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RESUME 

Le concept des origines développementales des maladies et de la santé (DOHaD) émet 

l’hypothèse d’une origine périnatale des maladies non-transmissibles (NCD). Le modèle de 

stress de séparation maternelle (MS) est largement utilisé chez le rongeur comme un paradigme 

d’événements adverses en période néonatale. Mon projet de doctorat, a eu pour but d’étudier 

les effets à long-terme du MS sur les fonctions de barrière intestinale, le métabolisme, la 

réponse immunitaire, l’auto-immunité ainsi que sur le microbiote, chez des souris mâles et 

femelles sauvages âgées sous régime standard. Le but étant de fournir des données 

expérimentales soutenant le lien entre stress néonatal et développement de désordres 

métaboliques ou auto-immuns à l’âge adulte. 

Dans une première étude, nous avons montré que, le MS a induit une intolérance au 

glucose et une perte de la sensibilité à l’insuline associée à une dysbiose fécale chez des souris 

mâles sauvages C3H/HeN âgées de 350 jours (PND350). Le MS a diminué les concentrations 

d’IgG fécales et a augmenté les IgG anti-E. coli plasmatiques, représentant la réponse humorale 

contre le microbiote commensal. Le MS a diminué significativement la sécrétion d’IL-17 et IL-

22 en réponse à une stimulation du TcR et a augmenté la sécrétion de TNFα en réponse à une 

stimulation LPS dans une culture de cellules de la lamina propria de l’intestin grêle (siLP). Les 

mêmes résultats ont été obtenus au niveau systémique (rate). Nous avons ainsi démontré pour 

la première fois que le stress néonatal est un facteur de risque pour le développement des 

désordres métaboliques chez la souris sauvage âgée sous régime standard. Nous avons écarté 

un rôle exclusif du microbiote dans l’intolérance au glucose induite par le MS avec des 

expérimentations de transfert de microbiote fécal. 

Dans une seconde étude, chez les femelles PND350 soumises au MS, on a observé une 

augmentation de la sécrétion d’IL-17 et IL-22 en réponse à une stimulation du TcR, et de TNFα 

avec ou sans stimulation au LPS par les cellules de la siLP. Nous avons observé en plus une 

inflammation systémique. Les souris MS ont développé une intolérance au glucose associée à 

une baisse de la sécrétion de l’insuline en réponse à un challenge au glucose. Le ratio de la 

surface des cellules β sur la surface du pancréas a légèrement diminué chez les MS et la valeur 

de ce ratio a corrélé positivement avec la sécrétion d’insuline induite par le glucose. En somme, 

le MS induit chez les souris femelles des effets à long terme sur l’immuno-métabolisme et 

l’homéostasie du pancréas. 
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Enfin, nous avons comparé les mesures de perméabilité intestinale in vivo (gavage) et 

ex vivo (chambres de Ussing) avec du FITC-Dextran 4 kDa dans un modèle de diabète de type 

1 (NOD - souris non-obese diabetic). De façon inattendue, les résultats ont différé en fonction 

des méthodes et cette différence n’est pas due à un défaut de la fonction rénale induite par le 

diabète. Par contre, nous avons observé un allongement de l’intestin grêle chez les souris 

diabétiques qui a corrélé positivement avec la perméabilité intestinale in vivo. Le diabète n’a 

pas modifié le transit intestinal, l’humidité des fèces et l’apparence histologique de l’intestin. 

En somme, nos résultats soulignent l’importance de distinguer la perméabilité intestinale, 

exprimée en cm/s mesurée ex vivo, et la notion d’exposition systémique aux antigènes luminaux 

mesurée in vivo. 

Mon travail de thèse montre que les événements adverses néonataux sont un facteur de 

risque pour les NCD. Il est intéressant de noter que nos observations sur les souris âgées sont 

similaires aux observations épidémiologiques. En effet, nos résultats préliminaires suggèrent 

que les souris MS femelles développent des désordres métaboliques avec des caractéristiques 

auto-immunes; alors que les mâles développent des désordres métaboliques plus classiques : 

résistance à l’insuline. Mon travail sur le modèle MS souligne l’importance de la vie néo-natale 

dans l’établissement de l’homéostasie et conforte le concept de DOHaD. 

Stress social, Métabolisme glucidique, Barrière intestinale, Réponse immunitaire, 

Origines développementales des maladies et de la santé. 
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SUMMARY 

The concept of Developmental Origins of Health and Disease (DOHaD) highlights the 

importance of early life period and raises the hypothesis that Non Communicable Diseases 

(NCD) could find their origins in perinatal environment. Neonatal maternal separation (MS) is 

a stress model widely used in rodents as a paradigm of early life adverse events. In my PhD 

project, I aimed to investigate in aging male and female wild-type mice under normal diet the 

long-term effects of neonatal MS on intestinal barrier function, metabolism, immunity, auto-

immunity, as well as on microbiota. My work aimed to provide experimental data to support a 

link between early life stress and development of metabolic or autoimmune disorders with 

aging.  

In our first study, MS led to glucose intolerance and loss of insulin sensitivity associated 

with fecal dysbiosis in Post Natal Day (PND) 350 wild-type C3H/HeN male mice fed a standard 

diet. Fecal IgG concentrations were decreased in MS mice compared to control mice, whereas 

anti-E. coli IgG, representing humoral response toward commensal microbiota, were 

significantly increased in plasma of MS mice. MS significantly decreased IL-17 and IL-22 

secretion in response to TcR stimulation in small intestine lamina propria (siLP) culture. 

Besides, TNFα secretion in response to LPS-stimulation was slightly increased. The same 

results were obtained at systemic level (spleen). For the first time, we demonstrated that early 

life stress alone is a risk factor for metabolic disorders development in aging wild type mice 

under normal diet. The result of this project gave us the opportunity to question the role of 

microbiota in MS-induced glucose intolerance. Fecal microbiota transfer of MS mice 

microbiota was not sufficient to induce glucose intolerance. 

In our second study in PND350 female, MS increased IL-17 and IL-22 by siLP cells in 

response to TcR stimulation. TNFα secretion with and without LPS stimulation was also 

increased by MS. Additionally, we observed systemic low-grade inflammation. MS mice 

developed glucose intolerance associated with decreased insulin secretion in response to 

glucose stimulus. Ratio of β-cell surface to pancreas surface was slightly decreased in MS mice 

compared to control. This ratio positively correlated with insulin secretion induced by glucose. 

Taken together, the results of our study showed that MS in wild type female mice under normal 

diet leaves a long-lasting imprinting on immune-metabolism and pancreas homeostasis.  

We compared in vivo and ex vivo intestinal permeability measurements in a model of 

type 1 diabetes (NOD – non-obese diabetic mice). Intestinal permeability was assessed in vivo 
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by gavage and ex vivo in Ussing chambers with the marker FITC-Dextran 4 kDa. Surprisingly, 

the results of both methods were divergent. The difference between in vivo and ex vivo 

measurements could not be explained by altered renal excretion. Curiously, diabetic NOD mice 

had significantly longer small intestine than non-diabetic NOD mice and small intestine length 

positively correlated with intestinal permeability in vivo. However, there were no difference in 

intestinal transit time, feces humidity and histological appearance. Altogether, our results 

highlighted the importance to distinguish intestinal permeability, which is expressed as cm/s 

measured ex vivo, and the notion of systemic exposition to luminal antigen measured in vivo.  

My PhD project shows that early life adverse events are a risk factor for NCD. 

Interestingly, our observations in aging mice are similar to epidemiological observations. 

Indeed, preliminary results suggested that female MS mice develop metabolic disorders with 

autoimmune characteristics but male MS mice develop classical metabolic disorders with 

insulin resistance. My work in MS model highlights the importance of early life in the 

establishment of homeostasis and comforts the concept of DOHaD. 

Social stress, Glucose metabolism, Intestinal barrier, Immune response, Developmental 

origin of health and diseases (DOHaD). 
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The incidence of non-communicable diseases (NCDs) is constantly increasing in the last 

decades. Among NCDs, there are metabolic disorders, like obesity and type 2 diabetes, 

autoimmune diseases, as for example type 1 diabetes and allergies. Explications for the 

important rise in NCDs are numerous and diverse. There are for example, changes in lifestyle, 

nutrition, increased exposure to environmental contaminations and pollutants,  

Early life is an important period for the establishment of lifelong beneficial homeostasis 

between the organism and its environment, especially its microbiota. The concept of 

developmental origins of health and disease (DOHaD) suggests that early life can have potent 

imprinting mechanism on host’s physiology and that adverse perinatal physical and social 

environment can lead to higher susceptibility to NCDs. Indeed, the thousand first days of our 

life, from conception to our second year’s birthday, are described to be decisive for future 

health. 

The intestine is the body’s greatest surface in contact with its environment. In order to 

protect the organism from harmful substances and microorganisms but maintaining at the same 

time efficient nutrient absorption, the intestinal barrier is highly developed and regulated. 

Principal actors of the intestinal barrier are microbiota, intestinal epithelium with its highly 

regulated permeability and intestinal immune system. Interestingly, a tremendous amount of 

studies has shown that disturbed microbiota homeostasis (dysbiosis) is associated with a 

multitude of diseases, especially NCDs. Indeed, the gastro-intestinal tract seems to play a 

crucial role in organism’s health and disease.  

This work is the continuation of previous studies performed in our laboratory, which 

highlighted the impact of stress on the integrity of the intestinal barrier. Especially early life 

stress has been of particular interest in our laboratory. Indeed, early life stress is known to 

impair intestinal barrier through induction of intestinal hyperpermeability, low-grade 

inflammation and microbiota dysbiosis in young rodents. Maternal separation (MS) is a 

paradigm of early life stress in rodents. 

During my PhD I had the opportunity to write a review article, submitted and under 

review for the journal Frontiers in Immunology. Some parts of this article are quoted in I. Part: 

State of the Art. 
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CHAPTER I 

INTESTINAL BARRIER AND INTESTINAL HOMOEOSTASIS 

The human intestine is about six meters long and due to multiple folding through crypts 

of Lieberkühn, villi and microvilli, the surface is about 400 m2. This makes the intestinal 

epithelium the mammalian organism’s biggest surface in contact with the environment (Figure 

1). A principal role of intestine is to complete the digestion and absorb the nutrients but at the 

same time, the intestine filters and defends the organism from harmful luminal content 

(pathogens, toxins…), while maintaining tolerance towards commensal microbiota and food 

antigens. Hence, the intestine is acting as a selective barrier. Considering the challenging, 

various, decisive and conflicting roles, it is not surprising that intestinal barrier function is 

highly diverse and well developed. 

 
Figure 1 Intestinal anatomy. The intestinal tube is surrounded by two muscle layers, the longitudinal outer and 

the circular inner layer. The mucosal surface is increased by circular folds. Villi are finger-like extensions of 
mucosa into the intestinal lumen increasing further the intestinal surface. Intestinal epithelial cells have 

microvilli on apical site, which are also increasing the intestinal surface. 
(https://histaminefriendlykitchen.com/wp-content/uploads/2017/08/TheVilliandmicrovilli.jpg) 

1. Actors of intestinal barrier 

Among the main actors of intestinal barrier, there are intestinal microbiota, mucus, 

intestinal epithelium, intestinal immune system with its innate and adaptive response, harbored 

within the lamina propria (LP), and muscular layer, responsible for gut motility. 

1.1 Intestinal microbiota 

The intestinal microbiota is a complex bacterial community colonizing the gut. There 

are more than 100 trillions of microorganisms from two major phyla, Bacteriodetes and 
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Firmicutes, representing around 90% of gut microbiota (Rinninella et al., 2019). Other 

represented phyla are for example Actinobacteria and Proteobacteria. Colonization density is 

increasing from stomach (101-103 bacteria/g), via duodenum (104-105 bacteria/g) and 

jejunum/ileum (108 bacteria/g) to colon (1012-1014 bacteria/g) (Nicolas, 2013). Microbiota plays 

an important role by providing, extracting and absorbing various nutritional compounds and 

metabolites, as for example bile acids, amino acids, vitamins, lipids, short-chain fatty acids 

(SCFAs) (Jandhyala et al., 2015). Lactate, as an example for a bacterial metabolite, has 

stimulating effect on colonic proliferation (Okada et al., 2013). Also small intestinal stem cells 

are using lactate as an energy source (Rodríguez-Colman et al., 2017). Microbiota cans also 

influence host’s physiology through its metabolites. For example, butyrate, a SCFA produced 

by gut microbiota, is able to regulate host metabolism and immunity via its utilization as energy 

source through β-oxidation in enterocytes and inhibition of histone deacetylases, affecting 

host’s gene expression (Stilling et al., 2016). As an example, in cell cultures of murine mast 

cells and primary bone marrow mononuclear cells, butyrate has been shown to suppress 

proliferation and the production of the cytokines IL-6 and TNFα via the inhibition of histone 

deacetylase (Zhang et al., 2016). Microbiota participates also in the protection against 

pathogens colonization by occupation of ecological niches (competition for nutrients and space) 

(Jandhyala et al., 2015). Additionally, microbiota contributes to maturation of intestinal 

epithelium and immune system. This fact particularly strikingly visible in germ-free (GF) 

animals, which are living in sterile isolators, devoid of any microbiota. Indeed, GF mice are 

described to have thinner small intestine lamina propria (siLP) (Round and Mazmanian, 2009) 

and a great deficit in gut associated lymphoid tissue, as small Peyer’s patches containing only 

a little number of germinal centers (Macpherson et al., 2001). They have immature immune 

system, namely reduced number of IgA producing and CD4+ cells. Colonization by microbiota 

can restore these defects (Falk et al., 1998; Helgeland et al., 1996; Macpherson et al., 2001). 

1.1.1 Microbiota during life-time 

Microbiota is depending on lots of different factors and can evolve during lifetime. In 

utero the fetus is considered sterile (Hornef and Penders, 2017), even if this assumption is 

debated. Some affirm that there is a microbiota in utero (Aagaard et al., 2014; Jiménez et al., 

2008). However, the presence of bacteria is often confirmed by qPCR and rarely by culture of 

living bacteria and critics are highlighting potential contamination and missing controls (Perez-

Muñoz et al., 2017). By definition, sterile is “devoid of life”. Detecting bacteria by qPCR 

demonstrate the presence of bacterial DNA but not living bacteria. In the following, I will 
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assume that fetus in utero is sterile and that first colonization takes place at birth. Highly 

dynamic microbiota during early life will be treated separately (cf. Chapter I 4. Ontogeny of 

intestine in early life 4.1 Colonization). 

In adulthood, microbiota is more stable than in early life (Borre et al., 2014; Palmer et 

al., 2007) and less sensitive to external insults. Indeed, highly diverse microbiota is resilient to 

a certain amount of time-limited stressors, as for example disease, antibiotic treatment. 

Resilience means that the microbiota can recover its initial state (equilibrium) after an external 

insult. This is due to a variety of host-microbiota and inter-community interaction at one side 

and on the other side host-bacteria and bacteria-bacteria antagonisms (Sommer et al., 2017). 

Another factor modifying microbiota is aging. Claesson et al. observed in elderly Caucasians 

compared to younger individuals, a shift from Firmicutes towards Bacteriodetes (Claesson et 

al., 2011). 

1.1.2 Dysbiosis 

There are several external parameters able to influence microbiota composition. For 

example, diet is a potent influencer of microbiota composition (Rothe and Blaut, 2013). In 

addition, our environment is influencing the microbial community of our gut. Medical 

treatment, as for example antibiotics, and disease state influence gut microbiota as well (Ottman 

et al., 2012). If the pressure on the microbiota ecosystem is long-lasting or more important, or 

if initial microbiota is less resilient, there can be a shift towards a new equilibrium, perhaps a 

detrimental one, also called dysbiosis (Sommer et al., 2017). 

It has been shown, that microbiota is different between different geographic 

environments. Indeed, people in countries with westernized lifestyle and non-westernized 

lifestyle have distinct microbiota (Pasolli et al., 2019). Migration of Hmongs and Karens 

towards the United States changes the microbiota composition strongly. A loss in diversity has 

been observed. These changes, increasing in long-term residents and the second generation 

post-immigration, were associated with increased incidence of obesity (Vangay et al., 2018).  

Dysbiosis is defined by Petersen and Round as a disturbance in the microbiome structure 

that may consist in a loss of beneficial microorganisms, and/or expansion of pathobionts or 

harmful microorganisms (Figure 2) (Petersen and Round, 2014). Gut dysbiosis is described in 

tremendous diseases. Autoimmune disorders (AD), metabolic disorders, inflammatory bowel 

diseases (IBD), irritable bowel syndrom (IBS), even psychological disorders are associated with 

gut microbiota dysbiosis. 
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Figure 2 Dysbiosis. “A loss of beneficial microbes, expansion of pathobionts, and loss of diversity are events 
that encompass dysbiosis. During healthy, homeostatic conditions the microbiota is composed of a diversity 

organisms that are known to benefit host development and health.” (Petersen and Round, 2014) 

Important inter-individual microbiota composition has been observed (Franzosa et al., 

2015). Further, regarding the high dynamics of microbiota during lifetime and the multiplicity 

of influencing factors, important questions seem to be: “Are there common elements to healthy 

microbiomes, in absence of overt disease? Which molecular elements of a personalized 

microbiome might be responsible for health outcomes, and how do they integrate with and 

maintain physiological processes such as the immune system and metabolism?” (the integrative 

HMP (iHMP) research Network consortium, 2019). The integrative Human Microbiome 

Project (HMP) address these question and was designed to gain a more complete view of 

microbial-host interactions in time. In this work frame, they found for example that not the 

microbiome but its prevalent molecular functions are correlated with host’s phenotype. Another 

finding of the more than 42 terabytes sampled omic data is that during disease microbiota is 

highly dynamic and could explain difficulties in cross-sectional studies to extract conclusive 

information (the integrative HMP (iHMP) research Network consortium, 2019). 

1.2 Mucus 

The gastrointestinal tract is covered by a mucus layer, protecting the epithelium from a 

direct contact with its microbiota. Mucus is secreted by goblet cells in the epithelial cell line 

and is made up mainly of mucin protein MUC2. The protein includes a high number of hydroxyl 

amino acids which serve as attachment sites for the O-glycans. After posttranslational 

modification in the Golgi apparatus, glycans represent around 80% of total mucin mass. O-
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glycans can bind a great amount of water, which is giving the mucus its gel-forming property 

There are also transmembrane mucins, expressed by enterocytes (MUC1, 3A/B, 4…) but in 

smaller quantity (McGuckin et al., 2011). 

The mucus structures in small intestine and colon are different (Figure 3). In small 

intestine, there is one mucus layer; bacteria can penetrate into the mucus (Johansson and 

Hansson, 2016). In colon mucus is fourfold thicker and in animal models, two distinct mucus 

layers have been described: the outer, loose mucus layer, penetrated by gut bacteria; and the 

inner, firm, sterile mucus layer tightly attached to the epithelium (Atuma et al., 2001; Johansson 

et al., 2008).  

 
Figure 3 Mucus layer organization in small intestine and colon. Mucus is produced and secreted by goblet 
cells. The mucus layer in the small intestine is loose and not attached to the epithelium. Antibacterial products 

are present in mucus, limiting the penetration of bacteria towards the epithelium. In the colon, mucus is 
organized in outer and inner mucus layer. The outer loose mucus layer is enriched in bacteria, whereas the inner 

mucus layer attached to the epithelium is almost free of bacteria (Johansson and Hansson, 2016). 

This vision of mucus organization, though, is debated. Notably Kamphuis et al. propose 

a mucus organization shaped by colonic content. They found the firm and sterile mucus layer 

attached to fecal pellet but not to colonic epithelium in histological staining in rat. In empty 

colon, the epithelium is covered with a loose, discontinuous mucus layer and devoid of bacteria 

(Kamphuis et al., 2017). However, Kamphuis et al. believe that the principal role of the mucus 

layer, even though attached to fecal pellet and not to epithelium, is the containment of bacteria 

in a restricted location in intestine in order to protect the host’s epithelium from invasion 

(Kamphuis et al., 2017). 



13 
 

Mucus is enriched with antimicrobial peptides (Dupont et al., 2015) and secretory IgA 

(sIgA) (McGuckin et al., 2011), hence mucus invading bacteria will encounter antimicrobial 

peptides and sIgA and might be killed in this process. Indeed, it has been demonstrated that 

mucus has microbiota killing activity (Meyer-Hoffert et al., 2008). Invading bacteria in mucus 

are mainly detected by FISH technic that do not prove that bacteria are alive. The concerted 

action of physical, biochemical and immunological barrier components in the mucus are 

effective to keep bacteria away from epithelium and protect the host from infection. 

1.3 Intestinal epithelium  

The intestinal epithelium is formed by distinct cell types distributed along the crypt–

villus axis. Although they all derived from a common stem cell progenitor located in the crypts, 

their morphology and roles differ (Figure 4) (for review (Gehart and Clevers, 2019)). The 

intestinal epithelium is renewed every five days, a part from Paneth cells whose lifespan has 

been estimated at about 60 days in mice (Ireland et al., 2005), and this constant renewing confers 

high plasticity and protection to the intestinal barrier since defective cells are removed rapidly 

(Gordon and Hermiston, 1994). 

1.3.1 Different cell types in the intestinal epithelium 

(a) Enterocytes 

Enterocytes are present all over intestine, namely in small intestine and colon. They 

serve as physical barrier. Their main role is the absorption of nutrients and water. Additionally, 

they can also secrete antimicrobial components and they are non professional antigen presenting 

cells (expression of MHC2 without co-stimulatory molecules). 

(b) Enteroendocrine cells 

Enteroendocrine cells can be found in colon and small intestine. The high variety of 

enteroendocrine cells secrete different hormones. They exert regulation on intestinal motility 

and digestive processes but they can also influence central nervous system, via their 

anorexigenic effect. Some examples are mentioned in Table 1.  

(c) Goblet cells 

The mucus producing and secreting goblet cells are present all over the intestine but 

more abundant in colon. Goblet cells are not restricted to the production of mucus, they also 

can secrete antimicrobial components and play a role in antigen passage of antigens via goblet 

cell-associated passage (GAP), which will be developed later.  
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Table 1 Hormones produced by intestinal epithelial cells (examples). 

Hormone Cell Functions (selection) 

PYY L-cells Inhibits gastric emptying and intestinal motility; inhibits 
gastric acid secretion and pancreatic exocrine function; 
anorexigenic; stimulates mucosal enterocyte proliferation 

GLP-1 L-cells Incretin effect; delays gastric emptying; postprandial satiety 

5-HT 
(Serotonin) 

Enterochromaffin 
cells 

Intestinal motility; intestinal secretion; visceral sensation; 
appetite 

Somatostatin D cells Major inhibitory hormone for digestive endocrine and 
exocrine function; stimulates colonic peristalsis 

GIP K-cells Inhibition of gastric acid secretion, stimulation of insulin 
secretion 

Cholecystekinin 
(CKK) 

I-cells Anorexigenic,  

 

(d) Paneth cells 

Paneth cells are only present in the small intestine. They are located at the bottom of the 

crypt in proximity with intestinal stem cells. Paneth cells secrete antimicrobial peptides (AMP), 

as for example lysozyme. Due to their location, they also contribute to the protection of stem 

cells by secreting AMP highly enriched in the bottom of the crypt and thus support the stem 

cell niche.  

(e) M cells 

Microfold (M) cells can be found in small intestine in the follicle-associated epithelium. 

They play an important role in the antigen uptake, facilitated by microfolds (short fold-like 

invaginations) on apical site. On their basolateral site, they have a large pocket promoting close 

contact with dendritic cells (DC) or lymphocytes. Additionally, the follicle-associated 

epithelium secrete less mucus, less AMP and sIgA, which help bacteria and antigens to reach 

M cells in order to be processed and transported for antigen presentation. Even though M cells 

represent a facilitating pathway for antigen to prime oral tolerance, they are not mandatory 

(Spahn et al., 2002). 

(f) Tuft cells 

Tuft cells are present all along intestine. They are important for helminth detection and 

innate lymphoid cell 2 (ILC2) expansion (Gerbe et al., 2016). They are also responsible for 

opioid production and secretion in the intestinal epithelium (Gerbe et al., 2011). 
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Figure 4 Different cell types in (A) small intestine and (B) colon. (A) Most of small intestinal epithelial cells 

are enterocytes, secreting antimicrobial peptides (RegIIIγ, β-defensins and cathelicidins). Paneth cells are located 
at the base of the crypts, they secrete antimicrobial peptides (sPLA2, lysozyme and α-defensins). Goblet cells are 

secreting mucus. Antigens can enter into lamina propria via M cells on the surface of Peyer’s Patches and via 
goblet cell associated passage (GAP); Underlying dendritic cells (DC) are sampling entered antigens. The lamina 

propria is rich in innate (macrophages, monocytes, dendritic cells) and adaptive (B cells, T cells, intraepithelial 
cells -IEL) immune cells. (B) Colonic epithelium consists mainly out of colonocytes and goblet cells. Goblet 
cells are forming the mucus layer via production of Muc2 but they are also secreting other proteins (RELMβ, 

CLCA1, Zg16,Agr2). (Allaire et al., 2018) 
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claudins (Furuse et al., 1993), occludins (Furuse et al., 1998), junctional adhesion molecule 

(JAM) (Martìn-Padura et al., 1998) and tricellulin (Ikenouchi et al., 2005). In the cell, these 

protein complexes are linked via cytosolic scaffold proteins (zonula occludens) with the 

perijunctional actomyosin ring. Myosin light chain (MLC) phosphorylation by MLC-kinase 

(MLCK) is regulating contraction and tension of actomyosin ring (Madara et al., 1987). 

 
Figure 6 Intercellular junctions of intestinal epithelial cells. “The intercellular junctions are organized by 
different protein complexes, including tight junctions (TJs), adherens junctions (AJs), and desmosomes. TJ 

complexes locate at the apical ends of the lateral membranes of intestinal epithelial cells and consist of 
transmembrane and intracellular scaffold proteins. Extracellular loops of the trans- membrane proteins (occludin, 

claudins, JAMs, and tricellulin) are regulating paracellular permeability. The intracellular domains of the 
transmembrane proteins interact with the intracellular scaffold proteins such as zonula occludens (ZO) proteins, 

which in turn anchor the transmembrane proteins to the actin cytoskeleton. Myosin light chain kinase (MLCK) is 
associated with the perijuctional actomyosin rings and regulates paracellular permeability through myosin 

contractility. The AJs along with desmosomes provide strong adhesive bonds between the epithelial cells and 
also intercellular communication” (Suzuki, 2013). 

Another paracellular passage has been described by Rescigno et al. Dendritic cells (DC) 

can extent dendrites through the paracellular space and sample bacteria directly in the lumen. 

Since DC also express tight junction proteins intestinal barrier remains preserved (Rescigno et 

al., 2001). 

(b) Transcellular permeability 

Bigger molecules (> 600 Da), such as peptides and food antigens can be transported 

through the epithelial cell via transcellular transport route (Figure 5) (Gardner, 1988; Heyman 
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et al., 1982). Most of transcellular passage takes place in M cells, but enterocytes are also able 

to transport peptides. In the great majority the molecules are processed by the lysosome during 

their passage through cells, only a small quantity can reach LP intact (Heyman et al., 1996, 

1982).  

Transcellular passage can also be mediated by retro-transport of immunoglobulins from 

the lumen to the serosal compartment via receptor expression on the intestinal epithelium, as 

for example the neonatal Fc receptor (FcRn) observed in suckling rats responsible for the 

transmission of passive immunity by the mother (Blumberg et al., 1995; Jones and Waldmann, 

1971; Simister and Mostov, 1989). FcRn has also been described on human fetal intestinal 

epithelial cells (Israel et al., 1997). 

Goblet cells in the small intestine have been shown in the steady state, to let pass low 

molecular weight soluble antigens from the intestinal lumen to underlying tolerogenic-dendritic 

cells (DC) (McDole et al., 2012). This phenomenon is called goblet-cell associated passage 

(GAP). However in the colon, this antigen passage via goblet cells is restricted to a precise time 

window, from post-natal day 10 (PND10) to PND20 and later downregulated by microbiota in 

rodents (Knoop et al., 2017). As a consequence, induction of gut microbiota tolerance by the 

colonic immune system is crucial in early-life period and supporting the hygiene hypothesis, 

which proposes that the increased incidence of immune-mediated diseases is due to decreasing 

exposure to microorganisms in early life (Al Nabhani and Eberl, 2017; Bach, 2018).  

There are multiple methods for the determination of intestinal permeability (IP) 

including in vivo and ex vivo measurements. First, in vivo methods are often used due to the 

simplicity of protocol and the absence for the need of complex device. Indeed, several non-

metabolized molecules can be used to determine their passage across intestinal barrier in vivo 

in animal and human. The individual is receiving the molecule via the oral route and after a 

fixed time, blood or urine is collected and the marker is detected according to its properties 

(radioactivity, fluorescence, etc). Thanks to distinct chemical characteristics and degradation 

process by intestinal microbiota, different markers can be used to assess permeability of 

different intestinal segments (Travis and Menzies, 2015). Another possibility to assess intestinal 

permeability is by dosing serological markers without any previous gavage, as for example 

zonulin-1 (Fasano, 2011) or endotoxin (Cani et al., 2007) that will represent respectively 

intestinal homolog of a Vibrio cholerae enterotoxin that reversibly increase IP and a marker of 

intestinal lipopolysaccharide translocation in the blood. 
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1.4 Intestinal immune system  

As the previous paragraph shows, the intestinal immune system is in close relationship 

with the other actors of the intestinal barrier and important to confer tolerance but at the same 

time protection to the host. Intestinal immune system is highly developed. Indeed, it is the 

largest immune system in the organism. There are particular structures – the gut-associated 

lymphoid tissue (GALT), numerous innate and adaptive immune cells and a large variety of 

immune active actors. 

The first line of host defense is the innate immune system. 

1.4.1 Antimicrobial peptides 

Antimicrobial peptides (AMP) are crucial for the maintenance of intestinal homeostasis. 

They are controlling intestinal colonization. AMP are oligopeptides or even small proteins (5-

100 amino acids), targeting a vast spectrum of microorganisms (bacteria, fungi, ..) (Bahar and 

Ren, 2013; Ganz and Lehrer, 1998). All AMP derive from bigger precursors and undergo 

important posttranslational modifications (Wilson et al., 1999). AMP repertoire is different 

between all species, even those who are related (Zasloff, 2002). Even different mouse strain 

have different AMP repertoire (Gulati et al., 2012). These differences can largely influence the 

microbiota and explain inter-species and inter-strain discrepancies in microbiota composition. 

Besides, it could confer diverse resistance capacities towards pathogens.  

The presence of AMP in the intestine is also highly regionalized. AMPs are produced 

by enterocytes and goblet cells, but also by specialized cells, the Paneth cells. Paneth cells are 

only present in the small intestine, they produce and secrete α-defensins, RegIIIγ, sPLA2 

(phospholipase-A2), and lysozyme (Vaishnava et al., 2008). 

Lysozyme can also be produced by neutrophils; it is present in saliva and maternal milk. 

Defensins possess three intramolecular disulfide bonds and a β-sheet structure. In vertebrates, 

there are two families, α-defensins, β-defensins. In mice, α-defensins are called cryptidins. 

Cathelin-related antimicrobial peptide (CRAMP) is member of the cathelicidin family, present 

in mice and similar to LL37 in human  

Some AMP are targeting a fundamental differences between microbes and multicellular 

animals: microbes’ surface is negatively charged whereas plants and animals cell membranes 

are composed of lipids without charge (Matsuzaki, 1999). Cationic AMP attack microbes by 

interaction with their membrane, lipids are displaced, membrane structure is altered as a 
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consequences and sometimes AMP enters into the cell. This mechanism is called Shai–

Matsuzaki–Huang (Matsuzaki, 1999; Shai, 1999; Yang et al., 2000).  

Due to their high aggressiveness, AMP are highly regulated and undergo numerous 

maturation steps. AMP are secreted either constitutively or after pattern recognition receptor 

(PRR) activation by microbe-associated molecular patterns (MAMPs) (Yokoi et al., 2019). 

 
Figure 7 Functions of AMP. AMP can directly kill bacteria, virus and fungi. They can favor pathogen clearance 

by opsonisation of bacteria, they contribute to angiogenesis. AMP have immunomodulatory function through 
chemotaxis towards immune cells. They inhibit proteases and can bind endotoxin thus influencing TLR signaling 

(Frew and Stock, 2011). 

AMP also have immunomodulatory functions (Figure 7). They have chemiotactic 

properties towards monocytes, macrophages, neutrophils and mast cells (Oppenheim et al., 

2003). They can recruit T cells via induction of inflammatory cytokines (Lai and Gallo, 2009). 

They can favor bacterial clearance by opsonisation (Wilkinson et al., 2009). Immune response 

can also regulate AMP as for exemple IL-22 can induce RegIIIγ release (Wang et al., 2018). 

1.4.2 Innate immune cells 

Additional to secreted AMP, which are regulating microbiota in the lumen, the lamina 

propria (LP) harbors a wide variety of innate immune cells, supporting the defense of host’s 

integrity. 
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(a) Dendritic cells, macrophages 

Dendritic cells (DCs) and macrophages are mononuclear phagocytes able to present 

antigens via major histocompatibility complex II (MHCII). In the intestine about 80% of 

CD11chi are CD103+, which is a tolerogenic phenotype of DCs, since they induce FoxP3+ 

regulatory T cell (Treg) development (Chirdo et al., 2005; Coombes et al., 2007). This is 

underlining the fact, that tolerance to luminal antigens is of great interest throughout the 

intestine. 

(b) Neutrophils 

Neutrophils can initiate the immune response via leukotrienes and prostaglandins; kill 

pathogens by releasing AMPs or reactive oxygen species; or phagocyte cellular debris. They 

can also release IL-17 and IL-23 (Mei et al., 2012). Neutrophils also produce lipocalin-2 (lcn-

2), a marker of intestinal inflammation, which is sequestrating iron and thus limiting bacterial 

growth (Cowland and Borregaard, 1997; Yang et al., 2002) and myeloperoxidases (MPO) with 

great antimicrobial activity due to their oxidative potential (Serteyn et al., 2003). In the intestine 

neutrophils are not very numerous, unless pathological conditions, such as ulcerative colitis 

(Robinson et al., 1997), coeliac disease and infection (Bennouna et al., 2003). 

(c) Eosinophils 

Eosinophils are leucocytes with pro-inflammatory properties. Only a small percentage 

of circulating blood cells are eosinophils. In steady-state condition, most of them reside in the 

gastrointestinal tract within the LP (Powell et al., 2010; Zuo and Rothenberg, 2007). Most of 

them are localized in the duodenum (Mishra et al., 1999). The roles of eosinophils are multiple. 

Following cellular activation, eosinophils secrete toxic inflammatory mediators (proteins and 

peroxidase) that are stored in intracellular vesicles. These mediators destroy tissues and insert 

pores into membranes of target cells. By generating toxic oxygen radicals, they increase smooth 

muscle reactivity (Al-Haddad and Riddell, 2005). Eosinophils are also supporting plasma cell 

(Chu et al., 2011) function and the recruitment of DCs (Jacobsen et al., 2011).They are playing 

a role in inflammatory bowel disease (IBD), mainly acting as pro-inflammatory and pro-

motility agent (Al-Haddad and Riddell, 2005). 

(d) Mast cells 

In the immune response to infection, mast cells are important effector cells. They release 

inflammatory mediators and recruit other immune cells, driving the pro-inflammatory immune 

response. Mast cells have an important role in the intestinal barrier, since epithelial function 

and integrity are regulated by them. Additionally, mast cells modulate innate and adaptive 
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mucosal immunity, and maintain neuro-immune interactions (Albert-Bayo et al., 2019). They 

have a great variety of receptors which permit them to react to a lot of different stimuli 

(chemical, microbial, neural; immune and metabolic) (Bischoff, 2007). Mast cells play a crucial 

role in gut-brain axis via mast cell-nerve interaction (Forsythe and Bienenstock, 2012). 

Additionally, they are described to play an important role in the pathogenesis of allergy. 

Allergen binding to serum IgE attached to mast cell’s FcɛRI receptors activates them, in 

consequence mast cells are releasing cytokines, eicosanoids and their secretory granules (Amin, 

2012). In their granules they stock histamine, cytokines, granulocyte macrophage colony-

stimulating factor (GM-CSF), leukotrienes, heparin, and many proteases. Those mediators are 

responsible for the characteristic symptoms of allergy (Amin, 2012). 

(e) Innate lymphoid cells 

Innate lymphoid cells (ILCs) are lymphocytes that do not express the type of diversified 

antigen receptors expressed on T cells and B cells. Like innate immune cells, they respond to 

infection quickly; but they secrete analogous inflammatory mediators as T lymphocytes. ILCs 

are largely tissue-resident cells, especially in mucosal surfaces, participating in tissue 

homeostasis. They are co-coordinating the development and maintenance of lymphoid tissue, 

act early during infection against pathogens and regulation of commensal bacteria. The secreted 

mediators of ILCs are similar to their adaptive T helper (Th) counterparts. However, ILCs are 

reacting to non-specific danger signals and this more rapidly than Th cells, giving them a role 

in the frontline of immune reaction. (for review (Eberl et al., 2015; Rankin et al., 2013)). ILCs 

develop in fetal liver from common lymphoid progenitors (CLPs). CLPs give rise to the 

lymphoid lineage: T cells, B cells and ILCs among others (Sawa et al., 2010; Vonarbourg et al., 

2010). There is a great heterogeneity of ILCs; different ILCs subsets can have surface receptors 

and cytokine profile in common. However, they are distinct for transcription factors required 

and the need to classify led to three broad populations (Figure 8) (Spits et al., 2013; Tait Wojno 

and Artis, 2012). 

ILC1 and natural killer (NK) cells respond to intracellular microbes, viruses and 

tumors. They produce IFNγ and are dependent on the transcriptional factor t-bet. 

ILC2 are sensitive to large parasites, adipose tissue, tissue injury and allergens. They 

produce cytokines similar to Th2 profile, play a role in tissue repair and mucus production and 

are dependent on transcription factor GATA3. 
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Figure 8 Innate lymphoid cells. Infected or damaged tissue are liberating signal, inducing ILC activation and 

expansion. Type 1 signals (intracellular microbes, viruses and tumors) induce natural killer cells (NK) and ILC1, 
type 2 signals (large parasites, adipose tissue, tissue injury and allergens) ILC2 and type 3 signals (extracellular 

microbes: bacteria, fungi) ILC3 with different effector cytokines and effector functions (Eberl et al., 2015). 

ILC3 and its member lymphoid tissue inducer (LTi) respond to signals of extracellular 

microbes, bacteria and fungi. LTi are necessary for the development of secondary lymphoid 

tissue during fetal life. ILC3 and LTi can produce IL-17 and IL-22. ILC3 are playing an 

important role in intestinal homeostasis. Indeed, Lymph node resident ILC3 have been shown 

to present antigen to T follicular helper cells (TfH), thus inhibiting the interaction of TfH and 

B cells. As a result, mucosal IgA responses are limited. The restriction of TfH response is 

especially developed in case of colonic antigen presentation rather than small intestine. ILC3 

thus maintain tissue homeostasis and mutualism with the commensal colonic microbiota (Melo-

Gonzalez et al., 2019). Another member of the ILC3 family producing IL-22 has been identified 

playing a crucial role in the immune response against Citrobacter rodentium (Satoh-Takayama 

et al., 2008). 

1.4.3 Pattern recognition receptors 

Sensing of luminal exogenous fragments by the epithelium or the immune system takes 

place via pattern recognition receptors (PRR). Indeed, PRR, notably Toll-like receptors (TLR) 

and nucleotide-binding oligomerization domain (NOD) recognize and detect a variety of 

bacterial components (LPS, peptidoglycan, lipoproteins, flagellin, profiling, dsRNA, ssRNA 

and CpG DNA) (Figure 9). These molecules are also called microbe-associated molecular 

patterns (MAMPs). They are found on commensal and pathogenic bacteria. The activation of 

PRRs by MAMPs is initiating a cascade of signaling inside the cell, leading to gene expression 

of innate immune response. Consequently, a suitable immune reaction restores intestinal 
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homeostasis. Thus, PRRs play a crucial role in regulating the interface gut microbiota-host and 

in the defense of bacterial infection. They are also important for the integrity of the epithelium.  

Proliferation of intestinal epithelial cells has been shown to be dependent on toll-like receptor 

(TLR) recognition of commensal bacteria in DSS-induced colitis (Rakoff-Nahoum et al., 2004). 

 
Figure 9 Pattern recognition receptors. TLR Toll-like receptors located at the cell membrane or the nucleus 
membrane. Intracellular NOD Nucleotide-binding oligomerization domaine. DAP, diaminopimelic acid; ds, 
double-stranded; MDP, muramyl dipeptide; LPS, lipopolysaccharide; LAM, lipoarabinomannan; ss, single-

stranded (Kaufmann, 2007). 

1.4.4 GALT 

The gut associated lymphoid tissue (GALT) comprises as induction sites the Peyers’ 

patches (PPs), the appendix and isolated lymphoid follicles (ILFs) where immune cells are 

primed. Together with mesenteric lymph nodes (MLN) they are considered inductive sites for 

mucosal B and T cells. Naïve T cells from the vascularization home these structures and meet 

antigen-presenting cells, which arrived via afferent lymphatics from the inflammation sites in 

the gut. Naïve T cells undergo antigen-driven priming/activation, polarization, and expansion 

into effector cells. Via efferent lymphatics, they enter the lymphatic system and home to the gut 

lamina propria, the effector site, supporting the local immune response against pathogens 

(Figure 10, for review (Koboziev et al., 2010)). 
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Figure 10 Inductive and effector sites of the gut-associated lymphoid tissue. (a) Antigens enter via M cells 

into Peyers’ patches and are transferred to DCs, (b) and presented directly in the Peyers’ patch to T cells or 
alternatively (c) migrate via the afferent lymphatics to mesenteric lymph nodes. (d) T cells will recognize 

presented antigens. (e) Alternatively antigens can enter directly the lamina propria via the intestinal epithelium. 
(f) enterocytes can serve as antigen presenting cells and directly activate T cells or antigens are transferred to 

DC. (g) Activated T cells enter via efferent lymphatics or (h) activated T cells, free antigens and DC via blood 
stream (i) peripheral lymph nodes and systemic distribution (Calder, 2013). 

1.4.5 Adaptive immune cells 

The second line of defense is the adaptive immune response. Studies in germ-free 

animals have shown that the adaptive immune response in the gut is extremely shaped by gut 

microbiota. Indeed, colonization contribute to the growth of inductive sites as PP (Shroff et al., 

1995), IgA producing plasma cells expand (Benveniste et al., 1971), and the number of CD4+ 

and CD8+ cells increase (Guy-Grand et al., 1991). Numerous adaptive immune cells are 

harbored in the lamina propria. 

(a) B cells 

B cells, antibody producers, are important actors of the adaptive intestinal immune 

response mostly by secreting IgA. Each day 3-5 mg of antibodies are secreted into the lumen 

by intestinal IgA plasma cells (Brandtzaeg and Pabst, 2004). Plasma cells are most abundant in 

intestine, predominantly in LP of small intestine and are found in large intestine in smaller 
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numbers (Bowcutt et al., 2014). The humoral response in the intestine can be divided in four 

stages: predominant IgA induction in mucosal B cells, recirculation of IgA plasma blasts and 

homing into the intestinal mucosa, terminal B cell differentiation to plasma cells with local IgA 

production and export of IgA through the intestinal epithelial layer (Figure 11) (for review 

(Mora and von Andrian, 2008)).  

 
Figure 11 Cycle of B cells in the lamina propria of intestine. Antigens are sampled by DCs below M cells or 
through the epithelial layer by DC extensions. In Peyers’ patches and mesenteric lymph nodes DCs induce B 
cells via antigen presentation to differentiate into IgA+ cells which are homing to lamina propria, secreting 

dimeric IgA, released into the lumen via transcytosis (Hooper and Macpherson, 2010). 

The intestine is also secreting IgG, this has been shown to be exacerbated in IBD. 

Indeed, in intestinal mononuclear cells of IBD patients a modified Ig secretory pattern has been 

observed. There is a decreased spontaneous IgA secretion, but increased IgG secretion 

compared with intestinal mononuclear cells from healthy control (MacDermott et al., 1983, 

1981). Food-specific IgE in the intestine are playing a crucial role in food allergies. Indeed, in 

allergic condition IgE-receptor mediated antigen transport from the lumen to the lamina propria 

via an IgE/allergen complex has been described to enhance epithelial antigen transport 



27 
 

(Bevilacqua et al., 2004; Yu et al., 2001). IgE are responsible for the activation of mast cells, 

triggering the allergic symptoms, as for example diarrhea (Ahmed and Fuchs, 1997).  

(b) T cells 

Most intestinal T cells mature in peripheral lymphoid organs. These cells gain the 

expression of intestinal homing receptors to migrate to the intestine. Intestinal lymphocytes are 

continuously exposed to food and microbial antigens. These lymphocytes help maintaining the 

integrity of the intestinal barrier and immune homeostasis. Due to their close location to luminal 

antigens they have both regulatory and effector capabilities, including the prevention of 

pathogenic invasion and maintenance of tolerance to prevent extensive tissue damage (for 

review (Hooper and Macpherson, 2010; Ma et al., 2019)). 

Intestinal intraepithelial lymphocytes (iIEL) are in close contact with the intestinal 

epithelium, express the integrin CD103 (Dalton et al., 2006; Matsumoto et al., 1999) whose 

ligand is E-cadherin (Hadley et al., 1997) and contribute to the maintenance of barrier integrity 

(Culshaw et al., 1997; Inagaki-Ohara et al., 2006). 

The principal CD4+  cells in the gut are T helper 17 (Th17), Th22 and regulatory T cells 

(Treg).  

CD4+ Th17 are producing IL-17, they appear only after colonization (Gaboriau-

Routhiau et al., 2009; Ivanov et al., 2008) and represents around 10-15% of CD4+  cells in SI 

(Maynard et al., 2007). They can stimulate mucin and AMP production, thus maintaining 

intestinal homeostasis. 

CD4+ Th22 are producing IL-22, which is promoting innate immune response (Wolk et 

al., 2004). In the case of allergic asthma, IL-22 has been shown to induce the expression of 

REG3G in lung epithelial cells thus improving induced asthma (Ito et al., 2017). Also in murine 

intestinal epithelial cells, IL-22 induced the expression of the AMP REG3G. Additionally, IL-

22 increased paracellular permeability in Caco-2 cell culture (Wang et al., 2017). Decreased 

Th22 cells are described in lamina propria mononuclear cells of patients suffering from 

ulcerative colitis compared to healthy control (Leung et al., 2014). 

CD4+ Th1 produce IFNγ, which is enhancing macrophage activity.  

Regulatory T cells (Treg) are crucial to regulate containment of immune response. Treg 

are under the control of transcription factor FoxP3+ and produce the cytokines IL-10 and TGFβ. 
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CD4+ Th2 have a role in allergy, tissue repair and parasite infection. Th2 are crucial for 

the fight against helminth infection. Th2 stimulate intestinal functions in order to kill and 

expulse the multicellular parasite by inducing smooth muscle hypercontractility, enhanced 

mucus secretion and activation of intestinal mast cells (Bamias and Cominelli, 2015). However, 

over-activation of Th2 response can lead to excessive collagen deposition, probably responsible 

for fibrogenesis in ulcerative colitis and Crohn’s disease (Principi et al., 2013). 

