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1 

General Introduction, Objectives and Layout 

There is a growing concern regarding the development of greener chemical processes 

as the implementation of more sustainable production processes is a prerequisite for a more 

sustainable world. Long-term environmental, social and economic viability of chemical 

processes must be developed by creating greener technologies based either on currently 

available feedstock or by replacing fossil-based raw materials with renewable ones such as 

those derived from biomass.1–3 One of the main issues is the implementation of green bio-

sourced solvents. Solvents define a major part of the environmental performance of a process, 

impacting cost, safety, and health issues, generating waste and pollution and demanding 

important energy consumption.4  

The project developed in the present thesis represents an effort to develop green versatile 

catalytic systems based on the coupling of green bio-sourced ionic liquids including deep 

eutectic solvents (DESs), with supercritical CO2 (scCO2) in a biphasic system. Green bio-

sourced DESs can be obtained from renewable materials and are considered as environmentally 

benign solvents because of their negligible vapor pressure, non-flammability and high thermal 

and chemical stability together with their excellent solubility properties, biodegradability and 

biocompatibility compared to traditional ionic liquids, including conventional DESs.5–7 DESs 

are now widely acknowledged as a new class of ionic liquids (IL) because they share many 

characteristics and properties with ILs.8 DESs contain ionic compounds that have low lattice 

energy and hence low melting points. They can usually be obtained by the combination of a 

quaternary ammonium salt with a metal salt or hydrogen bond donor.9,10 The charge 

delocalization occurring through hydrogen bonding between for example a halide ion and the 

hydrogen-donor moiety (such as urea, polyols) is responsible for the decrease in the melting 

point of the mixture relative to the melting points of the individual components, i.e. donor and 

acceptor hydrogen bond partners.  

However, one of the major challenges in bio-sourced DESs is their high viscosity, which 

leads to hindrance in mass transfer. Solvent Engineering can be used to overcome this 

challenge. It allows triggering changes in physicochemical properties of the solvent (such as 

viscosity, density, polarity, etc.) and permits to couple two or more steps of a given chemical 

process, increasing efficiency and decreasing energy and raw materials wastage. Development 

of a biphasic system containing scCO2 and bio-sourced DESs represents a strategy to perform 

Solvent Engineering and to incorporate these solvents into industrial applications by prevailing 
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separation issues, because scCO2 may allow the extraction of organic products from DES phase 

at the same time as tuning their properties (like viscosity, polarity etc.).11–15 This strategy allows 

the intensification of the reaction process.  

The DESs used in this study are amino-acid based cholinium salts as hydrogen bond 

acceptor and glycerol as hydrogen bond donor. Choline-based ILs are environmentally friendly 

with good biocompatible properties and presenting interesting solvent properties: non-

inflammability, negligible vapor pressure at ambient conditions and high solubility.16 In this 

context, glycerol also represents an innovative solvent coming from biomass and produced in 

high amounts as a by-product in the production of biodiesel.17 Its low-cost, non-toxicity, high 

boiling point (290 °C), negligible vapor pressure (< 1 mmHg at 293 K), high solubilizing ability 

for organic (except those completely apolar) and inorganic compounds, and low miscibility 

with other organic solvents such as ethers and alkanes, constitute striking properties that make 

it especially interesting for applications in catalysis.18  

Choline-based DESs are expected to interact strongly with CO2 due to the presence of 

the ammonium group, which is a CO2-philic group.19 These strong interactions may result in a 

high uptake of CO2 by choline-based derivatives, which allows the modulation of properties 

such as polarity, hydrogen bonding, density and viscosity across a very large range of values 

only by controlling the pressure of the system.  

It is known that metal-based nanoparticles are efficiently prepared in ionic liquids for 

catalytic purposes.20 The use of glycerol allows the efficient immobilization of the catalyst 

leading to metal-free organic compounds by simple extraction, as previously proven in the 

group.21–24 Furthermore, CO2 can play an important role in the catalytic hydrogenation by 

increasing the solubility of hydrogen in the medium. 

Additionally, due the higher solubility of organic compounds in scCO2, the extraction 

of organic compounds can be done by using scCO2, avoiding use of volatile organic solvents 

and promoting a greener method for extraction. The above-mentioned data lead to the following 

objectives of the thesis:  

 Synthesis of deep eutectic solvent from amino-acid based cholinium salt and 

glycerol; and to study the tunablity of its viscosity with changing pressure of 

carbon dioxide. 

 Synthesis of palladium nanoparticles stabilized by amino-acid based cholinium 

salts in glycerol as solvent.  
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 Application of palladium nanoparticles for catalytic hydrogenation reactions. 

 Use of sub and supercritical carbon dioxide to enhance the catalytic activity of 

palladium nanoparticles. 

 Use of supercritical carbon dioxide for the extraction of organic products after 

catalysis. 

This manuscript is divided into 4 parts, as described in following paragraphs. 

In Chapter 1, firstly, the physiochemical properties of supercritical fluids (especially 

supercritical carbon dioxide), ionic liquids and deep eutectic solvents are discussed. One of the 

major challenges of DESs is to overcome their viscosity issues. Supercritical fluids (SCFs) and 

gas-expanded liquids used as tunable media for various catalytic reactions are also described. 

Secondly, synthesis of metal nanoparticles in various media focusing especially on ionic liquids 

and glycerol has been reported. Catalytic activity of various nanoparticles in hydrogenation is 

discussed. Metal-catalyzed hydrogenation reactions using metal nanoparticles under sub- and 

super-critical CO2 are also studied. 

In Chapter 2, the synthesis of DES from choline tosylalaninate and glycerol is reported. 

Study of viscosity of DES in the presence of scCO2 is also reported. An innovative method for 

the measurement of viscosity is described in this Chapter. Molecular rotors have been used as 

a probe to determine in-situ viscosity for DES/scCO2 phases. A comparative study of different 

kinds of molecular rotors has been carried out. 

In Chapter 3, the synthesis of palladium nanoparticles (PdNPs) stabilized by a mixture 

of choline tosylalaninate and glycerol is reported. PdNPs have been fully characterized in both 

liquid phase and solid state (PdNPs isolated by centrifugation from the corresponding colloidal 

solutions). The as-prepared metal nanoparticles have exhibited remarkable catalytic activity in 

hydrogenation processes for a significant variety of functional groups (alkenes, alkynes, nitro 

derivatives, benzaldehydes, aromatic ketones). 

Hydrogenation reactions using PdNPs have been also carried out under CO2.Extraction 

of the organic products was carried using scCO2. Chapter 4 reports the effect of CO2 on the 

catalytic activity of PdNPs in those hydrogenation reactions. The efficiency of scCO2 to extract 

the product directly from the catalytic phase is also reported. 
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1. Solvent Engineering aspects of Supercritical Carbon 

dioxide  

Solvents define a major part of the environmental performance of a process, impacting cost, 

safety, and health issues, generating waste and pollution and demanding important energy 

consumption for its recycling, reuse and/or eventual disposal. However, choosing the right type 

of solvent can be tricky. For instance, in recent years, replacement of highly pollutant solvents 

by more environmentally friendly, less toxic solvents is needed; however, a solvent can be 

biodegradable but be volatile and ozone depleting. It can have an extremely low impact on 

health and the environment but needs a great amount of energy to be manufactured.1 The choice 

of a better solvent is then a difficult task and needs different solutions depending on the 

application.  

1.1. What is a solvent? 

A solvent is defined as any liquid, gas, solid, gas expanded liquid, or supercritical fluid in 

which a solute is dissolved, either partially or completely. Solvents are usually categorized in 

two broad groups: polar and non-polar.2 The role of solvent in chemical processes is quite 

evident. Usages of solvents as a reaction medium, in separation procedures, purifications, 

analyses and/or as diluters are widely known in various industrial processes. It can also act as 

a means of temperature control in a reaction. A solvent is determined by many physicochemical 

properties, such as, its dielectric constant, dipole moment, refractive index, hydrogen bonding 

capacity, among others, these properties have been described through several descriptors such 

as solvatochromic parameters, dispersion, induction-polarizability.3 

The choice of the solvent is always an important factor not only as a reaction medium, but 

also from the environmental, safety and economical perspectives. As reaction medium, solvents 

are prescribed to bring reactants and/or catalyst together and to deliver energy. Also, its 

chemical and physical nature may affect the activity and selectivity in a reaction.4,5 As Clark et 

al. has defined, an ideal solvent is a compound which is environmentally benign, low cost and 

would be a right brew of solvation properties (like hydrogen bonding, polarizability, ion 

binding, etc.) to maximize the reaction process and at the same time being unreactive in the 

system while enabling easy separation and recycling after the reaction.6 
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Figure 1.1. Compromise of transport ability and solvent power for various types of solvents. 

(Reproduced from Reference (2) with permission from the Royal Society of Chemistry) 

Considering the above-mentioned points, water as solvent is the first choice; as a reaction 

solvent, it allows easy separation of homogeneous catalysts from reaction mixtures that allows 

them to be recycled and re-used, resulting in giving higher turnover numbers and reducing 

wastes.6 However, its low solubility of many organic compounds and organometallic 

complexes limits its use.4 Organic and petroleum-based solvents have, up to recent years, solved 

the problem of solubility, but they are usually a source of pollution of the environment and of 

toxicity for living organisms. Thus, in order to minimize the generation of volatile organic 

compounds (VOCs), the scientific community is continuously searching for new sustainable 

media or alternative solvents. In the last decades, some potential approaches for current solvent 

innovation have been polyethylene glycol, perfluorinated solvents, ionic liquids, supercritical 

fluids.6–9 Pollet et al. proposed that a compromise usually exists between transport properties 

(expressed, for instance, as diffusion coefficient, DA) and solvation (expressed, as example, as 

Kamlet–Taft dipolarity/polarizability parameter, π*) as shown in Figure 1.1. For instance, gases 

have high diffusion coefficients but low π* which makes them poor solvents, on another hand, 

ionic liquids are good solvents with poor transport properties.2  Other solvents like supercritical 

fluids (SCFs), gas-expanded liquids (GXLs), near-critical water and organic solvents that lie 

between the two extreme points can be wisely chosen according to the requirements, their 

properties being dependent of the temperature and of the pressure, two variables that are easily 

adjusted in chemical processes.  



Chapter 1 

 

11 

 

Supercritical fluids is the class of solvents that surpass the conventional solvents in terms 

of compressibility.10 SCFs possess viscosity like gases that allows easy mass transfer and 

diffusivity like liquids that gives them higher solvating power.2,11,12 Moreover, SCFs provides 

a platform for a type of tunable solvents because their physicochemical properties can be tuned 

by changing parameters like temperature and pressure.11–13 The ability for SCFs to dissolve in 

many organic solvents like alcohols, ketones, ethers, esters and as well in ionic liquids provides 

flexibility to alter the physiochemical properties (like polarity, dielectric constant, density etc.) 

of the liquid solvent.14–18 

In the next section, we discuss in details the properties of SCFs especially supercritical 

carbon dioxide (scCO2). The next part also describes how solvent engineering can be applied 

to these solvents for them to serve as tunable media for various chemical reaction, extraction 

and separation processes. 

1.2. Supercritical Fluids 

Supercritical fluids are substances that are above their critical pressures (Pc) and 

temperatures (Tc) (Figure 1.2).10 If a substance is in equilibrium with its vapor in a closed vessel 

and heated to a temperature above its critical temperature, making the pressure go over its 

critical pressure, the interface between the two phases diminishes, and only one phase remains 

filling the entire space of the vessel that is technically the SCF phase. In fact, in SCF state, 

liquid and vapor phases do not exist.19 

 

Figure 1.2. Phase diagram showing the different states of matter 

The critical point of a SCF represents the highest temperature and pressure at which the 

substance can exist as a vapor and liquid in equilibrium.10 Table 1.1 shows critical temperature 
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and critical pressure for some compounds.19 In this Thesis, the focus is on supercritical carbon 

dioxide (scCO2). Supercritical carbon dioxide (scCO2), in this context, attracts a lot of attention 

due to its green properties and easy availability. ScCO2 is relatively chemically inert (for 

example, it is resistant to free radical chemistry) and exhibits a low-toxicity aprotic solvent 

power.20–22 

Table.1.1 Critical points and critical density for a selection of fluids. (Data taken from reference 

(19)) 

Supercritical Fluid Critical Temperature (°C) Critical Pressure (MPa) 

Carbon dioxide 31 7.4 

Water 374 22.1 

Ethane 32 4.9 

Propane 97 4.3 

Ethylene 9 5.0 

Methanol 239 8.1 

Ethanol 241 6.1 

Toluene 319 4.1 

Sulfur hexafluoride 46 3.8 

Dinitrogen monoxide 33 7.4 

Ammonia 132 11.3 

1.2.1.  Physiochemical Properties of Supercritical Carbon Dioxide 

ScCO2 (Pc = 7.38 bar and Tc = 304 K) (Table 1.1) is a nonpolar compound and has a large 

quadrupolar moment that enables dipole-quadrupole interactions with other molecules.20 It has 

the relative static permittivity or dielectric constant similar to hexane and therefore, can easily 

solubilize nonpolar low molecular weight compounds.23,24 In scCO2, a small change in pressure 

can lead to a large change in its volume and density. This property gives us a huge opportunity 

to tune the physiochemical properties of scCO2.25 

1.2.1.1. Density 

Density is an important property in any SCF as the solubility of many compounds depends 

on the density of SCFs. Near the critical point, a small increase in the temperature decreases 

the solvent density and consequently the solubilizing ability. At lower pressure, there is a large 
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negative change in the density of SCFs with the increasing temperature resulting in the decrease 

of solubility. On the other hand, at higher pressures, the change in density is not significant with 

increasing temperature, thus, the solubility increases with increasing temperature.25 

The density of scCO2 can be calculated by an equation of state (EOS). For example, Soave-

Redlich-Kwong equation 26,27 or Peng-Robinson EOS.28,29 Wang et al. used an apparatus to 

accurately measure the density of scCO2 over a wide range of temperature and pressures.30 They 

evaluated the error between the experimentally calculated density and various EOS proposed 

in the literature. They showed that when the increase in density with pressure presents a linear 

behavior, the predicted densities using EOS was accurate. However, in the high-pressure areas, 

the increase in density is dramatic and the calculated densities varies with the experimental 

densities in these areas. They introduced an error of correction (Equation 1.1) and proposed a 

new method for calculating the density of scCO2 for a known density and temperature (Equation 

1.2).30 

�� = ఘ��೗−ఘఘ × ͳͲͲ% ≈ ఘ��೗−ఘ���ఘ × ͳͲͲ%     Equation 1.1 

where, �� is the relative error of the CO2 density at a fixed temperature and pressure 

calculated using EOS, ��௔௟  is the CO2 density computed from the EOS, ���� is the CO2 density 

measured using the experimental apparatus and � is the true density of CO2. 

�ଶ = ͳ − ∑ ሺఘ̂�−ఘ̅ሻమ�∑ ሺఘ�−ఘ̅ሻమ�                     Equation 1.2 

where R2 is the non-dimensional coefficient of determination, ��  is the measured density, �̂�  is the density calculated by new formula and �̅ is the mean value of density calculated by all 

the measured densities. The above-developed formula is for a temperature range of 303K - 

473K and pressure range of 30 - 600 bar. In the equation, R2 of the new correlation is 0.873, 

which means that the density of the supercritical CO2 can be well described. 

1.2.1.2. Viscosity and Mass Transfer 

It is generally accepted that viscosity and density of a supercritical fluid are similar to a gas 

and to a liquid respectively. Intuitively, a lower viscosity contributes to an enhancement of mass 

transport inside the system. This phenomenon is well described by the Fick’s first and second 

law of diffusion (Equation 1.3 and 1.4).31 
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 J = −D1ଶ ∂C∂x                                  Equation 1.3

   

 
∂C∂t = D1ଶ ∂మC∂xమ           Equation 1.4 

Where, J is the diffusion flux of the compound per area, D12 is the binary diffusion 

coefficient of the compound in the solvent, C is the concentration of the compound, x is the 

position and t is the time. Equation 1.4 is valid for constant diffusion coefficients. This equation 

has an exact solution for the simplest systems; for the others, a numerical solution is needed.  

 Diffusion coefficients in supercritical fluids are higher than in liquids. Cunico et al. have 

reviewed self-diffusion of scCO2 as a function of temperature and pressure.19 Some methods to 

calculate self-diffusion and binary diffusion coefficients can be used, such as the Stokes-

Einstein equation (Equation 1.5). 

Di = κBT6πηSr                                

Equation 1.5 

Where, B is the Boltzmann constant, T is the temperature, r is the hydrodynamic radius of 

the particle, S is the shear viscosity of the solvent.  

 Other similar equations to the Stokes-Einstein relation have been derived and compared 

to experimental results with good accuracy.32 Diffusion coefficients for solutes in supercritical 

fluids reported in the literature and the correlation methods applied by the authors for modelling 

their experimental data have been published by I. Medina,33 where mostly equations based on 

Stokes-Einstein model and on the Rough-Hard-Sphere model are represented. Shenai et al. have 

discussed the validity of some of the existing methods to correlate diffusivities when no 

experimental data exists.34 Molecular Dynamics-based methods to calculate diffusion 

coefficients from the mean-square displacements of the molecules represent a valuable 

approach; this method is especially useful when the validity of the equations cited before is not 

proven.35 

It is to note that dynamic viscosity () of supercritical fluids is comparable to that of a gas 

but the density () is similar to that of a liquid making kinematic viscosity () very low near the 

supercritical point (=/). This phenomenon enhances mass transfer, because natural 

convection depends on kinematic viscosity. It is important to say here that natural convection 
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plays a non-negligible role in the mechanism of transfer in systems involving supercritical 

fluids as the kinematic viscosities of supercritical fluids are very small, and therefore the role 

of buoyancy forces may be predominant in mass transfer in systems involving such fluids.36   

1.2.1.3. Dielectric properties 

The solvent and the solute intermolecular interaction is determined by the dielectric 

properties of the solvent, which indeed determines the solubility.19 As stated above, scCO2 has 

the relative static permittivity or dielectric constant similar (even lower) than hexane and 

therefore, can easily solubilize nonpolar low molecular weight compounds. Hourri et al. were 

the firsts to determine the solubility of solids in SCFs using dielectric constant of saturated 

supercritical solution solvent–solute and the supercritical solvent as a function of pressure at 

varying temperatures.37 Later, Abbott et al. studied the solubility of aromatic hydrocarbons in 

supercritical difluromethane showing that the dielectric constant method is capable of 

determining the solubility of a range of solutes in supercritical medium. They stated that 

pressure, solvent polarity, number of polar interaction sites, and their relative substitution 

position affect the solubility of a particular solute.38,39 Leeke et al. also determined the solubility 

of various aromatic compounds in scCO2 using relative permittivity. Their technique allowed 

obtaining solubility data in situ.40 

Onsager and Kirkwood-Frohlich is one the most used equation for the determination of 

dielectric constant (Equation 1.6). 41,42 

ሺ��−�∞ሻሺଶ��+�∞ሻሺଶ��+ଶሻమ�� ெఘ = ସ�ேಲ9௞ಳ்  ଶ                                      Equation 1.6ߤ�

where, �∞ is the infinite relative permittivity, M is the molecular weight, ρ is the density, 

NA is Avogadro’s number, kB is Boltzmann’s constant, T is the temperature of the system, μ is 

the dipole moment of the fluid molecule in the vacuum, and g is the Kirkwood parameter. The 

parameter g measures the local order among molecules (nearest neighbors) and can be 

calculated as: � = ͳ −  ۄ�ݏ��ۃ�
where, z is the coordinator number and � is the angle between the test dipole and the 

neighbor. 
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W. Schröer reported that the first analysis of Onsager and Kirkwood-Frohlich equation 

ignores the free ion yields Kirkwood-g-factor of 0.05, which is much smaller than any value 

found in dipolar fluids.43 Therefore, they laid out a macroscopic theory that could be applied to 

the dielectric properties in ILs. The model proposed by W. Schröer by a factor of g from the 

classic model of Onsager and Kirkwood-Frohlich equation. As a result, they derived a 

correction for g that could be applied to Onsager and Kirkwood-Frohlich theories (Equation 

1.7). 

� = 11+ ��−�∞మ��+�∞ ೖಳమ�మయ(భ+ೖಳ�)+ೖಳమ�మ        Equation 1.7 

Ionic liquids have tunable polarity and hydrophilicity that can be used to enhance the 

miscibility with solvents of medium or low polarity.44 

1.2.2.  Supercritical CO2 as Tunable Media 

As said above, scCO2 has the ability to dissolve in many organic compounds like alcohols, 

ketones, ethers, esters and ionic liquids, which provides the ability to alter the physiochemical 

properties (like polarity, dielectric constant, density etc.) of these organic compounds by 

modulating the concentration of CO2, which can be easily performed from a processes point of 

view, through control of pressure (Figure 1.3). 45 

 

Figure 1.3. Change in physiochemical properties of a solvent on dissolution of carbon dioxide. 

(Reprinted (adapted) with permission from (45). Copyright (2018) American Chemical Society) 

A tunable/switchable solvent is a solvent that can be switched from one form to another by 

tuning its physiochemical properties like (dielectric constant, acidity, basicity, density, polarity, 
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degree of polymerization etc.) upon application of a trigger like CO2.13,19,46 The group of Jessop 

in collaboration with Eckert and Liotta were the firsts to develop switchable polarity 

solvents.46,47 They use CO2 to switch from lower to higher polarity solvent. They found that in 

the presence of just 1 bar of CO2 at room temperature, when two non-ionic solvents (1,8- 

diazabicyclo-[5.4.0]-undec-7-ene and 1-hexanol) were converted to ionic species resulting in a 

high polarity solvent. The system could promptly be converted back to the original form by 

bubbling nitrogen or argon (Scheme 1.1).  

 

Scheme 1.1. Protonation of 1,8- diazabicyclo-[5.4.0]-undec-7-ene (DBU) in the presence 

of an alcohol and carbon dioxide.46 

Tunable solvents are important media for organic reactions because in this case, a reaction 

can be performed in one form of solvent and then it can be switched to the other form and if the 

product or catalyst is not soluble in the converted, medium it will just precipitate.48 The same 

principle of tunability can also be applied to extraction.46 

1.3.  Gas-expanded liquids 

Over a decade, interest in gas-expanded liquids (GXLs) has rapidly increased. They are 

promising alternative media for performing separations, extractions, reactions, and other 

applications. However, a precise definition of GXLs has not been given out; so far, GXL can 

be defined as a liquid whose volume is increased when pressurized with a condensable gas such 

as CO2 or ethane.18 In addition, one of the more recent definitions was proposed by Jessop et 

al. where a GXL was defined as “a mixed solvent composed of a compressible gas dissolved in 

an organic solvent”.49  

Since, different liquids behave differently with expanding gases, Jessop et al. have proposed 

a classification:49 

- Class I GXL is one where the expanding gas has a low solubility in the liquid, and which 

does not expand much (such as CO2+water).  

- Class II GXL is one where the solubility of the expanding gas is high and the expansion 

is large, e.g. CO2+THF.  
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- Class III GXLs are liquids where the gas is moderately soluble, but the expansion is 

small (e.g. CO2+ILs or liquid polymers). Figure 1.4 shows the solubility of CO2 in 

different classes of liquids. 

 

Figure 1.4. The mass fraction solubility of CO2 in Class I (water (▲)), Class II (ethyl 

acetate (●) and MeCN ( )), and Class III liquids ([bmim]BF4  (■), crude oil (UOPK factor= 

11.7, assuming molar weight of 350 gmol-1, shown as a line), PEG (○), and PPG (□)). bmim = 

l-n-butyl-3-methylimidazolium; PEG = Polyethylene glycol; PPG = Polypropylene glycol. 

