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Dünyada her şey için, maddiyat için, maneviyat için, muvaffakiyet için, en
hakikî mürşit ilimdir, fendir. İlim ve fennin haricinde mürşit aramak gaflet-
tir, cehalettir, dalâlettir. Yalnız, ilim ve fennin yaşadığımız her dakikadaki
safhalarının tekamülünü idrak etmek ve terakkiyatını zamanında takip eyle-
mek şarttır. Bin, iki bin, binlerce sene evvelki ilim ve fen lisanının çizdiği
düsturları şu kadar bin sene sonra bugün aynen tatbikata çalışmak elbette
ilim ve fennin içinde bulunmak değildir.0

Mustafa Kemal Atatürk, 22 Eylül 1924, Samsun

0For everything in the world, for wealth, for the soul, for success, the truest guide is science. To seek
guidance in other things is foolishness, ignorance and heresy. But, it is necessary to perceive the developments
of science at each moment of our lives, and to follow its progress on time. Attempting to keep relying on
the same scientific postulates formulated thousands of years ago would certainly not constitute a scientific
contribution.
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Notations

Generalities

Bold lowercase letters are used to denote vectors: let u be a N ✂ 1 vector, then scalars
un, n ✏ 1, . . . , N are its entries. Capital bold letters denote matrices: for a N ✂M matrix
A, rAsn,: and rAs:,m respectively denote its nth row and mth column, and an,m ✏ rAsn,m is
the entry ♣n,mq. When dealing with indexing vectors and matrices, the first element has the
index 1, by following a MATLAB R©-like convention. Similarly, when using brackets to define
the contents of a matrix, ; for vertical concatenation (over the columns) and , is used for
horizontal concatenation (over the rows). Given the vector x P C

K , we use x③k or x③xk to
denote the size K ✁ 1 vector, corresponding to x without its kth element, i.e. xk.

IN is the N ✂ N identity matrix, 0N,M and 1N,M are respectively all zeros and all ones
N✂M matrices. The operator Diag♣uq denotes the diagonal matrix whose diagonal is defined
by u, the operator diag♣Uq denotes the column vector defined by the diagonal of the matrix
U, and Diag♣Uq denotes the matrix whose diagonal is defined by the U, but its other entries
are zeroes. XT denotes the transpose operation, XH denotes the Hermitian transposition and
X✝ denotes the complex-conjugate operation.

R,C, and Fk are respectively real, complex and kth order Galois fields. ♣nqN denotes
the classical modulo operation, that yields the number between 0 and N ✁ 1 congruent to
n, and ①n②N ✜ 1 � ♣n ✁ 1qN denotes modulo for congruence to the numbers between 1 and
N . Standard fonts are used for denoting most parameters, or sampled processes, but time-
continuous processes are denoted with roman, i.e. serifed fonts. For instance, samples of u♣tq
at t ✏ kTs, are denoted uk, for integer k, and Ts being a sampling period.

FK is the normalized K-point Discrete Fourier Transform (DFT) matrix with its elements
given by rFKsk,l ✏ exp♣✁2jπ♣k✁1q♣l✁1q④Kq④❄K, for k, l ✏ 1, . . . ,K, and such that FKFH

K ✏
IK . Moreover, if x P C

K is a time-domain process, then its frequency-domain response is
denoted with an underbar, such that x ✏ FKx (however there are some exceptions to the use
of underbar during message passing derivations). In particular, we have FH

K Diag♣❄KxqFK ✏
Circ♣xq, where Circ♣☎q is the K✂K circulant matrix whose first row is given by the argument.

Probability and Statistics

Let x and y be two random variables, µx ✏ Erxs is the expected value, σ2
x ✏ Varrxs is

the variance and σx,y ✏ Covrx, ys is the covariance. The probability of the discrete random
variable x taking the value α is Prx ✏ αs. For random vectors x and y, µx ✏ Erxs is the
expected value, and Σx,y ✏ Covrx,ys is the covariance matrix and Σx ✏ Covrx,xs. The
squared Mahalanobis distance is denoted ⑥x ✁ µ⑥2

Σ ✏ ♣x ✁ µqHΣ✁1♣x ✁ µq. For the sake of
notational simplicity, we do not distinguish a random variable and its values.

xxi
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Moreover, within the context of variational Bayes methods, following notations are used.

✾ Relation operator for two functions scaled by a constant factor
δ♣xq Dirac delta distribution
mFjÑxk

♣xkq Message from the factor node Fj to the variable node xk

mxkÑFj
♣xkq Message from the variable node xk to the factor node Fj

p♣xq PDF of x
q♣xq Approximated PDF of x
q̃♣xq Pre-projection posterior PDF of x (in the context of EP)
V♣☎q Set of neighbours of a node
xFi

Vector of variables related to the factor Fi

If x P R
k is Gaussian distributed of mean µµµ and covariance Σ, then it is denoted x ✒

N ♣µµµ,Σq, and its PDF is denoted N ♣x;µµµ,Σq, and

N ♣x;µµµ,Σq ✏ 1❛
♣2πqk⑤Σ⑤ exp

✂
✁1

2
♣x ✁µµµqT Σ✁1♣x ✁µµµq

✡
. (1)

If x P C
k is symmetrically circular complex Gaussian distributed of mean µµµ and covariance

Σ, then it is denoted x ✒ CN ♣µµµ,Σq, and its PDF is denoted CN ♣x;µµµ,Σq, and

CN ♣x;µµµ,Σq ✏ 1
♣πqk⑤Σ⑤ exp

�✁♣x ✁µµµqT Σ✁1♣x ✁µµµq✟ , (2)

and R♣xq, I♣xq ✒ N ♣µµµ,Σ④2q. If v is inverse-gamma distributed with shape parameter α and
scale parameter β, then it is denoted v ✒ IG♣α, βq and its PDF is denoted

IG♣v;α, βq ✏ βα

Γ♣αq
✂

1
v

✡♣α�1q

exp
✂
✁β
v

✡
, (3)

with a mean β④♣α✁ 1q (if α → 1) and a variance β2④r♣α ✁ 1q2♣α ✁ 2qs (if α → 2). When x
follows the complex multivariate Student distribution with location parameter µµµ, the shape
matrix Σ and with ν degrees of freedom, it is denoted x ✒ CT ν♣µµµ,Σq and its PDF is denoted

CT ν♣x;µµµ,Σq ✏ Γ♣ν � kq
♣πνqkΓ♣νq⑤Σ⑤

✂
1 � 1

ν
♣x ✁µµµqHΣ✁1♣x ✁µµµq

✡✁♣ν�kq

. (4)

The mean of this distribution is µµµ and its covariance matrix is ν
ν✁1Σ. Bernoulli distribution

of success probability p is denoted by B♣b; pq.

Network Parameters

U Number of users
Zrx Set of listening nodes
Ztx Set of transmitting nodes
Zu,dec Set of nodes to be decoded by the uth node
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Radio Parameters

α0 Roll-off factor
bu Transport block of node u
B Number of data blocks
BERu,v Bit error rate at node u for decoding node v’s message
Cu Channel code of node u

d♣bq
u bth coded block of node u

d♣bq
u,k Q-bit vector corresponding to the kth symbol of the bth data block

Eb Per-bit energy
Es Per-symbol energy
Etx,u Effective isotropic radiated power of node u
fc Carrier frequency
FWF,u Single-carrier waveform modulator
GWF,u Single-carrier waveform demodulator
ϕ Memoryless mapper
ϕ✁1

q ♣xq qth bit of the symbol x, according to ϕ
hu,v♣τ, tq Time-varying channel impulse response between nodes u and v

K Number of symbols per data block
Kb Number of bits per transport block
Kc Number of bits per codeword
Kd Number of coded bits per data block
L Delay spread
M Order of the constellation
mup Receiver upsampling factor
N ✶ Number of samples used to transmit a data block
N0 Thermal noise power spectral density
PERu,v Packet error rate at node u for decoding node v’s message
Pu uth user’s transmit power
Q Number of bits for encoding a symbol, i.e Q ✏ log2M

R Overall coding and modulation rate
Rc Channel coding rate

r♣bqu ♣tq Signal received by the uth node

s♣bqu ♣tq Signal transmitted by the uth node
SNR♣bq

u,v Signal-to-noise ratio of node v’s bth data block at node u
U Number of users
W Effective bandwidth
W0 Occupied bandwidth

x♣bq
u bth data block of user u

X Constellation

Small-case scalars corresponding to the definitions above are their iterator indexes, unless
specified otherwise. For instance b indexes data blocks from 1 to B.





