with respect to the coordinate directions).

The computation of singular points in parametric curves is a fundamental element of
any algorithm that aims to compute the topology. For the parametrization ϕ (Eq. (1.2)),
the following system of bivariate polynomials

hi(s, t) =
pi(s)qi(t)− qi(s)pi(t)

s− t
, for i ∈ [n] , (1.3)

is often considered to compute the singular points, since, for instance, the self-intersections
of the curve correspond to points in Rn given by two parameter values s and t, with
ϕ(s) = ϕ(t). Numerous research works find the singular points using univariate resultant
computations involving these polynomials [AB89, vdEY97, Par02, PD07, GRS02, BPD19,
RSV09, ADT10]. Other methods also exist, for example by using the syzygies of the ideal
generated by the polynomials that give the parametrization [CKPU11], or the µ-basis of
the parametrization ([JSC18] and references therein).

On the topology computation, a general algorithm for any dimension lacks from lit-
erature. Alcázar and Díaz-Toca [ADT10] study the topology of real plane and space
parametric curves without implicitizing. For the computation of the singularities they use
a resultant based approach of the system in Eq. (1.3). The case of space curves is reduced
to the plane one through a birational [SWPD08, Def. 2.37] projection of the curve on
the plane. For the isotopic graph construction they use a sweep-line approach, which is
common for implicit curves.

Contribution. We design an algorithm, PTOPO (Alg. 6), that applies directly to rational
parametric curves of any dimension and is exact and complete, in the sense that there are
no assumptions on the input, as for instance in [ADT10] where they require the absence
of axis-parallel asymptotes. However, a preprocessing step ensures some good properties
of the parametrization, that is properness [PD06] (Lem. 4.6) and abscence of singularities
at infinity (Lem. 4.7).

To compute the singular points, we isolate the roots of the polynomial system of
Eq. (1.3); it is an over-determined bivariate system. We introduce an algorithm for isolating
the roots of over-determined bivariate polynomial systems using the Rational Univariate
Representation (RUR) [Rou99, BLPR15, BLM+16, BLPR13]. It achieves a worst case and
expected bit complexity that matches the bounds for bivariate systems (Thm. 4.16). By
leveraging the symmetry of the system and using nearly optimal algorithms for computa-
tions with real algebraic numbers [DDR+22, BLM+16, DET09, PT17], we then are able to
find the parameters corresponding to the interesting points on the curve that will comprise
the graph’s vertices.
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For the connection of the graph’s vertices, the novelty of PTOPO is that it computes
only in the parameter space and it does not use a sweep-line algorithm to construct the
isotopic graph (in contrast to [ADT10]). In this way, we circumvent the need to carry out
operations such as univariate root isolation in a field extension or polynomial evaluation
at an algebraic number, that would result in an increase of complexity.

PTOPO computes the abstract graph in

ÕB(nd6 + nd5τ + d4(n2 + nτ) + d3(n2τ + n3) + n3d2τ)

bit-operations in the worst case (Thm. 4.24). We also provide a Las Vegas variant with
expected complexity in

ÕB(d6 + d5(n+ τ) + d4(n2 + nτ) + d3(n2τ + n3) + n3d2τ).

If n = O(1), the aforementioned bounds become ÕB(N6), where N = max{d, τ}. For
plane and space curves, our bound improves the previously known bound due to [ADT10]
by a factor of N10. In particular, for n = 2, our bound matches the record bound, ÕB(d6+
d5τ) or ÕB(N6), for computing the topology of implicit plane curves [DDR+22, KS15].

Additionally, for plane and space curves, we can compute an isotopic embedding of the
graph in box that contains all the the topological features of the curve (Lem. 4.20) in the
same bit-complexities (Thm. 4.23, Cor. 4.26, Thm. 4.28).

We provide a certified implementation1 of PTOPO in maple that computes the topology
of plane and space curves and visualizes them. Our package is built upon the real root
isolation routines of maple’s RootFinding library and the slv package [DET09]. A typical
output of PTOPO for a space parametric curve is shown in Fig. 1.3. Notice that in Fig. 1.3(a)
the box in which the curve is plotted is large enough to contain all the topological features,
including the branches that go to infinity.

1.1.3 Convex hull of plane and space parametric curves

In Ch. 5, we consider plane and space curves parametrized by ϕ as in Eq. (1.2), when n = 2

and 3 respectively. The polynomials of the parametrization are of degree at most d and
bitsize τ . Our objective is to compute an exact boundary description of the convex hull of
ϕ(I), where I ⊆ R such that ϕ(I) is compact.

A complete algorithmic framework for the exact boundary description is missing from
literature. There is a series of works for the problem of computing the convex hull of
curved arcs, given in parametric form, on the plane [SJVW87, DS90, BK91, JL05] that
are mostly combinatorial and rely on expensive oracles. Ranestad and Sturmfels [RS09]
compute the algebraic boundary of the convex hull of a space parametric curve; however,

1https://gitlab.inria.fr/ckatsama/ptopo

https://gitlab.inria.fr/ckatsama/ptopo
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(a) (b)

Figure 1.3: (a) The visualisation of PTOPO for the curve parametrized by ϕ(t) =(
− 3t4−1

(t2+1)2
,− t3(23t4−8)

(t2+1)2
,− t3(29t4−10)

(t2+1)8

)
. The blue square point is a multiple point (for

t = ±0.767963), the red square is a cusp (t = 0) and the purple spheres are extreme
points. (b) A close-up of the curve.

this description does not give information on the exact boundary structure. The convex
hull of parametric curves in Rn can be expressed as the projection of a spectrahedron, the
feasible region of a semidefinite program [Hen11]. While this representation of the convex
hull is suitable for optimization, it fails to provide any insights into the facial structure of
the boundary.

Previous research, such as that of [Joh04, EKH01] for plane curves and [SEJK04] for 3D
curves, has also presented a problem formulation approach that involves solving polynomial
systems. Specifically, the roots of the considered polynomial systems include the segments
(for plane curves) and triangles (for space curves) that lie on the boundary of the convex
hull. For space curves, the boundary’s surface patches can be traced by an implicit plane
curve; generically, a point on this curve corresponds to a segment connecting two points
on the space curve. However, some aspects of this approach are not easily implementable,
and there is no analysis of the computational complexity. Therefore, we seek to bridge
the gap between a theoretical method and one that can be effectively implemented in a
working system.

Contribution. We design an exact and complete algorithm for the convex hull compu-
tation of plane and space parametric curves, defined over a parameter interval I ⊂ R, such
that ϕ(I) is compact.

The boundary description that we compute, consists, in the case of plane curves, of a
sequence of parametric arcs, described by the corresponding parameter intervals, and of
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line segments that connect two points on the curve. All the parameters are represented
by algebraic numbers and thus a numerical approximation of arbitrary precision can be
obtained.

For space curves, we describe the faces of the boundary of the convex hull using a
doubly connected edge list (DCEL) [dBCvKO08, Ch.2.2], that is often used to encode the
boundary information of convex polyhedra. The vertices of the faces that are triangles are
described by the corresponding parameters that are algebraic numbers. A surface patch is
described by an arc of an implicit plane curve that traces the ruled patch.

A basic ingredient of our algorithms, is the Support predicate (Sec. 5.3) that can be
applied to parametric curves of any dimension and checks if a hyperplane is supporting for
the curve or not. The test that the predicate performs can be formulated as a test of sign-
invariance of a univariate polynomial. It should be noted that creating such a predicate
for implicit curves is not an easy task.

The algorithm for plane curves, first computes the line segments. The line segments
are solutions of some polynomial systems. However, these systems contain some extra
roots that do not correspond to segments on the boundary of the convex hull. We split the
curve at the endpoints corresponding to all the solutions of the systems (by splitting the
parameter interval); so the curve is segmented to possibly more arcs than needed because of
the extra roots of the polynomial system. Computing these extra segments is unavoidable,
since they are all roots of the same polynomial system. However, this does not affect the
correctness of the algorithm. Every arc of the decomposition has the property that it is
either entirely on the boundary of the convex hull, or it is contained in its interior. Then,
for every branch we can use the Support predicate to check if it is on the boundary or
not. At the last step, connecting the arcs can be done using some combinatorial criteria
since the sets of segments are already computed.

For the convex hull of space parametric curves our algorithm follows the same line as the
2D algorithm. The triangle facets are obtained through solving some polynomial systems.
Then, the surface patches of the curve, are traced through an implicit plane curve, the so-
called bisecant curve (Eq. (5.8)). We are able to find the surface patches on the boundary
by a suitable decomposition of this implicit curve (using a specially tailored Cylindrical
Algebraic Decomposition) and applications of the Support predicate. Connecting the
surface patches with triangles can be realised, since the triangles are already computed, by
using again some combinatorial criteria.

We analyse the bit-complexity of the algorithms. In the quest of minimizing the bit-
complexity, we manage to express it by means of the complexity of isolating the roots
of systems of the form of Eq. (1.1), instead of square systems of the same dimension
(Thm. 5.6 and Thm. 5.15). Using the results of Ch. 3 for the bit-complexity of solving
systems of this form, we show that the bit-complexity of the algorithm for plane curves is
in ÕB(d10 + d9τ) and in ÕB(d13 + d12τ) for space curves. If alternatively, we employ the
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Figure 1.4: The boundary of the convex hull of the curve parametrized by Eq. (1.4) consists
of one triangle and four ruled (developable) surface patches.

Las-Vegas algorithm of [BS16] for solving square zero-dimensional polynomial systems, the
bit-complexities would be

ÕB
(
d2ω+5(d+ τ)

)
≈ ÕB

(
d9.75(d+ τ)

)
for plane curves, and

ÕB
(
d3ω+7(d+ τ)

)
≈ ÕB

(
d14.12(d+ τ)

)
for 3D curves, where ω ≈ 2.372873 denotes the exponent in the complexity of matrix
multiplication. This highlights the advantage of utilizing the geometry of a problem to
create a formulation that involves system of special structure. A preliminary version of
our algorithm is implemented in Maple; as an example, the convex hull of the curve
parametrized by

ϕ(t) =

(
−
8
(
42t2 + 13t− 42

)3
614125 (t2 + 1)3

,
(t− 13)3 (13t+ 1)3

614125 (t2 + 1)3
,
(t− 13)3

(
8783t3 + 2223t2 − 2379t+ 10989

)
2456500 (t2 + 1)3

)
(1.4)

is shown in Fig. (1.4).

1.2 Organization of the thesis

Chapter 2 of this thesis provides an overview of the algebraic geometry concepts that
form the foundation of our research. Although this chapter does not present any novel
contributions, it is essential for understanding the subsequent chapters.

The remaining chapters of the thesis focus on our original contributions, which are
divided into two parts: Polynomial system solving and Algorithms on parametric curves.
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Polynomial system solving

• Chapter 3 contains our contribution to solving polynomial equations with coeffi-
cients in a multiple field extension. Part of this chapter will appear in

– Isolating roots in a multiple field extension.
C.K., Fabrice Rouillier.
ISSAC ’23: Proceedings of the 48th International Symposium on Symbolic and
Algebraic Computation.

Algorithms on parametric curves

• Chapter 4 contains our contribution to the computation of the topology of para-
metric curves in Rn. The contributions of this chapter are a joint work with Fabrice
Rouillier, Elias Tsigaridas and Zafeirakis Zafeirakopoulos and they have appeared in

– On the geometry and the topology of parametric curves.
C.K., Fabrice Rouillier, Elias Tsigaridas, Zafeirakis Zafeirakopoulos.
ISSAC ’20: Proceedings of the 45th International Symposium on Symbolic and
Algebraic Computation (10.1145/3373207.3404062) [KRTZ20a].

– PTOPO: Computing the geometry and the topology of parametric curves.
C.K., Fabrice Rouillier, Elias Tsigaridas, Zafeirakis Zafeirakopoulos.
Journal of Symbolic Computation (10.1016/j.jsc.2022.08.012) [KRTZ23].

• Chapter 5 contains our contribution to the computation of the convex hull of para-
metric curves in R2 and in R3.

https://doi.org/10.1145/3373207.3404062


Chapter 2

Preliminaries

The purpose of this chapter is to introduce some basic notions of computational algebra
and the computational tools employed regularly throughout this thesis. Most of the proofs
are omitted, since they can be found in classical textbooks of computer algebra, as for
example [BPR06, vzGG13, Yap99]. We chose to include some proofs that are instrumental
for the understanding of the reader or for whom we were not able to find a reference that
is appropriate for our setting.

The chapter is organised as follows. In Sec. 2.1 we present our notation. Then, we
review some algorithms for basic operations involving polynomials (Sec. 2.2), gcd, resul-
tant and subresultant computations (Sec. 2.3), root isolation of univariate polynomials
(Sec. 2.4) and general polynomial systems (Sec. 2.5). Lastly, Sec. 2.6 provides a general
description of modular algorithms. For the most part, the polynomials will be considered
with integer coefficients whose size will be taken into account to offer realistic estimates
for the complexity of the different algorithms; the so-called bit-complexity.

2.1 Notation

We introduce some notation and terminology used throughout this thesis.

Vectors. Throughout the thesis, vectors are denoted by boldface symbols. Let n ∈ N.
For a vector x = (x1, . . . , xn) ∈ Cn, we denote by x−i the vector (x1, . . . , xi−1, xi+1, xn) ∈
Cn−1, i ∈ [n]. We use the abbreviation [n] for the set {1, . . . , n}, for a positive integer n.

We call absolute L-bit approximation of a real number x, a rational number x̃ such
that |x− x̃| < 2−L.

Polynomials and Ideals. For a polynomial f =
∑d

i=1 aiX
i ∈ C[X] we denote by lc(f)

its leading coefficient and by tc(f) its tail coefficient (the coefficient of its non-zero term
of the lowest degree). The k-th derivative of f is denoted by f (k). When f has integer
coefficients, we denote its bitsize by L(f) and we say that it is of size (d, τ). when its

25
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degree is at most d and has bitsize τ . Similarly, a multivariate polynomial with integer
coefficients is of size (d, τ) when its total degree is at most d and has bitsize τ .

Let I = ⟨f1, . . . , fk⟩ be a polynomial ideal in C[X1, . . . , Xn], k ∈ N. We denote by
VC(I) or VC(f1, . . . , fk) the complex variety defined by I. For a x ∈ VC(I), we denote
by µI (x) its multiplicity as root of I. When I is generated by one polynomial f ∈ C[X],
we write for simplicity µ

f
(x) to denote the multiplicity of x as root of I = ⟨f⟩. The ideal

⟨f1, . . . , fi−1, fi+1, . . . , fk⟩, for i ∈ {1, . . . , k} is denoted by I \ fi.

2.2 Computations with polynomials

We consider polynomials with integer coefficients and we recall some elementary results on
computing with these polynomials. In particular, we review addition, multiplication and
division of polynomials and evaluation at rational numbers. We present bit-complexity
results for these operations, using state-of the-art algorithms.

2.2.1 Basic operations

The bit-complexity of adding two integers of bitsize τ is OB(τ). The bit-complexity of
multiplying two integers of bitsize τ depends strongly on the algorithm used: OB(τ2)
when the multiplication is done naively, OB(τ log(3)) when Karatsuba’s method is used,
OB(τ log τ log(log(τ))) using Fast Fourier Transform (FFT) and O(τ log τ) using the al-
gorithm of Harvey and van Der Hoeven [HvdH21]. We refer to [vzGG13, §8] for relative
information. For the results presented in this subsection we refer to [BPR06, §8] and
[vzGG13] for a detailed exposition.

Given two multivariate polynomials with integer coefficients, their addition amounts
to adding the coefficients of the corresponding monomials. It is described in [BPR06,
Alg. 8.9]. For the addition of two n-variate polynomials of total degree ≤ d, we have to
take into account that each one has

(
d+n
n

)
monomials [BPR06, Lem. 8.10], and so we have

to perform
(
d+n
n

)
≤ (d+ 1)n additions.

Theorem 2.1 (Addition). Let f, g ∈ Z[X1, . . . , Xn] be n-variate polynomials of size
(d, τ). Their sum f + g has bitsize at most τ + 1 and it can be computed in OB(dnτ)
bit-operations.

For the multiplication of two univariate polynomials we use Schönhage and Strassen’s
multiplication algorithm [vzGG13, §8.3]. For a more recent result, we refer again to
[HvdH21].

Theorem 2.2 (Univariate Multiplication). [vzGG13, Cor.8. 27] Let f, g ∈ Z[X] uni-
variate polynomials of size (d, τ). Their product f · g can be computed in Õ(d) arithmetic
operations and in ÕB(dτ) bit-operations.
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For the multiplication of two polynomials in Z[X1, . . . , Xn], one can use the method
of binary segmentation. Binary segmentation is used to map a multivariate polynomial
f ∈ Z[X1, . . . , Xn] directly into an integer, by substituting the variables X1, . . . , Xn by
integers 2ν1 , . . . , 2νn , where ν1, . . . , νn are as small as possible so that f(X1, . . . , Xn) can
then be uniquely recovered from its integer value f(2ν1 , . . . , 2νn).

Klose’s multivariate binary segmentation [Klo95] is based on the following power-2
substitution homomorphism:

Lemma 2.3. [Klo95, Lem.2.1] Let n, τ, d ∈ N, with n ≥ 2. Let also ν = (ν1, . . . , νn) with
νi := (τ + 1)(di−1 + di−2 + · · ·+ 1), for i ∈ [n]. Then, the substitution homomorphism

ϕν : Z[X1, . . . , Xn]→ Z

f 7→ f(2ν1 , . . . , 2νn)

is injective on the set Pd,τ = {f ∈ Z[X1, . . . , Xn] : L(f) ≤ τ, deg(f) ≤ d}. For f ∈ Pd,τ
we have that L(ϕν(f)) ≤ νn d+ τ + 1.

Using the mapping ϕν , one can compute the image of f under it and then perform
operations in Z, instead of Z[X1, . . . , Xn]. The result, can be recovered by computing
the inverse image with respect to ϕν . This is described in [Klo95, Alg. Inverse Binseg]
and uses integer division with remainder. So, for the multiplication of two multivariate
polynomials using multivariate binary segmentation we have the following:

Theorem 2.4 (Multivariate multiplication). [Klo95, Thm. 3.1] Let f, g ∈ Z[X1, . . . , Xn]

be n-variate polynomials of size (d, τ). Their product f · g is a polynomial of size (O(d),
O(τ + n log d)) and it can be computed using binary segmentation in ÕB((2d)n(n + τ))

bit-operations.

An alternative to binary segmentation is Kronecker substitution which reduces the mul-
tiplication to multivariate polynomials to the multiplication of univariate ones. It leads
to comparable bit-complexity estimates. We refer the interested reader to [vzGG13, §8.4],
[vzGG13, Ex. 8.38] and [Pan94]. For a probabilistic approach to Kronecker substitution
we refer to [Arn16].

Division with remainder is possible for any two elements in a Euclidean domain. This
means that, since Z[X] is not Euclidean domain, we cannot always divide with remainder
in Z[X]. For instance, division of x2+1 by 2x gives a trivially zero quotient and remainder
equal to the dividend x2 + 1. For polynomials in K[X], where K is a field, division with
remainder by an arbitrary nonzero polynomial is possible [BPR06, Alg. 8.5].

However, for two polynomials f, g ∈ Z[X], division with remainder in Z[X] can still
be done as long as lc(g) = −1 or 1, that is, g is invertible (see [vzGG13, Alg. 2.5]). In
general, to ensure that division of f(X) by g(X) can be performed in Z[X], or any integral
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domain, we can perform the so-called pseudo-division. It amounts to multiplying f(X) by
lc(g)deg(f)−deg(g)+1 (see [vzGG13, Alg. 6.61]).

Theorem 2.5 (Univariate pseudo-division). [vzGG13, Thm. 9.6] Let f, g ∈ Z[X] be
of sizes (d, τ). The pseudo-division of f by g can be performed in ÕB(d2τ) bit-operations.

Moreover, when the remainder of the division of f by g is known to be zero, we have
the following:

Lemma 2.6 (Exact division). [vzGG13, Ex. 9.14] Let f, g ∈ Z[X] such that f is of size
(d, τ) and there exists q ∈ Z[X] such that f = qg. Then q can be computed in ÕB(d(d+τ))
bit-operations.

Assume now that we have two multivariate polynomials f, g ∈ Z[X1, . . . , Xn], and we
want to perform pseudodivision of f by g with respect to the variable Xn. Then, we can
use binary segmentation to reduce computations to the univariate pseudo-division.

Theorem 2.7 (Multivariate pseudo-division). [Klo95, Thm. 3.2] Let f, g ∈ Z[X1, . . . , Xn]

of sizes (d, τ) and n ≥ 2. The pseudo-division of f by g with respect to Xn can be performed
in 

ÕB(d2n+1(n+ τ)) , if d ≥ 2 and degXn
(g) ≥ 1 ,

ÕB(d2n(n+ τ)) , if d ≥ 2 and degXn
(g) = 0 ,

ÕB(d2τ) , if d = 1

bit-operations.

2.2.2 Evaluation of polynomials

Let
f(X) = adX

d + . . .+ a1X + a0 ∈ Z[X]

of size (d, τ). To evaluate f at a rational number a, one can use the Horner’s rule to write
the polynomial as

f(X) = a0 +X(a1 +X(a2 +X(a3 + . . .+ (an−1 + anX) · · · ) . (2.1)

Then, we start by evaluating the inner-most parenthesis and then we continue similarly by
evaluating always the inner-most parenthesis. This algorithm is also described in [BPR06,
Alg. 8.14].

Having expressed the polynomial in the form of Eq. (2.1), its evaluation only requires d
additions and d multiplications. On the contrary, if the classic monomial form of f is used
for its evaluation, then we have to perform d additions and O(d2) multiplications. For the
bit-complexity of the Horner’s method, we have the following:
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Lemma 2.8 (Evaluation using Horner’s method). Let a ∈ Q of bitsize σ and a
univariate polynomial f ∈ Z[X] of size (d, τ). The evaluation of f at a, f(a), can be
computed using the Horner’s method in ÕB(d(τ + dσ)) bit-operations and it has bitsize in
O(τ + dσ).

Proof. The polynomials of degree one that are evaluated at each step, have increasing
bitsizes that are at most τ , O(τ + σ), O(τ + 2σ), . . . , O(τ + (d− 1)σ). To evaluate each
polynomial, we perform one addition and one multiplication, thus we perform ÕB(τ + σ),
. . . , ÕB(τ + dσ) bit-operations respectively. Adding all the previous bounds, results to a
total number of bit-operations in ÕB(d(τ + dσ)).

However, one can do better by using a divide and conquer approach, known as Estrin’s
scheme. Assuming, for simplicity, that d is a power of two, we can write f as

f(X) =

d/2∑
i=0

aiX
i +Xd/2

d/2∑
i=1

ai+d/2X
i . (2.2)

Thus, Eq. (2.2) shows that computing f(a) amounts to evaluating Xd/2 and two (d/2)-
degree polynomials of size (d, τ) and then to performing one multiplication and one ad-
dition. By repeating for the (d/2)-degree polynomials, we obtain a better bound on the
bit-complexity of the evaluation.

Lemma 2.9 (Evaluation using Estrin’s scheme). [BLPR15, Lem.6] Let a ∈ Q of
bitsize σ and a univariate polynomial f ∈ Z[X] of size (d, τ). The evaluation of f at a,
f(a), can be computed using Estrin’s scheme in ÕB(d(τ + σ)) bit-operations and it has
bitsize in O(τ + dσ).

Now, evaluating a multivariate polynomial at one point can be induced recursively to
the evaluation of univariate polynomials.

Lemma 2.10 (Evaluation of multivariate polynomials). Let a ∈ Qn of bitsize σ

and a polynomial f ∈ Z[X] of size (d, τ). The evaluation of f at a can be computed in
ÕB(ndn(τ + σ)) bit-operations and f(a) has bitsize in Õ(ndσ + τ).

Proof. We write f(X) = fd(X−n)X
d
n + · · ·+ f0(X−n). We denote by E(n) the cost of the

evaluation of f and by E(n−1) the cost of the evaluation of the (n−1)-variate polynomials
f0, . . . , fd. Let L(n − 1) be the bitsize of fi(a−n). Supposing that we evaluate f0, . . . , fd
and then, using Lem. 2.9, we evaluate the resulting univariate polynomial, we have the
relation

E(n) = (d+ 1) · E(n− 1) + d(L(n− 1) + σ).

Then, we induce the evaluation of each fi, for i = 0, . . . , d, to the evaluation of d + 1

(n−2)-variate polynomials and a univariate one, and we continue similarly. Again, for the
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k-variate polynomials that appear in this recursive process, we denote by E(k) the cost
their evaluation and by L(k) the bitsize of the result after the evaluation. Thus, we have
that in the end:

E(n) = (d+ 1)n−1E(1) +
n−1∑
j=1

djL(n− j) + σ
n−1∑
j=1

dj ∈ ÕB(ndn(τ + σ)),

since E(1) = ÕB(d(τ + σ)), L(1) = τ + dσ and L(k) = L(k− 1) + dσ, for k = 2, . . . , n− 1

(Lem. 2.9). The bitsize of f(a), i.e., L(n), is in Õ(ndσ + τ).

Now, say that we want to evaluate a univariate polynomial f ∈ Z[X] of degree d at
some numbers a1, . . . , ad ∈ Q, the straight-forward way would be to use the algorithms
of Lem. 2.8 or Lem. 2.9 d times. However, there is a faster way to do this, using fast
multipoint evaluation ([vzGG13, §10.1], [MB72]). Using recursion, this method reduces the
evaluation of a univariate polynomial at d points to successive polynomial multiplications
and divisions, while the recursion trees are balanced with respect to degree.

To describe the algorithm, we now assume for simplicity that d = 2k. We define the
polynomials

Pi,j :=
2i∏
l=1

(X − a2ij+l−1) for 0 ≤ i ≤ k and 1 ≤ j ≤ 2k−i .

Each Pi,j is a subproduct with 2i factors. We compute them in a recursive way, by building
a subproduct tree in bottom-up fashion, using the relations:

P0,j = (x− aj) and Pi+1,j = Pi,2j−1 · Pi,2j .

The subproduct tree is illustrated in Fig. 2.1.
Then, we build the remainder tree, in a top-bottom fashion. We define the polynomials

ri,j := f(X) mod Pi,j for 0 ≤ i ≤ k and 1 ≤ j ≤ 2k−i .

Then, we set rk,1 = f(X) and we compute them using the relation

ri,j = ri+1,⌈j/2⌉(X) mod Pi,j .

The evaluation of f at aj is exactly the remainder

r0,j = f(X) mod P0,j = f(X) mod (X − aj) = f(aj) .

The remainder tree is illustrated in Fig. 2.2. For the bit-complexity of the algorithm
we have the following result:
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Pk,1 = Pk−1,1 · Pk−1,2

Pk−1,1

...

P1,1 = P0,1 · P0,2

P0,1 = X − a1 P0,2 = X − a2

...

...

Pk−1,2

...
...

... P1,d/2 = P0,d−1 · P0,d

P0,d−1 = X − ad−1 P0,d = X − ad i = 0

i = 1

...

i = k − 1

i = k

· · ·

Figure 2.1: The subproduct tree of fast multipoint evaluation of f at a1, . . . , ad.

rk,1 = f(X)

rk−1,1 = rk,1 mod Pk−1,1

...

r1,1

r0,1 = f(a1) r0,2 = f(a2)

...

...

rk−1,2 = rk,1 mod Pk−1,2

...
...

...
r1,d/2

r0,d−1 = f(ad−1) r0,d = f(ad) i = 0

i = 1

...

i = k − 1

i = k

· · ·

Figure 2.2: The remainder tree of fast multipoint evaluation of f at a1, . . . , ad.
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Theorem 2.11 (Multipoint evaluation in Z). [KS13, Thm.9] Let f ∈ Z[X] be a polyno-
mial of degree d and of bitsize τ and let a1, . . . , ad ∈ Q of bitsize σ. Then, f(a1), . . . , f(ad)
can be computed using fast multipoint evaluation in

ÕB (d(τ + dσ))

bit-operations.

In particular, when the polynomial’s coefficients are complex numbers, we can have
another formulation of the previous theorem, that specifies that precision in which the
coefficients of the polynomial need to be approximated to obtain the evaluations at a
desired precision. Note that the existence of an oracle providing these approximations is
assumed.

Theorem 2.12 (Multipoint evaluation in C). [KS13, Thm.9] Let f ∈ C[X] be a
polynomial of degree d with bitsize at most τ and let a1, . . . , ad ∈ C be complex points with
absolute values bounded by 2Γ, where Γ ≥ 1. Then, approximate multipoint evaluation up to
a precision of 2−L for some integer L ≥ 0, that is, computing f̃i such that |f̃i−f(ai)| ≤ 2−L

for all i, can be done in
ÕB (d(L+ τ + dΓ))

bit-operations. The precision demand on f and the points ai is bounded by L+ Õ(τ + dΓ)

bits.

Remark 2.13 (Multivariate multipoint evaluation). The multipoint evaluation of a
univariate polynomial is not an immediate extension of the univariate case, unless if the
evaluation points belong in a set of a certain structure (for example tensor-grids [vdHS12]).
Other partial results concern only the bivariate case (when n = 2) [NRS20, vdHL21] or
evaluation over Z/rZ [KU11, KU08]. For a general result, we refer the reader to [vdHL23]
for recent advances on this matter.

2.3 Greatest Common Divisor, Resultant and Subresultants

This section reviews the relevant concepts of the greatest common divisor of two univariate
polynomials, their resultant, and subresultant sequences. For the most of this section we
consider polynomials with integer coefficients. We provide definitions and properties of
these concepts, along with bit-complexity results.

2.3.1 Greatest Common Divisor

For simplicity, we first consider two polynomials in Q[X]. However, Q can be replaced by
any field. A greatest common divisor (gcd) of f and g in Q[X], denoted gcd(f, g), is a
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polynomial h ∈ Q[X] such that h is a divisor of both f and g, and any divisor of both f

and g is a divisor of h. A gcd always exists in a Euclidean domain and is unique up to the
multiplication with an invertible element of Q (see [vzGG13, §3.4]).

A gcd does not always exit in an arbitrary ring. But when the polynomials have
coefficients in a Unique Factorization Domain (UFD), for example Z, still their gcd can be
computed.

Take f, g polynomials now belonging in Z[X]. Then f and g are expressed uniquely as

f = cont(f) · pp(f) ,

g = cont(g) · pp(g) ,

where cont(·) ∈ Z is the content and pp(·) ∈ Z[X] is the primitive part. Then, using
Gauss’ Lemma, we have that if h̃ is a gcd of pp(f) and pp(g) in Q[X], then

gcd(cont(f), cont(g)) · h̃ ∈ Z[X]

is a gcd of f and g in Z[X].

Computing the gcd of f, g in Q[X] (or an arbitrary Euclidean domain) can be done
using the Euclidean algorithm, that is as follows:

Let r0 = f and r1 = g. For i > 1 the algorithm computes the remainders

ri+1 = ri−1 mod ri ,

and returns the first non-zero rk.
The sequence of remainders {r0, . . . , rk} in the Euclidean Algorithm is called Euclidean

remainder sequence of f and g. The last element rk of the sequence is a gcd of f and g in
Q[X] [BPR06, Prop.1.16].

The Euclidean algorithm performsO(d2) arithmetic operations in Q [vzGG13, Thm. 3.11].
A faster algorithm is obtained with the half gcd approach [vzGG13, §11]: Essentially the
idea is to compute only the quotients of the divisions in the Euclidean algorithm and not
the entire remainder sequence. Computing the quotients and the remainder that gives the
gcd can be done in O(d) operations in Q [vzGG13, Cor. 11.9]. However, computing the
entire remainder sequence is not possible at the same cost: any algorithm computing it
requires at least O(d2) operations, since the output size of the sequence is quadratic in the
size of the input that is in O(d).

Theorem 2.14. [BPR06, Cor. 11.14] Let f, g ∈ Z[X] of sizes (d, τ). A gcd of f and g can
be computed in ÕB(d2τ) bit-operations.

The size of the gcd of two polynomials with integer coefficients can be deduced from
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the following bound:

Theorem 2.15 (Mignotte’s bound). [BPR06, Cor. 10.12] Let f ∈ Z[X] of size (d, τ)

and let h ∈ Z[X] be a polynomial that divides f in Z[X]. Then h has bitsize in O(d+ τ).

We end this subsection with a lemma that we will use to establish a connection between
resultants and greatest common divisors (see Rem. 2.25).

Lemma 2.16. [BPR06, Prop. 1.17] Let f, g ∈ Z[X] and h a gcd of f and g. Then, there
exist A,B ∈ Q[X] with deg(A) < deg(g) and deg(B) < deg(f) such that:

Af + bg = h .

2.3.2 Resultant

We consider two non-zero polynomials f, g ∈ Z[X] of degrees p, q ∈ N∗ respectively, ex-
pressed as

f(X) = apX
p + ap−1X

p−1 + · · ·+ a0 ,

g(X) = bqX
q + bq−1X

q−1 + · · ·+ b0 .
(2.3)

Definition 2.17 (Sylvester matrix). Let f, g ∈ Z[X] as in Eq. (2.3). The Sylvester
matrix of f and g is the (p+ q)-square matrix

Syl(f, g) =



ap · · · a0
. . . . . .

ap · · · a0

bq · · · b0
. . . . . .

bq · · · b0︸ ︷︷ ︸
p+q



 p

 q

.

Definition 2.18 (Resultant). The resultant of f and g, denoted by res(f, g), is the
determinant of the Sylvester matrix Syl(f, g). When the dependence on the variable X
needs to be emphasized, we write resX(f, g) instead of res(f, g).

The resultant res(f, g) [JA06] is an integer polynomial in the coefficients of f and g

[CLO15, §3.6, Prop.3], i.e.,

res(f, g) ∈ Z[ap, . . . , a0, bq, . . . , b0].

This follows from the formula for the determinant of a matrix and from the fact that f
and g have positive degree.
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When f and g do not have both positive degree, the resultant is defined as follows:

res(a0, g) = aq0 when a0 ̸= 0 , q > 0 ,

res(f, b0) = bp0 when b0 ̸= 0 , p > 0 ,

res(a0, b0) = 1 when a0, b0 ̸= 0 .

The resultant can be used to answer the question whether two polynomials f, g ∈ Z[X]

have a common factor, that is when there exists a polynomial in Q[X] of positive degree
that divides both f and g. More precisely, we have the following lemma:

Lemma 2.19. [CLO15, §3.6, Lem. 1] Let f, g ∈ Z[X] be polynomials of degrees p, q ∈ N∗,
respectively. Then, f and g have a common factor in Q[X] if and only if there exist
A,B ∈ Q[X] such that:

(i) A and B are not both zero.

(ii) A has degree at most p− 1 and B at most q − 1.

(iii) Af +Bg = 0.

So, to see if f and g have a common factor in Q[X], one could compute their gcd using
the Euclidean Algorithm. However this would require divisions in Q, that can be avoided
using the following property of the resultants:

Theorem 2.20 (Common factor property). [CLO15, §3.6, Prop. 3] Let non-zero f, g ∈
Z[X]. We have that res(f, g) = 0 if and only if f and g have a non-trivial common factor
in Q[X].

Remark 2.21. Thm. 2.20 suggests that f and g have a common root in C if and only if
their resultant is zero.

The next property of resultants, offers a link between resultants and elimination.

Theorem 2.22 (Elimination property). [CLO15, §3.6, Prop. 5] Let f, g ∈ Z[X]. There
exist polynomials A,B in the variable X such that res(f, g) = Af + Bg. The coefficients
of A and B are integer polynomials in the coefficients of f and g.

This property can be demonstrated with an example of how resultants can be used to
eliminate variables from systems of multivariate polynomials. The resultant of two univari-
ate polynomials is a polynomial with no variables. In multiple variables, this generalizes
to the resultant being a polynomial with one variable less.

Let f(X,Y ) = X2+2XY +1 and g(X,Y ) = Y 2−2X. We compute the resultant with
respect to X and we obtain

resX(f, g) = Y 4 + 4Y 3 + 4 ∈ Z[Y ].
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We can deduce from Thm. 2.22 that resX(f, g) is in the first elimination ideal of f and
g. Also, the roots of resX(f, g) ∈ Z[Y ] are the values of Y for whom f and g share a
non-trivial common factor in C[X]. So, this means that by solving Y 4 + 4Y 3 + 4 = 0 we
can find the Y -coordinates of the solutions of f = g = 0. However, not all the roots of the
resultant with respect to X may extend to solution of the system. In particular, we have
the following:

Lemma 2.23. [CLO15, §3.6, Cor.7] Let non-zero f, g ∈ Z[X,Y ] that have degrees p and q
in X respectively. Let also y0 ∈ C such that:

(i) f(X, y0) ∈ C[X] has degree p and g(X, y0) ∈ C[X] has degree q.

(ii) resX(f, g)(y0) = 0.

Then, there exists x0 ∈ C such that f(x0, y0) = g(x0, y0) = 0.

The previous lemma is a special case of the specialization property for the evaluation
homomorphism, as demonstrated also in the sequel.

