
HAL Id: tel-04167975
https://theses.hal.science/tel-04167975

Submitted on 21 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Individual and combined toxicity of a mycotoxin, the
deoxynivalenol and a trace metal, the cadmium on the

intestine
Su Luo

To cite this version:
Su Luo. Individual and combined toxicity of a mycotoxin, the deoxynivalenol and a trace metal, the
cadmium on the intestine. Agricultural sciences. Institut National Polytechnique de Toulouse - INPT,
2019. English. �NNT : 2019INPT0072�. �tel-04167975�

https://theses.hal.science/tel-04167975
https://hal.archives-ouvertes.fr


En vue de l'obtention du

DOCTORAT DE L'UNIVERSITÉ DE TOULOUSE
Délivré par :

Institut National Polytechnique de Toulouse (Toulouse INP)
Discipline ou spécialité :

Pathologie, Toxicologie, Génétique et Nutrition

Présentée et soutenue par :
Mme SU LUO

le lundi 23 septembre 2019

Titre :

Unité de recherche :

Ecole doctorale :

Individual and combined toxicity of a mycotoxin, the deoxynivalenol and a
trace metal, the cadmium on the intestine

Sciences Ecologiques, Vétérinaires, Agronomiques et Bioingénieries (SEVAB)

Toxicologie Alimentaire (ToxAlim)
Directeur(s) de Thèse :
MME ISABELLE OSWALD

  

Rapporteurs :
M. GUNNAR SUNDSTOL ERIKSEN, NORWEGIAN VETERINARY INSTITUTE

Mme NOLWENN HYMERY, UNIVERSITE DE BRETAGNE OCCIDENTALE

Membre(s) du jury :
M. FRANCOIS BLACHIER, INRA PARIS, Président

Mme ISABELLE OSWALD, INRA TOULOUSE, Membre
M. PHILIPPE PINTON, INRA TOULOUSE, Membre

  



1 
 

Résumé Français 
Le déoxynivalénol (DON) est une mycotoxine de type trichothécène de type B, principalement 

produite par le genre Fusarium. C'est l'une des mycotoxines les plus répandues, elle est 

largement trouvée dans les céréales et les produits dérivés des céréales. Le cadmium est un 

composant de la croûte terrestre et un polluant environnemental courant. C'est un métal trace 

non essentiel et toxique pour la santé des humains et des animaux. Bien que la toxicité 

individuelle du DON et du Cd ait été bien étudiée, leur effet combiné est peu étudié. L'intestin 

étant le premier organe ciblé par les contaminants alimentaires, le but de cette étude est 

d'explorer l'effet combiné du DON et du Cd sur la fonction de barrière intestinale à l'aide de 

modèles in vitro, in vivo et ex vivo. 

In vitro, des cellules épithéliales intestinales humaines Caco-2 ont été traitées avec une série de 

concentrations de DON et de Cd (0-30 µM) seules ou en combinaison. La fonction de barrière 

des cellules Caco-2 a été évaluée par la mesure de la résistance électrique transépithéliale 

(TEER), de la perméabilité paracellulaire et des protéines jonctionnelles. Le mélange DON, Cd 

et DON+Cd a diminué le TEER et augmenté la perméabilité paracellulaire de manière 

dépendante de la concentration. L'abondance des protéines jonctionnelles E-cadhérine et 

occludine a été considérablement réduite dans les cellules exposées au DON, au Cd et au 

DON+Cd, tandis que l'expression de ZO-1 et de claudine-3 et -4 est restée inchangée. Le 

mélange DON Cd a eu des effets légèrement supérieurs ou similaires à ceux du contaminant le 

plus toxique. 

In vivo, les rats ont été exposés à des aliments contaminés par du DON (8,2 mg / kg), et à de 

l'eau de boisson contaminée par du Cd (5 mg / L) ou au mélange DON+Cd pendant 4 semaines. 

Les résultats n'ont montré aucun effet sur la prise de poids corporel au cours de l'expérience. 

Des dommages morphologiques légers caractérisés par un œdème au niveau de la lamina 

propria et un aplatissement et une fusion des villosités ont été découverts chez le rat exposé à 

chaque contaminant. Le score lésionnel du jéjunum était plus élevé chez tous les animaux traités 

que chez les animaux témoins. Une diminution significative de la profondeur de la crypte 

jéjunale a été observée chez les rats exposés au DON, au Cd et au DON+Cd, alors que la hauteur 

des villosités n'était pas affectée. Une immunomarquage plus faible de l'E-cadhérine dans le 

jéjunum de rats exposés à des contaminants seuls ou en association a également été observée, 

alors que l'occludine n'a diminué que chez les rats exposés au DON et au DON+Cd. Comme 
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indiqué in vitro, l'exposition in vivo au DON et au Cd a induit des effets similaires à ceux du 

contaminant le plus toxique. 

Des explants jéjunaux de porcs ex vivo ont été exposés au DON (0-24 µM), au Cd (0-96 µM) 

et à la combinaison de DON+Cd. Le DON seul et le mélange DON Cd ont stimulé la réponse 

immunitaire chez le jéjunum en régulant positivement l'expression d'ARNm de IL-1β, IL-1α, 

IL-8 et TNF-α de manière dose-dépendante, tandis que le Cd seul n'a pas affecté ces gènes. 

L'expression génique des métallothionéines (MT), y compris MT1A et MT2A, était régulée 

positivement de manière dose-dépendante par le Cd seul et le mélange, mais n'était pas affectée 

par le DON seul. La régulation à la hausse des gènes de cytokines et de MT induite par le 

DON+Cd était similaire à celle obtenue par le DON ou le Cd seul. 

En conclusion, le DON et le Cd modifient tous deux la fonction de barrière intestinale et l'effet 

combiné est similaire avec leur effet individuel. L'effet du mélange n'a démontré aucune 

synergie, ce qui suggère que la réglementation sur chaque contaminant protège suffisamment 

les consommateurs exposés aux mélanges de DON et de Cd. 

Mots clés: déoxynivalénol, cadmium, effet combiné, fonction de barrière intestinale, protéines 

jonctionnelles, expression génique 
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Summary 
Deoxynivalenol (DON) is a type B trichothecene mycotoxin mainly produced by Fusarium 

genus. It is one of the most prevalent mycotoxins widely found in cereals and cereal-derived 

products. Cadmium is a component of earth’s crust and also a common environmental pollutant. 

It is a non-essential trace metal and toxic for humans and animals health. Although the 

individual toxicity of DON and Cd has been well investigated, their combined effect is poorly 

studied. As intestine is the first organ targeted by food contaminants, the aim of this study is to 

explore the combined effect of DON and Cd on the intestinal barrier function using in vitro, in 

vivo and ex vivo models.  

In vitro, the  human intestinal epithelail cells Caco-2 were treated with a series of concentrations 

of DON and Cd (0-30 µM) alone or in combination. The barrier function of Caco-2 cells was 

assessed through the measurement of transepithelial electrical resistance (TEER), paracellular 

permeability and junctional proteins. DON, Cd and DON+Cd mixture decreased the TEER and 

increased the paracellular permeability in a concentration-dependent manner. The abundance 

of junctional proteins E-cadherin and occludin was considerably reduced in cells exposed to 

DON, Cd and DON+Cd, while the expression of ZO-1, and claudin-3 and -4 remained 

unchanged. The mixture DON+Cd induced slightly higher or similar effects than the most toxic 

contaminant. 

 In vivo, rats were exposed to DON-contaminated feed (8.2 mg/kg feed), and Cd-contaminated 

drinking water (5 mg/L) or to the mixture DON+Cd for 4 weeks. The results showed no effect 

on body weight gain during the experiment. Mild morphological damage characterized by 

edema in lamina propria and villi flattening and fusion was found in rat exposed to each 

contaminant. The lesional score of jejunum was higher in all the treated animals than that in 

control animals. A significant decrease of jejunal crypt depth was observed in rats exposed to 

DON, Cd and DON+Cd, whereas villi height remained unaffected. A lower immunostaining of 

E-cadherin in the jejunum of rats exposed to contaminants alone or in combination was also 

observed, whereas occludin was only decreased in rats exposed to DON and DON+Cd. As 

shown in vitro, in vivo exposure to both DON and Cd induced similar effects than the most 

toxic contaminant. 

Ex vivo, jejunal explants of pigs were exposed to DON (0-24 µM), Cd (0-96 µM) and in 

combination DON+Cd. DON alone and mixture DON+Cd stimulated immune response in 

jejunum by upregulating mRNA expression of IL-1β, IL-1α, IL- 8 and TNF-α in a dose-
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dependent manner, while Cd alone did not affect these genes. Gene expression of 

metallothioneins (MTs) including MT1A and MT2A was dose-dependently upregulated by Cd 

alone and mixture, but not affected by DON alone. The upregulation of cytokine and MTs genes 

induced by DON+Cd was similar than by DON or Cd alone. 

In conclusion, both DON and Cd alter intestinal barrier function and the combined effect is 

similar with their individual effect. The effect of the mixture did not demonstrate any synergy, 

suggesting that regulation on individual contaminant is protective enough for consumers 

exposed to DON and Cd mixtures.  

 

Keywords: Deoxynivalenol, cadmium, combined effect, intestinal barrier function, junctional 
proteins, gene expression 
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Introduction 
 
1. Intestine  

The gastrointestinal tract (GT) is the interface for the interaction of external and internal 

environment. Its primary functions include food digestion, nutrient absorption, hormone 

secretion and immune response. These functions are supported by the unique structure of 

layered GT, which is divided into four layers from the inside to the outside, including the 

mucosa, the submucosa, the muscularis propria and the serosa (Rao and Wang 2010) (Fig.1). 

Mucosa is the deepest layer being consisted of three layers. The first layer is composed of a 

single layer of epithelial cells covering the second layer, the lamina propria, which consists of 

connective tissue and lymph nodes, and the third layer is muscularis mucosae. Below the 

mucosa is the submucosa, which contains inflammatory cells, lymphatics, autonomic nerve 

fibers, and ganglion cells, as well as arteries and small venous channels. Beneath the submucosa 

is the muscularis propria, which rests on the outermost layer called serosa. These different 

layers are not isolate from each other but combined by connective tissue, nerves and vessels 

and function together (Rao and Wang 2010).  

Among these layers, the first layer of mucosa named as epithelial cells or epithelium is 

structurally and functionally the pivotal part.  This single-cell layer lining the gut lumen, 

efficiently provides a selective filter, preventing the permeation of harmful luminal molecules 

and affording the appropriate absorption of nutrients and water (Groschwitz and Hogan 2009; 

Suzuki 2013). The intestinal epithelium is renewed rapidly and frequently. The mature and 

absorptive enterocytes on the top of villi die and exfoliate in 3-5 days, which is beneficial to 

remove the damaged cells. The stem cells on the base of intestinal crypt continually divide and 

provide proliferating cells, which differentiate into mature enterocytes during migrating upward 

to replace the dead cells in villi (Wells et al. 2017). The balance between cell apoptosis and 

proliferation plays an important role in maintenance of intestinal homeostasis and barrier 

function. 

The barrier function of intestinal epithelium is achieved by tight and adherens junction 

proteins (Fig.2) , which connect to the cellular cytoskeleton linking the adjacent cells to tightly 

seal the intercellular space (Groschwitz and Hogan 2009; Suzuki 2013). The tight junction 

proteins (TJs) located in apical side consist of transmembrane proteins including claudins, 

junctional adhesion molecules (JAMs) and occludin and intracellular scaffold proteins such as 

zonula occludens (ZO-1, -2 and -3). ZOs and occludin play an important role in regulation and 
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maintenance of TJ assembly (Suzuki 2013), while claudins act as both tightening (Claudin-3, -

4, -7 ect.) and pore-forming (Claudin-2 and -15) protein in TJ, which positively and negatively 

impact the paracellular permeability (Schumann et al. 2012; Lu et al. 2013). The adherens 

junction proteins (AJs) beneath the TJs like E-cadherin initiate and maintain the cell-cell 

adherion and support TJ formation (Garcia et al. 2018).  In addition, junctional proteins interact 

with the cytoskeleton network not only to regulate paracellular solute and water flux but also 

to integrate such diverse processes as gene transcription, tumor suppression, cell proliferation, 

and cell polarity (Schneeberger and Lynch 2004). Disruption of these proteins, followed by 

increased paracellular permeability, induces activation of intestinal immune system and tissue 

injury leading to disturbance of homeostasis and systemic diseases (Suzuki 2013). Therefore, 

understanding of the alteration of junctional proteins is important on revealing the dysfunction 

of intestinal barrier caused by food contaminants. 

The gut is the first barrier line to prevent organisms from the external harmful substances, 

which also makes it the first target of food contaminants, such as pathogens, toxins and other 

chemicals (Pinton and Oswald 2014; Payros et al. 2017). These contaminants can change 

intestinal morphology, modulate intestinal immunity, and disturb intestinal microbial 

homeostasis, consequently leading to dysfunction of intestine. Among these toxic food 

contaminants, mycotoxins and heavy metals are very common and the most studied ones. In 

the present study, we are going to investigate the toxicity of a mycotoxin, Deoxynivalenol, and 

a trace metal, cadmium or their combination on intestinal function. 

 

 

 

 



11 
 

 
Figure 1 The structure of gastrointestinal tract (Rao and Wang 2010) 

 

 
Figure 2 Molecule structure of the intercellular junction of intestinal epithelial cells (Suzuki 
2013) 

 

2. DON       

Fungi like Aspergillus, Fusarium and Penicillium are common pathogens infecting crops in 

the fields or during storage. They can produce various toxic secondary metabolites known as 
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mycotoxins, including zearalenone (ZEN), fumonisins (FUM), aflatoxins (Afla) , patulin (PAT), 

ochratoxin A (OTA) and trichothecenes (TCT) (Pinton and Oswald 2014; Payros et al. 2016). 

Among them, TCT mainly produced by Fusarium are a big family of over 150 toxins classified 

into A, B, C and D groups according to their molecular structure (McCormick et al. 2011; 

Proctor et al. 2018). Deoxynivalenol (DON) belongs to type B TCT and has a worldwide 

occurrence in cereals and cereals-derived products (Maresca 2013; Pierron et al. 2016a). Due 

to its property of emesis induction following acute exposure, DON is also called vomitoxin 

(Maresca 2013). DON possesses heat-resistance making it persistent throughout the food chain 

and it raises a worldwide concern (Pinton and Oswald 2014).  

2.1.  Occurrence, exposure and regulation of DON in food and feed 

Data collected from 21 European countries have shown that 44.6%, 43.5% and 75.2% 

of unprocessed grains of undefined end-use, food and feed were contaminated by DON, with 

the highest concentration in maize, wheat and oat grains and derived products (EFSA 2013). 

Among these grains, wheat is more sensitive to DON accumulation. In a survey on the 

worldwide occurrence of mycotoxins, up to 55% wheat samples from northern and central 

Europe were positive for DON (Rodrigues and Naehrer 2012). The latest Biomin global 

mycotoxin survey showed that in 2895 tested finished feed and raw cereal samples, 64% of 

them was positive with DON in Europe. In each part of Europe the contamination of DON 

appears similar. DON is also the most prevalent mycotoxins in North and South America, as 

well as in Asia and Africa (BIOMIN 2019). The main contributors of DON exposure for human 

are grain-based products as bread, rolls and pasta. The average chronic exposure to DON ranges 

from 0.2 to 2.0 μg / kg body weight (b.w.) / day (EFSA 2017). The tolerable daily intake (TDI) 

of DON was set at 1μg / kg b.w./day (EFSA 2017). However, the exposure level for young 

children is close to or even higher than the TDI. For example, in Germany the high consumers 

in the group of 4-6 years old children are chronically exposed to DON at a level of 2.7 fold 

higher than the TDI (EFSA 2013). Chronic and acute exposure to DON for animals range from 

3.9 to 43.3μg / kg b.w./day and from 11.6 to 317.9μg / kg b.w. (EFSA 2013). 

To protect human and animal health, many countries established the maximum 

concentration of DON in food and feed. European Commission regulated the level of DON in 

food for human direct consumption ranges from 0.2 to 0.75 mg / kg depending on the food 

category and age groups of exposed population, in complementary and complete feedstuffs 

from 0.9 to 5 mg / kg depending on the groups of exposed animal population and species (Table 

1 ) (European Union 2006a, b). The US Food and Drug Administration has determined an 
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advisory level of 1 ppm of DON on finished wheat products intended for human consumption, 

10 ppm on grains and grain by-products used for cattle and chicken, 5 ppm in grain-based feed 

for pig and other animals (Food and Drug Administration 2010). 

 

Table 1. Recommendation for DON in foodstuffs/feedstuffs in Europe (European Union 
2006a, b) 

 
Foodstuffs Maximum levels 

(mg/kg) 
Unprocessed cereals other than durum wheat, oats and maize 1.25 

Unprocessed durum wheat and oats 1.75 

Unprocessed maize 1.75 

Cereals intended for direct human consumption, cereal flour (including maize 
flour, maize meal and maize grits) bran as end product marketed for direct human 
consumption and germ, with the exception of foodstuffs  

0.75 

Pasta dry 0.75 

Bread (including small bakery wares), pastries, biscuits, cereals snacks and 
breakfast cereals 

0.5 

Processed cereal-based foods and baby foods for infants and young children 0.2 

Feedstuffs Maximum content in 
mg/kg relative to a feed 
with a moisture content 
of 12 % 

Feed materials   

- Cereals and cereal products  with the exception of maize by-products  8 

- Maize by-products 12 

Complementary and complete feedstuffs with the exception of: 5 

- complementary and complete feedstuffs for pigs 0.9 

- complementary and complete feedstuffs for calves (< 4 months), lambs 
and kids 

 

2 
 

 

2.2.  Toxicokinetics of DON 

How DON is transported into the intestinal epithelial cells is still unclear. It is likely to 

be transported by passive diffusion as the cell entry of DON was not saturated when Caco-2 

cells were exposed to 5 to 30 µM of DON (Videmann et al. 2007; Maresca 2013). Pig is the 

most sensitive farm animal to the toxicity of DON and its absorption in pig is rapid. In vitro 

intestinal absorption of DON analyzed by a dynamic in vitro GI-model is 51%, and most 

absorption take place in the jejunal compartment (Avantaggiato et al. 2004). In another in vivo 
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study, chronic exposure to DON (5.7 mg/kg diet, 5-8 weeks) showed a higher oral 

bioavailability with 89% than acute exposure (5.7 mg/kg diet, single bolus) with 54% in pig. 

DON was detected in serum samples as early as 15 min after chronic and actute exposure 

(Goyarts and Dänicke 2006). After feeding pigs with 4.2 mg DON/kg feed, the peak of DON 

concentration in serum was observed at 4.1 h. (Dänicke et al. 2004; EFSA 2017). DON can be 

transformed into less toxic metabolite DOM-1 by the microflora in colon of human and other 

monogastric animals, then excreted with feces. However, human microflora has a lower 

transformation efficiency than rodents, such as mouse and rat. Large amounts of ingested DON 

is conjugated to glucuronides or sulfonates in the liver and is excreted with urine or feces (Fig.3) 

(Payros et al. 2016; EFSA 2017). DON is rapidly excreted within 24 h and the metabolite DON-

15-glucuronide is the main urinary biomarker in human (Vidal et al. 2018). 

 
Figure 3 Absorption, metabolism and excretion of DON in human and monogastric animals. 

DOM-1, de-epoxide metabolite of DON; DON-GA, glucuronide derivetives of DON; DOM-1-

GA, glucuronide derivetives of DOM-1 (Payros et al. 2016). 

 

2.3.  Mode of action of DON 

The most frequent reported modes of action on DON are ribotoxic stress and oxidative 

stress. It is known that via its epoxy group DON binds to the 60s ribosomal subunit and target 

on the peptidyl transferase. This interaction inhibits the initiation and elongation of peptide 

chains of protein synthesis resulting in an inhibition of RNA, DNA and protein synthesis, which 

called ‘ribotoxic stress’ (Waśkiewicz et al. 2014; EFSA 2017). Upon DON binding to 

ribosomes, the ribosome-associated double-stranded RNA-dependent protein kinase (PKR) and 
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the hematopoietic cell kinase (Hck) are activated within 5 minutes. Subsequently the 

downstream sensor of PKR eukaryotic initiation factor 2α (eIF2α) is phosphorylated, thereby 

inhibiting translation (Zhou et al. 2003b, 2014). On the other hand, DON is able to trigger ER 

stress by decreasing the glucose regulated protein 78 (GRP78) (Shi et al. 2009), followed by 

the activation of the PKR-like ER kinase (PERK), one of the sensors under ER stress, which 

induces phosphorylation of eIF2α leading to a global translation inhibition (Wek et al. 2006; 

Tsuru et al. 2016).  

Following the ribotoxic stress, various downstream events occur. The DON-induced 

PKR and Hck activation triggers activation of the mitogen-activated protein kinases (MAPKs), 

including p38; extracellular signal regulated protein kinase 1 and 2 (ERK 1/2) and c-Jun N-

terminal kinase 1 and 2 (JNK 1/2) (Pestka 2008). MAPKs activation induces cell apoptosis at 

high dose and mRNA expression of pro-inflammatory cytokine genes at low dose (Zhou et al. 

2003a, 2005). In addition, recent reports demonstrated that DON induces rRNA cleavage by 

PKR/Hck-driven p-38 activation in the RAW264.7 cells, which could impair ribosome function 

and leading to cell apoptosis (Li and Pestka 2008; He et al. 2012). 

Since the past several years, oxidative stress has also been considered as a potential 

toxicity mechanism of DON toxicity. Oxidative stress is triggered by over production of 

reactive oxygen species (ROS) including hydroxyl radical (HO-), superoxide anion (O-2) and 

perhydroxyl radical (HOO-) or reactive nitrogen species (RNS), such as nitric oxide (NO) 

(Mishra et al. 2014). Several in vitro studies illustrated that DON exposure markedly induced 

DNA damage by inducing ROS production, inhibited activity of the antioxidant system 

including glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione 

reductase (GR) and glutathione peroxidase (GPx), and increased lipid peroxidation leading to 

cell apoptosis (Zhang et al. 2009b; Dinu et al. 2011; Lautert et al. 2014). In vivo experiments 

using broiler chickens showed that DON (7.54±2.20 mg/kg feed) dietary exposure for 10 days 

induced mRNA expression of Xanthine oxidoreductase (XOR, associated with cellular defense 

enzyme systems) up-regulation, whereas that of hypoxia-inducible factor 1 (HIF1α) and Heme-

oxigenase (HMOX) downregulation in the liver, both of which are sensitive markers of 

oxidative injury. In the jejunum the mRNA of HMOX and XOR were up-regulated, while in 

the ileum, only XOR was up-regulated (Osselaere et al. 2013). These data suggest that oxidative 

stress is an important mechanism of action of DON toxicity. 

2.4.  Toxicity of DON 
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Toxicity of DON depends on its capacity to break through such biological barriers as 

intestinal or blood brain barriers and to impact the functions and viability of the cells forming 

such organic systems (Maresca 2013). DON is able to impair the intestinal, immune and 

nervous systems thus exerts its immunotoxicity, genotoxicity, reproductive and developmental 

toxicity and neurotoxicity (EFSA 2017). The symptoms of DON poisoning, in the case of acute 

exposure, include diarrhea, emesis, abdominal stress, headache and dizziness; while in the case 

of chronic dietary exposure, include anorexia, decrease of body weight gain and low nutrition 

efficiency (Pestka 2008).  

2.4.1. Immunotoxicity 

DON has either an immunostimulatory or immunosuppressive effect depending on the 

duration and doses of exposure (Pestka et al. 2004; Liao et al. 2018). For instance, an increased 

IgA concentration in the serum and lower mRNA expression of IFN-γ and TGF-β in mesenteric 

lymph node of pigs exposed to DON (2.2-2.5 mg / kg feed) was observed. Meanwhile, DON 

exposure altered vaccinal immune response in animals (Pinton et al. 2008). DON exposure (0.5-

2mg/kg b.w.) for 14 days increased the population of CD8+ cells in the spleen and CD4+ T 

cells in mesenteric lymph node (MLN) of BALB/c mice. The expression of TLR4 in spleen and 

TLR2-4 in MLNs was decreased. In addition, the level of IgA and IgE in serum was reduced 

and increased respectively, while the mucosal IgA was significantly increased in the duodenum. 

The level of inflammatory cytokines as IFN-γ, IL-2, IL-4 and IL-6 was increased in the serum 

in DON-exposed animals compared to control animals (Islam et al. 2013). A higher 

concentration of DON at 11.4 mg / kg feed exposure for 30 days, induced  significant 

lymphocyte apoptosis and immunosuppression in the lymphoid organs of rats (Bracarense et al. 

2016). These results indicate that the immune system in different species is extremely sensitive 

to the toxicity of DON. 

2.4.2. Genotoxicity 

DON exerts its genotoxicity by inducing oxidative damage to DNA. Human peripheral 

blood lymphocytes were exposed to DON (6.25-500 ng/mL, which equal to 0.02-1.7 µM) for 

6, 12 and 24h, lipid peroxidation, DNA damage and protein expression of DNA repair genes 

were observed (Yang et al. 2014). DON (12.5-50 µM) exposure for 8h was also reported to 

induce genotoxicity in intestinal cells IEC-6  indicated by phosphorylated histone H2AX, a 

marker of DNA double-strand breaks (Payros et al. 2017). In human liver cell line HepG2, 

DON ranging from 3.75 to 30 µM induced DNA strand breaks after 1h exposure via ROS 

production  (Zhang et al. 2009b). These in vitro studies demonstrated that DON possesses 
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genotoxicity properties. Nevertheless, no correlation was found between DON and tumor or 

cancer thus it was classified in group 3 by the International Agency for Research on Cancer 

(IARC 1993). 

2.4.3. Reproductive and developmental toxicity 

Recent studies in different animal models have highlighted the link between DON 

exposure and the deficiency of maternal reproduction and fetus development (Yu et al. 2017).  

An in vitro study performed on pig oocytes and zygotes demonstrated that 1.88 µM of DON 

markedly inhibited the meiotic progression and maturation of pig oocytes and delayed the 

development of pig zygotes (Alm et al. 2002). DON (4.2 mg/ kg) exposure of sows at 63 and 

70 days of gestation, is able to pass placental barrier entering into placenta, which may change 

the population of leukocytes and lymphocytes of fetus (Goyarts et al. 2010). Oral exposure of 

female rats to DON (2.5 and 5 mg/ kg b.w/d) by daily gavage at 6-19d of gestation, significantly 

decreased the body weight gain, crown-rump length, and vertebral ossification of fetus (Collins 

et al. 2006). These in vivo data indicate that DON pass through the placental barrier, 

subsequently induces restriction of fetus development. 

2.4.4. Neurotoxicity 

There is a potential link between DON exposure and neuronal diseases. It was reported 

that DON (1-100 µM) exposure for 48h altered the functions and decreased the viability of 

microglia and enterocytes, which are responsible for brain homeostasis (Razafimanjato et al. 

2011). In addition, DON is capable of reducing the viability of brain endothelial cells and 

destroying the blood-brain barrier. DON at 1 and 10 µM significantly decreased the TEER and 

increased the paracellualer permeability of primary porcine brain capillary endothelial cells,   

with a decreased viability at 10 µM after 48h exposure (Behrens et al. 2015). This process is 

contribute to entrance of DON into the central nervous system and alteration of brain 

homeostasis, thereby inducing neurotoxicity. Low dose of DON (0, 0.125, 0.25, 0.5, 1 and 

2 µg/mL) is also able to inhibite proliferation and induce apoptosis of PC12 cells by 

mitochondrial apoptosis pathway after 24h of exposure (Wang et al., 2016).  

2.4.5. Intestinal toxicity 

Due to its special function, intestine is the first target organ of many food contaminants 

after ingestion. Here, we are going to stress the general toxicity of DON on the intestine and its 

specific effect on intestinal barrier function.  