Introduction

This Ph.D. thesis has been carried out under the collaboration between the “Signal &
Communications” group of IRIT-INPT, a CNRS laboratory at the University of Toulouse,
France, and the “Waveform Design” team of Thales SIX GTS (former Thales Communications
& Security), Gennevilliers, France, through a CIFRE funding, from June 2016 to May 2019.

Context of the Thesis

Wireless communications systems have significantly increasing influence in the modern
world, with both the widespread use of innovative consumer goods, and with growing indus-
trial applications and services. The wireless medium is a particularly challenging environment
for high-throughput systems: transmitted signals are subject to a variety of non-trivial propa-
gation phenomena such as multi-path fading, shadowing or interference caused by other users.
These difficulties require carefully designed protocols at Physical (PHY) and Medium Access
Control (MAC) layers, with the use of advanced signal processing algorithms at the emitter
and the receiver.

There has been an emerging design paradigm of communications protocols with coopera-
tion at the PHY layer (or cross-layer), in order to cope with the need for relaying techniques in
civilian broadband systems such as the 3rd Generation Partnership Project (3GPP) cellular
networks or the Institute of Electrical and Electronics Engineers (IEEE) 802.16m WiMAX
Wireless Metropolitan Area Network (WMAN). Such transmission strategies challenge the
conventional interference avoidance design principle, and instead they seek to create inter-
ference intentionally, to either harvest additional information, or to economize spectral and
temporal resources, through advanced signal processing and coding schemes.

These techniques naturally gather a significant amount of attention for their applicability
in Mobile Ad Hoc Networks (MANETs), which are networks that consist of peer-to-peer
transmissions. The mobility of user nodes makes the network topology subject to variations
in time, and such networks play a crucial role for many wireless systems that require fast
deployment and scalability, such as Wireless Sensor Networks (WSNs) and Private Mobile
Radios (PMRs) used in civilian protection, disaster-relief, search-and-rescue operations, and
also for tactical networks [Tob87; Haa00; Lu+07]. The use of multi-hop relaying is crucial
to cope with mobility and unstable topologies in such networks, hence using cooperative
strategies could further increase robustness, or enable sharing radio resources for multiplexing
new data. This thesis investigates the design of innovative PHY layer receiver algorithms for
future tactical MANETs.
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Distributed Cooperation in MANETs

Maintaining a low end-to-end latency in wireless MANETs while ensuring a certain level
of quality of service is a challenge due to the vulnerability of multi-hop routes. Increasing the
link robustness requires heavy control signalling and coordination, which ends up reducing
the spectral efficiency of the system [GW02; Bur+06].

In order to alleviate these issues, distributed cooperation strategies with minimal overhead
have been explored in order to either improve robustness or the throughput [And+08]. Indeed,
the broadcast and superposition nature of the wireless medium has to be exploited through
non-orthogonal transmissions, which has to be met with advanced PHY techniques capable
of mitigating intra-system interference.

A fundamental example in this objective is the cooperative broadcast strategy, where
every node that has correctly received a message, becomes a relay and actively helps to the
successful packet delivery, by re-transmitting simultaneously with the source and other relays
[MY04; SSM06; HC10; Cha+19]. A signal received through this process is naturally subject
to a significant amount of interference, that is prone to rapid changes, and PHY receivers
need to be able to cope with such considerations.

More advanced distributed cooperation schemes use partial Channel State Information
(CSI) at the receiver, and control channel feedback in order to coordinate non-orthogonal
transmission strategies for increasing the system load [DPP15; ZLL06; HMH16] . Such sig-
nalling methods require state-of-the-art PHY signal processing capabilities and moreover,
the benefit in their real-world implementation is non-trivial to conclude upon, as they often
involve a non-negligible amount of overhead.

In this thesis, the aforementioned challenges for enabling the design of cooperative MANETs
will be addressed from two fronts :

• identify from the state-of-the-art of PHY receiver design techniques, the strategies that
are likely to be realistic for near-future implementation in real-world platforms,

• ensure that selected receivers’ behavior can be predicted with link abstraction techniques
for enabling system-level simulation strategies for assessing the impact of the receiver
on a cooperative protocol.

Approximate Bayesian Inference for PHY Design

All these challenges for future cooperative MANETs underline that the received signal is
subject to a significant amount of perturbations, such as self-interference (e.g. Inter-Symbol
Interference (ISI)), intra-system interference or jamming. To mitigate or tolerate such issues,
advanced PHY layer signal processing is required. In particular, iterative detection and/or
decoding techniques play a significant role at the PHY layer [HEA11; Ngu+15]. These tech-
niques, that originated from turbo codes [BGT93], are well suited to Bit Interleaved Coded
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Modulation (BICM) systems [CTB98] and bring significant improvement over conventional
signal processing thanks to probabilistic Soft Input Soft Output (SISO) algorithms. Although
exact implementation of such algorithms can incorporate prohibitive complexity, there are
some low-complexity implementations for realistic PHY design for MANETs [CPC02].

In recent years, there are emerging variational Bayesian methods that enable deriving it-
erative detection and estimation algorithms for a large variety of signal processing problems.
In particular the Belief Propagation (BP) algorithm, which had enabled the design early
iterative turbo detection structures [WP99; TSK02], has been extended with several novel
iterative techniques [Sen+11; QM07; Han+18]. Hence it is important to assess the impact of
these developments for PHY layer receiver design with innovative SISO modules, and iden-
tify techniques with attractive complexity-performance trade-off. To better understand these
methods, we review the fundamental properties of variational Bayesian inference techniques
[Naj11; Rie+13; Per+15]. Within this family of message passing techniques, Expectation
Propagation (EP)-based doubly iterative receivers are at the heart of this thesis’ major tech-
nical contributions.

Alternatively there is a category of emerging low complexity parsimonious signal recovery
techniques, called Approximate Message Passing (AMP), which increasingly gathers attention
for iterative receiver design [Guo+13; Wu+14; Zha+15a]. There exists many strong connec-
tions between these methods, and algorithms based on variational Bayesian methods, hence
they should be investigated for clearing the dust on their strengths and weaknesses.

Furthermore, the use of deep learning for PHY layer design is also another hot topic
[OH17]. Designer must understand whether these learning algorithms could provide a sensible
advantage to the conventional model-based techniques [SDW19; HLW14].

Advanced Turbo Receivers

It has been just over twenty years [GLL97] since filter-based turbo equalization, and
more generally, turbo detection with filter-banks have been introduced. Focusing on their
use for equalization, Finite Impulse Response (FIR) structures have been widely accepted
as a reference, following the works of Tüchler et al. [TSK02; TK+02; TS11], based on the
methodology of Wang & Poor [WP99] or with the works of Roumy et al. [Rou00; Rou+01].
While these structures appear to be near optimal for low or medium-low data rates (i.e. for
low order constellations with a code rate up to 1④2), their performance is strongly degraded
when high spectral efficiency applications are considered. There has been various attempts
to improve upon these structures by using turbo Decision Feedback Equalizer (DFE) [LB06;
LX11; JM11; Tao16], however they often incorporate a considerable amount of robustness,
and the limits and usefulness of DFE-like SISO structures are not well-known.