Theorem 2.24 (Specialization property). [BPR06, Prop. 8.74] Let ϕ : D → D′ be
a ring homomorphism, and let also ϕ : D[X] → D′[X] the induced homomorphism. If
deg(ϕ(f)) = deg(f) and deg(ϕ(g)) = deg(g), then

resX(ϕ(f), ϕ(g)) = ϕ(resX(f, g)) .

In fact, let y0 ∈ C and the ring homomorphism

ϕy0 : Z[Y ]→ C

Y 7→ y0

and let also ϕy0 : Z[Y ][X] → C[X] the induced homomorphism. Let f, g ∈ Z[Y ][X] of
degrees p and q in X respectively such that deg(ϕy0(f)) = p and deg(ϕy0(g)) = q. Then,
from Thm. 2.24 we have that

resX(ϕy0(f), ϕy0(g)) =ϕy0(resX(f, g))⇔

⇔ resX(f(X, y0), g(X, y0)) =resX(f(X,Y ), g(X,Y ))(y0).

If resX(f(X,Y ), g(X,Y ))(y0) = 0 then resX(f(X, y0), g(X, y0)) is also zero and thus
f(X, y0), g(X, y0) have a common root (Rem. 2.21).

The next remark exhibits a connection between the resultant and the gcd.

Remark 2.25 (Resultant and gcd). Let f, g ∈ Z[X] with res(f, g) ̸= 0. Then, this
means that f and g do not have a common factor in Q[X] (Thm. 2.20), so their gcd is equal
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to one. From Lem. 2.16, we have that there exist A,B ∈ Q[X] such that Af + Bg = 1.
From Thm. 2.22 we have that there exist Ã, B̃ ∈ Z[X] such that Ãf + B̃g = res(f, g).
Thus it is evident that the coefficients of A,B have res(f, g) as denominator.

Finally, we give some useful expressions of the resultant. Let ξ1, . . . , ξp be the roots of
f and η1, . . . , ηq the roots of g in C (counted with multiplicities). Then we can express the
resultant as a function of the roots in C follows [BPR06, Thm. 4.14]:

resX(f, g) = aqpb
p
q

p∏
i=1

q∏
j=1

(ξi − ηj) = aqp

p∏
i=1

g(ξi) = (−1)p qbpq
q∏
j=1

f(ηj) .

2.3.3 Subresultant sequences

Before defining the subresultants, we start by introducing the concept of a polynomial de-
terminant of a matrix. We refer the reader to [Kah03] for a detailed review of subresultants
theory.

Definition 2.26 (Polynomial Determinant). Let M be a m × n matrix with m ≤ n

and Mi be the square submatrix of M consisting of the first m − 1 columns and the i-th
column of M , for i = m, . . . , n. Then, the polynomial determinant of M is the polynomial
defined as

det(Mm)X
n−m + det(Mm+1)X

n−(m+1) + · · ·+ det(Mn).

Definition 2.27 (Sylvester submatrix). Let f, g ∈ Z[X] as in Eq. (2.3) with p >

q. For i = 1, . . . ,min(p, q − 1), we define the i-th Sylvester matrix Syli(f, g) to be the
(p+ q − 2i)× (p+ q − i) matrix obtained from Syl(f, g) by deleting the i last rows of the
ones corresponding to the coefficients of f , the i last rows of the ones corresponding to the
coefficients of g, and the i last columns.

Definition 2.28 (Subresultants). For i = 0, . . . ,min(q, p−1), the i-the polynomial sub-
resultant of f and g, denoted by SresX,i(f, g) is the polynomial determinant of Syli(P,Q).
The coefficient of degree i of the polynomial SresX,i(f, g), denoted by sresX,i(f, g), is
called the i-th principal subresultant coefficient of f and g.

In the previous definitions we demand that p > q. When q = p the q-th Sylvester
matrix is not defined. Following [LPR17] we extend the definition when p = q and we
consider SresX,q(f, g) = g.

Note that SresX,0(f, g) = sresX,0(f, g) is the resultant of f and g with respect
to X. By the definition of subresultants it is evident that deg(SresX,i(f, g)) ≤ i. If
deg(SresX,i(f, g)) = i then the subresultant is called non-defective. Otherwise, if the
degree of SresX,i(f, g)) is k < i, then it is called defective of degree k.

The following lemma establishes that the gcd can also be derived from the subresultant
sequence.
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Lemma 2.29. [BPR06, Cor. 8.58] The last non-zero signed subresultant of f and g is
nondefective and a greatest common divisor of f and g.

Additionally, there is a close relationship between the subresultant polynomials and
the polynomials in the (signed) remainder sequence.

Lemma 2.30. [BPR06, Cor. 8.59] When for all j = p, . . . , 0 we have that Sresj(f, g) is
non-defective, then the signed subresultant polynomials are proportional up to a square to
the polynomials in the signed remainder sequence.

To conclude this section, we provide a complexity result for computing the subresul-
tant and principal subresultant coefficients of two (multivariate) polynomials with integer
coefficients as it appears in [LPR17, Lem. 4]. This result can be used to determine the
complexity of computing the resultant and the gcd of two polynomials.

Theorem 2.31. [BPR06, Prop.8.46],[vzGG13, §11.2] Let f and g in Z[X1, . . . , Xn][Y ],
where n is fixed, with coefficients of bitsize τ and degrees in Y bounded by dY and the
degrees in the other variables are bounded by d.

(i) The coefficients of SresY,i(f, g) have bitsize in Õ(dY τ).

(ii) The degree in Xj of SresY,i(f, g) is at most 2d(dY − i).

(iii) For any i ∈ {0, . . . , dY }, the polynomials SresY,i(f, g) can be computed in ÕB(dndn+2
Y τ)

bit-operations. The sequence of principal subresultant coefficients sresY,i(f, g) can
be computed in the same bit-complexity.

2.4 Univariate root isolation

The task of computing the real or complex roots of a univariate polynomial is a well-
researched problem in mathematics. When seeking a validated method to compute and
represent all roots, it is typical to present the solutions as a collection of separate isolating
intervals or boxes, with each interval or box containing exactly one root. This is why
the term "(real) root isolation" is frequently used in the literature. The complexity of
root isolation algorithms, often relies on certain quantitative results that pertain to the
geometric characteristics of the roots, which will be covered in the first section. The second
section will focus on the topic of root isolation.

2.4.1 Bounds on univariate polynomials

We begin by establishing notation and presenting definitions for the general case of a poly-
nomial with coefficients in the complex field. Let a univariate polynomial f =

∑d
i=0 aiX

i ∈
C[X], with leading coefficient lc(f) = ad ̸= 0.
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Definition 2.32 (Norms of a polynomial). Let f =
∑d

i=0 aiX
i ∈ C[X].

• Its ℓ1-norm, or length, is ∥f∥1 :=
∑d

i=0 |ai|.

• Its ℓ2-norm, is ∥f∥2 :=
√∑d

i=0 |ai|2.

• Its ℓ∞-norm, is ∥f∥∞ := maxi∈{0,...,d} |ai|.

It holds that
|f(X)| ≤ ∥f∥1 ·max(1, |x|)d .

We denote by VC(f) the complex variety defined by ⟨f⟩; in our case it is a finite set of
complex numbers. For an x ∈ VC(f), we denote by µ

f
(x) its multiplicity as a root of f . It

is well known that

f(x) = f ′(x) = · · · = f (µf (x)−1)(x) = 0 and f (µf (x))(x) ̸= 0 .

We can factorize f in C[X] as

f(X) = lc(f)
∏

x∈VC(f)

(X − x)µf (x) ,

and its square-free part is then

f∗(X) :=
∏

x∈VC(f)

(X − x) .

The Mahler measure of f is

M(f) := |lc(f)|
∏

x∈VC(f)

max(1, |x|)µf (x).

The Mahler measure is multiplicative, i.e., for two polynomials f, g ∈ C[X], it holds that

M(f · g) =M(f) · M(g) .

The following inequality bounds the Mahler measure of f by means of its ℓ1 and ℓ2 norms
[BPR06, Prop.10.8 and Prop.10.9]:

2−d∥f∥1 ≤M(f) ≤ ∥f∥2. (2.4)

In particular, if f ∈ Z[X] and it is of size (d, τ), the previous inequality becomes

2−d∥f∥1 ≤M(f) ≤ ∥f∥2 ≤ 2τ+log(d+1). (2.5)
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Let a root x ∈ VC(f). The local separation of f at x is

sep(x, f) := min
y∈VC(f),y ̸=x

|y − x|.

The separation of f is

sep(f) := min
x∈VC(f)

sep(x, f).

Following [DDR+22, Def. 3 and Prop. 1], we introduce the definition of the generalized
discriminant of a polynomial f ∈ C[X], in analogy with the definition of the discriminant.

Definition 2.33 (Discriminant). Let f ∈ C[X] of degree d. The discriminant Disc(f)

of f is the element of C such that

lc(f)Disc(f) = sresX,0(f, f
′) = (−1)d(d−1)/2res(f, f ′) .

Definition 2.34 (Generalized discriminant). Let f ∈ C[X] of degree d. The general-
ized discriminant GDisc(f) of f is the element of C such that

lc(f) ·GDisc(f) = tc

(
resX

(
f,

d∑
k=1

Uk−1f [k]

))
,

where f [k] := f (k)

k! .

The generalized discriminant of f can also be expressed as [DDR+22, Prop. 1]

GDisc(f) = lc(f)d−2
∏

x∈VC(f)

f [µf (x)](x)µf (x) .

When f has only simple roots, i.e., with multiplicity 1, then we have that

GDisc(f) = (−1)d(d−1)/2 ·Disc(f) .

We also define

lGDisc(f) :=
∑

x∈VC(f)

µ
f
(x)| log(|f [µf (x)](x)|)| and

lsep(f) :=
∑

x∈VC(f)

µ
f
(x)| log(sep(x, f))| .

The next proposition gives a bound on lsep(f) that depends on d, logM(f) and lGDisc(f).

Proposition 2.35. [DDR+22, Prop. 2] For a polynomial f ∈ C[X] of degree d with
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|lc(f)| ≥ 1, it holds that

lsep(f) ∈ O(d2 + d logM(f) + lGDisc(f)).

When the polynomial f has integer coefficients, with maximum bitsize τ , we have the
following bounds:

∥f∥1 ≤ (d+ 1) · 2τ ,

M(f) ≤
√
d+ 1 · 2τ .

Now, we want to transform the bound for lsep(f) of Prop. 2.35 into a bound depending
on d and τ . We have that

logM(f) ∈ O(τ + log d) . (2.6)

Also, from [DDR+22, Prop. 4], we have that lGDisc(f) ∈ Õ(dτ + d2). Therefore, we
conclude to the following:

Proposition 2.36. For a polynomial f ∈ Z[X] of size (d, τ), it holds that

lsep(f) ∈ Õ(dτ + d2).

Prop. 2.35 and 2.36 give a lower bound on the sum of distances between consecutive
roots of a polynomial. A more general result, is the well known DMM (Davenport-Mahler-
Mignotte) bound that we include here as it appears in [EMT20] (see also [EP17]).

Theorem 2.37 (DMM bound). Let f ∈ C[X] of degree d and γ1, . . . , γd its complex
roots in ascending magnitude order. Let also Ω be any set of couples of indices (i, j), with
i, j ∈ [d], i ̸= j and |Ω| = k. Then

2kM(f)k ≥
∏

(i,j)∈Ω

|γi − γj | ≥ 2k−d(d−1)/2M(f)1−d−k
√
Disc(f∗) ,

where f∗ is the square-free part of f . When f ∈ Z[X] with L(f) = τ and k ≤ d, we have
that

dd/222dτ ≥
∏

(i,j)∈Ω

|γi − γj | ≥ d−d2−d
2−6dτ .

The DMM bound shows that the separation of a polynomial is asymptotically equal
to all the distances between consecutive roots. This indicates that not all roots of the
polynomial can be "too close" to each other. The following classical bound will also be
useful.

Lemma 2.38 (Cauchy bound). [BPR06, Cor.10.4] When f ∈ Z[X] and it is of size
(d, τ), then for any root γ of f it holds that |γ| ≤ 2τ+log d+1.
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2.4.2 Root isolation

Given a univariate polynomial f ∈ C[X] with possibly multiple roots, the goal is to com-
pute isolating discs for its roots, i.e., disjoint disks in the complex plane such that each disk
contains exactly one root and the union of all disks covers all the roots (see Fig. 2.3). Mul-
tiple references are available that address the problem of root isolation and offer algorithms
for solving it [Yap99, KS11, YS11, MSW15].

In this thesis, to isolate the roots of a univariate polynomial with coefficients in C we use
the algorithm of Mehlhorn et al. [MSW15]. The algorithm requires that the number k of
distinct roots is known. It first computes an approximate factorization of the polynomial
using Pan’s algorithm [Pan02]. Assuming that the polynomial is of degree d, from the
approximate factorization one obtains approximations z̃1, . . . , z̃d of the roots. Then the
roots are grouped into k clusters based on geometric vicinity. Every cluster is enclosed by
a disc and contains the same number of approximations as roots counted with multiplicity.
The next proposition summarizes their result.

Proposition 2.39. [MSW15, Thm. 3], [DDR+22, Prop. 10] Let f(x) ∈ C[x] of degree
d ≥ 2, for whom it holds that 1/4 ≤ lc(f) ≤ 1. We assume that the number of distinct
roots of f is known. We can compute isolating discs for all x ∈ VC(f), as well as their
multiplicities, in

ÕB
(
d3 + d2 logM(f) + lGDisc(f)

)
bit-operations. As input, we need an oracle giving an absolute L-bit approximation of the
coefficients of f with L bounded by

Õ
(
d logM(f) + lsep(f) + lGDisc(f)

)
.

The previous result states that the coefficients of f are provided by oracles. That is, on
input L, the oracle essentially returns binary fraction approximations ãi of the coefficients

Figure 2.3: The graph of univariate polynomial (in blue) and the isolating intervals of its
real roots (in red).
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ai such that

∥f −
d∑
i=0

ãiX
i∥1 ≤ 2−L∥f∥1 .

In the special case where the polynomial has integer coefficients we have the following:

Proposition 2.40. [MSW15, Thm. 5] Let f(x) ∈ Z[x] of degree d ≥ 2 and bitsize at most
τ . We can compute isolating discs for all x ∈ VC(f), as well as their multiplicities, in

ÕB
(
d3 + d2τ

)
bit-operations. For a given positive integer L, we can further refine the isolating disks to a
size of less than 2−L with a number of bit operations bounded by

ÕB
(
d3 + d2τ + dL

)
.

Notice that in the previous theorem, the number of distinct roots is not needed. This
is because we can compute the squarefree part f∗ of f in ÕB(d2τ). Then, f∗ has bitsize
in O(d + τ) and its degree gives the number of distinct roots of f . The coefficients of f
can then be scaled so that lc(f) will belong in the interval [1/4, 1].

2.5 Zero-dimensional polynomial systems

Let f1, . . . , fk ∈ Q[X1, . . . , Xn]. We denote by VC(f1, . . . , fk) the set of zeros of f1, . . . , fk
in Cn, that is the solution set in Cn of the system

f1(X1, . . . , Xn) = 0 ,

f2(X1, . . . , Xn) = 0 ,

...

fk(X1, . . . , Xn) = 0 ,

(2.7)

in Cn.
The system is zero-dimensional if it has a finite number of solutions in Cn, i.e., if

VC(f1, . . . , fk) is a non-empty finite set. In particular, we have the following:

Theorem 2.41. [BPR06, Thm.4.86] Let f1, . . . , fk ∈ Q[X1, . . . , Xn]. The vector space
A = Q[X1, . . . , Xn]/⟨f1, . . . , fk⟩ is of finite dimension if and only if the system {f1 = · · · =
fk = 0} is zero-dimensional. The number of elements of VC(f1, . . . , fk) is less than or equal
to the dimension of A as a Q-vector space.

We denote by Ā the quotient ring C[X1, . . . , Xn]/⟨f1, . . . , fk⟩, where ⟨f1, . . . , fk⟩ in
now considered an ideal in C[X1, . . . , Xn]. Since A is a Q-vector space and C is a field
containing Q, we have that Ā is a C-vector space. Moreover, we have the following:
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Lemma 2.42. [BPR06, Lem. 4.87 and Lem. 4.88] It holds that A ⊂ Ā. Moreover, A
is a finite dimensional vector space of dimension m over Q if and only if Ā is a finite
dimensional vector space of dimension m over C.

For the quotient ring Ā, its localisation at x ∈ VC(I) is denoted by Āx. The local rings
Āx are also C-vector spaces. Then, we have the following result:

Theorem 2.43. [BPR06, Thm. 4.95] It holds that

Ā =
∏

x∈VC(I)

Āx .

Now, we are able to define the multiplicity of a root of a system of polynomial equations.

Definition 2.44 (Multiplicity). Let x ∈ VC(f1, . . . , fk). The multiplicity of x is the
dimension of the local ring Āx as a C-vector space.

From Thm. 2.43 we have that the dimension of Ā, and consequentially of A, is equal
to the sum of multiplicities of all x ∈ VC(I). In other words, it is equal to the number of
roots of I counted with multiplicity. We also note that for the system of Eq. (2.7) to be
zero-dimensional, k has to be equal to n. Now, supposing that f1, . . . , fn are of degree d,
the total number of roots, from Bézout’s theorem [BPR06, Thm. 4.108], is at most dn.

On computing the roots of the zero-dimensional system of Eq. (2.7) there is a great
number of approaches, essentially aiming at a representation of the roots either in a formal
way or a numerical one. For a comprehensive overview we refer the reader to [CCC+05,
Stu02, CLO05].

For the rest of this section we present briefly how resultants can be used to obtain
projections of the roots and how roots can be represented through triangular systems.
Another formal representaion of the roots can be obtained through the Rational Univariate
Representation (RUR), reducing zero-dimensional polynomial systems to the study of one
single univariate polynomial. This will be the subject of the next subsection.

Projections via resultants

When n = 2 we saw in Sec. 2.3.2 how resultants can be used to get the projections of the
coordinates of VC(f1, f2). In an analogous manner to univariate resultants, resultants of
several multivariate polynomials also exist [CLO05, §3.2] and they can be used to obtain
projections of coordinates of the roots of the zero-dimensional system in Eq. (2.7) (for
k = n).

Roughly speaking, given n+ 1 polynomials in Q[X1, . . . , Xn], their resultant is generi-
cally an irreducible polynomial in the coefficients of the polynomials and it can be computed
using determinants (at least in many cases). In particular, it is a factor of the determinant
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of a Sylvester-type matrix (the Macaulay matrix) [EP05, CLO05]. The vanishing of the
resultant provides a necessary and sufficient condition for the existence of roots of the
homogenized system in Pn.

Multivariate resultants can be employed to find the projections of roots of the system
in Eq. (2.7) on the coordinate axes. It is the so-called hidden variable method [CLO05,
§3.5]. Essentially the polynomials are considered in n−1 variables, say X1, . . . , Xn−1, with
coefficients in Q[Xn]. So, Xn is the hidden variable. Then we compute the resultant of
f1, . . . , fn, which is a polynomial in Q[Xn]. Among its roots are the Xn-coordinates of the
solutions of the system. However, not all the roots of the resultant may extend to roots of
the system [BS16, Lem. 1], but this can be ensured. A drawback of this approach is that
it solely provides the separate coordinates of the solution points without indicating their
correspondence with each other.

Another closely-related method using multivariate resultants, is the u-resultant ([CLO05,
§3.5],[Can88]), according to which the process of solving the system is reduced to multi-
variable factorization. The u-resultant method has significant drawbacks. Primarily, it
requires calculating symbolic determinants of large size. Moreover, performing multivari-
able factorization is hard; even if we can calculate the determinant, it may be challenging
to apply the method in practice. In contrast, the hidden variable method has less compu-
tational complexity since it requires computing resultants of fewer equations and variables
than the u-resultant approach.

Triangular systems

One way to represent algebraically the solutions of a zero-dimensional polynomial system,
is through one of several regular triangular systems [Laz92, LPR17, ALM99, CGY09]. A
triangular system with n variables is of the form

g1(X1) = 0 ,

g2(X1, X2) = 0 ,

...

gn(X1, . . . , Xn) = 0 ,

where gi ∈ Q[X1, . . . , Xi]. Moreover, we call the system regular when the leading coefficient
of gi in Q[X1, . . . , Xi−1][Xi], that is when it is viewed as a univariate polynomial in the
variable Xi, does not have a common zero with g1, . . . , gi−1.

This representation can be obtained by a Gröbner basis. It can be combined with
numerical methods for obtaining isolating boxes of the roots [CGY09]; for every triangular
set one starts by finding isolating boxes for the first univariate polynomial, and then
substitutes approximations of the roots to the second polynomial and so on so forth.
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So, by successive substitutions one solves only univariate polynomials. However, since
after the first solutions the coefficients are no longer integers, successive substitutions are
highly unstable. For a non-numerical solution, one must perform computations modulo
a triangular set [LMP09, DSM+05]. One can also compute a univariate representation of
the roots of the triangular set using the algorithm of [Laz92] in a number of arithmetic
operations that is polynomial in dn ([Laz92, Prop. 7],[Lak91]) (where d is an upper bound
on the degree of the polynomials), thus nearly optimal since the solutions are at most dn

(see also [Ben19] for the sparse case).

2.5.1 Rational Univariate Representation

In this subsection, we consider a zero-dimensional ideal I ∈ Q[X1, . . . , Xn]. A Rational
Univariate Representation (RUR) of VC(I) is a representation of the roots of I using only
one variable. It is obtained by expressing every coordinate of the roots as a rational
function evaluated at the zeros of the same univariate polynomial; the degree of the latter
polynomial is equal to the number of solutions of the system, counting multiplicities.

We recall basic definitions and the algorithm for the RUR computation of I, from the
multiplication tensor of the quotient algebra Q[X1, . . . , Xn]/I, as presented in [Rou99]. We
start with the definition of a separating element of VC(I) which is necessary for the RUR
computation, whose definition also follows.

Definition 2.45 (Separating form). [Rou99, Def. 2.1] Let I ⊆ Q[X1, . . . , Xn] be a zero
dimensional ideal and t ∈ Q[X1, . . . , Xn]. We say that t is separating for VC(I) if the map
x 7→ t(x) is injective on VC(I).

Finding a separating linear form (SLF for short) is always possible, and in particular
we have the following result:

Lemma 2.46. [Rou99, Lem. 2.1] If #VC(I) = D, then the family of linear forms{
X1 + iX2 + · · ·+ in−1Xn , i = 1, . . . , (n− 1)

D(D − 1)

2

}
contains at least one linear form that is separating for VC(I).

In the sequel, for any v ∈ Q[X] and σ ∈ Cn, we denote by v(σ) the evaluation of the
polynomial function v at σ.

Definition 2.47 (Rational Univariate Representation). [Rou99, Def.3.3] Let I ∈
Q[X1, . . . , Xn] be a zero-dimensional ideal. Let t = a ·X be a linear form in Q[X1, . . . , Xn]
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and a = (1, a2, . . . , an) ∈ Qn. We define the polynomials:

fI,a(T ) =
∏

σ∈VC(I)

(T −X1(σ)− a2X2(σ)− . . . anXn(σ))
µ
I
(σ) ,

fI,a,v(T ) =
∑

σ∈VC(I)

µI (σ)v(σ)
∏

s∈V (I)\{σ}

(T −X1(s)− a2X2(s)− . . . anXn(s)) ,

for v ∈ {1, X1, . . . , Xn}. The n + 2-tuple {fI,a, fI,a,1, fI,a,X1 . . . , fI,a,Xn} is called RUR
candidate of I associated to t = a ·X. If t is separating for VC(I) then it is called RUR of
I associated to t.

It is proven [Rou99, Thm. 3.1] that the polynomials {fI,a, fI,a,1, fI,a,X1 . . . , fI,a,Xn} are
in Q[T ] and that, if the linear form t = a ·X is separating, the coordinates of the roots of
I are expressed as follows:

X1 =
fI,a,X1(T )

fI,a,1(T )
, . . . , Xn =

fI,a,Xn(T )

fI,a,1(T )
for T such that fI,a(T ) = 0 .

Now, given a linear form

t = a ·X =

n∑
i=1

aiXi ∈ Q[X1, .., Xn],

we describe how the RUR candidate associated to it can be computed.

Notation. Let D = dim(Q[X1, . . . , Xn]/I). For P ∈ A, where A is an F -algebra of finite
dimension, where F is a field, we denote by MA

P be the multiplication matrix by P in A,
by EAP (T ) the (unitary) characteristic polynomial of MP and by TrA(P ) its trace. The
superscript can be omitted when A = Q[X1,..,Xn]

I . For a linear form t = a ·X ∈ Q[X1,..,Xn]
I ,

we use a slightly different notation and we let Ea(T ) be the characteristic polynomial of
Mt. Let E∗

a(T ) be its squarefree part, i.e., E∗
a(T ) =

∑d′

i=0 biT
d′−i, where d′ is its the

degree. Let Hj(T ) =
∑j−i

i=0 biT
j−i be the j-th Horner polynomial associated to E∗

a(T ). For
all v ∈ Q[X1, . . . , Xn], let

ha,v(T ) =
d′∑
i=0

Tr(vti)Hd′−i−1(T ) .

As shown in [Rou99], we have that

fI,a(T ) = Ea(T ) ,

fI,a,v(T ) = ha,v(T ) for v ∈ {1, X1, . . . , Xn} .

So, given a linear form t = a ·X (not necessarily separating), finding a RUR candidate
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amounts to computing:

1. The characteristic polynomial Ea(T ) of the multiplication by t = a ·X in Q[X1,..,Xn]
I

and its squarefree part. From the latter, we deduce the Horner polynomials associated
to Ea(T ).

2. The traces Tr(vti), for v ∈ {1, X1, . . . , Xn}.

The traces Tr(ti) are the Newton sums of Ea(T ) and therefore suffice for computing
Ea(T ) =

∑D
i=0 αiT

D−i, by solving the triangular system

(D − i)bi =
i−1∑
j=0

αi−jTr(t
j) , i = 0, . . . , D . (2.8)

Alg. 1 summarizes the computation of an RUR candidate. Given the required traces,
the number of arithmetic operations is given in the lemma that follows.

Lemma 2.48. [Rou99, Prop.4.1] Let t = a ·X a linear form. Given Tr(ti) and Tr(Xjt
i)

for j = 1, . . . , n and i = 0, . . . , D, we compute a RUR candidate of I in O(nD2) arithmetic
operations.

Proof. We need O(D2) arithmetic operations for the resolution of the triangular system
of Eq. (2.8) to compute Ea(T ). Then, in O(D2) arithmetic operations we compute the
squarefree part of Ea(T ), in O(D2) the Horner polynomials Hj for j = 0, . . . , d′−1, where
d′ is the degree of E∗

a(T ), and in O(nD2) we compute fI,a,v(T ) for v ∈ {1, X1, . . . , Xn}.

Algorithm 1: RUR candidate computation
Input: I, linear form t = a ·X
Output: RUR candidate of I

1 Compute Tr(ti),Tr(Xjt
i) for i ∈ [D], j ∈ [n], where D = #VC(I)

2 Solve the system (D − i)bi =
∑i−1

j=0 bi−jTr(t
j) , i = 0, . . . , D

3 Set fI,a(T ) =
∑D

i=0 biT
i

4 Compute the Horner polynomials Hj(T ) =
∑j−i

i=0 biT
j−i associated to fI,a(T )

5 Let d′ is the degree of the squarefree part of fI,a(T )
6 Set fI,a,v(T ) =

∑d′−1
i=0 Tr(vti)Hd′−i−1(T ) for v ∈ {1, X1, . . . , Xn}

7 return {fI,a, fI,a,1, fI,a,X1 , . . . , fI,a,Xn}

We saw that the RUR computation of an ideal I, decomposes to the computation of
a separating element for VC(I) and to the computation of a RUR candidate. One can
compute the separating linear form in advance, or take a random linear form t ∈ Q[X],
and then check if it is separating for VC(I) or not given the RUR candidate associated to
t. We refer the reader to [Rou99, Rou07, BLPR15, BLM+15, MST17] for more details on
the RUR computation algorithms.
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Figure 2.4: General scheme for big prime modular algorithms, where R is a Euclidean
domain (Figure take from [vzGG13, Fig. 5.1]).

2.6 Modular algorithms

In this section, we briefly review the useful concept in computer algebra of modular al-
gorithms ([vzGG13, §5],[Yap99, §4]). We will explore two different versions of modular
algorithms, where instead of solving problem over Z (or in general over a Euclidean do-
main), a problem can be solved modulo a big prime number (big prime version) or several
small primes (small primes version). Then, under certain conditions the solution in Z can
be reconstructed from the modular images. In the small primes version, a basic ingredient
of the modular approach is the application of the Chinese Remainder Theorem [vzGG13,
Cor. 5.3]; we solve the problem modulo a set of primes p1, . . . , pr, then from the Chinese
Remainder Theorem, we can obtain the solution to Zp, where p =

∏r
i=1 pi, and from that

we reconstruct the solution to Z. The general scheme of the big prime and small primes
version is summarized in Fig. 2.4 and Fig. 2.5 respectively.

One advantage of modular computations is that they can be used to avoid intermediate
coefficient swell ; during the computations of an algorithm, the coefficients of the interme-
diate results may become a lot bigger than the size of the output. But if we perform the
computations modulo a certain number, the size of coefficients is controlled.

Let φp : Z→ Z/pZ the reduction modulo p morphism. There are two main concerns in
the design of modular algorithms; First, a chosen prime p has to be such that the solution
over Zp is the reduction modulo p of the solution over Z. Not all prime numbers have this
property. We call a prime number lucky for an algorithm, if the algorithm’s computations
commute with the morphism φp and unlucky otherwise. The second concern is that an
upper bound on the size of the integers in the output has to be determined. This is so
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Figure 2.5: General scheme for small primes modular algorithms, where R is a Euclidean
domain (Figure take from [vzGG13, Fig. 5.2]).

as to ensure that the result can be recovered from its modular image; in the big prime
version, one must take a prime p larger that this bound and in the small primes version,
the product of the chosen primes has to be larger than this bound.

In what follows, we showcase the basic ingredients of modular algorithms using the
example of modular gcd computation.

Modular gcd computation. A classical application of modular algorithms is on the
gcd computation of two polynomials f, g ∈ Z[X]. From the Mignotte bound (Thm. 2.15),
we have an upper bound on the coefficient size of the gcd; if f and g have size (d, τ),
then the bitsize of the gcd is in Õ(d + τ). Nevertheless, during the computations of the
traditional Euclidean algorithm, the size of the coefficients seems to be exponential in
the size of the gcd (see for example [vzGG13, Example 6.1] and [vzGG13, Thm. 6.52]).
Modular algorithms can assist in overcoming this issue.

Lucky primes for the gcd computation as defined as follows.

Definition 2.49. [Yap99, §4.4] Let f, g ∈ Z[X]. A prime number p is lucky for the gcd of
f and g if φp(lc(f) · lc(g)) ̸= 0 and gcd(f, g) has the same degree as gcd(φp(f), φp(g)).

The problem with this definition is that it is not helpful for computing the gcd modulo
a prime number, since the definition of the lucky prime assumes that the gcd is already
known. The following proposition is useful:

Proposition 2.50. [Yap99, Lemmata 4.11 and 4.12] The lucky primes for the gcd of f and
g are the ones that do not divide neither lc(f), nor lc(g), nor the d-th principal subresultant
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coefficient of f and g, where d is the degree of gcd. The product of all the unlucky primes
is

Π ≤ N2D+2

where N = max(∥f∥2, ∥g∥2) and D is the maximum of the degrees of f and g.

As the previous proposition reveals, the number of unlucky primes is finite. So, if we
choose a random prime there is high probability of success. We can check if the result is
correct and, otherwise, repeat for another random prime. This method, combined with
fast techniques for polynomial and integer arithmetic [vzGG13, §11], leads to an efficient
modular Las-Vegas algorithm.

Theorem 2.51. [vzGG13, Cor. 11.14] Let f, g ∈ Z[X] of degree d and bitsize τ . Then, their
gcd can be computed with a Las-Vegas algorithm with expected bit-complexity ÕB(d2 + dτ).
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Polynomial System Solving



Chapter 3

Isolating Roots in a Multiple Field
Extension

We address univariate root isolation when the polynomial’s coefficients are in a multiple
field extension. We consider a polynomial F ∈ L[Y ], where L is a multiple algebraic
extension of Q. We provide aggregate bounds for F and algorithmic and bit-complexity
results for the problem of isolating its roots.

For the latter problem we follow a common approach based on univariate root isolation
algorithms. For the particular case where F does not have multiple roots, we achieve a
bit-complexity in ÕB(nd2n+2(d + nτ)), where d is the total degree and τ is the bitsize of
the involved polynomials. In the general case we need to enhance our algorithm with a
preprocessing step that determines the number of distinct roots of F .

On realising this step, we follow two approaches. The first, is certified numerical
method that has bit-complexity in ÕB(n2d3n+3τ+n3d2n+4τ). It essentially uses sufficiently
good approximations of the roots of the minimal polynomials of L. The second one, is a
formal approach that transforms the multiple extension to a simple extension through the
computation of a Rational Univariate Representation of the roots of the system defined by
the minimal polynomials of L. It leads to a Las-Vegas algorithm of expected complexity
in ÕB(n(n+ 2n)d3n−1(d+ τ) + n10) for the values of n that are greater than 6.

3.1 Introduction

We consider the problem of isolating the (complex) roots of a univariate polynomial over
a multiple algebraic field extension –the coefficients of the polynomial are multivariate
polynomial functions evaluated at algebraic numbers–. Solving in a field extension is a
common problem in computational mathematics; for example it arises in the topology
computation of plane curves [DDR+22, KS12], in the convex hull computation of para-
metric curves (Ch. 5), or it can be seen as a sub-problem in the resolution of triangular
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systems [CM12, XY02] and regular chains [BCLM10].

For n ≥ 2, we consider F1 ∈ Z[X1], . . . , Fn ∈ Z[Xn] univariate polynomials of degree
at most M and bitsize Λ and F ∈ Z[X1, . . . , Xn, Y ] of total degree at most d and bitsize
τ . We want to isolate the roots of the system{

F1(X1) = 0 , . . . , Fn(Xn) = 0 ,

F (X1, . . . , Xn, Y ) = 0 .

}
(3.1)

In theory, we can solve the system as follows: first, we isolate the roots of all the univariate
polynomials F1, . . . , Fn. Then, for every root x = (x1, . . . , xn) ∈ Cn of {F1 = · · · = Fn = 0}
we employ Pan’s algorithm [Pan02] for the approximate factorization of the univariate
F (x, Y ), with the worst case precision; the approximate factorization algorithm returns
as many root approximations as the degree of F (x, Y ) in Y is, and the fact that we used
the worst case precision allows to determine which root approximations correspond to the
same root. This method leads to good worst-case bit-complexity estimates (Rem. 3.10).
Nevertheless, this is at the price of requiring always to perform computations using the
maximum precision and it cannot lead to a practical algorithm. For example, if n = 2,
d = 10, and τ ∈ O(1), then we have to work with > 104 bits in all of our computations.
Our goal is to introduce an adaptive algorithm, depending on the multiplicities of the roots
and on their pairwise distances, so we will follow a different approach.

Isolating the roots of the system in Eq. (3.1) has not been treated in the literature
currently, but only in a simplified setting (e.g. [Rum77, JK97]). In [ST12] they consider
the same problem when F does not have multiple roots; it is a generalization of a prior
work for a simple algebraic extension [ST19, JK97]. They propose three methods. The
first one computes the minimal polynomial of the system and uses multivariate resultants.
The second one is based on Sturm’s algorithm and the third one on solving directly the
polynomial using univariate root isolation algorithms, similarly to ours. The last method
is the most efficient with a bit-complexity of ÕB(n3N2n+3), where N is a bound on the size
of the input polynomials, without any assumptions on the input. In [DDR+22], it is the
first time the general problem, in the simple extension setting, is addressed in literature
[KS12, ST19, MSW15, KS15]. The authors provide precise amortized separation bounds
for the polynomial and complexity bounds for isolating the roots. We provide further
details on their method in the sequel, since we share many ideas. We could also solve the
system in Eq. (3.1) by applying a general algorithm for zero-dimensional square systems of
an expected complexity in ÕB

(
(n+ 1)n(ω+1)+2N (ω+2)n+2

)
, where ω denotes the exponent

in the complexity of matrix multiplication [BS16]. However, such a method would not
exploit the special structure of the system.
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Our approach and contribution

We generalize the results of [DDR+22] for any n > 1. By following closely their techniques,
we are able to provide amortized bounds on the separation of F . On solving the system of
Eq. (3.1), the idea is to approximate the coefficients of F for every x = (x1, . . . , xn) ∈ Cn

that is root of F1 = . . . Fn = 0, up to a certain precision, so that to isolate the roots
of F (x, Y ), it suffices to isolate the roots of its approximation. The amortized bounds
that we prove in Cor. 3.4 and Cor. 3.6, quantify the required precision. To find the roots
of the approximation of F (x, Y ) we can now use algorithms for univariate root isolation.
Particularly, we employ the algorithm of [MSW15] that builds upon the algorithm of
approximate factorization of a polynomial of Pan [Pan02]; if a univariate polynomial is of
degree d, the approximate factorization algorithm returns d root approximations. Then,
the approximations must be clustered in a way so that each cluster corresponds to a root,
and it contains as many root approximations as the multiplicity of the corresponding root.
In [MSW15] they run Pan’s algorithm multiple times with increasing precision. For a
stopping criterion, they require the number of distinct roots of the polynomial. Therefore,
in our case, we should also compute the number of distinct roots of F (x, Y ) for every root
x ∈ Cn of F1 = . . . = Fn = 0. This dominates the total bit-complexity.