1.5 Intestinal motility 

As seen in the previous paragraph, intestinal motility is an important actor of intestinal 

barrier, since it is crucial for the expulsion of pathogens or toxic substances. There are two 

smooth muscles layers enveloping the intestine, the inner, circular muscle and the outer, 

longitudinal muscle (Figure 12). The main task of intestinal muscles is the aboral transport of 

the bolus from esophagus to anal sphincter by longitudinal muscle contraction above and 

relaxation below bolus (peristaltsis). On the other side, contractions and segmentations by 

circular muscles favor also the mixing of the luminal content with the digestive juice. (Kumral 

and Zfass, 2018) 

 
Figure 12 The enteric nervous system. The ENS consists of the myenteric plexus, located between the 

longitudinal and circular muscle, and the submucosal plexus (SMP, Meissner plexus) located between the 
muscularis mucosae and the circular muscle (Furness, 2012). 

The intestinal motility is autonomously regulated by the enteric nervous system (ENS). 

The movements are initiated by distention of the intestinal tube and triggered by the myenteric 

plexus, located in between both muscle layers. The sympathetic and parasympathetic nervous 



29 
 

system, elements from the autonomous nervous system (ANS), have only modulating influence 

on gut motility. 

2. Enteric nervous system 

The enteric nervous system (ENS) is located in the wall of digestive tube (Figure 12). 

The ENS in human contains 200-600 million neurons, which are distributed in many thousands 

of small ganglia. They can be found in the myenteric and submucosal plexuses. The myenteric 

plexus is located between the two smooth muscle layers, covering the intestine from esophagus 

to anal sphincter. The efferent limbs end in the smooth muscle layer, stimulating peristalsis and 

segmentation. Submucosal ganglia are present in the small and large intestine. It is regulating 

secretory functions of epithelial cells in the mucosa (Furness et al., 2014). There is close 

communication between the ENS and the central nervous system (CNS) and the ANS and also 

regulation by numerous hormones. 

3. Gut-Brain Axis 

“The gut-brain axis consists of bidirectional communication between the central and the 

enteric nervous system (ENS), linking emotional and cognitive centers of the brain with 

peripheral intestinal functions” (Carabotti et al., 2015). The gut-brain axis includes the central 

nervous system (CNS), the autonomic nervous system (ANS) including sympathetic and 

parasympathetic limb, ENS and the hypothalamic pituitary adrenal (HPA) axis (Figure 13). 

The HPA axis is playing a crucial role in the response to stressors (cf. Chapter II Stress). 

Top-down communication appear through neurons (vagus nerve) and hormones 

(cortisol) which can influence gut motility, immunity, intestinal permeability and mucus 

production. Bottom-up communication happens via hormones (5-HT), cytokines produced by 

immune cells and mast-cell neuron interaction. In case of invading microorganisms in the 

periphery, pro-inflammatory cytokines are produced by activated neutrophils and macrophages 

and shown to induce in brain sickness behavior (Konsman et al., 2002). These findings 

underline the role of cytokines in communication with CNS. Microbiota can also influence gut-

brain axis via metabolites as for example SCFAs and microbiota-produced or degraded 

neurotransmitter. Indeed, bacteria can produce themselves a big variety of neurotransmitter 

(Lyte, 1993) but also influence host’s neurotransmitter. Serotonin (5-HT) is decreased in GF 

colon and blood (Wikoff et al., 2009) and can be restored by colonization. Spore-forming 

bacteria have been shown to stimulate 5-HT secretion by enterochromaffin cells via different 

SCFAs, among them butyrate and propionate (Yano et al., 2015). 5-HT plays a crucial role in 

gut motility, thus a restoration of 5-HT levels by gut microbiota modifications could be 
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beneficial in gastro-intestinal disorders associated with motility. Indeed, Yano et al. showed 

that colonization with their spore-forming bacteria increases gut motility in GF mice (Yano et 

al., 2015). 

 
Figure 13 The gut-brain axis. Top-down communications via 1) vagus nerve which is enervating enteric 

muscles and sending signals to intestinal epithelial cells, 2) Hypothalamus-Pituary-Adrenal axis by cortisol, 
which is influencing immune cells, intestinal permeability. Bottom-up communication by 1) intestinal hormone 

secretions (5-HT by EC and GLP-1 and PYY by EEC), 2) cytokine secretion by immune cells. Microbiota is also 
playing a role in gut-brain axis by the production of SCFAs and neurotransmitters, which can influence intestinal 

epithelium but also enter into the system. NE, norepinephrine; GABA, γ-aminobutyric acid; BBB, blood brain 
barrier; EEC, enteroendocrine cell; EC, enterochromaffin cell); GLP-1, glucagon-like peptide-1; PYY, peptide 

tyrosine tyrosine; 5-HT, 5-hydroxytryptamine; SCFAs, short-chain fatty acids (Kim et al., 2018). 

4. Ontogeny of intestine in early life 

At birth, the intestine is immature, especially in rodents, and needs to undergo various 

maturation processes. The organism has to face colonization by microorganism, must develop 

immune tolerance to commensal and food antigens and establish a robust immune response 

against pathogens. 
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4.1 Colonization 

A first great change in the neonatal gut is the colonization by microbiota. In utero, the 

organism is sterile and at birth, it is facing microorganism for the first time. Delivery mode is 

greatly shaping microbiota in the newborn. Infants born by vaginal delivery are colonized by 

vaginal microbiota of the mother, whereas infants born by caesarian section (CS) have first gut 

microbiota similar to skin microbiota of the mother (Dominguez-Bello et al., 2010). During the 

first days microbiota is evolving, at 1 week of age, microbiota of neonates vaginally delivered 

is characterized by abundant levels of Bifidobacterium and Bacteroides. Infants delivered by 

CS have a microbiota characterized by blooming Clostridium (Hesla et al., 2014).  

 
Figure 14 Intestinal microbiota composition over lifetime. “The graph provides a global overview of the 

relative abundance of key phyla of the human microbiota composition in different stages of life. Measured by 
either 16S RNA or metagenomic approaches (DNA)” (Ottman et al., 2012). 

Early life nutrition affects also microbiota composition. Breast-fed and formula-fed 

children have distinct microbiota. Introduction of solid food induces important changes in 

microbiota composition (Hill et al., 2017). Bifidobacteria diminish with introduction of solid 

food and microbiota is more and more similar to classical adult-like microbiota (Palmer et al., 

2007). Aerobic and facultative anaerobic bacteria will decrease in favor of anaerobic species, 

the postulate is, that facultative anaerobic bacteria prepare the intestinal niche for strict 

anaerobic bacteria by diminishment of intestinal oxygen (Jost et al., 2012; Timmerman et al., 

2017). At adulthood, anaerobic bacteria are dominant in the gut (Figure 14). 
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4.2 Gut closure 

 
Figure 15 Intestinal permeability and gut microbiota diversity in lifetime. “Starting early in life, 

environmental factors influence microbial diversity (blue) and gut permeability (green), affecting the duration of 
resilience and metabolic health (different shadings). (A) During pregnancy, the developing foetal gut is ‘primed’ 
by the maternal gut microflora and intestinal permeability (diagonal lines), particularly towards the latter stages 

of gestation and prior to the imminent microbial colonization post-birth. (B) Following birth, the gut is colonised 
with bacteria and diversity develops throughout infancy and childhood with a subsequent decrease of the initially 

very high intestinal permeability. (C) In adulthood, events in early life have combined with tight intestinal 
permeability to influence the ‘resilience’ of adult gut’s microflora. This is positively correlated with diversity 
and determines the health trajectory for the remaining lifespan. (D) In later years, after a period of ‘resilience’, 

the diversity in the gut microbiome declines and the leakiness increases during normal ageing. A low diversity or 
high leakiness can lead to the accelerated decline and places the individual at risk of developing a range of 

chronic metabolic diseases” (Kerr et al., 2015). 

During the first days of our life, the gut is hyperpermeable in order to receive maternal 

nutritional compounds but also immune modulatory mediators (van Elburg et al., 2003). In rats, 

intestinal permeability measured in vivo by FITC-Dextran 4 kDa gavage, has been shown to 

decrease constantly from 10 days after birth to 50 days after birth (Moussaoui et al., 2014). 

Intestinal hyperpermeability in neonates is a normal function (Catassi et al., 1995; Weaver et 

al., 1984) However, in premature infants intestinal permeability is excessively increased 

(Weaver et al., 1984), which can lead to uptake of pathogens and infection in pathogenic context 

(Insoft et al., 1996). The physiological decrease in intestinal permeability after birth is called 

“gut closure” (Figure 15) (Drozdowski et al., 2010). The work of Vukavic et al. suggest that 

early beginning of breastfeeding (1h-6h after birth) leads to a more rapid gut closure than late 

start of breastfeeding (12h-15h after birth) (Vukavić, 1984), underlining the impact of 

breastmilk on intestinal permeability. The start time of breastfeeding influences the 

composition of the microbiota through maternal Ig and AMP present in high concentrations in 

colostrum (Menchetti et al., 2016). 
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4.3 Development of intestinal barrier 

 
Figure 16 Ontogeny of intestinal barrier in rodents. The intestinal barrier is highly dynamic in early life. 

Immature prenatal intestine matures after birth and with weaning towards adult intestine. Epithelial cells 
proliferation increases around weaning, crypts appear. Prenantal and neonatal CRAMP production ceases and is 
replaced by Paneth cell derived peptides. Paneth cells appear with weaning. Bacterial colonization takes place 

from birth on and microbiota gains in diversity and density. Innate immune sensing undergoes maturing 
processes as well. TLR4 and IκBα expression evolve during early life. IgA-producing plasma cells appear and 

replace secretory IgA delivered through breastmilk by the mother. Lymphocyte homing and differentiation takes 
place from birth on (Renz et al., 2011). 

The expression of AMP undergoes a switch in the first days of life. In rodents, during 

the first days the AMP CRAMP is constitutively expressed in neonates gut epithelium and 

regulates the microbiota. The intestine mature, microbiota is diversifying. Crypts that are absent 

in neonatal rodent intestinal epithelium appear with time (Hirano and Kataoka, 1986), CRAMP 

disappears after the first 15 days and is replaced by Paneth cells with larger AMP repertoire. 

Paneth cells are localized in the bottom of the crypts and appear only 15 days after birth (Ménard 

et al., 2008) coinciding with microbiota expansion and diversification of food. In this period, 
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intestinal epithelial cell proliferation accelerates (van der Flier and Clevers, 2009), and crypts 

multiply. Paneth cells are playing an important role in the fision of one crypt into two daughter 

crypts (Langlands et al., 2016). All this changes in intestinal physiology coincide with the 

changes around the weaning period: introduction of solid food and diversification of diet and 

consequently arrival of new commensal bacteria in the gut (Figure 16). 

In human, intestine is more mature at birth. Crypts are formed; Paneth cells and Peyer’s 

patches are present. However, the intestinal immune system, structurally complete, undergoes 

great maturation and expansion during this period (Stockinger et al., 2011). The neonatal 

immune response is distinct from adult one. Indeed, CD4+ cells tend to differentiate into 

regulatory T cells in response to stimulation (Wang et al., 2010). B cells expand in plasma cells, 

producing sIgA, important for the neutralization of nutritional and microbial antigens (Pabst et 

al., 2008). 

4.4 Glucocorticoide sensitivity 

Moussaoui et al. described that glucocorticoid receptor (GR) expression in colon of rat 

pups (PND10) is significantly higher than in PND20 rats. This increased expression comes 

along with higher sensitivity to dexamethasone a GR agonist in PND10 vs PND20 pups. The 

higher sensitivity for glucocorticoids leads to increased intestinal permeability in PND10 but 

not PND20 pups in response to a single maternal separation stress (Moussaoui et al., 2014). 

Intriguingly, dexamethasone or hydrocortisone are often used to prevent bronchopulmonary 

dysplasia in preterm children. Effects of these GR agonists on gut has to be assessed. Indeed, 

preterm gut resembles PND10 rat pups gut in maturity and glucocorticoid sensitivity. Morris et 

al. report in a meta-analysis that early hydrocortisone treatment in preterm increases 

significantly the risk for intestinal perforation (Morris et al., 2019). Thus, clinical practice 

should be probably reconsidered in order to develop save long-term treatment for neonates, 

taking into account their special physiology.  
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CHAPTER II 

GLUCOSE METABOLISM 

In the previous chapter, I presented the different components of the intestinal barrier and 

their development in early life period. During my PhD, we were also interested in the effects of 

early life stress on glucose metabolism. First, we were focused on metabolic disorders 

characterized by glucose intolerance associated with insulin resistance and obesity. Afterwards, 

we were interested in autoimmune diabetes.  

1. Regulation of blood glucose  

The regulation of blood glucose levels is crucial for survival and for that reason 

submitted under tight control. Various hormones and neuropeptides are implicated in the 

regulation of glycaemia. They are released mainly from the brain, pancreas, liver, and intestine 

as well as adipose and muscle tissues.  

1.1 Regulation by pancreatic hormones 

Pancreas is a key player in the regulation of blood glucose levels, secreting insulin and 

glucagon. Insulin, at one hand, has a blood-glucose lowering effect, glucagon, at the other hand, 

a glucose mobilizing glucose from tissue towards the circulation. Both hormones are produced 

in islets of Langerhans in the pancreas, insulin from pancreatic β-cells, glucagon from α-cells.  

In postprandial state, insulin is released in response to glucose entry via GLUT2 into the 

β-cell. ATP/ADP ratio is increasing, ATP-sensitive K+ channel close and as a consequence 

membrane is depolarized, voltage-dependent Ca2+-channel open and increasing Ca2+ levels lead 

to fusion of vesicles of insulin with the membrane (for review (Röder et al., 2016)). Insulin is 

stimulating glucose uptake by peripheral organs (liver, muscles, adipose tissue) via insulin 

receptor whose activation stimulates GLUT4 translocation to the membrane. In liver, insulin 

stimulates glycogenesis and inhibits gluconeogenesis (Figure 17). 

In fasted state, glucose levels are decreasing and glucagon is secreted, which stimulates 

gluconeogenesis and glycogenolysis in liver in order to liberate glucose to normalize blood 

glucose levels (Figure 17). 
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Figure 17 Glucose metabolism. After a meal blood glucose is rising, GLUT2 receptors in pancreatic β-cells 
trigger insulin release, which stimulates glucose uptake in peripheral organs (adipose tissue, muscles). In liver 
insulin upregulates glycogenesis and downregulates gluconeogenesis. These processes lead to normalization of 

blood glucose levels. During night, when blood glucose diminishes, pancreatic α-cells release glucagon. 
Glucagon stimulates glycogenolysis and gluconeogenesis in the liver and as a consequence restores normal 

blood glucose levels (Röder et al., 2016). 

1.2 Role of gut hormones in blood glucose regulation 

Besides pancreatic regulation of glucose metabolism there are numerous intestinal 

hormones playing a role in glucose homeostasis. Ghrelin is secreted by stomach mucosa in 

fasted state (Ariyasu et al., 2001). It can also be secreted by endocrine pancreas. Ghrelin plays 

an orexigenic role (Nakazato et al., 2001) but influences also gastric emptying, growth hormone 

release and body weight regulation (Verhulst and Depoortere, 2012). Ghrelin has an inhibitory 

function on insulin secretion and therefore a role in glucose metabolism (Broglio et al., 2001; 

Dezaki et al., 2008). GIP (glucose-dependent insulinotropic polypeptide) and GLP-1 

(glucagon-like peptide-1) are important incretins regulating blood glucose. GIP is secreted by 

K cells and GLP-1 by L cells. Both have important roles in the regulation of postprandial blood 

glucose levels. Indeed, they stimulate insulin secretion and contribute to glucose homeostasis 
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(for review (Nauck and Meier, 2018)). In diabetic state, a reduced incretin effect, characterized 

by GLP-1 and GIP resistance, has been observed (Nauck et al., 1986; T. et al., 2002). 

2. Metabolic syndrome and associated complications 

 
Figure 18 Disturbed body systems in metabolic disorders. Metabolic disorders are characterized chronic 
inflammation of the adipose tissue and increased lipid metabolism. In liver, increased gluconeogenesis and 

modified lipogenesis lead to steatosis. Peripheral insulin resistance alters also β-cell homeostasis in the pancreas. 
In intestine modified antimicrobial response, microbiota dysbiosis and altered intestinal integrity are observed. 

Intestinal hormones such as PYY are also impacted in metabolic disorders, leading to modified satiety signalling. 
Systemic inflammation is another hallmark of metabolic disorders. Figure modified from (Rutz et al., 2014). 

Metabolic syndrome “is the name given to the aggregate of clinical conditions 

comprising central and abdominal obesity, systemic hypertension, insulin resistance (or type 2 

diabetes mellitus), and atherogenic dyslipidemia” (McCracken et al., 2018). Type 2 diabetes 

mellitus (T2D) is a common metabolic disorder characterized by glucose intolerance and insulin 

resistance. “Insulin resistance is defined clinically as the inability of a known quantity of 

exogenous or endogenous insulin to increase glucose uptake and utilization in an individual as 

much as it does in a normal population” (Lebovitz, 2001). Insulin action is mediated by its 

binding on insulin receptor (IR) and subsequent cascade signaling. MAPK (pathway for 

mitogenesis) and PI3K (pathway for glucose metabolism regulation) are activated via IRS-1 

and IRS-2. Various factors can interfere with elements of the signaling cascade and therefore 
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inhibit insulin action in the cell. Among them are cytokines and free fatty acids, which 

accumulate in inflammatory state and increased adipose tissue (for review: (Guo, 2014)). 

The metabolic syndrome is underlining the fact that obesity, insulin resistance, 

dyslipidemia and hypertension are tightly linked. They have shared hallmarks, whereas not 

every single appear in the isolated pathology. Indeed, chronic systemic and local inflammation 

(adipose tissue, liver), intestinal barrier dysfunction, insulin resistance and disturbed insulin 

homeostasis, microbiota dysbiosis have been observed in metabolic syndrome (Figure 18). 

Thus, the set of metabolic diseases is associated with several complications. Patients with 

metabolic syndrome have faster developing atherosclerosis and increased risk for 

cardiovascular diseases due to high blood pressure and the increased circulating triglycerides 

and lipoproteins. The risk for chronic kidney disease is also increased in patients suffering from 

metabolic syndrome (McCracken et al., 2018). 

There are different models to study metabolic disorders like T2D and obesity. First, 

there is diet-induced metabolic disorder: animals receiving high-caloric, which could be high-

fat (HFD) or high-fat high sugar diet (HFHSD). Second, there are genetically induced metabolic 

disorders. In particular ob/ob mice – deficient for leptin, a satiety hormone, and db/db mice – 

deficient for leptin receptor. Both leading to the same phenotype: severe obesity due to 

hyperphagia and T2D. Obesity and T2D are often associated in animal models, thus obesity and 

diabetes will be treated together in the following paragraphs. 

3. Incidence of metabolic disorders 

Metabolic disorders are worldwide epidemic problems and as such a growing global 

challenge. The World Health Organization estimates that worldwide obesity has nearly doubled 

since 1980. In 2012, 3.7 million deaths were related to higher-than-optimal blood glucose and 

diabetes. In 2014, 422 million adults were diabetic (T1D and T2D) (World Health Organization, 

2016). Blood hyperglycemia was ranked as 5th global risk factor for DALYs (disability-adjusted 

life-years) (Forouzanfar et al., 2015). Until recently, only adults were affected, but now children 

are becoming more often diabetics. Even if the signification of metabolic syndrome and T2D 

are increasing, the understanding of those pathologies is still unsatisfactory and preventive and 

therapeutic strategies still fail to face this epidemy. 

Metabolic disorders are multifactorial diseases involving genetic and environmental 

factors. Among environmental factors, dietary habits such as overnutrition and western diet 

(high fat and high carbohydrates contents) as well as sedentarity associated with a reduction of 
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physical activity, are major contributors in metabolic diseases development (Freedman et al., 

1999; Wing et al., 2001). Beside diet and life style habits, epidemiological studies highlighted 

an association between post-traumatic stress disorder (PTSD) (Agyemang et al., 2012; 

Goodwin and Davidson, 2005; Lukaschek et al., 2013) or adverse childhood experience 

(Alastalo et al., 2009; Huang et al., 2015) and T2D incidence. 

4. Link between metabolic disorders and microbiota 

Over the last decade, several studies have linked intestinal microbiota to the 

development of metabolic disorders. Along with genetic and environmental susceptibilities, the 

intestinal microbiota could trigger impairment in the energy homeostasis leading to diseases. 

Several studies, showed that intestinal microbiota is a signature of metabolic disorders (Amar 

et al., 2011; Bäckhed et al., 2004; Hotamisligil, 2006).  

Genetically obese (ob/ob) mice had less Bacteriodetes and more Firmicutes than their 

lean siblings (Ley et al., 2005). In diet-induced obesity (HFD 60%) similar changes in the ratio 

of Bacteriodetes and Firmicutes were observed (Guo et al., 2017). A change in the ratio of those 

major phyla (Bacteroidetes to Firmicutes) leads to a new microbiota with an increased capacity 

to digest dietary fibers to produce monosaccharaides and short-chain fatty acids (SCFA) able 

to be absorbed by the host. Thus, microbiota has an impact on the energy harvest of the host 

(Turnbaugh et al., 2006).  

This is not surprising as microbiota has a role on host metabolism in physiological 

conditions. Indeed, intestinal microbiota could down-regulate the production of fat-induced 

adipocyte factor (FIAF) by the intestinal cells, which in turn inhibits the activity of the 

lipoprotein lipase. These results are in agreement with other studies showing that GF mice fed 

HFD are resistant to diet-induced metabolic disorders and gain less weight than their 

conventional counterparts (Bäckhed et al., 2007; Nicholson et al., 2012). GF mice genetically 

lacking FIAF are not protected from diet-induced obesity (Bäckhed et al., 2007). Colonization 

of GF mice showed a dramatic increase in body fat within 10-14 days, despite an associated 

decrease in food consumption after colonization in comparison with GF state (GF mice are 

described to be hyperphagic) (Bäckhed et al., 2004). In addition, mice colonized with 

microbiota from obese mice gained more weight than those transferred with microbiota from 

lean mice, demonstrating a causal role of microbiota in the development of metabolic diseases 

(Turnbaugh et al., 2006).  
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In human, 16S ribosomal RNA sequencing of microbiota of obese individuals have been 

shown to be characterized by increased Firmicutes and decreased Bacteriodetes. This obese 

microbiota phenotype could be reversed by dietary interventions (Ley et al., 2005). Serino et 

al. observed that caecal microbiota is distinct between insulin resistant and insulin sensitive 

obese patients (Serino et al. 2012). Microbiota dysbiosis was observed in T2D patients (Qin et 

al., 2012). Microbiota of T2D patients and healthy control were distinct, even after stratification 

for metformin treatment (Forslund et al., 2015). In patients suffering from metabolic syndrome, 

microbiota transfer of lean donors improves hepatic insulin sensitivity 6 weeks after transfer 

(Vrieze et al., 2012). The integrative Human Microbiome Project (iHMP) aimed to focus on the 

role of microbiota on the onset of diseases including type 2 diabetes (T2D) (Zhou et al., 2019). 

The strength of iHMP in T2D is the following of participants (healthy and pre-diabetics) for 

four years (Zhou et al., 2019). This allows to associate microbiome profile to insulin sensitivity 

status that confirm microbiota dysbiosis associated to T2D and might contribute to early 

detection of T2D (Zhou et al., 2019). 

Microbiota could trigger metabolic syndrome via its ability to modify intestinal 

permeability and/or immune response. Microbiota dysbiosis could lead to intestinal 

hyperpermeability and increased translocation of bacterial fragments that could reach the 

circulation. 

5. The role of intestinal permeability in metabolic disorder 

Indeed, intestinal hyperpermeability has been reported in metabolic disorders. In HFD-

induced metabolic disorders in mice, intestinal permeability measured in vivo by FITC-Dextran 

4 kDa (FD4) gavage was increased (Cani et al., 2008; Johnson et al., 2015). This was linked to 

reduced expression of genes coding for proteins of the tight junctions (Cani et al., 2008). 

Measurements in Ussing chambers confirmed increased intestinal permeability to FD4. 

Additionally, transepithelial conductance, an indicator for paracellular permeability, was also 

increased by HFD (Johnson et al., 2015). Of interest, Rohr et al wrote a complete review 

regarding the negative effects of HFD on intestinal permeability (Rohr et al., 2019). 

Intestinal hyperpermeability is pointed out as a factor leading to translocation of 

bacterial products (Cani et al., 2007). It is found that plasma levels of bacterial 

lipopolysaccharides (LPS), components of the outer membranes of gram-negative bacteria, 

increase under HFD (Cani et al., 2007). Interestingly, LPS levels in mice are fluctuating in 

function of food intake, highlighting a potential link with intestinal barrier (Cani et al., 2007). 

LPS are highly inflamatogenic molecules (Schumann et al., 1990; Sweet and Hume, 1996; 



41 
 

Wright et al., 1990). Increased plasma LPS level is defined as metabolic endotoxemia. The 

increase is 10-50 times lower than values which could be reached during septicemia or other 

infections (Cani et al., 2007). Intestinal phagocytes (DC and macrophages) capture bacterial 

intestinal antigens, LPS, and transfer them into lysosomes for degradation (Sansonetti and Di 

Santo, 2007). These antigens activate CD14/TLR4 positive immune cells, which secrete 

cytokines contributing to low-grade inflammation. LPS can induce macrophage accumulation 

in white adipose tissue, but it is not essential for the impaired glucose metabolism associated 

with gut colonization (Caesar et al., 2012). Therefore, other substances besides the LPS could 

be responsible for the low-grade inflammation. The bacterial Peptidoglycan (PGN), piline, 

flageline, fimbriae and bacterial DNA can also be transferred via intestinal barrier, taking para 

or transcellular route (Cani et al., 2007). LPS perfusion in mice under normal diet induced 

similar phenotype as HFD, namely fasted hyperglycemia, insulinemia, weight gain and increase 

in adipose tissue but also macrophage infiltration in adipose tissue and liver insulin resistance 

(Cani et al., 2007).  

Some argue that even living bacteria could pass the intestinal barrier and enter into the 

organism. Using green fluorescent protein (GFP) labeled Escherichia coli (E. coli), it has been 

shown that E. coli GFP accumulated after gavage in mucosa in HFD-fed mice. Bacteria are co-

localized with DC in intestinal lamina propria and probably disseminated inside DC towards 

mesenteric adipose tissue and mesenteric lymph nodes (MLN) via blood (Amar et al., 2011). 

However, these observations could rather be bacterial fragments or only GFP tracker, 

translocated into the circulation than living bacteria. 

Another indicator of intestinal hyperpermeability in metabolic disease are increased 

levels of Ig directed against microbiota. HFD-fed mice exhibit increased IgG against E.coli in 

plasma (Mohammed et al., 2012) 

Data on intestinal permeability in genetically obese mice are conflicting. Stenman et al. 

evaluated intestinal permeability in Ussing chambers using FD4 and did not find any 

modification in ob/ob vs WT (Stenman et al., 2013). However, Johnson described increased 

intestinal permeability to FD4 in vivo and ex vivo in Ussing chambers in ob/ob mice. 

Transepithelial conductance (paracellular permeability) was not different in comparison to WT 

(Johnson et al., 2015). Another study confirms these observations: Ye et al. observed increased 

intestinal permeability to FD4 in vivo in ob/ob mice in comparison to WT (Ye et al., 2018). 
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Data on intestinal hyperpermeability in metabolic disorders in human are similar to 

observations in mouse models. Increased intestinal permeability measured in vivo by 

lactulose/mannitol absorption is positively correlate with HOMA index (measure of insulin 

resistance) in obese patients (Teixeira et al., 2012). Additionally, LPS is elevated in plasma of 

apparently healthy men at risk of becoming obese and diabetic. Elevated level of LPS is 

correlated with energy intake (Amar et al., 2008). Furthermore, IgG against E.coli is increased 

in obese patients (Mohammed et al., 2012). 

Dysfunction of the intestinal barrier and translocation of bacterial products could be at 

the origin of inflammation at local or systemic levels. 

6. Low-grade inflammation in metabolic disorders 

As already mentioned, it became clear that inflammation is a key feature of obesity and 

T2D (Hotamisligil, 2006; Pickup and Crook, 1998). However, one has to redefine the term of 

inflammation. Initially inflammation was described by using the following four characteristics: 

calor, rubor, tumor and dolor (fever, redness, swelling and pain) (Larsen and Henson, 1983). 

Then, metabolic disorders are characterized by a low-grade inflammation which triggers insulin 

resistance (Duncan et al., 2003; Pradhan et al., 2001; Shoelson et al., 2006). Low-grade 

inflammation is a state of chronic, but low-grade, secretion of inflammatory mediators, as for 

example cytokines. Indeed, levels of inflammatory mediators in low-grade inflammation are 

only slightly increased in comparison to healthy state. 

The pro-inflammatory cytokine TNF-α plays also a role in the development of insulin 

resistance. Indeed, TNF-α increases lipolysis in adipocytes of rats (Green et al., 1994) and 

human (Zhang et al., 2002), thus increasing circulation fatty acids which is detrimental for 

insulin sensitivity. TNF-α neutralization has been shown to ameliorate insulin sensitivity in 

obese fa/fa rats (mutation in the gene for leptin receptor) (Hotamisligil et al., 1993). The excess 

of pro-inflammatory cytokines impairs cellular insulin signaling by increasing serine 

phosphorylation of insulin receptor substrate-1 (IRS-1) and thus contributes to insulin 

resistance and T2D (Feinstein et al., 1993; Hotamisligil et al., 1996). IL-6 provokes 

hypertriglyceridemia in vivo by stimulating lipolysis and hepatic triglyceride secretion in rats 

(Nonogaki et al., 1995). 

Immune cells are also important for triggering of diseases. Innate and adaptive immune 

cells contribute to disease. During obesity and T2D, macrophages and lymphocytes infiltrate 

the adipose tissue and the liver. The accumulation of these immune cells is directly proportional 
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to measures of adiposity (adipocyte size, BMI) in mice and humans (Hotamisligil, 2006; 

Weisberg et al., 2003).  

In mice, which had HFD-induced metabolic disorders and in ob/ob mice increased 

numbers of macrophages and CD8+ T lymphocytes were observed in the stromal fraction of 

epididymal fat pads in comparison to control mice under normal diet. In contrast, CD4+ T 

lymphocytes and Treg were significantly decreased (Nishimura et al., 2009). Additionally, mice 

under HFD, had increased secretion of IFN-γ. Kinetic analysis of adipose tissue infiltration 

following diet-induced insulin resistance have shown that infiltration by CD8 T cells preceded 

the accumulation of macrophages. CD8+ T cell elimination reduced macrophage infiltration and 

adipose tissue inflammation and ameliorated metabolic parameters (Nishimura et al., 2009). 

In epidemiological and case-control studies in human, it has been shown that pro-

inflammatory cytokines and biomarkers, like C-reactive protein (CRP) and IL-6, are increased 

in metabolic disorders (Duncan et al., 2003; Pradhan et al., 2001). Additionally, macrophages 

have been shown to accumulate in adipose tissue of obese patients (Weisberg et al., 2003). 

7. Type 1 diabetes mellitus 

Type 1 diabetes mellitus (T1D) is an autoimmune disorder with genetic predisposing 

factor accounting for more than 90% and hence in contrast to most of metabolic disorders, not 

due to inappropriate lifestyle. However, every person with genetic predisposition for T1D does 

not develop T1D suggesting not only a role for genetic but also environment. T1D is 

characterized by blood hyperglycemia due to a loss of insulin. Indeed, pancreatic β-cells are 

destructed by autoreactive T cells. A role of intestinal hyperpermeability in the development 

and/or course of disease is questioned. 

During my PhD, Dr. Sandrine Ménard and myself were invited by Dr. Julien Diana, 

guest editor of the Journal of Frontiers in Immunology, to write a review about the intestinal 

barrier and stress in the case of autoimmune disorders: “Psychological Stress, Intestinal Barrier 

Dysfunctions and Autoimmune Disorders” submitted in May 2019 and at the moment under 

review. We also discuss the role of intestinal microbiota, intestinal permeability and immune 

response in the case of T1D. Parts of this review are reused in the following chapter; the review 

article itself is inserted at the end of chapter III.  
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CHAPTER III  

STRESS 

Stress, firstly described in 1936 by Selye, is defined as a real (physical) or perceived 

(psychological) threat to homoeostasis, to which the organism has to react by an adaptive 

response (Selye, 1936). 

Lifetime window, length and frequency of exposure to stress play a pivotal role in 

consequences of stress on the individual pathophysiology. Indeed, acute and chronic stress 

exposure could occur in early life in a still maturating organism or at adulthood in mature 

organism. Traumatic experiences can lead to so called post-traumatic stress disorder (PTSD), a 

condition in which a person is suffering from anxiety, depression and flashbacks long after the 

traumatic experience (Kessler et al., 2005). Persisting stress or inadequate response can lead to 

harmful maladaptive reactions depending on the kind of stress. 

The stress response is orchestrated by hypothalamo-pituitary-adrenal axis (HPA) and 

sympathetic nervous system (SNS). The neuroendocrine and autonomous response is mediated 

by hormones as epinephrine, norepinephrine, CRF, ACTH, glucocorticoids (cortisol in human 

and corticosterone in rodents) (Charmandari et al., 2005; Smith and Vale, 2006).  

1. The HPA axis 

The Hypothalamo-Pituitary-Adrenal axis consists of three organs (hypothalamus, 

hypophysis (or pituitary gland) and adrenal glands) and the hormones CRF, ACTH and 

glucocorticoids. In response to stress, corticotropin releasing factor (CRF) is released by the 

paraventricular nucleus of hypothalamus into blood vessels leading to the anterior pituitary 

gland. Here, CRF is binding to corticotrop cells, which release in response adrenocorticotropic 

hormone (ACTH) into systemic circulation. Via the blood stream, ACTH is attaining its 

principal target the adrenal cortex. ACTH stimulates the synthesis and release of 

glucocorticoids (cortisol in human; corticosterone in rodents). Glucocorticoids act at numerous 

sites via its intracellular glucocorticoid receptor (GR). The HPA response is finely regulated by 

retrocontrol: Glucocorticoid can bind to receptors in hippocampus, hypothalamus, hypophysis 

via its GR and downregulate CRF and ACTH release (Figure 19) (Smith and Vale, 2006). 
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Figure 19 The hypothalamus-pituitary-adrenal axis. The hypothalamus is releasing CRF which reaches 

anterior pituitary gland stimulating the release of ACTH. ACTH acts on adrenal gland stimulating release of 
glucocorticoids. Glucocorticoids have various functions on diverse target tissues and can regulate via negative 
feedback CRF and ACTH release. CRF corticotropin releasing factor, ACTH Adrenocorticotropic hormone, 

AVP arginine vasopressin, V vasopressin, GR glucocorticoid receptor (Thomson and Craighead, 2008). 

2. Immunomodulatory effect of glucocorticoids 

A special attention has been paid to glucocorticoid in stress response and immune 

regulation. Endogenous glucocorticoids, part of the endocrine stress response, have ubiquitous 

functions in development, metabolism and inflammation. In general, glucocorticoids have been 

described to dampen immune response all along the inflammation process (for review (Cain 

and Cidlowski, 2017)). Glucocorticoids attenuate signaling pathways of many pattern 

recognition receptors (Beaulieu and Morand, 2011; Miyata et al., 2015), diminish leukocyte 

transmigration by reducing adhesion molecules (Atsuta et al., 1999). Glucocorticoids also 

decrease the production of chemoattractants (Mukaida et al., 1994), program macrophages to 

anti-inflammatory M2c subtype (high expression of scavenger receptors and secretion of anti-

inflammatory cytokines) (Martinez et al., 2008) and decrease T cell response (Gillis et al., 

1979a, 1979b) preferentially Th1 and Th17 by promoting Th2 and Treg (Elenkov, 2004; 

Liberman et al., 2007). Due to their immunosuppressive effects, glucocorticoids have been used 

to treat various immune related disorders like autoimmune disorders (AD). 
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The literature of the past 60 years focused on immunosuppressive properties of 

glucocorticoids but glucocorticoids can also enhance inflammation and immunity (for review 

(Cain and Cidlowski, 2017)). Part of the explanation of conflicting effects of glucocorticoid on 

immune response might reside in the diversity of glucocorticoid-receptors in different tissues, 

the presence or absence of 11βHSD, an enzyme inactivating cortisol as well as the time of 

glucocorticoid exposure (before or after tissue injury/inflammation) (Frank et al., 2010) and the 

dose (Lim et al., 2007). As an example, in humans, childhood maltreatment is associated with 

modified methylation of the glucocorticoid receptor gene NR3C1 in adults in brain and in 

leucocytes (McGowan et al., 2009; Melas et al., 2013; Perroud et al., 2011). All those factors 

might explain that stressful events inducing glucocorticoids release play a role in AD 

occurrence that can be treated by exogenous glucocorticoids.  

3. Effect of stress on intestinal barrier 

Stress is playing a role in the course of gastro-intestinal disorders like irritable bowel 

syndrome (IBS) (Hislop, 1979; Lowman et al., 1987; Videlock et al., 2009) and inflammatory 

bowel diseases (IBD) (Sgambato et al., 2017). IBS is a very interesting model to study the 

consequences of stress on intestinal barrier. Indeed, the occurrence of stressful events is 

considered as a contributing factor triggering and/or maintaining IBS (Mayer et al., 2001; 

Wood, 2011), suggesting that dysfunctional interactions in the brain-gut axis contribute to the 

pathophysiology of the disease (Bonaz and Bernstein, 2013) and as such justifying it’s new 

classification as disorder of the brain-gut interaction (Drossman, 2016).  

Stress comes along with microbiota modifications, intestinal and systemic inflammation 

and modified intestinal permeability in rodent and human. It is difficult to decipher if stress 

directly influences microbiota or if the observed effects are a consequence of modified immune 

response or intestinal physiology. These actors are tightly linked and regulate one another. 

3.1 Stress affects microbiota composition 

Neonatal maternal separation induced microbiota dysbiosis in mice (Riba et al., 2017). 

Limited nesting stress altered microbiota in rat pups (Moussaoui et al., 2017). In adults, chronic 

water avoidance stress increased susceptibility to indomethacin induced hyperpermeability in 

mice and the effect is transferable via fecal microbiota transfer (Yoshikawa et al., 2017). Germ 

free (GF) mice have exaggerated HPA stress response after restraint stress (Sudo et al., 2004) 

showing the role of microbiota in the regulation of stress response. Mice exposed to social 

disruption stress have increased circulating IL-6 and MCP-1 levels, these effects were totally 
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abolished by antibiotic mixture (ampicillin, vancomycin, neomycin sulfate, and metronidazole), 

showing the importance of microbiota in the induction of stress effects (Bailey et al., 2011). 

However, one cannot exclude an effect induced directly by the antibiotic treatment on the 

physiology of the intestine, and not by microbiota. 

In humans, decreased total abundance of Actinobacteria, Lentisphaerae, and 

Verrucomicrobia is associated with PTSD in south Africans individuals (Hemmings et al., 

2017). Microbiota dysbiosis has been described in IBS patients (for review (Collins, 2014)). 

3.2 Stress affects intestinal permeability 

In preclinical model and epidemiological studies, stress has been associated with an 

increase of intestinal permeability. Chronic water avoidance stress increases intestinal 

permeability and decreases tight junction protein expression in colon of adult rat (Zheng et al., 

2013) and overall intestinal permeability in mice (Cameron, 2005). Chronic neonatal maternal 

separation, a model of early life stress, also increases intestinal permeability in rat (Barreau et 

al., 2004; Moussaoui et al., 2017; Øines et al., 2012) and male mice (Riba et al., 2018) but not 

female. Maternal separation applied just for one time (acute stress) increases intestinal 

permeability in rats, which has been shown being mediated by stress hormones glucocorticoids. 

Indeed, using GR inhibitor there were no increase in intestinal permeability after acute maternal 

separation (Moussaoui et al., 2014). Combination of different stressors (subacute (isolation, 

limited movement) and chronic crowding stress) also decreased tight junction mRNA 

expression in rats (Lauffer et al., 2016). In a mouse model of social disruption, a social stressor, 

bacterial RNA (Lactobacillus spp.) is increased in spleen, which indicates translocation of at 

least bacterial fragments (Lafuse et al., 2017). 

In human, acute psychological stress like public speaking has also been shown to induce 

intestinal hyperpermeability (Vanuytsel et al., 2014). Intestinal hyperpermeability has also been 

described in IBS patients, but only in IBS-diarrhea predominant patients (Bischoff et al., 2014). 

The stress hormone cortisol (human) and corticosterone (mice) have been shown to mediate 

stress increased intestinal hyperpermeability as administration of the GR agonist 

dexamethasone mimicks the intestinal hyperpermeability (Moussaoui et al., 2014; Zheng et al., 

2013).  

3.3 Stress modifies intestinal immune system 

Chronic neonatal maternal separation in rats increases cytokine expression, 

myeloperoxidase activity and mast cell numbers in colonic tissue and exacerbate TNBS-
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induced colitis (Barreau et al., 2004). Neonatal maternal separation in mice increased TNFα 

expression by intestinal tissue in young adult (Riba et al., 2017). Acute restraint stress augments 

histamine release by mast cells (Eutamene et al., 2003). Acute acoustic stress increased 

intestinal IL-17 and IL-22 expression in mice (Miranda and Roux, 2017).  

In human, stress aggravates IBD symptoms including higher release of pro-

inflammatory effectors (Sgambato et al., 2017). In IBS, an increased state of activation of 

immune cells has been described even though this observation is under debate (Barbara et al., 

2011).  

3.4 Stress alters systemic immune response 

Not only the intestinal immune system is influenced by psychological stress. There is 

also evidence for modified systemic immune response without direct proof that inflammatory 

immune cells were activated in gastrointestinal tract. Neonatal maternal deprived rats have 

increased cytokine expression in liver and spleen (Barreau et al., 2004). Humoral immune 

response against microbiota is increased in neonatal maternal deprived mice (Riba et al., 2018). 

Social disruption stress in mice increases bacterial translocation and induces circulating IL-6 

and MCP-1 (Bailey et al., 2011; Lafuse et al., 2017). 

Eutamene et al. showed that acute stress-induced increase of histamine content in mast 

cells of rats was mediated by IL-1β and CRF. Injection of both individually mimics stress-

induced effects and inhibition of IL-1β blocked stress-induced mast cell changes (Eutamene et 

al., 2003). These findings are highlighting the close relationship and interaction between HPA, 

intestinal and systemic immune response. 

Stress is associated with an increase in pro-inflammatory response as described in PTSD 

patients (de Oliveira et al., 2018). A meta-analysis of several studies showed that IL-6, TNFα 

and IL-1β secretion were increased in response to acute stress in human (Marsland et al., 2017). 

Childhood victimization is associated with elevated CRP levels in young adult (Baldwin et al., 

2017; Slopen et al., 2015).  

3.5 Visceral sensitivity 

Stress has also been described to induce visceral sensitivity. “Hypersensitivity refers to 

increased sensation of stimuli. In practice, this is appraised by measurement of threshold 

volumes or pressures for first sensation or pain. Alternatively, it refers to the increased scores 

of symptoms (including pain) in response to standard stimuli. Hyperalgesia refers to increased 
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pain sensation in response to a certain stimulus. Allodynia refers to the appreciation that a 

stimulus, which was previously not perceived as being painful, becomes painful.” (Camilleri et 

al., 2001).  

Acute water avoidance stress (1h) induces transient visceral hyperalgesia, this effect was 

mediated by GR (Myers and Greenwood-Van Meerveld, 2012). Partial restraint stress (2h) 

induces hypersensitivity in response to rectal distension in rats (Gué et al., 1997). Chronic 

maternal separation leads to visceral hypersensitivity in young adult male and female mice 

(Riba et al., 2018, 2017). In studies with rodents, it has been shown, that the modified pain 

perception by stress is due to modifications of the HPA. Indeed, the effects have been shown to 

be mediated by GR (Myers and Greenwood-Van Meerveld, 2012) and could be mimicked by 

CRF injection (Gué et al., 1997) but also inflammation could influence pain perception since 

mast cell numbers, IL-1β and IFNγ are increased by chronic water avoidance stress (Bradesi et 

al., 2005; Gué et al., 1997).  

In human, IBS patients are often suffering from increased visceral sensitivity (Ludidi et 

al., 2012; van der Veek et al., 2008). Stressful life events and early childhood adverse 

experiences are described to aggravate pain in IBS patients (Lampe et al., 2003). 

4. Effects of stress on glucose metabolism 

Glucocorticoids have a direct influence on metabolism. Indeed, in acute stressful 

situations stress hormones stimulate catabolic processes in order to maintain life. Glucose and 

free fatty acids are distributed to muscles in order to prepare a “fight or flight” response. 

However, acute and chronic stress do not have the same impact on metabolism. Whereas acute 

stress leads to feeding suppression and body weight loss, chronic stress is associated with food 

overconsumption and body weight gain (Rabasa and Dickson, 2016). Stress has also an impact 

on insulin sensitivity. Acute chronic stress in mice induced by inescapable food shocks led 

rapidly to insulin resistance (Li et al., 2013). In human, psychosocial stress –related variables 

were associated with hyperglycemia, hyperinsulinemia and increased plasminogen activator 

inhibitor-1 antigen comprising the IRS, even after adjusting for BMI (Räikkönen et al., 1996). 

