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Bien sûr j’en oublie encore tant d’autres, merci à vous ! Et je ne t’oublies pas Camille, mon amour,
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D.3 Implémentation parallèle: ABCD-Solver . . . . . . . . . . . . . . . . . . . 230
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parallèle est calculée par rapport au temps moyen du plus petit problème. . . . . 216
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D.11 Itération en 2D de la méthode de projection par ligne Cimmino. Source: [133] . 222
D.12 Convergence de BCG: deltaX (7 · 104 × 2 · 104) avec 16 partitions . . . . . . . . 225
D.13 Augmentation d’une matrice tri-diagonale par bloc. . . . . . . . . . . . . . . . 226
D.14 Cimmino par bloc vs Cimmino par bloc augmenté . . . . . . . . . . . . . . . . 228
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List of Tables

I.1 Total run-times (in seconds) of the Vvar application: total, fine and coarse
grid timings for the asthenosphere scenarios iso-viscous and jump-410.
The number of iterations of the MG method (it) and the average number
of iterations of the coarse grid solver (C.it) are also displayed. . . . . . . . 34

I.2 Scaling of the sparse direct solver MUMPS (with exact double precision
arithmetic): analysis, factorisation and solve run-times in seconds. r:
reduction factor, m: corresponding number of processes. . . . . . . . . . . 39

I.3 Influence of the viscosity scenario and BLR ε parameter, with double and
single precision, on the accuracy and the run-time of the direct solver.
Run-times (in seconds) are separated in analysis, factorisation and solve
steps. Each process runs on a separate node. . . . . . . . . . . . . . . . . 41

I.4 Weak scaling of the Vvar-cycle with a sparse direct and a block low-rank
coarse level solver with or without single precision (SP) arithmetic. The
parallel efficiency compares the average total run-time of each run to the
average total run-time of the smallest case with no BLR. . . . . . . . . . . 42

I.5 Weak scaling of the multigrid execution with a sparse direct and a block
low-rank coarse level solver with single precision (SP) arithmetic. The
total execution time (in seconds) and the parallel efficiency considering
the average total execution times are displayed for both master-worker
and a simulated Superman agglomerations. . . . . . . . . . . . . . . . . . 43

II.1 Characteristics of the test matrices. m and n: the dimensions of the
matrix, ”elts per row”: the number of nonzero values in the matrix. . . . 77

II.2 Sequential execution time in seconds of the block-CG algorithm for rect-
angular matrices, with an increasing block-CG size in power of 2 starting
from 1 to 256. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79



xviii List of Tables

II.3 Application of the ABCD method on the test matrices. Displayed are the
size/density of S, and the memory required for its factorisation. Also, we
give for BC and ABCD the memory requirement for the factorisation of
the projection systems, as well as the execution time and accuracy. . . . . 82

II.4 For each method (BC or ABCD), number of classes of problems where
the partitioning giving best result is row, column, or both. The choice is
decided in terms of smallest number of iterations or augmentation size. . . 84

III.1 Characteristics of the test matrices. n: the order of the matrix, nnz: the
number of nonzero values in the matrix. . . . . . . . . . . . . . . . . . . . 90

III.2 Effect of a scaling applied to the matrix before the application of the
augmented block Cimmino method. The conditioning of the Schur com-
plement S and the average conditioning of the projection systems are
given. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

III.3 Best partitioner in terms of iterations for the BC method and in terms of
augmentation size for the ABCD method applied to resp. 361 (BC) and
429 (ABCD) classes of problems from the SuiteSparse Matrix Collection.
The matrices are split in least-squares problems, and underdetermined or
square matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

III.4 Characteristics of the test matrices. n: the order of the matrix, nnz: the
number of nonzero values in the matrix. . . . . . . . . . . . . . . . . . . . 104

III.5 Impact of the Duplication Method on the number of iterations, relatively
to the disjoint partitioning case. The number of duplications is bounded
by a fixed percentage of the matrix size. . . . . . . . . . . . . . . . . . . . 105

III.6 Best augmentation method in terms of size for different classes of problems
from the SuiteSparse Matrix Collection: 36 Least-Squares, 161 underde-
termined and 241 unsymmetric square matrices. . . . . . . . . . . . . . . . 111

III.7 Characteristics of the test matrices. n: the order of the matrix, nnz: the
number of nonzero values in the matrix. . . . . . . . . . . . . . . . . . . . 119

III.8 Impact of the distribution of partitions on the execution times. All runs
were performed with 1024 partitions and 128 MPI processes with 2 threads
on 16 nodes. (Com. col %: Normalised column reduction values with
respect to the Greedy algorithm. tot: Total time in seconds. Fact. imb.
%: ratio of maximum over average factorisation times. BCG it: Number
of iterations required for convergence. Sol. time: Total solution time in
seconds) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121



List of Tables xix

III.9 Execution time for the solution of the Schur complement system depending
on the number of processes used. The number of processes is displayed
relatively to the number of partitions used for each matrix. . . . . . . . . 122

III.10Impact of the placement of masters and workers on the execution times of
the ABCD Solver. All runs were performed with 32 partitions and 128
MPI processes with 2 threads on 16 nodes. . . . . . . . . . . . . . . . . . 123

III.11Best solver in terms of execution time or memory for different classes
of problems from the SuiteSparse Matrix Collection. We distinguish the
comparison in distributed memory MUMPS vs ABCD-Solver (187 classes),
and the comparison in shared-memory QR-MUMPS vs ABCD-Solver (128
classes). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

III.12Execution times for the different steps involved in BC, ABCD and QR-
MUMPS on the problem neos partitioned into 64 partitions. The backward
error ω on the normal equations for the computed solution is given. . . . . 127

III.13Execution time for the different steps involved in block Cimmino, and
QR-MUMPS on the problem LargeRegFile partitioned into 128 partitions.
The backward error ωLS on the normal equations for the computed solution
is also given. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

III.14Execution time for the different steps involved in BC, ABCD and QR-
MUMPS on the problem shar te2-b2 partitioned into 64 partitions. The
backward error ωLS for the computed solution is also given. . . . . . . . . 129

IV.1 Size of the matrix depending on the grid level for the different test sets
and problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

IV.2 Size of the prolongation and the augmentation depending on the grid level
chosen for the 3 PDE problems in test set PLarge. . . . . . . . . . . . . . . 146

IV.3 Evolution of the number of iterations for the convergence of the global
BC method applied on the system augmented on the coarse grid level 2,
depending on the block-CG size for BC-W. . . . . . . . . . . . . . . . . . 160

IV.4 Conditioning of S obtained with C-ABCD applied on the large problems
in the set Plarge , with varying ε threshold for BC-W between 10−12 and
10−4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

IV.5 Conditioning of the Schur complement before and after preconditioning
with various methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164



A.1 Application of the block Cimmino accelerated method on rectangular
matrices with an increasing block size for the block-CG algorithm in power
of 2 from 1 to 256. The first table displays the number of iterations for
convergence and the second the total time in seconds for the block-CG
iterations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

B.1 Characteristics of the test matrices. n: the order of the matrix, nnz: the
number of nonzero values in the matrix. . . . . . . . . . . . . . . . . . . . 200

B.2 Application of ABCD with the augmentation methods FCij and FFR.
The size and number of elements per row of the matrix S are given as well
as its condition number, and the sequential execution time to compute the
solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
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Summary
The comprehension of the physics behind complex physical problems is the goal of
numerical simulation. The models behind these simulations are often based on Partial
Differential Equations (PDE) coupled with some boundary conditions [111]. From these
equations, discretization techniques like the Finite element methods are applied on a
mesh, which introduces large sparse linear systems of the form Ax = b [53, 64]. The
solution of these systems is of major interest in high performance computing. Great
efforts were spent in the last decades in order to design solution methods for these linear
systems, called solvers, executed in parallel on supercomputing facilities.

Historically, two kinds of solvers were developed [128]. The direct methods are based
on the elimination of unknowns, leading to a factorisation of the matrix, to compute the
solution [46, 61]. The iterative methods improve an approximation in a succession of
updates until the convergence to a desired accuracy has been reached [75, 114]. While
direct methods are robust with respect to the problem solved, their cost in terms of
computation and memory is high compared to the iterative methods, for which the
convergence is very dependent on the problem. Lastly introduced, hybrid methods were
built in order to benefit from the advantages of both direct and iterative methods.

Multigrid methods

We first focus on a kind of hybrid methods called the multigrid methods [27, 129]. The
application of a discretization method on a PDE problem can be performed on grids
with various levels of refinement, creating linear systems of according size. Using a
hierarchy of such refinements, the multigrid methods are motivated by two observations.
First, standard iterative methods are able to damp rapidly oscillatory error components,
while keeping smooth components almost untouched, thus called smoothers. Secondly,
smooth functions, which are well represented on a coarse grid level, can then appear more
oscillatory on such level, and smoothers are then efficient again. In a global iterative
process, these two aspects are used to compute the solution of a linear system by going
through each level in cycles. On the coarsest level of grids, the system is generally
considered small enough to allow the application of a direct solver. Making multigrid
methods scale on large computing systems is difficult [109, 110]. Using multigrid methods
on supercomputers mostly comes with a large number of grid refinements and then the
ratio of grid points from the finest to the coarsest level becomes very large. When moving
to the coarsest levels, the computing efficiency deteriorates if all computing cores are
implied. In Chapter I, we introduce an agglomeration of the coarse grid problem onto
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fewer processors in order to compensate for this effect [101]. The convergence of multigrid
methods is theoretically proven only when a direct solver is applied on the coarsest
grid [25, 73]. For systems where the model and/or the data present some incertitude,
a popular alternative is to only approximate the coarse grid solution using an iterative
method with an appropriately chosen accuracy. In cases where the iterative solver has
trouble converging, the use of a direct solver combined with an approximated factorisation
is ideal, thanks to its robustness and relaxed computation and memory requirements.
In Chapter I, we study the solution, using the multigrid HHG framework (Hierarchical
Hybrid Grids) [18, 85], of a saddle-point problem with jumping coefficients up to 1011
degrees of freedom, inspired from Earth’s mantle convection [14]. We demonstrate an
improvement of the overall multigrid scheme with the use of MUMPS1 [6], combined
with a block low-rank approximation [1, 4] and the use of single precision arithmetic, on
the agglomerated coarse grid problem, compared to the use of an iterative method on
the coarse grid [30]. This is an essential improvement e.g. for Earth Mantle simulation
scenarios [16].

Block Cimmino iterative and pseudo-direct methods

The other major type of hybrid methods is the Domain Decomposition Methods (DDM)
[40, 98, 127] which, in order to make the best use of parallel computing platforms,
decompose the complete linear system into subproblems to be solved independently. An
instance of a direct solver is then executed in parallel simultaneously on each subproblem,
and a global iterative method combines the obtained parts to ensure the consistency of
the global solution. We are interested in a particular class of iterative methods which
can be interpreted as DDM [40]: the block projection methods [34, 52, 88]. Based
on a partitioning of the matrix in blocks of rows or columns, these methods compute
the solution through successive projections on the subspaces spanned by the partitions.
Among the projection methods, the block Cimmino iterations are of special interest
since at each iteration, the projections are computed independently. The convergence of
the block Cimmino iterations is known to be slow. An acceleration of the iterations is
possible through the use of a stabilised block conjugate gradient (block-CG) algorithm
[11, 112]. The accelerated block Cimmino (BC) takes benefit from a combination of
iteration reduction, and the use of computationally efficient matrix operations [80]. As
the convergence of this method remains problem dependent, an alternative was proposed
based on the augmentation of the original system with additional variables and constraints
in order to orthogonalize the partitions. Block Cimmino is guaranteed to converge in

1http://mumps-solver.org/

http://mumps-solver.org/
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one iteration on this augmented system, and we obtain the pseudo-direct Augmented
Block Cimmino method (ABCD) [47, 133]. The additional variables and constraints
are acting on the interconnections between partitions. Geometrically, and using the
language of DDM, the augmentation introduces a splitting on the interfaces between
subdomains. Then, the central point of ABCD is the embarrassingly parallel construction
of a condensed Schur complement matrix. The solution of this relatively smaller matrix,
using a direct solver, can require a large amount of memory, and in such case the block
Cimmino iterations stay a good option. These two approaches were developed using a row
partitioning for the solution of unsymmetric square systems. In Chapter II, we extend the
iterative and augmented methods to full rank systems with the minimum-norm solution
of underdetermined systems, and the solution of least-squares problems [50]. The latter
is based on a column partitioning of the matrix. In the case of unsymmetric square
systems, the choice is then open between row and column partitioning which makes a
large difference, in terms of convergence speed or augmentation size, for a wide range of
applications.

Parallel implementation of the ABCD-Solver

In order to improve the numerical properties of the block Cimmino iterative and aug-
mented methods, preprocessing techniques are applied, introduced in the first part of
Chapter III. After scaling the system by a simultaneous normalisation of both rows
and columns [113], the algebraic partitioning methods used are discussed [42, 112]. We
emphasise the use of graph-based partitioners which specifically aim either at the acceler-
ation of the convergence of BC, with the numerically-aware partitioner GRIP [126], or
at the minimisation of the size of the interfaces corresponding to the augmentation size
in ABCD, with the hypergraph partitioner PaToH [32]. A new augmentation method
additionally allows to decrease the augmentation size in ABCD, and thus the size of the
Schur complement.

The iterative method BC and the augmented method ABCD are implemented in
parallel in the ABCD-Solver2 based on MPI processes [71] (distributed) and OpenMP
threads [37] (shared-memory) parallelism. The solver follows a classical hybrid parallelisa-
tion scheme [133]. Specific processes, called masters, receive one or several partitions and
compute independently in parallel the associated projection using a direct solver. In the
iterative scheme, the masters sum their projections in parallel, using MPI communications,
to update the current approximation. We propose a new algorithm to simultaneously
minimise the future communication between masters while keeping a global balance in

2http://abcd.enseeiht.fr/

http://abcd.enseeiht.fr/
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workload. Two additional levels of parallelism are associated with the direct solver. The
computationally intensive dense kernels used internally are parallelised in shared-memory.
Additionally, processes with no partitions, called workers, can be linked to a master to
execute the direct solver in parallel. We show that deciding which process is a master
or a worker depending on their place in the parallel architecture at runtime has an
important impact. In particular, spreading the masters over the nodes greatly increases
the efficiency of cache access in the direct solver and the dense kernels, inducing a good
speed-up for the ABCD-Solver.

We demonstrate a good behaviour of the ABCD-Solver, in terms of execution time
and memory, compared to the state-of-the-art direct solvers MUMPS3 [6], for square
matrices, and QR-MUMPS4 [29], for rectangular matrices.

Multigrid inspired relaxation of the augmented block Cimmino method

While the iterative method has low memory requirements, its convergence is problem
dependent. The augmented method, on the contrary, converges in 1 iteration but is
highly dependent on the solution of the Schur complement which solution can require
prohibitive amounts of memory. In the context of discretized PDE problems [53], it
is possible to choose the partitioning based on the geometry of the domain, then the
size of the Schur is linked to the size of interfaces between subdomains. From multigrid
methods, we use the idea of a hierarchy of grids. A natural way to decrease the size
of the Schur is then to augment the matrix based on a coarser representation of the
interfaces between subdomains. Through the choice of a specific coarse grid level, we can
control the size of the augmentation. In Chapter IV, we focus on the solution of square
matrices using a partitioning in blocks of rows. We demonstrate that the iterative block
Cimmino applied on the matrix augmented this way, has a fast linear convergence for a
wide range of systems arising from the discretisation of 2D PDE problems. The central
issue of this approach is the construction and solution of the additional constraints in
the system and thus the Schur complement matrix. We introduce a construction method
based on the application of BC with linear convergence on canonical vectors. The right
hand side corresponding to the additional constraints is simultaneously updated during
this construction. The downside of this method is that the obtained constraints are very
dense. Finally, we present some research tracks, as perspective, which consists in finding
a good preconditioner for the Schur complement, without constructing the actual matrix.
This preconditioner would then be used in global preconditioned-CG [75] iterations to

3http://mumps-solver.org/
4http://buttari.perso.enseeiht.fr/qr_mumps/

http://mumps-solver.org/
http://buttari.perso.enseeiht.fr/qr_mumps/
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approximate the inverse of the Schur, using internal projections computed with the BC
method at each iteration.

Perspective and future works

Overlapping partitioning

Considering the block Cimmino methods as DDM, the natural evolution is to introduce
the notion of overlaps between subdomains [40]. In our context, overlaps correspond
to non-disjoint partitions for BC. We introduce in Section III.1.2.e, a method which
iteratively improves an existing partitioning by duplicating some rows into other partitions.
The choice of duplicated rows is based on the values of the normal equations inspired
from the GRIP partitioner [126]. The replication of rows allows an efficient acceleration
of the convergence of BC for some systems, but for others the added interconnections
between previously unlinked partitions through replication is counter-productive. One
direction of research is to find an algorithm which take these added links into account to
guarantee an acceleration of convergence.

Possible extensions to the relaxed augmentation

The multigrid-inspired relaxed ABCD has been developed in this thesis for a row par-
titioning in the context of discretised PDE problems. The next step is to extend this
method to a column partitioning. The main difficulty is the careful construction of the
block-CG algorithm for the simultaneous approximation of the constraint equations and
the corresponding right hand side. Additionally, in order to make the method applicable
to problems not coming from PDE problems, the use of algebraic multigrid techniques
can be considered in order to construct the necessary multigrid components directly from
the entries in the matrix.

We introduce at the end of Chapter IV some possibilities in order to improve the
approach based on the relaxed augmentation. A first track is the improvement of the
very dense approximated closure equations W , either through a filtering of their entries,
or through a different approximation, e.g. using Chebyshev polynomials. The parameters
for these iterations are the maximum and minimum eigenvalues of the BC iteration
matrix estimated thanks to the linear convergence rate of the associated BC method
in the block-CG. The second track concerns a more efficient projection on W using a
block Kaczmarz type of update every few iterations of the BC method on the augmented
partitions. Finally, the linear convergence of our new approach could not be formally
proven...
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Formal proofs of linear convergence

...which would be the real evolution of this thesis. For specific PDE problems, or using
algebraic properties from the multigrid elements such as the approximation property of the
prolongation operator, it would be possible to show some properties on the convergence
of our new approach. A particularly interesting possibility is to interpret this method as
a 2-level DDM and find the direct relation to existing methods like BDDC and FETI-DP
[90].



Résumé
L’intérêt de la simulation numérique est de mieux comprendre la physique derrière des
systèmes physiques complexes. Ces simulations sont souvent basées sur des modèles
d’équations aux dérivées partielles (EDP) couplées avec des conditions au bord [111].
Des méthodes de discrétisation, comme la méthode des éléments finis, appliquées à ces
équations donnent de grands systèmes linéaires creux de la forme Ax = b à résoudre
[53, 64]. Leur solution est l’un des thèmes majeurs en calcul scientifique haute performance.
Ces dernières décennies, des recherches poussées on été effectuées en vue de créer des
méthodes pour la résolution de ces systèmes linéaires, appelés solveurs, pouvant être
exécutées efficacement en parallèle sur des supercalculateurs.

Historiquement, nous distinguons 2 classes de solveurs [128]. Les méthodes directes
sont basées sur des techniques d’élimination de variables, menant à une factorisation de
la matrice A, afin de résoudre le système linéaire [46, 61]. Les méthodes itératives quant
à elles font successivement évoluer une approximation de la solution jusqu’à obtenir la
précision désirée [75, 114]. Là où les méthodes directes se montrent robustes par rapport
aux propriétés numériques du problème à résoudre, leur coût en calcul et mémoire est
élevé comparé à celui des méthodes itératives, qui elles présentent une convergence très
variable selon le problème. Introduites plus récemment, les méthodes hybrides ont été
crées afin de bénéficier des avantages des 2 types de méthodes, directes et itératives.

Méthodes multigrilles

Nous nous intéressons d’abord à des méthodes hybrides appelées méthodes multigrilles[27,
129]. Il est possible d’appliquer les méthodes de discrétisation sur des niveaux de grilles
de raffinement varié, créant des systèmes de taille plus ou moins grande. En utilisant une
telle hiérarchie de grilles, les méthodes multigrilles obtiennent la solution des systèmes
linéaires grâce à deux principes. Tout d’abord, il a été observé que certaines classes de
méthodes itératives, appelées lisseurs, atténuent rapidement les composantes d’erreur
caractérisées par une haute fréquence d’oscillation, alors que les composantes à basse
fréquence, i.e. lisses, restes pratiquement inchangées. De plus, les fonctions lisses sont
bien représentées sur une grille grossière, où elles apparaissent comparativement plus
oscillatoire. Ainsi, l’application d’une méthode itérative sur ces fonctions au niveau de la
grille grossière devient à nouveau efficace. A l’intérieur d’un processus itératif global, les
méthodes multigrilles utilisent ces deux aspects afin de calculer la solution du système
linéaire en se déplaçant d’un niveau de grille à l’autre dans un cycle. Au niveau de la
grille la plus grossière, le système est généralement considéré comme assez petit pour
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pouvoir être résolu avec un solveur direct sans utiliser trop de mémoire. Implémenter
une méthode multigrille de manière à ce qu’elle se comporte bien sur des systèmes de
calculs très larges est difficile[109, 110]. Dans ce cas, en partant d’une grille très fine,
résolue avec beaucoup d’unités de calcul (coeurs), et en se déplaçant vers une grille plus
grossière, le nombre de variables par coeur devient de plus en plus petit. L’efficacité en
calcul se détériore alors rapidement si tous les coeurs sont utilisés à tous les niveau. Dans
le Chapitre I, afin de compenser cette effet[101], nous proposons d’utiliser une méthode
d’agglomération de données sur un sous-ensemble des coeurs lorsque l’on considère le
problème le plus grossier[25, 73]. De plus, la convergence des méthodes multigrilles est
en théorie prouvée seulement si le problème le plus grossier est résolue de manière exacte,
avec un solveur direct. Cependant, pour des systèmes comportant une incertitude sur
le modèle et/ou les données, il est possible d’approcher la solution à moindre coût avec
une méthode itérative avec une précision correspondant au problème. Dans des cas
où la méthode itérative converge lentement, l’utilisation d’un solveur direct avec une
factorisation approchée peut alors devenir idéale, grâce à la robustesse de la méthode et
à un relâchement des besoins en calcul et en mémoire. Dans le Chapitre I, nous étudions
l’utilisation du framework multigrille HHG (Hierarchical Hybrid Grids)[18, 85]. pour la
solution d’un problème de point de selle avec des coefficient très variables d’une taille
allant jusqu’à 1011 variables, et inspiré de la simulation de la convection du manteau
terrestre [14]. Nous démontrons pour ce problème une amélioration de l’efficacité parallèle
du schéma multigrille grâce à l’utilisation combinée du solveur direct MUMPS5 [6], avec
approximation par blocs de rangs faibles [1, 4] et l’utilisation de l’arithmétique simple
précision, comparée à l’utilisation d’une méthode itérative classique sur la grille la plus
grossière [30]. Cette approche est une contribution pour la simulation numérique et, dans
notre cas, pour la simulation du manteau terrestre [16].

Méthodes Cimmino par blocs, itérative et pseudo-directe

L’autre grande classe de méthodes hybrides sont les méthodes de décomposition de
domaine (DDM) [40, 98, 127] qui décomposent le problème en sous-problèmes résolus
indépendamment, afin d’être efficaces en terme de calcul parallèle. Une instance de
solveur direct est alors exécutée en parallèle simultanément sur chaque sous-problème,
et un schéma itératif global combine les différentes solutions obtenues afin de garantir
la cohérence de la solution globale. Nous nous intéressons plus particulièrement à
une classe de méthodes itératives, pouvant être interprétée en tant que méthodes de
décomposition de domaine[40]: les méthodes de projection par bloc [34, 52, 88]. A partir

5http://mumps-solver.org/

http://mumps-solver.org/
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d’un partitionnement de la matrice par blocs, ces méthodes se rapprochent de la solution
du systèmes par projections successives sur les espaces engendrés par les partitions. Parmi
ces méthodes de projection, la méthode Cimmino par blocs est d’un intérêt particulier
puisqu’à chaque itération les projections peuvent être calculées indépendamment. Il est
cependant connu que la convergence de cette méthode peut être lente. Il est alors possible
de l’accélérer en utilisant un gradient conjugué travaillant par blocs stabilisés (bloc-
CG)[11, 112]. Nous obtenons ainsi la méthode Cimmino par blocs accélérée (BC), qui tire
avantage d’une réduction du nombre d’itérations, et de l’utilisation de noyau efficaces pour
le calcul d’opérations sur des matrices denses[80]. Comme la convergence de cette reste
méthode dépendante du problème considéré, une alternative basée sur l’augmentation du
système original avec des variables et contraintes additionnelles a été proposée. Cette
augmentation permet d’orthogonaliser mutuellement les partitions, garantissant ainsi la
convergence en une seule itération de la méthode BC. Ainsi, une méthode pseudo-directe
est obtenue, la méthode Cimmino par blocs augmentés (ABCD)[47, 133]. Les variables et
contraintes additionnelles agissent sur les interconnexions entre partitions et introduisent
une cassure au niveau des interfaces entre sous-domaines, d’où leur lien avec les DDM.
Enfin, le point clé de la méthode ABCD est la construction de manière ”embarrassingly
parallel” d’un complément de Schur. La solution de cette matrice, relativement plus
petite mais plus dense, est effectuée avec un solveur direct qui peut alors nécessiter une
large quantité de mémoire et de calcul. Dans ces cas-là, la méthode BC itérative reste
une bonne option, car peu coûteuse en mémoire. A l’origine, ces deux approches ont
été développées pour la solution de problèmes carrés et non-symétriques à l’aide d’un
partitionnement de la matrice en blocs de lignes. Dans le Chapter II, nous développons
une extension des méthodes itératives et pseudo-directes pour la solution de problèmes
sous-déterminés de norme minimale et la solution de problèmes de moindres-carrés[50].
Ces derniers sont basés sur un partitionnement par blocs de colonnes. Dans le cas des
systèmes carrés, le choix est alors ouvert entre l’utilisation d’un partitionnement par
ligne ou par colonne, l’un ou l’autre pouvant présenter un plus grand avantage selon le
problème, en terme d’itérations ou de taille d’augmentation.

Implémentation parallèle: ABCD-Solver

Afin d’améliorer les propriété numériques des méthodes itératives et pseudo-directes, des
techniques de pré-traitement sont présentées dans la première partie du Chapter III. Après
avoir atténué la disparité dans les facteurs d’échelle de la matrice via une normalisation
simultanée des lignes et des colonnes dans le cas des matrices carrées [113], les différentes
méthodes de partitionnement existantes sont discutées [42, 112]. Nous nous intéressons en
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particulier à des méthodes de partitionnement de graphes qui cherchent, soit à accélérer
la convergence de la méthode BC, avec le partitionneur GRIP [126] prenant en compte
les valeurs dans les équations normales, ou à diminuer la taille de l’augmentation, avec
le partitionneur d’hyper-graphes PaToH PaToH [32]. Nous introduisons ensuite une
nouvelle technique d’augmentation de la matrice qui permet de diminuer encore la taille
d’augmentation.

Les méthodes BC et ABCD sont implémentées en parallèle dans le ABCD-Solver, basé
sur l’utilisation de processus MPI [71] (distribué) et de threads OpenMP [37] (mémoire
partagée). Le solveur suit un schéma de parallélisation classique en DDM: des processus
MPI, appelés mâıtres, reçoivent une ou plusieurs partitions et calculent en parallèle,
de manière indépendante, les projections associées à l’aide d’un solveur direct. Ces
projections locales sont alors sommées grâce à des communications MPI entre mâıtres afin
de mettre l’itéré courant à jour. Nous proposons un nouvel algorithme de distribution des
partitions pour la méthode itérative qui permet, en plus d’équilibrer la charge de travail
entre les processus, de diminuer la communication entre ceux-ci afin de diminuer le temps
de calcul. En plus de l’indépendance entre les partitions, 2 niveaux de parallélisme sont
ajoutés par le solveur direct utilisé pour les projections. Les noyau de calcul pour les
opérations denses utilisés par le solveur direct ont une parallélisation en mémoire-partagée.
De plus, chaque potentiel processus sans partition, appelé ouvrier, peut être assignée à
un mâıtre afin de paralléliser l’exécution du solveur direct. Nous montrons que distribuer
les mâıtres sur l’architecture de calcul, plutôt que de les grouper, permet de diminuer les
accès mémoire concurrents et ainsi de réduire le temps d’exécution.

Enfin, nous effectuons une comparaison entre le solveur ABCD-Solver et les solveurs
directs MUMPS6 [6], pour les matrices carrées, et QR-MUMPS [29] pour les matrices
rectangulaires.

Relaxation inspirée du multigrille de l’augmentation pour la méthode
Cimmino par blocs

Bien que la méthode BC nécessite peu de mémoire, sa convergence dépend du problème.
La méthode ABCD, au contraire, converge en une itération mais est très dépendante
de la solution du complément de Schur qui peut nécessiter trop de mémoire. Pour la
solution de problèmes d’EDP discrétisés, il est possible de choisir un partitionnement
basé sur la géométrie des domaines. Dans ce cas, la taille du Schur est liée à la taille
des interfaces entre sous-domaines. En utilisant une hiérarchie de grille, directement
héritée des méthodes multigrilles, une manière naturelle de diminuer la taille du Schur est

6http://mumps-solver.org/

http://mumps-solver.org/
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d’augmenter la matrice sur une représentation grossière des interfaces entre sous-domaines.
Au travers du choix d’une grille plus ou moins grossière, nous contrôlons alors la taille
de l’augmentation. Dans le Chapter IV, nous nous concentrons sur des matrices carrées
et partitionnées par blocs de lignes. Nous montrons que la méthode BC, appliquée
sur les partitions augmentées de cette manière, a une convergence linéaire et rapide
pour des problèmes provenant de la discrétisation de problème d’EDP en 2D. Toute la
problématique de cette approche est alors la construction des contraintes additionnelles,
et la solution du complément de Schur qui en découle. Nous proposons une méthode de
construction basée sur l’application d’itérations BC avec une convergence linéaire sur
des vecteurs canoniques. Le second membre doit alors correspondre à ces contraintes
approchées, et nous le construisons en même temps. L’inconvénient de cette méthode
est que nous obtenons une matrice de contraintes dense. Nous ouvrons finalement sur
quelques pistes consistant à trouver un bon pré-conditionneur du complément de Schur,
sans construction explicite de celui-ci, qui permettra d’approcher son inverse grâce à un
algorithme CG préconditionné [75], qui utilise à chaque itération des projections basées
sur la méthode BC.

Perspective et futures travaux

Partitionnement avec chevauchement

Partant de l’interprétation de la méthode BC comme méthode de décomposition de
domaine, une idée naturelle est d’introduire la notion de chevauchement entre sous-
domaines [40]. Dans notre contexte, le chevauchement correspond à la construction de
partitions avec des lignes pouvant appartenir à plusieurs partitions. Dans le Chapitre
III.1.2.e, nous proposons une méthode construisant itérativement un tel partitionnement,
à partir d’un partitionnement classique existant, en dupliquant des lignes d’une partition
à l’autre. Le choix pour ces duplications se base sur les valeurs contenues dans les
équations normales du système, de manière similaire au partitionneur GRIP [126]. La
réplication de lignes permet une accélération de la convergence de la méthode BC pour
certaines matrices, bien que pour d’autres les interconnections entre partitions ajoutées
par ces réplications est contre-productive. Nous cherchons à développer une méthode qui
permettrait de prendre en compte ces nouvelles interconnections afin de garantir que la
convergence ne soit pas ralentie via la réplication de ligne.
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Améliorations possibles de l’approche C-ABCD

L’approche avec augmentation relâchée sur une grille grossière a été développée dans cette
thèse pour les matrices carrées avec un partitionnement par ligne. Il serait maintenant
naturel d’étendre cette approche à l’utilisation d’un partitionnement par colonnes. La
difficulté principales est alors la construction d’un algorithme CG par blocs qui calcule
simultanément une approximation des contraintes additionnelles et du second membre.
De plus, il serait possible d’étendre l’approche avec augmentation relâchée à des problèmes
non dérivés d’EDP, et possiblement rectangulaires, en construisant la hiérarchie de grilles
via des techniques provenant des méthodes multigrilles algébriques.

En ouverture du Chapitre IV, différentes possibilités sont introduites pour améliorer
l’approche C-ABCD. Une première piste serait d’améliorer l’approximation (très dense)
des équations additionnelles, d’une part via un filtrage de ses entrées, et d’autre part
en calculant une approximation différente, e.g. via des polynômes de Chebyshev. Les
paramètres pour les itérations de Chebyshev sont les valeurs propres de la matrice
d’itération de BC estimées grâce à quelques itérations de la méthode BC avec convergence
linéaire. Une deuxième piste concerne le calcul efficace de la projection sur le bloc W
grâce à une itération de la méthode Kaczmarz par blocs, appliquée toute les quelques
itérations de la méthode BC. Enfin, nous n’avons pu démontrer formellement sous quelles
conditions la convergence linéaire sur les partitions augmentée est garantie...

Preuve formelle d’une convergence linéaire

...ce qui serait une vraie évolution de cette thèse. Pour des problèmes d’EDP spécifiques,
et en utilisant des propriétés algébriques telles que la propriété d’approximation de
l’opérateur de prolongation, il serait peut-être possible de démonter la convergence de
notre nouvelle approche. Il serait particulièrement intéressant de faire le lien avec des
méthodes de décomposition de domaine à 2 niveaux, telles que BDDC ou FETI-DP.



Zusammenfassung
Das Verständnis der Physik hinter komplexen physikalischen Vorgängen ist der Fokus
der numerischen Simulation. Die Modelle hinter diesen Simulationen basieren häufig
auf partiellen Differentialgleichungen (englisch: Partial Differential Equations, kurz:
PDEs), welche mit entsprechenden Randbedingungen versehen sind [111]. Ausgehend
von diesen Gleichungen, werden Diskretisierungsmethoden wie die Finite Elemente
Methode angewandt. Durch die Anwendung auf einem Gitter entstehen oft große,
dünnbesetzte lineare Gleichungssysteme der Form Ax = b [53, 64]. Die Lösung dieser
Gleichungssysteme ist eines der Hauptinteressen des Hochleistungsrechnens oder High
Performance Computings. In den letzten Jahrzehnten wurden unter großem Aufwand viele
Lösungsmethoden, auch Löser genannt, entwickelt, welche in parallel auf Supercomputern
ausgeführt werden können.

Historisch wurden zwei Lösungsvarianten entwickelt [128]. Die direkten Methoden
basieren auf einer Elimination von Unbekannten, welches zu einer Faktorisierung der
Matrix führt. Diese Faktorisierung wird dann benutzt, um eine Lösung zu berechnen
[46, 61]. Die iterativen Methoden verbessern eine Approximation durch sukzessive
Aktualisierungen bis die Konvergenz zu einer gewünschten Genauigkeit erreicht wurde
[75, 114]. Während die direkten Methoden sehr robust in der Problemlösung sind,
sind ihre Kosten hinsichtlich Rechenzeit und Speicherbedarf im Vergleich zu iterativen
Verfahren hoch. Iterative Verfahren hingegen hängen in ihrer Konvergenz stark von der
Problemstellung ab. Die zuletzt eingeführten hybriden Methoden wurden entwickelt, um
die Vorteile von direkten und iterativen Methoden zu kombinieren.

Mehrgittermethoden

Die Anwendung einer Diskretisierung auf eine PDE-Problemstellung kann auf Gittern
mit unterschiedlichen Verfeinerungsstufen geschehen. Dies liefert verschiedene lineare
Gleichungssysteme entsprechender Größe. Unter Verwendung einer Hierarchie solcher
Verfeinerungen basieren Mehrgitter- oder Multigrid-Methoden auf zwei Beobachtungen
[27, 129]. Erstens sind einfache iterative Verfahren in der Lage oszillierende Fehlerkom-
ponenten schnell zu glätten während glatte Komponenten davon kaum berührt werden.
Diese Verfahren werden daher auch Glätter genannt. Zweitens können glatte Funktio-
nen auf gröberen Gittern gut approximiert werden[129]. In einem globalen iterativen
Prozessen kombinieren Mehrgittermethoden die lokale Fehlerreduktion der Glätter mit
einer Grobgitterkorrektur, um schnellstmöglich die Lösung des linearen Systems zu
berechnen. Auf dem gröbsten Level ist das System im Allgemeinen so klein, dass ein
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direkt Löser verwendet werden kann [109, 110]. Die Skalierung von Supercomputern auf
großen Computersystemen ist schwierig. Die Verwendung von Mehrgittermethoden auf
Supercomputern geht zumeist mit einer großen Zahl an Gitterverefeinerungen einher
und das Verhältnis zwischen Gitterpunkten auf dem feinsten und gröbsten Gitter wird
sehr hoch. Beim Übergang zu den gröberen Level verschlechtert sich dann die Effizienz
der Berechnung wenn alle Rechenkerne verwendet werden sollen. In Kapitel I führen
wir eine Agglomeration des Grobgitterproblems auf weniger Prozessoren aus um diesen
Effekt zu vermeiden[101]. Die Konvergenz von Mehrgittermethoden ist theoretisch nur
unter Einsatz von direkten Lösern für das Grobgitterproblem bewiesen [25, 73]. Für
Systeme in denen das Modell oder die Daten mit Unsicherheiten behaftet sind, ist
eine populäre Alternative die Anwendung von iterativen Lösern zur Approximation der
Grobgitterlösung. In Fällen, in denen der iterative Löser Konvergenzschwierigkeiten
aufzeigt, können auch direkte Löser mit approximativem Faktorisierungen verwendet
werden. Letztere haben reduzierte Rechenzeit- oder Speicheranforderungen, sind aber
weiterhin sehr robust. In Kapitel I studieren wir das Multigrid HHG (Hierarchical
Hybrid Grids) Framework[18, 85] für Lösungen von Sattelpunktproblemstellungen aus
der Erdmantelkonvektion mit springenden Koeffizienten und bis zu 1011 Freiheitsgraden.
Wir zeigen eine Verbesserung des gesamten Mehrgitterschemas durch Verwendung von
MUMPS [6] und einer block low-rank Approximation [1, 4] mit einfacher Genauigkeit für
das agglomerierte Grobgitterproblem auf [30]. Dies ist eine wesentliche Verbesserung, z.
B. für Erdmantel-Simulationsszenarien [16].

Block Cimmino iterative und pseudo-direkte Methoden

Gebietszerlegungsverfahren (englisch: Domain Decomposition Methods, kurz: DDM)
sind neben Mehrgittermethoden die bekanntesten hybriden Verfahren [40, 98, 127]. Bei
Gebietszerlegungsverfahren wird das globale lineare System in möglichst unabhängig
voneinander zu lösende Subprobleme zerlegt, um das Beste aus den parallelen Rechner-
strukturen herauszuholen. Auf diesen Subproblemen kann dann in parallel ein direkter
Löser ausgeführt werden. Ein globaler iterativer Prozess kombiniert die erhaltenen Teile,
um die Konsistenz der globalen Lösung zu gewährleisten. Hierbei sind wir insbesondere
an einer Klasse von iterativen Methoden interessiert, die als DDM aufgefasst werden
können[40], die Block-Projektionsmethoden[34, 52, 88]. Basierend auf einer Partition-
ierung der Matrix in Blöcke von Zeilen und Spalten, berechnen diese Methoden sukzessive
Projektionen auf den Unterraum, der von den Partitionen aufgespannt wird.

Unter den Projektionsmethoden sind die Block-Cimmino Iterationen von besonderem
Interesse, da in jeder Iteration die Projektionen unabhängig voneinander berechnet werden
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können. Die Konvergenz der Block-Cimmino-Iterationen ist langsam, aber eine Beschleuni-
gung durch die Verwendung eines stabilisierten Block-Konjugierten-Gradientenverfahrens
(englisch: Conjugate Gradients, kurz CG) beschleunigt werden[11, 112]. Das beschleu-
nigte Block-Cimmino-Verfahren (BC) profitiert von einer Kombination von Iterationsre-
duzierung und der Verwendung effizienter Matrixoperationen [80]. Da die Konvergenz
dieser Methode weiterhin problemabhängig ist, wurde eine Alternative mit zusätzlichen
Variablen und Nebenbedingungen eingeführt, um die Partitionen zu orthogonalisieren.
Block-Cimmino konvergiert in einer Iteration auf diesem augmentierten System und wir
erhalten das pseudo-direkte Augmented Block Cimmino-Verfahren (ABCD) [47, 133]. Die
zusätzlichen Variablen und Nebenbedingungen agieren auf die Verbindungen zwischen den
Partitionen. Geometrisch und in der Sprache der Gebietszerlegungsverfahren führt die
Erweiterung ein Splitting auf dem Interface zwischen Teilgebieten ein. Schlussendlich ist
der zentrale Punkt in ABCD die vollständig parallele Konstruktion eines komprimierten
Schurkomplements. Die Lösung dieser relativ kleinen Matrix kann bei Verwendung eines
direkten Lösers immer noch enorme Speicherkapazitäten verlangen und in solchen Fällen
sind die Block-Cimmino-Iterationen weiterhin eine gute Option. Diese zuvor genannten
Ansätze wurden für die Betrachtung einer Zeilenpartitionierung eines unsymmetrischen
quadratischen Systems entwickelt.

In Kapitel II erweitern wir die iterativen und augmentierten Methoden für Systeme
mit vollem Rang auf die Lösung mit minimaler Norm von unterbestimmten Systemen und
die Lösung von Kleinsten-Quadrate-Problemstellungen [50]. Letztere basieren auf einer
Spaltenpartitionierung der Matrix. Im Falle unsymmetrischer quadratischer Systeme kann
dann zwischen Zeilen- und Spaltenpartitionierung gewählt werden. Hierbei existieren
je nach Anwendungsgebiet große Unterschiede in der Konvergenzgeschwindigkeit oder
Augmentierungsgröße.

Parallele Implementierung des ABCD-Lösers

Um die numerischen Eigenschaften der iterativen und augmentieren Block-Cimmino-
Methode zu verbessern, werden Präprozessierungstechniken wie im ersten Teil von Kapi-
tel III eingeführt, verwendet. Nach Skalierung des Systems durch gleichzeitige Normal-
isierung von Zeilen und Spalten [113] werden die algebraischen Partitionierungsmethoden
diskutiert [42, 112]. Wir unterstreichen die Verwendung von graph-basierten Parti-
tionierern, welche entweder die Konvergenzbeschleunigung des BC-Verfahrens (GRIP
Partitionierer) [126] oder die Minimisierung der Partitionierungsschnittstellen des ABCD-
Verfahrens (PaToH Partitionierer) [32] zum Ziel haben.

Eine neue Augmentierungsmethode erlaubt die Verringerung der Augmentierungsgröße



xxxvi List of Tables

in ABCD und verringert daher auch die Größe des Schurkomplements. Die iterative
BC- und die augmentierte ABCD-Methode wurden sowohl unter Verwendung eines
distributed- (MPI) [71] als auch eines shared-memory (OpenMP) [37] Ansatzes parallel
implementiert. Der Löser folgt dem klassischen hybriden Parallelisierungsschema [133] der
Gebietszerlegungsverfahren: bestimmte Berechnungseinheiten (Master genannt) erhalten
eine oder mehrere Partitionen and berechnen unabhängig und in parallel die zugehörige
Projektion mittels eines direkten Lösers. Im iterativen Schema summieren die Master
ihre Projektionen in parallel und unter Verwendung von MPI Kommunikation auf, um
die vorhandene Approximation zu aktualisieren. Wir führen einen neuen Algorithmus ein,
der die künftige Kommunikation zwischen Mastern minimiert während er einen globalen
Lastausgleich garantiert. Zwei zusätzliche Parallelisierungslevel werden mit dem direkten
Löser verbunden. Die rechenintensiven, dichtbesetzten Kernels werden in shared-memory
parallelisiert. Zusätzliche Recheneinheiten ohne Partitionen, sogenannte Worker, können
mit einem Master verbunden werden, um den direkten Löser in parallel auszuführen.

Wir zeigen, dass die Auswahl der Recheneinheiten als Master oder Worker, je nach
ihrer Position in der parallelen Rechnerarchitektur, zur Laufzeit einen wichtigen Effekt
hat. Die Verteilung der Mastereinheiten über die Rechenknoten erhöht die Effizienz des
Cachezugriffs deutlich und sorgt für eine Beschleunigung des ABCD-Lösers. Wir zeigen
außerdem gutes Verhalten des ABCD-Lösers in Bezug auf seine Ausführungszeit und
seinen Speicherbedarf, verglichen mit hochmodernen direkten Lösern wie MUMPS 7 [6]
für quadratische oder QR MUMPS 8 [29] für rechteckige Matrizen.

Multigrid-inspirierte Relaxierung der Augmented Block-Cimmino-Methode

Während die iterative Methode niedrige Speicheranforderungen hat, ist ihre Konver-
genz problemabhängig. Die augmentierte Methode konvergiert im Gegenzug nach einer
Iteration, hat je nach Größe des Schurkomplements aber einen unzumutbar hohen Spe-
icherbedarf. Im Kontext der diskretisierten PDE-Problemstellungen [53] ist es möglich die
Partitionierung basierend auf der Gebietsgeometrie zu wählen. Die Größe des Schurkom-
plements steht dann im Verhältnis zur Größe des Interfaces zwischen den Teilgebieten.
Motiviert durch Mehrgittermethoden nutzen wir eine Gitterhierarchie. Ein natürlicher
Weg die Größe des Schurkomplements zu reduzieren besteht in der Augmentierung der
Matrix, basierend auf einer gröberen Repräsentierung des Interfaces zwischen den Teil-
gebieten. Durch die Wahl eines bestimmten Grobgitterlevels können wir die Größe der
Augmentierung kontrollieren. In Kapitel IV demonstrieren wir, dass die Block-Cimmino-

7http://mumps-solver.org/
8http://buttari.perso.enseeiht.fr/qr_mumps/

http://mumps-solver.org/
http://buttari.perso.enseeiht.fr/qr_mumps/
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Methode, angewandt auf eine Matrix, die wie beschrieben augmentiert wurde, eine schnelle
lineare Konvergenz für viele Systeme aus zweidimensionalen PDE-Problemstellungen
aufweist. Die zentrale Aufgabe dieses Ansatzes ist die Konstruktion und Lösung der
zusätzlichen Nebenbedingungen im System und daher der Schurkomplementmatrix. We
führen eine Konstruktionsmethode, basierend auf der BC-Anwendung mit linearer Kon-
vergenz auf kanonische Vektoren, ein. Die den Nebenbedingungen zugehörige rechte Seite
wird während der Konstruktion gleichzeitig aktualisiert. Der Nachteil dieser Methode
ist, dass die erhaltenen Nebenbedingungen dichtbesetzt sind. Schlussendlich führen wir
Vorkonditionierungsmethoden für das Schurkomplement ein [75]. Hierbei werden seine
Inverse als iterative Summe von Projektionen ohne explizite Kobnstruktion angewandt.

Ausblick und künftige Arbeiten

Nicht-disjunkte Partitionierung

Die Block-Cimmino-Methode als Gebietszerlegungsverfahren betrachtend ist ihre natürliche
Weiterentwicklung die Einführung von Gebietsüberlappungen [40]. In diesem Kon-
text entsprechend Überlappungen nicht-disjunkten Partitionierungen für BC. In Ab-
schnitt III.1.2.e führen wir eine Methode ein, welche iterativ eine existierende Partition-
ierung verbessert indem sie einige Zeilen dupliziert. Die Wahl der duplizierten Zeilen
basiert auf den Werten der Normalengleichungen, inspiriert durch den GRIP Partitionierer
[126]. Die Verdopplung dieser Zeilen kann für einige Problemstellungen zur effizienten
Beschleunigung der BC-Konvergenz führen, für andere Systeme sind die hinzugefügten
Verbindungen zwischen zuvor unverbundenden Partitionierungen kontraproduktiv. Ziel
weiterer Forschung ist die Findung eines Algorithmus’, der diese Verbindungen betrachtet
und zur Konvergenzbeschleunigung beiträgt.

Mögliche Verbesserungen der relaxierten Augmentierung

Der Mehrgitter-inspirierte augmentierte ABCD wurde in dieser Arbeit für Zeilenparti-
tionierungen entwickelt. Der nächste natürliche Schritt ist die Erweiterung auf Spal-
tenpartitionierungen.

Die Hauptschwierigkeit ist die Konstruktion eines Block-CG-Verfahrens für die gle-
ichzeitige Approximation der Nebenbedingungen und der zugehörigen rechten Seite.

Um die Methode auch für Aufgabenstellungen, welche nicht aus partiellen Differential-
gleichungen resultieren, anwendbar zu machen, können algebraische Mehrgittertechniken
betrachtet werden. Da die Mehrgitterkomponenten hierbei direkt aus den Matrixeinträgen
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generiert werden, wird hierfür allerdings kein theoretischer Beweis erwartet.

Formal proofs of linear convergence

...was die eigentliche Entwicklung dieser These wäre. Für spezielle PDE-Probleme, oder
unter Verwendung von algebraische Eigenschaften aus den Mehrgitterelementen wie z.B.
die Approximationseigenschaft, it wäre es möglich, einige Eigenschaften hinsichtlich der
Konvergenz unseres neuen Ansatzes aufzuzeigen. A besonders interessante Möglichkeit
ist, diese Methode als 2-Ebenen-DDM zu interpretieren und die direkte Beziehung zu
bestehenden Methoden wie BDDC und FETI-DP [90].



Introduction

Deep in the human unconscious is a
pervasive need for a logical universe
that makes sense. But the real
universe is always one step beyond
logic.

Frank Herbert, Dune

Scientific computing for system simulation is a hot topic for research and was one
of the major reasons behind the development of high performance computing (HPC)
facilities. Taking the example of nuclear fusion reactors or the simulation of Earth mantle
convection, the comprehension of the physics behind complex physical problems require
simulations when in-situ experiments are not feasible[111].

These simulations use models often based on partial differential equations (PDEs)
coupled with some boundary conditions [53]. The discretization of these systems of
equations with high resolution meshes results in huge sparse systems of equations [122]
of the form Ax = b. This process is typical of recent large scale projects, e.g. the
German funded project Terra-Neo9 [16] (Integrated Co-Design of an Exascale Earth
Mantle Modelling Framework), as illustrated in Figure 1. The goal of this project is the
simulation of the Earth mantle convection in order to gain new insights on the driving
forces for the plate tectonics, as well as on the causes of earthquakes and formation of
mountains.

Great efforts were spent in the last decades in order to design solution methods for
these linear systems, called solvers, executed in parallel on supercomputing facilities
[41]. While solution methods for very small linear systems can already be found in

9https://terraneo.fau.de/
10https://www.universetoday.com/40229/what-is-the-earths-mantle-made-of/

https://terraneo.fau.de/
https://www.universetoday.com/40229/what-is-the-earths-mantle-made-of/
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{
−ν∇2u+∇p = f in Ω,
∇ · u = 0 in Ω,Model Ax = b

solutionInsights

Figure 1 The numerical simulation process involves the solution of sparse linear systems
from the discretization of PDEs.

Source: Earth composition from Universe Today; simulation and matrix generated from LSS FAU10

ancient Chinese texts [118], the history of modern solvers started with the introduction
by Gauss of a technique based on the elimination of unknowns which gives a method to
solve square linear systems of any size [61]. Two kinds of solvers were then developed.
The direct methods are based on the factorisation of A in a specific form using the
elimination of unknowns [46]. The technique used is directly inherited from the Gaussian
elimination for square matrices, and using other methods such as the QR factorisation for
rectangular matrices [69]. As for the iterative methods, they improve an approximation
in a succession of updates until the convergence to a desired accuracy has been reached
[9, 105]. While direct methods are robust with respect to the problem solved, their cost
in terms of computation and memory is high compared to the iterative methods, for
which the convergence is very dependent on the problem.
Lastly introduced, the hybrid methods were built in order to benefit from the advantages
of both direct and iterative methods. The topic of this thesis is the study of some hybrid
methods, for square and rectangular systems, designed in order to be efficient on large
scale supercomputers, with a special emphasis on systems arising from the discretisation
of PDE problems.

In Chapter I, we first introduce the different aspects of this topic. In particular,
we study the multigrid methods, which use a hierarchy of grids with various levels of
refinement to get fast methods [27, 129]. These multigrid methods are motivated by
two facts [23]. First, some classes of iterative methods, called smoothers, have been
observed to reduce quickly the oscillatory error components in a linear system, while
keeping smooth components almost untouched. Secondly, the smooth functions are well
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represented on a coarser grid level where they appear comparatively more oscillatory, and
smoothers can again be applied efficiently. In a global iterative process, the multigrid
methods recursively combine the local error reduction of smoothers with coarse grid
corrections to rapidly compute the solution of the linear system. Considering the coarsest
level, the corresponding linear system is generally considered small enough such that a
direct solver can be applied.

The main focus in Chapter I is how to improve the efficiency of the multigrid schemes
on large computing systems. Making multigrid methods scale, in the sense that they
fully use the available computing power, is very difficult [109, 110]. In particular, an
issue arises on the coarsest grid level where the size of the problem is so small that the
computing efficiency deteriorates [101]. Typically, an agglomeration of the coarse grid
data to solve on fewer processors can be used to compensate for this effect. On another
line of idea, the convergence of multigrid methods is theoretically proven only when a
direct solver is applied on the coarsest grid [25, 73]. For systems where the model and/or
the data present some incertitude, a popular alternative is to only approximate the coarse
grid solution using an iterative method with an appropriately chosen accuracy. In cases
where the iterative solver has trouble converging, the use of a direct solver can then be
advantageous. In order to further decrease the amount of computations and memory
consumption, it is finally possible to combine the direct solver with an approximated
factorisation.

This particular approach is the main contribution in Chapter I where we study the
solution, using the multigrid Hierarchical Hybrid Grids framework (HHG) [18, 85], of a
saddle-point problem with jumping coefficients up to 1011 degrees of freedom, inspired
from Earth’s mantle convection [14]. We then use the parallel direct solver MUMPS on
the agglomerated coarse grid problem, combined with a block low-rank approximation
[1, 4]. and the use of single precision arithmetic, to accelerate the computation. As a
result, we demonstrate an overall improvement of the parallel scalability of the multigrid
scheme thanks to the use of the MUMPS solver compared to the typical use of an iterative
method on the coarse grid.