In Sec. 3.4, we compute the number of distinct roots of F (x, Y ) using a numerical
approach (Lem. 3.13). We compute the principal subresultant coefficients of F and ∂F

∂Y

with respect to Y . Then, for every root x of F1 = . . . = Fn = 0, we approximate the
principal subresultant coefficients up to the necessary precision so that we can determine
their sign correctly. The index of the first non-zero subresultant coefficient gives the degree
of the gcd of F (x, Y ) and ∂F (x,Y )

∂Y , and thus the number of distinct roots. The total bit-
complexity of solving the system of Eq. (3.1) then is described in Thm. 3.7(ii). In Rem. 3.8,
we give for simplicity the bound for the case when all the polynomials are of have degree
at most d and bitsize τ , which is ÕB

(
n2d3n+3τ + n3d2n+4τ

)
. On the contrary, when

the number of distinct roots of F (x, Y ) is known for every x, or when F is does not have
multiple roots, we can isolate the roots of the system in ÕB(nd2n+2(d+nτ)) bit operations.
This is to be juxtaposed with the result of [ST12]; it improves it by a factor of n.

In Sec. 3.5 we follow an alternative, formal, approach on the number of distinct roots
computation. We find a Rational Univariate Representation (RUR) [Rou99] of the roots
x of F1 = . . . = Fn (Thm. 3.35) We use the algorithm of [Rou99] and we analyse its
bit-complexity for this specific case, which is of independent interest. In particular, we
are able to compute the RUR fast since the multiplication matrices in Q[X]/⟨F1, . . . , Fn⟩
are sparse and multiplying by a variable in Q[X]/⟨F1, . . . , Fn⟩ requires a linear number
of arithmetic operations with respect to the dimension of the matrix. The RUR allows
then to transform the problem of solving in a multiple extension to solving in a simple
extension. So, we end up with a bivariate system in triangular form. We use this system
to find the number of distinct roots through gcd computations. In this case, our algorithm
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for the root isolation is a Las-Vegas algorithm of expected complexity in

ÕB(n3d3n + n2d3n−1τ + n2d2n+2τ + nd2n+5 + d2n+4τ)

when n ≥ 6 and ÕB(d2n+5(d+ τ)) otherwise (Rem. 3.8).
In Sec. 3.6 we apply the amortized bounds for F on the ‘Sum of Square Roots of Integers’

Problem. Comparing the length of two paths in the Euclidean Travel Salesman Problem
(TSP), relates also to this problem. It has been already studied through the separation
bound computation of the associated polynomial system [BFMS00, MS00]. Our approach
matches the latter results, and, even more, the proven bounds are aggregate.

Outline. In Sec. 3.2 we prove a lemma on multipoint evaluation that will be useful in
the sequel. In Sec. 3.3 we prove amortized bounds for a polynomial in a multiple field
extension and in Sec. 3.4 we analyze the bit-complexity of solving the system of Eq. (3.1).
In Sec. 3.5, we present the alternative Las Vegas algorithm to solve the system using a
RUR. In Sec. 3.6 we apply the bounds of Sec. 3.3 to the ‘Sum of Square Roots of Integers’
problem.

3.2 Prerequisite: Multipoint evaluation at a Cartesian prod-
uct in Cn

If we want to evaluate a univariate polynomial f ∈ C[X] of degree d at some numbers
a1, . . . , aD ∈ C, D ∈ N, we can use fast multipoint evaluation [KS13] (see also Sec. 2.2.2).
When D ≤ d the bit-complexity of the multipoint evaluation is given in [KS13, Thm.9]
(see also Lem. 2.12). When D > d, we have to repeat multipoint-evaluation

⌈
D
d

⌉
times.

Now, we want to evaluate a multivariate polynomial f ∈ C[X] at a1, . . . ,aD ∈ Cn. As
discussed in [vL20], multipoint evaluation in the multivariate case is not an elementary
extension of the univariate case, unless the evaluation points have good properties. In
particular, when the evaluation points belong in a set of the form S1×· · ·×Sn, it is advan-
tageous to perform multipoint evaluation at each coordinate one by one. The advantage
comes from the fact that the number of different values in each coordinate is |Si|, whereas
the evaluation points are in total

∏n
i=1 |Si|.

Proposition 3.1. Let f ∈ C[X] be a polynomial of degree d in each variable with absolute
value of coefficients at most 2τ and S = S1× · · ·×Sn ⊂ Cn be a set of complex points with
absolute values bounded by 2Γ, where Γ ≥ 1, and |Si| ≤M . Then, approximate multipoint
evaluation at S up to a precision of 2−L for some integer L ≥ 0, that is, computing f̃ such
that |f̃ − f(a)| ≤ 2−L for all a ∈ S, can be done in

ÕB
(
max(M,d)n−1

⌈
M

d

⌉
(ndL+ n2dτ + n3 d2 Γ)

)
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bit-operations. The precision demand on f and the points a ∈ S is bounded by L +

Õ
(
nτ + n2dΓ

)
bits.

Proof. For any k = 1, . . . , n−1, we can write f as a polynomial in the variablesXk+1, . . . , Xn

as
f(X) =

∑
ei∈{0,...,d},
i=k+1,...,n

fek+1,...,en (X1, . . . , Xk) X
ek+1

k+1 · · ·X
en
n .

Then, |fek+1,...,en(X1, . . . , Xk)| ≤ dk · 2τ · 2kdΓ. In particular, for k = n − 1 and a−n ∈
S1 × . . . Sn−1, f(a−n, Xn) =

∑d
i=0 fi(a−n)X

i
n, with |fi(a−n)| ≤ 2Õ(τ+(n−1)dΓ). Evaluating

f(a−n, Xn) at Sn with precision L can be done in ÕB(d(L+τ+(n−1)dΓ)) with a precision
demand on fi(a−n) and on the points an ∈ Sn in L+ Õ(τ + (n− 1) dΓ) bits.

Recursively, for any k ∈ {1, . . . , n − 1} and ak−1 := (a1, . . . , ak−1) ∈ S1 × · · · × Sk−1,
we need to evaluate the polynomials fek+1,...,en(a

k−1, Xk) at Sk with precision L + (n −
k)τ + dΓ

∑n−1
i=k i. Since the polynomial has coefficients with absolute value bounded by

τ + (k − 1)dΓ, the required precision on the coefficients and on the points in Sk is in
L + Õ((n − k + 1)τ +

∑n−1
i=k−1 idΓ). For a polynomial fek+1,...,en this requires at most

Mk−1 ·
⌈
M
d

⌉
multipoint evaluations of cost ÕB(d(L + nτ + n2dΓ)) each one. For a fixed

k there are at most (d + 1)n−k polynomials fek+1,...,en to be evaluated, so this yields a
complexity in ÕB(dn−kMk−1⌈Md ⌉d(L + nτ + n2dΓ)) bit-operation. By summing for all
k = 1, . . . , n− 1 we obtain a total bit-complexity in

ÕB
(
max(M,d)n−1

⌈
M

d

⌉
nd(L+ nτ + n2dΓ)

)
,

to compute all the evaluations with an error bounded by 2−L and a required precision of
all the coordinates of the points in S bounded by L+ Õ(nτ + n2dΓ) bits.

Notice that in Prop. 3.1, the existence of an oracle providing the necessary approxima-
tions is assumed.

3.3 Amortized bounds for polynomials in a multiple field ex-
tension

Let F1 ∈ Z[X1], . . . , Fn ∈ Z[Xn] be univariate polynomials of size (M,Λ) and F ∈ Z[X, Y ]

of size (d, τ). We consider the ideals

I = ⟨F1, . . . , Fn⟩ ⊂ Z[X1, . . . , Xn] and

J = ⟨F1, . . . , Fn, F ⟩ ⊂ Z[X1, . . . , Xn, Y ]. (3.2)

For x ∈ VC(I), let Fx(Y ) := F (x, Y ). We prove aggregate separation bounds for the roots
of F in (Z[X1, . . . , Xn])[Y ]. We follow closely [DDR+22], where they treat the simple
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extension case, and we generalize their results to the n-variate field extension. We use
Lem. 3.3 and Lem. 3.5, which are generalizations of Prop. 3 and Prop. 14 of [DDR+22]
respectively, as building blocks for our proofs. Lem. 3.3 gives upper and lower bounds
on the product of the evaluations of n-variate polynomials at all points in VC(I) and in
Lem. 3.5 the evaluation is of a set of n+ 1-variate polynomials at all points in VC(J ).

First, due to the special structure of the ideals I and J , we have the following result
on the multiplicities of the roots of the corresponding varieties. It will be used in the proof
of Lem. 3.3.

Lemma 3.2. [IPY21, Prop.3], [ZFX09] Let I and J be the ideals of Eq. (3.2). For any
x ∈ VC(I) and any i ∈ [n] it holds that µI (x) = µFi

(xi) · µI\Fi
(x−i). Moreover, for any

(x, y) ∈ VC(J ), it holds that µJ (x, y) = µI (x) · µFx
(y).

Lemma 3.3. Let I and J be the ideals of Eq. (3.2) and G1, . . . , Gm ∈ Z[X1, . . . , Xn] of
sizes (δ, σ).

(i) Let A ⊆ VC(I) such that for every x ∈ A, there exists an index i(x) ∈ [m] such that
Gi(x)(x) ̸= 0. Then,∑

x∈A
µI (x) log(|Gi(x)(x)|) ∈ Õ

(
Mn(n+ σ) + nδMn−1Λ

)
.

(ii) If for every x ∈ VC(I) there exists an index i ∈ [m] with Gi(x)(x) ̸= 0, then we denote
by i(x) the smallest such index. In this case,∑

x∈VC(I)

µI (x)
∣∣ log(|Gi(x)(x)|)∣∣ ∈ Õ (Mn(n+ σ) + nδMn−1Λ

)
.

Proof. (i) For any x = (x1, . . . , xn) ∈ A,

|Gi(x)(x)| ≤
(
δ + n

n

)
2σ

n∏
j=1

max{1, |xj |}δ,

since the number of monomials in Z[X1, . . . , Xn] of degree less than or equal to δ

is
(
δ+n
n

)
, the absolute value of every coefficient is ≤ 2σ and every xj is of degree at

most δ. Therefore,

∏
x∈A
|Gi(x)(x)|µI (x) ≤

∏
x∈A

((
δ + n

n

)
2σ

n∏
j=1

max{1, |xj |}δ
)µI (x)

. (3.3)
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Since
∑

x∈A µI (x) ≤Mn and
(
δ+n
n

)
∈ O((δ + n)n), we have:

∏
x∈A

((
δ + n

n

)
2σ

)µI (x)
∈ 2Õ(Mn(n+σ)). (3.4)

For j ∈ [n] it holds that∏
x∈A

max{1, |xj |}δ µI (x) =
∏
x∈A

(
max{1, |xj |}

µ
Fj

(xj))δ µI\Fj
(x−j)

=
∏

xj |x∈A

(
max{1, |xj |}

µ
Fj

(xj))δ ∑
x−j |x∈A µI\Fj

(x−j)

≤
∏

xj |x∈A

(
max{1, |xj |}

µ
Fj

(xj))δMn−1

≤M(Fj)
δMn−1

,

where the first equality follows from Lem. 3.2 and the first inequality from the fact
that

∑
x−j |x∈A µI\Fj

(x−j) ≤ Mn−1. Note that the last inequality is true since the
coefficients of Fj are in Z and so the absolute value of the leading coefficient of Fj
is greater or equal to 1. We have that M(Fj) ∈ 2O(Λ+logM), following Eq. (2.5).
Therefore, ∏

x∈A
max{1, |xj |}δµI (x) ∈ 2Õ(δMn−1Λ). (3.5)

From the equations (3.3), (3.4) and (3.5), we conclude.

(ii) Let A = {x ∈ VC(I) : |Gi(x)(x)| ≥ 1}. Then, we can write:∑
x∈VC(I)

µI (x)
∣∣ log(|Gi(x)(x)|)∣∣ = 2

∑
x∈A

µI (x) log(|Gi(x)(x)|)−

−
∑

x∈VC(I)

µI (x) log(|Gi(x)(x)|). (3.6)

Using (i) of this lemma, we obtain an upper bound for the first term of the previous
sum. Thus, we only need to compute a lower bound for

∑
x∈VC(I) µI (x) log(|Gi(x)(x)|).

LetG(X, U) = G1(X)+G2(X)U+· · ·+Gm(X)Um−1. We consider res(F1, . . . , Fn, G),
the multivariate resultant where we eliminate X. Using the Poisson formula [CLO05,
Thm. 3.4] we can write

resY (F1, . . . , Fn, G) = res(lc(F1)X
deg(F1)
1 , . . . , lc(Fn)Xdeg(Fn)

n )O(δ)·

·
∏

x∈VC(I)

G(x, U)µI (x) =
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=

(
res(X

deg(F1)
1 , . . . , Xdeg(Fn)

n )

n∏
j=1

lc(Fj)
∏

k∈[n],k ̸=j deg(Fk)

)O(δ)

·

·
∏

x∈VC(I)

G(x, U)µI (x) =

=

(
n∏
j=1

lc(Fj)
∏

k∈[n],k ̸=j deg(Fk)

)O(δ) ∏
x∈VC(I)

G(x, U)µI (x),

which is a polynomial in Z[U ]; it is not identically zero, since by the hypothesis, for
every x ∈ VC(I), G(x, U) is not identically zero. The absolute value of the constant
term of res(F1, . . . , Fn, G) is∣∣∣∣∣

n∏
j=1

lc(Fj)
∏

k∈[n],k ̸=j deg(Fk)

∣∣∣∣∣
O(δ) ∏

x∈VC(I)

|Gi(x)(x)|µI (x) ≥ 1. (3.7)

Since
∣∣∣∏n

j=1 lc(Fj)
∏

k∈[n],k ̸=j deg(Fk)
∣∣∣ ∈ 2O(nΛMn−1), it follows from Eq. (3.7) that

∏
x∈VC(I)

|Gi(x)(x)|µI (x) ∈ 2−O(nδΛMn−1). (3.8)

So, by applying part (i) of the lemma and Eq. (3.8) to Eq. (3.6), we conclude.

The following corollary, provides an amortized bound on the sum of the logarithms
(bitsize) of the Mahler measures of the polynomials Fx(Y ), for all x ∈ VC(I) (counting
multiplicities).

Corollary 3.4 (Amortized Mahler measure). Let I and J be the ideals of Eq. (3.2).
Then, ∑

x∈VC(I)

µI (x) logM(Fx) ∈ Õ
(
Mn(n+ τ + d) + nMn−1dΛ

)
.

Proof. We write F (X, Y ) = fd(X)Y d+· · ·+f0(X). For any x ∈ VC(I), following Eq. (2.5),
it holds

2−d∥Fx∥1 ≤M(Fx) ≤ ∥Fx∥2 , (3.9)

since the degree of any Fx(Y ) is ≤ d. Let

|fM(x)(x)| := max
j∈{0,...d}

|fj(x)| ,
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|fm(x)(x)| := min
j∈{0,...d}|fj(x) ̸=0

|fj(x)| .

Now, Eq.(3.9) gives

2−d |fm(x)(x)| ≤ M(Fx) ≤
√
d+ 1 |fM(x)(x)| .

If we consider for all x ∈ VC(I) (counting multiplicities), then

2−dM
n
∏

x∈VC(I)

|fm(x)(x)|µI (x) ≤
∏

x∈VC(I)

M(Fx)
µI (x) ≤

≤
√
d+ 1

Mn ∏
x∈VC(I)

|fM(x)(x)|µI (x) . (3.10)

We can bound the products on each side of the inequality in Eq.(3.10) by Lem. 3.3. This
concludes the proof.

The following lemma is an analog of Lem. 3.3, but in the case where we evaluate over
VC(J ).

Lemma 3.5. Let I and J be the ideals of Eq. (3.2) and G1, . . . , Gm ∈ Z[X1, . . . , Xn, Y ]

of sizes (δ, σ).

(i) Let A ⊆ VC(J ) such that for every (x, y) ∈ A, there exists an index i(x, y) ∈ [m]

such that Gi(x,y)(x, y) ̸= 0. Then,∑
(x,y)∈VC(J )

µJ (x, y) log |Gi(x,y)(x, y)|

∈ Õ
(
Mn(d(n+ σ) + δ(n+ τ + d)) + nδdMn−1Λ

)
.

(ii) Supposing that for every (x, y) ∈ VC(J ) there exists an index i ∈ [m] with Gi(x, y) ̸=
0, we denote by i(x, y) the smallest such index. Then,∑

(x,y)∈VC(J )

µ(x, y)
∣∣ log(|Gi(x,y)(x, y)|)∣∣
∈ Õ

(
Mn(d(n+ σ) + δ(n+ τ + d)) + nδdMn−1Λ

)
.

Proof. (i) For any (x, y) ∈ A,

|Gi(x,y)(x, y)| ≤
(
δ + n+ 1

n+ 1

)
2σ

n∏
i=1

max{1, |xi|}δmax{1, |y|}δ ,

since the number of monomials in Z[X1, . . . , Xn, Y ] of degree less than or equal to δ
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is
(
δ+n+1
n+1

)
. We have that:

∏
(x,y)∈A

((
δ + n+ 1

n+ 1

)
2σ
)µJ (x,y)

∈ 2Õ(Mnd(n+σ)) , (3.11)

since
∑

(x,y)∈A µJ (x, y) ≤Mnd. For j = 1, . . . , n:

∏
(x,y)∈A

max{1, |xj |}δµJ (x,y) ≤
∏

(x,y)∈VC(J )

max{1, |xj |}δµJ (x,y)

=
∏

(x,y)∈VC(J )

max{1, |xj |}
δµ

Fj
(xj)µI−j

(x−j)µFx
(y)

≤
∏

x∈VC(I)

max{1, |xj |}
δµ

Fj
(xj)µI−j

(x−j)d

=
∏

xj∈VC(Fj)

max{1, |xj |}
δµ

Fj
(xj)

∑
x−j |x∈VC(I) µI\Fj

(x−j)d

≤
∏

xj∈VC(Fj)

max{1, |xj |}
δµ

Fj
(xj)M

n−1d ≤M(Fj)
δMn−1d,

where the first equality follows from Lem. 3.2 and the third inequality from the fact
that

∑
x−j |x∈VC(I) µI\Fj

(x−j) ≤Mn−1. Note that the last inequality is true since the
coefficients of Fj are in Z. SinceM(Fj) ∈ 2O(Λ+logM), we have that∏

(x,y)∈A

max{1, |xj |}δµJ (x,y) ∈ 2Õ(δMn−1dΛ). (3.12)

Lastly, we have that ∏
x∈VC(I)

|lc(Fx(Y )|δµI (x) ·
∏

(x,y)∈A

max{1, |y|}δµJ (x,y) ≤

≤
∏

x∈VC(I)

|lc(Fx(Y )|δµI (x)
 ∏
y∈VC(Fx)

max{1, |y|}µFx
(y)

δµI (x)

≤

≤
∏

x∈VC(I)

M(Fx)
δµI (x) ∈ 2Õ(Mnδ(n+τ+d)+Mn−1δndΛ) ,

which follows from Cor.3.4. Also, from Lem. 3.3 we can bound the size of the factor∏
x∈VC(I) |lc(Fx(Y )|δµI (x) on the left-hand side of the previous equation, and thus,

we have that ∏
(x,y)∈A

max{1, |y|}δµJ (x,y) ∈ 2Õ(Mnδ(n+τ+d)+Mn−1δndΛ). (3.13)
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By putting together Eq. (3.11), Eq. (3.12) and Eq. (3.13) we can conclude.

(ii) Let A = {(x, y)||Gi(x,y)(x, y)| ≥ 1}. As in the proof of Lem. 3.3, we will first find a
lower bound for ∑

(x,y)∈VC(J )

µI (x)µFx
(y) log(|Gi(x,y)(x, y)|) .

LetG(X, Y, U) := G1(X, Y )+G2(X, Y )U+· · ·+Gm(X, Y )Um−1. Let alsoQ(X, U) :=

res(G(X, Y, U), F (X, Y )), be the resultant where we eliminate Y . Without loss of
generality, we assume that the leading coefficient of F (X1, . . . , Xn, Y ) when consid-
ered as a polynomial in Z[X1, . . . , Xn][Y ], is not canceled for any root of I (in the
case where the leading coefficient is cancelled for some roots, F is replaced by a
polynomial of smaller degree). So, the resultant is non the zero polynomial.

We consider res(Q,F1, . . . , Fn), which is now the resultant where we eliminate X.
Using the Poisson formula [CLO05, §3] we can write

res(Q(X, U), F1(X1), . . . , Fn(Xn)) =

=

(
n∏
j=1

lc(Fj)
∏

k∈[n],k ̸=j deg(Fk)

)O(dδ) ∏
x∈VC(I)

Q(x, U)µ(x) =

=

(
n∏
j=1

lc(Fj)
∏

k∈[n],k ̸=j deg(Fk)

)O(dδ) ∏
x∈VC(I)

fd(x)
O(δ)µI (x)·

·
∏

y|(x,y)∈VC(J )

G(x, y, U)µI (x)µ(y)

The absolute value of the constant term of res(Q(X, U), F1(X1), . . . , Fn(Xn)) ∈ Z[U ]

is: ∣∣∣∣∣
n∏
j=1

lc(Fj)
∏

k∈[n],k ̸=j deg(Fk)

∣∣∣∣∣
O(dδ) ∏

(x)∈VC(I)

|fd(x)|O(δ)µI (x)·

·
∏

(x,y)∈VC(J )

|Gi(x,y)(x, y)|µI (x)µFx
(y) ≥ 1.

We have that

∣∣∣∣∣∏n
j=1 lc(Fj)

∏
k∈[n],k ̸=j deg(Fk)

∣∣∣∣∣ ∈ 2O(nΛMn−1).

it follows that ∏
x∈VC(I)

|Gi(x)(x)|µI (x) ∈ 2−O(nδΛMn−1). (3.14)

So, by combining the first part of the lemma and Eq.(3.14), we conclude.
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Corollary 3.6 (Amortized bound on lGDisc and lsep). Let I and J be the ideals of
Eq. (3.2). Then,∑

x∈VC(I)

µI (x) lGDisc(Fx) ∈ Õ
(
dMn(n+ τ + d) + nd2Mn−1Λ)

)
and ∑

x∈VC(I)

µI (x) lsep(Fx) ∈ Õ
(
dMn(n+ τ + d) + nd2Mn−1Λ)

)
.

Proof. We can write ∑
x∈VC(I)

µI (x)lGDisc(Fx) =

=
∑

x∈VC(I)

µI (x)
∑

y∈VC(Fx)

µFx
(y)| log(|F

[µ
Fx

(y)]
x (y)|)| =

=
∑

(x,y)∈VC(J )

µJ (x, y)| log(|F
[µ

Fx
(y)]

x (y)|)|

and then apply Lem. 3.5 for the family of polynomials F [k]
x , for k = 0, . . . , d. These

polynomials are of size (d, Õ(τ)), therefore the first part follows. The second part is an
immediate consequence of Prop. 2.35, Cor. 3.4 and the first part of this corollary.

3.4 Solving in a multiple field extension

In this section, we study the complexity of isolating the roots of the system in Eq. (3.1).
We first solve the univariate polynomials of the system and then, for every x ∈ VC(I), we
will isolate the roots of Fx. Following [DDR+22], we employ the univariate root isolation
algorithm of Prop. 2.39. The main result of this section is summarized in the theorem that
follows.

Theorem 3.7. (i) If the number of distinct roots of Fx(Y ) for every x ∈ VC(I) is
known, then we compute isolating discs for all the roots and the corresponding mul-
tiplicities in

ÕB
(
nMn+1d(n+ τ + d) + nMnd2(nΛ + dn(n+ τ + d+ Λ)) + n2dn+3Mn−1Λ

)
.

(ii) If the number of distinct roots is not known, then we compute isolating discs for all
the roots, together with the corresponding multiplicities in



3.4. SOLVING IN A MULTIPLE FIELD EXTENSION 65

ÕB
(
max(M,d2)n−1

⌈
M

d2

⌉
((nMn + n2)d5(τ + n) + n2 d6 Λ(Mn−1 + n))+

+nMndn+2(n+ τ + d+ Λ) + n2dn+3Mn−1Λ

)
.

Remark 3.8. When M = d and Λ = τ , the bit-complexity bounds of the previous theorem
become

ÕB(nd2n+2(d+ nτ)) ,

when the number of distinct roots of Fx(Y ) is known for every x ∈ VC(I) (or when F is
squarefree) and

ÕB
(
n2d3n+3τ + n3d2n+4τ

)
,

otherwise.

Remark 3.9 (Number of distinct roots, numerically vs formally). Determining the
number of distinct roots of every Fx in Thm. 3.7 dominates the total complexity. When n =

1, a formal method involving univariate gcd computations can be used to find this number;
the initial system is triangular and it can be efficiently decomposed into regular triangular
systems, for whom the number of distinct roots over every x is constant [DDR+22, LPR17].
However, when n > 1 the system is not triangular and decomposing it to a set of regular
triangular systems (cf. extended gcd computation [DSM+05]) as for the case n = 1, and
thus loosing the original shape of the system, would require isolating roots of a triangular
system in n variables. The latter problem is substantially more demanding than isolating
the roots of n univariate polynomials. For this reason, we will follow a numerical approach
to find the number of distinct roots of every Fx.

In the remark that follows, we compute the complexity of isolating the roots of the
system of Eq. (3.1) using the algorithm of approximate factorization of Pan [Pan02] with
the maximal precision; instead of requiring the number of distinct roots of a univariate
polynomial, if we approximate its roots with precision up to the separation bound, then
the root approximations that have pairwise distances smaller that the separation bound,
will correspond to the same root. So, this is a method that avoids computing the number
of distinct roots of the univariate polynomials Fx. Nevertheless, it is a theoretical approach
which brings about practical limitations in contrast to our adaptive method.

Remark 3.10 (Pan’s algorithm with maximal precision). On isolating the roots of
Fx for every VC(I), instead of employing the algorithm of Prop. 2.39, that requires knowing
the number of distinct roots, we can use Pan’s algorithm of approximate factorization with
precision up to the separation bound of the roots of the initial system of Eq. (3.1). Then, for
every x ∈ VC(I), we approximate F (x, Y ) up to

∑
x∈VC(I) µI (x) lsep(Fx) ∈ Õ(Mnd(n +
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τ + d) + nd2Mn−1Λ)) bits. From Prop. 3.1 this is done in

ÕB

(
max(M,d)n−1

⌈
M

d

⌉
(nMnd2(n+ τ + d) + n2d3Mn−1Λ + n2dτ + n3 d2τ)

)
since there are d polynomials to evaluate. Then, for all Fx(Y ), Pan’s algorithm runs in

ÕB
(
M2nd2(n+ τ + d) + nd3M2n−1Λ

)
,

and returns isolating intervals for all the roots.

Before presenting the proof of Thm. 3.7, we need some intermediate results. The next
lemma, gives upper and lower bounds on the evaluation of a polynomial over an algebraic
number. For simplicity, we ignore the logarithmic factors.

Lemma 3.11. For every x ∈ VC(I) and a polynomial b(X) ∈ Z[X] of size (δ, σ), it holds
that

2−Õ(Mn(σ+n)+nMn−1δΛ) ≤ |b(x)| ≤ 2Õ(nδΛ+σ).

Proof. For the upper bound, we have that

|b(x)| ≤
(
δ + n

n

)
2σ
∏
i∈[n]

max(1, |xi|)δ ≤
(
δ + n

n

)
2σ2(Λ+logM+1)δn,

since, for i ∈ [n], max(1, |xi|) ≤ 2Λ+logM+1 from the Cauchy bound [BPR06, Cor.10.4].
For the lower bound, we follow the technique of u-resultant and consider the system:

F0(X, Y ) = F1(X1) = · · · = Fn(Xn) = 0, (3.15)

where F0(X, Y ) = Y − b(X) and Y is a new variable. We consider the resultant of the
previous system that eliminates X. Then,

R(Y ) := resX(F0, . . . , Fn) = lc(R)
∏

a∈VC(I)

(Y − b(a))µI (a) ∈ Z[Y ].

We will find an upper bound on the bitsize of R. To this scope, we follow the proof
of the DMM bound in [EMT20] (see also the proof of the sparse resultant’s height bound
in [MST17] ). For i = 0, . . . , n, let Qi be the Newton polytope of Fi. We denote by #Qi

the number of lattice points in the closed polytope Qi and by Mi the mixed volume of all
these polytopes except from Qi. The resultant R is a univariate polynomial in Y , with
coefficients homogeneous polynomials in the coefficients of the polynomials of the system
in Eq. (3.15):

R(Y ) = . . .+ ρkY
kcM0−k

0,k cM1
1,k · · · c

Mn
n,k + . . . ,
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where ρk ∈ Z, cMi
i,k is a monomial in the coefficients of Fi with total degree Mi, for i ∈ [n],

and cM0−k
0,k is a monomial in the coefficients of F0 of total degree M0 − k. It holds that

|cM1
1,k · · · c

Mn
n,k | ≤

n∏
i=1

∥Fi∥Mi
∞ ≤ 2nM

n−1δΛ ,

|cM0−k
0,k | ≤ ∥F0∥M0−k

∞ ≤ 2σ(M
n−k) ,

ρk ≤
n∏
i=0

(#Qi)
Mi ≤ ((δ + 1)n + 1)M

n
(M + 1)nM

n−1δ.

So, ∥R∥∞ ≤ 2nM
n−1δ(Λ+logM+1))+Mn(σ+n log δ+n+1) . Since R(Y ) is a polynomial with

integer coefficients, from the Cauchy bound, we have that the absolute value of any of its
roots is ≥ ∥R∥−1

∞ .

Lemma 3.12. For all x ∈ VC(I), we compute the degree of Fx(Y ) in a bit-complexity in

ÕB

(
max(M,d)n−1

⌈
M

d

⌉
(nd2(Mn(τ + n) + nτ) + n2d3Λ(Mn−1 + n))

)
.

Proof. To determine which is the first non-zero coefficient of Fx(Y ) =
∑d

i=0 fi(x)Y
i, it

suffices to approximate its coefficients up to L bits, where L ∈ Õ(Mn(τ +n) +nMn−1dΛ)

(Lem. 3.11). From Prop. 3.1, this can be done, for all fi(X) and all x ∈ VC(I), using
multipoint evaluation, in

ÕB
(
max(M,d)n−1

⌈
M

d

⌉
(nd2L+ n2d2τ + n3 d3Λ)

)
(3.16)

bit-operations. This requires approximations of every x to bit-accuracy at most Õ(L+nd+
+n2dΛ), which is done for all x ∈ VC(I) in ÕB(M3+M2Λ+ML+nMd+n2dMΛ) [MSW15,
Thm.5]. The total bit-complexity is dominated by the one in Eq. (3.16). We substitute
the upper bound for L to conclude.

Lemma 3.13. For all x ∈ VC(I), we compute the number of distinct complex roots of
Fx(Y ) in a bit-complexity in

ÕB

(
max(M,d2)n−1

⌈
M

d2

⌉
(nd5(τ + n)(Mn + n) + n2d6Λ(Mn−1 + n))

)
.

Proof. We define the polynomials Fℓ(X, Y ) :=
∑ℓ

i=0 fi(X)Y i, for ℓ = 0, . . . , d, which are
truncated versions of F (X, Y ). Since the degree of Fx is not the same for every x ∈ VC(I),
we have to repeat the following steps for every ℓ = 0, . . . , d:

(1) We compute the principal subresultant coefficients of Fℓ(X, Y ), ∂Fℓ
∂Y (X, Y ) with re-

spect to Y . The j-th principal subresultant coefficient is a polynomial in Z[X],
denoted by sresj(X), of total degree O (ℓ(ℓ− j)) and bitsize Õ ((τ + n)(ℓ− j))
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[BPR06, Prop.8.72]. The computation of all principal subresultant coefficients is
done in ÕB

(
ℓ2n+2τ

)
[LPR17, Lem.4].

(2) The index of the first non-zero sresj(x) gives the degree of the gcd(Fℓ(x, Y ), ∂Fℓ
∂Y (x, Y )).

So, for every x ∈ VC(I), we approximate sresj(x), for j = 0, . . . , ℓ, up to L bits,
with L ∈ Õ(Mnℓ(τ + n) + nMn−1ℓ2Λ) (Lem. 3.11), so as to determine if it zero or
not. From Prop. 3.1, this can be done, for all j ∈ {0, . . . , ℓ} and all x ∈ VC(I), using
multi-point evaluation, in

ÕB

(
max(M, ℓ2)n−1

⌈
M

ℓ2

⌉
(nℓ4(τ + n)(Mn + n) + n2ℓ5Λ(Mn−1 + n))

)
.

Repeating the previous steps for all ℓ ∈ {0, . . . , d}, yields a total bit-complexity in

ÕB

(
max(M,d2)n−1

⌈
M

d2

⌉
(nd5(τ + n)(Mn + n) + n2d6Λ(Mn−1 + n))

)
. (3.17)

As we can see in the proof of Prop. 3.1, to compute these evaluations, we need to
approximate each x to bit accuracy at most

Õ
(
Mnd(τ + n) + n2d2MΛ + nd(τ + n)

)
.

This costs for all x ∈ VC(I), ÕB(nM (Mnd(τ + n) + n2d2MΛ+ nd(τ + n))) [MSW15,
Thm.5], which does not overcome the bit-complexity of Eq. (3.17).

Lemma 3.14. For every x ∈ VC(I) let ρx be a positive integer. We compute ρx-approximations
of Fx(Y ) for all x ∈ VC(I) in

ÕB

n(M3 +M2Λ +M max
x∈VC(I)

ρx

)
+ dn+1

Mn(τ + dΛ) +
∑

x∈VC(I)

ρx

 .

Proof. For a ρx-approximation of Fx(Y ), it suffices to consider an Lx-approximation of x,
where Lx ∈ Õ(ρx + τ + dΛ). This follows from [BS17, Lem.1], since the coefficients of
F (x, Y ) are polynomials in Z[X1, . . . , Xn] of size (d, τ), and max(1, ∥x∥∞) ∈ 2O(Λ). To get
the desired approximation of each x ∈ VC(I), we compute isolating discs of the roots of
each Fi, for i = 1, . . . , n, of size less than 2−Lmax , where Lmax = maxx∈VC(I) Lx. This costs
[MSW15, Thm.5]

ÕB
(
n(M3 +M2Λ +MLmax)

)
. (3.18)

For a given x ∈ VC(I), to compute the ρx-approximation of F (x, Y ), we evaluate its
coefficients at the Lx-approximation of x. This costs ÕB(ndn+1(τ+Lx)): When we regard
F (X, Y ) as a polynomial in Y , it has at most d+1 coefficients which are polynomials in Z[X]

of size (d, τ). Using [BLPR15, Lem.6], we evaluate each one of them in ÕB(dn(τ + Lx)),
and then we multiply the latter bound by d. To obtain the final cost, we sum the latter
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bound for all x ∈ VC(I) and add the cost in Eq. (3.18) and use the fact that Lmax ∈
Õ(maxx∈VC(I) ρx + τ + dΛ).

Now, by putting everything together, we can prove our main theorem.

Proof of Thm. 3.7. (i) For any x = (x1, . . . , xn) ∈ VC(I), we compute a τx such that
2−τx−2 ≤ lc(Fx) ≤ 2−τx . Then, the polynomial 2−τxFx(Y ) satisfies the condi-
tions of Prop. 2.39, which we then use to isolate its roots (it has the same roots
as Fx(Y )). Repeating the arguments as in the proof of [DDR+22, Prop. 19] we have
that

∑
x∈VC(I) τx ∈ O(

∑
x∈VC(I) ρx) and that its computation does not affect the

total complexity.

Let F̃x(Y ) := 2τxFx(Y ). From Prop. 2.39, we can solve every F̃x(Y ) in

ÕB(d(d2 + d logM(F̃x) + lGDisc(F̃x)). (3.19)

For that, we require an approximation of the coefficients of F̃x(Y ) to an absolute
precision bounded by

ρx ∈ Õ(d logM(F̃x) + lsep(F̃x) + lGDisc(F̃x)).