(Reprinted (adapted) with permission from reference (49). Copyright (2007) American 

Chemical Society.) 

1.3.1.  CO2 - expanded liquids (CXLs) 

Because of the safety and economic advantages of CO2, CXLs are the most commonly used 

class of GXLs. By varying the CO2 composition, a continuum of liquid media ranging from the 

neat organic solvent to scCO2 is generated, the properties of which can be adjusted by tuning 

the operating pressure; for example, a large amount of CO2 favors mass transfer and, in many 

cases, gas solubility, and the presence of polar organic solvents enhances the solubility of solid 

and liquid solutes. CXLs have been shown to be optimal solvents in a variety of roles including 

inducing separations, precipitating fine particles, and facilitating polymer processing, and 

serving as reaction media for catalytic reactions.50 Process advantages include ease of removal 

of the CO2, enhanced solubility of reagent gases (compared to liquid solvents), fire suppression 

capability of the CO2, and milder process pressures (tens of bars) compared to scCO2 (hundreds 

of bars). Reaction advantages include higher gas miscibility compared to organic solvents at 

ambient conditions, enhanced transport rates due to the properties of dense CO2.51 The typical 
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expansion behavior of a class II GXL is shown in Figure 1.5, using CO2+THF.51 The expansion 

increases with pressure, rising almost exponentially towards the critical point. When the 

expansion is plotted against the CO2 mole fraction in the liquid phase, it is largely independent 

of the pressure or temperature. This expansion changes both the solvent character and the 

physical properties of the liquid.  

 

Figure 1.5. Volume expansion of THF with varying CO2 pressure at different temperatures, 

as measured visually in a Jerguson view cell. (Reproduced from reference (51) with permission 

of Royal Society Of Chemistry in the format Thesis/Dissertation via Copyright Clearance 

Center) 

When CO2 dissolves into the liquid, it reduces both the polarity and the hydrogen-bonding 

abilities of the expanded liquid. However, the solvent power is maintained for longer than 

expected, compared to simple dilution by CO2, since the polar solvent molecules can cluster 

dynamically around the solute. This leads to both an increase in the proportion of solvent 

molecules in the cybotactic region (part of a solution near a solute molecule in which the 

ordering of the solvent molecules is modified by the presence of the solute molecule), but also 

an increase in the local density.52,53 

1.4. Ionic Liquids (ILs) 

It was 1914 that the first report was made on ionic liquid (ILs) by Paul Walden.54 He 

reported the physical properties of ethylammonnium nitrate (EAN) that was formed by 

neutralization of ethylamine with concentrated nitric acid.55 He found that its physical 

properties were similar to water except that EAN possessed higher viscosity. However, its ionic 
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conductivity struck a remarkable property to Walden.56 Ionic liquids are molten salts, that are 

generally liquid at room temperature, whose enormous potential arises from particular 

characteristics of these liquids, namely, their physicochemical properties (viscosity, density, 

hydrophilicity, and solubility), which can be tuned by the combination of different cations and 

anions.57–59Figure 1.6 shows a various examples of cations and anions that have the ability to 

form ILs.60 Ionic liquids can participate in a variety of interactions; they can participate from 

the weak, nonspecific, and isotropic forces like van der Waals, solvophobic, dispersion to 

specific, anisotropic, strong Coulombic forces like hydrogen bonding, halogen bonding, dipole-

dipole, magnetic dipole, electron pair donor/acceptor interactions.57 

  

Figure 1.6. Various examples of cations and anions that have the ability to form ILs. 

Ionic liquids serve as up-and-coming solvents for various reasons like: (1) they can 

solubilize wide variety of both organic and inorganic materials; (2) they are composed of poorly 

coordinated ions, thus, they can be polar without being highly coordinating solvents; (3) they 

are immiscible with organic solvents and therefore can provide biphasic medium, which can 

come useful in extraction and separation processes; (4) they are non-volatile and can be used 

under high-vacuum environment. 61 
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1.4.1. Properties of Ionic Liquids 

Ionic liquids are often referred to as “designer liquids” since their physical and chemical 

properties can be altered by changing the type of cations and anions.62 Ionic liquids are 

generally non-volatile, non-flammable, and showing high viscosity.57 In the section below, 

some of the important properties of ILs are discussed. 

1.4.1.1. Melting points 

Melting point of ILs is one of their key identifying features. ILs are defined as salts with 

melting points below 100 °C.60 Seddon et al. has showed that the melting point of alkali metal 

chlorides is much higher than the chlorides with organic cations.63 Wasserschied et al. showed 

how the melting point of 1-ethyl-3-methylimidazolium (emim) based ILs changes as the anion 

is changed.53,64 They also showed how the melting point can also vary just by varying the molar 

ration of the cation and anion for [emim]Cl/AlCl3 system (Figure 1.7).53 They concluded that 

in this ILs the presence of several anions decreases the melting point. Wasserscheild et al. 

reported that melting points of ILs containing symmetrical cation are higher than ILs with 

asymmetrical cations.53 

 

Figure 1.7. Experimental phase diagram for the [EMIM]Cl/AlCl3 system. 

(emim = 1-ethyl-3-methylimidazolium) (Reproduced from reference (53) with permission 

of WILEY via Copyright Clearance Center. Year of copyright (2000)) 

1.4.1.2. Vapor Pressure  

ILs are considered to have no vapor pressure due its non-volatility.53 ILs have reduced 

Columbic interactions between ions, this energetically restricts the ion-pair formation required 

for volatization of salts resulting in lower vapor pressure.65 Due to lack of vapor pressure, ILs 
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serve as better solvent as compared to VOCs; after a reaction, the product recovery can be 

carried out in some systems by distillation.53 In fact, even if most of the ILs have negligible 

vapor pressure and therefore they lack the ability to be distilled,57–59,63 Earle et al. demonstrated 

the volatility and the distilling ability of some ILs.66 They showed a range of pure, aprotic ILs 

that can be vaporized at 200-300 °C under vacuum and then recondensed at lower temperatures. 

It is true that there are sets of ILs that possess zero vapor pressure, however, they reported the 

distillation of pure 1-alkyl-3-methylimidazolium bis-((trifluoromethyl)-sulphonyl)amide 

([Cnmim][NTf2]). According to them, ILs were volatized as neutral molecular species by proton 

transfer mechanism  instead of being transferred as ionic species into gas phase.67 This method 

can be useful for purification of ILs. Nevertheless, the vapor pressure of ILs remains negligible 

near ambient temperature, which allow ILs to continue serving as the phenomenal solvents. 

1.4.1.3. Viscosity 

ILs have higher viscosities than conventional solvents.60 ILs viscosities at room temperature 

range from a low of around 10 cP to values in excess of 500 cP (Viscosities of water, ethylene 

glycol and glycerol are 0.890, 16.1, and 934 cP, respectively).53 In an IL, viscosity is determined 

by their hydrogen bond ability and the strength of van der Waals interaction.68 Bonhôte et al. 

compared the viscosities of 1-alkyl-3-methylimidazolium based ILs. In Figure 1.8, they show 

that the increase of the van der Waals attraction dominates over the H-bonding from triflate 

(TfO¯ ) to nonaflate (NfO¯ ) and from trifluoroacetate (TA¯ ) to heptafluorobutanoate (HB¯ ). 

However, from TfO¯  to NfO¯  complete H-bonding suppression slightly dominates over the van 

der Waals attraction increase. On the other hand, in the case of TA¯  and acetate (AcO¯ ) 

opposite trend is observed as much stronger H-bonding overcompensates for smaller anion 

weight. TA¯  and bis-((trifluoromethyl)-sulphonyl)amide (Tf2N¯ ) salts combine minimal anion 

weight with moderate basicity and minimal basicity with moderate anion weight respectively 

and hence, present the lowest viscosities. The cation also influences the viscosity. It was 

observed that alkyl chain lengthening increases the viscosity due to increased van der Waals 

interaction. Additionally, from butyl to isobutyl the ILs become more viscous due to the 

hindrance in the freedom of rotation.68 
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Figure 1.8. Plot of dynamic viscosity (η, estimated error: (5%) of some ambient 

temperature molten salts as function of reciprocal absolute temperature (T-1). BuMeIm = 1-

butyl-3-methylimidazolium, EtMeIm = 1-ethyl-3-methylimidazolium (Reprinted (adapted) 

with permission from (68). Copyright (1996) American Chemical Society) 

The dynamic viscosity of ILs can be calculated using the same empirical equation that is 

used for unassociated liquid electrolytes (Equation 1.8).69  

� = �∞exp ሺ− �௔ �ܶ⁄ ሻ         Equation 1.8 

where, � is the dynamic viscosity, �∞ is the viscosity at the infinite temperature �௔ is the 

activation energy for viscous flow, R is the gas constant and T is the temperature. 

1.4.2. Mass Transfer in Ionic Liquids 

Viscosity is an important mass transfer property; it is inversely proportional to the diffusion 

coefficient.19,25 Viscosity is also an important property for the prediction of pressure drops and 

heat transfer rates in processes. Additionally, low solubility of gaseous reactants like H2, CO, 

CO2, etc. in ionic liquids (ILs) can reduce reaction efficiency. 65,70 Zhang et al. has provided an 

insight of gas-liquid mass-transfer properties in CO2 absorption with ILs.71 In their contribution, 

they have determined the liquid-side mass transfer coefficient of CO2 (kL) in ILs-H2O system 

by pressure drop method in a stirrer cell reactor. The coefficient was also evaluated and 

analyzed with respect to several parameters like type of IL, absorption temperature, stirrer speed 

and IL concentration. They derived the equation 1.9 for the determination of kL. 
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ݐ��݇ = �1+� ݈݊ [ ௉಴�మబሺ1+�ሻ௉಴�మబ −�௉಴�మబ ]                              Equation 1.9 

where, � = � �ܸ⁄  and � = ௏ಸ௄ಹ௓�்௏�, a is specific gas-liquid interfacial area (m-1), A is gas-

liquid interfacial area (m2), ��ைమ଴ is the initial pressure of CO2 in kPa and t is time in seconds. 

For equation 1.9, the volumetric mass-transfer coefficient within the time interval [0,t] can be 

determined by the linear fitting method. In the study, it was concluded that kL is influenced by 

the viscosity and the molecular structure of ILs. kL decreases while CO2 solubility increases 

with the increase of IL concentrations (Figure 1.9). They also found that a higher stirrer speed 

could result in a higher speed of pressure drop in the reactor, which can be attributed to a greater 

kL. 

 

Figure 1.9. kL in different IL-H2O systems over the temperature range from 303 - 323 K. 

bmim = 1-n-butyl-3-methylimidazolium (Reproduced from reference (71) with permission of 

WILEY via Copyright Clearance Center. Year of copyright (2014)) 

Solinas et al., described how the combination of ILs and scCO2 could not only increase the 

mass transfer but also increase the solubility of H2 in the system.72 This behavior is clearly 

beneficial for the effective hydrogenation reactions in ILs.  

Kian et al. measured the dynamic viscosity for three binary alkane mixtures of n-hexane, n-

decane, or n-tetradecane saturated with CO2, at three different isotherms (25, 40, and 55 °C) 

and pressures from 0 to 107 bar (Figure 1.10).73 They reported that the viscosity decreases 

considerably with the pressure of the CO2. According to them, it is not a pressure effect but the 
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large increase in CO2 solubility in the liquid phase that decreases the viscosity. For example, 

the system of n-tetradecane/CO2 shows the largest absolute and relative drop in viscosity due 

to the dissolution of CO2 in the liquid phase. For this system at 25 °C, 40 °C and 50 °C, the 

viscosity of liquid phase drops by 65%, 76% and 87% respectively compared to the ambient 

pressure viscosity, at about 55% mole CO2 solubility. Similarly, Sih et al. determined the 

viscosity of CO2 in methanol as a function of temperature from 25 to 40 °C, from 0 to 0.85 

mole fraction CO2 and from 1 to 76.7 bar. They reported that the liquid viscosity of the system 

decreased with CO2 enrichment and decreased with increasing liquid density.74 From this data, 

it is pertinent to say that, in general, CO2 provides an easy knob for decreasing mass transfer 

and viscosity in gas-expanded liquids. Jacquemin et al. determined the solubility of eight 

different gases (carbon dioxide, ethane, methane, oxygen, nitrogen, hydrogen, argon and carbon 

monoxide) in [Bmim][PF6].75 They found out that CO2 is the most soluble and hydrogen is the 

least soluble of the gases. Shannon et al. demonstrated that as the alkyl chain length on the 

cation increases the amount of CO2 decreases.76 

 

Figure 1.10. Comparison of viscosity of saturated CO2/n-alkane mixtures at 25 °C. 

(Reprinted from reference (73), Copyright (2017), with permission from Elsevier) 

1.4.3. Heat Transfer in Ionic Liquids 

Applications of heat transfer fluid is numerous in both industrial and consumer applications. 

They are used in refrigerators at low temperature, solar energy collection and storage at high 

temperature etc.21 It has been reported that ILs have the high density and high heat capacity, 

and also good thermal and chemical stability making them promising candidates for heat 

transfer fluids in medium and high temperature heat transfer systems.77 ILs are also known to 

be possessing large heat storage capacity (up to 50% larger than current heat transfer fluids).78,79 

França et al., compared the heat capacity of several ILs with commercial thermal fluids (data 
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for the density and heat capacity of the ILs chosen were taken from the IL Thermo database)  

(Figure 1.11). Heat capacity per unit volume of ILs between room temperature and 130 °C is 

20 to 40% higher.78  

 

Figure 1.11. Heat capacity per unit volume of several ionic liquids. Data for the ionic 

liquids were taken from ref 10 and for the heat transfer fluids from their Material Safety Data 

Sheets available online.8 , [C6mim][PF6]; , [C4mim][PF6]; +, [C2mim][BF4]; ◼, 

[C6mim[(CF3SO2)2N]; ▲, [C4mim][C18O17SO4]; ∗, [C4mim][CF3SO3]; ●, [C4mim] 

[(CF3SO2)2N]; ◻, [C2mim][PF6]; ○, [C2mim][(CF3SO2)2N]; △, [C2mim][C2H5SO4]; - - -, 

Syltherm 800; - · ·  -, Syltherm HF; −, Dowtherm A; − · −, Dowtherm MX; ····, Paratherm HE. 

Reprinted (adapted) with permission from reference (78). Copyright (2009) American 

Chemical Society. 

Nieto de Cartro et al. reported the thermal conductivity of ionic liquids with carbon 

nanotubes (CNTs) for alkylmethylimidazolium liquids.80 They reported the variation of heat 

capacity with temperature, together with the results obtained by different authors (Figure 1.12). 

The heat capacity (CP in Jmol-1K-1) measurements were done at a pressure of 0.1 MPa at 

temperatures (T) between 308 K and 423 K by using polynomial equation 1.10 as a function of 

temperature, where b is the coefficient of regression. �௉ = ܾ1 + ܾଶሺܶሻ + ܾଷሺܶሻଶ                            Equation 1.10 

They reported the data by Rebelo et al.,81 Kim et al.,82 Fredlake et al.,83 Waliszewski et 

al.,84 Van Valkenburg et al.,85 Garcia-Miaja et al.86 and Garcia-Miaja et al.87 The data reported 

by Nieto de Cartro et al. in figure 1.12 agrees with the other published data by an estimated 

uncertainty of 1%. Since ILs are fluid at room temperature and they disperse CNTs by 
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themselves, they give a gelatinous substance also known as “bucky gels”.88 This allow the 

design of soft composite material directly from the gels by modifying their physical properties, 

incorporating certain functionalities and/or transfer them into other fluid media or solid 

matrices.89 

 

Figure 1.12. Heat capacity CP of [bmim][BF4] as a function of temperature T. Data from 

other authors are also shown. ●, Nieto de Cartro et al.;80 ○, Rebelo et al.;81 ◻, Kim et al.;82 , 

Fredlake et al.;83 +, Waliszewski et al.;84 △, Van Valkenburg et al.;85∗, Garcia-Miaja et al.;86▲, 

Garcia-Miaja et al.87 Reprinted (adapted) with permission from reference (80). Copyright 

(2010) American Chemical Society. 

Tenney et al. studied the heat transfer properties of nine different ILs both computationally 

and experimentally.90 They showed the experimental Prandtl number (the ratio of the heat 

capacity multiplied by the viscosity to the thermal conductivity) versus temperature for each 

(Figure 1.13). The values they obtained for Prandtl number ranged from 1,000 or higher at the 

lowest temperatures to 100 at the higher temperatures.90 
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Figure 1.13. Prandtl number versus temperature calculated from experimental 

measurements of the present study. Ionic liquids in the legend are listed roughly in order of 

decreasing Prandtl number. emim = 1-ethyl-3-methylimidazolium; hmim = 1-hexyl-3-

methylimidazolium; hmDMApy = 1-Hexyl-3-methyl-4-(dimethylamino)pyridinium; hDMApy 

= 1-bexyl-4-(dimethylamino)pyridinium; bDMApy =  1-butyl-4-(dimethylamino)pyridinium 

.Reprinted (adapted) with permission from reference (90). Copyright (2014) American 

Chemical Society. 

Unfortunately, no heat transfer studies could be found concerning CO2-ionic liquid systems. 

It is also note to worth the lack of reports describing heat transfer in catalytic hydrogenation 

reactions in GXLs. 

1.5. Deep Eutectic Solvents (DESs) 

Over the last decade, DESs has appealed the interest of researchers as designer solvents for 

various electrochemical and material applications such as metal electrodeposition, gas 

adsorption, metal extraction and the processing of metal oxides.91 DESs are also promising 

green solvents that present properties like high viscosity, high thermal stability and low vapor 

pressure. The term “deep eutectic solvent” was first laid in β00γ by Abbott et al.92, they defined 

DES as a mixture of two or more components that form a eutectic mixture, the melting point of 

this mixture being lower than both the individual components. DESs usually contain a mixture 

of hydrogen bond acceptor and a hydrogen bond donor (HBD). The first DESs reported by 
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Abbott et al. were constituted by a mixture of a salt based on quaternary ammonium cation and 

a hydrogen donor (amines, imides, and carboxylic acids).93 This eutectic phenomenon was first 

observed through a mixture of urea and choline chloride with a 2:1 molar ratio. The result was 

a eutectic mixture that melts at 12 °C (melting points of urea and choline chloride are 133 °C 

and 302 °C, respectively). 

As mentioned in section 1, DESs are now widely acknowledged as a new class of ionic 

liquids because they share many characteristics and properties with ILs such as low volatility, 

non-flammability, low melting points, low vapor pressure, dipolar nature, chemical and thermal 

stability. However, the increasing interest in DESs as compared to traditional ILs is due to their 

potential to even more environmentally benign as compared to latter. DESs are superior in terms 

of the availability of raw materials, the ease of storage and synthesis, and the low cost of their 

starting materials.94 Besides having almost similar solvation properties, DESs put forward many 

potential applications in various fields of chemistry and electrochemistry. So far and due to 

economic reasons, the cases of using DESs at a commercial scale are still in finite amounts. 

The advantages of DESs over ILs are discussed in next section. 

1.5.1.  Ionic Liquids versus Deep Eutectic Solvents 

ILs have been used for a variety of purposes like non-conventional solvents, performance 

additives, and for immobilizing of catalysts.62 However, ILs costs are a barrier for practical 

uses, therefore, in order to combine sustainability and promising benefits of ILs, a new 

generation of solvents “deep eutectic solvents” is quite appealing. DESs are sometimes referred 

to as analogues of ILs and are often produced by heating and stirring two salts (e.g. choline 

chloride and urea). A DES may also has an ionic character, but consists of a mixture of organic 

compounds. A major advantage of DESs over ILs is the facility and versatility to prepare these 

solvents. DES can be prepared from the mixture of concentrated aqueous solutions containing 

each compound, from a melt of a first component in which the second is dissolved or from the 

solid mixture of the two components heated to a predetermined temperature.95 

There are unlimited methods to prepare various DESs due to their high flexibility to choose 

their individual components as well as their compositions. DESs production provides different 

properties and numerous applications can be envisaged especially in high-tech production and 

process that demand low costing materials. Recently, bio-based DES have been developed and 

attracted great attention due to their low-cost, easy recyclability and environment friendly 
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nature.96 They are non-volatile, biocompatible and biodegradable solvents.97 Chlorine chloride 

has become one the most famous choice for the hydrogen bond acceptor moiety whereas urea 

and glycerol are some of the choices as hydrogen bond donor.98 

1.5.2.  Properties of Deep Eutectic Solvents 

Through a wisely chosen combination of salts and HBD task-specific DESs can be produced, 

which can fulfill the desired requirements in terms of physicochemical properties for various 

applications. For example, solubility of a material in DES can be tuned by the choice of HBD. 

DESs are characterized by high conductivity, viscosity and surface tension. Additionally, they 

show lower vapor pressures as compared to other solvents. 

1.5.2.1. Density 

The density is one of the most important physical properties for a solvent. Generally, densities 

of DESs are determined by means of a specific gravity meter. Table 1.2 lists the density data of 

common DESs. Most of DESs exhibit higher densities than water.98 For instance, ZnCl2 - HBD 

eutectic mixtures have densities higher than 1.3 g cm-3. Among them, density of ZnCl2 - urea 

(1:3.5) and ZnCl2 acetamide (1:4) are different (1.63 and 1.36 g cm-3, respectively). This notable 

difference of density might be attributed to a different molecular organization or packing of the 

DES. 

Table 1.2. Densities of common DESs at 25 °C. (Data taken from reference 98) 

Salt HBD Salt : HBD 

(mol : mol) 

Density 

(ρ, g cm-3) 

EtNH3Cl CF3CONH2 1:1.5 1.273 

EtNH3Cl Acetamide 1:1.5 1.014 

EtNH3Cl Urea 1:1.5 1.140 

ChCl CF3CONH2 1:2 1.342 

ChCl Urea 1:2 1.25 

ZnCl2 Urea 1:3.5 1.63 

ZnCl2 Acetamide 1:4 1.36 

ZnCl2 Ethylene glycol 1:4 1.45 

ZnCl2 Hexanediol 1:3 1.38 

ChCl Glycerol 1:2 1.18 
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ChCl Glycerol 1:3 1.20 

ChCl Glycerol 1:1 1.16 

ChCl Glycerol 1:3 1.20 

ChCl Ethylene glycol 1:2 1.12 

ChCl Ethylene glycol 1:3 1.12 

ChCl Malonic acid 1:2 1.25 

1.5.2.2. Viscosity 

DESs have high viscosity, which is an important issue that needs to be addressed. Except 

for ChCl–ethylene glycol eutectic mixture, most of the DESs exhibit relatively high viscosities 

(>100 cP) compared to water (0.890 cP) or ethanol (1.095 cP) at room temperature. The high 

viscosity of DESs is often attributed to the presence of an extensive hydrogen bond network 

between each component, which results in a lower mobility of free species within the DES. The 

large ion size and very small void volume of most DESs, but also other forces such as 

electrostatic or van der Waals interactions may contribute to the high viscosity of DESs. Owing 

to their potential applications as green media, the development of DESs with low viscosities is 

highly desirable. In general, viscosities of eutectic mixtures are mainly affected by the chemical 

nature of the DES components (type of the ammonium salts and HBDs, organic salt/HBD molar 

ratio, etc.), the temperature, and the water content. As discussed above, viscosity of DES is also 

dependent on the free volume. Hence, this theory can also be used to design DESs with low 

viscosities. For instance, the use of small cations or fluorinated hydrogen-bond donors can lead 

to the formation of DES with low viscosity. 