2.4.5.1. DON-induced morphological lesions in intestine 
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The gut is the first barrier line to prevent organisms from the external harmful substances, 

such as antigens, toxins and other chemicals (Pinton and Oswald 2014; Payros et al. 2016). 

Thus, it is also the first target that can be exposed to a higher concentration of DON than other 

organs. On the other hand, DON is a protein synthesis inhibitor making it more toxic to such 

tissues with a rapid renewal as intestinal epithelium (Wells et al. 2017). The main 

morphological lesions in the intestine are multifocal atrophy, villi fusion and apical necrosis, 

which resulted in shorter and thicker villi (Bracarense et al. 2012; Pinton et al. 2012; Gerez et 

al. 2015). This suggests that DON induces an imbalance between proliferation and apoptosis of 

enterocytes. The impairment caused by DON on the intestinal morphology contributes to the 

decrease of nutrient absorption, consequently resulting in growth deficiency in animals 

(Alizadeh et al. 2015).  

2.4.5.2. DON-induced modification of intestinal immunity 

As described above, DON-induced inflammatory cytokine expression is mediated by 

MAPKs activation, which is associated with the phosphorylation of PKR and Hck. MAPKs 

plays a key role in signal transduction in the immune response. It has been proved that DON-

induced p-38 and ERK activation modulate the gene expression involving in pro-inflammatory 

or inflammatory cytokines in neutrophils or macrophages (Chung et al. 2003; Islam et al. 2006; 

Gauthier et al. 2013). The intestine has its own immune network, which protects it from 

infections or other harmful injuries, thus inflammatory or immune response will occur in the 

intestine to counteract DON-induced damage. 

Different intestinal cell lines and animal species have been used to investigate DON-

induced inflammatory or immune response. In the human epithelial intestine 407 cells, DON 

(25, 500 and 1000ng/mL) exposure for 12h promoted IL-8 expression via ERK1/2 activation 

(Moon et al. 2007). The expression of IL-8 also observed in the DON-treated Caco-2 cells with 

absent changes in the expression levels of IL-1β and TNF-α (Kadota et al. 2013). However, in 

the DON-exposed porcine epithelial cells IPEC-1, the mRNA expression of IL-8, IL-1α, IL-1β 

and TNF-α significantly increased (Cano et al. 2013). Several ex vivo studies constructed by 

jejunum explants demonstrated that the DON-mediated up-regulation of inflammatory genes 

was associated with MAPKs regulation (Cano et al. 2013; Alassane-Kpembi et al. 2017a; 

García et al. 2018). In vivo studies carried out in piglets further supported the obtained 

conclusions of in vitro and ex vivo investigations. Swine exposed to DON exhibited a potent 

inflammatory response in the intestine. The regulated dose of 0.9 mg DON/kg feed, induced 

IL-10 and IL-1β mRNA increase in the duodenum and COX-2 increase in the cecum of growing 
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pigs (Alizadeh et al. 2015). Chronic ingestion of DON caused an up-regulation of IL-1β, IL-6, 

MIP-1β and IL-2 mRNA in jejunum of piglets. In addition, the mRNA of IL-1β, TNF-α and 

IL-6 was up-regulated in the ileum (Bracarense et al. 2012).  

2.4.5.3. DON-induced oxidative stress on intestine 

Oxidative stress is a non-specific response to cell injury caused by toxins or 

inflammation. The production of ROS can degrade the membrane phospholipids of cells or 

organelles, which is responsible for damage of intestinal integrity and increase of intestinal 

barrier permeability (Wu et al. 2014).  

Several intestinal cell lines were used to test the capacity of DON to induce oxidative 

stress. Human HT-29 cells exposed to DON (250 and 500ng/mL) for 24h, exhibited a higher 

level of ROS and nitrite production compared to the non-treated cells. The higher production 

of ROS and nitrite was co-occurrence with NF-κB activation (Krishnaswamy et al. 2010). DON 

(1, 2.5 and 5μM) exposure of the non-tumorigenic rat intestinal epithelial cell line IEC-6, 

induced an evident increase of ROS generation, which could be exacerbated by nivalenol (Del 

Regno et al. 2015). The application of NF-κB inhibitor showed that NF-κB activation was 

involved in DON-mediated ROS release (Del Regno et al. 2015), which could explain the NF-

κB activation in the previous study (Krishnaswamy et al. 2010).  The two studies demonstrated 

that NF-κB plays an important role in DON-mediated oxidative stress. In the latter study, NF-

κB activation mediated the increase of iNOS (inducible nitric oxide synthase) protein 

expression leading to the release of NO, which reacted with superoxide anion resulting in 

peroxynitrite formation. Peroxynitrite can nitrate tyrosine residues in proteins, an alternative to 

phosphorylation, thereby changing the structure and function of proteins, consequently altering 

the cytoskeletal organization and impairing cell signal transduction (Del Regno et al. 2015). All 

these reactions contribute to intestinal barrier dysfunction.  

On the other hand, DON induced Nif2 activation, an oxidative stress sensor, increasing 

the expression of NQO1 and HO-1, which are the main products of Nif2 activation for 

protecting cells from oxidative stress injuries (Del Regno et al. 2015). However, another study 

performed on the human Caco-2 cell model lead to different result in terms of iNOS expression. 

DON (0.1 and 1μM) exposure for 3, 6 and 12h induced a time- and dose-dependent increase in 

iNOS mRNA expression, whereas the iNOS protein and the NO production were undetectable. 

These were caused by proteasome-dependent degradation of iNOS protein, in which the PKR, 

MAPKs (p-38 and ERK1/2) and NF-κB signal pathways were involved (Graziani et al. 2015). 

These contradictory conclusions suggest that DON could use different mechanisms to exert its 
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toxicity in different conditions depending on cell types or the doses and duration of exposure. 

The oxidative injury was also observed in DON-treated (0.9mg DON/kg feed treated for 10 

days) piglets, with upregulated and downregulated mRNA expression of HMOX1, one of the 

most sensitive indicator of oxidative stress, in the colon and jejunum (Alizadeh et al. 2015). 

These data revealed that low dose of DON efficiently induces oxidative stress in the intestine 

and intestinal cells.  

2.4.5.4. Effects of DON on the intestinal barrier function 

The intestinal barrier is an epithelium monolayer with the tight junction proteins (TJs), 

adherens junction proteins (AJs) and desmosomes connecting the adjacent cells, which are 

responsible for sealing the intercellular space. The intestinal epithelium functions as a selective 

permeable barrier allowing the dietary nutrients, electrolytes and water absorption and against 

bacteria, virus and other toxic molecules entrance, thereby maintaining the intestinal 

homeostasis (Groschwitz and Hogan 2009). Due to their important role in maintaining the 

barrier function, TJs and AJs can be targets of the food contaminants, such as DON. DON is 

able to damage the intestinal barrier by disturbance and redistribution of TJs, AJs and the 

cytoskeleton structure (Pinton et al. 2012; Akbari et al. 2014).  

A study carried out on Caco-2 cells demonstrated that the transepithelial electrical 

resistance (TEER) of the monolayer and the expression of TJs(claudin-1, -3 and -4) were dose-

dependently decreased in cells exposed to DON (1.39, 4.17 and 12.5μM), whereas the 

expression level of occludin and ZO-1 remained unchanged (Akbari et al. 2014). Treated piglets 

with 3mg DON/kg feed for 35d, induced a significant decrease of the expression of AJ protein 

E-cadherin and TJ protein occludin in the ileum (Bracarense et al. 2012) Nevertheless, a later 

study showed that DON elevated occludin expression in the duodenum, jejunum and colon of 

DON-fed (0.9mg/kg feed) pigs (Alizadeh et al. 2015). This distinction may be caused by 

different dose and duration of exposure.  

The underlying mechanisms of adverse effects on intestinal barrier function caused by 

DON have been investigated using various cell lines. The porcine intestinal epithelial cell line 

(IPEC-1) is highly sensitive to DON. DON (30 μM) significantly declined the expression of 

claudin-4 and the TEER of the monolayer, and raised the permeability to 4kD-dextrant after 

48h exposure. When treated for 1h, an obvious augmentation of ERK phosphorylation was 

observed. Interestingly, when the cells were pretreated with ERK inhibitor U0126 for 2h before 

DON addition, the alteration of claudin-4 expression, TEER and permeability was restored. 

They therefore demonstrated that ERK activation mediated decrease of claudin-4 expression 
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(Pinton et al. 2010). This conclusion was supported by Lei et al. (Lei et al. 2014), who pointed 

out that ERK activation reduced the expression of TJ proteins in the LPS-exposed Caco-2 cells.  

However, this is contrast with another study executed on the Caco-2 cells, which showed that 

claudin-4 decrease was independent of ERK activation by DON and U0126 simultaneous 

exposure (De Walle et al. 2010). The different results may due to the routes of ERK inhibitor 

U0126 application. A recent study has reported that DON (20 μM) induced intestinal barrier 

dysfunction in IPEC-J2 cells by reduction of claudin-1 and claudin-3 expression. The decrease 

of claudin-3 not claudin-1 expression partially caused by ERK activation (Springler et al. 2016). 

In contrast, Zhang et al. demonstrated that 20 μM DON exposure of IPEC-J2 caused a reduction 

of TEER and expression of claudin-4, and promoted p-38 activation and inhibited ERK 

activation (Zhang et al. 2016). This clearly suggests that different concentrations of DON 

selectively affects specific TJs in different cell line, and the activation of MAPKs is not the 

only mechanism of intestinal barrier damage. 

On the other hand, ERK activation was reported to increase the expression of ZO-1 and 

occludin and decrease the permeability to FITC-dextran in the intestinal epithelial cells IEC-6 

(Yang et al. 2005). Basuroy demonstrated that ERK activation inhibited H2O2-induced 

redistribution of ZO-1 and occludin in Caco-2 cells thereby maintain the normal barrier function 

(Basuroy et al. 2006). An interesting study conducted by Aggarwal et al. revealed that ERK 

activation in under-differentiated Caco-2 cells promoted tight-junction disruption, whereas in 

the differentiated cells enhanced tight junction integrity (Aggarwal et al. 2011). The results 

indicate that the effects of ERK on intestinal tight junction integrity depends on differentiation 

state of cells.  

It is notable that DON has different sensitive target TJ and AJ proteins in different cell 

lines. Thus, DON may impede intestinal barrier function via alternative mechanisms depending 

on cell types. Although these studies obtained different or even discrepant conclusions, it still 

can be seen that MAPKs/ERK plays an important role in DON-induced intestinal barrier 

dysfunction. Due to the role of ERK in regulation of intestinal barrier function is still 

controversial, further studies are needed to illustrate its mechanisms of toxic actions.  

 

Table 3 Effect of DON on intestinal barrier function  

Model  Dose and time 
exposure 

Effect on barrier function  References 

In vitro 
Caco-2 cells 2 μg/ml, 48h 

0.125-6 μg/ml, 
24h 

Decrease in TEER values (Sergent et al. 
2006) 
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Caco-2 cells 1.39–12.5 µM 
24 h 

Decrease in TEER values 
Decrease in horizontal impedance 
Increase in permeability  of LY and 4 kDa FITC-
dextran 
Increase in transcript level of claudin3, claudin4, 
occludin and ZO-1 
Decrease in protein expression of claudin1, 
claudin3 and claudin4 
Redistribution of claudin1, claudin3, claudin4, 
occludin and ZO-1. 

(Akbari et al. 
2014) 

Caco-2 cells 0.16–16 µM 
24 h 

Decrease in TEER values 
Increase in permeability of mannitol 
Increase in transcript level of claudin4 and 
occludin 
Decrease in protein expression of claudin4 

(De Walle et al. 
2010) 

Caco-2 cells 5–100 µM 
48 h 

Decrease in TEER values 
Increase in permeability of 4 kDa FITC-dextran 
Increase in translocation of pathogenic Escherichia 
coli (strain 28C) 
Decrease in protein expression of claudin4 

(Pinton et al. 
2009) 

Caco-2 cells 1–100 µM 
12 h 

Decrease in TEER values 
Increase in permeability of HRP and 4 kDa FITC-
dextran 
Increase in translocation of commensal Escherichia 
coli (strain k12) 

(Maresca et al. 
2008) 

Caco-2 cells 0.37–1.5 µM 
6–120 h 

Decrease in horizontal impedance value of 
undifferentiated cells 

(Manda et al. 
2015) 

Caco-2 cells 
T84 cells 

0.16–0.67 µM 
14 days 

Decrease in TEER values 
Increase in permeability of LY 

Kasuga et al. 
(1998) 

HT-29-D4 cells 0.001–100 µM 
48 h 

Decrease in TEER values (Maresca et al. 
2002) 

IPEC-1 cells 30 µM 
48 h 

Decrease in TEER values 
Increase in permeability of 4 kDa FITC-dextran 
Decrease in protein expression of claudin3, 
claudin4 
Redistribution of claudin4 

(Pinton et al. 
2010, 2012) 

IPEC-1 cells 5–50 µM 
48 h 

Decrease in TEER values 
Increase in permeability of 4 kDa FITC-dextran 
Decrease in protein expression of claudin3 and 
claudin4 

(Pinton et al. 
2009) 

IPEC-1 cells 
IPEC-J2 cells 

0.67–6.7 µM 
48 h 

Decrease in protein expression of ZO-1 
Redistribution of ZO-1 

(Diesing, et al., 
2011 b) 

IPEC-J2 cells 6.74 µM 
48 h 

Decrease in TEER values 
Decrease in protein expression of claudin3, 
occludin and ZO-1 
Redistribution of ZO-1 

(Gu et al. 2014) 

IPEC-J2 cells 0.67–13.4 µM 
24–72 h 

Decrease in TEER values 
Decrease in protein expression of claudin3 and 
ZO-1 
Redistribution of claudin3 

(Diesing, et al., 
2011 a) 

IPEC-J2 cells 1.68–33.7 µM 
72 h 

Decrease in TEER values 
Increase in permeability of doxycycline and 
paromomycin 

(Goossens et al. 
2012) 



23 
 

IPEC-J2 cells 0.33–3.3 µM 
24 h 

Increase in translocation of pathogenic Salmonella 
typhimurium (strain 112910a) 

(Vandenbroucke 
et al. 2011) 

IPEC-J2 cells 4 µM 
12 h 

Decrease in TEER values 
Increase in permeability of 4 kDa FITC-dextran 
Increase in translocation of commensal Escherichia 
coli (strain ATCC® 25922™) 
Increase in transcript level of claudin1, claudin4, 
occludin and ZO-1 
Decrease in protein expression of claudin3 and 
claudin4 

(Ling et al. 
2016) 

IPEC-J2 cells 20 µM 
72h 

Decrease in protein expression of claudin1 and 
claudin4 

(Springler et al. 
2016) 

IPEC-J2 cells 20 µM  
1h 

Decrease in TEER values 
Decrease in protein expression of  claudin4 

(Zhang et al. 
2016) 

IPEC-J2 cells 0.2 – 2 μg / mL 
6, 12, 24h 

Decrease in mRNA expression of ZO-1, occludin 
and claudin1 

(Liao et al. 
2017) 

Ex vivo 
Pig jejunal 
explants 

5–50 µM 
2 h 

Increase in permeability of 4 kDa FITC-dextran (Pinton et al. 
2009) 

Pig jejunal 
explants 

10 µM 
4h 

Decrease in E-cadherin expression (Basso et al. 
2013) 

Pig jejunal 
explants 

10 µM 
3h 

Increase in permeability of fluorescein sodium salt (García et al. 
2018) 

Pig jejunal 
explants 

10 µM 
4h 

Decrease in E-cadherin expression (Da Silva et al. 
2019) 

In vivo 
Piglet 3 mg/kg feed 

5 weeks 
Decrease in protein expression of E-cadherin and 
occludin in ileum 

(Bracarense et 
al. 2012) 

pig 2.85 mg/kg feed 
5 weeks 

Decrease in protein expression of claudin4 in 
jejunum 

(Pinton et al. 
2009) 

pig 3.5 mg/kg feed 
6 weeks 

Decrease in transcript level of claudin3,  claudin 4 
and occludin in ileum 

(Lessard et al. 
2015) 

pig 0.9 mg/kg feed 
10 days  

Increase in transcript level of CLDNs (cecum), 
OCLD (duodenum, ileum, cecum and colon) and 
ZOs (duodenum and colon) 
Decrease in transcript level of  claudin 4, occludin, 
ZO-1 and ZO-2 in jejunum 
Increase in protein expression of occludin in 
duodenum, jejunum and colon 

(Alizadeh et al. 
2015) 

Mouse 25 mg/kg bw 
6 h 

Increase in permeability of 4 kDa FITC-dextran 
Increase in transcript level of CLDN2,  claudin 3 
and  claudin 4 in distal small intestine 
Redistribution of  claudin 1-3 in distal small 
intestine 

(Akbari et al. 
2014) 

Mouse 5 mg/kg bw 
24 h 

Increase in transcript level of CLDN2 and  claudin 
3 in duodenum 
Decrease in protein expression of  claudin 3 in 
duodenum 

(Bol-
Schoenmakers et 
al. 2016, p.) 

Broiler chicken 7.5 mg/kg feed 
3 weeks 

Increase in transcript level of CLDN5 in jejunum 
and  claudin 1, CLDN5, ZO-1 and ZO-2 in ileum 

(Osselaere et al. 
2013) 

Broiler chicken 10 mg/kg feed 
3 weeks 

Decrease in mRNA level of jejunal occludin and 
claudin1 

(Wu et al. 2018) 

Atlantic 
Salmon 

5.5 mg/kg feed 
8 weeks 

Decrease in mRNA level of claudin25b, occludin 
and tricellulin in middle and distal intestine 

(Moldal et al. 
2018) 
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From the description above, it is not difficult to imagine that DON-induced 

inflammatory injury, oxidative stress or other potential mechanisms of toxicity may also 

involve in DON-mediated damage on intestinal barrier function. 

In the intestine of patients suffering inflammation bowel disease (IBD), Crohn’s disease 

or ulcerative colitis, the intestinal barrier is always defective. This aroused the interest to 

investigate the link between inflammation and intestinal barrier dysfunction. The interferon 

gamma (IFN-γ) was the first inflammatory cytokine that was observed to induce TJ disruption 

in human derived intestinal cells (Madara and Stafford 1989). Since then, researchers continue 

to explore the effects of IFN-γ on the intestinal barrier and the underlying mechanisms. They 

found that IFN-γ induced occludin endocytosis from the TJ complexes leading to TJ barrier 

disruption. This process requires myosin light chain (MLC) phosphorylation and Rho kinase 

activation. Both NF-κB and PI-3 kinase inhibition restored the adverse effects caused by IFN-

γ indicating that the two pathways are involved in IFN-γ induced increase of intestinal 

permeability and decrease of occludin expression (Al-Sadi et al. 2009).  

In addition to IFN-γ, other cytokines’ effects on intestinal barrier were also investigated. 

The permeability of Caco-2 monolayer was evidently increased by a physiological 

concentration of IL-1β via NF-κB pathway. This was further proved by NF-κB p65 depletion, 

which completely abolished IL-1β induced increase of TJ permeability (Al-Sadi and Ma 2007). 

Further, TNF-α was reported to promote opening of Caco-2 TJ barrier via MLCK expression 

mediated by NF-κB activation (Ye et al. 2006). Later, TNF-α was proved to active MAPK/ERK 

signaling pathway to promote transaction factor Elk-1binding to MLCK, leading to MLCK 

activation and expression. These reactions resulted in a decreasd TEER on Caco-2 monolayer 

and an increased intestinal permeability in mouse (Al-Sadi et al. 2013). Since NF-κB activation 

is the downstream event of MAPKs activation, it is reasonable to hypothesize a main pathway 

for TNF-α induced intestinal barrier disruption: TNF-α - MAPKs/ERK - NF-κB – MLCK - TJ 

disruption. These data indicate that DON induced inflammation in intestine is contribute to 

barrier dysfunction. 

Oxidative stress is also able to trigger intestinal injury and barrier disruption. In the 

intestinal cells, oxidative stress caused an increase of permeability of Caco-2 monolayer by 

reorganization of occludin-ZO-1 and E-cadherin-β-catenin complexes from the intercellular 

junctions and dissociation occludin from ZO-1 (Rao et al. 2002; Basuroy et al. 2006). 
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In fact, inflammation and oxidative stress can affect one another (Fig.4). Oxidative 

stress-mediated tissue damage could induce overexpression of inflammatory cytokines in 

human intestine who suffered intestinal inflammation disease (Alzoghaibi 2013; Moret et al. 

2014; Oyinloye et al. 2015; Vitali et al. 2015). It is reported that hydrogen peroxide H2O2 

upregulated the mRNA expression of IL-8 and TNF-α and increased protein expression of IL-

8 in IPEC-J2 cells (Paszti-Gere et al. 2012). NO, one of the reactive nitrogen species, could 

induce inflammatory cytokines production by activation of NF-κB or AP-1(Korhonen et al. 

2005). In turn, inflammatory cytokines also mediate ROS or NOS production in the 

inflammatory or epithelial cells (Federico et al. 2007). 

 

 

Figure 4 The relationship between DON-induced inflammation, oxidative stress and intestinal 

barrier dysfunction 

 

2.4.5.5. Effect of DON on the intestinal microbiota 

Gut microbiota have a marked influence on the the physiology functions of hosts and 

dysbiosis induces malnutrition, systematic diseases and chronic inflammatory diseases 

(Guinane and Cotter 2013; Thursby and Juge 2017). The effects of DON on the intestinal 

microbiota have been investigated in various animal models, such as rodents, pigs and chickens. 

Germ-free rats inoculated with human fecal flora were daily exposed to 100μg DON/kg b.w. 

for four weeks. It was found that the abundance of Bacteroides/Prevotella was significantly 

increased, while the concentration of Escherichia coli was decreased (Saint-Cyr et al. 2013). 

DON (10 μg/kg b.w./day) exposure of mice for 9 months caused an elevation of Proteobacteria 

and a reduction of Bacteroidetes (Vignal et al. 2018). DON dietary challenge altered the cecal 

microbiota of broiler chickens with a decrease of Proteobacteria and an increase of Firmicutes 

(Lucke et al. 2018). In pigs, it was reported that DON exposure increased the number of aerobic 

mesophilic bacteria and did not affect the abundance of anaerobic sulfite-reducing bacteria at 

28d post exposure (Waché et al. 2009). It is worth noting that the decrease of the number of 
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Bacteroidetes and the increase of Proteobacteria was frequently observed in the IBD and 

Crohn’s diseases, where are involved in intestinal inflammation diseases. The study of Wang 

et al. demonstrated that intestinal dysbacteriosis induced losses of barrier function and increased 

bacteria translocation, which can induce systematic inflammation (Wang et al., 2014). It 

suggests that DON-induced alteration of microbiota causes breaking of intestinal barrier that 

favor bacteria translocation leading to inflammation in intestine, which in turn, having a 

negative effect on the intestine defection of barrier function.  

3. Cadmium (Cd) 

Cadmium (Cd) is a toxic and carcinogenetic heavy metal widely distributed in the 

environment. Both natural (volcanic eruption, weathering and erosion) and anthropogenic 

activities contribute to Cd contamination and Cd-related health problems (EFSA 2009; ATSDR 

2012).  

3.1. Occurrence, exposure and regulation of Cd in food and feed 

Cd naturally exists in the earth’s crust as a consequence of volcano eruption, minerals 

and rock exfoliation. Industrial emission is the main source of Cd pollution. Cd from nature and 

industries can directly enter into air, water and soil and absorbed by the roots of cereals or 

vegetables, consequently arriving and accumulating in the edible part (EFSA 2009; ATSDR 

2012). A survey performed between 2003 and 2007 in 20 European countries on 137, 200 

samples of raw cereals, vegetables and meat indicated that 66% were contaminated with Cd.  

While 5% of them even exceed the maximum level of 0.2 mg/kg for bran, germ, wheat and rice 

and of 0.1 mg/kg for other raw cereals specified by European Commission  (European Union 

2006a; EFSA 2009). In the 73rd report of JECFA, all the 1503 wheat samples tested from 19 

European countries and 11 other countries worldwide were contaminated with Cd (JECFA 

2011). The smokers and the occupational workers are exposed to Cd via smoking and inhalation 

during work process (ATSDR 2012). Cd-contaminated food and water are the primary sources 

for the general population (EFSA 2009). Grain and cereal products, as well as fish and offal 

were the major contributor for human Cd dietary exposure (Fig.5) (Filipic et al. 2006; ATSDR 

2012). A tolerable weekly intake (TWI) for Cd of 2.5μg/ kg b.w. was established (EFSA 2009, 

2011). The mean dietary exposure to Cd for adults across European countries was close to or 

slightly exceeding this TWI, and subgroups, such as vegetarians, children, smokers exceed the 

TWI by about 2-fold (EFSA 2009).  
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In Europe, the guidance concentration in cereal grains used for food ranges from 0.1 to 

0.2 mg / kg depending on the grain species, no more than 0.5 mg / kg in the complete feed, and 

0.005 mg / L in water (Table 2) (European Union 2013, 2014). 

 
Figure 5 Sources of human exposure to cadmium (EFSA 2009) 

 

Table 2. Recommendation for Cd in foodstuffs/feedstuffs in Europe (European Union 2013, 

2014) 

Foodstuffs Maximum levels 
(mg/kg wet weight) 

Cereal grains excluding wheat and rice 0.1 

Wheat grains, rice grains; Wheat bran and wheat germ for direct consumption; 
Soybeans 0.2 

Vegetables and fruit, excluding root and tuber vegetables, leaf vegetables, fresh 
herbs, leafy brassica, stem vegetables, fungi and seaweed    

0.05 

 
Root and tuber vegetables (excluding celeriac, parsnips, salsify and horseradish), 
stem vegetables (excluding celery) 

0.1 
 

Leaf vegetables, fresh herbs, leafy brassica, celery, celeriac, parsnips, salsify, 
horseradish and the following fungi: Agaricus bisporus, Pleurotus ostreatus, 
Lentinula edodes 

0.2 

Meat (excluding offal) of bovine animals, sheep, pig and poultry 0.05 

Horsemeat, excluding offal 0.2 

Liver of bovine animals, sheep, pig, poultry and horse 0.5 

Kidney of bovine animals, sheep, pig, poultry and horse 1.0 

Processed cereal-based foods and baby foods for infants and young children 0.04 

Feedstuffs Maximum content in 
mg/kg relative to a feed 
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with a moisture content 
of 12 % 

 
Feed materials of vegetable origin 1 

Feed materials of animal origin 2 

Complete feed with the exception of:  0.5 

- complete feed for cattle (except calves), sheep (except lambs), goats 
(except kids) and fish; 

1 

- complete feed for pet animals 2 

 

3.2. Toxicokinetics of Cd  

Since Cd is not an essential element for human or animals, a specific transporter for Cd does 

not exist. Some transport proteins for essential metals, such as iron, zinc and calcium are 

reported to be responsible for Cd absorption. Divalent metal transpoter 1 (DMT 1) was highly 

induced by Fe deficient diet in rat duodenum, which was associated with the higher tissue Cd 

concentration (Park et al. 2002; Ryu et al. 2004). DMT1 knockdown Caco-2 cells displayed a 

50% reduction of Cd uptake (Bannon et al. 2003). Knockdown of Zinc transporters Zrt/Irt-

related protein 8 (ZIP8) and ZIP14 significantly decreased Cd uptake in mouse kidney proximal 

tubule cells (Fujishiro et al. 2012). Calbindin D9k, the major calbindin isoform in the enterocyte 

is also considersred as a candidate transporter for Cd. These transporters are mainly expressed 

in duodenum and jejunum where most Cd is absorbed (Vesey 2010). The absorption rate for 

Cd through gastrointestinal tract was estimated between 3% and 7% in adult human (Vesey 

2010). The ingested Cd entries into the blood and binds to proteins such as albumin and 

metallothioneins (MTs). Then, Cd firstly arrives in the liver where it induces synthesis of liver 

MTs. The Cd-MT complexes are released to blood again after hepatocytes necrosis or apoptosis. 