On the other hand, from an implementation point of view, FIR structures poses various
difficulties. In the exact turbo equalization scheme, a covariance matrix has to be inverted for
each equalized symbols, and even with complexity-efficient implementation methods [TSK02],
they can be prohibitive for hardware. Another issue with the FIR DFE structures, is limitation
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caused by the decision feedback latency, which can severely limit the operating frequency of
the algorithm.

To this end, Frequency Domain (FD) equalization structures are attractive alternatives,
and they are widely used in low-cost mobile terminals for the uplink channel, through Single-
Carrier Frequency Domain Equalization (SC-FDE) transmissions [SKJ94]. These structures
are attractive due to the parallel processing of each symbol with single-tap filters in the
FD, and by using Fast Fourier Transforms (FFTs). The corresponding linear FD turbo
equalization structures [TH00; TH01] also achieves near-optimal performance at low spectral
efficiency applications. To improve the detection capabilities for high rate systems, several
FD structures use equalization and Interference Cancellation (IC) steps successively, by using
a type of a soft block decision feedback [BT05; Tao15], to which we refer as self-iterations, to
avoid confusions with Time Domain (TD) block DFE structures [Kal95].

These two categories of receivers suffer from the use of hard or A Posteriori Probability
(APP) based feedback, which violate the extrinsic message principles of turbo structures, and
results in unpredictable and irregular behavior due to decisions being strongly correlated to
equalized estimates. EP-based receiver design of these structures could be investigated to
improve the properties of the soft feedback.

Semi-Analytical Link Abstraction

As announced at the earlier paragraphs of this introduction, one of the main design
challenges of cooperative protocols for MANETs, is being able to evaluate the impact of a
realistic PHY receiver and channel model. This cannot be carried out with the actual PHY
receivers, as multiple links could be active at the same time, and simulating transmissions
and the receiver on each link has prohibitive complexity.

PHY layer abstraction methods aim to describe the link behavior with semi-analytical
models [Bru+05], this is a further more complex channels for cooperative links where signals
may combine coherently. Moreover, with the emergence of novel categories of receivers, the
predictability of their asymptotic and finite-length behavior has to be investigated.

Dissertation Outline and Main Contributions

The main objective of this thesis is to explore advanced PHY layer receivers for mitigating
crippling amounts of interference that can occur in MANETs with loosely-coordinated cooper-
ative protocols. A secondary objective is to provide a tool to accurately assess the system-level
impact of iterative PHY algorithms and cooperative MAC protocols within suitable MANET
channel models. The dissertation outline is given in Figure 1 and main contributions are
summarized below.
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Chapter 1
System model: propagation channel, MANET structure, 

PHY model.

Chapter 2
A unified view of the literature on approximate Bayesian 

inference, AMP-like algorithms and deep networks.

Chapter 3
Turbo equalization: bridging the gap on achievable rates of 

FIR structures. Novel DFE structures.

Chapter 4
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Link abstraction for the doubly-iterative FDE. 
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variant block 

structures

Figure 1: Thesis outline and relationships between different chapters.

Chapter 1: In this context chapter, an introduction to the technical challenges of MANETs
is given in order to provide the motivations behind our system model. Notations for a generic
single-carrier BICM transmitter and receiver is given, along with definitions of performance
metrics, along with some notions on theoretical limitations of communications systems. The
gap of progress between asymptotic cooperative schemes and practical relaying protocols is
pointed out, in order to justify the need for the design tools for fairly comparing different
protocols.

Chapter 2: This chapter is a work of synthesis that summarizes major advances and
emerging iterative PHY receiver design techniques, while analytically outlining the simi-
larities and differences between various approximate Bayesian inference techniques (Mean
Field (MF), BP and EP) and message passing algorithms (Generalized Approximate Message
Passing (GAMP), Vector Approximate Message Passing (VAMP) and Orthogonal Approxi-
mate Message Passing (OAMP)). The similarities between such iterative methods, and the
state-of-the-art neural network structures, are also underlined, to nuance the potential bene-
fits of using deep learning techniques for receiver design.

The contributions of this chapter have not been yet published as a stand-alone work, but
parts of it has been used to provide necessary background for the works in [Şa+19b; Şa+19a].
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Chapter 3: This chapter points out several inconsistencies observed in the literature of FIR
turbo equalizers, regarding the contradictory behaviors of Linear Equalizer (LE) and DFE. In
this regard, a generalized turbo FIR model is exposed, in order to clearly lay out differences
and similarities between different algorithms, and to understand the impact of using a hard,or
soft decision feedback, and the impact of perfect decision assumption.

A novel APP based and EP-based exact FIR turbo DFE are proposed, along with a novel
efficient algorithmic implementation for such structures, based on Cholesky decomposition
and Givens rotations. Finally, self-iterated EP-based FIR turbo DFE is explored to further
improve the achievable rates of these structures. These contributions have been published in
the journal [Şa+18c].

Another original contribution in this chapter aims to reduce the computational complexity
of FIR turbo DFE, based on EP or APP, by predicting the reliability of the decision feedback,
before using the equalizer, in order to optimize its static filters accordingly. This contribution
has been published in the journal [Şa+20a].

Chapter 4: This chapter aims to drastically reduce self-iterated equalization complexity,
compared to FIR DFE, through the consideration of low complexity FD receiver design, by
following a “scalar EP” framework with double-loop scheduling. To illustrate the capabilities
of this framework, first a basic turbo Frequency Domain Equalizer (FDE) is derived, and its
finite-length and asymptotic performance is analyzed. This contribution has been published
in the conference paper [Şa+18b].

Next, through comparison to AMP-like low-complexity algorithms, our proposal appears
to be able to reach lower error rates that structures that would have been based on this
literature, if its parameters are properly tuned. Hence, the concept of deep unfolding is
used to generate deep neural network based on this receiver, and we have proposed a turbo-
receiver-oriented loss function in order optimize this receivers’ parameters through learning.
This contribution has been published in the conference papers [Şa+19a; Şa+19c].

There has also been various extensions of this framework for different circularized wave-
forms, for time-varying channel equalization, for multiple-user or multiple-antenna systems
has been derived or discussed. This has led to various publications such as [Şa+18a; Şa+18e;
Şa+18d].

Finally, the impact of channel and Signal to Noise Ratio (SNR) estimation through mis-
matched and robust FDE has been analyzed, and a groundwork has been laid out for deriving
a joint channel estimator and equalizer based on a three-loop receiver. These contributions
are being completed for future publications such as [Şa+20b].

The unifying technical aspect of all these structures is a novel SISO demapper, based on
EP, which enabled computing robust extrinsic symbol feedback, for interference regeneration
and cancellation. This element has been subject of the patent [Şa+b].
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Chapter 5: In this chapter, a simulation framework is proposed for enabling system-level
evaluation of cooperative MANET protocols. The core of such methods consist in semi-
analytical abstraction of physical links, and to this end, the prediction of the proposed FD
method is investigated through asymptotic evolution analysis [YGP07], then by extending
effective prediction methods from the literature [VB+10]. Contributions in these topics have
partially been presented in [Şa+19b].

An original finite-length prediction method is also presented in this chapter, by exploiting
the dispersion of the soft feedback reliability. This method is the subject of the patent [Şa+a].

Finally, in order to illustrate the use of these techniques in an explicit application, the
notion of cooperative broadcasting is presented, and the impact of the proposed receiver is
investigated at the link level and then system level. Part of this work that focused on modeling
the behavior of the cooperative link has been published in [Şa+18d].
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Cette thèse de doctorat a été menée grâce à la collaboration entre le groupe “Signal &
Communications” du laboratoire CNRS, IRIT-INPT, à l’Université de Toulouse, France, et
l’équipe “Waveform Design” de Thales SIX GTS (précédemment Thales Communications &
Security), Gennevilliers, France, à travers un financement CIFRE de Juin 2016 à Mai 2019.