Using Lem. 3.14, this is done for all x ∈ VC(I) in

ÕB
(
n(M3 +MΛ(M + d) +M max

x∈VC(I)
ρx)+

+ndn+1Mn(τ + dΛ) + ndn+1
∑

x∈VC(I)

ρx
)
. (3.20)

From Cor. 3.4 and Cor. 3.6, we have that∑
x∈VC(I)

µI (x)ρx ∈ Õ(M
nd(n+ τ + d) + nd2Mn−1Λ))

Therefore, Eq. (3.20) becomes

ÕB
(
n(M3 +M2Λ) + nMn+1d(n+ τ + d)

+nMnd2(nΛ + dn(n+ τ + d+ Λ)) + n2dn+3Mn−1Λ
)
. (3.21)

By summing Eq. (3.19) for all x ∈ VC(I) yields

ÕB
(
Mnd2(n+ τ + d) + nd3Mn−1Λ

)
. (3.22)
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We add the bounds in Eq. (3.21) and Eq. (3.22) to conclude (the bound in Eq. (3.21)
dominates).

(ii) When the number of distict roots of Fx(Y ) for every x ∈ VC(I) is not already known,
then we have to compute it using Lem. 3.13. We add the cost of this computation
to the bound of part (i) of the theorem.

3.5 Computing with a unique field extension

In this section, we follow an alternative approach to isolate the roots of the system in
Eq. (3.1). We compute a Rational Univariate Representation (RUR) (cf. Sec. 2.5.1) of I,
that essentially is defined by a univariate polynomial with coefficients in Q[T ] such that
there exists a bijection between its roots and the roots of I that preserves the multiplicities
and the real roots. Then, we use this univariate representation of the roots of the system

F1(X1) = · · · = Fn(Xn) = 0 ,

to transform the the system of Eq. (3.1) to a bivariate triangular system. In this way, we
reduce the original problem to the one of isolating the roots of a univariate polynomial
with coefficients in a simple extension field.

In particular, to accelerate the RUR computation, we will find a RUR of the radical
ideal

√
I and not of I. Note that for a general ideal I ⊂ Z[X], computing

√
I is not

easy, even if we already know a Gröbner basis, and the multiplicities of the roots are not
preserved. However, in our case, it is not hard to compute

√
I (due to the structure of I)

and we can obtain the multiplicities of the roots at a reasonable cost (see Rem. 3.15).

In the sequel, we denote
√
I by I∗ and the quotient algebra Q[X]

I∗ associated to I∗

by A. In Sec. 2.5.1, it was shown that the computation of the RUR for an ideal can
be broken down into two parts: finding a separating linear form (SLF) for the ideal and
computing the RUR candidate linked to that linear form. In this section, we present a
Las Vegas algorithm for computing the RUR of I∗ using modular arithmetic. Firstly, in
Sec. 3.5.1, we determine the arithmetic complexity of computing an RUR candidate and
we also provide the bitsize of the RUR polynomials. Secondly, in Sec. 3.5.2, we revisit the
principles of reducing the RUR computation modulo a prime number, which serves as the
basis for the Las Vegas algorithms in the following two sections; Sec. 3.5.3 for the SLF
computation and Sec. 3.5.4 for the RUR computation. Finally, in Sec. 3.5.5, we utilize the
RUR of I∗ to solve the original system.
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3.5.1 Operations in the quotient algebra A

In Sec. 2.5.1, we described how to compute an RUR candidate for general ideals in Q[X].
Given a linear form t = a ·X, computing an RUR candidate for an ideal requires

Tr(ti) and Tr(Xjt
i) for j = 1, . . . , n and i = 0, . . . , D ,

where Tr(ti) and Tr(Xjt
i) are the traces of the multiplication matrix Mti and MXjti re-

spectively and D is the dimension of the associated quotient algebra (Lem. 2.48). Here,
we compute the traces when the considered ideal is the radical ideal I∗.

Remark 3.15 (Radical Ideal). Since I is generated by univariate polynomials only, we
can easily compute its radical I∗, which is not the case in for a general zero-dimensional
ideal in Q[X] (cf. [GPB+08, § 4.5]). In particular, we have that {F1(X1), ..., Fn(Xn)} is a
Gröbner basis of I for any monomial ordering and the square-free parts of F1, . . . , Fn can be
computed in ÕB(nM2Λ) bit-operations. When one takes the square-free parts, multiplicities
are no longer preserved. However, in our case the multiplicity of a root x ∈ VC(I) is
µI (x) =

∏n
i=1 µFi

(xi), and thus it can be easily recovered from the multiplicities of the
roots of the univariate polynomials Fi.

Let F ∗
1 , . . . , F

∗
n be the square-free parts of F1, . . . , Fn. Then,

I∗ = ⟨F ∗
1 , . . . , F

∗
n⟩ .

Therefore, for a linear form t ∈ Q[X], the (monic) characteristic polynomial of the multi-
plication matrix by t in A and its minimal polynomial coincide. When t is also separating
for VC(I∗), then the minimal polynomial is square-free.

A monomial basis of A is B := {
∏n
i=1X

ei
i , ei < M} and we will denote it by

B = {w1, .., wD} ,

where D ≤Mn and w1 = 1. For an element P ∈ A we denote by P be the representative
of the class of P in A expressed in B, and by P [i] its i-th coordinate.

Given a linear form t = a ·X, for the computation of the traces Tr(ti) and Tr(Xjt
i),

we use the following remark which essentially suggests the precomputation of the multi-
plicative tensor

T := {wiwj , 1 ≤ i, j ≤ D}

and the vector of traces
Tr1 = [Tr(w1), . . . ,Tr(wD)] .

For a polynomial P ∈ Q[X], with P =
∑D

i=1 a1wi, the trace of the multiplication matrix
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MP is computed as

Tr(P ) =
D∑
i=1

Pwi[i] =
D∑
j=1

D∑
i=1

ajwjwi[i] .

Remark 3.16 (Linearity of the Trace map). For any P ∈ Q[X], Tr(P ) =
#»

P · Tr1,
where

#»

P is the expression of P as a vector in the base B.

Lemma 3.17 (Multiplication by one variable). Let P ∈ A. Then, for any i =

1, . . . , n, computing XiP can be done in O(D) arithmetic operations in Q.

Proof. Consider B1 = {XM−1
1 ·

∏n
i=2X

ei
i , ei < M} ⊂ B and B2 = B \B1. We can write P

as

P =
∑

mα∈X−(M−1)
1 B1

aαX
M−1
1 mα +

∑
mβ∈B2

aβmβ

Then,
X1P =

∑
mα∈X−(M−1)

1 B1

aαX
M
1 mα +

∑
mβ∈B2

aβX1mβ.

Notice that X1mβ ∈ B so that Q :=
∑

mβ∈B2
aβX1mβ is irreducible modulo I, i.e., Q = Q,

and thus
X1P =

∑
mα∈X−(M−1)

1 B1

aα
tail(F1)

lc(F1)
mα +Q

where tail(F1) = F1−lc(F1)X
M
1 . Note also that the supports of the polynomials aα

tail(F1)
lc(F1)

mα

are all disjoint so that computing
∑

mα∈X−(M−1)
1 B1

aα
tail(F1)
lc(F1)

mα is a simple concatenation

that can be done in O(D) arithmetic operations in Q. The addition with Q can be done
in O(D) arithmetic operations in Q which proves the lemma.

Remark 3.18 (Size of the multiplicative tensor). The size of the multiplicative tensor
varies between D and D2 in the general case (where D is the dimension of the quotient
algebra) and plays an important role in the resulting complexity. Here, T has cardinality
#T ∈ O((2M)n) = O(2nD). This simplifies its computation, which is described in the
next lemma.

Lemma 3.19 (Traces computation). (i) The multiplicative tensor T can be com-
puted in O(2nD2) arithmetic operations in Q.

(ii) Given the multiplicative tensor T , the vector Tr1 = [Tr(w1), . . . ,Tr(wD))] can be
computed in O(D2) arithmetic operations in Q.

(iii) Given T ,Tr1 and a linear form t = a ·X ∈ Q[X], we compute Tr(ti) and Tr(Xjt
i)

in O(nD2) arithmetic operations in Q.
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Proof. (i) As previously seen, T has less than 2nD elements and each element wiwj ,
when i · j ̸= 1, can be written as wiwj = Xkm for some k ∈ [n] and m ∈ T . Thus,
T can be computed in O(2nD2) arithmetic operations in Q, using Lem. 3.17.

(ii) We compute Tr1 = [Tr(w1), . . . ,Tr(wD)] inO(D2) arithmetic operations, since Tr(wi) =∑D
j=1wiwj [j].

(iii) We compute 1, t, td
n in O(nD2) arithmetic operations: Lem. 3.17 implies that we

can compute tP for a polynomial P ∈ A in O(nD) arithmetic operations. So,
we compute ti in O(nD2) by setting P as t, t2, . . . , tD−1. Then, Tr(1), Tr(t),. . . ,
Tr(tD) are computed in O(D2) arithmetic operations in Q, since Tr(ti) =

#»

ti · Tr1
(Rem. 3.16). Then similarly, we compute Xjti in O(nD2) arithmetic operations in
Q using Lem. 3.17, since ti is known. The traces Tr(Xjt

i) are computed for all i, j
in O(nD2).

Given a linear form t = a · X and the corresponding traces Tr(ti) and Tr(Xjt
i), in

Lem. 3.19 we showed that the number of arithmetic operations needed to compute the
RUR candidate for a general ideal is O(nD2) (using Alg. 1). Combining this with the
previous result, we obtain a bound on the total number of arithmetic operations.

Corollary 3.20. Given a linear form t = a ·X ∈ Q[X] we can compute a RUR candidate
of I∗ in O((n+ 2n)D2) arithmetic operations in Q.

Remark 3.21. It should be noted that for a general ideal in Q[X], unlike the previous
corollary, the arithmetic complexity of computing a RUR candidate given a linear form is
in O(D3 + nD2) [Rou99, Prop. 4.1], where D is the dimension of the associated quotient
algebra, or O(#T D3/2 + nD2) using a Baby-Step/Giant-Step algorithm [Rou07, §3].

Bitsizes of the RUR polynomials

Now, we provide an upper bound on the degree and the bitsize of the polynomials of the
RUR. For a linear form t = a ·X = X1 + a2X2 + · · · + anXn, let τa be the bitsize of a.
According to Brand and Sagraloff [BS16, Thm. 6], one can take a separating linear form t

with τa = O(n logM). In particular, we have the following:

Lemma 3.22. [BS16, Thm. 6] There exists a separating linear form t = a ·X for VC(I∗)
with non-negative integer coefficients bounded by M4n logn.

Then, for the sizes of the RUR polynomials, by the DMM bound [EMT20] and as it
was also demonstrated in Lem. 3.11, we have the following:
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Proposition 3.23. [MST17, Thm. 2.2] Given a separating linear form t = a ·X, such that
the bitsize of a = (1, a2, . . . , an) is in O(n log n logM), then the polynomials

fI∗,a, fI∗,a,1, fI∗,a,X1 , . . . , fI∗,a,Xn

have degrees at most Mn and bitsize in Õ(nMn + nMn−1Λ).

3.5.2 Lucky primes for the RUR computation

For complexity purposes, we will not compute the RUR over Q directly, but we will use a
(multi-)modular approach instead. For a prime number p we denote by φp : Z→ Z/pZ the
reduction modulo p morphism and by Ip the reduction modulo p of an ideal I ⊂ Z[X]. Let
also Ap(Ip) := (Z/pZ[X])/Ip. For the rest, we ue again the notation introduced in pg. 47.

The idea of the modular approach, is to find suitable primes, to compute the RUR
modulo these primes and then to lift the result to Q. This is to avoid intermediate coeffi-
cient swell that occurs in the computation of the traces. The total bit-complexity will be
then derived by using bounds on the size of the RUR coefficients and of the prime numbers
involved.

However, not all prime numbers are appropriate for this. We call a prime number lucky
for a computation, if the algorithm computations commute with the morphism φp.

Definition 3.24 (G-compatible prime). [Rou99, Def. 6.1] Let I ⊂ Q[X] be a zero-
dimensional ideal and G a Gröbner basis. A prime number p is said to be G-compatible if it
greater than the dimension of Q[X]/I and it does not divide any of the leading coefficients
of the polynomials in G.

Since F ∗
1 , . . . , F

∗
n form already a Gröbner basis of I∗, we have the following immediate

result:

Corollary 3.25. For the Gröbner basis G = {F ∗
1 , . . . , F

∗
n} of I∗, a prime number p ∈ Z is

G-compatible if it is greater than dim(A) ≤Mn and if it does not divide any of the leading
coefficients of F ∗

1 , . . . , F
∗
n .

According to the following theorem, a G-compatible prime number is lucky for the
computation of the multiplication matrix MP by any polynomial P in Z/pZ[X], for the
computation of the trace Tr(P ) of MP and of its characteristic polynomial EP .

Theorem 3.26. [Rou99, Cor. 6.1] Let G be a Gröbner basis of a zero-dimensional ideal
I ⊂ Z[X] and p a G-compatible prime number. Then, for any polynomial P ∈ Z[X], we
have that

1. ϕp(MP ) =M
Ap(Ip)
ϕp(P ) ,

2. ϕp(Tr(P )) = TrAp(Ip)(ϕp(P )),
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3. ϕp(EP ) = E
Ap(Ip)
ϕp(P ) .

In order to find a separating linear form for I∗ using modular computations, we will
use the following result:

Lemma 3.27. [Rou99, Prop. 6.1] Let G be a Gröbner basis of a zero-dimensional ideal
I ⊂ Z[X1, . . . , Xn] and p a G-compatible prime number. If p is greater that dim(Q[X]/I)

and #VC(I) = #VC(ϕp(I)), then every polynomial t ∈ Z/pZ[X] that separates VC(ϕp(I)),
separates also VC(I).

In the corollary that follows, we adapt the previous lemma in our setting, to define the
lucky primes for the separating linear form computation.

Corollary 3.28. A prime number p ∈ Z is lucky for the computation of a separating linear
form for VC(I∗) if it is greater that dim(A) ≤Mn, if it does not divide any of the leading
coefficients of F ∗

1 , . . . , F
∗
n and if #VC(I∗p ) = #VC(I∗). Then, any separating linear form

for VC(I∗p ) is also a separating linear form for VC(I∗).

In the next lemma we compute an upper bound on the number of unlucky primes for
the separating linear form computation for VC(I∗), by following [BLPR15, Prop. 13].

Lemma 3.29 (Unlucky primes). The number of unlucky primes for the computation of
a separating linear form for VC(I∗) is in Õ(nM2n +M2n−1Λ + nΛ).

Proof. A prime number p is unlucky if it smaller that Mn or if it divides lc(F ∗
1 ) · · · lc(F ∗

n)

or if #VC(I∗) ̸= #VC(I∗p ).
There are O( Mn

n lnM ) prime numbers smaller than Mn. Let Π = lc(F ∗
1 ) · · · lc(F ∗

n). The
bitsize of Π at most nΛ and the number of prime divisors of Π is bounded by its bitsize.
Let t = a ·X a linear form that separates VC(I∗). We have that #VC(I∗) ̸= #VC(I∗p ) if and
only if the degree of gcd(Ea, E

′
a) changes after taking the reduction modulo p. Let (d′, τ ′)

the size of the polynomials. Then the number of such primes is Õ(d′τ ′) (Prop. 2.50). Thus,
here it is Õ(nM2n +M2n−1Λ) (Prop. 3.23).

3.5.3 Separating Linear Form: Las-Vegas algorithm

We present a Las-Vegas algorithm to compute a separating linear form for VC(I∗). The
algorithm chooses iteratively a random candidate separating linear form and a random
candidate lucky prime p. At every iteration, it computes the reduction modulo p of I∗ and
then the corresponding characteristic polynomial of the multiplication by the linear form
in Ap(I∗p ). The iterations stop when p is G-compatible and the characteristic polynomial
is square-free. Since I∗ is radical, if the computed characteristic polynomial is square-free,
then the chosen prime is lucky for the computation of an SLF and the chosen linear form is
separating for VC(I∗p ), and thus for VC(I∗) too. The algorithm is described in pseudocode
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in Alg. 2. It should be noted that, as in [BLM+15, Alg. 5’], we select the candidate lucky
prime from increasingly larger sets. This is in order to avoid computing an explicit upper
bound on the number of unlucky primes, which would be necessary to find an interval that
contains a number of primes that is a constant multiple of the number of unlucky primes.
The correctness of the algorithm is proven in detail in the lemma that follows.

Algorithm 2: Separating linear form - Las Vegas
Input: The radical ideal I∗
Output: Separating linear form t = a ·X for I∗

1 Π = lc(F ∗
1 ) · · · lc(F ∗

n)
2 B =M2n

3 repeat
4 B = 2B
5 Choose (a2, . . . , an) ∈ Zn−1 uniformly at random from the set {1, . . . ,M2n}n−1

6 Set a = (1, a2, . . . , an) and t = a ·X
7 Choose a prime p uniformly at random from the interval (M2n, B)
8 Compute I∗p , the reduction modulo p of I∗

9 Compute TrAp(I∗
p )(ti),TrAp(I∗

p )(Xjt
i) for i ∈ [D], j ∈ [n]

10 Solve the system (D − i)bi =
∑i−1

j=0 bi−jTr
Ap(I∗

p )(tj) , i = 0, . . . , D

11 Set fI∗
p ,a(T ) =

∑D
i=0 biT

i

12 until p ̸ |Π and fI∗
p ,a(T ) is squarefree;

13 return t = a ·X

Lemma 3.30 (Correctness). Algorithm 2 computes a separating linear form for I∗ of
bitsize in O(n logM).

Proof. First, we show that if the loop in the lines 3-12 terminates, the exit condition
guarantees that the prime p is lucky for the SLF computation; it is greater that Mn by
definition, it does not divide lc(F ∗

1 ), . . . , lc(F
∗
n) and the fact that fI∗

p ,a(T ) is squarefree of
degree D, means that #VC(I∗) = #VC(I∗p ) (Cor. 3.28). Also, fI∗

p ,a(T ) being squarefree of
degree D, means that the linear form t = a ·X is separating for VC(I∗p ). Then, it is also
separating for VC(I∗).

Moreover, there exist a and p such that the loop in the lines 3-12 terminates; a is
chosen from a set of M2n(n−1) elements and the directions such that two points in VC(I∗p )
overlap after projecting them are

(
Mn

2

)
∈ O(M2n). So, there exists a choice for a such that

t = a ·X is separating for VC(I∗p ). The set in which we choose a prime number increases
in every iteration. Therefore, we will be able to find a lucky prime.

Before computing the bit-complexity of Alg. 2, we need to find the expected number of
iterations of the loop in lines 3-12. Following [BLM+15, Lem. 31], we have the following.

Lemma 3.31. The expected number iterations of the loop in Algorithm 2 is in O(n log nMΛ).
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Proof. Let K be an upper bound on the number of unlucky primes which is in O(nM2n+

M2n−1Λ + nΛ) (Lem. 3.29). At every iteration, the algorithm chooses a prime number
from the interval (M2n, B), where B starts from 2M2n and doubles at each iteration. We
fix the value B with whom the algorithm terminates. At the last iteration, the algorithm
chooses a prime number from an interval containing the sub-interval (B/2, B), and thus
from a set of at least B/2

2 lnB/2 primes [vzGG13, Thm. 18.7].

Now, we consider two cases. In the first case, B/2
2 lnB/2 ≤ 2K. Then, since B doubles at

each iteration, the total number of iterations is at most log(B), which is in O(logK) =

O(n log nMΛ)

In the second case, B/2
2 lnB/2 > 2K. For the choice of a and p at the last iteration of the

loop, we have that:

Pr(p is lucky and a ·X is separating for VC(I∗)) =

Pr(p is lucky )︸ ︷︷ ︸
P1

·Pr(a ·X is separating for VC(I∗)|p is lucky )︸ ︷︷ ︸
P2

.

The probability P1 is ≥ 1
2 since p is chosen uniformly at random from a set containing

at least B/2
2 lnB/2 > 2K primes. For P2, we have that if p is lucky, therefore VC(I∗p ) has

the same cardinality as VC(I∗). There are O(Mn) roots and thus
(O(Mn)

2

)
∈ O(M2n)

directions such that two solutions overlap after projecting them onto the separating linear
form t. Since we choose a from a set of cardinality (2M2n)n−1, we have that

P2 ≥ 1− M2n

(2M2n)n−1
≥ 1

2
,

since n > 1. Thus, we exit the loop with probability ≥ 1/4 each time, i.e., the expected
number or iterations in this case is 4. So, in total we have that the expected number of
iterations is O(n log nMΛ).

The bit-complexity of Alg. 2 can be proven now.

Theorem 3.32. Given the radical ideal I∗, Algorithm 2 computes a separating linear form
for VC(I∗), which is of bitsize in O(n logM), by performing

ÕB(n2(n+ 2n)M2n + n2MΛ + n10)

bit-operations in expected case.

Proof. The correctness follows from Lem. 3.30 and the bitsize of t from the choice of a

(line 5). For the bit-complexity, we first consider one iteration of the loop in lines 3-12.
The random vector a can be chosen in OB(n2 logM), since each coordinate can be chosen
in OB(n logM) bit-operations. The interval (M2n, B) contains (B/2, B), so there are at
least B/2

2 lnB/2 primes in it [vzGG13, Thm. 18.7]. The probability that we choose a prime
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number is at least 1
4 lnB/2 , so the prime is found after O(4 lnB/2) iterations is the expected

case. Checking that a number p is prime is done in ÕB(log7.5B) [AKS02, Thm. 5.3]. So,
a prime number p is found in expected bit-complexity ÕB(log9B) and it has bitsize in
O(logB).

Computing the reduction modulo p of I∗, amounts to reducing modulo p the coefficients
of F ∗

1 , . . . , F
∗
n . The coefficients are O(nM) in total and each one has bitsize in Õ(M +Λ).

So, they are all reduced modulo p in ÕB(nM(M + Λ + logB)) bit-operations [vzGG13,
Thm. 9.8].

The rest of the computations inside the loop is done in ÕB((n + 2n)M2n logB) bit-
operations (Cor. 3.20). At the end of every iteration, we check if the computed character-
istic polynomial is square-free in ÕB(M2n logB). The divisibility test of Π by p is done in
ÕB(MΛ).

Thus, in every iteration, there are performed

ÕB((n+ 2n)M2n logB + nMΛ + log9B)

bit-operations in expected case. At the last iteration B = 2jM2n, with j ∈ O(n log nMΛ).
So, the expected bit-complexity of the last iteration is in

ÕB((n+ 2n)M2nn+ nMΛ + n9)

and the expected bit-complexity of all the iterations is in

ÕB((n+ 2n)M2nn2 + n2MΛ + n10) .

3.5.4 Computing an RUR

In this subsection, Algorithm 3 computes a RUR of I∗. First, a separating linear form for
VC(I∗) is found by employing the Las Vegas algorithm of the previous section. For the
rest, we use a multimodular approach. We first compute a set S of lucky primes whose
product ΠS is greater than the output coefficients. Then, we compute the RUR modulo
these primes and we lift the result to ZΠS using the Chinese Remainder Theorem. The last
step is to reconstruct the RUR to Q from the modular image in ZΠS . In the lemma that
follows we prove that the solution to the rational reconstruction from ZΠS to Q is indeed
the RUR of I∗.

Before proving the correctness of Alg. 3, we need the following general lemma.

Lemma 3.33. Let ideal I ⊂ Q[X1, . . . , Xn]. Given a linear form t = a ·X ∈ Q[X] and
Ea ∈ Q[T ] the characteristic polynomial of the multiplication matrix by t in Q[X]/I, we



3.5. COMPUTING WITH A UNIQUE FIELD EXTENSION 79

have that

fI,a,v(T ) gcd(Ea, E
′
a) =

D∑
i=0

Tr(vti)HD−i−1(T ) ,

where D is the degree of Ea and v ∈ {1, X1, . . . , Xn}.

Proof. Let Ea(T ) =
∑D

i=0 biT
i. Following the proof of [Rou99, Thm. 3.1], we have that

fI,a,v(T ) gcd(Ea, E
′
a)

fI,a(T ) gcd(Ea, E′
a)

=
∑
i≥0

Tr(vti)

T i+1
.

By multiplying both sides with fI,a(T ) gcd(Ea(T ), E
′
a(T )) = Ea(T ), and given that

fI,a,v(T ) gcd(Ea(T ), E
′
a(T )) is a polynomial, we conclude that

fI,a,v(T ) gcd(Ea(T ), E
′
a(T )) =

D−1∑
i=0

D−i−1∑
j=0

Tr(vti)bjT
D−i−j−1 =

D∑
i=0

Tr(vti)HD−i−1(T ) .

Algorithm 3: RUR - Las Vegas
Input: The radical ideal I∗
Output: A separating linear form t = a ·X for VC(I∗) and the RUR of I∗

associated to t

1 Π = lc(F ∗
1 ) · · · · · lc(F ∗

n)
2 Compute an SLF t = a ·X for VC(I∗) using Alg. 2
3 B = 2(Mn(n+ L(a)) + nMn−1(Λ + logM)) ∈ Õ(nMn + nMn−1Λ)
4 Compute a set S of 2B primes that are larger than M2n and that do not divide Π
5 Let ΠS be the product of all the primes in S
6 for p ∈ S do
7 Compute I∗p , the reduction modulo p of I∗

8 Compute TrAp(I∗
p )(ti),TrAp(I∗

p )(Xjt
i) for i ∈ [D], j ∈ [n]

9 Solve the system (D − i)bi =
∑i−1

j=0 bi−jTr
Ap(I∗

p )(tj) , i = 0, . . . , D

10 Set fI∗,a(T ) =
∑D

i=0 biT
i

11 Compute the Horner polynomials Hj(T ) =
∑j−i

i=0 biT
j−i associated to fI∗,a(T )

12 Set fI∗,a,v =
∑D

i=0Tr
Ap(I∗

p )(vti)HD−i−1(T ) for v ∈ {1, X1, . . . , Xn}
13 RURp ← {fI∗,a, fI∗,a,1, fI∗,a,X1 , . . . , fI∗,a,Xn}
14 end
15 Lift {RURp}p∈S to the RUR in ZΠS using the Chinese Remainder Theorem
16 Reconstruct the RUR {fI∗,a, fI∗,a,1, fI∗,a,X1 , . . . , fI∗,a,Xn} in Q from the RUR in

ZΠS

17 return t = a ·X, {fI∗,a, fI∗,a,1, fI∗,a,X1 , . . . , fI∗,a,Xn}
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Lemma 3.34 (Correctness). Algorithm 3 computes a RUR for I∗. The polynomials

fI∗,a, fI∗,a,1, fI∗,a,X1 , . . . , fI∗,a,Xn

have degrees at most Mn and bitsize in Õ(nMn + nMn−1Λ).

Proof. Correctness of line 2 comes from Lem. 3.30. Then B is a bound on the bitsize of
the RUR polynomials, as computed in the proof of Lem. 3.11. In line 4, the primes in S
are all lucky for the computation of the traces and of the characteristic polynomial, since
they are greater than Mn and they do not divide Π. We note that we chose the primes to
be greater than M2n so that the separating linear form remains the same for every p ∈ S.

Now, for a p ∈ S, the characteristic polynomial of the multiplication by t in Z/pZ[X],
is not necessarily squarefree, since p may not be lucky for the SLF. However, we set fI∗,a to
be the characteristic polynomial and not its squarefree part, in contrast to the RUR candi-
date computation (Alg. 1). Likewise, in the computation of fI∗,a,v we consider the Horner
polynomials associated to fI∗,a and not to the squarefree part of the characteristic polyno-
mial (line 10). So, the computed polynomials are all multiplied by gcd(fI∗,a(T ), f

′
I∗,a(T ))

(Lem. 3.33). This is to guarantee that the polynomials have the correct degree and that
{RURp}p∈S contains the images of the RUR modulo all the primes in S.

For the correctness of line 16, we have to ensure that there is a solution to the rational
number reconstruction problem of the coefficients of the RUR polynomials from their
modular images.

Let c a coefficient in ZΠS . We want to find r̃, t̃ ∈ Z such that for a k ∈ {1, . . . ,ΠS}, we
have that

gcd(t,ΠS) = 1 , rs−1 = c mod ΠS , |r| < k and 0 < s ≤ ΠS
k
, (3.23)

where s−1 is the inverse of s in ZΠS . From [vzGG13, Thm. 5.26] there is at most one
solution to the Eq. (3.23) with r < k/2. We will show that there is exactly one solution
to the Eq. (3.23) that is the inverse modular image of the corresponding coefficient in the
RUR.

Let r̃/s̃ ∈ Q be a coefficient of the RUR in Q, with gcd(r̃, s̃) = 1 and s̃ > 0. Since B
is an upper bound on the bitsize of the RUR coefficients, we have that |r̃|, s̃ ≤ 2B. Now,
ΠS is the product of 2B > 2 primes, so it is greater than 22B−1 · 22 = 22B+1. Then,
0 < s̃ < 2B < ΠS

2B+1 . We also have that gcd(s̃,ΠS) = 1, since ΠS is a product of lucky
primes for the RUR computation by its definition and thus the reduction of r̃s̃−1 mod ΠS

is well defined, i.e. s̃ ̸≡ 0 mod ΠS . So, for k = 2B+1 we have that r̃, s̃ is the unique
solution to the Eq. (3.23) with |r̃| < k/2.

Finally, Prop. 3.23 and Thm. 3.32 provide the bitsize of the RUR polynomials.
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Theorem 3.35. Given the radical ideal I∗, Algorithm 3 computes a separating linear form
t = a ·X for VC(I∗) such that the bitsize of a = (1, a2, . . . , an) is in O(n logM), and the
RUR for I∗ associated to t in

ÕB(n(n+ 2n)M3n−1(M + Λ) + n10)

bit-operations in the expected case. The polynomials

fI∗,a, fI∗,a,1, fI∗,a,X1 , . . . , fI∗,a,Xn

have degrees at most Mn and bitsize in Õ(nMn + nMn−1Λ).

Proof. Correctness comes from the previous lemma. For the bit-complexity analysis, the
SLF is computed in expected bit complexity ÕB(n2(n+2n)M2n+n2MΛ+n10) (Thm. 3.32).
Then, in line 4 we compute the first 2B + ⌈log Π⌉ primes that are larger than M2n in
ÕB(B + nΛ) [vzGG13, Thm. 18.10(ii)], since log Π ∈ O(nΛ). Among them, there are at
least 2B primes that do not divide Π, since its prime divisors are at most nΛ. We compute
the reduction of the primes modulo Π and we keep 2B of them that do not reduce to
zero. Since each prime has bitsize in O(logB) [vzGG13, Thm. 18.10(ii)], all the reductions
modulo Π can be done in ÕB(B) [vzGG13, Thm. 9.8]. Since all the primes in S have
bitsize in Õ(logB), the bitsize of ΠS is in ÕB(B).

In the loop, for all p ∈ S we compute the modular images of F ∗
1 , . . . , F

∗
n in ÕB(nM(M+

Λ + B)) bit-operations; the coefficients are O(nM) in total and each one has bitsize in
Õ(M +Λ). So, they are all reduced modulo all the primes p in ÕB(nM(M +Λ+ logΠS))

bit-operations [vzGG13, Thm. 9.8]. Then, the rest of the computations in the each iteration
of loop requires O((n+2n)M2n) arithmetic operations. Thus, the total cost of the loop is
ÕB((n+ 2n)M2nB) bit-operations.

Lifting {RURp}p∈S to ZΠS amounts in lifting every coefficient to ZΠS . There are
O(nMn) coefficients and each lifting costs ÕB(ΠS) = ÕB(B), thus in total ÕB(nMnB) bit-
operations. Then, the rational reconstruction of a coefficient in ZΠS is done in ÕB(ΠS) =

Õ(B) [WP03, Cor. 5.1]. In total this step costs ÕB(nMnB) bit-operations.
Since B ∈ Õ(nMn + nMn−1Λ) the result follows.

3.5.5 From multiple to simple field extension

In this subsection, we utilize the RUR of I∗ computed by Thm. 3.35, to transform the
system of Eq. (3.1) into a bivariate system in triangular form. Then, by decomposing
the latter bivariate system into regular triangular systems, we can deduce the number of
distinct roots of Fx for every x ∈ VC(I). Knowing this number, we can then isolate the
roots of the system of Eq. (3.1) as described in the proof of Thm. 3.7(i).

Let {fI∗,a, fI∗,a,1, fI∗,a,X1 , . . . , fI∗,a,Xn} be the RUR of I∗ associated to the separating



82 CHAPTER 2

linear form t = a ·X. We plug-in of the RUR in the system of Eq. (3.1), and then we have
the bivariate system

fI∗,a(T ) = 0 ,

F̃ (T, Y ) := fI∗,1(T )
dF

(
fI∗,a,X1(T )

fI∗,1(T )
, . . . ,

fI∗,a,Xn(T )

fI∗,1(T )
, Y

)
= 0 .

(3.24)

In order to compute this, we employ the Las Vegas algorithm of [HL21, Cor. 3.6] for
multivariate modular composition. This has expected complexity in

ÕB(max(d,M)(1+ε)n(ndMn + ndMn−1Λ + τ)) , (3.25)

for any ε > 0, since the output bitsize is Õ(ndMn + ndMn−1Λ + τ).

We now demonstrate the procedure to determine the number of distinct roots of F̃ (t, Y )

for every t ∈ VC(fI∗,a) following [DDR+22]. We write F̃ (T, Y ) =
∑d

ℓ=0 f̃ℓ(T )Y
ℓ. We

denote by F̃ ℓ(T, Y ) the truncation of F̃ , containing only the terms of degree ≤ ℓ with
respect to Y , for ℓ = 0, . . . , d. First, we compute the polynomials Rℓ ∈ Q[T ], ℓ = 0, . . . , d,
such that

F̃ (t, Y ) = F̃ ℓ(t, Y )⇔ Rℓ(t) = 0 .

They are defined as follows:

R≤d(T ) :=fI∗,a(T ) ,

R≤ℓ−1(T ) := gcd(R≤ℓ(T ), f̃ℓ(T )) for ℓ = 1, . . . d and

Rℓ−1(T ) :=
R≤ℓ(T )

R≤ℓ−1(T )
.

Therefore, we can decompose the system of Eq. (3.24) into the regular systems

Rℓ(T ) = 0 ,

F̃ ℓ(T, Y ) = 0 ,

for ℓ = 1, . . . , d. Then, for every ℓ, we compute the principal subresultant coefficients of
F̃ ℓ(T, Y ) and ∂F̃ ℓ

∂Y (T, Y ), which we denote by rℓ,k(T ), k = 0, . . . , ℓ. We define the following
polynomials in Q[T ]:

∆ℓ
≥0(T ) :=Rℓ(T ) ,

∆ℓ
≥k+1(T ) := gcd(∆ℓ

≥k(T ), rℓ,k(T )) for k = 0, . . . ℓ− 1 and

∆ℓ
k(T ) :=

∆ℓ
≥k(T )

∆ℓ
≥k+1(T )

.
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We have that

degY (gcd(F̃
ℓ(t, Y ),

∂F̃ ℓ

∂Y
(t, Y ))) = k ⇔ ∆ℓ

k(t) = 0 ,

meaning that degY (F̃ (t, Y )) = ℓ and F̃ ℓ(t, Y ) has d − k distinct roots in C if and only if
∆ℓ
k(t) = 0. We also have that

fI∗,a(T ) = cont(fI∗,a)
∏
ℓ,k

∆ℓ
k(T ) .

Using this decomposition, we can then find the number of distinct roots of F̃ (t, Y ) for
every t ∈ VC(fI,a). In the lemma that follows we analyse the bit-complexity.

Lemma 3.36. For every t ∈ VC(fI∗,a), we determine the number of distinct roots of
F̃ (t, Y ) in expected bit-complexity

ÕB(nd6M2n + nd6M2n−1Λ + d5Mnτ) ,

with a Las Vegas algorithm.

Proof. To compute all the polynomials R≤ℓ−1 we need to perform d gcd computations.
The polynomials f̃ℓ have bitsize in Õ(ndMn+ndMn−1Λ+ τ) and degree O(dMn). So, we
do the gcd computations in an expected complexity ÕB(nd2M2n + nd2M2n−1Λ + dMnτ)

[KRTZ20a, Lem.2.2]. Then, to compute Rℓ−1(T ) we perform exact divisions of R≤ℓ(T )

with R≤ℓ−1(T ). These polynomials have bitsize in Õ(nMn+nMn−1Λ) and degree at most
Mn, so this is done for all ℓ in ÕB(nM2n + nM2n−1Λ) [vzGG13, Ex.10.21].

Now, we take ℓ = d. We have that F̃ d(T, Y ) is of degree d in Y , of degree O(dMn) in
T , and of bitsize in Õ(ndMn+ndMn−1Λ+τ). The degree of rd,k(T ) is in O(d2Mn) and its
bitsize is in Õ(nd2Mn+nd2Mn−1Λ+dτ); they are computed for all k in ÕB(d4Mn(ndMn+

ndMn−1Λ+τ)) [LPR17, Lem.4]. In order to compute ∆d
≥k(T ) for all k, we need to perform

d gcd computations. We do so in an expected complexity ÕB(nd5M2n + nd5M2n−1Λ +

d4Mnτ) [KRTZ20a, Lem.2.2]. In the end, to compute ∆d
k(T ) we perform exact divisions

of ∆d
≥k(T ) with ∆≥k+1(T ). This is done again for all k in ÕB(nd5M2n + nd5M2n−1Λ +

d4Mnτ)[vzGG13, Ex.10.21]. We multiply the latter bound by d conclude.