Meanwhile, some parts of these complexes may be excreted with bile and reenter the small 

intestine through the entro-hepatic cycle. The Cd-MT complexes released by hepatocytes then 

reach the kidney via blood circulation. These complexes are filtrated in the glomerulus and 

reabsorbed in the proximal tubules. It then remains in tubule cells for a long time (Godt et al. 

2006). Cd was mainly excreted with urine and feces even though the excretion of Cd is very 

scarce (Fig.6).  
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Figure 6 Metabolism, storage and excretion pf Cd in human body (Godt et al. 2006) 

 

3.3. Mode of action of Cd 

Oxidative stress is considered as the effective molecular basis of Cd toxic actions. Cd 

exposure induces a significant increase of ROS production in vivo (rat) and in vitro (primary 

rat hepatocytes), which contributes to hepatocyte apoptosis (Liu et al. 2011; Wang et al. 2014b). 

In fact, Cd can neither participate directly in redox reaction nor generate ROS, as it is a redox-

stable metal. However, Cd is able to substitute with copper, zinc and iron in various 

cytoplasmatic and membrane proteins, thereby increasing the components of free redox-active 

metal that can induce oxidative stress (Dorta et al. 2003; Liu et al. 2009). These metals induce 

ROS generation through Fenton-type chemical reaction (Desurmont 1983; Lee et al. 2012). 

Although Cd is redox-stable, the production of hydroxyl radical has an extremely strong 

oxidizing ability, which is highly toxic to human health.  

 
metal n+  + H2O2                                             metal n+1  + -OH + OH- 

 
 

On the other hand, Cd interferes with antioxidant enzymes activity, such as superoxide 

dismutase (SOD), catalase (CAT), glutathione reductase (GR) and glutathione peroxidase (GPx) 

through binding their thiol groups (Filipic et al. 2006; El-Boshy et al. 2015). Oral exposure to 

Cd (40mg/L) for 30 days decreased the content of GSH, SOD, CAT and GPx in serum (El-

Boshy et al. 2015), meanwhile intraperitoneal injection of Cd (6.5mg Cd/kg bw / d) for 5 days 

markedly reduced the activity of these antioxidant enzymes in hepatic and renal tissues (Dkhil 
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et al. 2014). These studies suggest that Cd exposure through different routes induces oxidative 

stress by inducing ROS production in an indirect way and compromises the antioxidant system 

by directly binding to their thiol groups. 

Cd-induced ROS generation is responsible for the downstream events as DNA damage, 

apoptosis, inflammation and genomic instability.   

Heavy metals interact directly with DNA or nuclear protein, causing DNA damage or 

conformational changes that may lead to carcinogenesis (Wang and Shi 2001; Beyersmann and 

Hartwig 2008; Qin et al. 2016). However, Cd did not induce DNA breaks on the pure DNA 

extracted from liver cells of mice, suggesting Cd may not be able to directly attack on DNA 

(Valverde et al. 2001), while in the intact cells exposed to Cd, the free radicals increased 

significantly (Valverde et al. 2001). In addition, ROS production especially the highly reactive 

hydroxyl radical (OH-) can directly attack on DNA bases inducing DNA damage (Dizdaroglu 

and Jaruga 2012; Cadet and Wagner 2013), as well as hydrogen peroxide H2O2 (Gafter-Gvili 

et al. 2013). These data suggest that ROS plays an important role in Cd-induced DNA damage.  

Cd not only induces DNA damage but also inhibits the DNA repair systems, including 

excision repair (base excision repair (BER) and nucleotide excision repair (NER)), mismatch 

repair (MMR) and recombination repair (homologous recombination (HR) and non-

homologous end-joining (NHEJ)), the last system is involved in DNA double-strand breaks 

(DSBs) (Giaginis et al. 2006; Lei et al. 2015; Li et al. 2015). Together with inhibition of DNA 

repair, DNA damage is associated with genotoxicity, genomic instability and carcinogenesis of 

Cd contamination. Since the oxidative stress and the inflammation caused by Cd were 

repeatedly observed in literature (Liu et al. 2015; Ghosh and N 2018), it promotes to speculate 

that there may be a link between the two processes. In the human umbilical vein endothelial 

cells (HUVECs), Cd increased the expression and secretion of inflammatory cytokine TNF-α 

via p38/ MAPK activation (Dong et al. 2014). These results indicate that Cd-induced 

inflammation isregulated by oxidative stress-mediated MAPKs activation (Cd-ROS-

MAPKs/p38-inflammation). 

Many reports demonstrated that acute Cd-induced apoptosis is p53- and MAPKs-

dependent (Yu et al. 2011). Cadmium exposure upregulated p53 gene expression and increased 

p53 protein level in vitro, leading to apoptosis(Achanzar et al. 2000; Al-Assaf et al. 2013; Lee 

et al. 2016). In addition siRNA-induced p53 silencing effectively inhibited cell apoptosis 

(Aimola et al. 2012), indicating that p53 plays a critical role in Cd-induced cell apoptosis. Other 

hypothesis proposed that Cd induces apoptosis via MAPK/JNK-mediated mitochondrial 

pathway, as the JNK inhibitor or JNK-specific siRNA interference protected cells from Cd-
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induced apoptosis (Chang et al. 2013; Jiang et al. 2014; Yuan et al. 2015). This reveals that 

MAPK/JNK pathway is involved in Cd-mediated cell apoptosis. Nevertheless, JNK inhibition 

did not decrease the ROS generation, while the antioxidant N-acetylcysteine (NAC) restored 

Cd-induced events, including JNK activation (Chang et al. 2013). This clearly implies that Cd-

induced events associated to apoptosis are mediated by Cd-generated ROS. These data guide to 

speculate that p53-and MAPKs-dependent ways of apoptosis may be in the same signaling 

pathway (Cd-ROS-MAPKs/JNK-p53-Bax-Mitochodria-caspases-apoptosis).  

Apoptosis is an important process in organisms to eliminate transformed and mutated 

cells from the body. Thus, cancer cells have to develop various efficient mechanisms against 

apoptosis to keep survival. Chronic low-dose exposure of Cd to rat liver cells and human 

prostate cells can induce cell transformation with an apoptotic resistance property, which is due 

to the inhibition of JNK activation associated with MT or Bcl-2 overexpression (Qu et al. 2006, 

2007). The abnormal proliferation of these DNA-damaged cells could elicit malignant 

transformation that finally develop to cancer.  

3.4. Toxicity of Cd   

Cd has various target organs, such as kidney, liver, lung, reproductive and nervous 

system. In these organs Cd is able to induce genotoxicity, cancer, immunotoxicity, 

neurotoxicity, reproductive and developmental toxicity (ATSDR 2012; Rani et al. 2014).  

3.4.1. Immunotoxicity 

There is still controversy on pro- or anti-inflammatory properties of Cd. Some studies 

demonstrated that Cd stimulate immune system and promote inflammatory reactions; while 

other studies suggested that Cd has non-inflammatory or anti-inflammatory properties 

(Olszowski et al. 2012). In vivo, Cd (40 mg/L drinking water) treated for 30 days evidently 

increased the secretion of inflammatory cytokines IL-1β, TNF α, IL-6 and IL-10 and decreased 

IFN-γ and the content of lymphocytes in serum of rats (El-Boshy et al. 2015). Similarly, the 

gene expression of TNF-α, IL-6 and IL-1β in larval zebrafish was up-regulated by Cd (1, 3, 10 

µM) after 96h exposure (Jin  et al., 2015). While, in adult zebrafish, the release of TNF-α was 

increased in the liver, brain and ovary, the mRNA level of NF-κB was upregulated in the liver 

and ovary at 24h exposure of Cd (1 mg / L). By contrast, in Cd (3 µM) treated rat primary lung 

cells and rat alveolar macrophages, the mRNA expression of TNF-α and IL-1β was reduced 

after 20h exposure, while their protein levels were not affected. The expression and release of 

IL-6 in alveolar macrophages was downregulated and unaltered (Låg et al. 2010). These data 
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revealed both positive and negative effects of cadmium on immune modulation. To improve 

understanding of the immunotoxicity of Cd, more studies in mammals should be done. 

3.4.2. Genotoxicity 

Cd induces genotoxicity characterized by DNA damage through induction of ROS 

production, resulting in cell apoptosis or malignant transformation that may develop to cancer 

(Achanzar et al. 2001; Chang et al. 2013). In human bronchial epithelial cells, 5 μM of Cd 

exposed for several weeks triggered genomic instability, DNA breaks and down-regulation of 

DNA repair genes (hMSH2, ERCC1, XRCC1, and hOGG1). Meanwhile, the mutation of exons 

on these genes was also observed in tumorgenetic cells of nude mice (Zhou et al. 2013). 

Occupational exposure to Cd (blood concentration 5.4-30.8 µg/L) significantly increased the 

frequency of sister chromatid exchanges (SCEs) as well as the leukocytes with DNA 

fragmentation in lymphocytes compared with controls (Palus et al. 2003). This study is 

consistent with a previous study performed on mice, which demonstrated that single 

intravenous exposure of Cd 5.7 and 7.6 mg /kg body weight, evidently increased the percentage 

of polychromatic erythrocytes with micronuclei, the frequency of SCEs and the portion of 

chromosomal aberrations in mouse bone marrow (Fahmy and Aly 2000). These gene toxic 

effects caused by Cd are necessary prerequisites for cadmium-induced cancer. 

3.4.3. Reproductive and developmental toxicity 

Reproductive system is a key site of Cd toxicity both in male and female. Cd is able to 

inhibit oocyte development in ovary and decrease sperm motility. In addition, it induces 

implantation delay, consequently inhibiting embryo development (Thompson and Bannigan 

2008; Zhao et al. 2017). A study performed with bovine oocytes proved that Cd (2 and 20 μM) 

exposure for 24h, efficiently decreased the oocytes maturation, as well as the post-fertilization 

cleavage rate in zygotes and blastocyst development (Akar et al. 2018). Another research 

illustrated that the motility of human and mouse sperm were significantly reduced by Cd (2.5 – 

10 μg/ml) exposure for 6-24h in a dose- and time-dependent manner. Exposure to these doses 

of Cd for 30 min did not alter sperm motility but significantly decreased the fertilization rate of 

sperm in vitro. Besides, exposure to low dose of Cd at 0.625 and 1.25 μg/ml for 12-84h 

dramatically declined the blastocyst formation rate of embryo (Zhao et al. 2017). Cd is also 

reported to pass through placental barrier and accumulate in embryo, resulting in degeneration 

and decompaction in blastocysts or early pregnancy loss (Thompson and Bannigan 2008; 

Gundacker and Hengstschläger 2012).  

3.4.4. Neurotoxicity 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/sister-chromatid-exchange
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/leukocyte
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/dna-fragmentation
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/dna-fragmentation
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It is known that Cd induces opening of blood-brain barrier and enters into central 

nervous system leading to endocrine disruption and even neuronal cells death through ROS 

production (Kim et al. 2013a; Tobwala et al. 2014; Chouchene et al. 2016). For instance, Cd 

can interfere with estrogen signaling in vitro and in vivo. In vitro, Cd (0.01-10 μM) exposure 

for 30h significantly abolished estradiol-induced up-regulation of estrogen receptors in mRNA 

level.  In vivo, Cd exposure (0.01-10 μM) for 72h significantly down-regulated the gene 

expression of esr1, esr2α, esr2β (encoding estrogen receptors) and cyp19a1b (encoding brain 

aromatase in fish) and efficiently inhibited the production of aromatase B in glial cells of 

zebrafish embryo (Chouchene et al. 2016). In neuroblastoma cells, Cd (25 μM) induced cell 

apoptosis after 6-24h exposure via ROS generation-mediated induction of GADD153, a 

member of the C/EBP (CAAT/enhancer-binding protein) family of bZIP transcription factors. 

This protein promoted C/EBP binding to Bak promoter and increased the intracellular level of 

Bak (a pro-apoptotic protein), thereby leading to cell apoptosis (Kim et al. 2013a). The data 

indicate that ROS production is the key causative of Cd-induced neurotoxicity. 

3.4.5. Intestinal toxicity 

Besides the adverse effects on these tissues above, gut was also considered as a new 

target of Cd recently (Tinkov et al. 2018). When human or animal are exposed to Cd by dietary 

food and water, the intestine can be the first target organ being subject to a high concentration 

of Cd. 

3.4.5.1. Cd-induced morphological lesions in intestine 

Cd consumption from food and water primarily retains in the mucosa, which causes 

intestinal histological changes, such as epithelial necrosis, apical villous damage, infiltration of 

inflammatory cells, leading to shorter and thicker villi (Zhao et al. 2006; Ninkov et al. 2015, 

2016). The morphological changes on intestine result in reduction of nutrients absorption and 

decrease of body weight gain in animals (Teshfam et al. 2006).  

3.4.5.2. Cd-induced modification of intestinal immune response 

Cd is able to modulate the immune response on intestine characterized by induction of 

inflammatory cytokines.  Several in vivo and in vitro studies have been carried out to investigate 

Cd-induced inflammatory response in intestine. Cadmium (5 and 10ppm) exposure for 30 days, 

induced a significant increase of inflammatory cytokines TNF, IL-1β, IFN-γ and IL-17 in the 

duodenum homogenates of rats. In addition, the level of high mobility group box1 (HMGB1), 

a potent mediator of inflammation as well as a suitable inflammatory biomarker (Palone et al. 

2014) increased notably in the intestine (Ninkov et al. 2015, 2016). These results suggest that 
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Cd can regulate immune response in the intestine. The up-regulation of IFN-γ and IL-17 mRNA 

and the down-regulation of IL-10 were observed in the mesenteric lymph node (MLN), with 

the increased MLN cell proliferation suggesting immune activation in this lymphoid tissue, and 

emphasizing the important role of MLN immune response to oral Cd exposure. Nevertheless, 

in a mice model, Cd exposure (25, 100mg/kg body weight) for 3-24h did not affect the mRNA 

expression of IL-1β and TNF-α in duodenum and proximal jejunum. Whereas, the expression 

of MIP-2 (mouse homologue IL-8 in human) was markedly augmented at 3h post exposure, 

and was decreased from 12h, then returned to the normal level at 24h. Besides, the infiltration 

of neutrophils into the intestinal mucosa of mice was observed (Zhao et al. 2006). These results 

from Cd-exposed mice are consistent with in vitro experiment preformed with human Caco-2 

cells. When treated with 50μM of Cd for 24h, only IL-8 cytokine level in the culture medium 

significantly increased, other cytokines TNF-α, IFN-γ and IL-1β were not stimulated by Cd. In 

this study, authors proved that the up-regulation of IL-8 gene and protein were driven by 

degradation of I-κBα and NF-κB activation in Cd-treated Caco-2 cells (Hyun et al. 2007). 

Opposite to pro-inflammatory effects of Cd exposure, some studies demonstrated that 

Cd did not affect inflammatory response even anti-inflammation. Breton et al. induced colitis 

using DSS (dextran sodium sulfate) and TNBS (trinitrobenzene sulfonic acid) to mimic an 

inflammatory bowel disease (IBD) in mice, afterwards, the mice were exposed to Cd (20 and 

68μM) for 6 weeks. The results showed that chronic Cd exposure suppressed the transcriptional 

activity of pro-inflammatory genes (IL-6, IL-1β, TNF-α, Nos2 and Cox-2) in the DSS-induced 

colitis, while in the TNBS-induced colitis, the expression of genes, such as IL-6, IL-1β, Nos-2 

were down-regulated (Breton et al. 2016). In this case, Cd exposure exhibited a favorable side 

against intestinal inflammation. The data listed above suggest that the pro-inflammatory or anti-

inflammatory effects caused by Cd depends on the species and the dose and duration of 

exposure. 

3.4.5.3. Cd-induced oxidative stress on intestine 

The capacity of Cd to induce ROS has been observed in different intestinal cell lines. 

Cadmium (50µM) efficiently induced ROS generation and high level of lipid peroxidation after 

24h exposure in HT29 cell line (Zhai et al. 2016). Similar results were observed in the TC7 

cells, a highly differentiated Caco-2 cell line exposed to 50µM of Cd, which showed a rapid 

formation of ROS within 30 min post exposure (Bolduc et al. 2004).  

On the other hand, the effects of Cd on antioxidant system have been studied. Oral 

exposure of Cd (5 and 50 ppm) for 30 days, a dose-dependent increase of CAT activity was 
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observed in rat intestine, while the SOD activity was decreased notably by the  high dose 

(50ppm) of Cd (Ninkov et al. 2015). An in vitro study using Caco-2 cells demonstrated that low 

dose of Cd (1-50μM) up-regulated the mRNA expression of NQO1 (an indicator of oxidative 

injury) and GR (glutathione reductase), whereas the high dose of Cd (100-300μM) down-

regulated these genes (Rusanov et al. 2015). Another study on Caco-2 cells revealed that Cd 

(0.25-10mg/L) decreased the activity of SOD and GPx in a dose-dependent manner (Aziz et al. 

2014). From these studies it could be concluded that high dose of Cd exposure inhibits the 

antioxidant system in vivo and in vitro. 

3.4.5.4. Effects of Cd on the intestinal barrier function 

Early studies showed that epithelial cells were able to absorb Cd, leading to decrease of 

monolayer TEER (transepithelial electrical resistance) and increase of permeability to mannitol 

(Rossi et al. 1996; Duizer et al. 1999). In Caco-2 cells, Cd (100 µM) exposure for 4h, altered 

the location of ZO-1, occludin and E-cadherin, which continued to develop after the 

intracellular Cd removing (Duizer et al. 1999). This study also showed that Caco-2 cells can 

transport Cd (5 µM) from the apical side to the basolateral side. These data suggest that 

intestinal cells are able to absorb Cd and the detained Cd in the body, which has a long 

biological half-life, would continue to affect human health even if the Cd sources are interrupted. 

This speculation was supported by a recent study, which reported that Cd absorption in Caco-2 

cells was mediated by the ferrous iron transporter (DMT1) and zinc transporter (ZIP14) 

(Fujishiro et al. 2017). In HT-29 cells, Cd caused an irregular distribution of ZO-1 and claudin-

1; in Caco-2 cells, Cd induced up-regulation of genes coding tight and adherens junction 

proteins, including ZO-1, claudin-4, E-cadherin, and p-120 catenin, among which the latter two 

genes are most sensitive to Cd influence (Rusanov et al. 2015; Zhai et al. 2016). These studies 

reveal an association between Cd exposure and the damage of intestinal barrier proteins. Both 

of ZO-1 and occludin involve cysteine group that contains thiol group (Itoh et al. 1993; Mitic 

and Anderson 1998). Cd has a high affinity to thiol group (Valko et al. 2005), therefore it may 

bind to ZO-1 and occludin in the thiol group to redistribute these junctional proteins in the 

intestinal cells, leading to loss of barrier function. 
 

Table 4 Effect of Cd on intestinal barrier function 

Model  Dose and time 
exposure 

Effect on barrier function  References 

In vitro 
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Caco-2 
cells 

10-80 μM,  
24h 

Decrease in TEER values 
Increase in permeability of mannitol 
Disruption in integrity of tight junctions 

(Rossi et al. 1996) 

Caco-2 
cells 

100 μM,  
4h 

Decrease in TEER values 
Increase in permeability of mannitol and PEG-4000 
Redistribution of ZO-1, occludin, E-cadherin  

(Duizer et al. 1999) 

Caco-2 
cells 

1-300 μM,  
3h  

Decrease in TEER values 
Increase in transcript level of E-cadherin, p120, 
Claudin4 and ZO-1  

(Rusanov et al. 2015) 

HT-29 
cells 

50 μM 
24h 

Redistribution of ZO-1 and Claudin1 
 

(Zhai et al. 2016) 

In vivo 
Mouse  100 mg/L water 

8 weeks 
Increase in permeability of DX-4000-FITC 
Decrease in transcript level of ZO-1, ZO-2, 
Claudin1 and occludin in jejunum and colon  

(Zhai et al. 2016) 

 

3.4.5.5. Effect of Cd on the intestinal microbiota 

As a main actor of gut homeostasis, the microbiota has become a potential target of 

environmental chemicals (Joly Condette et al. 2014; Jin et al. 2015b). The adverse effects of 

Cd on the gut microbiota have attracted attention. A study performed on mice model showed 

that Cd exposure suppressed the growth of the resident gut microbiota and reduced the 

abundance of total bacteria (Li et al. 2016). The population of Bifidobacterium and 

Lactobacillus decreased significantly in Cd-exposed mice, as well as the gut microbiome 

SCFAs (short chain fatty acids) metabolism (Li et al. 2016), which positively regulate the TJ 

assembly and paracellular permeability (Wells et al. 2017). Cd exposure also reduced the ratio 

of Bacteroidetes (decrease) to Firmicutes (increase) in this study. It may be beneficial for 

resisting Cd as Firmicutes possesses a high content of peptidoglycan and teichoic acid. These 

elements could bind Cd ions to cell wall by ion exchange reaction (Vrieze et al. 2010). This is 

consistent with the study performed by Liu et al. (Liu et al. 2014). However, Ba et al and Zhang 

et al found that the amount of Firmicutes decreased in the Cd-exposed mice (Zhang et al. 2015; 

Ba et al. 2017). Ba et al. demonstrated that low-dose Cd increased plasma fat accumulation via 

microbiota alteration in male mice, but not in female (Ba et al. 2017). Zhang et al. proved that 

Cd increased the transcription of genes related to glucose and lipid metabolism in liver (Zhang 

et al. 2015). These data suggest that Cd-induced disorder of intestinal microbiota mediates 

dysregulation on energy metabolism. In Zhang’s study, the increase of serum LPS level in the 

Cd-treated mice was also observed. Furthermore, serum LPS activity is closely associated with 

the concentration of blood Cd (Han et al. 2015). This imply that gut microbiota alteration may 

induce LPS production, which is related to systemic inflammation.  
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The conventional and germ-free mice models were used to detect the protective effects of 

gut microbiota against Cd toxicity. This research revealed that Cd accumulation in blood, 

kidney, liver and spleen of germ-free mice was significantly higher than that of conventional 

mice. The transcriptional level of metal transporter, such as metallothioneins (MT1 and MT2) 

was considerably higher, whereas, the expression level of antioxidant enzyme Nos2 was much 

lower in the duodenum and colon of germ-free mice compared to control mice (Breton et al. 

2013). These data indicate that Cd impairs intestinal function not only through the alteration of 

junctional structure but also via the alteration of the composition of intestinal microbiota. In 

summary, Cd exposure could change the micro-ecological balance, which could affect the 

intestinal epithelial layer. While the alteration of epithelial layer, in turn, also affects the gut 

microbiota. 
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Experimental work 
Generally, contaminants are not present alone but in mixture in food/feed. In recent 

decade years, the mixtures of different contaminants in food catch an increasing concern. 

Several studies showed that different heavy metals, like Cu, Pb, Cr and Cd accumulate in the 

edible parts of wheat, which was irrigated by contaminated water (Si et al. 2015; Zeng et al. 

2015; Ran et al. 2016). Other studies revealed that different mycotoxins, including DON,  ZEN, 

T-2 and HT-2 toxin are detected in the cereals or cereal-derived products (Mankevičienė et al. 

2014; Vanheule et al. 2014; Yoshinari et al. 2014). Eskandari and Pakfetrat found that various 

mycotoxins and heavy metals in animal feed exceeded the permissible maximum levels in Iran 

(Eskandari and Pakfetrat 2014). The co-occurrence of mycotoxins and heavy metals was also 

observed in the corn flours in Turkey (Algül and Kara 2014). These studies indicate that mixed 

contamination of different toxicants in food is very common. Therefore, the co-occurrence of 

DON and Cd in food is possible. Indeed the last French Total Diet Studies have shown that 

several food products, such as bread and dried bread products, pasta, croissant-like pastries, 

sweet or savory biscuits, rice and wheat products were contaminated with both DON and Cd 

(Arnich et al. 2012; Sirot et al. 2013). Overall, the co-contamination of food products by DON 

and Cd raises the concern of consumers exposed to the cocktail of these contaminants. 

The toxicity of a toxic mixture cannot be always predicted based on the effect of its 

individual toxicant, as exposure to mixtures could result in synergistic, antagonistic and additive 

effect (Alassane-Kpembi et al. 2017a; Tinkov et al. 2018). Some interactions in multi-

contaminant have been reported. Synergy effects on Caco-2 cytotoxicity were observed 

between DON and its acetylated derivatives at low concentrations (Alassane-Kpembi et al. 

2013) or between DON and aflatoxin B1 at higher doses (Sobral et al. 2018). In vivo study 

showed an additive and less than additive interaction between DON and aflatoxins on body 

weight gain (Grenier and Oswald 2011). Low dose of DON and nivalenol combination caused 

a synergistic interaction on inflammation induction in jejunal explants of pig (Alassane-Kpembi 

et al. 2017a). The genotoxicity of other toxicants such as colibactin and aristolochic acid, an 

Escherichia coli-derived and plant-derived genotoxin, can be aggravated by DON and 

ochratoxin A respectively in vivo and in vitro (Payros et al. 2017), implying a synergistic 

interaction between these toxins. The synergistic, additive and antagonistic effects were also 

reported between Cd and other chemicals, including lead, uranium, pesticide and 

benzo(a)pyrene (Roesijadi et al. 2009; Kim et al. 2013b; Margerit et al. 2015; Xu et al. 2017). 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Eskandari%20MH%5BAuthor%5D&cauthor=true&cauthor_uid=25029403
https://www.ncbi.nlm.nih.gov/pubmed/?term=Eskandari%20MH%5BAuthor%5D&cauthor=true&cauthor_uid=25029403
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Therefore, it is important to determine whether DON and Cd interact with each other to cause 

a synergy or an antagonism. 

Le et al. (Le et al. 2018) have studied the interaction types between DON and Cd using 

different in vitro models representing kidney (HEK293), intestine (Caco-2), blood (HL-60) and 

liver (HepG2). They found that the interaction type ranged from moderate antagonism to nearly 

additive in HEK293 and from nearly additive to antagonism in Caco-2 regardless of the ratios 

between DON and Cd into the mixture. In HL-60 and HepG2, interaction ranged from synergy 

to antagonism at ratio 1:1. This in vitro study has confirmed that DON and Cd affect each other 

on their toxic effect on intestine. These results give a sign that further in vitro and in vivo studies 

are needed to help understand the co-effects of the cocktail contaminants on the intestine and 

the underlying mechanisms. 

Human and animals are exposed to both toxicants through ingestion of contaminated 

food and feed, especially cereals and cereal by-products (Arnich et al. 2012; Sirot et al. 2013). 

However, so far, the combined effects of DON and Cd are poorly studied. To the best of our 

knowledge, with the exception of one study (Le et al. 2018), no more investigations have been 

performed to explore the combined effects of these two contaminants. The aim of the present 

study was to assess the individual and combined effects of DON and Cd on the intestinal barrier 

using in vitro, in vivo and ex vivo models. The individual and combined effects of DON and 

CdCl2 were analyzed in vitro on Caco-2 cells by measuring transepithelial electrical resistance 

(TEER), paracellular permeability and the abundance of junctional proteins. In vivo 

experiments were performed on rats to investigate the effects on intestinal histomorphology, 

abundance and localization of junctional proteins. Ex vivo trials were carried out on the jejunal 

explants of pig by measuring mRNA expression of inflammatory genes, TEER and paracellular 

permeability.  

 

The results of this work are presented in the form of scientific articles: 

Article 1  

Su Luo, Chloe Terciolo, Ana Paula Bracarense, Delphine Payros, Philippe Pinton, Isabelle 

Oswald. In vitro and in vivo effects of a mycotoxin, deoxynivalenol, and a trace metal, cadmium, 

alone or in mixture on the intestinal barrier. Environment International, 132:105082, 2019. 