 

In this chapter, I discussed the effect of stress on intestinal barrier and glucose 

metabolism. There is also tremendous data about a link between stress and autoimmune 

disorders. During my PhD, Dr. Sandrine Ménard and myself were invited by Dr. Julien Diana, 

guest editor of the Journal of Frontiers in Immunology, to write a review about the intestinal 
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barrier and stress in the case of autoimmune disorders: “Psychological Stress, Intestinal Barrier 

Dysfunctions and Autoimmune Disorders” submitted in May 2019 and at the moment under 

review.
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Abstract 9 

Autoimmune disorders (AD) are multifactorial diseases involving, genetic, epigenetic and 10 
environmental factors characterized by an inappropriate immune response toward self-antigens. In the 11 
past decades there has been a continuous rise in the incidence of AD which cannot be explained by 12 
genetic factors alone. Influence of psychological stress on the development or the course of 13 
autoimmune disorder is debated for a long time. Indeed, based on epidemiological studies, stress has 14 
been suggested to precede AD occurrence and to exacerbate symptoms. Furthermore, compiling data 15 
showed that most of AD are associated with gastro-intestinal symptoms i.e. microbiota dysbiosis, 16 
intestinal hyperpermeability and intestinal inflammation. Interestingly, social stress (acute or chronic, 17 
in adult or in neonate) is a well described intestinal disrupting factor. Taken together those observations 18 
questioned a potential role of stress-induced defect of intestinal barrier in the onset and/or the course 19 
of AD. 20 

In this review, we aim to present evidences supporting a role of stress-induced intestinal barrier 21 
disruption in the onset and/or the course of AD. We will mainly focus on auto-immune Type 1 22 
Diabetes, Multiple Sclerosis and Systemic Lupus Erythematous, AD for which we could find sufficient 23 
circumstantial data to support this hypothesis. 24 

1 Introduction 25 

Autoimmune disorders (AD) are multifactorial diseases involving, genetic, epigenetic and 26 
environmental factors. In the past decades there has been a continuous rise in the incidence of AD 27 
which cannot be explained by genetic factors alone. Changes in our lifestyle including, diet, hygiene, 28 
exposure to social adversity or pollutants have been suggested to be risk factors for AD. AD are 29 
associated with defect of intestinal barrier and besides nutrition, one other environmental factor well 30 
described to impair intestinal barrier is psychological stress. The aim of this review is to compile 31 
evidences highlighting a relationship between stress, intestinal barrier disruption and occurrence of 32 
AD. Even though, there are no striking studies linking stress-induced intestinal barrier defect to AD 33 
onset, our goal is to combine evidences based on a review of the literature and offer a new field of 34 
research and perspectives on AD. We will focus on three of the most studied AD: auto-immune type 1 35 
diabetes (T1D), systemic lupus erythematous (SLE) and multiple sclerosis (MS). 36 
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This review is based on epidemiological and pre-clinical studies. Numerous excellent and recent 37 
reviews treating either AD and stress or stress and intestinal barrier will be quote to support this 38 
hypothesis. 39 

2 Stress  40 

Stress, firstly described in 1936 by Selye, is defined as a real (physical) or perceived (psychological) 41 
threat to homoeostasis, to which the organism has to react by an adaptive response (1).   42 

Life time window, length and frequency of exposure to stress play a pivotal role in consequences of 43 
stress on the individual pathophysiology. Indeed, acute and chronic stress exposure could occur in early 44 
life in a still maturating organism or at adulthood in mature organism. Traumatic experiences can lead 45 
to so called post-traumatic stress disorder (PTSD), a condition in which a person is suffering from 46 
anxiety, depression and flashbacks long after the traumatic experience (2). Persisting stress or 47 
inadequate response can lead to harmful maladaptive reactions depending on the kind of stress that will 48 
be discussed below. 49 

The stress response is orchestrated by hypothalamic pituitary adrenal axis (HPA) and sympathetic 50 
nervous system (SNS). The neuroendocrine and autonomous response is mediated by hormones as 51 
epinephrine, norepinephrine, CRH, ACTH, glucocorticoids (cortisol in human and corticosterone in 52 
rodents) (3,4). A special attention has been paid to glucocorticoid in stress response and immune 53 
regulation. Endogenous glucocorticoids, part of the endocrine stress response, have ubiquitous 54 
functions in development, metabolism and inflammation. In general, glucocorticoids have been 55 
described to dampen immune response all along the inflammation process (for review (5)): they 56 
attenuate signaling pathways of many pattern recognition receptors (6,7), diminish leukocyte 57 
transmigration by reducing adhesion molecules (8), decreasing the production of chemoattractants (9), 58 
program macrophages to anti-inflammatory M2c subtype (high expression of scavenger receptors and 59 
secretion of anti-inflammatory cytokines) (10), decrease T cell response (11,12) preferentially Th1 and 60 
Th17 by promoting Th2 and Treg (13,14). Due to their immunosuppressive effects, glucocorticoids 61 
have been used to treat various immune related disorders like AD. 62 

The literature of the past 60 years focused on immunosuppressive properties of glucocorticoids but 63 
glucocorticoids can also enhance inflammation and immunity (for review (5)). We will not go into the 64 
details of conflicting effects of glucocorticoid on immune response but part of the explanation might 65 
reside in the diversity of glucocorticoid-receptors in different tissues, the presence or absence of 66 
11βHSD, an enzyme inactivating cortisol as well as the time of glucocorticoid exposure (before or after 67 
tissue injury/inflammation) (15) and the dose (16). All those factors might explain that stressful events 68 
inducing glucocorticoids release play a role in AD occurrence that can be treated by exogenous 69 
glucocorticoids. As an example, in humans, childhood maltreatment is associated with modified 70 
methylation of the glucocorticoid receptor gene NR3C1 in adults in brain and in leucocytes (17–19). 71 

3 Role of stress in AD (for rev (20)) 72 

The onset of at least 50% of autoimmune disorders has been attributed to unknown trigger factors. 73 
Many retrospective studies observed that that most of patients suffering from AD report uncommon 74 
emotional stress before disease onset (21). This is obviously a vicious cycle as AD diseases causes 75 
stress in patients (22,23). This review will focus on three of the most studied AD that will provide 76 
sufficient evidence to support the hypothesis of a role of stress-induced intestinal barrier defect on AD 77 
onset i.e. T1D, SLE and MS. Type 1 Diabetes (T1D) is an organ specific AD characterized by 78 
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autoimmune response against host pancreatic β-cells leading to a defect of insulin production by 79 
pancreas (24). Systemic lupus erythematosus (SLE) is an AD characterized by severe and persistent 80 
inflammation that leads to tissue damage in multiple organs (25,26). Multiple sclerosis (MS) is a 81 
chronic inflammatory disease of the central nervous system with a pathogenesis characterized by a 82 
breakdown of the blood-brain barrier and demyelination of the central nervous system by infiltrating 83 
auto-reactive T cells (27,28). The most widely used preclinical MS model is Experimental 84 
Autoimmune Encephalomyelitis (EAE). 85 

A potential association between stressful events and T1D has been highlighted already longtime ago 86 
when Thomas Willis links, in the 17th century, T1D onset to prolonged sorrow (29). Early life stress 87 
seems to be of particular risk for T1D development (30,31). This is in accordance with literature 88 
highlighting neonatal maturation of pancreas as critical and vulnerable to stressors (32). Stress in adult 89 
has been described to increase incidence of SLE (33) and is able to exacerbate SLE symptoms (physical 90 
pain, sleep disturbances and unemployment) (34). Around 70% of MS patients reported unusual 91 
amount of stress before the onset of the disease (35,36). 92 

Those epidemiological studies suggest that stress could be involved in both triggering or exacerbating 93 
AD. Whether it is dependent on the kind of stress or AD involved is unknown and it would be 94 
interesting to conduct both retrospective epidemiological studies and preclinical studies to better 95 
document the role of stress in AD. However, some interventional studies suggest that stress 96 
management could benefit to AD patients. Indeed, escitalopram (antidepressant) decreases the risk of 97 
MS relapsing in women (37). Diazepam (tranquilizer) decreases EAE incidence and histological signs 98 
associated with this disease in a mice model (38). A meta-analysis of ten randomized controlled trials 99 
in children and adolescents showed that supportive or counseling therapy, cognitive behavioral therapy 100 
and family system therapy reduce glycosylated hemoglobin and as such improve diabetes control (39). 101 
Interestingly, in 11 studies in adults no beneficial effect of stress management could be observed on 102 
T1D (39). 103 

4 Consequences of stress on intestinal barrier and systemic immune response 104 

Stress can affect various physiological process. Already Selye observed and others confirmed that the 105 
gastrointestinal tract and the immune system are among particularly responsive to stress no matter the 106 
origin of the stress (1). 107 

4.1 Actors of intestinal barrier and function 108 

Intestinal epithelium is the mammalian organism’s biggest surface in contact with the environment. 109 
Therefore, intestinal barrier function is highly diverse and well developed. The intestinal barrier have 110 
to fulfill conflicting functions. Indeed, intestinal barrier allows the transport of nutrient but at the same 111 
time filters and defends the organism from harmful luminal content (pathogens, toxins…). Among the 112 
main actors of intestinal barrier we can quote, intestinal microbiota, intestinal epithelium and immune 113 
response (innate and adaptive). All those actors are in close relationship and regulate one another (for 114 
review (40)). Not only intestinal microbiota participates in the protection against pathogens 115 
colonization but also contributes to maturation of intestinal epithelium and immune system and 116 
provides various nutritional compounds (41). The intestinal epithelium is formed by distinct cell types 117 
distributed along the crypt–villus axis. Although they all derived from a common stem cell progenitor 118 
located in the crypts, their morphology and roles differ (for review (42)). The intestinal epithelium is 119 
renewed every five days and this constant renewing confers high plasticity and protection to the 120 
intestinal barrier since defective cells are removed rapidly (43). Intestinal permeability is the ability of 121 
intestinal epithelium to allow the selective entrance of luminal antigens into the organism (44). Another 122 
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actor of the intestinal barrier is the intestinal immune system (Gut associated lymphoid tissue – GALT) 123 
harbored in the lamina propria and the Peyers patches (PP). GALT comprises the PPs, the appendix 124 
and isolated lymphoid follicles (ILFs), which are considered inductive sites for mucosal B and T cells. 125 
The humoral response in the intestine can be divided in four stages: predominant IgA induction in 126 
mucosal B cells, recirculation of IgA plasma blasts and homing into the intestinal mucosa, terminal B 127 
cell differentiation to plasma cells with local IgA production and export of IgA through the intestinal 128 
epithelial layer (for review (45)). Most intestinal T cells mature in peripheral lymphoid organs. These 129 
cells gain the expression of intestinal homing receptors to migrate to the intestine. Intestinal 130 
lymphocytes are continuously exposed to food and microbial antigens. These lymphocytes help 131 
maintaining the integrity of the intestinal barrier and immune homeostasis. Due to their close location 132 
to luminal antigens they have both regulatory and effector capabilities, including the prevention of 133 
pathogenic invasion and maintenance of tolerance to prevent extensive tissue damage (for review (46)). 134 
Innate lymphoid cells (ILCs) are lymphocytes that do not express the type of diversified antigen 135 
receptors expressed on T cells and B cells. ILCs are largely tissue-resident cells participating in tissue 136 
homeostasis (for review (47)). A defective intestinal barrier will lead to inappropriate intestinal but 137 
also systemic immune response leading to gastrointestinal disorders but also to extra intestinal diseases 138 
like autoimmune diseases (48–50).  139 

Intestinal barrier homeostasis is highly regulated and a defect in microbiota composition could lead to 140 
intestinal hyperpermeability and intestinal inflammation. Intestinal inflammation will not only 141 
contribute to intestinal hyperpermeability (51) but will also favor microbiota colonization by 142 
pathobionts (52).  143 

4.2 Psychological stress impairs intestinal barrier 144 

Stress is playing a role in the course of gastro-intestinal disorders like irritable bowel syndrome (IBS) 145 
(53–55) and inflammatory bowel disease (IBD) (56). IBS is a very interesting model to study the 146 
consequences of stress on intestinal barrier. Indeed, the occurrence of stressful events is considered as 147 
a contributing factor triggering and/or maintaining IBS (57,58), suggesting that dysfunctional 148 
interactions in the brain-gut axis contribute to the pathophysiology of the disease (59) and as such 149 
justifying it’s new classification as disorder of the brain-gut interaction (60). In this review, we will 150 
focus on the consequences of psychological stress on intestinal barrier and its consequences on 151 
systemic immune response. 152 

4.2.1 Microbiota dysbiosis 153 

Stress is modifying microbiota in animal and human. Neonatal maternal separation induced microbiota 154 
dysbiosis in mice at different ages (61,62). Limited nesting stress altered microbiota in rat pups (63). 155 
In adults, chronic water avoidance stress increased susceptibility to indomethacin induced 156 
hyperpermeability in mice and the effect is transferable via fecal microbiota transfer (64). Germ free 157 
(GF) mice have exaggerated HPA stress response after restraint stress (65) showing the role of 158 
microbiota in the regulation of stress response. Mice exposed to social disruption stress have increased 159 
circulating IL-6 and MCP-1 levels, these effects were totally abolished by antibiotic treatment showing 160 
the importance of microbiota in the induction of stress effects (66). 161 

In humans, decreased total abundance of Actinobacteria, Lentisphaerae, and Verrucomicrobia is 162 
associated with PTSD in south Africans individuals (67). Microbiota dysbiosis has been described in 163 
IBS patients (for review (68)). 164 
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4.2.2 Stress is associated with intestinal hyperpermeability 165 

In preclinical model and epidemiological studies stress has been associated with an increase of 166 
intestinal permeability. Chronic water avoidance stress increases intestinal permeability and decreases 167 
tight junction protein expression in colon of adult rat (69) and overall intestinal permeability in mice 168 
(70). Chronic neonatal maternal separation, a model of early life stress, also increases intestinal 169 
permeability in rat (63,71,72) and mice (73). Maternal separation applied just for one time (acute stress) 170 
increases intestinal permeability in rats (74). Combination of different stressors (subacute (isolation, 171 
limited movement) and chronic crowding stress) also decreased tight junction mRNA expression in 172 
rats (75). In a mouse model of social disruption, a social stressor, bacterial RNA (Lactobacillus spp.) 173 
is increased in spleen, which indicates bacterial translocation (76). 174 

In human, acute psychological stress like public speaking has also been shown to induce intestinal 175 
hyperpermeability (77). Intestinal hyperpermeability has also been described in IBS patients (78). The 176 
stress hormone cortisol (human) and corticosterone (mice) have been shown to mediate stress increased 177 
intestinal hyperpermeability as administration of the GR agonist dexamethasone mimicks the intestinal 178 
hyperpermeability (69,74).  179 

4.2.3 Stress exacerbates Intestinal and systemic inflammation  180 

Chronic neonatal maternal separation in rats increases cytokine expression, myeloperoxidase activity 181 
and mast cell numbers in colonic tissue and exacerbate TNBS-induced colitis (71). Neonatal maternal 182 
separation in mice increased TNFα expression by intestinal tissue in young adult (61) and LPS-183 
stimulated TNFα secretion of isolated lamina propria immune cells in ageing (62). Acute restraint 184 
stress augments histamine release by mast cells (79). Acute acoustic stress increased intestinal IL-17 185 
and IL-22 expression in mice (80).  186 

In human, stress aggravates IBD symptoms including higher release of pro-inflammatory effectors 187 
(56). In IBS, an increased state of activation of immune cells has been described even though this 188 
observation is under debate (81).  189 

Not only the intestinal immune system is influenced by psychological stress. There is also evidence for 190 
modified systemic immune response without direct proof that inflammatory immune cells were 191 
activated in gastrointestinal tract. Neonatal maternal deprived rats have increased cytokine expression 192 
in liver and spleen (71). Humoral immune response against microbiota is increased in neonatal 193 
maternal deprived mice (62,73). Social disruption stress in mice increases bacterial translocation and 194 
induces circulating IL-6 and MCP-1 (66,76). 195 

Stress is associated with an increase in pro-inflammatory response as described in PTSD patients (82). 196 
A meta-analysis of several studies showed that IL-6, TNFα and IL-1β secretion were increased in 197 
response to acute stress in human (83). Childhood victimization is associated with elevated CRP levels 198 
in young adult (84,85).  199 

5 Defect of intestinal barrier in AD (for review (86)) 200 

We provided evidence that stress might play a role in onset or course of AD and review the well-201 
documented deleterious role of stress in intestinal barrier functions. We will now summarize the data 202 
regarding the defect of intestinal barrier in AD. Indeed, the observed defect of intestinal barrier in AD 203 
is an interesting lead that largely contribute to the rise of the hypothesis suggesting a contribution of 204 
stress induced intestinal barrier defect in AD.  205 
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5.1 Microbiota in AD 206 

Microbiota is known to contribute to intestinal mucosal permeability, induction of innate defenses and 207 
as such represent a risk factor for AD (87,88). A growing body of evidence suggests that intestinal 208 
microbiota can modify the incidence and/or severity of immune-mediated extra-intestinal diseases 209 
(89). Aberrant microbiota has been described in patients suffering from type 1 diabetes (T1D) (90) 210 
systemic lupus erythematous (SLE) (88) and multiple sclerosis (MS) (91). Knowledge regarding 211 
microbiota dysbiosis in AD patients and animal models will be summarized here and interventional 212 
studies helping to understand the role of microbiota in those diseases will be discussed at the end of 213 
the paragraph. 214 

Increased microbial diversity and decreased level of butyrate producing Clostridia have been found in 215 
microbiota of pediatric T1D patients (92)(93). In the BABYDIET cohort, alteration in the composition 216 
of mucin degrading bacteria, with increased Bacteroïdes and decreased abundance of Akkermansia, 217 
associate with the risk of early development of islet auto-antibodies (94). Thus, changes in microbial 218 
diversity and differences in relative abundance, highlight that gut microbiota and associated increased 219 
gut permeability may contribute to disease onset or its progression. A reduction of microbial diversity 220 
is more pronounced before the time of diabetes onset (95). Fecal transplantation of NOD diabetic 221 
microbiota in NOD resistant mice resulted in insulitis induction revealing a diabetogenic gut microbial 222 
community (96,97). Antibiotic treatment accelerates disease development (98,99) suggesting a 223 
protective role of microbiota colonization in T1D. 224 

The presence of a disrupted or altered microbiota in relapsing remitting MS patient compared to 225 
healthy control has been observed (100–103) with no consensus on the involvement of a particular 226 
bacterial species. In contrast another study comparing 16S RNA profiles of feces from MS and healthy 227 
patients did not show any differences (101). Demyelination initiates after colonization with feces of 228 
specific pathogen free mice (104). Microbiota depletion by non-absorbable antibiotics ameliorates the 229 
development of EAE by reducing the number of mesenteric Th17 cells (105). GF mice present 230 
attenuated symptom in both spontaneous and induced EAE models (104,106) suggesting a deleterious 231 
role of microbiota colonization in MS. Furthermore, microbiota shapes and predicts the course 232 
(chronic-progressive or relapse remitting) of EAE in a mice model (107). 233 

Only few studies on human SLE microbiome in small cohorts reported microbial dysbiosis (108–110) 234 
confirmed by pre-clinical studies in mice models (110). A study performed in a larger and diversified 235 
cohort of SLE patient showed that the severity of disease is associated with more severe microbiota 236 
dysbiosis (111). 237 

5.1.1 Interventional studies. What do they tell us? 238 

Here, we will focus on direct supplementation by living bacteria like probiotic and fecal microbiota 239 
transplantation (FMT) treatment but not indirect interventions like prebiotics or nutritional compounds 240 
produced by bacteria, as short chain fatty acids for example, that may involve indirect effects. Once 241 
AD are diagnosed, the production of antibody against self-antigen will remain and will still damage 242 
tissues but this process could be delayed or reduced. Probiotics are living microorganisms which confer 243 
a health benefit to the host (112). Probiotics are known to have beneficial effects on intestinal barrier 244 
(113,114) and anti-inflammatory properties (115–119) and as such represent an interesting tool to 245 
delay, reduce or even prevent AD.  246 

Animal studies suggest beneficial effects of probiotics supplementation on EAE via a stimulation of 247 
IL-10 production (106,120–124). Clinical studies showed that a mixture of probiotics improved 248 
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expanded disability status score and decreased inflammatory markers (125). Regarding T1D, probiotic 249 
treatment delays the onset of T1D in an experimental rat model and improves intestinal barrier (126). 250 
Probiotics also protects NOD mice from T1D by reducing intestinal inflammation (127). In humans, it 251 
was demonstrated in the TEDDY (The Environmental Determinants of Diabetes in the Young) cohort 252 
that early probiotic supplementation was associated with a decreased risk of islet autoimmunity 253 
compared to late or missing supplementation (128). In animal models for lupus nephritis, probiotic 254 
administration lowers inflammatory response in kidney and intestine in female and castrated males but 255 
not in non-castrated males (129). 256 

FMT with microbiota from different diabetes resistant mouse strains delayed the onset of T1D in NOD 257 
diabetes prone mice (97). Few studies investigate to role of FMT on AD symptoms and most of the 258 
time the recommendation for FMT treatment was to target associated gastrointestinal troubles. 259 
Neurological symptoms were improved and disease progression was paused in three MS patients after 260 
FMT treatment for chronic constipation (130). Unfortunately, no data are available on intestinal barrier 261 
function of probiotics and FMT treatments in parallel of beneficial effects on AD. 262 

5.1.2 Mimicking  263 

Structural similarities between antigens from infectious agents and myelin proteins (molecular 264 
mimicry) can induce activation of naïve autoreactive T cells which will recognize peptides derived 265 
from both infectious agents and self-antigens. Cross reactivity could occur when important motifs are 266 
conserved and overall structures of TCR-peptide-MHC interaction are similar suggesting that cross 267 
reactivity may happen frequently (131). Myelin basic protein, the immunodominant autoantigen of 268 
MS, cross react with Epstein Barr Virus (EBV), influenza A virus, herpes simplex virus, human 269 
papilloma virus (132) or human herpesvirus-6 (133). Regarding EBV, MS patients seem to exhibit 270 
higher antibody titers against certain antigenic components of the virus than control subjects even 271 
before the onset of MS (134). Despite cross-reactivity, infectious agents can impair self-antigen 272 
tolerance by indirect activation (135). It has been showed that an integrase expressed by intestinal 273 
Bacteroides encodes a low-avidity mimotope of the pancreatic β cell autoantigens and as such might 274 
participate to T1D onset. Colonization of GF mice with Bacteroides promotes the recruitment of 275 
diabetogenic CD8+ T cells to the gut (136). 276 

5.2 Intestinal hyperpermeability in AD 277 

In AD, intestinal hyper-permeability has been described, resulting in an increased entry of luminal 278 
antigens derived from food and/or intestinal microbiota or pathogens. The resulting inflammation has 279 
been suggested to participate in AD onset and/or exacerbation. However, if intestinal 280 
hyperpermeability is a cause or a consequence of inflammation is under debate. Furthermore, if the 281 
microbiota dysbiosis is a cause or a consequence of intestinal hyperpermeability and inflammation is 282 
still unclear. 283 

Even though it is still unclear whether intestinal hyperpermeability is trigger or a consequence of T1D 284 
progression (137,138)(93) epidemiological and pre-clinical studies demonstrated that intestinal 285 
hypermeability occurs before disease onset (139,140). Reversion of intestinal hyperpermeability by 286 
treatment with a zonulin 1 (intestinal homolog of an Vibrio cholerae enterotoxin that reversibly 287 
increase intestinal permeability) inhibitor ameliorates T1D manifestation in rat model (141). Microbial 288 
translocation in pancreatic lymph nodes activates NOD2 and IL-17 production in pancreatic lymph 289 
nodes and pancreas contributes to T1D development (142).  290 
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Increased intestinal permeability precede EAE onset which worsen during disease progression (143). 291 
Intestinal hyper-permeability was associated with the increase of crypt depth and mucosa thickness in 292 
jejunum and ileum, as well as with an overexpression of zonulin 1 (143) as observed for T1D (141,144). 293 

Intestinal barrier defect and subsequent exposure to microbial products play an important role in the 294 
pathology of SLE (145,146). sCD14, lysozyme and CXCL16 are markers of antimicrobial response 295 
found increased in SLE subject attesting of a defect of intestinal barrier (147). 296 

5.3 Intestinal Inflammation 297 

T1D is associated with increased intestinal myeloperoxidase activity and goblet cell (producing mucus) 298 
density, supporting the idea that early intestinal inflammation might lead to intestinal 299 
hyperpermeability (148,149). Many studies suggest that increase of Th17 cells is involved in the 300 
pathogenesis of auto-immune diabetes. More IL-17 secreting cells were detected in recent-onset T1D 301 
and IL-17 seems to promote inflammatory response to β-cells (150,151). Th17 are increased in 302 
peripheral blood of children with T1D (151,152). In vitro IL-17 potentiate inflammatory and 303 
proapoptotic responses on human islets cells (151). Anti-IL-17 treatment reduced islet T cell infiltrates 304 
and GAD65 autoantibodies in NOD mice (153). Neutrophil extra cellular traps (NET) might contribute 305 
to the generation of AD by exposing autoantigen (154). The role of NET has been particularly studied 306 
in T1D. Indeed, degradation of NETs in the gut prevented immune infiltration of pancreatic islet 307 
preserving β-cell mass and systemic inflammation (155). 308 

In a mouse model of SLE developing severe nephritis, α4β7 expressing T cells were increased in Peyer 309 
patches and pro-inflammatory cytokines (IL-17, IL-22, IFNα and β) were much more expressed in 310 
distal ileum (156). Furthermore, intestinal monocytes/macrophages of SLE patients have an altered 311 
expression of type1 interferon stimulated genes, HLA-DR and Fcγ receptors (157,158). Monocytes 312 
isolated from plasma of SLE patients release higher pro-inflammatory cytokines in response to LPS 313 
compared to healthy patients (159). More generally, higher production of pro-inflammatory cytokines 314 
by monocytes/macrophages has been described in SLE patients (for review (160))  315 

In MS, elevated Th1 and Th17 pro-inflammatory responses were observed in lamina propria, Peyer’s 316 
patches and mesenteric lymph nodes (143). GF EAE animals produce lower levels of IFNγ and IL-17 317 
in intestine associated with higher number of Treg cells (104). GF animals monocolonized with 318 
segmented filamentous bacteria, known to induce IL-17 (161,162), develop EAE showing that 319 
microbiota can affect neurologic inflammation by induction of Th17 in intestinal lamina propria that 320 
recirculate to the brain causing inflammation (106). Autoreactive T cells could migrate in different 321 
organs, from gut to brain in the case of MS, to liver in the case of auto-immune cholestatic liver disease 322 
(163,164) or to kidney in the case of SLE (165). Interestingly, not only T cells seem to be involved in 323 
MS but also circulating ILC. Indeed, higher number of ILC has been observed in MS patients (166).  324 

6 Conclusion 325 

As a conclusion, compiling evidence highlights the importance of both intestinal barrier defect and 326 
stress in AD. Stress is well known to have long lasting deleterious consequences on intestinal barrier. 327 
A transversal research on AD and intestinal barrier function would be of great interest and would bring 328 
new understanding in the pathophysiology of AD. Identifying intestinal barrier as an actor of AD could 329 
bring new possibilities for therapeutic targets and especially preventing strategies toward the spreading 330 
epidemic of AD. Therapeutic strategies suggest that probiotics and FMT treatment might improve AD 331 
symptom but preventive strategies in at risk population still need to be explore. 332 



Psychological Stress, Intestinal Barrier Dysfunctions and Autoimmune Disorders 

 
59 

7 Conflict of Interest 333 

The authors declare that the research was conducted in the absence of any commercial or financial 334 
relationships that could be construed as a potential conflict of interest. 335 

8 Author Contributions 336 

Hanna Ilchmann-Diounou and Sandrine Ménard reviewed the literature, wrote and corrected the 337 
manuscript. 338 

9 References 339 

1.  Selye H. A Syndrome produced by Diverse Nocuous Agents. Nature (1936) 4: 340 

2.  Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE. Lifetime Prevalence 341 
and Age-of-Onset Distributions of DSM-IV Disorders in the National Comorbidity Survey 342 
Replication. Arch Gen Psychiatry (2005) 62:593. doi:10.1001/archpsyc.62.6.593 343 

3.  Smith SM, Vale WW. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine 344 
responses to stress. Dialogues Clin Neurosci (2006) 8:383–395. doi:10.1038/nrendo.2011.222 345 

4.  Charmandari E, Tsigos C, Chrousos G. ENDOCRINOLOGY OF THE STRESS RESPONSE. 346 
Annu Rev Physiol (2005) 67:259–284. doi:10.1146/annurev.physiol.67.040403.120816 347 

5.  Cain DW, Cidlowski JA. Immune regulation by glucocorticoids. Nat Rev Immunol (2017) 348 
17:233–247. doi:10.1038/nri.2017.1 349 

6.  Miyata M, Lee J-Y, Susuki-Miyata S, Wang WY, Xu H, Kai H, Kobayashi KS, Flavell RA, Li 350 
J-D. Glucocorticoids suppress inflammation via the upregulation of negative regulator IRAK-351 
M. Nat Commun (2015) 6:6062. doi:10.1038/ncomms7062 352 

7.  Beaulieu E, Morand EF. Role of GILZ in immune regulation, glucocorticoid actions and 353 
rheumatoid arthritis. Nat Rev Rheumatol (2011) 7:340–8. doi:10.1038/nrrheum.2011.59 354 

8.  Atsuta J, Plitt J, Bochner BS, Schleimer RP. Inhibition of VCAM-1 Expression in Human 355 
Bronchial Epithelial Cells by Glucocorticoids. Am J Respir Cell Mol Biol (1999) 20:643–650. 356 
doi:10.1165/ajrcmb.20.4.3265 357 

9.  Mukaida N, Morita M, Ishikawa Y, Rice N, Okamoto SI, Kasahara T, Matsushima K. Novel 358 
mechanism of glucocorticoid-mediated gene repression. Nuclear factor-κB is target for 359 
glucocorticoid-mediated interleukin 8 gene repression. J Biol Chem (1994) 269:13289–13295. 360 

10.  Martinez FO, Sica A, Mantovani A, Locati M. Macrophage activation and polarization. Front 361 
Biosci (2008) 13:453–61. 362 

11.  Gillis S, Crabtree GR, Smith KA. Glucocorticoid-induced inhibition of T cell growth factor 363 
production. II. The effect on the in vitro generation of cytolytic T cells. J Immunol (1979) 364 
123:1632–8. 365 

12.  Gillis S, Crabtree GR, Smith KA. Glucocorticoid-induced inhibition of T cell growth factor 366 
production. I. The effect on mitogen-induced lymphocyte proliferation. J Immunol (1979) 367 



Psychological Stress, Intestinal Barrier Dysfunctions and Autoimmune Disorders 

60 

 

123:1624–31. 368 

13.  Elenkov IJ. Glucocorticoids and the Th1/Th2 Balance. Ann N Y Acad Sci (2004) 1024:138–146. 369 
doi:10.1196/annals.1321.010 370 

14.  Liberman AC, Refojo D, Druker J, Toscano M, Rein T, Holsboer F, Arzt E. The activated 371 
glucocorticoid receptor inhibits the transcription factor T-bet by direct protein-protein 372 
interaction. FASEB J (2007) 21:1177–1188. doi:10.1096/fj.06-7452com 373 

15.  Frank MG, Miguel ZD, Watkins LR, Maier SF. Prior exposure to glucocorticoids sensitizes the 374 
neuroinflammatory and peripheral inflammatory responses to E. coli lipopolysaccharide. Brain 375 
Behav Immun (2010) 24:19–30. doi:10.1016/j.bbi.2009.07.008 376 

16.  Lim H-Y, Müller N, Herold MJ, van den Brandt J, Reichardt HM. Glucocorticoids exert 377 
opposing effects on macrophage function dependent on their concentration. Immunology (2007) 378 
122:47–53. doi:10.1111/j.1365-2567.2007.02611.x 379 

17.  Perroud N, Paoloni-Giacobino A, Prada P, Olié E, Salzmann A, Nicastro R, Guillaume S, 380 
Mouthon D, Stouder C, Dieben K, et al. Increased methylation of glucocorticoid receptor gene 381 
(NR3C1) in adults with a history of childhood maltreatment: a link with the severity and type of 382 
trauma. Transl Psychiatry (2011) 1:e59. doi:10.1038/tp.2011.60 383 

18.  Melas PA, Wei Y, Wong CCY, Sjöholm LK, Åberg E, Mill J, Schalling M, Forsell Y, Lavebratt 384 
C. Genetic and epigenetic associations of MAOA and NR3C1 with depression and childhood 385 
adversities. Int J Neuropsychopharmacol (2013) 16:1513–28. 386 
doi:10.1017/S1461145713000102 387 

19.  McGowan PO, Sasaki A, D’Alessio AC, Dymov S, Labonté B, Szyf M, Turecki G, Meaney MJ. 388 
Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood 389 
abuse. Nat Neurosci (2009) 12:342–8. doi:10.1038/nn.2270 390 

20.  Sharif K, Watad A, Coplan L, Lichtbroun B, Krosser A, Lichtbroun M, Bragazzi NL, Amital H, 391 
Afek A, Shoenfeld Y. The role of stress in the mosaic of autoimmunity: An overlooked 392 
association. Autoimmun Rev (2018) 17:967–983. doi:10.1016/j.autrev.2018.04.005 393 

21.  Stojanovich L, Marisavljevich D. Stress as a trigger of autoimmune disease. Autoimmun Rev 394 
(2008) 7:209–213. doi:10.1016/J.AUTREV.2007.11.007 395 

22.  Shepshelovich D, Shoenfeld Y. Prediction and prevention of autoimmune diseases: additional 396 
aspects of the mosaic of autoimmunity. Lupus (2006) 15:183–90. 397 
doi:10.1191/0961203306lu2274rr 398 

23.  Huerta PT, Kowal C, DeGiorgio LA, Volpe BT, Diamond B. Immunity and behavior: 399 
Antibodies alter emotion. Proc Natl Acad Sci (2006) 103:678–683. 400 
doi:10.1073/pnas.0510055103 401 

24.  Wang Z, Xie Z, Lu Q, Chang C, Zhou Z. Beyond Genetics: What Causes Type 1 Diabetes. Clin 402 
Rev Allergy Immunol (2017) 52:273–286. doi:10.1007/s12016-016-8592-1 403 

25.  Teruel M, Alarcón-Riquelme ME. The genetic basis of systemic lupus erythematosus: What are 404 



Psychological Stress, Intestinal Barrier Dysfunctions and Autoimmune Disorders 

 
61 

the risk factors and what have we learned. J Autoimmun (2016) 74:161–175. 405 
doi:10.1016/j.jaut.2016.08.001 406 

26.  Giannelou M, Mavragani CP. Cardiovascular disease in systemic lupus erythematosus: A 407 
comprehensive update. J Autoimmun (2017) 82:1–12. doi:10.1016/j.jaut.2017.05.008 408 

27.  Goverman J. Autoimmune T cell responses in the central nervous system. Nat Rev Immunol 409 
(2009) 9:393–407. doi:10.1038/nri2550 410 

28.  Selmi C, Barin JG, Rose NR. Current trends in autoimmunity and the nervous system. J 411 
Autoimmun (2016) 75:20–29. doi:10.1016/j.jaut.2016.08.005 412 

29.  Willis T. Pharmaceutice rationalis: or, An exercitation of the operations of medicines in humane 413 
bodies. Shewing the signs, causes, and cures of most distempers incident thereunto. : In two 414 
parts. : As also a treatise of the scurvy and the several sorts thereof, wi. London (1679). 415 

30.  Hägglöf B, Blom L, Dahlquist G, Lönnberg G, Sahlin B. The Swedish childhood diabetes study: 416 
indications of severe psychological stress as a risk factor for type 1 (insulin-dependent) diabetes 417 
mellitus in childhood. Diabetologia (1991) 34:579–83. 418 

31.  Thernlund GM, Dahlquist G, Hansson K, Ivarsson SA, Ludvigsson J, Sjöblad S, Hägglöf B. 419 
Psychological stress and the onset of IDDM in children. Diabetes Care (1995) 18:1323–9. 420 

32.  Portha B, Chavey A, Movassat J. Early-Life Origins of Type 2 Diabetes: Fetal Programming of 421 
the Beta-Cell Mass. Exp Diabetes Res (2011) 2011:1–16. doi:10.1155/2011/105076 422 

33.  Roberts AL, Malspeis S, Kubzansky LD, Feldman CH, Chang S-C, Koenen KC, Costenbader 423 
KH. Association of Trauma and Posttraumatic Stress Disorder With Incident Systemic Lupus 424 
Erythematosus in a Longitudinal Cohort of Women. Arthritis Rheumatol (2017) 69:2162–2169. 425 
doi:10.1002/art.40222 426 

34.  Mills SD, Azizoddin D, Racaza GZ, Wallace DJ, Weisman MH, Nicassio PM. The psychometric 427 
properties of the Perceived Stress Scale-10 among patients with systemic lupus erythematosus. 428 
Lupus (2017) 26:1218–1223. doi:10.1177/0961203317701844 429 

35.  Grant I, Brown GW, Harris T, McDonald WI, Patterson T, Trimble MR. Severely threatening 430 
events and marked life difficulties preceding onset or exacerbation of multiple sclerosis. J 431 
Neurol Neurosurg Psychiatry (1989) 52:8–13. doi:10.1136/jnnp.52.1.8 432 

36.  Warren S, Greenhill S, Warren KG. Emotional stress and the development of multiple sclerosis: 433 
case-control evidence of a relationship. J Chronic Dis (1982) 35:821–31. 434 

37.  Mitsonis CI, Zervas IM, Mitropoulos PA, Dimopoulos NP, Soldatos CR, Potagas CM, Sfagos 435 
CA. The impact of stressful life events on risk of relapse in women with multiple sclerosis: A 436 
prospective study. Eur Psychiatry (2008) 23:497–504. doi:10.1016/J.EURPSY.2008.06.003 437 

38.  Bibolini MJ, Chanaday NL, Báez NS, Degano AL, Monferran CG, Roth GA. Inhibitory role of 438 
diazepam on autoimmune inflammation in rats with experimental autoimmune 439 
encephalomyelitis. Neuroscience (2011) 199:421–428. doi:10.1016/j.neuroscience.2011.08.076 440 



Psychological Stress, Intestinal Barrier Dysfunctions and Autoimmune Disorders 

62 

 

39.  Winkley K, Ismail K, Landau S, Eisler I. Psychological interventions to improve glycaemic 441 
control in patients with type 1 diabetes: systematic review and meta-analysis of randomised 442 
controlled trials. BMJ (2006) 333:65. doi:10.1136/bmj.38874.652569.55 443 

40.  Kurashima Y, Kiyono H. Mucosal Ecological Network of Epithelium and Immune Cells for Gut 444 
Homeostasis and Tissue Healing. Annu Rev Immunol (2017) 35:119–147. doi:10.1146/annurev-445 
immunol-051116-052424 446 

41.  Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Reddy DN. Role of the 447 
normal gut microbiota. World J Gastroenterol (2015) 21:8787. doi:10.3748/wjg.v21.i29.8787 448 

42.  Gehart H, Clevers H. Tales from the crypt: new insights into intestinal stem cells. Nat Rev 449 
Gastroenterol Hepatol (2019) 16:19–34. doi:10.1038/s41575-018-0081-y 450 

43.  Gordon JI, Hermiston ML. Differentiation and self-renewal in the mouse gastrointestinal 451 
epithelium. Curr Opin Cell Biol (1994) 6:795–803. 452 

44.  Ménard S, Cerf-Bensussan N, Heyman M. Multiple facets of intestinal permeability and 453 
epithelial handling of dietary antigens. Mucosal Immunol (2010) 3:247–259. 454 
doi:10.1038/mi.2010.5 455 

45.  Mora JR, von Andrian UH. Differentiation and homing of IgA-secreting cells. Mucosal Immunol 456 
(2008) 1:96–109. doi:10.1038/mi.2007.14 457 

46.  Ma H, Tao W, Zhu S. T lymphocytes in the intestinal mucosa: defense and tolerance. Cell Mol 458 
Immunol (2019) 16:216–224. doi:10.1038/s41423-019-0208-2 459 

47.  Rankin L, Groom J, Mielke LA, Seillet C, Belz GT. Diversity, function, and transcriptional 460 
regulation of gut innate lymphocytes. Front Immunol (2013) 4:22. 461 
doi:10.3389/fimmu.2013.00022 462 

48.  Annibali V, Policano C, Buscarinu MC, Lionetto L, Mechelli R, Capi M, Mattei C, Piras E, 463 
Angelini DF, Monteleone I, et al. Intestinal permeability in multiple sclerosis. J Neuroimmunol 464 
(2014) 275:54. doi:10.1016/j.jneuroim.2014.08.143 465 

49.  Secher T, Kassem S, Benamar M, Bernard I, Boury M, Barreau F, Oswald E, Saoudi A. Oral 466 
Administration of the Probiotic Strain Escherichia coli Nissle 1917 Reduces Susceptibility to 467 
Neuroinflammation and Repairs Experimental Autoimmune Encephalomyelitis-Induced 468 
Intestinal Barrier Dysfunction. Front Immunol (2017) 8:1–10. doi:10.3389/fimmu.2017.01096 469 

50.  Li X, Atkinson MA. The role for gut permeability in the pathogenesis of type 1 diabetes - a solid 470 
or leaky concept? Pediatr Diabetes (2015) 16:485–492. doi:10.1111/pedi.12305 471 

51.  GITTER AH, BENDFELDT K, SCHULZKE J-D, FROMM M. Leaks in the epithelial barrier 472 
caused by spontaneous and TNF-α-induced single-cell apoptosis. FASEB J (2000) 14:1749–473 
1753. doi:10.1096/fj.99-0898com 474 

52.  Winter SE, Winter MG, Xavier MN, Thiennimitr P, Poon V, Keestra AM, Laughlin RC, Gomez 475 
G, Wu J, Lawhon SD, et al. Host-derived nitrate boosts growth of E. coli in the inflamed gut. 476 
Science (2013) 339:708–11. doi:10.1126/science.1232467 477 



Psychological Stress, Intestinal Barrier Dysfunctions and Autoimmune Disorders 

 
63 

53.  Lowman B, Drossman D, … EC-J of clinical, 1987  undefined. Recollection of childhood events 478 
in adults with irritable bowel syndrome. europepmc.org 479 

54.  Videlock EJ, Adeyemo M, Licudine A, Hirano M, Ohning G, Mayer M, Mayer EA, Chang L. 480 
Childhood Trauma Is Associated With Hypothalamic-Pituitary-Adrenal Axis Responsiveness in 481 
Irritable Bowel Syndrome. Gastroenterology (2009) 137:1954–1962. 482 
doi:10.1053/J.GASTRO.2009.08.058 483 

55.  Hislop IG. Childhood deprivation: an antecedent of the irritable bowel syndrome. Med J Aust 484 
(1979) 1:372–4. 485 

56.  Sgambato D, Miranda A, Ranaldo R, Federico A, Romano M. The Role of Stress in 486 
Inflammatory Bowel Diseases. Curr Pharm Des (2017) 23:3997–4002. 487 
doi:10.2174/1381612823666170228123357 488 

57.  Mayer EA, Naliboff BD, Chang L, Coutinho S V. V. Stress and irritable bowel syndrome. Am 489 
J Physiol Liver Physiol (2001) 280:G519–G524. doi:10.1152/ajpgi.2001.280.4.G519 490 

58.  Wood JD. Visceral pain: spinal afferents, enteric mast cells, enteric nervous system and stress. 491 
Curr Pharm Des (2011) 17:1573–5. 492 

59.  Bonaz BL, Bernstein CN. Brain-Gut Interactions in Inflammatory Bowel Disease. 493 
Gastroenterology (2013) 144:36–49. doi:10.1053/J.GASTRO.2012.10.003 494 

60.  Drossman DA. Functional Gastrointestinal Disorders: History, Pathophysiology, Clinical 495 
Features, and Rome IV. Gastroenterology (2016) 150:1262–1279.e2. 496 
doi:10.1053/J.GASTRO.2016.02.032 497 

61.  Riba A, Olier M, Lacroix-Lamandé S, Lencina C, Bacquié V, Harkat C, Gillet M, Baron M, 498 
Sommer C, Mallet V, et al. Paneth Cell Defects Induce Microbiota Dysbiosis in Mice and 499 
Promote Visceral Hypersensitivity. Gastroenterology (2017) 153:1594–1606.e2. 500 
doi:10.1053/j.gastro.2017.08.044 501 

62.  Ilchmann-Diounou H, Olier M, Lencina C, Riba A, Barretto S, Nankap M, Sommer C, Guillou 502 
H, Ellero-Simatos S, Guzylack-Piriou L, et al. Early life stress induces type 2 diabetes-like 503 
features in ageing mice. Brain Behav Immun (2019)0–1. doi:10.1016/j.bbi.2019.04.025 504 

63.  Moussaoui N, Jacobs JP, Larauche M, Biraud M, Million M, Mayer E, Taché Y. Chronic Early-505 
life Stress in Rat Pups Alters Corticosterone, Intestinal Permeability, and Fecal Microbiota at 506 
Weaning : Influence of Sex. J Neurogastroenterol Motil (2017) 23:135–143. 507 
doi:10.5056/jnm16105 508 

64.  Yoshikawa K, Kurihara C, Furuhashi H, Takajo T, Maruta K, Yasutake Y, Sato H, Narimatsu 509 
K, Okada Y, Higashiyama M, et al. Psychological stress exacerbates NSAID-induced small 510 
bowel injury by inducing changes in intestinal microbiota and permeability via glucocorticoid 511 
receptor signaling. J Gastroenterol (2017) 52:61–71. doi:10.1007/s00535-016-1205-1 512 

65.  Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu X-N, Kubo C, Koga Y. Postnatal microbial 513 
colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J 514 
Physiol (2004) 558:263–75. doi:10.1113/jphysiol.2004.063388 515 



Psychological Stress, Intestinal Barrier Dysfunctions and Autoimmune Disorders 

64 

 

66.  Bailey MT, Dowd SE, Galley JD, Hufnagle AR, Allen RG, Lyte M. Exposure to a social stressor 516 
alters the structure of the intestinal microbiota: Implications for stressor-induced 517 
immunomodulation. Brain Behav Immun (2011) 25:397–407. doi:10.1016/j.bbi.2010.10.023 518 

67.  Hemmings SMJ, Malan-Müller S, van den Heuvel LL, Demmitt BA, Stanislawski MA, Smith 519 
DG, Bohr AD, Stamper CE, Hyde ER, Morton JT, et al. The Microbiome in Posttraumatic Stress 520 
Disorder and Trauma-Exposed Controls. Psychosom Med (2017) 79:936–946. 521 
doi:10.1097/PSY.0000000000000512 522 

68.  Collins SM. A role for the gut microbiota in IBS. Nat Rev Gastroenterol Hepatol (2014) 11:497–523 
505. doi:10.1038/nrgastro.2014.40 524 

69.  Zheng G, Wu S-P, Hu Y, Smith DE, Wiley JW, Hong S. Corticosterone mediates stress-related 525 
increased intestinal permeability in a region-specific manner. Neurogastroenterol Motil (2013) 526 
25:e127–e139. doi:10.1111/nmo.12066 527 

70.  Cameron HL. Stress Impairs Murine Intestinal Barrier Function: Improvement by Glucagon-528 
Like Peptide-2. J Pharmacol Exp Ther (2005) 314:214–220. doi:10.1124/jpet.105.085373 529 

71.  Barreau F, Ferrier L, Fioramonti J, Bueno L. Neonatal maternal deprivation triggers long term 530 
alterations in colonic epithelial barrier and mucosal immunity in rats. Gut (2004) 53:501–506. 531 
doi:10.1136/gut.2003.024174 532 

72.  Øines E, Murison R, Mrdalj J, Grønli J, Milde AM. Neonatal maternal separation in male rats 533 
increases intestinal permeability and affects behavior after chronic social stress. Physiol Behav 534 
(2012) 105:1058–1066. doi:10.1016/j.physbeh.2011.11.024 535 

73.  Riba A, Olier M, Lacroix-Lamandé S, Lencina C, Bacquié V, Harkat C, Van Langendonck N, 536 
Gillet M, Cartier C, Baron M, et al. Early life stress in mice is a suitable model for Irritable 537 
Bowel Syndrome but does not predispose to colitis nor increase susceptibility to enteric 538 
infections. Brain Behav Immun (2018) doi:10.1016/J.BBI.2018.05.024 539 

74.  Moussaoui N, Braniste V, Ait-Belgnaoui A, Gabanou M, Sekkal S, Olier M, Théodorou V, 540 
Martin PGP, Houdeau E. Changes in intestinal glucocorticoid sensitivity in early life shape the 541 
risk of epithelial barrier defect in maternal-deprived rats. PLoS One (2014) 9:1–9. 542 
doi:10.1371/journal.pone.0088382 543 

75.  Lauffer A, Vanuytsel T, Vanormelingen C, Vanheel H, Salim Rasoel S, Tóth J, Tack J, Fornari 544 
F, Farré R. Subacute stress and chronic stress interact to decrease intestinal barrier function in 545 
rats. Stress (2016) 19:225–234. doi:10.3109/10253890.2016.1154527 546 

76.  Lafuse WP, Gearinger R, Fisher S, Nealer C, Mackos AR, Bailey MT. Exposure to a Social 547 
Stressor Induces Translocation of Commensal Lactobacilli to the Spleen and Priming of the 548 
Innate Immune System. J Immunol (2017) 198:2383–2393. doi:10.4049/jimmunol.1601269 549 