Hydrogen bonds, van der Waals and electrostatic interactions effectively control the 

viscosity of binary eutectic mixtures. For instance, ChCl/ethylene glycol (1:4) DES exhibits the 

lowest viscosity (19 cP at 20 °C).99 In contrast, the use of sugar-based derivatives (e.g. xylitol, 

sorbitol) or carboxylic acids (e.g. malonic acid) as HBDs led to DESs exhibiting high viscosities 

(e.g. 12,730 cP at 20 °C for ChCl/sorbitol), due to the presence of a more robust 3D 

intermolecular hydrogen-bond network.100 

In the case of a ChCl/glycerol DES, an increase of the ChCl/glycerol molar ratio results in 

a decrease of the DES viscosity (Figure 1.14). For example, at 20 °C, viscosities of ChCl–

glycerol mixtures with a molar ratio of 1:4, 1:3, 1:2 were 503, 450, and 376 cP, respectively.98 

Glycerol has a strong cohesive energy due to the presence of an important intermolecular 
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hydrogen bond network.4,101 This drastic decrease of the glycerol viscosity upon addition of 

ChCl was attributed to the partial rupture of this hydrogen bond network.102 

 

Figure 1.14. Effect of ChCl on the viscosity of glycerol as a function of composition at 298 

K. (Republished with permission of Royal Society of Chemistry, from reference (98); 

permission conveyed through Copyright Clearance Center, Inc) 

In addition, viscosity of most of the eutectic mixtures follows an Arrhenius like behavior, 

that is, as the temperature increases, the viscosity decreases. 

1.5.2.3. Polarity 

Polarity of a solvent is a term used commonly in the context of the capacity of a solvent for 

solvating dissolved charged or neutral (polar or apolar) species.103 In other words, modifying 

the polarity of the solvent initially miscible compounds are likely to become immiscible even 

at moderate pressures. Generally, polarity scale {ET (30)} is used to evaluate the polarity of a 

solvent, which is defined as the electronic transition energy of a probe dye (e.g. Reichardt’s 

Dye 30) in a solvent.98 By means of UV-vis technology and using Reichardt’s Dye γ0, ET(30) 

can be calculated according to equation 1.11.  �்ሺ͵Ͳሻ = ℎ�௎ �௔��� = ሺʹ.ͺ5ͻͳ × ͳͲ−ଷሻܷ�௔� = ʹͺ5ͻͳ ⁄�௔�ߣ              Equation 1.11 

where, h is Plank’s constant, C is the speed of light, Umax is the concentration and ߣ�௔� is 

the wavelength. 

 



Chapter 1 

 

33 

 

Table 1.3. Solvent polarity parameter of various ChCl-glycerol mixtures. (Data taken from 

reference 98) 

Solvent Molar ratio of 
ChCl:Glycerol  

ET(30)/kcal mol-1 

Glycerol — 57.17 

ChCl:Glycerol 1:3 57.96 

ChCl:Glycerol 1:2 58.28 

ChCl:Glycerol 1:1.5 58.21 

ChCl:Glycerol 1:1 58.49 

1.5.3. Glycerol-based DESs 

About 100 kg of glycerol is formed as byproduct per ton of biodiesel (Scheme 1.2).104 

World-wide production of glycerol had reached 2 million tons in 2010 and it is expected to 

grow in the near future due to the increasing demand for biodiesel, as well as the emergence of 

other large-scale processes based on the conversion of cellulose and lignocelluloses, where 

glycerol is also a concomitant product.  

 

Scheme 1.2. Overall reaction in the production of biodiesel from triglycerides.104 

Thus, glycerol is considered as green reaction medium for synthetic chemistry due to its 

properties like renewable origin and unique combination of physicochemical properties, such 

as high polarity, low toxicity and flammability, high boiling point, ability to form strong 

hydrogen bonds and to dissolve both organic and inorganic compounds (salts, acids, bases, 

transition metal complexes).104,105 

In the section 1.5.2.2, it was discussed how the viscosity of glycerol can be tuned by forming 

a DES where glycerol acts as HBD with different molar ratio of ChCl/glycerol. Its common use 

stems in part from its simple manufacture, an efficient gas phase reaction between 
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trimethylamine, ethylene oxide and HCl. This means that the E factor (defined as the mass ratio 

of waste to desired product and the atom efficiency) for this salt is close to zero because almost 

no waste products are formed during this reaction.106 Abbott et al. concluded that the 3D 

intermolecular H-bond interactions in glycerol get broken on addition of ChCl resulting in a 

less ordered system is the cause for decrease in viscosity.99 This conclusion was backed up by 

the density data they recorded, that is, the density also decreased as ChCl was added. 

Additionally, the conductivity of the system increased as a function of ChCl addition due to 

more charge carrying species being available in an increasingly more fluid solvent. 

In the next, synthesis of metal nanoparticles in alternative solvents is discussed in details. 

The reactivity of metal nanoparticles depends on size and shape of the nanoparticles.107,108 

Synthesis of metal nanoparticles in liquid phase provides a better control on the morphology 

from a thermodynamical and kinetic provision.109  

2. Metal Nanoparticles 

Approximately 150 years ago, on in 1857, Michael Faraday presented a lecture 

“Experimental Relations of Gold (and other Metals) to Light” to the Royal Society of London. 

Intrigued by the ruby color of colloidal gold, Faraday investigated the interaction of light in 

metal particles.110–112 Ruby glass had been used as for stained glass window since 17th century; 

however, it was the discovery by Faraday that led to a breakthrough in the field of nanoscience 

and nanotechnology. He prepared a biphasic aqueous solution of a gold salt and a solution of 

phosphorus in carbon disulfide. After some time, the bright yellow color of the Na[AuCl4] 

solution turned into a ruby color characteristic of gold nanoparticles.110 Although, the solution 

prepared by Faraday was a colloidal gold dispersions, it is to be noted that the term “colloid” 

was not be coined until 1861 by T. Graham.113 

Nanoparticles are assemblies of hundreds to thousands of atoms and a size in the range of 

1-50 nm that can be considered at first approximation as a state of matter intermediate between 

single atoms or molecules and bulk bodies.114 Depending on the structure, nanoparticles can be 

0D (like quantum dots), 1D (like nanotubes, nanoribbons, nanowires), 2D (nanoplates, 

nanowalls, nanodisks) or 3D (like nanocoils, nanoflowers, nanoballs).115 The sizes, shapes, 

dimensionality and morphologies of nanoparticles are key factors to define their performance 

and application and thus, can be exploited to tune their activity.115,116Depending upon the 
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morphology, size, physical and chemical properties, nanoparticles can be classified into various 

categories (Figure 1.14).117 In this Chapter, with the context of this Thesis, the focus is given 

to metal nanoparticles (MNPs). 

 

Figure 1.14. Different categories of nanoparticles based on their morphology, size, physical 

and chemical properties. 

2.1. Synthesis of Metal Nanoparticles 

There are two well-known general approaches for the synthesis of metal nanoparticles; top-

down and bottom-up methodologies.118 The top-down approach is breaking down of bulk metal 

into nanoparticles by physical processes. Some of the most commonly used top-down processes 

are sputtering, laser ablation, and lithography or spray drying.118 However, it is often very 

difficult to synthesize or fabricate uniformly shaped materials or achieve perfection in the 

surface structure using these processes. Moreover, these processes have a high-energy 

consumption or expensive equipments leading to high cost. On the other hand, in the bottom-

up approach, the atoms/molecules are brought together to form nanostructures. Chemical vapor 

deposition, photochemical and sonochemical deposition, chemical reduction and 

electrodeposition are some of the most well-known bottom-up techniques.110Unlike the top-

down approach, bottom-up processes yields better results when it comes to controlling the size, 

shape and morphology of the nanoparticles. One of the most popular method is chemical 

reduction. The idea is to take a metal precursor and reduce it into naked atoms that 

spontaneously starts to nucleate eventually forming metal nanoparticles. It is very important to 

highlight that this process takes place in the presence of a stabilizer.119 
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Figure 1.15. Schematic diagram showing the mechanism of formation of metal 

nanoparticles by chemical reduction of a metal precursor (salt, organometallic compound etc.) 

The presence of stabilizer plays an essential role in the synthetic route, not only it inhibits 

aggregation of nanoparticles into bulk method, it also helps to control the size and shape of the 

nanoparticles. In addition to the type of stabilizer used, nature of metallic precursor, reaction 

conditions, reducing agents and the choice of solvents are also very relevant in governing the 

morphology and surface-state of the metal nanoparticles.106 114 

2.1.1. Polyol Methodology  

The polyol methodology was first reported by Fiévet et al. in 1989.120 They synthesized Co 

and Ni particles, and Co-Ni and Fe-Ni bimetallic particles of various compositions.120–122 In this 

process, liquids polyols like ethylene glycol and diethylene glycol are used as solvent and as 

reducing agents for the preparation of metallic powder from various inorganic precursors like 

copper acetate.123,124 

Hachani et al. synthesized superparamagnetic iron oxide nanoparticles using polyol 

process.125 The size and magnetic properties could be finely tuned by modifying the solvent, 

reaction time and concentration of iron precursor iron (III) acetylacetonate. They reported that 

NPs synthesized by this method had a narrow size distribution as compared to conventional 

methods such as thermal decomposition or co-precipitation. Dong et al. wrote in a review that 

the most important feature of the polyols is that they can be considered as water-equivalent but 

with high boiling points. They can allow synthesis temperature as 200-320 °C.126 Carroll et al. 

used an experimental and theoretical approach to interpret the interaction of the polyols with 

metal surface (Cu and Ni nanoparticles) giving an insight of the mechanism of reduction and 

the shape of the resulting metal nanoparticles.127 However, it should be noted that the polyol 

methodology is restricted by the reducing power of the solvent and low solubility of non-polar 

metal surfaces that can result in insufficient stabilization in polar polyol.126 
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2.2. Metallic Nanoparticles in Glycerol  

In the field of metal-mediated reactions, glycerol plays an enormous role for both 

molecular- and colloidal-based catalyst.128–130,131 It has a negligible vapor pressure (0.003 

mmHg at 50 °C) and high ability to solubilize both organic and inorganic polar compounds, 

and also its immiscibility with low polar solvents.131 Nanoparticles prepared in glycerol 

with/without stabilizing agent exhibit excellent catalytic properties. Chahdoura et al. well-

defined and small Cu2O nanoparticles stabilized by poly(vinylpyrrolidine) in neat glycerol were 

synthesized and applied to C-heteroatom bond formation and azide–alkyne cycloaddition 

processes, obtaining high isolated yields. In the desired products, the catalytic phase could be 

recycled at least ten times whilst retaining the activity and selectivity of the Cu2ONPs.128 PdNPs 

dispersed in neat glycerol and stabilized by TPPTS (triphenylphosphine-γ,γ′,γ′′-trisulfonic acid 

trisodium salt) have been efficiently applied in a large panel of reactions, leading to the 

synthesis of heterocyclic compounds: (na)phthalimides, isoindole-1-ones, 

tetrahydroisoquinolin-1,3-diones, (Z)-3-(arylmethylene)isoindolin-1-one and (Z)-1-methylene 

-1,3-dihydroisobenzofurans.128 The desired products were obtained by one-pot tandem and/or 

sequential methodologies without the isolation of the generated intermediates. Furthermore, 

isolation of compounds containing two heterocycles, even using in the same medium two 

different catalysts, Pd and Cu2O based nanoparticles was possible.128 Lately, palladium 

nanoparticles capped by cinchona-based ligands were also synthesized in neat glycerol and 

successfully applied in dihydrogen-based processes, such as hydrogenation of unsaturated 

functional groups (alkenes, alkynes, imines, and nitro-based substrates) and 

hydrodehalogenation of halo-aromatic compounds by Reina et al.132 

Based on the review published Chahdoura et al., glycerol accelerates reactions, immobilizes 

the catalyst mainly in the case of nanoparticles systems, allows the recycling of the catalytic 

phase, and yields metal-free target compounds.133 Contrary to the most organic solvents, 

glycerol favors the stabilization of metallic nanoparticles, thus recovering nanoparticles at the 

end of the organic transformations that helps in better immobilization of the nanometallic 

species in the liquid phase during the products extraction procedure. The supramolecular 

network in glycerol leads to favors the dispersiom of nanoparticles than in conventional organic 

solvents and therefore the catalytic phase is preserved.133 It is to be noted that in the above 

examples H2 acts as a reducing agent whereas glycerol is only used as solvent. 
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In its pure anhydrous condition, glycerol has a density of 1.261 gmL-1, a melting point of 

18.2 °C and a boiling point of 290 °C under normal atmospheric pressure, accompanied by 

decomposition. At low temperatures, glycerol may form crystals that melt at 17.9 °C. Overall, 

it possesses a unique combination of physical and chemical properties, which are utilized in 

many thousands of commercial products. 105 

2.3. Metal Nanoparticles in Ionic Liquids 

Metallic Nanoparticles (MNPs) synthesized in ILs applied have applications in catalysis. 

Some ILs also act as reducing agents (e.g. hydroxylated imidazolium derivatives), even leading 

to the oxidation of the imidazolium cation by the metal precursor, as observed in the formation 

of gold nanoparticles (AuNPs) starting with Au(III) species.134 

2.3.1.  Interactions between Ionic Liquids and Metal Nanoparticles 

Quaternary ammonium salts are the most widespread model that can explain the 

stabilization of metallic nanoparticles by salt effect. A well-established stabilization mode 

consists in the interstitial layer constituted by the anions between the metal core and the 

surfactant shell. However, depending on the electronegativity of the metal, the literature 

describes a direct interaction of the ammonium cation to the metal surface (Figure 1.16). 135 

 

Figure 1.16. Representation of ionized MNPs at the surface: (a) positively and (b) 

negatively charged MNPs, surrounded by the corresponding shells of ionic species (black 

cluster denotes a metallic nanoparticle) 



Chapter 1 

 

39 

 

All these interactions generate channel-like molecular assemblies. Depending on the anion 

and cation nature, the interaction energies can be very different as well as the organization of 

the ILs. The ionic liquid cations are attracted to the surface of a negative charged nanoparticle 

to form a positive ion layer, and then counter ions form a second layer on the nanoparticle 

surface by electrostatic attraction. This electrical double layer efficiently keeps nanoparticles 

from aggregating.135 

Van der Waals interactions are also present in almost all the colloidal systems. The van der 

Waals force, arising from correlations between electrons motions in two neighboring 

molecules, is a short-range unidirectional force that is relatively weak compared to electrostatic 

interactions. 

The Derjaguin–Landau–Verwey–Overbeek (DLVO) theory can be applied to quantitatively 

calculate the stability of colloidal dispersions.136 It considers a combination of electrostatic 

double layer repulsion (Coulomb forces) and van der Waals attraction to examine the colloidal 

stability. The total particle–particle interaction energy potential (Vtotal) is calculated by addition 

of the van der Waals potential (VvdW) and the electrostatic potential (Vele):  

Vtotal = VvdW + Vele                                                                                                 Equation 1.6 

In an example of DLVO theory utilization, the potential between two gold NPs (with a 

diameter of 6 nm) dispersed in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide 

([bmim][NTf2]) was calculated by adding the electrostatic potential and the van der Waals 

potential. A negative total potential over the whole distance range resulted, indicating an 

unstable colloidal system.137 

An approximate expression (when R >> 1) for the electrostatic repulsion potential Vele(d) 

is:138 

Vele = 2Rε0εrψ0 ln[1 + exp(-d)]                                                                          Equation 1.7 

where, ψ0 is the surface potential. The Debye reciprocal length parameter  can be 

calculated from:138 

 = ቀ∑ ሺ���ሻమ��బ∗�εబε�௞் ቁ1/ଶ
                                                                                                 Equation 1.8  

where zi stands for ion valence, e is the elementary charge, ci0* is the bulk concentration of 

ions (at a reference point where the potential equals zero), εr is the solvent dielectric constant, 
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ε0 is the permittivity of free space, k is the Boltzmann constant and T is the absolute temperature. 

The thickness of the Debye layer (1/k) can be utilized as a measure of colloidal electrostatic 

stability.138 The colloidal particles are more stable with a thicker Debye layer because it expands 

the distance between nanoparticles, reducing the chance for nanoparticle agglomeration. 

Moreover, a wider separation between nanoparticles reduces van der Waals interactions, which 

further discourages nanoparticle aggregation. 

2.3.2.  Stabilization of Metal Nanoparticles by Ionic Liquids 

Metallic nanoparticles stabilized by ILs are generally considered as core-shell systems, 

mainly involving electrostatic and steric repulsion forces. Electrostatic stabilization is often 

based on Derjaguin, Landau, Verwey and Overbeek (DLVO) theory, which describes a balance 

between repulsive columbic forces opposed to attractive van der Waals ones as discussed in 

section 2.3.1. The anions interact with the electrophilic surface of the nanoparticles, forming a 

layer at the surface of the MNP. The thickness of the counter ions surrounding the MNP (Debye 

layers) affects the stability of the MNP. In general, the thinner the layers are, the greater is the 

interparticle distance. However, this anionic stabilization mode cannot explain all the reported 

observations.  

Apart from DLVO interaction, other interactions can govern the stability of nanoparticles 

in ILs. The next sections discuss some these non-DLVO interactions. 

2.3.2.1. Structural Aspects 

In colloidal systems, the motion of the solvent molecules surrounding the particle surface 

is constrained within a narrow range. Solvation shells are built by proton-donors and proton-

acceptors forming hydrogen bonds, and by electrostatic interactions attracting counterions. For 

aqueous colloidal systems, this orientation restriction is indicated as hydration pressure and the 

solvation shell is referred as a hydration shell. In dispersions of nanoparticles in ionic liquids, 

ion shells are built around nanoparticles to effect stabilization through structural forces. The 

nanoparticles can be viewed as encapsulated in constraining nano-regions of ionic liquids. The 

solvation layers are squeezed out of the closing gap when two solid surfaces approach each 

other, thus providing structural repulsion to prevent nanoparticles from agglomerating. The 

constraining effect on solvent molecules/ ions and the attractive interactions between the 

nanoparticle surface and solvent molecules/ions hence generate solvation forces between 

neighboring nanoparticles. 
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2.3.2.2. Solvophobic Interactions 

The hydrophobic force is another non-DLVO force acting on aqueous colloidal systems that 

is considered as a factor affecting colloidal stability. In the case of ionic liquid-based colloidal 

systems, we refer to this as solvophobic force. Analogous to polymers in a bad solvent, the 

nanoparticles tend to aggregate to reduce the contact area with the ionic liquid in the case where 

the nanoparticle surface is solvophobic relative to the ionic liquid medium.  

A better dispersibility indicated by Newtonian fluid-like rheological behavior in the 

hydrophilic ionic liquid at room temperature and at 100 °C, even at higher nanoparticle 

concentrations, implied that the hydrophilic silica nanoparticles with silanol groups were more 

stable under solvophilic conditions. To further confirmation, the silica nanoparticles were 

surface functionalized to render them hydrophobic. The hydrophobic silica nanoparticles in the 

hydrophobic ionic liquid behaved like Newtonian fluids, indicating better dispersibility. 

Besides the direct influence of solvophobic forces, the relative solvophibicites of ionic 

liquids and nanoparticles having surface-grafted polymers can affect the colloidal stability 

through steric interactions 

2.3.2.3. Steric Interactions 

When two nanoparticles with polymers adsorbed on their surface approach each other, the 

polymer layers may undergo some compression resulting in a strong repulsion that is referred 

to as steric interaction. The physical basis of steric repulsion is a combination of entropic and 

osmotic contributions. The entropic contribution is due to a volume restriction effect that 

decreases possible configurations in the region between two surfaces. The osmotic effect arises 

from a difference in concentration of the adsorbed polymers in the region between the two 

surfaces as they approach closer. In ionic liquid-based colloidal systems, steric forces can 

emerge from bulky groups within a molecule and/or from the addition of macromolecules, both 

of which hinder nanoparticles from physically contacting each other and/or from forming 

chemical bonds.139 

Compared to structural forces, which originate from the solvation layer being squeezed out 

of the closing gap when two solid nanoparticles approach each other, steric forces originate 

from polymers or side chains attached at the solid–liquid interface dangling out into the solution 

where they remain thermally mobile. In the cases of nanoparticles in pure ionic liquid without 

polymer addition, the ionic liquid provides structural forces through forming solvation layers. 

However, if the ionic liquid comprises a long alkyl side chain, e.g. from imidazolium- or 
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pyrazolium-based cations, the cations being attracted near nanoparticle surfaces can provide 

steric forces by stretching out their bulky side-chains, thus hindering the nanoparticles from 

approaching each other. This effect is steric rather than structural. 

The difference in polarity and the hydrogen-bonded supramolecular structure with cation 

and anion aggregates engender microheterogeneity in ionic liquids. The semi-organized ionic 

liquid-based nanostructure that extends beyond the electrostatic double layer also leads to steric 

forces that stabilize the embedded nanoparticles.139 

2.3.2.4. Hydrogen Bonding Interactions 

Hydrogen bond interactions are necessary to be considered in ionic liquid-based colloidal 

systems in addition to the classic electrostatic and van der Waals interactions. Several ionic 

liquids are highly hydrogen bonded to form supramolecular structures. In such ionic liquids, 

the cations contain one or more proton donors, which could form X–HY hydrogen bonds with 

halogen containing anions, e.g. [BF4] ˉ, [PF6] ˉ. Some nanoparticles possess hydroxy- and/or 

oxy-moieties on their surface, e.g. silica nanoparticles have silanol groups (–Si–OH), which can 

also hydrogen bond with ionic liquids.53 The cation–anion hydrogen bond and NP–IL hydrogen 

bond compete with each other and contribute to nanoparticle stabilization in ionic liquids. 

2.4. Catalytic Activity of Metal Nanoparticles 

Nanoparticles have electronic properties intermediate between molecules and bulk 

metals.140 The activity of nanoparticles depend hugely on their size and surface state; as the size 

decreased the exposed surface atoms increase leading to more area for the surface reactant 

interaction.140 C. R. Henry presented a study of supported nanometer-sized particles that are 

used in heterogeneous catalysis via the reactivity of size selected and soft-landed small metal 

clusters containing 2 to  50  atoms  called as molecular  approach   and  the  reactivity  of  

extended  single  crystal  surfaces  called as surface  science approach.141 He reported that the 

intrinsic heterogeneities (like the  presence  of  different types  of  facets,  the  presence  of  

edges  and  the  presence  of  the  support) encounter to the peculiarity of the nanometer-sized  

supported  clusters.131 Therefore, the compositional and structural complexity of these catalyst 

allows the chemical and adsorption properties in order to optimize their performance in a 

specific reaction.142 MNPs have been very popular for their catalytic properties in a variety of 

reactions, for example, as a surfactant for water‐soluble polymer, resins, vesicles etc, including 
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Fischer‐Tropsch, isomerization, and hydroformylation, etc which uses Rh, Pt, Ir, Au, and Pd 

nanoparticles as catalysts.143 Fisher-Tropsch is an important industrial process to convert 

feedstock like coal and biomass into clean diesel.144 In this process, nanocatalysts of Fe and Co 

of size 0-15 nm are used in slurry reactors to improve the production of high molecular waxes. 