Available on line : https://www.ncbi.nlm.nih.gov/pubmed/31400600  
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Su Luo, Sylvie Puel, Isabelle P. Oswald and Philippe Pinton.  Specific intestinal toxicity of 

deoxynivalenol and cadmium: analysis on pig jejunal explant. Archiva Zootechnica, 20 :2, 39-50, 2017. 
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Abstract: Deoxynivalenol (DON), one of the most widespread mycotoxins in Europe, and 

cadmium (Cd), a widespread environmental pollutant, are common food contaminants. They 

exert adverse effects on different organs including kidney, liver, and intestine. The intestine is 

a common target of DON and Cd when they are ingested. Most studies have focused on their 

individual effects whereas their combined toxicity has rarely been studied. The aim of this study 

was thus to evaluate their individual and combined effects on the intestinal barrier function in 

vitro and in vivo.  In vitro, Caco-2 cells were treated with increasing concentrations of DON 

and Cd (1-30 µM). In vivo, rats were used as controls or exposed to DON contaminated feed 

(8.2 mg/kg feed), Cd-contaminated water (5 mg/L) or both for four weeks. In Caco-2 cells, 

DON, Cd and the DON+Cd mixture reduced transepithelial electrical resistance (TEER) and 

increased paracellular permeability in a dose-dependent manner. Impairment of the barrier 

function was associated with a decrease in the amount of E-cadherin and occludin after 

exposure to the two contaminants alone or combined. A decrease in E-cadherin expression was 

observed in rats exposed to the two contaminants alone or combined, whereas occludin 

expression only decreased in animals exposed to DON and DON+Cd. Jejunal crypt depth was 

reduced in rats exposed to DON or Cd, whereas villi height was not affected. In vitro and in 

vivo results showed that the effects of exposure to combined DON and Cd on the intestinal 

barrier function in the jejunum of Wistar rats and in the colorectal cancer cell line (Caco-2) was 

similar to the effects of each individual contaminant. This suggests that regulations for each 

individual contaminant are sufficiently protective for consumers. 

 

Keywords: Deoxynivalenol, cadmium, intestinal barrier function, mixture exposure, junctional 

proteins, mixture risk assessment 

 

Highlights: 

- Both DON and Cd alter the intestinal epithelial barrier function. 

- Both DON and Cd disrupt the intercellular junctions (tight and adherens junctions). 

- Both DON and Cd reduce the depth of jejunal crypts. 

- Combined, DON and Cd have the same effects as each individual contaminant. 
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1.1 Introduction 

Food safety is a major concern worldwide. Food and feedstuff are frequently 

contaminated by multiple contaminants (Silins and Högberg 2011a; Rather et al. 2017). The 

toxic effects of these mixtures cannot be predicted only based on the toxicity of individual 

contaminants, and simultaneous exposure to several contaminants can lead to synergistic, 

antagonistic or additive effects (Alassane-Kpembi et al. 2017b). In recent years, combined 

toxicity studies have been carried out to assess the effects of mixtures of food contaminants 

such as mycotoxins (Alassane-Kpembi et al. 2017a) trace metals elements (Claus Henn et al. 

2014), pesticides (Lukowicz et al. 2018) or carcinogens (Miller et al. 2017). However, the 

toxicity of mixtures of contaminants from different families remains poorly documented 

(Payros et al. 2017; Le et al. 2018). 

Mycotoxins are the most frequently occurring natural food contaminants in human and 

animal diets. Among mycotoxins, Deoxynivalenol (DON), mainly produced by Fusarium 

graminearum and F. culmorum, frequently contaminates cereals and cereal products. Almost 

half  of 26,613 cereal samples collected from 21 European countries were found to be 

contaminated by DON, with the highest levels observed in wheat, maize and oat grains (EFSA 

2013). A tolerable daily intake (TDI) for DON and its derivative was established at 1 μg/kg 

b.w./day (EFSA 2017). Analyses of adult urine samples in the United Kingdom revealed that 

98% of them had been exposed to DON (Turner et al. 2008), while national and European 

surveys indicate that children exceed the health based guidance values (Sirot et al. 2013; 

Knutsen et al. 2017). DON interacts with the peptidyl transferase region of the 60S ribosomal 

subunit, inducing “ribotoxic stress,” resulting in the activation of mitogen-activated protein 

kinases and their downstream pathways (Pestka 2010a; Lucioli et al. 2013). Symptoms of 

intoxication in animals exposed to DON may include decreases food consumption and weight 

gain, neuro-endocrine changes as well as alteration of intestinal and immune functions. 

Following acute exposure, vomiting and bloody diarrhea have been observed (Pestka 2010a; 

Pinton and Oswald 2014; Payros et al. 2016). 

Cadmium (Cd) is a heavy metal element naturally presented in the Earth’s crust. It is a 

common environmental pollutant occurring both naturally and as a result of industrial and 

agricultural activities (ATSDR 2012). Natural sources of Cd include volcanic activity, 

weathering of rocks, sea aerosols and forest fires. Anthropic origins of Cd include batteries, 

pigments, plastic stabilizers, pesticides and fertilizers, and photovoltaic devices, as well as 

rubber processing, galvanization, fossil combustion and waste incineration. Cadmium 
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compounds are soluble in water and can be taken up by plant roots and translocated to the edible 

parts where it accumulates. High amounts of Cd accumulate in tobacco leaves and tobacco 

smokers are exposed by inhalation (Ganguly et al. 2018). Among nonsmokers, ingestion of 

contaminated food is a major source of Cd exposure. Sixty-six per cent of the 137,200 food 

samples analyzed in 20 European countries contained 5% more than the maximum level of Cd 

(EFSA 2009). A tolerable weekly intake (TWI) for Cd is set at 2.5 μg/ kg b.w. (EFSA 2009). 

European adults' mean dietary exposure to Cd was close to this TWI, and subgroups, including 

vegetarians, children, and smokers, exceeded the TWI about 2-fold (EFSA 2009). Grain and 

cereal products, as well as fish and offal were the major contributors to human Cd exposure 

(Filipic et al. 2006; ATSDR 2012). Cd causes inflammation, apoptosis and oxidative stress in 

liver and kidney (Liu et al. 2015; Kim et al. 2015). Cadmium absorbed by inhalation and 

ingestion mainly accumulates in the liver and kidney, but the small intestine and lung may also 

be targets (Zhang et al. 2015; Tinkov et al. 2018). Cd increases the risk of cancer through 

oxidative stress, which damages DNA and inhibits DNA repair systems, and is consequently 

classified as a (group 1) human carcinogen (Bishak et al. 2015). 

The intestinal epithelium is the first barrier against ingested chemicals and food 

contaminants. The gut barrier is formed to a large extent by intercellular junctions at the apical 

side of epithelial cells. These junctions seal the cells together and regulate the passage of ions 

and water across the epithelium (Suzuki 2013; Terciolo et al. 2019). Following ingestion of 

contaminated food, intestinal epithelial cells may be chronically exposed to contaminants such 

as DON and Cd. The effects of DON on the intestine are well described (Maresca 2013; Pinton 

and Oswald 2014). DON alters the intestinal structure, reduces the expression of several 

junctional proteins, reduces the barrier function, affects nutrient absorption, modulates  

intestinal microbiota and the local immune response (Pestka 2010a; Pinton and Oswald 2014; 

Payros et al. 2016). The effects of Cd on the intestine are less well documented, but recent 

studies show that it alters the gut microbiota, triggers a local inflammatory response and 

disrupts some tight junctions (Breton et al. 2016; Tinkov et al. 2018). 

Human and animals are exposed to both compounds through ingestion of contaminated 

food and feed, especially cereals and cereal by-products (Arnich et al. 2012; Sirot et al. 2013). 

To the best of our knowledge, with the exception of one study (Le et al. 2018), the combined 

effects of these two contaminants have not been documented. The aim of the present study was 

to assess the individual and combined effects of DON and Cd on the intestinal barrier using in 

vitro and in vivo models. In vitro, the individual and combined effects of DON and Cd (0-30 

µM) on Caco-2 cells were analyzed by measuring transepithelial electrical resistance (TEER), 
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paracellular permeability and the abundance of junctional proteins. In vivo experiments were 

performed to investigate the effects on intestinal histomorphology, the abundance and 

localization of junctional proteins in rats exposed to DON (8.2 mg/kg feed) and Cd (5ml/L of 

drinking water). Our in vitro and in vivo data on the parameters cited above demonstrated that 

the effects of different combinations of DON and Cd tested were comparable to those of the 

highest dose of each individual contaminant. 

 

1.2 Materials and methods 

1.2.1 Reagents 

 DON and CdCl2 were purchased from Sigma (St Quentin Fallavier, France). For in vitro 

experiments, DON and CdCl2 were dissolved in water and stock solutions (5 mM) were stored 

at -20 °C before dilution in complete cell culture medium. For in vivo experiments, DON was 

included in the rats’ diet as previously described  (Payros et al. 2016; Bracarense et al. 2017) 

while CdCl2 was added to drinking water at a rate of 5 mg/L.  

 

1.2.2 Cells  

 The Caco-2 cell line (Sigma, 86010202) was originally isolated from a primary colonic 

tumor in a 72-year-old Caucasian male. The cells were maintained in DMEM-Glutamax (Gibco, 

Life Technologies, Courtaboeuf, France) supplemented with 10% fetal calf serum (FCS) 

(Eurobio, Courtaboeuf, France), 1% non-essential amino acid (Sigma) and 0.5% gentamycin 

(Eurobio). Cells maintained in a humidified atmosphere at 37 °C with 5% CO2 were passaged 

by trypsinization (0.5% trypsin in 0.5 mM EDTA) when they reached 80% confluency. Caco-

2 cells were differentiated on 0.3 cm2 polyethylene terephthalate membrane inserts with 0.4 μm 

pores (Corning Inc., Corning, NY, USA) for the assessment of transepithelial electrical 

resistance (TEER) and paracellular permeability, as previously described (Pinton et al. 2009; 

Pierron et al. 2016a). 

 

 

1.2.3 Animals  

 The experimental protocol was carried out in accordance with European Guidelines for 

the Care and Use of Animals for Research Purposes and was validated by Toxcomethique 

Ethics Committee and the French Ministry of National Education Higher Education and 
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Research (TOXCOM/0142/PP). Three of the authors (DP, PP and IPO) have official 

authorization from the French Veterinary Services for animal experimentation.  

 Four-week-old male Wistar rats (140-170 g body weight), (Janvier Labs, Le Genest 

Saint Isle, France) were kept under the normal conditions with a 12-hour day/night cycle, 19-

25 °C temperature, 50-70% humidity, at the Toxalim animal facility (INRA, UMR 1331, 

Toulouse) with ad libitum access to food and water throughout the study. After five days of 

acclimatization, the rats were divided into four groups of eight animals: control, exposed to 

DON contaminated-feed (8.2 mg DON/kg feed), exposed to Cd-contaminated water (5 mg 

CdCl2/L) or exposed to both DON and Cd. No other mycotoxin was detected in the feed 

(supplementary table 1). Rats were weighed weekly. After four weeks, the animals were 

euthanized and the intestinal tissue was collected and fixed in 10% buffered formalin for 

histological assessment and immunohistochemical staining. 

 

1.2.4 Transepithelial electrical resistance assay  

Caco-2 cells grown on inserts differentiated and acquired an epithelial phenotype with 

polarity properties (apical and basolateral sides). They were treated apically with increasing 

concentrations of DON and Cd (0, 1, 3, 10, 30 µM) alone or combined. The TEER was 

measured every 4 h for 48 h using a cellZscope device (nanoAnalytics, Münster, Germany). 

Measurements were made on four replicates from four independent experiments.  

 

1.2.5 Paracellular tracer flux assay 

To assess paracellular flux, the 4-kDa fluorescein isothiocyanate-dextran (FITC-dextran) 

(Sigma), dissolved in cell culture medium, was added in the apical compartment (transwell final 

concentration 2.2 mg/mL) at 48 h post DON and/or Cd exposure. After 1 h of incubation, 

fluorescence was measured in the basal compartment (well of plate) with a microplate 

fluorimeter reader (Tecan, Lyon, France). The excitation and emission wavelengths were 490 

and 520 nm, respectively. The background signal resulted from reagent-treated medium without 

cells. Measurements were made on four replicates from four independent experiments. 

 

1.2.6 Western blot analysis of junctional proteins  

 Differentiated Caco-2 cells, cultured in 6-well plates, were treated with DON and Cd 

individually or in combination for 24 h to analyze junctional proteins. Three independent 

experiments were performed for each cell culture condition. After cell treatment, proteins were 
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extracted as previously described (Pinton et al. 2009) and separated on SDS-PAGE membranes 

probed with rabbit polyclonal Abs anti-occludin (#71-1500), -ZO-1 (#61-7300) (Thermo Fisher 

Scientific, Illkirch, France), -claudin-3 (#34-1700), -claudin-7 (#34-9100) (Invitrogen), rabbit 

monoclonal Ab anti-E-cadherin (Cell Signaling Technology, Leiden, The Netherlands), or 

mouse monoclonal Ab anti-claudin-4 (Invitrogen), diluted 1:250. Mouse monoclonal Ab or 

rabbit polyclonal anti-β-actin (Cell Signaling Technology, #3700 or #4967) was used as control 

(diluted 1:1000). Membranes were then washed and incubated with secondary antibodies 

CF680 goat anti rabbit IgG (#20067) or CF680 goat anti mouse IgG (#20065, diluted 1:10000) 

obtained from Biotium (Hayward, CA). Infrared fluorescence intensity of the specific bands 

was obtained with Odyssey Infrared Imaging System (LI-COR ScienceTec, Les Ulis, France). 

After correction for the background, the expression of the proteins was estimated after 

normalization calculated by the ratio of the intensity of the band of interest and of the β-actin 

band. 

 

1.2.7 Immunofluorescence analysis  

 Differentiated Caco-2 cells cultured on glass cover slips were treated with DON and Cd 

individually or in combination for 24 h. The cells were fixed with 4% paraformaldehyde at 4 °C 

for 30 min and permeabilized with PBS containing 0.1% Triton X-100 for 10 min, then blocked 

with 10% goat serum at room temperature for 1 h. Occludin and E-cadherin were detected by 

incubation with rabbit polyclonal Abs anti-occludin (Thermo Fisher Scientific, #71-1500) and 

monoclonal anti-E-cadherin (Cell Signaling Technology, #3195) respectively. After three 

washes, the cells were incubated for 1 h with Alexa Fluor 546-conjugated goat immunoglobulin 

(1:500; Life Technologies, #A11035) raised against rabbit IgGs. Nuclei were stained with DAPI 

(Vector Laboratories) for 10 min. Cells were washed and mounted in Prolong® Gold antifade 

reagent (Invitrogen, Oregon, USA). Images were captured using an SP8 Leica confocal 

microscope and analyzed using FIJI software. 

 

1.2.8 Histological and morphometric assessment of rat jejunum 

 The pieces of rat jejunum were fixed in 10% buffered formalin, embedded in paraffin 

and cut into 5 µm sections. The sections were stained with hematoxylin & eosin for 

histopathological evaluation. A lesional score, including the morphology of villi and 

enterocytes, interstitial edema, and lymph vessel dilation was designed to compare histological 

changes between different conditions as previously described (Pierron et al. 2018). Villus height 
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and crypt depth were measured randomly using a MOTIC Image Plus 2.0 ML analysis system 

(Motic Instruments, Richmond, Canada). 

 

1.2.9 Immunohistochemical assessment of junctional proteins in the jejunum 

 After dewaxing and heat-induced antigen retrieval as described previously (Bracarense 

et al. 2012), paraffin-embedded 5 µm sections of rat jejunum were incubated overnight at 4 °C 

with the primary antibody anti-E-cadherin (Zymed, San Francisco, CA, USA) and anti-occludin 

(Santa Cruz. Biotechnology Inc., USA). The secondary antibody (SuperPicTure™ Polymer, 

Zymed) was applied followed by the addition of a chromogen (3,30-diaminobenzidine). Finally, 

tissue sections were counterstained with hematoxylin. The sections were then examined and the 

proportion of intestinal section expressing E-cadherin was estimated. Each sample was 

classified as having either normal or reduced staining. 

 

1.2.10 Statistical analysis 

 The results are presented as the means ± standard error of mean (SEM) of independent 

experiments. Statistical analyses were performed using GraphPad Software (La Jolla, CA, 

USA). Significant differences between groups were analyzed by one-way ANOVA (non-

parametric) with Bonferroni’s multiple comparison test. p < 0.05 was considered statistically 

significant.  

 

1.3 Results 

 

1.3.1 Individual effects of DON and Cd on intestinal barrier function 

 Individual effects of DON and Cd were first assessed on two parameters that reveal the 

integrity of the intestinal epithelium: the TEER and the paracellular passage of dextran.  

 As shown in Figure 1A, both DON and Cd reduced the TEER of Caco-2 monolayers in 

a dose- and time-dependent manner. The TEER was not affected by 1 and 3 μM of either 

contaminants but was significantly decreased by 10 μM DON as early as 8 h after exposure (44% 

decrease, p < 0.001) and by 10 µM Cd after 12 h of exposure (40% decrease, p < 0.001). 

Treatment with 30 μM of DON or Cd reduced the TEER as early as 4 h (27%, p < 0.05), and 

the TEER decreased over time (82% and 87% decrease (p < 0.001) at 12 h respectively).  

 The permeability of Caco-2 monolayers to 4-kDa FITC-dextran was measured at the 

end of the experiment. As shown in Figure 1B, this parameter was not affected in cells exposed 
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to 1, 3 μM DON or 10 μM Cd. Higher doses of DON and/or Cd significantly increased the 

passage of FITC-dextran (18, 67 and 53-fold upon exposure to 10 μM DON, 30 μM DON and 

30 μM Cd respectively).  

 These results show that both DON and Cd alter the intestinal barrier function as 

measured by decreased TEER and increased passage of dextran.  

 

 

 
Figure 1. Effects of DON and Cd on TEER and paracellular permeability of differentiated 

Caco-2 cells.  

(A) Effect on the TEER. Caco-2 cells were grown and differentiated on inserts and treated 

apically with DON (blue upper panel) or Cd (red lower panel) at 1 µM (inverted triangles), 3 

µM (triangles), 10 µM (squares) or 30 µM (diamonds); control cells (circles, black line) were 

untreated. The TEER was recorded over a period of 40 h. 

 (B) Effect on paracellular permeability. At 48 h, 4-kDa FITC-dextran was added in the apical 

compartment and 1 h later, fluorescence was assessed in the basal compartment. Fluorescent 

intensity was measured and background levels subtracted. 

Results, normalized to the controls, are expressed as the mean of 4 independent experiments ± 

SEM (*, p < 0.05; ***, p < 0.001). Data were analyzed by non-parametric one-way ANOVA 
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1.3.2 Individual effects of DON and Cd on the abundance of junctional proteins  

 Adherent and tight junctions belong to apical multiprotein complexes that link adjacent 

epithelial cells together and play an important role in the formation and the maintenance of the 

intestinal barrier (Suzuki 2013). Thus, the effect of DON and Cd on the abundance of several 

junctional proteins was examined. 

 As shown in Figure 2, DON induced a dose dependent decrease in the amount of 

occludin, E-cadherin and claudin-7. In the case of occludin, upon exposure to 10 and 30 µM 

DON, the decrease reached 54% (p < 0.05) and 66% (p < 0.01); for E-cadherin the reduction 

was 50% (p < 0.05) and 80% (p < 0.001) respectively. For claudin-7, a significant decrease was 

only observed at 30 μM DON (80%, p < 0.05). By contrast, exposure to DON at rates up to 30 

µM, did not affect the amount of claudin-3, -4 and ZO-1.  

Regarding Cd, a significant reduction in the abundance of occludin and E-cadherin was 

only observed upon exposure to 30 µM (58% (p < 0.05) and 70% (p < 0.01) decrease 

respectively), whereas claudin-3, -4, -7 and ZO-1 were not affected by the trace metal element. 

 These results suggest that DON and Cd impair the intestinal barrier function via a 

specific decrease in the abundance of E-cadherin and occludin.  

 

1.3.3 Individual effects of DON and Cd on the distribution of junctional proteins  

 We next investigated the effect of DON and Cd on the distribution of junctional proteins 

in the Caco-2 cells. In control cultures, a well-defined band of membrane-associated 

immunofluorescence staining for E-cadherin and occludin was observed (Fig. 3A and B). 

Exposure to DON or Cd for 24 h caused significant changes in E-cadherin pattern as analyzed 

by fluorescence (white arrow) (Fig. 3A). The main modification caused by DON was reduced 

membranous expression of E-cadherin. At the same time, increased granular fluorescence was 

observed in the cytoplasm. After Cd exposure, the redistribution of E-cadherin into the 

cytoplasm was more visible. The loss of membranous expression with partial redistribution into 

the cytoplasm was also observed for occludin (white arrow) (Fig. 3B). The effects of DON and 

Cd on E-cadherin and occludin distribution were dose dependent.  

 Taken together, these results show that exposure to DON or Cd caused alterations in the 

cellular localization of E-cadherin and occludin. 
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Figure 2. Effects of DON and Cd on the expression of junctional proteins in Caco-2 cells. 

Differentiated Caco-2 cells were exposed to different concentrations of DON and Cd for 24 h. 

(A) After extraction, proteins were analyzed by immunoblotting for claudin-3, 4, 7, occludin, 

E-cadherin and ZO-1.  

(B) Protein expression was analyzed by densitometry and normalized to that of β-actin. Data 

are presented as means ± SEM of 3 independent experiments. Means with different letters differ 

(p < 0.05). ). Results were analyzed by one-way ANOVA with Bonferroni’s multiple 

comparison test. 
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Figure 3. Effect of DON and Cd on E-cadherin and occludin distribution in differentiated 
Caco-2 cells. 

Differentiated Caco-2 cells were exposed to different concentrations of DON or Cd for 24 h. E-

cadherin (A) and occludin (B) distribution (white arrow) was analyzed after immunostaining 

with specific antibody. 
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1.3.4 Combined effects of DON and Cd on intestinal barrier function 

The data presented above indicated that individual exposure to DON or Cd has harmful 

effects on the intestinal barrier; however, in a mixture, their combined effects remain unknown. 

 The combined effects of DON and Cd on the TEER are summarized in Figure 4. In this 

heat-map, the first line and column show the individual effects of DON and Cd while the other 

cells show the effects of different combinations, with a color code indicating the strength of the 

effect. A time and dose dependent decrease in the TEER was observed when the toxins were 

present alone or in a mixture. Comparison of the combined effect with that of each individual 

compound revealed that after 8 h of exposure, the impact of Caco-2 cells exposed to 3 µM Cd 

combined with 10 µM DON was always stronger than that of 3 µM Cd alone (p < 0.001) but 

similar to that of DON alone. The same effects were observed for Cd 10 µM combined with 

DON (10 or 30 µM) (p < 0.001). Moreover, at 12 h of exposure, 10 µM Cd combined with 

DON (10 or 30 µM) also had a stronger impact than DON alone (p > 0.05).  Conversely, 10 

µM of Cd combined with 3 µM of DON led to a greater decrease in the TEER than DON alone 

(p < 0.001).These results were also observed when 30 µM Cd was combined with 10 µM DON 

(p < 0.001 from 8 h to 12 h and p < 0.05 from 24 h), except for 36 h. At 4 h, 24 h and 36 h, the 

effect of the combination of DON and Cd 30 µM was stronger than the effect observed with 

DON or 30 µM Cd alone (p < 0.01 at 4 h, 24 h and 36 h). These data show that, as far as the 

TEER is concerned, in most cases, the combination of DON and Cd had a similar effect to that 

of the individual contaminants. 

The paracellular permeability to 4-kDa FITC-dextran was assessed on cell monolayers 

exposed to mixtures of DON and Cd for 48 h (Fig. 5). The results indicated that combinations 

of low doses of DON and Cd (1 to 3 µM) did not cause any significant changes in paracellular 

permeability except for the combination 3 µM DON and 10 µM Cd. In this case, the mixture 

had a stronger effect than the contaminant alone (DON, p < 0.001; Cd, p < 0.05). Moderate to 

high doses (10 to 30 µM) resulted in a marked increase in permeability to 4-kDa FITC-dextran. 

For example, the combination of DON and Cd at 10/10, 30/30, 10/30 and 30/10 μM increased 

the passage of dextran 46-, 82-, 76- and 81-fold, respectively, compared to untreated cells. 

Notably, 10 µM DON combined with 10 µM Cd resulted in a greater increase in paracellular 

permeability than 10 µM of Cd alone (p < 0.001). DON (10 µM) combined with 30 µM Cd had 

a stronger effect than 10 µM DON alone (p < 0.001). Similarly, 30 µM DON combined with 

10 µM Cd led to a greater increase in paracellular permeability than 10 µM Cd alone (p < 0.001). 
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These data indicate that the combination of DON and Cd has a similar effect on the intestinal 

permeability to that of the individual contaminant.  



56 
 

 



57 
 

 

Figure 4 Heatmap showing the effects of single and binary combinations of DON and Cd on 

the TEER of Caco-2 monolayers after 4 h, 8 h, 12 h, 24 h and 36 h of exposure. At each time-

point, the TEER of control untreated cells was considered as 100%. Results are expressed as 

the mean of 4 independent experiments ± SEM (#, combined effects VS effects of Cd alone, p 

< 0.05; ##, p < 0.01; ###, p < 0.001. $, combined effects VS effects of DON alone, p < 0.05; 

$$, p < 0.01; $$$, p < 0.001). Data were analyzed by non-parametric one-way ANOVA with 

Bonferroni’s multiple comparison test. The intensity of the color reflects the strength of effect 

on the TEER.  
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Figure 5 Heatmap showing the effects of single compound and binary combinations of DON 

and Cd on the paracellular permeability of Caco-2 monolayers after 48 h of exposure. After 1 

h of incubation with FITC-Dextran, the intensity of fluorescent was measured in the basal 

compartment. Results are expressed as fold increase in fluorescent intensity relative to controls. 

Results are expressed as the mean of 4 independent experiments ± SEM. (#, combined effects 

versus effects of Cd alone, p < 0.05; ##, p < 0.01; ###, p < 0.001. $, combined effects VS effects 

of DON alone, p < 0.05; $$, p < 0.01; $$$, p < 0.001). The depth of color reflects the strength 

of the effect on permeability. Data were analyzed by non-parametric one-way ANOVA with 

Bonferroni’s multiple comparison test. 
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1.3.5 Combined effects of DON and Cd on junctional protein abundance 

 To investigate the combined effect of DON and Cd on the intestinal barrier function in 

more detail, the abundance of two junctional proteins, occludin and E-cadherin, was analyzed. 

Figure 6 is a heatmap of the individual and combined effects of DON and Cd. The levels of the 

two proteins decreased continuously with increasing concentrations of combined compounds. 

The combination of DON and Cd at a rate of 3 µM induced a similar decrease in occludin and 

E-cadherin as 3 µM of DON or 3 µM of Cd alone. Only 10 µM Cd combined with 10 µM DON 

led to a bigger decrease in occludin and E-cadherin abundance than 10 µM of Cd alone (p < 

0.001). When the cells were exposed to a combination of 30 µM DON and 30 µM Cd, the levels 

of occludin and E-cadherin were lower than the level observed in cells only exposed to DON 

or Cd alone (DON, p < 0.001; Cd, p < 0.05). The data show that except for very high 

concentrations, the effect of a combination of DON and Cd on the abundance of occludin and 

E-cadherin was similar to the effect of the individual compounds. 