In the following chapters, we study some other hybrid methods based on the block
projection techniques [52]. As suggested by their name, these methods are base on a
partitioning of the matrix into blocks of rows or columns, and compute the solution
through successive projections on the subspaces spanned by these partitions, e.g. using a
direct solver. Among the projection methods, the block Cimmino iterations is of special
interest in parallel computing since the projections are summed and can be computed
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independently. This method is then hybrid in the sense that an instance of a direct solver
is executed in parallel on each subproblem, and a global iterative method combines the
obtained parts to ensure the consistency of the global solution. This scheme is typical
of a classical type of hybrid solvers called the Domain Decomposition Methods (DDM)
[40, 127]. The convergence of the block Cimmino iterations, geometrically linked to the
principal angles between subspaces spanned by the partitions, is known to often be slow.
An acceleration of the iterations is possible through the use of a stabilised block conjugate
gradient (CG) algorithm [11, 112]. The accelerated block Cimmino (BC) takes benefit
from a combination of iteration reduction, and the use of computationally efficient matrix
operations. As the convergence of this method remains problem dependent, an alternative
was proposed based on the augmentation of the original system with additional variables
and constraints in order to orthogonalize the partitions. Block Cimmino applied on
the augmented system is guaranteed to converge in one iteration, and we obtain the
pseudo-direct Augmented Block Cimmino method (ABCD) [47, 133]. The additional
variables and constraints are acting on the interconnections between partitions. Using the
language of DDM, the augmentation introduces a splitting on the interfaces between sub-
domains. Finally, the central point of ABCD is the embarrassingly parallel construction
of a condensed Schur complement matrix [133]. The solution of this relatively smaller
matrix, using a direct solver, can require a large amount of memory, and in such case the
block Cimmino iterations stay a good option. These two approaches were developed using
a row partitioning for the solution of unsymmetric square systems. In Chapter II, we
extend the iterative and augmented methods to full rank systems with the minimum-norm
solution of underdetermined systems, and the solution of least-squares problems. The
latter is based on a column partitioning of the matrix. In the case of unsymmetric square
systems, the choice is then open between row and column partitioning which makes a
large difference, in terms of convergence speed or augmentation size, for a wide range of
applications.

In order to improve the numerical properties of the block Cimmino iterative and
augmented methods, preprocessing techniques are applied, introduced in the first part
of Chapter III. After scaling the system by a simultaneous normalisation of both rows
and columns [113], the algebraic partitioning methods used are discussed. We emphasise
the use of graph-based partitioners which specifically aim either at the acceleration of
the convergence of the BC method, with the numerically-aware partitioner GRIP[126],
or at the minimisation of the size of the augmentation in the ABCD method, with the
hypergraph partitioner PaToH[32]. A new augmentation method additionally allows to
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decrease the augmentation size in ABCD, and thus the size of the Schur complement.
The second part of the Chapter III, focuses on the implementation of the iterative

method BC and the augmented method ABCD in the ABCD-Solver, based on MPI
processes [71] (distributed) and OpenMP threads [37] (shared-memory). We introduce the
hybrid parallelism of the ABCD-Solver [133]. From a partitioning of the matrix, specific
MPI processes, called master, receive one or more partitions in order to compute the
associated projection with a direct solver at each iteration. Concerning the distribution
of partitions, we propose a new algorithm whose goal is to minimise the communication
between masters, while keeping a global balance in workload. Two additional levels of
parallelism are associated with the direct solver. The computationally intensive dense
kernels used internally are parallelised in shared-memory [80]. Additionally, processes
with no partitions, called workers, can be linked to a master to execute the direct solver
in parallel [6]. We show that deciding which computing unit is a master or a worker
depending on their place in the parallel architecture at runtime has an important impact.
In particular, we propose an approach where the masters are spread over the nodes to
accelerate the execution time of the ABCD-Solver. We finally compare the behaviour of
the ABCD-Solver with the state-of-the-art direct solvers MUMPS11, for square matrices,
and QR-MUMPS12, for rectangular matrices.

While the iterative BC method has low memory requirements, its convergence is
problem dependent. The augmented method, on the contrary, converges in 1 iteration
but is highly dependent on the solution of the Schur complement which solution can
require prohibitive amounts of memory. In the context of discretized PDE problems, it
is possible to choose the partitioning based on the geometry of the domain, then the
size of the Schur is linked to the size of interfaces between subdomains. From multigrid
methods, we use the idea of a hierarchy of grids. A natural way to decrease the size
of the Schur is then to augment the matrix based on a coarser representation of the
interfaces between subdomains. Through the choice of a specific coarse grid level, we
can control the size of the augmentation. In Chapter IV, we demonstrate that the block
Cimmino applied on the partitions augmented this way has a fast linear convergence for
a wide range of systems arising from the discretisation of 2D PDE problems. We then
introduce first tracks in order to efficiently construct the closure equation, including the
Schur complement, with and without explicit construction.

11http://mumps-solver.org/
12http://buttari.perso.enseeiht.fr/qr_mumps/

http://mumps-solver.org/
http://buttari.perso.enseeiht.fr/qr_mumps/


6 Introduction

Dear reader, I wish you a pleasant reading !



Chapter I

On the coarse grid solution of
massively parallel multigrid

We [Irving Kaplansky and Paul
Halmos] share a philosophy about
linear algebra: we think basis-free, we
write basis-free, but when the chips
are down we close the office door and
compute with matrices like fury.

Irving Kaplansky

In scientific computing, the models behind simulations often involves the solution
of large sparse linear systems of the form Ax = b coming from the discretisation of
Partial Differential Equations (PDE) coupled with some boundary conditions [111]. In
Section I.1, we start with the introduction of the PDE problems studied in this thesis
and their discretisation [53]. We are especially interested in a simplified Stokes problem
derived from the study of Earth mantle convection.

Great efforts were spent in the last decades in order to design solvers executed in
parallel on supercomputing facilities. In Section I.2, we detail the issues involved in the
development of efficient solvers in the context of High Performance Computing (HPC)
using hybrid methods. Among these hybrid methods, there two main classes: the domain
decomposition methods [40] and the multigrid methods [27]. In Section I.3, we then focus
on improving the parallel efficiency at extreme scale of a multigrid scheme, using the
Hierarchical Hybrid Grids framework [18, 85], thanks to a new combination of modern
tools applied for the solution of the problem on the coarsest grid level.
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The content of this chapter is derived from the article submitted to Wiley’s Journal
Numerical Linear Algebra with Applications in April 2020 ”Block Low Rank Single Preci-
sion Coarse Grid Solvers for Extreme Scale Multigrid Methods”, A. Buttari, M. Huber,
P. Leleux, T. Mary, U. Ruede, & B. Wohlmuth.

I.1 Partial Differential Equations and their discretization

Throughout this thesis, we consider several PDE problems which we introduce here. Only
the flavour of what is required for the study of PDEs and their discretization is given
here. For more details on this large topic of applied mathematics, see e.g. [53]. We focus
on 2 classes of PDE problems.

I.1.1 Classical PDE problems

I.1.1.a Incompressible fluid flow

First, let’s consider a Newtonian fluid of density ρ and viscosity µ moving in a 2 or 3
dimensional space Ω bounded by a surface ∂Ω. We note the velocity of the fluid u, and
the pressure p. f represents external body forces. Using the fundamental principles of
conservation of mass, momentum, and energy, we derive the non-linear Navier-Stokes
equations

ρ

(
∂u

∂t
+ u · ∇)u

)
= −∇p+ µ∇2u+ ρf in Ω,

∇ · u = 0 in Ω.

These equations are the basis of practical models for incompressible viscous fluid flow when
combined with boundary conditions and initial data. We are focusing on steady − state
problems here and thus remove the time dependent term. When considering the kinematic
viscosity ν = µ

ρ , we obtain the steady-state Navier-Stokes equations

−ν∇2u+ u · ∇u+∇p = f in Ω,
∇ · u = 0 in Ω.

(I.1)
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The Stokes equations

−ν∇2u+∇p = f in Ω,
∇ · u = 0 in Ω,

(I.2)

characterise the behaviour of so called Stokes flow. These are fluids flowing through
narrow spaces and/or with a small velocity. As the viscous effects are dominating the
inertial effects, a good approximation can still be obtained when dropping the non-linear
quadratic term u · ∇u from the Navier-Stokes equations (I.1), directly giving the linear
Stokes equations (I.2).

These equations are particularly interesting for the simulation of Earth mantle con-
vection, since the mantle is considered as an incompressible flow with a high viscosity,
see Section (I.1.3). More realistic convection models sometimes include compressible flow
formulations, pressure/temperature/strain dependent fluid viscosity, or sudden jumps
of material properties [76]. E.g. the viscosity can abruptly vary by several orders of
magnitudes due to steep temperature gradients between cold, subducting slabs and hot
mantle material [124].

The Convection-Diffusion equation

− ν∇2u+−→w · ∇u = f in Ω, (I.3)

is obtained from the Navier-Stokes equations (I.1) after dropping the pressure and lin-
earising the quadratic term u · ∇u through −→w · ∇u, where −→w is known and often called
the wind. This equation characterises the velocity of a fluid subject to a diffusive, and a
convective effects.

The Poisson equation
−∇2u = f in Ω,

is the most famous elliptic partial differential equation. It is obtained when neglecting
any convection effect in the previous equation (I.3). The homogeneous case f = 0 is
called the Laplace equation.

I.1.1.b Wave equation

The second class of PDE problems we consider is derived from the wave equation. After
using the technique of separation of variables to distinguish time and spatial parts of the
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solution, the spatial component is the solution of the Helmholtz equation

−∇2u− k2u = f in Ω. (I.4)

I.1.1.c Boundary conditions

Boundary conditions on u in ∂Ω must be defined such that the problem to solve is
well-posed. There are three kind of conditions

1. Dirichlet u = vD: specifies the value of the function on the boundary,
2. Neumann ∂u

∂−→n = vN : specifies the value of the normal derivative on the boundary,
3. Robin ∂u

∂−→n + αu = vR, α 6= 0: specifies the value of a linear combination of u and
its normal derivative.

Different boundary conditions can be used on different parts of the boundary ∂Ω.
In this chapter, we focus on the solution of saddle point problems arising from the

Stokes equation (I.2), see Section I.1.3. Discretised problems based on the Poisson,
convection-diffusion, and Helmholtz equation are used in Chapter IV. These 3 types of
linear systems are typically used to assess the efficiency of a linear solver as the behaviour
of solvers is generally dependent on the problem. In particular, Helmholtz equation and
the convection-diffusion equation, with dominant convection effect, are known for giving
hard linear systems to solve due to their numerical properties.

I.1.2 Discretization schemes

Many discretization techniques exist, each with their own pros and cons. We can cite
among the usual methods

• Finite difference methods (FDM): these methods approximate derivative terms
through truncated Taylor series. Combined with structured grids, these may be
the easiest to implement and mostly encountered methods.

• Finite element methods (FEM): these are based on a finite subspace of the problem
solution space. The solution is constructed from the basis functions spanning this
subspace. These methods are very general and used to model complex problems
and geometries. Thanks to their flexibility and adaptability, they make a powerful
set of tools to model problems, from the Poisson equation to structural mechanics.

Note that The discretization of the PDE problems naturally involves the introduction of
discretization error, i.e. that the discrete solution may be computed exactly but it is still
different than the physical solution of the PDE problem. The use of a finer discretization
when needed or more complex discretization methods such as Hybridised Discontinuous
Galerkin (HDG) [35] can overcome this situation.
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In this thesis, we introduce several methods for the solution of such sparse linear
systems obtained using the FEM. In this chapter, we are interested in a challenging
application inspired from the Earth mantle convection simulation.

I.1.3 Stokes on a spherical shell

Let Ω = {x ∈ R 3 : rcmb < ‖x‖2 < rsrf} be a spherical shell, where rcmb = 0.55 and
rsrf = 1 correspond to the inner and outer mantle boundary. We consider the generalised
Stokes problem with velocity u and pressure p of the form

−∇ ·
(
ν

2 (∇u+ (∇u)>)
)

+∇p = f in Ω,

∇ · u = 0 in Ω,
u = vD on ∂Ω.

(I.5)

The forcing term is given by f = Ra τ x
‖x‖ , where Ra = 3.49649 · 104 is the dimensionless

Rayleigh number and τ the normalised Earth’s mantle temperature, as obtained from
real-world measurements [120]. vD is the Dirichlet boundary conditions, and ν is the
positive scalar viscosity. We impose non-homogeneous Dirichlet boundary conditions
derived from plate velocity data obtained by [104] on the surface and no-slip conditions at
the core-mantle boundary. Here we assume that vD satisfies the compatibility condition∫
∂Ω vD · ~n ds = 0 where ~n is the unit outer-normal.

We discretize Ω by an initial tetrahedral mesh T0 following a polar decomposition,
see Figure I.1. Then, we construct by uniform mesh refinement a hierarchy of meshes
T0 = {T`, ` = 0, . . . , L}, L > 0.

Figure I.1 2D discretization of a circle with 6 divisions in the radial direction and 12
divisions in the tangential direction.

For the discretization of (I.5), we apply the equal-order linear finite elements for
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velocity and pressure, see e.g. [53]. This equal-order discretization is known to be
unstable and must be stabilised [26]. To this end, we apply the pressure stabilisation
Petrov-Galerkin (PSPG) technique [83]. Using (component-wise) nodal basis functions
for velocity and pressure, we obtain a hierarchy of 2× 2-block structured linear systems
of the form (

A` G`

D` −C`

)(
u`

p`

)
=
(
f`

vD`

)
, (I.6)

with u` ∈ R nu;` and p` ∈ R np;` . The dimensions of the velocity and the pressure space
are denoted by nu;` and np;`. The divergence of the deviatoric stress operator in (I.5)
is be associated with A`, the gradient with G`, and the divergence operator with D`.
The C`-block originates from the PSPG-stabilisation. Problems of this structure are
found in mantle convection simulations where they represent the most time-consuming
computational tasks [14].

The viscosity in such problems can vary by several orders of magnitude and is
typically non-linearly depending on u. In particular, we consider either the iso-viscous
case (ν(x, T ) ≡ 1) or a viscosity profile, similar to the one used in [38], given by lateral
and radial variations

ν(x, T ) = exp
(

2.991− ‖x‖2
1− rcmb

− 4.61 T
)

1
10 · 6.3713d3

a for ‖x‖2 > 1− da,

1 otherwise,
(I.7)

where da is the relative thickness of the asthenosphere. Thus, the Earth mantle is assumed
to have layers with different viscosity characteristics. In particular, the asthenosphere,
i.e. the outermost layer is assumed to be mechanically weaker. In the geophysics
community, determining its depth is still an open research question [14, 38]. Here, we
choose a depth of 410 km that corresponds to a viscosity jump by a factor 145.

Equation (I.6) can now be solved. Note that geodynamic simulations are subject to
several types of errors, e.g., model or measurement error. In this particular context, we
consider that a reduction of the residual by 5 orders of magnitude is suitable to obtain
a solution with an appropriate accuracy. The efficient solution of this block system on
large scale computations is studied in a number of recent articles [28, 123]. Combined
with agglomeration techniques and an approximate direct solver on the coarse grid, we
propose a scalable approach based on the multigrid framework HHG in Section I.3.
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I.2 Linear solvers and High Performance Computing

In order to implement efficient numerical algorithms for the solution of sparse linear
systems on modern computing architectures, one must first get a good understanding
of the underlying techniques used to increase performance. Then, there remains the
question of which linear solver should be chosen. Historically, two classes of solvers have
been studied, namely direct and iterative, and the choice is based on the properties
of the linear system. Lastly, hybrid techniques were designed in order to benefit from
the advantages of both approaches, while making the best use of parallel computing
architecture. The purpose of this section is to introduce the basic knowledge on High
Performance Computing (HPC) and linear solvers to comprehend the contribution of
this thesis.

I.2.1 High Performance Computing

Over the last 50 years, advances in the technology of processors have lead to a widening
gap between the performance of processors (CPU) and the performance of memory, i.e.
latency reduction. In 1975, Gordon Moore predicted that the number of transistors fit in
a single processor would double every 2 years [102, 103]. This trend has been verified up
until now for CPUs however, similar improvement in the access to memory takes around
7 years leading to a Processor-Memory performance gap growing of around 50% every
year, see Figure I.2.

I.2.1.a Sequential performance: NUMA and ILP

In order to decrease the impact of this gap, chip designers used the principle of locality
[77]. This principle states that if some data or instructions have been used recently in a
program, they are likely to be reused soon (temporal locality), also data close in memory
to the current data is likely to be used soon (spatial locality).

Based on the principle of locality, most modern architectures use a hierarchy of
memory (NUMA or Non-Uniform Memory Access) including several levels of increasing
capacity and decreasing speed. Usually, the cores have some internal registers, then there
are 1 to 3 levels of cache memory inside the CPU, and finally we find the main memory,
the RAM, see Figure I.3. The general idea is to load once, in the right level of cache, data
and instructions likely to be reused in order to decrease the amount of (slow) accesses to
the main memory. Issues still arise, e.g. coherency issues or cache misses,but through a

1https://github.com/karlrupp/microprocessor-trend-data

https://github.com/karlrupp/microprocessor-trend-data
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Figure I.2 Qualitative representation of the evolution for the CPU and Memory
performance over the last 48 years.

Inspirations: CPU vs Memory from [77]; other trends from K. Rupp1.

careful use of special structures in the code one can improve the efficiency of a program
several folds.

Figure I.3 Common memory hierarchy for modern computing architectures.
Source: http://blog.zorangagic.com/2013/11/memory-hierarchy.html

Another aspect of modern computing processors is the Instruction Level Parallelism
(ILP). This term refers to a set of techniques allowing high processor throughput by

http://blog.zorangagic.com/2013/11/memory-hierarchy.html
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increasing the number of instructions (e.g. the sum of 2 floating point numbers) which
can be performed during each clock cycle. Historically, ILP evolved from pipelining to
current Multiple-Issue processors with, in particular, Intel’s famous Advanced Vector
Extensions which allow e.g. 16 double precision floating point instructions per cycle on
Haswell architectures.

I.2.1.b Parallel programming

The latest challenge chip designers had to face was the limit of clock frequency in CPUs.
While the frequency of processors increased steadily up to 4.7GHz in 2007, see Figure I.2,
the heat generated at such frequency was a real issue (among other aspects). Then the
frequency stagnated, which naturally brought chip designers and developers to a new era:
multi-core processors and parallel programming. Now instead of hoping for ever better
sequential performance, the idea is to use multiple computing resources concurrently and
coherently. There are two types of parallel programming models

1. Shared memory parallelism occurs at the level of a single processor. In modern
chips, cores are often separated in 2 sets, called NUMA domain or sockets, which
share a same L3 cache allowing faster computation inside a single socket. These 2
sockets share the same main RAM memory. Computing units, called threads, then
run on the physical cores concurrently and perform asynchronous read/write in
memory.

2. Distributed memory parallelism allows units, called processes, to run on separate
processors simultaneously, and cooperating for a global computation. These pro-
cesses exchange data via messages. As the processes run on separate processors,
this communication is carried on an interconnection network very slow compared
to what access to the RAM memory is capable of. One of the goals in distributed
programming is also to minimise the amount of communications.

In this thesis, we use the parallel programming with OpenMP (Open Multi-Processing)
[37], using threads concurrently in shared memory, and with MPI (Message Passing
Interface) [71], using distributed processes communicating through messages. MPI-
OpenMP Hybrid parallel programming is possible which combines both programming
models. In this case, the classical approach is based on divide-and-conquer. Considering
a parallel computation, the complete problem is divided in evenly sized subproblems.
Each subproblem is handled by a distributed process using threads for a shared-memory
parallelism. The local result is then sent to the other processes. When dividing the global
problem, one of the main issues is to find a good trade-off between subproblems with
similar sizes and minimised communications between processes.
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Once a parallel program has been implemented, remains the question of its scalability
i.e. the evolution of its execution time depending on the amount of resources used
and depending on the size of the problem. Considering tsn the execution time of the
program with n computing units on a problem of size s. The usual measure is the
Speedup Su = ts1/t

s
n. 2 classical studies of scalability are possible. The strong scaling

considers a fixed problem size s and focus on the evolution of the execution time compared
to sequential when increasing the computing resources. We define the strong scaling
efficiency as

ESS = ts1
n× tsn

.

The weak scaling focuses on the evolution of the execution time compared to sequential
when considering a fixed problem size per unit with an increasing number of computing
units. We define the weak scaling efficiency as

EWS = ts1
tn×sn

.

For a perfectly scaling application, both ESS and EWS are close to 1. In practice, textbook
scalability is very hard to obtain, both because of software issues (increasing amount of
communication, low granularity of subproblems, . . . ) and hardware issues at very large
scale.

As the end of Moore’s law has been announced for the coming years [94], increasing
amounts of efforts will be needed in terms of software design and parallel methods in order
to tackle more challenging issues. Researchers are now preparing for upcoming exascale
supercomputing centers [41], see the evolution on the TOP500 biannual ranking2. This
is particularly the case for extreme scale simulations, and one of their most consuming
part: the solution of very large sparse linear algebra systems.

2https://www.top500.org/

https://www.top500.org/
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I.2.1.c Numerical linear algebra

The solution of linear systems can be traced back to 2 000 BC when the Babylonians
knew how to solve 2×2 systems, while the Chinese were already able to solve a 6×6 linear
system working on its numerical coefficients in 200 BC [118]. Then the tools opening the
era of modern linear solvers appeared fairly recently, starting with the introduction of the
determinant by Leibniz in 1693. Then, Cramer introduced a rule giving the solution of a
square full rank system in 1750, without proof at the time. Finally, Gauss introduced in
1811 the famous systematic procedure now known as Gaussian elimination ([91], chapter
5). Nowadays, this method of elimination is still central for a class of solvers called the
direct methods. The other classical type, the iterative linear solvers, is also linked to
Gauss [115] who worked on such methods from the early 19th century, with Jacobi or
Seidel [75]. Even now, great efforts are spent in order to improve these methods and
make them usable for extreme scales, both in terms of cheer system sizes (now up to 1012

unknowns [93]) and computing resources.

Direct solvers
Direct solvers are methods based on the elimination of unknowns. Depending on the
properties of the system, several methods exist. Commonly, Gaussian elimination is used
for the solution of square linear systems [46], and the QR decomposition for the solution
of least squares systems or to solve eigenvalues-problems [128].

Here, we consider the case of square linear systems of the form Ax = b with A an
invertible matrix of size m × m, x and b vectors of size m. In this case, we can use
the Gaussian elimination. This approach is the main method used on computers. The
Gaussian elimination factorises the matrix A as A = LU , with L and U respectively
lower and upper triangular matrices. This LU-factorisation is performed by substracting
multiples of each row, divided by the diagonal element called pivot, from subsequent rows.
The process requires O(2

3m
3) operations. Once the factorisation has been computed, the

solution x for any particular right-hand side b is then computed through cheap forward
elimination Ly = b, and backward substitution Ux = y. The advantage is that, once
the cost of the factorisation is paid, multiple right-hand sides can be solved with a low
number of operations (O(m2)).

Algorithms are constrained by floating point arithmetic on computers, far from the
world of exact arithmetic. In this context, numbers are represented with a floating point
format. We call machine precision, noted εmachine, the difference between a real number
and its closest representation. This difference implies a rounding error from each floating
point operation (flop), e.g. addition, multiplication, or division. Despite the individual
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rounding errors are small, they remain far from negligible. In the Gaussian elimination,
a pivot close to 0 can give an erroneous decomposition leading to wrong solutions. We
say that classical Gaussian elimination is not backward stable [128].

The stability can be improved via preprocessing techniques such as scaling the
matrix or techniques called pivoting. Pivoting consists in permuting the order of rows
and columns of the matrix in order to avoid very small pivots. Obtaining an optimal
reordering is an NP-complete problem but good heuristics exist, such as partial pivoting
where better pivots are searched in the current column of the elimination [46]. Other
pivoting techniques are found in modern direct solvers, e.g. using 2× 2 pivots in MUMPS
[6]. The condition number of a matrix is defined as

κ(A) =
∥∥∥A−1

∥∥∥ ‖A‖ .
This number measures both the sensitivity for the forward and backward operations, and
does so for perturbations in x and also in A [128]. If we use the l2-norm, the condition
number is then κ(A) = σmax

σmin
where σmax and σmin are the largest and smallest singular

values of A. κ(A) is fundamental in numerical linear algebra and defines how accurately
a system can be solved. Even in the presence of very ill-conditioned systems, direct
solvers have the property to stay very robust as they guaranty to get a scaled residual of
the order of machine precision. One should still expect to lose log10κ(A) digits in the
solution computed by an algorithm with floating-point arithmetic.

The cost of direct methods stays a bottleneck in the general case: O(mn2) flops for
an m× n matrix. Taking advantage from the structure of the matrix to solve is a way to
gain several orders of magnitude. In particular, matrices are often built such that most
elements are zero on purpose, called sparse matrices. As seen in the previous section, one
of the most important source for such matrices is the discretization of PDEs problems.
The SuiteSparse Matrix Collection3 [39] offers a database of sparse matrices from various
real-world applications.
How much zeros to consider a matrix sparse ? There is no strict answer, usually we
consider a matrix sparse as soon as we can positively exploit only its non-zeros. We
note nz the number of non-zeros for a matrix A ∈ R m×n, then nz � m× n. There are
multiple advantages to sparse matrices [46]

• Storage: matrices generated from the discretization of PDEs problems can be
arbitrarily large, which ultimately gets prohibitive for storage. Several special

3https://sparse.tamu.edu/

https://sparse.tamu.edu/
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structures have been developed to store only the non-zero elements while allowing
efficient algebraic operations on matrices.

• Computation: only using the non-zero elements means less computation to perform
at all stages. For a comparison, considering a sparse matrix A and a dense vector
x, while the dense matrix-vector product Ax requires O(n2) operations, the sparse
equivalent requires only O(nz) operations. Dedicated libraries, e.g. sparselib++,
exist to implement these sparse operators.

• Parallelism: the fact that a matrix is sparse means that independence between
variables is high and exploiting this independence is the basis of the parallelism for
parallel solvers.

A lot of modern parallel solvers have been developed in recent years to exploit
efficiently the sparsity of matrices for sparse Gaussian elimination. The goal of these
methods is to exhibit dense submatrices which are then processed using standard dense
linear algebra kernels [33]. The main difficulties when using sparse LU factorisation is the
so-called fill-in: upon factorisation the L and U factors may exhibit a lot more non-zeros
than the original matrix [46]. Diverse reordering methods are used to prevent this issue,
such as AMF[5] (Approximate Minimum Fill-in) or the use of graph-partitioning methods
(SCOTCH[107], METIS[89]).

Two classes of sparse LU solvers can be distinguished: Multi-frontal methods[49], e.g.
MUMPS[6], and the Supernodal methods, e.g. Pardiso[116], PasTiX[78] and SuperLU[97].
In both methods, an assembly tree is constructed which defines the dependence between
dense submatrices and is a key ingredient for parallelism. Those dense submatrices are
then processed by parallel standard dense linear algebra kernels. The basic difference
between them is how this assembly tree is exploited. See e.g. [46] for a detailed description
of these methods. Note that parallel direct solvers for rectangular systems have also
been developed, e.g. QR-MUMPS [29] using the QR decomposition and based on the
multifrontal method.

Iterative solvers
Iterative methods may be the right choice in order to implement a scalable solver and
decrease significantly the memory requirements. Considering the linear system Ax = b

with solution x∗, the principle of these methods is to compute a converging sequence of
approximate solutions, x(k) −→

k−→∞
x∗, for the linear system.

The advantage compared to direct methods is that the computation of a single
iteration requires a lower number of floating point operations and a lower amount of
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memory. Generally, one or two vectors must be stored and the most costly part is a
sparse matrix-vector product. The downside is just as important: iterative methods are
less robust than direct methods, depending on the problem their convergence can vary
from super fast to no convergence at all. The iterative methods are separated into 2
main classes, the fixed-point and the Krylov methods.

Starting from an arbitrary initial guess x(0), fixed-point methods are defined by the
recursive relation

x(k+1) = Qx(k) +H, (I.8)

where Q and H are matrices independent of k. The solver is built such that the iterations
converge to a fixed-point, when k −→ ∞, which corresponds to the solution of the
linear system. For any matrix A with eigenvalues λi, we define the spectral radius
ρ(A) = max

i
|λi| [114]. Fixed-point iterations defined from (I.8) converge if and only if

ρ(Q) < 1 [69]. Generally, Q is called the iteration matrix.
Some classes of iterative methods called smoothers, e.g. Gauss-Seidel iterations, share

the property that they remove local errors [27]. Over the iterations with an iterative
method, the norm of oscillatory components of the error is damped rapidly while smooth
components are mostly unchanged, see Figure I.4. We call this the smoothing property as
standard iterative methods tend to quickly smooth the shape of the error [129]. This
property is central for multilevel methods. Methods having this property include the
damped-Jacobi, Gauss-Seidel and SOR. Note that smooth error components are actually
geometrically smooth only in simple cases like discretized elliptic PDE problems. In
the general case, smooth components are algebraically defined as those components not
quickly reduced by the iterative method. The convergence of the fixed-point iterations,
possibly slow, can be accelerated using polynomial techniques, also called Krylov methods
[75].

0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.250

-1

1

0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.250

-1

1

Figure I.4 Error associated to a linear problem before and after a few iterations of a
classical iterative method. The oscillatory error component is damped.

Using Krylov iterative methods, the approximate solution is extracted from a subspace
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of finite dimension much smaller than the dimension of A. These methods are based
on projections, orthogonal or oblique, onto Krylov subspaces, i.e. subspaces spanned by
vectors of the form Π(A)v where Π(A) is a polynomial in A [115]. In each iteration, we
then have at least a sparse matrix-vector product to perform which is the most costly
part of the computation. Considering A ∈ R m×n, m ≤ n, and v n, we call Krylov space
of dimension m associated with A and v, the space Km(A, v) = Span(v,Av, . . . , Am−1v).

The convergence of Krylov methods depends on the numerical properties of A. In
these methods, A−1v is approximated as Π(A)v where Π(A) is a specific polynomial.
It has been shown that the convergence of these methods is reached in less than n

steps, where there is no upper bound for fixed-point iterations [75]. Still, n steps is
large and we ideally would like to get a faster convergence which is possible through
preconditioning. Adding preconditioning also on the right of the matrix, we solve for x
the system M1AM2y = M1b with y = M−1

2 x. One advantage of Krylov methods here is
that neither the preconditioner nor the actual matrix have to be explicitly formed. We
only need to apply them at each iteration in a cheap way, i.e. sparse-matrix product or
the solution of simple linear systems, and in a parallelisable way in an HPC context. To
get a fast convergence for the Krylov method, the spectrum of the preconditioned matrix
must be well clustered. Ideally, when κ ≈ 1 the convergence of the method is expected
to be linear and fast.

A crucial point to define is when to stop the iterations. Stop too soon and the
approximation is poor, stop too late and computing time is wasted. Following works
from Wilkinson [130, 131], Oettli and Prager proposed their own backward error analysis
[105]. Based on this theoretical framework, the authors in [9] define a set of stopping
criteria which we use in this thesis. Note that all criteria used to stop the iterations can
also be used to assess the quality of a solution computed with any method. First, we use
the normwise backward error defined as

ωA,b(x(k)) =

∥∥∥Ax(k) − b
∥∥∥
∞

‖A‖∞
∥∥x(k)

∥∥
1 + ‖b‖∞

.

This backward error measures the norm of the smallest perturbation ∆A and ∆b on A
and b such that x(k) is the exact solution of (A + ∆A)x = (b + ∆b), i.e. the distance
between the initial system and the system actually solved. Alternatively, as it may be
difficult to accurately compute the norm of A, we also use the normwise scaled residual

ωb(x(k)) =

∥∥∥Ax(k) − b
∥∥∥
∞

‖b‖∞
.
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In the general case, it would be impossible to guarantee that neither of these criteria
can be brought to machine precision. It may not even be advisable as the data used to
construct A and b is itself perturbed most of the time . We then stop the iterations when
the chosen stopping criteria is driven under a threshold chosen according to the original
data.

Summary: Direct solvers are interesting for their high robustness to ill-conditioned
matrices thanks to efficient pivoting techniques [81]. Additionally, though the cost of
the LU factorisation is high, successive right-hand side is then solved cheaply with
simple forward and backward substitutions. However, the memory required by the LU
factorisation may quickly become prohibitive for very large problems, or problems with
higher density, e.g. discretisations of 3D PDE problems. Iterative solvers have the
advantage of being cheap, both in terms of flops and memory, as long as they display a
fast convergence. And that is the main issue: these are very problem dependent methods
which require specific preconditioning in order to be efficient in the general case. Fairly
recently, a last type of methods arose which attempts to take the benefits from both
iterative and direct methods: the hybrid methods.

I.2.2 Hybrid solvers

Hybrid methods were created specifically in order to get scalable solvers for very large
linear systems in parallel computing through the combination of iterative and direct
methods. Thanks to the iterative component, we split the complexity in memory and
computation. The direct methods then bring their robustness. Additionally, the synergy
between both approaches enables the natural management of several levels of parallelism
to match the characteristics of modern computing architectures.

I.2.2.a Domain decomposition methods

The first approach we consider is Domain Decomposition Methods (DDM), see [125] for a
review in the context of fluid flow simulation. The basic idea is very simple: considering
a discretized PDE problem on a ”complex” domain Ω. This domain is decomposed
into p smaller (possibly overlapping) subdomains Ω1, . . . ,Ωp constructed such that the
PDE problem restricted to one subdomain is geometrically and computationally easy to
solve with a direct solver. At each iteration of an iterative scheme, the solution of each
subdomain is given to the neighbouring subdomains as boundary conditions in order to
converge to a global solution in the end.

This process was first proposed by Schwarz in 1870 [117] to solve the Laplace’s
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equations. on a ”complex” domain T of boundary L equal to the union of a circular
domain T1 and a square domain T2 overlapping on T ∗, see Figure I.5. Schwarz devised
a method based on the known solution of the Laplace’s equations for circular and
square domains, called the Schwarz Alternating Method (ASM). The principle is to solve
alternatively on each subdomain, using on the overlapping part the value computed in
the other subdomains as a Dirichlet boundary condition (e.g. the value on L2 from T2 is
used for the solution in T1). These modified Dirichlet boundary conditions are also called
compatibility conditions. Schwarz demonstrated that for any initial guesses u(0)

1 and u(0)
2 ,

the process converges to the right solution. One hundred years later, Lions modified

Figure I.5 The first domain decomposition method (Schwarz’s original drawing).

the algorithm (and its proof) such that at iteration k, the 2 domains are independent
which makes the method perfect for parallel computing [98]. While the first DDM was a
method with overlapping subdomains, non-overlapping subdomains connecting only at
the interface are possible. To converge with disjoint subdomains, a modification of the
algorithm is necessary [99].

DDM are divide-and-conquer types of algorithms where the decomposition in sub-
domains splits the global complexity, under the condition that the algorithm has a fast
convergence. The subdomains can be defined based on the geometry of the system
or based on algebraic properties of the underlying global matrix. The convergence of
Schwarz methods are dependent on the domains (global and sub), as well as on the size
of the overlaps, and the interface conditions. Often faced with a slow convergence [60],
the focus started to shift the DDM from solvers to preconditioners on the algebraic level.

Considering the linear system Ax = b, the matrix is split into smaller local matrices
Ai, i = 1, . . . , p obtained by restriction matrices Ri such that Ai = RiAR

T
i . In that

case, the subdomains are constructed using graph partitioning methods to separate
the unknowns with interfaces as small as possible. In a parallel computing context,
these connections correspond to communications between computing units which must
be minimised, while balancing the subdomain sizes which translates as having a good
workload balance. In Section III.1.2.c, we study in detail possible partitioning choices for
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the block Cimmino method which can be interpreted as a DDM on the normal equations
of the system. Using the constructed local submatrices, we obtain the 2 algebraic iterative
DDM [43, 60]

(Multiplicative Schwarz) x
(
k+ i

p

)
= x

(
k+ i−1

p

)
+RTi A

−1
i Ri(b−Ax

(
k+ i

p

)
), i = 1, . . . , p,

(Additive Schwarz) x(k+1) = x(k) +
p∑
i=1

RTi A
−1
i Ri(b−Ax(k)).

Thanks to the independence between every component of the sum in the additive Schwarz,
a great potential for parallel performance is revealed. As for overlapping subdomains, to
get a convergence of the additive method a modification must be brought to the iterations
by introducing diagonal matrices Di which compensate for multiple contribution to the
interfaces:

p∑
i=1

RTi DiRi = I. Using overlapping subdomains, the convergence improves

with the size of the overlapping [60], at least in general. For problems like Helmholtz (I.4)
or the convection-diffusion (I.3), this may not be verified and designing more complex
transmission methods is central to the development of optimised Schwarz methods [54, 86].
In the case of p non-overlapping subdomains, once a matrix A has been partitioned, its
unknowns can be reordered to the very typical bordered block diagonal form

A =



A11 A1Γ

A11 A2Γ
. . . ...

App ApΓ

AΓ1 AΓ2 . . . AΓp AΓΓ


, x =


x1
...
xp

xΓ

 , b =


b1
...
bp

bΓ

 .

The subscripts 1, . . . , p indicate unknowns in the interior of the subdomains, while Γ
indicates unknowns on the interface between subdomains. After elimination of the
unknowns xi, i = 1, . . . , p, we construct a smaller system S called the Schur complement
[127] and exclusively expressed on the interface such that

SxΓ = f,

S = AΓΓ −
p∑
i=1

AΓiA
−1
ii AiΓ,

f = bΓ −
p∑
i=1

AΓiA
−1
ii bi.

Once the Schur complement system has been solved, the local solutions xi, i = 1, . . . , p
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are then obtained directly with

xi = A−1
ii (bi −AiΓxΓ).

These equations solve independently the local systems using the interface value as
Dirichlet conditions. The issue is that the Schur complement, though small compared
to the original system, may be quite dense and/or ill-conditioned. Its solution usually
requires specific preconditioning or the use of a direct solver. The augmented method
from Section II.3 involves the solution of such Schur complement using a direct solver.

While increasing the number of subdomains splits the complexity of solving each local
problem, the convergence of the DDM typically decreases due to a slower exchange of
information between separate subdomains [40]. We say that the method is not scalable
with respect to the number of subdomains, which is a big issue for parallel performance.
It is possible to obtain methods scalable in this sense with the help of a coarser mesh level.
Basically, the coarser mesh is used as a virtual subdomain and allows a faster transit of
information between separate subdomains. This approach gave the 2-level and multilevel
Schwarz methods [127] and is closely related to the method we introduce in Chapter IV,
as well as the other type of hybrid solvers we now discuss: multigrid methods.

I.2.2.b Multigrid methods

Historically created for discretized elliptic PDE problems [23, 57], the MultiGrid (MG)
methods uses of a hierarchy of increasingly refined meshes for the solution of linear
systems. The global approach is an iterative process using a recursive combination of
local error reduction, called smoothing, and global correction from a coarser mesh level.

Elements of multigrid
Let’s consider we have a hierarchy of meshes Ωl, l = 0, . . . , L− 1 with L > 0 with Ω0 the
finest mesh level. The linear system to solve Ax = b is expressed as the discretization
of the PDE problem on the finest grid. At level l, we consider the size of Ωl is nl. In
general, for so-called standard coarsening (or refinement) methods, the number of coarse
grid intervals is given by

nl+1 = 1
2dnl, (I.9)

where d is the dimension of the space [27]. These coarsening methods generally work on
nested grids, i.e. a grid embeds the points from the next coarser grid, which is obtained
by doubling the mesh interval size h on every dimension, see Figure I.6. This is only true
for structured grids, but equation (I.9) still gives a good idea of the number of unknowns
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after coarsening depending on the problem dimension. When the PDE problem has
problematic properties such as anisotropy, it is better to use non-standard coarsening
methods e.g. semi-coarsening [129].

Ωl Ωl+1

Figure I.6 hierarchy of 2D nested meshes on a uniform grid.

In order to transfer information from one grid to the other, we need a Prolongation
operator P ll+1 : R nl+1 −→ R nl , and a Restriction operator Rl+1

l : R nl −→ R nl+1 . There
are several possibilities for the definition of these operators [25]. The usual choice for the
prolongation operator is the interpolation. This operator transfers directly the value of a
point if it is common to the 2 grid levels, else the value taken is the weighted average of
the neighbouring coarse points. For non-nested grids, another choice is the piece-wise
constant prolongation giving the value of the closest coarse point to all neighbouring
points. Figure I.7 shows a 1D example for these prolongations. As for the restriction
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Figure I.7 Illustration of different interpolation operators for nested or non-nested grids.

operator, injection is possible for nested grids, i.e. taking at the coarse point the value on
the fine grid, or full-weighting which is interpolation taken the other way around. While
the prolongation and restriction can be built separately, they are generally set to respect
the relation

P l+1
l = cRl

T

l+1, (I.10)

where c ∈ R is a constant.
Now, while we have A0 = A the discretized linear operator on the finest level, how do



I.2 Linear solvers and HPC 27

we define the linear operators Al on all other levels ? One way is of course to discretize
the PDE problem on the coarser grids. The most popular approach is to use instead the
Galerkin coarse grid operator

Al+1 = P ll+1AlR
l+1
l . (I.11)

Together (I.10) and (I.11) are called the variational properties. We call Geometric multi-
grid (GMG) methods, techniques where the multigrid elements are constructed using the
geometry of the domain. When no explicit grid defines the domain or the grid is highly
unstructured, Algebraic multigrid (AMG) methods must be applied, where the transfer
operators are built solely based on the numerical coefficient of the original matrix using
aggregation methods[12]. Basically, these methods are based on the idea that unknowns
linked in the adjacency graph of the matrix are strongly dependent and can be aggregated
in a coarser representation [132].

2-grids cycle
Let’s consider we have L = 2 levels of grid Ω0 and Ω1 with respective linear operators A
and Ac, linked by the prolongation and restriction P and R. We compute the solution
x∗ of the system Ax = b. Starting from the finest level and an arbitrary initial guess x0,
the 2-grids cycle follows 3 steps

1. (Pre-smoothing) Apply a few iterations of a standard iterative method, called
smoother, to obtain the approximation xs. Thanks to the smoothing property
introduced in Section I.2.1.c, the iterations quickly remove oscillatory components
of the error on x. Only the smooth error

e = x∗ − xs, (I.12)

is left on Ω0

2. (Coarse grid correction) Since the remaining error is smooth, it is well represented
on a coarser grid. The goal is to compute a coarse vector ec such that after
prolongation we have e ≈ Pec. On the coarse grid, this vector is obtained through
the solution of the error equation

Acec = rc, (I.13)

where rc is the coarse residual approximated as the restriction of the residual on
the fine grid, i.e. rc = R(b−Axs). We generally consider the coarse grid is small
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enough to solve (I.13) using a direct solver. Using the computed coarse error ec, a
correction is applied to the fine grid vector xs. From (I.12), we obtain the corrected
vector xc = xs + Pec.

3. (Post-smoothing) Through the coarse grid correction, some oscillatory components
may be reactivated, thus a smoother is applied at last to obtain the final approx-
imation x. If the accuracy of the obtained approximation is not satisfactory, go
back to the first step using x as initial guess.

Figure I.8 illustrates 1 iteration of the 2-grids cycle process on a 2D Poisson problem.
The 2-grids cycle is interpreted as the product of successive projections in [27]. The
smoother then applies an approximate projection on the subspace corresponding to
smooth components, and the coarse grid correction is a projection on the subspace not
extrapolated from coarse vectors with P . If the multigrid is well constructed for the
solved problem, these two subspaces are almost orthogonal and the convergence is fast.

Pre-smooth

Restrict
residual

Exact coarse solve

Post-smooth

Prolongate
correction

Figure I.8 Evolution of the error in an iteration of the 2-grids cycle, in the case of a
Poisson problem.

Multigrid cycle
Here, we have a whole hierarchy of levels (L ≥ 2) and there is good news. At step 2 of the
2-grids cycle, the restricted residual naturally appears oscillatory again after restriction
on the coarse grid, see Figure I.9. Then, iterative methods become efficient again on the
coarser grid. After smoothing the error equation (I.13), the residual can be transferred
to an even coarser grid again. Once at the coarsest level, a direct solver is used on the
error equations. Coarse grid correction is then applied to the finer level, followed by
post-smoothing. The same correction is successively applied to all finer levels until we
finally get back to the finest level approximation. This process is called a V-cycle, see
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Figure I.9.

Ωl

Ωl+1

1 2 3 4 5 6 7 8 10 11 1290

0 1 2 3 4 5 6

Figure I.9 The coarse grid ”sees” a wave that is more oscillatory on the coarse grid than
on the fine grid. Source: [27].

γ successive V-cycles can be applied at each level of the MG cycle, thus giving an
infinity of classes of MG-cycles, see Figure I.10. The final kind of MG method we should
mention is the Full Multigrid (FMG). In this scheme, an initial solution is computed
on the coarsest grid then interpolated to a finer level where a V-cycle is launched. The
obtained solution is then interpolated to the next finer level for a V-cycle, and so on
until the solution finally gets to the finest level. The form of FMG really resembles the
previous form of MG cycles, the real difference is that the approximated solution is also
climbing up the mesh hierarchy, not just the corrections. FMG is the most efficient form
of MG method [25], and corresponds to finding an excellent initial guess for a classical
MG-cycle.

MG methods are the subject of a very rich literature, and in particular their conver-
gence whose proof follows two main approaches. The first approach is based on the local
Fourier analysis and was popularised by Brandt [23–25]. This method analyses the effect
of applying multigrid to functions defined on an infinite grid with separate Fourier modes.
From this, we obtain the smoothing factor, i.e. the worst factor by which oscillatory
error components are reduced in one iteration of the smoother [129]. The other method,
introduced by Hackbush [72, 73], is based on 2 notions: the smoothing property and the
approximation property. Using these concepts, Hackbush shows the convergence of both
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Two-grids Three-grids

Four-grids γ = 1 FMGγ = 2 γ = 3

γ = 1 FMG

Figure I.10 Cycle structures, for various grid levels and number of cycle recursions γ.

2-grids and multigrid methods.
MG are techniques of choice in a parallel context. They may be asymptotically

optimal, in the sense that the complexity to solve a linear system with sufficient accuracy
grows only linearly with the number of unknowns. This has been proven for the full
multigrid method [25].

I.2.3 Multigrid solution of saddle-point problems

We introduce a specific multigrid scheme to solve the Stokes type problem (I.5), inspired
from Earth mantle convection, at extreme scale. These problems are often solved using a
Schur complement conjugate gradient (CG) algorithm, or a preconditioned minimum
residual method. In [44, 66], different types of solvers are compared for problems similar
to (I.5) and it is found that a monolithic multigrid method for velocity and pressure
combined performs best in terms of time-to-solution and memory. The family of 8
uniformly refined meshes T from I.1.3 is used. 2 levels are dedicated to obtain a properly
defined coarsest grid problem, and 6 levels for the geometric multigrid method in the
form of a mildly variable V –cycle that we note Vvar. The Vvar–cycle has the same form
as a V –cycle but adds for each coarser level an additional number of smoothing steps. In
our case, we add for each level two additional steps, each in the pre- and post-smoothing.

In this method, an Uzawa-type smoother is used that acts on velocity and pressure
unknowns separately, see [134] and [44]. In the following, we refer to this monolithic
MG variant as the all-at-once Uzawa MG method. The transfer operators are defined as
linear interpolation for each component and their adjoint operators for restriction. Since
this multigrid method acts on the whole Stokes system, we have to solve on the coarsest
grid level again a saddle point problem. In theoretical considerations, one often assumes
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that the coarsest grid problem is solved exactly. Getting this high accuracy may be
computationally expensive in practice, e.g. using a direct solver. A popular alternative is
to solve this coarse problem approximately. In this case, the tolerance has to be carefully
selected to keep a mesh independent convergence for the multigrid scheme. In the next
section, we explore new strategies to efficiently get such an approximated solution on the
coarse grid problem in large scale and extreme scale computations.

I.2.3.a Hierarchical hybrid grids

For our studies the hierarchical hybrid grids (HHG) framework [18] is used, that provides
data structures, parallelization and matrix-free concepts for extreme scale geometric
multigrid computations. Here, we use the framework to explore coarse level strategies in
large scale simulations. HHG achieves excellent performance on state-of-the-art petascale
supercomputers. Problems with more than 1013 degrees of freedom (DOFs) [66] have
been solved. For similar data structure concepts, we refer to [56, 84].

In this section, we briefly review the data structures and the parallel implementation
of the considered multigrid framework. For more details, we refer to [14, 65, 66] and
the references therein. HHG organises the nodal points of the mesh by employing the
hierarchy of uniformly structured meshes T . Through the refinement, grid points are
generated on the edges, faces and within each input grid tetrahedron, also called macro
tetrahedron. In the case of two tetrahedra, this is illustrated in Figure I.11 (left). Each
of the nodes on each level of refinement is located on either the vertex, edge, face or the
volume of the original macro tetrahedra. This structure is used to classify the nodes
on each mesh level and to define container data structures that guarantee a unique
assignment of each node to one container. In a distributed memory architecture, we
assign each container uniquely to one processor.

To enable an efficient parallel communication across process boundaries, an additional
layer of halos (ghost layers) is introduced that holds copies of master data, i.e. the
original data, on other memory units. The data in these ghost layers can only be read
and the values must be updated when the master data is modified so that they hold
consistent values. In Figure I.11 (right), the ghost layer enrichment for two input mesh
tetrahedra and the face container between them is illustrated.

To enable efficient parallel computations, load-balancing is also an important aspect.
In HHG, the computational load can be identified with the dimensional complexity of
the container data structures. Asymptotically, the volume containers produce the largest
computational load, since they hold 3D data. Therefore, they are equally distributed to
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Figure I.11 Left two refined input elements; Right ghost layer structure of two input
elements.

computing processes.
Matrix-free techniques are applied within HHG to avoid storing the FE matrices. In

the classical assembly of the HHG framework only one stencil (i.e. a matrix row) needs
to be stored per container, in the case of constant coefficient PDE problems, so that
superior performance [18] is achieved. For curved domains such as the spherical shell
that we consider in the following, the nodes that are generated through refinement do not
reside on the boundary and thus do not fit with a simple single stencil representation. To
fix this, an efficient surrogate assembly technique was developed which computes stiffness
matrix entries approximately when applied, with no performance loss, by evaluating
polynomials in order to avoid the expensive evaluation of the stiffness matrix using
numerical quadrature [14, 15].

I.2.3.b Coarse grid solver

It now remains to choose a coarse level solver. Initially, we employ the standard method
provided by the HHG package, i.e., a block-preconditioned minimal residual (PMINRES)
iteration. This choice is motivated by the fact that Krylov space methods are easy
to implement and parallelise. PMINRES is executed until the coarse level problem
in each V-cycle has been solved with an accuracy corresponding to a reduction of the
preconditioned residual by three orders of magnitude. The preconditioner here consists of
velocity and pressure block preconditioner. For the velocity block, a Jacobi-preconditioned
conjugate gradient (PCG) method is applied and for the pressure block a scaling by
the lumped mass-matrix preconditioner for the pressure is used. The accuracy of the
PCG method is specified by a relative residual reduction of two orders of magnitude.
However, the error reduction depends on the condition number of the system matrix
which deteriorates with the mesh size, and an increasing number of iterations becomes
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necessary to solve the coarse grid problem with sufficient accuracy. The efficiency of the
approach in many cases of interest has been demonstrated in previous publications [66],
but also its limitations have been shown when viscosity models as (I.7) are considered
[14].

We carry out our experiments on Hazel Hen, a petascale supercomputer at the HLRS
in Stuttgart ranked on position 43 of the TOP5004 list (June 2020). Hazel Hen is a Cray
XC40 system with Haswell Intel Xeon E5-2680 v3 processors. Each compute node is
a 2-socket system, where the 12 cores of each processor constitute a separate NUMA
(non-uniform memory access) domain. Hazel Hen offers 64 GB per NUMA domain,
which means around 5.3 GB per core. Hazel Hen uses the Cray Aries interconnect. The
supercomputer has 185 088 cores in total for a theoretical peak performance of 7.42
Pflops/s.

In Table I.1, we present the total run-times (in seconds) of a Vvar-cycle application
for the scenario iso-viscous and the scenario jump-410, where the asthenosphere has
a depth of 410 km, see (I.7). The displayed parallel efficiency is equal to the average
total timing per iteration for the middle and large test cases compared to the average
total timing per iteration for the smallest one. We observe that the scalability worsens
for variable viscosity jump-410, with an efficiency decreased below 80%. For a more
detailed analysis of the run-time behaviour, we also distinguish between the compute
times for the coarsest grid and the finer grids. While the average run-time for the fine
grids stays stable for both scenarios, resp. 89.1s and 88.7s for the largest problem, the
average run-time for the coarse grid solution is getting worse with 11.6s with the scenario
jump-410, compared to 2.7s in the case of iso-viscous. This is explained by the increased
average number of iterations (C.it) for the convergence of PMINRES in the jump-410
scenario. Also, with the weak scaling, we observe that the average run-time per iteration
is robust for the fine grids, while it deteriorates for the coarse grid. Note that this is
expected, since we are using a sub-optimal coarse level solver and since the coarse grid
problem size grows when scaling to larger number of processors. What is less expected
is that the number of iterations does not increase for larger problem sizes. We are still
investigating to understand the origin of this phenomenon.

For numerically challenging problems, and when the coarsest grid size is relatively
large, such simple coarse grid solvers may become a bottleneck, especially since each
iteration incurs a significant overhead. In the following, we propose an alternative fast
and robust coarse level solver based on an approximate direct solver.