77.  Vanuytsel T, van Wanrooy S, Vanheel H, Vanormelingen C, Verschueren S, Houben E, Salim 550 
Rasoel S, Tόth J, Holvoet L, Farré R, et al. Psychological stress and corticotropin-releasing 551 
hormone increase intestinal permeability in humans by a mast cell-dependent mechanism. Gut 552 
(2014) 63:1293–9. doi:10.1136/gutjnl-2013-305690 553 



Psychological Stress, Intestinal Barrier Dysfunctions and Autoimmune Disorders 

 
65 

78.  Bischoff SC, Barbara G, Buurman W, Ockhuizen T, Schulzke J-D, Serino M, Tilg H, Watson 554 
A, Wells JM. Intestinal permeability – a new target for disease prevention and therapy. BMC 555 
Gastroenterol (2014) 14:189. doi:10.1186/s12876-014-0189-7 556 

79.  Eutamene H, Theodorou V, Fioramonti J, Bueno L. Acute stress modulates the histamine 557 
content of mast cells in the gastrointestinal tract through interleukin-1 and corticotropin-558 
releasing factor release in rats. J Physiol (2003) 553:959–966. 559 
doi:10.1113/jphysiol.2003.052274 560 

80.  Miranda S, Roux ME. Acoustic stress induces long term severe intestinal inflammation in the 561 
mouse. Toxicol Lett (2017) 280:1–9. doi:10.1016/j.toxlet.2017.07.898 562 

81.  Barbara G, Cremon C, Carini G, Bellacosa L, Zecchi L, Giorgio R De, Corinaldesi R, 563 
Stanghellini V. The Immune System in Irritable Bowel Syndrome. J Neurogastroenterol Motil 564 
(2011) 17:349–359. doi:10.5056/jnm.2011.17.4.349 565 

82.  de Oliveira JF, Wiener CD, Jansen K, Portela LV, Lara DR, Souza LD de M, da Silva RA, 566 
Moreira FP, Oses JP. Serum levels of interleukins IL-6 and IL-10 in individuals with 567 
posttraumatic stress disorder in a population-based sample. Psychiatry Res (2018) 260:111–115. 568 
doi:10.1016/j.psychres.2017.11.061 569 

83.  Marsland AL, Walsh C, Lockwood K, John-Henderson NA. The effects of acute psychological 570 
stress on circulating and stimulated inflammatory markers: A systematic review and meta-571 
analysis. Brain Behav Immun (2017) 64:208–219. doi:10.1016/j.bbi.2017.01.011 572 

84.  Baldwin JR, Arseneault L, Caspi A, Fisher HL, Moffitt TE, Odgers CL, Pariante C, Ambler A, 573 
Dove R, Kepa A, et al. Childhood Victimization and Inflammation in Young Adulthood: A 574 
Genetically Sensitive Cohort Study. Brain Behav Immun (2017) doi:10.1016/j.bbi.2017.08.025 575 

85.  Slopen N, Loucks EB, Appleton AA, Kawachi I, Kubzansky LD, Non AL, Buka S, Gilman SE. 576 
Early origins of inflammation: An examination of prenatal and childhood social adversity in a 577 
prospective cohort study. Psychoneuroendocrinology (2015) 51:403–413. 578 
doi:10.1016/j.psyneuen.2014.10.016 579 

86.  Rizzetto L, Fava F, Tuohy KM, Selmi C. Connecting the immune system, systemic chronic 580 
inflammation and the gut microbiome: The role of sex. J Autoimmun (2018) 92:12–34. 581 
doi:10.1016/J.JAUT.2018.05.008 582 

87.  Yurkovetskiy LA, Pickard JM, Chervonsky A V. Microbiota and autoimmunity: exploring new 583 
avenues. Cell Host Microbe (2015) 17:548–52. doi:10.1016/j.chom.2015.04.010 584 

88.  Rosser EC, Mauri C. A clinical update on the significance of the gut microbiota in systemic 585 
autoimmunity. J Autoimmun (2016) 74:85–93. doi:10.1016/j.jaut.2016.06.009 586 

89.  Carding S, Verbeke K, Vipond DT, Corfe BM, Owen LJ. Dysbiosis of the gut microbiota in 587 
disease. Microb Ecol Health Dis (2015) 26:26191. doi:10.3402/mehd.v26.26191 588 

90.  Gianchecchi E, Fierabracci A. On the pathogenesis of insulin-dependent diabetes mellitus: the 589 
role of microbiota. Immunol Res (2017) 65:242–256. doi:10.1007/s12026-016-8832-8 590 



Psychological Stress, Intestinal Barrier Dysfunctions and Autoimmune Disorders 

66 

 

91.  Ochoa-Repáraz J, Magori K, Kasper LH. The chicken or the egg dilemma: intestinal dysbiosis 591 
in multiple sclerosis. Ann Transl Med (2017) 5:145. doi:10.21037/atm.2017.01.18 592 

92.  de Goffau MC, Fuentes S, van den Bogert B, Honkanen H, de Vos WM, Welling GW, Hyöty 593 
H, Harmsen HJM. Aberrant gut microbiota composition at the onset of type 1 diabetes in young 594 
children. Diabetologia (2014) 57:1569–77. doi:10.1007/s00125-014-3274-0 595 

93.  Harbison JE, Roth‐Schulze AJ, Giles LC, Tran CD, Ngui KM, Penno MA, Thomson RL, 596 
Wentworth JM, Colman PG, Craig ME, et al. Gut microbiome dysbiosis and increased intestinal 597 
permeability in children with islet autoimmunity and type 1 diabetes : a prospective cohort study. 598 
Pediatr Diabetes (2019)pedi.12865. doi:10.1111/pedi.12865 599 

94.  Endesfelder D, Engel M, Davis-Richardson AG, Ardissone AN, Achenbach P, Hummel S, 600 
Winkler C, Atkinson M, Schatz D, Triplett E, et al. Towards a functional hypothesis relating 601 
anti-islet cell autoimmunity to the dietary impact on microbial communities and butyrate 602 
production. Microbiome (2016) 4:17. doi:10.1186/s40168-016-0163-4 603 

95.  Kostic AD, Gevers D, Siljander H, Vatanen T, Hyötyläinen T, Hämäläinen A-M, Peet A, 604 
Tillmann V, Pöhö P, Mattila I, et al. The Dynamics of the Human Infant Gut Microbiome in 605 
Development and in Progression toward Type 1 Diabetes. Cell Host Microbe (2015) 17:260–606 
273. doi:10.1016/j.chom.2015.01.001 607 

96.  Brown K, Godovannyi A, Ma C, Zhang Y, Ahmadi-Vand Z, Dai C, Gorzelak MA, Chan Y, 608 
Chan JM, Lochner A, et al. Prolonged antibiotic treatment induces a diabetogenic intestinal 609 
microbiome that accelerates diabetes in NOD mice. ISME J (2016) 10:321–332. 610 
doi:10.1038/ismej.2015.114 611 

97.  Peng J, Narasimhan S, Marchesi JR, Benson A, Wong FS, Wen L. Long term effect of gut 612 
microbiota transfer on diabetes development. J Autoimmun (2014) 53:85–94. 613 
doi:10.1016/j.jaut.2014.03.005 614 

98.  Brugman S, Klatter FA, Visser JTJ, Wildeboer-Veloo ACM, Harmsen HJM, Rozing J, Bos NA. 615 
Antibiotic treatment partially protects against type 1 diabetes in the Bio-Breeding diabetes-prone 616 
rat. Is the gut flora involved in the development of type 1 diabetes? Diabetologia (2006) 617 
49:2105–2108. doi:10.1007/s00125-006-0334-0 618 

99.  Schwartz RF, Neu J, Schatz D, Atkinson MA, Wasserfall C. Comment on: Brugman S et al. 619 
(2006) Antibiotic treatment partially protects against type 1 diabetes in the Bio-Breeding 620 
diabetes-prone rat. Is the gut flora involved in the development of type 1 diabetes? Diabetologia 621 
49:2105–2108. Diabetologia (2006) 50:220–221. doi:10.1007/s00125-006-0526-7 622 

100.  Miyake S, Kim S, Suda W, Oshima K, Nakamura M, Matsuoka T, Chihara N, Tomita A, Sato 623 
W, Kim S-W, et al. Dysbiosis in the Gut Microbiota of Patients with Multiple Sclerosis, with a 624 
Striking Depletion of Species Belonging to Clostridia XIVa and IV Clusters. PLoS One (2015) 625 
10:e0137429. doi:10.1371/journal.pone.0137429 626 

101.  Tremlett H, Fadrosh DW, Faruqi AA, Hart J, Roalstad S, Graves J, Spencer CM, Lynch S V, 627 
Zamvil SS, Waubant E, et al. Associations between the gut microbiota and host immune markers 628 
in pediatric multiple sclerosis and controls. BMC Neurol (2016) 16:182. doi:10.1186/s12883-629 



Psychological Stress, Intestinal Barrier Dysfunctions and Autoimmune Disorders 

 
67 

016-0703-3 630 

102.  Chen J, Chia N, Kalari KR, Yao JZ, Novotna M, Soldan MMP, Luckey DH, Marietta E V., 631 
Jeraldo PR, Chen X, et al. Multiple sclerosis patients have a distinct gut microbiota compared 632 
to healthy controls. Sci Rep (2016) 6:28484. doi:10.1038/srep28484 633 

103.  Jangi S, Gandhi R, Cox LM, Li N, von Glehn F, Yan R, Patel B, Mazzola MA, Liu S, Glanz 634 
BL, et al. Alterations of the human gut microbiome in multiple sclerosis. Nat Commun (2016) 635 
7:12015. doi:10.1038/ncomms12015 636 

104.  Berer K, Mues M, Koutrolos M, Rasbi Z Al, Boziki M, Johner C, Wekerle H, Krishnamoorthy 637 
G. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune 638 
demyelination. Nature (2011) 479:538–41. doi:10.1038/nature10554 639 

105.  Yokote H, Miyake S, Croxford JL, Oki S, Mizusawa H, Yamamura T. NKT cell-dependent 640 
amelioration of a mouse model of multiple sclerosis by altering gut flora. Am J Pathol (2008) 641 
173:1714–23. doi:10.2353/ajpath.2008.080622 642 

106.  Lee YK, Menezes JS, Umesaki Y, Mazmanian SK. Proinflammatory T-cell responses to gut 643 
microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci (2011) 644 
108:4615–4622. doi:10.1073/pnas.1000082107 645 

107.  Gandy KAO, Zhang J, Nagarkatti P, Nagarkatti M. The role of gut microbiota in shaping the 646 
relapse-remitting and chronic-progressive forms of multiple sclerosis in mouse models. Sci Rep 647 
(2019) 9:6923. doi:10.1038/s41598-019-43356-7 648 

108.  He Z, Shao T, Li H, Xie Z, Wen C. Alterations of the gut microbiome in Chinese patients with 649 
systemic lupus erythematosus. Gut Pathog (2016) 8:64. doi:10.1186/s13099-016-0146-9 650 

109.  Hevia A, Milani C, López P, Cuervo A, Arboleya S, Duranti S, Turroni F, González S, Suárez 651 
A, Gueimonde M, et al. Intestinal dysbiosis associated with systemic lupus erythematosus. MBio 652 
(2014) 5:e01548-14. doi:10.1128/mBio.01548-14 653 

110.  Luo XM, Edwards MR, Mu Q, Yu Y, Vieson MD, Reilly CM, Ahmed SA, Bankole AA. Gut 654 
Microbiota in Human Systemic Lupus Erythematosus and a Mouse Model of Lupus. Appl 655 
Environ Microbiol (2018) 84: doi:10.1128/AEM.02288-17 656 

111.  Azzouz D, Omarbekova A, Heguy A, Schwudke D, Gisch N, Rovin BH, Caricchio R, Buyon 657 
JP, Alekseyenko A V, Silverman GJ. Lupus nephritis is linked to disease-activity associated 658 
expansions and immunity to a gut commensal. Ann Rheum Dis (2019)annrheumdis-2018-659 
214856. doi:10.1136/annrheumdis-2018-214856 660 

112.  Johnson BM, Gaudreau M-C, Al-Gadban MM, Gudi R, Vasu C. Impact of dietary deviation on 661 
disease progression and gut microbiome composition in lupus-prone SNF 1 mice. Clin Exp 662 
Immunol (2015) 181:323–337. doi:10.1111/cei.12609 663 

113.  Abraham BP, Quigley EMM. Probiotics in Inflammatory Bowel Disease. Gastroenterol Clin 664 
North Am (2017) 46:769–782. doi:10.1016/J.GTC.2017.08.003 665 

114.  Toumi R, Abdelouhab K, Rafa H, Soufli I, Raissi-Kerboua D, Djeraba Z, Touil-Boukoffa C. 666 



Psychological Stress, Intestinal Barrier Dysfunctions and Autoimmune Disorders 

68 

 

Beneficial role of the probiotic mixture Ultrabiotique on maintaining the integrity of intestinal 667 
mucosal barrier in DSS-induced experimental colitis. Immunopharmacol Immunotoxicol (2013) 668 
35:403–9. doi:10.3109/08923973.2013.790413 669 

115.  Riedel C-U, Foata F, Philippe D, Adolfsson O, Eikmanns B-J, Blum S. Anti-inflammatory 670 
effects of bifidobacteria by inhibition of LPS-induced NF-kappaB activation. World J 671 
Gastroenterol (2006) 12:3729–35. doi:10.3748/wjg.v12.i23.3729 672 

116.  O’Hara AM, Bhattacharyya A, Mifflin RC, Smith MF, Ryan KA, Scott KG-E, Naganuma M, 673 
Casola A, Izumi T, Mitra S, et al. Interleukin-8 induction by Helicobacter pylori in gastric 674 
epithelial cells is dependent on apurinic/apyrimidinic endonuclease-1/redox factor-1. J Immunol 675 
(2006) 177:7990–9. 676 

117.  Khokhlova E V., Smeianov V V., Efimov BA, Kafarskaia LI, Pavlova SI, Shkoporov AN. Anti-677 
inflammatory properties of intestinal Bifidobacterium strains isolated from healthy infants. 678 
Microbiol Immunol (2012) 56:27–39. doi:10.1111/j.1348-0421.2011.00398.x 679 

118.  Roselli M, Finamore A, Britti MS, Mengheri E. Probiotic bacteria Bifidobacterium animalis 680 
MB5 and Lactobacillus rhamnosus GG protect intestinal Caco-2 cells from the inflammation-681 
associated response induced by enterotoxigenic Escherichia coli K88. Br J Nutr (2006) 682 
95:1177–84. 683 

119.  Toumi R, Soufli I, Rafa H, Belkhelfa M, Biad A, Touil-Boukoffa C. Probiotic bacteria 684 
lactobacillus and bifidobacterium attenuate inflammation in dextran sulfate sodium-induced 685 
experimental colitis in mice. Int J Immunopathol Pharmacol (2014) 27:615–27. 686 
doi:10.1177/039463201402700418 687 

120.  Lavasani S, Dzhambazov B, Nouri M, Fåk F, Buske S, Molin G, Thorlacius H, Alenfall J, 688 
Jeppsson B, Weström B. A novel probiotic mixture exerts a therapeutic effect on experimental 689 
autoimmune encephalomyelitis mediated by IL-10 producing regulatory T cells. PLoS One 690 
(2010) 5:e9009. doi:10.1371/journal.pone.0009009 691 

121.  Ezendam J, de Klerk A, Gremmer ER, van Loveren H. Effects of Bifidobacterium animalis 692 
administered during lactation on allergic and autoimmune responses in rodents. Clin Exp 693 
Immunol (2008) 154:424–31. doi:10.1111/j.1365-2249.2008.03788.x 694 

122.  Takata K, Kinoshita M, Okuno T, Moriya M, Kohda T, Honorat JA, Sugimoto T, Kumanogoh 695 
A, Kayama H, Takeda K, et al. The Lactic Acid Bacterium Pediococcus acidilactici Suppresses 696 
Autoimmune Encephalomyelitis by Inducing IL-10-Producing Regulatory T Cells. PLoS One 697 
(2011) 6:e27644. doi:10.1371/journal.pone.0027644 698 

123.  Rezende RM, Oliveira RP, Medeiros SR, Gomes-Santos AC, Alves AC, Loli FG, Guimarães 699 
MAF, Amaral SS, da Cunha AP, Weiner HL, et al. Hsp65-producing Lactococcus lactis prevents 700 
experimental autoimmune encephalomyelitis in mice by inducing CD4+LAP+ regulatory T 701 
cells. J Autoimmun (2013) 40:45–57. doi:10.1016/j.jaut.2012.07.012 702 

124.  Wang Y, Telesford KM, Ochoa-Repáraz J, Haque-Begum S, Christy M, Kasper EJ, Wang L, 703 
Wu Y, Robson SC, Kasper DL, et al. An intestinal commensal symbiosis factor controls 704 
neuroinflammation via TLR2-mediated CD39 signalling. Nat Commun (2014) 5:4432. 705 



Psychological Stress, Intestinal Barrier Dysfunctions and Autoimmune Disorders 

 
69 

doi:10.1038/ncomms5432 706 

125.  Kouchaki E, Tamtaji OR, Salami M, Bahmani F, Daneshvar Kakhaki R, Akbari E, Tajabadi-707 
Ebrahimi M, Jafari P, Asemi Z. Clinical and metabolic response to probiotic supplementation 708 
in patients with multiple sclerosis: A randomized, double-blind, placebo-controlled trial. Clin 709 
Nutr (2017) 36:1245–1249. doi:10.1016/j.clnu.2016.08.015 710 

126.  Valladares R, Sankar D, Li N, Williams E, Lai K-K, Abdelgeliel AS, Gonzalez CF, Wasserfall 711 
CH, Larkin J, Schatz D, et al. Lactobacillus johnsonii N6.2 Mitigates the Development of Type 712 
1 Diabetes in BB-DP Rats. PLoS One (2010) 5:e10507. doi:10.1371/journal.pone.0010507 713 

127.  Dolpady J, Sorini C, Di Pietro C, Cosorich I, Ferrarese R, Saita D, Clementi M, Canducci F, 714 
Falcone M. Oral Probiotic VSL#3 Prevents Autoimmune Diabetes by Modulating Microbiota 715 
and Promoting Indoleamine 2,3-Dioxygenase-Enriched Tolerogenic Intestinal Environment. J 716 
Diabetes Res (2016) 2016:7569431. doi:10.1155/2016/7569431 717 

128.  Uusitalo U, Liu X, Yang J, Aronsson CA, Hummel S, Butterworth M, Lernmark Å, Rewers M, 718 
Hagopian W, She J-X, et al. Association of Early Exposure of Probiotics and Islet Autoimmunity 719 
in the TEDDY Study. JAMA Pediatr (2016) 170:20. doi:10.1001/jamapediatrics.2015.2757 720 

129.  Mu Q, Zhang H, Liao X, Lin K, Liu H, Edwards MR, Ahmed SA, Yuan R, Li L, Cecere TE, et 721 
al. Control of lupus nephritis by changes of gut microbiota. Microbiome (2017) 5:73. 722 
doi:10.1186/s40168-017-0300-8 723 

130.  Borody TJ, Khoruts A. Fecal microbiota transplantation and emerging applications. Nat Rev 724 
Gastroenterol Hepatol (2012) 9:88–96. doi:10.1038/nrgastro.2011.244 725 

131.  Birnbaum ME, Mendoza JL, Sethi DK, Dong S, Glanville J, Dobbins J, Özkan E, Davis MM, 726 
Wucherpfennig KW, Garcia KC. Deconstructing the Peptide-MHC Specificity of T Cell 727 
Recognition. Cell (2014) 157:1073–1087. doi:10.1016/j.cell.2014.03.047 728 

132.  Wucherpfennig KW, Strominger JL. Molecular mimicry in T cell-mediated autoimmunity: viral 729 
peptides activate human T cell clones specific for myelin basic protein. Cell (1995) 80:695–705. 730 

133.  Tejada-Simon M V, Zang YCQ, Hong J, Rivera VM, Zhang JZ. Cross-reactivity with myelin 731 
basic protein and human herpesvirus-6 in multiple sclerosis. Ann Neurol (2003) 53:189–97. 732 
doi:10.1002/ana.10425 733 

134.  Ascherio A, Munger KL, Lennette ET, Spiegelman D, Hernán MA, Olek MJ, Hankinson SE, 734 
Hunter DJ. Epstein-Barr virus antibodies and risk of multiple sclerosis: a prospective study. 735 
JAMA (2001) 286:3083–8. 736 

135.  Haring JS, Pewe LL, Perlman S. Bystander CD8 T cell-mediated demyelination after viral 737 
infection of the central nervous system. J Immunol (2002) 169:1550–5. 738 

136.  Hebbandi Nanjundappa R, Ronchi F, Wang J, Clemente-Casares X, Yamanouchi J, Sokke 739 
Umeshappa C, Yang Y, Blanco J, Bassolas-Molina H, Salas A, et al. A Gut Microbial Mimic 740 
that Hijacks Diabetogenic Autoreactivity to Suppress Colitis. Cell (2017) 171:655–667.e17. 741 
doi:10.1016/j.cell.2017.09.022 742 



Psychological Stress, Intestinal Barrier Dysfunctions and Autoimmune Disorders 

70 

 

137.  Odenwald MA, Turner JR. Intestinal permeability defects: is it time to treat? Clin Gastroenterol 743 
Hepatol (2013) 11:1075–83. doi:10.1016/j.cgh.2013.07.001 744 

138.  Buckner JH, Greenbaum CJ. Stacking the Deck: Studies of Patients with Multiple Autoimmune 745 
Diseases Propelled Our Understanding of Type 1 Diabetes as an Autoimmune Disease. J 746 
Immunol (2017) 199:3011–3013. doi:10.4049/jimmunol.1701299 747 

139.  Paun A, Yau C, Danska JS. The Influence of the Microbiome on Type 1 Diabetes. J Immunol 748 
(2017) 198:590–595. doi:10.4049/jimmunol.1601519 749 

140.  Kuhn C, Besançon A, Lemoine S, You S, Marquet C, Candon S, Chatenoud L. Regulatory 750 
mechanisms of immune tolerance in type 1 diabetes and their failures. J Autoimmun (2016) 751 
71:69–77. doi:10.1016/j.jaut.2016.05.002 752 

141.  Watts T, Berti I, Sapone A, Gerarduzzi T, Not T, Zielke R, Fasano A. Role of the intestinal tight 753 
junction modulator zonulin in the pathogenesis of type I diabetes in BB diabetic-prone rats. Proc 754 
Natl Acad Sci (2005) 102:2916–2921. doi:10.1073/pnas.0500178102 755 

142.  de Goffau MC, Luopajarvi K, Knip M, Ilonen J, Ruohtula T, Harkonen T, Orivuori L, Hakala 756 
S, Welling GW, Harmsen HJ, et al. Fecal Microbiota Composition Differs Between Children 757 
With  -Cell Autoimmunity and Those Without. Diabetes (2013) 62:1238–1244. 758 
doi:10.2337/db12-0526 759 

143.  Nouri M, Bredberg A, Weström B, Lavasani S. Intestinal Barrier Dysfunction Develops at the 760 
Onset of Experimental Autoimmune Encephalomyelitis, and Can Be Induced by Adoptive 761 
Transfer of Auto-Reactive T Cells. PLoS One (2014) 9:e106335. 762 
doi:10.1371/journal.pone.0106335 763 

144.  Visser J, Rozing J, Sapone A, Lammers K, Fasano A. Tight Junctions, Intestinal Permeability, 764 
and Autoimmunity. Ann N Y Acad Sci (2009) 1165:195–205. doi:10.1111/j.1749-765 
6632.2009.04037.x 766 

145.  Manfredo Vieira S, Hiltensperger M, Kumar V, Zegarra-Ruiz D, Dehner C, Khan N, Costa FRC, 767 
Tiniakou E, Greiling T, Ruff W, et al. Translocation of a gut pathobiont drives autoimmunity in 768 
mice and humans. Science (80- ) (2018) 359:1156–1161. doi:10.1126/science.aar7201 769 

146.  Mu Q, Tavella VJ, Kirby JL, Cecere TE, Chung M, Lee J, Li S, Ahmed SA, Eden K, Allen IC, 770 
et al. Antibiotics ameliorate lupus-like symptoms in mice. Sci Rep (2017) 7:13675. 771 
doi:10.1038/s41598-017-14223-0 772 

147.  Ayyappan P, Harms RZ, Buckner JH, Sarvetnick NE. Coordinated Induction of Antimicrobial 773 
Response Factors in Systemic Lupus Erythematosus. Front Immunol (2019) 10:658. 774 
doi:10.3389/fimmu.2019.00658 775 

148.  Atkinson; JNRMLT-THLCS, Reverte CM, Mackey AD, Liboni K, Tuhacek-Tenace LM, Hatch 776 
M, Li N, Caicedo RA, Schatz DA, Atkinson M. Changes in Intestinal Morphology and 777 
Permeability in the Biobreeding Rat Before the Onset of Type 1 Diabetes. J Pediatr 778 
Gastroenterol Nutr (2005) 40:589–595. doi:10.1097/01.mpg.0000159636.19346.c1 779 

149.  Secondulfo M, Iafusco D, Carratù R, DeMagistris L, Sapone A, Generoso M, Mezzogiomo A, 780 



Psychological Stress, Intestinal Barrier Dysfunctions and Autoimmune Disorders 

 
71 

Sasso FC, Cartenì M, De Rosa R, et al. Ultrastructural mucosal alterations and increased 781 
intestinal permeability in non-celiac, type I diabetic patients. Dig Liver Dis (2004) 36:35–45. 782 

150.  Marwaha AK, Crome SQ, Panagiotopoulos C, Berg KB, Qin H, Ouyang Q, Xu L, Priatel JJ, 783 
Levings MK, Tan R. Cutting edge: Increased IL-17-secreting T cells in children with new-onset 784 
type 1 diabetes. J Immunol (2010) 185:3814–8. doi:10.4049/jimmunol.1001860 785 

151.  Honkanen J, Nieminen JK, Gao R, Luopajarvi K, Salo HM, Ilonen J, Knip M, Otonkoski T, 786 
Vaarala O. IL-17 immunity in human type 1 diabetes. J Immunol (2010) 185:1959–67. 787 
doi:10.4049/jimmunol.1000788 788 

152.  Reinert-Hartwall L, Honkanen J, Salo HM, Nieminen JK, Luopajärvi K, Härkönen T, Veijola 789 
R, Simell O, Ilonen J, Peet A, et al. Th1/Th17 Plasticity Is a Marker of Advanced β Cell 790 
Autoimmunity and Impaired Glucose Tolerance in Humans. J Immunol (2015) 194:68–75. 791 
doi:10.4049/jimmunol.1401653 792 

153.  Emamaullee JA, Davis J, Merani S, Toso C, Elliott JF, Thiesen A, Shapiro AMJ. Inhibition of 793 
Th17 cells regulates autoimmune diabetes in NOD mice. Diabetes (2009) 58:1302–11. 794 
doi:10.2337/db08-1113 795 

154.  Giaglis S, Hahn S, Hasler P. “The NET Outcome”: Are Neutrophil Extracellular Traps of Any 796 
Relevance to the Pathophysiology of Autoimmune Disorders in Childhood? Front Pediatr 797 
(2016) 4:97. doi:10.3389/fped.2016.00097 798 

155.  Liang Y, Wang X, He D, You Q, Zhang T, Dong W, Fei J, Xing Y, Wu J. Ameliorating gut 799 
microenvironment through staphylococcal nuclease-mediated intestinal NETs degradation for 800 
prevention of type 1 diabetes in NOD mice. Life Sci (2019) 221:301–310. 801 
doi:10.1016/J.LFS.2019.02.034 802 

156.  Gaudreau M-C, Johnson BM, Gudi R, Al-Gadban MM, Vasu C. Gender bias in lupus: does 803 
immune response initiated in the gut mucosa have a role? Clin Exp Immunol (2015) 180:393–804 
407. doi:10.1111/cei.12587 805 

157.  Hepburn AL, Mason JC, Davies KA. Expression of Fc  and complement receptors on peripheral 806 
blood monocytes in systemic lupus erythematosus and rheumatoid arthritis. Rheumatology 807 
(2004) 43:547–554. doi:10.1093/rheumatology/keh112 808 

158.  Lee PY, Li Y, Kumagai Y, Xu Y, Weinstein JS, Kellner ES, Nacionales DC, Butfiloski EJ, van 809 
Rooijen N, Akira S, et al. Type I Interferon Modulates Monocyte Recruitment and Maturation 810 
in Chronic Inflammation. Am J Pathol (2009) 175:2023–2033. doi:10.2353/ajpath.2009.090328 811 

159.  Jiang W, Zhang L, Lang R, Li Z, Gilkeson G. Sex Differences in Monocyte Activation in 812 
Systemic Lupus Erythematosus (SLE). PLoS One (2014) 9:e114589. 813 
doi:10.1371/journal.pone.0114589 814 

160.  Li Y, Lee PY, Reeves WH. Monocyte and Macrophage Abnormalities in Systemic Lupus 815 
Erythematosus. Arch Immunol Ther Exp (Warsz) (2010) 58:355–364. doi:10.1007/s00005-010-816 
0093-y 817 

161.  Gaboriau-Routhiau V, Rakotobe S, Lécuyer E, Mulder I, Lan A, Bridonneau C, Rochet V, Pisi 818 



Psychological Stress, Intestinal Barrier Dysfunctions and Autoimmune Disorders 

72 

 

A, De Paepe M, Brandi G, et al. The Key Role of Segmented Filamentous Bacteria in the 819 
Coordinated Maturation of Gut Helper T Cell Responses. Immunity (2009) 31:677–689. 820 
doi:10.1016/J.IMMUNI.2009.08.020 821 

162.  Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, Wei D, Goldfarb KC, Santee 822 
CA, Lynch S V., et al. Induction of Intestinal Th17 Cells by Segmented Filamentous Bacteria. 823 
Cell (2009) 139:485–498. doi:10.1016/J.CELL.2009.09.033 824 

163.  Wu X, Tian Z. Gut-liver axis: gut microbiota in shaping hepatic innate immunity. Sci China Life 825 
Sci (2017) 60:1191–1196. doi:10.1007/s11427-017-9128-3 826 

164.  Ma H-D, Wang Y-H, Chang C, Gershwin ME, Lian Z-X. The intestinal microbiota and 827 
microenvironment in liver. Autoimmun Rev (2015) 14:183–191. 828 
doi:10.1016/j.autrev.2014.10.013 829 

165.  Okamoto A, Fujio K, Tsuno NH, Takahashi K, Yamamoto K. Kidney-infiltrating CD4+ T-cell 830 
clones promote nephritis in lupus-prone mice. Kidney Int (2012) 82:969–979. 831 
doi:10.1038/ki.2012.242 832 

166.  Perry JSA, Han S, Xu Q, Herman ML, Kennedy LB, Csako G, Bielekova B. Inhibition of LTi 833 
Cell Development by CD25 Blockade Is Associated with Decreased Intrathecal Inflammation 834 
in Multiple Sclerosis. Sci Transl Med (2012) 4:145ra106-145ra106. 835 
doi:10.1126/SCITRANSLMED.3004140 836 

 837 





74 
 

β-cell mass is expanding, especially after weaning (Bonner-Weir et al., 2016). During the time 

of physiologic maturation, the organism is particularly sensitive to environmental influences 

(Figure 20). 

1. Allostatic load 

Over the past three decades, a body of epidemiologic evidences has shown that early-

life conditions influence patterns of growth, body composition, and later risk of non-

communicable diseases at adulthood. Among them there are type 2 diabetes (T2D), 

dyslipidemia, high blood pressure (for review (Gluckman, 2008; Weaver, 2009)) but also 

cancers (Kelly-Irving et al., 2013), autoimmune diseases like type 1 diabetes (T1D) (Virk et al., 

2015) or cognitive and behavioral disorders (Banqueri et al., 2016).  

Life course epidemiology proposes the concept of embodiment which is “how we, like 

any living organism, literally incorporate, biologically, the world in which we live, including 

our societal and ecological circumstances” (Krieger, 2005). Early life insults are incorporated, 

the allostatic load – which “is the cost of chronic exposure to fluctuating or heightened neural 

or neuroendocrine responses resulting from repeated or chronic environmental challenge that 

an individual reacts to as being particularly stressful” (McEwen and Stellar, 1993) - is 

increasing (Figure 21). 

 
Figure 21 Allostasis and allostatic load. Suitable adaptive response of the organism to a stressor leads to 
allostasis. In case of increased stressors and increased adaptive response without relieve allostatic load is 

increasing (Seaway, n.d.). 

2. Evidence for the DOHaD hypothesis 

Barker proposed in the late 80s the concept of developmental origins of health and 

disease (DOHaD) (Barker et al., 1989) in response to observations he made in the Hertfordshire 

cohort. Indeed he found that low birth weight was associated with impaired glucose tolerance 
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in adulthood (Hales et al., 1991). Since, DOHaD has been extended from fetal period to a period 

running from meiosis and gametogenesis to adolescence, with special emphasis on the first 

1000 days of life. Of interest is the health status in adulthood and even of those of the 

offspring’s. 

Studies about the consequences of the Dutch famine during World War II showed that 

adults, exposed to the famine in the second or third trimester in utero had lower glucose 

tolerance (Ravelli et al., 1998). Data on the Chinese famine in 1958 showed that adults exposed 

in utero had higher risk for T2D (Wang et al., 2016). There has also been established a link 

between intrauterine growth restriction and later dyslipidemia (Barker et al., 1993). Animal 

models allowed to confirm the observations from epidemiological studies. Uterine ligation is a 

model for idiopathic in utero growth restriction and leads to dyslipidemia and T2D (Lane et al., 

2001; Simmons et al., 2001).  

Even psychological diseases and IQ have been linked to early environment. Infants from 

mother with high cortisol levels during pregnancy had lower IQ than their siblings (LeWinn et 

al., 2009). In the cohorts of Chinese and Dutch famines, a more than doubled risk for developing 

schizophrenia has been observed for the exposed group (Hoek et al., 1996; St Clair et al., 2005). 

However, Serpeloni et al. reported that children, whose mother was exposed in prenatal and 

postnatal period to intimate partner violence, had less psychological disorders, as for example 

depression or anxiety, than children, which were only exposed in prenatal period to this stressor. 

They found epigenetic modifications on glucocorticoid receptor (NR3C1) and its repressor 

FKBP51 (FKBP5) and differentially methylated regions on DNA, which has previously been 

associated with increased resilience (Serpeloni et al., 2019). However, these modifications 

might have beneficial effects only in the special environment where they are living (high 

violence). Indeed, the genes implicated are responsible for social and emotional behavior 

(oxytocin). The authors argue, that decreased sensibility to violence is protective in this specific 

context but may be disadvantageous in a more societally accepted subcultures (Serpeloni et al., 

2019). 

Modifications of immune system by early life environment have also been described. In 

human, O’Conner et al found that maternal prenatal anxiety predicts lower adaptive immune 

response after hepatitis B vaccination (O’Connor et al., 2013). Prenatal exposure to xenobiotic, 

as for example tobacco, increased asthma risk in infants (Hylkema and Blacquiere, 2009). In 

an animal model, perinatal exposure to bisphenol A led to altered immune response in adult 
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mice, namely dampened intestinal and increased systemic immune response (Malaisé et al., 

2018, 2017).  

3. Mechanisms 

Mechanistic studies in the DOHaD domain are still sparse but underlying mechanisms, 

which has been proposed, are epigenetic modification of genome via DNA methylation and 

histone acetylation. The phenomenon of catch-up growth has been associated with 

endoplasmatic reticulum stress, which could trigger later deleterious metabolic outcomes. 

Metabolic adaption in response to nutritional stress in utero has been another proposition. In 

infants small for gestational age and in rodents with in utero growth restriction decreased lipid 

oxidation has been observed (Hoffman et al., 2017). A potent tool seems to be the allostatic 

load, which is measured by diverse biomarkers (Casavant et al., 2019; Thayer et al., 2016)  
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The model of maternal separation induced a large variety of outcomes. Indeed, there are 

studies interested in behavioral outcomes of early life stress (Gracia-Rubio et al., 2016). MS 

serves also as a model in the research on brain activity (Nishi et al., 2013) and depression 

(Vetulani, 2013). The model is also used to study the gut-brain axis (O’Mahony et al., 2011). 

We are interested in this model due to its effects on intestinal homeostasis. Indeed, MS 

is responsible for long lasting alterations of intestinal homeostasis on adult male and female 

rodents offspring (Barreau et al., 2004; Riba et al., 2018, 2017).  

Recent data from the host laboratory, who have been working with this model for some 

years, showed that MS induced in 50 days old (PND50) male mice an increase in intestinal 

permeability and visceral hypersensitivity. MS led to low-grade inflammation and microbiota 

dysbiosis. It also exacerbated immune response toward microbiota. Indeed, MS increased 

humoral response toward a commensal E. coli isolated from feces of the mouse strain used 

(Riba et al., 2018). MS induces already at PND50 a sexual dimorphic phenotype. In female 50-

days old mice, MS leads to visceral hypersensitivity, decreased lysozyme expression, blooming 

of E. coli, humoral immune response against microbiota and intestinal low-grade inflammation 

(Riba et al., 2017). 

We carried out separate studies for male and female mice, since sexual dimorphism was 

observed from PND50 on. We analyzed the long-term effects of MS on male and female mice 

separately. 

The impaired intestinal barrier functions and abnormal immune responses toward 

microbiota observed in male mice by the MS model at PND50 have also been observed in 

metabolic disorders. For example, obesity and/or T2D have been associated with increased 

intestinal permeability in mice (Brun et al., 2007; Cani et al., 2008), IgG response against 

specific E.coli (Mohammed et al., 2012), dysbiosis (Turnbaugh et al., 2006) and low-grade 

systemic inflammation (Osborn and Olefsky, 2012). However, in PND50 male mice, which 

underwent maternal separation, no metabolic disorder were observed. 

As metabolic disorders occur in aging individuals, we wondered if MS-induced low-

grade inflammation leads to metabolic disorders in aging male mice (PND350) under normal 

diet and if we could identify MS as a risk factor in metabolic disorders development.  

In our first study, we focused on the characterization of immunometabolism in aging 

male mice, which underwent MS in neonatal period. We aimed to analyze the long term 
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consequences of neonatal maternal separation on mice’ metabolism, as well as on intestinal 

barrier functions, immune responses toward microbiota, and low-grade inflammation. 

My work aims to provide experimental data to support a link between early life stress 

and development of metabolic disorders with aging. This project will highlight the neonatal 

period as a critical window for homeostasis establishment and early life adverse events like 

stress as a risk factor triggering metabolic disorders. 

In a second time, we aimed to assess the role of microbiota dysbiosis in the development 

of metabolic disorders in the MS model in male mice. We wondered if microbiota dysbiosis, 

observed in the model of maternal separation, could trigger the observed immunometabolic 

phenotype in male mice. Fecal microbiota transfer is the current gold standard to prove causal 

relationship, so we carried out fecal microbiota transfer into germ-free male mice. 

In a third project, we aimed to analyze long-term consequences of MS in female mice 

on allostatic load, namely intestinal barrier function, neuroendocrine functions and metabolism. 

Additionally, we were interested in immune response and wondered if MS could lead to 

autoimmune disorder in aging female mice. As previously discussed in the review article, there 

seems to be a link between stressful environment, intestinal barrier dysfunction and 

autoimmune disorders. 

In a last part of this PhD project, we were interested in a methodological question 

regarding the various methods used to measure intestinal permeability and their relevance. We 

set up a project to compare ex vivo and in vivo measurements of intestinal permeability in a 

model of autoimmune type 1 diabetes. Our aim is to initiate a discussion around the definitions 

of intestinal permeability and systemic exposure in order to clarify the concept of intestinal 

permeability. 
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The first part of my work has the objective to describe long-lasting effects of neonatal 

maternal separation (MS) on immune-metabolism in male mice.  

Previous data from our laboratory from Riba et al. showed that MS induced in 50 days 

old (PND50) male mice an increase in intestinal permeability and visceral hypersensitivity. MS 

led to low-grade inflammation and microbiota dysbiosis. It also exacerbated immune response 

toward microbiota. Indeed, MS increased humoral response toward a commensal E. coli 

isolated from feces of the mouse strain used (Riba et al., 2018). 

These features are also described in metabolic disorders like diabetes. However, at 

PND50 no metabolic disorder has been observed. A major risk factor for metabolic disorders 

is aging. Therefore, we wondered, if mice, which underwent neonatal maternal separation 

would develop metabolic disorder with aging. This hypothesis was additionally strengthen by 

epidemiological studies, which showed an association between early life adverse events and 

metabolic disorder, especially type 2 diabetes (Huang et al., 2015). 

This work has been published as an original article online on April 11, 2019, in print in 

August 2019 in the Journal “Brain, Behavior, and Immunity” and I signed as the first author. 
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A B S T R A C T

Early life stress is known to impair intestinal barrier through induction of intestinal hyperpermeability, low-
grade inflammation and microbiota dysbiosis in young adult rodents. Interestingly, those features are also ob-
served in metabolic disorders (obesity and type 2 diabetes) that appear with ageing. Based on the concept of
Developmental Origins of Health and Diseases, our study aimed to investigate whether early life stress can
trigger metabolic disorders in ageing mice.

Maternal separation (MS) is a well-established model of early life stress in rodent. In this study, MS increased
fasted blood glycemia, induced glucose intolerance and decreased insulin sensitivity in post-natal day 350 wild
type C3H/HeN male mice fed a standard diet without affecting body weight. MS also triggered fecal dysbiosis
favoring pathobionts and significantly decreased IL-17 and IL-22 secretion in response to anti-CD3/CD28 sti-
mulation in small intestine lamina propria. Finally, IL-17 secretion in response to anti-CD3/CD28 stimulation was
also diminished at systemic level (spleen).

For the first time, we demonstrate that early life stress is a risk factor for metabolic disorders development in
ageing wild type mice under normal diet.

1. Introduction

During the last century, the incidence of non-communicable dis-
eases, including metabolic disorders, is expanding in western countries
(Bach, 2002). The causes for this drastic increase are debated. The
concept of Developmental Origins of Health and Disease (DOHaD)
highlights the importance of early life period and raises the hypothesis
that chronic diseases could find their origins in perinatal environment
(Barker et al., 1989; Gluckman et al., 2016). In mice and humans, early
life is important for the development of the immune system, metabolic
switch, microbiota colonization (Tamburini et al., 2016) and the de-
velopment of life-long beneficial host-microbe homeostasis (Hornef and
Fulde, 2014). Adverse events can disturb these mechanisms of adap-
tation. Several observational epidemiological studies have shown an
association between adverse childhood experiences and metabolic dis-
eases in later life (Huang et al., 2015). This study aims to provide ex-
perimental data to support a link between early life stress and

development of metabolic disorders with ageing.
Metabolic disorders, such as obesity and type 2 diabetes are asso-

ciated with modification of intestinal barrier, microbiota dysbiosis and
low grade inflammation (Brun et al., 2007; Cani et al., 2008; Osborn
and Olefsky, 2012; Turnbaugh et al., 2006). In mice, several models
such as diet induced obesity (high-fat or western diets) or genetic
models (ob/ob and db/db, respectively deficient for leptin and leptin
receptor) are used to investigate obesity associated with hyperglycemia.
In those models, a defect of intestinal barrier as well as low-grade in-
flammation were observed, even before the onset of obesity and hy-
perglycemia (Araújo et al., 2017; Brun et al., 2007). Neonatal maternal
separation (MS) is a stress model widely used in rodents as a paradigm
of early life adverse events. We previously observed that, in male mice,
MS triggers long lasting alterations of intestinal homeostasis in young
adult offspring (post-natal-day (PND) 50) including a defect of in-
testinal barrier, microbiota dysbiosis and low-grade inflammation (Riba
et al., 2018). With ageing, intestinal permeability and low-grade
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inflammation are increasing in mice (Thevaranjan et al., 2017) and
human (Man et al., 2015). This might explain why chronic metabolic
diseases appear in the ageing population and suggest a potential role of
intestinal barrier defect itself in triggering and/or maintaining meta-
bolic disorders.

Here, we aimed at investigating in wild-type male mice the long-
term effects of neonatal MS on metabolism, intestinal barrier function,
as well as on microbiota composition, immune response toward mi-
crobiota, and low-grade inflammation in ageing mice fed a regular diet.

2. Material and methods

2.1. Mouse model

All experimental protocols were approved by local Animal Care Use
Committee (Comité d'Ethique de Pharmacologie-Toxicologie de
Toulouse – Midi-Pyrénées, France) registered as N°86 at the Ministry of
Research and Higher Education (N° 0029/SMVT), and conducted in
accordance with the European directive 2010/63/UE. Mice were kept
at a constant temperature (22 ± 1 °C) and maintained on a 12:12 h
light/dark cycle (lights on 7 h30 am) on Specific and Opportunistic
Pathogen Free (SOPF) conditions. Normal diet (Harlan2018, Envigo,
Gannat, France) and water were available ad libitum.

2.1.1. Maternal separation protocol

Nulliparous female C3H/HeN mice (Janvier Labs, Le Genest St Isle,
France) were used. Maternal separation (MS) was performed as pre-
viously described (Riba et al., 2018). Briefly, pups were separated from
their dam and the rest of the litter 3 hours per day. MS was repeated for
10 working days, week-end excluded, between post-natal-day 2 (PND2)
and PND15. Control pups were left with their dam. At weaning
(PND21), litters were mixed within the same group and housed by 5
mice per cage; only males were kept for this study as MS induced on
PND50 male mice a defect of intestinal barrier, microbiota dysbiosis
and low-grade inflammation (Riba et al., 2018), features also observed
in metabolic disorders. Four independent batches of experiments were
realized. Experiments were performed at PND350.

2.1.2. Oral glucose (OGTT) and intraperitoneal insulin tolerance test (ITT)

OGTT and ITT were performed in mice 6 h-fasted during day light.
For OGTT, mice were gavaged with 2mg glucose per g of bodyweight.
Blood glucose levels were monitored from the tip of the tail vein with a
glucose meter (Johnson & Johnson, Issy-les-Moulineaux, France) at
−30, 0 (glucose gavage), 15, 30, 60, 90 and 120min.

During ITT mice were injected with 0.75mU insulin (NovoRapid,
Novo Nordisk, Chartres, France) per g of bodyweight. Blood glucose
levels were measured up to 30min after injection.

For fasted blood glucose, mice were fasted 16-h overnight.
For plasma insulin, blood samples were harvested in fasted state

(6 h) and 15min after glucose stimulation per os (2 mg glucose per g of
bodyweight). Insulin was measured with commercial ELISA kit (Merck
Millipore, Saint Quentin en Yvelines, France).

2.2. Fecal microbiota composition analysis

Total microbial genomic DNA was obtained from stool samples
using the ZR Fecal DNA MiniprepTM (Zymo Research, Ozyme SAS,
Montigny-le-Bretonneux, France) and DNA quantity was determined
using a TECAN Fluorometer (Qubit® dsDNA HS Assay Kit, Molecular
Probes, Thermofisher Scientific, Montigny le Bretonneux). The micro-
bial 16S rRNA gene was amplified during the first PCR step with
adapter fusion primers targeting the V3 to V4 regions. Sequence reads
were quality controlled and treated first with the FROGS pipeline (Find
Rapidly OTU with Galaxy Solution) (Escudié et al., 2018) to obtain
OTUs and their respective taxonomic assignment thanks to Galaxy in-
stance (http://sigenae-worbench.toulouse.inra.fr). Rarefaction curves,

richness and diversity indexes of bacterial community, as well as or-
dinations were computed using the Phyloseq package (v 1.19.1) in
RStudio software (Mcmurdie and Holmes, 2012; McMurdie and
Holmes, 2013; R Development Core Team, 2011). Differences in
structure between groups were determined using Adonis (permuted p-
value was obtained by performing 9999 permutations). LDA effect size
was performed between two groups and plotted using LEfSe (Segata
et al., 2011). For further univariate differential abundances analysis,
closely-related taxa were agglomerated at the species rank, reducing the
taxon list to 73. A negative binomial fit model for count data was run on
all groups using the DESeq2 package (v 1.14.1) (Love et al., 2014;
McMurdie and Holmes, 2014). Tests were corrected for multiple in-
ferences using the Benjamini-Hochberg method to control the false
discovery rate (Hochberg and Benjamini, 1990). Complete methods and
accession numbers are available in the Supplementary methods.