These waxes then hydrocracked to generate green diesel.145 Kang et al. reported the selective 

conversion of synthesis gas to diesel fuel using Ru nanoparticles supported on carbon 

nanotubes.146They said that both selectivity and turnover frequency (TOF) for CO conversion 

depend on the mean size of Ru particles. As already said above, reactivity of MNPs highly 

depends on its size. Bezemer et al. reported that the TOF for CO conversion over Co supported 

on carbon nanofibers increased with Co size up to roughly 8 nm and then remained almost 

unchanged with further size increases.145 

One of the most popular catalytic reaction by MNPs is hydrogenation, which has been 

investigated since 19th century when Paul Sabatier discovered hydrogenation of unsaturated 

hydrocarbons using Ni as catalyst.147 The Sabatier process to hydrogenate carbon dioxide to 

form methane and water was the reason he was awarded Nobel Prize in Chemistry in 1912. 

Until date, hydrogenation reaction based on his work as well as the work of Döbereiner have 

been investigated.  

 

Scheme 1.3. The Döbereiner and Sabatier reactions 

Recently, Han et al. fabricated hexahedral Ni nanoparticles confined in mixed domains of 

Al3+-doped NiO and tested the catalytic hydrogenation reduction of p-nitrophenol to p-

aminophenol.148 Qu et al. also synthesized bimetallic AuPd nanoparticles supported on TiO2 

for solvent-free selective hydrogenation of nitroarenes.149 The catalyst showed a good 

selectivity for the chemoselective hydrogenation of 4-chloronitrobenzene to 4-chloroaniline. 

They compared the reactivity of these bimetallic nanoparticles with monometallic (Au and Pd) 

nanoparticles and found the reactivity of former to be 54% more than the latter under identical 

reaction conditions, evidencing the synergy between metals.150 

F. Zaera studied the surface chemistry of transition metal-based heterogeneous catalysts for 

hydrogenation.151 He discussed the state-of-the-art of hydrogenation catalysis using the 

example of olefin hydrogenation to study the adsorption of the organic reactants, the role that 
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the strongly adsorbed carbonaceous deposits that form during reaction play in defining the 

catalytic kinetics, the mechanistic details of the hydrogen dissociative uptake and surface 

mobility during reaction, and the dynamic changes of the structure of the surface induced by 

the catalytic conditions. They also discussed the issue of selectivity in connection with the 

hydrogenation of alkynes, dienes, trienes, and aromatics; unsaturated aldehydes and imines; 

and cases where hydrogenation competes with other types of reactions such as 

dehydrogenations, skeletal rearrangements, cyclizations, and hydrogenolysis. 

2.4.1. Catalytic Hydrogenation Applications of Metal Nanoparticles 

under Carbon dioxide  

Hydrogenation reactions are often limited due to the low solubility of hydrogen in the 

solvents currently used. Application of supercritical fluids (SCFs) during hydrogenation can 

serve as a promotor for transporting hydrogen into the liquid phase and thus enhance the 

equilibrium concentrations of both reactants and products in the gaseous phase. Supercritical 

reaction media have been investigated for completely solubilizing hydrogen and thereby 

eliminating gas–liquid transport resistances in heterogeneous-catalyzed hydrogenations. 

Cyclohexene hydrogenation is often used as benchmark for both optimization of reaction 

parameters and comparative purposes of different catalysts. Howdle et al. prepared PdNPs on 

silica aerogels in scCO2.152 The as-synthesized catalytic material was successfully applied in 

the hydrogenation of cyclohexene under flow conditions using scCO2, without observing 

sintering or coking on the metal surface after catalysis. Later, Knez’s group reported the 

synthesis of PdNPs on organic modified silica aerogels (AEROMOSIL), prepared following 

one-pot methodology from tetramethoxysilane, polydimethylsiloxane, formic acid and the 

Pd(II) precursor under scCO2 conditions (313 K, 50 MPa CO2).153 This catalyst was applied in 

the hydrogenation of 2,5-dihydro-2,5-dimethoxyfurane both under batch and continuous flow 

scCO2, being the latter reactor much more efficient: under comparable conditions, batch reactor 

led to 60% conversion, while flow reactor achieved 99%. RuNPs supported on carbon-based 

solids (Single Walled Carbon Nanotubes, SWCNTs; hollow Graphitized Nanofibers, GNFs) 

applied on hydrogenation of alkenes, evidenced the essential role of scCO2 in the transport of 

reactants to the metallic surface, in particular for RuNPs/SWCNTs (mean size: 0.74 ± 0.18 nm). 

154 Actually, RuNPs/GNFs were less active under the same conditions (10 MPa CO2, 1 MPa 

H2, 383 K, 0.17 mol% Pd, 24 h), for the hydrogenation of both substrates norbornene and 

benzonorbornadiene (Scheme 1.4). For both catalysts, RuNPs were confined inside the carbon 
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material (proven by STEM and HRTEM analyses). For commercial Ru/C catalyst, where the 

Ru nanoparticles are located at the support surface, the activity was lower than for 

RuNPs/SWCNTs. The affinity of the aromatic substituents for the interior of carbon supports 

could be demonstrated by the competitive reaction between both substrates, which altered the 

selectivity of the reactions. 

 

Scheme 1.4. Ru-based nanocatalysts on SWCNTs catalyzed the hydrogenation of the non-

aromatic C=C bond: a) independent reactions of norbornene and benzonorbornadiene; b) 

competitive reactions of norbornene and benzonorbornadiene 

The design of catalysts for selective hydrogenation processes without additives represents 

a challenging and sustainable approach. For the hydrogenation of alkenes containing a benzyl 

group, hydrogenolysis process can also take place (deprotection reaction), which is often 

precluded modifying the catalyst by additives.155 Lee et al. prepared a selective catalyst based 

on PdNPs supported on mesoporous silica SBA-15 by palladium confinement on the pores, 

which was applied in the chemoselective hydrogenation of 4-methoxycinnamic acid benzyl 

ester in scCO2.156,157 Comparing with other heterogeneous catalysts (Pd/C, Pd/Al2O3), 

PdNPs/SBA-15 was the most selective giving up to 97% selectivity for full conversion (for 

Pd/C and Pd/Al2O3, 38% (100% conversion) and 64% (92% conversion) of selectivity, 

respectively). 

In gas-liquid heterogeneous catalytic systems several steps can be identified: 1) transfer of 

gaseous reactants from bulk gas phase to gas/liquid interface by diffusion, 2) transfer from this 

interface to the bulk of the liquid phase through adsorption and diffusion, 3) transfer of both 

reactants from bulk liquid to the catalytic surface by diffusion through the stagnant film at the 

surface of the catalyst, 4) transfer of the reactants inside the pores of the catalyst through internal 

diffusion, 5) adsorption of reactants, 6) reaction at the surface, 7) desorption and transfer of the 



Chapter 1 

 

46 

 

products by internal and external diffusion to bulk liquid or gas phase. It is clear here that 

diffusion plays a key role in the transfer of substrates, hydrogen and products. At the interface, 

mass transfer is a non-equilibrium process. Transport phenomena that occur outside of the 

catalyst particle are commonly referred to as external or interphase transport effects or 

resistances. The phenomena occurring inside the pores of the catalyst are called internal or 

intraparticle effects.  

3. Conclusions 

To summarize, in the first part of this we have described the physiochemical properties of 

supercritical fluids (especially supercritical carbon dioxide), ionic liquids and deep eutectic 

solvents at length. Furthermore, we have described how SCFs and gas-expanded liquids can be 

used as tunable media for various reactions. We have discussed how these solvents are a smart 

choice over the volatile organic solvents. We have also discussed the limitations of mass 

transfer in the ILs and DES and the use of scCO2 to overcome these limitations. 

In the next part, we have talked about synthesis of metal nanoparticles in various media 

focusing especially on ionic liquids and glycerol. Catalytic activity of various nanoparticles in 

hydrogenation have been discussed. Special focus has been given to hydrogenation reaction 

using metal nanoparticles under sub and supercritical CO2. 
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2.1. Introduction 

Viscosity is a measure of a fluid's resistance to flow. It describes the internal friction of a 

moving fluid. Viscosity is the property of a fluid that offers resistance to the movement of one 

layer of fluid over an adjacent layer.  

Viscosity of fluids used in a chemical process is crucial from processes design and 

optimization points of view as it defines the mass transfer properties of a substance. Liquids, 

for example, ionic liquids and polyols (such as glycerol), possess in general high viscosity (2-

3 times higher than usual organic solvents),1 which decreases mass transfer efficiency (Table 

2.1). In 1980, Manger and Ponters published results showing the decreasing of mass transfer 

coefficient (kLa) with increasing viscosity of carbon dioxide into pure water and aqueous 

glycerol mixtures.2 The rate of mass transfer is proportional to the concentration difference of 

the compound and the interfacial transfer area, the proportionality constant in equation 2.1 is 

defined as mass transfer coefficient (kLa).3 �1 =  ݇��ሺ�1� − �1ሻ                    Equation 2.1 

where, N1 is the rate of transferred mass per area at the interface, c1i is the concentration at 

the interphase of the phase and c1 is the concentration at the bulk of phase. Chen et al. proposed 

a correlation for mass transfer coefficient for both Newtonian4 and non-Newtonian fluids.4 

Mass transfer coefficient kLa defined by is:5 

݇�� = ���(��మ−��మ) ln[ቀ1− భ�ቁ ����+భ�]1−భ�                      Equation 2.2 

where, QL is the liquid flow rate, ro and ri are the outer and inner radius (respectively) of the 

packed bed, S is the stripping factor defined as S = (HQG)/QL with H as Henry’s constant and 

QG as gas flow rate. xo and xi are mole fractions of solute in the outlet and inlet liquid stream 

respectively. Based on equation 2.2, they stated that an increase in liquid viscosity would lead 

to a slower flow of the liquid, a smaller degree of liquid mixing at the packing junction, and 

thicker liquid films, which causes the decrease in mass transfer efficiency.6 

As stated above, it is important to overcome the viscosity issues in order to solve the 

problems of mass transfer. In this context, gas-expanded liquids (GXLs) have emerged as an 

innovative solution because it is possible to change the viscosity of GXLs by changing the 

operating pressure of the gas dissolved. The definition of GXLs is well reported in the review 
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by B. Subramaniam and P. G. Jessop.7 When gases, such as carbon dioxide, and light 

hydrocarbons (propylene, ethylene) are mildly compressed at ambient temperatures, they attain 

liquid-like densities and can be dissolved in most conventional solvents creating a GXL phase.7 

Table 2.1. Viscosities of some selected solvents at 25 °C. 

Solvent Viscosity (mPa.s) 

Acetone 0.32 

Benzene 0.56 

Dichloromethne 0.79 

Water 1.00 

Ethylene glycol 19.83 

Choline hydroxide 25.30 

1-Decyl-3-methylimidazolium 

bis(trifluoro-

methylsulfonyl)imide 

90.06 

Glycerol 1412 

 

Maroncelli et al. have simulated the transport properties of CO2-expanded liquids. They 

reported translational diffusion coefficients, rotational correlation times and shear viscosities of 

the liquids as function of CO2 mole fraction.8–10 Granero-Fernandez et al. have performed a 

physicochemical and molecular study on CO2-expanded alkyl acetates.11 Both teams found a 

significant decrease in the viscosity with increasing amounts of CO2. This decrease in viscosity 

at the expanded state improves the mass transport for these alkyl acetates as compared to other 

organic liquids. Water does not have ability to dissolve sufficient CO2; hence, no viscosity 

change is observed and on the other hand, viscosity of methanol can be varied from 0.6 cP to 

less than 0.1 cP (at 25 °C) by increasing the amount of CO2.7,12,13 Similar results were reported 

by Lin et al. for the measurement of the diffusion coefficient of benzonitrile in the CO2-

expanded ethanol. They found that the diffusion coefficient increased with increasing the 

amount of CO2. This indicated that as the amount of CO2 increases, more CO2 is dissolved in 

ethanol. This leads to reduction of collision between molecules and decrease in viscosity and 

density, favoring the diffusion of benzonitrile in liquid.14  
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As it has been stated, the study of viscosity is key in highly viscous systems. In this context, 

the conventional methods to measure viscosity from the beginning of the 20th century until date 

includes the use of instrumentations like capillary viscometer, the falling ball viscometer, 

rheometer among others, which are mechanical methods.15–17As stated by Haidekker and 

Theodorakis, all mechanical methods have in common that the fluid is subjected to shear forces, 

and the resistance of the fluid to these forces (internal friction) is measured.18 The internal 

friction of a fluid is proportional to the dynamic viscosity and the velocity gradient (i.e., the 

shear rate) between layers of different velocities.18 In 1936, Bacon reported the measurement 

of absolute viscosity by the falling sphere viscometer,19 and on the other hand, Topham in 1972 

reported a rising sphere rheometer;20 both of them working on the same principle of determining 

viscosity of viscous Newtonian fluids by measuring the rate of fall of a sphere through the 

liquid. However, these conventional methods are focused on measuring the bulk macroscopic 

viscosity. The microscopic viscosity is one of the key parameters that controls the diffusion rate 

of molecular species and hence affects the reaction rates of diffusion-controlled processes on 

the microscopic level.21 

Molecular rotors have emerged as one the most innovative methods to measure the viscosity 

at the micro-scale.21–23 Molecular rotors are in general fluorophores that form twisted 

intramolecular charge transfer (TICT) states upon photoexcitation. Thus, depending upon the 

viscosity of the system, they can exhibit two de-excitation pathways: (1) fluorescence emission 

and (2) non-radiative de-excitation.18 

2.2. Molecular rotors 

In 1973, Rotkiewicz, Grellmann and Grabowski formulated a structural hypothesis for 

“inner-charge transfer” for the reinterpretation of the anomalous fluorescence of p-N,N-

dimethylamino-benzonitrile.24 Later, based on various studies by Mataga et al.25 Grabowski 

coined the term twisted intramolecular charge transfer or TICT for electronic structures in 

which an electron transfer occurs upon photoexcitation in molecules constituted by a donor (D) 

and an acceptor (A) moiety linked by a single bond.24,26,27 
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Figure 2.1. Jabłoński diagram of electron donor-acceptor (D–A) system for TICT dynamics. 
GS = ground state; LE = locally excited state. Reproduced from Ref. (28) with permission 

from the Royal Society of Chemistry. 

TICT governs the phenomena of fluorescence in fluorophores. The electron transfer is 

accompanied by intramolecular D-A twisting around the single bond (Figure 2.1) and produces 

a relaxed perpendicular structure. The equilibration between a relaxed perpendicular conformer 

and a coplanar conformer often results in dual fluorescence, i.e. from a high-energy band 

through relaxation of the locally excited (LE) state and from a lower energy band due to 

emission from the TICT state.28 

 

 

Figure 2.2. Emission spectra of 9-(dicyanovinyl)julolidine (DCVJ) in some selected solvents. 

Reprinted from reference (29), Copyright (2005), with permission from Elsevier. 
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Since the relaxation pathways can easily be modulated by substituents, local polarity and 

steric restrictions, the TICT process can be exploited for novel design strategies of functional 

molecules.30–32 One of the major applications and our focus of interest, however, is molecular 

rotors. As mentioned above, molecular rotors are fluorophores that exhibit TICT on 

photoexcitation consequently giving fluorescence or non-radiative emission on de-excitation. 

One of the most commonly known molecular rotor is 9-(dicyanovinyl)julolidine (DCVJ). Reed 

et al. have described DCVJ as a fluorescent dye whose intramolecular rotational relaxation 

depends on the nature of the solvent.33,34 Figure 2.2 shows the emission spectra of DCVJ in 

different solvents. 29 In the case of DCVJ, on photoexcitation, the electron pair on the julolidine 

nitrogen is transferred to one of the nitrile group that induces TICT in the molecule (Figure 

2.3). The intermolecular rotation caused within the molecule is governed by the molecular-free 

volume of the solvent. This implies that when the solvent is viscous the molecule is sterically 

hindered to rotate, in this case, the relaxation shifts towards higher radiative rates.28 In other 

words, we can say that more is the viscosity, less is the molecular-free volume hence more is 

the fluorescence intensity.  

 

Figure 2.3. Schematic diagram showing how DCVJ works under irradiation. 

Many scientists are now working on the development of synthetic molecular rotors. Ibarra-

Rodríguez et al. have synthesized molecular rotors of organoboron compounds from Schiff 

hν 

hν 
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bases (Figure 2.4) and have successfully proven that the fluorescence quantum yield increases 

strongly with increasing solvent viscosity (Figure 2.5).35 

 

Figure 2.4. Organoboranic molecular rotors synthesized from Schiff bases. Adapted with 

permission from reference (35). Copyright (2017) American Chemical Society. 

The observed increase in fluorescence intensity is consistent with the restricted rotation of the 

phenyl bonded to the boron atom in the medium of high viscosity and dissipated energy by 

intramolecular rotation, and the photoactivated molecule may relax by a non-radiative decay 

process.35 

 

 

Figure 2.5. Fluorescence spectra exhibited by molecular rotors (a, left) and (b, right) shown in 

Figure 2.4, synthesized from Schiff bases in binary mixtures of methanol and glycerol in 

different ratios. Adapted with permission from reference (35). Copyright (2017) American 

Chemical Society. 

(a) (b) 

(a) 
(b) 
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Very recently, Jin et al. used tetraphenylethylene (TPE) derivatives with different-length alkyl 

chains for viscosity measurements of hydrocarbon and silicone oil fluids (Figure 2.6). They 

successfully determined the viscosity using these molecular rotors.36 

 

Figure 2.6. Chemical structures of TPE derivatives (R = n-octadecyl, n-octyl and methyl). 

Reprinted from reference (35), Copyright (2019), with permission from Elsevier. 

In the next section, we present the study on the viscosity measurement of DES synthesized 

using choline-based amino acid and glycerol. The viscosity was measured at different 

temperatures and different pressures of CO2 by using DCVJ and 4,4’-difluoro-4-bora-3a,4a-

diaza-s-indacene (BODIPY) - based molecular rotors (Figure 2.7). In other words, we discuss 

in detail the changes in viscosity of DES with changing amounts of CO2. An ݔ −  equation ݕ

obtained from a calibration curve has been used to calculate the viscosity using the florescence 

intensity (Equation 2.3).32 37 log ݕ = ݈��݇ + ݕ             ��             ݔ��݈ ݉ =  Equation 2.3      �ݔ݇

where, ݕ is the fluorescence intensity obtained from the molecular rotor and ݔ is the calculated 

viscosity. The plot of log ݕ as a function of log x yields a straight line with a slope of ݉. The 

straight line, typically observed only in the intermediate range of viscosities (15-1000 cP), 

serves as a calibration plot for molecular rotors. The intercept of the line gives information 

about the radiative rate constant, ݇ for the molecule. 

In the context of our work, Lu et al. investigated the solvent properties of mixtures of 1-

butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) and CO2 as functions of 

temperature (range: 35-50 °C) and CO2 pressure (range: 0-230 bar). They concluded that the 

effect of added CO2 on the microviscosity might be significant for promoting mass transport 

and facilitating separation for viscous room temperature ionic liquids.37 
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2.3. Experimental Section 

2.3.1. Materials and methods 

Unless otherwise stated, all chemical reagents were obtained from commercial suppliers 

and used without further purification. 9-(2,2-Dicyanovinyl)julolidine was taken from Sigma-

Aldrich with 97% purity. All manipulations were performed using Schlenk techniques under 

argon atmosphere. Glycerol was dried under vacuum at 80 °C for 18 h prior to use. Choline 

tosylalaninate was prepared following reported methodology.38 TA INSTRUMENTS DSC 

Q2000 was used for Differential scanning calorimetry to measure the melting point of the DES. 

Bulk viscosity was measured using the Rheometer AR2000Ex from TA Instruments. Three 

molecular rotors were tested: commercial rotor DCVJ (to complete, ); and 2 BODIPY-derived 

rotors which were synthesized by the group of Pr. Norberto Farfan, at the Facultad de Química 

of the Universidad Nacional Autónoma de México (UNAM).35,39–41 Details on the 

characterization of these compounds are given in Annex 1. Synthesis details are out of the scope 

of this thesis, where the purpose is the utilization of these rotors as microviscosity probes 

(Figure 2.7); for convenience, molecular rotors are called MR1 and MR2.  

MR1    MR2  

Figure 2.7. Structures of BODIPY-based molecular rotors. 

2.3.2. Synthesis of choline N-tosylalaninate (ChTs-ala) 

Choline hydroxide (103 mg, 0.85 mol, 46 wt.% in H2O) was stirred with an aqueous solution 

of N-tosylalanine (206 mg, 0.85 mmol) at 60 °C for 12 h. After the ion exchange reaction, water 

was evaporated under vacuum at 80 °C, obtaining a brownish viscous oil (294.1 mg, 99.9%). 

ChTs-ala was obtained as a racemic mixture. 1H NMR (300 MHz, DMSO-d6) δ 7.7β – 7.61 (m, 

2H), 7.35 – 7.22 (m, 2H), 4.08 – 3.96 (m, 2H), 3.69 – 3.60 (m, 1H), 3.50 – 3.44 (m, 2H), 3.19 

– 3.12 (m, 9H), 2.29 (s, 3H), 1.20 (d, J = 7.2 Hz, 3H). 13C NMR (75 MHz, DMSO-d6) δ 17β.6, 

142.4, 137.8, 129.5, 126.6, 67.0, 67.0, 66.9, 55.1, 53.2, 53.1, 53.1, 52.1 20.9, 19.6. HR-MS 

(ESI+) for C5H14NO+: theoretical = 104.1075, experimental =104.1072; HR-MS (ESI-) for 
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C10H12NO4Sˉ: theoretical = 242.0487, experimental = 242.0483. IR (ATR, cm-1): 3256, 3045, 

2954, 2922. 2866, 2853, 2427, 1718, 1598, 1456, 1397, 1324, 1221, 1093, 958, 884, 816, 708, 

662. Viscosity 3054 Pa.s at 25 °C and 2.973 Pa.s at 80 °C.  

2.3.3. Preparation of Deep Eutectic Solvent (DES) 

20 mL of glycerol was mixed with 3.4 mmol (1.17 g) of choline tosylalaninate in a Schleck 

at 80 °C for 1 h under inert atmosphere. A light brownish viscous liquid was formed. 

Differential scanning calorimetry was done to determine the melting point of the DES. 

Unfortunately, the melting point could not be determined as the melting point expected for this 

kind of DES was out of range from the DSC instrument used. 

2.3.4. Determination of Viscosity of the DES at increasing pressure of CO2 

A stainless steel cell of 5 mL with four sapphire windows was used for fluorescence 

spectroscopy determinations. The windows were sealed with Teflon gasket joints capable of 

withstanding pressures exceeding 350 bar. The temperature control unit for the cell consisted 

of heating cartridges inserted into the body, probes, and a temperature controller. A magnetic 

stirrer was used to agitate the contents in the cell throughout measurements to facilitate 

equilibrium. The cell was completely filled with the above prepared DES and the molecular 

rotor solution depending on the experiment (concentration of DCVJ, MR1 and MR2: 1.12 x 

10-4 mmolL-1, 1.12 x 10-4 mmolL-1 and 1.12 x 10-4 mmolL-1 respectively), then the cell was 

tightly closed. A UV-source and a fluorescent detector were placed on adjacent windows of the 

cell making them orthogonal to each other (Figure 2.8). A StellarInc spectrophotometer was 

used to record the detected fluorescence on a computer. This experiment was done at three 

different temperatures: 40 °C, 60 °C and 80 °C. Each time, the cell was filled with a certain 

pressure of CO2 and rested until an equilibrium between DES and CO2 was achieved. A 

calibration curve was used to determine the viscosity from the fluorescence measurements 

described in next section (see Annex 2).  
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Figure 2.8. Set-up (actual (left); schematic (right)) of the high-pressure cell for the 

measurement of the fluorescence 

2.3.5. Calibration of molecular rotors 

Four solutions of different viscosity were prepared using mixtures of glycerol:ethylene glycol 

in the ratio of 1:0, 8:2, 6:4 and 4:6. The viscosities of these four solutions were measured using 

a rheometer at 40 °C, 60 °C and 80 °C. Molecular rotors (concentration of DCVJ, MR1 and 

MR2: 1.12 x 10-4 mmolL-1, 1.12 x 10-4 mmolL-1 and 1.12 x 10-4 mmolL-1 respectively) were 

added to each one of these solutions and then fluorescence was recorded using the procedure 

mentioned in section 2.5.4 (see below) at 40 °C, 60 °C and 80 °C . A ݔ −  graph was plotted ݕ

for the three different temperatures using the viscosity from the rheometer measurements to thr 

corresponding fluorescence obtained from the molecular rotors. The calibration curves of 

DCVJ, MR1 and MR2 are reported in Annex 2 Part 1, Part 2 and Part 3 respectively. 