 

1.3.6 In vivo effects of DON and Cd alone or in combination on the histomorphometry of the 
jejunum 

  Given the impact of DON and Cd on intestinal barrier function on Caco-2 cells, 

experiments were also performed on animals. Rats were exposed to DON-contaminated feed 

(8.2 mg/kg), Cd-contaminated water (5 mg/L) or both. The individual and combined effects of 

these contaminants were assessed on the intestine after 4 weeks of exposure.  

The animals’ body weight gain was not affected in any of the conditions (Fig. 7). 

Histomorphometrical changes were analyzed in the jejunum of rats fed DON and Cd alone or 

in combination. These results showed moderate but significant lesions compared to the intestine 

of control rats. The main histological changes were atrophy and fusion of the villi. Interstitial 

edema and enterocyte apical flattening were also observed (Fig. 8A, B, C, D). Lesional scores 

were about 4-fold higher in rats exposed to DON, Cd or both than that in control rats (Fig. 8E). 

These results indicate that intestinal damage caused by the combination of DON and Cd were 

as severe as the damage caused by each contaminant individually. 

 The in vivo effects of the mycotoxin and the heavy metal on intestinal cell proliferation 

were also assessed by measuring villus height and crypt depth. A significant reduction in crypt 

depth was observed in the jejunum of rats exposed to the contaminants compared with control 

animals (Fig. 8F). The reduction in crypt depth in animals exposed to both DON and Cd was 

similar to the reduction observed in animals exposed to Cd alone but slightly greater than the 
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reduction observed in the animals only exposed to DON (−16%, p < 0.01). Villus heights did 

not differ significantly whatever the group of animals considered (Fig. 8G).  

 Taken together, these results indicate that ingestion of a combination of DON and Cd 

induces similar or slightly bigger lesions and has greater histomorphological effects on the 

intestine than ingestion of the individual contaminants. 

 

1.3.7 In vivo effects of DON and Cd alone or in combination on the abundance of E-cadherin 
and occludin in the jejunum 

 As DON and Cd significantly reduced the amount of E-cadherin and occludin in Caco-

2 cells, their abundance was also assessed in the jejunum of rats exposed to the same 

contaminants. Immunohistochemical staining revealed a significant reduction in E-cadherin in 

all exposed animals (Fig. 9). In control rats, strong homogeneous immunostaining was observed 

at the intercellular borders of epithelial cells (Fig. 9A). In rats exposed to either DON or Cd, 

the intensity of E-cadherin staining was significantly reduced (Fig. 9B, C). In rats exposed to 

the mixture, weak heterogeneous staining was also observed (Fig. 9D). The abundance of E-

cadherin decreased by 57%, 49% and 71% in animals treated with DON, Cd, and DON+Cd 

respectively (Fig. 9E).  

For occludin, strong homogeneous immunostaining at the cell membrane was observed 

in control rats, as well as in rats exposed to Cd (Fig. 10A, C). By contrast, in the jejunum of 

animals exposed to DON and to the combination of DON and Cd, weak heterogeneous staining 

was observed (Fig 10B, D) compared to that in control rats, the abundance of occludin 

decreased by 84% and 62% (p < 0.001), respectively (Fig. 10E).  

These results indicate that exposure to either DON or Cd reduces the expression of the 

E-cadherin and occludin at the cell membrane. Exposure to the mixture induced the same 

reduction in junctional protein as ingestion of DON alone. 

 

 

 

 



61 
 

 
 

Figure 6. Heatmap showing the effects of individual compounds and binary combinations of 

DON and Cd on the expression of junctional proteins after 24 h of exposure. Results are 

expressed as means of 3 independent experiments ± SEM. (# combined effects versus effects 

of Cd alone, p < 0.05; ##, p < 0.01; ###, p < 0.001. $, combined effects versus effects of DON 

alone, p < 0.05; $$, p < 0.01; $$$, p < 0.001). The intensity of the color reflects the extent of 

the decrease in the junctional proteins. Data were analyzed by non-parametric one-way 

ANOVA with Bonferroni’s multiple comparison test. 
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Figure 7. Individual and combined effects of DON and Cd on body weight gain.  

Male Wistar rats were divided into four groups: control (white column), exposed to 10 mg/kg 

DON-contaminated feed (blue column), exposed to 5 mg/L Cd-contaminated feed (red column) 

or exposed to both DON and Cd (black column). Values are mean ± SEM (n=8 animals). Data 

were analyzed by non-parametric one-way ANOVA. 

 

 
Figure 8. Individual and combined effects of DON and Cd on jejunum histology. Histology of 

the jejunum after hematoxylin–eosin staining: control rat (A), DON treated rat (B, villus 

atrophy and fusion, arrow; 20 X), Cd treated rat (C, moderate interstitial edema and enterocyte 

flattening, arrow; 10 X) and DON + Cd treated rat (D, villus atrophy and fusion, arrow; 20X). 

Lesional score (E); crypt depth (F) and villus height (G). Values are means ± SEM (n=8). Mean 

values with different  letters differ (p < 0.05). Data were analyzed by non-parametric one-way 

ANOVA with Bonferroni’s multiple comparison test. 
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Figure 9. Individual and combined effects of DON and Cd on E-cadherin expression in jejunum. 

(A, 60x) Jejunum of rats in the control group showed strong homogeneous staining on E-

cadherin; Less intense immunostaining on E-cadherin occurred in the jejunum of rats in the 

groups treated with DON (B, 40x), Cd (C, 40x) and DON + Cd (D, 40x). (E) The number of 

fields with strong homogeneous immunostaining. Values are mean ± SEM (n=8). Means with 

a different letter differ (p < 0.05). Data were analyzed by non-parametric one-way ANOVA 

with Bonferroni’s multiple comparison test. 

 

 
Figure 10. Individual and combined effect of DON and Cd on occludin expression in jejunum. 

(A, 60x) The jejunum of rats in the control group showed strong homogeneous staining on 

occludin; Less intense immunostaining on occludin occurred in the jejunum of rats in the groups 

treated with DON (B, 40x), Cd (C, 40x) and the combination of DON and Cd (D, 40x). (E) The 

number of fields with strong homogeneous immunostaining. Values are mean ± SEM (n=8). 

Means with a different letter differ (p < 0.05). Data were analyzed by non-parametric one-way 

ANOVA with Bonferroni’s multiple comparison test. 
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1.4 Discussion 

 The combined toxicity of pollutants is hard to predict based on the toxic effect of a single 

compound (Alassane-Kpembi et al. 2017b; More et al. 2019). In the last few years, the number 

of studies of the combined toxicity of pollutants has increased but knowledge of the impact on 

animal and human health of exposure to mixtures of pollutants is nevertheless still very poor 

(Silins and Högberg 2011b). The main objective of the present study was to investigate the 

effects of a mycotoxin, DON, and a heavy metal, Cadmium, alone and in combination, on the 

intestinal epithelial barrier function. Two experimental approaches were used: in vitro exposure 

of human intestinal epithelial cells (Caco-2) to DON and Cd alone or in combination, and the 

in vivo dietary exposure of rats to these contaminants. The range of concentrations tested in 

vitro (1 to 30 µM) was chosen to screen a large panel of plausible exposure and adverse effects. 

In human, assuming that DON consumption in one meal is diluted in 1 L of gastrointestinal 

fluid and is totally bioaccessible (Sergent et al. 2006). The doses used in this study correspond 

to 0.296, 0.89, 2.96 and 8.89 μg/ml, which lay in the range of the plausible intestinal 

concentrations of DON (0.25-10 µg/ml) (De Walle et al. 2008). Furthermore, as previous report 

indicates that the molar ratio of mean exposure to DON and Cd in food in Europe is 1:1 (Le et 

al. 2018), the doses chosen for Cd were in the same range of doses as DON. The 

recommendation for DON in feed intended for farm animals is 5 mg/kg feed (European Union 

2006b). In our experiment, the concentration of DON in feed was 8.2 mg/kg. Indeed, the 

concentrations of 2-10 mg/kg feed of DON are the most frequently used in toxicological studies 

of farm and experimental animal models and demonstrate adverse effects in specific target 

organs (intestine, liver, kidney) (Pinton et al. 2008, 2009; Bracarense et al. 2012). The 

concentration of 5 mg/L CdCl2 in drinking water is an environmentally realistic low dose 

(Brzóska et al. 2003; Benoff et al. 2008). It led only to modification of the phenotype of innate 

immune cells in the mesenteric lymph nodes in a rat model (Ninkov et al. 2015). Our proposal 

was to investigate the potential increase of the adverse effects when cadmium was in 

combination with another toxic compound. We took into account that the molar ratio of mean 

exposure of European population to DON and Cd in food is estimated to be 1:1 (Le et al. 2018). 

Considering the daily ingestion of food and water by the rat and the content of DON in food, 

the concentration of 5 mg of Cd /L of drinking was in accordance to reach this realistic ratio. 

 

To evaluate the effects of DON and Cd alone or in combination on the intestine in vivo, 

rats were exposed to the contaminants for four weeks. The body weight gain of animals was 
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not affected in any of the conditions tested. However, alterations in the histology and the 

morphology of the intestine were observed after exposure to DON and Cd alone or in 

combination. A significant decrease was observed in crypt depth in the jejunum of rats exposed 

to DON, Cd and DON+Cd. The effect of DON on crypt depth has already been reported in pigs 

(Gerez et al 2015) and might be due to the DON-induced ribotoxic stress that compromised 

protein synthesis and triggered apoptosis (Pestka 2010a; Pinton et al. 2010; Pierron et al. 2016b). 

In piglets exposed to DON, a decrease in the number of proliferating cells in the intestinal crypt 

in response to DON has been already observed (Bracarense et al. 2012; Gerez et al. 2015). A 

study on broiler chickens reported that Cd ingestion caused histological alterations such as a 

decrease in leaf-like villi and a reduction in crypt depth (Teshfam et al. 2006). Moreover, 

inhibition of proliferation and induction of apoptosis has been observed in human renal 

mesangial cells and subventricular neural stem cells exposed to Cd. These effects were 

mediated by activation of the JNK or p-38 pathway (Wang et al. 2017). It is thus tempting to 

hypothesize that Cd inhibits the proliferation of intestinal epithelial cells via the same MAPK-

dependent mechanism. By contrast, villus height was not affected irrespective the contaminant 

to which the rats were exposed. This suggests proliferating cells are more sensitive to DON 

and/or Cd than differentiated ones, as already described in vitro for DON (Bony et al. 2006; 

Pierron et al. 2016b).  

The histological and morphological alterations induced by the two contaminants tested 

here suggest that the intestinal barrier function may also be impaired. A dose-dependent 

reduction in the TEER and an increase in paracellular permeability were observed in DON and 

in Cd treated cells.  The reduction in the barrier function caused by DON is mediated by MAPKs 

/ ERK activation, as inhibition of this signaling pathway restored TEER in porcine and human 

intestinal epithelial cells (Pinton et al. 2010; Springler et al. 2016; Du et al. 2018). A MAPKs / 

ERK activation in the differentiated Caco-2 cells treated with Cd has also been reported 

(Mantha and Jumarie 2010), and may be involved in the disruption of the intestinal barrier by 

Cd. 

The intestinal barrier function is closely linked to the junctional protein network and 

several studies have shown that DON or Cd alter some junctional proteins such as occludin or 

E-cadherin (Pinton et al. 2009; De Walle et al. 2010; Templeton and Liu 2013). However, the 

effects of combinations of DON and Cd on the junctional proteins have not previously been 

investigated. Here, we observed a decrease in E-cadherin expression in the three groups of 

exposed rats (DON, CD and DON+ Cd) while the decrease in occludin was only observed in 

animals exposed to DON (with or without Cd). By contrast, in Caco-2 cells, the amount of E-
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cadherin and occludin decreased after exposure to the two contaminants (DON and Cd) alone 

or in combination. This was associated with redistribution of the junctional proteins from the 

membrane to the cytoplasm. A similar decrease in the expression of E-cadherin has already 

been observed in pigs fed a DON-contaminated diet (Bracarense et al. 2012; Pierron et al. 2018). 

As far as Cd is concerned, several studies have shown that, in intestinal cells, intercellular 

junctions, mainly E-cadherin and actin cytoskeleton, are sensitive to this contaminant (Duizer 

et al. 1999; Rusanov et al. 2015). In MCF-7 cells, Cd has been shown to disturb calcium 

homeostasis and cause a depletion of Ca2+ (Zhou et al. 2015); this induces the activation of 

Cdc42, a member of Rho family GTPases, and leads to the ubiquitination and degradation of 

E-cadherin via Src-mediated pathway (Shen et al. 2008). In a human airway tissue model, Cd 

induced redistribution of occludin by tyrosine phosphorylation through c-Src and PKC 

activation, resulting in TJ disruption (Cao et al. 2015). Whether these modes of action of Cd 

also occur in the intestine remains to be determined. Disruption of junctional adhesion 

associated with increased paracellular permeability can facilitate the passage of pathogens 

and/or harmful substances into the body. Therefore, animals or humans exposed to these toxins 

are likely to be more sensitive to intestinal pathogens. In addition, increased intestinal 

permeability may also favor permeability to other contaminants (Payros et al. 2017).  

 Humans and animals are exposed to multi-component mixtures in the environment and 

food, whereas chemical risk assessment generally concerns the toxicity of single compounds. 

The effects of combinations of several food contaminants are very poorly documented. In the 

case of DON and Cd, apart from a previous study by our team (Le et al. 2018), no study 

investigated their combined effect. The in vitro and in vivo data presented in this paper indicate 

that, whatever the parameter analyzed (TEER, paracellular permeability or the abundance of 

junction protein), the toxicity resulting from exposure to a combination of DON and Cd is 

similar to that caused by each individual contaminant. It is well known that chemical 

compounds have multiple modes of action, a range of targets and different degrees of affinity 

for these targets, and, conversely, that each mode of action can be used by a variety of chemical 

compounds (Thrupp et al. 2018). As described above, the mechanisms of action of DON and 

Cd share some pathways, one of which is the MAPkinase pathway. Indeed, DON and Cd induce 

the activation of ERK1/2 and p38 respectively, leading to disruption in tight junctions (Pinton 

et al. 2010; Rather et al. 2017). We hypothesize that, when combined, DON and Cd play 

competitive roles in the pathway, which would explain why the effect of a mixture of DON and 

Cd is no greater than the effect of each individual contaminant.  
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 From the point of view of human health, our results suggest that existing regulation for 

DON and Cd are sufficient to protect consumers exposed to a mixture of these contaminants. 

Indeed, their combined effects on the intestine were identical to the effect of the most toxic 

compound alone, whatever the parameter analyzed. This points to a less than additive effect. 

More data are needed to determine if the results concerning the effect of DON and Cd on the 

intestine can be extended to other organs and/or to other mixtures. 
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2. Specific intestinal toxicity of deoxynivalenol and cadmium: analysis on pig 
jejunal explants 
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SUMMARY 
Deoxynivalenol (DON) is the most prevalent mycotoxin naturally 

present in grains and other commodities. It is produced by toxigenic fungus 
Fusarium species that are common pathogens of cereal crops under 
temperate climate. In pigs, chronic exposure to DON reduces feed 
consumption and weight gain, induces neuro-endocrine changes, and alters 
intestinal and immune functions. Cadmium (Cd) is one of common and 
widespread toxic heavy metals found naturally in the Earth’s crust. Its 
presence in the environment is a consequence of both natural and 
anthropic processes. Cd can be released into soil, water and air. It is soluble 
in water and can be uptake by plant roots and accumulate into the edible 
parts especially cereal products. Chronic intoxication with Cd may result in 
various organs damage especially kidney. Through its high consumption of 
cereals, pigs can be exposed to both DON and Cd. Using pig intestinal 
explants this study was designed to analyze their intestinal toxicity when 
present alone or in combination. Jejunal explants were treated with 
increasing concentration of both contaminants for 4 hours and the 
expression of 17 genes targeting the immune response (IL-1β, IL-1α, IL-8, 
IL-10, IL-17a, IL-22, IFN-γ, TGF-β, TNF-α), and the oxidative stress (NF-κB, 
MT1A, MT2A, CCS, SOD1, SOD2, CAT, DUOX) was analyzed by RT-qPCR. Our 
data confirm the inflammatory effect of DON with induction of the 
expression of genes encoding for IL-1β, IL-1α, IL-8, and TNF-α. Exposure of 
pig explants to Cd induced the gene expression of metallothioneins (MT1A, 
MT2A) but did not have any effect on the inflammatory genes. When DON 
and Cd were present together, an increased expression of both 
inflammatory genes and metallothioneins genes was observed. Taken 
together our data demonstrate a specific intestinal effect of DON and Cd 
and suggest that these contaminants do not interact at the intestinal level. 
 
 

                                                 
† Corresponding author : philippe.pinton@tolouse.inra.fr 
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INTRODUCTION 
The trichothecene deoxynivalenol (DON), known colloquially as 

“vomitoxin”, is a secondary metabolite mainly produced by the Fusarium 
genus. DON and other trichothecene mycotoxins are commonly found 
worldwide in cereals including wheat, barley, oat, rye, and corn, which is an 
increasing food safety concern in the world [Pestka, 2010; Payros et al., 
2016; Placinta et al., 1999]. Human and animals are exposed to these 
mycotoxins by consumption of contaminated cereals leading to health 
problems. DON causes gastroenteritis with some primary symptoms of 
nausea, diarrhea and vomiting. Apart from gastroenteritis, DON exposure 
induces growth effects and anorexia, immune dysregulation, reproductive 
and teratogenic effects in experimental animals [Pestka, 2010; Smith et al., 
2012]. 

In recent decades, amount of researches carried out on swine have 
demonstrated that it is the most susceptible animal to DON. The reason 
maybe that DON absorption is very rapid in swine and it reaches peak 
plasma concentration rapidly [Pestka et al., 2005; Prelusky et al., 1998]. 
Chronic ingestion in piglets of DON at concentration of 3 mg/kg of feed 
induced morphological and histological changes in jejunum, altered the 
gene expression of inflammatory cytokines and the serum biochemical 
profile and simultaneously altered the integrity of the intestinal barrier 
[Bracarense et al., 2012; Wu et al., 2015]. At lower concentration (0.9 
mg/kg feed), a short-term exposure to piglets negatively affected weight 
gain, induced histomorphological alterations in the jejunum and affected, 
the mRNA expression of different tight junction proteins, of inflammatory 
and of oxidative stress marker, along the intestine [Alizadeh et al., 2015]. 

Cadmium (Cd) is one of the most toxic heavy metal pollutants. Due to 
its high mobility in soil, plant, and water systems, it is widely distributed in 
the environment [Manquián-Cerda et al., 2016]. The soluble form of Cd in 
water can be uptaken by plant roots and accumulated into the edible parts 
especially of cereals. The Cd concentration in crops increases with the 
increasing Cd concentration in soil [Jones et al., 1992; Andersson et al., 

1985], causing concern for the long-term dietary intake of Cd. In addition, 
Cd is carcinogen [Järup & Akesson, 2009; Joseph, 2009]. Exposure to Cd can 
damage various organs, such as heart, lung, liver, kidney and bone. Kidney 
is considered to be the main target of Cd-induced toxicity [Włostowski et 
al., 2008; Wang et al., 2011]. The well-known effect caused by Cd is “Itai-
Itai” disease in Japan [Ishihara et al., 2001]. 

Swine is one of the main experimental animals for the study of 
cadmium toxicity. Some reports have shown that there was a marked 
correlation between cadmium levels in porcine kidney and cadmium in 
feed [Wu et al., 2012; Grawé et al., 1997]. Human is at the top of food chain, 
therefore an increase Cd concentration in pig might be an indicator of an 
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increase in human Cd exposure [Grawé et al., 1997]. Kidney and liver are 
the two dominating organs where Cd distributes to and accumulates in, and 
where it exerts toxicity [Grawé et al., 1997; Hoogenboom et al., 2015; 
Tomović, et al., 2011]. Ingestion of food and water contaminated by Cd 
reduced the number of lymphocytes, affected the serum biochemical profile 
[Du et al., 2013]. 

As described above, the main source of Cd and DON exposure is the 
diets. Hence the intestine could be the target organ for both ingested Cd 
and DON [Pestka, 2010; Smith et al., 2012; Jones et al., 1992; Ninkov et al., 
2015]. In addition, swine is susceptible to these contaminants.  Thus, it is a 
good way to use a pig intestinal explants model to explore the combined 
toxicity of Cd and DON. This ex vivo model  helps to reduce the number of 
experimental animals and preserves the normal morphological structure of 
intestine [Nietfeld et al., 1991]. Previous studies have used the pig jejunal 
explants to explore the gastrointestinal toxicity of DON [Lucioli et al., 2013; 
Pierron et al., 2016], and to analyze the toxicity and the interaction types of 
mixtures of different mycotoxins [Basso et al., 2013; Alassane-Kpembi et 
al., 2017]. 

Our aim was to analyze for the first time the toxic effects of Cd and 
DON, alone or in combination, as well as the interaction types between 
them in the intestine. We assessed the dose-dependent effect of DON and 
Cd on the expression of different genes by quantitative real-time 
polymerase chain reactions. 
 
 

MATERIAL AND METHODS 
Animals  
Six crossbred piglets (Landrace × Large White × Duroc), 5 week-old 

were housed in the animal facility of the INRA ToxAlim Laboratory 
(Toulouse, France) and used for explants experiments and. The 
experimental procedures were conducted in accordance with European 
Guidelines for the Care and Use of Animals for Research Purposes and were 
approved by the Ethics Committee of Pharmacology-Toxicology of 
Toulouse-Midi-Pyrénées (TOXCOM/0163 PP-APAFiS#6303). Animals were 
fed ad libitum prior to the experiment. 

 
Toxins 
DON and Cd were obtained from Sigma (St Quentin Fallavier, France). 

DON and Cd stock solutions (5 mM concentration) were prepared in sterile 
water and stored at −20 °C. Working dilutions were prepared in William’s 
medium E (Sigma). The concentration range of DON and Cd were 0–24μM 
and 0–96 μM respectively. Explants were also exposed to a combination of 
DON and Cd at a ratio 1 DON/1 Cd in the range of doses 0/0 to 24/24 µM. 
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Culture of explants and exposure to DON and Cd 
Jejunal explants were obtained immediately after euthanasia as 

previously described [25]. Fragments of 5 cm of middle jejunum were 
washed 4-6 times with phosphate buffered saline (PBS) and opened 
longitudinally with sterile scissors. Explants were collected by a biopsy 
punch (6 mm). Three explants were deposited, villi upward, on biopsy 
sponges in six-well plates containing control or DON-, Cd-, and DON/Cd-
contaminated medium. All these operations were achieved in 1 h after the 
piglets were euthanized. Plates were incubated at 39 °C, 5% CO2 for 4 h. 
Then explants were stored at -80 °C before transcriptional analysis 

 
RNA extraction 
Jejunal explants were lysed in 1 mL of Extract All reagent (Eurobio, Les 

Ulis, France) with ceramic beads (Bertin Technologies, St. Quentin en 
Yvelines, France). Total RNA was extracted as previously described [26,28]. 
The RNA concentration was measured by spectrophotometric analysis with 
Nanodrop ND1000 (Labtech International, Paris, France). The quality of 
RNA was determined by capillary electrophoresis with Agilent 2100 
Bioanalyzer (Agilent Technologies Inc., Santa Clara, CA, USA).  

 
Quantitative real-time polymerase chain reaction (RT-qPCR) analysis 
The RT-qPCR were performed using total RNA samples (n = 6 per 

treatment group) as previously described[26]. Non-reverse-transcribed 
RNA was used as non-template control for verification of absence of 
genomic DNA amplification signal. The specificity of the qPCR products was 
assessed at the end of the reactions by analyzing the dissociation curves. 
Primers were purchased from Sigma. The list of primers and corresponding 
genes is presented in table 1. Amplification efficiency and initial 
fluorescence were determined by LinRegPCR(2014.x) for Real Time-PCR 
method [29]. Then values obtained were normalized by both house-
keeping genes, β2-microglobulin and ribosomal protein L32(RPL32), which 
were chosen with NormFinder software [30]. Finally, gene expression was 
expressed relatively to the control group as already described [25]. 

 
Statistic analysis 
All data was analyzed by R program (version 3.3.2, 31.10.2016). One-

way ANOVA was used to analyze the significance when data exhibited 
normal distribution. Otherwise, Kruskal test was used, followed by Tukey 
HSD (multi-comparison). A p-value <0.05 was considered significant. 
Graphs were made by GraphPad Prism 4.  

 
 
 

sluo
Texte tapé à la machine
72



Archiva Zootechnica 20:2, 39-50, 2017 

 

43 

 

Table 1. Primer sequences 
Gene 
symbol 

Gene name Primer sequence 
Accession number and 
reference 

IL-1β Interleukin 1-beta F : GAGCTGAAGGCTCTCCACCTC NM_001005149[28] 
R :TTGTTGCTATCATCTCCTTGCAC 

IL-1α Interleukin 1-alpha F :TCAGCCGCCCATCCA NC_010445.3[31] 
R :AGCCCCCGGTGCCATGT 

TNF-α Tumor necrosis factor-
alpha 

F : ACTGCACTTCGAGGTTATCGG NM_214022[31] 
R : GGCGACGGGCTTATCTGA 

IL-8 Interleukin 8 F :GCTCTCTGTGAGGCTGCAGTTC NM_213867[28] 
R :AAGGTGTGGAATGCGTATTTATGC 

MT-1A Metallothionein 1A F :GCAAATGCACCTCCTGCAAG ENSSSCT00000031974.
1 (This study) R:CAGCCCTGGGCACACTTG 

MT-2A Metallothionein 2A F:CTGCAAATGCAAAGAGTGCAAA ENSSSCT00000029059.
1 (This study) R:ACACTTGGCACAGCCCACA 

RPL32 Ribosomal Protein L32 F :AGTTCATCCGGCACCAGTCA NM_001001636[32] 
R :GAACCTTCTCCGCACCCTGT 

β2-
Microglob 

β2-Microglobulin F: TTCTACCTTCTGGTCCACACTGA NM_213978[32] 
R: TCATCCAACCCAGATGCA 

 
 

RESULTS  
Individual or combined effect of DON and Cd on the expression of 

cytokine genes 
Cytokines are very important in cell signaling and play a key role in 

immunomodulatory process. In order to determine the individual or 
combined effect of DON and Cd on the intestinal immunity, the mRNA 
expression of nine genes involved in inflammation (IL-1β, IL-1α, IL-8, IL-10, 
IL-17a, IL-22, IFN-γ, TGF-β, TNF-α) was analyzed by RT-qPCR.  

The results showed that the expression levels of four inflammatory 
factors (IL-1β, IL-1α, IL-8, and TNF-α) were significantly elevated in the 
explant treated with DON at doses above 3μM (IL-1β, IL-8) or 24 μM (IL-1α, 
TNFα) (Fig.1). By contrast, in the Cd treatment groups, the expression 
levels of these genes were not affected (Fig. 1). In the explants exposed to 
the combination DON/Cd  (ratio 1/1), the mRNA expression levels of these 
genes gradually increased in a dose-dependent manner, and the difference 
between treatment groups and control group became significant with 
doses higher than 6 μM, except IL-1α (Fig. 1).  

In terms of genes associated with oxidative stress (NF-κB, MT1A, 
MT2A, CCS, SOD1, SOD2, CAT, DUOX), we only observed an increased 
expression of metallothioneins (MT1A, MT2A). The expression of these two 
genes increased with the increasing doses of Cd, and was statistically 
different from the control group at 24 μM. (Fig.2). By contrast, DON did not 
altered the expression of metallothioneins (Fig. 2). When explants were 
exposed to the two contaminants simultaneously, the gene expression 
levels increased in a dose-dependent manner, and the difference between 
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treatment and control groups occurred from a dose of 6 μM (ratio 1/1) 
(Fig.2).  