4https://www.top500.org

https://www.top500.org
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Table I.1 Total run-times (in seconds) of the Vvar application: total, fine and coarse grid
timings for the asthenosphere scenarios iso-viscous and jump-410. The number of

iterations of the MG method (it) and the average number of iterations of the coarse grid
solver (C.it) are also displayed.

proc. DOFs iso-viscous jump-410
fine coarse it total fine coarse eff. C.it it total fine coarse eff. C.it

1 920 5.4 · 109 9.2 · 104 4 313 309 3.8 1.00 25 15 1186 1133 53.4 1.00 68
15 360 4.3 · 1010 7.0 · 105 5 440 430 9.7 0.89 18 13 1188 1091 96.8 0.87 49
43 200 1.2 · 1011 1.9 · 106 8 735 713 21.9 0.85 17 14 1404 1242 162.5 0.79 48

I.3 Approximate Coarse Grid Solvers for Extreme Scale
Multigrid Methods

Scaling GMG on large computing systems is hard in the sense that on the coarse grid
levels the granularity deteriorates. Commonly, an agglomeration of data onto fewer
processors is used to compensate for this effect. We propose a new approach combining
agglomeration to an external approximate direct solver on the coarse grid to obtain a
scalable multigrid for saddle-point problems. Our solution strategy at the coarse level
consists of the following four steps

1. Convert HHG format to sparse matrix data-format (Coordinate list format (COO)
for MUMPS).

2. Apply an agglomeration technique.
3. Solve the coarse level problem using the external library.
4. Redistribute and convert the approximation to the HHG format.

I.3.1 Agglomeration

The number of DOFs per process decreases drastically on coarser grid levels. When
the balance between computation and communication worsens, and the communication
overhead becomes a concern, then we propose to accumulate the data from several
processes onto a single process. Thus the coarsest grid problems are redistributed.
The remaining processors can either perform redundant computations or the unneeded
processors stay idle [109, 110]. In our implementation, we use an external software library
as coarse grid solver. Processors which are not used by the external solver will stay idle.

Within the HHG framework, we achieve this with techniques similar to [101], where
routines specific to PETSc are used. In our method, we collect the data from several
processes and accumulate it to a single process. This defines a reduction factor r ∈ N≥1
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denoting how much the overall process count |P| is reduced such that we get

m = |P|/r (I.14)

master processes. Here, we assume, for simplicity, that the reduction factor r is a divisor
of |P|. We distinguish 2 agglomeration techniques

1. Master-workers agglomeration: all physical cores are used for the computation on
the fine grids in the multigrid scheme, and only a subset of them is used for the
coarse grid.

2. Superman agglomeration: from the beginning, a subset of all cores is only dedicated
to the coarse grid solve. During the first cycle, the factorisation of the coarse grid
matrix is performed simultaneously with the computations on the finer grids.

An example with reduction factor r = 3 and m = 2 is shown in Figure I.12. In both

p0 p1 p2 p3 p4 p5
(Master-worker)

p6 p7p0 p1 p2 p3 p4 p5(Superman)

Figure I.12 Showcase with reduction factor r = 3 and m = 2, for agglomeration
techniques.

cases, during the solution phase on the masters, the remaining processes stay idle. Then
the solution is distributed back to the original processes. The Superman agglomeration is
possible because only a very limited number of processes is used on the coarse grid after
agglomeration, thus only a few additional nodes must be allocated, see Section I.3.3.

The application to sparse matrix data formats involves array-like data structures like
C++ vectors, which make the agglomeration technique easy to implement and efficient to
apply, since we only need to concatenate vectors and let the external solver be executed
by a reduced communicator.



36 Massively parallel multigrid

This approach is very pragmatic and so is the selection of a suitable r. The latter
depends on the granularity of the problems solved by the direct solver and have to
be determined on a case by case basis. Using the factor r, the agglomeration method
can be adapted to the parallel architecture of the machine in our case, we have chosen
to agglomerate all the data that resides in the same node. This makes agglomeration
possible with small communication overhead, but may put extra communication burden
on the parallel coarse grid solver. At the other extreme, compacting all the processes
inside a same node is not advisable because of intensive memory usage by the memory
bound dense kernels used by MUMPS. In the absence of time dependency in the problem
to solve, the agglomeration of the system matrix is performed only once, and then kept
in memory on the master processes.

I.3.2 MUMPS

MUMPS (MUltifrontal Massively Parallel direct Solver)5 [4, 6] is a package for solving
sparse systems of linear equations like (I.6) with symmetric (positive-definite or indefinite)
or unsymmetric matrices, using single or double precision real/complex arithmetic. It is
based on Gaussian elimination. In the multigrid context, the use of such sparse direct
solver as coarse level solver provides two distinct advantages

1. Robustness in terms of accuracy and execution times, even when iterative solvers
show slow convergence.

2. Saving the analysis and factorisation in memory, the most time consuming parts,
in a preprocessing step. Fast coarse level solves through application of the stored
factorisation for each multigrid cycle.

I.3.2.a Method

The MUMPS solver is based on the multifrontal scheme as previously introduced [6].
Like most direct solvers, MUMPS achieves the solution of a system in three steps

1. Analysis at this step a sequential preprocessing of the matrix is performed in order
to reduce the fill-in and improve the linear system (scaling, permutation to a zero-
free diagonal); this is followed by a symbolic factorisation defining dependencies
between the unknowns of the system (elimination tree), finding dense subproblems
in particular.

2. Factorisation: this step computes the numerical factorisation of the matrix, based
on the analysis. Two levels of parallelism are managed: one comes from the

5http://MUMPS-solver.org/

http://MUMPS-solver.org/
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independency between dense subproblems (fronts), the other is intrinsic to the
dense linear algebra kernels applied to the fronts.

3. Solve: the factors are used to compute the solution through forward elimination
and backward substitution.

Parallelism in MUMPS is implemented through a hybrid MPI/OpenMP model which
makes the solver suited to modern distributed memory Machines equipped with multicore
processors.

I.3.2.b Block low-rank approximation

In multigrid methods, the coarse grid is assumed to be solved exactly in theoretical
considerations; in practice, it is common to approximate the coarse grid solution up to a
given tolerance. MUMPS offers a mechanism that allows the reduction of the solution
cost in exchange for a lower accuracy via the block low-rank (BLR) method.

Full rank sparse matrices also result in full rank fronts in the sparse factorisation.
Nonetheless, it can be proven that for problems in a very broad class of applications,
conveniently defined off-diagonal blocks of the fronts can be approximated with accuracy
ε using a low-rank product [17]. In most cases, even with an accuracy close to the working
precision, this mechanism allows for considerable reduction of the cost for the linear
algebra algorithms both in terms of memory consumption and floating point operations.
Several approaches have been proposed in the literature to take Advantage of this low-
rank property. The MUMPS solver is based on a matrix format called BLR [1, 4] where
the matrix is partitioned into blocks in a checker-board fashion and block-wise low-rank
approximations are exploited to significantly reduce the theoretical complexity [2] and
practical cost of the factorisation and solve phases. Although even lower theoretical
complexities can be achieved by using multilevel [3] or hierarchical [74] approximations,
the flexible BLR format has proven to be very efficient in the context of a general purpose,
fully-featured sparse solver such as MUMPS [4, 100].

Additionally, running MUMPS in single precision arithmetic decreases the overall
memory usage and time consumption of the solver. This arithmetic can be combined
with the BLR approximation freely with no loss in the accuracy of the solution, as soon
as the choice of the parameter ε gives an approximation with accuracy lower or equal to
single precision [82].
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I.3.3 Scaling experiments

In this section, we study the performance of the multigrid solver when combined with
a block low-rank method using single precision arithmetic as coarse level solver for the
Stokes problem introduced in Section I.2.3.b. We start with a performance study of the
MUMPS solver standalone combined with agglomeration on the coarse level system in
the Section I.3.3.a. Then, we use the best obtained configurations to improve the overall
multigrid solver performance in a weak scaling test in Section I.3.3.b.

I.3.3.a Approximate sparse direct solver with agglomeration

For the 3 problem sizes of Section I.2.3, we seek the best agglomeration factor r to run
MUMPS, in the sense that the execution time is minimised on the resulting m processes.
We run MUMPS as a standalone solver, with exact double precision accuracy on the
coarse grid matrices extracted from HHG. In Table I.2, we display the results from a
scaling study where we increase the reduction factor r, see (I.14). The focus lies on the
more challenging problem variant, i.e. the jump-410 scenario. We consider that r is a
divisor of the original number of processes. We are looking for a trade-off between a
high number of active cores (r not too high) and a combination of large granularity and
low memory concurrency for the solver (r not too low), both cases leading to a shorter
run-time.

Using all fine grid processes for the coarse grid produces a large run-time due to
the excessively high volume of communications. In this scenario, the resulting set of
unknowns per process is very small (less than 152 DOFs). This is clear for the smallest
problem and r = 1, for which the total timing is more than 10 times higher than after
a reduction by r = 24, which corresponds to removing concurrent memory access by
accumulating the data of a whole node to only one process. Increasing r further decreases
the overhead in communication until a too high r gives low parallelization compared
to the granularity of the problem. We observe this effect for the biggest case where
having r = 192 decreases the total timing by around 40% compared to r = 24, and
having r = 576 then increases the total run-time again. To obtain minimal run-times,
while increasing the problem size, we must further increase the reduction factor: for the
problem with 1 920 processes the best choice is r = 48, with 15 360 processes, r = 92,
and with 43 200 processes, r = 192. While all the timings increase when increasing the
problem sizes, we observe only a very small run-time for MUMPS solve phase, which
is performed at each cycle. Over several multigrid iterations, the cost of analysis and
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factorisation is steadily amortised.

Table I.2 Scaling of the sparse direct solver MUMPS (with exact double precision
arithmetic): analysis, factorisation and solve run-times in seconds. r: reduction factor,

m: corresponding number of processes.

r 1 920 15 360 43 200
m analysis fac. solve m analysis fac. solve m analysis fac. solve

1 1 920 6.5 10.8 13.66 - - - - - - - -
24 80 1.6 1.1 0.03 640 15.6 31.1 0.86 1 800 66.6 248.2 1.87
48 40 1.6 0.9 0.03 320 14.6 20.7 0.28 900 45.0 199.5 0.67
96 20 1.6 1.2 0.03 160 13.7 19.6 0.20 450 53.6 173.0 0.73

192 10 1.7 1.7 0.07 80 14.4 24.1 0.22 225 41.0 134.6 0.56
576 - - - - - - - - 75 42.9 158.4 0.59

In a next step, we fix the optimal reduction factor previously found for MUMPS
in full-rank, assuming it stays relevant for different parameters. We now compare the
performance of the BLR method, in double and single precision, with the standard sparse
direct solver (Full Rank). In order to respect the setup after agglomeration in HHG for
the coarse grid solver, each process runs on a separate node. The choice of the BLR ε

parameter is important, since it controls the accuracy of the approximation as well as
the performance of the factorisation. Furthermore, for different problem setups, we are
interested in the robustness of the BLR with threshold ε in terms of solution accuracy,
when increasing the problem size.

In Table I.3, we consider three different resolutions of the problem for the iso-viscous
and for the jump-410 scenarios, (I.7). We compare the accuracy of the approximated
solution through the scaled residual for 2 settings. Full Rank gives machine precision
accuracy, while for BLR with ε = 10−3 the scaled residual is about 10−4. The latter is
the accuracy level that we typically require in order to keep the convergence of the MG
scheme unchanged. In the next section, we see that the largest problem is the most critical
one and a more detailed study is required such that we also include data for BLR with
ε = 10−5 which gives an accuracy of the order 10−6. The processor specification remains
unchanged compared to the previous experiments. Hence, as theoretically proven in [82],
the accuracy is controlled by the BLR ε and stays robust for different problem sizes when
including viscosity variations. Furthermore, as long as ε stays safely below 10−8, we can
use single precision arithmetic without changing the quality of the solution [82]. This
helps to further decrease the cost in memory and computation.
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When applying the BLR method for different ε in comparison to the Full Rank, we
observe a small increase in the timings for the analysis, around 15% for the biggest case.
This overhead comes from the identification of blocks for the factorisation, necessary to
the BLR method. The biggest effect of the BLR approximations on the performance
of MUMPS is on the factorisation. The first evidence is a reduction of FLOPS for the
factorisation: when using BLR ε = 10−3 in comparison to the Full Rank factorisation.
The FLOPS are reduced up to a factor 10 for the biggest test case which translates in
a run-time reduction of a factor 4. Additionally, the use of BLR approximations also
reduces the cost of the solve phase, by about a factor 2 for the biggest test case.

To further accelerate the computation, we also turn to single precision arithmetic. In
this case, the analysis and solve phases stay mostly unchanged, while we get a reduction
of 30% of the factorisation run-time, originally dominating. Overall, using BLR combined
with single precision reduces the total run-time of a complete MUMPS computation by a
factor up to 2.6 for the largest problem. Finally, for a fixed problem size, the run-times
for all phases of the solver as well as the accuracy of the solution appear robust with
respect to the problem type iso-viscous or jump-410. For this reason, we focus on the
scenario jump-410, most challenging for the PMINRES solver, in the rest of the paper.

I.3.3.b Multigrid solver combined with the approximate coarse level solver

Finally, we use the MUMPS sparse direct solver and its BLR variant to approximate
the coarsest level problem within the Uzawa multigrid solver in the HHG framework.
We compare the run-times of one Vvar-cycle for this strategy with the ones using the
PMINRES solver on the coarsest grid of Section I.2.3.b in a weak scaling test.

In Table I.4, we present the total run-times with up to 43 200 processes. We present
again the total run-time over the Vvar-cycle iterations. We distinguish the fine grid
run-time, the run-time for MUMPS analysis and factorisation cumulated and the coarse
grid run-time (i.e. MUMPS solve phase) separately. Additionally, we include the total
time for data transfer, i.e. the time for agglomeration plus data conversion from HHG to
MUMPS and vice versa. To get the best performance from the coarse level solver, we
use the agglomeration factors r = 48, 96 and 192 respectively, according to the previous
study in Table I.2. We use here the master-worker agglomeration technique. For the
largest test case, we had to reduce ε from 10−3 to 10−5 in the BLR method to obtain
the same iteration number as in the Full Rank case. The value of the scaled residual is
still comparable with the other problem sizes when using ε = 10−3. This justifies that an
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Table I.3 Influence of the viscosity scenario and BLR ε parameter, with double and
single precision, on the accuracy and the run-time of the direct solver. Run-times (in

seconds) are separated in analysis, factorisation and solve steps. Each process runs on a
separate node.

proc. DOFs type BLR ε
analysis factorisation solve scaled res.

coarse time Flops red. time time

40 9.2 · 104

iso-viscous Full Rank 1.51 100.0 0.86 0.03 1.2 · 10−18

10−3 + single 1.74 26.2 0.70 0.01 6.7 · 10−5

jump-410 Full Rank 1.55 100.0 0.88 0.03 6.0 · 10−18

10−3 + single 1.74 26.0 0.67 0.01 2.5 · 10−4

160 7.0 · 105

iso-viscous Full Rank 13.73 100.0 20.65 0.21 1.1 · 10−18

10−3 + single 15.91 10.8 6.81 0.09 2.3 · 10−4

jump-410 Full Rank 13.74 100.0 19.58 0.20 4.8 · 10−18

10−3 + single 15.86 10.5 6.62 0.09 7.5 · 10−5

225 1.9 · 106

iso-viscous

Full Rank 41.10 100.0 139.17 0.55 7.9 · 10−19

10−5 47.24 12.9 35.51 0.28 4.4 · 10−7

10−5 + single 47.31 12.9 25.17 0.26 4.8 · 10−7

10−3 + single 47.40 7.7 21.07 0.20 2.1 · 10−4

jump-410

Full Rank 41.02 100.0 134.61 0.56 1.5 · 10−18

10−5 47.56 13.0 36.98 0.30 2.4 · 10−6

10−5 + single 47.65 13.2 25.63 0.27 1.4 · 10−6

10−3 + single 47.62 7.6 21.16 0.19 4.7 · 10−5

accuracy around 10−5 for the coarsest grid problem is the bare minimum needed for the
considered class of problems.

First, as expected, we observe that the average run-time for the processing of the
fine grids is very similar to those we observe when using PMINRES, except for some
small usual variations at extreme scale [121]. The coarse grid solve stays below 1s, i.e.
less than 0.1% of the total run-time over the iterations. Only the portion of the analysis
and factorisation step should be seen critical. The run-time of the single precision
BLR method, ana.fac.+coarse, is accelerated by a factor 2.3 in comparison to the direct
solve, while the number of iterations stays unchanged. Comparing the coarse grid timings
for single precision BLR in MUMPS, including the analysis, factorisation and data
transfer, to the ones of the PMINRES solver of Section I.2.3.b, we observe a 50 %
reduction of the total run-time, from 162.5s to 83.6s for the largest case. We also get
a 6% points improvement of the overall parallel efficiency of the multigrid scheme with
43 200 processes.
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Table I.4 Weak scaling of the Vvar-cycle with a sparse direct and a block low-rank coarse
level solver with or without single precision (SP) arithmetic. The parallel efficiency

compares the average total run-time of each run to the average total run-time of the
smallest case with no BLR.

proc. DOFs BLR ε it time (s) eff. scaled res.
fine coarse total fine ana.fac coarse trans.

1 920 5.4 · 109 9.2 · 104
Full Rank 15 1169 1166 2.4 0.4 0.1 1.00 1.9 · 10−17

10−3 15 1179 1176 2.7 0.3 0.1 0.99 3.4 · 10−4

10−3 + SP 15 1139 1136 2.5 0.3 0.1 1.03 1.5 · 10−3

15 360 4.3 · 1010 7.0 · 105
Full Rank 13 1120 1081 36.3 2.8 0.3 0.90 3.1 · 10−18

10−3 13 1118 1092 24.8 1.3 0.2 0.90 1.4 · 10−4

10−3 + SP 13 1091 1067 22.3 1.1 0.7 0.93 2.4 · 10−4

43 200 1.2 · 1011 2.0 · 106

Full Rank 14 1382 1197 176.2 8.2 0.3 0.79 1.0 · 10−18

10−5 14 1297 1206 87.1 4.0 0.3 0.84 3.5 · 10−7

10−5 + SP 14 1282 1194 79.3 3.3 1.0 0.85 3.6 · 10−7

10−3 19 1755 1672 78.4 4.4 0.3 0.84 1.4 · 10−4

Up to now, we used the master-worker agglomeration and now turn to the new
Superman agglomeration. This technique is an additional contribution compared to the
submitted article [30]. We use the same number of processes as before for the fine grid
processing, and allocate an additional number of nodes corresponding to the number of
processes used solely for MUMPS, i.e. respectively 2, 7, and 10 nodes for the 3 problem
sizes. Then, we choose among all allocated nodes the processes dedicated for MUMPS,
one per node maximum as before. It is possible to perform simultaneously the first
descending part of the fine grid computations and the analysis/factorisation phases of
MUMPS on the coarse grid. Based on the results in Table I.4, we simulate the effect
of such an agglomeration method in Table I.5. The only difference is in the considered
execution time for analysis and factorisation

tsimuana.&fac. = max(tana.&fac. −
tfine

2 , 0),

tsimutotal = ttotal − tana.&fac. + tsimuana.&fac..

In the first multigrid cycle, we only consider the analysis and factorisation if they are still
not completed after the descending part of the first fine grid computations. Virtually, this
agglomeration strategy allows to remove most of the execution times from the analysis
and factorisation phases in most cases, when MUMPS is combined with BLR and single
precision. With this approach, the parallel efficiency gets to 88% on the largest test
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case, compared to 85% with the master-workers agglomeration, and to 79% when using
the PMINRES iterative solver. These results are of course estimations, as the fine grid
computation may take longer due to the cores dedicated to MUMPS only. The Superman
agglomeration will be the subject of future research. A possible improvement is to have
cores dedicated to MUMPS only on the analysis and factorisation, i.e. in parallel with
the first fine grid processing, then these cores can participate in the fine grid computation
during ulterior cycles.

Table I.5 Weak scaling of the multigrid execution with a sparse direct and a block
low-rank coarse level solver with single precision (SP) arithmetic. The total execution

time (in seconds) and the parallel efficiency considering the average total execution times
are displayed for both master-worker and a simulated Superman agglomerations.

DOFs BLR ε it Master-Worker Superman
fine coarse proc. total par. eff. proc. total par. eff.

5.4 · 109 9.2 · 104 Full Rank 15 1 920 1169 1.00 1 920 + 40 1167 1.00
10−3 + SP 15 1139 1.03 1137 1.03

4.3 · 1010 7.0 · 105 Full Rank 13 15 360 1120 0.90 15 360 + 160 1084 0.93
10−3 + SP 13 1091 0.93 1069 0.95

1.2 · 1011 1.9 · 106 Full Rank 14 43 200 1382 0.79 43 200 + 225 1339 0.81
10−5 + SP 14 1282 0.85 1235 0.88

This improvement is summarised in Figure I.13, where for each problem size, coarse
grid solver and agglomeration technique, we plot the run-time for fine, coarse, analy-
sis+factorisation, and data transfer. As expected, the total run-time stays relatively
robust in the weak scaling and we observe that the gain from using MUMPS increases
with the size of the problem because the scalability of the proposed solution is better.
Also, the run-times for coarse, i.e. MUMPS solve phase, and data transfer are negligible
on larger scales.

Concluding remarks

In this chapter, we studied the impact of advanced techniques for the solution of large
linear systems, and in particular solvers applied to the coarsest level of a multigrid scheme.
To increase the granularity of computations on the coarse grid, we propose the use of an
agglomeration technique such that the coarse level solver is executed on only a fraction
of the processors intended for the fine grid. By doing so, we significantly reduce the
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Figure I.13 Comparison of 3 coarse grid solvers in HHG for the three different sizes of
problem (I.5): PMINRES (P); MUMPS using BLR and single precision with

master-worker agglomeration (M) and Superman agglomeration (S).

time for communication and memory access, thus reducing the overall run-time of the
coarse level solver. To increase the speed-up, we employ single precision arithmetic and
the block low-rank approximation feature of the MUMPS parallel sparse direct solver
that improves compute times at the cost of a reliably controlled loss of accuracy in the
solution of the coarsest mesh. The efficiency of the solver is tested on the petascale
supercomputer Hazel Hen on up to 43 200 processes and compared to Krylov space solvers
for the coarsest grid level. For a 3D Stokes problem, the new solver achieves a 9% points
overall parallel efficiency improvement compared to a simple Krylov solver by reducing
the run-time of the coarsest level solver. This scalability is achieved thanks to the fact
that the factorisation of the coarsest grid matrix need only be computed once and that
the factorisation is then re-used in all later V-cycle iterations.

This is an essential improvement e.g. for Earth Mantle simulation scenarios.
This contribution is at the intersection of several domains which we reintroduced: PDE
problems and their discretization, direct and iterative linear algebra solvers, efficient
hybrid methods for large scale scientific computing. In the next chapters, we introduce
other hybrid direct-iterative methods for the solution of very large unsymmetric linear
systems based on the block Cimmino iterations.



Chapter II

On numerical solution of full rank
linear systems

Algebra is but written geometry and
geometry is but figured algebra.

Sophie Germain a.k.a. Antoine
Auguste Le Blanc

Among iterative methods with a high potential for parallelism, projection methods
have received a lot of attention [108]. One interesting feature is that these projection
methods can be accelerated with the use of Conjugate Gradient (CG) [75] which guarantees
convergence to the solution for Symmetrizable systems in a finite number of iterations.
We extend the block Cimmino iterations [52], accelerated with a stabilised block-CG to
solve full rank systems. This iterative method was developed for square unsymmetric
problems [11], using a partitioning of the matrix into blocks of rows. An alternative
pseudo-direct method was also introduced [47] which guarantees a convergence in 1
iteration through an augmentation of the matrix in a larger space. We here extend these
two methods to the minimum norm solution of underdetermined systems and, using a
corresponding column partitioning, to the solution of least-squares problems [50].
We start in section II.1 with the introduction of the basic projection techniques Cimmino
[34] and Kaczmarz [88]. In section II.2, we then adapt the ideas of the accelerated block
Cimmino method [112] applied to underdetermined systems, and least-squares problems.
Finally, in section II.3, we introduce the augmented block Cimmino scheme [133] with
complete theoretical justification of its properties.
The content of this section is an extension of the work submitted to SIAM’s Journal on
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Scientific Computing in June 2020 ”On numerical solution of full rank linear systems”,
A. Dumitraşc, P. Leleux, C. Popa, D. Ruiz, & U. Ruede, SIAM’s SISC, Copper Mountain
Special Issue.

II.1 Block projection methods for full rank systems

Here, we consider the solution to the minimisation problem of the form

min ‖x‖2 when x ∈ {x; ‖b−Ax‖2 = min!}. (II.1)

where A ∈ R m×n is a full-rank matrix, x is vector of size n and b a vector of size m.
For simplification, we consider that all matrices are real, although the results can be
generalised to complex matrices. The minimum norm solution (m.n.s.) to (II.1) (see e.g.
[108]) is given by

x = A+b, (II.2)

where A+ is the Moore-Penrose pseudo inverse of the matrix A.
For any matrix K ∈ R m×n, if K is full row rank (rank(K) = m) then K+ =
KT (KKT )−1, and if K is full column rank (rank(K) = n) then K+ = (KTK)−1KT .
We also define the orthogonal projections on R(K) and R(KT ), the range of K and KT ,
as

PR(KT ) = K+K and PR(K) = KK+, (II.3)

as well as the projectors on N (K) and N (KT ), the nullspace of K and KT , as

PN (KT ) = Im − PR(K) and PN (K) = In − PR(KT ). (II.4)

II.1.1 The Cimmino and Kaczmarz methods

We assume that we have a partitioning of the matrix A into p blocks. For a full row rank
matrix, we partition the matrix into row blocks Ai, and b is partitioned accordingly

A =


A1

A2
...
Ap

 , and b =


b1

b2
...
bp

 , (II.5)

with A1, . . . , Ap row blocks from the partitioning Ai ∈ R mi×n, m1 + · · · + mp = m.
For a full column rank matrix, we partition the matrix into column blocks Ai, and x is
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partitioned accordingly

A =
[
A1 A2 . . . Ap

]
, and x =


x1

x2
...
xp

 , (II.6)

with A1, . . . , Ap column blocks from the partitioning Ai ∈ R m×ni , n1 + · · ·+ np = n.

Block projection methods are iterative algorithms which compute the solution of
the linear system (II.1) through successive projections of the current iterate x(k) onto
the range of the partition blocks [52]. We distinguish 2 approaches: the multiplicative
methods in which an iterate is obtained with a product of projections, and the additive
methods in which the iterate is computed with a sum of projections. The 2 approaches
are respectively related to the application of Successive Over-Relaxation (SOR), and
block Jacobi (BJ) on the normal equations of the matrix, in the sense that the iteration
matrices are equivalent. When the partitions are reduced to single rows, these methods
are respectively called the Kaczmarz algorithm [88], and the Cimmino algorithm [34].
The row and column block Kaczmarz (BK) and block Cimmino (BC) methods are then
generalisations with row or column partitions of arbitrary sizes [52].

Let’s consider that A is underdetermined (m ≤ n) and has full row rank (rank(A) =
m). The starting vector x(0) is arbitrary. In the row block Cimmino method, we obtain
the next iterate x(k+1) through a sum of projections of the current iterate x(k) onto the
range of ATi , i = 1, . . . , p. Let’s note ω a relaxation parameter, and δ(i) the projection
on R(ATi ). We get the iteration

δ(i) = A+
i (bi −Aix(k)) = A+

i bi − PR(AT
i )(x(k)), i = 1, . . . , p,

x(k+1) = x(k) + ω
p∑
i=1

δ(i).
(II.7)

In the row block Kaczmarz method, on the contrary, the new projections are used as
soon as available

δ(1) = x(k),

δ(i+1) = δ(i) + ωA+
i (bi −Aiδ(i)) = δ(i) + ωA+

i bi − PR(AT
i )(δ(i)), i = 1, . . . , p

x(k+1) = δ(p+1).
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We illustrate both methods in Figure II.1 on a 2D case, where each equation corresponds
to a line in space and finding the solution is finding the intersection between those spaces.

A1x = b1

x(0)

δ(1)

δ(2)

x(1)

δ(1)

x(1)= δ(2)

x∗ A2x = b2

Figure II.1 2D visualisation of an iteration for (Blue) the BC method, and (Red) the
block Kaczmarz method, applied to an initial iterate x(0).

Similarly, we consider now that A is overdetermined (m ≥ n) and has full column
rank (rank(A) = n), with A partitioned into column blocks Ai, i = 1, . . . , p. The starting
vector x(0) is arbitrary. Let’s denote by ω a relaxation parameter, δ(i) the projection,
and r(k,i) the residual corresponding to partition i. The column block Cimmino method
updates each part of the current iterate separately. Starting from an initial residual
r(0) = b−Ax(0), the iteration reads

δ(i) = AiAi
+
r(k) = PR(Ai)(r(k)),

x
(k+1)
i = x

(k)
i + ωAi

+
r(k),

r(k+1) = r(k) − ω
p∑
i=1

δ(i), i = 1, . . . , p,

(II.8)

The column block Kaczmarz method counterpart is given by

δ(k,1) = r(k) = b−Ax(k),

δ(k,i+1) = δ(k,i) − ωAiAi+δ(k,i) = δ(k,i) − ωPR(Ai)(δ(k,i)),

x
(k+1)
i = x

(k)
i + ωAi

+
δ(k,i), i = 1, . . . , p.

The Cimmino and Kaczmarz methods are very similar. We consider primarily the block
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Cimmino method for parallel computing reasons: at each iteration, the projections are
computed independently, thus unveiling a large potential for parallelism.

II.1.2 The block Cimmino method

In this section, we detail the block Cimmino method applied to full rank matrices, and its
interpretation. But first, in an attempt to unify the approaches based on row and column
partitioning, we are interested in the relation between the solution of an underdetermined
system and a least-squares problem for special choices of right hand side.

Property 1. Assuming the matrix A ∈ R m×n is underdetermined (m ≤ n), has full row
rank, and is partitioned into blocks of rows Ai as in (II.5). AT ∈ R n×m is overdetermined
(m ≥ n), has full column rank, and is partitioned into blocks of columns Ai as in (II.6),
with Ai = AT

i .
Then, considering the vectors b and b̃ s.t. b = Ab̃, the unique solution xls of the least-
squares problem

min
x̃

∥∥∥b̃−AT x̃∥∥∥
2
, (II.9)

and the minimum norm solution (m.n.s.) xmns of the problem

min ‖x‖2 with Ax = b, (II.10)

are linked by the relation xmns = ATxls.

Proof Considering we have b = Ab̃, the proof is simple.
xls is the unique solution of the normal equations AAT x̃ = Ab̃.

xmns is the unique solution of the system{
AAT y = b = Ab̃,

x = AT y,

⇐⇒
{
y = x̃,

x = AT x̃,

(II.11)

which completes the proof. The 2-steps process in (II.11) is implicit in the row block
Cimmino method, which can also be seen as a ω-damped block Jacobi method (ω-
BJ) applied to the normal equations, where the diagonal blocks correspond to the
row partitions [52]. As we apply the same ω-BJ iterations to solve both (II.9) and
(II.10), the iterates x(k+1) and x̃(k+1) from row and column block Cimmino are linked by
x(k+1) = AT x̃(k+1) whenever b = Ab̃.
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To find b̃ such that b = Ab̃ is to find a solution to the system without considering the
minimum norm constraint. This is not the goal. The previous property is only introduced
to greatly simplify further developments by writing b = Ab̃ and always working with
an underdetermined matrix A. In the rest of the thesis, we solve the underdetermined
system (II.10), based on matrix A and b, using the row block Cimmino method, or the
least-squares problem (II.9), based on the matrix AT and b̃, using the column block
Cimmino method, with b = Ab̃.

II.1.2.a The iteration matrices

We introduce the block diagonal matrix

D = blkdiag(D1, . . . , Dp),
Di = AiA

T
i , i = 1, . . . , p.

As detailed in [47], we rewrite the iteration of the row block Cimmino method (II.7)
as

x(k+1) = x(k) + ω
p∑
i=1

Ai
+(bi −Aix(k)), i = 1, . . . , p

= Qrowω x(k) + ωkrow,

(II.12)

with 
Qrowω = In − ωHrow is the iteration matrix,

Hrow =
p∑
i=1

A+
i Ai = ATD−1A,

krow =
p∑
i=1

A+
i bi = ATD−1b.

(II.13)

Using previous notation, we also rewrite the iteration of the column block Cimmino
(II.8) as

x̃
(k+1)
i = x̃

(k)
i + ωAi

+(b̃−AT x̃(k)), i = 1, . . . , p
⇐⇒ x̃(k+1) = Qcolω x̃(k) + ωkcol,

(II.14)

with 
Qcolω = Im − ωHcol is the iteration matrix,
Hcol = D−1AAT ,

kcol = D−1Ab̃.

(II.15)

As Hrow and Hcol share several properties, in the following H is used to refer to
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either matrices. The same kind of notation is used for Q and k.
It is shown in [52] that both row and column block Cimmino methods converge if

and only if 0 < ω < 2/ρ(H). The remaining question is how to compute the various
pseudo-inverses composing H and k.

II.1.2.b Computing the projections

As detailed in [133], there are several approaches to compute these pseudo-inverses.
• Normal equations: The normal equations of each partition AiA

T
i are directly

factorised. However, additionally to being expensive in flops and memory be-
cause of fill-in effects, this approach can also be numerically unstable because the
conditioning of the original partition Ai is squared.

• QR factorisation: another alternative is to use the QR factorisation ATi = QiRi, so
that A+

i = QiR
−T
i and A+

i Ai = QiQ
T
i .

• Semi-normal equations: using the same QR factorisation, A+
i v is computed in 2

steps. Solving RiRTi w = v is a simple elimination, cheap and stable as R is upper
triangular. Then we directly obtain A+

i v = ATi w. The issue is that QR factorisation
is expensive compared to Gaussian elimination.

• Augmented systems: using the partitions Ai, the augmented system [19][
In ATi
Ai 0mi

] [
ui

vi

]
=
[
r

zi

]
, (II.16)

is solved with r ∈ R n×1 and zi ∈ R mi×1, with mi the size of the partition Ai. We
obtain the solutions

vi = (AiATi )−1(Air − zi),
ui = r −ATi (AiATi )−1(Air − zi).

Solving (II.16) at each iteration, with one independent system for each partition,
we obtain the required elements for the block Cimmino method.

The best option in our case is to use the augmented systems, that we call projection
systems, and solve these systems with a parallel direct solver. This approach was proven
to be more stable than the normal equations in [10].

II.1.2.c Block Cimmino as a domain decomposition method

In this section, we highlight the interpretation of BC as a Domain Decomposition Method
(DDM) As stated above, the block Cimmino iterations (row or column methods) are
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equivalent to applying a damped block-Jacobi algorithm to the normal equations of
the system [75], where the size of the diagonal blocks corresponds to the size of the
corresponding partition. The damped-Jacobi iterations are shown to be a form of additive
Schwarz method with minimum overlap, as introduced in I.2.2, applied on the normal
equations system. A proof is given in Appendix A.1 inspired from Section 1.2 of [40].
This interpretation gives a wider interpretation on how systems are solved with block
Cimmino iterations. Also, this naturally points to the solution of discretized PDEs,
together with domain decomposition. As a matter of fact, the partitioning of the matrix
can be performed using the geometry of the PDE problem, with the usual purpose of
DDM to balance the workload inside partitions – subdomains – while minimising the
links between them – interfaces. We develop in more details these issues with respect to
partitioning techniques in Section III.1.2.

II.2 Conjugate gradient acceleration for the block Cim-
mino method

The convergence of the projection methods introduced above is known to be slow, even
with an optimal choice for the relaxation parameter ω [52]. From (II.12) and (II.14), the
iteration of the block Cimmino method can be written in the form

x(k+1) = Qx(k) + k, (II.17)

where the iteration matrix Q = I − ωH, H and k depends on the row or column version.
Equation (II.17) is the classical form of a fixed-point iterative scheme such as Jacobi or
SOR, as seen in Section I.2.1. In [75], polynomial accelerations using either Chebyshev
polynomials or the Conjugate Gradient algorithm (CG) were introduced to improve the
convergence of these symmetrisable iterative schemes. Among these 2, CG acceleration
is particularly interesting because it does not require any parameter estimation. On
the opposite, Chebyshev polynomials require an estimation of the largest and smallest
eigenvalues of the iteration matrix, but will not involve any dot-products.
The CG algorithm is known to converge in a finite number of steps, in the absence of
round-off errors, when applied to symmetric positive definite (SPD) matrices [79]. For
this kind of matrices, CG is the iterative scheme usually chosen. In particular, CG
acceleration was studied for the Cimmino and Kaczmarz methods in [22]. The authors
showed the potential of such accelerated methods to solve large unsymmetric linear
systems, that exhibit a nice parallelism and high robustness. In this context, the CG
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acceleration of symmetrisable schemes [75] was observed to converge faster than other
classical iterative methods designed for unsymmetric systems, such as e.g. the Generalised
Minimal Residual method (GMRES) or the Conjugate Gradient method on the Normal
Equations (CGNE).

In this section, we recall the details relative to the Conjugate Gradient acceleration
[75] of the block Cimmino method [112]. Looking at the fixed point of the iterations x∗,
we rewrite the system as

x∗ = (I − ωH)x∗ + ωk

⇐⇒ ωHx∗ = ωk

⇐⇒ Hx∗ = k (ω 6= 0).

where (I − ωH) is the iteration matrix of the block Cimmino iterations. This equation is
independent from the relaxation parameter (ω 6= 0). We end up with the new system to
solve

Hx∗ = k. (II.18)

As an abuse of language in the following, we also call H the iteration matrix of the
block Cimmino method. This change of system can be viewed as a left preconditioning
of the original system inspired from Cimmino.

II.2.1 Solving underdetermined systems

In this section, we remind the results detailed in [112] and [133] for square full rank
systems. We also prove that these results are directly applicable to the minimum norm
solution (m.n.s.) of full rank underdetermined systems, and which can thus be solved
using the accelerated row block Cimmino method.

Assuming we are computing the m.n.s. of the underdetermined system (II.10). With
the row-partitioned block Cimmino method, the iteration matrix Hrow, defined in (II.13)
is a sum of orthogonal projections, and is symmetric semi positive definite (SPD). Also,
the system (II.18) is consistent, and we can then use a CG to solve the equation (II.18),
thus accelerating the row block Cimmino method as described in [75].

II.2.1.a Stabilised block-CG

The convergence of the CG acceleration can still be slow depending on the distribution of
the eigenvalues of the matrix Hrow. In particular, if the spectrum of Hrow contains clusters
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of small eigenvalues together with some ill-conditioning, we may observe long plateaus
in the convergence. To reduce these plateaus, it was proposed in [68] to combine the
CG acceleration with Chebyshev filtering to target directly these clusters of eigenvalues.
Such filters are of particular interest in the case of the block Cimmino iteration matrix
Hrow, whose eigenvalues are clustered around 1, and small clusters of eigenvalues remain
at the extreme of the spectrum. The authors showed that this approach can be beneficial
when solving linear systems with multiple right-hand sides.
In [11] and [112], a block version of the CG acceleration (block-CG) is used to reduce
the long plateaus in the convergence. The right hand side b is then augmented as
B ∈ R m×s, using additional random vectors. Using the block-CG we can also naturally
solve with multiple right-hand sides. The algorithm is additionally stabilised through a
re-orthonormalization of the residual and conjugate directions to avoid numerical issues
at superlinear convergence. The complete algorithm is detailed in Algo. 1, which we shall
simply call row-BC in the following.

Algorithm 1 Stabilised block-CG acceleration of the row block Cimmino iterations
(row-BC).
Input: Hrow ∈ R n×n, Krow ∈ R m×s.
Output: solution X ∈ R n×s.

1: X(0) is arbitrary, R(0) = K −HrowX(0),
2: R

(0) = R(0)γ−1
0 such that R(0)T

R
(0) = Is,

3: P
(0) = R

(0)
β−1

0 such that P (0)T

HrowP
(0) = Is,

4: for j = 0, 1, 2, . . . until convergence do
5: λj = β−Tj ,

6: X(j+1) = X(j) + P
(j)
λj

(
0∏
i=j

γi

)
,

7: R
(j+1) = (R(j) −HrowP

(j)
λj)γ−1

j+1 such that R(j+1)T

R
(j+1) = Is,

8: αj = βjγ
T
j+1,

9: P
(j+1) = (R(j+1) + P

(j)
αj)β−1

j+1 such that P (j+1)T

HrowP
(j+1) = Is.

10: end for

II.2.1.b The stabilisation process

Through the iterations, stabilisation is necessary in the block-CG because the residuals
R(j) and R(j+1) are naturally maintained orthonormal block-wise, i.e. R(j)TR(j+1) = 0,
but the column-vectors inside the blocks are not. As the algorithm converges, some
vectors in the residual block get close to colinear. As a result, R(j) is asymptotically
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ill-conditioned, and need to be orthonormalized. This orthonormalisation takes the form
of an upper triangular matrix γj built such that R(j)T

R
(j) = Is with R

(j) = R(j)γ−1
j .

For the same reasons, an upper triangular matrix βj is constructed at each iteration in
order to Hrow-orthonormalize the conjugate directions within each block P (j). We obtain
P

(j) = P (j)β−1
j such that P (j)T

HrowP
(j) = Is.

There are several choices to compute the orthonormalization matrices. In [112], the
authors proposed to orthonormalize the residuals using a Cholesky decomposition of
R(j)TR(j) and P (j)THrowP (j). The same authors show that for large block sizes, the
stability of this process may deteriorate. Again, this instability is due to an increasing
ill-conditioning of the residuals when reaching superlinear convergence. An alternative
was is to use an orthonormalization process based on a modified Gram-Schmidt (GMGS)
[20], or a generalised QR (GQR) [69]. We choose to use the latter. In any case, the main
complexity of the stabilisation process comes from a dense matrix operations on a matrix
of dimension s. Finally, some of the solution vectors may converge earlier than others in
the block-CG, then we could reduce the block-size along the block-CG iterations [106].

II.2.1.c Computation of the projections

In Algo. 1, Hrow is never explicitly assembled, we directly apply a sum of independent
projections to the set of s vectors. The algorithm to compute the sum of projections,
sumProject, is detailed in Algo. 2. For each partition i, the projection A+

i Ai is computed
independently via the solution of the system (II.16) by a parallel direct solver, see Algo. 3.
The independence between the computation of each projection is a key stone to the
hybrid parallelization scheme [133] of the block Cimmino method accelerated with the
stabilised block-CG, see Section III.2.1. This function takes 2 arguments r ∈ R n and
zi ∈ R mi , thus in the block-CG algorithm, we compute the projections as

R(0) = −sumProject(X(0), B),
HP (j) = sumProject(P (j), 0).

The stabilised block-CG algorithm written in the form of Algo. 1 has several advantages
in terms of computational complexity as the resulting block iterative algorithm benefits
from efficient dense matrix operations together with the reduction of plateaus in the
convergence. We detail these effects with experiments in Section II.4.1.
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Algorithm 2 Sum of Projections (sumProject).
Input: r and z.
Output: σ =

p∑
i=1

A+
i (zi −Air).

1: σ =
[
0 . . . 0

]T
,

2: for i = 1→ p do
3: zi = z restricted to the rows of partition i,

4:

[
ui
vi

]
= solve Ai(r, zi),

5: σ = σ + ui.
6: end for

Algorithm 3 Solution of the projection system for Ai (solve Ai).
Input: r and zi.
Output: ui = A+

i (Air − zi) and vi = (AiATi )−1(Air − zi).

1:

[
ui
vi

]
= direct solve(

(
In ATi
Ai Omi

)(
ui
vi

)
=
(
r
zi

)
,

2: ui = r − ui.

II.2.2 Solving least-squares problems

We now extend the previous approach to the solution of the full column rank least squares
problem (II.9) with the column block Cimmino method, accelerated with a block-CG.
Thanks to the equivalence shown in Section II.1.2, most of the elements used to accelerate
the row block Cimmino stay applicable for the column block Cimmino.

As opposed to the case with the row block approach, matrix Hcol from (II.15) is
not symmetric in itself, but since D 1

2HcolD−
1
2 = D−

1
2AATD−

1
2 , it is similar to an SPD

matrix given A has full row rank. To develop a block Conjugate Gradient (block-CG)
acceleration of the column block Cimmino iterations (II.8), we consider the solution of
the equivalent linear system

My = f, (II.19)

in which M = D−
1
2AATD−

1
2 , f = D−

1
2AB̃, and y = D

1
2 x̃ is a change of variables in

(II.18). B̃ is the right-hand side b̃ completed to the block size s with additional random
columns. Since matrix M is SPD, provided A has full row rank, we use the stabilised
block-CG algorithm to solve this latter system. We recall the basics from [11] applied
to (II.19), and summarised in Algo. 4 below. In this algorithm, matrices γj and βj are
upper triangular, and result from an orthonormalization process, which is managed as
before with GQR for instance.



II.2 CG-accelerated for block Cimmino 57

Algorithm 4 Stabilised Block Conjugate Gradient to solve MY = F .
Input: M ∈ R m×m, F ∈ R m×s.
Output: solution Y ∈ R n×s.

1: Y (0) is arbitrary, Z(0) = F −MY (0),
2: Z

(0) = Z(0)γ−1
0 such that (Z(0)T

Z
(0)) = Is,

3: W
(0) = Z

(0)
β−1

0 such that (W (0)T
MW

(0)) = Is,
4: for j = 0, 1, 2, . . . until convergence do
5: λj = β−Tj ,
6: Y (j+1) = Y (j) +W

(j)
λj
(∏0

i=j γi
)
,

7: Z
(j+1) =

(
Z

(j) −MW
(j)
λj
)
γ−1
j+1 such that (Z(j+1)T

Z
(j+1)) = Is,

8: αj = βjγ
T
j+1,

9: W
(j+1) =

(
Z

(j+1) +W
(j)
αj
)
β−1
j+1 such that (W (j+1)T

MW
(j+1)) = Is,

10: end for

The derivation, from Algo. 4, of the block-CG acceleration of the column block
Cimmino, is rather straightforward. We introduce the starting guess X̃(0), so that
Y (0) = D

1
2 X̃(0), and the associated residual R(0) = B̃ −AT X̃(0), for which we get

Z(0) = F −MY (0) = D−
1
2AR(0).

From step 2 in Algo. 4, we then introduce R(0) = R(0)γ−1
0 , so that

R
(0)T (ATD−1A)R(0) = Z

(0)T
Z

(0) = I.

The matrix γ0 enforces the orthonormality of the residuals R(0) with respect to the inner
product associated with matrix ATD−1A. Note also, that this matrix corresponds to the
sum of the projectors onto the subspaces spanned by the partitions, and thus to Hrow,
the iteration matrix from the row block Cimmino in (II.13). In step 3, we set the upper
triangular matrix β0 so that β−T0 Z

(0)T
MZ

(0)
β−1

0 = I, which is also equivalent to

β−T0 R
(0)T (Hrow)2R

(0)
β−1

0 = I.

Therefore, we introduce the new set of vectors Q(0) = HrowR
(0)
β−1

0 , for which we then
have Q(0)T

Q
(0) = I, and matrix β0 is built in order to orthonormalize the set of vectors

in HrowR
(0). We then verify the propagation of this initial setting, by recurrence, and
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exchange step 7 with

R
(j+1) =

(
R

(j) −Q(j)
λj
)
γ−1
j+1 such that (R(j+1)T

HrowR
(j+1)) = I,

together with step 9 replaced by

Q
(j+1) =

(
HrowR

(j+1) +Q
(j)
αj
)
β−1
j+1 such that (Q(j+1)T

Q
(j+1)) = I.

Strictly speaking, the iterations are equivalent, yielding the same iterates αj , βj , γj , and λj ,
except that we update different vectors, for which we have the relations Z(j) = D−

1
2AR

(j)

and Q
(j) = ATD−

1
2W

(j), together with an iteration matrix Hrow that corresponds to
the sum of projections defined by the partitioning of A. The final step is to recover
the iterates X̃(j) = D−

1
2Y (j). From step 6 in Algo. 4, we maintain iteratively the new

updates P (j) = D−
1
2W

(j). This is resumed in steps 4 and 11 in Algo. 5.
All in all, we obtain the following Stabilised Block-CG acceleration of the column-

block Cimmino method, detailed in Algo. 5, which we simply call column-BC in the
following. In this algorithm, the set of vectors Q(j) and P

(j) depend respectively on

Algorithm 5 Stabilised Block Conjugate Gradient acceleration of the column-BC.
Input: AT ∈ R n×m, B̃ ∈ R n×s, Hrow ∈ R n×n.
Output: solution X̃ ∈ R m×s.

1: X̃(0) is arbitrary, R(0) = B̃ −AT X̃(0),
2: R

(0) = R(0)γ−1
0 such that (R(0)T

HrowR
(0)) = Is,

3: Q
(0) = HrowR

(0)
β−1

0 such that (Q(0)T

Q
(0)) = Is,

4: P
(0) = D−1AR

(0)
β−1

0 ,
5: for j = 0, 1, 2, . . . until convergence do
6: λj = β−Tj ,

7: X̃(j+1) = X̃(j) + P
(j)
λj(

0∏
i=j

γi),

8: R
(j+1) = (R(j) −Q(j)

λj)γ−1
j+1 such that (R(j+1)T

HrowR
(j+1)) = Is,

9: αj = βjγ
T
j+1,

10: Q
(j+1) = (HrowR

(j+1) +Q
(j)
αj)β−1

j such that (Q(j+1)T

Q
(j+1)) = Is,

11: P
(j+1) = (D−1AR

(j+1) + P
(j)
αj)β−1

j+1.
12: end for

HrowR
(j) and D−1AR

(j). The first results from a sum of projection and is computed
using sumProject(R(j), 0). The second element is a concatenation of pseudo-inverse
solutions, which can be computed together with a direct solver again from the projection
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systems (II.16), using solve Ai (Algo. 3). Steps 4 and 11 are computed as

D−1AR
(j) = gatherProject(R(j), 0),

with the corresponding Algo. given in Algo. 6. In practice, the results from sumPro-

Algorithm 6 Gather Projections (gatherProject).
Input: r and z.
Output: γ = D−1(Ar − z).

1: γ =
[
0 . . . 0

]T
,

2: for i = 1→ p do
3: zi = z restricted to the rows of partition i,

4:

[
ui
vi

]
= solve Ai(r, zi),

5: γi = vi.
6: end for

ject and gatherProject are obtained with a single solution of the projection system for
each partition. Doing so, we spare half of the calls to the direct solver to compute
the projections, which is the most expensive part of the algorithm. The computational
advantages of Algo. 5 are the same as for Algo. 1. Again, the independence between
these subsystems is a keystone for the hybrid parallel implementation of the column-BC
method accelerated with a stabilised block-PCG. We detail this parallelisation in the
Section III.2.1, together with implementation details for the row and column methods as
they are implemented in the ABCD-Solver 1 library.

Summary We have developed an acceleration of the block Cimmino method with a
stabilised block-CG, designed both for the m.n.s. of underdetermined and the solution
of overdetermined linear systems. Henceforth, in this thesis, we simply refer to the
accelerated methods as row-BC and column-BC as opposed to the classical iterations. In
section II.4, we show the sequential efficiency of the method for some sparse matrices
and in particular the effect of increasing the block size within the block-CG acceleration.
As explained in the forthcoming Section III.1.2, which details the construction of the
partitions, the spectrum of the iteration matrix (row and column) is affected by the
principal angles between the subspaces spanned by the partitions, and this is problem
dependent. The convergence behaviour is thus difficult to predict in general with a
convergence profile displaying either long plateaus or linear convergence. To overcome

1http://abcd.enseeiht.fr/

http://abcd.enseeiht.fr/
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these issues with the convergence of such iterative methods, we propose in the next
section an alternative approach that can achieve convergence in 1 iteration.

II.3 The augmented block Cimmino method

We introduce now an alternative approach proposed in [47]. The principle of the
Augmented block Cimmino method (ABCD) is to augment the matrix to enforce the
orthogonality between subspaces spanned by the partition blocks, so as to achieve a
convergence of the block Cimmino method in 1 iteration. The result is a pseudo-direct
method in which the construction and solution of a smaller symmetric positive system is
central. In this section, we extend the approach, originally designed for full rank square
unsymmetric systems, to full rank rectangular systems.

II.3.1 Enforcing the orthogonality between spaces

We consider again that we have a full rank underdetermined matrix A ∈ R m×n, par-
titioned in blocks of rows as in (II.5), and we are computing either the m.n.s. of the
underdetermined system (II.10), based on A and b, or the solution for the least-squares
problem (II.9), based on AT and b̃ together with b = Ab̃. Most of the results for the
augmentation process are identical for both kind of systems, and we thus do not make
any difference at first. We shall just detail how to compute the final solution for each case.

For a better understanding of the augmentation process, we use the example of a
block-tridiagonal matrix of the form


A1 A1,1 A1,2

A2 A2,1 A2,2 A2,3

A3 A3,2 A3,3
. (II.20)

Such a form is not mandatory but simplifies the illustration below, and the approach
is valid for any general underdetermined matrix. In this block tridiagonal form, the scalar
product of 2 partitions is reduced to

∀ i, j = 1, . . . , p, i 6= j, ATi Aj =
{

0, if j 6= i± 1
ATi,jAj,i, if j = i± 1

,

where Ai,j and Aj,i are the submatrices within Ai and Aj respectively corresponding to
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the overlapping columns between these two blocks.

II.3.1.a The augmentation scheme

The essence of the method is to enforce the numerical orthogonality between partitions
with the help of additional variables and constraints in the system. First, we augment
the matrix A into A, viz.

A =
[
A C

]
, (II.21)

with C ∈ R m×q, and A ∈ R m×n, n = n+ q. This augmentation block is built so that
the augmented partitions Ai are mutually orthogonal, i.e.

∀ i, j = 1, . . . , p, i 6= j, AiA
T
j = AiA

T
j + CiC

T
j = 0.

Thus, the general property that must be satisfied by the augmentation block C is

∀ i, j = 1, . . . , p, i 6= j, CiC
T
j = −AiATj .

Since A has full row rank, the extended matrix A ∈ R m×n has also full row rank, and
the has block structure

A =


A1
...
Ap

 , with C =


C1
...
Cp

 and Ai =
[
Ai Ci

]
, i = 1, . . . , p,

composed of orthogonal partitions.
In the following, we denote as interconnections the non-zero overlapping columns

between several partitions. In the example (II.20), the two sub-blocks A1,2 and A2,1, as
well as A2,3 and A3,2, correspond to interconnections. The simplest augmentation is then
to consider each couple of interconnections, and duplicate them with a minus sign for
the second row partition. Using our block tridiagonal example, the augmented matrix
then becomes 

A1 A1,1 A1,2 A1,2

A2 A2,1 A2,2 A2,3 −A2,1 A2,3

A3 A3,2 A3,3 −A3,2
.