Le Contexte de la Thèse

Les systèmes de communications sans-fils ont un impact de plus en plus marquants dans
le monde moderne, avec à la fois avec l’usage répandu de produits de consommation inno-
vantes, et avec l’expansion des cas d’usages industrielles et de services. Le milieu sans-fil
est un environnement particulièrement éprouvant pour les systèmes haut-débits: les signaux
transmises sont susceptibles à une variété de phénomènes de propagation non-triviaux tel que
l’évanouissement multi-trajets, le masquage ou l’interférence généré par d’autres usagers. Ces
défis nécessitent des protocoles conçus avec soin aux couches PHY et MAC avec l’utilisation
des algorithmes de traitement de signal avancés à l’émetteur et au récepteur.

Il y a une paradigme de conception émergeant des protocoles de communication avec
coopération au niveau de la couche PHY (ou inter-couches), afin de répondre aux besoins
d’utilisation de techniques de relayage dans les systèmes civiles large-bandes tels que le réseau
cellulaire du 3GPP ou le WMAN 802.16m WiMAX du IEEE. Tels stratégies de transmission
s’oppose aux principes conception conventionnels fondés sur l’évitement d’interférence, en
plutôt créant de l’interférence intentionnellement, afin de soit pouvoir récolter de l’information
supplémentaire, ou afin d’économiser des ressources spectrales et temporelles, grâce à des
techniques avancées de traitement du signal et de codage.

Naturellement, ces techniques attirent beaucoup d’attention par rapport à leur appli-
cabilité dans les réseaux ad-hoc mobiles (MANETs), puisque ceux-ci sont principalement
constitués des transmissions pair-à-pair. La mobilité des utilisateurs rendent la topologie du
réseau susceptible à des variations dans le temps, et de tels réseaux jouent un rôle clé dans
tout système sans-fil nécessitant un déploiement rapide et de la capacité de passage à l’échelle,
tels que les réseaux de capteur (WSNs) et les radios mobiles professionnelles (PMRs) utilisés
pour la protection des civiles, les opérations d’aide humanitaire ou de sauvetage et aussi pour
les réseaux tactiques [Tob87; Haa00; Lu+07]. L’utilisation du relayage par sauts multiples
est un point clé pour faire face à la mobilité et des topologies instables dans de telles réseaux,
donc l’utilisation des stratégies coopérations pourrait augmenter la robustesse davantage, ou
permettre de partager les ressources radios pour multiplexer plusieurs flux de données. Cette
thèse étudie la conception d’algorithmes innovants en couche PHY pour les récepteurs des
MANETs tactiques futurs.

9
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La Coopération Distribuée dans les MANETs

Maintenir un faible délai de transmission bout-à-bout dans les MANETs sans-fil, tout en
assurant un certain niveau de qualité de service, est un défi majeur à cause de la vulnérabilité
des trajets à saut-multiples. Augmenter la robustesse du lien nécessite de la coordination
et une signalisation excessive sur un lien de contrôle, ce qui réduit l’efficacité spectrale du
système [GW02; Bur+06].

Pour remédier ces problèmes, les stratégies coopératives distribués ayant les charges de
signalisation les plus légers ont été explorées, afin de soit améliorer la robustesse ou le débit du
système [And+08]. En effet, l’aspect favorable du milieu sans-fil à la diffusion et à la superpo-
sition des signaux peut être exploité par des transmissions non-orthogonaux avec l’utilisation
des techniques couche PHY avancés, capable de mitiger l’interférence intra-système.

Un exemple fondamental à cet égard, est la technique de la diffusion coopérative, où
chaque noeud ayant correctement reçu une message, devient un relai et aide activement à
la transmission du paquet en le retransmettant simultanément avec la source et les autres
relais [MY04; SSM06; HC10; Cha+19]. Un signal reçu par ce moyen subit naturellement une
quantité significative d’interférence, qui peut rapidement évoluer, et les récepteurs couche
PHY doivent donc affronter ces considérations.

Des stratégies coopératives distribuées plus avancées utilise une connaissance partielle
de l’état du canal (CSI) au niveau du récepteur, et utilise un canal de retour pour coor-
donner les transmissions non-orthogonaux afin d’optimiser la charge du système [DPP15;
ZLL06; HMH16]. De telles méthodes de signalisation nécessitent l’utilisation des techniques
de traitement du signal de l’état de l’art en couche PHY, et par ailleurs, leur intérêt pour
une implémentation réelle est non-trivial à déterminer, puisque les coûts de signalisation sont
souvent négligés dans les études.

Dans cette thèse, les défis précédemment cités pour la conception des MANETs coopéra-
tives seront adressés sur deux fronts:

• identifier, à partir de l’état de l’art sur les techniques de conception de récepteurs PHY,
les stratégies qui sont le plus vraisemblable pour une implémentation dans le futur
proche sur des plateformes réelles,

• s’assurer que le comportement des récepteurs choisis peut être prédit avec des techniques
d’abstraction de lien afin de pouvoir mener des simulations système permettant d’évaluer
l’impact des récepteurs à l’échelle d’un protocole coopératif.

Inférence Bayésienne Approximée pour la Conception PHY

Tous ces défis cités pour les MANETs coopératives futurs soulignent que le signal reçu
est sujet à de nombreuses perturbations, tel que l’auto-interférence (e.g. l’interférence entre
symbols (ISI)), l’interférence intra-système ou le brouillage. Afin de mitiger, ou tolérer ces
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nuisances, on utilise du traitement de signal avancé au niveau de la couche PHY. En par-
ticulier, les techniques de détection et/ou de décodage itératives jouent un rôle significatif
à cet égard [HEA11; Ngu+15]. Ces techniques, qui proviennent des turbo-codes [BGT93],
son bien adaptés aux systèmes de modulation codé à bit entrelacés (BICM) [CTB98] et ap-
portent des gains significatifs comparés aux techniques de traitement classiques, grâce à des
modules probabilistes à entrée et à sortie souples (SISO). Tandis que l’implémentation ex-
acte de tels algorithmes peut relever une complexité prohibitive, il existe des implémentations
faible-complexités pour permettre leur utilisation dans la couche PHY des MANETs réalistes
[CPC02].

Récemment, il y a des méthodes bayésiennes variationnelles émergentes qui permettent
de dériver des algorithmes de détection et d’estimation itératives pour une grande variété de
problèmes de traitement du signal. En particulier, l’algorithme de propagation de croyance
(BP), qui avait permis la conception des premières structures de détection turbo [WP99;
TSK02], a été étendu grâce à des nouvelles techniques itératives [Sen+11; QM07; Han+18].
Il est donc important d’évaluer l’impact de ces développements pour la conception de ré-
cepteurs PHY avec des modules SISO innovantes, et identifier ceux qui permettent d’avoir
un compromis performance-complexité attractive. Afin de mieux comprendre ces méthodes,
nous effectuerons la revue des propriétés fondamentales des techniques d’inférence bayésienne
variationnelles [Naj11; Rie+13; Per+15]. Parmi cette famille de techniques de passage de
message, les récepteurs doublement itératifs à base de la propagation d’espérance (EP) sont
au coeur de contributions techniques majeures de cette thèse.

Alternativement, il y a une catégorie émergents de techniques de récupération du signal
parcimonieux, à faible complexité, appelées passage de message approximée (AMP), qui at-
tirent de plus en plus l’attention pour la conception de récepteurs itératives [Guo+13; Wu+14;
Zha+15a]. Il existe de nombreuses connections entre ces méthodes et les algorithmes basés sur
les méthodes bayésiennes variationnelles, et donc ils méritent d’être examinés afin de clarifier
leur points forts et leurs faiblesses.

Par ailleurs, l’utilisation de l’apprentissage profond pour la conception de la couche PHY
est un autre sujet d’actualité [OH17]. On doit alors comprendre si ces algorithmes peuvent
fournir un avantage considérable face aux méthodes conventionnelles basés sur les modèles
[SDW19; HLW14].