2.4. Results and Discussion 

2.4.1. Synthesis of Choline tosylalaninate (ChTs-ala) 

The ionic liquid choline tosylalaninate (ChTs-ala) was prepared based on the reported 

methodology for the preparation of choline carboxylate ionic liquids (see Experimental section 

2.3.2) (Scheme 2.1).38After the ion exchange reaction, water was evaporated under vacuum at 

80 °C, obtaining a brownish viscous oil of ChTs-ala was obtained as a racemic mixture, as 

proven by the optical activity obtained; [α]D = +0.002. The ChTs-ala was dissolved in glycerol 

in a ratio of 1:100, in order to synthesize the corresponding Deep Eutectic Solvent (DES). It 

was important to wash the resulting solution with dichloromethane in order to remove any 

insoluble IL from glycerol phase. 
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Scheme 2.1. Synthesis of choline tosylalaninate (ChTs-ala). 

The use of choline alaninate was envisaged (Scheme 2.2),42 instead of the protected anion 

N-tosylalaninate; however, choline alaninate became unstable under atmospheric conditions, 

due to its high reactivity with carbon dioxide, giving the corresponding carbamate (Scheme 

2.3).43 

 

Scheme 2.2. Synthesis of choline alaninate. 

 

 

Scheme 2.3. Formation of choline N-alanine carbamate from choline alaninate in the 

presence of CO2. 

2.4.2. Determination of viscosity using DCVJ 

Viscosity of the above-prepared DES was determined using DCVJ. The procedure to 

determine the viscosity using DCVJ has been described in the experimental section 2.3.4 and 

2.3.5 Figure 2.9 gives the value of viscosity measured by using DCVJ as molecular rotors at 40 

°C, 60 °C and 80 °C.  
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(a)   (b)  

(c)  

 

Figure 2.9. Determination of viscosity using DCVJ as molecular rotor at (a) 40 °C, (b) 60 

°C and (c) 80 °C.  

As reported in literature, it would be expected that with increasing pressure of CO2 the 

viscosity of the DES should decrease. However, in this case we observe an initial increase in 

the viscosity before the viscosity decrease at higher pressure. The reasoning proposed behind 

this was that initially when CO2 is added in the system, it starts to fill up the space between the 

molecules making the mass transfer more difficult. However, as the pressure is increased these 

spaces starts to expand resulting in a viscosity decrease.10,44 It is to note the second increase in 

viscosity observed at around 200 bar could probably due to experimental error. This behaviour 

was reproducible when different experiments where performed at different temperatures. 

2.4.3. Determination of viscosity using BODIPY-based molecular rotors 

MR1 was tested for the measurement of viscosity of the DES in the similar fashion as above. 

The viscosity measurement was first carried out at 80 °C and the results were compared with 

that of DCVJ and MR2 (see below). Figure 2.11 gives the value of viscosity measured by using 

MR1 as molecular rotors at 80 °C. As can be seen in this figure, the viscosity trend of MR1 

does not correlate with that of DCVJ and MR2. Additionally, the calibration curve obtained for 



Chapter 2 

 

75 

 

MR1 was also not linear; hence, the results obtained from MR1 cannot be quantified (Annex 

2, part 2). The possible reason for this error might be the experimental set-up.  

Additionally, from 19F and 11B NMR spectra of MR1, it was seen that this molecular rotor 

contains 12% of BF4- salt as impurity (probably NaBF4) (Figure 2.10). However, this impurity 

is not fluorescent then it is expected that is not affecting the fluorescence from MR1. 

  

 

Figure 2.10. 19F NMR (282 MHz, CDCl3) spectrum of MR1 showing BF4- salt impurity 

(top). 11B NMR (96 MHz, CDCl3) spectrum of MR1 showing BF4- salt impurity (bottom). 

BF4- 

BF4- 
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Figure 2.11. Determination of viscosity using MR1 as molecular rotor at 80 °C.  

In the next step, viscosity of the DES has been measured using MR2 (Figure 2.12). The 

behavior is similar to that obtained with DCVJ; it meansan initial increase in the viscosity 

before going on to viscosity decrease at higher pressure. These observations verify that 

BODIPY-based molecular rotors can be used as a tool to measure viscosity. 

(a)  (b)  

(c)  

Figure 2.12. Determination of viscosity using MR2 as molecular rotor at (a) 40 °C, (b) 60 

°C and (c) 80 °C.  

In the above results, it has been demonstrated that the viscosity of the DES can be decreased 

with increasing the pressure of CO2. These results help us to understand the viscosity behavior 

of the DES and hence can be exploited for further applications. 
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2.5. Conclusions 

From the above results and discussion, it can be concluded that molecular rotors may 

represent an innovative method to determine the in-situ viscosity for a determined system. In 

addition, it minimizes the use of expensive instruments. DCVJ and BODIPY-based molecular 

rotors can be used as probe for the viscosity measurements. On another hand, accurate 

determinations of the emission spectra are needed, and some experimental error may be 

originated from manipulating the set-up during changes in pressure and sample, which can lead 

to important errors in acquisition of the spectra because the spectrometer and the light source 

may not be well collimated. Use of lifetime decay of the rotor instead of its fluorescence 

intensity would be more accurate, as it is independent of the concentration of the rotor and 

viscosity-dependant property; a more sophisticated set-up is needed for these determinations.   

It has been proven that the viscosity of the DES prepared from glycerol (as hydrogen bond 

donor) and choline tosylalaninate (as hydrogen bond acceptor) could be tuned using 

supercritical CO2. It was observed that the viscosity of the DES first increases with the pressure 

and then decreases at higher pressures. In this context, we report how the viscosity of highly 

viscous DES can be decreased with increasing pressure of carbon dioxide, which can help in 

better mass transport properties of these solvents and envisage many applications.  
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3.1. Palladium Nanoparticles 

3.1.1. Introduction 

Palladium nanoparticles (PdNPs), due to their high efficiency, selectivity and their ability 

to perform various kinds of catalytic reactions, have emerged as an important tool in organic 

synthesis. PdNPs are one of the most used and efficient catalysts to build C–C bonds and to 

perform other chemical transformations such as carbon-heteroatom bond formation, 

hydrogenation, carbonylation and oxidation processes.1–4 Well-defined PdNPs are appropriate 

catalysts for hydrogen activation and hydrogen spillover.5,6 PdNPs can be synthesized via 

chemical and electrochemical routes.7 

PdNPs dispersed in neat glycerol and stabilized by TPPTS have been efficiently applied in 

a large panel of reactions, leading to the synthesis of heterocyclic compounds: (na)phthalimides, 

isoindole-1-ones, tetrahydroisoquinolin-1,3-diones, (Z)-3-(arylmethylene)isoindolin-1-one and 

(Z)-1-methylene -1,3-dihydroisobenzofurans.8The desired products were obtained by one-pot 

tandem and/or sequential methodologies without the isolation of the generated intermediates. 

Furthermore, isolation of compounds containing two heterocycles, even using in the same 

medium two different catalysts, Pd and Cu2O based nanoparticles was possible.8 Lately, 

palladium nanoparticles capped by cinchona-based ligands were also synthesized in neat 

glycerol and successfully applied in dihydrogen-based processes, such as hydrogenation of 

unsaturated functional groups (alkenes, alkynes, imines, and nitro-based substrates) and 

hydrodehalogenation of halo-aromatic compounds by Reina et al.9 

Dupont et al. have reported numerous work on catalysis by PdNPs for hydrogenation and 

selective hydrogenation.10–14 In a recent publication, they worked structural, electronic and 

support effect on PdNPs prepared by sputtering deposition and chemical reduction of a Pd(II) 

precursor in/on a poly(ionic liquid) for selective hydrogenation of α,β-unsaturated carbonyl 

compounds and dienes.10 Hu et. al also reorted the IL stabilized PdNPs for the selective 

hydrogenation C=C double bonds of various functionalized alkenes.15 

 

 

3.1.2. Synthesis of palladium nanoparticles 
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In this work, we prepared palladium nanoparticles (PdA, PdB) by thermal decomposition 

of [PdCl2(cod)] (cod = 1,5-cyclooctadiene) in the presence of a choline-based ionic liquid 

[choline chloride (A); choline N-tosylalaninate (B)], using glycerol as solvent (Scheme 3.1). 

The preparation of ionic liquid B is described in Chapter 2 (Experimental section 2.3.2). The 

synthesis of nanoparticles followed polyol methodology where the water present in the ionic 

liquids act as the reducing agent.16

In both cases, we obtained black colloidal solutions, constituted by spherical small 

nanoparticles (for PdA, 1.4 ± 0.6 nm; for PdB, 1.7 ± 0.6 nm), exhibiting a very well-dispersion 

mainly thanks to the supramolecular structure of glycerol which avoids agglomeration, as 

evidenced in previous works using ligands and polymers as stabilizers reported by our group 

(Figure 3.2).8,9,17–19It is important to highlight that these reaction conditions did not trigger any 

deprotection of choline N-tosylalaninate.20 

 

Scheme 3.1. Synthesis of palladium nanoparticles in glycerol using choline-based ionic 

liquids (A, B) as stabilizers. 

Control tests proved that the water present on the IL (for A, 0.25%; for B, 1.70%; 

determined by Karl-Fischer titration) is the responsible of the reduction of Pd(II) into Pd(0); 

[PdCl2(cod)] in dry glycerol under the same conditions used in the synthesis of PdNPs was 

stable and did not exhibit decomposition. This is in agreement with the work carried out by 

Hirai and coworkers, proving the unsuccessful synthesis of zero-valent rhodium nanoparticles 

in anhydrous alcohols.21 

 

They synthesized rhodium nanoparticles stabilized by polyvinyl alcohol. They found out 

that in the absence of polyvinyl alcohol, rhodium(III) chloride was not reduced to the zero 

valence state in anhydrous methanol but to a black precipitate of rhodium metal in methanol-
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water. They concluded that the presence of water indispensable for both dissolution of polyvinyl 

alcohol and reduction of rhodium(III) chloride to the zero valence state. 

  

 

Figure 3.2. TEM images of PdA and PdB in glycerol with the corresponding size 

distribution diagrams. 

When PdNPs were synthesized in the absence of any stabilizer and under hydrogen 

atmosphere using wet glycerol and different palladium precursors, Pd(0) agglomerates were 

formed (Figure 3.3).18 

 

0

50

100

150

200

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

N
o.

 o
f 

pa
rt

ic
le

s

Diameter (in nm)

PdA 

dmean = 1.4± 0.6 nm 

No. of particles = 3031 

PdB 

dmean = 1.7 ± 0.6 nm 

No. of particles = 2043 



Chapter 3 

 

88 

 

 

 

Figure 3.3. Synthesis of palladium nanoparticles in neat glycerol in the absence of any other 

stabilizer and the corresponding TEM images.18 

We also tried palladium acetate as starting metal precursor with the two choline derivatives 

(A and B), obtaining in both cases aggregates; for choline chloride, anisotropic nano-objects 

were observed probably due to the presence of halides at the metal surface (see Figure 

3.4(a,b)).22 We then added polyvinylpyrrolidone (mean molecular weight = 10000 g.mol-1), in 

order to improve the dispersion, but in this case very few nanoparticles could be detected by 

TEM (see Figure 3.4(c,d)). Curiously, when dihydrogen was used as reducing agent, an 

immediate precipitation of bulk palladium took place. Venkatesan et al. observed a similar 

behave when trying to synthesize Pd(0) nanoparticles stabilized by ILs.13 In their case, very 

much like ours, the reactions employed show that the simple thermal treatment of palladium 

acetate provides the best results towards the formation of well-dispersed and immobilized 

nanoparticles. Instead, other reducing agents provoke those nanoparticles formation that was 

followed by metal precipitation. In most cases it can be assumed that the reduction with 

Pd(OAc)2 [PdCl(cod)2] 

[Pd2(dba)3] [Pd(ma)(nbd)] 
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hydrogen as the reductant is too fast, therefore the local concentration of Pd(0) is too high which 

provokes fast agglomeration and metal precipitation.12,13 

 

 

 

Figure 3.4. TEM analyses recorded in glycerol of palladium nanoparticles, starting from 
Pd(OAc)2, using (a) choline chloride; (b) choline tosylalaninate; and (c) polyvinylpyrrolidone 
(ChCl:PVP molar ratio = 1:2) as stabilizers and synthesized by thermal heating under argon; 
(d) synthesized under 3 bar dihydrogen pressure with polyvinylpyrrolidone (ChCl:PVP molar 
ratio = 1:2). 

We envisaged the use of choline alaninate23 as, instead of the protected anion N-

tosylalaninate; however, choline alaninate, however, choline alaninate became unstable under 

atmospheric conditions, due to its high reactivity with carbon dioxide, giving the corresponding 

(a) (b) 

(c) (d) 
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carbamate (See Chapter 2 Section 2.4.1 Scheme 2.3).23 Moreover, we also studied the effect of 

the solvent on the synthesis of colloidal PdNPs, using water and ethanol instead of glycerol 

under the same conditions than those described in Scheme 1. In both cases, fast precipitation of 

black palladium was observed, proving that glycerol avoids the agglomeration of metal-based 

nanoparticles probably due to its supramolecular structure.24–26 

3.1.3. Characterization of palladium nanoparticles 

Given the better catalytic behavior of PdB (see below Table 3.1), we selected this catalyst 

for its full characterization. Palladium nanoparticles at solid state were isolated by 

centrifugation (4500 rpm for 1 h). Powder X-ray diffraction (PXRD) analysis showed the 

presence of crystalline nanoparticles exhibiting face cubic center Pd(0) structure (Fig. 3.5). The 

crystallite size found from the X-ray diffraction peaks (calculated by the Scherrer equation) is 

ca. 3.7 nm.27 Differences in size between TEM and XRD are frequently observed because the 

average crystallite size (PXRD) is not necessarily the same as the particle size (TEM).28,29As 

mentioned by Jensen et al., nanopowders often consist of primary particles arranged in a larger 

macroscopic structure. The primary particle size is defined to be the smallest size of individual 

particles. The primary particles can be made up of several crystals or consist of a crystalline 

core with an amorphous shell. The size of the primary particles can be determined by for 

example SAXS and electron microscopy, TEM and SEM. The primary particle size is not 

necessarily equal to the crystallite size determined by XRD where only the crystalline part is 

detected. Furthermore, powders are normally not monodisperse but consist of a size 

distribution. The polydispersity of nanopowders is not taken into account in Scherrer’s 

formula.30 

 

Figure 3.5. PXRD diffractogram of PdB at solid state (sharp blue lines correspond to the 

diffraction pattern of bulk fcc Pd(0)).30 
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XPS analysis corroborated the absence of any oxidized palladium species (Fig. 3.6 and Fig. 

3.7); XPS showed the presence of carbon, oxygen and nitrogen that confirms the presence of 

the ionic liquid at solid state; the presence of chloride probably comes from the metal precursor 

(Figure 3.7 (e)). The metal precursor used in the synthesis is [PdCl2(cod)], where the oxidation 

state of palladium is +2. On reduction of Pd(II) to Pd(0), chlorides are released  that can be 

detected by XPS analysis.31 

 

Figure 3.6. XPS survey spectrum of PdB at solid state. 

Figure 3.7 shows the HR-XPS of PdB at solid state. Figure 3.7(a) only showed the 

corresponding binding energies for palladium (Pd 3d3/2 and Pd 3d5/2) which concludes the 

presence of only Pd(0) and absence of amorphous phases of palladium oxides. This result 

compensates the drawback of powder-XRD, which can only confirm the presence of Pd(0) in 

crystalline form and not give us any information about the amorphous phase. Even though 

there are peaks of carbon and oxygen (Figure 3.7(a & b) respectively) in the HR-XPS survey, 

it is the spectrum of nitrogen (Figure 3.7(d)) that truly confirms the presence of IL on the 

surface of palladium even in solid state. 

(a)                                                                     (b) 
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(c)                                                                    (d) 

 
                                       
                                    (e) 

 

Figure 3.7. HR-XPS spectra of PdB at solid state for (a) Pd(0), (b) carbon, (c) oxygen and 

(d) nitrogen. 

In this context, it is important to highlight that PdB at solid state could be re-dispersed in 

glycerol without formation of aggregates (Figure 3.8).  

 

Figure 3.8. TEM analyses (left) and mean size distribution (right) of PdB after centrifugation 

(isolation of PdNPs at the solid state) and re-dispersion in glycerol. 
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3.2. Pd-catalyzed Hydrogenation Reactions 

3.2.1. Introduction 

Hydrogenation is a fundamental process in organic chemistry to add elemental hydrogen to 

unsaturated bonds.32 In fact, a process that has been used and explored for centuries. One of the 

best well-known example dates as early as 1823, Johann W. Döbereiner a German scientist who 

observed that when a stream of hydrogen mixed with air is passed over porous platinum; it is 

ignited. This was the observation that the great Swedish chemist, Jöns Jacob Berzelius, coined 

as “catalysis.33 Interestingly, it is Döbereiner’s lamp forms the basis of lighters (Figure γ.9).34 

 

Figure 3.9. Döbereiner hydrogen Lamp 34 

 

 In late 19th century, Paul Sabatier discovered hydrogenation of unsaturated hydrocarbons 

using Ni as catalyst.35The Sabatier process to hydrogenate carbon dioxide to form methane and 

water was the reason he was awarded Nobel Prize in Chemistry in 1912. Until date, 

hydrogenation reaction based on his work as well as the work of Döbereiner are been 

investigated. The Sabatier reaction, Haber-Bosch36 and Fischer-Tropsch37 processes have 

provided a significant platform of research for industrial applications. 

 



Chapter 3 

 

94 

 

 

Scheme 3.4. The Döbereiner and Sabatier reactions 

The mechanism of hydrogenation was proposed by Horiuti and Polyani in 1934 (Figure 

3.10). The mechanism is very aptly described by Mattson et al. in three steps: (i) alkene 

adsorption on the surface of the hydrogenated metal catalyst, (ii) hydrogen migration to the 

βcarbon of the alkene with formation of a σ-bond between the metal and α-C, and finally (iii) 

reductive elimination of the free alkane.38 In their paper, they describe the investigation of gas-

phase reactions between deuterium and 1-butene using a supported palladium catalyst under 

ambient laboratory conditions and how the results are consistent with the Horiuti−Polanyi 

mechanism.38 

 

Figure 3.10. Profile of Horiuti−Polanyi mechanism. Step β, (a) → (b) →(c), is reversible. 

Pd atoms are blue, carbon atoms are black, hydrogen atoms are green, and deuterium atoms 

are red. Reprinted (adapted) with permission from (38). Copyright 2013 American Chemical 

Society. 

On the other hand, Yang et. al. has investigated the prevalence of the non-Horiuti-Polanyi 

mechanism over the Horiuti-Polanyi mechanism on a series of metals for hydrogenation of 

acrolein.39 Ohno et. al. has described the mechanism of olefin hydrogenation catalysis driven 

by palladium dissolved hydrogen. They had characterized the hydrogen and butene co-

adsorption system on Pd(110) through temperature programmed desorption (TPD), high 
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resolution electron energy loss spectroscopy (HREELS) and nuclear reaction analysis (NRA) 

measurements and discussed the individual roles of Pd-dissolved hydrogen, of surface 

chemisorbed hydrogen, and of the butene adsorbate in the catalytic hydrogenation reaction.40 

Palladium nanoparticles, as mentioned above, due to their high efficiency, selectivity and 

their ability to perform various kinds of catalytic reactions have been widely investigated. 

Reduction of unsaturated hydrocarbons and various functional groups like nitro-compounds 

and carbonyls can be achieved using palladium nanoparticles. The group Dupont has long since 

been working on palladium nanoparticels stabilized by different kind of ionic liquids 

catalytically active for hydrogenation.10,12–14 

Our team has synthesized PdNPs in both solution and solid state, using tris(3-

sulfophenyl)phosphinetrisodium salt (TPPTS);18 thioether-phosphine ligands;41 naturally 

occurring cinchona-based alkaloids,9 applied in dihydrogen-based processes, such as 

hydrogenation of unsaturated functional groups. In the next section, we describe the catalytic 

behavior exhibited by the palladium nanoparticles synthesized in glycerol using choline 

tosylalaniante as the stabilizer.  

3.2.2. Results and discussion 

We chose the hydrogenation of 4-phenylbut-3-en-2-one as benchmark reaction to study the 

catalytic activity of PdNPs. 4-phenylbut-3-en-2-one provides a scope to study the reactivity and 

selectivity of the PdNPs, since it contains an unsaturated C-C bond, a carbonyl group and an 

aromatic ring; all three of them are subject to reduction. Both catalysts, PdA and PdB, behave 

likewise, giving exclusively 4-phenylbutan-2-one (entries 1-2, Table 3.1), interesting skeleton 

present in fragrances.42 Both systems were also highly active at low Pd load (0.1 mol%, entries 

3-4, Table 3.1). However, at shorter times (1 h reaction), only PdB preserved the activity (entry 

5 vs 6, Table 3.1), probably due to the non-innocent effect of the chloride anions present in 

PdA, which can trigger a poison effect due to the adsorption of chloride ions at the surface.43 
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Table 3.1. Hydrogenation of 4-phenylbut-3-en-2-one catalyzed by PdNPs in glycerol stabilized 
by ChCl (A) and ChTsAla (B).a 

 
 

 

Entry Catalyst Conv. (yield)b (%) 

1 PdA >99 (96) 
2 PdB >99 (93) 
3c PdA 50 (49) 
4c PdB >99 (91) 
5c,d PdB 96 (92) 
6c,d PdA 55 (51) 

a Results from duplicated experiments. Reaction conditions: 1 mmol of 1 and 1 mL of the corresponding 
catalytic glycerol solution of PdNPs (10-2 mol L-1, 0.01 mmol of total Pd). b Determined by GC and 
GC/MS using decane as internal standard. c 0.1 mol% Pd load. d Reaction time 1 h. 

With the aim of carrying out a scope related to functions to be reduced by PdB, we firstly 

analyzed the behavior of PdB in the hydrogenation of alkenes and alkynes (Table 3.2). The 

terminal alkene 1-dodecene (2) was fully converted into dodecane and internal alkenes in a ratio 

of 54/46 respectively under smooth conditions (3 bar H2 and 2 h of reaction; entry 1, Table 3.2). 

Similar results were obtained when the reaction was carried out under higher pressure (20 bar; 

entry 1, Table 3.2). Under harsher conditions (20 bar H2, 18 h), (-)-β-pinene (3) was mainly 

isomerized, giving only 18% of hydrogenated product (entry 2, Table 3.2); PdB was not active 

enough to reduce (+)--pinene (entry 3, Table 3.2). However, for conjugated C=C bonds 

(alkene 5), full conversion was achieved under 3 bar H2 overnight (entry 4, Table 3.2). In 

agreement with this behavior, the extended conjugated substrate (trans-1,4-diphenylbuta-1,3-

diene) 6 was fully hydrogenated concerning the non-aromatic C=C bonds (entry 5, Table 3.2). 