The scalar product between each pair of augmented partitions (Ai, i = 1, . . . , 3) is now
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zero as

AiA
T
j =

{
0, if j 6= i± 1
Ai,jA

T
j,i −Ai,jATj,i = 0, if j = i± 1

,

There are several ways to form the augmentation block C, which do not lead to the
same size, nor density [47]. We detail several techniques in Section III.1.3, including a
novel approach. Note that, since the augmented partitions Ai are mutually orthogonal,
the orthogonal projector onto the range of A corresponds to a sum of projectors onto
orthogonal subspaces, i.e.

P = PR(AT ) = P p⊕
i=1
R(AT

i )
=

p∑
i=1
PR(AT

i ) =
p∑
i=1

A
+
i Ai. (II.22)

In a second step, a set of constraints Y ∈ R q×n is introduced to set[
A

Y

]
=
[
A C

0 Iq

]
. (II.23)

The augmented matrix is now of size m × n with m = m + q and n = n + q. In the
case of the underdetermined system, the new block Y =

[
0 Iq

]
is there to ensure that

the solution to the augmented system remains the solution of the original problem by
enforcing the additional variables to 0, i.e.[

A C

0 Iq

] [
x

0

]
=
[
b

0

]
.

Now the partitions A =
[
A C

]
and Y =

[
0 Iq

]
are no longer orthogonal. We

enforce the orthogonality through the projection of Y T onto the orthogonal complement
of A. Using (II.4), this projector is rewritten PN (A) = In − PR(AT ). In the end, Y is
replaced by the block W defined as

W =
[
B S

]
= Y (In − PR(AT )), (II.24)

in which B ∈ R n×q, S ∈ R q×q. Then, W ∈ R q×n is such that

AW T = 0.

The mutual orthogonality between Ai and W is what guarantees convergence in exactly
1 iteration, see Figure II.2.
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Figure II.2 (Left) An iteration of the BC method in 2D. (Right) The space has been
augmented with one dimension, lines are included into orthogonal planes. The closure

equations Wx = f correspond to a new plane orthogonal to the 2 other ones. One
iteration of the BC method gets directly to the solution of the system.

Finally, we get the fully augmented matrix[
A C

B S

]
. (II.25)

Depending on the problem, underdetermined or overdetermined, we then obtain a set
of augmented variables as well as an augmented right-hand side. These are specified in
Section II.3.2, where the choice of the additional right hand side is crucial to ensure that
we can recover the solutions xmns or xls of the original problems. Before computing the
actual solution to our systems, we first show some general properties on the augmented
matrix.

II.3.1.b Properties of the augmented matrix

In this section, we introduce some properties of the block W =
[
B S

]
and the pseudo-

inverses of the augmented partitions. They prove useful for the computation of the
solution to the augmented system of equations.

Property 2. We consider the augmented matrix from (II.25) with W as in (II.24). Due
to the mutual orthogonality between partitions Ai, we define

D = AA
T = blkdiag(D1, . . . , Dp) and Di = AiA

T
i . (II.26)

Then we have the following properties
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(i) using (II.22), the symmetric matrix S is SPD, and it is written

S = YW T = Y (In − P )Y T

= Iq − CT D
−1
C = Iq −

p∑
i=1

CTi D
−1
i Ci.

(II.27)

(ii) the normal equations of W respect the property

WW T = BBT + S2 = S. (II.28)

(iii) the block B is written

B = −CT D−1
A = −

p∑
i=1

CTi D
−1
i Ai. (II.29)

(iv) the normal equations of A are defined as

[
A

W

] [
A

W

]T
=
[
D 0
0 S

]
. (II.30)

Proof (i): First, from the definition of W in (II.24), as Y =
[
0 Iq

]
is a restriction

matrix on the augmentation space, S is given by

S = WY T = Y (In − P )Y T .

Since (I − P ) is a symmetric orthogonal projector, its eigenvalues are 0 or 1. As S is a
restriction of this projector, the eigenvalues of S lie in the interval [0, 1], and thus S is
symmetric semi positive definite.

(ii): Then, using the definition (II.24) of W , and the fact that (I−P ) is an orthogonal
projector, as in (II.22), we have

WW T = Y (In − P )(In − P )TY T = Y (In − P )2Y T

= Y (In − P )Y T

= S.

Additionally, we rewrite the normal equations of W in terms of B and the symmetric
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matrix S, and obtain

WW T =
[
B S

] [
B S

]T
= BBT + SST

= BBT + S2.

(i) and (iii): As A has full row rank, so does A and we know from (II.3) that

P = A
+
A = A

T (AAT )−1A = A
T
D
−1
A. (II.31)

Then, using the orthogonality between Ai, we express the block W in terms of the
matrices A and C as

W = Y (I − P ) = Y (In −A
T
D
−1
A)

= Y (In −
[
AT

CT

]
D
−1 [

A C
]
)

=
[
0 Iq

] [In −AT D−1
A −AT D−1

C

−CT D−1
A Iq − CT D

−1
C

]

=
[
−CT D−1

A Iq − CT D
−1
C

]
=
[
−

p∑
i=1

CTi Di
−1
Ai Iq −

p∑
i=1

CTi Di
−1
Ci

]
.

(II.32)

(iv): Finally, using the orthogonality between A and W , (II.26) and (II.28), the
normal equations of the augmented matrix are

[
A

W

] [
A

W

]T
=
[
AA

T 0
0 WW T

]

=
[
D 0
0 S

]
.

The pseudo-direct computation of the solution using the ABCD approach makes the
critical assumption that S is invertible. The next result gives a sufficient condition for
this.

Property 3. If the matrix A has full row rank, then S is invertible and

S−1 = I + CT (AAT )−1C. (II.33)

Proof We present here a proof for the invertibility of S based on algebraic arguments.
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In [50], another proof based on geometric arguments is given.

From the equality S = WW T (II.28), we get the invertibility of the matrix S if and
only if the matrix W T has full column rank. In this respect, let us suppose that W T z = 0,
for some z ∈ R q. From (II.32), we obtain

W T z = 0⇔
{

ATD
−1
Cz = 0,

z − CTD−1
Cz = 0.

(II.34)

But, from our hypothesis, the matrix AT has full column rank, and thus from the first
equation in (II.34), we must have Cz = 0, which gives us z = 0 from the second equation,
and completes the proof.

Finally, in order to get an algebraic expression for the inverse of S, we remind the
Sherman-Morrison Woodbury formula (SMW)

(M + UΣV )−1 = M−1 −M−1U(Σ−1 + VM−1U)−1VM−1, (II.35)

where M and Σ are invertible matrices. Since AAT = AAT + CCT , we rewrite S as

S = Iq − CT (AAT + CCT )−1C

and using SMW (II.35) with M = Iq, U = CT , Σ = (AAT )−1, and V=C, we get (II.33),
which completes the proof.

Finally, we need to compute the pseudo inverse of W and A to obtain the solutions
of the underdetermined and overdetermined systems respectively, and this is detailed in
sections II.3.2.a and II.3.2.b.

Property 4. If we consider W from (II.24), we express its pseudo-inverse as

W+ = (I − P )Y TS−1. (II.36)

Also, since A from (II.21) is made of orthogonal partitions, we have the following
properties

A
+ =

[
A

+
1 . . . A

+
p

]
,[

A

W

]+

=
[
A

+
W+

]
.

(II.37)
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Proof From the previous proof II.3.1.b, we know W is full row rank. From the
equality (II.28), we derive the pseudo-inverse of W

W+ = W T (WW T )−1 = W TS−1

= (In − P )Y TS−1.

As for the second set of properties, this can be directly derived from the mutual orthog-

onality between the partitions Ai and the block W , and the fact that
[
A

W

] [
A
T

W T
]

is

a block diagonal matrix.

II.3.1.c Decoupling subdomains through a Schur complement

Like the BC method, an interpretation of the ABCD method as a Domain Decomposition
Method (DDM) is possible. As seen in Section II.1.2, to solve either the underdetermined
system (II.10), or the least-squares problem (II.9), we must solve the normal equations

AAT x̃ = b.

Consider that we have the augmented system (II.23) where the partitions Ai are
numerically orthogonal, but not Y . The normal equations become

[
A C

0 Iq

] [
A C

0 Iq

]T
=


A1A

T
1 C1

. . . ...
ApA

T
p Cp

CT1 . . . CTp Iq

 . (II.38)

This bordered block diagonal form is commonly found in DDM. We can compute
the Schur complement for the normal equations of the augmented matrix (II.38), which
condenses all the information of the matrix on the interface variables. The expression of
the Schur matrix is

Schur = Iq −
p∑
i=1

Ci(AiA
T
i )−1CTi

= S.

(II.39)

The Schur complement of the intermediary augmented normal equations system is
equal to the block S from the complete ABCD approach. In fact, projecting the augmen-
tation block Y T onto the nullspace of A, amounts to condensing all the information of
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the system onto the interfaces between subdomains.

An illustrative example: 1D Poisson
To have a better understanding of how the ABCD method works, we use a 1D Poisson
discretized with finite differences as the toy problem. We use here a row partitioning and
the corresponding augmented block Cimmino method. Consider the Poisson equation in
1D with homogeneous Dirichlet boundary conditions{

∇u = f , on Ω =]0, 1[,
u = 0, on ∂Ω = {0, 1}.

(II.40)

We discretize this equation using finite differences on a structured grid of 6 points
with interval of size h, looking for the function u discretized as xi with the forcing term
f giving the right hand side elements bi = h2fi, see Figure II.3. We obtain the system{

−xi−1 + 2xi − xi+1 = bi , i ∈ {1, .., 4},
xi = 0 , i ∈ {0, 5}.

(II.41)

x0 x1 x2 x4x3 x5

Ω1 Ω2

Figure II.3 1D grid with 2 domains corresponding to the partitioning of the matrix for
block Cimmino.

As a result, we have to solve the classical system
2 −1
−1 2 −1

−1 2 −1
−1 2




x1

x2

x3

x4

 =


b1

b2

b3

b4

 .

As we would like to solve this system with ABCD, we partition the matrix in 2
blocks of rows of equal size 2. Basically, we are splitting the grid in 2 equal parts, also
illustrated in the Figure II.3. Then we augment the system with new variables to enforce
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the orthogonality. The corresponding underdetermined problem is

[
A

Y

] [
x

y

]
=


2 −1 −1
−1 2 −1 2 −1

−1 2 −1 1 −2
−1 2 1





x1

x2

x3

x4

y2

y3


=


b1

b2

b3

b4

 . (II.42)

This system can be written as
2x1 − (x2 + y2) = b1,

−x1 +2(x2 + y2) − (x3 + y3) = b2,

− (x2 − y2) +2(x3 − y3) − x4 = b3,

− (x3 − y3) +2x4 = b4.

This is equivalent to decoupling completely the space Ω into 2 domains Ω1 and Ω2

which are augmented into domains Ω1 and Ω2, where each domain has its own copy of
the local interface variables (x(1)

2 , x
(1)
3 ) and (x(2)

2 , x
(2)
3 ). A possible interpretation is to see

the additional variables as a halo ghost where we have
x

(1)
2 = x2 + y2,

x
(2)
2 = x2 − y2,

x
(1)
3 = x3 + y3,

x
(2)
3 = x3 − y3.

(II.43)

As illustrated in Figure II.4, Ω1 and Ω2 are recoupled using the Dirichlet compatibility
conditions  x

(1)
2 = x

(2)
2 ,

x
(1)
3 = x

(2)
3 .

(II.44)

Rewriting the system (II.42) to include the new variables and compatibility conditions
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x0 x1 x
(1)
2

x4x
(2)
3 x5

Ω1

Ω2

x
(1)
3

x
(2)
2

= =

Figure II.4 1D grid with the 2 domains decoupled then re-coupled with compatibility
conditions on the interface points.

(II.44), we obtain


2 −1
−1 2 −1

2 −1 −1
−1 2

1 −1
1 −1





x1

x
(1)
2
x

(2)
3
x4

x
(2)
2
x

(1)
3


=



b1

b2

b3

b4

0
0


.

which corresponds to a stretching method applied on A [70]. This system is equivalent to
the one from the ABCD method if we consider (II.43). We combine the 2 first equations
and the 2 last equations in (II.43) to obtain 2× y2 = x

(1)
2 − x

(2)
2 ,

2× y3 = x
(1)
3 − x

(2)
3 .

The additional variables y2 and y3 are then interpreted as the gap between the
decoupled variables in each domain. The compatibility equations become x

(1)
2 = x

(2)
2 ,

x
(1)
3 = x

(2)
3 ,

⇐⇒
{
y2 = 0,
y3 = 0.

Through this example we have illustrated the equivalence between the ABCD and a
DDM, where subdomains are completely decoupled through additional variables, then
recoupled using simple equality conditions, possibly leading to the solution of a Schur
complement equation. While BC is an additive Schwartz method with minimal overlap,
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ABCD introduces the corresponding Schur complement method when considering the
transmission of information between subdomains as Dirichlet conditions at the interface.

II.3.2 Computing the pseudo-direct solution

Now, we have set the stage with a fully augmented matrix and proven properties on
the augmentation blocks. In this section, we first show how to get the solution to the
augmented problem. Secondly, we prove that these solutions are the same as the m.n.s. to
the original underdetermined system (II.10), and the least-squares problem (II.9).

II.3.2.a Underdetermined systems

As a reminder, our goal is to compute the m.n.s. of the full rank underdetermined system
(II.10), i.e. min ‖x‖2 with Ax = b. After augmenting the matrix A as in (II.25), we have
to solve the new underdetermined system[

A

W

] [
x

y

]
=
[
A C

B S

] [
x

y

]
=
[
b

f

]
. (II.45)

In this system, the augmented partitions Ai and the additional constraints W are
mutually orthogonal. To keep the solution to the original system (II.10), the right hand
side f is chosen in order to enforce the additional variables y to be 0. Let’s consider

xmns is the solution of the original system and
[
xmns

0

]
is the solution of the augmented

system (II.45). Using (II.22) and (II.31), the right-hand side f must satisfy

f = W

[
xmns

0

]
= Y (In − P )

[
xmns

0

]

=
[
0 Iq

] [xmns
0

]
− Y A+

A

[
xmns

0

]
= −Y A+

b

= −Y
p∑
i=1

A
+
i bi.

(II.46)

We now prove the following property, which establishes the equivalence between the
m.n.s. solutions of the systems (II.10) and (II.45).

Property 5. Let’s consider the matrix S is invertible and f is defined by (II.46). Then,
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(i) if x is the m.n.s. of the system (II.10), the vector
[
x

0

]
is the m.n.s. of (II.45).

(ii) if
[
x

y

]
is the m.n.s. of the system (II.45), then y = 0 and x is the m.n.s. of (II.10).

Proof The authors in [47] proved this property for square unsymmetric systems. To
extend the theory to underdetermined systems, we need to prove that the solutions have
minimum norm, on top of satisfying Ax = b.

If x is the m.n.s. of (II.10), using (II.46), we have

[
A

W

] [
xmns

0

]
=


Axmns

W

[
xmns

0

] =
[
b

f

]
,

yielding the fact that
[
xmns

0

]
is a solution of (II.45), which gives the first part of (i).

Let now
[
x

y

]
be the m.n.s. of (II.45) with f from (II.46). Hence, from (II.37) and

(II.45), we write

[
x

y

]
=
[
A

W

]+ [
b

f

]
=
[
A

+
W+

] [b
f

]
= A

+
b+W+f. (II.47)

As S is invertible, using Prop. (II.36) we have

W+f = W TS−1f =
[
BT

ST

]
S−1f =

[
BTS−1f

f

]
.

We then have

A
+
b+W+f =

[
In 0
0 Iq

]
A

+
b+W+f =

[In 0
]
A

+
b[

0 Iq
]
A

+
b

+
[
BTS−1f

f

]

=
[
[In 0]A+

b

Y A
+
b

]
+
[
BTS−1f

−Y A+
b

]

=
[
[In 0]A+

b+BTS−1f

0

]
.

(II.48)
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Finally, (II.47) and (II.48) yield y = 0, hence the m.n.s. of the (consistent) system (II.45)

has the form
[
x

0

]
, with x = [In 0]A+

b+BTS−1f . In particular, from (II.45), we have

[
A C

B S

] [
x

0

]
=
[
Ax

Bx

]
=
[
b

f

]
,

i.e. b = Ax which shows that x is a solution of (II.10). Now since
∥∥∥∥∥
[
x

y

]∥∥∥∥∥ = ‖x‖ is

minimum (as y = 0 necessarily), x must correspond to xmns, the m.n.s. of (II.10), and
vice-versa. This completes the second part of the proof for (i), and proves (ii) at the
same time.

Thanks to the mutual orthogonality between partitions, the classical BC iterations is
guaranteed to converge in one iteration. Using (II.36), (II.46), (II.47), and the mutual
orthogonality between Ai, the final solution is then computed as[

xmns

0

]
= A

+
b+W+f

=
p∑
i=1

A
+
i bi − (In − P )Y TS−1Y

p∑
i=1

A
+
i bi.

(II.49)

From [47], the final algorithm to compute this solution is detailed in Algo. 7.

Algorithm 7 Solve using ABCD for the m.n.s. of underdetermined systems.
Input: A and b.
Output: x.

1: Build w = A
+
b, using a sum of projections, then restrict f = −Y w,

2: Solve Sz = f with a direct solver,
3: Expand z = Y T z and project it, u = (In − P )z,

4: Then sum w + u to get the solution
[
xmns

0

]
.

II.3.2.b Least-squares problems

Here, we compute the unique least-squares solution xls of problem (II.9), i.e. min
x̃

∥∥∥b̃−AT x̃∥∥∥
2
.

After augmenting the matrix AT , so as to ensure orthogonality between the partitions,
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we have to consider the solution of the new least-squares problem

min
x̃

∥∥∥∥∥
[
b̃

f̃

]
−
[
A
T

W T
] [x̃
ỹ

]∥∥∥∥∥ . (II.50)

with A =
[
A C

]
and W =

[
B S

]
.

In this system, the augmented partitions Ai, corresponding to a partitioning of A
in blocks of rows, and the additional constraints W are mutually orthogonal. To keep
the least-squares solution of the original system (II.9), we have to make the right choice
for the right hand side f̃ . In the following lemma, we examine what is the form of a
least-squares solution to the augmented system (II.50).

Lemma 1. For any vector f̃ ∈ R q, the matrix of the problem (II.50) is overdetermined
and has full column rank. Moreover, its (unique) least-squares solution is given by

[
x̃

ỹ

]
=
[
D
−1(Ab̃+ Cf̃)

S−1(Bb̃+ Sf̃)

]
. (II.51)

Proof The column blocks AT and W T have full column rank and are orthogonal,
which tells us that matrix

[
A
T

W T
]

in (II.50) is overdetermined (has dimensions
n×m, n ≥ m), and has also full column rank. Hence, using (II.30), the least-squares
solution of (II.51) is the unique solution of the associated normal equations[

D 0
0 S

] [
x̃

ỹ

]
=
[
Ab̃+ Cf̃

Bb̃+ Sf̃

]
.

which gives us (II.51) and completes the proof.
In [50], the proof of equivalence between the least-squares solution of the original and

the augmented least-squares problem is made with a choice of f̃ = 0. Here, we establish
directly the equivalence using a non-zero appropriate choice for the right hand side.

Property 6. Given matrix S is invertible, let us suppose that the vector f̃ from (II.50)
is given by

f̃ = −S−1Bb̃. (II.52)

Then,
[
x̃

ỹ

]
is the (unique) least-squares solution of problem (II.50), iff ỹ = 0 and x̃ is the

(unique) least-squares solution of problem (II.9).

Proof Since we know that matrix
[
A
T

W T

]
has full column rank, the least-squares
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solution is unique of (II.50) is unique, and the components x̃, ỹ of the least-squares
solution of problem (II.50) are given by (II.51). Using (II.52), we first obtain that ỹ = 0,
as f̃ = −S−1Bb̃, and we have

x̃ = D
−1(Ab̃+ Cf̃) = D

−1
Ab̃−D−1

CS−1Bb̃

= D
−1
Ab̃+D

−1
CS−1CTD

−1
Ab̃.

(II.53)

The unique solution to the problem (II.9) must satisfy the normal equations and we
verify this is the case for x̃. Using (II.33) and (II.53), we have

AAT x̃ = AAT (D−1
Ab̃+D

−1
CS−1CTD

−1
Ab̃)

= AAT
[
D
−1
Ab̃+D

−1
C(I + CT (AAT )−1C)CTD−1

Ab̃
]

= AAT D
−1
Ab̃+AAT D

−1 [
C + CCT (AAT )−1C

]
CT D

−1
Ab̃

= AAT D
−1
Ab̃+AAT D

−1 [
Im + CCT (AAT )−1

]
CCT D

−1
Ab̃

= AAT D
−1
Ab̃+AAT D

−1(AAT + CCT )(AAT )−1CCT D
−1
Ab̃.

Since D = AAT + CCT , we get

AAT x̃ = (AAT + CCT )D−1
Ab̃

= Ab̃.

This shows that x̃ is also the unique least-squares solution of (II.9) and completes the
proof. Since the least-squares solution of (II.9) and the least squares solution of (II.50)
are unique, this completes the proof.

Due to the mutual orthogonality between the augmented partitions, the column BC
iteration is guaranteed to converge in one iteration to the solution (II.53). In order to
rewrite this solution for an efficient computation, we use the following identities

C = AY T , Ab̃ = A

[
b̃

0

]
, D

−1
A

[
b̃

0

]
=



D
−1
1 A1

[
b̃

0

]
...

D
−1
p Ap

[
b̃

0

]


, A

T
D
−1
A

[
b̃

0

]
= H

row

[
b̃

0

]
,

with H
row =

p∑
i=1

A
+
i Ai =

p∑
i=1
PR(AT

i ) All of these identities simply come from (II.26),

and the fact that Ai has full row rank. From (II.53), the final solution is then given by
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x̃ = D
−1
Ab̃+D

−1
CS−1CTD

−1
Ab̃, and is decomposed by blocks as

x̃ =



D
−1
1 A1

[
b̃

0

]
+D

−1
1 A1Y

TS−1Y H
row

[
b̃

0

]
...

D
−1
p Ap

[
b̃

0

]
+D

−1
p ApY

TS−1Y H
row

[
b̃

0

]


. (II.54)

We can observe that each sub-part x̃k of the solution, corresponding to the partition Ai,
can be computed independently with

x̃i = D
−1
i Ai

[
b̃

0

]
+D

−1
i AiY

TS−1Y H
row

[
b̃

0

]
.

This independence between all the solution parts is again a key point of the parallelisation
scheme, each part being computed on separate cores. The final algorithm to compute
this solution is detailed in Algo. 8.

Algorithm 8 Solve using ABCD for least-squares problems.
Input: A and b̃.
Output: x̃.

1: Build w =
p∑
i=1

A
+
i Ai

[
b̃
0

]
and vk = D

−1
k Ak

[
b̃
0

]
, k = 1, . . . , p, using projections,

2: Restrict f = Y w and solve Sz = f with a direct solver,
3: Expand z = Y T z and compute the projection uk = D

−1
k A

T
k z,

4: Then sum and gather all the parts x =

u1 + v1
...

up + vp

.

Remark: As seen in Prop. 1 of Section II.1.2, the solutions of (II.9) and (II.10) are
linked when considering b = Ab̃. Taking (II.49) and (II.54), we can again show in such
case that xmns = ATxls.

Summary
We have developed the theory to establish a new pseudo-direct augmented approach,
namely the ABCD method (standing for the Augmented Block Cimmino Distributed
method), to solve full rank linear systems, either underdetermined or overdetermined. In
[133], using the ABCD approach showed good results for some problems when compared to
either the iterative BC or a more classical direct solver, e.g. MUMPS. We emphasise that
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the augmented scheme is based on ingredients coming from block projection techniques,
but yields a pseudo-direct method. For this reason, we denote this method as an hybrid
direct-iterative scheme. The efficiency of this method depends entirely on the solution
with the SPD matrix S (the matrix B is useless for the computations of the solution). As
a result, the ABCD approach is efficient when the augmentation remains small (typically
< 5%.m), as well as when the density and then conditioning of S stays reasonnable.
This will be illustrated in the experiments.

II.4 Numerical Experiments

We have extended the CG-accelerated block Cimmino method (BC), as well as the aug-
mented block Cimmino approach (ABCD), to the solution of rectangular systems (both
m.n.s. and L.S.). Here, we are interested in the computational efficiency of both methods.
In particular, we demonstrate a behaviour of the methods on rectangular matrices similar
to previous studies on unsymmetric square matrices [8, 47].

In order to assess these results, we apply the BC and ABCD methods on underde-
termined matrices and least-squares problems extracted from the SuiteSparse Matrix
Collection2 [39] with characteristics detailed in Table II.1. The number of partitions
in these cases is chosen so as to get blocks of a dimension in the order of 10 000. The
partitioner used is again GRIP [126] for BC, and PaToH [32] for ABCD, see Section III.1.2
for more details.

Table II.1 Characteristics of the test matrices. m and n: the dimensions of the matrix,
”elts per row”: the number of nonzero values in the matrix.

Matrix m (×106) n (×106) elts per row Problem #Parts
deltaX 0.07 0.02 3.61 Counter Example 4

LargeRegFile 2.11 0.80 2.34 Circuit Simulation 64

sctap1-2r 0.03 0.06 6.46 Linear Programming 8
stat96v3 0.03 1.11 98.04 Linear Programming 4

TSOPF RS b39 c30 0.06 0.06 17.97 Power Network 8

II.4.1 Accelerated block Cimmino iterations

As introduced in Section I.2.1, we use as stopping criterion for the iterative scheme a
threshold of 10−12 for the normwise backward error. For consistent systems, either square

2https://sparse.tamu.edu/

https://sparse.tamu.edu/
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or rectangular and underdetermined, the classical backward error used [9] is

ωk =

∥∥∥Ax(k) − b
∥∥∥
∞

‖A‖∞ ‖x‖1 + ‖b‖∞
.

In the case of least squares problems, the equivalence between the system (II.9) with
solution x̃ and the system (II.10) when taking b = Ab̃ and x = AT x̃, allows us to use the
same backward error with

ωLSk =

∥∥∥Ax(k) − b
∥∥∥
∞

‖A‖∞ ‖x‖1 + ‖b‖∞

=

∥∥∥A(AT x̃(k) − b̃)
∥∥∥
∞

‖A‖∞ ‖AT x̃‖1 +
∥∥∥Ab̃∥∥∥

∞

.

which is implicitly based on the normal equations ATA. Note that to compute x = AT x̃

in the BC method Algo. 5, it is not necessary to compute explicitly the matrix-vector
product AT x̃ at each iteration. Instead, it suffices to use the relation Q(j) = ATP

(j), and
introduce the additional update

X(j+1) = AT X̃(j) = X(j) +Q
(j)
λj(

0∏
i=j

γi),

to monitor the convergence.

In [133], using the row partitioned BC algorithm from II.2.1, the authors showed
that increasing reasonably the block size has a positive effect on the convergence of the
method as well as on the execution time, reducing the long plateaus in the convergence
profile and improving the ratio of computations vs. memory access. For the non-square
matrices in Table II.1, we apply in sequential the appropriate BC method, i.e. Algo. 1
for underdetermined systems and Algo. 5 for overdetermined systems, with a block-CG
size s varying in powers of 2 from 1 to 256.

We first focus on the case of the overdetermined matrix deltaX. Figure II.5 displays
the convergence profile in terms of backward error for all block-CG sizes. When applying
a simple CG acceleration, i.e. using a block size of 1, the convergence is characterised by
plateaus corresponding to clusters of small eigenvalues in the iteration matrix. Increasing
the block size of the block-CG algorithm can take care of several eigenvalues at once,
thus breaking plateaus and accelerating the convergence.

Table II.2 gives for each block size the total execution time of the block-CG algorithm
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Figure II.5 Convergence of the block Cimmino method applied to the matrix deltaX
with 16 partitions. The block-CG size varies by power of 2 from 1 to 256.

for each rectangular matrix. In all cases, there is a positive effect in using a block size
higher than 1 up to a certain threshold. The optimal choice remains problem dependent.
Two effects are combined which are synthesised with Figure II.6.

Table II.2 Sequential execution time in seconds of the block-CG algorithm for rectangular
matrices, with an increasing block-CG size in power of 2 starting from 1 to 256.

Matrix 1 2 4 8 16 32 64 128 256
deltaX 65 59 49 45 40 39 47 62 84

LargeRegFile 501 388 420 467 595 753 1420 2790 6100
sctap1-2r 99 67 37 18 8 7 8 12 61
stat96v3 188 160 148 136 139 171 233 317 1050

The first effect is the reduction in iterations in itself. However, while the convergence
is apparently faster, the complexity of each iteration is increased accordingly. Using a
block-CG is computationally similar to applying multiple iterations of a CG at once. If
we define k1 and ks the iteration at convergence for block sizes 1 and s, we ideally get
ks � k1 × s for an efficient reduction of the plateaus using a block-CG. We thus consider
the notion of equivalent iterations itseq = s× ks, which is just a better indicator for the
actual computational complexity. In Figure II.6 plain lines (with left scale) represent the
relative evolution of equivalent iterations, i.e. it1eq/itseq. This ratio rises up to around 1.6
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in the case of sctap1-2r, meaning that increasing the block size up to 16 or 32 is 60%
more effective than the equivalent number of CG iterations. The ratio then lowers as the
reduction in the iteration counts starts to stall.

But what explains the speed-up for the other matrices for which the ratio it1eq/itseq
deteriorates ? Through an efficient use of instruction level parallelism, as introduced in
I.2.1, the BLAS3 effect is a phenomenon which makes matrix-matrix operations more
efficient than the corresponding series of matrix-vector operations computed separately
[80]. The BLAS3 effect stays advantageous as long as 1 equivalent iteration with the
block size is faster than a single CG iteration. In Figure II.6, dashed lines (with right
scale) display the ratio between the time for one iteration of the CG (t1iteq

) and the time
for 1 equivalent iteration of the block-CG (tsiteq

). We observe a benefit from the BLAS3
effect for all considered block sizes. The execution time of an equivalent iteration is
consistently reduced up to a block size of 32, a machine dependent threshold, from which
the efficiency decreases and the computational load gets too high.
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Figure II.6 (Plain) Equivalent number of iterations relative to the number of CG
iterations. (Dashed) Timing for an equivalent iteration relative to the timing of a CG

iteration.

In summary, it is the combination of a faster convergence and more efficient compu-
tations thanks to an appropriate choice of the block-CG size, which characterises the
efficiency of the BC method.
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II.4.2 Augmented block Cimmino

While choosing an appropriate block-CG size for the BC method may improve its
convergence and execution time, the convergence still stays unpredictable from one test
case to the other. The ABCD method enforces a convergence in only 1 iteration at
the expense of additional variables and the direct solution of a Schur complement S.
Using again the example matrix deltaX, we display in Figure II.7 the structure of the
augmented matrix and the corresponding S. Even if the size of the augmentation is
relatively small, S can be quite dense which introduces a difficulty for the direct solver
used to solve it. For matrix deltaX, the augmentation size is around 27% of the original
number of columns, but S has 2 614 elements per row which is rather dense compared
to the original matrix. Additionally, the conditioning of this matrix can be high, and
here κ(S) = O(1014). In Section III.1.1, we introduce a scaling method for the ABCD
method to improve this conditioning.

Figure II.7 (Left) Structure of the augmented matrix deltaX with a partitioning in 4
blocks of columns, and (Right) structure of the resulting Schur complement S.

We apply ABCD on the matrices from Table II.1 using for each case the augmentation
method giving smallest augmentation among the methods introduced in [47]. Table II.3
displays the resulting augmentation size, number of entries in S, execution time, memory
and accuracy. The memory requirement is split into the memory used for the factorisation
of the projection systems, and the factorisation of S. We also include for reference the
memory required by the iterative BC method as well as the execution time and accuracy.

We first observe that we obtain a backward error of the order of machine precision
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Table II.3 Application of the ABCD method on the test matrices. Displayed are the
size/density of S, and the memory required for its factorisation. Also, we give for BC
and ABCD the memory requirement for the factorisation of the projection systems, as

well as the execution time and accuracy.

Matrix
ABCD BC

S Memory (MB) Time (s) Bwd. err. Memory Time (s) Bwd. err.
m elts per row Facto Facto S Facto (MB)

deltaX 5 226 2 614 129 273 21 2 · 10−18 118 44 1 · 10−11

LargeRegFile 214 422 Memory requirements too high 1315 1272 4 · 10−16

sctap1-2r 952 239 190 21 5 1 · 10−16 59 8 3 · 10−14

stat96v3 1 026 534 459 13 65 2 · 10−20 458 152 4 · 10−13

with ABCD in any case, compared to the more limited accuracy of block Cimmino in
general. In terms of memory, the amount used for the factorisation of the projection
systems is systematically higher in ABCD compared to BC, which is natural as the matrix
is then embedded in a larger space. The determining factor is then the memory used for
the factorisation of S in ABCD, which is directly linked to the potentially high size and
density of the Schur complement. Taking the example of deltaX, the memory required
for S is around 2.1 times larger than the memory for the projections themselves in ABCD.
Worst case is the matrix LargeRegFile for which the memory requirements induced
by its large augmentation is too high for the machine we use. In Section III.1.3, we
introduce a new augmentation technique in order to decrease the size of the augmentation
in general. In the case of sctap1-2r and stat93v3, the complexity of solving S is not
high, and these are the cases where the hybrid direct-iterative solver can be of great
interest especially when compared to other solvers.

Finally, thanks to the convergence in one iteration and the direct solver used to
compute the projections and solve the Schur complement, we observe here a total
execution time lower in all cases when using ABCD compared to BC. This is no generality
though. In Section III.2, we present a thorough comparison between BC and ABCD as
implemented in parallel inside the ABCD-Solver3, as well as a comparison with the state-
of-the-art direct solvers MUMPS4 for square matrices, and QR-MUMPS5 for rectangular
matrices.

3http://abcd.enseeiht.fr/
4http://mumps-solver.org/
5http://buttari.perso.enseeiht.fr/qr_mumps/

http://abcd.enseeiht.fr/
http://mumps-solver.org/
http://buttari.perso.enseeiht.fr/qr_mumps/
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II.4.3 Handling unsymmetric square matrices

The approaches presented in this chapter are applicable to any full rank system, and
thus also to unsymmetric square matrices as was the purpose of the original augmented
block Cimmino method [47]. The advantage is that we now have the choice between
partitioning the matrix in blocks of rows or blocks of columns, depending on the problem.

To observe the potential impact of choosing the orientation of the partitioning, we
focus on the unsymmetric matrix TSOPF RS b39 c30 from Table II.1. Applying the block
Cimmino methods with either a row or a column partitioning on this matrix gives two
very different behaviour. The left part of Figure II.8 displays the convergence of the
BC method for both type of partitioning. While we get a convergence in 141 iterations
with super linear convergence using a row partitioning, the column partitioning gives a
convergence in 432 iterations with long plateaus. In the case of the ABCD method, a row
partitioning gives an augmentation of size 140, while the column partitioning induces
an augmentation of size 4 731 with an ill-conditioned Schur complement S, see the right
part of Figure II.8.
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Figure II.8 The BC and ABCD methods applied to TSOPF RS b39 c30 partitioned in 8
blocks of rows or 8 blocks of columns. (Left) Convergence of the iterative method.

(Right) Spectrum of the Schur complement S.

While in this specific case a row partitioning is preferable, the choice for the par-
titioning strategy is completely problem dependent. We now apply the iterative and
augmented method on all square unsymmetric matrices from the SuiteSparse Matrix
Collection with more than 1 000 rows and columns. After removing the matrices for which
the ABCD-Solver could not finish, either because the system is ultimately (numerically)
rank deficient or because of too high memory requirements, around 700 matrices were
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kept. Additionally, matrices from the same family were merged, e.g. adder dcop 01
to adder dcop 48, and the mean value taken for iterations and augmentation sizes. In
total, 240 classes of problems remain, with 158 problems for BC and 238 problems for
ABCD. The partitioner used is again GRIP [126] for BC, and PaToH [32] for ABCD,
see Section III.1.2 for more details. We use for BC a block-CG size of 4, and for ABCD
the technique from [47] giving smallest augmentation for each matrix. Table II.4 gives
the number of classes where each partitioner is best in term of iterations for convergence
and augmentation sizes. These results seem to indicate that it is better to use a column
partitioning for the iterative BC method, and a row partitioning for better efficiency
when considering the pseudo-direct ABCD method, but this is not systematic. In Ap-
pendix A.3, Figure A.1 represents the difference in number of iterations vs. the difference
in augmentation size from the use of a row and a column partitioning applied on each
test case.
Obviously, the convergence and augmentation size are problem dependent (sparse struc-

Table II.4 For each method (BC or ABCD), number of classes of problems where the
partitioning giving best result is row, column, or both. The choice is decided in terms of

smallest number of iterations or augmentation size.

Best part. Row Equal Column
BC (it.) 40 40 78

ABCD (aug. size.) 114 42 82

ture, numerical values, . . . ), but it is good to have the opportunity to choose between
the row or column partitioning alternatives, to better exploit the particularities of the
given sparse matrix.

Concluding remark

In this chapter, we introduced the extended CG-acceleration of the block Cimmino
iterations for the minimum-norm solution of underdetermined systems and the solution
of least squares problems. The latter performs a partitioning of the columns instead of
the rows. We show the sequential efficiency of the method for some sparse matrices and
in particular the effect of increasing the block size which reduces the number of iterations
for convergence while taking benefit from the BLAS3 effect.

While the memory requirement is low, the efficiency of the method stays problem
dependent with an unpredictable convergence characterised by a convergence profile
possibly displaying either long plateaus or superlinear convergence. The augmented
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block Cimmino method is then a pseudo-direct alternative which we also extended to
the solution of full rank rectangular systems. To compute the final solution, a relatively
smaller symmetric positive definite system is built and solved. The major drawback of
the augmented block Cimmino method is then its dependence on the numerical properties
of this smaller (but denser) SPD matrix S. In cases where the matrix S is too big or
dense, the memory and computation required to solve it may become prohibitive.

In the next chapter, we introduce preprocessing methods to improve the behaviour of
the iterative and augmented approaches through scaling methods, a good construction of
partitions, and a new augmentation method to reduce the size of S. The advantage of the
augmented block Cimmino method is a decomposition of the matrix into subproblems,
which breaks the complexity in computation and memory of the direct solver, internally
used for the computation of projections. Due to the independence between projections,
a natural parallelism appears. In section III.2, we detail the parallel scheme for these
methods as they were implemented in the ABCD-Solver. We then demonstrate the
parallel efficiency compared to state-of-the-art direct solvers.

Additionally, thanks to elements from the multigrid methods, we introduce in chapter
IV a new approach to control the size of S via approximate orthogonality between
partitions to obtain an iterative method with linear convergence.





Chapter III

Parallel implementation

At this point, we have developed 2 approaches for the solution of the problem (II.1). An
iterative method [11, 96, 112], based on a stabilised block-CG (BC), and a pseudo-direct
method [47, 51, 133], which embeds the original matrix into an augmented space (ABCD),
to accelerate the classical block Cimmino iterations [52].
The convergence and overall robustness of these 2 approaches are highly dependent on the
numerical properties of the original problem and the partitioning of the system into blocks.
To make sure we get the best performance from our methods, we need to preprocess
these matrices which display various block structures, densities, and numerical properties.
In Section III.1, we introduce preprocessing techniques aiming at the improvement of
these properties.
Both the iterative or the pseudo-direct methods rely on the partitioning of the original
matrix A into blocks of rows, on which independent projections are computed. This
independence is a key point of the parallelism we manage in distributed memory envi-
ronments. In section III.2, we present the parallelism scheme we use for the parallel
implementation of the ABCD-Solver.
In particular, we improve the scalability of our parallel implementation through a combi-
nation of load balancing methods and communication reducing techniques. Finally, we
demonstrate the parallel efficiency of the solver on a distributed memory architecture by
solving several problems from the SuiteSparse Matrix Collection.
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III.1 Preprocessing

Science, my lad, is made up of
mistakes, but they are mistakes which
it is useful to make, because they lead
little by little to the truth.

A Journey to the Center of the Earth,
Jules Verne

In this section, we study practical techniques to improve the numerical properties of
the original system, as well as the augmented problem in the case of the pseudo-direct
approach. Here, we only need to focus on the row partitioning method, indeed the
preprocessing performed on an underdetermined A, independent from the right hand
side, is also relevant to the overdetermined matrix AT partitioned in blocks of columns.
First, we will consider the problem of scaling the matrix, original or augmented. Then
we will introduce several approaches to partition and augment the matrix.

III.1.1 Scaling

Generally, we assume that the matrix A and the solution x are well-scaled, however norms
are largely affected by this scaling. In particular, the condition numberK(A) = ‖A‖

∥∥A−1∥∥
often becomes unnecessarily large because of a poorly scaled matrix [46]. The best scaling
option is to build a well scaled matrix to begin with, by having consistent units in data
and variables, and making consistent modelling assumptions. We turn to automatic
scaling when this is not possible. The standard scaling methods aim at building diagonal
matrices Dr and Dc, called scaling matrices, such that the matrix Ã = DrADc is well
scaled. However, it is difficult to construct a generic matrix scaling, see the discussion in
[59], because when dealing with various real problems it is difficult to define what data is
significant in a general sense.

We can consider, for instance, normalising both rows and columns close to 1, so as
to get a doubly stochastic matrix. In [92, 113], the authors achieve this through an
algorithm which scales iteratively the rows and columns by the square roots of their norm.
In some cases, this algorithm gives a scaling with optimal condition number in the sense
of [13], and at least never increases the condition number. This scaling was implemented
in sequential in Harwell Subroutine Library (HSL)HSL as MC77, and a parallel version
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[31] is available in the direct solver MUMPS1 [6], using 1-norm or ∞-norm. However,
this approach is feasible only when considering square matrices with total support.

In the more general case, when using the scaled matrix Ã instead of A, the un-
derdetermined system (II.10) becomes min ‖y‖ s.t. DrADcy = Drb, with y = D−1

c x.
However, min ‖x‖ from the original system is not equivalent to min D−1

c x. As for the
overdetermined system (II.9), the problem is reduced to min

∥∥∥Dc(ATDrỹ − b̃)
∥∥∥ which is

not equivalent to min
∥∥∥AT x̃− b̃∥∥∥. In summary, for rectangular systems, only the row

scaling can be applied in general, as opposed to square matrices for which solving Ax = b

is equivalent to DrADcx = Drb with y = D−1
c x.

III.1.1.a Iterative block Cimmino

In the ABCD-Solver, our default choice is to apply 3 successive MC77 scaling steps: 5
iterations in the ∞-norm, 20 in the 1-norm, and 10 in the ∞-norm, using the parallel
implementation of MC77 in MUMPS. We also add, as a final step, an optional normali-
sation of the rows in the 2-norm. In the case of rectangular matrices, only this last step
is applied so as not to change the minimisation problem itself.

The scaling of the rows has no impact on the convergence of the BC algorithm as
shown in [52, 112]. However, the row scaling affects the numerical pivoting in the direct
solver when solving the projection systems (II.16). Thus the row scaling should improve
the quality of the factorisation of these projection systems, see e.g. [7].

The column scaling of the matrix, on the contrary, affects the convergence properties
of the method. In [112], the author uses ellipsoidal norms for the projections, implicitly
using a column scaling on interface variables, to accelerate the convergence of BC.

III.1.1.b Augmented block Cimmino

In the case of the pseudo-direct ABCD method, it is not possible to scale the augmented
system after its construction as we may lose the convergence in 1 iteration, either with row
or column scaling, if this is not done in a coherent manner so as to maintain orthogonality
between the augmented partitions. There is a simple way to maintain this orthogonality.
First scale the matrix A as DrADc, as was done for the iterative BC, then construct C
and W from this scaled matrix. In this case, the column scaling for the block C directly
comes from Dc restricted to the interconnected columns, and its row scaling is Dr. Also
in this context, W is constructed with the classical projection of Y =

[
0 Iq

]
on the

1http://mumps-solver.org/

http://mumps-solver.org/
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nullspace of the scaled A, see Section II.3.1. Finally, we may choose a row scaling for W
arbitrarily, the convergence staying independent from any row scaling.

In order to observe the impact of the scaling on the ABCD method, we extract
full rank square unsymmetric and rectangular matrices from the SuiteSparse Matrix
Collection2 [39], see Table III.1. The number of partitions is set so that in these cases,
the size of a partition is of the order of 10 000. We use to build these partitions the
PaToH partitioner [32] combined with one of the augmentation techniques introduced in
[47], chosen so as to give the smallest augmentation size. Given the number of partitions,
we exploit the 2 methods for permutation and partitioning described in Section III.1.2.
For each matrix, we use for the iterative BC solver the partitioning inducing the smallest
number of iterations, and for the pseudo-direct ABCD solver, we use the combination of
partitioning and augmentation technique giving the smallest augmentation size. After

Table III.1 Characteristics of the test matrices. n: the order of the matrix, nnz: the
number of nonzero values in the matrix.

Matrix m (×106) n (×106) elts per row #Parts Problem
deltaX 0.07 0.02 3.61 4 Counter Example

sctap1-2r 0.03 0.06 6.46 8 Linear Programming
bayer01 0.06 0.06 4.76 8 Chemical Process

scaling the matrices deltaX, sctap1-2r, and bayer01 with the default chosen approach,
the augmentation technique is applied. The conditioning of the corresponding Schur
complement S and the projection systems are shown in Table III.2 for the 3 test matrices
with and without scaling. The scaling of rows and columns is very efficient in the case of
bayer01 to decrease the conditioning of both S and the projection systems.

For the rectangular cases deltaX and sctap1-2r, when applying the augmented block
Cimmino method on the scaled system Ã = DrA, thus C̃ = DrC the Schur complement
becomes

S̃ = Iq − C̃T (ÃÃT + C̃C̃T )−1C̃

= Iq − CDr(DrAA
TDr +DrCC

TDr)−1DrC

= Iq − C(AAT + CCT )−1C = S.

(III.1)

However, we have the possibility to scale the rows of S in 2-norm. In the case of bayer01,
there is a large benefit from this scaling which shifts even further the spectrum of S

2https://sparse.tamu.edu/

https://sparse.tamu.edu/
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towards 1. In the case of the rectangular matrices however, the effect is not so beneficial.

Table III.2 Effect of a scaling applied to the matrix before the application of the
augmented block Cimmino method. The conditioning of the Schur complement S and

the average conditioning of the projection systems are given.

Matrix scaling κ(S) mean κ(proj)

deltaX
No scaling 2.95 · 1016 1.63 · 104

2-norm S 3.15 · 1015 1.65 · 104

sctap1-2r
No scaling 5.24 · 105 3.27 · 104

2-norm S 5.31 · 105 3.27 · 104

bayer01
No scaling 1.45 · 1011 8.90 · 1030

Scaling 1.89 · 107 2.74 · 1010

Scaling + 2-norm S 4.48 · 103 2.74 · 1010
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Figure III.1 Spectrum of the Schur complement matrix obtained using the augmented
block Cimmino method applied to the matrix bayer01 partitioned in 8 blocks of rows.

III.1.2 Partitioning

In this section, we are interested in the construction of the partitions (II.5) for the block
Cimmino scheme. We first establish what we consider a good partitioning strategy. Then,
we focus on 2 different types of partitioning methods: partitioning based on bandwidth
reducing techniques, and partitioning based on graph-partitioning techniques.
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III.1.2.a Targeting the angles with partitioning

Although with the block Cimmino iterative scheme, the computation of the solution is
reduced to projections on subdomains, the convergence stays very problem dependent.
If the matrix A is ill-conditioned, this means that there exists a linear combination of
the rows which is close to zero. To get a fast convergence, one must group these specific
linear combinations inside a partition [133]. The burden of the ill-conditioning then lies
in the computation of the projections handled by the direct solver. The convergence
behaviour of the accelerated block Cimmino iterations is directly linked to the spectrum
of the matrix H [112]. Even though the CG method is guaranteed to converge after
m iterations, it is desirable to obtain convergence way before. For each partition Ai,
i = 1, . . . , p, let a QR decomposition be defined as ATi = QiD

1
2
i , where Qi ∈ R mi×n is

an orthonormal matrix.Using their definition from (II.13) and (II.15), we show that the
iteration matrices from row (Hrow) and column (Hcol) block Cimmino, share the same
non-zero spectrum. Firstly, we symmetrize Hcol with the matrix D 1

2 to get

D
1
2HcolD−

1
2 = (D−

1
2AT )(AD−

1
2 )

=
(
Q1 . . . Qp

)T (
Q1 . . . Qp

)
= H̃.

Secondly, concerning Hrow we have

Hrow =
p∑
i=1

ATi (AiATi )−1Ai =
p∑
i=1

QiQ
T
i

=
(
Q1 . . . Qp

) (
Q1 . . . Qp

)T
.

Thus, from the theory of the singular value decomposition (see [67, 69]), the nonzero
eigenvalues of Hrow are also the nonzero eigenvalues of H̃. All in all, Hrow and Hcol

have the same nonzero spectrum as that of the matrix

H̃ =



Im1 QT1 Q2 . . . . . . QT1 Qp

QT2 Q1 . . . ...
... . . . . . . . . . ...
... . . . QTp−1Qp

QTpQ1 . . . . . . QTpQp−1 Imp


,

where the QTi Qj are matrices whose singular values represent the cosines of the principal
angles between the subspaces R(Ai) and R(Aj), as defined in [21]). These principal
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angles (see [69, pages 584-585]) are also defined successively by

cos(Ψk) = max
u∈R(AT

i )
max

v∈R(AT
i )

uT v
‖u‖‖v‖

= uT
k vk

‖uk‖‖vk‖ ,
subject to


uTup = 0, p = 1, . . . , k − 1,

vT vp = 0, p = 1, . . . , k − 1,

with k varying from 1 to mij = min(dim(R(AiT )), dim(R(AjT ))).
Note that the principal angles satisfy 0 ≤ Ψ1 ≤ . . . ≤ Ψmij ≤ Π/2 and that having
Ψk = Π/2, ∀ k = 1, . . . ,mij is equivalent to R(ATi ) being orthogonal to R(ATj ). In the
extreme case where all partitions are mutually orthogonal, the accelerated (and classical)
BC converges in 1 iteration. This is the idea behind the ABCD method. Then the
intuition is the following: the wider the principal angles between subspaces, the closer H
is to the identity, and the faster the convergence of the iterative scheme should be.
However, knowing the principal angles between partitions is not enough to have a full
grasp of the spectrum of H, except in special cases, e.g. a two-blocks partitioning strategy.

Following the example in [52], let’s consider the original matrix A ∈ R m×n is
partitioned with a two-blocks partitioning as introduced in [52]

A =
(
B1

B2

)
.

Illustrated in Figure III.2, this type of partitioning is obtained when the normal equations
are block tridiagonal. Then naturally, the even numbered blocks are mutually orthogonal,
and so are the odd numbered blocks: ∀i = 1, . . . , p − 2, AiATi+2 = 0. We thus group
the odd (resp. even) partitions in B1 ∈ R m1×n (resp. B2 ∈ R m2×n). In this case, we
have Hrow = PR(B1) + PR(B2), where each projector is a sum of independent projectors
because the partitions within B1 and B2 are structurally mutually orthogonal. Then,
considering mmin = min(m1,m2), the authors in [52] showed that the spectrum of Hrow

is
λk = 1 + cos Ψk,

λk = 1− cos Ψk−mmin
,

λk = 1,

k = 1, . . . ,mmin,

k = mmin + 1, . . . , 2mmin,

k = 2mmin + 1, . . . , n,
,

where Ψk, k = 1, . . . ,mmin are the principal angles between R(B1
T ) and R(B2

T ). With
such two-blocks partitioning, we conclude that the CG algorithm would not take more
than 2mmin iterations to converge in exact arithmetic. The smallest block of is called the
interface block. With a very small interface between the partitions we would essentially
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Figure III.2 Block tridiagonal matrix with a two-blocks partitioning and the
corresponding normal equations, sharing also a block tridiagonal structure with respect

to the chosen partitioning. Even numbered partitions are not interconnected, and
neither are the odd numbered partitions.

reach a faster convergence in CG.

Based on the two discussions above, we derive 2 linked objectives for a well-defined
partitioning

Objective 1: Minimise the principal angles between subspaces spanned by the partitions. Or
phrased differently, reduce the ill-conditioning across partitions, while concentrating
it inside partitions to be handled by a direct solver upon the computation of
projections.

Objective 2: Minimise the size of the interface interconnecting the partitions.
In a parallel implementation, both criteria are combined with a global balance constraint
between the workload needed to compute each projection. Concerning the ABCD scheme,
the goal of a partitioning is to have a Schur complement S as small as possible to be
solved by a direct solver, while keeping a certain balance between the computation of
projections, as these are performed in parallel. The augmentation size in the ABCD
scheme, and thus the size of S, is directly linked to the size of the structural interface
between subdomains, which is exactly what Objective 2 targets.

Generally speaking, partitioning the matrix can also imply a permutation of the rows
in order to redistribute the entries between blocks and have more flexibility to achieve
the two objectives above. We thus determine a permutation matrix P , and we consider
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the row permuted problem to solve,

min ‖x‖2 when x ∈ {x; ‖P (b−Ax)‖2 = min!},

with a partitioning of PA. Note that orthonormal matrices (such as permutations) do
not change the 2-norms, and thus the least squares problem remain the same.

A tremendous amount of reordering and partitioning methods have been studied over
time in contexts as varied as

• Reordering to minimise fill-in for solvers based on Gaussian elimination [46],
• Building a coarsening in algebraic Multigrid methods [132],
• Image segmentation [119],
• Determination of subdomains in domain decomposition methods [40].

In the context of the BC and ABCD methods, several partitioners were considered
[11, 48, 96, 112, 133] which we summarise in the 2 following Sections. We distinguish
2 class of partitioners: methods relying on bandwidth reducing techniques motivated
by the good properties of the 2-blocks partitioning. Then, techniques from domain
decomposition, particularly methods based on graph-partitioning techniques. Finally, we
introduce a new partitioning technique relying on defining partitions which can overlap.

As stated in Section II.3, the BC and ABCD schemes are designed to tackle rectangular
or unsymmetric square matrices. However, most reordering and partitioning methods
target symmetric square matrices. The solution is to analyse symmetric matrices linked
to the original matrix, such as AAT , ATA, A+AT or the bipartite graph which ultimately

corresponds to the adjacency graph of the symmetric matrix
[

0 AT

A 0

]
[46].