In the next theorem, we put together the previous results to prove the bit-complexity
of a Las-Vegas algorithm to isolate the roots of the system in Eq. (3.1).

Theorem 3.37. There is a Las Vegas algorithm that computes isolating discs for all the
roots of the system in Eq. (3.1), together with the corresponding multiplicities in expected
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complexity

ÕB
(
n(n+ 2n)M3n−1(M + Λ) + n10 + nd6M2n + nd6M2n−1Λ + d5Mnτ+

nMn+1d(n+ τ) + nMnd2(nΛ + dn(n+ τ + d+ Λ)) + n2dn+3Mn−1Λ
)
.

Proof. The proof essentially follows from the combination of Thm. 3.35 for the RUR com-
putation, the cost of computing the system of Eq. (3.24), which is given in Eq. (3.25),
Lem. 3.36 for the complexity to determine the number of distinct roots, and from Thm. 3.7(i)
for the root isolation. Note that there always exists a choice of ε > 0 so that the bit-
complexity in Eq. (3.25) gets dominated. Also, we have to add another step that finds the
correspondence of each x ∈ VC(I∗) with a root of fI∗,a. This can be done by evaluating the
separating linear form a ·X at suitable approximations x̃ of every x ∈ VC(I∗), so that a · x̃
belongs to the isolating interval of the root a ·x of fI∗,a. To perform these evaluations, we
work as in the proof of Lem. 3.14, where we employ Prop. 3.1 for L ∈ Õ(nM2n+nM2n−1Λ).
This costs ÕB(n2M3n + n2M3n−1Λ), since the polynomial that we evaluate is now linear
and has bitsize in Õ(n). So, the bit-complexity of this operation does not overcome the
total one, which is

ÕB
(
n(n+ 2n)M3n−1(M + Λ) + n10 + nd6M2n + nd6M2n−1Λ + d5Mnτ+

nMn+1d(n+ τ + d) + nMnd2(nΛ + dn(n+ τ + d+ Λ)) + n2dn+3Mn−1Λ
)
.

After a simplification, we arrive to the desired bound.

Remark 3.38. When M = d and Λ = τ , the bit-complexity bound of the previous theorem
becomes

ÕB
(
n(n+ 2n)d3n−1(d+ τ) + nd2n+5(d+ τ) + n10

)
,

which simplifies toÕB
(
n(n+ 2n)d3n−1(d+ τ) + n10

)
when n ≥ 6 ,

ÕB
(
d2n+5(d+ τ)

)
otherwise.

3.6 Application: Sum Of Square roots of integers problem

We consider the problem of determining the minimum non-zero difference between two
sums of square roots of integers. It appears as Problem 33 in ‘The Open Problems Project’
and was originally addressed by Joseph O’Rouke [DMO33].

Let ai, bi ∈ Z≥0 for i = 1, . . . , n of bitsize τ . We want to decide if
∑n

i=1

√
ai is less than,

equal to, or greater than
∑n

i=1

√
bi. This problem is also related to the Euclidean Travel

Salesman Problem (TSP): Given a set of points in the plane with integer coordinates and



3.6. APPLICATION: SUM OF SQUARE ROOTS OF INTEGERS PROBLEM 85

L ∈ N, decide if there exists a circuit passing through all these points and having total
length (with respect to the Euclidean distance) at most L. The length of the path is a
sum of square-roots of integers.

Comparing
∑n

i=1

√
ai with

∑n
i=1

√
bi in the real-RAM model, can be done trivially.

However, in the bit-complexity setting, one has to determine the number of bits that is
sufficient to obtain a correct result. We by r(n, τ) denote the minimum positive value of∣∣∑n

i=1

√
ai−

∑n
i=1

√
bi
∣∣ . Lower bounds on r(n, τ), and in turn upper bounds on− log r(n, τ),

give upper bounds on the precision needed to compare
∑n

i=1

√
ai with

∑n
i=1

√
bi. In

particular, if − log r(n, τ) is bounded above by a polynomial in k and n, then the sign
of
∑n

i=1

√
ai −

∑n
i=1

√
bi can be computed in polynomial time. Nevertheless, existing

upper bounds on − log r(n, τ) are exponential. In [BFMS00, MS00] they prove that
− log r(n, τ) ∈ Õ(τ22n), through studying separation bounds.

Here, we apply the results of Sec. 3.3 to derive bounds that, however, remain exponen-
tial in n. Nonetheless, the same bounds apply to the sum of all the roots of the associated
system that has as root the two quantities that we have to compare. We consider the
system 

Fi(Xi) := X2
i − ai = 0 , i ∈ [n]

Gi(Yi) := Y 2
i − bi = 0 , i ∈ [n]

H(X,Y, Z) := (Z −X1 − · · · −Xn)(Z − Y1 − · · · − Yn) = 0


Let K = ⟨F1, . . . , Fn, G1, . . . , Gn⟩. From Cor.3.6 we have that∑

(x,y)∈VC(K)

µK(x,y)lsep(H(x,y, ·)) ∈ Õ(n22nτ) ,

or equivalently, since all the multiplicities are equal to one,

∑
(x,y)∈VC(K)

∣∣ log ∣∣ n∑
i=1

xi −
n∑
i=1

yi
∣∣ ∣∣ ∈ Õ(n22nτ) . (3.26)

We see that, as Eq. (3.26) shows, not only − log r(n, τ) is in Õ(nτ22n), but also the sum of
the differences associated to all the 22n roots of the system {F1 = · · · = Fn = G1 = · · · =
Gn = 0}.
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Chapter 4

Topology of Parametric Curves

We consider the problem of computing the topology and describing the geometry of a
parametric curve in Rn. We present an algorithm, PTOPO, that constructs an abstract
graph that is isotopic to the curve in the embedding space. Our method exploits the
benefits of the parametric representation and does not resort to implicitization.

Most importantly, we perform all computations in the parameter space and not in
the implicit space. When the parametrization involves polynomials of degree at most d
and maximum bitsize of coefficients τ , then the worst case bit complexity of PTOPO is
ÕB(nd6 + nd5τ + d4(n2 + nτ) + d3(n2τ + n3) + n3d2τ). This bound matches the current
record bound ÕB(d6+d5τ) for the problem of computing the topology of a plane algebraic
curve given in implicit form. For plane and space curves, if N = max{d, τ}, the complexity
of PTOPO becomes ÕB(N6), which improves the state-of-the-art result, due to Alcázar and
Díaz-Toca [ADT10], by a factor of N10. In the same time complexity, we obtain a graph
whose straight-line embedding is isotopic to the curve. For curves of general dimension, we
can also distinguish between ordinary and non-ordinary real singularities and determine
their multiplicities in the same expected complexity of PTOPO by employing the algorithm
of Blasco and Pérez-Díaz [BPD19]. We have implemented PTOPO in maple for the case of
plane and space curves. Our experiments illustrate its practical nature.

4.1 Introduction

Parametric curves constitute a classical and important topic in computational algebra
and geometry [SW99] that constantly receives attention, e.g., [Sed86a, CKPU11, BLY19,
SWPD08]. The motivation behind the continuous interest in efficient algorithms for com-
puting with parametric curves emanates, among others reasons, by the frequent presence
of parametric representations in computer modeling and computer aided geometric de-
sign, e.g., [FGS10].

We focus on computing the topology of a real parametric curve, that is, the computation

87
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of an abstract graph that is isotopic [BT06, p. 184] to the curve in the embedding space.
We design an algorithm, PTOPO, that applies directly to rational parametric curves of any
dimension and is complete, in the sense that there are no assumptions on the input. We
consider different characteristics of the parametrization, like properness and normality,
before computing the singularities and other interesting points on the curve. These points
are necessary for representing the geometry of the curve, as well as for producing a certified
visualization of plane and space curves.

Previous work. A common strategy when dealing with parametric curves is implicit-
ization. There has been a lot of research effort, e.g., [SC95, BLY19] and the references
therein, in designing algorithms to compute the implicit equations describing the curve.
However, it is also important to manipulate parametric curves directly, without converting
them to implicit form. For example, in the parametric form it is easier to visualize the
curve and to find points on it. The advantages of the latter become more significant for
curves of high dimension.

The study of the topology of a real parametric curve is a topic that has not received
much attention in the literature, in contrast to its implicit counterpart [DDR+22, KS15].
The computation of the topology requires special treatment, since for instance it is not
always easy to choose a parameter interval such that when we plot the curve over it, we
include all the important topological features (like singular and extreme points) [ADT10].
Moreover, while visualizing the curve using symbolic computational tools, the problem of
missing points and branches may arise [AR07, Sen02]. [ADT10] study the topology of real
parametric curves without implicitizing. They work directly with the parametrization and
address both plane and space real rational curves. Our algorithm to compute the topology
is to be juxtaposed to their work. We also refer to [CFGVN14] and [AMW08] for other
approaches based on computations by values and subdivision, respectively.

To compute the topology of a curve it is essential to detect its singularities. This is an
important and well studied problem [ADT10, RSV09, KS15] of independent interest. To
identify the singularities, we can first compute the implicit representation and then apply
classical approaches [Wal78, Ful69]. Alternatively, we can compute the singularities using
directly the parametrization. For instance, there are necessary and sufficient conditions to
identify cusps and inflection points using determinants, e.g., [LC97, MC92].

On computing the singularities of a parametric curve, a line of work related to our ap-
proach, does so by means of a univariate resultant [AB89, vdEY97, Par02, PD07, GRS02].
We can use the Taylor resultant [AB89] and the D-resultant [vdEY97] of two polynomials
in K[t], to find singularities of plane curves parametrized by polynomials, where K is a
field of characteristic zero in the first case and of arbitrary characteristic in the latter,
without resorting to the implicit form. Park [Par02] extends previous results to curves
parametrized by polynomials in affine n-space. The generalization of the D-resultant for a
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pair of rational functions and its application to the study of rational plane curves, is due to
[GRS02]. In [PD07, BPD19] they present a method for computing the singularities of plane
curves using a univariate resultant and characterizing the singularities using its factoriza-
tion. Notably, Rubio et al. [RSV09] work on rational parametric curves in affine n-space;
they use generalized resultants to find the parameters of the singular points. Moreover,
they characterize the singularities and compute their multiplicities.

Cox et al. [CKPU11] use the syzygies of the ideal generated by the polynomials that
give the parametrization to compute the singularities and their structure. There are state-
of-the-art approaches that exploit this idea and relate the problem of computing the singu-
larities with the notion of the µ-basis of the parametrization, e.g., [JSC18] and references
therein. In [CS01a], they reveal the connection between the implicitization Bézout ma-
trix and the singularities of a parametric curve. Busé and D’Andrea [BD12] present a
complete factorization of the invariant factors of resultant matrices built from birational
parametrizations of rational plane curves in terms of the singular points of the curve and
their multiplicity graph. Let us also mention the important work on matrix methods
[Bus14, BLB10] for representing the implicit form of parametric curves, that is suitable
for numerical computations. In [BGI16], the authors use the projection from the rational
normal curve to the curve and exploit secant varieties.

Overview of our approach and our contributions. We introduce PTOPO, a complete,
exact, and efficient algorithm (Alg. 6) for computing the geometric properties and the
topology of rational parametric curves in Rn. Unlike other algorithms, e.g. [ADT10], it
makes no assumptions on the input curves, such as the absence of axis-parallel asymptotes,
and is applicable to any dimension. Nevertheless, it does not identify knots for space curves
nor it can be used for determining the equivalence of two knots.

If the (proper) parametrization of the curve consists of polynomials of degree d and
bitsize τ , then PTOPO outputs a graph isotopic [BT06, p.184], [ACDT20] to the curve in
the embedding space, by performing

ÕB(nd6 + nd5τ + d4(n2 + nτ) + d3(n2τ + n3) + n3d2τ)

bit operations in the worst case (Thm. 4.24), assuming no singularities at infinity. We also
provide a Las Vegas variant with expected complexity

ÕB(d6 + d5(n+ τ) + d4(n2 + nτ) + d3(n2τ + n3) + n3d2τ).

If n = O(1), the bounds become ÕB(N6), where N = max{d, τ}. The vertices of the out-
put graph correspond to special points on the curve, in whose neighborhood the topology
is not trivial, given by their parameter values. Each edge of the graph is associated with
two parameter values and corresponds to a unique smooth parametric arc. For an embed-
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ding isotopic to the curve, we map every edge of the abstract graph to the corresponding
parametric arc.

For plane and space curves, our bound improves the previously known bound due to
[ADT10] by a factor of ÕB(N10). The latter algorithm [ADT10] performs some computa-
tions in the implicit space. On the contrary, PTOPO is a fundamentally different approach
since we work exclusively in the parameter space and we do not use a sweep-line algorithm
to construct the isotopic graph. We handle only the parameters that give important points
on the curve, and thus, we avoid performing operations such as univariate root isolation
in a field extension or evaluation of a polynomial at an algebraic number.

Computing singular points is an essential part of PTOPO (Lem. 4.18). We chose not to
exploit recent methods, e.g., [BPD19], for this task because this would require introducing
new variables (to employ the T-resultant). We employ older techniques, e.g., [RSV09,
PD07, ADT10], that rely on a bivariate polynomial system, Eq. (4.2). We take advantage
of this system’s symmetry and of nearly optimal algorithms for bivariate system solving
and for computations with real algebraic numbers [DDR+22, BLM+16, DET09, PT17]. In
particular, we introduce an algorithm for isolating the roots of over-determined bivariate
polynomial systems by exploiting the Rational Univariate Representation (RUR) [BLPR15,
BLM+16, BLPR13] that has worst case and expected bit complexity that matches the
bounds for square systems (Thm. 4.16). These are key steps for obtaining the complexity
bounds of Thm. 4.23 and Thm. 4.24.

Moreover, our bound matches the current state-of-the-art complexity bound, ÕB(d6 +
d5τ) or ÕB(N6), for computing the topology of implicit plane curves [DDR+22, KS15].
However, if we want to visualize the graph in 2D or 3D, then we have to compute a
characteristic box (Lem. 4.20) that contains all the the topological features of the curve
and the intersections of the curve with its boundary. This can be done in the same bit-
complexity (Thm. 4.23).

A preprocessing step of PTOPO consists of finding a proper reparametrization of the
curve (if it is not proper). We present explicit bit complexity bounds (Lem. 4.6) for the
algorithm of [PD06] to compute a proper parametrization. Another preprocessing step is
to ensure that there are no singularities at infinity. Lem. 4.7 handles this task and provides
explicit complexity estimates.

Additionally, we consider the case where the embedding of the abstract graph has
straight line edges and not parametric arcs; in particular for plane curves, we show that
the straight line embedding of the abstract graph in R2 is already isotopic to the curve
(Cor. 4.26). For space curves, the procedure supported by Thm. 4.28 adds a few extra
vertices to the abstract graph, so that the straight line embedding in R3 is isotopic to
the curve. The extra number of vertices serves in resolving situations where self-crossings
occur when continuously deforming the graph to the curve. In Thm. 4.29 we also prove that
for curves of any dimension, we can compute the multiplicities and the characterization
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of singular points in the same bit-complexity as computing the points (in a Las Vegas
setting). For that, we use the method by [BPD19], which does not require any further
computations apart from solving the system that gives the parameters of the singular
points (cf. [ADT10]).

Last but not least, we provide a certified implementation1 of PTOPO in maple. The
implementation computes the topology of plane and space curves and visualizes them. If
the input consists of rational polynomials, our algorithm and the implementation is certi-
fied, since, first of all, the algorithm always outputs the correct geometric and topological
result. This is because we perform exact computations with real algebraic numbers based
on arithmetic over the rationals. Moreover, no assumption that cannot be verified (for
example by another algorithm) is made on the input.

Outline. The next section presents some useful results needed for our proofs. In Sec. 4.3
we give the basic background on rational curves in affine n-space. We characterize the
parametrization by means of injectivity and surjectivity and describe a reparametrization
algorithm. In Sec. 4.4 we present the algorithm to compute the singular, extreme points
(in the coordinate directions), and isolated points on the curve. In Sec. 4.5 we describe
our main algorithm, PTOPO, that constructs a graph isotopic to the curve in the embedding
space and its complexity. In Sec. 4.6 we expatiate on the isotopic embedding for plane
and space curves. In Sec. 4.7, we study the multiplicities and the character of real sin-
gular points for curves of arbitrary dimension. Finally, in Sec. 4.8 we give examples and
experimental results.

4.2 Algebraic tools

We present some useful results, needed for our analysis.

Lemma 4.1. Let A =
∑m

i=0 aiX
i, B =

∑n
i=0 biX

i ∈ Z[X] of degrees m and n and of bit-
sizes τ and σ respectively. Let α1, . . . , αm be the complex roots of A, counting multiplicities.
Then, for any κ = 1, . . . ,m it holds that

2−mσ−nτ−(m+n) log(m+n) < |B(ακ)| < 2mσ+nτ+(m+n) log(m+n).

Proof. Following [ST19], let R = resX(A(X), Y − B(X)) ∈ Z[Y ]. Using the Poisson’s
formula for the resultant we can write R(Y ) = anm

∏m
κ=1(Y − B(ακ)). The maximum

bitsize of the coefficients of R(Y ) is at most mσ + nτ + (m + n) log(m + n). We observe
that the roots of R(Y ) are B(ακ) for κ = 1, . . . ,m. Therefore, using Cauchy’s bound we

1https://gitlab.inria.fr/ckatsama/ptopo

https://gitlab.inria.fr/ckatsama/ptopo
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deduce that

2−mσ−nτ−(m+n) log(m+n) < |B(ακ)| < 2mσ+nτ+(m+n) log(m+n).

Lemmata 4.2 and 4.3 restate known results on the gcd computation of various univari-
ate and bivariate polynomials.

Lemma 4.2. Let f1(X), . . . , fn(X) ∈ Z[X] of sizes (d, τ). We can compute their gcd,
which is of size (d, Õ(d + τ)), in worst case complexity ÕB(n(d3 + d2τ)), with a Monte
Carlo algorithm in ÕB(d2 + dτ), or with a Las Vegas algorithm in ÕB(n(d2 + dτ)).

Proof. These are known results [vzGG13]. We repeat the arguments adapted to our nota-
tion.

Worst case: We compute g by performing n consecutive gcd computations, that is

gcd(f1, gcd(f2, gcd(· · · , gcd(fn−1, fn))).

Since each gcd computation costs ÕB(d3 + d2τ) [BLPR15, Lem.4], the result for this case
follows.

Monte Carlo: We perform one gcd computation by allowing randomization. If we
choose integers a3, . . . , an independently at random from the set {1, . . . ,Kd}, where K =

O(1), we get that gcd(f1, . . . , fn) = gcd(f1, f2+a3f3+· · ·+anfn) in Z[x], with probability≥
1/2 [vzGG13, Thm. 6.46]. This actually computes the monic gcd in Q. To compute the gcd
in Z we need to multiply with the gcd of the leading coefficients of f1, f2+a3f3+ · · ·+anfn
and then take the primitive part of the resulting polynomial. This is sufficient since the
leading coefficient of the gcd in Z[X] divides the leading coefficients of the two polynomials.
Also, by [vzGG13, Cor. 6.10] the monic gcd of two polynomials in Q[X] is equal to their
gcd in Z[X] divided by their leading coefficient. The gcd of the two leading coefficients of
f1, f2 + a3f3 + · · ·+ anfn is an integer of bitsize Õ(τ), therefore this does not pollute the
total complexity.

We compute g∗ = gcd(f1, f2 + a3f3 + · · · + anfn). Notice that the polynomial f2 +
a3f3+ · · ·+ anfn is asymptotically of size (d, τ). So, it takes ÕB(d2+ dτ) to find g∗, using
the probabilistic algorithm in [Sch88].

Las Vegas: We can reduce the probability of failure in the Monte Carlo variant of the
gcd computation to zero, by performing n exact divisions. In particular, we check if g∗

divides f3, . . . , fn. Using [vzGG13, Ex.10.21], the bit complexity of these operations is in
total ÕB(n(d2 + dτ)).

Lemma 4.3. Let f1(X,Y ), . . . , fn(X,Y ) ∈ Z[X,Y ] of bidegrees (d, d) and L(fi) = τ . We
can compute their gcd, which is of bitsize Õ(d + τ), in worst case complexity ÕB(n(d5 +



4.3. RATIONAL CURVES 93

d4τ)), with a Monte Carlo algorithm in ÕB(d3 + d2τ), or with a Las Vegas algorithm in
ÕB(n(d3 + d2τ)).

Proof. The straightforward approach is to perform n consecutive gcd computations, that
is

gcd(f1, gcd(f2, gcd(· · · , gcd(fn−1, fn))).

To accelerate the practical complexity we sort fi in increasing order with respect to their
degree. Each gcd computation costs ÕB(d5 + d4τ) [BLM+16, Lem. 5], so the total worst
case cost is ÕB(nd5 + nd4τ).

Alternatively, we consider the operation gcd(f1,
∑n

k=2 akfk), where ak are random in-
tegers, following [vzGG13, Thm. 6.46]. The expected cost of this gcd is ÕB(d3 + d2τ).
To see this, notice that we can perform a bivariate gcd in expected time Õ(d2) [vzGG13,
Cor. 11.12], over a finite field with enough elements, and the bitsize of the result is Õ(d+τ)
[Mah62].

Then, for a Las Vegas algorithm, using exact division, we test if the resulting polynomial
divides all fi, for 2 ≤ i ≤ n. This costs ÕB(n(d3 + d2τ)), by adapting [vzGG13, Ex.10.21]
to the bivariate case.

4.3 Rational curves

Following [ADT10] closely, we introduce basic notions for rational curves. Let C̃ be an
algebraic curve over Cn, parametrized by the map

ϕ : C 99K C̃

t 7→
(
ϕ1(t), . . . , ϕn(t)

)
=
(p1(t)
q1(t)

, . . . ,
pn(t)

qn(t)

)
, (4.1)

where pi, qi ∈ Z[t] are of size (d, τ) for i ∈ [n], and C̃ is the Zariski closure of Im(ϕ). We
call ϕ(t) a parametrization of C̃.

We study the real trace of C̃, that is C := C̃ ∩Rn. A parametrization ϕ is chatacterized
by means of properness (Sec. 4.3.1) and normality (Sec. 4.3.2). To ensure these properties,
one can reparametrize the curve, i.e., apply a rational change of parameter to the given
parametrization. We refer to [SWPD08, Ch. 6] for more details on reparametrization.

Without loss of generality, we assume that no coordinate of the parametrization ϕ is
constant; otherwise we could embed C̃ in a lower dimensional space. We consider that ϕ is
in reduced form, i.e., gcd(pi(t), qi(t)) = 1, for all i ∈ [n]. The point at infinity, p∞, is the
point on C we obtain for t → ±∞ (if it exists). For a parametrization ϕ, we consider the
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following system of bivariate polynomials:

hi(s, t) =
pi(s)qi(t)− qi(s)pi(t)

s− t
, for i ∈ [n]. (4.2)

Remark 4.4. For every i ∈ [n] hi(s, t) is a polynomial since (s, s) is a root of the numerator
for every s. Also, hi(t, t) = ϕ′i(t)q

2
i (t) [GRY02, Lem. 1.7].

4.3.1 Proper parametrization

A parametrization is proper if ϕ(t) is injective for almost all points on C̃. In other words,
almost every point on C̃ is the image of exactly one parameter value (real or complex).
For other equivalent definitions of properness, we refer the reader to [SWPD08, Ch. 4],
[RSV09]. As stated in [ADT10, Thm. 1], a parametrization is proper if and only if
deg(gcd(h1(s, t), . . . , hn(s, t))) = 0. This leads to an algorithm for checking properness.
By applying Lem. 4.3 we get the following:

Lemma 4.5. There is an algorithm that checks if a parametrization ϕ is proper in worst-
case bit complexity ÕB(n(d5 + d4τ)) and in expected bit complexity ÕB(n(d3 + d2τ)).

Proof. We construct the polynomials hi(s, t) for all i ∈ [n] in OB(nd2τ). Then, we need
to check if deg(gcd(h1(s, t), . . . , hn(s, t))) = 0 [ADT10, Thm. 1]. For the gcd computation,
we employ Lem. 4.3 and the result follows.

If ϕ is a not a proper parametrization, then there always exists a parametrization
ψ ∈ Z(t)n and R(t) ∈ Z(t) such that ψ(R(t)) = ϕ(t) and ψ is proper [SWPD08, Thm. 7.6].
There are various algorithms for obtaining a proper parametrization, e.g., [Sed86a, GRS02,
SWPD08, PD06, GC92]. We consider the algorithm in [PD06] for its simplicity; its pseudo-
code is in Alg. 4.

Lemma 4.6. Consider a non-proper parametrization of a curve C, consisting of univari-
ate polynomials of size (d, τ). Alg. 4 computes a proper parametrization of C, involving
polynomials of degree at most d and bitsize O(d2 + dτ), in ÕB(n(d5 + d4τ)), in the worst
case.

Proof. The correctness of the algorithm is proved in [PD06]. We analyze its complexity.
The algorithm first computes the bivariate polynomials Hi(s, t) = pi(s)qi(t) − pi(t)qi(s)
for i = 1, . . . , n. They have bi-degree at most (d, d) and bitsize at most 2τ + 1. Then, we
compute their gcd, which we denote by H, in ÕB(n(d5+d4τ)) (Lem. 4.3). By [Mah62] and
[BPR06, Prop. 10.12] we have that L(H) = O(d+τ). If we writeH = Cm(t)s

m+· · ·+C0(t),
it also holds that L(Cj) = O(d+ τ), j = 1, . . . ,m.

If the degree of H is one, then the parametrization is already proper and we have
nothing to do. Otherwise, we consider H as a univariate polynomial in s and we find two
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Algorithm 4: Make_Proper(ϕ)
Input: A parametrization ϕ ∈ Z(t)n as in Eq. (4.1)
Output: A proper parametrization ψ = (ψ1, . . . , ψn) ∈ Z(t)n

1 for i ∈ [n] do Hi(s, t)← pi(s)qi(t)− pi(t)qi(s) ∈ Z[s, t] ;
2 H ← gcd(H1, . . . ,Hn) = Cm(t)s

m + · · ·+ C0(t) ∈ (Z[t])[s]
3 if m = 1 then return ϕ(t) ;
4 Find k, l ∈ [m] such that:

deg(gcd(Ck(t), Cl(t))) = 0 and Ck(t)
Cl(t)

̸∈ Q
5 R(t)← Ck(t)

Cl(t)

6 r ← deg(R) = max{deg(Ck), deg(Cl)}
7 G← sCl(t)− Ck(t)
8 for i ∈ [n] do
9 Fi ← xqi(t)− pi(t)

10 Li(s, x)← rest(Fi(t, x), G(t, s)) = (q̃i(s)x− p̃i(s))r
11 end
12 return ψ(t) =

( p̃1(t)
q̃1(t)

, . . . , p̃n(t)q̃n(t)

)

of its coefficients that are relatively prime, using exact division. The complexity of this
operation is m2 × ÕB(d2 + dτ) = ÕB(d4 + d3τ) [vzGG13, Ex. 10.21].

Subsequently, we perform n resultant computations to get L1, . . . Ln, as defined in
Alg. 4. From these we obtain the rational functions of the new parametrization. We focus
on the computation of L1. The same arguments hold for all Li. The bi-degree of L1(s, x) is
(d, d) [BPR06, Prop. 8.49] and L(L1) = O(d2+dτ) [BPR06, Prop. 8.50]; the latter dictates
the bitsize of the new parametrization.

To compute L1, we consider F1 and G as univariate polynomials in t and we apply
a fast algorithm for computing the univariate resultant based on subresultants [LR01]; it
performs Õ(d) operations. Each operation consists of multiplying bivariate polynomials of
bi-degree (d, d) and bitsize O(d2+dτ) so it costs ÕB(d4+d3τ). We compute the resultant
in ÕB(d5 + d4τ). We multiply the latter bound by n to conclude the proof.

4.3.2 Normal parametrization

Normality of the parametrization concerns the surjectivity of the map ϕ. The parametriza-
tion ϕ(t) is R-normal if for all points p on C there exists t0 ∈ R such that ϕ(t0) = p. When
the parametrization is not R-normal, the points that are not in the image of ϕ for t ∈ R
are p∞ (if it exists) and the isolated points that we obtain for complex values of t [AR07,
Prop. 4.2]. An R-normal reparametrization does not always exist. We refer to [SWPD08,
Sec. 7.3] for further details. However, if p∞ exists, then we reparametrize the curve to
avoid possible singularities at infinity. The point p∞ exists if deg(pi) ≤ deg(qi), for all
i ∈ [n].
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Lemma 4.7. If p∞ exists, then we can reparametrize the curve using a linear rational
function to ensure that p∞ is not a singular point, using a Las Vegas algorithm in expected
time ÕB(n(d2 + dτ)). The new parametrization involves polynomials of size (d, Õ(d+ τ)).

Proof. The point at infinity depends on the parametrization. So, for this proof, let us
denote the point at infinity of ϕ by pϕ∞. This point is obtained for t→∞.

The reparametrization consists of choosing t0 ∈ R and applying the map r : t 7→ t0 t+1
t−t0

to ϕ, to obtain a new parametrization, ψ = ϕ ◦ r. The point at infinity of the new
parametrization is pψ∞ = ϕ(t0). We need to ensure that pψ∞ = ϕ(t0) is not singular. There
are ≤ d2 singular points, so we choose t0 uniformly at random from the set {1, . . . ,Kd2}
where K ≥ 2. Then, with probability ≥ 1/2, ϕ(t0) is not singular and pψ∞ is also not
singular. The bound on the possible values of t0 implies that the bitsize of t0 is O(lg(d)).

We compute the new parametrization, ψ, in ÕB(n(d2+dτ)) using multipoint evaluation
and interpolation, by exploiting the fact that the polynomials in ψ have degrees at most d
and bitsize Õ(d+ τ).

For a Las Vegas algorithm we need to check if ϕ(t0) is a cusp or a multiple point. For
the former, we evaluate ϕ′ at t0 (see Rem. 4.4). This costs ÕB(ndτ) [BLPR13, Lem. 3].
For the latter, we check if deg(gcd(ϕ1(t0)q1(t) − p1(t), . . . , ϕ1(t0)q1(t) − p1(t))) = 0 in
ÕB(n(d2 + dτ)) (Lem. 4.2). If ϕ′(t0) is not the zero vector and the degree of the gcd is
zero, then ϕ(t0) is not singular.

Remark 4.8. Since the reparametrizing function in the previous lemma is linear, it does
not affect properness [SWPD08, Thm. 6.3].

4.4 Special points on the curve

We consider a parametrization ϕ of C as in Eq. (4.1), such that ϕ is proper and there are
no singularities at infinity. We highlight the necessity of these assumptions when needed.
We detect the parameters that generate the special points of C, namely the singular, the
isolated, and the extreme points (in the coordinate directions). We identify the values of
the parameter for which ϕ is not defined, namely the poles (see Def. 4.9). In presence of
poles, C consists of multiple components.

Definition 4.9. The parameters for which ϕ(t) is not defined are the poles of ϕ. The sets
of poles over the complex and the reals are:

TCP = {t ∈ C :
∏
i∈[n]

qi(t) = 0} and TRP = TCP ∩ R, respectively.

We consider the solution set S of the system of Eq.(4.2) over C2:

S = {(t, s) ∈ C2 : hi(t, s) = 0 for all i ∈ [n]}.
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Remark 4.10. Notice that when ϕ is in reduced form, if (s, t) ∈ S and (s, t) ∈ (C\TCP )×C,
then also t ̸∈ TCP [RSV09, (in the proof of) Lem. 9].

Next, we present some well-known results [RSV09, SWPD08] that we adapt to our
notation.

Singular points. Quoting [MC92], “Algebraically, singular points are points on the
curve, in whose neighborhood the curve cannot be represented as an one-to-one and C∞ bi-
jective map with an open interval on the real line". Geometrically, singularities correspond
to shape features that are known as cusps and self-intersections of smooth branches. Cusps
are points on the curve where the tangent vector is the zero vector. This is a necessary
and sufficient condition when the parametrization is proper [MC92]. Self-intersections are
multiple points, i.e., points on C with more than one preimages.

Lemma 4.11. The set of parameters corresponding to real cusps is

TC =
{
t ∈ R \ TRP : (t, t) ∈ S

}
.

The set of parameters corresponding to real multiple points is

TM = {t ∈ R \ TRP : ∃s ̸= t, s ∈ R such that (t, s) ∈ S}.

Proof. The description of TC is an immediate consequence of Rem. 4.4. It states that
hi(t, t) = ϕ′i(t)q

2
i (t), for i ∈ [n].

Now let p = ϕ(t) be a multiple point on C. Then, there is s ∈ R \ TRP with ϕ(t) =

ϕ(s) ⇒ hi(t, s) = 0 for all i ∈ [n] and so t ∈ TM . Conversely, let t ∈ TM and s ̸= t,
s ∈ R such that hi(t, s) = 0 for all i ∈ [n]. From [RSV09, (in the proof of) Lem. 9],
when ϕ is in reduced form, if (t, s) ∈ S and (t, s) ∈ (R \ TRP ) × R, then also s ̸∈ TRP . So,
hi(t, s) = 0 ⇔ pi(t)

qi(t)
= pi(s)

qi(s)
for all i ∈ [n], and thus p = ϕ(t) = ϕ(s) is a real multiple

point.

Notice that TC and TM are not necessarily disjoint, for we may have both cusps and smooth
branches that intersect at the same point.

Isolated points. An isolated point on a real curve can only occur for complex values of
the parameter. The point at infinity is not isolated because it is the limit of a sequence of
real points. So, additional care is needed in order to avoid cases where the point at infinity
is obtained also for complex values of the parameter.

Lemma 4.12. The set of parameters generating isolated points of C is

TI ={t ∈ C \ (R ∪ TCP ) : (t, t) ∈ S and ̸ ∃s ∈ R s.t. (t, s) ∈ S and ϕ(t) ̸= lim
s→∞

ϕ(s)}.
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Proof. Let p = ϕ(t) ∈ Rn be an isolated point, where t ∈ C\(R∪TCP ). Notice that p is also
a multiple point, since it holds that ϕi(t) = ϕi(t) = ϕi(t) for i ∈ [n]. Thus, hi(t, t) = 0 for
all i ∈ [n] and (t, t) ∈ S. Moreover, since p is isolated, there are no real branches through
p and there does not exist s ∈ R such that ϕ(t) = ϕ(s) ⇒ hi(t, s) = 0, for all i ∈ [n]. So,
t ∈ TI .

Conversely, let (t, t) ∈ S with t ∈ C \ R ∪ TCP . Since ϕ is in reduced form, we have
that t ̸∈ PC[RSV09, (in the proof of) Lem. 9], therefore hi(t, t) = 0, for all i ∈ [n], implies
that ϕ(t) = ϕ(t) = ϕ(t) ∈ Rn. Since there does not exist s ∈ R with ϕ(t) = ϕ(s), p is an
isolated point on C.

Extreme points. Consider a vector δ⃗ and a point on C whose normal vector is parallel
to δ⃗. If the point is not singular, then it is an extreme point of C with respect to δ⃗. We
compute the extreme points with respect to the direction of each coordinate axis. Rem. 4.4
leads to the following lemma:

Lemma 4.13. The set of parameters generating extreme points in the coordinate directions
is

TE =
{
t ∈ R \ TRP :

∏
i∈[n]

hi(t, t) = 0 and t ̸∈ TC ∪ TM
}
.

4.4.1 Computation and Complexity

From Lemmata 4.11, 4.12, and 4.13, it follows that given a proper parametrization ϕ

without singular points at infinity, we can easily find the poles and the set of parameters
generating cusps, multiple, extreme, and isolated points. We do so by solving an over-
determined bivariate polynomial system and univariate polynomial equations. Then, we
classify the parameters that appear in the solutions, by exploiting the fact the system is
symmetric. For sake of completeness, we describe the procedure in Alg. 5.

To compute the Rational Univariate Representation (RUR) [Rou99] of an overdeter-
mined bivariate system (Thm. 4.16), we employ Lem. 4.14 and Prop. 4.15, which adapt
the techniques used in [BLM+16] to our setting.

Lemma 4.14. Let f, g, h1, . . . , hn ∈ Z[X,Y ] with degrees bounded by δ and bitsize of
coefficients bounded by L. Computing a common separating element in the form X+αY, α ∈
Z for the n+1 systems of bivariate polynomial equations {f = g = 0}, {f = hi = 0},
i = 1 . . . n needs ÕB(n(δ6+ δ5L)) bit operations in the worst case, and ÕB(n(δ5+ δ4L)) in
the expected case with a Las Vegas Algorithm. Moreover, the bitsize of α does not exceed
log(2nδ4).

Proof. A straightforward strategy consists of simultaneously running Algorithm 5 (worst
case) or Algorithm 5’ (Las Vegas) from [BLM+16] on all the systems. The only modifica-
tions needed are that the values of α to be considered are less than 2nδ4 (twice a bound
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Algorithm 5: Special_Points(ϕ)
Input: Proper parametrization ϕ ∈ Z(t)n without singularity at infinity, as in

Eq. (4.1)
Output: Real poles and parameters that give real cusps, multiple, isolated and

extreme points with respect to the direction the coordinate axes.