Turbo Récepteurs Avancés

Cela a fait un peu plus de vingt années depuis l’émergence de turbo égalisation à base de
filtres [GLL97], ou de manière plus générale, l’utilisation de banc de filtres pour la détection
turbo. Si on se limite à leur utilisation en égalisation, les structures à base de filtres à réponse
impulsionnelles finis (FIR) sont largement acceptés comme une référence fondamentale, suiv-
ant les travaux de Tüchler et al. [TSK02; TK+02; TS11], basés sur la méthodologie de Wang

& Poor [WP99] ou avec les travaux de Roumy et al. [Rou00; Rou+01]. Alors que ces struc-
tures semblent être quasi-optimales pour des systèmes à base ou moyen débits (i.e. pour des
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constellations d’ordre faibles avec un rendement de code inférieure à 1④2), leur performances
sont fortement dégradés lorsqu’on considéré des applications à haut débits. Il y a eu plusieurs
tentatives d’amélioration de ces structures en utilisant des turbo égaliseurs avec un retour de
décisions (DFE) [LB06; LX11; JM11; Tao16], par contre ces méthodes se focalisent souvent
sur la robustesse avec des hypothèses simplificatrices, et les limites et l’utilité des structure
SISO semblables à un DFE no sont pas bien connus.

D’autre part, de point de vue de l’implémentation matérielle, les structures FIR posent
des divers problèmes. Pour le turbo égaliseur exact, une matrice de covariance doit être
inversée pour chaque symbole égalisé, et même avec des approches d’implémentation efficaces
en complexité [TSK02], ceci peut s’avérer trop complexe pour implémentation matérielle. Un
autre soucis se présente pour les DFE FIR où la latence de retour de décision constitue le
chemin critique et peut sévèrement limiter la fréquence de fonctionnement de l’algorithme.

Dans cet objectif, les structures d’égalisation en domaine fréquentielle (FD) sont des alter-
natives très attractives, et ils sont utilisés de manière répandus dans des bornes mobiles à bas
coût pour le canal de la liaison montante, à travers des transmissions mono-porteuses avec
égalisation fréquentielle (SC-FDE) [SKJ94]. L’attractivité de ces structures est notamment
dû à l’utilisation de filtres à un coefficient pour le traitement en parallèle de toutes les sym-
boles, avec l’utilisation de la transformée de Fourier rapide (FFT). Les structures de turbo-
égalisation associées [TH00; TH01] atteignent aussi une performance quasi-optimale pour des
applications à bas débit. Afin d’améliorer leurs performances pour des systèmes hauts débits,
plusieurs structures FD utilisent les étapes d’égalisation et d’annulation d’interférence (IC)
successivement, avec une variante de retour de décision souple sur block [BT05; Tao15], lequel
on décrira comme une auto-itération, pour éviter la confusion avec les structures DFE block
de [Kal95].

Ces deux catégories de récepteurs subissent le même sort, en violant le principe de messages
intrinsèque échangés équitables, et les résultats sont souvent imprédictibles, et avec le retour
dur du démodulateur est fortement corrélée aux estimés égalisés. La conception de récepteurs
à base d’EP peut être investigué pour améliorer les propriétés du retour souple.

Abstraction de Lien Semi-Analytique

Comme mentionné au début de cette introduction, un des défis de conception des pro-
tocoles coopératifs pour les MANETs est d’être capable d’évaluer l’impact d’une récepteur
PHY et une modèle de canal réalistes. Cela ne peut être effectué avec les vrais algorithmes
des récepteurs PHY, puisqu’à cette échelle plusieurs liens peuvent être simultanément actives
et simuler ces transmissions et chaque récepteur a une complexité excessive.

Les méthodes d’abstraction de la couche PHY ont pour but de décrire le comportement
du lien en utilisant des modèles semi-analytiques [Bru+05], et cela est encore plus compliqué
lorsqu’on considère les canaux compliquées mise en jeu par des liens coopératives où les
signaux peuvent s’interférer et/ou combiner de façon cohérent. D’autre part, avec l’émergence
de nouvelles catégories de récepteurs, leur prédictibilité asymptotique et à taille-fini devront
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Chapitre 1
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Figure 2: Le plan de la thèse et les liens entre les différents chapitres.

être investigué.

Le Plan de la Thèse et les Contributions Principales

L’objectif principal de cette thèse est d’explorer de récepteur couche PHY avancés pour
mitiger la quantité écrasante d’interférence qui peut survenir dans des MANETs utilisant
des protocoles coopératives peu coordonnées. Un objectif secondaire est de fournir un outil
permettant d’évaluer fidèlement l’impact à l’échelle du système des algorithmes PHY itératives
et des protocoles MAC coopératives avec des modèles de canal convenables pour MANET.
Le plan de la thèse est illustré dans la Figure 2 et les contributions principales sont résumées
ci-dessous.

Chapitre 1: Dans ce chapitre de contexte, on fournit une introduction sur les défis tech-
niques pour les MANETs afin d’expliquer notre motivation sur le modèle de système considéré.
Les notations pour un émetteur et récepteur mono-porteuse générique utilisant de la mod-
ulation codée à bit entrelacés, i.e. BICM, est présenté, avec la définition des métriques de
performance et avec quelques notions théoriques sur les limites systèmes de télécommunica-
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tions. On souligne l’écart de progrès entre les schémas coopératifs théoriques, asymptotiques
et des protocoles de relayage coopératif, afin de pouvoir comparer les différentes méthodes
disponibles pour effectuer un choix de conception.

Chapitre 2: Ce chapitre est une thèse qui résume les avancés majeurs sur les techniques
itératives en couche PHY, ainsi que les méthodes émergents, toute en effectuant une com-
paraison analytique entre divers techniques d’inférence bayésienne approximées (MF, BP et
EP) et les algorithmes de passage de massage approximés (GAMP, VAMP et OAMP). Les
similarités entre ces structures itératives et les réseaux neuronales de l’état de l’art sont aussi
évoqués afin de nuancer le potentiel apport de l’utilisation l’apprentissage profond pour la
conception de récepteurs.

Les contributions de ce chapitre n’ont pas été encore publiées comme un article séparé,
mais certains passages ont été utilisés pour fournir le fond nécessaire pour les travaux dans
[Şa+19b; Şa+19a].

Chapitre 3: Ce chapitre soulève certaines inconsistances, constatées dans la littérature sur
les turbo égaliseurs à réponse impulsionnelle fini (FIR), à propos de comportement contradic-
toire des structures des égaliseurs linéaires (LE) et des égaliseurs à retour de décision (DFE).
À cet égard, une modèle de turbo égaliseur FIR générique est donnée afin de plus facilement
identifier les similarités et les différences entre les différents algorithmes de l’état de l’art, et
de comprendre l’impact de l’utilisation du retour dur ou souple, ainsi que celui de l’hypothèse
de retour de décision parfaite.

Nouveaux turbo égaliseurs FIR exactes à base de retours APP et basés sur EP sont
proposés, avec une nouvelle proposition d’implémentation efficace pour de tels structures, en
exploitant la décomposition de Cholesky et les rotations de Givens. Pour finir, un turbo FIR
DFE, auto-itérée, à base d’EP, est explorée afin de davantage pousser les limites de débits
atteignables avec ce type de structures. Ces contributions ont été publiées dans l’article de
journal [Şa+18c].

Une autre contribution originale de ce chapitre cherche à réduire la complexité calculatoire
des turbo DFE FIR, basés sur EP ou APP, en prédisant la fiabilité du retour de décision,
avant d’utiliser l’égaliseur, afin d’optimiser ses filtres statiques de manière appropriée. Cette
contribution a été publiée dans un article de journal [Şa+20a].