 
Fig.1 Dose-dependent regulation of inflammatory genes in the intestine upon exposure to 
DON, Cd and the co-contaminants. Jejunal explants from 6 piglets were exposed to graded 
levels of DON, Cd alone or in combination for 4 hours. The mRNA expression levels of IL-1β, 
IL-1α, IL-8, TNF-α, were measured by quantitative RT-PCR and analyzed using R program. 
RPL-32 and β2-microglobulin were used as the internal references. The data are the mean ± 
sem (n=6 animals). P-values <0.05 is considered significant. 

 
DISCUSSION 
In the present study, we explored the combined toxicity of DON and Cd 

in the intestine using pig jejunal explants. Previous studies have used this 
model of study of the intestine to analyze the effect of cocktail of 
mycotoxins [Basso et al., 2013; Kolf-Clauw et al., 2013]. So far, no study 
using explants to investigate the toxicity of Cd or Cd combined with 
mycotoxins have been reported. 
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Fig.2 Dose-dependent regulation of MT genes in the intestine upon exposure to DON, Cd and 
the co-contaminants. Jejunal explants from 6 piglets were exposed to graded levels of DON, 
Cd alone or in combination for 4 hours. The mRNA expression levels of MT1A and MT2A 
were measured by quantitative RT-PCR and analyzed using R program. RPL-32 and β2-
microglobulin were used as the internal references. The data are the mean ± sem (n=6 
animals). P-values <0.05 is considered significant. 

 
We used the RT-qPCR to detect the modulation of gene expression 

caused by the two contaminants. The elevation of four (IL-1β, IL-1α, IL-8, 
TNF-α) genes of inflammation were observed following DON exposure as 
already observed [Bracarense et al., 2012; Islam et al., 2006; Chung et al., 
2003]. 

IL-8 is a chemokine, which recruits neutrophil cells and induces them 
to adhere to vascular endothelium and triggers extravasation into tissues 
[Linevsky et al., 2007]. TNF-α, IL-1β, and IL-1α are pro-inflammatory 
cytokines that play a key role in inflammation response. It has been 
reported that DON induces upregulation of pro-inflammatory genes 
including IL-1β, IL-6, TNF-α, MIP-2 and IL-8 through activation of MAPK 
[Islam et al., 2006; Chung et al., 2003]]. Therefore, we can hypothesize that 
the DON-induced MAPKs activation, already shown in explants [Lucioli et 
al., 2013] leads to an up-regulation of IL-1β, IL8, TNF-α and IL-1 α.  

Metallothioneins are the markers of heavy metal toxicity and are 
necessary in Cd accumulation [Hoogenboom et al., 2015; Henry et al., 
1994]. There are four isoforms of metallothioneins (MT-1 - MT-4), among 
which the MT-1 and MT-2 are the most common. They are ubiquitous in 
liver, intestine, pancreas and kidney [Sato & Kondoh, 2002; Werynska et al., 
2015]. A decrease in metallothionein level in rat liver after exposure to 
moldy wheat contaminated by DON, zearalenone, T2-toxin and aflatoxins 
was observed. When feed was supplemented with vitamins, the levels 
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increased depending on the content of moldy wheat [Vasatkova et al., 
2009]. To the best of our knowledge there is no report describing how DON 
affects the expression levels of metallothionein genes. In the present study, 
in the intestine exposed ex vivo, we did not observed any effect of DON on 
their expression at mRNA level.  

MT levels and the mRNA expression levels of MT-1 and MT-2 have 
been found increased in pig kidney and rat mesenteric lymph node (MLN) 
after Cd exposure [Hoogenboom et al., 2015; Ninkov et al., 2015]. The 
present study corroborates the results obtained by Ninkov et al.  

Cd exposure in rat for 30 days, could also induce mRNA up-regulation 

of pro-inflammatory cytokines in the intestine including TNF, IL-1, IFN-, 
and IL-17 [Ninkov et al., 2015]. Nevertheless, in our study, Cd do not affect 
the expression of inflammatory cytokines genes. We can make the 
hypothesis that the duration of exposure of the explants was too short to 
observe any effect. 

 
 

CONCLUSIONS 
In summary, at the level of gene expression level in the jejunal explants 

model, the combined effects of DON and Cd correspond to the effects of the 
individual compounds suggesting that these contaminants do not interact 
with each other.  
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General Discussion and conclusion 
Co-occurrence of various chemicals including DON and Cd in food and feedstuffs has been 

frequently reported (Arnich et al. 2012; Sirot et al. 2013; Eskandari and Pakfetrat 2014; Algül 

and Kara 2014), which indicates that humans and animals can be exposed simultaneously to 

DON and Cd. This promotes us to speculate that there may exist an interaction between DON 

and Cd, such as synergy, antagonism or additive effects. So far, the regulations of DON and Cd 

in food and feed are based on their individual toxicity, which is not safe for the consumers 

exposed to the mixture of DON and Cd if there is synergistic or additive effect between them. 

Therefore, studying the combined effect of these two compounds is important for human and 

animal health and safety.  

Caco-2 cells are a human epithelial cell line originally derived from colon carcinoma. This cell 

line has been widely used as human intestinal epithelial barrier model to study drug absorption 

or barrier disruption effect of toxic compounds (Breemen and Li 2005; Sun et al. 2008). We 

used it as an in vitro model, as Caco-2 cells spontaneously differentiate structurally and 

functionally into a monolayer with the typical properties of normal enterocytes in small 

intestine (Breemen and Li 2005; Sun et al. 2008). The differentiated Caco-2 monolayer has a 

higher transepithelial electric resistance than HT-29 cells, which is more similar to the in vivo 

situation (Lea 2015). And it also can express receptors, transporters and metabolic enzymes 

found in normal epithelium (Sun et al. 2008; Lea 2015). These properties of Caco-2 cells are 

important to make them closely mimic human intestinal epithelium. It is known that the 

biomarker of differentiated cells is the high activity of alkaline phosphatase, but we did not 

verify it in this study. It has been widely accepted that in vitro Caco-2 cells cultured for 3 weeks 

are considered as differentiated cells. For example,  previouse study used 4 d- and 14 d-old cells 

as proliferating and differentiated cells (Aggarwal et al. 2011), and a lot of studies used 21 d-

old cells as the differentiated cell model without verifying the activity of alkaline phosphatase 

(Pinton et al. 2009; De Walle et al. 2010; Akbari et al. 2014). 

After selecting the model, we chose the concentrations to be considered on the base of the 

following assumption. The plausible intestinal concentration of DON in human is ranging from 

0.25-10 μg/ml of gastrointestinal fluid (De Walle et al. 2008). In order to screen a large panel 

of plausible concentrations and adverse effects of DON, we selected the following doses: 1, 3, 

10, and 30 μM. Assuming that DON consumption in one meal is diluted in 1 L of 

gastrointestinal fluid and is totally bio accessible (Sergent et al. 2006), the doses used in this 
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study correspond to 0.296, 0.89, 2.96 and 8.89 µg/ml. Namely, all the doses we used in vitro 

lay in the range of plausible intestinal concentration of DON. This approach has been used in 

the study of DON or other mycotoxins (Sergent et al. 2006; Pinton et al. 2009).  From previous 

reports (EFSA 2017; Le et al. 2018), we got the knowledge that the molar ratio of the mean 

exposure of European consumers to DON and Cd is 1:1, thus the same doses of Cd were 

selected:1, 3, 10, and 30 μM), which corresponding to 0.112, 0.336, 1.12 and 3.36 µg/ml. These 

concentrations were also used in other studies of DON on intestinal cells (Maresca et al. 2002; 

Pinton et al. 2009; Rusanov et al. 2015). 

Transepithelial electric resistance (TEER) is a quantitative measurement of the barrier function 

on in vitro culture models of epithelial/endothelial monolayers, which serves a strong indicator 

of the integrity of cellular barriers. This widely accepted technique has been applied to assess 

the permeability of different in vitro biological barriers with cells growing on semipermeable 

supports (Srinivasan et al. 2015). In this study, cellZscope device was used to assess the 

integrity of junctions by measuring the real-time alteration of TEER in Caco-2 cells caused by 

DON and Cd or the mixtures. Except TEER values, paracellular permeability indicating pore 

seize of junctions is also a good mark of the integrity of cellular barriers. This parameter is 

usually determined by the flux of paracellular tracer compounds with certain molecular weight 

(Arrieta et al. 2006; Srinivasan et al. 2015). A good tracer marker should be water soluble, non-

toxic, uncharged and do not interfere with cells, such as fluorescein sodium salt, sucrose, 

mannitol or dextran (Arrieta et al. 2006; Srinivasan et al. 2015). Fluorescein isothiocyanate 

(FITC)-labeled dextran (4kD), one of the most common fluorescently labeled compounds was 

used in paracellular flux assay in this study. 

Junctional proteins including tight junctions and adherens junctions play a central role in 

maintaining the normal function of intestinal barrier. These proteins bind to intracellular 

cytoskeleton proteins forming a number of transmembrane complexes, by which the adjacent 

cells are tightly linked (Suzuki 2013). These complexes contribute to generate transepithelial 

electric resistance when a continuous current pass through the cell monolayer (Anderson and 

Van Itallie 2009). Damage of these proteins causes decline of TEER and increase of paracellular 

permeability, in turn, alteration of TEER and paracellular permeability indicates injury on 

junctional proteins. Based on the results of TEER and FITC-dextran flux, western-blot 

technique was applied to analyze the changes of these junctional proteins. A main adherens 

junction, E-cadherin, and several tight junctions, ZO-1, occludin, claudin-3, claudin-4 and 

claudin-7 were selected in this study. 
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As described in literature, although Caco-2 cells provide a powerful in vitro epithelial model 

with many advantages, it still has some limits. For example, Caco-2 monolayer has  only one 

cell type enterocyte and it  cannot excrete mucins to build the mucus layer, which are not the 

same situation with in vivo (Lea 2015).  In order not to limit our findings in in vitro, we selected 

rat as our in vivo model. Rat has been considered a standardized toxicological model with a 

more similar physiology with the corresponding human conditions than mouse (Iannaccone and 

Jacob 2009) and it required less toxic than pig. Although there are significant differences 

between rat and human, the use of rat models has provided a wealth of valuable insight into 

toxicology and pharmacology study on human. In this study, the effect of DON, Cd and their 

mixtures on body weight gain, morphological changes and junctional proteins in the intestine 

were investigated in rats. These results of in vivo model can further support the results generated 

by in vitro model.  

For in vivo study, 8.2 mg DON /kg feed and 5 mg Cd /L water were chosen to induce a chronic 

effect on rat intestine. The regulation of DON for common animals like rat is 5 mg/kg feed that 

provide a complete protection against the toxicity of DON (European Union 2006b a). 

Therefore, the double of regulated concentration of DON (10 mg/kg feed) was initially selected 

to mix in feed. After mixing, high performance liquid chromatography (HPLC) analysis showed 

that the real concentration of DON in the feed was 8.2 mg/kg. Indeed, the concentration of 2-

10 mg/kg feed of DON is the most used one in toxicological studies in animals and logical 

results are obtained (Pinton et al. 2008, 2009; Bracarense et al. 2012). The low concentration 

of CdCl2 at 5 mg/L water is considered as equal to the dose of long-term exposure of Japanese 

women who suffer from Itai-itai disease. In rat, this concentration of Cd only affected the 

phenotype of innate immunity cells in the mesenteric lymph nodes without any clinical 

symptoms (Ninkov et al. 2015). Despite this, we were expecting that interactions between DON 

and Cd would induce stronger effects.  

During the experiment, the food and water intake was noted weekly. The daily toxicant intake 

was calculated at the end of the experiment. The mean daily feed intake is 18 g/rat for animals 

fed DON- and DON+Cd-contaminated diet, thus the daily amount of DON taken up by rats is 

147 μg/rat. The total daily water intake of animals fed Cd- and DON+Cd-contaminated diet is 

21 and 22 ml/rat, which equals to 64 and 67 µg Cd /rat /day.  In order to build a link between 

the doses used in vitro and in vivo, we calculate the mean exposure of DON and Cd by the 

following approach. It was reported that the volume of water in the gastrointestinal tract of 

female rats that normally get access to feed and water is 7.8±1.5 ml, the solid content is 2g 
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(McConnell et al. 2008). Assuming that the volume of solid content is 2 ml, plus the volume of 

water makes the total volume of gastrointestinal fluid around 10 ml. The mean intestinal 

concentration of DON in the rats fed DON- and DON+Cd-contaminated diet is 14.7 µg/ml, 

which is higher than the highest concentration in vitro (30 µM or 8.9 µg/ml). While the mean 

concentration of Cd is 6.4 and 6.7 µg/ml in the intestine of rats exposed to Cd and DON+Cd, 

which is also higher than the highest dose used in vitro (30 µM or 3.36 µg/ml). Despite this, we 

still expected to compare the results of in vitro and in vivo.  

The results of TEER and FITC-dextran flux show as expected that DON, Cd and DON+Cd 

declined the barrier function in a time- and dose-dependent manner throughout the experiment. 

The results are consistent with previous studies (Duizer et al. 1999; Pinton et al. 2009, 2010; 

Akbari et al. 2014). At 1 µM, neither DON nor Cd affected the TEER values. At 3 µM, TEER 

was slightly decreased without statistical difference compared to control and 1 µM of 

contaminants. From 10 µM, TEER was significantly reduced by DON and Cd, where TEER 

decreased more by DON than by Cd. The decrease of TEER caused by 10 µM was also observed 

in other intestinal cell lines, such as HT-29-D4 and IPEC-1 (Maresca et al. 2002; Pinton et al. 

2009). The extent of TEER decrease by DON and Cd is similar at 30 µM. However, from 24h 

post exposure, the TEER values did not change so much in any conditions. Since then, in the 

next experiment on proteins, cells are only exposed for 24h. 

Lower TEER and higher permeability indicate the damage on the integrity of intestinal 

monolayer. Many cell signaling pathways are involved in regulation of intestinal barrier 

function, such as PKA (protein kinase A), PKC (protein kinase C), Rho GTPases, Src and 

MAPKs (González-Mariscal et al. 2008; Dörfel and Huber 2012). Conventional protein kinase 

C alpha (cPKCα) was demonstrated to disassembly tight junction, inhibit occludin 

incorporation into tight junctions and increase paracellular permeability, while novel protein 

kinase C epsilon (nPKCε) and nPKCη can enhance TEER and permeability of MDCK or Caco-

2 monolayers (Andreeva et al. 2006; Suzuki et al. 2009). These data suggest that the effect of 

PKC on epithelial barrier is depending on specific isoforms. In addition, activation of c-Src, an 

isoform of Src kinase induced a reduction of occludin expression and of TEER values, delayed 

TJ assembly and increased inulin permeability in Caco-2 cells, which was recovered by 

inactivation of c-Src (Basuroy et al. 2003). Decrease of TEER and increase of FITC-4D 

permeability caused by ethanol was observed in Caco-2 monolayers, which were  mediated by 

MAPKs activation icluding p-38, ERK and JNK (Elamin et al. 2014). The assessment of the 
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effect of DON and Cd on PKC, Src and MAPKs could provide useful information to understand 

their mode of action on induction of intestinal barrier disruption. 

In vitro, the results showed that DON and Cd selectively affected junctional proteins. Both of 

them induced delocalization of E-cadherin and occludin from cell membrane into cytoplasm, 

which may be responsible for the decrease of barrier function. The abundance of E-cadherin, 

occludin and claudin-7 was significantly reduced by DON in a concentration-dependent manner. 

Cd only at the highest concentration 30 µM decreased the abundance of E-cadherin and 

occludin. Other analyzed proteins were not affected by DON and Cd. In the aspect of proteins, 

DON has a stronger effect than Cd. In most conditions, the combined effect is similar than the 

one with DON alone. In vivo, the intensity of immunostaining on E-cadherin was decreased by 

each condition, while for occludin it was negatively affected only by DON and DON+Cd. The 

combined effect is similar than DON or Cd alone. The results of these two proteins in vivo 

supported our in vitro results even the exposure doses of DON and Cd are slightly higher than 

in vitro. The results of DON on the protein expression of E-cadherin and occludin are consistent 

with previouse study performing on pigs, which also showed that DON decreased the 

abundance of these two junctional proteins (Bracarense et al. 2012). Although the alteration of 

E-cadherin and occludin in intestinal cells caused by DON and Cd was also observed in other 

studies (Duizer et al. 1999; Bracarense et al. 2012), the underlying mechanism has not been 

investigated.  

Cell signaling molecules can directly or indirectly interact with junctional proteins to regulate 

the function of these proteins. Some studies reported that E-cadherin and occludin can be 

degraded by Src activation through ubiquitinatin-lysosomal or -proteasomal way. In MDCK 

and T84 cells (the immortalized human colon-derived epithelial cells), Src activation induced 

tyrosine phosphorylation and ubiquitination of E-cadherin resulting in E-cadherin endocytosis 

and degradation, which was restored by Src inhibition (Fujita et al. 2002; Smyth et al. 2012). 

In vitro, Src was observed to directly bind to C-terminal domain of occludin fusion protein 

which interrupted the linkage between occludin and ZO-1 (Kale et al. 2003). By contrast, the 

direct interaction of ERK/MAPKs with C-terminal region of occludin in differentiated Caco-2 

extracts prevented occludin dissociation from ZO-1 (Basuroy et al. 2006). Degradation of other 

TJs including claudin-1, claudin-4 and ZO-1 by ubiquitation was also reported (Cai et al. 2018). 

These studies indicate that protein ubiquitination mediated by Src is an important regulator for 

TJs and AJs formation in epithelial/endothelial cells. Beside, inhibition of nPKCη increased 

paracellular permeability to inulin and decreased TEER by redistribution of occludin and ZO-
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1 in MDCK and Caco-2 cell monolayers (Suzuki et al. 2009). ERK MAPKs activation induced 

redistribution and low expression of occludin, E-cadherin, ZO-1 and claudin-1 was also 

observed in Fas-transformed MDCK and endothelial cells (Chen et al. 2000; Fischer et al. 2005). 

To verify the effect of DON and Cd on Src, PKC and MAPKs would be helpful to understand 

their mechanism of action involved in deficiency of TJs and AJs. 

The common effect of DON on animals is a reduction of their body weight gain. Low dose level 

of DON at 0.9 mg/kg feed negatively affected the body weight gain of pigs after 10 d exposure 

(Alizadeh et al. 2015). However, exposed to DON at 1.75 mg /kg feed for 30 d or 11.4 mg/kg 

feed for 7-14 d did not alter the body weight gain of rats, while DON at 11.4 mg/kg feed 

exposure for 30 d significantly decreased animals weight gain (Bracarense et al. 2017). In our 

study, the body weight gain of rat was not affected by any treatments during 4 weeks. This 

classical effect of DON in relation to body weight gain was not observed either in another 

unpublished study, in which the same concentration of DON was used in rat feed (Payros et al, 

submitted). These data suggest that the concentration of DON (8.2 mg/kg feed), slightly higher 

than the regulation (5 mg/kg feed), used in our study has no effect on the body weight gain of 

rat. These data indicate that the effect of DON on body weight gain depends upon the time and 

dose of exposure, as well as species used. In mice, intraperitoneal exposure to 0.25 and 1 mg/kg 

b.w. of Cd for 24h induced a significant decrease of body weight gain (Braga et al. 2015). 

Nevertheless, Cd exposure at 50 mg/L water or at 1.1 mg/kg feed for 12 weeks (Jurczuk et al. 

2003; Haouem and El Hani 2013), or 6.6 mg/kg b.w. exposure for 20 d did not significantly 

alter the body weight gain of rats. These results are consistent with ours indicating that Cd is 

not a main inducer for decrease of body weight gain on rat. Compared to these studies, the dose 

of Cd used in our study is quite low, which is corresponding to 0.25-0.27 mg/kg b.w after 

calculation. This possibly induces no effect on body weight gain. 

The main cause of loss of body weight gain is malnutrition caused by reduction of food intake 

and damage of absorptive enterocytes. However, in this study, the enterocytes in villi are only 

slightly injured and food intake is not changed by any conditions. For instance, several slight 

lesions in small intestine of treated animals like cell vacuolation and low frequency of villus 

fusion and atrophy were observed without any necrosis on the top of villi. These mild injuries 

do not affect the villi height as showed in vivo. These data are consistent with the results on 

unaffected body weight gain. Surprisingly, the crypt depth of jejunum was slightly but 

significantly decreased by DON, Cd and DON+Cd. This result indicates that cells in the crypt 

are more sensitive to these contaminants than the cells in the villi. This is because the cells at 
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the crypt are proliferating cells, while the cells at the villi are differentiated cells. Differentiated 

cells are more resistant to food contaminants than the proliferating cells (Pierron et al. 2016a; 

Broekaert et al. 2016). This may be the reason why we observed decreased crypt depth and 

unaffected villi height. 

In order to investigate the direct effect of DON, Cd and their mixture on the intestine, an ex 

vivo model of pig jejunal explants was used. Pig is one of the most sensitive species to the 

toxicity of DON (Pestka 2007). Furthermore, similarities on intestinal physiology and immune 

system with human make pig an idea model to study the toxic effect of DON. Amounts of 

interesting results and valuable conclusions on the toxicity of DON are obtained from pig 

models. Explants application helps to reduce the number of experimental animals and 

meanwhile can provide large number of replications in scientific procedures. In addition, in 

vitro tissue culture is able to preserve the normal morphological structure of intestine (Kolf-

Clauw et al. 2009). Although the investigation of toxic effects of food contaminants is limited 

by the short cultural time of ex vivo model, the effects on jejunum explants reflect the early 

events caused by DON and Cd after ingestion. 

DON is capable of modifying immune response. Induction of chemokines and pro-

inflammatory cytokines by DON has been frequently reported. The pro-inflammatory effect of 

Cd is still in dispute. As pro-inflammatory cytokines are able to interfere with tight junction 

proteins resulting in opening of the intestinal barrier, we analyzed the effect of DON, Cd and 

DON+Cd on mRNA level of these cytokines. We found that DON up-regulated several 

cytokine genes (IL-1β, IL-1α, IL-8, TNF-α). DON+Cd upregulated these gene expression at the 

same level than DON alone. However, none of the selected inflammatory genes was impacted 

by Cd whatever the doses tested. The results of DON are consistent with previous study, which 

also showed an up-regulation effect on the mRNA of IL-1β, IL-1α, IL-8 (Alassane-Kpembi et 

al. 2017a). While the results of Cd are inconsistent with some reports (Ninkov et al. 2015) but 

consistent with other ones (Zhao et al. 2006; Hyun et al. 2007). Ninkov et al found the protein 

level of IL-1β, IFN-γ and IL-17 but not TNF-α was slightly increased in the duodenum of rat 

exposed to 5 mg/ L Cd for 30d, and all of these cytokines were increased by 50 mg/ L Cd 

(Ninkov et al. 2015). However, the mRNA transcript level was not analyzed in this study. In 

mice exposed to 25 and 100 mg Cd /kg b.w., or in Caco-2 cells exposed to 50 µM for 24h, the 

secretion of IL-1β and TNF-α was not affected (Zhao et al. 2006; Hyun et al. 2007). A similar 

result was observed on Cd-treated airway epithelial cells (Cormet-Boyaka et al. 2012). One 

common point in these studies is that the secretion level of IL-8 was significantly augmented 
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in vivo and in vitro (Zhao et al. 2006; Hyun et al. 2007; Cormet-Boyaka et al. 2012). In our 

study, the non-effect of Cd on cytokine expression in pig explants is possibly due to the short-

term exposure (4h). On the other hand, to the best of our knowledge, this is the first study on 

the pro-inflammatory effect of Cd on pig intestine. The pro-inflammatory effect of Cd may also 

be affected by the species used. If Cd could induce inflammatory response in intestine, our 

results indicate that intestinal immunity is more sensitive to DON than to Cd.  

Metallothioneins are small intracellular cysteine-rich proteins with four isoforms (MT1-MT4) 

in mammals. MT1 and MT2 are expressed in most organs, while MT3 and MT 4 mainly 

presents in brain or skin (Ruttkay-Nedecky et al. 2013). The sulphydryl group of cysteine has 

a high affinity for metals that makes them strongly bind to metal ions by covalent binding, 

thereby regulating metal homeostasis and detoxifying heavy metals (Ruttkay-Nedecky et al. 

2013; Schulkens et al. 2014). The correlation between MTs level and resistance to heavy metal 

poisoning has been confirmed. For example, cells with amount of MTs are resistant to Cd 

toxicity, while cells lacking of MTs are sensitive to Cd. In addition, MT1/MT2 knockdown 

mice are more susceptible to Cd (Ruttkay-Nedecky et al. 2013; Schulkens et al. 2014). The 

relation between DON and the level of MTs is rarely reported. There are two studies performed 

on rat demonstrated that DON (3500 ± 5 µg/kg feed) or DON (80 ± 5 µg/kg feed) mixed with 

other mycotoxins did not affecte or decreased MTs level in rat liver (Vasatkova et al. 2009; 

Sobrova et al. 2012). Thus, we hypothesized that DON and Cd may affect MT level and induce 

MTs expression in intestine. The results in pig explants showed that the mRNA transcript of 

MT1A and MT2A was only upregulated by Cd and DON+Cd, but not by DON alone. The effect 

of DON+Cd on MT1A and MT2A is similar than Cd alone. This indicate that MTs may not be 

the main detoxification mechanism for DON in intestine.  

Surprisingly, other cytokine and antioxidant enzyme genes were not affected by DON or Cd in 

pig explants. NF-kB is a transcription factor and the changes of its mRNA expression by DON 

was not observed in this study. Transcription factors are expressed in cells prior to pro-

inflammatory cytokines (Zhou et al. 2003a). Previous study pointed out that DON induces IL-

8 expression through NF-κB pathway in Caco-2 cells. The gene expression of IL-8 in our study 

indicates that the increase of NF-kB gene expression may occur earlier and then return to control 

level at 4 h post-exposure.   

IL-10 is an anti-inflammatory cytokine, which is predominantly produced by macrophages 

residing in the subepithelial lamina propria (Krause et al. 2015; Morhardt et al. 2019). TGF-β 

mainly produced by immune cells such as dendrical cells (DCs), is an immunosuppressive 
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cytokine involved in inhibition of inflammatory response in intestinal immunity (Bauché and 

Marie 2017; Ihara et al. 2017). IL-17A is an inflammatory cytokine produced by T cells and 

macrophages, DCs and neutrophils (Geha et al. 2017). IFNγ is mainly produced by T helper 

cells (Schuhmann et al. 2011). These cytokines play an important role in regulation of immune 

response, composition of microbiota and integrity of epithelial barrier in intestine (Al-Sadi et 

al. 2009). The producers of these cytokines reside in the intestinal laminal propria. Exposure 

time of 4 h might be not long enough for these cells migrating from lamina propria to the sites 

of injury to release corresponding cytokines. 

The reason for that DON did not induce the expression of antioxidant enzymes maybe due to 

the short exposure time or the low doses used in this study. In previous studies, 40 µM DON 

for 24 h or 0.5 µM DON for 72 h were shown to induce oxidative damage in intestinal cells 

(Kouadio et al. 2005; Bony et al. 2006). In our study, the explants were exposed to DON up to 

24 µM only for 24 h that might be too short to induce oxidative stress. 

Cd significantly increased the transcription of MTs, indicating the synthesis of metallothionein 

proteins. The Cd in the medium might be bound to MT proteins and could not induce 

inflammation and oxidative stress. This hypothesis needs to be confirmed in further studies. On 

the other hand, the short exposure period may also be the reason for no effects of Cd on the 

gene expression of cytokines and antioxidant enzymes. 

Overall, the results in in vitro, in vivo and ex vivo indicate the combined effects of DON and 

Cd on intestinal barrier function are equivalent to the most toxic compound alone whatever the 

parameter analyzed. These results indicate a less than additive effect. It is not clear yet how this 

less than additive effect happened.  