/* The subroutines SOLVE_R and SOLVE_C return the solution set of a
univariate polynomial or a system of polynomials over the real and
complex numbers resp. */

1 Compute polynomials h1(s, t), . . . , hn(s, t)
2 TRP ←

⋃
i∈n SOLVE_R(qi(t) = 0)

3 TCP ←
⋃
i∈[n] SOLVE_C(qi(t) = 0)

4 S ← SOLVE_C(h1(s, t) = 0, . . . , hn(s, t) = 0)
5 TC , TM , TI ,W ← ∅
6 for (s, t) ∈ S do
7 if s = t and s ∈ R \ TRP then
8 TC ← TC ∪ {t}
9 end

10 else if s ̸= t then
11 if s ∈ R \ TRP then
12 if t ∈ R then
13 TM ← TM ∪ {t}
14 end
15 else
16 W ←W ∪ {t}
17 end
18 end
19 else if s = t and s ̸∈ TCP then
20 TI ← TI ∪ {t}
21 end
22 end
23 end
24 TI ← TI \W

/* Extreme points */
25 TE ←

⋃
i∈n SOLVE_R(hi(t, t) = 0)

26 TE ← TE \ (TE ∩ (TC ∪ TM ))

on the total number of solutions of all the systems) and that the exit test is valid if and
only if it is valid for all the systems.

Proposition 4.15. Let f, g ∈ Z[X,Y ] with degrees bounded by δ and coefficients’ bitsizes
bounded by L. We can compute a rational parametrization {h(T ), X = hX(T )

h1(T )
, Y = hY (T )

h1(T )
}

of f, g with h, h1, hX , hY ∈ Z[T ] with degrees less than δ2 and coefficients’ bitsizes in
Õ(δ(L+ δ)), in ÕB(δ5(L+ δ)) bit operations in the worst case and ÕB(δ4(L+ δ)) expected
bit operations with a Las Vegas Algorithm.
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Proof. Algorithms 6 and 6’ from [BLM+16] compute an RUR decomposition of f = g = 0

in ÕB(δ5(L+δ)) bit operations in the worst case and ÕB(δ4(L+δ)) expected bit operations
with a Las Vegas Algorithm respectively. They provide s ⩽ δ parametrizations in the form
{hi(T ),

hi,X(T )
hi,1(T )

,
hi,Y (T )
hi,1(T )

}, where i = 1, . . . , s, with the following properties:

•
∏s
i=1 hi is a polynomial of degree at most δ2 with coefficients of bitsize Õ(δL+ δ2).

• The degrees of hi,1(T ), hX,1(T ) and hY,1(T ) are less then the degree of hi.

• The coefficients’ bitsizes of hi,1(T ), hX,1(T ) and hY,1(T ) are in ÕB(δL+ δ2).

Also,
s∏
i=1

hi,

∑n
n=1 hj,X

∏
i ̸=j hi∑n

n=1 hj,1
∏
i ̸=j hi

,

∑n
n=1 hj,Y

∏
i ̸=j hi∑n

n=1 hj,1
∏
i ̸=j hi

is a rational parametrization of the system {f = g = 0}, defined by polynomials of degree
less than δ2 with coefficients of bitsizes Õ(δ(L+ δ)) and can be computed from the RUR
decomposition performing O(s) multiplications of polynomials of degree at most δ2 with
coefficients of bitsize Õ(δ(L+ δ)), which requires ÕB(δ4(L+ δ)) bit operations.

Theorem 4.16. There exists an algorithm that computes the RUR and the isolating boxes
of the roots of the system {h1(s, t) = · · · = hn(s, t) = 0} with worst-case bit complexity
ÕB(n(d6 + d5τ)). There is also a Las Vegas variant with expected complexity ÕB(d6 +

nd5 + d5τ + nd4τ).

Proof. Assume that we know a common separating linear element ℓ(s, t) = ℓ0+ℓ1s+ℓ2t that
separates the roots of the n− 1 systems of bivariate polynomial equations {h1 = h2 = 0},
{h1 = hi = 0}, for 3 ≤ i ≤ n. We can compute ℓ with ÕB(n(d6 + d5τ)) bit operations
in the worst case and with ÕB(n(d5 + d4τ)) expected bit operations with a Las Vegas
algorithm (Lem. 4.14).

We denote an RUR for {h1 = h2 = 0} with respect to ℓ by {r(T ), rs(T )rI(T )
, rt(T )rI(T )

}. In

addition, for i = 3 . . . n, let {ri(T ), ri,s(T )ri,I(T )
,
ri,t(T )
ri,I(T )

} be the RUR of {h1 = hi = 0}, also with

respect to ℓ. We compute these representations for all i = 3 . . . n with ÕB(n(d6+d5τ)) bit
operations in the worst case, and with ÕB(n(d5+ d4τ)) in expected case with a Las Vegas
algorithm (Lem. 4.15).

Then, for the system {h1 = h2 = . . . = hn = 0} we can define a rational parametrization
{χ(T ), rs(T )rI(T )

, rt(T )rI(T )
}, where

χ(T ) = gcd( r(T ), r3(T ), . . . , rn(T ),

rs(T )r3,I(T )− r3,s(T )rI(T ), rt(T )r3,I(T )− r3,t(T )rI(T ),
...

rs(T )rn,I(T )− rn,s(T )rI(T ), rt(T )rn,I(T )− rn,t(T )rI(T )).
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So to compute such a parametrization, we still need to compute the gcd of 3n − 5

univariate polynomials of degrees at most d2 and coefficients of bitsizes in Õ(dτ) which
needs ÕB(n(d6 + d4τ)) bit operations in the worst case. Isolating the roots of such a
parametrization requires ÕB(d6 + d5τ) according to Alg. 7 from [BLM+16].

Remark 4.17 (RUR and isolating interval representation). If we use Thm.4.16
to solve the over-determined bivariate system of the hi polynomials of Eq. (4.2), then we
obtain in the output an RUR for the roots, which is as follows: There is a polynomial
χ(T ) ∈ Z[T ] of size (O(d2), Õ(d2 + dτ)) and a mapping:

V (χ)→ V (h1, . . . , hn)

T 7→
(rs(T )
rI(T )

,
rt(T )

rI(T )

)
, (4.3)

that defines an one-to-one correspondence between the roots of χ and those of the system.
The polynomials rs, rt, and rI are in Z[T ] and have also size (O(d2), Õ(d2 + dτ)).

Taking into account the cost to compute this parametrization of the solutions (Thm.4.16),
we can also compute the resultant of {h1, h2} with respect to s or t at no extra cost. No-
tice that both resultants are the same polynomial, since the system is symmetric. Let
Rs(t) = ress(h1, h2). It is of size (O(d2),O(d2 + dτ)) [BPR06, Prop. 8.46].

Under the same bit complexity, we can sufficiently refine the isolating boxes of the
solutions of the bivariate system (computed in Thm.4.16), so that every root ( rs(ξ)rI(ξ)

, rt(ξ)rI(ξ)
),

where χ(ξ) = 0, has a representation as a pair of algebraic numbers in isolating interval
representation:

((Rs, I1,ξ × I2,ξ), (Rs, J1,ξ × J2,ξ)). (4.4)

Both coordinates in the latter representation, are algebraic numbers which are roots of
the same polynomial. Moreover, I2,ξ, J2,ξ are empty sets when the corresponding algebraic
number is real. Therefore, we can immediately distinguish between real and complex pa-
rameters. At the same time, we associate to each isolating box of a root of Rs the algebraic
numbers ρ = (χ, Iρ× Jρ) for which it holds that rs(ρ)

rI(ρ)
projects inside this isolating box. We

can interchange between the two representations in constant time and this will simplify our
computations in the sequel.

Lemma 4.18. Let C be a curve with a proper parametrization ϕ(t) as in Eq. (4.1), that
has no singularities at infinity. We compute the real poles of ϕ and the parameters cor-
responding to singular, extreme (in the coordinate directions), and isolated points of C in
worst-case bit complexity

ÕB(nd6 + nd5τ + d4(n2 + nτ) + d3(n2τ + n3) + n3d2τ),
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and using a Las Vegas algorithm in expected bit complexity

ÕB(d6 + d5(n+ τ) + d4(n2 + nτ) + d3(n2τ + n3) + n3d2τ).

Proof. The proof is an immediate consequence of the following:

• We compute all hi ∈ Z[s, t] in ÕB(nd2τ): To construct each hi we perform d2 multipli-
cations of numbers of bitsize τ ; the cost for this is ÕB(d2τ). The bi-degree of each is at
most (d, d) and L(hi) ≤ 2τ + 1 = O(τ).

• The real poles of ϕ are computed in ÕB(n2(d4+d3τ)): To find the poles of ϕ, we isolate
the real roots of each polynomial qi(t), for i ∈ [n]. This costs ÕB(n(d3 + d2τ)) [PT17].
Then we sort the roots in ÕB(ndn(d3 + d2τ)) = ÕB(n2(d4 + d3τ)).

• The parameters corresponding to cusps, multiple and isolated points of C are computed
in ÕB(n(d6 + d5τ)):

We solve the bivariate system of Eq. (4.2) in ÕB(n(d6+d5τ)) or in expected time ÕB(d6+
nd5 + d5τ + nd4τ) (Thm. 4.16). Then we have a parametrization of the solutions of the
bivariate system of Eq. (4.2) of the form of Eq. (4.3) and in the same time of the form of
Eq. (4.4) (see Rem. 4.17). Some solutions (s, t) ∈ S may not correspond to points on the
curve, since s, t can be poles of ϕ. Notice that from Rem. 4.10, s and t are either both
poles or neither of them is a pole. We compute gs = gcd(Rs, Q), where Q(t) =

∏
i∈[n] qi(t),

and the gcd-free part of Rs with respect to Q. This is done in ÕB(max{n, d} (nd3τ +

nd2τ2)) [BLPR15, Lem. 5].

Every root of R∗
s is an algebraic number of the form (Rs, I1,ξ×I2,ξ), for some ξ that is root

of χ. We can easily determine if it corresponds to a cusp, a multiple or an isolated point;
when real (i.e., I2,ξ = ∅) it corresponds to a cusp of C if and only if ((Rs, I1,ξ), (Rs, I1,ξ)) is
in S. Otherwise, it corresponds to a multiple point. When it is complex (i.e., I2,ξ ̸= ∅), it
corresponds to an isolated pont of C if and only if ((Rs, I1,ξ× I2,ξ), (Rs, I1,ξ× (−I2,ξ))) ∈ S
and there is no root in S of the form ((Rs, I1,ξ × I2,ξ), (Rs, J1,ξ′)).

• The parameters corresponding to extreme points of C with respect to the direction of each
coordinate axis are computed in ÕB(d4nτ + d3(n2τ + n3) + d2n3τ):

For all i ∈ [n], hi(t, t) is a univariate polynomial of size (O(d),O(τ)). Then, H(t) =∏
i∈[n] hi(t, t) is of size (O(nd), Õ(nτ)). The parameters that correspond to the extreme

points are among the roots of H(t). To make sure that poles and parameters that give
singular points are excluded, we compute gcd(H,Q · Rs), where Q(t) =

∏
i∈[n] qi(t), and

the gcd-free part of H with respect to Q ·Rs, say H∗. Since Q ·Rs is a polynomial of size
(d2 + nd, (d + n)τ), the computation of the gcd and the gcd-free part costs ÕB(n(d4τ +

nd3τ + n2d2τ)) [BLPR15, Lem. 5]. Then, H = gcd(H,Q · Rs)H∗, and the real roots of
H∗ give the parameters that correspond to the extreme points. We isolate the real roots
of H∗ in ÕB(n3(d3 + d2τ)), since it is a polynomial of size (O(nd), Õ(n(d+ τ))).
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4.5 PTOPO: Topology and Complexity

We present PTOPO, an algorithm to construct an abstract graph G that is isotopic [BT06,
p.184] to C when we embed it in Rn. We emphasize that, currently, we do not identify
knots in the case of space curves. The embedding consists of a graph whose vertices are
points on the curve given by their parameter values. The edges are smooth parametric
arcs that we can continuously deform to branches of C without any topological changes.
We need to specify a bounding box in Rn inside which the constructed graph results in
an isotopic embedding to C. We comment at the end of the section on the case where an
arbitrary box is provided at the input. We determine a bounding box in Rn, which we call
characteristic, that captures all the topological information of C.

Definition 4.19. A characteristic box of C is a box enclosing a subset of Rn that intersects
all components of C and contains all its singular, extreme (in the coordinate directions),
and isolated points.

Let BC be a characteristic box of C. If C is bounded, then C ⊂ BC . If C is unbounded,
then the branches of C that extend to infinity intersect the boundary of BC . A branch of
the curve extends to infinity if for t → t0, it holds ||ϕ(t)|| > M , for any M > 0, where
t0 ∈ R∪{∞}. Lem. 4.20 computes a characteristic box using the degree and bitsize of the
polynomials in the parametrization of Eq. (4.1).

Lemma 4.20. Let C be a curve with a parametrization as in Eq. (4.1). For b = 15d2(τ +

log d) = O(d2τ), BC = [−2b, 2b]n is a characteristic box of C.

Proof. We estimate the maximum and minimum values of ϕi, i ∈ [n], when we evaluate it
at the parameter values that correspond to special points and also at each pole that is not
a root of qi.

Let t0 be a parameter that corresponds to a cusp or an extreme point with respect to the
i-th direction. Then, it is a root of ϕ′i(t). Let N(t) = p′i(t)qi(t)− pi(t)q′i(t) the numerator
of ϕ′i(t). Then N(t0) = 0. The degree of N(t) is ≤ 2d − 1 and L(N) ≤ 22τ+log d+1. From
Lem. 4.1 we conclude that |pi(t0)| ≤ 24dτ+d log(d)+(3d−1) log(3d−1)+d−τ . Analogously, it holds
that |qi(t0)| ≥ 2−4dτ−d log(d)−(3d−1) log(3d−1)−d+τ . Therefore,

|ϕi(t0)| ≤ 22(4dτ+d log(d)+(3d−1) log(3d−1)+d−τ).

Now, let (t1, t2) be two parameters corresponding to a multiple point of C, i.e., (t1, t2)

is a root of the bivariate system in Eq. (4.2). Take any j, k ∈ [n] with j ̸= k and let
R(t) = ress(hj , hk). It holds that R(t1) = 0. The degree of R is ≤ 2d2 and L(R) ≤
2d(τ +log(d)+ log(d+1)+1) [BPR06, Prop. 8.29]. By applying Lem. 4.1, we deduce that

|ϕi(t1)| ≤ 24d
2(τ+log(d)+log(d+1)+1)+4d2τ+(2d2+d) log(2d2+d).
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Let t3 be a pole of ϕ with qj(t3) = 0, for some j ̸= i. If ϕi(t3) is defined, applying Lem. 4.1
gives

|ϕi(t3)| ≤ 24dτ+4d log 2d.

To conclude, we take the maximum of the three bounds. However, to simplify notation,
we slightly overestimate the latter bound.

The vertices of the embedded graph must include the singular and the isolated points
of C. Additionally, to rigorously visualize the geometry of C, we consider as vertices the
extreme points of C, with respect to all coordinate directions, as well as the intersections of C
with the boundary of the bounding box. We label the vertices of G using the corresponding
parameter values generating these points, and we connect them accordingly. Alg. 6 presents
the pseudo-code of PTOPO and here we give some more details on the various steps.

We construct G as follows: First, we compute the poles and the sets TC , TM , TE , and TI

of parameters corresponding to “special points”. Then, we compute the characteristic box
of C, say BC . We compute the set TB of parameters corresponding to the intersections of C
with the boundary of BC (if any). Lem. 4.21 describes this procedure and its complexity.

Lemma 4.21. Let B = [l1, r1] × · · · × [ln, rn] in Rn and L(li) = L(ri) = σ, for i ∈ [n].
We can find the parameters that give the intersection points of ϕ with the boundary of B
in ÕB(n2d3 + n2d2(τ + σ)).

Proof. For each i ∈ [n] the polynomials qi(t)li − pi(t) = 0 and qi(t)ri − pi(t) = 0 are of
size (O(d),O(τ + σ)). So, we compute isolating intervals for all their real solutions in
ÕB(d2(τ + σ)) [Pan02]. For any root t0 of each of these polynomials, since ϕ is in reduced
form (by assumption), we have t0 ̸∈ TRP . We check if ϕj(t0) ∈ [lj , rj ], j ∈ [n] \ i. This
requires 3 sign evaluations of univariate polynomials of size (d, τ + σ) at all roots of a
polynomial of size (d, τ +σ). The bit complexity of performing these operations for all the
roots is ÕB(d3 + d2(τ + σ)) [ST19, Prop. 6]. Since we repeat this procedure n − 1 times
for every i ∈ [n], the total cost is ÕB(n2d3 + n2d2(τ + σ)).

We partition TC ∪ TM ∪ TE ∪ TI ∪ TB into groups of parameters that correspond to the
same point on C. For each group, we add a vertex to G if and only if the corresponding
point is strictly inside the bounding box B; for the characteristic box it is strictly inside
by construction.

Lemma 4.22. The graph G has κ = O(d2 + nd) vertices, which can be computed using
O(d2 + nd) arithmetic operations.

Proof. Since TB ∩TM = ∅ and TE ∩TM = ∅, to each parameter in TB and TE corresponds a
unique point on C. So for every t ∈ TB∪TE we add a vertex to G, labeled by the respective
parameter. Next, we group the parameters in TC ∪ TM ∪ TI that give the same point on C
and we add for each group a vertex at G labeled by the corresponding parameter values.
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Grouping the parameters is done as follows: For every t ∈ TC ∪ TM we add a vertex to
G labeled by the set {s ∈ R : (s, t) ∈ S} ∪ {t} and for every t ∈ TI we add a vertex to G
labeled by the set {s ∈ C : (s, t) ∈ S} ∪ {t}. We compute these sets simply by reading the
elements of S.

It holds that TB = O(nd), TE = O(nd) and |S| = O(d2). Since for each vertex, we can
find the parameters that give the same point in constant time, the result follows.

We denote by v1, . . . , vκ the vertices (with distinct labels) of G and by λ(v1), . . . , λ(vκ)
their label sets (i.e., the parameters that correspond to each vertex). Let T be the sorted
list of parameters in TC ∪ TM ∪ TE ∪ TB (notice that we exclude the parameters of the
isolated points). If for two consecutive elements t1 < t2 in T, there exists a pole s ∈ TRP
such that t1 < s < t2, then we split T into two lists: T1 containing the elements ≤ t1 and
T2 containing the elements ≥ t2. We continue recursively for T1 and T2, until there are
no poles between any two elements of the resulting list. This procedure partitions T into
T1, . . . , Tℓ.

To add edges to G, we consider each Ti with more than one element, where i ∈ [ℓ],
independently. For any consecutive elements t1 < t2 in Ti, with t1 ∈ λ(vi,1) and t2 ∈ λ(vi,2),
we add the edge {vi,1, vi,2}. To avoid multiple edges, we make the convention that we add
an edge between vi,j , j = 1, 2, and an (artificial) intermediate point corresponding to a
parameter in (t1, t2). If p∞ exists, we add an edge to the graph connecting the vertices
corresponding to the last element of Tℓ and the first element of the T1.

Algorithm 6: PTOPO(ϕ) (Inside the characteristic box)
Input: A proper parametrization ϕ ∈ Z(t)n without singular points at infinity.
Output: Abstract graph G

1 Compute real poles TRP .
2 Compute parameters of ‘special points’ TC , TM , TE , TI .
/* Characteristic box */

3 b← 15d2(τ + log d), BC ← [−2b, 2b]n
4 TB ← parameters that give to intersections of C with BC
5 Construct the set of vertices of G using Lem.4.22
6 Sort the list of all the parameters T = [TC , TM , TE , TB].
7 Let T1, . . . , Tℓ the sublists of T when split at parameters in TRP
8 for every list Ti = [ti,1, . . . , ti,ki ] do
9 for j = 1, . . . , ki − 1 do

10 Add the edge {ti,j , ti,j+1} to the graph
11 end
12 end
13 if p∞ exists then
14 Add the edge {t1,1, tℓ,kℓ} to the graph
15 end



106 CHAPTER 2

Theorem 4.23 (PTOPO inside the characteristic box). Consider a proper parametriza-
tion ϕ of curve C involving polynomials of degree d and bitsize τ , as in Eq.(4.1), that has
no singularities at infinity. Alg. 6 outputs a graph G that, if embedded in Rn, is isotopic
to C, within the characteristic box BC. It has worst case complexity

ÕB(nd6 + nd5τ + d4(n2 + nτ) + d3(n2τ + n3) + n3d2τ),

while its expected complexity is

ÕB(d6 + d5(n+ τ) + d4(n2 + nτ) + d3(n2τ + n3) + n3d2τ),

If n = O(1), then the bounds become ÕB(N6), where N = max{d, τ}.

Proof. We count on the fact that ϕ is continuous in R\TRP . Thus, for each real interval [s, t]
with [s, t]∩TRP = ∅, there is a parametric arc connecting the points ϕ(s) and ϕ(t). Since for
any (sorted) list Ti, for i ∈ [ℓ], the interval defined by the minimum and maximum value of
its elements has empty intersection with TRP , then for any s, t ∈ Ti there exists a parametric
arc connecting ϕ(s) and ϕ(t) and it is entirely contained in BC . If p∞ exists, then p∞ is
inside BC . Let t1,1, tℓ,kℓ be the first element of the first list and the last element of the last
list. There is a parametric arc connecting ϕ(t1,1) with p∞ and p∞ with ϕ(tℓ,kℓ). So we
add the edge {t1,1, tℓ,κℓ} to G. Then, every edge of G is embedded to a unique smooth
parametric arc and the embedding of G can be trivially continuously deformed to C.

For the complexity analysis, we know from Lem.4.18 that steps 1-2 can be performed
in wost-case bit complexity

ÕB(nd6 + nd5τ + d4(n2 + nτ) + d3(n2τ + n3) + n3d2τ),

and in expected bit complexity

ÕB(d6 + d5(n+ τ) + d4(n2 + nτ) + d3(n2τ + n3) + n3d2τ),

using a Las Vegas algorithm. From Lemmata 4.20, 4.21, and 4.22 steps 4-5 cost ÕB(n2(d3τ)).
To perform steps 6-7 we must sort all the parameters in T ∪ TRP , i.e., we sort O(d2 +

nd) algebraic numbers. The parameters that correspond to cusps and extreme points
with respect to the i-th coordinate direction can be expressed as roots of

∏
i∈[n] hi(t, t),

which is of size (nd, nτ). The poles are roots of
∏
i∈[n] qi(t), which has size (nd, nτ). The

parameters that correspond to multiple points are roots of Rs which has size (d2, dτ). At
last, parameters in TB are roots of a polynomial of size (d, d2τ).

We can consider all these algebraic numbers together as roots of a single univariate
polynomial (the product of all the corresponding polynomials). It has degree O(d2 + nd)

and bitsize Õ(d2τ + nτ). Hence, its separation bound is in Õ(d4τ + nd3τ + n2dτ) and the
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Figure 4.1: The left figure is the output of ptopo for the parametric curve
( 3 t2+3 t+1
t6−2 t4−3 t−1

, (t4−2 t+2)t2

t6−2 t4−3 t−1
), while the right figure is the output for the curve

(6 t
8−756 t6+3456 t5−31104 t3+61236 t2−39366

t8+36 t6+486 t4+2916 t2+6561
, −18(6 t6−16 t5−126 t4+864 t3−1134 t2−1296 t+4374)t

t8+36 t6+486 t4+2916 t2+6561
). Mul-

tiple points are indicated by red squares and isolated points by red stars.

same bound also holds for sum of the bitsizes of these numbers. Since we know that the
bitsize of a number is in the range [1, Õ(d4τ +nd3τ +n2dτ)], we can use the counting sort
algorithm to sort the numbers according to their bitsize in ÕB(d4τ +nd3τ +n2dτ). Then,
we sort numbers of the same bitsize using radix sort, in a bit-complexity bounded by the
total sum of bitsizes, that is ÕB(d4τ + nd3τ + n2dτ).

If we are interested only in the topology of C, i.e., the abstract graph G, and not
in visualizing the curve within BC , then the intersection points of C with BC are not
important any more. We sketch a procedure to construct the abstract graph by avoiding
their computation:

Assume that we have not computed the points on C ∩ BC . We split again the sorted
list T = [TC , TM , TE ] at the real poles, and we add an artificial parameter at the beginning
and at the end of each sublist. The rest of the procedure remains unaltered.

To verify the correctness of this approach, it suffices to prove that the graph that we
obtain by this procedure, is isomorphic to the graph G. It is immediate to see that the
latter holds, possibly up to the dissolution of the vertices corresponding to the first and last
artificial vertices. Adding these artificial parameters does not affect the overall complexity,
since we do not perform any algebraic operations. Therefore, the bit complexity of the
algorithm is determined by the complexity of computing the parameters of the special
points (Lem.4.18), and so we have the following theorem:

Theorem 4.24 (PTOPO and an abstract graph). Consider a proper parametrization ϕ

of curve C involving polynomials of degree d and bitsize τ , as in Eq. (4.1), that has no
singularities at infinity. Alg. 6 outputs a graph G that, if we embed it in Rn, then it is
isotopic to C. It has worst case complexity

ÕB(nd6 + nd5τ + d4(n2 + nτ) + d3(n2τ + n3) + n3d2τ),
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Figure 4.2: The left figure is the output of ptopo for the parametric curve (t8 − 8 t6 +
20 t4 − 16 t2 + 2, t7 − 7 t5 + 14 t3 − 7 t) while the right figure is the output for the curve
(37 t

3−23 t2+87 t+44
29 t3+98 t2−23 t+10

, −61 t3−8 t2−29 t+95
11 t3−49 t2−47 t+40

). Multiple points are indicated by red squares.
.

while its expected complexity is

ÕB(d6 + d5(n+ τ) + d4(n2 + nτ) + d3(n2τ + n3) + n3d2τ),

If n = O(1), then bounds become ÕB(N6), where N = max{d, τ}.

Remark 4.25. If we are given a box B ⊂ Rn at the input, we slightly modify PTOPO, as fol-
lows: We discard the parameter values in TC∪TM∪TE∪TI that correspond to points not con-
tained in B. The set of G’s vertices is constructed similarly. To connect the vertices, we
follow the same method with a minor modification: For any consecutive elements t1 < t2

in a list Ti with more than two elements, such that t1 ∈ λ(vi,1) and t2 ∈ λ(vi,2), we add the
edge {vi,1, vi,2} if and only if ϕ(t1), ϕ(t2) are not both on the boundary of B; or in other
words t1 and t2 are not both in TB.

4.6 Isotopic embedding for plane and space curves

In this section we elaborate on the isotopic embedding of the output graph G of Thm. 4.24
for the case of plane and space parametric curves C. We embed every edge of the abstract
graph G in the corresponding parametric arc by sampling many parameter values in the
associated parametric interval and then connecting the corresponding points accordingly,
in R2 or R3. The larger the number of sampled parameters, the more likely it is for the
embedding to be isotopic to C. However, we might need a prohibitive large number of points
to sample; their number is related to the distance between two branches of the curve. We
show that by introducing a few additional points, we can replace the parametric arcs of the
embedded graph with straight line segments and count on it being isotopic to C. Following
[ACDT20] closely, if X,Y ⊂ Rn are one-dimensional, then being isotopic implies that one
of them can be deformed into the other without removing or introducing self-intersections.

For plane curves, there is no need to take intermediate points on each parametric arc.
We consider the embedding of the abstract graph G in R2 as a straight-line graph G̃, i.e.,
with straight lines for edges, whose vertices are mapped to the corresponding points of
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the curve. The vertices of G̃ are all the singular and extreme points with respect to the
x- and y- directions. Therefore, the edges of G̃ correspond to smooth and monotonous
parametric arcs and so they cannot intersect but at their endpoints. The embedding G̃ is
then trivially continuously deformed to C. The above discussion summarizes as follows:

Corollary 4.26 (PTOPO and isotopic embedding for plane curves). Consider a proper
parametrization ϕ of a curve C in R2 involving polynomials of degree d and bitsize τ , as
in Eq. (4.1), that has no singularities at infinity. Alg. 6 computes an abstract graph whose
straight-line embedding in R2 is isotopic to C in worst case complexity ÕB(d6 + d5τ).

For space curves, a straight-line embedding of G is not guaranteed to be isotopic to C
for knots may be present. To overcome this issue, we need to segment some edges of G
into two or more edges. To find the extra vertices that we need to add to the graph, we
follow a common approach [ADT10, ACDT20, Kah08, DMR08, CJL13] that projects the
space curve to a plane one. For a projection defined by the map π : C → R2, we write
C̃ = π(C). We will ensure in the sequel that the following two conditions are satisfied:

(C1) C has no asymptotes parallel to the direction of the projection.

(C2) The map π is birational [SWPD08, Def. 2.37].

The first condition is to ensure that the point at infinity p∞ of C exists if and only if
the point at infinity of C̃ exists and is equal to π(p∞) [ADT10, Lem. 10]; see Fig. 4.3b
for an instance where this condition is violated. The second condition ensures that only
a finite number of points on C̃ have more than one point as a preimage. We call these
points apparent singularities [DMR08]; see Fig. 4.3a. Thus, with this condition we avoid
the "bad" cases where two branches of C project to the same branch of C̃.

Lemma 4.27. Consider a proper parametrization ϕ of curve C in R3 involving polynomials
of degree d and bitsize τ , as in Eq. (4.1), that has no singularities at infinity. We compute
a map π : C → R2 satisfying conditions (C1), (C2) in worst case complexity ÕB(d5 + d4τ)

and using a Las Vegas algorithm in expected complexity ÕB(d3 + d2τ).

Proof. By [Wal78, Thm. 6.5, pg. 146], any space curve can be birationally projected to a
plane curve. We choose an integer a uniformly at random from the set {1, . . .Kd2}, where
K = O(1); we explain later in the proof about the size of this set. We define the mapping:

π : C3 → C2

(x, y, z) 7→ (x, y + az) (4.5)

It will be useful in the sequel to regard the application of π(·) to ϕ(t) as being performed
in two steps:
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(a) (b)

Figure 4.3: (a) Graph of the curve parametrized by ϕ(t) =(
7t4−22t3+55t2+94t−87

56t4+62t2−97t+73
, 88t

5+4t4−83t3+10t2−62t−82
56t4+62t2−97t+73

,−95t5−4t4+83t3−10t2+62t+82
56t4+73

)
(green)

and its orthogonal projection on the xy-plane (blue). In red, a double
point in the projected curve with two points in its preimage, i.e., appar-
ent singularities (purple). (b) Graph of the curve parametrized by ϕ(t) =(−7t4+22t3−55t2−94t+87

−56t4−62t2+97t−73
, −4t4+83t3−10t2+62t+82

−56t4−62t2+97t−73
, t

7−4t4+83t3−10t2+62t+82
−56t4−73

)
(green) and its

orthogonal projection on the xy-plane (blue). The space curve does not have a point at
infinity, whereas the plane curve has.

1. Change of orthogonal basis of R3: Let {

1

0

0

 ,

 0

1

−a

 ,

0

a

1

} be an orthogonal basis

of R3 and

A =

1 0 0

0 1 a

0 −a 1

 .

In the new basis the curve is parametrized by:

(ϕ1(t), ϕ2(t), ϕ3(t)) ·A = (ϕ1(t), ϕ2(t) + aϕ3(t),−aϕ2(t) + ϕ3(t))

2. Orthogonal projection onto the first two coordinates: This yields the plane curve
parametrized by (ϕ1(t), ϕ2(t) + aϕ3(t)).

For a given choice of a, we check if conditions (C1) and (C2) are satisfied:
For (C1): The direction of the projection is defined by the vector (0, a, 1). So, C has

no asymptotes parallel to (0, a, 1) if and only if the curve with parametrization ϕ(t) · A
has no asymptotes parallel to (0, a, 1) ·A−1 = (0, 0, 1). We can check if this is the case by
employing [ADT10, Lem. 9]; this is no more costly that solving a univariate polynomial of
size (O(d), Õ(τ)), which costs ÕB(d3 + d2τ) worst case.

Morover, there areO(d) bad values of a for whom (C1) does not hold: for any asymptote
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of C, there is a unique value of a that maps it to an asymptote parallel to (0, 0, 1) in the
new basis. The asymptotes of C are O(d) since they occur at the poles of ϕ(t) and at the
branches that extend to infinity.

For (C2): Since ϕ(t) is proper, π(·) is birational if and only if π(ϕ(t)) is also proper.
We check the properness of this parametrization of C̃ in ÕB(d3+d2τ) expected time, using
Lem. 4.5.

To find the values of a that result in a ‘bad’ map: Let h̃1(s, t), h̃2(s, t) be the poly-
nomials of Eq. (4.1) associated to π(ϕ(t)). The parametrization π(ϕ(t)) is proper if and
only if gcd(h̃1(s, t), h̃2(s, t)) = 1. If gcd(h̃1(s, t), h̃2(s, t)) ̸= 1 then, by letting R(s) =

rest(h̃1(s, t), h̃2(s, t)), we have that R(s) = 0. Notice that R(s) is not always identically
zero (e.g., for h̃1(s, t) = t+ s, h̃2(s, t) = t+ s− 1 we get R(s) = 1). We consider R(s) as a
polynomial in Z(a)[s]:

R(s) = cd2(a)s
d2 + · · ·+ c1(a)s+ c0(a),

where ci ∈ Z[a] is of size (d, Õ(dτ)) for 0 ≤ i ≤ d2 . The bad values of a ∈ R satisfy then
the equation:

c2d2(a) + · · ·+ c21(a) + c20(a) = 0.

The polynomial has degree O(d2) and so there are O(d2) bad values to avoid. This points
to the worst case complexity ÕB(d5 + d4τ).

Given a map π computed through Lem. 4.27, we find the parameters that give the real
multiple points of C̃ and its extreme points with respect to the two coordinate axes. We add
the corresponding vertices to G and we obtain an augmented graph, say G′. The straight-
line embedding of G′ in R2 is isotopic to C̃ by Cor. 4.26, possibly up to the isolated points
[ADT10, Thm. 13 and Lem. 15]. Then, by lifting this embedding to the corresponding
straight-line graph in R3, we obtain a graph isotopic to C [ADT10, Thm. 13 and Thm. 14].
The following theorem summarizes the previous discussion and states its complexity:

Theorem 4.28 (PTOPO and isotopic embedding for 3D space curves). Consider a
proper parametrization ϕ of curve C in R3 involving polynomials of degree d and bitsize τ ,
as in Eq. (4.1), that has no singularities at infinity. There is an algorithm that computes an
abstract graph whose straight-line embedding in R3 is isotopic to C in worst case complexity
ÕB(d6 + d5τ).

Proof. Given a projection map π(·) such that (C1) and (C2) hold, correctness follows from
the previous discussion. From Lem. 4.27, we find such a map in expected complexity
ÕB(d3 + d2τ) and ÕB(d5 + d4τ). Using Alg. 5 for π(ϕ(t)) we find the parameters of the
extreme (in the coordinate directions) and real multiple points of C̃, say T̃, in ÕB(d6+d5τ)
(Lem. 4.18). Then, we employ Alg. 6 for ϕ(t), by augmenting the list of parameters that are
treated with T̃. The last step dominates the complexity and is not affected by the addition
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(a) (b)

Figure 4.4: Output of PTOPO for (a) a Lissajous curve parametrized by( (−t2−1)
t2+1

, −8t(t2−1)(t4−6t2+1)
t8+4t6+6t4+4t2+1

, −(16(t4−6t2+1))(t2−1)t(t8−28t6+70t4−28t2+1)
(t16+8t14+28t12+56t10+70t8+56t6+28t4+8t2+1)

)
. The multi-

ple points are indicated by the red squares. (b) a space curve parametrized by(−2t2

t2+1
, −2t(3t5−19t4+8t3−9t2−t+2

(t2+1)(10t4−6t3+3t2+1)
, t
)
. The apparent singularities are indicated by the

black squares.

of extra parameters to the list since |T̃| = O(d2). The complexity result in Thm. 4.24
allows us to conclude.

4.7 Multiplicities and characterization of singular points

We say that a singularity is ordinary if it is at the intersection of smooth branches only
and the tangents to all branches are distinct [Wal78, p.54]. In all the other cases, we
call it a non-ordinary singularity. The character of a singular point is either ordinary or
non-ordinary. To determine the multiplicity and the character of each real singular point
in C we follow the method presented in the series of papers [PD07, BPD17, BPD19]. They
provide a complete characterization using resultant computations that applies to curves of
any dimension. In the sequel, we present the basic ingredients of their approach and we
estimate the bit complexity of the algorithm.