The more sterically hindered conjugated substrate 1,2,3,4,5-pentamethylcyclopentadiene (7) 

allowed the selective reduction of one of the two endocyclic C=C bonds working at 20 bar of 

H2 pressure (entry 6, Table 3.2). 

Internal aromatic alkynes (8, 9) were fully reduced obtaining the corresponding alkane 

derivatives (entries 7-8, Table 3.2). At lower H2 pressure (entry 9, Table 3.2), only the formation 

of the corresponding Z-alkene was observed, giving up to ca. 50% yield; longer reaction times 

led to the formation of 1,2-diphenylethane. However, the internal alkyl-substituted alkyne, 5-
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decyne (10; entry 10, Table 3.2) gave mainly the corresponding internal alkene; at longer time 

(18 h), full hydrogenation was observed (entry 11, Table 3.2).  

Table 3.2. Hydrogenation of alkenes and alkynes catalyzed by PdB in glycerol.a 
 

 

Entr
y 

Substrate Product pH2 (bar) 
Conv. 

(yield)b (%) 

1  
2 

 
2H 

γ 
β0 

>99c 

>99d 

2 
 

3 

 
3H 

20 
(3) 

88e 

[65f ] 
 

 
3G 

3 

 
4 

- 20 n.r. 

4 

 
5 

 
5H 

3 >99 (99)g 

5 

 
6 

 
6H 

3 >99 (98)g 

6 
 

7 
 

7H 

3 
(20) 

86 (n.d) 
[>99 (n.d)] 
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7 
 

8 

 
8H 

1 >99 (97) 

8 

 
9 

 
9H 

3 >99 (99) 

9 

 
9 

 
9I 

1 50 (49) 

10  
10 

 
10H 

3 >99 (90/10)h,i 

11  
10 

 
10I 

3 >99 (96)h 

a Results from duplicated experiments. Reaction conditions: 1 mmol of substrate (2-10) and 1 mL of the 
catalytic glycerol solution of PdB (10-2 mol L-1, 0.01 mmol of total Pd); n.r. means no reaction; n.d. 
means not determined. b Determined by GC and GC/MS using decane as internal standard. c 

Dodecane/internal alkenes = 54/46. d Dodecane/internal alkenes = 55/45. e Ratio 3/3G/3H = 12/70/18. f 
Ratio 3/3G/3H = 35/43/22. g Isolated yield. h Cyclooctane as internal standard. i cis-5-decene/n-decane 
= 90/10. 

 
We were also interested in the hydrogenation of other organic functional groups, such as 

nitro and carbonyl derivatives (Table 3.3). As expected, nitrobenzene gave aniline in 

quantitative yield (entry 1, Table 3.3).44 PdB was also an efficient catalyst for the reduction of 

carbonyl groups, coming from both aldehydes (12-14) and ketones (15-17). Work has been 

reported in literature concerning the hydrogenation of carbonyl group by palladium 

nanoparticles. Recently, Nindakova et al. has reported the study of enantioselective 

hydrogenation of ketones on Pd nanoparticles applied in the form of colloidal suspension 

prepared in the Pd(acac)2-(-)-cinchonidine-Н2 system.45 Concerning the formyl groups, 

benzaldehyde derivatives exhibiting substituents inducing different electronic effects, were 

fully converted into the corresponding benzyl alcohols under smooth conditions (3 bar H2; 

entries 2-4, Table 3.3). Aromatic ketones 15 and 16, more challenging substrates, were 

hydrogenated to give the corresponding secondary alcohols, but under higher hydrogen 
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pressure (entries 5-6, Table 3.3). The non-conjugated ketone (which are thermodynamically 

less favored for hydrogenation) (1H) gave a moderate conversion to the corresponding 

secondary alcohol (1I) at 40 bar H2 pressure (entry 7, Table 3.3). This is attributed to the fact 

that the entire π-system of dienes is involved in adsorption through di-π-coordination, which is 

more favorable than the d-σ mode of adsorption of a single double bond.46 The 1-phenylprop-

2-yn-1-one (17) mainly gave the saturated ketone (17H) with only 15% of the corresponding 

secondary alcohol (17I) (entry 8, Table 3.3). This reactivity behavior concerning the reduction 

of carbonyl groups follows the same trend than that reported recently by J. Dupont and co-

workers using supported palladium nanoparticles on poly (ionic liquid) materials based on 

pyrrolidinium salts.10 

Alkyl ketones (such as 3-pentanone and 2,2,4,4–tetramethyl pent-3-one) and alkyl 

aldehydes (like hexanal) were not reduced (up to 20 bar H2). Similarly, benzonitrile and esters 

were not hydrogenated under harsh conditions. 

Table 3.3. Hydrogenation of nitro and carbonyl groups catalyzed by PdB in glycerol.a 
 

 

Entry R1 R2 Product Conv. (yield)b (%) 

1c, d NO2 (11) H 

 
11H 

>99 (99) 

2 CHO (12) H 

 
12H 

98 (95) 
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3 CHO (13) Br 

 
13H 

99 (97) 

4 CHO (14) C(CH3)3 

 
14H 

90 (89) 

5e COCH3(15) H 

 
15H 

>99 (98)f 

6e COCF3(16) H 

 
16H 

>99 (97) 

7g 
CH2CH2COCH3 

(1H) 
H 

 
1I 

40 (37) 

8e COC≡CH (17) H 

 
17H 

>99 (85/15)h 

 
17I 

a Results from duplicated experiments. Reaction conditions: 1 mmol of substrate (1H, 12-18) and 
1 mL of the catalytic glycerol solution of PdB (10-2 mol L-1, 0.01 mmol of total Pd). b Determined 
by GC and GC/MS using decane as internal standard. c H2 pressure 10 bar. d Reaction for 2 h. e H2 
pressure 20 bar. f Isolated yield. g H2 pressure 40 bar. h 17H/17I ratio. 
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After catalysis, the product extracted was analyzed by ICP-AES in order to detect leaching 

of palladium from the catalytic phase; fortunately, no leaching of Pd was detected. However, 

some aggregation was observed by TEM preserving the zero-valent PdNPs (Figures 3.11 and 

3.12); the formation of aggregates may be the reason for the observed decrease of the catalytic 

activity and hence it was difficult to use the PdNPs for an efficient recycling (Fig. 3.13). 

 

Figure 3.11. Powder-XRD of the PdB at solid state after catalysis. 

 

 

Figure 3.12. TEM analyses ((a), (b)) and mean size distribution (c) recorded in glycerol of 
PdB after catalysis. 
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Figure 3.13. Hydrogenation reaction of 1 catalyzed by PdB in glycerol and the diagram 
showing the recycling of the catalytic phase. 

3.3. Experimental Section 

3.3.1. Methods and materials 

Unless otherwise stated, all chemical reagents were obtained from commercial suppliers 

and used without further purification. All manipulations were performed using Schlenk 

techniques under argon atmosphere. Glycerol was dried under vacuum at 80 °C for 18 h prior 

to use. N-tosyl-alanine was prepared following previously reported methodology.47 High-

pressure reactions were carried out in a Top Industrie Autoclave. NMR spectra were recorded 

on a Bruker Advance 300 spectrometer at 293 K (300 MHz for 1H NMR, 75.5 MHz for 13C 

NMR and 50.6 MHz for 15N). GC analyses were carried out on a GC Perkin Elmer Clarus 500 

with ionization flame detector, using SGE BPX5 column composed by 5% 

phenylmethylsiloxane, coupled to a Perkin Elmer Clarus MS560 mass detector. TEM images 

of PdNPs dispersed in glycerol were obtained from a JEOL JEM 1400 instrument running at 

120 kV. PdNPs size distributions and average diameters were determined from TEM images 

applying Image-J software associated to a Microsoft Excel macro. Powder X-ray diffraction 

analyses were collected on a XPert (Theta-Theta mode) Panalytical diffractometer with α(Cu 

Kα1, Kαβ)=1.54060, 1.5444γ Å. Elemental and ICP-AES analyses were carried out at the 

“Service d’Analyse” of Laboratoire de Chimie de Coordination (Toulouse) using a Perkin 

Elmer 2400 series II analyser and an iCAP 6300 ICP Spectrometer. XPS measurements were 
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performed at room temperature with a SPECS PHOIBOS 150 hemispherical analyzer (SPECS 

GmbH, Berlin, Germany) in a base pressure of 5x10-10 mbar using monochromatic Al Kα 

radiation (1486.74 eV) as excitation source.  

3.3.2. Synthesis of palladium nanoparticles stabilized by choline-based 

derivatives in glycerol 

0.05 mmol (14.1 mg) of [PdCl2(cod)] and 0.85 mmol of choline-based derivative [117 mg 

for choline chloride (A); 294.5 mg for choline N-tosylalaninate (B)] were dissolved in 5 mL of 

glycerol and stirred under argon in a Schlenk flask at 80 °C for 18 h. Then, the resulting solution 

was washed with dichloromethane (3x5 mL) in order to remove any insoluble IL from glycerol 

phase. A black colloidal solution was then obtained. 

3.3.3. Synthesis of palladium nanoparticles stabilized by choline 

tosylalaninate at solid state, PdB 

After synthesis, PdNPs in glycerol were transferred to a centrifugation tube and 2 mL of 

ethanol were added. Centrifugation was carried out at 4500 rpm for 1 h and then the solution 

was separated by decantation. This process was repeated 3 times until complete removal of 

glycerol. The remaining black powder was then dried under vacuum at 80 °C overnight. 

Elementary analysis (palladium content determined by ICP-AES) for PdB: Pd 84.0%, C 7.55%, 

N 0.30%, H 0.40%. 

3.3.4. General procedure for Pd-catalyzed hydrogenation in glycerol 

In a Fisher–Porter bottle (working from 1 to 3 bar total pressure) or an autoclave (working 

from 3 to 20 bar total pressure), the appropriate substrate (1 mmol for 1 mol% of catalyst or 10 

mmol for 0.1 mol% of catalyst) was added to 1 mL of preformed nanoparticles (2.85 mg of Pd) 

in glycerol under argon. The reaction mixture was put under vacuum and then pressurized with 

H2 at the convenient pressure, heated up at 80 °C and stirred for the appropriate time; then 

cooled down to room temperature before extraction. Organic products were extracted from 

glycerol by a biphasic methodology, adding dichloromethane (5 × 3 mL); organic phases were 

collected and solvent removed under vacuum. Conversion and yields were determined by GC 

using decane as internal standard. The obtained products were characterized by GC-MS data 

and 1H and 13C NMR and compared to literature reports to confirm spectral identity.  
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3.3.5. Characterization of organic compounds 

4-phenylbutan-2-one (1H)48 1H NMR (300 MHz, CDCl3) δ 7.45 – 7.15 (m, 5H), 2.96 (d, J 

= 7.5 Hz, 2H), 2.83 (d, J = 7.7 Hz, 2H), 2.20 (s, 3H). 13C NMR (75 MHz, CDCl3) δ β07.8, 

141.0, 128.5, 128.3, 126.1, 45.1, 30.0, 29.7. 

Dodecane (2H)49 1H NMR (300 MHz, CDCl3) δ 1.γ1 (s, β0H), 1.07 – 0.76 (m, 6H).13C 

NMR (75 MHz, Chloroform-d) δ γβ.1, β9.9, 29.5, 22.8, 14.2. 

1-phenylcyclohexane (5H)50 1H NMR (300 MHz, CDCl3) δ 7.β0 (d, J = 13.5 Hz, 5H), 2.45 

(s, 1H), 1.59 (d, 10H). 13C NMR (75 MHz, CDCl3) δ 148.β, 1β8.4, 1β6.9, 1β5.9, 44.7, γ4.6, 

27.1, 26.3. 

1,4-diphenylbutane (6H)51 1H NMR (300 MHz, CDCl3) δ 7.56 – 6.95 (m, 10H), 2.63 (s, 

4H), 1.67 (s, 4H). 13C NMR (75 MHz, CDCl3) δ 14β.6, 1β8.5, 1β5.7, γ5.9, γ1.β. 

Propylbenzene (8H)48 1H NMR (300 MHz, CDCl3) δ 7.94 – 6.68 (m, 5H), 3.00 – 2.30 (t, 

2H), 1.76 (m, 2H), 1.06 (t, 3H).13C NMR (75 MHz, CDCl3) δ 14β.8, 1β8.γ, 1β5.7, γ8.β, β4.7, 

13.9. 

Bibenzyl (9H)49 1H NMR (300 MHz, CDCl3) δ 7.51 – 7.15 (m, 10H), 2.99 (s, 4H). 13C NMR 

(75 MHz, CDCl3) δ 141.9, 1β8.5, 1β6.0, γ8.0. 

cis-stilbene (9I)52 1H NMR (300 MHz, CDCl3) δ 7.64 – 7.06 (m, 10H), 6.62 (s, 2H). 13C 

NMR (75 MHz, CDCl3) δ 1γ7.γ, 1γ0.γ, 1β8.9, 1β8.γ, 1β7.β. 

n-decane (10I)53 1H NMR (300 MHz, CDCl3) δ 1.β7 (s, 16H), 0.86 (s, 6H).13C NMR (75 

MHz, CDCl3) δ γβ.1, β9.8, β9.5, ββ.8, 14.β. 

Aniline (11H)53 1H NMR (300 MHz, CDCl3) δ 7.5γ – 7.07 (m, 2H), 7.01 – 6.59 (m, 3H), 

3.68 (s, 2H). 13C NMR (75 MHz, CDCl3) δ 146.4, 1β9.β, 118.4, 115.1. 

Benzyl alcohol (12H) 51 1H NMR (300 MHz, CDCl3) δ 7.γ9 (m, 5H), 4.6γ (s, 1H), γ.58 (s, 

1H). 13C NMR (75 MHz, CDCl3) δ 140.8, 1β8.4, 1β7.4, 1β6.9, 64.7. 

4-bromobenzyl alcohol (13H)53 1H NMR (300 MHz, CDCl3) δ 7.65 – 6.97 (m, 4H), 4.69 

(s, 2H). 13C NMR (75 MHz, CDCl3) δ 1γ9.8, 1γ1.7, 1β8.7, 1β1.5, 64.7. 

4-(tert-butyl)-benzyl alcohol (14H)54 1H NMR (300 MHz, CDCl3) δ 7.6γ – 7.12 (m, 4H), 

4.67 (s, 2H), 2.68 (s, 1H), 1.39 (d, 9H). 13C NMR (75 MHz, CDCl3) δ 150.6, 1γ8.0, 1β6.9, 

125.5, 65.0, 34.6, 31.4. 
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Phenylethanol (15H)51 1 H NMR (300 MHz, CDCl3) δ 7.6γ – 7.09 (m, 5H), 4.90 (d, 1H), 

2.47 (s, 1H), 1.52 (d, 3H). 13C NMR (75 MHz, CDCl3) δ 145.9, 1β8.5, 1β7.5, 1β5.44, 70.4, 

25.2. 

2,2,2-trifluoro-1-phenylethan-1-ol (16H)55  1H NMR (300 MHz, CDCl3) δ 7.4β (d, J = 3.0 

Hz, 5H), 5.01 (d, J = 6.8 Hz, 1H), 3.27 (s, 1H). 13C NMR (75 MHz, CDCl3) δ 1β9.6, 1β8.7, 

127.5, 72.9 (d, J = 31.9 Hz). 19F NMR (282 MHz, CDCl3) δ -78.28 (d, J = 6.8 Hz). 

4-phenylbutan-2-ol (1I)56 1H NMR (300 MHz, CDCl3) δ 7.β7 (m, 5H), γ.86 (m, 1H), γ.07 

– 2.55 (m, 2H), 1.95 (s, 1H), 1.87 – 1.77 (m, 1H), 1.28 (d, 3H). 13C NMR (75 MHz, CDCl3) δ 

142.1, 128.4, 125.8, 67.5, 40.9, 32.2, 23.6. 

3.4. Conclusions 

To sum up, we efficiently prepared and fully characterized new palladium nanocatalysts, 

stabilized by environmentally friendly choline-based ionic liquids in glycerol. The counter 

anion of the choline derivative showed a non-innocent effect on the catalytic activity, probably 

due to the higher adsorption of chloride than tosyl-alalinate at the metallic surface,57 and 

consequently hindering the interaction of reagents with palladium. 

PdB was active for the hydrogenation of C-C multiple bonds and for C=O bond of aromatic 

aldehydes and aromatic ketones. It was found that it was more active for conjugated substrates 

as explained above in Section 3.2.2.58 For non-conjugated substrates, such as internal alkyl 

alkynes, PdB was highly selective to the formation of the corresponding alkene. The organic 

products extracted from the catalytic glycerol phase did not contain palladium according to 

ICP-AES analyses, proving the efficient immobilization of PdNPs in the glycerol phase. 
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4.1. Pd-catalyzed hydrogenation reactions under sub and 

supercritical carbon dioxide 

4.1.1. Introduction 

Catalytic hydrogenation is one of the most employed reactions in industrial applications.1,2 

Hydrogenations are majorly catalyzed by noble metals like Ru, Pd, Pt etc. involving different 

solvents, such as water, alcohols, ionic liquids.3,4 The common factors influenced by solvents 

are 1) hydrogen solubility, which directly affects overall rates, 2) catalytic dissociation of 

molecular hydrogen, 3) solubility of reactants and products, and 4) competitive adsorption of 

solvent molecules on the active sites of the catalyst.5 Hydrogenation reactions are often limited 

due to the low solubility of hydrogen in the solvents currently used. Application of CO2 in sub 

or supercritical states during hydrogenation can serve as a promotor for transporting hydrogen 

into the liquid phase and thus enhance the equilibrium concentrations of both reactants and 

products in the gaseous phase.6,7 For example, Brunner et al. investigated and calculated the 

phase equilibria of hydrogen, carbon dioxide, squalene, and squalane for the hydrogenation of 

squalene to squalane, showing that the additional application of scCO2 enhances the equilibrium 

concentrations of squalene and squalene in the gaseous phase.6 Their results focused on 

planning of hydrogenation of squalene to squalane using supercritical carbon dioxide (scCO2) 

as a modifier for solubility in both phases. Supercritical reaction media have been investigated 

for completely solubilizing hydrogen and thereby eliminating gas–liquid transport resistances 

in heterogeneous-catalyzed hydrogenations. Härräd and Møller showed that by employing 

supercritical conditions, reaction rates for hydrogenation of fats and oils (triglycerides) can go 

as high as 1,000 times compared to conventional methods, i.e. a multiphase, gas–liquid system 

at low pressures in which the hydrogen is contacted with a nickel-based catalyst that is 

suspended in the vegetable oil.8 Supercritical carbon dioxide (scCO2), in this context, attracts a 

lot of attraction due its green properties and easy availability. ScCO2 is chemically relatively 

inert (for example, it is resistant to free radical chemistry) and is a low-toxic aprotic solvent.7,9,10 
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Figure 4.1. Schematic diagram of a laboratory-scale hydrogenation reactor under scCO2 

medium. (Open access)11 

Typically, during a hydrogenation process under scCO2, the starting material and molecular 

hydrogen are dissolved in scCO2 giving one phase system. Consequently, at the end of the 

reaction, the supercritical mixture is returned to the gas phase due to the depressurization of the 

system and the products and any unreacted starting material can easily be collected as they 

separate from the gas phase (Figure 4.1).11,12 Bogel-Łukasik et al. reported that Rh and Ru 

catalyzed hydrogenation in a CO2-expanded liquid terpene is influenced by the phase equilibria 

which determines the fine changes in the liquid and the vapor phases  composition, and the 

volume expansion of the liquid phase attributable to the presence of CO2 (Figure 4.2).13 
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Figure 4.2. Predicted vapor–liquid equilibrium phase diagrams for CO2 + β-myrcene + H2 

(light grey phase envelop) system at 1β.5 MPa total pressure and γβγ.15 K. Filled circles (●) 

represent the overall initial composition of the reaction mixture. Dashed tie lines give the 

compositions of the liquid and the gas phase (○). Dotted tie lines and grey circles represent the 

compositions of the liquid and the gas phase for CO2 + limonene + H2 (dark grey phase envelop) 

system. (Reprinted from reference (13), Copyright 2010, with permission from Elsevier) 

Supercritical CO2 can also help to achieve better selectivity.11,14,15 Pillai et al. and Wang et 

al. showed that for the hydrogenation of maleic anhydride over palladium catalyst in scCO2 

higher selectivity of towards ƴ-butyrolactone (GBL) can be obtained as compared to 

conventional organic solvent system (Scheme 4.1).11,14,15 

 

Scheme 4.1. Hydrogenation of maleic anhydride.15 
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Figure 4.3. Effect of CO2 pressure on CAL-B-catalyzed transesterification of rac-1-

phenylethanol in CO2-expanded MeTHF. Reaction conditions: 0.20 mmol 1-phenylethanol, 

0.53 mmol vinyl acetate, 5.0 mg Novozym 435, 1.0 mL MeTHF, 0-6 MPa of CO2, 20 °C, 1 h. 

Reprinted from reference (15), Copyright 2017, with permission from Elsevier. 

In the last two decades, scCO2 has not only been used for catalytic reactions but also in the 

preparation of nanoparticles and nanocomposites.16,17 Türk and Erkey used scCO2 deposition 

method to the synthesis of supported Pt nanoparticles.18–20 Recently, Morère et al. not only used 

scCO2 for partial hydrogenation of limonene but also in the preparation of reduced graphene 

oxide supported Pt, Ru and Ni nanoparticles (Figure 4.4 and 4.5).21 They found out that 

nanoparticles synthesized in the presence of CO2 and other supercritical fluids required lower 

temperature and pressure giving smaller particle size. The catalytic activity of these 

nanoparticles were much higher than that reported for a Ru/C commercial catalyst.21 
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Figure 4.4 (a) Metal deposition on rGO by: (a) impregnation in scCO2 and further reduction 

in H2/N2 and (b) reduction in H2/CO2. Reprinted from reference (21), Copyright 2016, with 

permission from Elsevier. 

 

 

Figure 4.5 TEM images of Ni/rGO obtained in scCO2 using: impregnation (left) and (b) H2 

reduction in scCO2 (right). Reprinted from reference (21), Copyright 2016), with permission 

from Elsevier. 

In this context, this chapter will serve to discuss about the effect of CO2 on catalytic 

hydrogenation of nitrobenzene and 4-phenylbutan-2-one using tosylalaninate stabilized 

palladium nanoparticles in glycerol. The aim of this study was to increase the catalytic 

efficiency of the PdNPs used in this thesis. In other words, we want to achieve high conversion 

rates using lower amount of H2. 

4.1.2. Results and discussion  

As discussed above, carbon dioxide (CO2) has been known to increase the efficiency of 

hydrogenation by increasing the solubility of hydrogen into the system.9,22,23 The work in 

Chapter 3 (Section 3.2) described the system used for hydrogenation of various compounds 



Chapter 4 

120 

 

exhibiting different functional groups using palladium nanoparticles (PdNPs) as catalyst.24 In 

the discussion below, we aim to use carbon dioxide to increase the efficiency of the PdNPs used 

in Chapter 3. 

To study the effect of sub and supercritical CO2 on hydrogenation the catalytic reduction of 

nitrobenzene to aniline was studied. This work was done under the supervision of Dr. A. M. 

Masdeu-Bultó at University Rovira i Virgili (Tarragona, Spain). Table 4.1 summarizes the 

results for the reduction of nitrobenzene with different pressure of carbon dioxide at 80 °C. 