DON and Cd exhibit some common toxic effects on intestinal cells through the same or 

alternative mechanisms (Fig. 7, 8). Abundant studies demonstrated that DON induces MAPKs 

activation in intestine or intestinal cell lines (Pinton et al. 2010; Cano et al. 2013; Alassane-

Kpembi et al. 2017a). Only few reports focus on Cd-induced MAPKs activation in intestinal 

cells. Mantha and Jumarie verified that Cd exposure enhanced ERK and p-38 activation in 

differentiated Caco-2 cells, which is likely to increase protein synthesis (Mantha and Jumarie 

2010). Furthermore, DON and Cd can cause cell apoptosis through a mitochondrial pathway, 

in which MAPKs are involved (Pestka 2010b; Yuan et al. 2015). In addition, both of them 

trigger oxidative stress, DNA damage, inflammation in intestinal cells (Fig. 7, 8)(Hyun et al. 

2007; Krishnaswamy et al. 2010; Kadota et al. 2013; Ninkov et al. 2015; Lynch et al. 2017). 

With regard to intestinal microbiota, DON and Cd can decrease the number of Bacteroidetes 
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and increase that of Firmicutes and Odoribacter. Based on these facts, we speculate that DON 

and Cd have some similar mode of actions, which indicates that they may have common targets 

in cells. For instance, both of DON and Cd were reported to induce degradation of the same 

molecule inhibitor of κB, leading to NF-κB activation and to increase IL-8 transcription in 

Caco-2 cells (Hyun et al. 2007; De Walle et al. 2008). We hypothesized there may be a 

competition for the same molecular targets between DON and Cd. When present in mixture, 

they would compete for the same receptors and finally only the effect of the compound with a 

stronger effect could be displayed. To confirm this hypothesis, further studies are needed. On 

the other hand, there are also some dissimilar mode of actions between DON and Cd. For 

example, the well-known toxicity of DON is its ability to bind ribosome and induce inhibition 

of protein synthesis (Fig. 7). While, Cd is famous for its interference with other divalent metals 

in cells or in proteins, thereby inducing oxidative stress or dysfunction of proteins. Although a 

few studies provide evidence for mixture effect of dissimilarly acting toxicants, there is still 

more studies demonstrating that no mixture effect was observed between compounds with 

dissimilar actions (Kortenkamp et al. 2007). In summary, the less than additive effect between 

DON and Cd may be caused by their competition for the same targets or by their different mode 

of actions. 
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Figure 7 Mode of action of DON in cells. Blue arrows indicate cell survival pathways, red 

arrows indicate cell apoptosis or death pathways, grey arrows indicat possible pathway of the 

effect of DON. 
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Figure 8 Mode of action of Cd. Blue arrows indicate cell survival pathways, red arrows 

indicate cell apoptosis or death pathways. 

In conclusion, we demonstrated that DON and Cd disrupted intestinal barrier characterized by 

lower TEER and higher paracellular permeability via breaking and redistributing junctional 

proteins in vitro (Caco-2). In in vivo, DON and Cd did not affect villi height but significantly 

decreased crypt depth and the expression of junctional proteins in jejunum of rats, which further 

supported our in vitro results. In ex vivo, DON and Cd stimulated the gene expression of 

inflammatory cytokines and metallothioneins respectively in pig jejunal explants. The 

combined effect of DON and Cd on the intestinal parameters tested in this study is always 

similar than the individual compound with a stronger effect whatever in vitro, in vivo or ex vivo. 

These results suggest that the current regulation concerning each individual compound should 

provide sufficient protection for the consumers exposed to the mixtures of DON and Cd. 

However, if the results of this study can be extended to other target organs of DON and Cd such 

as liver and kidney need to be verified. 
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Perspectives 
Understand the mechanism of action of DON and Cd on intestinal barrier 

This study showed that DON, Cd and their combinations disrupt intestinal barrier function 

through damaging the integrity of tight and adherens junctions by decreasing or relocalization 

of these proteins. The combination DON+Cd induced similar effects to the most toxic 

individual compound in vitro, in vivo and ex vivo. So far, how the junctional proteins are injured 

by DON and Cd is unclear. Generally, protein levels in cells are regulated by the balance of 

protein synthesis and degradation. Therefore, protein degradation and synthesis inhibition could 

be the main causes for the decreased abundance of junctions. Although DON is able to inhibit 

protein synthesis (Pestka 2007), it cannot completely explain the decrease of junctional proteins 

as changes of specific junction proteins were observed in different cell lines (Pinton et al. 2010; 

Gu et al. 2014). This indicates alternative mechanisms of DON-induced junction reduction may 

exist. Cd-induced decrease of junctional proteins was studied in vitro and in vivo (Rusanov et 

al. 2015; Zhai et al. 2016), however the mechanisms of this effect has not been reported. That 

makes it difficult to explain the less than additive effect between DON and Cd. Thus, it is 

necessary to investigate the underlying mechanisms of disruption of intestinal barrier caused 

by DON and Cd. 

Although other protein kinases like Src or PKC are of interest to consider, here we are going to 

talk about MAPKs as they seem to play a more important role in regulation of biological barrier 

function including intestinal barrier. For instance, p-38 and JNK activation induced by LPS 

decreased occludin expression in human cerebral microvascular endothelial cell, which 

decreased the blood-brain barrier function (BBB) (Qin et al. 2015). MAPKs (p-38, ERK and 

JNK) activation was associated with ethanol-induced delocalization of TJs and AJs, decrease 

of TEER and increase of permeability in Caco-2 monolayers (Elamin et al. 2014). In rat testes 

and sertoli cells, p-38 MAPK activation induced disruption of blood-testis barrier (BTB) 

characterized by TEER decrease and ubiquitin-degradation of junctional proteins (Jia et al. 

2017). These data reveal that MAPKs pathways play a crucial role in regulation of the integrity 

of BBB, BTB and intestinal barrier.  

DON is able to active MAPKs pathways in epithelial cells. DON (30 μM) reduced the 

expression of Claudin-4 resulting in decrease of TEER and increase of paraellualr permeability 

by ERK/MAPKs activation in IPEC-1 cells, which was inhibited by ERK inhibitor U0126 

(Pinton et al. 2010). In IPEC-J2 cells, ERK activation by DON reduced TEER and the 
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expression of claudin-1 and claudin-3, which were partially recovered by ERK inhibitor 

(Springler et al. 2016). The data show that MAPKs pathways play an important role in DON-

induced damage on intestinal claudins. However, the relation between MAPKs and intestinal 

E-cadherin and occludin has not been established. ERK, p-38 and JNK activation caused by Cd 

in Caco-2 cells was observed (Mantha and Jumarie 2010). Cd induced disruption of intestinal 

barrier function and impairment on TJs and AJs was reported (Duizer et al. 1999; Rusanov et 

al. 2015; Zhai et al. 2016). Nevertheless, the link between MAPKs activation and dysfunction 

of intestinal barrier has never been investigated.  

Since both DON and Cd can activate MAPKs, which are involved in regulation of TJs and AJs, 

the next step of this work is to investigate the relation between MAPKs activation and DON- 

and Cd-induced reduction and redistribution of intestinal junctions. Such a study would 

improve the understanding on the mechanisms that involved in intestinal barrier destruction by 

DON and Cd, which may also be helpful in explaining the less than additive effect between 

them observed in the present study. 

To further understand the underlying molecular basis of DON and Cd induced intestinal barrier 

dysfunction, transcriptomics and proteomics research of the impacts of DON and Cd on gene 

and protein expression levels would be helpful. 

Assess interactions of DON and Cd on other organs 

Besides intestine, liver and kidney are the other two major targets of DON and Cd. Interaction 

between DON and Cd on the intestine was not observed in vitro, neither in vivo in this study. 

As the nature of the interaction between them may depend on organs (Le et al. 2018), it is 

interesting to explore the combined effects of DON and Cd on these two organs in future studies. 

It would be helpful to understand better the effects of these two toxic compounds. 

Liver is the main detoxification organ of the body, which makes it the first target organ of food 

contaminants after absorption by intestine. DON firstly distributes to liver reaching to a 

maximum level rapidly, where it triggers histopathological changes such as cytoplasmic 

vacuolisation and hepatocelular megalocytosis (Bracarense et al. 2016; Bernhoft et al. 2017). 

HepG2 cells exposed to 0.9-3.5 µM/L of DON showed a decrease of cell viability after 24h 

exposure (Mayer et al. 2017). Similar results were observed in rat liver clone-9 cells (Sahu et 

al. 2008). In vitro, Cd decreased viability of liver cells HL-7702 and HepG2 (Aziz et al. 2014; 

Le et al. 2018). The interaction between DON and Cd on the cytotoxicity to HepG2 is synergy 

and antagonism for the high (60-80%) and low (20-30%) cytotoxicity levels (Le et al. 2018). 
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More in vitro and in vivo studies are needed to assess how DON and Cd interact when they are 

presented together in the liver. 

Kidney is the main excretory organ of the body and can be damaged by DON and Cd when 

they entered into this tissue. In female mice, 1.5-2.5 μM of DON induced oxidative stress-

mediated apoptosis of kidney cells resulting in renal dysfunction after 12d exposure (Liang et 

al. 2015). In HEK-293 cell line, 2.5-15 μM of DON exposure for 12h reduced cell viability, 

induced lipid peroxidation and cell apoptosis (Dinu et al. 2011). The nephrotoxicity of Cd is 

due to its efficient accumulation in kidney (Rana et al. 2018). In vivo study revealed that 5 

mg/kg b.w. of Cd induced histopathological changes, oxidative stress and kidney dysfunction 

in rats (Gabr et al. 2019).  In vitro, significant cytotoxicity and ROS production were observed 

in bovine kidney cells exposed to 50 μM Cd for 24h (Zhang et al. 2014). The interaction 

between DON and Cd on the cytotoxicity to kidney cells HEK-293 is synergy and antagonism 

at high and low affected fraction respectively (Le et al. 2018). It is necessary to conduct in vivo 

experiments to confirm these in vitro results.  

Assess interactions between other mixtures of heavy metals and mycotoxins 

Although the interaction between DON and Cd on intestine was not observed, the interaction 

is still expected between other heavy metals such as lead (Pb), mercury (Hg) and other 

mycotoxins like ochratoxins, aflatoxins, and zearalenone. 

Ochratoxin A (OTA) is a widely distributed and chemically stable mycotoxin. The main target 

organ of OTA is kidney particularly the proximal tubules (PT) (Bui-Klimke and Wu 2015). 

OTA is associated with the human diseases chronic interstitial nephropathy (CIN), and Balkan 

endemic nephropathy (BEN) characterized by progressive renal fibrosis (Bui-Klimke and Wu 

2015). OTA exposure induced cytotoxicity and oxidative damage on rat primary PT cells and 

the LLC-PK1 cell line (Schaaf et al. 2002). Lead (Pb) is the most pervasive nephrotoxic metal. 

Acute exposure of Pb impairs the morphology of PT such as tubular necrosis while chronic 

exposure induces glomerular atrophy, tubular degeneration and interstitial fibrosis (Lentini et 

al. 2017; Orr and Bridges 2017). Pb (0.25-1 μM) decreased the cell viability and increased cell 

apoptosis and necrosis in rat primary PT cells (Wang et al. 2009). Since kidney is the common 

target of OTA and Pb, it is interesting to investigate the combined effect of them on this organ. 

Aflatoxins are mycotoxins mainly produced by Aspergillus spp. The most common and toxic 

aflatoxin is aflatoxin B1 (AFB1) that mainly targets on liver. AFB1 is a hepatocarcinogenic 

compound due to its oxidative damage to DNA (Verma 2004). It induces lipid peroxidation and 
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MDA production in rat liver (Shen et al. 1994; Abdel‐Wahhab et al. 2006). Pb and Cd mainly 

target on liver and their hepatotoxicity is primarly mediated by oxidative stress. They induce 

ROS production that may result in histological damage and dysfunction of liver (Jarrar and Taib 

2012; Matović et al. 2015). In addition, Pb and Cd have a high affinity for sulfhydryl (SH) 

groups. They can block the function of antioxidant enzymes by binding to their SH groups, 

including SOD, CAT, GPx (Patra et al. 2011). Due to the same mode of action of Pb or Cd with 

AFB1 in the same target organ, it is of great value to explore the co-effect of Pb + AFB1 or Cd 

+ AFB1 on liver. 

Zearalenone (ZEA) is a worldwide spread mycotoxin with estrogenic effect. It has a similar 

structure to estrogen thus it can bind to estrogen receptors (ERs) and impact the growth of 

estrogen-dependent cells, which may induce reproductive dysfunction (Minervini and 

Dell’Aquila 2008). ZEA was demonstrated to stimulate T47D cell (human breast cancer cells) 

growth and MCF-7 cell (human breast cancer cells) proliferation by binding to ERs 

(Khosrokhavar et al. 2009; Tatay et al. 2018). Cd is able to mimic the estrogenic effect that 

causes reproductive disorders (Byrne et al. 2009). Cd exposure increased proliferation of MCF-

7 cells through the ERα-dependent mechanism (Brama et al. 2007). Cd also enhanced DNA 

synthesis caused by estrogen on T47D cells (Zang et al. 2009). Due to their estrogenic effects, 

Cd and ZEA are toxic to reproductive organs and could increase the incidence of breast, ovarian, 

testicular and prostate cancers (Tatay et al. 2018). Even much work has been done on the 

individual estrogenic effects of Cd and ZEA, their combined effect has never been considered. 

Therefore, to investigate the mixture effect is helpful to reveal the interactions between Cd and 

ZEA, which is also beneficial for evaluating the existed individual regulation of them in food 

and feed. 

Fumonisins are mycotoxins produced by Fusarium verticilloides and naturally occur in various 

crops especially in maize. Fumonisin B1 (FB1) is the most common and most toxic fumonisins 

(Voss and Riley 2013). The structure of FB1 is very similar to sphingolipids thus it can disrupt 

the metabolism of sphingolipids (Domijan 2012). FB1 is known to induce equine 

leukoencephalomalacia (ELEM) characterized by focal necrosis of cerebral white. Neuronal 

degeneration and inhibition of sphingolipid metabolism in the cortex of brain were observed in 

FB1-exposed mice (Doi and Uetsuka 2011; Domijan 2012). The neurotoxic metal mercury 

interrupts the central nervous system by induction of ROS. For example, inorganic mercury 

(HgCl2) induced oxidative stress resulting in neurodegeneration in motor cortex (Teixeira et al. 

2018). Methylmercury induced neurotoxicity on PC-12 cells was efficiently restored by 
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antioxidant Pyrroloquinoline quinone (Zhang et al. 2009a). These toxic effects on central 

nervous system indicate that the mixture effect may exist between FB1 and Hg, which is worth 

to investigate.  

Except the compounds mentioned above, other toxic food contaminants may also co-occur in 

food/feed and induce mixture effect in human and animals. For example, most organochlorine 

pesticides, such as chlordane, DDT (dichlorodiphenyl trichloroethane), BHC (benzene 

hexachloride) and mirex target on liver, reproductive organs, central nervous system, thyroid 

and kidney (Jayaraj et al. 2016), as well as other chemicals like dioxins and bisphenol A (White 

and Birnbaum 2009; Michałowicz 2014). It is also necessary to study whether there are some 

interactions between these compounds and mycotoxins or heavy metals with same target organs 

or similar mode of action. 
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A B S T R A C T

Deoxynivalenol (DON), one of the most widespread mycotoxins in Europe, and cadmium (Cd), a widespread
environmental pollutant, are common food contaminants. They exert adverse effects on different organs in-
cluding kidney, liver, and intestine. The intestine is a common target of DON and Cd when they are ingested.
Most studies have focused on their individual effects whereas their combined toxicity has rarely been studied.
The aim of this study was thus to evaluate their individual and combined effects on the intestinal barrier function
in vitro and in vivo. In vitro, Caco-2 cells were treated with increasing concentrations of DON and Cd (1–30 μM). In
vivo, Wistar rats were used as controls or exposed to DON contaminated feed (8.2mg/kg feed), Cd-contaminated
water (5 mg/l) or both for four weeks. In Caco-2 cells, DON, Cd and the DON+Cd mixture reduced transe-
pithelial electrical resistance (TEER) and increased paracellular permeability in a dose-dependent manner.
Impairment of the barrier function was associated with a decrease in the amount of E-cadherin and occludin
after exposure to the two contaminants alone or combined. A decrease in E-cadherin expression was observed in
rats exposed to the two contaminants alone or combined, whereas occludin expression only decreased in animals
exposed to DON and DON+Cd. Jejunal crypt depth was reduced in rats exposed to DON or Cd, whereas villi
height was not affected. In vitro and in vivo results showed that the effects of exposure to combined DON and Cd
on the intestinal barrier function in the jejunum of Wistar rats and in the colorectal cancer cell line (Caco-2) was
similar to the effects of each individual contaminant. This suggests that regulations for each individual con-
taminant are sufficiently protective for consumers.

1. Introduction

Food safety is a major concern worldwide. Food and feedstuffs are
frequently contaminated by multiple contaminants (Rather et al., 2017;
Silins and Högberg, 2011). The toxic effects of these mixtures cannot be
predicted based on the toxicity of individual contaminants alone, as
simultaneous exposure to several contaminants can have synergistic,
antagonistic or additive effects (Alassane-Kpembi et al., 2017b; More
et al., 2019). In recent years, combined toxicity studies have assessed
the effects of mixtures of food contaminants such as mycotoxins
(Alassane-Kpembi et al., 2017a), trace metal elements (Claus Henn
et al., 2014), pesticides (Lukowicz et al., 2018) and carcinogens (Miller
et al., 2017). However, the toxicity of mixtures of contaminants from
different families remains poorly documented (Le et al., 2018; More
et al., 2019; Payros et al., 2017).

Mycotoxins are the most frequently occurring natural food

contaminants in human and animal diets. Among mycotoxins,
Deoxynivalenol (DON), mainly produced by Fusarium graminearum and
F. culmorum, frequently contaminates cereals and cereal products.
Almost half of 26,613 cereal samples collected from 21 European
countries were found to be contaminated by DON, with the highest
levels observed in wheat, maize and oat grains (EFSA, 2017). Tolerable
daily intake (TDI) for DON and its derivative was established at 1 μg/kg
b.w./day (EFSA, 2017). Analyses of adult urine samples in the United
Kingdom revealed that 98% of them had been exposed to DON (Turner
et al., 2008), while national and European surveys indicate that the
health based guidance values are exceeded in children (EFSA, 2017;
Sirot et al., 2013). DON interacts with the peptidyl transferase region of
the 60S ribosomal subunit, inducing “ribotoxic stress,” resulting in the
activation of mitogen-activated protein kinases and their downstream
pathways (Lucioli et al., 2013; Pestka, 2010). Symptoms of intoxication
in animals exposed to DON may include reduced food consumption and
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weight gain, neuro-endocrine changes as well as alteration of intestinal
and immune functions. Following acute exposure, vomiting and bloody
diarrhea have been reported (Payros et al., 2016; Pestka, 2010; Pinton
and Oswald, 2014).

Cadmium (Cd) is a heavy metal element naturally present in the
Earth's crust. It is a common environmental pollutant that occurs both
naturally and as a result of industrial and agricultural activities
(ATSDR, 2012). Natural sources of Cd include volcanic activity,
weathering of rocks, sea aerosols and forest fires. Anthropic origins of
Cd include batteries, pigments, plastic stabilizers, pesticides and ferti-
lizers, and photovoltaic devices, as well as rubber processing, galvani-
zation, fossil combustion and waste incineration. Cadmium compounds
are soluble in water and can be taken up by plant roots and translocated
to edible parts where they accumulate. For example, large quantities of
Cd accumulate in tobacco leaves and tobacco smokers are thus exposed
by inhalation (Ganguly et al., 2018). Among nonsmokers, ingestion of
contaminated food is a major source of Cd exposure. Sixty-six percent of
137,200 food samples analyzed in 20 European countries contained 5%
more than the maximum recommended level of Cd (EFSA, 2009).
Tolerable weekly intake (TWI) for Cd is set at 2.5 μg/kg b.w. (EFSA,
2009). European adults' mean dietary exposure to Cd was shown to be
close to this TWI, and subgroups, including vegetarians, children, and
smokers, exceeded the TWI about 2-fold (EFSA, 2009). Grain and cereal
products, as well as fish and offal were the major contributors to human
Cd exposure (ATSDR, 2012; Filipič et al., 2006). Cd causes inflamma-
tion, apoptosis and oxidative stress in liver and kidney (Kim et al.,
2015; Liu et al., 2015). Cadmium absorbed by inhalation and ingestion
mainly accumulates in the liver and kidney, but the small intestine and
lung are other targets (Tinkov et al., 2018; Zhang et al., 2015). Cd in-
creases the risk of cancer through oxidative stress, which damages DNA
and inhibits DNA repair systems, and cadmium is classified as a (group
1) human carcinogen (Bishak et al., 2015).

The intestinal epithelium is the first barrier against ingested che-
micals and food contaminants. The gut barrier is formed to a large
extent by intercellular junctions on the apical side of epithelial cells.
These junctions seal the cells together and regulate the passage of ions
and water across the epithelium (Suzuki, 2013; Terciolo et al., 2019).
Following ingestion of contaminated food, intestinal epithelial cells
may be chronically exposed to contaminants including DON and Cd.
The effects of DON on the intestine are well described (Maresca, 2013;
Pinton and Oswald, 2014). DON alters the intestinal structure, reduces
the expression of several junctional proteins, reduces the barrier func-
tion, affects nutrient absorption, modulates intestinal microbiota and
the local immune responses (Payros et al., 2016; Pestka, 2010; Pinton
and Oswald, 2014). The effects of Cd on the intestine are less well
documented, but recent studies have shown that it alters the gut mi-
crobiota, triggers a local inflammatory response and disrupts tight
junctions (Breton et al., 2016; Tinkov et al., 2018).

Human and animals are exposed to both compounds through in-
gestion of contaminated food and feed, especially cereals and cereal by-
products (Arnich et al., 2012; Sirot et al., 2013). To the best of our
knowledge, with the exception of one study (Le et al., 2018), the
combined effects of these two contaminants have not been documented
to date. The aim of the present study was thus to assess the individual
and combined effects of DON and Cd on the intestinal barrier using in
vitro and in vivo models. In vitro, the individual and combined effects of
DON and Cd (0–30 μM) on Caco-2 cells were analyzed by measuring
transepithelial electrical resistance (TEER), paracellular permeability
and the abundance of junctional proteins. In vivo experiments were
performed to investigate the effects on intestinal histomorphology, the
abundance and localization of junctional proteins in rats exposed to
DON (8.2mg/kg feed) and Cd (5ml/l of drinking water). Our in vitro
and in vivo data on the parameters cited above demonstrated that the
effects of different combinations of DON and Cd tested were compar-
able to those of the highest dose of each individual contaminant.

2. Materials and methods

2.1. Reagents

DON and CdCl2 were purchased from Sigma (St Quentin Fallavier,
France). For the in vitro experiments, DON and CdCl2 were dissolved in
water and stock solutions (5mM) were stored at −20 °C before dilution
in complete cell culture medium. For the in vivo experiments, DON was
included in the rats' diet as previously described (Bracarense et al.,
2017; Payros et al., 2016) while CdCl2 was added to drinking water at a
concentration of 5mg/l.

2.2. Cells

The Caco-2 cell line (Sigma, 86010202) was originally isolated from
a primary colonic tumor in a 72-year-old Caucasian male. The cells
were maintained in DMEM-Glutamax (Gibco, Life Technologies,
Courtaboeuf, France) supplemented with 10% fetal calf serum (FCS)
(Eurobio, Courtaboeuf, France), 1% non-essential amino acid (Sigma)
and 0.5% gentamycin (Eurobio). Cells were maintained in a humidified
atmosphere at 37 °C with 5% CO2 and passaged by trypsinization (0.5%
trypsin in 0.5mM EDTA) when they reached 80% confluency. Caco-2
cells were differentiated on 0.3 cm2 polyethylene terephthalate mem-
brane inserts with 0.4 μm pores (Corning Inc., Corning, NY, USA) for
the assessment of transepithelial electrical resistance (TEER) and
paracellular permeability, as previously described (Pierron et al.,
2016b; Pinton et al., 2009).

2.3. Animals

The experimental protocol was carried out in accordance with
European Guidelines for the Care and Use of Animals for Research
Purposes and was validated by the Toxcomethique Ethics Committee
and the French Ministry of National Education Higher Education and
Research (TOXCOM/0142/PP). Three of the authors (DP, PP and IPO)
have official authorization from the French Veterinary Services for
animal experimentation.

Four-week-old male Wistar rats (140–170 g body weight), (Janvier
Labs, Le Genest Saint Isle, France) were kept under the normal condi-
tions with a 12-hour day/night cycle, 19–25 °C temperature, 50–70%
humidity, at the Toxalim animal facility (INRA, UMR 1331, Toulouse)
with ad libitum access to food and water throughout the study. After five
days of acclimatization, the rats were divided into four groups of eight
animals: a control group, rats exposed to DON contaminated-feed
(8.2 mg DON/kg feed), rats exposed to Cd-contaminated water (5 mg
CdCl2/l) and rats exposed to both DON and Cd. No other mycotoxin was
detected in the feed (Supplementary Table 1). The rats were weighed
weekly. After four weeks, the animals were euthanized, and the in-
testinal tissue was collected and fixed in 10% buffered formalin for
histological assessment and immunohistochemical staining.

2.4. Transepithelial electrical resistance assay

Caco-2 cells grown on inserts differentiated and acquired an epi-
thelial phenotype with polarity properties (apical and basolateral
sides). They were treated apically with increasing concentrations of
DON and Cd (0, 3, 10, 30 μM) alone or combined. Transepithelial
electrical resistance (TEER) was measured at 4 hourly intervals for 48 h
using a cellZscope device (nanoAnalytics, Münster, Germany).
Measurements were made on four replicates of four independent ex-
periments.

2.5. Paracellular tracer flux assay

To assess paracellular flux, the 4-kDa fluorescein isothiocyanate-
dextran (FITC-dextran) (Sigma), dissolved in cell culture medium, was
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added in the apical compartment (transwell, final concentration
2.2 mg/ml) at 48 h post DON and/or Cd exposure. After 1 h of in-
cubation, fluorescence was measured in the basal compartment (well of
plate) with a microplate fluorimeter reader (Tecan, Lyon, France). The
excitation and emission wavelengths were 490 and 520 nm, respec-
tively. The background signal resulted from reagent-treated medium
without cells. Measurements were made on four replicates of four in-
dependent experiments.

2.6. Western blot analysis of junctional proteins

Differentiated Caco-2 cells, cultured in 6-well plates, were exposed
for 24 h to DON and Cd individually or combined to analyze junctional
proteins. Three independent experiments were performed for each cell
culture condition. After cell treatment, proteins were extracted as pre-
viously described (Pinton et al., 2009) and separated on SDS-PAGE
membranes probed with rabbit polyclonal Abs anti-occludin (#71-
1500), -ZO-1 (#61-7300) (Thermo Fisher Scientific, Illkirch, France),
-claudin-3 (#34-1700), -claudin-7 (#34-9100) (Invitrogen), rabbit
monoclonal Ab anti-E-cadherin (Cell Signaling Technology, Leiden, The
Netherlands), or mouse monoclonal Ab anti-claudin-4 (Invitrogen),
diluted 1:250. Mouse monoclonal Ab or rabbit polyclonal anti-β-actin
(Cell Signaling Technology, #3700 or #4967) was used as control
(diluted 1:1000). Membranes were then washed and incubated with
secondary antibodies CF680 goat anti rabbit IgG (#20067) or CF680
goat anti mouse IgG (#20065, diluted 1:10000) obtained from Biotium
(Hayward, CA). Infrared fluorescence intensity of the specific bands
was obtained with Odyssey Infrared Imaging System (LI-COR Scien-
ceTec, Les Ulis, France). Protein expression was estimated after nor-
malization calculated by the ratio of the intensity of the band of interest
to that of the β-actin band.