III.1.2.b Reduction of bandwidth for 2-blocks partitioning

The first considered approach was relying on bandwidth reducing methods to permute
the matrix into block tri-diagonal form. In this form, a two-blocks partitioning is simple
to obtain, see Figure III.2. For matrices coming from the discretization of a 1D PDE
problem, this structure often naturally appears. Else, we need to apply an automatic
ordering tool on the pre-existing matrix [46]. The traditional choice is the Cuthill-McKee
algorithm [36] (CM), and its reverse version which was observed to often give better
results in [64].

For the partitioning in block Cimmino, the authors in [112] propose to apply Cuthill-
McKee to A+AT , while in [42] the normal equations AAT are reordered. In both cases,
we can obtain a two-blocks row partitioning of the reordered matrix. If one considers,
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for instance, only the sparsity structure of the normal equations AAT , for permutation
purposes, not the values in the matrix, only Objective 2 may be targeted (i.e. reducing
the size of the interconnections between partitions). As shown in [133], the partitions
obtained with this approach often raise very unbalanced sizes, leading to a poor degree
of parallelism.

In [42], the authors propose to apply Cuthill-McKee on normalised normal equations
in which small values are filtered out based on a threshold τ . The goal is to sparsify the
pattern of the resulting approximate matrix AAT , and to have more freedom to improve
the balance between partition sizes. Considering that the rows of the original matrix were
normalised in 2-norm, the entries in the normalised normal equations correspond to the
cosines of the principal angles between every pair of rows, i.e. the degree of colinearity be-
tween rows. Filtering small entries then correspond to ignoring interconnections between
already quasi-orthogonal pairs of rows. The result is a partitioning close to the strict
two-blocks partitioning. The lower the threshold τ for filtering is, the closer to two-blocks
partitioning we get. Additionally, as the normal equations get sparser after filtering, their
bandwidth after reordering should be smaller, and the number of level-sets is higher than
with the complete AAT . This fact helps in getting better balanced workloads for the
projections, and thus a higher parallelism.

III.1.2.c Graph partitioning

In a parallel context, finding the solution of a linear system typically implies the subdivi-
sion of the problem into p parts. As we introduced in Section I.2.2, this is particularly
the case with DDM where sets of equations are assigned to ”subdomains”. A processor
then holds a set of equations and the associated vector components. Here, the goal is to
minimise communications, i.e. the size of data exchanged on the interfaces, while keeping
balanced workloads for the subproblems over the processors.

For the discretization of PDE problems, the construction of these subsets is often
based on the geometry for simple situations, e.g. structured grids. When the situation is
more complex, an algebraic approach is required, commonly using graph partitioning
techniques. These techniques are based on the dissection of the matrix graph. The
principle is to find small subsets of edges or nodes in the graph, called separators, which
cut the graph in smaller parts when removed. Reordering the matrix based on such
cuts leads to a typical bordered block diagonal form [63]. Each smaller part can then
be similarly dissected if needed, leading to a technique called nested dissection [62].
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Nested dissection is the base of several well-known graph partitioners such as METIS3

or SCOTCH4. These two partitioners use multilevel approaches where separators are
constructed on coarsened graphs, then these separators are refined using the Fiduccia
and Mattheyses algorithm [58].

Generally these partitioners use the number of edge-cuts, i.e. edges linking nodes
from different subdomains, as a measure of interface reduction. However, this criterion
is not enough, e.g. if a single node is linked to k nodes in another subdomain then k

edge-cuts are artificially counted while only one variable is involved in an exchange be-
tween partitions in practice. This simple fact was used to devise the notion of Hypergraph
partitioners, particularly usefull to partition sparse matrices.

PaToH: hypergraph partitioning The concept of hypergraph is a generalisation of
the notion of graphs. A hypergraph H = (V,N ) consists of a set of nodes V and a set
of hyperedges N , called nets, linking two or more nodes. Hypergraphs represent the
structure of a matrix: each row is represented by a node, and each column is represented
by a net linking the rows with a non-zero entry in this column. Figure III.3 shows a
sparse matrix and its hypergraph representation.
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Figure III.3 A sparse matrix and its hypergraph representation. The white circles
represent the nodes, i.e. the row, and the black circles are the nets, i.e. the

interconnection columns.

A k-way partitioning of the hypergraph separates the graph into k disjoint subsets
such that the interconnections between partitions, represented by the cut hyperedges, are
minimised. This problem is NP-hard in reality [95]. In practice, heuristics are used to
look for such a partitioning while enforcing a balance between the size of the constructed

3http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
4https://www.labri.fr/perso/pelegrin/scotch/

http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
https://www.labri.fr/perso/pelegrin/scotch/
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subsets. In the ABCD-Solver, the hypergraph partitioner PaToH [32] is used to satisfy
these criteria as introduced in [47]. In Figure III.4, we show the typical result of our
example matrix partitioned uniformly (Left) and using a hypergraph partitioner (Right).
With the uniform partitioning, the partitions are interconnected on almost every columns,
while when using the hypergraph partitioner, only 4 columns remain interconnected.
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Figure III.4 A sparse matrix partitioned with (Left) a uniform and (Right) a hypergraph

partitioner. Grey columns represent interconnections between partitions.

The target of the hypergraph partitioner is explicitly to reduce the number of inter-
connections between partitions, i.e. Objective 2. As such, we expect this approach to give
the smallest sizes of augmentation in ABCD. However, the hypergraph partitioner only
takes into account the structure of the matrix, the numerical properties should also be
used for the iterative BC method.

GRIP: numerically aware partitioning In [126], the authors propose a graph parti-
tioning method, called GRIP [126], which takes into account numerical information from
the matrix in order to accelerate the convergence of the iterative BC. For this purpose,
the row inner-product graph model of the matrix A is introduced. This graph, noted
GRIP (A) = (V, E) is composed of the nodes V representing the rows of A (vi for row ri),
and there is an edge (vi, vj) between node vi and vj if the inner product between rows ri
and rj is nonzero. The nodes can be weighted, e.g. a weight of 1 per row or the number
of nonzeros in the corresponding row, and each edge has a cost corresponding to the
absolute value of the inner product between the linked rows

∀vi, w(vi) = nnz(ri),
∀(vi, vj) ∈ E , cost(vi, vj) = |rirTj |.



III.1 Preprocessing 99

The method then uses the state-of-the-art partitioner METIS to perform a k-way parti-
tioning of the weighted GRIP to minimise the cutsize between partitions while maintaining
a certain balance between weights of the partitions. The cutsize after partitioning corre-
sponds to the sum of the inner products between rows belonging to separate partitions.
The weight of a partition corresponds to the sum of the row weights inside the partition.
E.g. if each row has a weight of 1 then the weight of the partition corresponds to the
number of rows belonging to this partition in the matrix. After reordering according to
the computed partitioning, we obtain normal equations were the large row inner products
are close to the diagonal, see Figure III.5.
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Figure III.5 Normal equations of a matrix partitioned with (Left) a uniform and (Right)
the GRIP partitioner.

Furthermore, in the case where each row of the matrix A is scaled in 2-norm, the
cost of each edge then corresponds to the cosines of the angle between the linked pair
of rows. Therefore, minimising the cutsize after a k-way partitioning means minimising
the sum of the cosines between partitions, and thus should help to explicitly reduce the
angles between subspaces spanned by the partitions. As we have seen before, reducing
these angles is ultimately expected to improve the spectrum of the iteration matrix H
for block Cimmino. In [126], the authors show a reduced number of iterations with
GRIP compared to other partitioners including PaToH. Because this partitioning method
explicitly targets the angles between subspaces spanned by the partitions, it is expected to
give best convergence in the case of the iterative BC method.

III.1.2.d Partitioning in practice

We now present numerical results from the application of the 2 partitioners PaToH and
GRIP. Our goal here is not to study the detailed impact of the partitioning on the test
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matrices. This has already been studied for unsymmetric square matrices before, see [47]
and [126], and the conclusions are very similar for rectangular matrices. In appendix,
results are given for the matrices bayer01, deltaX and sctap1-2r for both the iterative
and augmented block Cimmino methods.

In this section, we have extracted all unsymmetric matrices from the SuiteSparse
Matrix Collection with more than 1 000 rows. BC and ABCD are applied to each matrix
with a number of partitions chosen such that each partition contains around 10 000 rows.
Both the GRIP and the PaToH partitioners are used and we compare qualitatively the
obtained results. Only matrices where the ABCD-Solver could finish computation were
kept, and values from the same family of matrices were merged into the average value.
In the end, we give results for

• BC : 28 Least-Squares, 143 underdetermined matrices, and 190 unsymmetric square,
• ABCD: 36 Least-Squares, 158 underdetermined matrices, and 235 unsymmetric

square.

In Appendix B.1.1, we display the detailed difference between the 2 partitioners for
each matrix in terms of number of iterations or augmentation size. In Table III.3, the
number of cases where each partitioner is best, in terms of iterations for BC and augmen-
tation size for ABCD, is given for each type of problem (least-squares underdetermined
or square). These results confirm what we expected from the principle of each partitioner,
i.e. the augmented block Cimmino method generally gives a smaller augmentation size
with the PaToH partitioner, and the iterative block Cimmino method generally converges
faster when using the GRIP partitioner.

Table III.3 Best partitioner in terms of iterations for the BC method and in terms of
augmentation size for the ABCD method applied to resp. 361 (BC) and 429 (ABCD)
classes of problems from the SuiteSparse Matrix Collection. The matrices are split in

least-squares problems, and underdetermined or square matrices.

Best part. GRIP Both PaToH

BC

LS 14 7 7
under 67 29 47
Square 113 45 32

A
BC

D LS 11 0 25
under 59 7 92
Square 31 11 193



III.1 Preprocessing 101

III.1.2.e Overlapping partitioning

Considering the iterative BC method as a DDM, a natural evolution for the construction
of the subdomains is to introduce the notion of overlap. In our context, overlapping
subdomains correspond to the construction of non-disjoint partitions.

In this approach, we start from an already existing disjoint partitioning of the sparse
matrix, noted Ai, i = 1, . . . , p. From this partitioning, we have the possibility to duplicate
some rows from one partition to another, with the corresponding right hand side entries.
Each row from the original matrix only appears once in each partition such that they
keep full row rank. We focus here on BC for underdetermined systems of the form (II.10).
After replication, we obtain the new system to solve

Ãx =


Ã1

Ã2
...
Ãp

x =


b̃1

b̃2
...
b̃p

 .

where Ãi is a row-block which may intersect some rows with other partitions due to the

replication. Each block of row Ãi can be reordered into the form Ãi =
(
Ai

Ri

)
where Ai is

the original partition and Ri is the set of duplicated rows.
Considering that the original matrix A has full row rank, so are the partitions Ãi

because no row can appear several times in a single partition. Also, the system stays
consistent as the right hand side contains the duplications. These two conditions, and
the right choice of a relaxation parameter, are sufficient for the BC classical iterations to
converge to the solution of the original system (II.10), see [52]. As in Section II.2, in the
case of the row version of BC, we then solve the system

H̃x = K̃ with


H̃ =

p∑
i=1
PR(ÃT

i ),

K̃ =
p∑
i=1

Ã+
i fi.

We shall try now to understand intuitively the effect of duplicated rows between
partitions on the spectrum of the iteration matrix H̃. To explain this, let’s consider the
simple case of a matrix with 2 row-blocks. Let Ã be partitioned into 2 row-blocks Ã1 and
Ã2 and let R be the replicated rows which are shared by both Ã1 and Ã2. The matrix is

reordered as Ã =
(
Ã1

Ã2

)
where Ã1 =

(
A1

R

)
and Ã2 =

(
R

A2

)
. Let Qi be an orthonormal
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matrix whose columns span the range of ÃTi . We define Qi with first an orthogonalisation
of the rows in the R set, followed by an orthogonalisation of the complementary rows Ai
projected first onto the orthogonal complement of range of RT . Then the two partitions
can be represented by

Q1 =
(
W1 WR

)
and Q2 =

(
WR W2

)
,

where WR corresponds to the orthogonal columns spanning the range of RT , and W1,W2

correspond to the orthogonal columns which complete the spanning of the range of ÃTi .
As explained before, the iteration matrix of the row-replicated Cimmino is given by

H̃ =
p∑
i=1

Ã+
i Ãi = Q1Q

T
1 +Q2Q

T
2 , (III.2)

and the non-zero eigenvalues of (III.2) are equal to the non-zero eigenvalues of matrix

(
Q1 Q2

)T (
Q1 Q2

)
=
(

I QT1 Q2

QT2 Q1 I

)
, (III.3)

where QT1 Q2 are matrices whose singular values represent the cosines of the principal
angles between the subspaces R(Ã1) and R(Ã2).

Considering the above representation of Qi, we have

QT1 Q2 =
(
W T

1
W T
R

)(
WR W2

)
=
(

0 W T
1 W2

IR 0

)
. (III.4)

As the singular values of QT1 Q2 are the cosines of the principal angles between R(Ã1)
and R(Ã2), we see that as many cosines as the number of replicated rows are set to 1
using the replication technique. As in the case of a 2-blocks partitioning, the non-zero
eigenvalues of the iteration matrix H̃ correspond to the non-zero values of 1 ± the singular
values of Q1Q

T
2 . For each replication, we thus ensure a non-zero eigenvalue of 2. The

issue is then to know the content of the spectrum corresponding to what has not been
replicated, i.e. the singular values of W T

1 W2 in (III.4). This shifting property can be
extended to a general case where the matrix has no special structure and partitions are
interconnected in any way, which is what we generally encounter in practice. However,
things are then getting more complex with respect to the spectral analysis of H̃. The
links between the partitions are like a spider web where a single row may connect more
than 2 partitions. In this case, replicating a row still shifts eigenvalues, however it is
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hard to understand (and control) the effect of what is left, and in particular implicit new
links can be induced between previously non-linked partitions.

We now propose a method of replication based on the partitioning obtained using the
previous GRIP partitioner. As a reminder, in this partitioner, we build a graph where
the nodes are the rows, and where the edges are weighted with the absolute value of the
inner product between 2 rows. The idea of our approach is to use the already existing
graph GRIP (A) for selecting the rows to be duplicated. Here, the expectation is that,
when applying a replication technique targeting edges with a high inner-product weight,
the gain from replication may be higher than the loss from the induced links between
partitions. Several heuristics have been tested for this purpose. In practice, one of the
most efficient at the moment, between these alternatives, is the Duplication Method, a
very straight-forward approach.

In this method, we choose the edge with highest weight connecting 2 partitions. The
rows at each end of this edge are then duplicated in the other partition. For example,
in the graph with 3 partitions of Figure III.6, the edge (v1, v6) is the cut-edge with the
highest weight. v1 is then replicated into partition 2, and v6 is replicated into partition 3.
This does not however take into account any feedback from the induced links between
partitions due to this replication. For example, v6 is connected to v3 inside the same
partition, and to v7 in a separate partition, but we do not consider an additional edge
(v6′ , v3), (v6′ , v7). As a crude approximation of the effect from these replicated nodes, we
only suppress the edge cost between v1 and v6. The algorithm then proceeds with the
next edge of highest weight, and so on. Each replication is performed such that in every
partition, each row can only appear once. Replication is stopped whenever all edges are
under a certain threshold, or we have reached a maximum number of replications.

In Table III.5, we show the effect of an overlapping partitioning, obtained with
the above described Duplication method, on the unsymmetric square matrices memchip,
bayer01 and cage14. The characteristics of these matrices, obtained from the SuiteSparse
Matrix Collection5 [39], are given in Table III.4. An initial partitioning of these matrices
into 16 blocks of rows is computed using the GRIP partitioner [126]. The number of
duplicated rows is bounded so as to increase the matrix by a maximum ratio of its size,
and we vary this ratio from 0.1% to 20%. We observe the evolution of the number
of iterations to convergence relatively to the disjoint partitioning case. In the case of
memchip and bayer01, we observe a direct acceleration of the method with a decrease of
the number of iterations by 20% with only 0.1% of duplicated rows. This decrease goes
up to 77% for memchip with 1% of duplicated rows. In the case of cage14, the results

5https://sparse.tamu.edu/

https://sparse.tamu.edu/
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Figure III.6 Graph illustration of before and after replication of two nodes for a 3-way
partitioning.

are negative as the number of iterations increases by up to 26% with 5% of duplicated
rows. This might be explained by additional links between partitions induced by the
duplicated rows which the heuristics does not consider at all. This work is still ongoing,
with the hope to design a method taking into account these additional links that would
enable a reduction in iterations as soon as rows are duplicated.

Table III.4 Characteristics of the test matrices. n: the order of the matrix, nnz: the
number of nonzero values in the matrix.

Matrix m (×106) n (×106) elts per row #Parts Problem
bayer01 0.06 0.06 4.76 8 Chemical Process
cage14 1.51 1.51 18.02 256 Directed Weighted Graph

memchip 2.71 2.71 4.93 512 Circuit Simulation

If we increase the number of duplications even further, we can observe however
an acceleration of the convergence in all cases. Indeed, as the number of duplications
increases, our method tend to the extreme case where each partition contains all rows
and each projection computes the complete solution in 1 iteration. A trade-off must then
be found between the right number of duplications to reduce sufficiently the set of small
eigenvalues in the iteration matrix H̃, together with the number of iterations and the
computational complexity induced by the increase of the sizes of the partitions.
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Table III.5 Impact of the Duplication Method on the number of iterations, relatively to
the disjoint partitioning case. The number of duplications is bounded by a fixed

percentage of the matrix size.

Matrix Original Relative it. with DM replication
it. 0.1% 1% 5% 10% 20%

bayer01 285 0.79 0.81 0.51 0.48 0.48
cage14 19 1.05 1.16 1.26 1.26 1.26
memchip 349 0.86 0.26 0.23 0.23 0.23

III.1.3 Alternative techniques for the augmentation

In Section II.3.1, we have introduced the augmented block Cimmino method. Starting
from a matrix A partitioned in p blocks of rows Ai, an augmentation technique is applied
to construct the augmentation block C so that the partitions Ai of the augmented matrix
A =

[
A C

]
are mutually orthogonal, i.e

∀i, j ∈ 1, .., p, i 6= j, AiA
T
j = AiA

T
j + CiC

T
j = 0.

We define the augmentation procedure as the nonlinear function on matrices

F
R m×n −→ R m×N+

A −→ C
, (III.5)

Two main augmentation procedures have been developed in [47]. We first remind these 2
procedures, and then introduce a variant that can minimise the amount of extra columns
introduced. To illustrate these techniques, we use the simple block tridiagonal example

A =


A1,1 A1,2

A1,2 A2,2 A2,3

A2,3 A3,3

 . (III.6)

III.1.3.a Normal equations duplication

The procedure FCij considers separately each couple of interconnected partitions. For
each couple Ai ∈ R mi×n and Aj ∈ R mj×n, the normal equations Ci,j = AiA

T
j ∈ R mi×mj

are computed. As some rows from the 2 partitions are often already orthogonal (mainly
structurally), zero rows and/or columns appear in the normal equations. We filter out
the zero columns from Ci,j , as well as in its transpose, to obtain Cfilti,j and Cfiltj,i . If Cfilti,j
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has the smallest number of column, the augmentation receives the blocks Cfilti,j /− I, else
we incorporate instead the blocks −I/Cfiltj,i in the augmentation. Back to our example
matrix, considering the filtered normal equations with smallest size are Cfilt1,2 and Cfilt3,2 ,
then we obtain the augmentation block

FCij(A) =


Cfilt1,2
−I −I

Cfilt3,2

 .
Following this procedure, for each couple of interconnected partitions the augmentation
gets a number of additional columns corresponding to the order of the smallest partition
size. The size of the augmentation varies greatly depending on how many zero columns
are filtered from the normal equations, and this is of importance not to increase too much
the size of the matrix S, and to minimise the amount of extra computations in ABCD.

III.1.3.b Straight forward duplication

The procedure FAij consists in considering each couple of interconnected partitions sepa-
rately. After finding the complete set of their interconnected columns, the corresponding
interconnected blocks are duplicated with a minus sign for the second partition. On the
example matrix (III.6), we obtain

FAij(A) =


A1,2

−A1,2 A2,3

−A2,3

 .
With this procedure, for a single column in the original matrix interconnecting z partitions,
the augmentation block receives z(z−1)/2 columns with a total of z(z−1) non-empty sub-
blocks inside. This is illustrated with a column a =

(
a1 a2 a3

)T
with 3 interconnected

partitions, giving the augmentation

FAij(a) =


a1 a1

−a2 a2

−a3 −a3

 =
(
c1 c2 c3

)
. (III.7)

Note that for both FAij and FCij , we can use scaling matrices to better balance
the numerical values in matrix C In the example (III.6), the part of the augmentation

FAij(A) corresponding to the first 2 partitions could then be set to
[
A1,2D

A2,1D
−1

]
with D a



III.1 Preprocessing 107

diagonal scaling matrix. This scaling is particularly important in the case of FCij , as
when using the normal equations, the scaling factors in the normal equations often vary
by several orders of magnitude compared to the identity block added below in C. Of
course, the diagonal matrix D can change for each couple of partitions, and also can be
reduced to a simple scaling factor α 6= 0 in some cases (such that D = αI).

Note that none of the augmentation technique F requires a special structure for the
matrix, and they all are directly applicable to more than 2 interconnected partitions.
The main concern in the ABCD method is about the construction and solution of the
Schur complement matrix S. The first concern is that S may be ill-conditioned. A good
scaling and partitioning helps to improve this point. The second issue is with the size
of S which may get large in some cases. Note that the augmentation block C is not
guaranteed to be full rank, and this is actually not the case in general. Indeed, when
more than 2 partitions are interconnected through a single column, then the added
columns in C, when using FAij for instance, are linearly linked. In the above example
with a column a =

(
a1 a2 a3

)T
interconnecting 3 partitions, the augmentation C is as

in (III.7). In this block, we can see that c1 + c3 − c2 = 0, so that these augmentation
columns are linearly dependent. It can be shown that the rank of the added block for the
FA〉| augmentation technique is always equal to the number of interconnected partitions
minus 1. As mentioned above, the size of the augmentation may be very large, and in
some cases even larger than the size of the original system itself. Using the augmentation
FAij on a column with z interconnected partitions induces a number of columns in the
augmentation of the order of O(z2).

III.1.3.c Full rank augmentation

Here we introduce a new augmentation procedure FFR, that ensures that, for each
interconnected column a, the added block FFR(a) has full column rank and the number
of added columns is of the order O(z). In the case of 2 interconnected partitions, FFR

gives the same augmentation as FAij , the difference appears with more interconnections.
To illustrate the differences between the three augmentation techniques, we use the
matrix

A =


A1,1 A

(1)
1,2 A

(1)
1,2,3

A
(2)
1,2 A2,2 A

(2)
2,3 A

(2)
1,2,3

A
(3)
2,3 A3,3 A

(3)
1,2,3

 . (III.8)

The principle of FFR relies on the construction of a lower block tridiagonal augmenta-
tion which prevents the use of redundant information. When building the augmentation
for a given column with z interconnected partitions, the first column in C receives the
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duplicates of the parts corresponding to all the interconnected partitions with a minus
sign for all partitions except the first. Then another column is added, incorporating again
the parts corresponding to all partitions except the first, and with a minus on all except
for the second partition, which now gets a scaling factor of 2. And so on, until there
are only 2 partitions left, in which case the first gets the factor (z − 1) and the other
gets a minus sign. The complete algorithm for FFR is detailed in Algo. 9. For a single
column with z interconnected partitions, the number of columns in the augmentation
is z − 1 and the number of non-empty blocks is (z+2)(z−1)

2 . Thus, in all cases, we have
size(FFR) ≤ size(FAij ). Additionally, this new augmentation technique ensures that,
for each interconnected column, the corresponding block in the augmentation C is full
rank, thus its name.

Algorithm 9 Algorithm to compute FFR(A)
Input: A ∈ R m×n partitioned in p row blocks.

1: Adj(p, c) =
{

1, if c is a nonzero column of partition Ap
0, else ,

2: Interc(c) =
p∑
i=1

Adj(i, c),

3: Count = zeros(n),
4: for all i ∈ {1, . . . , p} do
5: for all c ∈ {1, . . . , n} s.t. Adj(i, c) 6= 0 and Interc(c)− Count(c) > 1 do
6: Count(c)++,
7: scale = zeros(m), scale(Ai) = Count(c),
8: for all j ∈ {i+ 1, . . . , p} s.t. Adj(j, c) 6= 0 do
9: scale(Aj) = −1,

10: end for
11: C = diag(scale)A(:, c).
12: end for
13: end for

Taking the example matrix (III.8), when using the 2 augmentations FAij and FFR,
we get the complete augmentation blocks

FAij =

 A
(1)
1,2 A

(1)
1,2,3 A

(1)
1,2,3

−A(2)
2,1 A

(2)
2,3 −A(2)

1,2,3 A
(2)
1,2,3

−A(3)
2,3 −A(3)

1,2,3 −A(3)
1,2,3

 , FFR =

 A
(1)
1,2 A

(1)
1,2,3

−A(2)
2,1 A

(2)
2,3 −A(2)

1,2,3 2 ·A(2)
1,2,3

−A(3)
2,3 −A(3)

1,2,3 −A(3)
1,2,3

 .
As was done for the other two augmentation procedures, it is also possible to scale

in some way the augmentation blocks. However, partitions are no longer augmented by
pairs of blocks, and setting appropriate scaling factors so as to maintain the orthogonality
between the augmented partitions is more complicated. For the first interconnected block
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in the augmentation, a scaling matrix D is applied to the right, then on the i-th added
column we apply to the right of the first non-zero block the matrix D + (i− 1)D−1. As
for the minus signs they all have to be replaced by −D−1 on the right of the blocks.
Taking the example of a column

a =
[
a1 . . . ap

]T
,

interconnecting all p partitions. The augmented column scaled with the diagonal matrix
D, would then be

[
a FFR(a)

]
=



a1 a1.D

a2 −a2.D
−1 a2.(D +D−1)

a3 −a3.D
−1 −a3.D

−1 . . .
...

...
...

ap−1 −ap−1.D
−1 −ap−1.D

−1 . . . ap−1.[D + (p− 1)D−1]
ap −ap.D−1 −ap.D−1 . . . −ap.D−1


.

This type of augmentation respects the orthogonality between partitions. ∀i, j ∈
{1, . . . , p}, i < j, we call ai and aj the augmented partitions, then we have

aia
T
j = aia

T
j + (i− 1)aiD−1D−1aTj − ai[D + (i− 1)D−1]D−1aTj

= (1− 1)aiIaTj + [(i− 1)− (i− 1)]aiD−2aTj = 0.
(III.9)

III.1.3.d Augmentation in practice

As in [47], we investigate the size of the augmentation using ABCD on a wide range
of matrices. For this purpose, we have considered all the matrices with more than
1 000 rows or columns from the SuiteSparse Matrix Collection6. We distinguish between
overdetermined, underdetermined and unsymmetric square matrices. We apply the
augmentation method giving the smallest augmentation in each case. For all matrices,
the size of the augmentation blocks relatively to the larger dimension of the original matrix,
is displayed in Figure III.7 sorted by increasing order. Matrices from the same family,
e.g. the combinatorial problems GL7d11 to GL7d26, gave similar relative augmentation
sizes, and were merged together in one class with the average augmentation size. In the
end, 38 classes of least squares problems, 153 classes of underdetermined systems, and
241 classes of unsymmetric square matrices are displayed. We observe similar behaviours

6https://sparse.tamu.edu/

https://sparse.tamu.edu/
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for the 3 types of problems. A third of the matrices shows augmentation sizes below 5%
of the dimension of the original problem, which confirms for full rank matrices the results
from [47], where the an augmentation below 5% is considered to be reasonnable. More
than 70% over all classes show an augmentation size under 20% of the original size. In
this case, whenever the constructed S is still sparse, the augmentation size is potentially
still acceptable for ABCD when compared to a direct solver, but this has to be verified
in practice.

0 20 40 60 80 100 120 140 160 180 200 220 2400

20

40

60

80

100

120

Problems from the SuiteSparse Matrix Collection

A
ug

m
en

ta
tio

n
Si

ze
(%

)

0 5 10 15 20 25 30 350 20 40 60 80 100 120 140

Square unsymmetric (241 pbs)
Least-squares (38 pbs)

Underdetermined (153 pbs)

Figure III.7 Distribution of the augmentation size, relative to the size of the original
system, for 38 least squares (green plain line), 153 underdetermined (dashed red line)

and 241 unsymmetric square (dotted blue line) problems, sorted by increasing
augmentation size. The 5%, 20% and 100% thresholds are drawn.

In order to compare the new augmentation FFR with the previous approach FCij ,
we apply these augmentations on the same classes of matrices. The augmentation FAij

is not used as it is guaranteed to give an augmentation larger or equal to FFR. In table
III.6, we give the number of matrices which gave the smallest augmentation size using
FFR or FCij . We distinguish the type of problems as least-squares, underdetermined,
and unsymmetric square. In the case of rectangular matrices, FCij generally gives smaller
augmentations, while FFR is best for the unsymmetric square matrices.

The best augmentation method depends on the structure of the matrix. As illustrated
in Figure III.8, FCij is more suited for dense rows, which induce large interconnection
blocks, while FFR is more suited for dense columns, where the normal equations fill-in
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Table III.6 Best augmentation method in terms of size for different classes of problems
from the SuiteSparse Matrix Collection: 36 Least-Squares, 161 underdetermined and 241

unsymmetric square matrices.

Smallest aug. FCij Both FFR

LS 29 1 7
under 83 11 57
Square 22 25 193

and the number of interconnected partitions is large. In reality, matrices display a mix of
various structures. In Appendix B.1.2, we give more details on these 2 extreme cases and
also give results from the application of ABCD for a set of matrices from the SuiteSparse
Matrix Collection depending on the used augmentation technique. In the following
sections, we use the augmentation method with smallest size for each problem.

A FF R(A) FCij (A)

Figure III.8 Two matrices partitioned in 3 blocks of rows, with respectively dense rows
and dense columns. The corresponding augmentation blocks obtained with FFR and

FCij are displayed.
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III.2 Parallel implementation scheme

I do not fear computers. I fear the lack
of them.

Isaac Asimov

With preprocessing, the stage is set for the actual parallel implementation. In this
section, we first introduce all practical aspects of the parallelism scheme we use, then
the implementation choices made in order to decrease the complexity in computation,
communication, and memory. All of these 3 aspects are essential to get an efficient solver
in modern supercomputers. Finally, putting everything together, we demonstrate the
efficiency of the ABCD-Solver through numerical experiments.
The three following sections and the corresponding numerical experiments are derived from
the paper [45], published in the proceedings of the Parallel Computing 2019 conference. In
this work, we combine methods to get a good trade-off between an overall load-balancing
amongst the distributed tasks, together with a reduced communication.

III.2.1 Hybrid parallelism

The parallelism of the ABCD-Solver is based on MPI [71] and OpenMP [37]. Both the
BC and the ABCD methods perform the same preprocessing steps following the principles
presented in the beginning of this chapter. This preprocessing step is applied to the
underdetermined matrix A. Firstly, after scaling the system, we partition the matrix.
Secondly, the basic idea is to distribute each partition Ai to one process, called master,
which builds the corresponding projection system (II.16). Thirdly, these symmetric
systems are solved using the sparse direct solver MUMPS7 [6] so as to be able to compute
the projection on the subspace spanned by the block of rows in the partition. This
direct solver uses the well-known multifrontal method and performs three steps: analysis
(preprocessing, estimation of workload and memory), LDLT factorisation, and finally
solve (forward elimination and backward substitution), see Section I.3.2. Analysis and
factorisation must only be performed once, while one solve is performed each time we
need to compute the projection at every iterations. These local projections are then
summed through non-blocking point-to-point communications between masters. The
amount of data communicated between 2 masters is equal to the number of shared
columns, i.e. interconnections [133]. Additionally in ABCD, the matrix S is built in an
embarrassingly parallel way, see Section 5.4 in [133] for the detailed description. We

7http://mumps-solver.org/

http://mumps-solver.org/
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use the fact that S is the restriction of W , and each column of W corresponds to the
independent projections of canonical vectors, thus implying only a small subset of the
masters. Then S is given in distributed form directly to MUMPS for a parallel solve
on the global communicator (see [47] and [133] for the details of the construction and
solution of S). S being identical for both row and column partitionings, no modification
to this computation was needed compared to the previously published versions.

The ABCD Solver is a hybrid scheme, in the sense that the method is block-iterative,
with the use of a direct solver for each subproblem defined by the partition, but also in
the sense that it offers a pseudo-direct approach, with convergence in 1 iteration, through
the augmentation technique. The solver also implements a hybrid parallelism with several
levels of parallelism exploited at the same time

1. the projections are independent and computed in parallel,
2. the MUMPS solver introduces two levels of parallelism: through the exploitation of

its elimination tree and through the factorisation of large frontal matrices using
parallel linear algebra dense kernels.

Figure III.9 depicts the parallelization scheme, including the fundamental steps of the
algorithm, for the BC and ABCD algorithms.

In addition to the multiple levels of parallelism exploited in the ABCD-Solver, the
management of data is also optimised as introduced in [133]. In particular, the possibility
to compress the data maintained locally on each process is crucial, particularly to reduce
MUMPS complexity via a reduction of the size of the projection systems. Also important,
is the possibility to update only the part of the solution corresponding to the local
partitions in the column version of the block Cimmino methods. In the row version, the
same is true concerning the residuals.

III.2.2 Improving the scalability of the ABCD-Solver

The possibility to give exactly one partition to each process is only the basic idea.
Depending on the number of masters and the number of partitions, there are various
possibilities for scheduling the computations. In the following sections of the article, we
propose and study two different approaches. In the first setting, the number of partitions
is higher than the number of masters, and a master process owns a group of partitions.
In Section III.2.2.a, we propose a new algorithm that aims to group partitions on each
master so as to minimise the overhead of communication between masters, and at the
same time maintain the load balance across masters. In the second setting, there are
more processes than masters. We use the extra processes, not yet assigned, to act as
workers to help the master MPI processes to parallelize the computation further. In
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Figure III.9 Hybrid parallelisation scheme of the ABCD-Solver.

Section III.2.2.b, we introduce a new method to assign the processes, masters and workers,
in the physical computing resources to decrease the communication overhead both within
and between master-workers groups.

In the ABCD Solver, we distinguish three types of communications [133]: the intra-
communication within master-workers group which only occurs when computing a pro-
jection using MUMPS; the inter-communication between masters which occurs when
summing the projections; finally in ABCD, the global communication used at first when
solving the system based on S with all available processes.
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III.2.2.a Load balancing: distribution of partitions

In the first setting, the number of masters is assumed to be less than the total number of
partitions. In such a case, the idea is to assign groups of partitions to the masters, who
construct one single block diagonal system, made with the projection systems from the
various partitions. This block diagonal system is then solved using MUMPS as before.
Here, the goal is to distribute the partitions to the masters with the right trade-off
between balancing the weight of the local groups of partitions over all master processes,
and minimising the overhead in communication between masters.

Remark: At extreme scales, this scheme can be further enforced by picking a number
of masters much lower than the number of partitions, and also lower than the total
number of available processes, together with the idea to exploit the extra processes as
workers assigned in clusters to the masters. This can be of interest depending on the
architecture of the target machine. The distribution of partitions then becomes a kind of
data agglomeration in situations where the execution on a limited number of processes is
more efficient, see Section I.3.1.

As proposed in [133], the first approach we consider is called ”Greedy”. This distri-
bution results in an optimal distribution of the partitions over all masters, in terms of
balancing the weight of the groups of partitions. Globally, balancing the weights of local
sets of partitions is not the only concern, one should also consider the overhead from inter-
communication between masters resulting from the distributed group of local projections.
Point-to-point communication is then effectively performed on values corresponding to
interconnections between different masters, see the details in [47]. Therefore, the best
distribution of the partitions should find the right trade-off between minimising this
communication, i.e. decreasing the number of interconnected columns between master
processes, and balancing the workload over these masters in order to achieve minimum
parallel execution time.

We propose a new approach, called ”Comm-µ”, which is based on this principle,
see Algo. 10. The algorithm first creates a graph G. The nodes of G are the partitions
weighted by their respective size. There is an edge between two nodes if the corresponding
partitions are interconnected, i.e. they share a nonzero column, and the cost of that edge
equals the number of such columns. In the final step, we partition G using the multilevel
graph partitioning tool METIS [89] to minimise the number of interconnections between
the groups of partitions for each master, with a parameter µ that permits a certain
imbalance in the accumulated weight over the groups of partitions.



116 Parallel implementation

Algorithm 10 Algorithm for the distribution of partitions minimising communications
while keeping a balance over the weight of partitions.
Input: w: weight of the partitions
Input: colIndex: indices of the non-empty columns for each partition
Input: nb masters, nb parts, µ: imbalance threshold

1: AdjacencyMatrix = zeros(nb parts, n)
2: AdjacencyMatrix(p, colIndex(p)) = 1
3: for p1, p2 ∈ {1..nb parts} do
4: Interactions(p1, p2) = size (colIndex(p1)⋃ colIndex(p2))
5: end for
6: Create graph G = (V, E) using AdjacencyMatrix and interactions
7: METIS(G, nb masters, µ)

III.2.2.b Placement of masters and workers

In the second setting, we assume more MPI processes than masters. Partitions, or groups
of partitions, are assigned to the masters, and the extra processes with no partitions
are associated with the masters in clusters, as worker processes that contribute to the
parallel computations in MUMPS.

Hierarchy of the computing architectures
The ABCD Solver is designed to solve large systems on distributed memory architectures
where the computing resources are hierarchically structured with nodes and cores, as
introduced in Section I.2.1. When launching our distributed solver, we specify a certain
number of MPI processes per node which are allocated and placed on the system
architecture in a predetermined way by the batch system. Depending on the situation
at runtime, we need to decide which processes are given the role of master or worker
in order to minimise the total overhead of the communication between masters (inter-
communication) on the one hand, and inside master-workers groups (intra-communication)
on the other hand. This process is composed of three steps. Firstly, processes are chosen
to be masters, and in a second phase we determine the number of workers for each
master. In principle, the anticipated number of flops (given by the MUMPS analysis for
each partition) is used to assign more workers to masters with higher workload. The
assignment of workers optimally balance the average workload per process with a greedy
algorithm. Thirdly, we choose the workers for each master depending on their respective
placement in the architecture.

Two opposite approaches emerge for the first step. We can place masters close to
each other to accelerate inter-communication (by exploiting the shared memory access
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available on each node), and we refer to this approach as Compact. Alternatively, we can
spread the masters over the nodes in order to fit the master-workers group together on a
same node. This simultaneously improves intra-communication and decreases concurrent
access to memory by masters. We refer to this approach as Scatter.

Architecture aware placement of masters and workers
The approach first implemented in the ABCD Solver is Compact, see [133]. In this
approach, the first ranks of MPI define the masters and the rest of the processes are
assigned in sequence to them as workers, depending on their rank. Although this
approach minimises the inter-communication, both the intra-communication as well as
the sequential calls to dense kernels, known to be memory-bound, are slowed down due
to concurrent memory access among masters.

In this case, spreading masters over the nodes can be better, we call this approach
Scatter. This was the placement privileged in Section I.3.3 when using MUMPS on
the coarse grid of a multigrid scheme at extreme scale. Note that we propose here a
“manual” implementation of this approach, but, in the future, this implementation could
be replaced by existing architecture aware mechanisms [87]. We define two algorithms,
respectively for the placement of the masters and the workers. The principle of these
algorithms is simple

• To place the masters, we first gather information to know which node each process
runs on. We then assign one master per non-filled node in a zig-zag fashion, starting
from the largest node to the smallest then alternating.

• To place the workers, we first sort the masters in descending number of desired
workers. Then for each master, we place its workers in the same node and, when
the node is filled, we group the remaining workers in other nodes as close to each
other as possible.

The pseudo-code of these algorithms is given in Appendix B.2. In Figure III.10,
we illustrate the effect of the Compact and Scatter approaches on a toy example. We
partition a matrix in 3 partitions solved using block Cimmino with 12 processes. We
define 3 masters each with 3 workers and launch the solver on 3 nodes each with 4
processes.

In Section III.2.3, the ABCD-Solver is applied to various matrices. We demonstrate
an improvement in parallel performance in both settings, first using the communication
reducing distribution of partitions, then deciding masters and workers depending on the
computing architecture.
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Figure III.10 3 nodes with 4 processes on each and we have 3 masters with 3 workers
each. Mi corresponds to the master i and the Sj of the same colour is its worker j.

(Left) Compact scheme, (Right) Scatter scheme.

III.2.3 Parallel experiments

In this section, we show parallel distributed runs for the BC and ABCD methods on the
unsymmetric and rectangular matrices described in Table III.7, which were extracted from
the SuiteSparse Matrix Collection8 [39]. This set of sparse matrices is freely accessible
and corresponds to problems from real-world applications. The number of partitions is set
so that in these cases, the size of a partition is of the order of 10 000. Given the number
of partitions, we exploit the 2 methods for permutation and partitioning described in
Section III.1.2. For the iterative BC solver, we use the partitioning inducing the smallest
number of iterations, and for the pseudo-direct ABCD solver, we use the combination
of partitioning and augmentation technique giving the smallest augmentation size. Our
experiments are carried on Meggie, a supercomputer at the RRZE at FAU in Erlangen,
Germany9. Meggie is a Megware system with Broadwell Intel Xeon E5-2630 v4 processors
at 2.2GHz. Each of its 728 compute nodes is a 2-socket system with 64 GB memory,
where the 10 cores of each processor constitute a separate NUMA (non-uniform memory
access) domain. Meggie uses the Intel OmniPath interconnect.

Firstly, we demonstrate parallel efficiency induced by the communication reducing
load balancing introduced in Section III.2.3.a. Secondly, to have an efficient parallel
ABCD method, we show that the Schur complement must be solved with a limited number
of processes, as S is of small size whenever this approach is effective, in Section III.2.3.b.
Thirdly, as presented in Section III.2.3.c, a good placement of the master and worker
processes is used to decrease the execution time of the iterative and pseudo-direct methods.

8https://sparse.tamu.edu/
9https://www.anleitungen.rrze.fau.de/hpc/meggie-cluster/

https://sparse.tamu.edu/
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Table III.7 Characteristics of the test matrices. n: the order of the matrix, nnz: the
number of nonzero values in the matrix.

Matrix m (×106) n (×106) elts per row #Parts Problem
deltaX 0.07 0.02 3.61 4 Counter Example

image interp 0.24 0.12 2.97 16 Computer Graphics/Vision
LargeRegFile 2.11 0.80 2.34 64 Circuit Simulation

shar te2-b2 0.20 0.02 3.00 32 Combinatorial Problem

neos 0.48 0.52 3.19 32 Linear Programming
sctap1-2r 0.03 0.06 6.46 8 Linear Programming
stat96v3 0.03 1.11 98.04 4 Linear Programming

bayer01 0.06 0.06 4.76 4 Chemical Process
cage14 1.51 1.51 18.02 256 Directed Weighted Graph

memchip 2.71 2.71 4.93 256 Circuit Simulation

The experiments in Sections III.2.3.a and III.2.3.c use the same settings as those presented
in [45] which details are recalled. Finally, in Section III.2.3.d, the parallel scalability is
studied on larger test cases with an extensive comparison with the state-of-the-art direct
solvers MUMPS, and QR-MUMPS.

III.2.3.a Communication reducing distribution of partitions

Here we use the distribution technique introduced in Section III.2.2.a to apply the BC
method on the square matrices bayer01, cage14, and memchip. We apply BC in parallel
using 128 MPI processes spread over 16 distributed nodes. Each MPI process is attached
to 2 OpenMP threads. Matrix bayer01 is partitioned in blocks of rows, and matrices
Hamrle3 and memchip are partitioned in blocks of columns, using the partitioning method
giving the smallest number of iterations for convergence.

In the first setting, each matrix is partitioned into 1 024 blocks and partitions must
be grouped before being distributed to the master processes. Note that this number of
partitions would be considered too high for a normal use of the BC method on matrices
of this size, see Table III.7. Here, because we want to analyse the communication scheme,
we set the number of partitions to an exaggerated fixed size such that partitions are highly
interconnected in general, and thus the amount of communications required for the sum
of projections between masters is increased. We use the three matrices bayer01, cage14,
and memchip because they illustrate the main behaviours in terms of computation and
communications.

The experiments are then conducted using 3 distribution of partitions. First, the
greedy algorithm (Greedy) is used, which goal is to only balance the workload over the
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groups of partitions. Then, the communication reducing algorithm is applied, which takes
into account the interconnections between partitions to reduce communications while
keeping a balance ratio µ between workloads associated to the sets of partitions. We
use 2 values for this parameter, µ = 1% (Comm-1 ) and µ = 10% (Comm-10 ). Results
are reported in Table III.8. The column ‘Com. col%’ of Table III.8 reports the total
communication volume, equal to the number of interconnected columns, normalised with
respect to the greedy method. The table also reports execution times for the factorisation
as well as the imbalance ratio between the slowest and average factorisation times over
all masters. Finally, the table gives the BCG execution time and iterations for the BC
method. As seen in the table, for BC, the proposed methods Comm-1 and Comm-10
achieve around 89%, 58%, and 60% reduction in the total number of exchanged columns
for bayer01, cage14, and memchip respectively. This improvement in turn leads to
faster parallel execution of BCG for the matrices bayer01, and memchip. On the other
hand, for cage14, despite the reduction in the amount of communications, the execution
time increases because the overhead of load imbalance on the factorisation absorbs the
gain from the minimisation of communication. This is partly explained because of the
fast convergence in this case, since the amount of communication (performed once per
iteration) is then low. In the ABCD-Solver, the workload induced by each partition
is crudely estimated by its number of rows for the distribution of partitions, which
explains why the imbalance does not increase exactly according to the imbalance ratio µ.
Additionally, our experiments tend to show that a larger value for the parameter µ has a
limited effect on the reduction of the total size of communication and of the execution
time.

The overall execution time of the BC benefits from the use of the communication
reducing distribution of partitions with a reasonnable parameter, e.g. µ = 1, in cases
where the time spent in the direct solver is not predominant compared to communication.
In the case of the ABCD method, only one iteration is required for the convergence, thus
the communication between masters to compute the sum of projections is only performed
once. Also, with such a high number of partitions, the size of the Schur complement
would explode and most of the execution time would be spent on its solution. Applying a
special technique for the distribution of partitions for the ABCD method does not make
sense.

III.2.3.b Parallel solution of the Schur complement

The block Cimmino approach is a hybrid scheme where we use a direct solver to solve
subsystems defined by the partitions, with a divided complexity in terms of computation
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Table III.8 Impact of the distribution of partitions on the execution times. All runs were
performed with 1024 partitions and 128 MPI processes with 2 threads on 16 nodes.

(Com. col %: Normalised column reduction values with respect to the Greedy algorithm.
tot: Total time in seconds. Fact. imb. %: ratio of maximum over average factorisation
times. BCG it: Number of iterations required for convergence. Sol. time: Total solution

time in seconds)

Matrix Algo. Com. Fact. BCG
col.% tot. imb. tot. it.

bayer01
Greedy 100 0.85 120 18.80 3647
Comm-1 11 0.87 122 16.20 3571
Comm-10 11 0.78 105 16.80 3570

cage14
Greedy 100 2.14 126 5.26 17
Comm-1 42 3.44 192 8.26 17
Comm-10 42 3.09 202 7.42 17

memchip
Greedy 100 1.21 145 89.40 537
Comm-1 39 0.96 119 89.00 536
Comm-10 40 1.04 133 91.00 537

as well as in terms of memory. However, there is a downside to this effect. As the
size of the subsystems decrease, so does their granularity and this is a limit for parallel
scalability. Once a certain limit of granularity is reached there is often positive effect on
execution times in limiting the number of processes used by a direct solver. We have
shown this effect in Section I.3, in the case of a direct solver used for the solution of the
coarse grid problem in a multigrid scheme, for example.

The ABCD method shows a good behaviour in cases where the matrix S is not too
large, nor dense. When the direct solver is applied to solve this system with a large
number of processes, the granularity of the subproblems considered by the direct solver
crumbles. In Table III.9, we show the execution times corresponding to the solution of
the Schur complement system for ABCD applied to the matrices from Table III.7 (with
the corresponding number of partitions), depending on the number of processes used.
The number of processes varies from half to 32 times the number of partitions, with each
process attached to 2 threads. We observe that the fastest runs are always obtained with
a number of processes equal or lower to the number of partitions. For example in the
case of the matrix neos (split in 64 partitions), if we use 2 048 processes instead of 64,
the solution time is increased by a factor 6. Thus, in the rest of this chapter, while the
matrix S is built in an embarrassingly parallel way involving all processes [133], we solve
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the Schur complement system only with the master processes, which number is upper
bounded by the number of partitions.

Table III.9 Execution time for the solution of the Schur complement system depending
on the number of processes used. The number of processes is displayed relatively to the

number of partitions used for each matrix.

Matrix #Parts Aug. #MP I
#P arts

1
4

1
2 1 2 4 8 16 32

deltaX 4 5 154

so
lv

e
ti

m
e

(s
) 1.39 1.15 1.09 1.10 1.14 1.08 1.09 1.07

image interp 16 4 406 0.42 0.27 0.33 0.40 0.47 0.86 0.86 3.22

neos 32 42 677 46.30 53.03 40.62 51.39 76.11 161.86 247.62 –
sctap1-2r 8 102 0.009 0.010 0.010 0.013 0.019 0.023 0.034 0.071
stat96v3 4 2 817 0.53 0.67 0.57 0.61 0.59 0.61 0.70 –

bayer01 8 257 0.004 0.004 0.006 0.007 0.009 0.011 0.014 0.051
memchip 256 68 122 3.45 3.67 4.86 8.29 16.10 – – –

III.2.3.c Node aware placement of master and worker processes

Here we use the node aware placement of master and worker processes introduced in
Section III.2.2.a, to apply the BC and ABCD methods on the square matrices bayer01,
cage14, and memchip. These experiments are based on the same settings as those
performed in [45], and we recall now the useful details for the analysis of the results. We
apply the ABCD-Solver in parallel using 128 MPI processes spread over 16 distributed
nodes. Each process runs with 2 OpenMP threads. Matrix bayer01 is partitioned in
blocks of rows, and matrices Hamrle3 and memchip are partitioned in blocks of columns,
using the partitioning giving the smallest number of iterations for convergence.

In this setting, each matrix is partitioned into 32 blocks which are given to separate
master processes. The processes left are then assigned as workers to help with the
factorisation and the solution of the projection systems. We recall that only masters
are involved in the solution of the Schur complement system S, thus no impact on its
solution time is expected from placing masters and workers. Note that here we use a
fixed number of partitions such that the number of masters (32), is low compared to the
number of workers (128− 32 = 96). While 32 partitions stays of the same order as the
number of partitions presented in Table III.7, we are again exaggerating the situation to
force the importance of the master-worker parallelisation. We then use the three matrices
bayer01, cage14, and memchip again because they show the main behaviours in terms
of computation and communications.
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Here we apply two methods to distribute the masters and workers: the Scatter
method, which spreads the masters over the allocated nodes, and the Compact method,
which places the masters close to each other. Table III.10 displays for the BC method
the execution times for the MUMPS factorisation, the block-CG execution, the sum of
projections and also gives the number of iterations. As for the ABCD method, Table III.10
gives the execution time for factorisation also, as well as the timing to compute the
solution of the S system. Using the Scatter approach generally reduces the factorisation
time (e.g. up to 75% for memchip). Factorisation only increases slightly for the matrix
memchip in ABCD. While the masters are scattered, the master-workers groups are meant
to be grouped in the same node. This way, the intra-communication is reduced together
with the concurrent access in memory compared to the Compact approach. A benefit
from the Scatter approach is also observed for the sum of projections in the BC method.
This phase includes the solve step of MUMPS, behaving similarly to the factorisation
w.r.t. the Scatter method, and a communication between masters to exchange the
local projections. In the case of bayer01, the execution time for the sum of projections
increases. In fact, bayer01 has highly interconnected partitions of size only around 60
variables. As the granularity in the direct solver crumbles, the communication from the
sum of projections predominates and there is no benefit from the Scatter method on this
point. To sum up, when using the Scatter approach, the execution time for the BCG
still decreases in this case, because less concurrent access to memory are performed by
the masters in the dense kernels used when applying the Scatter technique. Overall, the
execution time for the BC method, including factorisation and BCG, is reduced by 22%
in average, and the execution time for the ABCD method, including factorisation and
solution of the Schur complement system, is reduced in average by 17%.

Table III.10 Impact of the placement of masters and workers on the execution times of
the ABCD Solver. All runs were performed with 32 partitions and 128 MPI processes

with 2 threads on 16 nodes.

Matrix Algo. Block Cimmino ABCD
Facto(s) BCG(s) it. Proj. sum(s) Facto(s) Sol.(s) Aug.

bayer01 Compact 0.89 0.73 81 0.40 1.41 0.07 1 083Scatter 0.07 0.82 81 0.41 0.82 0.09

cage14 Compact 37.80 9.67 13 8.63 112.56 – 2 380 194Scatter 37.79 8.82 13 8.07 104.87 –

memchip Compact 1.20 90.70 242 62.60 1.14 40.70 34 048Scatter 0.44 83.30 242 61.30 1.44 40.41
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III.2.3.d Comparison with direct solvers

We now compare the parallel efficiency of the BC iterative method and pseudo-direct
ABCD method (with the best settings for each of them) together with state-of-the-
art direct solvers. We focus on the well-known parallel direct solvers MUMPS-5.3.110

[6] and QR-MUMPS-2.011 [29]. MUMPS is designed for the solution of unsymmetric
square systems via an LU factorisation, and uses a hybrid MPI-OpenMP parallelism.
QR-MUMPS is a multithreaded software based on the StarPU runtime engine12, and is
intended for rectangular matrices with the minimum-norm solution of underdetermined
systems and the solution of least-squares problems. Both solvers are known to be very
robust and support an efficient parallelism based on variants of the multifrontal method [6].

For our comparison, we extracted all the matrices from the SuiteSparse Matrix
Collection with more than 1 000 rows. In the case of the square matrices, we then
compare the iterative and pseudo-direct methods from the ABCD-Solver with the solver
MUMPS. These runs are performed on the cluster Meggie with 64 MPI processes spread
over 16 nodes. Each MPI process is attached to 4 OpenMP threads.