Entry 1 shows the conversion of the substrate under 5 bar of H2 in the absence of CO2, obtaining 

a high conversion. Then, the effect of CO2 was studied.  As high amounts of CO2 was 

introduced, formation of aniline decreased dramatically (entries 2 and 3, Table 4.1). The 

plausible explanation behind this decrease can be that as the amount of CO2 increases, the 

partial pressure of H2 (pH2 = 5 bar, pCO2 = 235 bar – 275 bar) in the system decreases which 

leads to low availability of H2 for the reduction or in the other words, H2 in the system is diluted 

due to high amounts of CO2. Similar observations were reported by Olbrich et. al., where they 

saw an indirect decrease of the hydrogenation of pyrolysis oil over nickel-based catalysts due 

to the lower partial pressure of hydrogen.25 Following these observations, the pressure of the 

system was decreased and the reaction was done in non-supercritical conditions (pH2 = 5 bar, 

pCO2 = 70 bar) (entry 4, Table 4.2). These conditions led to full conversion of nitrobenzene. 

However, with this result it is not possible to conclude whether carbon dioxide is helping in 

increasing the efficiency of hydrogenation because the conversion in presence and absence of 

CO2 is the same.  

Table 4.1. Hydrogenation of 4-phenylbutanone in glycerol catalyzed by PdNPs stabilized by 
choline tosylalaninate.a 

 

 

Entry 
p(H2) 
(bar) 

p(CO2) 
(bar) 

Conversion (yield)b 

(%) 
1 
2 
3 

4 

5 0 
235 
275 
70 

97 (93) 
5 45 (43) 
5 11 (n.d) 
5 >99 (95)  

a Results from duplicated experiments. Reaction conditions: 1 mmol of 1 and 1 mL of the 
corresponding catalytic glycerol solution of PdNPs (10-2 mol L-1, 0.01 mmol of total Pd). b 

Determined by GC and GC/MS using decane as internal standard. n.d = not determined. 
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From these results, it is clear that nitrobenzene is not an appropriate substrate for this study 

due to its easy reduction. Therefore, a more challenging substrate was chosen. 4-

Phenylbutanone was then used as model substrate in order to study the reduction of a ketone 

group into a secondary alcohol, leading to the formation of 4-phenylbutan-2-ol (Table 4.2). In 

order to better observe the effect of the partial pressures of CO2 and hydrogen, as well as the 

effect of total pressure on the conversion, reactions 1 to 7 were conducted at the same total 

pressure of 40 bar, the effect of an increase in total pressure is shown in entry 8 of table 4.2. 

Table 4.2. Hydrogenation of 4-phenylbutanone in glycerol catalyzed by PdNPs stabilized by 
choline tosylalaninate.a 

 
 

 

Entry 
p(H2) 
(bar) 

p(CO2) 
(bar) 

Conv. (yield)b (%) 

1 20 0 23 (21) 
2 30 0 26 (23) 
3 40 0 40 (37)  
4 10 30 37 (35) 
5 30 10 26(22) 
6c 10 30 40 (35) 
7d 10 30 11.5 (n.d) 
8e 10 30 44.3(41) 
9 40 40 45(40) 

a Results from duplicated experiments. Reaction conditions: 1 mmol of 1 and 1 mL of the 
corresponding catalytic glycerol solution of PdNPs (10-2 mol L-1, 0.01 mmol of total Pd). b 

Determined by GC and GC/MS using decane as internal standard. c Reaction time 40 h. d 

Reaction time 7 h. e2 mmol of substrate and 2 mL of the catalytic glycerol solution of PdNPs. 
 

In the absence of CO2 (entries 1 2 and 3, Table 4.2), we could reach 40% conversion under 

harsh conditions (40 bar H2) and only 23% conversion under 20 bar H2. We could clearly state 

the benefic effect of CO2 when the reaction was carried out under the same total pressure (40 

bar) but using four times less amount of hydrogen (entry 3 vs 4, Table 4.2). The conversion 

remains low under 30 bar H2 and 10 bar CO2 (entry 5). The reason for this is that when 10 bar 

CO2 was probably not enough to increase the conversion that is initially obtained with 30 bar 

H2 in the absence of CO2 (entry 2).  However, we were unable to increase the conversion beyond 

40% (entries 6, 8-9) even when the reaction was run at longer time (40 h, entry 6) or with higher 
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catalytic load (2 mol%, entry 8) or higher pressure of H2 and CO2 (entry 9). We also did the 

reaction under the same conditions but at shorter time to confirm the saturation of the reaction, 

in other words, we wanted to see at what point the reaction reaches its maximum conversion. 

In entry 7, (Table 4.2) we could see that for a shorter time (7 h), the conversion was only 11%. 

The reason behind this behavior might be the catalyst deactivation after a certain time. One of 

the reasons can be associated to the formation of CO as a by-product of the reverse water-gas 

shift reaction even at low temperature (Scheme 4.2).12,26 

 

Scheme 4.2. Reaction showing formation of carbon monoxide as a product of the 

reverse water-gas shift reaction.12,26 

Another plausible explanation proposed for deactivation of palladium in the presence of 

CO2 and hydrogen at high pressures is the formation of metal formate species, In other words, 

insertion of CO2 between the metal and the dissociative adsorbed hydrogen can lead to the 

formation of metal formates, e.g. Pd-C(O)OH.12,27 Jessop had suggested that these formates are 

stable at high pressure but revert to CO2 and H2 when depressurized.27 

We were also interested in knowing the state of nanoparticles after catalysis (Figure 4.6). It 

is evident from Figure 4.6 (a & b) that CO2 led to the agglomeration of PdNPs after catalysis. 

However, it was found that when more amount of H2 was used, the PdNPs retained their 

dispersion (Figure 4.7(a)). It can be clearly seen that the presence of H2 avoided the 

agglomeration and led to dispersed PdNPs. It was also observed that when PdNPs were exposed 

to H2 for a longer time (even though the amount of H2 was less) there was some inhomogeneous 

dispersion in the system after catalysis ((Figure 4.7(b)).  

 

 

 

 

(a)                                                                        (b) 
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Figure 4.6. TEM micrographs of PdNPs after catalysis (a) 10 bar H2 + 30 bar CO2 at 80 °C 
for 18 h (b) 10 bar H2 + 30 bar CO2 at 80 °C for 7 h 
   
    (a) 

 

   (b)  

  

 

Figure 4.7. TEM micrographs and the respective size distribution of PdNPs after catalysis (a) 
30 bar H2 + 10 bar CO2 at 80 °C for 18 h (b)10 bar H2 + 30 bar CO2 at 80 °C for 40 h 

To sum up the first part of this chapter, it can be said that carbon dioxide helped increasing 

the efficiency of the hydrogenation reactions. It should also be noted that it is not only the partial 

pressures of the individual gases but also the total pressure of the system that determines the 

conversion.  
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4.2. Extraction of organic products using supercritical 

carbon dioxide 

4.2.1. Introduction 

Supercritical fluid extraction (SCFE) is the extraction done with a fluid at temperatures and 

pressures near the critical point.28 SCFs have “gas-like” viscosity and “liquid-like” density. 

Table 4.3 compares the density, viscosity and diffusivity of gas, SCF and liquid.29 The low 

viscosity of SCF leads to fast diffusivity and therefore overcomes the problems of mass transfer. 

Additionally, the compressibility of an SCF is much larger than that of liquid that allows large 

changes in volume and density over a small change in the pressure.28,29 These properties make 

SCFs an excellent candidate for separation and extraction processes it is possible to vary the 

solubility by tuning the operational conditions.30–33 Even though SCFE is more expensive than 

the classic extraction techniques, it is widely adopted especially at industrial scale.34–36 

Table 4.3. Comparison of the densities, viscosities and diffusivity of gases, SCFs and 

liquids.29 

Substance Density (gmL-1) Viscosity (cP) Diffusivity (mm2s-1) 

Gas 10-3 0.01 200 

SCF 0.2-1.0 0.002-0.1 0.01-0.1 

Liquid 1.0 0.3-2.0 0.001 

 

Supercritical carbon dioxide is one of the most promising solvent used for extraction.37–40 

It is nontoxic, nonflammable, and hugely available. Supercritical CO2 has low dielectric 

constant (similar to hexane) that allows scCO2 to dissolve mainly nonpolar low-molecular 

weight compounds.41 Additionally, when the extract is recovered in the separators, CO2 is easily 

separated because of its high volatility (Figure 4.1).11,28 Use of scCO2 for extraction after a 

catalytic reaction can effectively avoid the use of volatile organic solvents. Moreover, an 

additional product from the co-solvent can lead to the problems of cross contamination.42 

Blanchard et al. investigated the feasibility of using scCO2 for the separation of organic solutes 

from ionic liquids.43 They doped 1-n-butyl-3-methylimidazolium hexafluorophosphate 

([bmim][PF6]) with 20 different organic solutes. They showed above 95% recovery of 
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numerous types of organic compounds, polar and nonpolar, aromatic and aliphatic, volatile and 

nonvolatile, with variety of chemical substituents from [bmim][PF6] with scCO2 (Figure 4.8). 

 

Figure 4.8. Extraction of aromatic (left) and aliphatic (right) solutes from [bmim][PF6] with 

scCO2 at 40 °C and 138 bar. Solute dipole moments (Debye) shown in figure. Reprinted 

(adapted) with permission from reference (43). Copyright 2001 American Chemical Society. 

Distribution coefficient, K, is an important thermodynamic property to study the extraction 

of solutes.43 K the ratio of the solute mole fractions in the supercritical and IL phases, 

respectively. The distribution coefficient is determined by the non-ideality of the solute in the 

supercritical fluid and liquid phases. Since, [bmim][PF6] does not dissolve appreciably in the 

CO2, the supercritical phase is essentially organic solute and CO2.43 Serbanovic et al. did the 

extraction of products for their osmium-catalyzed asymmetric dihydroxylation of methyl trans-

cinnamate in different ionic liquids (1-n-butyl-3-methylimidazolium  hexafluorophosphate  

([C4mim]PF6), 1-n-butyl-3-methylimidazolium tetrafluoroborate([C4mim]BF4), 1-n-butyl-3-

methylimidazolium bis(trif-luoromethylsulfonyl)imide ([C4mim][NTf2]), 1-n-octyl-3-

methylimidazolium  hexafluorophosphate  ([C8mim]PF6) and 1-n-butyl-2,3-

methylimidazolium tetrafluoro-borate ([bdmim]BF4)) (Scheme 4.3). They found out that it is 

more advantageous to perform the product extraction by scCO2 than by common organic 

solvents, because the extraction is more efficient and no contamination of osmium in the 

product was detected.40 Delample et al. also used scCO2 for the selective extraction of 

diarylated alkene from the glycerol-palladium phase in their Mizoroki-Heck coupling reaction 

(Scheme 4.4).44 
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Scheme 4.3. Osmium-catalyzed asymmetric dihydroxylation of methyl trans-cinnamate in 

different ionic liquids.40 

 

Scheme 4.4. β,β-Diarylation of acrylate derivatives in glycerol.44 

In the frame of the present work, we carried out and optimized the extraction of 

phenylbutanone using supercritical carbon dioxide. 

4.2.2. The Extractor  

A SEPAREX SF200 pilot (Separex Company, Nancy, France) was used to carry out the 

extraction. Figure 4.9 (a and b) shows the real and the schematic diagram for the extractor, 

respectively. This apparatus consisted of a 200 mL contacting vessel that can be used as a 

reactor and/or liquid-fluid extractor. The introduction of CO2 was done through a filter mesh 

screen from a commercial HPLC pump. This device allowed good dispersion of CO2 in the 

glycerol based mixture. Additionally, a magnetic stirrer was added to improve the dispersion.  

A  cascade  of  three  20-ml cyclonic  separators  is  present  at  the  contactor  outlet. The 

pressure in each vessel can be adjusted by depressurization valves. A volumetric pump (Milton 

Roy, flow rate maximum 5 kg/h) was used to pump subcooled CO2 in the system. The extractor 

was then heated to the desired temperature with the continuous flow of CO2. Experiments can 

be carried  out  in  open-loop  or  closed-loop  configuration,  in which  case,  after  condensation,  

CO2 was  recycled  at  the head  of  the  pump.  Temperatures  and  pressures  were controlled  

in  each  unit  of  the  pilot,  The limitation of the pressure  is  300  bar  and  temperature is  

around  80 °C  5. 
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Figure 4.9 (a) SEPAREX SF200 pilot. (b) Schematic diagram of Pilot SF200: E, extractor; 

S1, S2, S3: separators; GF1, cooling group; GC2, GC3: heating groups; PI, pressure indicator; 

TR, temperature regulator; D1, D2, D3: depressurization valves. 

The extractor E and the three separators S1, S2 and S3 are connected in series. Temperatures 

are kept constant by a temperature control system that includes the GC2 and GC3 hot groups 

and "double envelopes" heat exchangers around E, S1, S2 and S3.  In some extraction schemes, 

the separator Sl can also be cooled using the cold group GF1.  The system is fed with liquid 

CO2 contained in a pressure bottle CO2 (pressure equal to the vapor pressure at room 

temperature).  The CO2 was maintained in the liquid state before and in the pump P using the 

P 

 E 

AE A1 A2 A3 

RECYCLE 
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GF1 cold unit and was then raised beyond its critical temperature by means of a tubular heat 

exchanger before being introduced into the extractor E. The pressure in the extractor was kept 

constant using the pressure regulator (pressure relief valve) D1.  The pressures in the separators 

S1 and S2 were maintained using the control valves D2 and D3.  At the outlet of the extractor 

and each separator, a drain valve is placed (AE, Al, A2 and A3, respectively) for directing the 

solvent to the vent (in case of work in open circuit).  It is also possible to work in closed (with 

CO2 recycling) by closing the drain valves and opening the recycling valve R. In this case, the 

CO2 passes through the recycling line. The symbols TI and PI are respectively temperature and 

pressure indicators.  These indicators were connected to a recorder (Endress + Hauser) allowing 

the recording of these quantities over time.  TRs are regulators of the temperature of the hot 

groups and the cold group.  This installation also allows the use of co-solvents.  They were 

introduced by the P-CS pump from the co-solvent tank R-CS, mixed and dissolved in CO2 just 

before the extractor inlet. 

4.2.3. Results and Discussion 

As mentioned in Chapter 3, after catalysis the extraction of organic products was done by 

various volatile organic solvents like dichloromethane, cyclohexane, ethyl acetate, heptane etc. 

In order to replace the use of volatile organic solvents, the extraction of the products was done 

using scCO2. For this purpose, the extraction of compounds involved in our benchmark reaction 

mentioned in Chapter 3 were. This reaction involves hydrogenation of 4-phenyl-but-3-en-2-one 

(3) to 4-phenyl butanone (3H) (Scheme 4.5). As a preliminary test, a mixture of the 3 and 3H 

in glycerol was taken to carry out the extraction and determine the optimal conditions. It is 

important to study the extraction of both compounds, 3 and 3H, mainly for those reactions 

exhibiting partial conversion. For a 200 mL extractor, 60 mL of glycerol were used in order to 

let the diffuser completely immerse in the solvent. 2 mmol (0.3 g) of 3H was added to the 

glycerol and the conditions were set (entry 1, Table 4.4). The extraction was started with 125 

bar of pressure and 40 °C as this is the condition where a decrease in viscosity is seen for our 

system (see Chapter 2, section 2.1.1, figure 2.7(a)). However, under these conditions, nothing 

was extracted. As the solubility increases with increasing temperature, the temperature was 

increased up until 80 °C preserving the pressure, but in this case as well, no significant product 

was extracted (entry 2; Table 4.4). Next, the amount of CO2 was increased up to 200 bar. It was 

also thought that that amount of product in use might not be enough as compared to the volume 
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of the extractor, thus, the amount increased to 1 g (0.67 mmol). The volume of glycerol was 

also reduced to 40 mL in order to increase the solvent/product ratio. For these conditions, 

extraction was performed at two different temperatures 60 °C and 80 °C, extracting 17.6% and 

24.7% of 1 for the two temperatures respectively (entries 3 and 4; Table 4.4). 

 

Scheme 4.5. Hydrogenation reaction of 4-phenyl-but-3-en-2-one (3) to 4-phenyl butanone 

(3H) 

Therefore, these conditions were explored in order to improve the extraction. Firstly, the 

amount used was doubled (2 g; 1.35 mmol of 3) and the extraction was done again at 60 °C and 

80 °C. The results at these conditions were significantly improved. At 60 °C, 42.5 % of 3 was 

recovered (entry 5, Table 4.4) and at 80 °C, 75% recovery was achieved (entry 6, Table 4.4). 

Since, using 2 g of 3 at 80 °C gave the best result so far after the pressure of the both the 

extractor and the separators was increased. Unfortunately, in this case no recovery was made 

(entries 7 and 8; Table 4.4). Therefore, the conditions in entry 6 were considered as the best. So 

far, extraction was done using the 3 (except for entries 1 and 2). Consequently, the optimized 

conditions in entry 6 were tried with 3H and 70% of the product was extracted without any 

difficulty (entry 9, Table 4.4). The solubility of both 4-phenyl-but-3-en-2-one and 4-phenyl 

butanone is similar in scCO2 since they are structurally close. Therefore, they are extracted in 

almost same amount under the same parameter. This similarity in their structure also makes it 

difficult to separate both 3 and 3H during the extraction, as described below. 

After achieving the maximum extraction of both 3 and 3H separately, the extraction was 

done for the mixture 3 and 3H. 1 g each of 3 and 3H were mixed, making the total amount 2 g 

(same amount as used in entries 6 and 9.) Only 50% of the mixture was recovered with 65% 

selectivity towards the 3H (entry 10, Table 4.4). It is to be noted that both the substrate and the 

product were extracted at the same time as a mixture and it was not possible to separate the two. 

The amount of both the compounds were further increased (entry 11, Table 4.4). The extraction 

improved by a factor of 15%, however, the ratio of 3 and 3H was 1:1. The ratio of 3 and 3H 

was determined by GC/MS using decane as an internal standard. 
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Table 4.4. Conditions applied to the SEPAREX extractor for extraction of 4-phenyl but-3-

en-2-one (3) and 4-phenyl butanone (3H)a 

Entr
y 

Mass 
glycero

l 
(mL) 

Mas
s 3H 
(g) 

Mas
s 3 
(g) 

T 
(°C) 

Pressure 
in 

extractor 
E (bar) 

Pressure 
in 

separator 
S1 (bar) 

Pressure 
in 

separato
r S2 
(bar) 

Extracted 
mass  

(g)/(%) 

1b 60 0.3 - 40 125 30 8 - 

2b 60 0.3 - 60-80 125 30 8 - 

3 40 - 1 60 200 50-60 20 
0.176 

(17.6%) 

4 40 - 1 80 200 50-60 20 
0.247 

(24.7%) 

5 40 - 2 60 200 50 22 
0.850 

(42.5%) 

6 40 - 2 80 203 55 17 
1.5  

(75%) 

7 40 - 2 80 253 45 16 - 

8 40 - 2 80 253 100 40-60 - 

9 40 2 - 80 200 52 15 
1.4  

(70%) 

10 40 1 1 80 204 52 12 

Total= 

1.025 

(50%) 

3H = 

0.67 

(65%) 

3 = 0.36 

(35%) 

11 40 2 2 80 202 45-55 45-55 

Total = 

2.6 (65%) 

3H= 1.22 

(47%) 
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3 = 1.38 

(53%) 

a Flow rate of CO2 = 30 g/min. b Flow rate of CO2 = 15 g/min. For each extraction, samples 
were collected at an interval of 5-10 minutes. 

The conditions used in entry 11 were considered as the optimal conditions. The extraction 

with the system of our deep eutectic solvent, glycerol and choline tosylalaninate, was then 

performed under these conditions. 10 mL of DES with 10 mmol (1.5 g) each of 3 and 3H were 

used. This scale was chosen because it was ten times the original scale used in our studies (see 

Chapter 3, Table 3.1). The mixture was then diluted with 30 mL of glycerol to make the total 

of 40 mL solvent. 73% of 3H (1.095 g) and 90% of 3 (1.35 g) of the substrate were recovered. 

Additionally, the amount left in the mixture of DES and glycerol was extracted by 

dichloromethane using biphasic methodology (See Experimental Section 4.3.4) and quantified 

using GC/MS with decane as internal standard. It was found out that only 0.025% and 0.017% 

of 3 and 3H respectively were left behind. It implies that rest of the mass was lost in the 

extractor that could not be recovered. 

After this optimization, the extraction was applied to the catalytic system. A ten times 

scaled-up (starting material was 10 mmol, 1.5 g) reaction was done for the benchmark reaction 

(Scheme 4.5) and its products were extracted using scCO2. 89% of 3H was extracted using the 

condition of entry 11 from Table 4.3. Fortunately, no product 3H was lost in the extractor. The 

extracted product was also analyzed by ICP-AES in order to detect extraction of palladium from 

the catalytic phase. No leaching of Pd was detected. Additionally, the TEM images of the 

PdNPs showed remains immobilized in the glycerol phase (Figure 4.10).  

Figure 4.10. TEM of PdNPs after extraction. 
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Diffusion of constants of 3 and 3H in the glycerol/choline tosylalaninate and CO2 mixture 

at three different temperature with increasing pressures were calculated (Figure 4.11 and 4.12 

respectively). The diffusion constant were calculated using Stokes-Einstein equation (Equation 

4.1).45 

� = ���6���           Equation 4.1 

where, kB is the Boltzmann constant (= 1.38064852 × 10-23 m2kg s-2K-1), T is the 

temperature, ƞ is the viscosity, these values were taken from the data obtained from 

measurements with molecular rotors (MR1 and DCVJ ), in section 2.4.1 and 2.4.2 of Chapter 

2 of this thesis, and R is is chosen to be the radius of a sphere of volume equal to the van der 

Waals volume of the diffusing molecule. R is calculated using Bondi method described by Zhao 

et al. (Equation 4.2).46 

van der Waals volume ( VvdW ) = ∑ all atom contributions - 5.92NB - 14.7RA - 3.8RNR 

where, NB is the number of bonds, RA is the number of aromatic rings, and RNA is the 

number of non-aromatic rings). NB is the number of bonds present simply calculated by NB = 

N - 1 + RA + RNA (where N is the total number of atoms). 

(a) (b)  
Figure 4.11. Diffusion constant of 3 in glycerol/choline tosylalaninate and CO2 mixture at 

(a) 60 °C and (b) 80 °C. 
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(a) (b)  

Figure 4.12. Diffusion constant of 3H in glycerol/choline tosylalaninate and CO2 mixture 

at (a) 60 °C and (b) 80 °C. 

From data of diffusion constants in Figure 4. 10 and 4.11, large dispersion is obtained in the 

data calculated, which comes undoubtedly from the dispersion obtained in measurements of 

viscosity. As it has been discussed in chapter 2, improvement of viscosity measurements is 

needed by using fluorescence decay time and better experimental techniques.  

Additionally, diffusion constants of 3 and 3H in glycerol/choline tosylalaninate were calculated 

at increasing temperature while the pressure of CO2 was kept to zero (Figure 4.13). As expected, 

the diffusion constant increased with increasing temperature due to the viscosity decrease with 

increasing temperature. This explains why the extraction efficiency increased with an increase 

in temperature. 

 

Figure 4.13. Diffusion constant of 3 (left) and 3H (right) in glycerol/choline tosylalaninate 

with increasing temperature (P=0 bar). 
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4.3. Synthesis of palladium nanoparticles under scCO2 and 

their catalytic activity 

In section 4.2.3, where scCO2 extraction of organic products is discussed, it is shown how 

PdNPs remain immobilized even after extraction (Figure 4.10). This observation envisaged the 

synthesis PdNPs in the presence of scCO2. The idea was to check whether scCO2 promotes the 

formation of more catalytically active nanoparticles. 