Let n = 2 and Hi(s, t) = pi(s)qi(t) − pi(t)qi(s), for i ∈ [2]. Consider a point p ∈ C
given by the parameter values {s1, . . . , sk}, k ≥ 1; that is p = ϕ(si), for all i ∈ [k]. The
fiber function at p [BPD19, Def. 2] is

Fp(t) = gcd(H1(sj , t), H2(sj , t)),

for any j ∈ [k]. It is a univariate polynomial, the real roots of which are the parameter
values that correspond to the point p. When the parametrization of the curve is proper,
for any point p on C other than p∞ it holds that deg(Fp(t)) = multp(C) [BPD19, Cor. 1].
Also, when the parameters in {s1, . . . , sk} are all real, k equals the number of real branches
that go through p.
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To classify ordinary and non-ordinary singularities we proceed as follows: For a point
p ∈ C the delta invariant δp is a nonnegative integer that measures the number of double
points concentrated around p. We can compute it by taking into account the multiplicities
of p and its neighboring singularities. [BPD19] consider three different types of non-
ordinary singularities and use the delta invariant to distinguish them. In particular:

1. If k = multp(C) and 2δp = multp(C)(multp(C)−1), then p is an ordinary singularity.

2. If k < multp(C) and 2δp = multp(C)(multp(C)− 1), then p is a type I non-ordinary
singularity.

3. If k = multp(C) and 2δp > multp(C)(multp(C)−1), then p is a type II non-ordinary
singularity.

4. If k < multp(C) and 2δp > multp(C)(multp(C)−1), then p is a type III non-ordinary
singularity.

[BPD19] compute the delta invariant, δp, using the formula

δp =
1

2

k∑
j=1

∑
t s.t. h1(sj ,t)=h2(sj ,t)=0

Inth1,h2(sj , t), (4.6)

where Inth1,h2(α, β) is the intersection multiplicity of the coprime polynomials h1(s, t) and
h2(s, t) at a point (α, β). Using a well known result, e.g., [Ful84, 1.6] as stated in [BKM05,
Prop. 5], we can compute the intersection multiplicities using resultant computations. Let
R(s) = rest(h1(s, t), h2(s, t)). For a root α of R(s), its multiplicity µ(a) is equal to the
sum of the intersection multiplicities of solutions of the system of {h1, h2} in the form
(α, t), and so

µ(α) =
∑

t s.t. h1(α,t)=h2(α,t)=0

Inth1,h2(α, t). (4.7)

Therefore, from Eq. (4.6) and Eq. (4.7), we conclude that:

δp =
1

2

k∑
j=1

µ(sj). (4.8)

For space curves, we birationally project C to a plane curve [Wal78, Thm. 6.5, pg. 146].
The multiplicities of the singular points of C and their delta invariant are preserved under
the birational map realizing the projection [BPD19, Prop. 1 and Cor. 4]. The pseudo code
of the algorithm appears in Alg. 7.

Theorem 4.29. Let C be a curve with a proper parametrization ϕ(t) as in Eq. (4.1), that
has no singularities at infinity. Alg. 7 computes the singular points of C, their multiplicity
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Algorithm 7: CharacterizeSingularPoints(ϕ,S)
Input: Proper parametrization ϕ ∈ Z(t)n without singularity at infinity, as in

Eq. (4.1)
Output: Multiplicities and characterization of points

1 S ← Special_Points(ϕ)
2 if n=2 then
3 Compute polynomials H1(s, t), H2(s, t) for ϕ
4 end
5 else
6 repeat
7 Choose integers a3, . . . , an at random from {1, . . . ,Kdn}, where K = O(1).
8 ϕ̃(t)← (ϕ1(t), ϕ2(t) + a3ϕ3(t) + · · ·+ anϕn(t))

9 until ϕ̃(t) is proper ;
10 Compute polynomials H1(s, t), H2(s, t) for ϕ̃
11 end
12 for p ∈ S do
13 Mp ← {s ∈ R : ϕ(s) = p} // parameters that give the same point p
14 k ← |Mp| // number of real branches that go through p
15 Take s0 ∈Mp

16 multp(C)← deg(gcd(H1(s0, t), H2(s0, t))) // multiplicity
// compute delta invariant

17 δp ← 0
18 for sj ∈Mp do
19 µ(sj)← multiplicity of sj as a root of rest(H1(s, t)/(s− t), H2(s, t)/(s− t))
20 δp ← δp + µ(sj)

21 end
22 δp ← δp/2
23 if k = multp(C) and 2δp = multp(C)(multp(C)− 1) then
24 return p is an ordinary singularity
25 end
26 else if k < multp(C) and 2δp = multp(C)(multp(C)− 1) then
27 return p is a type I non-ordinary singularity
28 end
29 else if k = multp(C) and 2δp > multp(C)(multp(C)− 1) then
30 return p is a type II non-ordinary singularity
31 end
32 else if k < multp(C) and 2δp > multp(C)(multp(C)− 1) then
33 return p is a type III non-ordinary singularity
34 end
35 end

and character (ordinary/non-ordinary) in

ÕB(d6 + d5τ)
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worst-case complexity when n = 2 and for n > 2 in expected complexity

ÕB(d6 + d5(n+ τ) + d4(n2 + nτ) + d3(n2τ + n3) + n3d2τ).

Proof. We compute the parameters that give the singular points of C using Alg. 5 in
ÕB(d6 + d5(n + τ) + d4(n2 + nτ) + d3(n2τ + n3) + n3d2τ) when n > 2, which becomes
worst-case when n = 2 (Lem. 4.18).

When n > 2, lines 5-8 compute a birational projection of C to a plane curve parametrized
by ϕ̃(t) (note that the projection is birational if and only if ϕ̃(t) is proper since ϕ(t) is
proper). The expected complexity of this is ÕB(d3 + nd2τ) by slightly adapting the proof
of Lem. 4.27.

We can group the parameter values that give singular points using Lem. 4.22 in O(d2+
nd) arithmetic operations. We have that gcd(H1(s, t), H2(s, t)) = s − t. For h1(s, t) =

H1(s, t)/(s− t), h2(s, t) = H2(s, t)/(s− t), we compute a triangular decomposition of the
system {h1(s, t) = h2(s, t) = 0} which consists of the systems {(Ai(s), Bi(s, t))}i∈I . For
any root α of Ai, Bi(α, t) is of degree i and equals gcd(h1(α, t), h2(α, t)) (up to a constant
factor). By [BLM+15, Prop. 16], the triangular decomposition is computed in ÕB(d6+d5τ)
worst case2.

For a singular point p and s0 ∈ Mp: To compute the degree of gcd(H1(s0), H2(s0)),
since s0 is a root of rest(h1(s, t), h2(s, t)), it suffices to find for which i ∈ I Ai(s0) = 0.
The latter is not immediate when s0 is given in isolated interval representation as a root of
rest(h1(s, t), h2(s, t)). However, we can isolate the roots of all Ai by taking care that the
isolating invervals are small enough so that the isolating interval of s0 intersects only one
of them. Because they are roots of the same polynomial this cannot exceed the complexity
of isolating the roots of rest(h1(s, t), h2(s, t)). This is can be done in ÕB(d6 + d5τ). In
the same bit complexity, we have the multiplicity µ(sj) of sj as a root of rest(h1, h2).

4.8 Implementation and Examples

PTOPO is implemented in maple3 for plane and 3D curves. A typical output appears in
Figures 4.1, 4.2, 4.5a, and 4.5. Besides the visualization the software computes all the
points of interest of curve (singular, extreme, etc) in isolating interval representation as
well as in suitable floating point approximations.

We build upon the real root isolation routines of maple’s RootFinding library and the
slv package [DET09], to use a certified implementation of general purpose exact compu-
tations with one and two real algebraic numbers, like comparison and sign evaluations, as
well as exact (bivariate) polynomial solving.

2In a Las Vegas setting this computation could be reduced to ÕB(d
4 +d3τ), but since it does not affect

the total complexity we chose not to expand onto this.
3https://gitlab.inria.fr/ckatsama/ptopo

https://gitlab.inria.fr/ckatsama/ptopo
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(a) (b)

Figure 4.5: Output of PTOPO for a curve parametrized by (a)(−7t4+22t3−55t2−94t+87
−56t4−62t2+97t−73

, −4t4∗83t3−10t2−62t−82
−56t4−62t2+97t−73

, −4t4∗83t3−10t2−62t−82
−56t4−62t2+97t−73

)
(b)(−3t2+1

(t2+1)2
, (−3t2+1)t

(t2+1)2
, (−3t2+1)t3

(t2+1)4
) . The red star in (a) corresponds to an isolated point,

whereas the red square in (b) corresponds to a multiple point. Examples are taken from
[ADT10].

PTOPO computes the topology and visualizes parametric curves in two (and in the near
future in three) dimensions. For a given parametric representation of a curve, PTOPO

computes the special points on the curve, the characteristic box, the corresponding graph,
and then it visualizes the curve (inside the box). The computation, in all examples from
literature we tested, takes less than a second in a MacBook laptop, running maple 2020.
We refer the reader to the website of the software and to [KRTZ20b] for further details.



Chapter 5

Convex Hull of Parametric Curves

We consider the problem of the computing the boundary of the convex hull of rational
parametric curves in R2 and in R3. The boundary of the convex hull is a semi-algebraic
set and an exact representation, breaks it down to a combination of line segments and
arcs of the curve for the 2D case, and of triangles and surface patches for the 3D case.
We provide an algorithmic solution together with bit-complexity estimates. We show that
its computation reduces to univariate and bivariate solving and to isolating roots of a
univariate polynomial with coefficients in a multiple field extension. We express the bit-
complexity with respect to the bit-complexity of the latter operation. By utilizing the
results of Ch. 3, we offer asymptotic upper bounds on the bit-complexity.

5.1 Introduction

For any subset of Rn, where n ≥ 1, its convex hull is defined as the smallest convex set
that contains it, or in more technical terms, as the intersection of its supporting halfspaces
[Brø83, Thm. 4.5]. Convex hull computations are fundamental in computational geometry
with direct applications in motion planning [ZST11, YLLF11], computer vision [dFT90]
and geometric modeling systems [EMP10, GVNPD+04]; to mention few of them. Convex
hulls of linear objects (points, segments, polygons, polyhedra) are well-studied in literature
[dBCvKO08]. We focus on non-linear convex hulls, and in particular on the convex hull of
parametric curves in R2 and in R3. Convex hulls of non-linear objects arise naturally in
optimization [Las09, BPT12] and learning theory [CS01b, SNW11] because they are useful,
among other things, in optimizing a linear function over a nonlinear object.

Let C be an algebraic curve over Rn, parametrized by

ϕ : R 99K Rn

t 7→
(
ϕ1(t), . . . , ϕn(t)

)
=
(p1(t)
q1(t)

, . . . ,
pn(t)

qn(t)

)
, (5.1)

117
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(a) (b)

Figure 5.1: (a) A plane curve and its convex hull; the boundary consists of the green line
segments and the orange arcs. (b) A curve in R3 and its convex hull; the visible part of
the boundary consists of the green triangle and the ruled surfaces patches in purple and
magenta.

where pi, qi ∈ Z[t] have degree at most d and bitsize τ and gcd(pi(t), qi(t)) = 1, i ∈ [n].
Let I ⊆ R. We denote by conv(ϕ(I)) the convex hull of ϕ(I). When n = 2, the boundary
of the convex hull consists of a combination of smooth curved arcs and segments joining
two points on the curve (Fig. 5.1a). When n = 3, it is a combination of triangles and
ruled (developable) surface patches (Fig. 5.1b). We design algorithms for the boundary
description in these cases and we study their bit-complexity.

Parametric curves stimulated our interest since the parametric representation has al-
ready been proven advantageous in the topology computation; for parametric curves in
Rn the bit-complexity is linear in n, whereas for the implicit case the dependence in n

seems to be exponential. In particular, for plane curves the bit-complexity of the implicit
and parametric case coincides [KRTZ20a] but for space curves the bit-complexity gap is
already of order O(d2), where d is the degree of the polynomials involved [CJP+21]. In
addition, parametric curves come up in various applications in control theory [Kur12], in
machine learning [SMC20] or in chemical engineering [CKLS18].

Previous work. There is a series of works for the problem of computing the convex
hull of curved arcs, given in parametric form, on the plane [SJVW87, DS90, BK91, JL05].
Nevertheless, in all these approaches, there are assumptions on the monotonicity and/or
the total curvature of the arcs. The corresponding algorithms are combinatorial and are
adaptations of algorithms for polygons. The resulting arithmetic complexity estimates are
optimal with respect to the number of curved edges they consider but they rely on several
oracles whose running time can be expensive. For instance, such oracles are considered for
the computation of bitangents, that are lines tangent to the curve at two points.

Bitangents’ computation is a problem of independent interest that appears in several
geometric applications, e.g., on belt synchronous of automobile engines [CLL+20]. Lee
and Kim [LK92] compute the common tangents to monotone curve segments. Parida
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Figure 5.2: On the left, a smooth plane curve and the bitangents on the boundary of the
convex hull (in red). On the right, the parameter intervals corresponding to arcs on the
boundary of the convex hull are annotated in orange.

and Mudur [PM95] present a heuristic algorithm for computing common tangent lines
of two parametric curves. Their algorithm is based on a rejection criterion that aims in
excluding portions of the curves that do not admit common tangent lines. Johnstone
[Joh01] reduces the problem of finding common tangents between a pair of parametric
curves to the intersection of parametric curves in a dual space. Then, he applies his
method for the convex hull computation of a smooth paramatric plane curve [Joh04]; the
bitangents now correspond to multiple points of the dual curve. After computing the
bitangents, he constructs the convex hull by walking along the curve, starting from a point
on the convex hull and leaping, every time a bitangent is found, to the other end of the
segment. Essentially, with this method we walk along the curve by walking along the
parameter interval. It applies only to smooth curves; for example, for the curve of Fig. 5.2,
starting from t0, we walk along the parameter interval (t0,+∞) and when we reach t1 we
leap to t2. Then, we continue walking on the parameter interval in the same direction,
that is on the interval (t2,+∞). On the contrary, for the curve in Fig. 5.3 that has a self
intersection, after leaping from the point ϕ(t1) to ϕ(t3), we must continue walking on the
parameter interval (−∞, t3) and not on (t3,+∞).

A more general approach for plane parametric curves with possible self-intersections is
proposed by Elber et al. [EKH01]. They express the parameter intervals that correspond
to the arcs of the curve on the boundary of the convex hull, as the complement of the
projection of the graph of a bivariate polynomial on one coordinate axis. Then, they sort
the arcs with respect to their normal angles and connect them accordingly with segments
whenever there is a gap. So, in some sense, the sorting compensates for the fact that now
the curve has self-intersections and the connections of the arcs of the curve are not trivial.
In practice, computing the arcs of the curve that are on the boundary of the convex hull
and sorting them is not straightforward. For an exact algorithm and an analysis of its
bit-complexity, a precise algebraic formulation of the problem is needed. Moreover, the
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Figure 5.3: On the left, a non-smooth plane curve and the bitangents on the boundary of
the convex hull (in red). On the right, the parameter intervals corresponding to arcs on
the boundary of the convex hull are annotated in orange.

presence of cusps is not considered.

A general algorithm for the case of implicit curves in the plane is given by [KYP92],
without bit-complexity estimates. Although the general idea of the algorithm is common
for parametric and implicit plane curves, it is important to take advantage of the parametric
representation when designing the necessary predicates. So, our algorithms for parametric
curves are not to be juxtaposed to the ones for implicit curves.

For space curves, Sedykh provides a detailed study of the singularities of the convex
hull’s boundary [Sed86b]. Nevertheless, in our case, a complete classification is not neces-
sary. Seong et al. [SEJK04] present an algorithm for the computation of the convex hull,
that is extension of the work of [EKH01] for plane curves. They describe the boundary
of the convex hull as a combination of developable surface patches and plane patches (tri-
angles). The plane patches are found by solving systems of polynomial equations and the
developable surface patches by tracing an implicit plane curve that expresses a bitangent
condition. As with the algorithm for plane curves, cusps are not treated and there are no
bit-complexity estimates. Ranestad and Sturmfels [RS09] compute the algebraic boundary
of the convex hull of a space curve, that is an irreducible polynomial defining the so-called
edge surface. However, this surface contains parts that are not on the boundary of the
convex hull. They extend their work for general algebraic varieties in [RS11] using duality.
An important result of Henrion [Hen11] states that the convex hull of parametric curves
in Rn can be represented as the projection of a spectrahedron, the feasible region of a
semidefinite program, at the price of introducing a certain number of lifting variables, that
is polynomial in the dimension. Nevertheless, although this expression of the convex hull is
appropriate for optimization, it does give information on the facial structure of the bound-
ary. Vinzant [Vin11] builds off the works [RS09, RS11, Hen11] and describes the faces of
the convex hull of parametrized curves using semidefinite programming, yet without pro-
viding much information about the connection of the different facets nor bit-complexity
estimates. Her results hold for parametric curves of any dimension. The convex hull of
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space curves of totally positive torsion is studied in [dIM22], who provide parametrizations
of the upper and lower hulls.

Other work on non-linear higher dimensional objects, however not related to our ap-
proach, is the one of [CKLS18], that sample points on a smooth parametric curve and then
compute inner polyhedral approximations that converge to the convex hull. Ierardi [HI93]
exploits duality to find the convex hull of general dimensional “curved polyhedra” following
a combinatorial method. We also refer to [BCD+96] for the convex hull of two circles in
R3 and to [GIHS01] for the convex hull of ellipsoids.

Contribution. We propose an algorithm for the convex hull computation of plane para-
metric curves, as well as one for parametric curves in R3. The algorithms apply to any
curve, as long as it is properly reparametrized (see [PD06] for an algorithm and [KRTZ20a]
for an analysis of its complexity), but require in the input a parameter interval I ⊂ R,
such that ϕ(I) is compact (Rem. 5.1). Throughout the chapter, we have assumed for sim-
plicity that the sum of the bitsizes of the boundary points of I is a small constant. The
algorithms share the basic idea and they both rely on our Support predicate (Sec. 5.3)
that applies to any dimension and checks if a given hyperplane is a supporting hyperplane
for the curve (see Sec. 5.2 for a definition). The latter problem is reduced to a condition of
sign-invariance of a univariate polynomial. We remark that for implicit curves designing
such a predicate is not straightforward.

The boundary of the convex hull of plane parametric curves comprises of arcs of the
curve and line segments, whose types we classify in Def. 5.2. The first step of the algorithm
is to compute all these line segments. This is realised by solving some polynomial systems.
However, among the solutions we obtain segments that do not lie on a supporting line
to the curve and thus, they are not on the boundary of conv(ϕ(I)) (see Fig. 5.4 for an
example). It is not needed at this point to check if they lie on a supporting line. The
second step consists of decomposing the curve at the endpoints of these segments; in this
way, every arc of the decomposition is either entirely on the boundary of the convex hull,
or it is contained in its interior. This is equivalent to decomposing the parameter interval I
at the parameters that correspond to the segments’ endpoints. At the third step, we start
from a point on ϕ(I), we follow the branches of the curve one by one and we check for every
branch if it is on the boundary of the convex hull by calling the Support predicate for an
arbitrary tangent line at the interior of the branch. The last step, amounts to connecting
the branches that are on the boundary accordingly with line segments. If the endpoint of
a branch is smooth, then determining the segment is trivial, since it lies on the tangent
line (and the other endpoint has been found at the first step). When the endpoint is not
smooth (i.e., cusp or endpoint of ϕ(I)), we check all the possible segments by employing
the Support predicate of Sec. 5.3.

The boundary of the convex hull of curves in R3 consists of a combination of triangle
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facets, whose types we classify in Def. 5.9, and of some surface patches (Def. 5.11). The
surface patches are ruled (they are generated by line segments connecting two points on
the curve) and also developable. They are part of the bisecant surface (Eq. (5.8)), which
is traced through the bisecant curve (Eq. (5.7)), an implicit plane curve in the space of
parameters. Finding the surface patches on the boundary is equivalent to determining
certain branches of the bisecant curve. The algorithm follows the same line as in the
2D case. First, we compute the triples of parameters that correspond to triangle facets,
through solving some polynomial systems. At the second step, we split the graph of
the bisecant curve into branches by computing a special purpose Cylindrical Algebraic
Decomposition (CAD) of I. The third step is to identify the surface patches that are on
the boundary of the convex hull. They correspond to branches of the bisecant curve. The
Support predicate is used again to find the branches of the bisecant curve that correspond
to surface patches. At the last step, we connect the surface patches with triangle facets.
Triangles with a smooth vertex that are on the boundary are revealed by the endpoints
of the branches of the bisecant curve. We call the predicate Support for the planes on
which there are triangles that do not have any smooth vertex. Then, the triangles that do
not belong on a supporting plane are discarded.

Our algorithms are built upon the algorithms of [EKH01] for plane curves and of
[SEJK04] for 3D curves. These approaches present challenges when it comes to imple-
mentation and lack analysis of their computational complexity. So, our goal is to bridge
the gap between a theoretical approach and one that can be practically implemented in a
working system. Moreover, linear facets (segments or triangles) with non-smooth vertices
(cusps or endpoints of ϕ(I)) require special treatment. This is done at the last step of
our algorithm, where we check if the corresponding lines or planes are supporting for ϕ(I).
When the facets have a smooth vertex, this is not necessary to do so, since the tangency
condition at the smooth point defines the facet uniquely.

A bit-complexity analysis, up to our knowledge, has been missing from literature. Our
main challenge was to minimize the bit-complexity by identifying the appropriate alge-
braic formulation that could eliminate expensive operations. By exploiting the problem’s
geometry, we show that treating the linear facets with non-smooth vertices at the last step
amounts to isolating the roots of a zero-dimensional system of the form {F1(X1) = · · · =
FN (XN ) = F (X, Y )}. We denote the bit-complexity of this operation by C(M,Λ, N)

(Def. 5.4). We emphasize that the last polynomial might not be square-free, if we consider
it as univariate polynomial in Y . Since there has not been extensive work on the complex-
ity of isolating roots of systems of this form, we express the bit-complexity with respect to
d, τ and C(M,Λ, N). We employ algorithms for univariate and bivariate solving, and the
resulting bit-complexities are in

ÕB
(
d7 + d6τ

)
+ C (d, τ, 2)
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(a) (b) (c)

Figure 5.4: (a) The graph of the curve parametrized by
(
−t2+1
t2+1

, −8t(t2−1)(t4−6t2+1)
t8+4t6+6t4+4t2+1

)
, (b)

segments tangent to the curve at two points or more (in blue) and (c) the ones that are on
the convex hull (in red).

for 2D curves (Thm. 5.6), and in

ÕB(d10 + d9τ) + C(d, d6τ, 1) + C(d, d+ τ, 3)

for 3D curves (Thm. 5.15). Using [DDR+22, Prop.19] for the case where N = 1 and our
results from Ch. 3, the previous bit-complexities become

ÕB
(
d10 + d9τ

)
for plane curves and

ÕB
(
d13 + d12τ

)
for space curves. Alternatively, one can employ the Las-Vegas algorithm of [BS16] forN×N
zero-dimensional polynomial systems. Then, by denoting by ω ≈ 2.372873 the exponent in
the complexity of matrix multiplication, the bit-complexities become ÕB(d2ω+5(d+ τ)) ≈
ÕB(d9.75(d + τ)) for plane curves and ÕB(d3ω+7(d + τ)) ≈ ÕB(d14.12 (d + τ)) for 3D
curves. So, our results lead to lower bit-complexity estimates. A preliminary version of
our algorithms is implemented in Maple; we give some examples in Sec. 5.6.

Outline. In Sec. 5.2 we give the basic background on rational curves in Rn and their
convex hull. A general predicate for parametric curves in any dimension is given in Sec. 5.3,
that decides if a hyperplane is supporting for the curve. In Sec. 5.4 we present the algorithm
for plane curves (Sec. 5.4.1) and its bit-complexity (Sec. 5.4.2). Analogously, in Sec. 5.5 we
present the algorithm for 3D curves (Sec. 5.5.1) and its bit-complexity (Sec. 5.5.2). Sec. 5.6
contains examples using our prototype implementation.
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5.2 Background on rational curves

For the sake of generality, we introduce some basic notions for rational curves in Rn and
their convex hull. Let C be an algebraic curve over Rn, parametrized by ϕ in Eq. (5.1).
Then, C is the Zariski closure of ϕ(R). We call ϕ(t) a parametrization of C. We say that
the parametrization is of size (d, τ) when the polynomials pi, qi have degree at most d and
bitsize τ , i ∈ [n]. The parametrization is proper, if it is injective for almost all points on
C [SWPD08, Ch. 4]. If it is not proper, reparametrization algorithms exist, e.g., [PD06]
(see [KRTZ20a] for an analysis of its complexity). Without loss of generality, we assume
that no component of the parametrization ϕ is constant. The point at infinity, p∞, is the
point on C we obtain for t→ ±∞ (if it exists). The tangent vector of the curve at a point
p = ϕ(t) is ϕ′(t).

Singular points on the curve correspond to shape features that are known as cusps and
self-intersections of smooth branches. Self-intersections are multiple points, i.e., points on
C with more than one preimages. The parameters that correspond to pairs of multiple
points are obtained by solving the square polynomial system [KRTZ20a, Lem. 11]:

hi(s, t) :=
pi(s)qi(t)− qi(s)pi(t)

s− t
, for i ∈ [n]. (5.2)

Cusps are points on the curve where the tangent vector is the zero vector. This is a
necessary and sufficient condition when the parametrization is proper [MC92]. It holds
that hi(t, t) = ϕ′i(t)q

2
i (t), for i ∈ [n]. Therefore, a parameter that gives a cusp of C is a

root of

H(t) :=
n∑
i=1

h2i (t, t) (5.3)

(see [KRTZ20a, Lem. 4.1]). Poles are parameters for whom ϕ is not well-defined, i.e., t ∈ R
such that

∏
i∈[n] qi(t) = 0.

We adopt the definitions of [Brø83] of a supporting halfspace and supporting hyperplane
for sets in Rn. Let C be a non-empty set in Rn. A supporting halfspace of C is a closed
halfspace K in Rn such that C ⊂ K and H ∩ C ̸= ∅, where H denotes the bounding
hyperplane of K. A supporting hyperplane of C is a hyperplane H in Rn which bounds a
supporting halfspace. If C is not contained in H, then H is a proper supporting hyperplane.
Then, the convex hull of a set in Rn, is the intersection of its supporting halfspaces.

Remark 5.1. Let I ⊂ R. For the convex hull conv(ϕ(I)) to be a compact subset of Rn,
I has to be either a union of closed intervals not containing any poles of ϕ or a union of
such closed intervals and intervals of the form (−∞, a], [a′,+∞), for a ≤ a′, a, a′ ∈ R, if
p∞ exists.
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5.3 Support: a predicate for parametric curves in Rn

Our algorithms are based on the following predicate that holds for curves in any dimension:
Given the implicit equation of a hyperplane ⟨a,x⟩ + c = 0, where a,x ∈ Rn and c ∈ R,
decide if it is a supporting hyperplane of ϕ(I). By definition, this holds if the hyperplane
bounds a supporting halfspace of ϕ(I). Then, the convex hull of the intersection points of
ϕ(I) and the hyperplane is a face on the boundary of the convex hull of ϕ(I) (see Fig. 5.5
for an example in two dimensions).

Given the parametric representation of the curve, we can reduce the support test for
the hyperplane in question to a condition of sign-invariance; for the hyperplane defined by
⟨a,x⟩ + c = 0 is supporting for ϕ(I) if and only if ⟨a, ϕ(t)⟩ + c ∈ R(t) has at least one
root in I and is sign-invariant in I. Therefore, we just have to isolate the real roots of
⟨a, ϕ(t)⟩+ c, since this allows to determine its sign over I.

Figure 5.5: The line ⟨a,x⟩+c = 0 is supporting for ϕ(I); ϕ(I) lies entirely in the halfplane
where ⟨a,x⟩ + c is positive. The line segment (in red) is on the boundary of the convex
hull.

5.4 Convex hull of parametric curves in R2

Let C be a plane curve parametrized by ϕ(t) = (ϕ1(t), ϕ2(t)) =
(
p1(t)
q1(t)

, p2(t)q2(t)

)
, defined as in

Eq. (5.1).We further assume that the parametrization is proper. We consider I ⊆ R, for
whom ϕ(I) is a compact subset of R2 (see Rem. 5.1). We make the following simplifying
assumptions:

Assumptions. (i) The point at infinity, if it exists and it is in ϕ(I), is not endpoint of
any segment. The reason is that, if this does not hold, we will not be able to obtain
these segments as solutions of a polynomial system. We can reparametrize the curve
to ensure that the point at infinity is not a segment’s endpoint, using a Las Vegas
algorithm in expected time ÕB(d2 + dτ) [KRTZ20a, Lem.7].

(ii) The real subset I has k ∈ O(1) boundary points of constant bitsize.
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(a) (b) (c)

Figure 5.6: Segments of type (a) I, (b) III and (c) IV and VI (in blue).

We compute a boundary description of conv(ϕ(I)). Its facets are line segments joining
two (or more) points on the curve. The boundary also consists of one-dimensional families
of points on the curve, which are zero-dimensional faces; they assemble to smooth arcs of
the curve (Fig. 5.1b). We will consider these arcs also as facets, by abuse of terminology.

In the next definition, we classify the line segments on the boundary of the convex hull
in several types (see also Fig. 5.6). For the set I ⊂ R, we denote by bd(I) its boundary.

Definition 5.2 (Types of line segments). We distinguish the following types of line
segments (I-VI) on the boundary of conv(ϕ(I)) according to their endpoints:

I. bitangent segments: segments on the common tangent line of two or more smooth
points of ϕ(I),

II. cusp-curve segments: segments connecting a cusp and a smooth point on the curve,
lying on the latter point’s tangent line,

III. cusp-cusp segments: segments whose endpoints are both cusps,

IV. endpoint-curve segments: segments connecting a point corresponding to a parameter
in bd(I) and a smooth point on the curve, lying on the latter point’s tangent line,

V. endpoint-cusp segments: segments connecting a point corresponding to a parameter
in bd(I) and a cusp,

VI. endpoint-endpoint segments: segments connecting two points corresponding to param-
eters in bd(I).

5.4.1 Algorithm

Now, we develop the different steps of our algorithm that computes a boundary description
of conv(ϕ(I)).
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Step 1: Computing the segments. We compute all segments of types I to VI for
ϕ(I) (Def. 5.2). They form a superset of the set of segments that are on the boundary
of conv(ϕ(I)) (Fig. 5.4). Each segment has a type (I to VI) and it is determined by
two parameter values, say a and b, such that ϕ(a) and ϕ(b) are the segment’s endpoints
respectively. We find the parameters that correspond to each type of segments by solving a
polynomial system and we denote by S the set of all these pairs of parameters. We assume
that for a given pair of parameters in S we can determine the type of the corresponding
segment in constant time.

We consider the equations in Z(s, t)

⟨ϕ(s)− ϕ(t), (−ϕ′2(s), ϕ′1(s))⟩ = 0 ,

⟨ϕ(s)− ϕ(t), (−ϕ′2(t), ϕ′1(t))⟩ = 0 .
(5.4)

We can easily verify that the pairs of parameters corresponding to segments of Types I to
III satisfy these equations. We divide them by (s− t)2, since it is always a factor and we
let H1(s, t), H2(s, t) ∈ Z[s, t] be their numerators respectively. We now have to compute
the isolated roots of the system {H1(s, t) = H2(s, t) = 0} over R2. This system has as
roots also the tuple of parameters that correspond to multiple points of the curve and the
tuples of poles. The pairs that correspond to multiple points can be viewed as bitangents
of length zero, and thus do not harm the correctness of the algorithm. As for the pairs of
poles, they can easily be excluded, by checking if any parameter is also a root of q1(s)·q2(s).

For the segments of types IV and V, that have an endpoint of the form ϕ(a), with
a ∈ bd(I), we isolate the roots of H1(s, a) ∈ Q[s] and we consider all the pairs (s, a) such
that s is a root of H1(s, a). For segments of type VI we just have to consider all pairs of
parameters in bd(I).

In that way, we can construct the set S, containing all the pairs of parameters.

Step 2: Decomposition of the curve. We subdivide I into a finite number of open
intervals and points, where the points of the decomposition are the parameters of all pairs in
S. Let Rt(s) = rest(H1, H2). The points of the decomposition are roots of the polynomial

P (s) := Rt(s)
∏

a∈bd(I)

(s− a) ·H1(s, a) . (5.5)

Every interval of the decomposition corresponds to a parametric arc that does not contain
endpoints of any segment and thus, it is either contained in the boundary of the convex
hull or in its interior.

Step 3: Computing the arcs. For every interval Ij of the decomposition of I computed
in Step 2, we work as follows: We pick any rational u ∈ Ij ; ϕ(u) is always a smooth point
on C since the singular points are given by parameters that are among the points of
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decomposition of I. We check if ϕ(u) is on the boundary of conv(ϕ(I)), which is the case
if and only if there is a supporting line of ϕ(I) passing from ϕ(u) [Brø83, Thm.4.3]. But
since ϕ(u) is smooth, the only possible supporting line is the tangent line to C at ϕ(u). So
we call the predicate Support for the tangent line at ϕ(u). Its equation is

⟨(x, y)− ϕ(u), (−ϕ′2(u), ϕ′1(u)⟩ = 0 .

Let ℓu(λ) ∈ Q[λ] be the numerator of the tangent line equation after substituting (x, y)

with the parametrization ϕ(λ). We isolate the real roots of ℓu(λ) in order to determine its
sign in I. If it is supporting to ϕ(I), then the parametric arc ϕ(Ij) is on the boundary of
conv(ϕ(I)).

Step 4: Connecting the facets. Having determined the curved facets on the boundary
at the previous step, we now describe how they connect with each other. In other words,
we compute the segments, among the ones found in the first step, that are on the boundary
of the convex hull. Two neighboring facets, intersect at a point of the curve. Since this
point is on the boundary, there has to be a supporting line to the curve passing from it
[Brø83, Thm.4.3]. If it is a smooth point, then the supporting line can only be the tangent
line. When the point is not smooth, there is not a unique possible choice for the supporting
line. So, for every arc of the curve that is on the boundary, we check each of its endpoints:

• If the endpoint is smooth, then the parametric arc is adjacent to the bitangent
segment passing from this point.

• If the endpoint is not smooth but it belongs to a segment that has only one non-
smooth point, then, the segment will be found with this procedure from the other
one of its two adjacent curved facets.

• If the endpoint is not smooth and it belongs to a segment with two non-smooth end-
points, that is cusp-cusp (type III), endpoint-cusp (type IV) and endpoint-endpoint
(type V) segment, we need to check every possible combination in order to find the
ones that contribute to the boundary of the convex hull. Thus, for every such seg-
ment we check if it lies on a supporting line to the curve by calling the predicate
Support.

The parameters that correspond to cusp-cusp segments are also among the solutions
of the system {H(s) = H(t) = 0}. The equation of the line passing through ϕ(s)

and ϕ(t) is

⟨ϕ(s)− (x, y), (−(ϕ2(s)− ϕ2(t)), (ϕ1(s)− ϕ1(t))⟩ = 0 .

We substitute (x, y) with ϕ(λ) in the previous equation. Let L(s, t, λ) ∈ Z[s, t, λ]
be the polynomial obtained after clearing the denominators . Calling the predicate
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Support for all the lines connecting cusps, amounts to computing the isolated roots
of

H(s) = 0 ,

H(t) = 0 , (5.6)

L(s, t, λ) = 0 .

For the segments of type V, for all a ∈ bd(I), we compute the polynomial L(a, t, λ) ∈
Q[t, λ] and then solve the system {H(t) = L(a, t, λ) = 0}. For the endpoint-endpoint
segments, we solve for λ the polynomials L(a, b, λ) ∈ Q[λ] for every a, b ∈ bd(I).

Output of the algorithm. The output is circular doubly linked list L; this data struc-
ture consists of a sequence of records, each one corresponding to a facet of the convex hull.
Every record contains the data required to describe the facet and a link to a previous and a
next record. The data is a parameter interval, say [t1, t2], together with a parametrization;
the image of the interval over the parametrization is an arc of ϕ(I) or a segment on the
boundary of conv(ϕ(I)). The link to the previous record points to the neighboring facet
containing ϕ(t1), and the link to the next record points to the neighboring facet containing
ϕ(t2). Note that the intervals that are contained in the data of each record are all bounded
sub-intervals of I, except from at most one which may be of the form (−∞, a] ∪ [b,+∞)

(Rem. 5.1).

Remark 5.3 (Degeneracies). In a degenerate situation, several line segments on the
boundary of the convex hull can lie on the same supporting line (e.g., Fig. 5.4). Conse-
quently, each segment will be accounted for multiple times with different pairs of endpoints.
However, this problem can be resolved during a post-processing stage, where the systems’
solutions from the first step are analyzed to identify such situations.

5.4.2 Complexity analysis

We introduce the following definition, which will serve in expressing the bit-complexity.