In the case of rectangular matrices, we compare the ABCD-Solver with QR-MUMPS
in shared memory on the cluster Kraken13 at CERFACS, France. Kraken is a cluster with
Skylake Intel Xeon Gold 6140 processors at 2.3GHz. Each of its 185 compute nodes is a
2-socket system with 96 GB memory, where the 18 cores of each processor constitute a
separate NUMA (non-uniform memory access) domain. Kraken uses the Intel OmniPath
interconnect. This cluster was chosen for its larger number of cores and memory per
node, which makes it better suited to shared-memory parallelism than Meggie. In our
experiments, we use 18 threads for QR-MUMPS, i.e. a full NUMA domain on a node,
and for the ABCD-Solver we use 9 MPI processes with 2 threads attached to each process,
i.e. 18 active cores spread over the 2 sockets on a single node. We use this configuration
to run QR-MUMPS in the best conditions available for a fair comparison with respect
to the resulting efficiency. In that respect, the ABCD-Solver is run in a shared memory
setting (which is not ideal for such a hybrid solver) but still takes advantage of the hybrid
MPI-OpenMP parallelism.
In Figure III.11, we display the relative difference between the direct solver and our
solver in terms of time and memory consumption. Positive values in the figure show an

10http://mumps-solver.org/
11http://buttari.perso.enseeiht.fr/qr_mumps/
12https://starpu.gitlabpages.inria.fr/
13https://cerfacs.fr/en/cerfacs-computer-resources/

http://mumps-solver.org/
http://buttari.perso.enseeiht.fr/qr_mumps/
https://starpu.gitlabpages.inria.fr/


III.2 Parallel implementation scheme 125

advantage for the ABCD-Solver. After merging matrices from the same families and only
keeping results whenever both compared solvers actually achieve the run, we are left with
187 classes of problems in the comparison with MUMPS, and 128 for the comparison
with QR-MUMPS. In terms of execution times, the first thing we can observe is that
the direct solvers usually performs better than ABCD or BC as most of the points are
on the left side, associated to the negative part of the x-axis. Nevertheless, there are
about 17% of cases where either ABCD or BC shows some advantage compared to either
MUMPS or QR-MUMPS. The second thing to observe is that the ABCD-Solver has a
lower memory consumption than MUMPS as 75% of points are on the upper and positive
part of the y-axis. With respect to QR-MUMPS, the memory footprint gives advantage
to the ABCD-Solver only in around half of the cases. The results from Figure III.11 are
summarised in the table III.11 where we display the number of cases giving advantage to
either solver based on execution time or memory.
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Figure III.11 Relative difference between the use of the ABCD-Solver and (Left) MUMPS
or (Right) QR-MUMPS in terms of (x-axis) execution time and (y-axis) memory

consumption for the block Cimmino iterative method applied to 187 and 128 classes of
problems from the SuiteSparse Matrix Collection. Positive values show a smaller

execution time (resp. smaller memory consumption) when using the ABCD-Solver.

In order to get a better understanding of major differences with respect to the
behaviours of these solvers, we now focus on some specific examples. In [47], the authors
present a detailed comparison between the ABCD-Solver and MUMPS for unsymmetric
square matrices. In this thesis, the main contribution is for the solution of rectangular
systems, and we now focus on the matrices LargeRegFile, neos and shar te2-b2 from
Table III.7 to discuss the performance of the ABCD-Solver compared to QR-MUMPS.
These matrices were chosen to show the typical behaviour where each method, QR-
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Table III.11 Best solver in terms of execution time or memory for different classes of
problems from the SuiteSparse Matrix Collection. We distinguish the comparison in
distributed memory MUMPS vs ABCD-Solver (187 classes), and the comparison in

shared-memory QR-MUMPS vs ABCD-Solver (128 classes).

Time Memory
MUMPS ABCD-Solver MUMPS ABCD-Solver

155 32 (BC : 23, ABCD: 18) 51 136 (BC )
QR-MUMPS ABCD-Solver QR-MUMPS ABCD-Solver

101 27 (BC : 7, ABCD: 20) 68 60(BC : 58, ABCD: 2)

MUMPS, ABCD, or BC, has the advantage depending on the particular structure and
properties of the matrix. We start with the solution of the underdetermined matrix neos,
which runs are given in Table III.12. The execution times are summarised for runs of
the BC and ABCD methods as well as the QR-MUMPS solver. In the Table III.12, we
distinguish

• Analysis: including the partitioning and augmentation of the matrix as well as
the analysis of the projection systems by MUMPS inside the ABCD-Solver. For
QR-MUMPS, this represents the analysis of the whole system.

• Facto.: the parallel factorisation of the projection systems by MUMPS inside the
ABCD-Solver. The factorisation of the whole matrix for QR-MUMPS. The average
memory per core is displayed for these steps.

• Solve: for BC, this corresponds to the execution time of the block-CG for BC, i.e.
Algo. 5 in the case of the column partitioning. For QR-MUMPS, this is simply the
solve phase.

• We also show for ABCD: the size and density of S, as well as the time to build it; the
execution time for factorisation and solving using MUMPS and the corresponding
requirement in terms of average memory per active core. In the case of the column
partitioning approach, these steps correspond to the Algo. 8.

As expected, the preprocessing time increases between the BC and ABCD methods,
which corresponds to the computation of the augmentation. This is reflected by a slightly
longer analysis of the projection systems. Even with the augmentation, the analysis
phase stays faster for the ABCD-Solver than for QR-MUMPs.

The same tendency is observed for the factorisation phase: only 1.3s and 2.0s for
BC and ABCD, compared to 108.1s for QR-MUMPS. Additionally, we observe that the
memory required for the augmented approach is increased by a factor 2.3 compared to
memory needed by the iterative scheme. The direct solver requires more than 26 times
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the amount of memory. This is expected as we split the problem into 64 smaller problems
to factorise inside the ABCD-Solver, reducing the requirements in both memory and
computation time.

The iterative method takes a high number of iterations to converge, thus requiring a
long execution time. In the case of the augmented approach, the size of the augmentation
is small, around 8% of the column dimension of the original matrix, but S is quite dense
with around 3 100 entries per row. Due to this density, the required memory rises up
to almost 2.0 GB, which is 23.5 times the memory required to factorise the projection
systems. As for QR-MUMPS, once the price for the factorisation is paid, getting the
solution is cheap with only 2.5s. Overall, the augmented approach is the fastest for
this problem, and we can also notice that it requires 13% less memory than the direct
solver. In terms of accuracy, QR-MUMPS and ABCD both reach backward errors of the
order of machine precision, while BC only computes an approximation of the solution
corresponding to the sopping criteria. In most applications, this accuracy would be
enough, since errors are usually present in the data and/or models anyway.

Table III.12 Execution times for the different steps involved in BC, ABCD and
QR-MUMPS on the problem neos partitioned into 64 partitions. The backward error ω

on the normal equations for the computed solution is given.

BC ABCD QR-MUMPS

Analysis Preprocess Anal. proj. Preprocess Anal. proj. 88.1
5.3 1.1 5.7 1.2

factorisation 1.3 2.0 108.1
Memory usage/core (MB) 37 84 2 247

solve 754.0 (920 it.) 2.5

Size of S 4.27 · 104

Entries (density) of S 1.34 · 108

Building S 63.4
Fact. + solve with S 20.0
Memory usage/core (MB) 1 970

Total 761.8 92.3 198.7
ω 9.88 ·10−10 1.12 · 10−16 3.00 · 10−21

We now move to the case of the overdetermined matrix LargeRegFile, which is a
difficult one for the augmented approach. Despite an augmentation size of around 8%
the row dimension of the original system, the density of S is so high that the memory
required to apply the ABCD method on this matrix does not fit our machine. In this
case, we focus on the results of BC and QR-MUMPS, as shown in Table III.13.
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Table III.13 Execution time for the different steps involved in block Cimmino, and
QR-MUMPS on the problem LargeRegFile partitioned into 128 partitions. The backward

error ωLS on the normal equations for the computed solution is also given.

BC QR-MUMPS

Analysis 6.6 3.8
factorisation 23.2 1.2
Memory usage/core (MB) 152.7 80.9

solve 152.0 (28 it.) 0.6

Total 181.8 5.7
ωLS 3.20·10−10 5.50·10−23

The iterative BC scheme exhibits a very fast convergence with only 28 iterations.
However, each iteration costs 5.4s in average, 90% of the BCG iterations is spent on MPI
communication during the distributed sum of projections. This is due to 2 very dense
columns on the left of the matrix LargeRegFile, which interconnect the corresponding
partition to all the other partitions. On the opposite, it is a particularly good matrix
for QR-MUMPS which can actually benefit from pivoting strategies to overcome nicely
the issues induced by these dense columns. After reordering using a simple SymAMD
(Symmetric approximate minimum degree permutation), the normal equations end up in
a perfect arrowhead form, see left Figure III.12. Due to this particular structure, the
complexity of the direct solver is very small, both in terms of computations and memory.
This explains why BC requires even more memory than QR-MUMPS. Back to the matrix
neos, the structure of the matrix was not so easy to handle for QR-MUMPS, which
explains its low performance on that matrix. Using the same SymAMD algorithm to
reorder the normal equations of this matrix shows a structure very likely to fill-in inside
QR-MUMPS (see right Figure III.12). This is due to particularly dense columns in this
underdetermined matrix (and QR-MUMPS actually factorises its transpose).

We finally focus on the matrix shar te2-b2, and show the results in Table III.14. For
this matrix, the size of the augmentation with ABCD becomes large with around 46% of
the row dimension of the original matrix. Computing the solution with the matrix S

requires a long execution time, due to its high density of around 5 700 entries per row.
Due to this high computational cost, the augmented approach is still 40 times slower
than the direct solver. Furthermore, the memory required for ABCD is larger with 51
GB per core compared to almost 1 GB per core for QR-MUMPS. With this type of
matrices, the iterative BC shows up as a good alternative. BC converges in 11 cheap
iterations, and the memory cost for the factorisation of the projection system is very low
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Figure III.12 Structure of the normal equations after reordering with a SymAMD
(Symmetric Approximate Minimum Degree) algorithm for the matrices (Left)

LargeRegFile and (Right) neos.

with only 27.8 MB per core. In terms of accuracy, we have the same conclusion as for the
previous underdetermined problem neos. In particular, BC computes an approximation
with a precision of the order 10−11 again.

Table III.14 Execution time for the different steps involved in BC, ABCD and
QR-MUMPS on the problem shar te2-b2 partitioned into 64 partitions. The backward

error ωLS for the computed solution is also given.

BC ABCD QR-MUMPS

Analysis Preprocess Anal. proj. Preprocess Anal. proj. 88.3
0.5 0.3 1.8 7.0

factorisation 0.4 4.2 104.9
Memory usage/core (MB) 27.8 480.5 980

solve 2.4 (11 it.) 2.3

Size of S 9.26 · 104

Entries (density) of S 5.27 · 108

Building S 758
Fact. + solve with S 1 552.7
Memory usage/core (MB) 51 000

Total 3.7 2 331.4 59.1
ωLS 4.36 ·10−11 1.60 ·10−20 3.67 ·10−20
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Concluding remarks

We demonstrated that our approach implemented in parallel shows generally a good
memory consumption, even compared to a direct solver based on QR decomposition.
However, in cases where the matrix S is too big or dense, the memory and computation
required to solve it may become prohibitive. For these cases, we provide a block Cimmino
accelerated with a stabilised block-CG algorithm for the solution of least squares problems.
The latter method, whose convergence is problem dependent, keeps a very low memory
requirement.

The ABCD approach makes a good option to solve least squares problems or un-
derdetermined systems. The efficiency of this approach is of course dependent on the
structure of the matrix, and e.g. dense rows or columns can destroy the behaviour
of the solver due to an excessively big augmentation. ABCD compares well with the
direct solver QR-MUMPS in a shared memory setting, giving comparable accuracy for
rectangular systems. The iterative BC approach is then a good alternative with low
memory consumption in cases where the structure of the matrix induces a too large or
too dense S matrix, particularly when the convergence is fast.

In cases where the system is constructed from the discretization of a PDE problem,
we can exploit the geometry of the system to obtain an efficient partitioning. In Chapter
IV, we introduce a method based on a relaxed augmentation procedure. The resulting
method, inspired from multigrid, is no longer a pseudo-direct method, but an iterative
one with hopefully fast linear convergence.



Chapter IV

A multigrid-based approach for the
Augmented Block Cimmino Distributed
solver

”Do not forget the famous law of
conservation of nastiness”

Ulrich Ruede

For large PDE problems, we investigate extensions of the augmented block Cimmino
method (ABCD) from Section II.3, in which we relax the strict orthogonality between
blocks in order to reduce the size of the augmentation blocks. The purpose is a better
control of the requirements in memory and computations, mostly involved with the
solution of the Schur complement. We exploit ideas from the multigrid framework,
assuming that we have several levels of grids for the discretisation of the geometry.
In Section IV.2, we augment the original matrix by enforcing the strict orthogonality
between partitions on a coarse level. While in the exact ABCD approach, the size of the
augmentation can be large for highly connected subdomains, this new approach gives a
way to control explicitly the augmentation through the choice of the coarse grid level.
This system can be solved with the block-CG acceleration of the block Cimmino method
(BC) from Section II.2, with fast linear convergence for a range of systems coming from
PDE problems. We demonstrate the efficiency of this method on heterogeneous Elliptic,
Helmholtz and Convection-Diffusion 2D problems.

The main issue of this approach is the construction and solution of the reduced Schur
complement S, which cannot be obtained directly through a single sum of projections
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anymore. In the second part of this chapter, we propose 2 methods to handle this matrix.
In Section IV.3, the Schur complement is built iteratively with the help of BC iterations.
In Section IV.4, we use the algebraic expression of S and its inverse to apply the latter
without construction.

IV.1 Controlling the Schur complement

The BC method, introduced in Section II.2, is efficient for a variety of problems, but its
convergence stays hard to predict and is problem dependent. To address this issue, the
ABCD approach was introduced in Section II.3, yielding a pseudo-direct alternative that
relies on the solution of a smaller condensed matrix corresponding to a Schur complement.
The factorisation and solution with this Schur matrix S, brings two issues

1. S can be ill-conditioned: the matrix S is a condensed representation of the
ill-conditioning of the original system and the relations between partitions. By
improving the scaling of the original matrix, following the method introduced in
Section III.1.1, it is possible to improve partly the numerical properties of S.

2. S can be large and/or dense: as seen in the results of Section III.1.3, when the
number of interactions between subdomains is high, the size of the augmentation
grows accordingly. A way to explicitly control this size is required to be able to
address with this method very large 3D PDE problems in particular, as it can make
the solution with S impossible with a direct solver because of the large memory
and computational requirements.

The latter point is not specific to a restricted class of problems as it can systematically
arise when looking at highly interconnected matrices.

IV.1.1 Using coarser levels

As seen in Section II.3, ABCD is equivalent to a DDM where we decouple domains by
duplicating variables at the interface. The size of the augmentation is then of the same
order as the number of interface nodes between subdomains. Consider for instance a 3D
Poisson problem discretized on a cube, with standard 7-point finite difference stencil. Let
the cube be meshed with a number of N = 212 = 4.096 points in each direction. The
total number of nodes is then n = N3 ∼ 68.7 · 109. Let the 3D cube be partitioned in
lp = 16 blocks in each direction, which gives p = l3p = 4096(= N) partitions in total,
see Figure IV.1. The interconnection between 1 partition and the rest is approximately
equal to the number of variables in its 6 faces: Mi = 6× f with f = (Nlp )2 the number of
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variables in 1 face. The size of the augmentation block C will then be of the same order

Figure IV.1 Partitioning of a cube with 16 division in every directions.

as the size of the faces

size(C) ∼
p∑
i=1

Mi = 6p(N
lp

)2 ≈ O(N3). (IV.1)

When facing 3D problems, one cannot afford to augment the system with such a huge
size for the Schur matrix S, for which a direct solver would require too much memory,
and we need to reduce and control better the augmentation size. With a reduction of the
augmentation, information is no longer completely condensed on the interface, as there
remains lingering interconnections. Algebraically, the augmented partitions are no longer
mutually orthogonal in the resulting augmented system. We are then forced back to an
iterative scheme, as the convergence in 1 iteration for the block Cimmino method will
be lost. The goal is to find an augmentation procedure opening sufficiently the angles
between the augmented partitions, to enable a fast convergence of BC, while controlling
the size of the resulting augmentation. In the context of discretized PDE problems, a
natural approach is to use a coarser discretization of the problem, in particular on the
interface. This idea is directly inspired from multigrid methods [27]. As a matter of fact,
using a hierarchy of grids naturally decreases the size of the considered problem when
going to coarser levels. In principle, two successive levels of grids are linked by the pro-
longation operator P of size n×nc. The prolongation will be our main tool in this chapter.

Back to the 3D Poisson discretized on a cube, let’s consider we have several levels of
grid refinement with nl variables on grid l, and l = 0 is the coarsest level. As seen in
Section I.2.2, when using standard coarsening methods on regular grids the number of
variables in 2 consecutive levels is linked by the approximate relation nl ≈ 1

2dnl+1 where d
is the dimension. Considering 2 consecutive grid levels, the number of variables on the 2D
interfaces is divided by 4 on the coarser level. Simply put, starting from the finest level of
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our 3D cube where the interface has roughly 1.6.109 variables, only by considering the 3rd
coarser grid, the size of the interface is reduced to 2.5.107 variables, i.e. a 98.5% reduction.

Using such coarse levels would allow to choose an acceptable augmentation size. In
the case of problems not coming from the discretization of PDE problems, algebraic
multigrid tools could eventually be considered to allow the use of several grid levels
thanks to aggregation methods applied directly on the entries of the sparse matrix [132].

IV.1.2 Challenging PDE problems

In this chapter, we are focusing on the solution of discretized PDE problems on which a
hierarchy of refined meshes is naturally constructed. In order to study the efficiency of
the methods we propose, we are focusing on 3 linear PDE problems, inspired from those
introduced in [53].

IV.1.2.a Domains and discretization

We consider 2 dimensional PDE problems discretized on
• the square domain Ω� = (−1, 1)× (−1, 1),
• the L-shaped domain ΩL, defined as the union of the 3 smaller square domains

(−1, 0)× (−1, 0), (−1, 0)× (0, 1), and (0, 1)× (0, 1).
The dimensions of the space are noted as usual x and y. An initial grid is defined on these
domains, see Figure IV.2. Concerning ΩL, this initial grid splits the domain in several
subdomains and in particular 2 rectangular patches (see the red lines in Figure IV.2) on
which the PDE problem will have special properties.

A hierarchy of L levels of nested triangular grids is then built using initmesh for the
initial grid and the refinement method refinemesh from the Matlab PDE toolbox©. For
illustration, the grids generated with 2 levels of refinement are displayed on Figure IV.2
for the 2 types of domains.

IV.1.2.b Test problems

The problems considered here are derived from the equations introduced in Section I.1.1.
We are interested in the solution of

• the Helmholtz problem

−∇2u− k2u = f in Ω�,
u = 0 on ∂Ω�,

(IV.2)
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Figure IV.2 Structured grid after 2 levels of refinement for the (Left) square domain Ω�
and (Right) L-shaped domain ΩL.

with the wave number k = 40, and a sinusoidal forcing term f = (5π2−402)sin(2πx)sin(πy).
• the convection-diffusion equation

−ν∇2u+−→w · ∇u = 0 in Ω�,

u =
{

1 if x = 1,
0 else,

on ∂Ω�,
(IV.3)

with the viscosity ν = 1/200, i.e. dominating convection, and ~w a recirculating
wind.

• the heterogeneous diffusion equation

div(c∇u) = f in ΩL, (IV.4)

with the forcing term f = 200. The heterogeneous diffusivity c and the boundary
conditions are defined as shown in Figure IV.4. One of the difficulty of this problem
is the presence of diffusivity jumps.

The shape of the solution for the 3 test problems is displayed in Figures IV.3 and IV.4
(Right). These problems are discretized on the previously generated grids using P1 finite
elements, i.e. piece-wise linear continuous finite elements where the degrees of freedom
are the values on the vertices. The solution to these linear systems is known to be
challenging for multigrid methods in particular, due to either heterogeneous coefficients
in the domain in (IV.4), or to high frequencies difficult to capture on a coarse grid in
the case of Helmholtz problems [55], or due to strong non-ellipticity with a dominant
convection effect in (IV.3).
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Figure IV.3 Shape of the solution for (Left) the Helmholtz problem (IV.2) (Right) the
convection-diffusion problem (IV.3).

Figure IV.4 (Left) Diffusivity and boundary conditions for the Diffusion problem (IV.4)
on the L-shaped domain ΩL. The bottom is a Dirichlet, and the right a Neumann

boundary condition, while we have an adiabatic condition on the sides. (Right) Shape of
the solution.

IV.1.2.c Multigrid elements and partitioning

One way to deal with Dirichlet boundary conditions is to remove them from the linear
system. In the following, we consider the solution of the linear system Ax = b where
A and b have been reduced to remove the Dirichlet boundary conditions on all grid
levels. The complete discrete solution of the discretized PDE problem is then given by
u = PBCx+ uD, where uD corresponds to the boundary conditions, and PBC expands
the computed solution x with zeros in order to integrate uD. We also define between 2
consecutive levels of grids, l and l + 1 (l being the coarsest), the prolongation operator
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P l+1
l as bilinear interpolation, and the restriction operator Rll+1. The restriction is usually

taken as Rll+1 = P l
T

l+1. The linear operator on each level l is denoted Al ∈ R ml×ml ,
where AL = A ∈ R m×m, L > 0 is the finest grid level considered, and we usually define
recursively Al, l ≥ 0 with the Galerkin operator, i.e. Al = Rll+1Al+1P

l+1
l .

Finally, as the methods introduced in this chapter are variants of the block Cimmino
methods seen in Chapter II, we need to define a partitioning of the generated matrices.
We use here the geometry of the problem. The partitioning is then defines by splitting the
2D domain into small squares with a given number of subdivision ndiv in each direction,
for the whole domain Ω�, or with a similar parameter to subdivide each of the 3 smaller
squares forming ΩL. Figure IV.5 displays the partitioning of Ω� into 9 subdomains
(ndiv = 3) and ΩL into 12 subdomains (ndiv = 2).

Figure IV.5 Partitioning of the domains based on the geometry: (Left) Ω� into 9
subdomains and (Right) ΩL into 12 subdomains.

During our experiments in the next sections, we use 2 sets of test cases
• Psmall : small test cases for the PDE problems above, for illustration purposes.

The PDE problems are discretized on 3 levels of grids, respectively refined 2 times
from the initial grid. The obtained matrix on the finest grid level is partitioned into
12 blocks of rows for the diffusion, 9 blocks for the others, following the geometry.

• Plarge : large test cases for the PDE problems. We generate a hierarchy of 7 grid
levels corresponding to 6 refinements applied on the initial grid. The obtained matrix
is partitioned into 16 blocks of rows for the convection-diffusion and Helmholtz
problems, and 12 blocks of rows for the diffusion problem.

In all these test cases, we have at hand the prolongation operators from aggressive
coarsening, i.e. between the coarse grid and the finest grid levels. For each problem, the
size of the operators is given in Table IV.1, for every available levels of grid.
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Set Problem Grid level
0 1 2 3 4 5

PS diffusion (IV.4) 97 364 1 408 – – –
convection-diffusion (IV.3) 49 225 961 – – –Helmholtz (IV.2)

PL
diffusion (IV.4) 97 364 1 408 5 536 21 952 87 424

convection-diffusion (IV.3) 49 225 961 3 969 16 129 65 025Helmholtz (IV.2)
Table IV.1 Size of the matrix depending on the grid level for the different test sets and

problems.

As we have seen above, one of the limiting factor of the ABCD approach concerns
the Schur complement matrix S. Even using an efficient direct solver, S often remains
either too dense, too large or both. As the sparse linear problems become more and
more complicated, this will prove to be a limit in the end. In the following, we use the
previously introduced hierarchy of grids in a relaxed variant of the ABCD method to
control the size of the augmentation. We demonstrate this control on the above PDE
problems.

IV.2 Enforcing a relaxed orthogonality

In this section, we introduce a new augmentation procedure to solve the linear system on
the finest grid Ax = b with A ∈ R m×m, using ideas inspired from multilevel methods.
We focus on 2-level methods, i.e. based on the use of a single coarser level chosen among
the hierarchy of grids. The coarse level is integrated in the augmentation through the
intergrid transfer operators defined from an aggressive coarsening scheme. Considering
the finest level is the level L > 0, where AL = A, and we use only the coarsest grid at
level 0, where A0 : m0 ×m0, then the prolongation and restriction operators are defined
as the product of the intermediary operators

P = PLL−1 . . . P
1
0 : m×mc

R = R0
1 . . . R

L−1
L : mc ×m

(IV.5)
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IV.2.1 General discussion on ways to construct a relaxed augmentation

A naive approach to relax the augmentation is to look for a general form of the augmented

matrix
(
A

W

)
=
(
A C

B S

)
. The goal is to construct an augmented system on which the

convergence of the BC method is accelerated. What would be the ideal properties of
such system ?

First, as we have seen, the convergence of BC is closely related to the angles between
subspaces spanned by the partitions, and in a broader sense our target is to improve the
block diagonal dominance of AAT .
Then, as we need additional closure equations to maintain the solution of the original
system, the second targeted property is: the normal equations of the additional constraints
block WW T has a good spectrum, to ensure an easy solution technique when computing
the projections linked to this additional block.
Finally, the angles between the super partitions A and W should not slow the convergence
so: A and W should be close to orthogonal.

Here we focus on a simple case with the matrix A ∈ R m×m, and where we have the
prolongation operator P ∈ R m×m0 . The restriction operator is defined as R = P T ∈
R m0×m, and we use the Galerkin operator on the coarse grid A0 = P TAP ∈ R m0×m0 ,
i.e. we satisfy the variational properties. To build the augmentation blocks, we focus
on linear transformations involving P , A and Ac. The consistency of the system must
be satisfied, which can be fulfilled by enforcing the additional variables to 0 and forcing
the additional right hand side to be dependent on the original b. Based on dimensional
arguments, the general form of the augmented system could be set as[

A M1PM2

N1P
TN2A −G

] [
x

0

]
=
[

b

N1P
TN2b

]
(IV.6)

where M1, N2 ∈ R m×m, M2, N1 ∈ R mc×mc , and G ∈ R mc×mc . There is a number of
possibilities on the choice of the matrices Mi and Ni satisfying all or part of the previously
introduced properties.

We would like to mention at this point that it is also possible to avoid the use of
the closure equations (viz W =

[
N1P

TN2A −G
]

in (IV.6)). To do so, we have the
possibility to choose M1 = AM̃1, where M̃1 : m×m, and the solution is then obtained
as x∗ = x+ M̃1PM2y where y introduces extra degrees of freedom in the system. In this
case, we only have to choose M̃1 and M2 such that the normal equations of A are better
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suited for fast linear convergence in BC.

In the same line of ideas, it is also possible to avoid considering the extra variables

and to build only an overdetermined system
[
A

B

]
x =

[
b

Bx

]
that has the same solution x.

As long as we keep the system consistent as before, and the partitions used stay full rank,
the block Cimmino algorithm will converge to the right solution. Obviously, the key
point is to know Bx by default, and this is possible only with some particular choices for
B. This kind of augmentation is closely related to the notion of overlapping partitioning
we have introduced in Section III.1.2.e. Instead of replicating full rows into separate
partitions, the idea here would be to take linear combinations of the rows in A to build a
new block, which can then be used as an separate partition.
As above, the 2 new possible underdetermined and overdetermined alternatives are

[
A AM̃1PM2

] [x
y

]
= b, and

[
A

N1P
TN2A

]
x =

[
b

N1P
TN2b

]
.

We now introduce three specific augmentations that we explored, based on the previous
ideas. From (IV.6), one possibility is to augment the partitions with the prolongation
operator, and set the additional constraints such that their normal equations are reduced
to the identity. We use the augmented system[

A P

GN−1P TA −G

] [
x

0

]
=
[

b

GN−1P T b

]
,

where M = (P TAATP )(P TP )−1, S = (P TP )−1N , and G = chol((S+ Iq)S−1) with chol
giving the lower triangular factor from a Cholesky decomposition of the corresponding
matrix. Using this augmentation, A and W are not orthogonal but the normal equations
AA

T are directly improved for small systems as we will see in the experiments below.
Then we introduce the underdetermined and overdetermined augmented systems

[
A APA−1

c

] [x
y

]
= b, and

[
A

P TA

]
x =

[
b

P T b

]
. (IV.7)

Concerning the overdetermined augmentation above, we show in Appendix C.1 that it
corresponds to a 2-level multigrid cycle where the coarse grid correction is applied in
an additive way instead of the classical product introduced in Section I.2.2. As such, it
also corresponds to a 2-level additive Schwartz method. We now consider the convection-
diffusion problem (IV.3) with 3 and 5 refinement levels. We use the corresponding
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finest level of grid and the coarser grid is 2 levels below, i.e. we have for the problem
refined 3 times A ∈ R 961×961 and Ac ∈ R 49×49, and for the problem refined 5 times
A ∈ R 16 129×16 129 and Ac ∈ R 961×961.

In the first sub-figure of Figure IV.6, we show in blue the convergence of the BC
method applied on the original system and in red the convergence of the BC method
applied on the underdetermined augmentation in (IV.7). The convergence profile for
the augmented system is characterised by plateaus, and converges with 2.5 times more
iterations than in the non-augmented case. An improvement of the prolongator P itself
was then considered, using Chebyshev filtering, in order to target explicitly the small
eigenvalues on the coarse level. After filtering the prolongation operator using this
method, we apply the BC method on the original system (blue curves) and using the 3
previously introduced augmentations (pink curves), see Figure IV.6. In the case of the
smaller system, the Chebyshev filtering applied on the prolongation operator enabled a
linear convergence of the BC method for the 3 augmentation techniques. The method
with fastest convergence is then the overdetermined variant which converges in only 100
iterations compared to almost 1 000 for the original system. However, none of these
approaches were found to be robust with respect to the size of the system.

All-in-all, as these formulations are not robust even with the algebraic improvement
of the prolongation operator, we were then conducted to consider other augmentation
procedures. In particular, we study a variant of the ABCD method taking into account
the information coming from a coarse grid level.
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Figure IV.6 Convergence of the BC method applied on the original system (blue), and on
the augmented systems for the convection-diffusion problem with grids from 3 and 5

refinements. The augmentations considered are the underdetermined, the generic
augmentation with C = P , and the overdetermined variants using P the prolongation
between the finest grid (size m) and the next coarser grid (size mc). The prolongator
used in the augmentation is (red) the original, or (pink) the version improved with a

Chebyshev filtering.
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IV.2.2 A relaxed ABCD

We are now looking for the solution of the square linear system

Ax = b, (IV.8)

where A ∈ R m×m is partitioned in blocks of rows Ai ∈ R mi×m as in (II.5). Considering
an augmentation scheme F from Section III.1.3, the ABCD method enforces the strict
mutual orthogonality between augmented partition Ai through the block F(A). Using a
rectangular thinner matrix V ∈ R m×mV , mV � m, we propose a new approach where
the augmentation block is built as C = F(AV ) ∈ R m×q. AV and F(AV ) are partitioned
in the same way as A, we note their partitions respectively (AV )i = AiV and F(AV )i,
i = 1, . . . , p. The result of this process is the augmented matrix

A =
[
A F(AV )

]
. (IV.9)

For the choice of the matrix V
1. the size of the augmentation should be small i.e. q � n,
2. the normal equations of the matrix in (IV.9) are approximately block diagonally

dominant, i.e. from a domain decomposition point of view, the subdomains defined
by the partitions are mostly decoupled.

In fact, the strict orthogonality between partitions is enforced only for the matrix[
AV F(AV )

]
,

As a consequence, in the new system (IV.9), we have purely decoupled subdomains within
the subrange R(AV ), viz

∀ i, j ∈ {1, . . . , p}, (AV )i(AV )Tj + F(AV )iF(AV )Tj = 0
⇐⇒ F(AV )iF(AV )Tj = −AiV V TATj

(IV.10)

Typically, in the case of a classical multigrid cycle, smooth error components are prob-
lematic for the smoother applied of the finer levels of grids. Through the restriction
and prolongation operators, multigrid methods resolve these smooth components onto
the coarse grid. In the approach we propose, a natural choice for the matrix V would
be, as in the previous general approach, to take the prolongation operator P between
the finest grid and a chosen level of coarse grid. The expectation is that with such
a choice for V = P , the information contained in AP (which actually corresponds to
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the representation of the PDE problem on the coarse grid developed in the fine grid
finite element basis) will be enough to capture the low frequency interactions between
partitions and F(AV ) will incorporate appropriately decoupled partitions.

IV.2.2.a Size of the augmentation

The size of AP on which the augmentation is built can be controlled through the choice
of a more or less coarse level of grid. At the extreme, using the augmentation procedure
directly on the finest level of grid, i.e. with P = Im, simply corresponds to the ABCD
method with convergence in 1 iteration.

To illustrate the new augmentation procedure, we introduce again the block tridiagonal
matrix partitioned in 3 blocks of rows

A =


A1,1 A1,2

A1,2 A2,2 A2,3

A2,3 A3,3

 .
We have a similar, possibly denser, structure for the matrix AP

AP =


(AP )1,1 (AP )1,2

(AP )1,2 (AP )2,2 (AP )2,3

(AP )2,3 (AP )3,3

 ,
where (AP )i,j is the interconnection block between Ai and Aj . An augmentation tech-
nique, e.g. FFR from Section III.1.3, is applied on AP to obtain

A =
[
A FFR(AP )

]
=


A1,1 A1,2 (AP )1,2

A1,2 A2,2 A2,3 −(AP )1,2 (AP )2,3

A2,3 A3,3 −(AP )2,3

 .
Note that, when generated from the geometry of the system, as in Section IV.1.2, the

prolongation P stays relatively sparse, which gives good chances for AP to stay sparse as
well. For an illustration of this sparsity, let’s consider the small heterogeneous diffusion
problem with 12 partitions in Psmall . Figure IV.7 displays the matrix A obtained on
the finest level, the prolongation operator P between the 2 levels of grids as well as the
product AP and the obtained augmentation C = FFR(AP ).

Remark: As a reminder from Section III.1.1, we build the augmentation for ABCD
based on a well-scaled scaled matrix Ã = DrADc, with Dr and Dc diagonal scaling
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A P AP C

Figure IV.7 Matrix A ∈ R 1408×1408, prolongation P ∈ R 1408×364, the product AP and
the computed augmentation C = FAij (AP ) ∈ R 1408×248 obtained for the heterogeneous

diffusion problem (IV.4) with 2 grid levels.

matrices. We have to be careful that the scaling is coherent when using the relaxed
augmentation on AP . Using Ã as instead of A, we compensate the column scaling Dc

on the rows of P for the augmentation. Also, we can add a diagonal scaling matrix Dc
c

on the columns of P , i.e. a scaling on the coarse space, to obtain a scaled prolongator
P̃ = D−1

c PDc
c. In this way, we obtain a scaled product Ã P̃ = DrAPD

c
c which does

not mix different magnitudes of scaling factors. We add the notion of scaled restriction
R̃ = Dc

rP
TD−1

r which compensates the row scaling of A and also adds a scaling on the
coarse space. In practice, it is enough to set Dc

r = Dc
c and to compute these as scaling

factors for the symmetric coarse grid operator P TAATP which is the Galerkin operator
for the normal equations. We can show that these scaled operators Ã, P̃ and R̃ can be
used in a coherent 2-grids cycle applied on the normal equations AAT , as introduced in
Section I.2.2.

We now consider the set of large problems Plarge , i.e. the 3 PDE problems (IV.4),
(IV.3), and (IV.2) from Section IV.1.2 with refined grids, and we have the prolongation
operators defined from aggressive coarsening (IV.5) to transfer information from any
grid level to the finest. In Table IV.2, we display the size of the prolongation operator,
corresponding to the size of the linear operator on this level, as well as the size of the
augmentation obtained with FFR(AP ) for the 3 problems. These sizes are shown for
all choices of coarse grid level l = 0, . . . , 5. Let’s remind that the finest level amounts
to applying the classical ABCD. We observe here that when going down to a coarser
level, the size of P is divided by approximately 4 while the size of the augmentation is
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divided by a factor close to 2. This reduction is expected as the problem is in 2D, thus
the interfaces are in 1D, and we have seen that the number of unknown is divided by 2
in each direction using standard coarsening, see (I.9). This also confirms the previous
interpretation that the augmentation is applied on the interfaces between subdomains.

Table IV.2 Size of the prolongation and the augmentation depending on the grid level
chosen for the 3 PDE problems in test set PLarge.

Coarse grid levels Diffusion Helmholtz Convection-Diffusion

P FF R(AP ) P FF R(AP ) P FF R(AP )
0 (ABCD) 87 424 9 329 65 025 4 112 65 025 4 096
1 21 952 4 766 16 129 2 072 16 129 2 064
2 5 536 2 477 3 969 1 048 3 969 1 044
3 1 408 1 339 961 536 961 536
4 364 764 225 280 225 280
5 97 471 49 152 49 152

IV.2.2.b Widening the angles between partitions

The expectation is that, with such a choice for P = V , the information contained in AP
(which actually corresponds to the representation of the PDE problem on the coarse
grid developed in the fine grid finite element basis) will be enough to capture the low
frequency interactions between partitions, and F(AV ) will appropriately decouple the
partitions.

As we have seen in (IV.10), through the relaxed augmentation, partitions are made
orthogonal on a subrange of the linear operator which corresponds to the low frequencies.
We are decoupling the subdomains on a coarser space, and we expect a large improvement
of the non-zero spectrum of Hrow, the sum of projections on the partitions in A. Consid-
ering as before the small diffusion problem in Psmall . Figure IV.8 shows the non-zero
spectrum of the BC iteration matrix Hrow, before and after augmentation using grid
level 1 to define P . As expected, there is a very large improvement of the conditioning of
Hrow from 3 · 10−6 to 2 · 10−1. The resulting spectrum is well clustered around 1 which
should imply a fast linear convergence in the block-CG acceleration. As a reminder, when
ABCD is used with strict orthogonality between partitions, Hrow becomes the identity.

IV.2.3 The relaxed augmented block Cimmino method

Once the relaxed augmentation has been applied, we need to add additional constraints
to close the system in order to keep the same solution as the original problem. The
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Figure IV.8 Non-zero spectrum of the iteration matrix Hrow for the BC iterations
applied on (Above) A and (Below) A, obtained for the heterogeneous diffusion problem

(IV.4) in Psmall with 2 grid levels.

additional variables are still set to 0 by adding the block Y =
[
0q×m Iq

]
as in ABCD,

and we need to make the additional constraints orthogonal to A so as to be able to get
the final solution in 2 steps. As before, we project Y T in the nullspace of A, see (II.24),
to obtain the new block

W =
[
B S

]
= Y (I − P ), (IV.11)

with P = PR(AT ). The corresponding right hand side f , see (II.46), is

f = W

[
x∗

0

]
= −Y A+

b.

In this way, we construct the following enlarged system of equations[
A

W

] [
x

y

]
=
[
A F(AP )
B S

] [
x

y

]
=
[
b

f

]
. (IV.12)

The proof from Section II.3.2.a concerning the equivalence between the solution of
(IV.8) and the solution of the augmented system using the ABCD method only relies
on A being full rank, not on the orthogonality. Thus, this proof is still valid for the
equivalence of the solution of the original system (IV.8) and (IV.12). Furthermore, from
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(II.49) in Section II.3.2.a, the solution of (IV.12) is expressed as[
x∗

0

]
= A

+
b+W+f = A

+
b− (In − P )Y TS−1Y A

+
b. (IV.13)

However, as the mutual strict orthogonality between partitions is no longer true, the
projection onto R(AT ) cannot be expressed as a sum of orthogonal projections anymore,
i.e.

P = PR(AT ) 6=
p∑
i=1
PR(AT

i ).

Then, in the expression of the solution in (IV.13), one problem is that the pseudo inverse
A

+ is no longer decomposed as a sum. With the equality (IV.11), the Schur complement
S is still given by

S = Iq − CT (AAT )−1C,

where AAT is not block diagonal and thus S 6= Iq −
p∑
i=1

CTi (AiA
T
i )−1Ci.

Therefore, we can no longer compute the block W , nor the Schur S through a single
sum of projections as in ABCD, due to the lost orthogonality between partitions. As the
projection P = PR(AT ) involves the inverse of the normal equations AAT which is not
block diagonal, we will have to approximate W and S using an iterative scheme. In the
following sections, we propose two approaches for this iterative construction

1. in Section IV.3, we approximate the block W , and thus S, by an application of the
BC iterations on A applied on Y T . We then integrate the approximated block W
as an additional partition to solve (IV.12) with a global BC scheme on the total
enlarged system in (IV.12).

2. in Section IV.4, we seek a good preconditioner for S to apply directly its inverse
using a classical iterative scheme, e.g. preconditioned conjugate gradient (PCG)
iterations.

In the rest of this section, we concentrate on the convergence of BC on A. Considering
that W is computed exactly, the solution of (IV.12) is split as in (IV.13), and the block
Cimmino iterations are only applied on A, independently from W . We expect a fast linear
convergence since the relaxed orthogonality is true on a subrange of A corresponding
to the chosen coarser level, and hopefully this is enough to open the principal angles
between subspaces spanned by the partitions.

We consider again the set of large problems PL from Section IV.1.2. Figure IV.9
displays the convergence profile in terms of backward error for the BC method on the
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original system (IV.8) and on A with the same partitions, and considering a relaxed
augmentation made with the grid level 2 (level 5 is the finest) so as to minimise the extra
variables. The stopping criteria of the iterations is a backward error of 10−10. Without
augmentation, we observe a convergence characterised by long plateaus. On the opposite,
when the matrix is augmented using the grid level 2, the convergence appears to be
linear and fast. This means that the angles between partitions are quickly opened even
with information coming from a very coarse grid discretization. This also implies that
we can construct PR(AT ) applied to any vector by means of a fast converging iterative
method based on the sum of projectors onto the range of the partitions in A. In the case
of the diffusion problem, the number of iterations needed is 126 for an augmentation of
size 1339, i.e. 2% of the original system size. We also observe that without these extra
columns, the BC methods needs more than 2 000 iterations to converge which means
small angles between partitions.
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Figure IV.9 Convergence of the BC method applied (plain line, plus marks) on A (IV.8)
and (dashed line, round marks) on A augmented using the grid level 2 for the 3 PDE

problems in PLarge

In Figure IV.10, we display for the 3 small problems in the test set Psmall a represen-
tation of the solution obtained with the relaxed augmentation method on the domain
split in 2 parts, respectively A+

b corresponding to the augmented partitions, and W+f

for the closure equations. Each case is very different. For the diffusion problem, most of
the solution is contained in the part coming from the closure equations, and the part of
the solution coming from the augmented partitions does not act on the interfaces. As for
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the Helmholtz problem, it is the contrary. Most of the global solution is contained in A+
b,

while W+f seems to take care of underlying waves together with the crossroads between
partitions. Finally, A+

b for the convection-diffusion only acts on the boundary where the
wind enters the domain, and W+f then resolves the spiral in the rest of the domain. The
error of the global solution is then represented in Figure IV.11, and we notice that for the
convection-diffusion and Helmholtz problems, the largest part of the error (of the order
10−8) is centered around the interfaces. We are still missing the general interpretation
from these representations.

Of course, we expect that by going down into coarser levels for large scale problems,
the amount of available information is lower and there may be some trade-off between
the size of the augmentation and the convergence speed. The idea is to fix a desirable
grid size and a necessary amount of information for convergence. In the first experiments
(Figure IV.9), we have used the grid level 2 to check the robustness of the approach, and
we may expect even faster convergence with a finer grid level. Figure IV.12 displays the
resulting augmentation size as well as the number of iterations for convergence of BC
applied on A when varying the choice of the coarse grid level from the finest to coarsest
available. The 3 test problems are coming from the set Plarge and the iterations are
monitored with the same stopping criterion. While the size of the augmentation is divided
by 2 from one level to the next coarsened one, the number of iterations is also increased
by a factor of approximately 2. Through the choice of a more or less coarse grid for the
augmentation, we introduce a whole class of methods with linear convergence, standing in
the middle between at one extreme the ABCD method, with a pure orthogonality and con-
vergence in 1 iteration, and at the other extreme the BC method, with no augmentation
and a convergence often in plateaus. We call this new approach Coarse-ABCD (C-ABCD).

As our approach is very similar to a 2-level domain decomposition method, one
question is the influence of the number of subdomains on its convergence. In the domain
decomposition literature, we call an iterative scheme optimal if it is independent of
the number of subdomains. For the 3 problems in PLarge, we now vary the number
of divisions in each direction ndiv for the partitioning of the domains. The resulting
number of partitions is of ndiv2 for the square domain, and 3ndiv2 for the L-shape
domain. Figure IV.13 shows the evolution of the number of iterations for the convergence
of the block Cimmino iterations on A, and the augmentation size for ndiv = 2, . . . , 10. It
is interesting to see that when we augment the number of subdomains, the number of
iterations stays relatively stable at the price of a larger augmentation size in the case
of the diffusion and convection-diffusion problems. As for the Helmholtz problem, the
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Figure IV.10 Application of the augmentation from the relaxed augmentation method
for the problems in Psmall . Representation of the 2 solution parts, one from the

augmented partitions and the other from the closure equations..
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Figure IV.11 Error (in log10) from the application of the augmentation from the relaxed
augmentation method for the problems in Psmall .
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Figure IV.12 Number of iterations (plain lines, left y-axis) and size of the augmentation
(dashed lines, right y-axis) for the BC method applied on A, obtained using the different

coarse grid levels for the test set Plarge . The augmentation sizes for Helmholtz and
convection-diffusion completely overlap

number of iterations follows the same general trend but with peaks regularly appearing.

After handling the part of the solution which corresponds to A, remains the problem
of dealing with the additional constraints W . Considering the small diffusion problem
in Psmall , Figure IV.14 displays the spectrum of the Schur complement S as computed
with the pure augmentation from ABCD, and with the augmentation from C-ABCD
applied on the coarsest level. We observe that the spectrum of S for the 2 methods
is very similar. Relaxing the augmentation does not seem to make the conditioning of
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Figure IV.13 Number of iterations (plain lines, left y-axis), and augmentation size
(dashed lines, right y-axis) for the BC method applied on A, using different number of

partitions: 3ndiv2 for the Diffusion (IV.4), and ndiv2 for Helmholtz (IV.2) and
convection-diffusion problems (IV.3). The augmentation sizes for Helmholtz and

Convection-Diffusion completely overlap.

the resulting Schur complement worse (nor better unfortunately, but this is the ”law of
conservation of nastiness”).
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Psmall .
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IV.3 A block Cimmino approximation of the closure equa-
tions

Previously, we considered that the block of additional constraints W was computed
exactly, e.g. using a direct solver on the normal equations, and thus adds no numerical
effect on the convergence of the block Cimmino method. As previously stated, the
computation of W involves the normal equations (AAT )−1 = (AAT + CCT )−1 which
solution with a direct solver is not realistic.

1. Indeed, due to the loss of orthogonality between partitions, (AAT )−1 is not block
diagonal anymore, and as we have said before, the sum of projections for the
partitions Ai does not correspond to the projection on the range of AT .

2. So, to build W , and thus the Schur matrix S, we need to consider an iterative
approach. Doing so, we also need to investigate the numerical quality of the
approximation of W , and its impact on the global method.

3. Finally, we still have to figure out how to perform the solution with the Schur
matrix S, which can be ill-conditioned, though much smaller. This can be done
at the expense of building and factorising S, but it might also be computationally
more effective to consider iterative solutions of S.

IV.3.1 Construction of W

We can express W T as the following sum

W T = (Iq − P )Y T = Y T −A+
AY T .

Denoting Z = A
+
AY T , the projection of Y T on R(AT ), we may compute this through

the minimum norm solution of the underdetermined system with multiple right hand
sides

AZ = AY T ,

which can be obtained considering again the block Cimmino iterations.
In ABCD, the construction of S requires the computation of the projection A

+
Aek =

p∑
i=1

A
+
i Aiek for each canonical vector ek of Y T which is obtained with one sum of projectors

only. Due to the structure of the augmentation, in which Aiek 6= 0 only for a small subset
of the partitions, we have the opportunity to obtain the entries of S in an embarrassingly
parallel as detailed in [133].

The problem is that in C-ABCD, due to the loss of orthogonality between partitions,
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A
+
A 6=

p∑
i=1

A
+
i Ai, and thus all partitions are involved iteratively in the construction of

the whole W T . In order to make the best use of the BLAS3 kernels, we can decompose
Y T ∈ R m×q into blocks of columns Y T

k ∈ R m×qk , with qk a fixed block size. We then
apply the block Cimmino iterations on

AZk = AY T
k , (IV.14)

to obtain each part Zk ∈ R m×qk of Z ∈ R m×q. As we have seen, the convergence
for these iterations applied on A should be fast and linear, the issue is that we may
have to run the BC iterations on a lot of separate blocks, depending on the size of the
augmentation and how many blocks of qk there will be.

Depending on the stopping criteria used to stop the iterations, W will approximately
be orthogonal to A. In that case, we can no longer split the solution in 2 parts as in
(IV.13). Instead, we add the block W as a full-fledged partition for a global BC scheme
which computes the final solution of the augmented system (IV.12) as an outer iteration
(which hopefully requires very few iterations, as we expect near orthogonality). There
is a trade-off to find between setup cost and solution cost, when setting the stopping
criteria. At one extreme, the computation of W is very accurate. In this case, while its
computation is expensive, W is very close to be orthogonal to A and does not affect the
fast linear convergence (same behaviour as ABCD). At the other extreme, W is a crude
approximation, far from orthogonal to A. In that case, the computation is much cheaper,
but the convergence of the block Cimmino iterations can display plateaus again (same
behaviour as BC).

Following the theory from Section II.3, and assuming A is full rank, the solution of
the enlarged system (IV.12) is equivalent to the solution x∗ of the original system (IV.8)
as long as W is full rank. Z = A

+
AY T is approximated through an iterative scheme

with an arbitrary accuracy, and we need to keep the consistency of the system with a
right hand side f updated that fits with the computed value of Z. As f enforces the
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additional variables to 0, it is expressed as

f = W

[
x∗

0

]
= (Y − ZT )

[
x∗

0

]

=
[
0 Iq

] [x∗
0

]
− ZT

[
x∗

0

]

= −ZT
[
x∗

0

]
,

(IV.15)

and f can then be constructed together with Z in a single block-CG algorithm, as detailed
in Algorithm 11.

Algorithm 11 Stabilised Block Conjugate Gradient acceleration of the row-BC applied
to the simultaneous construction of the additional constraints W = A

+
AY T and right

hand side f for C-ABCD
1: Z(0) = 0, R(0) = HY T −HZ(0) = A

T
D
−1
AY T

2: f (0) = 0, r(0)
f = K −Hf (0) = A

T
D
−1
b

3: R
(0) = R(0)γ−1

0 such that R(0)T

R
(0) = I

4: r(0)
f = γ−T0 Y r

(0)
f

5: P
(0) = R

(0)
β−1

0 such that P (0)T

HP
(0) = I

6: p(0)
f = β−T0 r

(0)
f

7: λ0 = β−T0
8: for j = 0, 1, 2.. until convergence do

9: αj = λj(
0∏
i=j

γi)

10: Z(j+1) = Z(j) + P
(j)
αj

11: f (j+1) = f (j) − αTj p
(j)
f

12: R
(j+1) = (R(j) −HP (j)

λj)γ−1
j+1 such that (R(j+1))T R(j+1) = I

13: r
(j+1)
f = γ−Tj+1(r(j)

f − λTj P
(j)T

r
(0)
f )

14: δj = βjγ
T
j+1

15: P
(j+1) = (R(j+1) + P

(j)
δj)λTj such that P (j+1)T

HP
(j+1) = I

16: p
(j+1)
f = λj(r(j+1)

f + δTj p
(j)
f )

17: λj+1 = β−Tj
18: end for

This algorithm is the one developed for the minimum norm solution of underdeter-
mined systems, in which we have just added the updates for the desired right hand side
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f . In the algorithm, H = A
T
D
−1
A, with D = blkdiag(A1A

T
1 , . . . , ApA

T
p ), is the block

Cimmino iteration matrix Hrow expressed on the augmented matrix A. At each iteration
j, we update Z(j) and f (j) using R(j) and r

(j)
f , as well as the conjugate directions P (j)

and p(j)
f . In order to respect the property (IV.15), we prove that for all iterations j, there

exists Z̃(j) such that
Z(j) = A

T
Z̃(j)T

, and f (j) = −Z̃(j)b (IV.16)

Therefore, we have f (j) = Z(j)T
[
x∗

0

]
= Z̃(j)A

[
x∗

0

]
= Z̃(j)b, which gives us the appropri-

ate expression of f to maintain
[
x∗

0

]
as the solution of the enlarged system,

Proof For the sake of this proof, we additionally prove that for all iterations j, there
exists R̃(j) and P̃ (j) such that

R
(j) = A

T
R̃(j)T

, and r
(j)
f = R̃(j)b, (IV.17)

P
(j) = A

T
P̃ (j)T

, and p
(j)
f = P̃ (j)b. (IV.18)

We now prove the properties (IV.16), (IV.17) and (IV.18) recursively. At iteration 0, we
take f (0) = Z(0) = 0, thus property (IV.16) is given by Z̃(0) = 0. Also we have

R
(0) = R(0)γ−1

0 = A
T
D
−1
A(Y T − Z(0))γ−1

0 ,

r
(0)
f = γ−T0 Y r

(0)
f = γ−T0 Y A

T
D
−1(b−Af (0)).

As f (0) = Z(0) = 0, if we take R̃(0) = γ−T0 Y A
T
D
−1 then property (IV.17) is satisfied.

Using this result, we can write

P
(0) = R

(0)
β−1

0 = A
T
R̃(0)T

β−1
0 ,

p
(0)
f = β−T0 r

(0)
f = β−T0 R̃(0)b,

and property (IV.18) is satisfied for P̃ (0) = β−T0 R̃(0).