Chapitre 4: Ce chapitre vise à radicalement réduire la complexité de l’égalisation auto-
itérée, compare à celle des DFE FIR, à travers l’étude de méthodes de conception pour
des récepteurs domaine fréquentielle (FD) à faible complexité, en suivant une approche EP
“scalaire” avec un ordonnancement à deux boucles. Afin d’illustrer les capacités de cette
approche, dans un premier temps un turbo égaliseur domaine fréquentielle (FDE) simple est
dérivée, et ses performances à taille-fini et asymptotique sont analysés. Cette contribution a
été publiée dans l’article de conférence [Şa+18b].
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Puis, à travers une comparaison avec les algorithmes faible complexité basés sur l’AMP,
on montre que notre proposition est capable d’atteindre des taux d’erreur plus faibles que
ce que ces structures auraient donnée pour une application en turbo FDE, lorsqu’on calibre
correctement leurs paramètres. Ainsi, le concept du dépliement profond est utilisé pour
générer un réseau de neurones basé sur ce récepteur, et nous avons proposé un fonction de
perte dédiée pour les récepteurs turbo afin d’optimiser les paramètres du turbo FDE à base de
EP à travers l’apprentissage. Ces contributions ont été publiées dans les papiers de conférence
[Şa+19a; Şa+19c].

Il y a eu aussi divers extension de cette approche fréquentielle pour d’autres formes
d’onde circulaires, comme pour l’égalisation de canaux temps-variant, ou pour des systèmes à
plusieurs utilisateurs ou antennes. Cela a mène d’autre publications tel que [Şa+18a; Şa+18e;
Şa+18d].

Pour finir, l’impact de l’estimation du canal et du SNR à travers des FDE en disparité
ou robuste set analysé, et un travail de fond est mise en place pour dériver un égaliseur et
estimateur de canal conjointe avec un récepteurs à trois boucles. Ces contributions sont en
train d’être complétés pour des publications futures telle que [Şa+20b].

L’aspect unifiant de toutes ces structures fréquentielles est le nouveau démodulateur SISO
basé sur EP, permettant de calculer un retour extrinsèque sur les symboles à détecter, ce qui
peut être utilisé pour l’annulation ou la régénération de l’interférence. Cet élément est le
sujet du brevet [Şa+b].

Chapitre 5: Dans ce chapitre, une méthodologie de simulation est proposé pour permettre
l’évaluation au niveau système des protocoles coopératives pour MANETs. Le coeur de cette
méthode réside dans l’abstraction semi-analytique des liens physiques et dans cet objectif, on
a étudié la prédiction de la méthode FD proposé à travers l’analyse de son évolution asymp-
totique [YGP07], et puis en étendant des méthodes de prédiction efficaces de la littérature
[VB+10]. Les contributions sur ces sujets ont été partiellement présentés dans [Şa+19b].

Une méthode de prédiction originale à taille-fini est aussi présentée dans ce chapitre, en
exploitant la dispersion de la fiabilité du retour souple. Cette méthode est le sujet du brevet
[Şa+a].

Pour finir, afin d’illustrer l’utilisation de ces techniques dans une application explicite, la
notion de la diffusion coopérative est présentée, et l’impact du récepteur proposé est étudié
au niveau du lien, puis à l’échelle du système. Une partie de ce travail sur la modélisation
des liens coopératifs a été publiée dans [Şa+18d].





List of publications

Peer-Reviewed Journal Articles

J1- S. Şahin, A. M. Cipriano, C. Poulliat, M.-L. Boucheret, “Iterative Equalization with
Decision Feedback based on Expectation Propagation”, IEEE Transactions on Com-

munications, vol. 66, no. 10, pp. 4473-4487, Oct. 2018. [Şa+18c]

J2- S. Şahin, A. M. Cipriano, C. Poulliat, M.-L. Boucheret, “A Framework for Iterative Fre-
quency Domain EP-based Receiver Design”, IEEE Transactions on Communications,
vol. 66, no. 12, pp. 6478-6493, Dec. 2018. [Şa+18a]

J3- S. Şahin, C. Poulliat, A. M. Cipriano, M.-L. Boucheret, “Iterative Decision Feedback
Equalization Using Online Prediction”, IEEE Access, vol. 8, pp. 23638-23649, Jan.
2020. [Şa+20a]

International Conference Articles

C1- S. Şahin, A. M. Cipriano, C. Poulliat, M.-L. Boucheret, “Iterative Equalization Based
on Expectation Propagation: a Frequency Domain Approach”, 26th European Signal

Processing Conference (EUSIPCO), Rome, Italy, Sep. 2018, pp. 932-936. [Şa+18b]

C2- S. Şahin, C. Poulliat, A. M. Cipriano, M.-L. Boucheret, “Spectrally Efficient Iterative
MU-MIMO Receiver for SC-FDMA based on EP”, IEEE 29th Annual International

Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Bologna,
Italy, Sep. 2018. [Şa+18e]

C3- S. Şahin, A. M. Cipriano, C. Poulliat, M.-L. Boucheret, “On Cooperative Broadcast
in MANETs with Imperfect Clock Synchronization”, IEEE Military Communications

Conference (MILCOM), Los Angeles, CA, USA, Oct. 2018. [Şa+18d]

C4- S. Şahin, A. M. Cipriano, C. Poulliat, M.-L. Boucheret, “Evolution Analysis of Iterative
BICM Receivers with Expectation Propagation over ISI Channels”, IEEE International

Symposium on Information Theory (ISIT), Paris, France, Jul. 2019. [Şa+19b]

C5- S. Şahin, C. Poulliat, A. M. Cipriano, M.-L. Boucheret, “Doubly Iterative Turbo Equal-
ization: Optimization Through Deep Unfolding”, IEEE 30th Annual International Sym-

posium on Personal, Indoor and Mobile Radio Communications (PIMRC), İstanbul,
Turkey, Sep. 2019. [Şa+19a]

C5- S. Şahin, A. M. Cipriano, C. Poulliat, M.-L. Boucheret, “Doubly Iterative Turbo Equal-
ization: Optimization Through Deep Unfolding”, IEEE 45th International Conference

on Acoustics, Speech, and Signal Processing (ICASSP), Barcelona, Spain, May 2020.
[Şa+20b]

17



18 List of publications

National Conference Articles

N1- S. Şahin, A. M. Cipriano, C. Poulliat, M.-L. Boucheret, “Récepteurs Itératifs par Prop-
agation de l’Espérance : Optimisation par Dépliage Profond”, Actes du XXVIIème Col-

loque du Groupement de Recherche en Traitement du Signal et des Images (GRETSI),
Lille, France, Aug. 2019. [Şa+19c]

N2- Eric Soubigou, Serdar Şahin, Antonio Maria Cipriano, Charly Poulliat and Romain
Chayot, “Analyse Multicritères des Performances et de la Complexité des Turbo-égaliseurs
à Complexité Réduite à base de Treillis et de Filtres”, Actes du XXVIIème Colloque

du Groupement de Recherche en Traitement du Signal et des Images (GRETSI), Lille,
France, Aug. 2019. [Sou+19]

Patents

P1- S. Şahin, A. M. Cipriano, C. Poulliat, M.-L. Boucheret, “Procédé pour calculer une
estimation d’un signal numérique modulé et de sa fiabilité”, awaiting publication., time-
stamped: Feb. 2018. [Şa+b]

P2- S. Şahin, A. M. Cipriano, C. Poulliat, M.-L. Boucheret, “Méthode de prédiction des
performances d’un récepteur itératif basé sur la propagation d’espérance”, awaiting
publication., time-stamped: Oct. 2019. [Şa+a]

Articles in Preparation or Under Review

R1- S. Şahin, A. M. Cipriano, C. Poulliat, M.-L. Boucheret, “Finite-length Pseudo-random
Semi-analytic Prediction for Doubly Iterative Turbo Receivers”, in preparation.