Definition 5.4. We consider the zero-dimensional polynomial system

{F1(X1) = · · · = FN (XN ) = F (X1, . . . , XN , Y ) = 0}

in Z[X1, . . . , XN , Y ]. If all the polynomials have degree O(M) in each variable and bitsize
in Õ(Λ), then C(M,Λ, N) is the bit-complexity of computing isolating intervals for the
roots. C(M,Λ, N) has the following properties:

1. It is linear in Λ.

2. It is increasing with N .
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Step 1. We compute the polynomials H1, H2 in ÕB(d3 + d2τ): To construct the nu-
merator of each Hi we perform multiplications of univariate polynomials in the variable s
and in the variable t; this costs ÕB(d2τ) [vzGG13, Ch.8]. The bi-degree of the resulting
expression is in (O(d),O(d)) and its bitsize in Õ(τ). Then, we divide by (s− t)2 and this
costs ÕB(d3+d2τ) by adapting [vzGG13, Ex.10.21] to the bivariate case. The polynomials
H1 and H2 are then of size (O(d), Õ(d+ τ)).

Isolating the isolated roots of the system {H1(s, t) = H2(s, t) = 0} costs ÕB(d6 + d5τ)

[KS15]. If it is not zero-dimensional, then we have first to compute the gcd of H1 and
H2 and their gcd-free parts. This is done in ÕB(d6 + d5τ). We can also compute the
resultant of H1 and H2 with respect to s or t at no extra cost. Notice that both resultants
are the same polynomial, since the system is symmetric. Let Rt(s) = rest(H1, H2). It
is of size (O(d2),O(d2 + dτ)) [BPR06, Prop. 8.46]. For the segments of types IV-V, for
every a ∈ bd(I), we construct the polynomial Ha(t) by performing O(d) evaluations of
polynomials of size (O(d), Õ(d + τ)) at a in ÕB(d(d + τ)) [BLPR15, Lem. 6]. Then we
isolate its roots in ÕB(d3 + d2τ) [MSW15, Thm. 5].

Step 2. We decompose I at the endpoints of all the segments, which are roots of the
polynomial P (Eq. (5.5)). Every endpoint is approximated by an isolating interval, so what
it suffices, is that for two consecutive parameters in the sorted list, the respective isolating
intervals do not overlap. The polynomial P is of size (O(d2), Õ(dτ)) and we find isolating
intervals of its roots in ÕB(d6 + d5τ) [MSW15, Thm. 5]. Every endpoint of an isolating
interval is a rational of size Õ(σi), and for all of them the bitsizes sum to Õ(d3τ).

Step 3. We take a rational inside every interval of the decomposition, say ui with i =

1, . . . ,O(d2). The sum of their bitsizes is again in Õ(d3τ). For every ui, ℓui(λ) ∈ Q[λ] is
a polynomial of size (d, Õ(dσi + τ)), so we isolate its roots in ÕB(d3σi + d2τ) [MSW15,
Thm. 5]. In the same bit-complexity we can decide if ℓui(λ) is non-negative in I. Summing
for all i we get a total bit-complexity in ÕB(d6τ).

Step 4. To keep only the zero dimensional part of the solutions of the system in Eq. (5.6)
we work as follows: Let L(s, t, λ) = lD(s, t)λ

D + · · ·+ l1(s, t)λ+ l0(s, t), where D = O(d).
For i = 1, . . . , D, we compute Rsi (s) = rest(li(s, t), H(t)) and Rti(t) = ress(li(s, t), H(s))

in ÕB(d5τ) [LPR17, Lem. 4]. We compute the gcd of Rs0(s), . . . , RsD(s) in ÕB(d7 + d6τ)

[KRTZ20a, Lem. 2] and then the gcd of the later with H(s) in ÕB(d3τ) [BLM+15, Lem. 4].
Let h̃s(s) the gcd-free part of H(s). It has bitsize O(d+τ) [BLM+15, Lem. 4]. Analogously,
we compute the gcd of Rt0(t), . . . , RtD(t), H(t) and we let h̃t(t) be the gcd-free part of the
last polynomial. Then, the system {h̃s(s) = h̃t(t) = L(s, t, λ) = 0} is zero-dimensional and
gives the isolated solutions of the system in Eq. (5.6). The bit-complexity of isolating its
roots is C(d, d+ τ, 2).
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Examining the multiplicities of the roots, allows to find the pairs (s0, t0) for whom
L(s0, t0, λ) is sign-invariant in I, and therefore decide which segments are on the boundary
of the convex hull. For the segments of type V, for all a ∈ bd(I), we compute the polynomial
L(a, t, λ) and then solve the system {H(t) = L(a, t, λ) = 0}. Since the number of boundary
points is assumed to be in O(1), this cost is C(d, τ, 1). Step 4 requires also manipulating
the output data structure; we perform O(d2) updates, each one in constant time.

Corollary 5.5. The bit-complexity of the algorithm is in ÕB(d7 + d6τ) + C(d, d+ τ, 2).

In the theorem that follows we summarize our result.

Theorem 5.6. Let C be a curve with a proper parametrization ϕ(t) as in Eq. (5.1), of size
(d, τ). Let I ⊂ R such that ϕ(I) is compact in R2. There is an algorithm that computes
the convex hull of ϕ(I) in ÕB(d7 + d6τ) + C(d, d + τ, 2). The output of the algorithm
is a circular doubly linked list, containing the parameter intervals and the corresponding
parametrizations for each facet; the image of the interval over the parametrization is a
parametric arc or a segment on the boundary of conv(ϕ(I)). The circular doubly linked list
has N ∈ O(d2) elements.

Proof. The correctness of the algorithm is based on the fact that the Support predicate,
correctly detects the curve branches that are on the boundary of the convex hull (Step 3).
On connecting the curve branches with segments, we refer to the selection criterion of the
gift-wrapping algorithm for the set of points ϕ(I); given a point p on the boundary of the
convex hull, the next point with whom it connects, is a point q ∈ ϕ(I) such that the line
that passes from p and q is strictly supporting for the convex hull. The connection phase
in Step 4 respects this criterion.

For the size of the output, we have that N ∈ O(d2) by taking into account the degrees of
the systems entailed in the computation of segments of the different types and Assumption
5.4(ii).

Remark 5.7. If the curve is smooth, without self-intersections, we have that N ∈ O(d).
[EKH01]; this is since there are O(d) inflection points and poles. If there is a bitangent
connecting two smooth points ϕ(t1), ϕ(t2) with t1 < t2 then in the interval [t1, t2], there
exists at least one parameter that corresponds to an inflection point or a pole. Moreover,
since there are O(d) cusps, the number of Type II and III segments that are on the boundary
of the convex hull is also in O(d). The segments of Type IV, V, VI are already in O(1)
(Assumption 5.4(ii)).

Corollary 5.8. Using the bit-complexity results of Ch. 3 (see Rem. 3.8) for C(d, d+ τ, 2),
we have that the boundary of the convex hull of a plane parametric curve can be computed
in ÕB(d10 + d9τ) bit-operations.
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5.5 Convex hull of parametric curves in R3

Let ϕ(t) = (ϕ1(t), ϕ2(t), ϕ3(t)) =
(
p1(t)
q1(t)

, p2(t)q2(t)
, p3(t)q3(t)

)
, defined as in Eq. (5.1). Again, the

ϕ is proper and the polynomials pi, qi have degree at most d and bitsize τ , i = 1, 2. We
consider I ⊆ R, for whom ϕ(I) is a compact subset of R3 (see Rem. 5.1). We make again
the simplifying Assumptions 5.4 of Sec. 5.4.

Our goal is to compute a boundary description of conv(ϕ(I)). The facets of the convex
hull are triangles with vertices points on the curve. In addition, it includes one-dimensional
families of segments with endpoints on the curve, which are one-dimensional faces. These
families assemble to two-dimensional surface patches, to which we refer from now on as
facets, with abuse of terminology.

The next definition classifies the triangles on the boundary of the convex hull in several
types (see Fig. 5.7).

Definition 5.9. We distinguish the following types of triangles on the boundary of conv(ϕ(I))
according to their vertices:

I. tangent triangles: there is at least one vertex that is a smooth point of C and the
triangle lies on a tangent plane to C at this point. The other two vertices of the
triangle are either smooth points, at which the plane is also tangent, or cusps,

II. cuspidal triangles: the three vertices of the triangle are cusps,

III. endpoint triangles: there is at least one vertex of the triangle that is given by a
parameter in bd(I).

Remark 5.10. If we consider all the possible combinations of the three vertices of a triangle
(smooth point, cusp, endpoint), we see that there exist ten different configurations. Among
them, three correspond to tangent triangles, one to cuspidal triangle and six to endpoint
triangles. We divide them in the three categories of Def. 5.9 due to the following reasons:

• To define uniquely a plane that passes from a smooth point of C and is tangent to the
curve at this point, we need to specify another point belonging on the plane. Therefore,

(a) (b) (c)

Figure 5.7: In green (a) a tangent triangle, (b) a cuspidal triangle and (c) an endpoint
triangle.
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the plane in which the tangent triangle belongs is not affected by the smoothness (or
not) of the two other vertices.

• The cuspidal and endpoint triangles can be obtained as solutions of a polynomial
system of special structure, which is simpler comparing to the system corresponding
to tangent triangles.

The one-dimensional families of segments on the boundary of the convex hull form
developable surface patches, that can be also classified (see Fig. 5.8).

Definition 5.11. We distinguish the following types of surface patches according to the
vertices of the spanning segments:

I. bitangent surface patches: The segments’ endpoints are smooth points of C and the
segment lies on the plane tangent to the curve at these two points,

II. cuspidal surface patches: All segments have a common endpoint that is a cusp,

III. endpoint surface patches: All segments have a common endpoint that is given by a
parameter in bd(I).

(a) (b) (c)

Figure 5.8: (a) A bitangent surface patch, (b) a cuspidal surface patch and (c) an endpoint
surface patch.

The pairs of parameters that give these type of segments, are points of a plane curve.
Let E(s) :=

∏
a∈bd(I)(s− a). We define the bisecant curve as the zero set of the equation

G(s, t) :=
det(ϕ(s)− ϕ(t), ϕ′(s), ϕ′(t)) · E(s) · E(t)

(s− t)4
= 0 . (5.7)

In the previous equation, we divide by (s− t)4 since, as it can be shown, it is a factor of
the numerator. We multiplied by both E(t) and E(s) to preserve the symmetry. A point
(s, t) ∈ R2 satisfying Eq. (5.7) is such that:
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• ϕ(s) − ϕ(t), ϕ′(t), ϕ′(s) ̸= 0 and there is a bitangent plane to the curve at ϕ(s) and
ϕ(t), or

• ϕ(s) = ϕ(t) and/or ϕ′(t) = 0 and/or ϕ(s) = 0, i.e., ϕ(t) is a multiple point and/or
ϕ(t) is a cusp and/or ϕ(s) is a cusp, or

• s ∈ bd(I) or t ∈ bd(I).

Now, we consider all the segments ϕ(s)ϕ(t), with s and t satisfying G(s, t) = 0. This
gives rise to the bisecant surface in R3:

B =

{
T ϕ(s) + (1− T )ϕ(t) |T ∈ [0, 1], G(s, t) = 0

}
. (5.8)

The bisecant surface is ruled, since through every point of the surface there is a straight-
line segment that lies on it, and it is also developable [Bla05, §5.1]. The surface patches of
Def. 5.11 are part of this surface.

Only certain parts of the bisecant surface are on the boundary of the convex hull. We
will use the bisecant curve to find and describe these parts.

5.5.1 Algorithm

We now describe the steps of our algorithm.

Step 1: Computing the triangles. We compute all triangles of types I to III for
ϕ(I) (Def. 5.9). They form a superset of the set of triangles that are on the boundary
of conv(ϕ(I)). Each triangle has a type (I to III) and is determined by three parameter
values, say a, b and c, such that ϕ(a), ϕ(b) and ϕ(c) are the triangle’s vertices. We will find
the parameters that correspond to each type of triangles by solving a polynomial system
and we will denote by S the set of all such triples. We assume that for a given triple of
parameters in S we can determine the type of the corresponding triangle in constant time.

To find the different types of triangles, it is easier to factorize G (Eq. (5.7)) and consider
each type separately. We know that cusps of C are given by parameters that are among the
roots of H(s) (Eq. (5.3)). Therefore, in the case where there are cusps, the polynomial G
can be factorised as Ĥ(s) ·Ĥ(t) ·Ĝ(s, t) ·E(s) ·E(t), where Ĥ corresponds to the parameters
that give cusps. We consider the equations in Z(s, t, u):

det(ϕ(u)− ϕ(t), ϕ′(t), ϕ′(s))
(s− t)(t− u)2

= 0 , (5.9)

det(ϕ′(s), ϕ′(t), ϕ′(u))

(s− t)(t− u)(s− u)
= 0 . (5.10)

Let (s, t) ∈ R2 such that Ĝ(s, t) = 0. Then, ϕ(s) and ϕ(t) are both smooth points, since
we have excluded the factors that correspond to cusps. Let P be the common tangent



5.5. CONVEX HULL OF PARAMETRIC CURVES IN R3 135

plane passing from ϕ(s) and ϕ(t). Then, Eq. (5.9) expresses the fact that the plane P
intersects the curve at ϕ(u). Eq. (5.10) expresses the condition that the three tangent
vectors, ϕ′(s), ϕ′(t), and ϕ′(u) lie on the same plane and so P is also tangent to C at ϕ(u),
if it is smooth. Let H1, H2 ∈ Z[s, t, u] be the numerators of Eq. (5.9) and Eq. (5.10)
respectively. From the isolated roots of the system {Ĝ = H1 = H2 = 0} we can obtain the
tangent triangles with three or two smooth vertices (when ϕ(u) is a cusp).

We consider the equations in Z(s, t, u):

det(ϕ(u)− ϕ(s), ϕ(u)− ϕ(t), ϕ′(u))
(t− u)2(s− u)2(s− t)

= 0 ,

det(ϕ(u)− ϕ(s), ϕ(u)− ϕ(t), ϕ′(s))
(t− u)(s− u)2(s− t)2

= 0 .

Let H3, H4 ∈ Z[s, t, u] be their numerators respectively. For the tangent triangles with one
smooth vertex and two cusps, we solve the system:

H(s) = 0 ,

H(t) = 0 ,

H3(s, t, u) = 0 .

(5.11)

The system has also as roots the parameters corresponding to cuspidal triangles, since ϕ(u)
can be a cusp. For the endpoint triangles, for every a ∈ bd(I), to find the planes that go
through it, we solve the system

H1(s, t, a) = 0 ,

H4(s, t, a) = 0 .
(5.12)

For any a, b ∈ bd(I), to find the planes that go through ϕ(a), ϕ(b), we solve the equation

H4(s, a, b) = 0 . (5.13)

Step 2: Decomposition of the bisecant curve. We consider the graph of G and we
compute a special purpose Cylindrical Algebraic Decomposition (CAD) of the s-axis. In a
CAD we decompose the s-axis into a finite number of points and open intervals delimited
by these points over which the graph of the bisecant curve G has a cylindrical structure,
i.e., the number of branches of the graph of the curve is constant. We call the points
defining the decomposition special values. Special fibers are the points on the curve above
the special values. Regular fibers are the points on the curve above additional points
between two special values.

In a CAD the special values are the projections of the s-critical points and the verti-
cal asymptotes. We refine the decomposition by further subdividing the intervals at the



136 CHAPTER 4

(a) (b)

Figure 5.9: (a) An arc of the graph of the bisecant curve G and (b) the surface patch that
corresponds to the part of the arc between (s0, t0) and (s′, t′) (in purple).

projections of the t-critical points and at the parameters of all triples corresponding to the
triangles computed in the previous step.

Let (s0, t0) be a point on the graph of G, such that the line segment connecting ϕ(s0)
and ϕ(t0) is on the boundary of the convex hull and is on a bisecant surface patch. If we
move along the arc of the graph of G around the point (s0, t0) and we take a neighboring
point (s′, t′) that is sufficiently close, then, the segment ϕ(s′)ϕ(t′) is also on the boundary
of the convex hull, part of the same bisecant surface patch (see Fig. 5.9). In particular, by
moving along the arc in both directions starting from (s0, t0), we get bitangent segments
that are on the bisecant surface patch, and thus, obtain a way to trace it. We continue
until we find point (s′′, t′′) that corresponds to a segment that is on the intersection of the
bisecant surface patch with another facet. This point can be such that:

• ϕ(s′′) and ϕ(t′′) are vertices of triangle (so, s′′ and t′′ are both special values of the
decomposition), or

• (s′′, t′′) is a self-intersection point of G, i.e., there are two surface patches that inter-
sect at the segment with endpoints ϕ(s′′) and ϕ(t′′). So, in this case s′′ is an s-critical
point and therefore a special value of the decomposition.

All the previous discussion suggests that an arc of the decomposition of G (that is
obtained by the decomposition of the s-axis) corresponds to a surface patch that is either
on the boundary of the convex hull or in its interior.

Step 3: Computing the bisecant surface patches. We want to find the arcs of G
that correspond to the bisecant surface patches on the boundary of the convex hull. The
following lemma gives a criterion. It is a direct consequence of the discussion in Step 2.

Lemma 5.12. We consider a smooth and monotonous arc on the graph of G, with A =

(s1, t1) and B = (s2, t2) its endpoints. If there is no point on the arc that corresponds to a
bitangent segment belonging on a triangle, then, if any interior point on the arc corresponds
to a bitangent segment on the boundary of the convex hull then the entire arc corresponds
to a bitangent surface patch on the boundary of the convex hull.
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Over every open interval of the decomposition of the s-axis there are several arcs of
the graph of G, corresponding to bitangent surface patches. From Lem. 5.12, in order
to determine if a patch is on the boundary it suffices to take an interior point of the arc
and check if the corresponding tangent plane is supporting for ϕ(I), using the Support

predicate.
For every (open) interval Ij of the decomposition, we work as follows: We pick any

rational u ∈ Ij and we solve G(u, t) = 0. For every v such that G(u, v) = 0, we have
that ϕ(u) and ϕ(v) are always smooth points on C since the singular points are given by
parameters that are among the points of decomposition of the s-axis. We check if the
segment connecting ϕ(u) and ϕ(v) is on the boundary of conv(ϕ(I)), which is the case if
and only if there is a supporting plane of ϕ(I) passing from ϕ(u) and ϕ(v). But since both
points are smooth, the only possible supporting plane is the tangent plane to C at ϕ(u)
and ϕ(v). So we call the predicate Support for this plane. Its equation is

det((x, y, z)− ϕ(u), ϕ′(u), ϕ′(v)) = 0 .

Let ℓu,v(λ) ∈ Q[λ] be the numerator of the tangent line equation after substituting (x, y)

with the parametrization ϕ(λ). We isolate the real roots of ℓu,v(λ) in order to determine
its sign in I. If the plane is supporting to ϕ(I) then the arc of G over Ij , containing the
point (u, v), corresponds to a bisecant surface patch that is on the boundary of conv(ϕ(I)).

Step 4: Connecting the facets. Having determined the bisecant surface patches on
the boundary at the previous step, we now describe how they connect with each other. In
other words, we compute the triangles, among the ones found in the first step, that are
on the boundary of the convex hull. Two neighboring facets intersect at a line segment
with endpoints that are points on the curve. Let ϕ(s) and ϕ(t) be the endpoints of such a
segment. Since this segment is on the boundary, there has to be a supporting plane to the
curve containing it. If at least one point is smooth, then the supporting plane can only be
the plane tangent to the curve at the smooth point and passing from both. If none of the
points is smooth, then the supporting plane is not uniquely defined.

So, for every arc of the graph of G corresponding to a bisecant surface patch on the
boundary, we check each of its endpoints. Let (s, t) be one of them.

1. If at least one of ϕ(s) and ϕ(t) is a smooth point, say ϕ(s), then the plane that is
tangent to C at ϕ(s) and passes from ϕ(t) is uniquely defined. This plane passes from
a third point ϕ(u) on C, that was found in Step 1. So, there is only one possible
plane facet (if there are no degeneracies) that is neighboring, and this is the triangle
with vertices ϕ(s), ϕ(t) and ϕ(u). In a degenerate situation, there will be more than
one u, corresponding to the multiple interections of the plane with the curve, and the
different triangles that belong on the same plane will be considered multiple times
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(see Rem. 5.13).

2. If both ϕ(s) and ϕ(t) are cusps or endpoints of ϕ(I), then we need to check every
possible combination in order to find the triangle containing this segment that is on
boundary of the convex hull.

For the cuspidal triangles, let (s, t, u) ∈ R3 be a triple of parameters corresponding
to cusps. Then,

⟨(ϕ(s)− ϕ(u))× (ϕ(s)− ϕ(t)), ϕ(s)− (x, y, z)⟩ = 0

is the implicit equation of the plane in R3 that goes through ϕ(s), ϕ(t) and ϕ(u). We
substitute (x, y, z) with ϕ(λ) in the previous equation. Let L(s, t, u, λ) ∈ Z[s, t, u, λ]
be the polynomial obtained after clearing the denominators. Calling the predicate
Support for all these planes, amounts to isolating the roots of the system

H(s) = 0 ,

H(t) = 0 ,

H(u) = 0 ,

L(s, t, u, λ) = 0 .

(5.14)

For the triangles with non-smooth vertices that involve an endpoint, we distinguish
three cases for the system that we solve:

• If one vertex is an endpoint and the other two cusps, the system is of the form
{H(s) = H(t) = L(s, t, a, λ) = 0}, where a ∈ bd(I),

• If two vertices are endpoints and the third one is a cusp, the system is of the
form {H(s) = L(s, a, b, λ) = 0}, where a, b ∈ bd(I),

• If all the vertices are endpoints, then we just have to solve the univariate equa-
tion L(a, b, c, λ) = 0, where a, b, c ∈ bd(I).

So, for a surface patch that corresponds to an arc of the graph of G with endpoints
(s1, t1) and (s2, t2), the neighboring facets from each side can be determined.

Output of the Algorithm. We will use the half-edge data structure, or doubly con-
nected edge list (DCEL), to represent the output [dBCvKO08, Ch.2.2]. This data structure
is used to represent an embedding of a planar graph in the plane by maintaining the fol-
lowing records: vertices, edges and faces. By extension, it is widely used to describe the
boundary of three-dimensional convex polyhedra and is also convenient to describe the
boundary of the convex hull of ϕ(I). In our case, a face is a 2-dimensional facet of the
convex hull, that can be either a triangle or a bisecant surface patch. An edge is intersec-



5.5. CONVEX HULL OF PARAMETRIC CURVES IN R3 139

tion of two facets, i.e, a parametric arc or a segment connecting two points of the curve.
A vertex is the intersection of two edges of the convex hull, i.e., a point on the curve.

The principle of this data structure is to ‘decompose’ every edge into two half-edges
with opposite directions. All the records are associated to a half-edge and this allows to
encode all the combinatorial information of the planar graph, or of the boundary of the
convex hull in the present case. In particular:

• a vertex is associated to one (arbitrary) halfedge with the vertex as starting point,

• an edge is associated to one halfedge,

• a face is associated to some halfedge on its boundary,

• a halfedge is associated to the vertex that is its origin, to a "twin" halfedge, that is
the halfedge with the opposite direction, and to the face that is incident to the edge
on the left side, when we traverse it from the origin to its endpoint.

Although it is a combinatorial data structure, we can also store geometrical information
on the records, by giving them extra attributes:

• For a vertex, since it a point on the curve, we store the corresponding parameter,

• For an edge, if it is a parametric arc we store the corresponding parameter interval.
If it is a bitangent segment, it is described by the two parameters that correspond to
the endpoints of the segment,

• A face can be either a triangle or a bisecant surface patch. In the first case, it
is described by the parameters of the incident vertices. In the second case, it is
described by the reference to its corresponding arc of the graph of G. An arc is
described by its endpoints, its projection on the s-axis and its ordering with respect
to other branches over the interval.

Remark 5.13 (Degeneracies). In a degenerate situation, several triangles on the bound-
ary of the convex hull can lie on the same supporting plane (e.g., Fig. 5.13b) or several
surface patches can be included in a bigger surface patch. Consequently, each boundary
element will be accounted for multiple times. However, this problem can be resolved during
a post-processing stage, where the systems’ solutions from the first step are analyzed to
identify such situations.

5.5.2 Complexity analysis

In this subsection, we analyse the bit-complexity of the algorithm step by step. Again, we
use C(M,Λ, N) (Def. 5.4) to express it.
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Step 1. We construct the polynomials G,H1, H2, H3, H4 in ÕB(d3τ) [vzGG13, Ch. 8].
We factorize G as Ĥ(s) · Ĥ(t) · Ĝ(s, t) ·E(s) ·E(t) in ÕB(d4+d3τ) [DDR+22, Prop. 21], by
considering G(s, t) as a polynomial in s or in t and then finding the gcd of the coefficients.

To find the triangles with two or three smooth vertices we need to find the isolated
roots of the system {Ĝ(s, t) = H1(s, t, u) = H2(s, t, u) = 0}. In particular, we are only
interested in the first two coordinates of the roots; if (a, b, c) is a solution to the system
and ϕ(u) is smooth, then all the possible permutations of a, b, c are solutions as well. So,
we can obtain the triples corresponding to tangent planes with smooth vertices just by
the (s, t)-projections. We take the resultant R1(s, t) := resu(H1, H2) ∈ Z[s, t]. It is a
polynomial of degree O(d2) in each variable and bitsize in Õ(dτ) [BPR06, Prop. 8.72].
It is computed in ÕB(d7τ). Then, we consider the system {Ĝ = R1 = 0}. We take the
resultant R2(s) := rest(Ĝ, R1) ∈ Z[s]. It is of size

(
O(d3), Õ(d2τ))

)
[KS15, Cor. 5] and

is computed in ÕB(d8τ) [KS15, Lem. 6]. At last, we isolate the roots of {R2 = Ĝ = 0} in
ÕB(d9 + d8τ) [KS15] (if the system is not zero-dimensional we first compute the gcd and
the gcd-free parts).

Tangent triangles with two smooth vertices can be found by computing the isolated
roots of the system {Ĝ(s, t) = H(u) = H1(s, t, u) = 0}. In particular, we are only interested
this time in the last two coordinates of the roots; if (a, b, c) is a solution to the system
and ϕ(a), ϕ(b) are smooth, then (b, a, c) is a solution as well. Thus, we can group the
triples corresponding to the same triangle. The resultant R3(s, u) := rest(Ĝ,H1) ∈ Z[s, u]
is of size (O(d2), Õ(dτ)) and is computed in ÕB(d7τ). We isolate the roots of {H(u) =

R3(s, u) = 0} in ÕB(d8 + d7τ).

For the triangles with one smooth point and the cuspidal triangles, we find the isolated
roots of the system of Eq. (5.11) in ÕB(d7 + d6τ) in the same way as for the system in
Eq. (5.6).

At last, for every a ∈ bd(I), we compute H1(s, t, a) and H4(s, t, a) by performing O(d2)
evaluations at a; this costs ÕB(d3τ) and the resulting polynomials have bitsize in Õ(d+ τ)
[BLPR15, Lem.7]. Then, we solve the bivariate systems of Eq. (5.12) in ÕB(d6+d5τ). For
all a, b ∈ bd(I), we compute H4(s, a, b) (Eq. (5.13)) in ÕB(d3τ) [BLPR15, Lem.7]. These
polynomials have bitsize in Õ(d+ τ) and so we isolate the roots in ÕB(d3+d2τ) [MSW15,
Thm. 5].

Step 2. The decomposition points of the s-axis are:

• s-projections of critical points ofG, and thus roots of rest(G, ∂G/∂t). The graph ofG
is symmetric with respect to the line s = t, so we do not consider also rest(G, ∂G/∂s),

• The s-values where vertical asymptotes occur. These values are roots of the leading
coefficient of G(s, t), when considered as a polynomial in t,
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• parameters corresponding to a triangle, and thus roots of

H(s) ·R2(s)
∏

a∈bd(I)

(s− a) · rest(H1(s, t, a), H4(s, t, a))
∏

b∈bd(I)

H4(s, a, b)

 .

The product of these polynomials is of size (O(d3), Õ(d2τ)). We isolate its roots in
ÕB(d9 + d8τ) [MSW15, Thm. 5]. Every endpoint of an isolating interval is a rational of
size Õ(σi), and for all of them the bitsizes sum to Õ(d5τ).

Step 3. We take a rational point qi inside every interval of the decomposition (e.g. the
midpoint); it has bitsize Õ(σi). We construct the polynomial G(qi, t) by performing O(d)
evaluations of univariate polynomials at qi. Then, calling the predicate Support for every
intersection point on the graph of G, amounts to isolating the roots of the system

G(qi, t) = 0

H1(t, qi, λ) = 0 (5.15)

This costs C(d, dσi, 1). Summing for all i, since C is linear in the bitsize, we obtain
C(d, d6τ, 1).

Step 4. To keep only the zero dimensional part of the solutions of the system in Eq. (5.14)
we work as follows: Let L(s, t, u, λ) = lD(s, t, u)λ

D + · · · + l1(s, t, u)λ + l0(s, t, u), where
D = O(d). For i = 1, . . . , D, we compute

Rsi (s) = resu(rest(li(s, t, u), H(t)), H(u)) ∈ Z[s] ,

Rti(t) = resu(ress(li(s, t, u), H(s)), H(u)) ∈ Z[t] ,

Rui (u) = rest(ress(li(s, t, u), H(s)), H(t)) ∈ Z[u] .

This is done in ÕB(d8τ) [KS15, Lem. 6]. by successive resultant computations. They are
polynomials of size

(
O(d3), Õ(d2τ)

)
[BPR06, Prop.8.72]. For v = s, t, u, we compute the

gcd of Rv0(v), . . . , RvD(v) in ÕB(d10+d9τ) [KRTZ20a, Lem. 2] and then the gcd of the later
withH(v) in ÕB(d6τ) [BLM+15, Lem. 4]. Let h̃v(v) the gcd-free part ofH(v). It has bitsize
O(d+ τ) [BLM+15, Lem. 4]. Then, the system {h̃s(s) = h̃t(t) = h̃u(u) = L(s, t, u, λ) = 0}
is zero-dimensional and gives the isolated solutions of the system in Eq. (5.14). The bit-
complexity of isolating its roots is C(d, d+ τ, 3). Computing the isolated roots of the other
systems in this step is dominated by the previous computations.

Corollary 5.14. The bit-complexity of the algorithm is in ÕB(d10 + d9τ) +C(d, d6τ, 1) +

C(d, d+ τ, 3).

In the theorem that follows we summarize our result.
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Theorem 5.15. Let C be a curve in R3 with a proper parametrization ϕ(t) as in Eq. (5.1),
of size (d, τ). Let I ⊂ R such that ϕ(I) is compact in R3. There is an algorithm that
computes the boundary of the convex hull of ϕ(I) in

ÕB
(
d10 + d9τ

)
+ C(d, d6τ, 1) + C(d, d+ τ, 3) .

The output of the algorithm is a doubly connected linked list describing the facets of conv(ϕ(I)),
which are O(d3).

Proof. The correctness of the algorithm is based on Lem. 5.12 and the fact that the
Support predicate correctly detects the bisecant surface patches that are on the bound-
ary. On connecting the bisecant surface patches with triangles, we refer to the selection
criterion of the gift-wrapping algorithm for the set of points ϕ(I). Given a segment that
is on the boundary of the convex hull (and also on the boundary of a surface patch), the
next point with whom it connects, is a point q ∈ ϕ(I) such that the plane that contains
the segment and passes from q is strictly supporting for the convex hull. The connection
phase in Step 4 respects this criterion. For the number of the facets on the boundary of
the convex hull, we consider the degrees of the systems entailed in the computation of
triangles and Assumption 5.4(ii).

Corollary 5.16. Using the bit-complexity results of Ch. 3 (see Rem. 3.8) for C(d, d+ τ, 3)
and [DDR+22] for C(d, d6τ, 1), we have that the boundary of the convex hull of a space
parametric curve can be computed in ÕB(d13 + d12τ) bit-operations.

5.6 Implementation and Examples

In this section, we provide some examples using our prototype implementation in Maple.
It is built upon the real root isolation routines of Maple’s RootFinding library and the
PTOPO package [KRTZ20b], to compute the topology and visualize parametric curves in
two and three dimensions.

Example 5.17. We consider a curve in R2 parametrized by

ϕ(t) =

(
−

2
(
12t2 + 7t− 12

) (
1679t4 + 2688t3 − 5074t2 − 2688t+ 1679

)
15625 (t2 + 1)3

,

(t− 7) (7t+ 1)
(
2929t4 + 2688t3 − 2574t2 − 2688t+ 2929

)
15625 (t2 + 1)3

)
.
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(a) (b)

Figure 5.10: (a) The curve of Example 5.17 (in green) and the segments computed at the
first step of the algorithm (in blue). (b) The segments on the boundary of the convex hull
(in red).

The parametrization is proper. We take I = R. We compute the polynomials

H1(s, t) =128092t4s4 + 86016t3s4 + 43008t4s3 − 159912t2s4 + 292544t3s3 − 25000t4s2−

− 43008t s4 + 43008t2s3 + 129024t3s2 + 34364s4 − 187456t s3 + 265264t2s2−

− 187456t3s+ 34364t4 − 129024t s2 − 43008t2s+ 43008t3 − 25000s2+

+ 292544st− 159912t2 − 43008s− 86016t+ 128092 ,

H2(s, t) =− 128092t4s4 − 43008t3s4 − 86016t4s3 + 25000t2s4 − 292544t3s3 + 159912t4s2−

− 129024t2s3 − 43008t3s2 + 43008t4s− 34364s4 + 187456t s3 − 265264t2s2+

+ 187456t3s− 34364t4 − 43008s3 + 43008t s2 + 129024t2s+ 159912s2−

− 292544st+ 25000t2 + 86016s+ 43008t− 128092 .

We isolate the real roots of the system {H1 = H2 = 0}; they correspond to the blue
segments in Fig. 5.10a. Then R is decomposed at the s-projections of the roots as shown
in Fig. 5.11. The segments on the boundary of the convex hull are shown in red in Fig. 5.10b
and the parameter intervals corresponding to the arcs on the boundary of conv(ϕ(R)) are
annotated in orange in Fig. 5.11.

Figure 5.11: Decomposition of the parameter interval in Example 5.17.

Example 5.18. We consider a curve in R3 parametrized by

ϕ(t) =

(
−(t+ 3)(3t− 1)

5(t2 + 1)
,
2(t− 2)(2t+ 1)

5(t2 + 1)
,
8(t− 2)(2t+ 1)(t+ 3)(3t− 1)(7t2 + 2t− 7)(t2 − 14t− 1)

625(t2 + 1)4

)
.

The parametrization is proper. We take I = R. We compute the bisecant curve, which is
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defined by the polynomial

G(s, t) =64 (5s2t2 − s2 + 12st− t2 + 5)(17s2t2 + 62s2t+ 62st2 − 17s2 − 68st− 17t2 − 62s−

− 62t+ 17) · (31s2t2 − 34s2t− 34st2 − 31s2 − 124st− 31t2 + 34s+ 34t+ 31) .

The curve has neither cusps nor endpoints. We compute the polynomials H1, H2 and
R1 = resu(H1, H2) and we solve the system {G = R1 = 0}. There are 96 real roots. For
simplicity, in Fig. 5.12a we show only 24 of them on the graph of G; they correspond to the
boundary segments of the triangle facets on the boundary of conv(ϕ(R)). Then, for the
second step of the algorithm, we decompose the s-axis at the s-projections of these roots
and of the critical points of G and at the values where G has a vertical asymptote; there
are 46 decomposition points in total. The branches of the bisecant curve that correspond
to bitangent surface patches on the boundary are annotated in Fig. 5.12b. By sampling
points on the graph of the bisecant curve, we construct the bisecant surface in Fig. 5.13a.
At last, again by sampling but only on the annotated branches of the bisecant curve we
construct the convex hull in Fig. 5.13b. It consists of 8 surface patches and triangle facets
that assemble to two squares.

(a) (b)

Figure 5.12: (a) The graph of the bisecant curve of Example 5.18. (b) The arcs of the
bisecant curve that correspond to bisecant surface patches are shown in orange.

Example 5.19. We consider the curve in R3 parametrized by

ϕ(t) =

(
−3t2 − 1

t2 + 1
,− t (3t

2 − 1)

(t2 + 1)2
,−(t6 − 1)(3t2 − 1)

(t2 + 1)4

)
.

The parametrization is proper. We take I = R. The bitangent curve is defined by the
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(a) (b)

Figure 5.13: (a) The bisecant surface and (b) the convex hull of the curve of Example 5.18.

(a) (b)

Figure 5.14: (a) The bisecant curve and (b) the convex hull of the curve in Example 5.19

polynomial

G(s, t) =− 8(s+ t)(63s7t7 + 81s7t5 − 33s6t6 + 81s5t7 + 45s7t3 − 159s6t4 − 201s5t5−

− 159s4t6 + 45s3t7 + 27s7t+ 13s6t2 + 195s5t3 + 295s4t4 + 195s3t5 + 13s2t6+

+ 27s t7 + 11s6 + 93s5t+ 211s4t2 + 375s3t3 + 211s2t4 + 93s t5 + 11t6 + 13s4−

− 31s3t− 169s2t2 − 31s t3 + 13t4 + 17s2 + 31st+ 17t2 + 15) .

The graph of G is shown in Fig. 5.14a. There are no triangle facets on the boundary of
the convex hull. The convex hull consists of two surface patches (Fig. 5.14b); the red one
corresponds to the factor (s+ t) of G, and the blue one corresponds to the other factor.
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