We now consider the 3 properties are satisfied at iteration j and prove them at
iteration j + 1. Considering first the residuals, from (IV.17) and since H = A

T
D
−1
A,

we have

R
(j+1) = (R(j) −HP (j)

λj)γ−1
j+1 = A

T (R̃(j)T

−D−1
AP

(j)
λj)γ−1

j+1,

r
(j+1)
f = γ−1

j+1(r(j)
f − λ

T
j P

(j)T

r
(0)
f ) = γ−1

j+1(R̃(j) − λTj P
(j)T

A
T
D
−1)b,

(IV.19)
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and we take R̃(j+1) = γ−1
j (R̃(j)−λTj P

(j)T

R̃(j)) to satisfy (IV.17). Similarly, using (IV.19)
and from (IV.18), we have

P
(j+1) = (R(j+1) + P

(j)
δj)λTj = A

T (R̃(j+1)T

+ P̃ (j)T

δj)λTj ,

p
(j+1)
f = λj(r(j+1)

f + δTj p
(j)
f ) = λj(R̃(j+1) + δTj P̃

(j))b,

and property (IV.18) is satisfied for P̃ (j+1) = λj(R̃(j+1) + δTj P̃
(j)). Finally, we can

conclude for property (IV.16) with

Z
(j+1) = Z(j) + P

(j)
αj = A

T (Z̃(j)T

+ P̃ (j)T

αj),

p
(j+1)
f = f (j) − αTj p

(j)
f = −(Z̃(j) + αTj P̃

(j))b,

Z̃(j+1) = Z̃(j) + αTj P̃
(j),

(IV.20)

which completes the proof.
In the following, we call BC-W the approximation of W and f using Algo. 11, to

distinguish it from the BC method which is used to compute the final solution. The
choice for the block-CG size, i.e. the number of columns in the blocks Yk, is open and
should be chosen depending on the characteristics of the target computer.

IV.3.2 Approximation of W and convergence of a global BC

In this section, we approximate W and f using the previously introduced algorithm with
a default threshold of ε = 10−10 on the backward error. Using the obtained approximation
of W as an additional partition, we apply the BC method on the resulting enlarged
system obtained for the set of large tests Plarge , and we observe its convergence behaviour
depending on several parameters. In the augmentation, we enforce orthogonality between
partitions in AP with the grid level 2 as coarse grid.

IV.3.2.a Block-CG size for the approximation of W

First, we vary the block-CG size s (i.e. the value of qk explained in (IV.14)) for the
approximation of W between 1 and 16 by powers of 2. Figure IV.15 presents for the 3
problems in Plarge the evolution of its, the average number of iterations for convergence
of a block Zk with a block size s, relative to it1, the average number of iterations with a
block size of 1. This evolution is represented by the ratio it1/its. With C-ABCD, that
implements the relaxed augmentation on the coarse grid, the convergence of the block-CG
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applied on A is close to linear, thus no plateau in the convergence is present and needs
to be reduced. In the case of the Helmholtz problem, this is confirmed by the ratio in
Figure IV.15, which is close to the block size itself meaning that using a block size s for
the block-CG iterations has the same behaviour as s times the convergence of a simple
CG. As a result, the benefit from an increased block-CG size is only expected from the
BLAS3 effect, i.e. a reduced execution time from more efficient matrix operations at each
iteration. In the case of the diffusion and convection-diffusion problems, the reduction of
iterations is respectively 1.25 and 2 times more efficient than the equivalent number of
CG, this shows that the convergence of the global BC in this case is not exactly linear
and has a little room for improvement.
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Block-CG size (Approx. W )
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Figure IV.15 Evolution of the average number of iterations to approximate a part of W
of size s relative to the average number of iterations with a block size of 1. The results

for Diffusion and Convection-Diffusion completely overlap.

As stated above, once the block W has been approximated, it is used as an additional
partition for the application of a global BC method on the augmented system. Table IV.3
displays the number of iterations for the convergence of this global BC, depending on the
block size used in BC-W. As expected, the number of iterations are not varying much
depending on the chosen block size. The variations are explained by little differences in
which approximations of W was obtained. Because here we do not compute W exactly,
the obtained number of iterations is not exactly equal to the results in Figure IV.12.
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Block size Diffusion Convection-Diffusion Helmholtz
1 206 112 49
4 204 112 58
8 195 112 55
16 180 112 59
32 183 112 59

Table IV.3 Evolution of the number of iterations for the convergence of the global BC
method applied on the system augmented on the coarse grid level 2, depending on the

block-CG size for BC-W.

IV.3.2.b Stopping criterion for the Block-CG approximation of W

The approximated block W depends on the stopping criterion we choose for BC-W.
Now, we approximate W with a varying stopping criterion on the backward error
ε ∈ {1 · 10−12, 1 · 10−10, 1 · 10−8, 1 · 10−6, 1 · 10−4}. Figure IV.16 presents the evolution of
the average number of iterations for the convergence of BC-W. Again, the Helmholtz
problem stands as a special case since the number of iterations for BC-W decreases
linearly with the value of epsilon. As for the two other problems, the iterations of both
BC-W and the global BC do not change for ε between 1 · 10−12 and 1 · 10−10. Then when
ε increases, W gets further away from being orthogonal to A, as its numerical quality
degrades, thus slowing down the iterations of the global BC method applied on the
enlarged system. Figure IV.17 shows the convergence profile of the global BC depending
on ε for the Helmholtz problem. With ε > 1 · 10−8, plateaus start to appear. A trade-off
must be found between a cheaper construction of W and a fast convergence of the global
BC. For the 3 test cases, it seems that an intermediate ε = 1 ·10−8 would be a reasonnable
choice, but this may also be relaxed when the problems are less ill-conditioned.

Table IV.4 displays the conditioning of the Schur complement matrix S in W . Another
effect of decreasing the accuracy of the approximation of W is a better conditioning of S.
In a very informal way, we call this the ”law of conservation of nastiness”, as accelerating
the global BC method is often done at the cost of a more expensive approximation of W ,
combined with a worse conditioning of S, and vice-versa.

In summary, the block-CG approximation of the closure equations W and the right
hand side f does not depend much on the choice of a good block size, except for a little im-
provement in cases where the convergence is not exactly linear like the convection-diffusion
and diffusion problems. Also, when setting the desired accuracy for the approximation
of W , a trade-off must be found between decreasing the cost of the BC-W iterations,
and having plateaus reappearing in the convergence profile of the global BC iterations.
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Figure IV.16 For the problems in Plarge , we show the evolution of (dashed line with left
y-axis) the average number of iterations for BC-W and (plain line with right y-axis) the
number of iterations for the global BC depending on the stopping criterion ε chosen for

the approximation of W .
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Figure IV.17 Convergence of BC applied on the large Helmholtz problem with a
threshold ε for BC-W varying between 10−12 and 10−4. The convergence for ε = 10−12,

ε = 10−10, and ε = 10−8 completely overlaps.

One aspect of the matrix W we haven’t mentioned before is that it is almost completely
dense once approximated with the BC-W algorithm. The construction of the block W
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ε Diffusion Convection-Diffusion Helmholtz
1.0 · 10−12 2.0 · 104 1.1 · 103 5.1 · 103

1.0 · 10−10 1.1 · 104 1.1 · 103 4.7 · 103

1.0 · 10−8 6.9 · 103 1.1 · 103 1.4 · 103

1.0 · 10−6 2.2 · 103 1.2 · 103 5.5 · 102

1.0 · 10−4 9.6 · 101 1.3 · 102 7.3 · 101

Table IV.4 Conditioning of S obtained with C-ABCD applied on the large problems in
the set Plarge , with varying ε threshold for BC-W between 10−12 and 10−4.

is computationally heavy because it amounts to applying sequentially a CG to each
canonical vector in Y . Due to its density, the factorisation of the projection system
corresponding to W using a direct solver is also an issue in terms of computational and
memory cost due to its high density.

We may compensate for the computational cost when solving a linear system with
multiple right hand sides, indeed W only needs to be computed and solved once. As for
the approximation of f , we need to update Z̃(j) from (IV.20) instead of f (j) and keep
it for later right hand sides. In that case, it may be worthy to approximate W with
a high accuracy so that it is orthogonal to A and only the application of BC on A is
necessary for each right hand side as in (IV.13). We propose in Appendix C.2 a sketch
for the parallelisation scheme of the ABCD-Solver corresponding to C-ABCD with the
construction of W .

However, the density of W can make it ineffective in practice, depending on the
number of rows in W (e.g. the size of the augmentation). We have therefore tried to
investigate other approaches, in which we may not need to build W explicitly, but instead
we can use S or its inverse in an iterative fashion through matrix-vector products.

IV.4 Implicit approximation of the Schur complement

The role of this last section is to present the latest tracks we have explored as an
opening for future research. In the first part of chapter IV, we have introduced a relaxed
augmentation method that enables a fast linear convergence of the BC method applied
on partitions augmented using a coarse grid representation of the problem. While an
explicit construction of the closure equations is costly in practice, as seen above, the
other possibility is to implicitly apply the inverse of the Schur complement through an
iterative procedure, with matrix-vector products based on S (without the need to build
S explicitly).
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IV.4.1 Iterative solution with S

Let’s start with some reminders. Once the original matrix has been augmented with the
relaxed augmentation technique applied on the coarse grid, we obtain the augmented
matrix A where the partitions Ai are not purely orthogonal. The exact additional
constraints are then obtained as

W =
[
B S

]
= Y (I − P ),

where Y =
[
0 Iq

]
, and P = PR(AT ) = A

+
A. The solution of the augmented system is

then in two parts, corresponding respectively to A and W , expressed as[
x∗

0

]
= A

+
b− (Iq − P )Y TS−1Y A

+
b,

where the vector x∗ is the solution of the original system. This expression is composed of
multiple steps

X A
+
b is obtained as the minimum-norm solution (m.n.s.) of Ax = b using the BC

method with linear convergence (because of the relaxed augmentation),
X Iq − P is a projection, and P = A

+
A can be applied to a vector v through the

m.n.s. of Ax = Av using BC again.
× S−1 is the problematic part first of all. The use of S−1 relies on the assumption

that S is still a good approximation of the normal equations of W , as WW T =
Y (I − P)2Y T , and if P is computed with a relatively good accuracy then

S = Y (Iq − P )Y T .

Additionally, since we do not want to construct W , we need to work iteratively using
matrix products with Y (I − P)Y T , which in itself implies an inner BC iteration
which realising the product with P .

Since S has been proven SPD, as long as A is full row rank, we propose to use a CG
algorithm to solve with S. However, the conditioning of S has been observed as possibly
ill-conditioned in IV.3.2.b. We should look for a good preconditioner M−1 ≈ S−1 so as
to avoid too many inner-outer steps, and consider a preconditioned CG on the equation

M−1Y (Iq − P )Y Tx = v.
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IV.4.2 Preconditioning S

Since we do not construct the matrix S explicitly, most classical preconditioning methods
cannot be applied directly, such as block-Jacobi, Gauss-Seidel or incomplete Cholesky
factorisation. We must look for a preconditioner based on the algebraic forms of S or S−1.
We present here our current research tracks. In Table IV.5, we give the conditioning of
the matrix S obtained with the augmentation based on the second finest grid level (the
conditioning of S worsens) for the 3 small problems in Psmall , as well as the conditioning
of the preconditioned matrix M−1 S, as computed in MATLAB for some choices of M
that we shall describe.

M−1 Prolongation κ(M−1S)
Diffusion Convection-diffusion Helmholtz

Iq × 5.2 · 1010 1.4 · 108 5.2 · 107

(Iq −
p∑
i=1

A
+
i Ai)−1 × 3.4 · 1013 1.3 · 106 1.8 · 105

Iq + CTP (P TAATP )−1P TC
P 1.9 · 109 9.8 · 105 3.8 · 103

FFR(P ) 4.4 · 1010 5.8 · 105 1.7 · 105

Table IV.5 Conditioning of the Schur complement before and after preconditioning with
various methods.

Sum of projections
A naive idea is to consider that the normal equations AAT are not too far from being
block diagonal. This would mean that the augmentation technique applied on the coarse
grid gives augmented partitions close to orthogonal. We may then consider only the
block diagonal elements AiA

T
i of the normal equations and, in the same way as S is

constructed in ABCD in an embarrassingly parallel way, we construct M as the restricted
sum of projections

M = Iq − Y
( p∑
i=1
PR(Ai)

)
Y T = Iq −

p∑
i=1

CTi (AiA
T
i )−1Ci,

where Ci, i = 1, . . . , p, are the blocks of C corresponding to the partitions. As observed
in Table IV.5, this preconditioner actually helps a little to improve the conditioning of
S for the convection-diffusion and Helmholtz problems, but the conditioning worsens
for the diffusion. In the previous section, we have observed that the construction of W
requires several iterations of the BC method to obtain a satisfactory accuracy. It is then
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natural that the preconditioner cannot be constructed from a single sum of projections.

Coarse grid approximation of S−1

We have looked at the previous approach because it gives an approximation for S cheap
to construct and inverse. Another original angle of attack to the problem is to use the
algebraic form for the inverse of S given by

S−1 = Iq + CT (AAT )−1C.

While S depends on the normal equations of the augmented partitions, S−1 depends on
the normal equations of the original system. In the context of this chapter, a natural idea
is to use the hierarchy of grids we have at hand, to build the augmentation block. Basically,
we can choose a level of grid, e.g. the one used to build the relaxed augmentation, and
exploit the prolongation operator between the finest grid and this chosen level. Then, we
can approximate the inverse of the normal equations with

(AAT )−1 ≈ P (P TAATP )−1P ,

within the expression for S−1 above. In Table IV.5, we display the conditioning of the
preconditioned matrix, with this setting, using coarse grid level 1 i.e. the second finest
level of grid. We observe an improvement of the conditioning in all cases. In practice, we
would apply implicitly (P TAATP )−1 on a vector v through the solution of the equation
(P TAATP )−1x = v, e.g. using a direct solver. Choosing a coarser grid level means a
smaller column dimension for P and a less expensive application of the approximated
normal equations, but also a potentially less accurate approximation.

Splitting the prolongation operator
While the previous 2-level preconditioner improves the conditioning of S a little, it is clear
that the approximation of the inverse of the normal equations applied on C is missing
some information. The columns of C express the decoupling between subdomains through
the augmentation technique, and the previous approximation may lose this information
because the coarse grid does not incorporate the corresponding splitting. Indeed, on the
coarse grid, the interface itself is swallowed in the middle of larger finite elements.

Here, we attempt to improve the prolongation operator by splitting the columns of P
following the augmentation technique applied on the matrix A to get Psplit. Using this
split prolongation operator, we compute the same preconditioner as previously. Again, the
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conditioning of S is almost untouched, except a small fraction for the convection-diffusion
problem. All-in-all, we did not yet succeed in finding an appropriate preconditioner to
fast convergence for the PCG method in all our test cases.

Perspective and concluding remarks

We have introduced a method based on a variant of the ABCD method where the
augmentation is done on a coarse level of grid. In this approach, it is then possible to
control the number of additional variables through the choice of a more or less coarse
level. Due to these additional variables and the introduction of the corresponding closure
equations, it possible to obtain a linear convergence of the BC method applied on the
augmented matrix A.

The closure equations W =
[
B S

]
are based on a projection on the nullspace of A

which, contrary to the ABCD method, cannot be obtained with a single projection on the
augmented partitions Ai. It is instead obtained with a convergence of the BC method on
A applied on a set of canonical vectors, with a simultaneous update of the right hand
side f to keep the system consistency. Obtained using this method, the construction of
each vector in W , taken separately, is easy since it amounts to applying a fast linear
convergence of the BC method using the augmented partitions. However, a few hundreds
of such convergence are required and the obtained W is very dense.

Future works:
• A possible improvement for BC-W is to consider that, since the convergence of

BC on A is linear for all test problems, the distribution of the eigenvalues of A
is not important, then the polynomial we apply to a random vector inside the
block-CG can be reused for any other vectors. This means that in Algo. 11, we can
save the small matrices γ and β at every iterations for the block-CG applied on a
random vector, to reconstruct the full polynomial applied on all canonical vectors
for the construction of W . At each iteration, a sum of projection still needs to be
computed to apply H but the cost from the stabilisation process vanishes. This
approach is only an idea at the moment and would need to be demonstrated, then
proven in the general case for a matrix showing linear convergence.

• Also, still based on the fact that the BC method applied on A is linear, we can
consider an efficient construction of W using Chebyshev iterations on the system

Hx = K, (IV.21)

where H is the iteration matrix of BC based on A, and K = A
T
D
−1
Y T . The
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Chebyshev iterations require an estimation of the smallest and largest eigenvalues
[75]. We know from [69] that the convergence rate on the error for the CG algorithm
is bounded with the relation

∥∥∥e(k)
∥∥∥
H
≤ 2

(√
κ(H)− 1√
κ(H) + 1

)k ∥∥∥e(0)
∥∥∥
H
, (IV.22)

with κ(H) = λmax(H)/λmin(H), and we also have that ρ(H) ≤ p as a sum of p
projections. Through the application of a few iterations of the BC method on A,
a stabilised block-CG applied on (IV.21), we obtain the fixed convergence rate
ρ =

∥∥∥e(k)
∥∥∥
H
/
∥∥∥e(0)

∥∥∥
H

of the linear convergence. Then, we can get an upper bound
for λmin from (IV.22).

• Remains the problem of the density of W , and an idea is to sparsify W with a
carefully constructed filtering of its values based on the values on the diagonal of
the Schur complement S. Indeed, the values on the diagonal of S can be small,
which explains its relatively ill-conditioning. Also, S is SPD and thus diagonal
dominant so it gives an upper bound of the sum of the values on the corresponding
rows and columns from which we could base a symmetric relative filtering of the
values in S. Additionally, in Section II.3.1.b, it was observed that BBT = S(S+ Iq)
and thus Sii(Sii − 1) = Bi:B

T
i: , then we consider filtering the values in the rows

of B relatively to the corresponding diagonal element in S. Using an arbitrary
filtering on the values of W could otherwise drop crucial information in the system,
since we may then lose the information of the small eigenvalues in S. With this
filtering, while we keep the information in S, we may lose the consistency of the
system. Another filtering approach, which would then guaranty the consistency of
the system, would be to drop values in the matrix Z̃ introduced in (IV.16).

Using the computed approximation of W as an additional partition, we obtain the
solution of the complete augmented system with the convergence of a global BC method.
The projection on W at each iteration may however be expensive due to its high density.

Future work:

• While we are using the block Cimmino approach, i.e. a method based on a sum of
projections, we could use the partition W based on the block Kaczmarz approach
[108]. From a current iterate x(k), we would apply the update

x
(k+1)
A = A

+
x(k)

x(k+1) = W+x
(k+1)
A ,
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where A+ is only approximated with several iterations of the BC method applied on
A with linear convergence. W was constructed to have a very near orthogonality with
A, and the block Kaczmarz method is known to converge faster than block Cimmino
in this case [108]. By choosing the number of iterations for the approximation of
A

+, we reduce the number of times we need to use W and thus the associated
computational difficulty.

• While we can compute the projection of W using a projection system similarly to
the projections on R(Ai), it is possible to decrease the complexity of this projection.
The idea is to consider that W was approximated with an accuracy sufficient such
that the contained sub-block S is a good approximation of the normal equations of
W . The projection can then be computed as

W+ = W TS−1,

which implies ”only” the inversion of the smaller matrix S. In the end, we could
completely remove the block W from this expression, viz.

W+ = (I − P )Y TS−1.

where P is computed with another application of the BC method on A. Of course
we then suppose that the projection is computed with a high accuracy and that
the inverse of S corresponds to the normal equations of the implictely constructed
partition W , which remains to be verified in practice.

From the previous statements and using (IV.13), we can then consider approximating
S and the projection P iteratively with enough accuracy such that we directly get the
solution in 3 steps. First the application of a BC convergence on A applied on b, then the
iterative application of the inverse of S on the obtained result, and finally the projection
with yet another application of the BC method on A to apply P . We propose to apply
the inverse of S using a Krylov method which requires the implicit application of S using
again the projections P . A good preconditioner is necessary to get a fast convergence
from this Krylov solver. The construction of this preconditioner is still an ongoing work.

The precise interpretation of the C-ABCD approach, with respect to the solved PDE,
is not fully understood yet. In particular, the way the information is distributed between
the augmented partitions and the closure equations, depends highly on the problem,
see e.g. Figure IV.10 and Figure IV.11. This distribution of information, even though
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linked to a fine and coarse grids through the augmentation, does not seem to display a
behaviour similar to multigrid methods where the fine grid serve to smooth the error
components while the coarse grid correct this smooth error. Here, both A and W seem
to work on smooth and oscillatory components. In order to use this different behaviour
from the methods we introduced (BC, C-ABCD, and ABCD), we may consider building a
classical multigrid framework where the BC method is used as a type of smoother on the
finer grid levels and the ABCD method is applied for the coarsest grid level, considering
the problem on this level is small enough.





Conclusion and perspectives

A mathematician is a device for
turning coffee into theorems.

Alfréd Rényi, often also attributed to
Paul Erdõs

In this manuscript, we considered the solution of large sparse linear systems with the
use of hybrid direct-iterative methods with two main research axis.

Parallel multigrid at large scale

In a first axis, we study the parallel efficiency of multigrid methods at very large scale.
In Chapter I, we started with the introduction of the different aspects underlying the
world of linear solvers for scientific computing as well as the various PDE problems
considered in this thesis. We detailed the two main classes of hybrid solvers, namely
the domain decomposition methods (DDM) and the multigrid methods (MG). On large
supercomputers, one significant limit for the parallel efficiency of MG schemes is the
computation of the solution on the coarse grid, where a standard Krylov solver is applied.
We address in the Chapter I the 2 reasons for this limitation

• First, when the linear problem is complex, e.g. with jumping coefficients, iterative
solvers often converge slowly. The use of a direct solver on the coarse grid is
then ideal since it has a robust behaviour, and the underlying factorisation can be
computed once and reused cheaply during each MG cycle, for problems where the
matrix stays unchanged. We chose to use the sparse direct solver MUMPS, known
for its good parallel behaviour, which offers the possibility to approximate the
factorisation through the use of block-low rank approximation and single precision
arithmetic.
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• Secondly, the limited granularity of the coarse grid problem makes communication
dominant compared to computation when solved with a high number of processes.
We proposed 2 agglomeration techniques in order to reduce the execution by solving
the coarse grid problem with fewer processes. The Superman agglomeration in
particular adds a degree of parallelism as the factorisation of the direct solver is
performed at the same time as the factorisation of the direct solver.

We studied the solution of a saddle-point problem, with up to 1011 unknowns using the
multigrid Hierarchical Hybrid Grids framework (HHG) with up to 43 000 cores. With the
combination of the approximate direct solver and the Superman agglomeration applied
on the coarse grid, we demonstrated an overall improvement of the parallel efficiency by
9% point. This is an essential improvement for extreme scale simulation using multigrid.

The ABCD-Solver

We then explored a second axis with the study of hybrid solvers for unsymmetric square
and rectangular systems, based on the row projection methods. We first introduced the
principle of these methods which, based a partitioning of the matrix into blocks, construct
an approximation of the solution iteratively through projections on these blocks. We
then focused on the block Cimmino scheme, which has a good potential for parallelism
thanks to the independence between the projections at each iteration. In the Chapter II,
we introduced two methods based on the block Cimmino iterations with their extension
to the minimum-norm solution of underdetermined systems and least-square problems,
and a detailed analysis on their behaviour.

The block Cimmino iterations can be proven to be a type of domain decomposition
method, namely an additive Schwartz method with minimal overlap, as they correspond
to applying the block Jacobi iterations on the normal equations. The convergence of
the block Cimmino iterations is however known to be slow, often with plateaus in the
convergence due to clusters of small eigenvalues in the iteration matrix spectrum. In
order to overcome these convergence issues, a stabilised block-CG acceleration of the
block Cimmino iterations (BC) was studied with a partitioning of the matrix into blocks
of rows. Through a good choice of the block size, the block-CG algorithm allows to
reduce partly the plateaus in the convergence of the block Cimmino iterations, and
exploit efficient matrix operations with BLAS3 kernels. The projections required at each
iteration are performed using a direct solver applied on an augmented system built from
the partition. This combination of a direct solver applied for the independent projections
on subdomains inside a global iterative scheme is what makes this method hybrid.
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Despite the block-CG acceleration, the convergence of this solver stays dependent on
the angles between the subspaces spanned by the partitions and thus depends on the
problem. An alternative was proposed in which the system is enlarged with additional
variables and constraints to enforce the mutual orthogonality between partitions. Applied
on this enlarged system, the block Cimmino iterations are guaranteed to converge in one
iteration. We obtain a pseudo-direct approach called the Augmented Block Cimmino
method (ABCD). This method requires the embarrassingly parallel construction and the
solution of a relatively smaller, but denser, system S. We also showed a link to DDM, as
the ABCD method decouples completely the subdomains with the additional variables,
and the information from the interconnection between these subdomains is condensed in
the matrix S, a Schur complement. The issue of this method is the solution of S which
may require prohibitive amounts of memory when solved with a direct solver due to its
size and density.

In the Chapter II, the main originality of the approach is the extension of the existing
BC and ABCD methods, to the minimum-norm solution of underdetermined systems
and to the solution of least-squares problems. The overdetermined case is based on a
partitioning of the matrix into blocks of columns. The main points for these extensions are
a block-CG acceleration in the case of a column partitioning, and the proof for rectangular
problems that the solution of the augmented system in the ABCD method corresponds to
the solution of the original system. In the underdetermined case, we showed in particular
that the solution obtained with the ABCD method is the minimum-norm solution in
addition to respecting Ax = b. The number of methods capable of solving rectangular
systems is limited, and thus this is a positive contribution for scientific computing. The
possibility to partition the matrix either in blocks of rows or in blocks of columns gives
an additional choice to solve unsymmetric square systems, and this can greatly affect the
behaviour of the BC and ABCD methods.

In the first part of Chapter III, we studied the impact of preprocessing techniques
applied on the original matrix. Improving the scaling factors of the original matrix can
have a great impact on the subsequent Schur complement in the case of square matrices.
Also, we detail several choices for the partitioning technique, based on graph-partitioning
method. After applying the BC and ABCD methods on a very large number of matrices,
we show that the GRIP partitioner introduced in [126] is more likely to accelerate BC,
while the partitioner PaToH generally gives the smallest augmentation size in the ABCD
method. Then, we introduce a new augmentation technique in order to further reduce
the size of the Schur complement in the case of highly interconnected partitions. On a



174 Multigrid-based ABCD

very large number of matrices (including rectangular ones), we show that the size of the
Schur complement in the ABCD method stays in acceptable ranges most of the time,
and thus ABCD is widely applicable.

In the second part of Chapter III, we introduce the parallel implementation of the iter-
ative and the augmented method inside the ABCD-Solver. Executed with MPI processes
and OpenMP threads, the solver uses a hybrid parallelisation scheme. Several levels of
parallelism are managed: the independence between projections, the parallelisation of
the direct solver to compute the projections, and the multithreaded underlying dense
kernels. After partitioning the matrix, one or more partitions are given to a process,
called master. At each iteration, the master computes the projections corresponding
to its local partitions, and communication is performed between masters to obtain the
global sum of these projections. The distribution of partitions in groups must balance
the average workload, induced by the computation of projections, over all processes. For
the BC method, we introduce a distribution of partitions which additionally decrease
the amount of communications between masters. This distribution decreases the overall
execution time for highly interconnected systems where communication is dominating.
After the partitions have been distributed, processes with no partitions can be assigned
to the masters to parallelise the computation of projections. We introduce a technique
which spreads the masters explicitly on the computing architecture, while putting the
workers from the same master close to each other. Through decreased, concurrent memory
accesses from masters, the overall computation time is then decreased for both the BC
and the ABCD method. In the case of the ABCD method, we also show that solving the
Schur complement with too many processes can slow the computation. Indeed, the cases
where the ABCD method is efficient are cases where the Schur complement is small, then
the direct solver used to get its solution cannot scale. From these results, we decide to
use only the masters to solve the Schur complement.

Using the introduced scaling technique, partitioning and augmentation technique, as
well as the introduced methods to improve the execution time of our implementation the
BC and ABCD methods, we applied our approaches to a very wide range of matrices
from the SuiteSparse Matrix Collection. The BC and ABCD methods are then compared
to the direct solvers MUMPS, for square matrices, and QR-MUMPS, for rectangular
matrices. Both direct solvers are generally faster than our approach, with only 17%
of the matrices where BC or ABCD is faster. However, the ABCD-Solver generally
has the advantage in terms of memory consumption. From a detailed comparison with
QR-MUMPS, we see that the difference in behaviour highly depends on the matrices.
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Cases where the ABCD method will be best are cases where the Schur complement stays
relatively small and sparse, e.g. dense rows or columns can give very large augmentations.
As for the BC method, it stays a good choice whenever memory is decisive.

For the solution of discretized PDE problems, we finally propose in Chapter IV to
apply the augmentation technique on a coarser level of grid. The goal was to open the
principal angles between the subspaces spanned by the partitions augmented with this
approach, compared to the angles between the original partitions. With such opened
angles, the BC method applied on the augmented partition is shown to have a fast linear
convergence even with a very coarse grid, on three types of 2D problems, namely an
heterogeneous diffusion, an Helmholtz, and a convection-diffusion problems. Through a
choice of a coarser level, the size of the augmentation decreases at the same rate as the
number of iterations increases. And the contrary is observed with a choice of a finer grid.
For the simultaneous construction of the closure equations, and corresponding right hand
side, we then propose a block-CG algorithm based on the application of the BC method,
with the partitions augmented using a coarse level, applied on a set of canonical vectors.
Even though the convergence of the BC method for each separate vector is linear and
fast, a few hundred must be computed and the obtained closure equations are dense.
Using these approximated closure equations in a global BC method, we then obtain the
final solution with a linear convergence depending on the angles between A and W , thus
depending on the accuracy of W . The issue issue is that, due to the high density of W ,
computing the corresponding projection can be expensive. We then proposed possible
research tracks in order to solve the latter problem.

Overall, this approach, called the C-ABCD method, allows a fast linear convergence
of BC applied on the augmented partitions. Even though finding an efficient solution
for the projection on the closure equations is still an open question, this approach is
a positive evolution for the block Cimmino method. In [68], the authors proposed to
combine the CG acceleration with Chebyshev filtering to target directly the small clusters
of eigenvalues in the iteration matrix of block Cimmino, whose eigenvalues are clustered
around 1, and small clusters of eigenvalues remain at the extreme of the spectrum. While
the authors showed that this approach can be beneficial for the BC method, the number
of small eigenvalues that are improved, and thus the acceleration of convergence, could
not be explicitly controlled. Then, the ABCD method was introduced in [47], and while
the convergence is obtained in 1 single iteration, the size of the augmentation is dependent
on the problem and the partitioning. With the C-ABCD approach, we have a way to
encourage fast linear convergence for the BC method with a number of added variables
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that is explicitly controlled, and this is big step forward for the block Cimmino methods.

Perspectives and future work

The methods proposed in this thesis opened the way for several future research tracks.
In particular the relaxed augmentation method for which a lot of possible evolutions
were given in Chapter IV. The search of a good preconditioner for the Schur complement
in C-ABCD is a long-term perspective. In the context of PDE problems, using the
properties of a specific problem and discretisation method would allow to get a precise
understanding of the relaxed augmentation in physical terms. Then, e.g. using algebraic
methods [132], other specific properties could be introduced such as the approximation
property [73]. Throughout this thesis, we have established the interpretation of the BC
method as iterative domain decomposition methods, and the ABCD method as a Schur
complement method. It is then fairly logical to assume that an interpretation of the
C-ABCD approach is possible in terms of a 2-level domain decomposition method, or at
least some links could be made with known methods such as BDDC or FETI-DP.
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Appendix A
On numerical solution of full rank linear systems

A.1 Block Cimmino as a Domain Decomposition Method

Let’s first remind the definition of the damped block-Jacobi algorithm. We consider the
system

Ky = b.

The matrix K : m×m here corresponds to the normal equations K = AAT . This
matrix is partitioned in blocks of size corresponding to the partitions of A, i.e. the row
indices M = {1, . . . ,m} are partitioned in disjoint sets of indices Mi ⊂M, i = 1, . . . , p.
For example if we consider 2 partitions, the system has the following block form(

K11 K12

K21 K22

)(
y1

y2

)
=
(
b1

b2

)

where Kij = AiA
T
j .

We define D as the block-diagonal of K with diagonal blocks Di = Kii = AiA
T
i , the

block-Jacobi algorithm then consists of the iteration

y
(k+1)
Jacobi = y(k+1) = y(k) +D−1(b−Ky(k)). (A.1)

And the damped block-Jacobi iteration is

y(k+1) = (1− ω)y(k) + ωy
(k+1)
Jacobi

= (1− ω)y(k) + ω(y(k) +D−1(b−Ky(k))
= y(k) + ωD−1r(k) with r(k) = b−Ky(k).

Considering the iterates x(k) = AT y(k), we recognise an iteration of the BC algorithm.
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To get a more compact form of this iteration, we introduce the restriction operators
Ri : mi ×m from M to Mi (

0 . . . 0 Imi 0 . . . 0
)
,

as well as their transpose which are extension operators fromMi toM with i ∈ {1, . . . , p}.
We then have the equalities

Kii = RiKR
T
i and RTi K

−1
ii Ri =



0
. . .

K−1
ii

. . .
0


.

Using these definitions, we can rewrite (A.1) as

y(k+1) = y(k) + ωD−1r(k)

= y(k) + ω


K−1

11
. . .

K−1
pp

 r(k)

= y(k) + ω(
p∑
i=1

RTi K
−1
ii Ri)r(k)

= y(k) + ω(
p∑
i=1

RTi (RiKRTi )−1Ri)r(k)

= y(k) + ωM−1
ASMr

(k).

We recognise in M−1
ASM the abstract form of a damped additive Schwartz method

iteration matrix, applied on the normal equations system, and to which the block-Jacobi
method is equivalent. See section 1.2 in [40] for a more detailed proof of this equivalence.
This interpretation gives a wider interpretation on the solution of the system with the
block Cimmino iterations. Also, this naturally points to the solution of discretised PDEs,
together with domain decomposition. As a matter of fact, the partitioning of the matrix
can be performed using the geometry of the PDE problem, with the usual purpose of
DDM to balance the workload inside partitions – subdomains – while minimising the
links between them – interfaces.
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A.2 Impact of the block size for the accelerated block Cim-
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A.3 Handling unsymmetric square matrices with the ABCD-
Solver

The choice of row or column partitioning in the case of unsymmetric square matrices is
completely problem dependent. Here, we apply the iterative and augmented methods
on all square unsymmetric matrices from the SuiteSparse Matrix Collection with more
than 1 000 rows and columns. After removing the matrices for which the ABCD-Solver
could not finish, either because the system was ultimately rank deficient or because of
too high memory requirements, around 700 matrices were kept. Additionally, matrices
from a same family were merged, e.g. adder dcop 01 to adder dcop 48, and the mean
value taken for iterations and augmentation sizes. In the end, 158 and 238 classes of
problems are considered respectively for BC and ABCD. The goal of this study is to get
a qualitative evaluation of how much does the choice on partitioning orientation favours
BC or ABCD. The partitioner used is GRIP [126] for BC, and PaToH [32] for ABCD,
see Section III.1.2 for more details. We use for BC a block size of 4, and for ABCD the
technique from [47] giving smallest augmentation for each matrix.

In Figure A.1, the x-axis gives the relative difference in number of iterations, and
the y-axis gives the relative difference in augmentation size between column and row
partitioning. A positive value means that the row partitioning gave a smaller value for
one or the other measure. The first observation is that some matrices only converged
using a column partitioning, thus the cluster on the right of the figure. Additionally,
the points are slightly shifted towards the bottom, giving a slight advantage for the row
partitioning when using ABCD. Statistically, these results are confirmed when counting
the case where one or the other partitioning is best for each approach. This would
tend to say that a row partitioning is better for the iterative BC method and a column
partitioning is better for the pseudo-direct ABCD method.
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Figure A.1 Relative difference between row and column partitioning for (x-axis) the
number of iterations, and (y-axis) the size of the augmentation. These results are

obtained for 158 and 238 classes of problems, resp. for BC and ABCD, from matrices
extracted from the SuiteSparse Matrix Collection.





Appendix B
Parallel implementation

B.1 Preprocessing

B.1.1 PaToH vs GRIP partitioner

The choice of the partitioning between GRIP and PaToH is also problem dependent. Here,
we apply the iterative and augmented methods on all matrices (square or rectangular)
from the SuiteSparse Matrix Collection with more than 1 000 rows and columns. After
removing the matrices for which the ABCD-Solver could not finish, either because
the system was ultimately rank deficient or because of too high memory requirements,
around 1000 matrices were kept. Additionally, matrices from a same family were merged,
e.g. adder dcop 01 to adder dcop 48, and the mean value taken for iterations and
augmentation sizes. In the end, 361 and 329 classes of problems are considered respectively
for BC and ABCD. The goal of this study is to get a qualitative evaluation of how much
does the choice on partitioning GRIP among and PaToH favours BC or ABCD. We
use for BC a block size of 4, and for ABCD the technique from [47] giving smallest
augmentation for each matrix.

Figures B.1 shows the results for both BC and ABCD applied on each class problems.
In x-axis, the difference in number of iterations for BC between the use of GRIP and the
use of PaToH, scaled by the mean value. In y-axis, the difference in augmentation size
for ABCD between the use of GRIP and the use of PaToH, scaled by the mean value.
A positive value shows a better result from the use of PaToH, i.e. a smaller number of
iteration, or augmentation size.

We observe that most green en red points are placed in the upper left part of the
figure. This means that the GRIP partitioner has the advantage in terms of iterations
and PaToH in terms of augmentation size. Only the underdetermined case is less clear,
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Figure B.1 Relative difference between the GRIP and the PaToH partitioners in terms of
(x-axis) iterations and (y-axis) total time in seconds for the block Cimmino iterative
method applied on 325 classes of problems from the SuiteSparse Matrix Collection.

Positive values show a smaller number of iterations (resp. smaller execution time) when
using the PaToH partitioner.
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A FF R(A) FCij (A)

Figure B.2 Two matrices with respectively dense rows and dense columns, and
partitioned in 3 blocks of rows. The corresponding augmentation blocks obtained with

FFR and FCij are displayed.

but looking at the actual results the conclusion is still the same.

B.1.2 Matrix structure and augmentations FCij and FFR

The choice of one or the other technique is entirely dependent on the structure of the
matrix. We distinguish the 2 extreme cases of a matrix with dense rows and a matrix
with dense columns. Both cases are illustrated in Figure B.2 with the corresponding
augmentations obtained with both methods. In the presence of dense rows

1. the size of the interconnection blocks is large,
2. the normal equations AiATj will not fill-in,
3. the number of interconnected partitions should be small as such rows will tend to

be grouped.
Due to all these reasons, after filtering zero-rows/columns from the normal equations,
the size of the augmentation given by FCij stays small compared to FFR(A). On the
contrary, with dense columns

1. the size of the interconnection blocks is small,
2. the normal equations AiATj will completely fill-in,
3. the number of interconnected partitions is large.

In this case, the lower number of duplications with respect to the number of intercon-
nected partitions should make the augmentation from FFR(A) smaller. Of course, these
cases are caricature. The reality stands in the middle and both approaches can give
similar results. Our goal here was to extract a rule of thumb based on structures that
can be typical of a type of problem, either square, underdetermined or overdetermined.
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We apply the two augmentation techniques on the test matrices bayer01, deltaX and
sctap1-2r and give the results in Table B.2, together with the sparse structure of the 3
matrices in Figure B.3. sctap1-2r is the typical matrix displaying a dense column where
FCij (A) is large and dense. As for deltaX, with a mixture of dense rows and columns,
and bayer01, with diagonal sparse features, both approaches naturally give similar results.
The choice of augmentation is then guided on the one hand by the resulting conditioning
of S, where FCij tends to be worse as it relies on normal equations, and on the execution
time of the solver which is heavily dependent on the size and density of S. In conclusion
the augmentation method applied is problem dependent.

Matrix m (×106) n (×106) elts per row #Parts Problem
deltaX 0.07 0.02 3.61 8 Counter Example

sctap1-2r 0.03 0.06 6.46 8 Linear Programming
bayer01 0.06 0.06 4.76 8 Chemical Process

Table B.1 Characteristics of the test matrices. n: the order of the matrix, nnz: the
number of nonzero values in the matrix.

Matrix Aug. S Total (s)
m elts per row κ(S)

sctap1-2r Cij 30339 7585.75 1.08 · 109 248.30
FR 238 461.50 3.36 · 106 2.59

deltaX Cij 10389 2642.08 2.38 · 1015 30.25
FR 10703 2701.5 8.82 · 1015 30.54

bayer01 Cij 327 92.66 1.47 · 108 2.83
FR 257 69.33 1.88 · 107 2.54

Table B.2 Application of ABCD with the augmentation methods FCij and FFR. The
size and number of elements per row of the matrix S are given as well as its condition

number, and the sequential execution time to compute the solution.
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bayer01 deltaX
sctap1-2r

Figure B.3 Sparse structure of the test matrices.
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B.2 Architecture aware placement of masters and workers

Here, we give the architecture aware algorithms for the placement of masters, Algo. 12,
and the placement of workers, Algo. 13.

Algorithm 12 Placement of masters
Input: nb masters
Input: map containing for each node the rank of its processes. The nodes are numbered

in descending order of number of processes
Output: ptype: the type of each process (0 for master, 1 for worker)

1: master = 1, node = 1, direction = 1
2: ptype(proc) = 1, ∀proc
3: while master ≤ nb masters do
4: if ∃proc ∈ map(node) not assigned then
5: ptype(proc) = 0
6: master + +
7: else
8: break
9: end if

10: if First node then
11: direction+ +
12: else if Last node then
13: direction−−
14: end if
15: node = node+ direction
16: end while
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Algorithm 13 Placement of workers
Input: nb procs, nb masters
Input: map: containing for each node the rank of its unassigned processes
Input: numworkers: number of workers required by each master. The masters are

ordered in descending order of number of workers.
Input: M node: the node of each master
Output: workers: the workers of each master

1: workers[master] = {}, ∀master
2: nonFullNode = 0
3: for master = 1..nb masters do
4: node = M node[master]
5: while numworkers[master] > 0 do
6: if node is fully assigned then
7: Find next non-empty node fully assigned
8: end if
9: assigned proc ∈ map[node] to workers[master]

10: numworkers[master]−−
11: end while
12: end for





Appendix C
Relaxed augmented block Cimmino method inspired from
multigrid

Multigrid-inspired relaxed ABCD]Solution of full rank systems

C.1 Overdetermined augmentation as a multigrid scheme

In this section, we are augmenting the original system Ax = b with additional variables
corresponding to a restriction of the full rank operator A. We can solve the overdetermined
augmented system (

A

W

)
x =

(
A

P TA

)
x =

(
b

P T b

)
(C.1)

using the row partitioned block Cimmino since A is full rank and the system stays
consistent.

We remind that implictely, the block Cimmino method get the solution in the two
steps

AAT y = b, (C.2)
x = AT y, (C.3)

with y an intermediary variable, solution of the normal equations. We can build the simple
2-grid cycle in Algo. 14, with no post-smoothing, to solve the normal equations (C.2). In
this algorithm, P and R are the prolongation an restriction operators. Also, Smooth is
the application of a smoother which we will be specified below, and Ac = RAATP is the
Galerkin operator.

Additionally, from (C.3), we can rewrite Algo. 14 w.r.t. x(k) by following the steps
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Algorithm 14 2MG: 2-levels Multigrid algorithm where ”Smooth” is the application of
any smoother.
Input: initial guess y(0), number of cycles µ
Output: solution y

1: for k in 1..µ do
2: y(k+1) = Smooth(AAT , y(k), b)
3: r(k+1) = R(b−AAT y(k))
4: y(k+1) = y(k) + PA−1

c r(k+1)

5: end for

• use the restriction operator R = P T ,
• smooth on x(k) instead of y(k), since we often can consider that

(
Smooth(AAT , y(k), b)⇐⇒ Smooth(A,AT y(k), b)

)
,

e.g. for the block Kaczmarz smoother,
• Keep the coarse grid correction using the normal equations, as done for y(k+1), and

get the next iterate with x(k+1) = AT y(k+1). We obtain

x(k+1) = AT y(k+1)

= AT y(k) +ATPA−1
c P T (b−AAT y(k)

= x(k) +ATP (P TAATP )−1P T (b−Ax(k))
= x+ (P TA)+P T b+ (P TA)+P TAx(k)

= x+ (P TA)+P T b+ PR(PTA)x
(k)

(C.4)

Considering that we use the block Kaczmarz iterations as smoothers on x(k) with a
partitioning of the matrix A in blocks of rows Ai, we obtain the Algo. 15.

Algorithm 15 MG-Kaczmarz: Kaczmarz equivalent of the 2-levels Multigrid algorithm
without post-smoothing.
Input: initial guess x(0), number of iterations µ
Output: solution x

1: for k in 1..µ do
2: δ(0) = x(k)

3: for i in 1..p do
4: δ(i) = δ(i−1) +A+

i (bi −Aiδ(i−1))
5: end for
6: x(k+1) = δ(p) + (P TA)+(P T b− P TAδ(p))
7: x = δ
8: end for

Now, as explained in [27] (chapter 5), we can see the multigrid schemes as successive
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Figure C.1 Illustration of (Left) classical and (Right) additive Multigrid V-cycle
iterations in terms of successive projections on non-orthogonal subspaces: (L,H)

corresponds to the low/high-frequency modes subspaces and (N ,R) corresponds to
N (RA), with R = P TA, and R(P ). Source: [27].

applications of projectors. Consider the decomposition of the space
1. into the orthogonal subspaces H and L where H is the subspace corresponding to

the high-frequency components of the error and L the subspace corresponding to
the low frequency components,

2. into the orthogonal subspaces N (RA) = N (P TA) and R(P ), noted N and R.
L and R should be more nearly aligned as the range of the prolongation ideally

corresponds to the low-frequency modes which we target on the coarse grid. Then
1. the smoother which quickly damps the high-frequency modes of the error can be

viewed as an approximate projection of the subspace L (once the high-frequency
part is removed, the point is near stationary),

2. the coarse grid correction, I−PA−1
c P TA, is a projection on the subspace N (RA) =

R(P )⊥, the orthogonal complement of R(P ).
Applying a product of projections in an iterative way to converge to the solution of a
linear system has a name: the block Kaczmarz iterations. This interpretation of the
algorithm is illustrated in the left Figure C.1.

In Algo. 15, we can interpret the coarse grid correction as the presence of an additional
partition for Kaczmarz, i.e. the partition P TA. Finally, while the block Kaczmarz apply
a product of projections, we can instead take the sum of projections, still including the
additional partition P TA. We then obtain block Cimmino iterations applied on the
overdetermined system (C.1). This iterative scheme is finally equivalent to an additive
2-level cycle, see right Figure C.1.
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C.2 C-ABCD parallelism with the construction of W

Here we present a possible parallelisation inside the ABCD-Solver to integrate the C-
ABCD approach with an explicit construction of the closure equations W . The C-ABCD
method combines the augmentation from ABCD, applied on the smaller matrix AP

partitioned with the partitioning as in as A, and the conjugate gradient from BC, and
with the addition of a step following the factorisation of the projection systems from the
augmented partitions Āi. This new step is the approximation of the block W and the
right hand side f thanks to the variant of the block-CG algorithm introduced in Algo. 11.
The Analysis and Factorisation phases of the direct solver MUMPS are then applied on
the projection system built from the block W in order to integrate it as a partition in
the global BC iterations.

An MPI process, called the master of W , needs to be reserved for the application
of the direct solver MUMPS on W . Additionally, if there are processes left as workers,
some can be assigned to the master of W for the application of MUMPS on the system
associated to the projection onto the range of T . The process distributing the workers to
the masters takes into account the estimation of workload from the Analysis phase of
MUMPS, applied on the projection systems from the partitions Āi. As this process is
performed before we start building W , we use as workload estimation for the projection
system based on W the maximum workload associated to a partition multiplied by a
relaxation parameter, e.g. ρ = 1.5. Figure C.2 presents the parallelisation scheme of the
ABCD-Solver for the application of the C-ABCD method.

The issue with this scheme is that the analysis, and factorisation of W are performed
only using the master reserved for W and its workers. We are thus adding, between the
factorisation of the projection systems from Āi and the conjugate gradient iterations, a
step where most processes stay idle, thus breaking the potential performance.



C.2 C-ABCD parallelism with the construction of W 209

Figure C.2 Hybrid parallelisation scheme of the ABCD-Solver with the approximation of
W and its inclusion as a partition in the global block-CG.





Appendix D
Résumé étendu 1

Mais enfin, ça fait 15 lieues que vous
nous pétez les noyaux avec vos
bestioles : les moutons, les chèvres, les
poules, vous croyez que ça nous
intéresse ça ?
Oh la la, mais c’est pas vrai ! Les
poules c’est plus ce que c’était, les
chèvres c’est pas rentable, maintenant
les moutons c’est fastidieux ! Vous
savez même pas ce que ça veut dire
fastidieux !

Arthur, Kaamelott

L’intérêt de la simulation numérique est de mieux comprendre la physique derrière
des systèmes physiques complexes. Suivant le schéma classique de la Figure D.1, ces
simulations sont souvent basées sur des modèles d’équations aux dérivées partielles (EDP)
couplées avec des conditions au bord [111]. Des méthodes de discrétisation, comme
la méthode des éléments finis, appliquées à ces équations donnent de grands systèmes
linéaires creux de la forme Ax = b à résoudre [53, 64]. La solution de ces systèmes
linéaires est alors utilisée afin de faire tourner la simulation numérique qui donne à son
tour des informations sur le fonctionnement du système physique.
Dans ce travail, nous nous intéressons à la solution des systèmes linéaires creux qui
est l’un des thèmes majeurs en calcul scientifique haute performance. Ces dernières

1Requis pour la rédaction du manuscrit en anglais. Ce résumé représente le contenu de la
soutenance de thèse: https://www.youtube.com/watch?fbclid=IwAR0nkXSJTiFi_T85KFQQHzc9ESzGU_
IONUx72UrLmWgwAp-gCZ3YhU9x8Hw&v=jv5gCjFu8UU.

https://www.youtube.com/watch?fbclid=IwAR0nkXSJTiFi_T85KFQQHzc9ESzGU_IONUx72UrLmWgwAp-gCZ3YhU9x8Hw&v=jv5gCjFu8UU
https://www.youtube.com/watch?fbclid=IwAR0nkXSJTiFi_T85KFQQHzc9ESzGU_IONUx72UrLmWgwAp-gCZ3YhU9x8Hw&v=jv5gCjFu8UU
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décennies, des recherches poussées on été effectuées en vue de créer des méthodes pour la
résolution de ces systèmes linéaires, appelés solveurs, pouvant être exécutées efficacement
en parallèle sur des supercalculateurs.

{
−ν∇2u+∇p = f in Ω,
∇ · u = 0 in Ω,Model Ax = b

solutionInsights

Figure D.1 The numerical simulation process involves the solution of sparse linear
systems from the discretization of PDEs.

Historiquement, nous distinguons 2 classes de solveurs [128]. Les méthodes directes
sont basées sur des techniques d’élimination de variables, menant à une factorisation de
la matrice A, afin de résoudre le système linéaire [46, 61]. Les méthodes itératives quant
à elles font successivement évoluer une approximation de la solution jusqu’à obtenir la
précision désirée [75, 114]. Là où les méthodes directes se montrent robustes par rapport
aux propriétés numériques du problème à résoudre, leur coût en calcul et mémoire est
élevé comparé à celui des méthodes itératives, qui elles présentent une convergence très
variable selon le problème. Introduites plus récemment, les méthodes hybrides ont été
crées afin de bénéficier des avantages des 2 types de méthodes, directes et itératives, pour
la solution de très grands systèmes sur des architectures de calcul parallèle.

Nous distinguons deux grandes classes de méthodes hybrides: les méthodes multigrilles
et les méthodes de décomposition de domaine. La Figure D.2 présente le plan général du
travail de thèse. Dans le chapitre 1, nous présentons un travail de recherche concernant
l’amélioration de la scalabilité d’un schéma multigrille à de très grandes échelles, et
plus précisément au niveau de la résolution du problème linéaire sur la grille la plus
grossière. Dans la suite, nous étudions des méthodes de décomposition de domaine basées
sur la méthode de projection par ligne Cimmino. Dans le chapitre 2, nous étendons
une méthode bloc-itérative et une méthode pseudo-directe, originellement développées
pour les systèmes carrés non-symétriques, à la solution de systèmes rectangulaires de
rang pleins. L’implémentation parallèle de ces méthodes dans le ABCD-Solver est
ensuite introduite dans le Chapitre 3, avec des méthodes de pré-traitement permettant
d’améliorer l’efficacité de ces méthodes. Finalement, nous faisons le lien avec les méthodes
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multigrilles en introduisant une méthode intermédiaire, entre les méthodes bloc-itérative
et pseudo-direct, utilisant un niveau de grille grossière pour obtenir une convergence
rapide et linéaire pour la solution de problèmes provenant de problèmes d’équations aux
dérivées partielles.

Figure D.2 In the PhD, we explore the world of hybrid methods for the solution of sparse linear
systems.

D.1 Multigrille à très grande échelle

Dans le Chapter I, nous nous intéressons à la solution d’un problème exprimé sur une
coquille sphérique, inspiré de la simulation de la convection du manteau terrestre, modélisé
par les équations de Stokes généralisées:

−div
(
ν
2 (∇u + (∇u)>))

)
+∇p = f in Ω,

div(u) = 0 in Ω,
u = g on ∂Ω,

(D.1)

avec u la vitesse, p la pression et f le forçage. Ces équations sont couplées à des
conditions aux bords simplifiées, i.e.

• au niveau de la surface des conditions de Dirichlet utilisant des données réelles sur
la vitesse du manteau,

• au niveau de la limite coeur-manteau des conditions de glissement libre. A noter
qu’il s’agit là d’une simplification par rapport à la physique réelle du problème).
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D.1.1 Problèmes à point de selle

Sur la coquille sphérique, nous construisons un maillage initial basé sur une division
radiale et tangentielle de l’espace, voir Figure D.3. Une hiérarchie de grilles embôıtées
est alors construite par raffinements successifs du maillage initial. Sur ces niveaux de
grille, le problème de Stokes (D.1) est discrétisé en utilisant des éléments finis, et des
opérateurs de prolongation sont construits, ici basés sur une interpolation linéaire. Selon
la taille du maillage initial, nous obtenons 3 différentes tailles de problèmes résumées
dans le Table D.1 avec jusqu’à 1011 degrés de libertés (DDL).