Chapter 1

On Distributed Cooperation in
Mobile ad hoc Networks
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1.1 Introduction

Common wireless systems, such as the 3GPP cellular networks or the IEEE 802.11 Wireless
Local Area Network (WLAN) Wi-Fi, rely on fixed infrastructures, where base stations or ac-
cess points play a key role to establish connection between nodes. This is the classical “star
topology” where a fixed terminal has the computational power to carry out heavy signal
processing, or to handle complex network access management for mobile, low-cost nodes.
However 3GPP’s latest updates in Long Term Evolution Advanced (LTE-A), for 4th Genera-
tion (4G) cellular networks, include Device-to-Device (D2D) links where mobile terminals are
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Figure 1.1: Illustration of a tactical network.

used as relays for range extension, on top of base stations [TUY14; KK14; Baz+17]. Similarly,
3GPP’s 5th Generation (5G) New Radio’s the Machine Type Communications (MTC) use
case for future WSN with heterogeneous nodes, considers the use of peer-to-peer relaying, as
emerging cannot always rely only on a fixed infrastructure.

In ad hoc networks, as opposed to the fixed topology systems, users communicate directly
with each other, i.e. with peer-to-peer transmissions, leading to a mesh network infrastructure
[AWW05]. Such systems are self-organizing and they use multi-hop connectivity across the
network through user terminals which can act both as a source or as a relaying node for
other sources. MANETs are of significant importance for military applications, as they can
adapt to very different deployment requirements, as illustrated in Figure 1.1. A widespread
application is voice broadcasting among soldiers or vehicles with push-to-talk radios on the
tactical edge, but more advanced command-and-control networks also connect MANETs to
a command center through satellite or cabled networks [HHK05; LN09; Lar+10; Elm12].

Applications involving low-latency, wide coverage and robust connectivity requirements,
such as push-to-talk, pose many design challenges for MANETs [GW02; Bur+06; Fis16]:

• handle issues caused by an unstable dynamic topology,

• ensure robustness in harsh propagation channels with uncertainties,

• mitigate intra-system interference,

• adapt to the challenges of radio hardware constraints.

Multi-hop relaying provides a certain robustness to channel impairments, thanks to possibly
available alternative routes, but the resulting end-to-end latency and jitter is non-negligible
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[BFY04; GT01]. Clustering is used to address these issues, to some extent, by establishing
a sort of infrastructure on a large scale, but within each cluster, distributed protocols and
signal processing algorithms are preferred for minimizing overhead [OLT07; MLC17; Gav18].
Finally, the network scalability is another major issue, as the number of nodes increases
protocols should be capable of supplying required resources, without causing a significant loss
of spectral efficiency due to coordination overhead of the control channel.

Considering the broadcast and superposition nature of radio transmissions in the wireless
medium, cooperation and relaying appear to be necessary for achieving the network capacity
[OLT07; ADT11; Lim+11; LKK17; LC15a]. Cooperative communications strategies con-
struct virtual Multiple Input Multiple Output (MIMO) transmissions within a network, and
bring considerable flexibility on protocol design for improving the throughput or the diversity
[Lan02; TV05; KMY+07; DL10]. In various wireless systems with infrastructure, cooperation
and relaying concepts have been proven to be of primordial importance, both as a fundamen-
tal means to achieve network capacity, or as a means to satisfy highly demanding Quality
of Service (QoS) requirements, such as the coverage [Li+12; Cip+12; Zha+15b; HMH16;
Tho+17]. But the above-mentioned issues of MANETs increase the toll of control signalling
on the spectral efficiency, and hence, conventional strategies which require a high amount of
coordination are not applicable for such networks [Tse+02; Ram05; And+08].

Theoretical works on the per-user capacity in wireless ad hoc networks also show that
broadcast traffic makes a more efficient use of available resources, compared to unicast trans-
missions [GK00; KHRR06; WSG08]. This observation has led to the emergence of protocols
that extend the notion of “physical link” from a conventional peer-to-peer routes to a multi-
nodal routes [LTW04; SGL06; Jak+06; RT07]. Such concepts rely on cross-layer design of
MAC and PHY layers to establish connections that are robust to the difficulties posed by the
wireless medium [DPB13], but low-cost oscillators and amplifiers of MANETs also induce a
significant amount of interference and limitations for the cooperation. While these issues can
be avoided for low throughput services [SH03; Cha+19], they are problematic for high-spectral
efficiency applications and require advanced receivers for ISI, Inter-Block Interference (IBI)
or Inter-Carrier Interference (ICI) mitigation [WGV06; Bla+07; WXY09; Yen+11].

These challenges for future cooperative MANETs show that the received signal is subject
to various perturbations, whether it be self-interference, intra-system interference or jamming.
To mitigate or tolerate such issues, advanced PHY layer signal processing is required. In
particular, iterative detection and/or decoding techniques play a significant role at the PHY
layer [HEA11; Ngu+15]. These techniques, that originated from turbo codes [BGT93], are
well-suited for BICM [CTB98] and bring significant improvements over conventional methods
thanks to probabilistic SISO algorithms. Although exact usage of such algorithms can have
prohibitive costs, there are some low-complexity implementations for MANETs [CPC02].

In this chapter, MANET and radio system model assumptions used in this thesis are
provided, along with some fundamental notations and definitions. Next, our hypotheses on the
wireless propagation channel are exposed. Finally, an overview of challenges for cooperative
communications in MANETs is given, in order to emphasize the motivations behind design
choices and the PHY layer models used throughout this thesis.
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1.2 Network and Radio Model

In this section, network model assumptions and high-level radio properties are exposed
for the considered MANET.

1.2.1 Network Structure and Services

In this thesis, the considered MANET is comprised of low-cost terminals with limited
capabilities for a vast range of applications including, but not limited to mobile, vehicular or
tactical networks. Moreover, the network consists of homogeneous nodes and thus, peer-to-
peer physical links are subject to the same set of limitations. These users can be deployed
on an area ranging from a few to a hundred square kilometers, with possible clustering into
smaller groups.

MANETs for military or civilian protection use a high amount of services that are based
on group communications where multiple users are interested in decoding a single source’s
information [HHK05; Lar+10]. Hence these applications require by nature broadcast or mul-
ticast traffic where destination nodes are also well-suited to serve as relay nodes for multi-hop
transmissions. However these services can have different latency and robustness requirements:

• push-to-talk (PTT) voice transmissions are often narrowband and involve stringent
delay constraints and require a significant amount of robustness versus channel outage,

• situational awareness messages (information sharing) have looser latency constraints,

• video streaming requires wideband transmissions, also with looser latency constraints,

• augmented-reality could require both wideband signals and strict latency constraints.

From the considerations above, robustness, latency and throughput constitute the key per-
formance metrics for MANETs.

Although multi-hop relaying appear as a beneficial factor for increasing coverage and peer-
to-peer link robustness [BFY04], as mentioned in the introduction, unicast traffic does not
scale well with such networks [GK00], and the network capacity decreases with the number of
nodes. This issue is less severe for broadcast traffic [WSG08], and the capacity scaling further
improves with cooperative signalling [OLT07]. Consequently, many MAC protocols for unicast
traffic in MANETs exploit an underlying broadcast mechanism, along with cooperation, in
order to increase efficiency of the overall traffic.

1.2.2 Protocol Stack and Access

As communications system design involves a high variety of disciplines, they are conven-
tionally modeled as a vertically stacked layered architecture to address this complex engi-
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Reliable signal transmission over the physical channel. 

Figure 1.2: Open Systems Interconnection layers.

neering problem. A widespread example is the Open Systems Interconnection (OSI) model
which enables interoperability of protocol at various abstraction levels [Elm12], as shown in
Figure 1.2. In this thesis, only MAC and PHY layers are considered, with a strong focus on
PHY, and a few references to the network layer. To this end, some vocabulary is introduced
to be specific about the notions that will be discussed.