4.3.1. Result and discussion 

The synthesis of PdNPs was done following the methodology described in Chapter 3 

(Section 3.1.2). The only modification during the synthesis was that it was done under 200 bar 

of CO2 instead of atmospheric pressure of argon (Scheme 4.6). A black colloidal solution of 

PdNPs were obtained. The synthesized nanoparticles were observed under TEM in the glycerol 

phase (Figure 4.14). The PdNPs synthesized were so small (1.3 ± 0.3 nm) that it was difficult 

to observe them under low resolution TEM. 

 

Scheme 4.6. Synthesis of choline tosylalaninate stabilized palladium nanoparticles in 

glycerol under scCO2 

 

Figure 4.14. TEM images of PdNPs in glycerol with the corresponding size distribution 

diagram. 
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The catalytic activity of these nanoparticles was studied by hydrogenation of 4-phenyl-but-

3-en-2-one (3) at 20 bar of H2 (Scheme 4.7). Table 4.5 gives the comparison of hydrogenation 

of 3 using PdNPs synthesized in the absence (entry 1) and the presence (entry 2) of scCO2. 

 

Scheme 4.7. Hydrogenation reaction of 4-phenyl but-3-en-2-one (3) to 4-phenyl butanone 

(3H) and 4-phenyl butan-2-ol (3I)  

It was found the nanoparticles synthesized in the presence of scCO2 were more active, 

favoring the hydrogenation of carbonyl group in addition to the exocyclic C=C bond. They 

showed a better selectivity (35%) towards reducing the carbonyl group present in 3 as compared 

to the PdNPs synthesized in absence of scCO2 (18%) for the same reaction. 

 

Table 4.5. Hydrogenation of 4-phenyl-but-3-en-2-one catalyzed by PdNPs stabilized by 
choline tosylalaninate in glycerol.a 

Entry PdNPs Product 
Conv. (selectivity)b 

(%) 

1 
Synthesized in the 
absence of scCO2 

 
3H 

 
 

 
3I 

>99 (82/18)h 
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2 
Synthesized in the 
presence of scCO2 

 
3H 

 
 

 
3I 

>99 (65/35)c 

a Results from duplicated experiments. Reaction conditions: 1 mmol of substrate 3 and 1 mL of 
the catalytic glycerol solution of PdB (10-2 mol L-1, 0.01 mmol of total Pd). b Determined by GC 
and GC/MS using decane as internal standard. c 3H/3I ratio. 

After catalysis, the product was extracted using biphasic extraction using dichloromethane 

and TEM was done for the catalytic phase (Figure 4.15). It was observed that the PdNPs 

synthesized under scCO2 remain intact and no aggregation was observed. Unlike the case of the 

PdNPs that were synthesized in the absence of scCO2, where the nanoparticles formed 

aggregates after extraction using biphasic conditions (Chapter 3, Section 3.2.2, Figure 3.12). 

  
Figure 4.15. TEM images of PdNPs in glycerol after catalysis with the corresponding size 

distribution diagram. 

Following the above results, it can be said that scCO2 favors the formation of smaller and 

more catalytically active PdNPs. Since scCO2 is known to trigger higher solubility of metal 

precursor in the glycerol/choline tosylalaninate system it leads forming smaller nanoparticles, 

which in return gives enhanced activity.47 The synthesized PdNPs can be explored for other 

kind of catalytic reactions. Additionally, since no aggregates are formed after catalysis, these 

nanoparticles are promising candidates from recycling point of view.  
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4.4. Experimental section  

4.4.1. Materials and methods 

Unless otherwise stated, all chemical reagents were obtained from commercial suppliers 

and used without further purification. All manipulations were performed using Schlenk 

techniques under argon atmosphere. Glycerol was dried under vacuum at 80 °C for 18 h prior 

to use. Choline tosylalaninate was prepared following reported methodology. High-pressure 

reactions were carried out in a Top Industrie Autoclave. GC analyses were carried out on a GC 

Perkin Elmer Clarus 500 with ionization flame detector, using SGE BPX5 column composed 

by 5% phenylmethylsiloxane, coupled to a Perkin Elmer Clarus MS560 mass detector. TEM 

images of PdNPs dispersed in glycerol were obtained from a JEOL JEM 1400 instrument 

running at 120 kV. PdNPs size distributions and average diameters were determined from TEM 

images applying Image-J software associated to a Microsoft Excel Elemental ICP-AES 

analyses were carried out at the “Service d’Analyse” of Laboratoire de Chimie de Coordination 

(Toulouse) using a Perkin Elmer 2400 series II analyser and an iCAP 6300 ICP Spectrometer. 

A SEPAREX SF200 pilot (Separex Company, Nancy, France) was used to carry out the 

extraction. 

4.4.2. General procedure for hydrogenation using choline 

tosylalaninate stabilized palladium nanoparticles under CO2 

In an autoclave of volume 100 mL (working from 5 to 350 bar total pressure), the 

appropriate substrate/nitrobenzene (1 mmol for 1 mol% of catalyst or 10 mmol for 0.1 mol% 

of catalyst) was added to 1 mL of preformed nanoparticles (1 mol%; 2.85 mg of Pd) in glycerol 

under argon. The reaction mixture was put under vacuum and then pressurized with H2 and/or 

CO2 at the convenient pressure, heated up at 80 °C and stirred for the appropriate time; then 

cooled down to room temperature before extraction. Organic products were extracted from 

glycerol by a biphasic methodology, adding dichloromethane (5 × 3 mL); organic phases were 

collected and solvent removed under vacuum. Conversion and yields were determined by GC 

using decane as internal standard. The obtained products were characterized by GC-MS data 

and 1H and 13C NMR and compared to literature reports to confirm their spectral identity. 
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4.4.3. Procedure for extraction of organic products left in glycerol 

phase  after using the extractor 

Organic products were extracted from glycerol by a biphasic methodology, adding 

dichloromethane (10 × 15 mL); organic phases were collected and solvent removed under 

vacuum. Conversion and yields were determined by GC using decane as internal standard. The 

obtained products were characterized by GC-MS data and 1H and 13C NMR and compared to 

literature reports to confirm spectral identity. 

4.4.4. Characterization of organic compounds 

Aniline (1H) 34 1H NMR (300 MHz, CDCl3) δ 7.5γ – 7.07 (m, 2H), 7.01 – 6.59 (m, 3H), 

3.68 (s, 2H). 13C NMR (75 MHz, CDCl3) δ 146.4, 1β9.β, 118.4, 115.1. 

4-phenylbutan-2-ol (2H) 48 1H NMR (300 MHz, CDCl3) δ 7.6γ – 7.09 (m, 5H), 4.90 (d, 

1H), 2.47 (s, 1H), 1.52 (d, 3H). 13C NMR (75 MHz, CDCl3) δ 145.9, 1β8.5, 1β7.5, 1β5.44, 70.4, 

25.2. 

4-phenylbutan-2-one (3H)48 1H NMR (300 MHz, CDCl3) δ 7.45 – 7.15 (m, 5H), 2.96 (d, J 

= 7.5 Hz, 2H), 2.83 (d, J = 7.7 Hz, 2H), 2.20 (s, 3H). 13C NMR (75 MHz, CDCl3) δ β07.8, 

141.0, 128.5, 128.3, 126.1, 45.1, 30.0, 29.7. 

4.5. Conclusions 

It can be concluded that carbon dioxide enables to increase the efficiency of hydrogenation 

in catalytic reactions. As mentioned above, the reason for increased conversion of the substrate 

to product is the increased solubility of hydrogen in the system in the presence of carbon 

dioxide. Increase in carbon dioxide content when the hydrogen pressure decreases brings the 

system closer to the critical pressure, where the liquid expands in volume. In these conditions, 

the higher solubility of hydrogen compensates for the lower partial pressure in the gas phase. 

The results obtained in the presence of carbon dioxide decreases the amount of hydrogen used 

by three times when the other parameters are kept the same.  

It is important to note that it is not just the partial pressure of hydrogen that increases 

conversion but total pressure, and even more, partial pressure of carbon dioxide is a determining 

factor. A higher partial pressure of carbon dioxide increases conversion, even if partial pressure 

of hydrogen is lower, clearly showing that carbon dioxide increases the availability of 

hydrogen. Here, we showed that in the presence of CO2, we could hydrogenate ketones in to 
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secondary alcohol using very less amount of H2; ketones, in general, are harder to hydrogenate 

using PdNPs.49,50 However, the partial pressure of both the gases have to be carefully optimized 

as a large increase in the partial pressure of carbon dioxide can also result in dilution of 

hydrogen and cause a negative effect. In this context, CO2 has emerged as an alternative medium 

for a variety of synthetic reactions. Application of CO2 during hydrogenation can serve as a 

promotor for transporting hydrogen into the liquid phase and thus enhance the equilibrium 

concentrations of both reactants and products in the gaseous phase.6,7 

Depending on supports and reaction conditions, the recycling is efficient, but often 

deactivation catalyst issues appear, mainly due to both agglomeration of metal nanoparticles 

with the consequent specific surface decrease and poisoning by carbon monoxide adsorption, 

which can be in situ formed during the hydrogenation process. Curiously, metal nanoparticles 

constituted by first-row transition metals (Fe, Ni, Cu, Co…) have scarcely applied in 

hydrogenation under scCO2 conditions. 

In relation to the extraction of organic compounds by scCO2, successful extraction of 

phenylbutanone was carried out from choline tosylalaninate stabilized palladium nanoparticles 

in glycerol, achieving Up to 90% of the product. Neither glycerol nor the ionic liquid was 

extracted during this process. Futhermore, palladium nanoparticles also remains immobilized 

in the glycerol phase and were not detected in the extracted organic phase.  

Additionally, scCO2 helps in synthesis of more active metal nanoparticles by increasing by 

the solubility of metallic precursor in the glycerol/IL phase increases. This leads to formation 

of smaller palladium nanoparticles. The smaller nanoparticles possess better catalytic activity.  

It is evident from the above experiments that supercritical carbon dioxide is a greener and 

effective alternative for the extraction of organic products after catalytic hydrogenation in IL. 

It eliminates the use of volatile organic solvents and avoids the risk of cross contamination. The 

removal of solvent (CO2) is quite easy at end of the extraction by depressurization. Moreover, 

the supercritical fluid extraction is relatively fast due to the low viscosity, high diffusivity, and 

tunable solvent power of the scCO2. However, one of the major disadvantage of using scCO2 

for extraction is its difficulty in extracting polar and ionic compounds.51 The polarity of scCO2 

can be changed by mixing it with another supercritical fluid or adding a co-solvent. For 

example, the coupling of scCO2 and subcritical water is a very recent and promising alternative 

that has proved to extract non-polar analytes successfully.41 
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Summary, Conclusions and Perspectives 

In this Thesis, we explored multiple aspects that included the synthesis and physico-

chemical studies of a bio-based deep eutectic solvent (DES) in particular tuning its viscosity by 

using carbon dioxide, synthesis and characterization of palladium nanoparticles both in 

colloidal and solid state phases. Pd-catalyzed hydrogenation reactions including sub and 

supercritical carbon dioxide conditions, and extraction of organic products from catalytic DES 

solutions using supercritical carbon dioxide. 

In the first part of the Thesis, we successfully synthesized choline derived amino acid based 

ionic liquid by a simple ion exchange reaction. However, protected amino acid (tosylalanine) 

was used since amino acids reacts with carbon dioxide leading to carbamate derivatives. The 

ionic liquid synthesized in this thesis was choline tosylalaninate (ChTs-ala). ChTs-ala along 

with glycerol in the ratio of 1:100 was used as deep eutectic solvent (DES). Since, DESs are 

highly viscous they hinder mass transfer and therefore, an attempt was made to lower the 

viscosity of this DES by using CO2 in sub or supercritical conditions as a strategy to control 

solvent properties, in particular viscosity, in a word, to develop what has been called “Solvent 

Engineering”.  To measure the viscosity of DES, in addition to the classical rheometer 

measurements which give bulk data information, an innovative in-situ method was applied 

using molecular rotors in order to determine the viscosity at a microscopic level. 9-(2,2-

Dicyanovinyl)julolidine (DCVJ) and BODIPY-based molecular rotors were used for these 

measurements. Thus, molecular rotors permit to measure the microscopic viscosity in a system, 

which is one of the key parameters that controls the diffusion rate of molecular species and 

hence affects the reaction rates of diffusion-controlled processes on the microscopic level. It 

was observed that when the DES was pressurized with CO2 the viscosity of the system increased 

initially. However, as the amount of CO2 increased in the system, the viscosity of the DES 

started to decrease significantly. Therefore, it can be concluded that CO2 can be used to control 

the viscosity of a choline tosylalaninate/glycerol system. 

In the second part of the Thesis, the above-mentioned DES system was used to synthesize 

palladium nanoparticles (PdNPs). PdNPs were prepared from [PdCl2(cod)] (cod = 1,5-

cyclooctadiene) in a ChTs-ala and glycerol mixture, acting as stabilizer (ChTs-ala) and solvent 

(glycerol). The water present in ChTs-ala acted as a reducing agent. Taking advantage of the 
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low vapor pressure of DES, TEM analysis of colloidal PdNPs was carried out, without needing 

to be centrifuged. Well-dispersed PdNPs of mean size 1.7 ± 0.6 nm were obtained. Furthermore, 

PdNPs were isolated at solid state by centrifugation and their Powder-XRD (PXRD) analysis 

showed the absence of any Pd(II) crystalline species and only the presence of zero-valent 

nanoparticles exhibiting a face cubic center structure. The crystallite size found from the X-ray 

diffraction peaks (calculated by the Scherrer equation) was ca. 3.7 nm; differences in size 

between TEM and PXRD are frequently observed because the average crystallite size (PXRD) 

is not necessarily the same as the particle size (TEM). XPS analysis corroborated the absence 

of any amorphous oxidized palladium species. Additionally, XPS showed the presence of 

carbon, oxygen, chloride and nitrogen that confirms the presence of the ionic liquid even after 

isolation of nanoparticles; the presence of chloride probably comes from the metal precursor. 

This also explains that PdNPs at solid state could be re-dispersed in glycerol without formation 

of aggregates due to the presence of stabilizers. 

The PdNPs system was highly active for catalytic hydrogenation reactions. It was observed 

that the catalyst was selectively active for conjugated C=C bonds and terminal C=C bonds under 

smooth conditions (1-3 bar H2, 80 °C, 2-18 h, 1 mol% Pd), extracting the organic products after 

catalysis by addition of an immiscible organic soluble in relation to the catalytic phase, such as 

dichlromethane, ethyl acetate etc.. However, it was not possible to reduce isolated internal C=C 

bonds. Alkynes were also reduced using this system. Other functional groups like nitro and 

carbonyl groups could also be efficiently reduced using low catalytic load (1 mol%). After 

catalysis, no leaching of metal was observed in the extracted organic products (ICP analyses); 

however, the catalytic phase showed the formation of aggregates which can be the responsible 

of the reduced catalytic activity after the first catalytic run. 

In the third part of the Thesis, sub and supercritical CO2conditions were used to improve 

the catalytic activity of the above synthesized PdNPs. Supercritical CO2 was also used for the 

extraction of organic products by using a SEPARAX SF200 pilot. CO2 is known to increase the 

efficiency of hydrogenation by increasing the solubility of hydrogen in the colloidal system. In 

other words, hydrogenation reactions are often limited due to the low solubility of molecular 

hydrogen in the solvents currently used. Application of sub and supercritical CO2 conditions 

during the hydrogenation can serve as a promotor for transporting hydrogen into the liquid 

phase and thus to enhance the equilibrium concentrations of both reactants and products in the 

gaseous phase. For this purpose, the catalytic hydrogenation of nitrobenzene and 4-

phenylbutan-2-one was studied. In the case of 4-phenylbutan-2-one, remarkable results were 
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obtained. In the absence of CO2, the conversion of 4-phenylbutan-2-one into 4-phenylbutanol 

was 40% (40 bar H2, 80 °C, 18 h, 1 mol% Pd). When CO2 was used the same conversion was 

reached by using 4 times less H2 (10 bar H2, 30 bar CO2, 80 °C, 18 h, 1 mol% Pd) at the same 

total pressure. These results clearly showed that CO2 increases the availability of H2 in the 

catalytic system. 

Extraction of the obtained organic products after catalysis from the catalytic solution was 

also performed using scCO2. The extraction conditions were optimized to achieve up to 90% 

extraction of organic products. It is also important to highlight that during the extraction 

process, neither glycerol nor ChTs-ala was extracted with the product. Additionally, scCO2 did 

not lead to the aggregation of the PdNPs in the system (checked by TEM), remaining well 

dispersed in the glycerol phase. In addition, no traces of Pd nor the ionic liquid or glycerol were 

detected in the extracted products. This behavior leads us to conclude that scCO2, can wisely 

be used for the extraction of selected organic products after a catalytic reaction, eliminating the 

use of volatile organic solvents and preserving the state of the catalyst. 

 

Some perspectives can be proposed from this work, as following indicated: 

➢ Deep studies on physicochemical properties (such as density, polarity etc.) can be 

explored for DES and CO2 systems, permitting a better knowledge of the medium 

and in consequence better conceive the synthesis of catalysts and their applications. 

➢ Other physicochemical properties such as density, polarity etc. could be explored 

for the DES and CO2 system with the aim of better characterize these media. 

➢ Other molecular rotors can be synthesized and used as microviscosity probes, which 

would allow responding the main question arising from the use of this method: how 

bulk viscosity can be related to microviscosity? 

➢ Taking advantage of the wide range of amino acids, different kind of choline based 

DES can be synthesized and explored for both solvent engineering and synthesis of 

metal nanoparticles. Applications in enantioselective hydrogenations can be 

envisaged, upon to fix the racemization of amino acids during their protection. 

➢ The choline tosylalaninate/glycerol system can also be used in the synthesis of 

different kinds of metal-based nanoparticles, including those from earth-abundant 

metals (Cu, Ni, Fe, Co) and metal oxide and bimetallic nanoparticles. Once 
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synthesized the catalytic activity of these metal nanoparticles can be explored in the 

absence and presence of carbon dioxide.  
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Annex 1 

Part 1: NMR characterization for MR1 

 

Figure A1.1. 1H NMR spectrum of MR1 at 300 MHz in CDCl3. 

 

Figure A1.2. 13C NMR spectrum of MR1 at 300 MHz in CDCl3. 
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Figure A1.3. 19F NMR spectrum of MR1 at 282 MHz in CDCl3. 

 

Figure A1.4. 11B NMR spectrum of MR1 at 96 MHz in CDCl3. 
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Part 2: NMR characterization for MR2 

 

Figure A1.5. 1H NMR spectrum of MR2 at 300 MHz in CDCl3. 

 

 

Figure A1.6. 13C NMR spectrum of MR2 at 75 MHz in CDCl3. 
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Figure A1.7. 19F NMR spectrum of MR2 at 282.4 MHz in CDCl3. 

 

Figure A1.8. 11B NMR spectrum of MR2 at 160.4 MHz in CDCl3. 

 



 

 
 

155 

Annex 2 

Part 1: Calibration curve of 9-(2,2-Dicyanovinyl)julolidine (DCVJ)  

 

Figure A1.1. Calibration curve of DCVJ at 40 °C  

 

Figure A1.2. Calibration curve of DCVJ at 60 °C  

 

Figure A1.3. Calibration curve of DCVJ at 80 °C  
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Part 2: Calibration curve of MR1 

 
Figure A1.4. Calibration curve of MR1 at 80 °C  

Here, it is observed that the calibration curve of the rotor MR1 decreases with viscosity. The reason 

for this behavior is still uninvestigated.  
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Part 3: Calibration curve of MR2 

 

Figure A1.5. Calibration curve of MR2 at 40 °C  

 

Figure A1.6. Calibration curve of MR2 at 60 °C  

 

Figure A1.7. Calibration curve of MR2 at 80 °C  
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Bio-sourced ionic solvents and supercritical CO2: design of 

sustainable processes for the synthesis of target molecules 

Garima GARG, October 21st 2019, Toulouse 

Supervisors: Yaocihuatl MEDINA-GONZALEZ and Montserrat GÓMEZ 

This Thesis represents a multi-disciplinary project where aspects going from solvent 

engineering to catalysis using metal-based nanoparticles, are explored. In this project, solvent 

engineering has been applied to bio-based deep eutectic solvents (DES) synthesized from 

choline tosylalaninate and glycerol in an effort to decrease the solvent viscosity by using 

different amounts of carbon dioxide. In this context, molecular rotors were used as an 

innovative method to measure the viscosity, avoiding the use of expensive instrumentation and 

giving the possibility to access to the microviscosity of the system. Furthermore, DES have 

been applied for the synthesis of palladium nanoparticles, also acting as stabilizers, which were 

fully characterized. The as-prepared palladium nanoparticles were then used for catalytic 

hydrogenations of unsaturated C-C bonds, and nitro and carbonyl groups. Sub and supercritical 

CO2 conditions have been applied to improve the efficiency of the palladium nanocatalysts in 

hydrogenation reactions and afterwards for the extraction of organic products. This work 

represents an effort to intensify a hydrogenation process in a highly viscous, non-volatile, 

biodegradable, and non-toxic DES by using CO2 in order to decrease mass transfer limitations 

and to extract products from the reaction media.  

Keywords: Biodegradable Ionic Solvents, Supercritical CO2, Solvent Engineering, Catalysis, 

Metal Nanoparticles 

 



 

 Solvants ioniques biosourcés et CO2 supercritique : conception 

des processus durable pour la synthèse de molécules cibles  

Garima GARG, le 21er octobre 2019 à Toulouse 

Supervisors: Yaocihuatl MEDINA-GONZALEZ and Montserrat GÓMEZ 

Cette thèse représente un projet multidisciplinaire qui explore des aspects allant de l'ingénierie 

des solvants à la catalyse à l'aide de nanoparticules métalliques. Dans le cadre de ce projet, 

l’ingénierie des solvants a été appliquée à des solvants eutectiques profonds (SEP) biosourcés 

synthétisés à partir de tosylalaninate de choline et de glycérol afin diminuer leur viscosité en 

utilisant différentes quantités de dioxyde de carbone. Les rotors moléculaires ont été utilisés 

comme méthode innovante pour mesurer la viscosité, évitant ainsi l’utilisation d’une 

instrumentation coûteuse et donnant accès à la microviscosité du système. De plus, ce système 

a été appliqué à la synthèse de nanoparticules de palladium, jouant également un rôle de 

stabilisants, qui ont été entièrement caractérisées. Les nanoparticules de palladium bien 

dispersées ont été ensuite utilisées pour l'hydrogénation catalytique de liaisons C-C insaturées, 

de groupes nitro et carbonyle. Le CO2 dans ses états sub- ou supercritique a été utilisé pour 

améliorer l'efficacité des nanoparticules de palladium dans les réactions d'hydrogénation 

catalytique et subséquemment pour l'extraction du produit après la réaction de catalyse. Ce 

travail représente an effort pour intensifier un procédé dehydrogénation dans un milieu très 

visqueux, non volatile, biodégradable, biosourcé et non-toxique en utilisant du CO2 1) pour 

améliorer le transfert de matière et 2) pour extraire les produits de la réaction du milieu 

réactionnel. 

Keywords: Solvants ioniques biodégradables, CO2 supercritique, Ingénierie des solvants, 

Catalyse, Nanoparticules métalliques 
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