Figure D.3 Coupe transversale du maillage initial avec 6 divisions radiales et 12 divisions
tangentielles.

Table D.1 Taille des problèmes fins obtenus à partir de différents maillages initiaux, avec le
nombre de tétrahèdres et la résolution correspondantes. La taille du problème sur la grille

grossière est également donnée.

Tetrahèdres Résolution (km2) DDL DDL coarse
1920 6.89 5.37 ·109 9.22 ·104

15360 3.44 4.29 ·1010 6.96 ·105

43200 2.30 1.21 ·1011 1.94 ·106

D.1.2 Problème de scalabilité

La question centrale ici est comment pouvons nous résoudre de tels problèmes efficacement,
sachant que nous avons à disposition le supercalculateur Hazel Hen, classé 43ème du
classement TOP500 de juin 2020. Ce supercalculateur contient presque 8 000 noeuds de
calcul, et afin d’utiliser au mieux cette puissance de calcul parallèle, i.e. être scalable, nous
devons utiliser des solveurs avec une complexité de calcul linéaire. Nous nous intéressons
alors à des méthodes hybrides appelées méthodes multigrilles[27, 129]. En utilisant une
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hiérarchie de grilles de taille plus ou moins grande, les méthodes multigrilles obtiennent
la solution des systèmes linéaires grâce à deux principes. Tout d’abord, il a été observé
que certaines classes de méthodes itératives, appelées lisseurs, atténuent rapidement
les composantes d’erreur caractérisées par une haute fréquence d’oscillation, alors que
les composantes à basse fréquence, i.e. lisses, restes pratiquement inchangées. De plus,
les fonctions lisses sont bien représentées sur une grille grossière, où elles apparaissent
comparativement plus oscillatoire. Ainsi, l’application d’une méthode itérative sur ces
fonctions au niveau de la grille grossière devient à nouveau efficace. A l’intérieur d’un
processus itératif global, les méthodes multigrilles utilisent ces deux aspects afin de
calculer la solution du système linéaire en se déplaçant d’un niveau de grille à l’autre dans
un cycle. Au niveau de la grille la plus grossière, le système est généralement considéré
comme assez petit pour pouvoir être résolu avec un solveur direct sans utiliser trop de
mémoire.

Cependant, alors que notre supercalculateur Hazel Hen possède près de 1 000 TB
de mémoire, cela ne correspond qu’à une dizaine de vecteurs de taille 1013, soit la plus
grande taille de système linéaire résolue à ce jour. La seconde contrainte pour résoudre les
problème du Table D.1 est alors d’utiliser une implémentation sans matrice assemblée. Ici,
nous utilisons le framework multigrille HHG (Hierarchical Hybrid Grids)[18, 85]. Dans
[66], les auteurs utilisent un solveur multigrille ”all-at-once”, i.e. traitant simultanément
la vitesse et la pression, couplé avec un lisseur de type Uzawa. Les auteurs conduisent
alors une étude de scalabilité faible pour un problème similaire à (D.1). Les résultats de
cette étude sont présentés en Figure D.4 et il est alors observé que l’efficacité parallèle,
calculée par rapport au temps moyen du plus petit problème, se dégrade lorsque la taille
du problème augmente. Alors que le temps nécessaire au traitement de la grille fine
reste stable, le solveur appliqué sur la grille grossière est de plus en plus lent. Dans ce
Chapter I, un premier but est de trouver une solution scalable sur la grille grossière.
De plus, la viscosité µ utilisée dans le problème (D.1) peut être considérée simplement
constante, ou nous pouvons considérer une viscosité variant soudainement afin de refléter
plus fidèlement la limite lithosphère-asthénosphère du manteau terrestre 410km. Ce
changement de coefficient de viscosité peut avoir un impact important sur l’efficacité du
solveur sur la grille grossière et notre second but est de trouver un solveur robuste sur la
grille grossière.

D.1.3 Solveur sur la grille grossière

La première approche pour résoudre le problème sur la grille la plus grossière est la
méthode de minimisation du résidu préconditionnée (PMINRES), native dans le framework
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Figure D.4 Scalabilité faible pour un problème similaire à (D.1). Nous distinguons le temps
moyen pour le traitement des grilles fine et de la grille la plus grossière. L’efficacité parallèle est

calculée par rapport au temps moyen du plus petit problème.

HHG. Cette approche a l’avantage d’être facilement parallélisée et utilise l’implémentation
sans matrice assemblée de HHG. Par contre, la convergence de cette méthode dépend
beaucoup du problème. En Figure D.5, nous montrons une étude de scalabilité faible
effectuée sur les 3 tailles de problèmes à notre disposition avec une viscosité constante
(iso-viscous), soit une viscosité avec saut (jump-410 ). Nous observons que le temps
nécessaire pour traiter la grille grossière augmente avec la taille du problème. C’est
d’autant plus vrai lorsque l’on considère une viscosité variante pour laquelle l’efficacité
parallèle du solveur multigrille global descend alors en dessous de 80%.
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Figure D.5 Scalabilité faible pour le problème (D.1) avec viscosité (Gauche) iso-viscous et
(Droite) jump-410. Nous distinguons le temps moyen pour le traitement des grilles fine et de la

grille la plus grossière. L’efficacité parallèle est calculée par rapport au temps moyen du plus
petit problème.
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Nous proposons comme alternative l’utilisation d’un solveur direct approximé, ici
le MUltifrontal Massively Parallel Solver (MUMPS)2 [6]. Ce solveur, basé sur une
élimination gaussienne, permet de résoudre des systèmes linéaires en parallèle grâce à la
méthode multifrontale. Après une phase de Setup, pendant laquelle le solveur analyse
puis factorise la matrice (A = LU), une phase de calcul de la solution, très peu chère en
calcul et en mémoire, permet d’obtenir la solution pour un second membre spécifique
en utilisant la factorisation de la matrice. Le Table D.2 montre les résultats obtenus
avec MUMPS sur les matrices correspondant à la grille grossière du problème le plus
large que nous traitons, avec viscosité constante ou non. Nous distinguons les temps de
setup et de solution, et montrons dans chaque cas la précision de la solution calculée en
terme de résidu scalé. Nous observons alors que MUMPS, au contraire de PMINRES,
est très robuste par rapport à la viscosité en terme de temps de calcul et de précision
de la solution. Cette robustesse a un prix, d’une part MUMPS nécessite une matrice
totalement assemblée, ce qui n’est pas un problème puisque le problème grossier est
relativement petit, et d’autre part le setup est longue, à elle seule cette phase prend 180s
alors que le temps total pour PMINRES dans HHG est de 165.5s.

Table D.2 MUMPS on the largest problem (1.94 · 106 DOF s) with jump− 410.
FYI: PMINRES runtime is 165.5s

Type Time (s) Scaled residual
Setup Solve

iso− viscous 180.3 0.55 8 · 10−19

jump− 410 175.6 0.56 2 · 10−18

Ce prix peut être compensé. Tout d’abord, le schéma multigrille se fait au travers
de plusieurs itérations d’un cycle-V dans lequel la matrice grossière reste constante. La
factorisation peut alors être calculée une seule fois, son prix est divisé par le nombre
d’itérations où seule la phase de solution peu chère reste à calculer en fonction du second
membre. De plus, MUMPS offre un mécanisme appelé approximation par blocs de rang
faible (BLR)[1, 4]. Son principe est d’approximer des blocs loin de la diagonale dans la
matrice par des blocs de rang faible, en utilisant le fait que deux variables éloignées ont
généralement peu d’effet l’une sur l’autre, voir Figure D.6. Grâce à ce mécanisme, il est
possible de contrôler la précision de la solution en obtenant une réduction du coup de
la factorisation. En effet, une approximation de la solution est suffisante sur la grille la
plus grossière, e.g. PMINRES est arrêté avec une précision de 10−3. Lorsque BLR donne
une solution inférieur à 10−8, il est alors possible d’utiliser le mode simple précision

2http://mumps-solver.org/

http://mumps-solver.org/
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de MUMPS pour un gain en temps supplémentaire, sans perte de précision. Dans ce
contexte, cette solution peut être idéale.

Figure D.6 Source: thèse de Theo Mary [100]

Implémenter une méthode multigrille de manière à ce qu’elle se comporte bien sur
des systèmes de calculs très larges est difficile[109, 110]. Dans ce cas, en partant d’une
grille très fine, résolue avec beaucoup d’unités de calcul (coeurs), et en se déplaçant vers
une grille plus grossière, le nombre de variables par coeur devient de plus en plus petit,
voir Figure D.7. L’efficacité en calcul se détériore alors rapidement si tous les coeurs sont
utilisés à tous les niveau. L’agglomération est une solution très simple à ce problème

geometric multigrid

coarse solver

d
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g
D
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F

Figure D.7 (Gauche) Les niveaux de grille grossiers ont de moins en moins de DDL par coeur,
(Droite) ce qui entrâıne une baisse de la granularité des sous-problèmes résolus dans MUMPS.

qui consiste à utiliser sur la grille grossière seulement un sous-ensemble m de tous les
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coeurs |P | obtenue via un facteur de réduction r tel que m = |P |/r. Nous proposons 2
stratégies d’agglomération, voir Figure D.8:

1. Schéma Mâıtre-Ouvrier : parmi tous les coeurs utilisés pour le traitement des grilles
fines, un sous-ensemble est sélectionné sur lequel les DDL de la grille grossière sont
rassemblés et traités avec le solveur direct.

2. Superman: un certain nombre de noeuds est dédié dès le départ au traitement de
la grille grossière. Ce schéma a l’avantage que la factorisation de la matrice du
niveau grossier peut être effectué en parallèle de la première branche du premier
cycle multigrille. Au prix d’un (petit) nombre de coeur additionnels, le coût de la
factorisation est alors virtuellement réduit (voire supprimé).

p0 p1 p2 p3 p4 p5(Mâıtre-ouvrier)

p6 p7p0 p1 p2 p3 p4 p5(Superman)

Figure D.8 Schémas d’agglomération proposés.

Le problème de ce schéma d’agglomération est que le choix du facteur de réduction r
doit se faire au cas par cas. Dans la Figure D.9, nous montrons le temps d’exécution
de MUMPS sur la matrice grossière pour les 3 tailles de problème avec un facteur de
réduction qui augmente. A partir de ces résultats, nous pouvons obtenir le facteur donnant
l’exécution la plus rapide et l’utiliser pour nos tests. Nous pouvons alors introduire
l’approximation BLR et l’utilisation du calcul simple précision. Pour MUMPS appliqué
au problème de plus grande taille, le Table D.3 présente la réduction du temps d’exécution
et la précision obtenue avec ces approximations. Nous observons que BLR permet de
diviser le temps d’exécution de la factorisation par 3 au prix de quelques secondes de plus
dans l’analyse de la matrice, pour calculer les blocs de rangs faibles, et d’une solution de
précision 10−6. L’utilisation du calcul simple précision peut alors être activé pour une
réduction supplémentaire de 30% de la factorisation sans changer la solution.

Enfin, nous pouvons inclure MUMPS avec approximation à l’intérieur du framework
HHG pour une étude de scalabilité faible sur nos 3 tailles de problème. Les résultats
sont présentés en Figure D.10 où nous comparons le temps d’exécution en utilisant les
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Figure D.9 Temps d’exécution de MUMPS pour les 3 tailles de problème selon le facteur de
réduction utilisé pour l’agglomération.

Table D.3 MUMPS sur le problème le plus gros (1.94 · 106 DOFs) with jump− 410.
FYI: PMINRES runtime is 165.5s

BLR ε
Analyse Factorisation Solution Résidu scalé
Temps (s) Flops (%) Temps (s) Temps (s)

Rang plein 41.0 100 134.6 0.56 2 · 10−18

10−5 47.6 13 37.0 0.30 2 · 10−6

10−5 + simple 47.7 13 25.6 0.27 1 · 10−6

différents solveurs sur la grille grossière: (P) PMINRES, MUMPS approximé couplé
avec (M) l’agglomération Mâıtre-Ouvrier et (S) l’agglomération Superman. En utilisant
MUMPS avec l’agglomération Mâıtre-Ouvrier, le temps de traitement de la grille la plus
grossière est réduit de 50% grâce à l’approximation BLR et le calcul simple précision[30].
Additionnellement, grâce à l’agglomération Superman, le temps du setup peut-être
virtuellement caché puisque effectué en parallèle avec la première branche du premier
cycle multigrille. Le résultat est une réduction du temps de traitement de la grille
grossière de 80% par rapport à l’utilisation de PMINRES, ce qui donne une amélioration
de l’efficacité parallèle du framework HHG de 79% à 88%.

Cette approche est une contribution importante pour la simulation numérique et,
dans notre cas, pour la simulation du manteau terrestre [16].
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Figure D.10 Comparaison de 3 solveurs sur la grille grossière dans HHG pour les 3 tailles du
problème (D.1): PMINRES (P); MUMPS utilisant BLR et simple précision couplé avec

agglomération Mâıtre-Ouvrier (M) ou agglomération Superman (S).

D.2 Méthodes Cimmino par blocs, itérative et pseudo-directe

L’autre grande classe de méthodes hybrides sont les méthodes de décomposition de
domaine (DDM) [40, 98, 127] qui décomposent le problème en sous-problèmes résolus
indépendamment, afin d’être efficaces en terme de calcul parallèle. Nous nous intéressons
plus particulièrement à la méthode de projection par bloc de lignes bloc Cimmino[34,
52, 88], pouvant être interprétée en tant que méthodes de décomposition de domaine[40].
Une itération de la méthode Cimmino est très simple à visualiser et nous en montrons
un exemple en 2 dimensions dans la Figure D.11. Dans ce cas, trouver la solution d’un
système linéaire revient à trouver l’intersection de 2 lignes, chacune correspondant à une
équation. Appliquer une itération de Cimmino consiste alors à calculer la projection
d’un itéré courant sur chacune de ces lignes puis à prendre une somme pondérée de ces
projections pour obtenir l’itéré suivant.
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A1x = b1

A2x = b2

x(0)

x∗

δ
(0)
1

δ
(0)
2

x(1)
ν

Figure D.11 Itération en 2D de la méthode de projection par ligne Cimmino. Source: [133]

D.2.1 Accélération de la méthode Cimmino par blocs

Ce processus peut être généralisé très facilement. Considérons la matrice carrée, inversible
A ∈ R n×n, partitionnée en p blocs de ligne tel que l’on résout le système partitionné:

A1

A2
...
Ap

x =


b1

b2
...
bp,

 (D.2)

avec x et b des vecteurs de taille n. Dans ce cas, une ligne du problème 2D devient
un sous-espace engendré par une partition, et l’application d’une itération de Cimmino
revient toujours à calculer une somme pondérée des projections de l’itéré courant. Cette
itération est exprimée par

δ(i) = A+
i (bi −Aix(k)), i = 1, . . . , p,

x(k+1) = x(k) + ω
p∑
i=1

δ(i).
(D.3)

Cette méthode peut-être interprétée comme une méthode de décomposition de domaine,
plus précisément une méthode de Schwartz abstraite additive sur les équations normales,
puisque Cimmino par bloc revient à appliquer un Jacobi par bloc sur les équations
normales. Comme la convergence de cette méthode est souvent lente, nous considérons le



D.2 Méthodes Cimmino par blocs, itérative et pseudo-directe 223

point fixe des itérations (D.3) pour obtenir le nouveau système équivalent

Hx = K avec


H =

p∑
i=1
PR(AT

i ) =
p∑
i=1

A+
i Ai,

K =
p∑
i=1

A+
i bi.

La matrice d’itération H est symétrique positive définie (SPD) et, afin d’accélérer les
itérations de Cimmino par bloc, nous pouvons utiliser un algorithme de gradient conjugué
pour le résoudre. Une des principale contribution du Chapter II est alors d’étendre
cette approche, originellement pensée pour les systèmes carrés, à la solution de systèmes
rectangulaires.

Une bonne nouvelle pour commencer, l’approche précédente est directement valable
les systèmes sous-déterminés de rang ligne plein, avec un partitionnement en blocs de
ligne. Quant aux systèmes sur-déterminés, il faut considérer une matrice de rang colonne
plein, avec un partitionnement en blocs de colonnes. Afin d’unifier les approches pour
ces 2 types de systèmes, notamment dans la notation, nous considérons que la matrice A
est toujours sous-déterminée et de rang ligne plein. Nous cherchons alors à calculer soit
la solution de norme minimale d’un problème basé sur A, soit la solution du problème de
moindre carré basé sur AT , i.e. où chaque solution est calculée grâce au pseudo-inverses

Sous-déterminé:
(solution de norme-minimale)

min
x∈R n

‖x‖2 tel que Ax = b

=⇒ xmns = A+b = AT (AAT )−1

Sur-déterminé:
(problème de moindres carrés)

min
x̃∈R n

∥∥∥AT x̃− b̃∥∥∥
2

=⇒ xls = (AT )+b̃ = (AAT )−1Ab̃

de Moore-Penrose A+ et (AT )+. Nous remarquons alors que pour le choix spécifique de
second membres b = Ab̃, les solutions des systèmes sous- et sur-déterminés sont liés par
la simple relation xmns = ATxls. Nous utilisons ce simple fait seulement pour simplifier
les calculs et notations.

Nous pouvons maintenant développer la même accélération de la méthode Cimmino
par bloc que précédemment en considérant les problèmes partitionnés

min
x∈R n

‖x‖2 tel que

A1
...
Ap

x =

b1...
bp

 min
x∈R n

∥∥∥∥∥∥∥
[
AT1 . . . ATp

] x̃
1

...
x̃p

− b̃
∥∥∥∥∥∥∥

2

sur lesquels nous pouvons appliquer l’itération correspondante de Cimmino par blocs
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Sous-déterminé:

δ(i) = A+
i (bi −Aix(k)), ∀i,

x(k+1) = x(k) + ω
p∑
i=1

δ(i),

Sur-déterminé:

δ(i) = Ai
+Air

(k)

x
(k+1)
i = x

(k)
i + ω(ATi )+r(k), ∀i,

r(k+1) = r(k) − ω
p∑
i=1

δ(i).

En considérant à nouveau le point fixe des itérations, nous obtenons le nouveau
système à résoudre Hx = k avec où D = blkdiag(A1A

T
1 , . . . , ApA

T
p ). Nous pouvons alors

Hrow =
p∑
i=1
PR(AT

i ) =
p∑
i=1

A+
i Ai

= ATD−1A

Hcol =


(AT1 )+

...
(ATp )+

 [AT1 . . . ATp

]
= D−1AAT

considérer la résolution de ces systèmes à l’aide d’un gradient conjugué car
• Hrow est cette fois symétrique semi-définie positive, dans un système qui reste

consistent. Cette matrice correspond à la somme des projections sur les partitions.
• Hcol n’est pas symétrique mais est symétrisable au sens de Hageman&Young [75].

Cette matrice correspond à une concaténation des pseudo-inverses des partitions.
Dans le but d’accélérer un peu plus la convergence de l’algorithme, nous utilisons

un algorithme de gradient conjugué par bloc stabilisés aux systèmes rectangulaires. Le
but de cet algorithme, que nous avons étendu aux problèmes de moindres carrés, est
de réduire les possibles plateaux dans la convergence du gradient conjugué classique,
voir Figure D.12 pour un exemple. Ces plateaux sont notamment dûs à des groupes de
petites valeurs propres dans le spectres de H. Même si les plateaux sont réduits, chaque
itération est alors plus chère mais grâce à l’utilisation de librairies très efficaces pour le
calcul d’opérations matrice-vecteur, nous obtenons une amélioration du temps de calcul
comparé au gradient conjugué classique pour un choix de taille de bloc raisonnable. Dans
cet algorithme, que ce soit pour la solution de problèmes sous- ou sur-déterminés, il est
nécessaire à chaque itération de calculer une somme de projections sur les partitions, i.e.
PR(Ai)T = A+

i Ai, qui sont obtenues via la solution des systèmes linéaires

(
In ATi
Ai Omi

)(
ui

vi

)
=
(
r

zi

)
, (D.4)
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avec un solveur direct parallèle. Grâce à l’indépendance entre les projections, et 2 niveaux
de parallélisme inhérents au solveur direct, nous obtenons naturellement un schéma de
parallélisation hybrides pour l’implémentation.
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Figure D.12 Convergence de BCG: deltaX (7 · 104 × 2 · 104) avec 16 partitions

Nous obtenons ainsi la méthode Cimmino par blocs accélérée (BC) pour la solution
de systèmes rectangulaire. Pourtant, malgré l’utilisation d’un paradigme par blocs, et
même en considérant l’utilisation de pré-traitements du systèmes, la convergence de cette
méthode reste problème dépendante et peut être caractérisée par de long plateaux. En
effet, le spectre de la matrice d’itération H dépend de l’ouverture des angles entre les
sous-espaces engendrés par les partitions. Une alternative basée sur l’augmentation du
système original avec des variables et contraintes additionnelles a été proposée dans [46].
Cette augmentation permet d’orthogonaliser mutuellement les partitions, garantissant
ainsi la convergence en une seule itération de la méthode BC.

D.2.2 Méthode Cimmino par blocs augmentée

Nous considérons encore une matrice A sous-déterminée de rang ligne plein et parti-
tionnée par blocs de lignes Ai. Le principe de l’augmentation [46] est le bloc F(A) aux
colonnes de la matrice. Nous obtenons la matrice augmentée A =

[
A F(A)

]
dans

laquelle les partitions augmentées Ai sont mutuellement numériquement orthogonales,
i.e. ∀ i, j = 1, . . . , p, i 6= j, AiA

T
j = AiAj + F(A)iF(A)j = 0. La Figure D.13 montre

l’augmentation obtenue à partir d’une matrice bloc tri-diagonale. Il y a plusieurs tech-
niques d’augmentation, et la plus simple duplique les blocs d’intéraction de chaque couple
de partition avec un signe moins sur la deuxième partition.

Une fois la matrice augmentée, le système est fermé à l’aide d’un bloc additionnel
simple Y =

[
0 Y

]
. Et comme ce bloc n’est pas orthogonal à A, Y T est projeté sur le
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Figure D.13 Augmentation d’une matrice tri-diagonale par bloc.

noyau de A pour obtenir la matrice augmentée

[
A

W

]
=
[
A F(A)
B S

]
avec

 W =
[
B S

]
= Y (I −ArP ),

ArP = PR(AT ).
(D.5)

La bonne nouvelle c’est que grâce à l’orthogonalité entre partitions, le projecteur orthog-
onal sur R(AT ) devient une somme de projecteurs orthogonaux, i.e. P =

p∑
i=1
PR(AT

i ). Le
même schéma de parallélisation que la méthode itérative reste donc envisageable. De
plus, nous obtenons une nouvelle matrice S qui a de bonnes propriétés. Tout d’abord
cette matrice est SPD et correspond aux équations normales du bloc W (S = WW T ). De
plus, si nous considérons les équations normales de la matrice augmentée avec seulement
Y , nous obtenons

[
A

Y

] [
A

Y

]T
=


A1A

T
1 F(A)1

. . . ...
ApA

T
p F(A)p

F(A)T1 . . . F(A)Tp Iq

 . (D.6)

La forme de ces équations normales, une matrice bloc diagonale bordée, est typique des
méthodes de décomposition de domaine. Il est alors naturel de calculer le complément de
Schur de ces équations, Schur = Iq−

p∑
i=1
F(A)Ti (AiA

T
i )−1F(A)i = S, qui correspond tout

simplement à la matrice S du schéma d’augmentation. Là où la méthode Cimmino par
bloc correspond à une méthode de Schwartz abstraite additive, la méthode Cimmino par
bloc augmentée est une méthode de complément de Schur, également sur les équations
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normales. L’augmentation sert alors à condenser l’information sur l’interface entre les
sous-domaines correspondant aux partitions dans la matrice.

Maintenant que le système est augmenté, nous allons voir comment reconstruire
la solution du système originale à partir de la solution du système augmenté. Pour
commencer, comme dans [46], nous considérons une matrice A carrée inversible et le
système augmenté [

A

W

] [
x

y

]
=
[
A C

B S

] [
x

y

]
=
[
b

f

]
, (D.7)

où y et f sont respectivement des variables et second membre additionnels. Le choix
spécifique f = −Y A+

b permet de forcer y = 0. Nous garantissons ainsi que la solution

du système augmenté est
[
xmns

0

]
où xmns est la solution du système original. Grâce

à l’orthogonalité entre A et W , cette solution est obtenue en une seule itération de
Cimmino par bloc, i.e. [

xmns

0

]
= A

+
b+W+f. (D.8)

De plus, comme W = Y (I − P ) est de rang plein, que S = WW T , et en utilisant
f = −Y A+

b, on obtient la meilleure forme pour la solution[
xmns

0

]
= A

+
b−W T (WW T )−1Y A

+
b,

= A
+
b− (I − P )Y TS−1Y A

+
b.

(D.9)

La question du Chapter II est alors la même, comment étendre cette approche
développée pour des systèmes carrés à des systèmes rectangulaires ? Concernant les
systèmes sous-déterminés, l’approche est directement valable ! La seule différence est

au niveau théorique, puisqu’il faut démontrer que les solutions xmns et
[
xmns

0

]
sont de

norme minimale. Quant aux systèmes sur-déterminés, comme dit précédemment, nous
utilisons la transposée du système augmenté et résolvons le problème de moindres carrés

min
(x̃,ỹ)∈R n×R q

∥∥∥∥∥
[
AT BT

CT S

] [
x̃

ỹ

]
−
[
b̃

f̃

]∥∥∥∥∥
2

. (D.10)

A nouveau, le choix spécifique f̃ = S−1Y A
(
A
T
)+
[
b̃

0

]
permet d’annuler les variables

additionnelles (ỹ = 0). Grâce à l’orthogonalité entre AT et W , nous obtenons la solution
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de ce système augmenté en une itération et la solution du système original xls est
construite selon

xls =
(
A
T
)+
[
b̃

f̃

]

=
(
A
T
)+

[
b̃

0

]
+
(
A
T
)+

Y TS−1Y A
+
A

[
b̃

0

] (D.11)

Pour toute forme de matrice, nous obtenons ainsi la méthode Cimmino par bloc
augmentée (ABCD) étendue dans le Chapter II à la solution de systèmes rectangulaires.
Comme illustré dans la Figure D.14, alors que la méthode itérative accélérée Cimmino
par bloc (BC) a une convergence très dépendante de l’ouverture des angles entre les
partitions, dans la méthode ABCD permet d’obtenir la solution en une itération grâce à
l’orthogonalité mutuelle entre les espaces engendrés par les partitions augmentées. C’est
une méthode pseudo-directe.

Figure D.14 Cimmino par bloc vs Cimmino par bloc augmenté

La forme de la solution de norme minimale (D.9) pour les systèmes sous-déterminés,
et de la solution (D.9) des problèmes de moindres carrés ont une forme très similaire. Ces
solutions sont exprimées en 2 parties, une pour A et une pour W , et ne font intervenir
que quelques éléments:

1. le calcul de pseudo-inverses indépendants, comme dans BC. En effet, dans les
solutions apparaissent des pseudo-inverses A+ qui, grâce à l’orthogonalité entre
partitions, peuvent être décomposés en éléments indépendants. Nous avons par
exemple A+

b =
p∑
i=1

A
+
i b.

2. l’inverse du complément de Schur S, qui peut être obtenu en résolvant un système
Sz=f avec un solveur direct parallèle. La résolution d’un tel système n’est possible
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que si S, et donc l’augmentation, sont de petite taille. La Figure D.15 présente les
tailles d’augmentations, relativement à la plus grande dimension du système original,
obtenues pour tous les systèmes de plus de 1000 lignes ou colonnes extraits de la
SuiteSparse Matrix Collection. Nous observons alors que deux-tiers des systèmes,
toutes structures confondues, ont une taille d’augmentation inférieure à 20% de la
taille du système original. Ce seuil est considéré comme généralement acceptable
dans [46], et la solution du complément de Schur est réaliste. Le point clé de la
méthode ABCD est alors la construction de manière ”embarrassingly parallel” du
complément de Schur à l’aide des projections indépendantes.
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Figure D.15 Distribution de la taille d’augmentation, relatif à la taille du système original, pour
38 problèmes sur-déterminés (points verts), 153 problèmes sous-déterminés (croix rouges) et 241
problèmes carrés non-symétriques (signes plus bleus) problèmes, classés par taille d’augmentation

croissante. Les seuils de 5%, 20% et 100% sont indiqués.

Le calcul de ces éléments permet d’utiliser le même type de schéma de parallélisation
que BC. L’implémentation des méthodes BC et ABCD pour la solution de systèmes
rectangulaires a été développé pendant la thèse dans le ABCD-Solver4 [133] et nous
allons maintenant détailler cette parallélisation.

4http://abcd.enseeiht.fr/
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D.3 Implémentation parallèle: ABCD-Solver

Afin d’améliorer les propriété numériques des méthodes itératives et pseudo-directes, des
techniques de pré-traitement sont présentées dans la première partie du Chapter III. Après
avoir atténué la disparité dans les facteurs d’échelle de la matrice via une normalisation
simultanée des lignes et des colonnes dans le cas des matrices carrées [113], les différentes
méthodes de partitionnement existantes sont discutées [42, 112]. Nous nous intéressons en
particulier à des méthodes de partitionnement de graphes qui cherchent, soit à accélérer
la convergence de la méthode BC, avec le partitionneur GRIP [126] prenant en compte
les valeurs dans les équations normales, ou à diminuer la taille de l’augmentation, avec
le partitionneur d’hyper-graphes PaToH PaToH [32]. Nous introduisons ensuite une
nouvelle technique d’augmentation de la matrice qui permet de diminuer encore la taille
d’augmentation.

D.3.1 Schéma de parallélisation

Les méthodes BC et ABCD sont implémentées en parallèle dans le ABCD-Solver, suivant
le même schéma de parallélisation basé sur l’utilisation de processus MPI [71] (distribué)
et de threads OpenMP [37] (mémoire partagée). Tout commence par la phase de
pré-traitement séquentielle durant laquelle, en particulier, la matrice est partitionnée,
éventuellement augmentée (dans ABCD), et un système est créé pour chaque partition afin
de calculer la projection correspondante avec le solveur direct MUMPS. Le solveur suit
alors un schéma de parallélisation classique en DDM: des processus MPI, appelés mâıtres,
reçoivent une ou plusieurs partitions et calculent en parallèle, de manière indépendante,
les projections associées à l’aide d’un solveur direct. Ces projections locales sont alors
sommées grâce à des communications MPI entre mâıtres afin de mettre l’itéré courant
à jour. Nous proposons un nouvel algorithme de distribution des partitions pour la
méthode itérative qui permet, en plus d’équilibrer la charge de travail entre les processus,
de diminuer la communication entre ceux-ci afin de diminuer le temps de calcul. En
plus de l’indépendance entre les partitions, 2 niveaux de parallélisme sont ajoutés par le
solveur direct utilisé pour les projections. Les noyau de calcul pour les opérations denses
utilisés par le solveur direct ont une parallélisation en mémoire-partagée. De plus, chaque
potentiel processus sans partition, appelé ouvrier, peut être assignée à un mâıtre afin de
paralléliser l’exécution du solveur direct. Nous montrons que distribuer les mâıtres sur
l’architecture de calcul, plutôt que de les grouper, permet de diminuer les accès mémoire
concurrents et ainsi de réduire le temps d’exécution. Cette parallélisation est résumée
dans la Figure D.16.
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Pré-traitement

Scaling

Partition/Augmentation

Projection Syst.

MUMPS

Analyse

Assgine ouvriers

Factorisation

Projection (CG/S), Sz=f

Solution

Figure D.16 ABCD-Solver: Schéma de parallélisation.

D.3.2 Efficacité parallèle

Enfin, la grande question est quelle est l’efficacité du ABCD-Solver, que ce soit la
méthode BC ou la méthode ABCD ? Afin d’estimer cette efficacité, nous comparons notre
approche avec des solveurs directs de l’état de l’art en tournant sur toutes les matrices
de la SuiteSparse Matrix Collection de plus de 1000 lignes ou colonnes. Concernant les
matrices carrées, nous effectuons une comparaison avec le solveur MUMPS5 [6], qui utilise
une décomposition LU et la méthode multifrontale dans une parallélisation hybride MPI-
OpenMP. Nous effectuons alors des tests sur le cluster Meggie6 avec 64 processus MPI et
4 OpenMP par MPI. Quant aux matrices rectangulaires, nous effectuons une comparaison
avec QR-MUMPS [29], un solveur direct pour les matrices rectangulaires, basé sur la
décomposition QR et la méthode multifrontale, avec une parallélisation OpenMP. Nous
effectuons alors des tests sur le cluster Kraken 7 avec 18 OpenMP pour QR-MUMPS, et 9
MPI × 2 OpenMP pour le ABCD-Solver, afin de bénéficier tout de même du parallélisme
hybride pour ce dernier. Les résultats de ces tests sont présentés dans la Figure D.17
dans 2 graphes indiquant la différence relative entre le solveur direct et le ABCD-Solver
en terme de temps d’exécution (en abscisse), et de mémoire (en ordonnée). Une valeur
positive donne l’avantage au ABCD-Solver. Ce que nous observons tout d’abord c’est

5http://mumps-solver.org/
6RRZE, FAU: https://www.anleitungen.rrze.fau.de/hpc/meggie-cluster/
7CERFACS: https://cerfacs.fr/en/cerfacs-computer-resources/

http://mumps-solver.org/
https://www.anleitungen.rrze.fau.de/hpc/meggie-cluster/
https://cerfacs.fr/en/cerfacs-computer-resources/
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qu’en terme de temps d’exécution, les solveurs directs ont l’avantage dans la plupart des
cas. En effet, seulement 17% des tests donnent l’avantage au ABCD-Solver. Pour ce qui
est de la consommation en mémoire, ABCD-Solver a l’avantage en général: MUMPS a
besoin de plus de mémoire dans 75% des cas, et QR-MUMPS dans 50% des cas.
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Figure D.17 Différence relative entre l’ABCD-Solver et (Gauche) MUMPS ou (Droite)
QR-MUMPS en terme (x-axis) de temps d’exécution et (y-axis) de mémoire pour 187 et 128

classes de problèmes de la SuiteSparse Matrix Collection. Une valeur positive indique un
avantage pour l’ABCD-Solver (temps ou mémoire plus petit).

Comme l’extension du ABCD-Solver à la solution de systèmes rectangulaires est
la principale contribution des Chapter II et III, nous nous concentrons alors sur la
comparaison avec QR-MUMPS. Dans la Figure D.18, les tests les plus larges (¿ 1s pour
la résolution) sont mis en évidence avec le plus meilleur solveur dans chacun de ces cas.
Quelles sont les conditions dans lesquelles chaque solveur est le plus rapide ? Prenons
trois matrices typiques.

Dans le cas de la matrice neos (losange sur le graphe), la factorisation de QR-MUMPS
est particulièrement coûteuse (196s et 2.2 GB). Pour la méthode itérative BC, chaque
itération est rapide mais la convergence n’est obtenue qu’après 920 itérations pour 754s
au total. Dans ce cas, la méthode ABCD est la meilleure car le complément de Schur
est petit (10% de la taille originale) et, même si S reste un peu dense, la résolution du
système associé est rapide et moins coûteuse en mémoire que QR-MUMPS (92s et 2GB).

Considérons maintenant la matrice LargeRegFile (triangle sur le graphe) qui est le
complet opposé du cas précédent. Ici, ABCD donne un complément de Schur toujours
petit (8% de la taille originale) mais si dense que la factorisation avec MUMPS requiert
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Figure D.18 Différence relative entre l’ABCD-Solver et QR-MUMPS en terme (x-axis) de temps
d’exécution et (y-axis) de mémoire. Les plus grosses classes de problème (temps > 1s) pour

lesquelles chaque solveur est meilleur sont indiquées, ainsi que 3 exemples spécifiques.

trop de mémoire pour la machine à notre disposition. Quant à la méthode BC, la
convergence est très rapide avec seulement 28 itérations, mais chaque itération est très
lente pour un total de 182s avec 153 MB. Dans ce cas, QR-MUMPS est imbattable
puisque la solution est obtenue en seulement 6s pour une consommation mémoire de 81
MB (même moins que BC).

Pourquoi une telle différence ? Pour les deux matrices précédentes, nous montrons en
Figure D.19 les équations normales après reordering en utilisant un simple algorithme
SymAMD (Symmetric Approximate Minimum Degree). Pour la matrice neos, la structure
obtenue est typiquement une matrice qui provoquerait une grosse utilisation mémoire
pour un solveur direct (effet de fill-in), et une grosse complexité en terme de calcul
(beaucoup de pivoting). Quant à la matrice LargeRegFile, nous obtenons une forme
en tête de flèche parfaite, ce qui explique que QR-MUMPS est imbattable dans ce cas.
Malheureusement, ABCD-Solver ne peut faire usage de telles méthodes de pré-traitement.

Finalement, nous considérons la matrice shar te2-b2. Pour cette matrice, ABCD
donne une taille d’augmentation très large ET très dense ce qui donne un temps
d’exécution énorme (2 311s) et une très grande consommation mémoire (51 GB). Pour
QR-MUMPS, la factorisation est très coûteuse (193s et 1 GB). Enfin, cette matrice
est parfaite pour la méthode itérative BC pour qui la convergence est très rapide (11
itérations en 2.4s). Cette dernière méthode est alors imbattable dans ce cas, mais c’est
loin d’être une généralité et n’arrive que dans des cas très spécifiques.
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neos LargeRegFile

Figure D.19 Structure des équations normales après reordering grâce à l’algorithme SymAMD
(Symmetric Approximate Minimum Degree).

Nous avons donc développé une méthode itérative et une méthode pseudo-directe
basées sur un paradigme par bloc. La méthode ABCD nécessite que le complément
de Schur calculé ait une taille raisonnable. Dans le chapitre suivant, nous proposons
une méthode permettant de contrôler explicitement la taille de l’augmentation grâce à
l’utilisation d’une grille grossière. Cependant, QR-MUMPS reste plus rapide dans la
plupart des cas. Finalement, BC reste une bonne alternative avec une basse consommation
en mémoire dans les cas où ABCD et QR-MUMPS seraient trop coûteux. Bien sûr, la
convergence de BC reste problème dépendante.

D.4 Une approche pour le ABCD-Solver inspirée des méthodes
multigrilles

Nous avons vu que la méthode ABCD peut être meilleure qu’un solveur direct compétitif
mais que son efficacité dépend fortement du complément de Schur calculé. Considérons
l’exemple très simple d’un problème de Poisson en 3D défini sur un cube. Le problème
est discrétisé à l’aide de simples différences finies et on obtient un système linéaire de
taille N = 212 = 4 096 ≈ 70 · 109DDLs. Cette matrice est partitionné en utilisant la
géométrie du système, i.e. nous divisons le cube en lp = 16 blocs dans chaque direction.
L’augmentation obtenue avec ABCD, qui correspond à une condensation de l’information
sur l’interface entre les partitions, a alors une taille du même ordre que les faces entre les
petits cubes. Sur chaque face, nous avons f =

(
N
lp

)2
DDLs, et la taille d’augmentation
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finale est
taille(Aug.) ≈

p∑
i=1

6× f = 6p(N
lp

)2 = 6N3

162 = O(N3) ! (D.12)

C’est-à-dire que l’augmentation obtenu a une taille du même ordre que le nombre total
de point dans le système original, ce qui n’est pas acceptable et nous avons besoin de
réduire/contrôler cette taille.

D.4.1 Problèmes d’EDPs et multigrille

Nous considérons seulement des systèmes linéaires venant de la discrétisation de problèmes
aux dérivées partielles (EDPs) définis sur un domaine carré ou sur un domaine en L. Sur
ces domaines, une hiérarchie de 6 grilles imbriquées, de la plus grossière l = 0 à la plus
fine L = 5, sont définies à partir d’une grille initiale, voir le haut de la Figure D.20. De
plus, un partitionnement est défini en se basant sur la géométrie du domaine, voir le bas
de la Figure D.20.

Domaine carré Domaine en L
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Figure D.20 Maillage et partitionnement des domaines carré et en L.

A partir de ces domaines et grilles, nous nous concentrons sur 3 problèmes, voir
Figure D.21:

1. un problème de Helmholtz défini sur le domaine carré,
2. un problème de convection-diffusion sur le domaine carré, avec convection domi-
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nante,
3. un problème de diffusion défini sur le domaine en L, avec diffusivité très hétérogène.

Helmholtz Convection-diffusion Diffusion

Figure D.21 Solution des problèmes d’EDPs.

Ces problèmes sont discrétisés à l’aide d’éléments finis P1 et des opérateurs de
prolongations P l+1

l sont définis entre 2 niveaux consécutifs l et l+1 avec une interpolation
bilinéaire. Comme fait dans les méthodes multigrilles, nous avons alors à disposition une
hiérarchie de systèmes linéaires et une idée naturelle est que le choix d’un niveau grossier
pour l’augmentation permettrait de contrôler la taille du complément de Schur.

D.4.2 Augmentation relâchée et construction de la solution

Considérons une matrice carrée A inversible provenant de la discrétisation d’EDPs
et partitionnée suivant la géométrie du système. Plutôt que d’applique la technique
d’augmentation de ABCD directement sur A, nous l’appliquons sur la matrice A.V , où V
est une matrice sur-déterminée avec peu de colonnes, afin d’obtenir la matrice augmentée:

A =
[
A F(AV )

]
avec V ∈ R m×mc , mc � m.

Dans cette matrice, les partitions augmentées ne seront pas strictement orthogonale. Le
but est simplement d’obtenir une augmentation de petite taille et dans laquelle les angles
entre les sous-espaces engendrés par les partitions sont plus ouverts que dans le système
original afin d’avoir une convergence de la méthode Cimmino par bloc plus rapide. En
réalité, l’orthogonalité strict est vrai dans une sous-image de A, i.e. pour la matrice[
AV F(AV )

]
.

Dans notre cas, un choix naturel pour la matrice V vient alors des méthodes multi-
grilles. En choisissant un niveau de grille grossière spécifique l et en considérant que nous
résolvons le niveau fin L, nous pouvons définir l’opérateur de prolongation entre ces 2
niveaux comme le produit des prolongations intermédiaires, i.e. P = PLL−1 . . . P

l+1
l . A

noter également que si nous choisissons le niveau fin comme niveau grossier (l = L), alors
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P = I et nous récupérons la méthode ABCD classique. Pour les 3 problèmes considérés,
nous donnons dans le Table D.4 la taille de P et la taille de l’augmentation F(AP )
obtenues pour chaque choix de grille grossière possible. Nous observons que la taille de
P est divisée par 4 en choisissant le niveau grossier consécutif, ce qui est normal car le
problème est en 2D et le nombre de points est divisé par 4 entre 2 niveaux. Lorsque nous
choisissons le prochain niveau grossier, l’augmentation est quant à elle divisée par 2. Une
fois de plus ceci est attendu car l’augmentation a la même taille que les interfaces entre
sous-domaines et l’interface est en 1D dans nos problèmes.

Table D.4 Size of the prolongator P and augmentation F(AP ) depending on level

Grid levels Helmholtz Convection-Diffusion Diffusion
P F(AP ) P F(AP ) P F(AP )

5 (ABCD) 87 424 9 329 65 025 4 112 65 025 4 096
4 21 952 4 766 16 129 2 072 16 129 2 064
3 5 536 2 477 3 969 1 048 3 969 1 044
2 1 408 1 339 961 536 961 536
1 364 764 225 280 225 280
0 97 471 49 152 49 152

Afin de calculer la solution du système, nous n’avons qu’à appliquer le reste de la
méthode ABCD avec partitionnement par blocs de ligne. D’abord, le système est fermé
avec des contraintes additionnelles W = Y (I − P ), orthogonales à A, avec Y =

[
0 Y

]
.

Nous résolvons alors le système augmenté[
A

W

] [
x∗

0

]
=
[
A F(AP )
B S

] [
x

y

]
=
[
b

f

]
(D.13)

Ensuite, nous pouvons choisir un second membre f = −Y A+
b tel que les variables

additionnelles soient annulées. Nous obtenons donc comme dans ABCD la solution x∗

du système original grâce à la solution du système augmenté[
x∗

0

]
= A

+
b+W+f. (D.14)

D.4.3 Construction itérative de la solution

Tout est ainsi identique à la méthode ABCD... Sauf que les partitions ne sont plus
mutuellement orthogonales. Ainsi nous ne pouvons plus calculer les deux parties de la
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réponse comme précédemment:
1. A+

b 6=
p∑
i=1

A
+
i bi et pour calculer cette partie il est maintenant nécessaire de faire

converger la méthode Cimmino par bloc complètement pour obtenir cette partie de
la solution. La bonne nouvelle est que nous espérons une convergence linéaire et
rapide grâce à l’augmentation.

2. PR(AT ) 6=
p∑
i=1
PR(AT

i ) et pour calculer W+f , l’idée est la même.

D.4.3.a Solution part A+
b

Nous examinons maintenant la convergence de la méthode BC appliquée à la matrice
augmentée A qui permet de calculer d’une part A+

b, et d’autre part les projections sur
l’image de AT . Nous nous attendons à observer une convergence linéaire et rapide puisque
l’orthogonalité est vraie sur une sous-image de A correspondant au niveau grossier choisi,
et l’espoir est que ce soit suffisant pour ouvrir les angles entre les sous-espaces engendrés
par les partitions. Considérons maintenant les 3 problèmes d’EDPs introduit ci-dessus,
et prenons leur discrétisation sur la grille fine L = 5 pour former le système Ax = b où
A est partitionnée en blocs de lignes suivant la géométrie du problème. Nous utilisons
alors le niveau l = 2 comme niveau grossier afin d’appliquer l’augmentation relâchée,
avec 4 niveaux de grilles dans ce cas. La Figure D.22 montre le profile de convergence
de la méthode BC appliquée au système original, et au système augmenté A. Nous
prenons comme critère d’arrêt une erreur backward [9] de 10−10. Sans augmentation,
nous observons une convergence caractérisée par de longs plateaux et donc imprévisible.
Au contraire, quand la matrice est augmentée sur le niveau grossier 2, la convergence
devient linéaire et rapide. Dans le cas du problème de diffusion, la convergence sur A est
obtenue après plus de 2 000 itérations, et est réduite à 126 itérations après augmentation
avec 1 339 colonnes, soit 2% de la taille du système original. Cela signifie que les angles
entre les partitions sont ouverts très rapidement grâce à l’information provenant de la
grille grossière. Cela implique aussi que nous pouvons construire PR(AT ) appliqué à
n’importe quel vecteur avec une convergence rapide de la méthode itérative.

Bien sûr, nous nous attendons à ce qu’un choix de grille plus grossier apporte moins
d’informations et une convergence plus lente. Un compromis est alors à trouver entre
une petite taille d’augmentation et une convergence rapide. Dans les premiers tests
(Figure D.22), nous avons utilisé le niveau de grille l = 2 pour vérifier la robustesse
de notre approche. La Figure D.23 montre la taille d’augmentation obtenue, ainsi que
le nombre d’itérations pour la convergence de BC appliqué sur A, lorsque l’on varie le
niveau de grille grossière choisi du plus grossier (l = 0) au plus fin (l = 6). Entre un
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Figure D.23 Block Cimmino appliqué sur A avec différents choix de niveau grossier.

l’augmentation, nous introduisons une classe de méthodes avec convergence linéaire,
à l’intermédiaire entre à un extrême la méthode ABCD (l = L), avec l’orthogonalité
pure et la convergence en 1 seule itération, et à l’autre extrême la méthode BC, sans
augmentation et avec une convergence en plateaux.

D.4.3.b Solution part W+f

Maintenant, il reste à s’occuper de la deuxième partie de la solution, dépendante des
contraintes additionnelles W et du complément de Schur S. Comme dit précédemment,



240 Résumé étendu

les blocs W et S ne peuvent plus être construit avec une simple somme de projections
comme dans ABCD, à cause de la perte d’orthogonalité entre les partitions. Nous
devons approximer W et S itérativement. Ici, nous discutons deux approches pour cette
construction itérative:

1. Une approximation des contraintes additionnelles via Cimmino par bloc: Rappelons
que ces contraintes sont exprimées par

W T = (Im − P )Y T = Y T − PY T ,

où Y =
[
0 Iq

]
. La projection P = A

+
A peut être calculée par l’application de

la méthode BC sur A qui, comme vu précédemment, a une convergence rapide
et linéaire. Notons Z = A

+
AY T , la projection de Y T sur R(AT ), nous pouvons

calculer Z via la solution de norme minimale du système sous-déterminé avec
multiple second membres

AZ = AY T ,

qui peut être obtenue avec la méthode BC à nouveau [51]. Même si la convergence
de cette méthode sur A devrait être linéaire et rapide, il faut l’appliquer à autant
de vecteurs que la taille d’augmentation. De même, et c’est l’inconvénient principal,
l’approximation de S devient alors généralement très dense, comme cela résulte
d’une méthode itérative qui mélange l’information graduellement. En considérant
que la taille de S est raisonnable, le coût additionnel induit par la construction et la
solution d’un système avec une telle matrice pourrait être compensé en considérant
des problèmes dépendants du temps, avec plusieurs second membres successifs.

2. Approximation implicite du complément de Schur: Dans une seconde approche,
nous appliquons implicitement l’inverse du complément de Schur en utilisant une
méthode itérative appliquée à l’équation

Sz = f.

Pour résoudre cette équation avec une méthode de Krylov, e.g. un gradient conjugué
préconditionné, il suffit de pouvoir appliquer S à chaque itération. Comme nous
avons

S = Y (Im − P )Y T = Iq − Y PY T ,

la difficulté principale pour appliquer S à un vecteur v est le calcul de la projection
PY T v qui peut être calculée grâce à la méthode BC à chaque itération. Nous
obtenons alors un schéma d’itérations internes-externes. Le point crucial est alors



D.5 Conclusion 241

la construction d’un bon préconditionneur pour S qui permettrait d’avoir une
convergence rapide du solveur de Krylov. Le préconditionnement efficace de ce
système est le sujet de nos recherches actuelles.

D.5 Conclusion

Ces travaux de thèse ne sont qu’un élément dans la course actuelle pour arriver à l’échelle
du calcul exascale. Dans ce but, ma première contribution est l’apport d’une solution
robuste et scalable pour la solution du problème sur la grille grossière à de très grandes
échelles dans le framework multigrille HHG. Ceci n’est bien sûr qu’un élément que nous
avons lié avec des techniques sans matrice assemblée et des méthodes de discrétisation
flexibles. Ma deuxième contribution est l’apport de méthodes robustes pour des problèmes
complexes, que même les méthodes multigrilles ne peuvent résoudre. Dans ce contexte,
j’ai développé les méthodes itératives BC et pseudo-directe ABCD pour la solution des
systèmes rectangulaires de très grande taille. Enfin, dans le cas où ces deux méthodes
ne pourraient obtenir un résultat dans un temps et avec une consommation mémoire
raisonnable, j’ai proposé une nouvelle méthode dans laquelle nous appliquons la méthode
ABCD en considérant une représentation de basse résolution des interfaces entre sous-
domaines. Cette augmentation relâchée permet d’obtenir une convergence rapide et
linéaire de la méthode Cimmino par bloc. Une question très importante reste en suspend:
quelle est l’interprétation en terme d’EDPs de cette nouvelle approche. Un début de piste
serait de faire le lien entre cette méthode ABCD relâchée et des méthodes existantes de
décomposition de domaine à 2 niveaux.
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Abstract: In scientific computing, the numerical simulation of systems is crucial
to get a deep understanding of the physics underlying real world applications. The models
used in simulation are often based on partial differential equations (PDE) which, after fine
discretisation, give rise to huge sparse systems of equations to solve. Historically, 2 classes
of methods were designed for the solution of such systems: direct methods, robust but
expensive in both computations and memory; and iterative methods, cheap but with a very
problem-dependent convergence properties. In the context of high performance computing,
hybrid direct-iterative methods were then introduced in order to combine the advantages of
both methods, while using efficiently the increasingly large and fast supercomputing facilities.
In this thesis, we focus on the latter type of methods with two complementary research axis.

In the first chapter, we detail the mechanisms behind the efficient implementation of
multigrid methods. These methods use several levels of increasingly refined grids to solve
linear systems with a combination of fine grid smoothing and coarse grid corrections. The
efficient parallel implementation of such a scheme is a difficult task. We focus on the solution
of the problem on the coarse grid whose scalability is often observed as limiting at very large
scales. We propose an agglomeration technique to gather the data of the coarse grid problem
on a subset of the computing resources in order to minimise the execution time of the overall
scheme. Combined with an approximate direct solver, we demonstrate an increased overall
scalability of the multigrid scheme when using our approach compared to classical iterative
methods, when the problem is numerically difficult. At extreme scale, this study is carried in
the HHG framework (Hierarchical Hybrid Grids) for the solution of a Stokes problem with
jumping coefficients, inspired from Earth’s mantle convection simulation. The direct solver
used on the coarse grid is MUMPS, combined with block low-rank approximation and single
precision arithmetic.

In the following chapters, we study some hybrid methods derived from the classical
row-projection method block Cimmino, and interpreted as domain decomposition methods.
These methods are based on the partitioning of the matrix into blocks of rows. Due to its
known slow convergence, the original iterative scheme is accelerated with a stabilised block
version of the conjugate gradient algorithm. While an optimal choice of block size improves
the efficiency of this approach, the convergence stays problem dependent. An alternative
solution is then introduced which enforces a convergence in one iteration by augmenting the
linear system with additional variables and constraints. These two approaches are extended
in order to compute the minimum norm solution of indefinite systems and the solution of
least-squares problems. The latter problems require a partitioning in blocks of columns. We
show how to improve the numerical properties of the iterative and pseudo-direct methods
with scaling, partitioning and better augmentation methods. Both methods are implemented
in the parallel solver ABCD-Solver (Augmented Block Cimmino Distributed solver) whose
parallelisation we improve through a combination of load balancing and communication
minimising techniques.

Finally, for the solution of discretised PDE problems, we propose a new approach which
augments the linear system using a coarse representation of the space. The size of the aug-
mentation is controlled by the choice of a more or less refined mesh. We obtain an iterative
method with fast linear convergence demonstrated on Helmholtz and Convection-Diffusion
problems. The central point of the approach is the iterative construction and solution of a
Schur complement.

Keywords: high-performance computing, hybrid methods, multigrid methods,
agglomeration, full rank linear systems, augmented block Cimmino
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