2.3. Intestinal permeability in Ussing chambers

Intestinal permeability was assessed as previously described (Riba
et al., 2018). Briefly, jejunal and colonic fragments were mounted in
Ussing chambers (Physiologic Instruments, San Diego, CA, USA). Tis-
sues were bathed 2 h with oxygenated thermostated Kreb’s solution
(Sigma, Saint Quentin Fallavier, France). Fluorescein Sodium Salt
40 µg/ml (FSS 376 Da; Sigma) and Horse Radish Peroxidase 0.4mg/ml
(HRP 4 kDa; Sigma) were respectively added to mucosal compartment
as para- and trans-cellular markers of intestinal permeability.

Epithelial permeability to total HRP was determined by ELISA.
Briefly, 96-wells black plates (Greiner, Les Ulis, France) were coated
with 10 µg/ml mouse polyclonal to HRP (Abcam, Paris, France),
blocked with PBS-1% bovine serum albumin (BSA), incubated with
serosal compartments of Ussing chamber, detected with 10 µg/ml
Rabbit polyclonal anti HRP biotin (Abcam) and revealed with FITC-
conjugated streptavidin (BD, Paris, France). Fluorescence intensity was
measured 485 nm/525 nm using an automatic Infinite M200 microplate
reader (Tecan, Männedorf, Switzerland). Epithelial permeability to FSS
was determined by measuring the fluorescence intensity (FI) 485 nm/
525 nm using an automatic Infinite M200 microplate reader.
Permeability was calculated as the ratio of flux/concentration, and
expressed as cm/second.

2.4. Immune cells isolation

Splenocytes were isolated through a 70-µm nylon mesh and sus-
pended in PBS 1%-KO SR serum (Gibco, Thermofisher Scientific).

Isolated cells from Small Intestines (si) lamina propria (siLP) were
obtained as follow: si were washed in cold PBS, incubated in PBS 3mM
EDTA (Sigma), washed in warm PBS, digested with 100 U/mL of col-
lagenase (Sigma) in DMEM 20% FCS and finally purified on Percoll
(Sigma).

2.4.1. Fluorescence-Activated cell sorter analysis

Isolated cells from spleen and siLP were stained as follow (all an-
tibodies are listed in Table 1). Activated T-cells: CD4 (BD), CD44 (BD),
CD62L (BD); Regulatory T-cells: CD4 (BD), CD25 (BD), Foxp3
(ebioscience, Thermofisher Scientific); ILC3: CD127 (BD), RORγt (BD).
Th17/22 CD3 (BD), RORγt (BD), IL-17 (BD). MACSQuant® Analyzers
(Miltenyi Biotec SA, Paris, France) and VenturiOne® (AppliedCyto-
metry, Sheffield, Great Britain) software were respectively used for data
collection and analysis.

2.4.2. Primary cell culture

Isolated cells from spleen and siLP were seeded at 2×106 cells per
well in the presence or absence of a) 100 ng/mL Lipopolysaccharide
(LPS; Sigma) or b) 5 µg/mL hamster anti-mouse CD3 (BD) and hamster
anti-mouse CD28 (BD) coated wells. Supernatants were collected after
a) 24 h, b) 72 h.

H. Ilchmann-Diounou, et al. Brain, Behavior, and Immunity 80 (2019) 452–463

453 84



2.5. Cytokines measurement

Cytokines were measured in supernatant of primary cell culture, or
jejunal fragments suspended in RIPA buffer (0.5% deoxycholate, 0.1%
SDS and 1% Igepal in TBS) containing complete anti protease cocktail
(Sigma). Jejunal protein concentrations were measured using BCA up-
tima kit (Interchim, Montlucon, France). IL-17, TNFα, IL-10, IL-22,
TGFβ and IFNγ in supernatant or lysate of jejunal fragments were as-
sayed using commercial ELISA kits (R&D Systems, Lille, France).

2.6. Humoral response in feces and plasma

Plates were coated with 5 µg/ml of sheep anti-mouse IgA (Sigma) or
goat anti-mouse IgG (SouthernBiotech, Cliniscience, Nanterre, France),
incubated with plasma, detected with 1.5 µg/ml HRP-conjugated goat
anti-mouse IgA (Sigma) or goat anti-mouse IgG (SouthernBiotech), HRP
was revealed using TMB and the reaction was stopped with H2SO4

before reading at 450 nm using automatic Infinite M200 microplate
reader.

Immunoglobulin specificity against commensal E. coli

Maxisorp 96-wells plates were coated with 5 µg/ml of protein from
C3H/HeN isolated E. coli lysate (being used as representative bacteria
of the intestinal microbiota), incubated with plasma (10 µg/mL IgG),
and revealed as above-mentioned. Results were expressed as arbitrary
units (AU) per 10 µg/mL of IgG, in comparison with a standardized
immune serum. The E. coli lysate was prepared as previously described
(Riba et al., 2018).

2.7. Measurements in plasma

ELISA kits were used to monitor corticosterone (Immunodiagnostic
Systems, Pouilly-en-Auxois, France), GIP, GLP-1 (Merck Millipore),
Ghrelin (elabioscience, Clinisciences) and LPS-binding protein (LPB)
(Abnova, Cliniscience) in plasma. Plasma-cholesterol, LDL, HDL, tri-
glycerides, free fatty acids and calcium were analyzed by the Platform
GenoToul Anexplo, Toulouse, France.

2.8. Statistical analysis

Statistical analyses were performed using GraphPad Prism version
6.04 (GraphPad Software, La Jolla, CA, USA). Results for single com-
parisons were displayed as box plots [min to max] and analyzed using
Student’s unpaired t-test or Mann-Whitney test after prior Shapiro-Wilk

Normality test and F-Test to compare variances. Results in text were
described as MS mean ± SD vs. Control mean ± SD for normally
distributed samples and as median, [25%-quartile; 75%-quartile] in
other case. Multiple conditions in OGTT, ITT and cytokine measure-
ments were displayed either as kinetics with SEM or box plots [min to
max] and compared per family by Holm-Sidak posttest after a sig-
nificant repeated measures (RM) two-way ANOVA. Differences were
considered significant for P < 0.05.

3. Results

3.1. MS’s effects on glucose tolerance and insulin sensitivity

At post-natal-day 350 (PND350), MS did neither affect body weight
(Fig. 1A) or the perigonadal-adipose-tissue-weight (PGAT)-to-body-
weight-ratio (data not shown) nor feed intake (Fig. 1B). However, MS
mice had higher fasted blood glucose than the control mice (127.0mg/
dL ± 23.5 vs. 101.1 mg/dL ± 22.3, t13=2.175, p < 0.05, two tailed
t-test, Fig. 1C). During oral glucose tolerance test (OGTT), blood glu-
cose levels were higher in MS mice than in control (at 15min: 270mg/
dL ± 57, vs. 227mg/dL ± 57, p < 0.0001; at 30min: 211mg/
dL ± 47 vs. 178mg/dL ± 30, F1,49=6.668, RM-two-way ANOVA
followed by Holm-Sidak’s post test, p < 0.01, Fig. 1D). The Area Under
the Curve (AUC) during OGTT for MS mice were higher (21353mg/dL/
2h, [20460; 24068], vs. 20022mg/dL/2h, [18376; 21866],
t49=2.463, p < 0.05, two tailed t-test, Fig. 1E). MS did affect neither
fasted nor glucose-stimulated insulin secretion (Fig. 1F). Insulin toler-
ance test (ITT) suggests lower insulin sensitivity for MS mice. Slower
decrease of blood glucose (at 15min: 136.5 mg/dL ± 27.6, vs.

105.1 mg/dL ± 26.1, p < 0.01; at 30min: 97.9 mg/dL ± 24.5 vs.

69.7 mg/dL ± 15.6, F1,28=7.365, RM-two-way ANOVA followed by
Holm-Sidak’s post test, p < 0.01, Fig. 1G), resulted in significantly
higher Area Under the Curve (AUC) for MS mice (3997mg/dL/
30min ± 162,8 vs. 3306mg/dL/30min ± 139,2, t28=3.105, two
tailed t-test , p= 0.0043, Fig. 1H). In plasma, no difference in corti-
costerone (Fig. 2A), incretins (GIP, GLP-1) (Fig. 2B and C), cholesterol,
HDL, LDL, triglycerides or free fatty acids (FFA) (Fig. 2D–H) levels was
observed. However, MS significantly increased ghrelin in plasma
(0.61 ± 0.13, n= 10 vs. 0.50 ± 0.05, t18=2.496, two tailed t-test,
p= 0.0279, Fig. 2I) at PND350.

3.2. Effect of MS on fecal microbiota

Despite the bacterial community richness indicated by the α-di-
versity richness index showed no significant change between MS mice
and control group (230 OTUs ± 5.86, vs 244 ± 8.56; t14=1,409,
two-tailed t-test, n= 9) (Fig. 3A), β-diversity indices revealed altera-
tions in the taxonomic bacterial community structure in MS compared
to control mice. Indeed β-diversity determined using both unweighted
and weighted Unifrac distances was altered in response to early life
stress (F1,14=3,775; p=0.0002 and F1,14=2,71; p=0.043 respec-
tively) (Fig. 3B). As compared to weighted Unifrac distance, use of the
unweighted Unifrac distance revealed a more pronounced separation
between mice groups, suggesting that abundant OTUs in both groups
are phylogenetically close and that MS-induced alterations mainly af-
fect OTUs with lower abundance. These findings were confirmed by
OTUs prevalence visualization (Supplementary Fig. 1A) and by ex-
amination of differences at each taxonomic rank using LEfSe analysis
(Fig. 3C, Supplementary Fig. 1B). No appreciable differences at the
taxonomic level of phyla was indeed observed between MS mice and
control group. However, community composition of MS mice was in-
creased in both Betaproteobacteria and Gammaproteobacteria classes
within the Proteobacteria phylum, as well increased in Bacteroidaceae

and Enterococcaceae families within the Bacteroidetes and Firmicutes

phyla respectively. Reduced abundance in Rikenellaceae and additional
taxa mainly among Lachnospiraceae family was observed in MS mice as

Table 1

Antibodies.

Antibody Company Reference Working
concentration

Anti-CD3-FITC BD 553062 dil 1/200
Anti-CD3 BD 555273 5 µg/mL
Anti-CD4-PE BD 553730 dil 1/200
Anti-CD25-PE-Cy7 BD 552880 dil 1/100
Anti-CD28 BD 553295 5 µg/mL
Anti-CD44-APC-Cy7 BD 560568 dil 1/200
Anti-CD62L-PE-Cy7 BD 560516 dil 1/500
Anti-CD127-AF488 BD 561533 dil 1/50
Anti-FoxP3 PerCP-

Cy5.5
eBioscience 45-5773-82 dil 1/100

Anti-RORgT-A647 BD 562682 dil 1/100
Anti-IL17-PE BD 559502 dil 1/100
Anti-mouse-Ig Southern Biotech 1010-01 5 µg/mL
Anti-mouse-IgG-HRP Southern Biotech 1030-05 dil 1/8000
Anti-mouse-IgA Sigma M-1272 5 µg/mL
Anti-mouse-IgA-HRP Sigma A4789 1.5 µg/mL
Anti-HRP Abcam 34961 10 µg/mL
Anti-HRP-biotin Abcam 195239 1.6 µg/mL
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compared to control mice (Supplementary Fig. 1B). Once agglomerated
at the species rank, differential abundance analysis using DESeq size
factors revealed that taxa significantly enriched in MS mice were pa-
thobionts, i.e. Bacteroides vulgatus, Proteus mirabilis, Enterococcus fae-

calis, Escherichia coli, and unidentified species belonging to Para-

sutterella and Bacteroides genus, whereas one unclassified taxa
belonging to commensal Lachnospiraceae (among 11 additional dif-
ferent unclassified Clostidiales members at the OTUs level) was sig-
nificantly enriched in control mice (q-values < 0.05; Fig. 3D,
Supplementary Fig. 1C, Table 2). In sum, alterations in structure and
composition observed in fecal microbiota of MS mice at PND350 meet
the definition of dysbiosis proposed notably by Peterson and Round
(Petersen and Round, 2014), i.e. a disturbance in the microbiome
structure that may consist in a loss of beneficial microorganisms, and/
or expansion of pathobionts or harmful microorganisms.

3.3. Repercussions of MS on intestinal permeability

We then wondered if MS could have long lasting consequences on
intestinal barrier. First, translocation of intestinal bacterial fragments
was assessed indirectly by LPS Binding Protein (LBP) concentrations in
plasma (Abad-Fernández et al., 2013), without modification in MS mice
(Fig. 4A). Additionally, we addressed intestinal permeability ex-vivo in
Ussing chambers in jejunum (Fig. 4B–D) and colon (data not shown).
No difference for electrical resistance, para- (Fluorescein Sodium Salt,
FSS) and trans-cellular permeability (Horse Radish Peroxidase, HRP)
was observed between MS and control mice.

3.4. Effects of MS on intestinal immune system

Even though MS had no consequences on intestinal permeability,
we wondered if humoral immune response was altered. Fecal IgG
concentrations were decreased in MS mice compared to control mice
(0.1078 µg/mg fecal protein [0.0375; 0.1625] vs. 0.2018 µg/mg fecal

Fig. 1. MS induced oral glucose intolerance associated with a loss of insulin sensitivity at PND350. (A) Body weight (g), n= 24–28. (B) Feed intake (g)/animal/week,
n= 8–9, (C) 16-h fasted blood glucose levels (mg/dL), n= 7–8, unpaired t-test, *p < 0.05. (D) Oral glucose tolerance test, after 6-h fasting, gavage with 2mg
glucose/g bodyweight at 0, blood glucose (mg/dL) from −30min to 120min, n=23–28, RM-two-way-ANOVA, **p < 0.01, ****p < 0.0001. (E) Area under the
curve of blood glucose 0–120min (mg/dL/2h), n=23–28 Mann-Whitney test, *p < 0.05. (F) Plasma insulin (ng/mL) after 6-h fasting and 15min after oral glucose
stimulation (2mg glucose/g bodyweight). (G) Insulin tolerance test, after 6-h fasting, intraperitoneal injection of 0.75mU insulin/g bodyweight at 0, blood glucose
(mg/dL) from−30min to 30min, n= 13–17, RM- two-way-ANOVA, **p < 0.01. (H) Area under the curve of blood glucose 0–30min (mg/dL/30min), n= 13–17,
unpaired t-test, **p < 0.01.
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protein [0.1066; 0.3825], t82=3.044, two tailed t-test p= 0.0006,
Fig. 5A). However, fecal IgA content was not different (Fig. 4B). Plas-
matic IgG and IgA concentrations were similar between both groups
(Fig. 5C and D) whereas anti-E. coli IgG representing humoral response
toward commensal microbiota were significantly increased in plasma of
MS mice (673 AU/10 µg/ml IgG [362.7; 904.8], vs. 449.4 AU/10 µg/ml
IgG [274.6; 754.5], t80=2.145, two tailed t-test, p= 0.0362, Fig. 5E).

We analyzed cellular immune response in the siLP. Percentage of
Rorγt+ in CD3+ was not affected by MS (Fig. 6A). Innate Lymphoid
Cells 3 (ILC3: CD127+ RORγt+) (Fig. 6B) and regulatory T cells (Treg:
CD25+ Foxp3+ in CD4+) (data not shown) were not altered in MS
mice. Fluorescence intensity of IL-17 on Th17 cells (CD3+ RORγt+ IL-
17+) was significantly decreased for MS mice suggesting lower IL-17
production (3428 IF IL-17 ± 1567 vs. 7854 IF IL-17 ± 2599,
t5=2.836, two tailed t-test, p= 0.0364, Fig. 6C). Furthermore, IL-17
secretion in response to TCR stimulation (anti-CD3/28) (Fig. 6D) and
IL-17 in jejunal tissue (Fig. 6E) were decreased in MS mice (TCR sti-
mulation: 2191.3 pg/ml ± 1583 vs. 4753.8 pg/ml ± 3635,
F1,21=4.610, RM-two-way ANOVA followed by Holm-Sidak’s post test,
p < 0.01; jejunal tissue: 30.98 pg/mg ± 19.1 vs. 49.36 pg/mg ±
21.1, t20=2.145, two tailed t-test p= 0.0444). IFNγ-secretion was not
modified by MS (Fig. 6F). Nevertheless, IL-10 and IL-22-secretion in

response to TCR-stimulation was significantly decreased in isolated LP
cells from MS mice as observed for IL-17 (IL-22: 2013.4 pg/ml ± 800
vs. 4597.7 pg/ml ± 1115, F1,21=3.028, RM two-way ANOVA fol-
lowed by Holm-Sidak’s post test, p < 0.05 Fig. 6G and H; IL-10:
709.8 pg/ml ± 961 vs. 2045.1 pg/ml ± 2056, F1,15=2.969, RM-two-
way ANOVA followed by Holm-Sidak’s post test, p < 0.05). Ad-
ditionally, IL-10 concentrations were decreased in jejunum of MS mice
(82.82 pg/mg ± 45.8 vs. 138.7 pg/mg ± 33.6, t23=3.454, two tailed
t-test, p= 0.0022; Fig. 6I), whereas IL-22 were non-detectable and
TGFβ similar in both groups (data not shown). TGFβ-secretion in re-
sponse to TCR stimulation was not modified by MS (data not shown).
Finally, TNFα-secretion in response to LPS-stimulation was slightly but
significantly increased in cells from MS mice (32.25 pg/ml ± 32.06 vs.
11.54 pg/ml ± 13.02, F1,21=2.996, RM-two-way ANOVA followed by
Holm-Sidak’s post test, p < 0.05, Fig. 6J).

3.5. MS’s effects on systemic immune response

We next assessed the systemic consequences of MS. Activated T cells
(CD4+ CD44high CD62Llow) (Fig. 7A) and regulatory T cells (CD4+

CD25+ foxp3+) (Fig. 7B) populations in spleen were not modified by
MS. Regarding functionality, IFNγ and IL-10-secretion in response to

Fig. 2. Plasmatic measurements in MS and control mice at PND350. (A) Basal plasma corticosterone levels (ng/mL) at PND350, n= 19–27. (B) Plasma GIP (pg/mL),
n= 22–27. (C) Plasma GLP1 (pM) in anti-DPP4 treated plasma, n=15–23. (D) Plasma cholesterol (mmol/L), n=15. (E) Plasma LDL (mmol/L), n=15. (F) Plasma
HDL (mmol/L), n=15. (G) Plasma triglycerides (mmol/L), n=15. (H) Plasma free fatty (FFA) acids (mmol/L), n= 10. (I) Ghrelin (ng/mL), n= 10, unpaired t-test
with Welch’s Correction, *p < 0.05.
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TCR-stimulation were not modified by MS (Fig. 7C and D). However, IL-
17 secretion was diminished in response to TCR-stimulation
(4249.81 pg/ml ± 1902.5 vs. 6590.09 pg/ml ± 4659.7,
F1,33=3.348, RM-two-way ANOVA followed by Holm-Sidak’s post test,
p < 0.05, Fig. 7E). TNFα-secretion in response to LPS-stimulation was
slightly but significantly increased in splenocytes of MS mice
(243.81 pg/ml ± 116.7, vs. 197.30 pg/ml ± 50.8, F1,46=4.293, RM-
two-way ANOVA followed by Holm-Sidak’s post test, p < 0.05,
Fig. 7F). Overall, MS-induced immunological perturbations followed
the same tendency at systemic and intestinal level.

4. Discussion

This study shows, for the first time, that early life stress is a risk
factor for glucose intolerance and loss of insulin sensitivity in ageing
wild-type mice under normal diet. In this model, glucose intolerance
was associated with microbiota dysbiosis, systemic response against
microbiota and decrease of IL-17 and IL-22 response in the intestine.

We previously observed that MS triggered features of Irritable
Bowel Syndrome (IBS) in young adult C3H/HeN male mice (PND50):
visceral hypersensitivity, intestinal hyperpermeability, low-grade

inflammation, defect of Paneth cells and microbiota dysbiosis (Riba
et al., 2018). As those features, apart of visceral hypersensitivity, are
also observed in metabolic disorders, we wondered if MS could trigger
metabolic disorders with ageing as metabolic disorders are ageing re-
lated diseases. This hypothesis was strengthened by epidemiological
study showing that both, stress and IBS, are positively correlated with
higher HbA1c (glycated hemoglobin) in patients suffering from type 2
diabetes (Badedi et al., 2016) indicating worse glycemic control. Fur-
thermore, epidemiological studies showed that IBS is related to meta-
bolic disorders independently of dietary patterns (Gulcan et al., 2009;
Guo et al., 2014). At PND350, MS induces glucose intolerance asso-
ciated with a loss of insulin sensitivity. Stress hormones (glucocorti-
coids) known to regulate metabolism (Schäcke et al., 2002) like corti-
costerone are not affected by MS at PND350 excluding a direct effect of
corticosterone on the observed metabolic phenotype.

Scattering evidences suggesting consequences of MS on metabolism
have already been published. MS alone did not induce glucose intol-
erance in 8-months-old Sprague-Dawley male rats, but diminished in-
sulin receptor expression in muscle and serum IGF-1 levels (Ghosh
et al., 2016). However, Sprague-Dawley rats submitted to MS combined
with post-weaning social isolation developed glucose intolerance at
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Fig. 3. MS induced fecal microbiota dysbiosis in favor of pathobionts. (A–E) 16S rRNA gene illumina Miseq sequences analysis, n= 7–9. (A) Chao-1 diversity index in
male PND350 mice. (B) Unweighted and weighted Unifrac Multidimentional Scaling (MDS) plot representing structural changes in bacterial community composition
in MS and control mice. (C) Circular cladogram generated from LEfSe analysis showing the most differentially abundant taxa enriched in microbiota from control
mice (red) or MS mice (green). LDA scores> 3 and significance alpha< 0.05 determined by Kruskal-Wallis test. (D) Classified differentially abundant taxa between
MS and control mice. Log2FoldChange (MS vs. Control)= log2(MS/Control) is plotted on the Y-axis. Phylum is indicated using color codes. Features were considered
significant if their adjusted post test p-value was<0.05. Key: a: Bacteroides vulgatus, b: Bacteroides spp., c: Odoribacter spp., d: Rikenellaceae RC9 gut group, e:
Enterococcus faecalis, f: Enterococcus spp., g: Lactococcus reuteri, h: Familly XIII UCG-006, j: Eubacterium xylanophilum, k: Peptococcus spp., l: Unlc. Ruminoclostridium 5,
m: Uncl. Ruminoclostridium 6, n: Unlc. Ruminococcus 1, o: Parasutterella spp., p: Bilophila spp., q: Escherichia coli, r: Escherichia shigella genus, s: Proteus mirabilis, t:
Proteus spp. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

H. Ilchmann-Diounou, et al. Brain, Behavior, and Immunity 80 (2019) 452–463

457 88



PND180, involving increased corticosterone levels (Vargas et al., 2016)
reinforcing the idea that long-lasting perturbations of metabolic
homeostasis could enhance the risk for metabolic dysfunctions through
higher vulnerability to additional risk factors (Ghosh et al., 2016). Fi-
nally, shorter MS protocol (5 days, 90 minutes per day) increased body
weight as well as glucose and insulin response after arginine-stimula-
tion in male Sprague-Dawley rats aged between PND105 and PND133
(Gehrand et al., 2016).

Interestingly, in our study, the MS-induced glucose intolerance and
loss of insulin sensitivity were not associated with changes in body
weight. This is of particular interest as in human, type 2 diabetes are
not always associated with obesity (Carnethon, 2014; Zou et al., 2017).

Neither plasmatic markers mainly involved in metabolic disorders
(FFA, triglycerides, cholesterol, HDL, LDL) nor incretins, like GLP-1 and
GIP, were modified by MS at PND350. However, ghrelin, a satiety
hormone, was significantly increased in MS mice compared to control
without modification of food intake. In ob/ob mice loss of ghrelin
production significantly raised insulin secretion restoring peripheral
insulin sensitivity, thus improving glucose homeostasis (Sun et al.,
2006). So, in our model increase of ghrelin might contribute to the
glucose intolerance and the loss of insulin sensitivity.

MS consequences on metabolic disorders were associated with mi-
crobiota dysbiosis. Microbial signature at PND350 in response to MS
displayed similitudes with signature previously observed in patients
with type 2 diabetes, that was mainly characterized by a moderate
degree of enrichment in Bacteroidetes (mainly explained by a bloom in
Bacteroides genus) and Betaproteobacteria, associated with a decrease in
Clostridia within Firmicutes phylum (Larsen et al., 2010; Leite et al.,
2017; Pedersen et al., 2016). As previously observed in type 2 diabetic
patients, using a metagenome-wide association study (Qin et al., 2012),
microbiota dysbiosis in response to MS at PND350 was also mainly
driven by pathobionts like Bacteroides vulgatus, Enterococcus faecalis as
well as Enterobacteriaceae such as Proteus mirabilis and Escherichia coli

(Leite et al., 2017; Cuív et al., 2017; Seo et al., 2015). B. vulgatus and E.

coli are suspected to drive insulin resistance via branched-chained
amino acids (Leite et al., 2017; Pedersen et al., 2016). Interestingly, MS
increased Bacteroides spp. and especially the species B. vulgatus as ob-
served in type 2 diabetic patients, and directly associated with a loss of
insulin sensitivity (Leite et al., 2017; Pedersen et al., 2016).

The microbiota dysbiosis observed at PND350 is not associated with
intestinal permeability changes. Increased intestinal permeability is
positively correlated with HOMA index in obese patients and (Teixeira
et al., 2012) in high-fat diet (HFD) mice model (Cani et al., 2008).
Furthermore, intestinal hyperpermeability is pointed out as a factor
leading to endotoxemia that might contribute to low-grade inflamma-
tion and triggering metabolic disorders (Cani et al., 2007). A normal
intestinal permeability in our model could be due to the absence of
obesity. Indeed, intestinal hyperpermeability has been described in
complex metabolic disorder i.e. type 2 diabetes associated with obesity
in mice and human model but never in type 2 diabetes in lean in-
dividuals. In mouse model of HFD-induced intestinal hyperpermeability
associated with an increase of HOMA index, restoring intestinal per-
meability by fish oil treatment or resolvin D1 did not improve HOMA
index (Lam et al., 2015), suggesting that correcting intestinal perme-
ability is not sufficient to ameliorate metabolic status. Cells isolated
from small intestine and spleen of MS mice at PND350 secrete higher
TNFα concentration in response to LPS in vitro stimulation compared to
control mice. Interestingly, childhood victimization is correlated with
higher plasmatic CRP levels in young adult in human (Baldwin et al.,
2017). Until today, there is no consensus among scientists if low-grade
inflammation is cause or consequence of metabolic disorder. On one
hand, obesity leads to low-grade inflammation through the exceeding
production of inflammatory molecules by white adipose tissue (Gregor
and Hotamisligil, 2011) whereas, on the other hand, endotoxemia can
induce obesity and insulin resistance (Cani et al., 2007). MS also de-
creased IgG in feces adding evidence to impaired intestinal barrierT
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despite no modification of intestinal permeability. This defect is also
reflected by higher TNFα in response to LPS in siLP and spleen, as well
as by higher anti-E. coli IgG in plasma. Interestingly, IgG against com-
mensal antigens were increased in diabetic patients (Mohammed et al.,
2012).

In our model, intestinal IL-17 and IL-22 and systemic IL-17 secre-
tions were impaired after TCR stimulation. The defect of IL-17 and IL-
22 secretion is not due to modification of populations, but rather to a
misfunction of Th17 and Th22 cells. The observed decrease of IL-17 and
IL-22 secretion is of particular interest since it was also observed in

Fig. 4. MS had no consequences on intestinal permeability. (A) LBP concentration in plasma (ng/mL) n= 9–10. (B–D) Ex vixo Ussing chambers experiment in
jejunum (B) Electrical resistance (Ω×cm2), n= 14–21. (C) Paracellular permeability to FSS (×10−7 cm/s), n= 14–19. (D) Transcellular permeability to HRP
(×10−8 cm/s), n= 7–11.
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Fig. 5. MS decreased fecal IgG and increased anti-E. coli IgG in plasma. (A) Fecal IgG content (µg/mg fecal protein), n= 38–46, Mann Whitney test, ***p < 0.001.
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other models of hyperglycemia induced by nutritional challenge and
genetically engineer. Indeed, HFD leading to obesity and type 2 dia-
betes are associated with a decrease of intestinal Th17 and Th22

populations (Garidou et al., 2015; Hong et al., 2017; Wang et al., 2014).
Furthermore, RORγt KO mice deficient for Th17/22 cells present a mild
glucose intolerance (Garidou et al., 2015). The direct or indirect

Fig. 6. MS impaired IL-17 and IL-22 secretion and increased TNFα in small intestine lamina propria (siLP). (A) Representatives dot plots of CD3+RORγt+ cells of siLP,
n= 3–4, unpaired t-test. (B) ILC3 in isolated siLP (RORγt+ in CD127+), n= 8–7. (C) Median fluorescence intensity of IL-17 on T helper 17 cell population
(CD3+RORγt+ cells) of siLP, n=3–4, unpaired t-test, *p < 0.05. (D, F–H) Cytokine secretion in siLP cell culture after 72 h without or with anti-CD3/CD28 (5 µg/
mL) stimulation. (D) IL-17, n=11–12. (F) IFNγ, n= 23. (H) IL-10, n=9–10. (G) IL-22, n=10–12, RM two-way ANOVA, *p < 0.05, **p < 0.01. (E, I) Cytokine
concentration (pg/mg protein) in jejunal tissue. (E) IL-17, n=11 (I) IL-10, n= 12–13, unpaired t-test, *p < 0.05, **p < 0.01. (J) TNFα secretion in siLP cell
culture after 16 h with or without LPS (100 ng/mL) stimulation, n=10–13, RM two-way ANOVA, * p < 0.05.
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increase of IL-22 moderates metabolic disorder induced by HFD (Wang
et al., 2014; Zou et al., 2017) and restores microbiota (Gulhane et al.,
2016; Zou et al., 2017) and intestinal barrier (Gulhane et al., 2016).

Taking together the results of this study show that MS in wild type
mice under normal diet induces glucose intolerance associated with a
loss of insulin sensitivity. Interestingly, glucose intolerance in MS
model is associated with a decrease of intestinal IL-17 and IL-22 se-
cretion as previously observed in studies of HFD-induced metabolic
disorders. Consequently, MS induce the same adverse effects as HFD,
without obesity and intestinal hyperpermeability. Finally, this study
highlights early life stress as a risk factor for metabolic disorders de-
velopment independently of nutritional challenge and early life period
as critical time window for appropriate establishment of immune
system and metabolism.
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SUPPLEMENTARY METHODS 

16S rRNA Amplification and Amplicon Sequencing 

The microbial 16S rRNA gene was amplified during the first PCR step with adapter fusion 

primers targeting the V3 to V4 regions (corresponding to a 460-bp region of Escherichia coli 

16S rRNA gene, GenBank number J01695). The forward PCR primer 5’CTT TCC CTA CAC 

GAC GCT CTT CCG ATC TAC GGR AGG CAG CAG3’ was a 43-nuclotide fusion primer 

consisting of the 28-nt illumina adapter (designed by bold font) and the 14-nt broad range 

bacterial primer 343F (Liu et al., 2007). The reverse PCR primer 5’GGA GTT CAG ACG 

TGT GCT CTT CCG ATC TTA CCA GGG TAT CTA ATC CT3’ was a 47-nuclotide fusion 

primer consisting of the 28-nt illumina adapter (designed by bold font) and the 19-nt broad 

range bacterial primer 784R (Andersson et al., 2008).  

The PCR mix contained MTP Taq DNA polymerase (SIGMA, 0,05 U/µl), 200 µM of each 

DNTP (SIGMA, premix), and 0,5 µM of each primer. After initial denaturation at 94°C for 60 

sec in CFX-96 Thermal Cycler (Bio-Rad), 30 cycles were run with 60 sec denaturation at 94°C, 

60 sec annealing at 65°C and 60 sec at 72°C.Round ended with 10 min extension at 72°C. 

Pooled amplicon libraries were sequenced employing an Illumina MiSeq (2 x 250 bp) at the 

GeT-PlaGe platform in Toulouse (France). Amplification quality (length, quantity and 

specificity) was verified using the Agilent 2200 Tapestation system (High sensitivity D1000 

ScreenTape Assay) and AATI Fragment Analyser at the GeT (Genomic and Transcriptomic, 

TRIX and PlaGe) platforms in Toulouse. The quality of the run was checked internally using 

PhiX, and then each pair-end sequences were assigned to its sample with the help of the 

previously integrated index. 

Microbiome 16S Data Analysis 
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High quality filtered reads were further processed using FROGS pipeline (Find Rapidly OTU 

with Galaxy Solution (Escudié et al., 2017)) to obtain OTUs and their respective taxonomic 

assignment thanks to Galaxy instance (http://sigenae-worbench.toulouse.inra.fr): Initial 

FROGS pre-process step allowed to select overlapped reads with expected length without N. 

Swarm clustering method (Mahé et al., 2014) was applied by using a first run for denoising 

with a distance of 1 and then a second run for clustering with an aggregation maximal distance 

of 3 on the seeds of first Swarm. Putative chimera were removed using Vsearch combined to 

cross-validation (GitHub repository. Doi 10.5281/zenedo.15524).  

Cluster abundances were filtered at 0,005% (Bokulich et al., 2013) and/or had to be present at 

least in 2 samples, yielding to  316 clusters corresponding to 308625 final valid reads. Between 

13 339 and 22 656 valid sequences per sample were counted (no significant difference between 

groups was noticed; p=0.421, unpaired t test with equal SD). 100% of clusters were affiliated 

to OTU by using a silva128 16S reference database and a taxonomic multi-affiliation procedure 

(Blast+ (Camacho et al., 2009) with equal multi-hits). Since rarefaction has shown to result in 

high rates of false positive tests for differential abundance (McMurdie and Holmes, 2014), 

counts were not rarefied.  

OTU prevalence, rarefaction curves were plotted for each sample by using Phyloseq package 

(v 1.19.1, Figure 3, Supplementary Figure 1A). Within sample community, alpha diversity was 

assessed by Chao-1 index. Divergence in community composition between samples was 

qualitatively and quantitatively assessed by calculating both unweighted (an investigation into 

the presence and absence of taxa) and weighted (which takes relative abundances of taxa in 

account) Unifrac distance matrices. Unconstrained ordination was visualized using 

multidimensional scaling (MDS) and hierarchical clustering (complete linkage combined with 

Unifrac distance, Supplementary Figure 1A) and compared using Adonis test (9999 

permutations). 

http://sigenae-worbench.toulouse.inra.fr/
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In order to determine features at each phylogenetic rank that characterize fecal microbiota of 

PND350 mice in response to maternal separation, LEfSe algorithm (Segata et al., 2011) was 

performed with an alpha value of 0.05 (Kruskall-Wallis non parametric pairwise comparisons) 

and a threshold on the logarithmic LDA score for discriminative features of 2.  

OTUs were agglomerated at the species rank  before univariate differential abundance of taxa 

was obtained using a negative binomial noise model for over dispersion as implemented in the 

R package DESeq2 (v 1.14.1) (Love et al., 2014; McMurdie and Holmes, 2014). Taxa were 

considered significantly differentially  

abundant between treatments if their adjusted p-value was below 0.05.  
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LEGENDS SUPPLEMENTARY FIGURES 

Supplementary Figure 1: MS induces gut dysbiosis in offspring at PND350. (A) Prevalence 

per OTUs in samples associated with hierarchical clustering based on the Unifrac distances 

with Ward linkage. (B) Histogram of the LDA scores computed for affiliated OTUs that were 

found differentially abundant between MS and control mice. The magnitude of the LEfSe scores 

higher than 3 and p < 0.05 are displayed. Differences are represented in the color of the most 

abundant class. (C) Relative abundance of taxa agglomerated at the species rank that were 

found differentially abundant using Deseq2 analysis, adjusted p-value < 0.05. 



Control MS

-4

-3

-2

-1

0

L
o
g
1
0
(R
e
l.
A
b
u
n
d
a
n
c
e
)

B. vulgatus Bacteroides spp.P. mirabilis E. coliE. faecalis Parasutterella spp.

Lachnospiraceae

UCG-006

Control MS

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

L
o
g
1
0
(R
e
l.
A
b
u
n
d
a
n
c
e
)

Control MS

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

L
o
g
1
0
(R
e
l.
A
b
u
n
d
a
n
c
e
)

Control MS

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

L
o
g
1
0
(R
e
l.
A
b
u
n
d
a
n
c
e
)

Control MS

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

L
o
g
1
0
(R
e
l.
A
b
u
n
d
a
n
c
e
)

Control MS

-2.0

-1.5

-1.0

-0.5

0.0

L
o
g
1
0
(R
e
l.
A
b
u
n
d
a
n
c
e
)

Control MS

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

L
o
g
1
0
(R
e
l.
A
b
u
n
d
a
n
c
e
)

A B

C

Supplementary Figure 1

100



101 
 

Additional data 

Lysozyme activity is resolved at PND350 

At PND50 MS induced in male mice intestinal barrier dysfunction, namely intestinal 

hyperpermeability, decreased fecal lysozyme activity and increased fecal IgA (Riba et al., 

2018). In my article (Ilchmann-Diounou et al., 2019) we showed, that intestinal permeability is 

restored at PND350. We wondered if lysozyme activity in PND350 mice is still modified. Feces 

were collected and frozen at -80°C. Activity of lysozyme against peptidoglycan was determined 

using the EnzChek® Lysozyme Assay Kit (Molecular probes, life technology). 
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Figure 23 Resolved parameters of intestinal barrier dysfunctions in maternal separated (MS) or control 
C3H/HeN mice at post-natal day (PND) 350 (A) Lysozyme (LZM) activity in fecal supernatant (U/µg fecal 
protein) of feces measured by ELISA. (B) fecal IgA concentration (µg/mg fecal protein) measured by ELISA. 

At PND350 fecal lysozyme activity in MS and control mice were similar. As a 

consequence, decreased lysozyme activity at PND50 is resolved in time (Figure 23A). Fecal 

IgA were similar between MS and control at PND350 (Figure 23B) but increased at PND50. 

These are arguments that intestinal barrier dysfunction resolves with time. One can hypothesize 

that, the effects of MS on immune-metabolism are due to a delay in intestinal barrier 

development. However, even though intestinal permeability and lysozyme activity are 

corrected, the intestinal immune system is not. Indeed, fecal IgG were diminished by MS at 

PND350 (Ilchmann-Diounou et al., 2019). Furthermore, intestinal low-grade inflammation is 

persisting TNFα secretion in response to LPS stimulation is increased and diminished IL-17 

and IL-22 in siLP show that intestinal immune system in MS mice is distinct from control. The 

delayed maturation of intestinal barrier namely delayed gut closure and delayed lysozyme 

activity could be responsible for a wrong priming of the immune system, leading to long-lasting 

intestinal and systemic low-grade inflammation. 

However, interventional studies are needed to prove this hypothesis. 
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Microbiota dysbiosis is different between PND50 and PND350 

We were interested in evolution of microbiota in our model over the time of the 

experiment. We wondered, if microbiota dysbiosis at PND50 is similar to microbiota dysbiosis 

at PND350. 

We confirmed that the bacterial signature associated with MS was specific of PND350 

mice since bacterial signature observed in PND50 mice was distinct from that of PND350 mice 

(Figure 24A) and not driven by pathobiont expansion (Figure 24B), unlike what we observed 

at PND350 (Ilchmann-Diounou et al., 2019). 
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Figure 24 Bacterial taxonomic patterns that characterize fecal microbiota of PND350 mice and PND50 

mice differ significantly. (A) PLS-DA score plots on the first three components (top panel: X-variates 1 and 2, 
bottom panel: X-variates 1 and 3) built from affiliated OTUs agglomerated at the species rank (74 taxa). Samples 

are classified into four classes: Control mice at PND50 (C-PND50), PND350 (C-PND350) and MS mice at 
PND50 (MS-PND50) or PND350 (MS-PND350). (B) Relative abundance of taxa agglomerated at the species 

rank in PND50 mice. Taxa displayed are not altered by MS at PND50 (adj-p >0.1) despite they were previously 
found differentially abundant using Deseq2 analysis in PND350 mice. (PLS-DA = Partial least square 

discriminant analysis; OUT = operational taxonomic unit)  
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SECOND RESULT: 

ROLE OF MICROBIOTA IN MS-INDUCED GLUCOSE INTOLERANCE  

IN AGING MICE 

 

Work in progress 

 

In collaboration with Olier, Maïwenn; Ilchmann-Diounou, Hanna; Lencina, Corinne; 

Guzylack-Piriou, Laurence; Balvay, Aurélie; Maudet, Claire; Foussier, Anne; Rabot, Sylvie; 

Ménard, Sandrine 

 

Microbiota dysbiosis is described to play a crucial role in the development of various 

non-communicable diseases, including metabolic disorders. The definition of dysbiosis 

proposed notably by Peterson and Round (Petersen and Round, 2014), is a disturbance in the 

microbiome structure that may consist in a loss of beneficial microorganisms, and/or expansion 

of pathobionts or harmful microorganisms.  

Since microbiota is modified in our model of neonatal maternal separation (MS), and a 

tremendous amount of articles showed that microbiota dysbiosis is sufficient to induce 

metabolic disorder in germ-free recipient mice (Bäckhed et al., 2004; Turnbaugh et al., 2006), 

we wondered, if the observed effects of MS are triggered by gut microbiota dysbiosis. Germ-

free mice are the recent gold standard to prof a causal relationship. 

We set up collaboration with the germ-free platform ANAXEM at Micalis and Sylvie 

Rabot of the team Food, Gut Microbiota, Brain and Metabolic Diseases (AMIPEM) at Micalis, 

INRA Jouy en Josas, to carry out fecal microbiota transfer (FMT) of PND350 MS and control 

fecal samples into germ-free (GF) mice. 
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INTRODUCTION 

Intestinal microbiota is an important factor to intestinal homeostasis but more largely 

contribute to the host’s wellbeing. Host and microbiota interact in a symbiotic relationship that 

benefits to both: host and microbiota (Bäckhed et al., 2005). Microbiota dysbiosis is described 

to play a crucial role in the development of various non-communicable diseases, including 

metabolic disorders. The definition of dysbiosis proposed notably by Peterson and Round 

(Petersen and Round, 2014), is a disturbance in the microbiome structure that may consist in a 

loss of beneficial microorganisms, and/or expansion of pathobionts or harmful microorganisms. 

The main issue remaining in microbiota study was to define the ‘healthy” microbiota. This was 

the aim of the first phase of the National Institutes of Health Human Microbiome Project (NIH 

HMP), which started in 2007 (Turnbaugh et al., 2007). Then, the second phase (integrative 

HMP, iHMP or HMP2) aimed to focus on the role of microbiota on the onset of diseases 

including type 2 diabetes (T2D) (Zhou et al., 2019). Before iHMP, obesity and diabetes, were 

described to be associated with gut dysbiosis (Ley et al., 2005; Qin et al., 2012). The strength 

of iHMP in T2D is the following of participants (healthy and pre-diabetics) for 4 years (Zhou 

et al., 2019). This allows to associate microbiome profile to insulin sensitivity status that 

confirm microbiota dysbiosis associated to T2D and might contribute to early detection of T2D 

(Zhou et al., 2019). Those epidemiological studies need to be completed by mechanistic 

experiments to validate causative associations.  

Neonatal maternal separation (MS) has been described to play a role in the development of 

metabolic diseases (Aya-Ramos et al., 2017; Ghosh et al., 2016; Ilchmann-Diounou et al., 

2019). Indeed, MS induces type 2 diabetes-like features in aging, namely fasted hyperglycemia, 

glucose intolerance and insulin resistance, associated with intestinal and systemic low-grade 

inflammation, decreased intestinal IL-17 secretion and increased humoral response against 

microbiota. This immune-metabolic phenotype was associated with fecal dysbiosis (Ilchmann-

Diounou et al., 2019).  

We aimed to address the role of microbiota in MS-induced glucose intolerance. Germ free 

mice raised under axenic condition represent an interesting tool to answer this question. So, we 

set up a fecal microbiota transfer from old mice which underwent or not MS in early life into 

adult germ-free mice. 
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MATERIAL & METHODS 

Mouse model 

The donor mice, conventional, Specific and Opportunistic Pathogen Free (SOPF), C3H/HeN 

male mice, aged post-natal day (PND350), were raised in INRA Toulouse mouse house 

facilities. They are issue of an anterior experiment, experimental protocol and maternal 

separation (MS) procedure were previously described (Ilchmann-Diounou et al., 2019). 

Experimental protocol were approved by local Animal Care Use Committee (Comité d'Ethique 

de Pharmacologie-Toxicologie de Toulouse - Midi-Pyrénées, France) registered as N°86 at the 

Ministry of Research and Higher Education (N° 0029/SMVT), and conducted in accordance 

with the European directive 2010/63/UE. MS and control mice were kept at a constant 

temperature (22 ± 1°C) and maintained on a 12:12 h light/dark cycle (lights on 7h30 am). 

Normal diet (Harlan2018, Envigo, Gannat, France) and water were available ad libitum.  

The germ-free C3H/HeN male were obtained locally from the germ-free rodent breeding 

facility of Anaxem (Germfree animal facilities of the Micalis Institute, France). They were 

housed in sterile Plexiglas isolators (Eurobioconcept, Paris, France). The germ-free status was 

monitored weekly by microscopic examination and aerobic and anaerobic cultures of freshly 

voided feces. All mice were kept in Macrolon cages (38 cm long, 22 cm wide, 21 cm high) 

containing sterile beddings made of wood shavings. They were given a free access to autoclaved 

tap water and a γ-irradiated (45 kGy) normal diet (Harlan2018, Envigo, Gannat, France).The 

isolators were maintained at 20–24°C and on a 12-h light/dark cycle (lights on at 07:30 a.m.). 

Experimental procedures were conformed to the European guidelines for the care and use of 

laboratory animals. They were carried out in accordance with the recommendations of and 

approved by (approvals #10724) the ethics committee of the INRA Research Center at Jouy-

en-Josas (ethics committee named Comethea, registered by the French Ministry in charge of 

Research since 2011/06/30 with reference number 45). 

Colonization of Germ Free mice 

Fecal homogenate of PND350 maternal separated (MS) and control mice were prepared as 

follows. A pool of feces collected from 14 mice was suspended at 1/100 in Ringer solution 

supplemented with 0.05% (w/v) L-cysteine (HCl) and 10% skimmed milk and frozen at -80°C 

prior to use. 

PND150 GF mice were orally inoculated with a 1:100 dilution of fecal homogenate from 

PND350 MS mice, PND350 control mice or vehicle (Ringer solution supplemented with 0.05% 
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(w/v) L-cysteine (HCl) and 10% skimmed milk). Sixteen weeks after colonization, mice were 

used for analysis. Mice that received fecal homogenate from PND350 MS mice are named 

GFMS; from PND350 control mice are named GFC whereas mice receiving the vehicle are 

named GFM (Milk added to Ringer solution) mice. All mice had same age at analysis (150 days 

+ 16 weeks = 262 days). 