2.7. Immunofluorescence analysis

Differentiated Caco-2 cells cultured on glass cover slips were ex-
posed for 24 h to DON or Cd. The cells were fixed with 4% paraf-
ormaldehyde at 4 °C for 30min and permeabilized with PBS containing
0.1% Triton X-100 for 10min, then blocked with 10% goat serum at
room temperature for 1 h. Occludin and E-cadherin were detected by
incubation with rabbit polyclonal Abs anti-occludin (Thermo Fisher
Scientific, #71-1500) and monoclonal anti-E-cadherin (Cell Signaling
Technology, #3195) respectively. After three washes, the cells were
incubated for 1 h with Alexa Fluor 546-conjugated goat im-
munoglobulin (1:500; Life Technologies, #A11035) raised against
rabbit IgGs. Nuclei were stained with DAPI (Vector Laboratories) for
10min. Cells were washed and mounted in Prolong® Gold antifade
reagent (Invitrogen, Oregon, USA). Images were captured using an SP8
Leica confocal microscope and analyzed using FIJI software.

2.8. Histological and morphometric assessment of rat jejunum

The pieces of rat jejunum were fixed in 10% buffered formalin,
embedded in paraffin and cut into 5 μm sections. The sections were
stained with hematoxylin & eosin for histopathological evaluation. A
lesional score, including the morphology of villi and enterocytes, in-
terstitial edema, and lymph vessel dilation was used to compare his-
tological changes in different conditions as previously described
(Pierron et al., 2018). Villus height and crypt depth were measured
randomly using a MOTIC Image Plus 2.0 ML software (Motic Instru-
ments, Richmond, Canada).

2.9. Immunohistochemical assessment of junctional proteins in the jejunum

After dewaxing and heat-induced antigen retrieval as described
previously (Bracarense et al., 2012), paraffin-embedded 5 μm sections
of rat jejunum were incubated overnight at 4 °C with the primary

antibody anti-E-cadherin (Zymed, San Francisco, CA, USA) and anti-
occludin (Santa Cruz. Biotechnology Inc., USA). The secondary anti-
body (SuperPicTure™ Polymer, Zymed) was applied followed by the
addition of a chromogen (3,30-diaminobenzidine). Finally, tissue sec-
tions were counterstained with hematoxylin. The sections were then
examined and the proportion of intestinal section expressing E-cadherin
was estimated. Each sample was classified as having either normal or
reduced staining.

2.10. Statistical analysis

The results are presented as the means± standard error of the mean
(SEM) of independent experiments. Statistical analysis was performed
using GraphPad Software (La Jolla, CA, USA). Significant differences
between groups were analyzed by one-way ANOVA (non-parametric)
with Bonferroni's multiple comparison test. p < 0.05 was considered
statistically significant.

3. Results

3.1. Individual effects of DON and Cd on intestinal barrier function

The individual effects of DON and Cd were first assessed on two
parameters that reveal the integrity of the intestinal epithelium: the
TEER and the paracellular passage of dextran.

As shown in Fig. 1A, both DON and Cd reduced the TEER of Caco-2
monolayers in a dose- and time-dependent manner. The TEER was not
affected by 1 and 3 μM of either contaminant but was significantly re-
duced by 10 μM DON as early as 8 h after exposure (44% decrease,
p < 0.001) and by 10 μM Cd after 12 h of exposure (40% decrease,
p < 0.001). Exposure to 30 μM of DON or Cd reduced the TEER as
early as 4 h (27%, p < 0.05), and the TEER decreased over time: re-
spectively 82% and 87% decrease (p < 0.001) at 12 h.

The permeability of Caco-2 monolayers to 4-kDa FITC-dextran was
measured at the end of the experiment. As shown in Fig. 1B, this
parameter was not affected in cells exposed to 1, 3 μM DON or 10 μM
Cd. Higher doses of DON and/or Cd significantly increased the passage
of FITC-dextran (18, 67 and 53-fold upon exposure to 10 μM DON,
30 μM DON and 30 μM Cd, respectively).

These results show that both DON and Cd alter the intestinal barrier
function as measured by decreased TEER and increased passage of
dextran.

3.2. Individual effects of DON and Cd on the abundance of junctional
proteins

Adherent and tight junctions belong to apical multiprotein com-
plexes that link adjacent epithelial cells together and play an important
role in the formation and the maintenance of the intestinal barrier
(Suzuki, 2013). Consequently, the effect of DON and Cd on the abun-
dance of several junctional proteins was examined.

As shown in Fig. 2, DON induced a dose-dependent decrease in the
amount of occludin, E-cadherin and claudin-7. In the case of occludin,
upon exposure to 10 and 30 μM DON, the decrease reached 54%
(p < 0.05) and 66% (p < 0.01); the reduction in E-cadherin was 50%
(p < 0.05) and 80% (p < 0.001) respectively. For claudin-7, a sig-
nificant decrease was only observed at 30 μM DON (80%, p < 0.05).
By contrast, exposure to DON at rates of up to 30 μM, did not affect the
amount of claudin-3, -4 and ZO-1.

Cd only caused a significant reduction in the abundance of occludin
and E-cadherin upon exposure to 30 μM (58% (p < 0.05) and 70%
(p < 0.01) decrease respectively), whereas claudin-3, -4, -7 and ZO-1
were not affected by the trace metal element.

These results suggest that DON and Cd impair the intestinal barrier
function via a specific decrease in the abundance of E-cadherin and
occludin.
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3.3. Individual effects of DON and Cd on the distribution of junctional
proteins

We next investigated the effect of DON and Cd on the distribution of
junctional proteins in Caco-2 cells. In control cultures, a well-defined
band of membrane-associated immunofluorescence staining was ob-
served for E-cadherin and occludin (Fig. 3A and B). Exposure to DON or
Cd for 24 h caused significant changes in the E-cadherin pattern ana-
lyzed by fluorescence (white arrow) (Fig. 3A). The main modification
caused by DON was reduced membranous expression of E-cadherin. At
the same time, increased granular fluorescence was observed in the
cytoplasm. After exposure to Cd, the redistribution of E-cadherin into
the cytoplasm was more visible. The loss of membranous expression
with partial redistribution into the cytoplasm was also observed for
occludin (white arrow) (Fig. 3B). The effects of DON and Cd on E-
cadherin and occludin distribution were dose dependent.

Taken together, these results show that exposure to DON or Cd
caused alterations in the cellular localization of E-cadherin and oc-
cludin.

3.4. Combined effects of DON and Cd on intestinal barrier function

The data presented above show that individual exposure to DON or
Cd has harmful effects on the intestinal barrier; however, in a mixture,
their combined effects remain unknown.

The combined effects of DON and Cd on the TEER are summarized
in Fig. 4. In this heat-map, the first line and column show the individual
effects of DON and Cd while the other cells show the effects of different
combinations, with a color code indicating the strength of the effect. A
time and dose dependent decrease in the TEER was observed both when
the toxins were present alone or in a mixture. Comparison of the
combined effect with that of each individual compound revealed that

after 8 h of exposure, the impact of Caco-2 cells exposed to 3 μM Cd
combined with 10 μM DON was always stronger than that of 3 μM Cd
alone (p < 0.001) but was similar to that of DON alone. The same
effects were observed for 10 μM Cd combined with DON (10 or 30 μM)
(p < 0.001). Moreover, at 12 h of exposure, 10 μM Cd combined with
DON (10 or 30 μM) also had a stronger impact than DON alone
(p > 0.05). Conversely, 10 μM of Cd combined with 3 μM of DON led
to a greater decrease in the TEER than DON alone (p < 0.001). These
results were also observed when 30 μM Cd was combined with 10 μM
DON (p < 0.001 from 8 h to 12 h and p < 0.05 from 24 h), except for
36 h. At 4 h, 24 h and 36 h, the effect of the combination of DON and Cd
30 μM was stronger than the effect observed with DON or 30 μM Cd
alone (p < 0.01 at 4 h, 24 h and 36 h). These data show that, as far as
the TEER is concerned, in most cases, the combination of DON and Cd
had a similar effect to that of the individual contaminants.

Paracellular permeability to 4-kDa FITC-dextran was assessed on
cell monolayers exposed to mixtures of DON and Cd for 48 h (Fig. 5).
The results showed that, except for the combination 3 μM DON and
10 μM Cd, combinations of low doses of DON and Cd (1 to 3 μM) did not
cause any significant changes in paracellular permeability. In this case,
the mixture had a stronger effect than the contaminant alone (DON,
p < 0.001; Cd, p < 0.05). Moderate to high doses (10 to 30 μM) re-
sulted in a marked increase in permeability to 4-kDa FITC-dextran. For
example, the combination of DON and Cd at 10/10, 30/30, 10/30 and
30/10 μM increased the passage of dextran 46-, 82-, 76- and 81-fold,
respectively, compared to untreated cells. Notably, 10 μM DON com-
bined with 10 μM Cd resulted in a greater increase in paracellular
permeability than 10 μM of Cd alone (p < 0.001). DON (10 μM) com-
bined with 30 μM Cd had a stronger effect than 10 μM DON alone
(p < 0.001). Similarly, 30 μM DON combined with 10 μM Cd led to a
greater increase in paracellular permeability than 10 μM Cd alone
(p < 0.001). These data show that the combination of DON and Cd has

Fig. 1. Effects of DON and Cd on TEER and on the paracellular permeability of differentiated Caco-2 cells.
(A) Effect on the TEER. Caco-2 cells were grown and differentiated on inserts and treated apically with DON (blue upper panel) or Cd (red lower panel) at 1 μM
(inverted triangles), 3 μM (triangles), 10 μM (squares) or 30 μM (diamonds); control cells (circles, black line) were untreated. The TEER was recorded over a period of
40 h.
(B) Effect on paracellular permeability. At 48 h, 4-kDa FITC-dextran was added in the apical compartment and fluorescence was assessed in the basal compartment
1 h later. Fluorescent intensity was measured, and background levels subtracted.
Results, normalized to the controls, are expressed as the mean of 4 independent experiments ± SEM (*, p < 0.05; ***, p < 0.001). Data were analyzed by non-
parametric one-way ANOVA.
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a similar effect on the intestinal permeability to that of the individual
contaminant.

3.5. Combined effects of DON and Cd on junctional protein abundance

To investigate the combined effect of DON and Cd on the intestinal
barrier function in more detail, the abundance of two junctional pro-
teins, occludin and E-cadherin, was analyzed. Fig. 6 is a heatmap of the
individual and combined effects of DON and Cd. The levels of the two
proteins decreased continuously with increasing concentrations of

combined compounds. The combination of DON and Cd at a rate of
3 μM led to a similar decrease in occludin and E-cadherin as 3 μM of
DON or 3 μM of Cd alone. Only 10 μM Cd combined with 10 μM DON
led to a bigger decrease in occludin and E-cadherin abundance than
10 μM of Cd alone (p < 0.001). When the cells were exposed to a
combination of 30 μM DON and 30 μM Cd, the levels of occludin and E-
cadherin were lower than the level observed in cells only exposed to
DON or Cd alone (DON, p < 0.001; Cd, p < 0.05). The data show that
except for very high concentrations, the effect of a combination of DON
and Cd on the abundance of occludin and E-cadherin was similar to the

Fig. 2. Effects of DON and Cd on the expression of junctional proteins in Caco-2 cells. Differentiated Caco-2 cells were exposed to different concentrations of DON and
Cd for 24 h. (A) After extraction, proteins were analyzed by immunoblotting for claudin-3, 4, 7, occludin, E-cadherin and ZO-1.
(B) Protein expression was analyzed by densitometry and normalized to that of β-actin. Data are presented as means ± SEM of 3 independent experiments. Means
with different letters differ (p < 0.05). Results were analyzed by one-way ANOVA with Bonferroni's multiple comparison test.
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effect of the individual compounds.

3.6. In vivo effects of DON and Cd alone or in combination on the
histomorphometry of the jejunum

Given the impact of DON and Cd on intestinal barrier function on
Caco-2 cells, experiments were also performed on animals. Rats were
exposed to DON-contaminated feed (8.2 mg/kg), Cd-contaminated
water (5 mg/l) or both. The individual and combined effects of these
contaminants were assessed in the intestine after four weeks of ex-
posure.

The animals' body weight gain was not affected in any of the con-
ditions (Fig. 7). Histomorphometrical changes were analyzed in the
jejunum of rats fed DON and Cd alone or in combination. These results
showed moderate but significant lesions compared to the intestine of
control rats. The main histological changes were atrophy and fusion of
the villi. Interstitial edema and enterocyte apical flattening were also
observed (Fig. 8A, B, C, D). Lesional scores were about 4-fold higher in
rats exposed to DON, Cd or both than that in control rats (Fig. 8E).
These results show that intestinal damage caused by the combination of
DON and Cd were as severe as the damage caused by each contaminant
individually.

Fig. 3. Effect of DON and Cd on E-cadherin and occludin distribution in differentiated Caco-2 cells.
Differentiated Caco-2 cells were exposed to different concentrations of DON or Cd for 24 h. E-cadherin (A) and occludin (B) distribution (white arrow) was analyzed
after immunostaining with specific antibody.
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Fig. 4. Heatmap showing the effects of single and binary
combinations of DON and Cd on the TEER of Caco-2 mono-
layers after 4 h, 8 h, 12 h, 24 h and 36 h of exposure. At each
time-point, the TEER of control untreated cells was con-
sidered to be 100%. Results are expressed as the mean of four
independent experiments ± SEM (#, combined effects vs ef-
fects of Cd alone, p < 0.05; ##, p < 0.01; ###, p < 0.001.
$, combined effects vs effects of DON alone, p < 0.05; $$,
p < 0.01; $$$, p < 0.001). Data were analyzed by non-
parametric one-way ANOVA with Bonferroni's multiple com-
parison test. The intensity of the color reflects the strength of
the effect on the TEER.
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The in vivo effects of the mycotoxin and the heavy metal on in-
testinal cell proliferation were also assessed by measuring villus height
and crypt depth. A significant reduction in crypt depth was observed in
the jejunum of rats exposed to the contaminants compared with control
animals (Fig. 8F). The reduction in crypt depth in animals exposed to
both DON and Cd was similar to the reduction observed in animals
exposed to Cd alone but slightly greater than the reduction observed in
the animals only exposed to DON (−16%, p < 0.01). Villus heights did
not differ significantly whatever the group of animals considered
(Fig. 8G).

Taken together, these results indicate that ingestion of a combina-
tion of DON and Cd induces similar or slightly bigger lesions and has
greater histomorphological effects on the intestine than ingestion of the
individual contaminants.

3.7. In vivo effects of DON and Cd alone or in combination on the
abundance of E-cadherin and occludin in the jejunum

As DON and Cd significantly reduced the amount of E-cadherin and
occludin in Caco-2 cells, their abundance was also assessed in the je-
junum of rats exposed to the same contaminants. Immunohistochemical
staining revealed a significant reduction in E-cadherin in all exposed
animals (Fig. 9). In control rats, strong homogeneous immunostaining
was observed at the intercellular borders of epithelial cells (Fig. 9A).
The intensity of E-cadherin staining was significantly reduced in rats

exposed to either DON or Cd (Fig. 9B, C). Weak heterogeneous staining
was also observed in rats exposed to the mixture (Fig. 9D). The

Fig. 5. Heatmap showing the effects of single compound and
binary combinations of DON and Cd on the paracellular per-
meability of Caco-2 monolayers after 48 h of exposure. After
1 h of incubation with FITC-Dextran, the intensity of fluor-
escent was measured in the basal compartment. Results are
expressed as fold increase in fluorescent intensity relative to
controls. Results are expressed as the mean of four in-
dependent experiments ± SEM. (#, combined effects versus
effects of Cd alone, p < 0.05; ##, p < 0.01; ###,
p < 0.001. $, combined effects VS effects of DON alone,
p < 0.05; $$, p < 0.01; $$$, p < 0.001). The depth of color
reflects the strength of the effect on permeability. Data were
analyzed by non-parametric one-way ANOVA with
Bonferroni's multiple comparison test.

Fig. 6. Heatmap showing the effects of individual compounds
and binary combinations of DON and Cd on the expression of
junctional proteins after 24 h of exposure. Results are ex-
pressed as means of three independent experiments ± SEM.
(# combined effects versus effects of Cd alone, p < 0.05; ##,
p < 0.01; ###, p < 0.001. $, combined effects versus effects
of DON alone, p < 0.05; $$, p < 0.01; $$$, p < 0.001). The
intensity of the color reflects the extent of the decrease in the
junctional proteins. Data were analyzed by non-parametric
one-way ANOVA with Bonferroni's multiple comparison test.

Fig. 7. Individual and combined effects of DON and Cd on body weight gain.
Male Wistar rats were divided into four groups: control (white column), ex-
posed to 10mg/kg DON-contaminated feed (blue column), exposed to 5mg/l
Cd-contaminated feed (red column) or exposed to both DON and Cd (black
column). Values are mean ± SEM (n=8 animals). Data were analyzed by non-
parametric one-way ANOVA.
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abundance of E-cadherin decreased by 57%, 49% and 71% in animals
treated with DON, Cd, and DON+Cd respectively (Fig. 9E).

For occludin, strong homogeneous immunostaining at the cell
membrane was observed in control rats as well as in rats exposed to Cd
(Fig. 10A, C). By contrast, weak heterogeneous staining was observed in
the jejunum of animals exposed to DON and to the combination of DON
and Cd, (Fig. 10B, D) compared to that in control rats, the abundance of
occludin decreased by 84% and 62% (p < 0.001), respectively
(Fig. 10E).

These results show that exposure to either DON or Cd reduces the
expression of the E-cadherin and occludin at the cell membrane.
Exposure to the mixture led to the same reduction in junctional protein
as ingestion of DON alone.

4. Discussion

The combined toxicity of pollutants is hard to predict based on the

toxic effect of a single compound (Alassane-Kpembi et al., 2017b; More
et al., 2019). In the last few years, the number of studies of the com-
bined toxicity of pollutants has increased but knowledge of the impact
on animal and human health of exposure to mixtures of pollutants is
nevertheless still very poor (Silins and Högberg, 2011). The main ob-
jective of the present study was to investigate the effects of a myco-
toxin, DON, and a heavy metal, Cadmium, alone and in combination, on
the intestinal epithelial barrier function. Two experimental approaches
were used: in vitro exposure of human intestinal epithelial cells (Caco-2)
to DON and Cd alone or in combination, and the in vivo dietary ex-
posure of rats to these contaminants. The range of concentrations tested
in vitro (1 to 30 μM) was chosen to screen a large panel of plausible
exposure and adverse effects. In human, assuming that DON con-
sumption in one meal is diluted in 1 l of gastrointestinal fluid and is
totally bioaccessible (Sergent et al., 2006). The doses used in this study
correspond to 0.296, 0.89, 2.96 and 8.89 μg/ml, which lay in the range
of the plausible intestinal concentrations of DON (0.25–10 μg/ml) (De

Fig. 8. Individual and combined effects of DON and Cd on jejunum histology. Histology of the jejunum after hematoxylin–eosin staining: control rat (A), DON treated
rat (B, villus atrophy and fusion, arrow; 20×), Cd treated rat (C, moderate interstitial edema and enterocyte flattening, arrow; 10×) and DON+Cd treated rat (D,
villus atrophy and fusion, arrow; 20×). Lesional score (E); crypt depth (F) and villus height (G). Values are means ± SEM (n=8). Mean values with different letters
differ (p < 0.05). Data were analyzed by non-parametric one-way ANOVA with Bonferroni's multiple comparison test.

Fig. 9. Individual and combined effects of DON and Cd on E-cadherin expression in jejunum. (A, 60×) Jejunum of rats in the control group showed strong
homogeneous staining on E-cadherin; less intense immunostaining on E-cadherin occurred in the jejunum of rats in the groups treated with DON (B, 40×), Cd (C,
40×) and DON+Cd (D, 40×). (E) The number of fields with strong homogeneous immunostaining. Values are mean ± SEM (n=8). Means with a different letter
differ (p < 0.05). Data were analyzed by non-parametric one-way ANOVA with Bonferroni's multiple comparison test.
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Walle et al., 2008). Furthermore, as previous report indicates that the
molar ratio of mean exposure to DON and Cd in food in Europe is 1:1
(Le et al., 2018), the doses chosen for Cd were in the same range of
doses as DON. The recommendation for DON in feed intended for farm
animals is 5 mg/kg feed (European Union, 2006). In our experiment,
the concentration of DON in feed was 8.2 mg/kg. Indeed, the con-
centrations of 2–10mg/kg feed of DON are the most frequently used in
toxicological studies of farm and experimental animal models and de-
monstrate adverse effects in specific target organs (intestine, liver,
kidney) (Bracarense et al., 2012; Pinton et al., 2009, 2008). The con-
centration of 5mg/l CdCl2 in drinking water is an environmentally
realistic low dose (Benoff et al., 2008; Brzóska et al., 2003). It led only
to modification of the phenotype of innate immune cells in the me-
senteric lymph nodes in a rat model (Ninkov et al., 2015). Our proposal
was to investigate the potential increase of the adverse effects when
cadmium was in combination with another toxic compound. We took
into account that the molar ratio of mean exposure of European po-
pulation to DON and Cd in food is estimated to be 1:1 (Le et al., 2018).
Considering the daily ingestion of food and water by the rat and the
content of DON in food, the concentration of 5mg of Cd/l of drinking
was in accordance to reach this realistic ratio.

To evaluate the effects of DON and Cd alone or in combination on
the intestine in vivo, rats were exposed to the contaminants for four
weeks. The body weight gain of animals was not affected in any of the
conditions tested. However, alterations in the histology and the mor-
phology of the intestine were observed after exposure to DON and Cd
alone or in combination. A significant decrease was observed in crypt
depth in the jejunum of rats exposed to DON, Cd and DON+Cd. The
effect of DON on crypt depth has already been reported in pigs (Gerez
et al., 2015) and might be due to the DON-induced ribotoxic stress that
compromised protein synthesis and triggered apoptosis (Pestka, 2010;
Pierron et al., 2016a; Pinton et al., 2010). In piglets exposed to DON, a
decrease in the number of proliferating cells in the intestinal crypt in
response to DON has been already observed (Bracarense et al., 2012;
Gerez et al., 2015). A study on broiler chickens showed that Cd inges-
tion caused histological alterations such as a decrease in leaf-like villi
and a reduction in crypt depth (Teshfam et al., 2006). Moreover, in-
hibition of proliferation and induction of apoptosis has been observed
in human renal mesangial cells and subventricular neural stem cells
exposed to Cd. These effects were mediated by activation of the JNK or
p-38 pathway (Wang et al., 2017). It is thus tempting to hypothesize
that Cd inhibits the proliferation of intestinal epithelial cells via the
same MAPK-dependent mechanism. By contrast, villus height was not

affected irrespective of the contaminant to which the rats were exposed.
This suggests proliferating cells are more sensitive to DON and/or Cd
than differentiated ones, as already described in vitro for DON (Bony
et al., 2006; Pierron et al., 2016a).

The histological and morphological alterations induced by the two
contaminants tested here suggest that the intestinal barrier function
may also be impaired. A dose-dependent reduction in the TEER and an
increase in paracellular permeability were observed in DON and in Cd
treated cells. The reduction in the barrier function caused by DON is
mediated by MAPKs/ERK activation, as inhibition of this signaling
pathway restored TEER in porcine and human intestinal epithelial cells
(Du et al., 2018; Pinton et al., 2010; Springler et al., 2016). A MAPKs/
ERK activation in the differentiated Caco-2 cells treated with Cd has
also been reported (Mantha and Jumarie, 2010), and may be involved
in the disruption of the intestinal barrier by Cd.

The intestinal barrier function is closely linked to the junctional
protein network and several studies have shown that DON or Cd alter
some junctional proteins including occludin or E-cadherin (De Walle
et al., 2010; Pinton et al., 2009; Templeton and Liu, 2013). However,
the effects of combinations of DON and Cd on the junctional proteins
have not previously been investigated. Here, we observed a decrease in
E-cadherin expression in the three groups of exposed rats (DON, CD and
DON+ Cd) while the decrease in occludin was only observed in animals
exposed to DON (with or without Cd). By contrast, in Caco-2 cells, the
amount of E-cadherin and occludin decreased after exposure to the two
contaminants (DON and Cd) alone or in combination. This was asso-
ciated with redistribution of the junctional proteins from the membrane
to the cytoplasm. A similar decrease in the expression of E-cadherin has
already been observed in pigs fed a DON-contaminated diet (Bracarense
et al., 2012; Pierron et al., 2018). As far as Cd is concerned, several
studies have shown that, in intestinal cells, intercellular junctions,
mainly E-cadherin and actin cytoskeleton, are sensitive to this con-
taminant (Duizer et al., 1999; Rusanov et al., 2015). In MCF-7 cells, Cd
has been shown to disturb calcium homeostasis and cause a depletion of
Ca2+ (Zhou et al., 2015); this induces the activation of Cdc42, a
member of Rho family GTPases, and leads to the ubiquitination and
degradation of E-cadherin via Src-mediated pathway (Shen et al.,
2008). In a human airway tissue model, Cd induced redistribution of
occludin by tyrosine phosphorylation through c-Src and PKC activation,
resulting in TJ disruption (Cao et al., 2015). Whether these modes of
action of Cd also occur in the intestine remains to be determined.
Disruption of junctional adhesion associated with increased para-
cellular permeability can facilitate the passage of pathogens and/or

Fig. 10. Individual and combined effect of DON and Cd on occludin expression in jejunum. (A, 60×) The jejunum of rats in the control group showed strong
homogeneous staining on occludin; less intense immunostaining on occludin occurred in the jejunum of rats in the groups treated with DON (B, 40×), Cd (C, 40×)
and the combination of DON and Cd (D, 40×). (E) The number of fields with strong homogeneous immunostaining. Values are mean ± SEM (n=8). Means with a
different letter differ (p < 0.05). Data were analyzed by non-parametric one-way ANOVA with Bonferroni's multiple comparison test.
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harmful substances into the body. Therefore, animals or humans ex-
posed to these toxins are likely to be more sensitive to intestinal pa-
thogens. In addition, increased intestinal permeability may also favor
permeability to other contaminants (Payros et al., 2017).

Humans and animals are exposed to multi-component mixtures in
the environment and food, whereas chemical risk assessment generally
concerns the toxicity of single compounds (More et al., 2019). The ef-
fects of combinations of several food contaminants are very poorly
documented. In the case of DON and Cd, apart from a previous study by
our team (Le et al., 2018), no study has investigated their combined
effect. The in vitro and in vivo data presented in this paper indicate that,
whatever the parameter analyzed (TEER, paracellular permeability or
the abundance of junction protein), the toxicity resulting from exposure
to a combination of DON and Cd is similar to that caused by each in-
dividual contaminant. It is well known that chemical compounds have
multiple modes of action, a range of targets and different degrees of
affinity for these targets, and, conversely, that each mode of action can
be used by a variety of chemical compounds (Thrupp et al., 2018). As
described above, the mechanisms of action of DON and Cd share some
pathways, one of which is the MAPkinase pathway. Indeed, DON and
Cd induce the activation of ERK1/2 and p38 respectively, leading to
disruption in tight junctions (Pinton et al., 2010; Rather et al., 2017).
We hypothesize that, when combined, DON and Cd play competitive
roles in the pathway, which would explain why the effect of a mixture
of DON and Cd is no greater than the effect of each individual con-
taminant.

From the point of view of human health, our results suggest that
existing regulation for DON and Cd are sufficient to protect consumers
exposed to a mixture of these contaminants. Indeed, their combined
effects on the intestine were identical to the effect of the most toxic
compound alone, whatever the parameter analyzed. These results point
to a less than additive effect. More data are needed to determine if the
results concerning the effect of DON and Cd on the intestine can be
extended to other organs and/or to other mixtures.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.envint.2019.105082.
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