Fecal microbiota composition analysis 

Total microbial genomic DNA was obtained from stool samples using the ZR Fecal DNA 

MiniprepTM (Zymo Research, Ozyme SAS, Montigny-le-Bretonneux, France) and DNA 

quantity was determined using a TECAN Fluorometer (Qubit® dsDNA HS Assay Kit, 

Molecular Probes, Thermofisher Scientific, Montigny le Bretonneux).  

16S rRNA Amplification and Amplicon Sequencing 

The microbial 16S rRNA gene was amplified during the first PCR step with adapter fusion 

primers targeting the V3 to V4 regions (corresponding to a 460-bp region of Escherichia coli 

16S rRNA gene, GenBank number J01695). The forward PCR primer 5’CTT TCC CTA CAC 

GAC GCT CTT CCG ATC TAC GGR AGG CAG CAG3’ was a 43-nuclotide fusion primer 

consisting of the 28-nt illumina adapter (designed by bold font) and the 14-nt broad range 

bacterial primer 343F (Liu et al., 2007). The reverse PCR primer 5’GGA GTT CAG ACG 

TGT GCT CTT CCG ATC TTA CCA GGG TAT CTA ATC CT3’ was a 47-nuclotide fusion 

primer consisting of the 28-nt illumina adapter (designed by bold font) and the 19-nt broad 

range bacterial primer 784R (Andersson et al., 2008).  

The PCR mix contained MTP Taq DNA polymerase (SIGMA, 0,05 U/µl), 200 µM of each 

DNTP (SIGMA, premix), and 0,5 µM of each primer. After initial denaturation at 94°C for 60 

sec in CFX-96 Thermal Cycler (Bio-Rad), 30 cycles were run with 60 sec denaturation at 94°C, 

60 sec annealing at 65°C and 60 sec at 72°C.Round ended with 10 min extension at 72°C. 

Pooled amplicon libraries were sequenced employing an Illumina MiSeq (2 x 250 bp) at the 

GeT-PlaGe platform in Toulouse (France). Amplification quality (length, quantity and 

specificity) was verified using the Agilent 2200 Tapestation system (High sensitivity D1000 

ScreenTape Assay) and AATI Fragment Analyser at the GeT (Genomic and Transcriptomic, 

TRIX and PlaGe) platforms in Toulouse. The quality of the run was checked internally using 

PhiX, and then each pair-end sequences were assigned to its sample with the help of the 

previously integrated index. 



108 
 

Microbiome 16S Data Analysis 

High quality filtered reads were further processed using FROGS pipeline (Find Rapidly 

OTU with Galaxy Solution (Escudié et al., 2018)) to obtain OTUs and their respective 

taxonomic assignment thanks to Galaxy instance (http://sigenae-worbench.toulouse.inra.fr): 

Initial FROGS pre-process step allowed to select overlapped reads with expected length without 

N. Swarm clustering method (Mahé et al., 2014) was applied by using a first run for denoising 

with a distance of 1 and then a second run for clustering with an aggregation maximal distance 

of 3 on the seeds of first Swarm. Putative chimera were removed using Vsearch combined to 

cross-validation (GitHub repository. Doi 10.5281/zenedo.15524). Cluster abundances were 

filtered at 0,005% (Bokulich et al., 2013) and/or had to be present at least in 2 samples. 100% 

of clusters were affiliated to OTU by using a silva128 16S reference database and a taxonomic 

multi-affiliation procedure (Blast+ (Camacho et al., 2009) with equal multi-hits). Diversity 

indexes of bacterial community, as well as ordinations were computed using the Phyloseq 

package (v 1.19.1) in RStudio software (Mcmurdie and Holmes, 2012; McMurdie and Holmes, 

2013; R Development Core Team, 2011). Divergence in community composition between 

samples was assessed by calculating unweighted (an investigation into the presence and absence 

of taxa) Unifrac distance matrice. Unconstrained ordination was visualized using 

multidimensional scaling (MDS) and compared using Adonis test (9999 permutations). 

Oral glucose tolerance test (OGTT)  

OGTT were performed in mice after 16 h-fasted during night. For OGTT, mice were 

gavaged with 2 mg glucose per g of bodyweight. Blood glucose levels were monitored from 

the tip of the tail vein with a glucose meter (Johnson & Johnson, Issy-les-Moulineaux, France) 

at -30, 0 (glucose gavage), 15, 30, 60, 90 and 120 min.  

For fasted blood glucose, mice were fasted 16-h overnight.  

Intestinal permeability in Ussing chambers 

Intestinal permeability was assessed in jejunal fragments on Ussing chambers. Briefly, 

jejunal fragments were mounted in Ussing chambers (Physiologic Instruments, San Diego, CA, 

USA). Tissues were bathed 2h with oxygenated thermostated Kreb’s solution (Sigma, Saint 

Quentin Fallavier, France). Fluorescein Sodium Salt 40 µg/ml (FSS 376Da; Sigma) was added 

to mucosal compartment as para-cellular marker of intestinal permeability.  

Fluorescence intensity was measured 485nm/525nm using an automatic Infinite M200 

microplate reader (Tecan, Männedorf, Switzerland). Epithelial permeability to FSS was 

http://sigenae-worbench.toulouse.inra.fr/
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determined by measuring the fluorescence intensity (FI) 485 nm/525 nm using an automatic 

Infinite M200 microplate reader. Permeability was calculated as the ratio of flux/concentration, 

and expressed as cm/second. 

Immune cells isolation 

Splenocytes were isolated through a 70-µm nylon mesh and suspended in PBS 1%-KO SR 

serum (Gibco, Thermofisher Scientific).  

Isolated cells from Small Intestines (si) lamina propria (siLP) were obtained as follow: si 

were washed in cold PBS, incubated in PBS 3 mM EDTA (Sigma), washed in warm PBS, 

digested with 100 U/mL of collagenase (Sigma) in DMEM 20% FCS and finally purified on 

Percoll (Sigma). 

Primary cell culture  

Isolated cells from spleen and siLP were seeded at 2x106 cells per well in the presence or 

absence of 5 µg/mL hamster anti-mouse CD3 (BD) and hamster anti-mouse CD28 (BD) coated 

wells. Supernatants were collected after 72h.  

Cytokines measurement 

Cytokines were measured in supernatant of primary cell culture, or jejunal fragments 

suspended in RIPA buffer (0.5% deoxycholate, 0.1% SDS and 1% Igepal in TBS) containing 

complete anti protease cocktail (Sigma). Jejunal protein concentrations were measured using 

BCA uptima kit (Interchim, Montlucon, France). IL-17, IFNγ, and IL-22 in supernatant or 

lysate of jejunal fragments were assayed using commercial ELISA kits (R&D Systems, Lille, 

France).  

Humoral response in feces and plasma 

Plates were coated with 5 µg/ml of sheep anti-mouse IgA (Sigma) or goat anti-mouse IgG 

(SouthernBiotech, Cliniscience, Nanterre, France), incubated with plasma, detected with 1.5 

µg/ml HRP-conjugated goat anti-mouse IgA (Sigma) or goat anti-mouse IgG 

(SouthernBiotech). HRP was revealed using TMB and the reaction was stopped with H2SO4 

before reading at 450 nm using automatic Infinite M200 microplate reader.  

Immunoglobulin specificity against commensal E. coli  

Maxisorp 96-wells plates were coated with 5 µg/ml of protein from C3H/HeN isolated 

E. coli lysate (being used as representative bacteria of the intestinal microbiota), incubated with 

plasma (10 µg/mL IgG or 30 µg/mL IgA), and revealed as above-mentioned. Results were 
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expressed as arbitrary units (AU) per 10 µg/mL of IgG or AU per µg/mL IgA, in comparison 

with a standardized immune serum. The E. coli lysate was prepared as previously described 

(Riba et al., 2018). 

Statistical analysis 

Statistical analyses were performed using GraphPad Prism version 6.04 (GraphPad 

Software, La Jolla, CA, USA). Results for single comparisons were displayed as box plots [min 

to max] and analyzed using either one-way ANOVA, following Dunnett’s multiple comparison 

test (parametric) or Kruskal-Wallis test, following Dunn’s multiple comparison test (non-

parametric) in case of different standard deviations (Brown-Forsythe test). Multiple conditions 

in OGTT and cytokine measurements were displayed either as kinetics with SEM or box plots 

[min to max] and compared per family by Tukey multiple comparison posttest after a significant 

repeated measures (RM) two-way ANOVA. Differences were considered significant for 

P<0.05. 
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RESULTS 

Colonization led to distinct microbiota in GFC and GFMS mice 

We confirmed by 16S rRNA gene sequencing that inoculation of GF mice with microbiota 

from MS (IMS) or control (IMT) mice lead 16 weeks after colonization to recipient mice with 

distinct microbiota (GFC and GFMS) (Figure 1). Indeed, GFM group was distant from GFC 

and GFMS along axis 1 in multidimensional scaling (MDS) of Unifrac distances. GFC and 

GFMS groups could be separated along axis 2. Microbiota of recipient GFC is similar to 

inoculum coming from control donor mice and microbiota of recipient GFMS is similar to 

inoculum coming from MS donor mice. 

 
Figure 1 First two axes of a multidimensional scaling (MDS) of UniFrac distances from 16S rRNA gene 

sequencing of GFM (green), GFC (blue) and GFMS (red); inoculum of MS mice (IMS-brown), inoculum of 
control mice (IC-black). 

Fecal microbiota transfer of MS donor failed to induce glucose intolerance in recipient 

In order to test our hypothesis involving a role of MS microbiota driving glucose intolerance 

in aging mice (Ilchmann-Diounou et al., 2019), we looked at glucose metabolism in mice 

receiving either microbiota from MS (GFMS) or control mice (GFC) or the vehicle (GFM). 

Fecal microbiota transfer (FMT) of MS microbiota in recipient mice (GFMS) did not, after 16 

weeks, increase fasted blood glucose compared to FMT of control microbiota (GFC) (Figure 

2A). Glucose intolerance, as measured during oral glucose tolerance test (OGTT), was not 

induced by FMT of MS microbiota (Figure 2B-C). However, FMT of microbiota from MS and 

control mice induced glucose intolerance compared to mice receiving the vehicle (Figure 2B-

C). In summary, FMT of MS mice was not sufficient to transfer MS metabolic phenotype 

observed at PND350. 



112 
 

-3 0 0 3 0 6 0 9 0 1 2 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

t im e  (m in )

b
lo

o
d

 g
lu

c
o

s
e

 (
m

g
/d

L
)

G FM

G F C

G F M S

#

**

G
F

M
G

F
C

G
F

M
S

0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

A
U

C
 (

m
g

/d
L

/2
h

)

a a ,bb

*  G F M  v s  G F C

#  G F M  v s  G F M S

A B

G
F

M
G

F
C

G
F

M
S

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

b
lo

o
d

 g
lu

c
o

s
e

 (
m

g
/d

L
)

C

 
Figure 2 (A) 16h-fasted blood glycemia. (B) Oral glucose tolerance test in 16h-fasted mice, blood glucose 

(mg/dL), two-way ANOVA, **p<0.01 GFC in comparison to GFM, # p<0.05 GFMS in comparison to GFM. (C) 
Area under the curve (mg/dL/2h), one-way ANOVA, same letter = no statistical difference, different letters = 
significant differences.  

Fecal microbiota transfer of MS donor failed to decrease IL-17 secretion in small intestine 

lamina propria 

In our previous study, MS-induced glucose intolerance was associated with a decrease of 

IL-17 secretion in small intestine lamina propria (siLP). Even though FMT of MS microbiota 

in GFMS was not sufficient to induced glucose intolerance, we wonder if it could lead to the 

defect of IL-17 secretion in siLP. FMT of MS microbiota in GFMS did not decrease IL-17 

concentration in jejunum nor IL-17 secretion in response to T cell receptor (TcR) stimulation 

in siLP cells (Figure 3A-B) compared to GFC or GFM.  

G
F

M
G

F
C

G
F

M
S

0

5 0

1 0 0

1 5 0

IL
-1

7
 (

p
g

/m
g

 p
r
o

te
in

)

- a n t i C D 3 -2 8

0

5 0 0 0

1 0 0 0 0

1 5 0 0 0

IL
-1

7
 (

p
g

/m
L

)

G F C

G F M S

G FMG FM

G F C

G F M S

A B

 
Figure 3 (A) IL-17 concentration (pg/mg protein) in lysate of small intestine (SI). (B) Primary cell culture of 

small intestine lamina propria (siLP). IL-17 concentration in cell culture supernatant (pg/mL) after 72h incubation 
without or with anti-CD3/CD28 stimulation. 

In summary, our FMT protocol allowed to colonize GF recipient mice with MS (GFMS) and 

control microbiota (GFC) that are similar to inoculum from donor mice and as such led to 

different microbiota between GFMS and GFC. However, FMT of MS microbiota in GFMS , 
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even after 16 weeks, was not sufficient to reproduce MS-induces phenotype, namely fasted 

hyperglycemia, glucose intolerance and defect of IL-17 secretion in small intestine.  

We choose to make the most of this work by exploiting the results in a different way. Indeed, 

we took advantage of the obtained results to study the long-term effects of colonization (after 

16 weeks) of GF adult mice with microbiota of aging (PND350) control mice on different 

parameters, notably intestinal permeability, intestinal and systemic immune response and 

glucose metabolism. Indeed, at our knowledge, colonization effects are principally measured in 

a short time window after colonization. We analyzed intestinal barrier, immune response and 

metabolism 16 weeks after colonization. 

In the following part, results are presented and compared between GF, recipient (previous 

GFC) and donor mice (previous control). 

 

What are the long-term effects of fecal microbiota transfer in adult germ-free mice? 

 

Fecal microbiota of recipient mice differ from donor and inoculum. 

Figure 4 shows that inoculated microbiota of donor mice were distinct to recipient 

microbiota. The groups are separated along axis 2, but not axis 1 in multidimensional scaling 

(MDS) of Jaccard distances. Inoculum do not differentiate from donor microbiota, since it could 

not be separated by Jaccard distances. GF fecal 16S rRNA sequencing confirmed that GF mice 

are different from donor and recipient (separated along axis 1).  

 
Figure 4 First two axes of a multidimensional scaling (MDS) of Jaccard distances from 16S rRNA gene 

sequencing of donors (conventional mice), recipients (germ-free mice colonized with the inoculum: inoc) and 
germ-free mice. 
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Microbiota colonization of GF mice is not sufficient to achieve intestinal barrier 

maturation observed in donor mice 

Intestinal paracellular permeability to FSS is lower in donor mice compared to GF mice. 

(Figure 5A). Colonization (recipient mice) decreased slightly but not significantly intestinal 

paracellular permeability compared to GF mice but do not reach the same levels as donor mice. 

Concentration of secretory immunogloblulin A (sIgA) in feces is higher in donor mice 

compared to GF mice (Figure 5B). Colonization (recipient mice) did not significantly increase 

sIgA in feces compared to GF mice. Compared to donor mice, recipient mice had lower IgA. 

Lipocalin-2 concentration in feces is higher in donor mice compared to GF mice (Figure 5C). 

Colonization (recipient mice) did not increase lipocalin-2 concentration in feces compared to 

GF mice. Compared to donor mice, recipient mice had lower lipocalin 2.  
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Figure 5 (A) Paracellular jejunal permeability to FSS (10-7 cm/s), assessed in Ussing chambers. (B) secretory 

IgA in fecal supernatant (sIgA) (ng/µg fecal protein). (C) Lipocalin-2 (lcn2) (pg/µg fecal protein) in fecal 
supernatant, Kruskal-Wallis test, same letter = no statistical difference, different letters = significant differences. 

Microbiota colonization induces systemic humoral immune response 

IgA and IgG concentrations in plasma were higher in donor mice compared to GF mice 

(Figure 6A-B). Colonization (recipient mice) significantly increased IgA but not IgG compared 

to GF mice. Compared to donor mice, recipient mice had lower IgG and IgA concentration in 

plasma.  

Humoral response (IgA and IgG) directed against microbiota (E.coli lysate as a 

representative of bacterial luminal antigens) were higher in donor mice compared to GF mice 

(Figure 6 C-D). Colonization (recipient mice) slightly but not significantly increased anti-E. 

coli IgG and IgA compared to GF mice. Compared to donor mice, recipient mice had decreased 

anti-E. coli IgG and IgA in plasma. 
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Figure 6 Plasmatic humoral immune response. A IgG (µg/mL). B IgA (µg/mL). C anti-E.coli IgG (AU/10 

µg/mL IgG). D anti-E.coli IgA (AU/µg/mL IgA). Kruskal-Wallis test., same letter = no statistical difference, 
different letters = significant differences. 
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Microbiota colonization triggers IL-17 secretion in response to TcR stimulation in siLP 

IL-17 secretion by siLP cells in response to TcR stimulation is higher in donor mice 

compared to GF mice (Figure 7A). Similar secretions of IL-22 and IFNγ by siLP cells in 

response to TcR stimulation were observed between donor and GF mice (Figure 7B-C). 

Colonization (recipient mice) significantly increased IL-17 secretion in response to TcR 

stimulation in siLP compared to GF. Compared to donor mice, recipient mice had identical IL-

17 secretion in response to TcR stimulation in siLP. 

There were no differences for IL-17 (Figure 7A), IL-22 (Figure 7B) and IFNγ (Figure 7C) 

secretion in basal state between the three groups. 
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Figure 7 Primary cell culture of small intestine lamina propria (siLP). Cytokine concentrations in cell culture 

supernatant (pg/mL) after 72h incubation without or with anti-CD3/CD28 stimulation. (A) IL-17. (B) IL-22. 
(C) IFNγ. Two-way ANOVA, same letter = no statistical difference, different letter = significant differences. 
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Microbiota colonization triggers IL-17 secretion in response to TcR stimulation in spleen 

On systemic level, IL-17 secretion by splenocytes in response to TcR stimulation is higher 

in donor mice compared to GF mice (Figure 8A). Similar secretions of IL-22 and IFNγ by 

splenocytes in response to TcR stimulation were observed between donor and GF mice (Figure 

8B-C). Colonization (recipient mice) significantly increased IL-17 secretion in response to TcR 

stimulation in splenocytes compared to GF. However, recipient mice did not reach the same IL-

17 concentrations than donor, so recipient mice had lower IL17 secretion in response to TcR 

stimulation in spleen compared to donor mice  

In basal conditions, IL-22 secretion is lower in donor compared to GF and recipient mice 

(Figure 8B). 
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Figure 8 Primary cell culture of splenocytes. Cytokine concentrations in cell culture supernatant (pg/mL) after 

72h incubation without or with E.coli lysate or anti-CD3/CD28 stimulation. (A) IL-17. (B) IL-22. (C) IFNγ. Two-
way ANOVA, same letter = no statistical difference, different letters = significant differences. 
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Microbiota colonization induced glucose intolerance compared to GF and donor 

Body weight was higher in donor mice compared to GF and recipient (Figure 9A). 

Interestingly, fasted blood glucose was lower in donor mice compared to GF and recipient mice 

(Figure 9B). Glucose tolerance during OGTT was better in donor and GF mice compared to 

recipient mice as observed through the kinetic and AUC (Figure 9C-D). Indeed, 16 weeks 

colonization induced glucose intolerance in recipient mice compared to GF and donor. 
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Figure 9 (A) Body weight (g). (B) 16h-fasted blood glucose (mg/dL). (C) Oral glucose tolerance test in 16h-

fasted mice, blood glucose (mg/dL), two-way ANOVA, **p<0.01 recipient vs donor, ## p<0.01 recipient vs GF. 
(D) Area under the curve (AUC) (mg/dL/2h), one-way ANOVA, same letter = no statistical difference, different 
letters = significant differences. 
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DISCUSSION 

In this study, we aimed to address the role of microbiota in MS-induced glucose intolerance 

and associated defect of IL-17 secretion in siLP and spleen (Ilchmann-Diounou et al., 2019). 

We performed fecal microbiota transfer (FMT) from maternal separated (MS) and control at 

PND350 into germ-free (GF) adult mice and demonstrated that 16 weeks after FMT, MS 

microbiota did not induce glucose intolerance nor IL-17 secretion defect compared to control 

microbiota even though microbiota was different between mice receiving microbiota inoculum 

from control or MS mice.  

Our experiment showed that microbiota was not sufficient to induce the MS PND350 

phenotype. Microbiota dysbiosis was observed at earlier time point in the MS model (PND50) 

and was associated with intestinal barrier modification (lower anti-microbial peptides, intestinal 

hyperpermeability, low grade inflammation) without disturbed glucose metabolic phenotype 

(Riba et al., 2018). At PND350 in MS mice, antimicrobial peptides and intestinal permeability 

returned to the control level and only intestinal inflammation and microbiota dysbiosis 

remained. Microbiota is evolving in the course of time in the MS model (cf. III. Part Results. 

First Result, Additional Data). Therefore, we wonder if the microbiota at PND350 could be a 

consequence of earlier defect and if the causative microbiota could be the dysbiotic microbiota 

observed in MS mice a PND50. The next step will be to perform FMT with microbiota of MS 

mice at PND50. If microbiota from MS PND50 mice fails to induce glucose intolerance 

associated with decrease of IL-17 secretion in siLP and spleen it would be interesting to 

combine dysbiotic microbiota and impaired intestinal barrier i.e. transfer microbiota from 

control and MS mice on GF mice submitted or not to MS. Indeed, a weakened intestinal barrier 

associated with low-grade inflammation may be necessary to enable dysbiotic MS microbiota 

to modify host immune-metabolism. Indeed, de Palma et al. showed that microbiota transfer 

was not sufficient to induce MS-caused behavioral modifications in GF mice (De Palma et al., 

2015). This experiment will also be an opportunity to address the consequences of MS on 

intestinal barrier and immune response in GF conditions. Indeed, MS has been widely used in 

rodent to address the long lasting consequences of early life stress on intestinal homeostasis (at 

PND50 irritable bowel syndrome model) but the contribution of microbiota in those outcomes 

has never been tested. 
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Even though we could not reach our primary objective, we took advantage of this work and 

analyzed the effect of FMT on adult GF mice in order to compare intestinal physiology as well 

as systemic immune response and glucose metabolism between donor, recipient and GF mice.  

With our work, we showed that, 16 weeks after colonization, recipient mice failed to reach 

the same level of maturation that donor mice, regarding intestinal barrier, immune response and 

metabolic status.  

First, microbiota from recipient mice is different from donor microbiota, even if inoculum 

was a good representative of donor microbiota. This result could be explained by the 

conservation of the inoculum or the frequency of the inoculum administration. FMT could be 

performed by co-housing, frozen inoculum without prior preparation or frozen inoculum with 

cryoprotectant (milk in our case). Inoculation could be performed twice a week for several 

weeks or in one shot, what we did. Further analysis of the bacteria involved in the distinction 

between donor and recipient are needed to provide explanations and also to reconcile the data 

on microbiota and consequence of colonization on host maturation.  

Adult GF mice present defect in immune response, social behavior, nutrient absorption and 

metabolism (Desbonnet et al., 2014). 

 

Indeed, in a second part, we showed that colonization only induced partial maturation of host 

functions. We demonstrated that intestinal permeability is lower in donor mice compared to GF 

and recipient mice are in-between. Data on intestinal permeability in GF mice are conflicting. 

An increase of transcelluar intestinal permeability to HRP has been described (Heyman et al., 

1986) in conventionally raised mice compared to GF. Thevaranjan et al. report no modifications 

of in vivo measured intestinal permeability in GF vs conventionally raised or colonized mice 

(Thevaranjan et al., 2017). It is interesting to note that colonization decreased permeability of 

another barrier: the Blood Brain Barrier (Braniste et al., 2014). We then looked at IgA and 

lipocalin production by the intestine. Donor mice have higher concentration of sIgA and 

lipocalin compared to GF and recipient mice. It has already been published that GF mice have 

weakened intestinal barrier, namely immature immune system (Falk et al., 1998; Macpherson 

and Harris, 2004) and impair sIgA secretion (Moreau et al., 1978). However, it has been 

demonstrated that colonization of GF with complex microbiota induced the same IgA response 

that the one observed in conventionally raised mice (Lécuyer et al., 2014). The discrepancy 

between those results and our results could be explain by the method used to measured IgA, 
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elispot in siLP (Lécuyer et al., 2014) and ELISA on feces for us. Furthermore, inoculum was 

prepared out of fresh microbiota and gavaged twice. They analyzed mice 8 weeks after 

colonization whereas we analyzed them 16 weeks after colonization. In a recent article Le Roy 

et al. demonstrated that stabilization of microbiota is reached 9 weeks after colonization and as 

such host parameters could be unstable before (Le roy front in microbial 2019). Regarding 

cellular intestinal immune response, GF mice are described to have thinner siLP (Round and 

Mazmanian, 2009) and a great deficit in gut associated lymphoid tissue which can be restored 

by colonization (Falk et al., 1998; Macpherson and Harris, 2004). In our study, donor produced 

higher IL-17 in response to TcR stimulation compared to GF and colonization completed 

restore IL-17 secretion in recipient mice. Indeed, it has been well described that GF mice have 

decreased Th17 in small intestine which can be stimulated by colonization and more 

particularly by Segmented Filamentous Bacteria (Gaboriau-Routhiau et al., 2009; Ivanov et al., 

2008). Interestingly, regarding IL-17 response, the same observation has been made at systemic 

level (spleen). 

Donor mice had higher Ig in plasma compared to GF and colonization slightly increased IgA 

response but not IgG. Humoral response toward microbiota was higher in donor mice compared 

to GF and colonization failed to induce such response. 

GF mice body weight is lower compared to donor mice and colonization failed to increase 

GF body weight so recipient mice are lighter compared to donor mice even after 16 weeks of 

colonization. It has been published that GF mice are lighter than conventionally raised mice 

(Thevaranjan et al., 2017) but colonization has been published to increase adipose mass 

(Bäckhed et al., 2004). Colonization induced glucose intolerance in recipient mice compared to 

GF and donor mice. However, it has been described that GF have better glucose tolerance than 

specific pathogen free (SPF) mice (Wostmann et al., 1983) but in our study we did not observed 

any difference between GF and donor mice regarding glucose tolerance. Microbiota 

colonization induces both inflammation and glucose intolerance in a dynamic pathway. Indeed, 

Molinaro et al. showed that colonization induced early transient inflammation associated with 

glucose intolerance and after 4 weeks the inflammation disappear but glucose intolerance 

remained (Molinaro et al., 2017). However, in this study conventionally raised mice were 

glucose intolerant compared to GF mice whereas we did not observed any differences in our 

model. This result is surprising, as aging is a major risk factor for the development of T2D, in 

both human and animal studies (Almaça et al., 2014; Meneilly and Tessier, 2001). Their 

protection from metabolic disorders are principally due to increased fatty acid metabolism, 
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caused by increased AMP-activated protein kinase (AMPK, a key regulator of metabolism) 

activity and elevated levels of Fiaf (fasting-induced adipose factor, a regulator of fatty acid 

metabolism) (Bäckhed et al., 2007). Beside the already mentioned difference in protocol used 

for inoculation of microbiota. The age of the receiver mice is of importance as well as the age 

of the microbiota from the donor mice.  

Microbiota of PND350 mice were transferred in GF mice aged of PND150 that might be too 

old. There is more and more evidence for a window of opportunity in early life (Dupont et al., 

2016; Ménard et al., 2008; Renz et al., 2017). The first days of life are a highly dynamic period 

in the development of intestinal barrier (Stockinger et al., 2011). Age of recipient is important 

for the establishment of transferred microbiota. Indeed, experiments of microbiota transfer into 

GF and SPF of different age, showed that microbiota of mice, which has been transplanted at 

the age of three weeks (GF or SPF) clustered more closely with inoculum than those which 

were 8-weeks old at transplantation (Le Roy et al., 2019). Furthermore, it has been 

demonstrated that colonizing with old microbiota do not lead to the same outcome than 

colonizing with young microbiota (Thevaranjan et al., 2017) May be the differences in our 

model are at least partially explained by the use of old microbiota used to colonize old GF mice. 

Additionally, age is also a crucial factor for immune priming. Al Nabhani et al. identified a 

unique time window where a so-called “weaning reaction” takes place. Indeed, microbiota 

changes in the timeframe of weaning provoke robust but transient immune reaction, which is 

crucial for later protection to immune-related pathologies (Al Nabhani et al., 2019).  

 

In summary, this study gave us the opportunity to observe the effect of late FMT in adultGF 

mice on intestinal barrier and immune system maturation. This study gives interesting 

perspectives to better understand the role of microbiota in maturing the host, the importance of 

microbiota used to colonize and the time of colonization. It lso provides information relative to 

the close relationship and regulation between intestinal barrier, immune response and glucose 

metabolism.  

 

PERSPECTIVES 

The established collaborations gave us the opportunity to continue the project in order to 

question the role of microbiota in the MS model. In ongoing experiments, we apply MS in GF 

mice, studying intestinal barrier. We wonder, what are the effects of MS in GF conditions. 
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Furthermore, we are planning to proceed to FMT experiments, inoculating MS or control 

microbiota in young GF mice, which underwent or not MS prior to FMT. We hope that these 

experiments put light on the role of microbiota in the MS phenotype.  

 

REFERENCES 

Al Nabhani, Z., Dulauroy, S., Marques, R., Cousu, C., Al Bounny, S., Déjardin, F., Sparwasser, T., Bérard, M., 
Cerf-Bensussan, N., Eberl, G., 2019. A Weaning Reaction to Microbiota Is Required for Resistance to 
Immunopathologies in the Adult. Immunity 50, 1–13. https://doi.org/10.1016/j.immuni.2019.02.014 

Almaça, J., Molina, J., Arrojo E Drigo, R., Abdulreda, M.H., Jeon, W.B., Berggren, P.-O., Caicedo, A., Nam, 
H.G., 2014. Young capillary vessels rejuvenate aged pancreatic islets. Proc. Natl. Acad. Sci. U. S. A. 111, 
17612–7. https://doi.org/10.1073/pnas.1414053111 

Andersson, A.F., Lindberg, M., Jakobsson, H., Bäckhed, F., Nyrén, P., Engstrand, L., 2008. Comparative analysis 
of human gut microbiota by barcoded pyrosequencing. PLoS One 3. 
https://doi.org/10.1371/journal.pone.0002836 

Aya-Ramos, L., Contreras-Vargas, C., Rico, J.L., Dueñas, Z., 2017. Early maternal separation induces preference 
for sucrose and aspartame associated with increased blood glucose and hyperactivity. Food Funct. 8, 2592–
2600. https://doi.org/10.1039/C7FO00408G 

Bäckhed, F., Ding, H., Wang, T., Hooper, L. V., Koh, G.Y., Nagy, A., Semenkovich, C.F., Gordon, J.I., 2004. The 
gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. 101, 15718–
15723. https://doi.org/10.1073/pnas.0407076101 

Bäckhed, F., Ley, R.E., Sonnenburg, J.L., Peterson, D.A., Gordon, J.I., 2005. Host-bacterial mutualism in the 
human intestine. Science 307, 1915–20. https://doi.org/10.1126/science.1104816 

Bäckhed, F., Manchester, J.K., Semenkovich, C.F., Gordon, J.I., 2007. Mechanisms underlying the resistance to 
diet-induced obesity in germ-free mice. Proc. Natl. Acad. Sci. 104, 979–984. 
https://doi.org/10.1073/pnas.0605374104 

Bokulich, N.A., Subramanian, S., Faith, J.J., Gevers, D., Gordon, J.I., Knight, R., Mills, D.A., Caporaso, J.G., 
2013. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. 
Methods 10, 57–9. https://doi.org/10.1038/nmeth.2276 

Braniste, V., Al-Asmakh, M., Kowal, C., Anuar, F., Abbaspour, A., Tóth, M., Korecka, A., Bakocevic, N., Ng, 
L.G., Guan, N.L., Kundu, P., Gulyás, B., Halldin, C., Hultenby, K., Nilsson, H., Hebert, H., Volpe, B.T., 
Diamond, B., Pettersson, S., 2014. The gut microbiota influences blood-brain barrier permeability in mice. 
Sci. Transl. Med. 6, 263ra158. https://doi.org/10.1126/scitranslmed.3009759 

Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., Madden, T.L., 2009. BLAST+: 
architecture and applications. BMC Bioinformatics 10, 421. https://doi.org/10.1186/1471-2105-10-421 

De Palma, G., Blennerhassett, P., Lu, J., Deng, Y., Park, A.J., Green, W., Denou, E., Silva, M.A., Santacruz, A., 
Sanz, Y., Surette, M.G., Verdu, E.F., Collins, S.M., Bercik, P., 2015. Microbiota and host determinants of 
behavioural phenotype in maternally separated mice. Nat. Commun. 6, 7735. 
https://doi.org/10.1038/ncomms8735 

Desbonnet, L., Clarke, G., Shanahan, F., Dinan, T.G., Cryan, J.F., 2014. Microbiota is essential for social 
development in the mouse. Mol. Psychiatry 19, 146–8. https://doi.org/10.1038/mp.2013.65 

Dupont, A., Sommer, F., Zhang, K., Repnik, U., Basic, M., Bleich, A., Kühnel, M., Bäckhed, F., Litvak, Y., Fulde, 
M., Rosenshine, I., Hornef, M.W., 2016. Age-Dependent Susceptibility to Enteropathogenic Escherichia coli 
(EPEC) Infection in Mice. PLoS Pathog. 12, 1–19. https://doi.org/10.1371/journal.ppat.1005616 

Escudié, F., Auer, L., Bernard, M., Mariadassou, M., Cauquil, L., Vidal, K., Maman, S., Hernandez-Raquet, G., 
Combes, S., Pascal, G., 2018. FROGS: Find, Rapidly, OTUs with Galaxy Solution. Bioinformatics 34, 
1287–1294. https://doi.org/10.1093/bioinformatics/btx791 

Falk, P.G., Hooper, L. V, Midtvedt, T., Gordon, J.I., 1998. Creating and maintaining the gastrointestinal 



124 
 

ecosystem: what we know and need to know from gnotobiology. Microbiol. Mol. Biol. Rev. 62, 1157–70. 

Gaboriau-Routhiau, V., Rakotobe, S., Lécuyer, E., Mulder, I., Lan, A., Bridonneau, C., Rochet, V., Pisi, A., De 
Paepe, M., Brandi, G., Eberl, G., Snel, J., Kelly, D., Cerf-Bensussan, N., 2009. The Key Role of Segmented 
Filamentous Bacteria in the Coordinated Maturation of Gut Helper T Cell Responses. Immunity 31, 677–
689. https://doi.org/10.1016/j.immuni.2009.08.020 

Ghosh, S., Banerjee, K.K., Vaidya, V.A., Kolthur-Seetharam, U., 2016. Early stress history alters serum IGF1 and 
impairs muscle mitochondrial function in adult male rats. J. Neuroendocrinol. 
https://doi.org/10.1111/jne.12397 

Heyman, M., Crain-Denoyelle, A.M., Corthier, G., Morgat, J.L., Desjeux, J.F., 1986. Postnatal development of 
protein absorption in conventional and germ-free mice. Am. J. Physiol. Liver Physiol. 251, G326–G331. 
https://doi.org/10.1152/ajpgi.1986.251.3.g326 

Ilchmann-Diounou, H., Olier, M., Lencina, C., Riba, A., Barretto, S., Nankap, M., Sommer, C., Guillou, H., Ellero-
Simatos, S., Guzylack-Piriou, L., Théodorou, V., Ménard, S., 2019. Early life stress induces type 2 diabetes-
like features in ageing mice. Brain. Behav. Immun. 0–1. https://doi.org/10.1016/j.bbi.2019.04.025 

Ivanov, I.I., Frutos, R. de L., Manel, N., Yoshinaga, K., Rifkin, D.B., Sartor, R.B., Finlay, B.B., Littman, D.R., 
2008. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the 
small intestine. Cell Host Microbe 4, 337–49. https://doi.org/10.1016/j.chom.2008.09.009 

Le Roy, T., Debédat, J., Marquet, F., Da-Cunha, C., Ichou, F., Guerre-Millo, M., Kapel, N., Aron-Wisnewsky, J., 
Clément, K., 2019. Comparative Evaluation of Microbiota Engraftment Following Fecal Microbiota 
Transfer in Mice Models: Age, Kinetic and Microbial Status Matter. Front. Microbiol. 9, 3289. 
https://doi.org/10.3389/fmicb.2018.03289 

Lécuyer, E., Rakotobe, S., Lengliné-Garnier, H., Lebreton, C., Picard, M., Juste, C., Fritzen, R., Eberl, G., McCoy, 
K.D., Macpherson, A.J., Reynaud, C.-A., Cerf-Bensussan, N., Gaboriau-Routhiau, V., 2014. Segmented 
filamentous bacterium uses secondary and tertiary lymphoid tissues to induce gut IgA and specific T helper 
17 cell responses. Immunity 40, 608–20. https://doi.org/10.1016/j.immuni.2014.03.009 

Ley, R.E., Bäckhed, F., Turnbaugh, P., Lozupone, C.A., Knight, R.D., Gordon, J.I., 2005. Obesity alters gut 
microbial ecology. Proc. Natl. Acad. Sci. U. S. A. 102, 11070–5. https://doi.org/10.1073/pnas.0504978102 

Liu, Z., Lozupone, C., Hamady, M., Bushman, F.D., Knight, R., 2007. Short pyrosequencing reads suffice for 
accurate microbial community analysis. Nucleic Acids Res. 35. https://doi.org/10.1093/nar/gkm541 

Macpherson, A.J., Harris, N.L., 2004. Interactions between commensal intestinal bacteria and the immune system. 
Nat. Rev. Immunol. 4, 478–485. https://doi.org/10.1038/nri1373 

Mahé, F., Rognes, T., Quince, C., de Vargas, C., Dunthorn, M., 2014. Swarm: robust and fast clustering method 
for amplicon-based studies. PeerJ 2, e593. https://doi.org/10.7717/peerj.593 

Mcmurdie, P.J., Holmes, S., 2012. Phyloseq: a Bioconductor Package for Handling an Analysis of High-
Throughput Phylogenetic Sequence Data. Pac Symp Biocomput 235–246. 

McMurdie, P.J., Holmes, S., 2013. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics 
of Microbiome Census Data. PLoS One 8. https://doi.org/10.1371/journal.pone.0061217 

Ménard, S., Förster, V., Lotz, M., Gütle, D., Duerr, C.U., Gallo, R.L., Henriques-Normark, B., Pütsep, K., 
Andersson, M., Glocker, E.O., Hornef, M.W., 2008. Developmental switch of intestinal antimicrobial 
peptide expression. J. Exp. Med. 205, 183–193. https://doi.org/10.1084/jem.20071022 

Meneilly, G.S., Tessier, D., 2001. Diabetes in elderly adults. J. Gerontol. A. Biol. Sci. Med. Sci. 56, M5-13. 
https://doi.org/10.1093/gerona/56.1.m5 

Molinaro, A., Caesar, R., Holm, L.M., Tremaroli, V., Cani, P.D., Bäckhed, F., 2017. Host–microbiota interaction 
induces bi-phasic inflammation and glucose intolerance in mice. Mol. Metab. 6, 1371–1380. 
https://doi.org/10.1016/j.molmet.2017.08.016 

Moreau, M.C., Ducluzeau, R., Guy-Grand, D., Muller, M.C., 1978. Increase in the Population of Duodenal 
Immunoglobulin A Plasmocytes in Axenic Mice Associated with Different Living or Dead Bacterial Strains 
of Intestinal Origin. Infect. Immun. 21, 532–539. 

Qin, J., Li, Y., Cai, Z., Li, S.S., Zhu, J., Zhang, F., Liang, S., Zhang, W., Guan, Y., Shen, D., Peng, Y., Zhang, D., 
Jie, Z., Wu, W., Qin, Y., Xue, W., Li, J., Han, L., Lu, D., Wu, P., Dai, Y., Sun, X., Li, Z., Tang, A., Zhong, 
S., Li, X., Chen, W., Xu, R., Wang, M., Feng, Q., Gong, M., Yu, J., Zhang, Y., Zhang, M., Hansen, T., 



125 
 

Sanchez, G., Raes, J., Falony, G., Okuda, S., Almeida, M., LeChatelier, E., Renault, P., Pons, N., Batto, J.-
M., Zhang, Z., Chen, H., Yang, R., Zheng, W., Li, S.S., Yang, H., Wang, J.J., Ehrlich, S.D., Nielsen, R., 
Pedersen, O., Kristiansen, K., Wang, J.J., 2012. A metagenome-wide association study of gut microbiota in 
type 2 diabetes. Nature 490, 55–60. https://doi.org/10.1038/nature11450 

R Development Core Team, R., 2011. R: A Language and Environment for Statistical Computing. R Found. Stat. 
Comput., R Foundation for Statistical Computing. https://doi.org/10.1007/978-3-540-74686-7 

Renz, H., Adkins, B.D., Bartfeld, S., Blumberg, R.S., Farber, D.L., Garssen, J., Ghazal, P., Hackam, D.J., 
Marsland, B.J., McCoy, K.D., Penders, J., Prinz, I., Verhasselt, V., von Mutius, E., Weiser, J.N., Wesemann, 
D.R., Hornef, M.W., 2017. The neonatal window of opportunity—early priming for life. J. Allergy Clin. 
Immunol. 2017–2019. https://doi.org/10.1016/j.jaci.2017.11.019 

Riba, A., Olier, M., Lacroix-Lamandé, S., Lencina, C., Bacquié, V., Harkat, C., Van Langendonck, N., Gillet, M., 
Cartier, C., Baron, M., Sommer, C., Mallet, V., Zill, M., Robert, H., Laurent, F., Ellero-Simatos, S., 
Théodorou, V., Ménard, S., 2018. Early life stress in mice is a suitable model for Irritable Bowel Syndrome 
but does not predispose to colitis nor increase susceptibility to enteric infections. Brain. Behav. Immun. 
https://doi.org/10.1016/J.BBI.2018.05.024 

Round, J.L., Mazmanian, S.K., 2009. The gut microbiota shapes intestinal immune responses during health and 
disease. Nat. Rev. Immunol. 9, 313–23. https://doi.org/10.1038/nri2515 

Stockinger, S., Hornef, M.W., Chassin, C., 2011. Establishment of intestinal homeostasis during the neonatal 
period. Cell. Mol. Life Sci. 68, 3699–3712. https://doi.org/10.1007/s00018-011-0831-2 

Thevaranjan, N., Puchta, A., Schulz, C., Naidoo, A., Szamosi, J.C.C., Verschoor, C.P., Loukov, D., Schenck, L.P., 
Jury, J., Foley, K.P., Schertzer, J.D., Larch??, M.J., Davidson, D.J., Verd??, E.F., Surette, M.G., Bowdish, 
D.M.E., Larché, M.J., Davidson, D.J., Verdú, E.F., Surette, M.G., Bowdish, D.M.E., 2017. Age-Associated 
Microbial Dysbiosis Promotes Intestinal Permeability, Systemic Inflammation, and Macrophage 
Dysfunction. Cell Host Microbe 21, 455-466.e4. https://doi.org/10.1016/j.chom.2017.03.002 

Turnbaugh, P.J., Ley, R.E., Hamady, M., Fraser-Liggett, C.M., Knight, R., Gordon, J.I., 2007. The Human 
Microbiome Project. Nature 449, 804–810. https://doi.org/10.1038/nature06244 

Wostmann, B.S., Larkin, C., Moriarty, A., Bruckner-Kardoss, E., 1983. Dietary intake, energy metabolism, and 
excretory losses of adult male germfree Wistar rats. Lab. Anim. Sci. 33, 46–50. 

Zhou, W., Sailani, M.R., Contrepois, K., Zhou, Y., Ahadi, S., Leopold, S.R., Zhang, M.J., Rao, V., Avina, M., 
Mishra, T., Johnson, J., Lee-McMullen, B., Chen, S., Metwally, A.A., Tran, T.D.B., Nguyen, H., Zhou, X., 
Albright, B., Hong, B.-Y., Petersen, L., Bautista, E., Hanson, B., Chen, L., Spakowicz, D., Bahmani, A., 
Salins, D., Leopold, B., Ashland, M., Dagan-Rosenfeld, O., Rego, S., Limcaoco, P., Colbert, E., Allister, C., 
Perelman, D., Craig, C., Wei, E., Chaib, H., Hornburg, D., Dunn, J., Liang, L., Rose, S.M.S.-F., Kukurba, 
K., Piening, B., Rost, H., Tse, D., McLaughlin, T., Sodergren, E., Weinstock, G.M., Snyder, M., 2019. 
Longitudinal multi-omics of host–microbe dynamics in prediabetes. Nature 569, 663–671. 
https://doi.org/10.1038/s41586-019-1236-x 

 



126 
 

THIRD RESULT: 

EARLY LIFE STRESS INDUCES GLUCOSE INTOLERANCE AND 

INSULIN SECRETION FAILURE IN AGING FEMALE MICE 

 

Work in progress 

 

Ilchmann-Diounou, Hanna; Lencina, Corinne; Bacquié, Valérie; Liu, Jun-Jun; Olier, 

Maïwenn; Théodorou, Vassilia; Movassat, Jamileh; Diana, Julien; Ménard, Sandrine 

 

As a third part of my PhD project, we were interested in the long-term effects of neonatal 

maternal separation (MS) on the female litter. We chose to analyze and present female data 

separately from male data, since we observed from early time point a sexual dimorphism in our 

model. Indeed, female and male data in early adulthood (PND50) were published in two 

different articles due to sexual dimorphism. Indeed, in male mice MS increased intestinal 

permeability and led to intestinal low-grade inflammation (Riba et al., 2018), whereas in female 

mice, MS induced, intestinal E. coli overgrowth, - (Riba et al., 2017)) . Nevertheless, some 

observations were similar between male and female mice that underwent MS, as for example 

intestinal hypersensitivity, diminished intestinal lysozyme activity and elevated humoral 

immune response against microbiota. 

We wondered what are the long-term consequences of MS in female aging mice on 

allostatic load, namely intestinal barrier function, neuroendocrine functions and metabolism. 

Additionally, we were interested in immune response and wondered if MS could lead to 

autoimmune disorder in aging female mice. As previously discussed in the review article, there 

seems to be a link between stressful environment, intestinal barrier dysfunction and 

autoimmune disorders. 

This work is still ongoing within the framework of a collaboration with Prof Jamileh 

Movassat, Biology and Pathology of the Endocrine Pancreas at BFA, Université Paris Diderot, 

Paris and in collaboration with Dr Julien Diana, Innate and Adaptive Immune Pathways in 

Autoimmunity and Autoinflammation at INEM, Inserm, Paris.  
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ABSTRACT 

The incidence of metabolic disorders is increasing worldwide. Besides diet and life style 

habits, epidemiological studies highlighted an association between stress and the increase 

incidence of non-communicable diseases (NCD) including metabolic disorders, inflammatory 

and autoimmune diseases. Based on the concept of Developmental Origins of Health and 

Diseases (DOHaD) our study aimed to investigate whether early life stress can trigger NCD 

and associated key feature i.e. low-grade inflammation. 

Maternal separation (MS) is an established model of early life stress in rodent. C3H/HeN 

mice pups were separated from their dam and the rest of the litter 3 hours per day during 10 

days starting at post-natal day 2 (PND2). All experiments were carried out in female offspring 

aged of PND350 on standard diet. 

MS had an impact on intestinal immune system at PND350 but not on intestinal 

permeability. Secretion of IL-17 and IL-22 by small intestine Lamina Propria (siLP) cells in 

response to Tcell receptor (TcR) stimulation was increased by MS as well as TNFα secretion 

with and without LPS stimulation. Additionally, MS led to low-grade inflammation: IFNγ-

secretion by splenocytes in response to TcR stimulation was increased. MS decreased body 

weight and induced glucose intolerance, measured during oral glucose tolerance test (OGTT). 

MS did not induce a loss of insulin sensitivity measured by intraperitoneal insulin tolerance test 

(ITT). Instead, MS decreased plasma insulin secretion in response to glucose stimulation. 

Furthermore, ratio of β-cell surface to pancreas surface was slightly decreased in MS mice and 

this ratio positively correlates with insulin secretion induced by glucose.  

For the first time, this study showed that early life stress induces glucose intolerance 

associated with a loss of insulin secretion in mice non-genetically predisposed to metabolic 

disorders or type 1 diabetes and fed with standard diet. Interestingly, glucose intolerance is 

associated with local and systemic low-grade inflammation but not with intestinal 

hyperpermeability.  
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INTRODUCTION 

The early life period is crucial for the development and maturation of metabolism, immune 

system, intestinal barrier and a life-long beneficial host-microbiota interaction (Stockinger et 

al., 2011). The concept of Developmental Origins of Health and Disease (DOHaD) highlights 

the importance of early life period and raises the hypothesis that chronic diseases could find 

their origins in perinatal environment (Barker et al., 1989; Gluckman et al., 2016). Apart of 

genetics and life style, early life environment could leave a silent imprinting in child’s 

physiology, which possibly erupt later in pathology. This imprinting is also called allostatic 

load and usually measured through neuroendocrine, metabolic, inflammatory and 

cardiovascular markers (Edes & Crews, 2017). 

Early life psychological stress is one of multiple factors of interest. Epidemiological studies 

have shown an association between early life stress and increased circulation inflammatory 

markers in young adults (Baldwin et al., 2017). Neonatal maternal separation (MS) is a stress 

model widely used in rodents as a paradigm of early life adverse events. We previously 

observed that, in female mice, MS triggers lasting alterations of intestinal homeostasis in young 

adult offspring (post-natal-day (PND) 50) including defect of Paneth cells and low-grade 

inflammation (Riba et al., 2017).  

In this study, we aimed to investigate in aging wild-type mice under standard diet the long-

term effects (PND350) of neonatal MS on mice’s allostatic load: intestinal barrier function, 

low-grade inflammation, neuroendocrine functions, as well as glucose metabolism. 
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EXPERIMENTAL PROCEDURES 

Mouse model 

All experimental protocols were approved by local Animal Care Use Committee (Comité 

d'Ethique de Pharmacologie-Toxicologie de Toulouse - Midi-Pyrénées, France) registered as 

N°86 at the Ministry of Research and Higher Education (N° 0029/SMVT), and conducted in 

accordance with the European directive 2010/63/UE. Mice were kept at a constant temperature 

(22 ± 1°C) and maintained on a 12:12 h light/dark cycle (lights on 7h30 am) on Specific and 

Opportunistic Pathogen Free (SOPF) conditions. Normal diet (Harlan2018, Envigo, Gannat, 

France) and water were available ad libitum.  

Maternal Separation protocol 

Nulliparous female C3H/HeN mice (Janvier Labs, Le Genest St Isle, France) were used. 

Maternal separation (MS) was performed as previously described (7). Briefly, pups were 

separated from their dam and the rest of the litter 3 hours per day. MS was repeated for 10 

working days, weekend excluded, between post-natal-day 2 (PND2) and PND15. Control pups 

were left with their dam. At weaning (PND21), litters were mixed within the same group; only 

females were kept for this study. Four independent batches of experiments were realized. 

Experiments were performed at PND350.  

Oral glucose (OGTT) and intraperitoneal insulin tolerance test (ITT) 

OGTT and ITT were performed in mice 6 h-fasted during day light. For OGTT, mice were 

gavaged with 2 mg glucose per g of bodyweight. Blood glucose levels were monitored from 

the tip of the tail vein with a glucose meter (Johnson & Johnson, Issy-les-Moulineaux, France) 

at -30, 0 (glucose gavage), 15, 30, 60, 90 and 120 min. 

For plasma insulin, blood samples were harvested in fasted state (6h) and 15 min after 

glucose stimulation per os (2 mg glucose per g of bodyweight). Insulin was measured with 

commercial ELISA kit (Merck Millipore, Saint Quentin en Yvelines, France). 

During ITT mice were injected with 0.75 mU insulin (NovoRapid, Novo Nordisk, Chartres, 

France) per g of bodyweight. Blood glucose levels were measured up to 30 min after injection.  

For fasted blood glucose, mice were fasted 16-h overnight.  
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Lysozyme activity in fecal content 

Activity of lysozyme against the peptidoglycan was determined in feces suspended in 

phosphate-buffered saline using the EnzChek Lysozyme Assay Kit (Molecular probes, Life 

Technology, St Aubin, France). 

Intestinal permeability in Ussing chambers 

Intestinal permeability was assessed as previously described (Riba et al., 2018). Briefly, 

jejunal and colonic fragments were mounted in Ussing chambers (Physiologic Instruments, San 

Diego, CA, USA). Tissues were bathed 2h with oxygenated thermostated Kreb’s solution 

(Sigma, Saint Quentin Fallavier, France). Fluorescein Sodium Salt 40 µg/ml (FSS 376 Da; 

Sigma) and Horse Radish Peroxidase 0.4 mg/ml (HRP 4 kDa; Sigma) were respectively added 

to mucosal compartment as para- and trans-cellular markers of intestinal permeability.  

Intestinal permeability to total HRP was determined by ELISA. Briefly, 96-wells black 

plates (Greiner, Les Ulis, France) were coated with 10 µg/ml mouse polyclonal to HRP (Abcam, 

Paris, France), blocked with PBS-1% bovine serum albumin (BSA), incubated with serosal 

compartments of Ussing chamber, detected with 10µg/ml Rabbit polyclonal anti HRP biotin 

(Abcam) and revealed with FITC-conjugated streptavidin (BD, Paris, France). Fluorescence 

intensity was measured 485 nm/525 nm using an automatic Infinite M200 microplate reader 

(Tecan, Männedorf, Switzerland). Intestinal permeability to FSS was determined by measuring 

the fluorescence intensity (FI) 485 nm/525 nm using an automatic Infinite M200 microplate 

reader. Permeability was calculated as the ratio of flux/concentration, and expressed as 

cm/second. 

Immune cells isolation 

Splenocytes were isolated through a 70-µm nylon mesh and suspended in PBS 1%-KO SR 

serum (Gibco, Thermofisher Scientific).  

Isolated cells from small intestines (si) lamina propria (siLP) were obtained as follow: si 

were washed in cold PBS, incubated in PBS 3 mM EDTA (Sigma), washed in warm PBS, 

digested with 100 U/mL of collagenase (Sigma) in DMEM 20% FCS and finally purified on 

Percoll (Sigma). 

Fluorescence-Activated Cell Sorter Analysis 

Isolated cells from spleen and siLP were stained as follow. Activated T-cells: CD4 (BD), 

CD44 (BD), CD62L (BD); Regulatory T-cells: CD4 (BD), CD25 (BD), Foxp3 (ebioscience, 
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Thermofisher Scientific); ILC3: CD127 (BD), RORγt (BD). Th17/22 CD3 (BD), RORγt (BD). 

MACSQuant® Analyzers (Miltenyi Biotec SA, Paris, France) and VenturiOne 

(AppliedCytometry, Sheffield, Great Britain) software were respectively used for data 

collection and analysis. 

Primary cell culture  

Isolated cells from spleen and siLP were seeded at 2x106 cells per well in the presence or 

absence of a) 100 ng/mL Lipopolysaccharide (LPS; Sigma), b) 1 µg/mL of protein from 

commensal E. coli lysate or c) 5µg/mL hamster anti-mouse CD3 (BD) and hamster anti-mouse 

CD28 (BD) coated wells. Supernatants were collected after a) 24h, b/c) 72h.  

Cytokines measurement 

Cytokines were measured in supernatant of primary cell culture, or jejunal fragments 

suspended in RIPA buffer (0.5% deoxycholate, 0.1% SDS and 1% Igepal in TBS) containing 

complete anti protease cocktail (Sigma). Jejunal protein concentrations were measured using 

BCA uptima kit (Interchim, Montlucon, France). IL-17, TNFα, IL-10, IL-22, TGFβ and IFNγ 

in supernatant or lysate of jejunal fragments were assayed using commercial ELISA kits (R&D 

Systems, Lille, France).  

Humoral response in feces and plasma 

Plates were coated with 5µg/ml of sheep anti-mouse IgA (Sigma) or goat anti-mouse IgG 

(SouthernBiotech, Cliniscience, Nanterre, France), incubated with plasma, detected with 1.5 

µg/ml HRP-conjugated goat anti-mouse IgA (Sigma) or goat anti-mouse IgG 

(SouthernBiotech), HRP was revealed using TMB and the reaction was stopped with H2SO4 

2N before reading at 450nm using automatic Infinite M200 microplate reader.  

Measurements in plasma 

ELISA kits were used to monitor corticosterone (Immunodiagnostic Systems, Pouilly-en-

Auxois, France), GIP and GLP-1 (Merck Millipore, Saint Quentin en Yvelines, France). 

Plasma-cholesterol, LDL, HDL, triglycerides, free fatty acids and calcium were analyzed by 

the Platform GenoToul Anexplo, Toulouse, France.  

Staining and counting of β-cells 

Pancreas were fixed over night in Formol-4%, rinsed in ethanol-70% and included in 

paraffin. Entire pancreas were cut in 5 µm slices, representative slices across the organ were 

mounted on slides, first stained with anti-insulin-guinea pig (Abcam) and anti-glucagon-rabbit 
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(Europroximia), second incubated with anti-guinea pig-HRP (Abcam) and anti-rabbit-HRP 

(Jackson), third revealed with diamino-benzidine (Vectorlabs). Surfaces counts were realized 

using Microvision HistoLab 10.5. Ratio of total insulin-positive-surface to total pancreas-

surface was calculated. 

Statistical analysis 

Statistical analysis were performed using GraphPad Prism version 6.04 (GraphPad Software, 

La Jolla, CA, USA). Results for single comparisons were displayed as box plots [min to max] 

and analyzed using unpaired t-test or Mann-Whitney test after prior Shapiro-Wilk Normality 

test and F-Test to compare variances. Multiple groups were displayed either as kinetics with 

SEM or box plots [min to max] and compared per family by Bonferroni posttest after a 

significant two-way ANOVA. Differences were considered significant for P<0.05. 
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RESULTS 

MS had no effect on fecal lysozyme nor intestinal permeability. 

Since maternal separation is a model of intestinal irritable bowel syndrome at PND50, we 

wondered if the intestinal barrier is disturbed in our model at long term. First, lysozyme activity 

in feces of PND350 mice was not different (Figure 1A). Second, translocation of intestinal 

bacterial fragments was assessed indirectly by LPS Binding Protein (LBP) concentrations in 

plasma, without modification in MS mice (Figure 1B). Additionally, we addressed intestinal 

permeability ex-vivo in Ussing chambers in jejunum (Figure 1C-E) and colon (data not shown). 

No difference for electrical resistance, para- (Fluorescein Sodium Salt, FSS) and trans-cellular 

permeability (Horse Radish Peroxidase, HRP) was observed between MS and control mice. 
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Figure 1 MS did not affect fecal lyzozyme nor intestinal permeability. (A) Lysozyme (LZM) activity in fecal 

content (U LZM/ µg protein). (B) LPS-binding protein (LBP) in plasma (ng/mL). (C-E) Jejunal permeability as 
assessed in Ussing chambers. (C) Paracellular permeability of jejunum to FSS (x10-7 cm/s). (D) Electrical 
resistance of jejunal tissue (Ωxcm2). (E) Transcellular permeability of jejunum to total HRP (x10-8 cm/s). 
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MS increased cellular response in siLP 

We analyzed intestinal immune response. First, fecal IgG and IgA were similar between both 

groups (Figure 2A-B).  
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Figure 2 MS had no effect on fecal Ig. (A) Fecal IgA content (µg/mg fecal protein). (B) Fecal IgG content 

(µg/mg fecal protein). 

Second, we looked at the cellular immune response in the small intestine lamina propria 

(siLP). Percentage of Rorγt+ in CD3+ (Th17/22 cells) was not affected by MS (Figure 3A). 

Innate Lymphoid Cells 3 (ILC3: CD127+ RORγt+) (Figure 3B) and regulatory T cells (Treg: 

CD25+ Foxp3+ in CD4+) (Figure 3C) were not altered in MS mice either. TNFα-secretion in 

basal state and in response to LPS-stimulation was significantly increased in siLP cells from 

MS mice (Figure 3D). IFNγ-secretion was not modified by MS (Figure 3E). Nevertheless, IL-

17 and IL-22-secretion in response to TcR-stimulation (anti CD3/CD28) was significantly 

increased in isolated siLP cells from MS mice (Figure 3F-G). We observed the same tendency 

for basal state and E. coli lysate stimulation. IL-10 and TGFβ-secretion were not modified by 

MS (data not shown).  
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Figure 3 MS increased IL-17, IL-22 and TNFα secretions in small intestine lamina propria (siLP). (A) 

Representatives dot plots of CD3+RORγt+ cells of siLP. (B) ILC3 in isolated siLP (RORγt+ CD127+) (C) regulatory 
T cells in siLP (CD25+Foxp3+ in CD4+) (D) TNFα secretion in siLP cell culture after 24h with or without LPS 
(100 ng/mL) stimulation, two-way ANOVA, * p < 0.05. (E)-(G) Cytokine secretion in siLP cell culture after 72h 
without, with E. coli lysate (1 µg/mL) or anti-CD3/CD28 (5 µg/mL) stimulation. (E) IFNγ. (F) IL-17. (G) IL-22, 
two-way ANOVA, ** p < 0.01, * p < 0.0001. 

MS had no consequences on humoral response in plasma 

We next assessed the systemic consequences of MS. We looked at plasmatic IgG and IgA 

concentrations, which were similar between both groups (Figure 4A, B).  
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Figure 4 MS did not affect circulating IgA and IgG. (A) Plasmatic IgA (µg/mL). (B) Plasmatic IgG (µg/mL). 
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We further analyzed systemic immune response by isolation of splenocytes. Activated T 

cells (CD4+ CD44high CD62Llow) (Figure 5A) and regulatory T cells (CD4+ CD25+ foxp3+) 

(Figure 5B) populations in spleen were not modified by MS. Regarding functionality, TNFα-

secretion in response to LPS-stimulation was not different between both groups (Figure 5C). 

IFNγ-secretion in response to TcR-stimulation was significantly higher in MS mice (Figure 

5D). However, Il-17 and IL-22 secretion in response to TcR-stimulation were not modified by 

MS (Figure 5E, F).  
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Figure 5 MS increased IFNγ-secretion in spleen. (A) Representative dot plots of activated T cell population 

in spleen (CD44high CD62Llow in CD4+). (B) Representative dot plots of regulatory T cell population in spleen 
(CD25+ Foxp3+ in CD4+). (C) TNFα secretion in primary cell culture of splenocytes after 24h with or without LPS 
(100 ng/mL) stimulation (D-F) Cytokine secretion in primary cell culture of splenocytes after 72h without, with 
E.coli lysate (1 µg/mL) or anti-CD3/CD28 (5 µg/mL) stimulation. (D) IFNγ. (E) IL-17. (F) IL-22, two-way 
ANOVA, * p < 0.05. 

MS impaired glucose tolerance associated with a decrease of insulin secretion 

Regarding glucose metabolism phenotype, at PND350, MS mice had slightly but 

significantly lower body weight than control mice (Figure 6A) without modification of food 

intake (data not shown). During oral glucose tolerance test (OGTT), blood glucose levels were 
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higher in MS mice than in control (Figure 6B) resulting in significantly higher Area Under the 

Curve (AUC) for MS mice (Figure 6C). Insulin tolerance test (ITT) was not different between 

groups (Figure 6D, E). Insulin secretion after glucose stimulation (+15 min) justified for 

bodyweight was significantly decreased in MS mice compared to control (Figure 6F).  
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Figure 6 MS induced oral glucose intolerance associated with a loss of insulin secretion. (A) Body weight 

(g), unpaired t-test, * p<0.05. (B) Oral glucose tolerance test, after 6-h fasting, gavage with 2 mg glucose/g 
bodyweight at 0, blood glucose (mg/dL) from -30 min to 120 min, two-way-ANOVA, ** p < 0.01, **** 
p < 0.0001. (C) Area under the curve (AUC) of blood glucose 0-120 min (mg/dL/2h), unpaired t-test. (D) Insulin 
tolerance test, after 6-h fasting, intraperitoneal injection of 0.75 mU insulin/g bodyweight at 0, blood glucose 
(mg/dL) from -30 min to 30 min. (E) Area under the curve of blood glucose 0-30 min (mg/dL/30min). (F) Insulin 
secretion in 6h-fasted state and after glucose stimulation (2 mg glucose/g bodyweight) justified for body weight, 
two-way-ANOVA, ** p < 0.01. 

MS did not affect plasmatic marker of stress or metabolism 

No differences in plasmatic markers of metabolism like cholesterol, HDL, LDL, 

triglycerides or free fatty acids were observed (Figure 7A-E). There were no differences in 

plasma corticosterone (Figure 7F) and incretins (GIP, GLP-1, Figure 7G-H).  
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Figure 7 MS did not induce changes in metabolic plasmatic markers. (A) Free fatty acids (FFA) (mmol/L). 

(B) Triglycerides (mmol/L). (C) Cholesterol (mmol/L). (D) High-density lipoprotein (HDL) (mmol/L). (E) Low-
density lipoprotein (LDL) (mmol/L). (F) Corticosterone (ng/mL). (G) Glucagon like peptide-1 (GLP-1) (pM). (H) 

Glucose insulinotropic peptide (GIP) (pg/mL). 

MS decreased β-cell surface in pancreas 

Because of the observed decrease of insulin secretion in response to glucose stimulation, we 

wondered if in our model pancreas β-cells producing insulin were affected. We assessed β-cell 

surface in pancreas by immunohistochemistry. The ratio of β-cell surface to total pancreas 

surface was slightly but not significantly decreased for MS mice compared to control (Figure 

8A). We wondered if we could find a correlation between β-cell surface/ pancreas surface and 

insulin secretion in response to glucose stimulation. Indeed, these two factors are positively 

correlated and values of MS mice tend to be inferior to control (Figure 8B). 
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Figure 8 MS leads to diminished β-cell surface. (A) total β-cell surface/total pancreas surface (B) positive 

correlation between β-cell surface/pancreas surface and insulin secretion/bodyweight. 
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DISCUSSION 

We here show that maternal separation (MS) has a long-lasting impact on allostatic load. 

MS exacerbates IL-17 and IL-22 intestinal immune response as well as intestinal and systemic 

low-grade inflammation at PND350 in C3H/HeN female mice. MS leads also to glucose 

intolerance associated with a lower stimulation of insulin secretion by glucose and a slight 

decrease of ratio β-cell surface / pancreas surface. These results mimic type 1 diabetes features 

even though we are in non-genetically predisposed mice. 

As previously shown, at PND50 MS induces intestinal barrier dysfunction: defect of Paneth 

cells and intestinal low-grade inflammation (Riba et al., 2017). Interestingly, at PND350 we do 

not observe anymore the decrease of fecal lysozyme activity but intestinal low-grade 

inflammation is persisting. Intestinal permeability was never affect in female by MS (PND50 

nor PND350). In our model of MS at PND350 in female, MS induced glucose intolerance and 

defect of insulin secretion associated with increased intestinal and systemic IL-17 secretion in 

response to TcR stimulation. Furthermore, IL22 secretion in response to TcR stimulation was 

also increased in siLP of MS mice. The increased secretion of IL-17 and IL-22 is not due to 

modification of populations, but rather to a hyperfunction of Th17 and Th22. Interestingly, 

Th22 and Th17 levels were significantly elevated in patients of T1D (Xu et al., 2014). 

Stress hormones (glucocorticoids) known to regulate metabolism (Schäcke et al., 2002) and 

immune function (Cain & Cidlowski, 2017) like corticosterone are not affected by MS at 

PND350 excluding a direct effect of corticosterone on the observed metabolic and immune 

phenotype. 

Interestingly, in our study, the MS-induced glucose intolerance and loss of insulin secretion 

were associated with slight but significantly lower body weight. Neither plasmatic markers 

mainly involved in metabolic disorders (FFA, triglycerides, cholesterol, HDL, LDL) nor 

incretins, like GLP-1 and GIP, were modified by MS at PND350. 

Pancreas is immature at birth and weaning is necessary for the maturation of β cells 

producing insulin (Stolovich-Rain et al., 2015). Early life period is as such a critical window 

for pancreas maturation and scattering evidences suggest that stress might impair appropriate 

pancreas maturation. There is a slight correlation between bereavement and type 1 diabetes 

incidence after 11 years of age (Virk et al., 2015). β-cell mass is influenced by early life 

environment. Adverse nutritional status in utero and early life can impact β-cell development 

(Portha et al., 2011). 
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Taking together the results of this study show that MS in wild type mice under normal diet 

leaves a long-lasting imprinting on allostatic load. MS induces glucose intolerance associated 

with a loss of insulin secretion in response to glucose stimulation. Finally, this study highlights 

early life stress as a risk factor for glucose metabolism development independently of 

nutritional challenge and the early life period as critical time window for establishment of 

appropriate establishment of immune system and metabolism. 

 

PERSPECTIVES 

This work is still in progress and two aspects are under investigation: 

1. Diabetes incidence in NOD/ShiltJ mice  

We aim to perform MS in mice genetically prone to type 1 diabetes (T1D): NOD/ShiltJ mice 

and identify MS as a potential risk factor for autoimmune T1D. This perspective is of particular 

interest, since it will strengthen the hypothesis defended in our review presented in the 

introduction section “Psychological Stress, Intestinal Barrier Dysfunctions and Autoimmune 

Disorders” 

Male mice, which are more resistant to T1D development, will be kept to be able to 

appreciate both incidence and gravity of diabetes with and without MS. This experiment will 

be performed within the framework of a collaboration with Dr Julien Diana, INSERM, Institut 

Necker Enfant Malades, Paris. 

2. Role of CRAMP antimicrobial peptide in diabetes triggered by MS.  

Antimicrobial peptides are also playing a role in the development of diabetes in non-obese 

diabetic mice model. CRAMP an antimicrobial peptides expressed in pancreas islet cells is 

protective for development of type 1 diabetes in NOD mice (Sun et al., 2015). Interestingly, 

CRAMP is also expressed in small intestine of mice but only from birth to PND15 (Ménard et 

al., 2008), corresponding to the period of MS stress. CRAMP will be stained in the pancreas of 

C3H/HeN mice aged of PND350 submitted or not to MS and in intestine of NOD mice 

submitted or not to MS and aged of PND7 and PND15. This work will also be performed within 

the framework of a collaboration with Dr Julien Diana, INSERM, Institut Necker Enfant 

Malades, Paris. 
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FOURTH RESULT: 

NON-OBESE DIABETIC MOUSE MODEL IS EMPHASIZING 

DIVERGENCE BETWEEN IN VIVO AND EX VIVO INTESTINAL 

PERMEABILITY MEASUREMENTS 

 

Manuscript submitted 23 July 2019 to Scientific Reports 

 

Ilchmann-Diounou, Hanna; Buléon, Marie; Bacquié, Valérie; Lencina, Corinne; Théodorou, 

Vassilia; Denis, Colette; Ménard, Sandrine 

 

A fourth part of my PhD project had a methodological orientation. There are various 

methods to evaluate intestinal permeability. We set up a project to compare in vivo and ex vivo 

measurements in a model of autoimmune type 1 diabetes, the NOD/ShiltJ mouse strain. 

Our aim is to initiate a discussion around the definitions of intestinal permeability and 

systemic exposure in order to clarify the concept of intestinal permeability. 

This work has been realized in collaboration with Dr Colette Denis and Dr Marie Buléon 

from Renal Fibrosis Lab, I2MC, Inserm, Toulouse. 
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ABSTRACT 

Intestinal permeability (IP) is the ability of luminal antigens to pass intestinal epithelium. 

We aimed to compare IP measured by in vivo and ex vivo technics in a mouse model of type 1 

diabetes mellitus - the Non Obese Diabetic (NOD/ShiltJ). 

In vivo IP to FITC Dextran 4kDa (FD4) measured in blood during a 4h kinetic after gavage 

was higher in diabetic NOD mice compared to non-diabetic NOD mice. Surprisingly, ex vivo 

IP to FD4 in Ussing chambers were not different between groups neither in jejunum nor in 

colon. Diabetes-induced modifications of renal excretion, transit time, feces humidity and 

histology failed to explain this difference. However, diabetic mice had significantly longer 

intestine compared to non-diabetic mice and intestinal length positively correlated with in vivo 

IP. 

Our results demonstrate that depending on technic used to address IP, results can be different 

even if using the same marker. This difference could be explained by confounding factors 

affecting in vivo measurements whereas ex vivo IP is addressed in a controlled surface and thus 

correspond to the ability of luminal antigen to cross the intestinal epithelium. FD4 

concentrations measured in blood after gavage reflect systemic exposure to luminal content 

rather than IP stricto sensu. 
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INTRODUCTION 

There are multiple methods for the determination of intestinal permeability (IP) including in 

vivo and ex vivo measurements. First, in vivo methods are often used due to the simplicity of 

protocol and the absence for the need of complex device. Indeed, several non-metabolized 

molecules can be used to determine their passage across intestinal barrier in vivo in animal and 

human. The individual is receiving the molecule via the oral route and after a fixed time, blood 

or urine is collected and the marker is detected according to its properties (radioactivity, 

fluorescence, etc). Thanks to distinct chemical characteristics and degradation process by 

intestinal microbiota, different markers can be used to assess permeability of different intestinal 

segments 1. Another possibility to assess intestinal permeability is by dosing serological 

markers without any previous gavage, as for example zonulin-1 2 or endotoxin 3 that will 

represent respectively intestinal homolog of a Vibrio cholerae enterotoxin that reversibly 

increase IP and a marker of intestinal lipopolysaccharide translocation in the blood. However, 

the relevance of using those markers as indicators of IP is still under debate. Last, ex vivo 

experiments can be used to determine IP. Tight junctions (TJ) proteins, sealing the paracellular 

pathway, can be observed through microscopy or in protein extracts of tissues. Tremendous 

amount of tight junctions proteins have been described and various mechanisms of 

compensation identified 4. Analysis of TJ proteins represents an interesting complement to 

identify the mechanisms involved when intestinal flux are modified but their analyze alone can 

not lead to any conclusion regarding the physiological process of IP. Ussing chambers are a 

well-established ex vivo method to analyze permeability of different tissues 5. However, they 

are more invasive, since biopsies are necessary. Looking at the functionality of a tissue, as in 

Ussing chambers, is of great advantage since it is performed in a controlled surface avoiding 

the confounding factors involved in in vivo experiment per gavage i.e. intestinal transit, renal 

excretion, intestinal length. 

Increased intestinal permeability has been highlighted as a cause or a consequence in 

intestinal but also extra-intestinal disorders. A condition in which increased intestinal 

permeability is documented is type 1 diabetes (T1D) - an autoimmune disorder characterized 

by hyperglycemia involving pancreatic islet cells antibodies and destruction of β-cells 

producing insulin. Intestinal hyperpermeability is observed in human patients but also in 

rodents models (NOD mice, BioBreeding Diabetes Prone rats) even before the onset of the 

disease 6–8. These facts nourished the debate if intestinal hyperpermeability is triggering the 

onset of T1D by increasing the translocation of luminal antigen that might contribute to 
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destruction process of insulin producing cells. However, until today no consensus is found. To 

our knowledge, all studies investigating IP in T1D (human and animal models) have been 

performed in vivo. In our laboratory, we investigate IP principally through two different 

methods: in vivo by FITC-Dextran 4 kDa measurement in plasma 4h after oral gavage and ex 

vivo in Ussing chambers. We aimed to further characterize the defect of intestinal permeability 

in a mouse model of T1D - the Non Obese Diabetic Strain (NOD) - using both in vivo and ex 

vivo methods. 
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RESULTS 

Results of intestinal permeability measurements in vivo and ex vivo by FD4 are conflicting 

Consistently with literature, passage of FD4 through the intestinal barrier into the plasma 

had a tendency to be increased in NOD mice with overt diabetes compared to non-diabetic (ND) 

NOD mice four hours after FD4 gavage (1.370 µg/mL ± 0.17 vs 0.919 ± 0.12, p=0.0809, Figure 

1A). However, intestinal permeability assessed in Ussing chambers did not show any increased 

permeability for FD4, neither in small intestine (SI) (jejunum) nor in colon (Figure 1B). We 

wondered if differences are due to modification in the kinetic of passage from intestinal lumen 

to blood. Kinetic of fluorescence intensity (FI) during in vivo intestinal permeability assessment 

were monitored by repeated blood collection during 4h post FD4 gavage. FI in blood of diabetic 

NOD mice was increased all along the experiment and a significant difference is observed 1h 

after gavage (11.975 µg/mL ± 3.61 vs 3.340 ± 0.81, p<0.01, Figure 1C). The area under the 

curve (AUC) of FI during 4h was increased for diabetic NOD mice in comparison to non-

diabetic mice (1882 ± 556.8 vs 670.4 ± 167.3, p=0.0499, Figure 1D). 

Urinary FD4 excretion is higher in diabetic NOD mice 

In order to decipher the origin of the difference of in vivo and ex vivo measurements, we 

questioned a potential defect of FD4 excretion in urine of diabetic compared to non-diabetic 

(ND) mice. To do so, intestinal pathway was bypass using intravenous injection of FD4. 

Diabetic NOD mice had elevated excreted quantity of urine after 1 and 2 hours (Figure 2A) 

with similar FD4 concentrations in urine the first hour and lower FD4 concentration the second 

hour (Figure 2B). As a consequence, quantity of FD4 excreted in urine was higher in diabetics 

the first hour and similar the second one (Figure 2C). The consequence of this higher urinary 

excretion of FD4 by diabetic mice is lower FD4 concentration in plasma of diabetic mice 2h 

after intravenous injection (Figure 2D). 

Additionally we addressed fecal humidity and transit time, which both were similar between 

diabetic and non-diabetic NOD mice (Figure 3).  

Intestinal length is increased in diabetic NOD mice 

We wondered if the intestinal morphology was modified by diabetes in NOD mice compared 

to non-diabetic (ND) mice. Surprisingly at macroscopical level, small intestine (45.24 cm ± 

0.72 vs 41.53 ± 0.76, p=0.0009, Figure 4A) and colon (9.80 cm [8.50; 10.60] vs 8.75 [8.5; 9.43], 

p=0.0306, Figure 4B) of diabetic NOD mice were significantly longer than intestine of non-
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diabetic NOD mice, but we did not observed any further differences at microscopic level. We 

did not observe any particularity or abnormality by microscopic screening of duodenal, jejunal, 

ileal or colonic tissue. Villi length, crypt depths and intestinal circumference were measured 

and no differences were observed between diabetic and non-diabetic NOD mice (Figure 4C-F) 

Small intestine length is positively correlated with AUC of FD4 concentrations in blood 

Total intestinal length is correlated with the area under the curve of FD4 concentration during 

4h after gavage (Pearson correlation, r=0.6659, R2=0.4434, p=0.0253, Figure 5). 

Ex vivo paracellular intestinal permeability to FSS is decreased in diabetic mice 

In order to further characterize intestinal permeability, we used Fluorescein Sodium Salt 

(FSS) and Horse Radish Peroxidase (HRP) as specific para- and transcellular marker 

respectively in Ussing chambers. Paracellular permeability to FSS was significantly decreased 

in small intestine (jejunum) of diabetic mice compared to non-diabetic (ND) mice (44.859 

ng/cm2/2h ± 11.05 vs 217.96 ± 76.50, p<0.05, Figure 6A). Short circuit current (Isc) in colon 

was significantly increased in diabetic NOD mice compared to non-diabetic NOD mice (-

13.335 µAcm2 ± 1.59 vs -25.266 ± 6.39, p<0.05, Figure 6B). Transcellular permeability to HRP 

was not modified; neither in jejunal nor in colonic tissue (Figure 6C). Intact HRP as a measure 

of non-lysosomal transcellular pathway was not affected either (Figure 6D). 

Diabetic state is not associated with inflammatory profile 

We wondered if diabetes had an effect on inflammatory state in the intestine. We screened 

several cytokines (TNFα, Lipocalin-2, IL-10, IL-17 and IL-22) in lysate of colon and jejunum 

(small intestine: SI). As expected cytokine levels in colonic tissues were higher. IL-10, IL-17 

and IL-22 were non-detectable in lysate of SI tissue. There were no diabetes-induced 

modifications in cytokine concentrations (Figure 7). 
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DISCUSSION 

We here demonstrate that using the same marker FITC-Dextran 4 kDa (FD4) in vivo and ex 

vivo to measure IP can give different results in a type 1 diabetes model: the non-obese diabetic 

mice.  

In our study, we compared NOD diabetic vs non-diabetic mice. This is an advantage in 

comparison to other studies in which different mouse/rat strains were compared, for example 

NOD vs non-obese resistant (NOR) mice or BioBreeding diabetes-prone (BBDP) vs 

BioBreeding diabetes-resistant rats (BBDR) 8,9. 

We used FD4 to assess intestinal permeability in vivo. As most laboratories take plasma at 

4h after gavage, when FD4 had time to transit all along the intestinal tract 10, we choose to 

follow this method. We observed a tendency for an increase in FD4 concentration in plasma at 

4h after gavage in diabetic mice that is consistent with literature. Indeed, intestinal permeability 

has been described to be increased by auto-immune diabetes in rodents and in human 6–8,11. 

During ex vivo jejunal (representative of small intestine) and colonic permeability 

measurements in Ussing chambers we used the same marker i.e. FD4. Surprisingly, ex vivo FD4 

flux was not different between diabetic and non-diabetic NOD mice. This result suggests that 

the increased FD4 concentration in blood observed in vivo is not the result of increased FD4 

flux in jejunum and/or colon and as such excludes an increase of IP stricto sensu in auto-

immune diabetes. Indeed, the proper definition of IP is “the facility with which intestinal 

epithelium allows molecules to pass through by non-mediated passive diffusion” expressed in 

cm/sec 1 and as such need to take into account the exposed surface witch cannot be done in in 

vivo experiments. To decipher differences in kinetic of FD4 absorption in the mouse model, 

blood samples were taken at different time points during the 4h-period after FD4 gavage and 

FD4 concentrations measured. Although FD4-flux in Ussing chambers were similar in tissue 

of diabetic and non-diabetic mice, all along the in vivo experiment FD4 concentrations in blood 

were higher in diabetic compared to non-diabetic mice and significantly different at 1h after 

FD4 gavage. As a result, AUC of FD4 is higher in diabetic mice compared to non-diabetic mice. 

Those results highlight the interest to follow the kinetic of FD4 in blood rather than measuring 

FD4 concentration in plasma at a unique time point. Of note, Woting and Blaut observed that 

absorption kinetics is highly depend on mouse strain 12. 

We then wondered if urinary excretion of FD4 was modified. It is largely known that 

diabetes comes along with renal complications. Hyperglycemia leads to polyuria and 80% of 
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persons diagnosed with diabetes mellitus have lower urinary tract complications, as for example 

nephropathy that at the ultimate stage can lead to a defect of urinary excretion process and 

request dialysis intervention 13. However, our results showed that the quantity of FD4 excreted 

in urine of diabetic mice is higher the first hour and the same the second hour. This effect is 

mainly driven by increased volume of urine excreted by diabetic mice compared to non-diabetic 

rather than higher concentration of FD4 excreted. In those experiments of urinary excretion, 

bypassing intestinal pathway, higher quantity of FD4 excreted in diabetic mice is associated 

with lower FD4 in plasma 2H after gavage. Those results excluded a defect of renal excretion 

of FD4 in diabetic mice to explain higher FD4 concentration in plasma after FD4 oral gavage 

(in vivo permeability assessment). 

Transit time and feces humidity were not different between diabetic and non-diabetic mice. 

However, in literature enhanced intestinal transit, measured by charcoal progression after 20 

min in the intestinal tract, is described in NOD mice with long-term diabetes  (4-5 weeks) 14. In 

insulin-dependent diabetes mellitus patients both delayed and rapid intestinal transit has been 

documented 15. Nevertheless, since transit time was not modified in our study transit could not 

explain the increased FD4 concentration in blood. 

We looked in detail at intestinal morphology by histology. Surprisingly no aberrant 

structures indicating inflammation or epithelium modifications have been observed. Villi length 

and crypt depth were similar between diabetic and non-diabetic mice. Neu et al. observed 

increased mucosal crypt depth in BioBreeding diabetes-prone vs BioBreeding diabetes-resistant 

rats 9. However, as already pointed out at the beginning of the section discussion, they compared 

two different strains (BBDP vs BBDR) whereas in our study we compare same strain but 

different diabetic state. In streptozotocin-induced diabetic rats increased wall stiffness 16 and 

increased thickness of intestinal mucosa 17 have been observed. Circumference of ileum was 

increased and contraction force of intestinal smooth muscles were decreased in diabetic rats 18. 

Another study reported that colonic smooth muscle from RIP-I/hIFNβ diabetic mice had similar 

contractile responses with control mice 19. In human, 75% of diabetes mellitus patients (T1D 

and T2D) suffer from gastro-intestinal symptoms 20. Abnormal motility has been described in 

patients suffering from auto-immune diabetes with conflicting results, some report intestinal 

hypermotility 21 others hypomotility 22
 . In our study, we do not observe any difference in 

circumference of small (duodenum, jejunum, ileum) and large intestine between diabetic and 

non-diabetic mice excluding a major role of tonus to explain our different results in in vivo and 

ex vivo measurements for FD4. 
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The most striking result of our study was the elongation of intestine in diabetic NOD mice. 

Interestingly, increased intestinal proliferation, intestinal weight and length have previously 

been described in streptozotocin- and alloxan-induced diabetes 23,24. The increase of intestinal 

length means an increase of absorptive surface that seems to be a main contributor to the 

observed higher FD4 concentration in plasma of diabetic mice compared to non-diabetic mice. 

We aimed to further characterize intestinal permeability in our model in Ussing chambers 

using FSS and HRP as respective markers of para- and trans-cellular permeability 25. Small 

inert molecules with a molecular weight below 600 Da can pass the epithelial barrier between 

cells via the tight junctions 26. Horse Radish Peroxidase (HRP) is a bigger molecule (44 kDa) 

which can pass the intestinal epithelial barrier by transcellular route via endocytosis. For that, 

it serves as a marker to measure transcellular permeability. Surprisingly, in jejunum, 

paracellular permeability to FSS was significantly decreased in diabetic mice whereas 

transcellular permeability to HRP was not modified (intact and total HRP). FD4 can be 

considered as a marker of transcellular permeability due to its molecular weight (4 kDa) and as 

it acts like HRP and not FSS.  

Short current circuit (Isc) was significantly increased in colon of diabetic mice and might 

reflect an increased Cl- secretion into the lumen triggering H2O flux in the lumen 27. However, 

we did not observe differences in fecal humidity and intestinal transit time excluding a major 

effect on water fluxes. 

In our model, diabetic state was not associated with intestinal inflammation. So we could 

exclude any direct effect of inflammation on modified intestinal morphology and permeability, 

since inflammation comes along with increased intestinal permeability 28 

During in vivo measurements FD4 concentrations are increased in diabetic mice as early as 

15 min after gavage that could involve gastric and duodenal permeability since FD4 is increased 

shortly after gavage and the FD4 bolus is still in the upper intestinal part, it would be interesting 

to assess additionally gastric and duodenal permeability. Indeed, in insulin-dependent diabetes 

patients abnormal duodenal chyme transport has been observed 29. Even though, the accurate 

characterization of IP in different fragments of small intestine is of interest, this is not the object 

of our study. Here our objective was to emphasize that ex vivo and in vivo measurement of FD4 

transport by intestine can lead to conflicting results and we used jejunum as a representative 

fragment of small intestine. 
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In summary, our work highlights that the assessment of intestinal permeability is complex 

and a lot of confounding factors have to be considered when setting up the experiment. On one 

side, in vivo experiments do not allow to control the absorptive surface, neither intestinal 

circumference nor intestinal length, are known in the experimental conditions. Furthermore, 

one has also to consider that in vivo intestinal permeability measurements are highly dynamic 

– depending on transit, excretion and could be fluctuating in time. One point plasma 

measurements are difficult to consider as representative. Overall, in vivo measurements are 

reflecting more likely the exposition of the organism to the luminal marker in circulation at one 

time point, rather than the intestinal permeability as such in its stricto sensu definition. On the 

other side, Ussing chamber allow to control surface. This allows the researcher to analyse 

different intestinal segments and to use different molecular markers. Ussing chambers allow to 

measure real permeability, which is “the facility with which intestinal epithelium allows 

molecules to pass through by non-mediated passive diffusion” expressed in cm/sec 1. However, 

tissues are outside of the organism and effects of innervation and blood circulation are depleted 

and additional observations and experiments are necessary to describe the physiologic 

importance of observed modifications ex vivo.  
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MATERIALS AND METHODS 

Mouse model 

All experimental protocols were approved by local Animal Care Use Committee (Comité 

d'Ethique de Pharmacologie-Toxicologie de Toulouse - Midi-Pyrénées, France) registered as 

N°86 at the Ministry of Research and Higher Education (N° 0029/SMVT), and conducted in 

accordance with the European directive 2010/63/UE. NOD Shilt/J strain (Charles River, 

France) were housed by five per cage. Female NOD mice were chosen for the experiment since 

they develop more rapidly diabetes than male NOD mice (Jackson Laboratory Physiologic Data 

Sheet). Mice were kept at a constant temperature (22 ± 1°C) and maintained on a 12:12 h 

light/dark cycle (lights on 8h00 am) on Specific and Opportunistic Pathogen Free (SOPF) 

conditions. Normal diet (Harlan2018, Envigo, Gannat, France) and water were available ad 

libitum. Blood glucose levels of NOD Shilt/J mice were monitored weekly from the tip of the 

tail vein with a glucose meter (AccuCheck, Roche, Mannheim, Germany). Mice with non-fasted 

glycaemia superior to 250 mg/dL were considered as diabetic according to Jackson Laboratory 

Physiologic Data Sheet. After one to four weeks posterior to diabetes diagnosis, diabetic mice 

and non-diabetic mice from same cage were attributed either to in vivo or ex vivo intestinal 

permeability assays. Three independent batches of animals were analyzed. 

Intestinal permeability in vivo – FITC-Dextran 4 kDa (FD4) 

Mice were fasted for 3h prior to intragastric gavage with FITC-Dextran 4kDa (750 µg/g 

bodyweight in tap water). Small blood samples were obtained at the tip of the tail vein via 

microheamatrocrit capillary tubes (Hirschmann, Eberstadt, Germany) before and 15 min, 30 

min, 60 min, 2h, 3h, 4h after gavage. At the end of the procedure mice were euthanized by 

dislocation and blood was harvested intracardiac for plasma. Blood samples were diluted 1/20 

and plasma 1/10 in NaCl 0,9%, and Fluorescent Intensity (FI) measured by excitation: 485 nm/ 

emission: 525 nm using an automatic Infinite M200 microplate reader. FI in blood was 

corrected by FI measured before gavage. 

Intestinal permeability ex vivo - Ussing chambers 

Intestinal permeability was assessed as previously described 25. Briefly, jejunal (as 

representative for small intestine: SI) and colonic fragments were mounted in Ussing chambers 

(Physiologic Instruments, San Diego, CA, USA). Tissues were bathed 2h with oxygenated 

thermostated Krebs solution (Sigma, Saint Quentin Fallavier, France). Horse Radish Peroxidase 

400 µg/ml (HRP 40 kDa; Sigma) and Fluorescein Sodium Salt 40 µg/ml (FSS 376Da; Sigma) 
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or FITC-Dextran 400 µg/mL (FD4 4 kDa, TdB, Sweden) were added to mucosal compartment. 

FSS and HRP were used as respective markers for para- and trans-cellular intestinal 

permeability.  

Intestinal permeability to total HRP was determined by ELISA. Briefly, 96-wells black 

plates (Greiner, Les Ulis, France) were coated with 10 µg/ml mouse polyclonal to HRP (Abcam, 

Paris, France), blocked with PBS-1% bovine serum albumin (BSA), incubated with serosal 

compartments of Ussing chamber, detected with 10 µg/ml Rabbit polyclonal anti HRP biotin 

(Abcam) and revealed with SPRD-conjugated streptavidin (BD, Paris, France). Fluorescence 

intensity was measured 485nm/525nm using an automatic Infinite M200 microplate reader 

(Tecan, Männedorf, Switzerland). Intestinal permeability to intact HRP was determined in 96-

wells black plates, adding TMB substrate to serosal compartments of Ussing chambers, and 

measuring the slope within 90 seconds at 37°C at 450 nm in automatic Infinite M200 microplate 

reader. Intestinal permeability to FSS and FD4 were determined by measuring FI 485 nm/525 

nm using an automatic Infinite M200 microplate reader. Results of Ussing chambers 

measurements are presented as flux, expressed as ng/2h/cm2. 

FD4 excretion in urine 

For analysis of FD4 excretion in urine, mice were anesthetized by a mixture of ketamine 100 

mg/kg of body weight and xylazine 10 mg/kg of body weight and maintained anesthetized by 

jugular catheter perfusion with 20mg/kg/h ketamine and a flow of 0.1ml/h. 10 mg FD4 was 

injected in jugular vein (100 mg/mL), arterial pressure was monitored in femoral artery. Urine 

was collected through a catheter inserted in bladder at 1h and 2h after FD4 injection. FD4 

concentration was measured by FI. After 2h mice were euthanized by cervical dislocation, 

blood was taken for measurements of FI in plasma. 

Histological analysis of intestinal morphology 

Intestinal fragments of duodenum, jejunum, ileum and colon were fixed in 4% formalin and 

included in paraffin. Paraffin sections were stained with Hematoxylin and Eosin (Eosine 

aqueuse 1% Labo modern, France). Tissue were screened for morphological abnormalities. 

Intestinal diameter, crypt depth and villi length were measured (Nis Element-Ar, Nikon System-

Elements-Advanced research, microscope Nikon Eclipse 90 i, France).  

Fecal humidity and Transit time 

Feces of diabetic and non-diabetic mice were collected and regrouped by condition, 

weighed, dried at 37°C for one week and weighed again. Lost weight was considered as water 
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content. In the morning, mice were isolated in clean cages without bedding material but tissue 

for 45 min without food. Afterwards feces were numbered. 

Cytokine measurements 

Cytokines were measured in jejunal (representative of small intestine: SI) or colonic 

fragments suspended in RIPA buffer (0.5% deoxycholate, 0.1% SDS and 1% Igepal in TBS) 

containing complete anti protease cocktail (Sigma). Jejunal and colonic protein concentrations 

were measured using BCA uptima kit (Interchim, Montlucon, France). TNFα, Lipocalin-2, IL-

10, IL-17 and IL-22 in lysate of jejunal or colonic fragments were assayed using commercial 

ELISA kits (R&D Systems, Lille, France) and expressed as pg/mg of protein. 

Statistical analysis 

Statistical analyses were performed using GraphPad Prism version 6.04 (GraphPad 

Software, La Jolla, CA, USA). Results for single comparisons were displayed as box plots [min 

to max] and analyzed using Student’s unpaired t-test (two-tailed) or Mann-Whitney test (two-

tailed) after prior Shapiro-Wilk Normality test and F-Test to compare variances. Multiple 

measurements in time or in different tissues were displayed either as kinetics with SEM or box 

plots [min to max] compared per family by Holm-Sidak posttest after a significant two-way 

ANOVA. Differences were considered significant for P<0.05. Results in text were described as 

NOD diabetic mean ± SEM vs. NOD non-diabetic mean ± SEM for normally distributed 

samples and as median, [25%-quartile; 75%-quartile] in other case. 
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LEGENDS 

Figure 1 In vivo and ex vivo measurements of intestinal permeability to FITC-Dextran 4 kDa 

(FD4) give different results. (A) Plasmatic FD4 concentration 4h after gavage by 750 µg FD4/g 

bodyweight, unpaired students t-test, p=0.0809, n=4-5. (B) Jejunal (small intestine: SI) and 

colonic permeability to FD4 (400 µg/mL in serosal compartment) measured in Ussing 

chambers, n=4-5. (C) Kinetic of FD4 fluorescence in blood during 4h after gavage by 750 µg 

FD4/g bodyweight, repeated-measurement two-way ANOVA, ** p<0.01, n=5-6. (D) Area 

under the curve (AUC) of FD4 in blood during 4h after FD4 gavage, unpaired students t-test, 

p=0.0499, n=5-6. 

Figure 2 Urinary excretion of FITC-Dextran 4 kDa (FD4) is higher in diabetic NOD mice. 

FD4 (10 mg/mice) was injected in jugular vein in anesthetized mice (A) urinary volume (µL) 

measured 1h and 2h after intravenous injection of FD4 harvested in bladder during the 

experiment in anesthetized mice, n=2-3. (B) FD4 concentrations in urine (µg/mL), n=2-3. (C) 

Quantity of FD4 excreted as calculated from FD4 concentrations measured in urine multiplied 

by urine volume, n=2-3. (D) FD4 concentrations measured in plasma harvested 2h after FD4 

intravenous injection, n=2. 

Figure 3 Intestinal transit and humidity in feces are not affected by diabetes in NOD diabetic 

mice. (A) Intestinal transit, measured as number of feces/mice during 45 minutes, n=7-14. (B) 

Fecal humidity calculated as the ratio of fresh feces weight (one cage) and one week at 37°C 

dried feces weight, n=2. 
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Figure 4 Macroscopical and microscopical and characterization of small intestine and colon 

in diabetic vs non-diabetic NOD mice. (A) Small intestine length (cm), unpaired students t-test, 

p=0.0009, n=25-26. (B) Colon length (cm), Mann-Whitney test, p=0.0306, n=25-26. (C-D) 

representative cross sections of 4%-formalin, paraffin-embedded haematoxylin/eosin stained 

jejunal, objective 2x (E-F) and colonic tissue, objective 10x (C-D) tissue n=5. 

Figure 5 Total intestinal length (cm) is positively correlated with the area under the curve 

(AUC) of FD4 concentrations during the 4h after FD4 gavage, pearson correlation, r=0.6659, 

R2=0.4434, p=0.0253, n=11. 

Figure 6 Measurements of intestinal permeability in Ussing chambers in jejunum (small 

intestine: SI) and colonic tissue. (A) Paracellular flux (ng/cm2/2h) of Fluorescein Sodium Salt 

(FSS), 330 Da, 40 µg/mL in serosal compartment, two-way Anova, Sidaks multiple comparison 

post-test, *p<0.05, n=8-12. (B) Short circuit current (Isc, µA.cm2), two-way Anova, Sidaks 

multiple comparison post-test, *p<0.05, n=7-10. (C) transcellular flux (ng/cm2/2h) of total 

Horse Radish Peroxidase (HRP), 44 kDa, 400 µg/mL in serosal compartment, n=8-13. (D) 

transcellular flux (ng/cm2/2h) of intact Horse Radish Peroxidase (HRP), 44 kDa, 400 µg/mL in 

serosal compartment, n=6-8. 

Figure 7 Cytokine concentrations in colonic and jejunum (small intestine: SI) lysate were 

similar between diabetic and non-diabetic NOD mice. Cytokine concentrations in (pg/mg 

protein) (A) TNFα, n=5 and (B) Lipocalin-2, n=5 in jejunum (small intestine: SI) and colon. 

(C) IL-10, n=5 (D) IL-17, n=5 (E) IL-22, n=5, in colon. 
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Addtional Discussion 

The original article published by Thaiss and colleagues in 2018 in the journal Science 

is entitled “Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection”. 

The question if hyperglycemia is triggering intestinal barrier dysfunction (including intestinal 

hyperpermeability) is of great interest in our model. The authors are principally working with 

a model of type 1 diabetes induced by streptozotocin (STZ). One has to note that STZ is entering 

the cell via GLUT2 (Lenzen, 2008; Wang and Gleichmann, 1998), which is not only expressed 

in β cells of pancreas but also on intestinal epithelial cells. Thus, a direct effect of STZ on the 

observed intestinal barrier dysfunction cannot be excluded. Additionally, STZ is also used in 

gut cancer (Clamon et al., 1987; Welt et al., 2003), emphasizing its action on intestinal epithelial 

cells and thus an impact on intestine. STZ is also used as chemotherapeutic agent. A clastogenic 

effect of STZ on human colon cancer cell lines has been described (Bolzán and Bianchi, 2003). 

In their paper, Thaiss et al. describe that mice with a partial knock-out of GLUT2 on intestinal 

epithelial cells (GLUT2ΔIEC) were resistant to STZ-induced transcriptomic and tight junctional 

changes despite persisting hyperglycemia. They conclude that hyperglycemia is 

reprogramming via GLUT2 the intestinal transcriptome. However, these observations are more 

in favor for the hypothesis that STZ is affecting directly the intestinal epithelial cells. Indeed, 

disturbance of glucose transporters in the intestinal epithelial cell could lead to reorganization 

or even loss of cell polarization and an ectopic expression of SGLT1 to compensate the knock-

out. Perhaps glucose could also enter into the epithelial cell via SGLT1, a glucose transporter. 

(Kellett and Brot-Laroche, 2005).  

The authors use many different models to support their hypothesis. Indeed, they have 

data on STZ-induced hyperglycemia, db/db, ob/ob, Akita and HFD mice. It is important to note 

that in these models, hyperglycemia is linked with obesity and inflammation. It is difficult to 

disentangle the effects of these three phenomenon. Indeed, they are highly interwoven and 

influenced one by another. The authors present only data on immune system of STZ treated 

mice, but not of db/db, ob/ob, Akita and HFD mice, which would be interesting for the 

comprehension of increased pathogen load in all five models. Our work was carried out in non-

obese diabetic (NOD) mice. There is no interference with obesity. Additionally we showed that 

hyperglycemia was not associated with inflammation. So the NOD model would have been an 

interesting plus in the work of Thaiss et al. 

Even though, we were not convinced that this paper clearly demonstrated that 

hyperglycemia drives intestinal hyperpermeability the role of hyperglycemia on intestinal 
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permeability was of particular interest in our model of NOD diabetic mice. We set up the 

following experiment to confirm a potential role of high glucose on intestinal permeability in 

Ussing chambers. Intestinal permeability was assessed in Ussing chambers on small intestine 

and colon from NOD non-diabetic, diabetic, C57Bl6/J and Balbc/J mice in high-glucose (6 g/L) 

vs normal glucose (2 g/L) conditions. In jejunum (Figure 25) and colon (Figure 26), no 

increase FSS, FD4 and HRP fluxes after 2h bathing could be detected and electrical parameters 

were not affected neither. We had just 1 point for NOD mice in every condition, but did not 

observe increased passage of molecules in high-glucose conditions. So, we excluded a role of 

hyperglycemia in the increase of intestinal permeability measured in Ussing chambers.  
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Figure 25 Jejunal permeability measurements in Ussing chambers in C57/Bl6 and Balbc mice in low (2 g/L) 
and high-glucose (6g/L) Krebs medium. (A) FSS-flux (ng/cm2/2h). (B) Electrical resistance (R) (Ωxcm2). (C) 
Short circuit current ISC (µAxcm2). (D) HRP-flux (ng/cm2/2h). (E) FD4-flux (ng/cm2/2h). 
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Figure 26 Colonic permeability measurements in Ussing chambers in C57/Bl6 and Balbc mice in low (2 g/L) 
and high-glucose (6g/L) Krebs medium. (A) FSS-flux (ng/cm2/2h). (B) Electrical resistance (R) (Ωxcm2). (C) 
Short circuit current ISC (µAxcm2). (D) HRP-flux (ng/cm2/2h). (E) FD4-flux (ng/cm2/2h). 
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THE INTESTINE IS PLAYING A CRUCIAL ROLE IN HEALTH AND 

DISEASE 

Historically, MS model has been used with the objective to analyze its consequences on 

intestinal barrier function and as such is a reference as a rodent model of Irritable Bowel 

Syndrome (IBS). The interest in intestinal homeostasis gain a special attention during the last 

years. Indeed, intestinal homeostasis is impaired not only in intestinal disorders, but also in 

extra-intestinal disorders and we aimed to address this question during my PhD.  

The intestine is playing a central role in our life: it is the biggest body surface in contact 

with the outside, transporting about 30 000 tons of food and 50 000 liter of fluids during our 

life, harboring the biggest immune repertoire in our organism and due to the numerous neurons 

often called our second brain. 

The different projects of my PhD highlight the long-term consequences of stress on 

intestinal homeostasis and the development of diseases. Indeed, intestinal hyperpermeability is 

one of the first characteristics of MS-induced phenotype in young C3H/HeN male mice. 

Microbiota dysbiosis is observed in young MS male mice. The intestinal immune system is 

modified by MS in male and female mice from young age on, and remained different between 

MS and control throughout lifetime. Our observations on MS-induced effects in male and 

female young adult mice led us hence to the hypothesis that intestinal barrier dysfunction could 

be at the origin of later disease. Interventional studies are needed to confirm this. 

 

In male mice, intestinal hyperpermeability induced by MS appeared from early age on. 

Indeed, intestinal permeability was increased from early time point on (PND15). Riba et al. 

reported still increased intestinal permeability at PND50 and additionally decrease in lysozyme 

activity (Riba et al., 2018), which were both resolved later on (PND350) (Ilchmann-Diounou 

et al., 2019) (Figure 27).  
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Figure 27 Jejunal paracellular permeability to FSS (x10-7 cm/s) assessed in Ussing chambers in C3H/HeN 

male maternal separated (MS) and control mice at post-natal day (PND) 15, 50, 100, 150 and 350.  

The intestinal barrier in MS male mice is also weakened by diminished lysozyme 

content in Paneth cells and decreased fecal lysozyme activity at PND50 and intestinal low-

grade inflammation, namely increased TNFα and fecal IgA concentrations (Riba et al., 2018). 

The effects of MS on antimicrobial activity and on IgA concentrations were resolved in 

PND350 mice (cf. III. Part Results, First Result, Additional Data), whereas intestinal low-grade 

inflammation and increased IgG against commensal microbiota, which is an indicator for 

disturbed host-microbiota mutualism, are persisting in time (Ilchmann-Diounou et al., 2019). 

Metabolic disorder only appear at PND350. Additionally, microbiota dysbiosis is observed at 

PND50 and PND350, but evolving in time.  

The establishment of life-long beneficial host-microbiota interaction takes place in the 

early life (Stockinger et al., 2011). After birth, the host is massively colonized and encountering 

microbiota for the first time. A transient disturbed barrier can have long-lasting consequences 

due to the potent priming mechanisms on immunity during the highly shapeable neonatal 

period. Increased exposition to luminal antigens (from microbiota and food origins), due to 

weakened intestinal barrier, in this time frame can have an impact on later disease susceptibility. 

Al Nabhani et al. show that a transient but robust immune reaction during weaning period have 

long-term effects on the resistance to immunopathology in later life, notably colitis and allergy 

(Al Nabhani et al., 2019). However, MS does not predispose to colitis (IL-10 KO model) or 

enteric infection by Salmonella or Listeria (Riba et al., 2018). 

We hypothesize that intestinal barrier dysfunction, which precedes the onset of 

metabolic phenotype, is triggering metabolic disorder in our model.  

The role of intestinal barrier in metabolic disorder is highly discussed. Some consider 

intestinal barrier dysfunction as a consequence, other as a cause of metabolic disorder. Cani et 
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hyperpermeability was observed before the onset of disease in biobreeding diabetic prone 

(BBDP) rats (Meddings et al., 1999). Additionally, tight junction proteins were modified in 

BBDP (Neu et al., 2005). In epidemiological studies, different results have been observed. Bosi 

et al. demonstrated that intestinal hyperpermeability, as measured in vivo by lactulose/mannitol 

(L/M) test occurs before disease onset (Bosi et al., 2006), others found increased in vivo 

cellobiose/M intestinal permeability in established but uncomplicated T1D (Carratù et al., 

1999). While Kuitunen et al. did not observe increased intestinal permeability (L/M) in T1D 

patients (Kuitunen et al., 2002). Relatives of T1D patients had intermediate in vivo L/M 

intestinal permeability between T1D and control (Sapone et al., 2006). In rats, reversion of 

intestinal hyperpermeability by treatment with a zonulin 1 (intestinal homolog of an Vibrio 

cholerae enterotoxin that reversibly increase intestinal permeability) inhibitor ameliorates T1D 

manifestation in rat model (Watts et al., 2005). Our study, addressing intestinal permeability in 

T1D in non-obese diabetic (NOD) mice compared to non-diabetic NOD mice by in vivo and ex 

vivo measurements, showed important intestinal modifications during T1D in NOD/ShiltJ mice. 

In the NOD mice model, we observed increased in vivo intestinal permeability (FD4) but 

decreased ex vivo paracellular permeability associated with striking intestinal modifications 

only after the onset of diabetes. We excluded an ex vivo intestinal hyper-permeability expressed 

in cm/s in diabetic mice but agreed with a higher in vivo exposure to luminal content. 

Due to the proximity between pancreas and duodenum, bacterial translocation from the 

intestine via the pancreatic duct towards pancreas could be hypothesized. 40% of long-term 

T1D patients had periductal fibrosis (Meier et al., 2005), which could be an indicator for 

persisting duct inflammation, possibly induced by bacterial infection. Microbial translocation 

in pancreatic lymph nodes activates NOD2 and IL-17 production in pancreatic lymph nodes 

and pancreas contributes to T1D development (de Goffau et al., 2013). Indeed, Korsgren et al. 

instilled different bacteria into the pancreatic duct. This leads to consecutive islet inflammation 

and T1D. Different bacteria were tested, among them E. coli, which exhibits the most severe 

pancreatic inflammation in comparison to S. aureus, E. faecalis, α-Streptococcus (Korsgren et 

al., 2012). This is of particular interest since E. coli has been increased in fecal microbiota of 

PND50 female MS mice due to defect of AMP in Paneth cells of small intestine. AMP 

expression is not uniquely found in Paneth cells, also neutrophils and epithelial cells can express 

and secrete AMPs. It is interesting to consider that antimicrobial peptides expression has also 

been found in pancreas. Indeed, the AMP repertoire seems to be diverse in pancreas, however 

in human pancreas their expression is not yet fully known (Stenwall et al., 2019). The presence 
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of CRAMP in the pancreas has been shown to protect mice from autoimmune diabetes (Sun et 

al., 2015). Stenwall et al. analysed pancreas of healthy control and one T1D patient. They found 

differentially expressed AMP in healthy vs the patient. AMP were generally less present in the 

patient than in control, even in the inflamed parts of pancreas of the patients, where AMP 

expression was higher than in non-inflamed parts (Stenwall et al., 2019). It could be possible, 

that early life stress is not only decreasing intestinal AMP activity, but also AMP activity in 

pancreas leading to pancreatic inflammation, which could end up in destruction of insulin-

producing β-cells. To answer this question we plan to assess the presence of the AMP CRAMP 

in pancreas and small intestine of MS and control mice. Indeed, it is of particular interest that 

CRAMP is only expressed in small intestine from birth to PND15 corresponding to the 

timeframe of MS protocol. However, in our model in C3H/HeN mice the effect of MS on 

pancreas were modest so it would be also interesting to perform those analyses in a genetically 

predisposed mouse model. 

 

In conclusion, the work of my PhD project highlights the role of intestinal barrier 

dysfunction in extra-intestinal, namely metabolic and autoimmune, diseases. The challenging 

hypothesis of intestinal barrier dysfunction and bacterial translocation preceding disease onset 

and its causal role in the pathogenesis of those diseases still need to be assessed in interventional 

studies. 
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THE ROLE OF LOW-GRADE INFLAMMATION IN AGING - 

INFLAMMAGING 

During my PhD thesis, we showed that neonatal maternal separation (MS) leads to 

metabolic disorder in aging male mice. It is interesting to consider that metabolic disorder did 

not appear at an earlier time point. Indeed, “aging is a ubiquitous complex phenomenon that 

results from environmental, stochastic, genetic, and epigenetic events in different cell types and 

tissues and their interactions throughout life” (Franceschi and Campisi, 2014). Aging is 

characterized by decreased capacity to react to diverse stressors and as a consequence, gradually 

increasing pro-inflammatory status, a phenomenon called “inflammaging”. Chronic low-grade 

inflammation establishes (Franceschi et al., 2006), resilience decreases. These are risk factors 

to develop metabolic but also other non-communicable diseases (NCDs).  

There are multiple propositions for the origins of the inflammaging process in aging 

individuals (for review (Franceschi and Campisi, 2014)). Damaged macromolecules and cell 

debris (self) can accumulate due to inadequate elimination. Harmful metabolites, products and 

fragments from bacteria or other sources (non-self) leak inside the organism due to 

inappropriate barrier function. Indeed, intestinal barrier dysfunction have been described in 

aging (Man et al., 2015). Cellular senescence, which is arrest of cell proliferation, is also playing 

a role in aging. In elderly, there is increased activation of the coagulation system (Hager et al., 

1989) which can be considered as part of the immune system due to its strong interaction with 

the last, underlining a disturbed immune system in the elderly. Another parameter favoring 

inflammaging are the changes in the immune system, also called immune senescence. Indeed, 

there have been multiple observations on immune system in elderly. Some authors propose that 

the adaptive immune response undergoes great changes and declines, whereas the innate 

immune response seems to stay preserved and becomes more reactive (Franceschi et al., 2000). 

Thanks to previous work and my PhD project, we had the possibility to follow several 

markers of the immune system at different time points during our protocol in C3H/HeN male 

mice, namely in early life (PND7, PND15, PN21), in young adulthood (PND50) adult 

(PND100, PND150) and in aging (PND350). Due to experimental reasons, not all data are 

available for every time point. 
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Figure 30 Plasmatic immunoglobulin concentrations measured by ELISA in C3H/HeN male mice at post-

natal day (PND) 7, 15, 21, 50, 100, 150 and 350. (A) IgG (µg/mL). (B) IgA (ng/mL) 

In C3H/HeN mice, IgG and IgA plasmatic concentrations increase in time (Figure 30), 

whereas IgG increased sharply in aging mice (PND350, Figure 30A). Paganelli et al. observed 

similar phenomena in human. They studied a cohort, including males and females, in the age 

range from 23 years to 106 years. They showed that plasmatic IgG and IgA increased with 

aging (Paganelli et al., 2008). 
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Figure 31 Cytokine concentrations measured by ELISA in C3H/HeN male mice at post-natal day (PND) 7, 15, 

21, 50, 100, 150 and 350. (A) TNFα concentrations (pg/mg protein) in lysate of small intestine. (B) TGFβ 
secretion (pg/mL) in response to anti-CD3/CD28 (T cell receptor) stimulation in primary culture of splenocytes. 

Cytokine secretion during lifetime is visualized in Figure 31. We observed cytokine 

concentrations in SI. TNFα concentrations increased with aging (Figure 31A). These results 

are consistent with literature. Thevaranjan et al. identified increased TNFα as driving force for 

decreased killing capacity of macrophages from old vs young mice (Thevaranjan et al., 2017). 

In human, stimulated secretion of IL-6, IL-1β, TNFα was increased in PBMC of old (mean age 
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80.2) vs young (mean age 26.8) participants. There were no differences for IFNγ secretion 

(Fagiolo et al., 1993).  

We analyzed several cytokines of adaptive immune response at systemic level (spleen), 

as for example pro-inflammatory and anti-inflammatory, like TGFβ (Figure 31B). TGFβ 

secretion constantly decreased in time and reached lowest levels in aging mice. These are 

indications that adaptive immune response seems to decrease in aging. Indeed, the immune 

system in the young is characterized by strong Th2 response and secretion of the anti-

inflammatory cytokine TGFβ in order to favor entry of luminal antigens for immune priming 

and establishment of tolerance (Adkins et al., 2004). Even though in physiological conditions 

TGFβ seem to decrease with age, it is interesting to note that the opposite is observed in 

pathologies. In human, increased TGFβ is described in aging and in numerous age-related 

pathologies, as for example osteoarthritis (Krieglstein et al., 2012). In healthy state, TGFβ is 

necessary for maintenance of articulate cartilage, in the case of osteoarthritis decrease of TGFβ-

receptor expression and modified TGFβ signaling has been described (van Caam et al., 2016). 

These observations highlight that not only TGFβ concentration could be affected during aging 

but also underlying mechanisms. 

Aging is also associated with intestinal barrier dysfunctions. Indeed, with aging 

intestinal permeability increases and innate immune system is modified in mice (Thevaranjan 

et al., 2017) and human (Man et al., 2015). Intestinal IL-6 (Man et al., 2015) and TNFα 

(Thevaranjan et al., 2017) secretion are increased in aging subjects. Thevaranjan et al. showed 

that aging is associated with microbiota dysbiosis, which is triggering age-associated 

inflammation. However, both were interdependent, since microbiota dysbiosis could be 

reversed by treating increased TNFα (Thevaranjan et al., 2017). They concluded that “age-

associated inflammation and microbial dysbiosis drive intestinal permeability and translocation 

of bacterial components, further fueling inflammation and impairing cellular antibacterial 

function” (Thevaranjan et al., 2017). Those results are underlining the potent role of 

inflammation and intestinal barrier dysfunction in aging. 

Until here, I demonstrate the effects of aging on immune system and intestinal barrier 

in C3H/HeN mice. However, this does not explain why we observe differences between MS 

and control mice. Why do MS mice develop metabolic disorder with aging but not control? 

Franceschi et al. propose that inflammaging alone is not sufficient to induce age-related 

diseases. Low-grade inflammation in aging leads to higher susceptibility to disorders, the 
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authors called this “first hit”. However, to develop disease a “second hit” is necessary. 

According to Franceschi et al. this could be genetically predisposition (Franceschi et al., 2006), 

but I would extend the term “second hit” by defining it as an additional risk factor like MS. 

Indeed, MS mice experienced an important insult in early life – the separation from their 

dam, which led already in young mice to modifications of immune system and intestinal barrier. 

According to the theory of embodiment, this insult can leave an imprinting on the organism 

which lead later to higher disease susceptibility. The cost of the adaption to early life stress in 

MS male mice is reflected by early (PND50) development of low-grade inflammation (Riba et 

al., 2018). As young adult, MS mice already faced the symptoms of irritable bowel syndrome 

(Riba et al., 2018). These modifications can be resumed as wear and tear on the body – which 

try to find new homeostasis (Fava et al., 2019). In aging (PND350) male mice face higher low-

grade inflammation compared to control (Ilchmann-Diounou et al., 2019). Indeed, at PND350 

protective IL-17, IL-22 and IL-10 responses were decreased and pro-inflammatory TNFα 

secretion increased in SI.  

To conclude, our work confirmed that aging is associated with profound changes in the 

immune system and higher susceptibility to disease. Indeed, metabolic disorder only appear at 

PND350 in our model. 
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THE MODEL OF MATERNAL SEPARATION IS A USEFUL MODEL TO 

DECIPHER ETIOLOGY OF METABOLIC DISORDERS 

During my PhD thesis, we showed that neonatal maternal separation (MS) leads to 

metabolic disorder in aging (PND350) male mice without any dietary challenge. Metabolic 

disorder was characterized by fasted hyperglycemia, glucose intolerance and insulin resistance 

without obesity. Additionally, we observed microbiota dysbiosis, intestinal and systemic 

immune alterations and increased humoral immune response against microbiota (Ilchmann-

Diounou et al., 2019).  

Interestingly, low-grade inflammation was already observed in small intestine and 

spleen in our model at earlier time point (PND50) (Riba et al., 2018) and persists at PND350 

with increased LPS-induced TNFα secretion in siLP and spleen suggesting an imprinting of 

early life. Additionally, intestinal barrier dysfunction has been observed at PND50, namely 

decreased lysozyme activity, intestinal hyperpermeability and microbiota dysbiosis (Riba et al., 

2018).  

We hypothesize that weakened intestinal barrier at PND50 induces persistent low-grade 

inflammation that precedes metabolic disorder. Until today, there is no consensus among 

scientists if low-grade inflammation is cause or consequence of metabolic disorder.  

Arguments in favor of low-grade inflammation as a trigger are inflammaging process 

(treated in the previous chapter) and experiments with anti-inflammatory treatments in 

metabolic diseases. In 1957, Reid and colleagues demonstrated that aspirin (salicylates), an 

anti-inflammatory treatment decreased fasting blood glucose levels in overweight and lean 

diabetic patients (Reid, 1957). Later on, studies indentified IκB/NFκB axis as the molecular 

target of hypoglycemic effects of salicylates (Shoelson et al., 2003; Yuan et al., 2001).  

Our data suggest that defect of intestinal barrier functions (intestinal hyperpermeability 

and defect of Paneth cells associated with microbiota dysbiosis) and low-grade inflammation 

observed in PND50 male mice submitted to MS (Riba et al., 2018) precedes the onset of glucose 

intolerance and insulin resistance observed in PND350 mice. This observation is in accordance 

with studies suggesting that high-fat diet impairs intestinal barrier (intestinal hyperpermeability 

and defect of Paneth cells) and triggers low-grade inflammation before the onset of adverse 

metabolic consequences (for review, (Araújo et al., 2017)). Furthermore, in mouse model of 

HFD-induced intestinal hyperpermeability associated with an increase of HOMA index (a 
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measure for insulin resistance), restoring intestinal permeability by fish oil treatment or 

resolving D1 did not improve HOMA index (Lam et al., 2015), suggesting that correcting 

intestinal permeability is not sufficient to ameliorate metabolic status. One could hypothesize 

that, past intestinal hyperpermeability have been already responsible for the establishment of 

low-grade inflammation. Correcting hyperpermeability at late time point when metabolic 

disorder is established may be too late to correct immune modifications. In our model, we 

observe corrected intestinal permeability at PND350, however, metabolic disorder only 

appeared at this time point. MS increased humoral immune response against-E. coli in plasma 

from PND50 and this signature persists until PND350. Interestingly, IgG against specific 

bacterial antigens were increased in diabetic patients (Mohammed et al., 2012). 

These results are encouraging to set up an experimental model to decipher whether 

metabolic disorder are a consequence or a cause of an ongoing low-grade inflammation, a 

question still under debate in metabolic disorder and particularly in T2D. Indeed, since 

metabolism and inflammation are closely related and regulate one another (as previously 

discussed), in established metabolic disorder with inflammation it is difficult to discriminate 

which one – inflammation or metabolic disorder – precedes the other. The neonatal maternal 

separation paradigm seems an appropriate model in order to answer this question and to 

evaluate the mechanisms linking intestinal barrier, immune changes, low-grade inflammation 

and glucose metabolism disorders, which seem to appear in a distinct time frame in this model. 

Using the model of neonatal maternal separation to study metabolic disorder may contribute to 

a better understanding of the relationship between immunology, intestinal barrier (including 

microbiota) and metabolism. In the following, I am suggesting some interventional studies, 

which could be useful to respond to the question. 

Since metabolic disorder in our model appear late, it would be interesting to precipitate 

or accelerate the establishment of metabolic disorder, by a dietary challenge. Indeed, our results 

are obtained under normal diet. High-fat high-sugar diet (HFHSD) could be a useful tool, since 

it is described to induce rapidly metabolic disorder.  

In a first step, one has to validate that HFHSD induces exacerbated metabolic disorder 

in MS mice compared to control. Indeed, preliminary results in our laboratory showed that 

HFHSD induces in MS male mice greater weight gain compared to control under HFHSD diet 

(Figure 32). Besides, food intake were similar between control under HFHSD and MS under 

HFHSD. 
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Figure 32 Preliminary data Body weight (g) from maternal separated (MS) and control C3H/HeN male mice 
under high-fat high-sugar diet (HFHSD) or normal diet (ND) at post-natal day (PND) 50 (start of HFHSD) and 
1, 2, and 3 weeks after HFHSD. Asterisk is indicating statistic difference between MS mice under HFHSD and 
control mice under normal diet, two-way ANOVA, Sidak’s multiple comparison test, ** p<0.01, *** p<0.001, 

n=7-10 mice. 

In a second step, numerous interventional studies are possible to assess the role of 

- Intestinal barrier  

o Intestinal barrier correction (decrease of inflammation and intestinal 

hyperpermeability induced by MS) via pre- and probiotic treatment, before 

HFHSD challenge. 

o Intestinal permeability correction (decrease of intestinal hyperpermeability 

induced by MS) by ML-7, a MLCK-inhibitor (Moussaoui et al., 2014; Rincel 

et al., 2019) or zonulin inhibitor (Fasano, 2011), before HFHSD challenge 

- Immune response 

o Decrease of inflammation induced by MS by non-steroidal anti-

inflammatory treatment, before HFHSD challenge. 

We hope that by reducing inflammation and/or improving intestinal barrier function we 

will prevent MS-induced glucose intolerance and increased gain weight observed under 

HFHSD diet compared to control on the same diet. Those studies will confirm the role of the 

intestinal barrier dysfunction and inflammation in the onset of metabolic disease. 
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THE EFFECTS OF MATERNAL SEPARATION AFFIRM THE 

IMPORTANCE OF NEONATAL WINDOW AND THE DOHAD CONCEPT 

This PhD project underlined the early and long-term effects of early life adverse events, 

namely neonatal maternal separation in the development of different non-communicable 

diseases. 

The most significant effect we observed all along the MS model is the induction of 

modified humoral immune response against luminal content in plasma of male and female. This 

effect appears already in early life (PND15). Indeed, at PND15 IgG against commensal bacteria 

(E. coli) is decreased in male, but not in female (Figure 33A) and specific humoral IgG immune 

response against food is significantly increased (Figure 33B) in both sexes. 
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Figure 33 Specific humoral immune response measured by ELISA at post-natal day (PND) 15 in plasma of 

male and female C3H/HeN maternal separated (MS) and control pups. (A) Specific IgG against microbiota 
(E.coli lysate) (arbitrary unit (AU) of standard sample/10 µg/mL IgG). (B) Specific IgG against hydrosoluble 

fraction of food (optical density (OD) at 450 nm), Student’s unpaired t-test,* p<0.05, **p<0.01. 

Interestingly, the specific immune response against luminal antigens is reversed in MS 

model in time. Indeed, here we show that MS reduces IgG against E. coli in pups. However, in 

MS young adults (Riba et al., 2018) and aging mice (Ilchmann-Diounou et al., 2019) IgG 

against commensal microbiota is increased. In contrast, IgG against food is increased in MS 

pups and similar in young adults (Riba et al., 2018) and aging mice (Figure 34).  
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Figure 34 IgG against hydrosoluble fraction of food in plasma measured by ELISA (optical density (OD) at 

450 nm) at post-natal day (PND) 350 (A) of male and (B) female C3H/HeN mice. 
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In summary, in pups, humoral immune response against microbiota is delayed by MS, 

whereas MS pups are more sensitive to food antigens. Modified immune response towards 

luminal antigens could also be due to different microbiota composition. Indeed, Zeng et al. 

identified the potential of commensal gram-negative bacteria to induce systemic specific IgG 

response, which was protective in later infection (Zeng et al., 2016). The increased reaction to 

food antigens could perhaps be explained by the fact that MS pups start earlier to introduce 

solid food in their nutrition than control pups. One can hypothesize that this could be due to the 

disturbed relationship with their dam. To answer this question, it would be interesting to observe 

feeding behavior in MS neonates and to study microbiota changes in early life. In contrast, with 

potentially advanced solid food introduction, we observe in our model in male a retarded gut 

closure, since intestinal permeability stay increased until PND50. The combination of advanced 

introduction of solid food and concomitant microbiota changes with delayed gut closure could 

be threatening, since more potential dangerous molecules could pass the intestinal barrier and 

reach the systemic circulation. However, in female there is no delayed gut closure but decreased 

lysozyme activity and intestinal low-grade inflammation, indicating perturbation of intestinal 

physiology.  
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Figure 35 Plasma IgE concentrations (ng/mL) measured by ELISA in maternal separated (MS) and control 

C3H/HeN pups. (A) post-natal day (PND) 15. (B) PND21. Student’s t-test, *p<0.05, **p<0.01. 

IgE concentrations were significantly increased at PND15 in male and female mice 

submitted to MS (Figure 35A). This effect was transient and already resolved at PND21 

(Figure 35B). However, since pups are, during the neonatal period, immunological dependent 

on their dam it would be necessary to analyze dams milk and assess Ig content. Indeed, 

immunoglobulins are delivered from dam to pup by milk, which provide protection from 

infection during the first days of life through passive immunity. Additionally, transfer of Ig 

from lumen into circulation is possible via Fc receptors in mice (Van de Perre, 2003). IgE is 
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playing a role in allergy. Indeed, there are IgE-mediated food allergies (Berin, 2015). 

Interestingly, mice with low diversity microbiota as well as germ-free (GF) mice have elevated 

IgE concentrations in plasma. The increased IgE concentration lead to anaphylactic reactions 

in GF mice This deleterious outcome can be avoided by colonization with high diversity 

microbiota in early life (Cahenzli et al., 2013). It would be interesting to analyze microbiota in 

early life in the MS model. Perhaps MS leads to decreased gut microbial diversity. Additionally, 

it would be intriguing to set up food allergy experiments, to test if the observed effect on 

immunoglobulin repertoire has significant consequences on the allergy susceptibility. However, 

the food allergy experiment must be carried out in early life, since the observations we made in 

IgE and IgG against food resolve in time, thus highlighting the presence of an early critical 

window of opportunity.  

In conclusion, our work shows that an insult in early life can have long-lasting 

consequences on intestinal barrier and immune system. Depending on the time the effect of MS 

were analyzed, different disease susceptibilities have been highlighted. At PND350 metabolic 

disorder, at PND50 IBS (Riba et al., 2018) and at PND15 probably food allergy. Thus MS 

model is highlighting that early life adverse events can have multiple consequences on 

physiology and as a consequence increasing overall disease susceptibility. Hence, this work 

supports the concept of DOHaD and the notion of a neonatal window of opportunity. 
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MS INDUCES SEXUAL DIMORPHISM 

Interestingly in our work, we observe a MS-induced sexual dimorphism at all ages. 

Indeed, already at the age of 15 days male and female mice were different regarding immune 

response. One example is the increase in IgE concentrations in female compared to male in both 

control and MS group (Figure 36). These observations are underlining early onset of sexual 

dimorphism in the control and MS group. 
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Figure 36 Plasma IgE concentrations (ng/mL) measured by ELISA in C3H/HeN maternal separated (MS) and 

control pups at post-natal day (PND) 15, two-way ANOVA, Sidak’s multiple comparison test. 

 

Table 2 Sexual dimorphism in MS-induced phenotype at PND350 

 Male Female 

Glucose tolerance Glucose intolerant Glucose intolerant 

Insulin sensitivity Loss of insulin sensitivity No change of insulin sensitivity 
by MS 

Insulin secretion No change of insulin secretion Decreased insulin secretion in 
response to glucose stimulus 

Intestinal innate immune 

response 

Increased TNFα secretion in 
response to LPS stimulation 

Increased basal and LPS-
stimulated TNFα secretion 

Intestinal adaptive 

immune response 

Decreased IL-17, IL-22 and IL-
10 secretion in response to TcR 
stimulation  

Increased IL-17 and IL-22 
secretion in response to TcR 
stimulation 

Systemic innate immune 

response 

Increased TNFα secretion in 
response to LPS stimulation 

No modification by MS 

Systemic adaptive immune 

response 

Increased IL-17 secretion in 
response to TcR stimulation 

Increased IFNγ secretion in 
response to TcR stimulation 

Humoral immune 

response 

Decreased fecal IgG 
concentrations, increased 
plasmatic IgG specific for 
microbiota 

No modification by MS 
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The different results observed in male and female at PND350 are summarized in Table 

2. Interestingly, our observations in aging mice are similar to epidemiological observations 

highlighting diseases susceptibility depending on sex. Male MS mice develop classical 

metabolic disorder with insulin resistance, while we hypothesize that female MS mice develop 

metabolic disorder with autoimmune characteristics. Elderly men developed more often 

metabolic syndrome than female. However, today in the United States there are more women 

with metabolic diseases due to faster increase in obesity in women (Beigh and Jain, 2012). 

Similar data were obtained in other countries, as for example Russia and Korea. However, 

women suffering from metabolic diseases in comparison to men with metabolic diseases have 

higher body weight but lower plasmatic HDL, suggesting that woman need higher degree of 

obesity to reach the same metabolic disturbance than man (Dallongeville et al., 2004; Williams 

et al., 2003). Additionally, women suffer less from metabolic disorder associated 

complications, as for example coronary heart disease. This is principally due to the more 

favorable fat distribution in women (Regitz-Zagrosek et al., 2006). Additionally, men have 

higher insulin resistance than woman, associated with higher hepatic and visceral adipose tissue 

in men (Geer and Shen, 2009). These data are matching with our results, since male MS mice 

developed metabolic disorder, namely glucose intolerance and decreased insulin sensitivity 

without obesity. 

Besides metabolic disease susceptibility, there are various other diseases where male 

and female have different susceptibility.  

In human, a great sexual dimorphism is seen in the susceptibility to autoimmune 

diseases (AD). Female are more prone to develop autoimmune disease. Indeed, about 45 of 80 

identified auto-immune diseases are female-biased (Hayter and Cook, 2012). Since the onset of 

most AD is around 40 years of age, sexual hormones have been rapidly identified as the trigger 

of differences in susceptibility. However, there are also sex-biased AD with pediatric onset, 

long before puberty, as for example juvenile idiopathic arthritis (Ravelli et al., 1998).  

These data are consistent with our observations. It seems that female MS mice develop 

metabolic disorder with autoimmune characteristics, namely loss of insulin secretion that still 

need to be confirm by results of MS on diabetes incidence on NOD female mice. 

The male and female immune response are different. Female develop robust adaptive 

immune response and are as a consequences more protected from infection than males, which 

develop more easily inflammation (Fairweather et al., 2008; Klein and Flanagan, 2016). The 
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differences in the immune system have been finely documented and largely attributed to sexual 

hormones (Oertelt-Prigione, 2012). Data on pre-pubertal immune system is sparse or lacking 

(Chiaroni-Clarke et al., 2016). 

There are also differences observed in the susceptibility to mental and psychological 

disease. Indeed, women develop twice-often depression in comparison to men (Karger, 2014). 

The ratio of boys:girls diagnosed autism spectrum disorder is 3:1 (Loomes et al., 2017). 

The stress response and the HPA axis response differ between male and female. Female 

sex hormones attenuate the sympathoadrenal and HPA responsiveness, leading to slowly 

cortisol feedback on the brain and less or delayed containment of the stress response (Verma et 

al., 2011). Studies in female control, ovaroectomized and oestrogen and progesterone-replaced 

rats showed that ovarian steroids influence the HPA axis (Carey et al., 1995). Other studies 

argue that the observed HPA differences in male and female emerge from the organizational 

effects of gonadal steroids during early brain development (Patchev and Almeida, 1998). 

However, in human obtained data are conflicting. In women, cortisol concentrations were not 

correlated to menstrual cycle (Abplanalp et al., 1977).  

Additionally, glucocorticoid receptors (GR) are differentially expressed in male and 

female. On most leucocytes, GR are more expressed in male compared to female (Lu et al., 

2017). This could be one reason for modified immune response in male and female.  

What could be the reasons for sexual dimorphism apart of sex hormones? Are there 

other explications for sexual dimorphisms? 

Even if sexual hormones are similar in pre-pubertal stage, sex hormone receptor 

expression could be different. Indeed, a study in sheep showed that estrogen receptor (ER) but 

not androgen receptor (AR) were differentially expressed in male and female sheep already 

during gestation (Reddy et al., 2014). In rats, dimorphic ER expression has been found in the 

early neonatal period (Orikasa et al., 2002). ERα and ERβ are expressed in a variety of tissues 

and cells. They are present in intestinal tissue (Kawano et al., 2004), whereas ERβ is expressed 

twice times more in female colonic epithelium compared to male (Campbell-Thompson et al., 

2001; Thomas et al., 1993). They can also be found on numerous immune cells (Grimaldi et al., 

2002; Phiel et al., 2005). 

Other mechanisms, which lead to sexual dimorphism, could be due to genetics. X-

chromosome silencing or epigenetic mechanisms (Chiaroni-Clarke et al., 2016). 
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In human, sex-bias can also be due to different exposure between genders due to 

occupation, however, in our study, male and female mice were living in the same environment 

and no social gender-effect can be accused. 

There is no standard reason to choose one sex or another in animal studies for general 

purposes. Indeed, historically female animals were often excluded due to the hormonal changes 

during the sexual cycle. Researchers supposed that these hormonal changes in female would 

induce greater variability in data and a need for higher number of groups in the experiments to 

find statistical significance (Shansky, 2019). This lead to a great bias in several disciplines of 

biomedical research (Beery and Zucker, 2011). However, there were no scientific study 

proofing this assumption. Even more surprisingly, a meta-analysis of variability did not find 

that female data are more variable than male (Becker et al., 2016) but demonstrated in the 

contrary that testosterone levels in male subjects have a great variability depending on their 

social position (dominant or subordinate) in the cage (Machida et al., 1981). 

Carrying out preclinical studies in sex-biased experiments, can have important impact 

on the results and therefore adverse effects on especially women’s health. Only in 2014, but 

luckily, the NIH changed its policy to face the sex-bias in biomedical research. Indeed, the NIH 

requires now that male and female cells and animals are included in preclinical studies, except 

of applications were use of both sexes is not justified (Clayton and Collins, 2014).  

In summary, our work shows that male and female are, from young age on, biologically 

different and highlights sex as an important variable in biomedical studies. Our work 

emphasizes the need to conduct research in male and female subjects, since observed effects 

could be quite different and conclusions of studies carried out only in one sex could not 

necessarily be transposable to the other sex.  
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This PhD project identified for the first time neonatal maternal separation as a risk factor 

for Non-Communicable Diseases in male and female C3H/HeN mice. We observed a sexual 

dimorphism confirming epidemiological data: male mice developed metabolic disorder with 

insulin resistance, while female seem to develop autoimmune disorder. The results of our work 

show that sexual dimorphism is a real challenge in biomedical research and that dimorphic 

phenotype can appear already in early life.  

Our results highlight the neonatal window as a critical period for the establishment of 

immune homeostasis and a life-long appropriate interplay between microbiota, immune 

response and metabolic functions, hence strengthening the concept of Developmental Origin of 

Health and Diseases (DOHaD).  

In our work, we did not analyze any epigenetic signature, since it was beyond the aim 

of this project. Nevertheless, epigenetic regulations are potent mechanisms in the mediation of 

early life environment and later health outcomes. Further studies in the MS model are needed 

to assess the impact of early life stress on epigenetic signature and its role in the development 

of non-communicable diseases. 

Our work underlines the role of intestinal integrity in health and disease. Indeed, 

intestinal modifications are observed in intestinal and extra-intestinal diseases, in some case 

even before the onset of disease. Hence, preserving intestinal integrity should be one of personal 

and medical occupations. Indeed, preservation of overall health and prevention of disease could 

be improved and supported in taking care of our gastro-intestinal tract at early time point. Care 

and treatment could be food remediation, applications of pre- and probiotics. Indeed pre- and 

probiotics are already used in different diseases in order to regain a healthy and stable 

microbiota. Dietary intervention are still the first choice of treatment in metabolic disorder. 

Additionally, intestinal health could also be targeted via the HPA axis by stress management. 
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The concept of Developmental Origins of Health and Disease (DOHaD) highlights the importance of 
early life period and raises the hypothesis that Non Communicable Diseases (NCD) could find their origins in 
perinatal environment. Neonatal maternal separation (MS) is a stress model widely used in rodents as a 
paradigm of early life adverse events. In my PhD project, I aimed to investigate in aging male and female wild-
type mice under normal diet the long-term effects of neonatal MS on intestinal barrier function, metabolism, 
immunity, auto-immunity, as well as on microbiota. My work aimed to provide experimental data to support 
a link between early life stress and development of metabolic or autoimmune disorders with aging.  

In our first study, MS led to glucose intolerance and loss of insulin sensitivity associated with fecal 
dysbiosis in Post Natal Day (PND) 350 wild-type C3H/HeN male mice fed a standard diet. Fecal IgG 
concentrations were decreased in MS mice compared to control mice, whereas anti-E. coli IgG, representing 
humoral response toward commensal microbiota, were significantly increased in plasma of MS mice. MS 
significantly decreased IL-17 and IL-22 secretion in response to TcR stimulation in small intestine lamina 

propria (siLP) culture. Besides, TNFα secretion in response to LPS-stimulation was slightly increased. The 
same results were obtained at systemic level (spleen). For the first time, we demonstrated that early life stress 
alone is a risk factor for metabolic disorders development in aging wild type mice under normal diet. The result 
of this project gave us the opportunity to question the role of microbiota in MS-induced glucose intolerance. 
Fecal microbiota transfer of MS mice microbiota was not sufficient to induce glucose intolerance. 

In our second study in PND350 female, MS increased IL-17 and IL-22 by siLP cells in response to 
TcR stimulation. TNFα secretion with and without LPS stimulation was also increased by MS. Additionally, 
we observed systemic low-grade inflammation. MS mice developed glucose intolerance associated with 
decreased insulin secretion in response to glucose stimulus. Ratio of β-cell surface to pancreas surface was 
slightly decreased in MS mice compared to control. This ratio positively correlated with insulin secretion 
induced by glucose. Taken together, the results of our study showed that MS in wild type female mice under 
normal diet leaves a long-lasting imprinting on immune-metabolism and pancreas homeostasis.  

We compared in vivo and ex vivo intestinal permeability measurements in a model of type 1 diabetes 
(NOD – non-obese diabetic mice). Intestinal permeability was assessed in vivo by gavage and ex vivo in Ussing 
chambers with the marker FITC-Dextran 4 kDa. Surprisingly, the results of both methods were divergent. The 
difference between in vivo and ex vivo measurements could not be explained by altered renal excretion. 
Curiously, diabetic NOD mice had significantly longer small intestine than non-diabetic NOD mice and small 
intestine length positively correlated with intestinal permeability in vivo. However, there were no difference 
in intestinal transit time, feces humidity and histological appearance. Altogether, our results highlighted the 
importance to distinguish intestinal permeability, which is expressed as cm/s, measured ex vivo, and the notion 
of systemic exposition to luminal antigen, measured in vivo.  

My PhD project shows that early life adverse events are a risk factor for NCD. Interestingly, our 
observations in aging mice are similar to epidemiological observations. Indeed, preliminary results suggested 
that female MS mice develop metabolic disorders with autoimmune characteristics but male MS mice develop 
classical metabolic disorders with insulin resistance. My work in MS model highlights the importance of early 
life in the establishment of homeostasis and comforts the concept of DOHaD. 

Keywords:  

Social stress, Glucose metabolism, Intestinal barrier, Immune response, Developmental origin of health and 
diseases (DOHaD) 
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