The relevance of the traditional OSI model and its derivatives have become questionable
for MANETs, due to multi-hop transmissions. For instance, frequent use of relaying causes
increased latency, as packets have to go at least up to the network layer for multi-hop routing
[Cla+03]. Moreover, the use of cooperative techniques blurs the borders between PHY and
MAC layers [Ram05; Elm12]. Hence, MANETs require innovative adaptive protocol stack,
depending on whether a node is relaying or not, and they need to use advanced cross-layer
algorithms that exploit the notion of cooperative link [RT07; KK14]

The packet that upper layers provide to the MAC layer is called the payload, and the
MAC layer possibly carries out pre-processing at MAC with segmentation, control signalling
for resource allocation or Automatic Repeat Request (ARQ) [Let18], one-or-two-hop topology
discovery, or network coding, and produces one or more transport blocks as its output. MAC
layer adds to the segmented and pre-processed data an header for protocol control and also
appends a Cyclic Redundancy Check (CRC) code, for error detection. PHY layer processes
a transport block to produce a set of data blocks, which are the elementary blocks of symbols
that is transmitted on the physical medium. Data blocks are assigned to physical channel
resources, according to a cross PHY-MAC resource allocation and transmission protocol, and
Frequency Hopping (FH) with a pseudo-random pattern is used at the PHY output, for
increasing jamming resilience [AWH07].

Another important functionality of MAC layer is the access regulation for collision avoid-
ance, and intuitive multiple access techniques for MANETs are based on random access,
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Figure 1.3: Illustration of the resource grid and notations for simple TDMA.

where the medium is attempted to be allocated when needed, by ensuring no other nodes
are transmitting. Although this type of protocols are particularly interesting for delay-
constrained applications, they require coordination procedures, such as Carrier Sense Multiple
Access (CSMA), which can cause large contention and collision resolution periods, and which
is vulnerable to the hidden terminal problem. Alternatively, reservation-based MAC protocols
with strict schedules, such as Time Division Multiple Access (TDMA) or Frequency Division
Multiple Access (FDMA), increase predictability and avoid collision and hidden node issues.
In this thesis, the network is considered to be synchronous, with a resolution of a few tens
of microseconds, and for simplicity we limit ourselves to MAC protocols with predetermined
static schedules. Such access schedules can be combined with spatial reuse or Non-orthogonal
Multiple Access (NOMA) for further increased spectral efficiency [BS08].

1.2.3 High-Level Network and Radio Model

Following the assumptions above, here a high-level model of a baseline MANET and radios
is described, along with some definitions and notations, and an illustration on Figure 1.3.

The considered MANET has U homogeneous user terminals with varying degrees of mo-
bility, depending on whether radios are on foot (0 - 15 km/h), on terrestrial vehicles (50 - 130
km/h) or on flying vehicles (0 - 400 km/h). Transmitters operate around a carrier frequency
fc, which is typically in the Ultra High Frequency (UHF) band. Radios are equipped with
a Global Navigation Satellite System (GNSS) receiver for sharing a large-scale time refer-
ence, but the local oscillators of radios can have small clock offsets and oscillator drifts. A
network-wide reference time and frequency synchronization procedure is periodically carried
out by the upper layers, which allows to assume that residual timing errors are in the order
of a microsecond outdoors, and up to a few tens of microseconds otherwise.

Next, we discuss the PHY and MAC resource grid on time, frequency and power domains.
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The time duration during which a round of MAC protocol is carried out is called a frame;
and with TDMA, each frame is sliced into MAC slots, such that each elementary access
operation is scheduled within a slot. Each slot is further divided into dwell periods Tdwell,
which corresponds to the lowest granularity of time resource, such that the PHY layer carries
out its elementary operations at each dwell. From the frequency point of view, the available
bandwidth is sliced into elementary frequency bands (similar to the subcarriers or resource
blocks in Long Term Evolution (LTE)) and different set of users are assigned to specific
sub-bands through FDMA. Finally, a transmit power of Pu is assigned to each radio.

At a given MAC slot, depending on the considered protocol, transmitting radio set Ztx

and receiving radio set Zrx are established. Moreover, for each u P Zrx, the set of radios
whose message are to be decoded is denoted Zu,dec, with Zu,dec ⑨ Ztx. Then, at a node
u P Ztx, the MAC layer receives payloads au,v, destined to nodes v P Zrx, and produces a set
of transport blocks bu, scheduled to be transmitted on the ongoing time slot. At the physical
layer, a transport block bu is encoded through a BICM scheme into a set of B data blocks
x♣bq

u , with b ✏ 1, . . . , B, consisting of complex symbols which are transmitted on the wireless
medium with the baseband signal s♣bqu ♣tq, within a dwell-period, on the assigned band. The
signal received at a receiver in the baseband is denoted r♣bqu ♣tq.

In the following, wireless channel modeling within MANETs is discussed, followed by a
description of the PHY layer in Section 1.4. As the thesis is focused on PHY receivers, specific
parameters of network and radio models will be revealed gradually as needed throughout the
remainder of this chapter, and when will discuss a cross-layer model in the final chapter.

1.3 The Wireless Propagation Channel

In this section, we discuss the modeling of the wireless propagation channel between two
single-antenna radios in a MANET. Extension to channels for multiple-antenna radios is
briefly covered in the next section.

In particular, we overview some modeling issues that differ from the traditional assump-
tions used in cellular networks. For instance, D2D nature of transmissions makes the antenna
height of user terminals more relevant for path-loss considerations, and the slope of the path-
loss changes with distance, according to the amount of non-line-of-sight reflections in the
environment. Another limiting issue is caused by the shadowing, which has a very important
role in describing the spatial correlation of peer-to-peer links in MANETs, which severely
impacts the realistic assessment of communications schemes [Fis+13b]. Finally, the mobility
characteristics of such networks also differ from traditional models, as both the transmitter
and the receiver are mobile [DL10], and the multi-path propagation characteristics are often
harsher than those encountered in cellular networks, due to the nature of the terrain [LN+14].

The focus of this thesis is not on the channel modeling, therefore most of these issues are
covered in a simpler way. But the major modeling aspects that will deeply impact the system
performance have to be addressed. In order to keep channel parameters simple, we rely on
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Figure 1.4: Large-scale and small-scale components of a channel.

stochastic linear time variant channel modeling, close to conventional approaches, but with
some modifications and parameter-selection based on existing works on MANET channels
[DL10; Eri+14; Fis16].

Let the time-varying impulse response of a baseband wireless channel from a node v to a
node u, be hu,v♣τ, tq, t being the time parameter and τ being the delay variable over which
the channel impulse response is given. In the absence of noise or interference, the baseband
signal at the radio u is given by the time-varying convolution product

ru♣tq ✜ ♣sv ✝ hu,vq♣tq ✏
➺ ✽

✁✽
sv♣t✁ τqhu,v♣τ, tq dτ. (1.1)

We consider that the propagation medium is symmetric, hence hv,u♣τ, tq ✏ hu,v♣τ, tq. More-
over, we consider that the channel model can be decomposed as contributions from large-scale
and small-scale propagation effects, such that

hu,v♣τ, tq ✜ ♣hLS
u,v ✝ hSS

u,vq♣τ, tq ✜
➺ ✽

✁✽
hLS

u,v♣τ ✁ τ ✶, t✁ τ ✶qhSS
u,v♣τ ✶, tq dτ ✶ (1.2)

In the following, we will discuss the characteristics of these two components.

1.3.1 Large-Scale Propagation Channel

The large-scale wireless propagation effects include a distance-dependent attenuation com-
ponent, the path-loss, and a position dependent shadow fading component. The path-loss
attenuation captures the average attenuating behavior of a channel, and it is impacted by
many factors, such as the transmission frequency, antenna heights and the nature of the
propagation environment. On the other hand, shadow fading captures the slow variations of
channel attenuation around the value of path-loss, which is caused by multiple reflections of
transmitted signal from randomly located obstacles in the environment.

The resulting large-scale channel component is considered as the product of these two
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attenuating components, i.e.
hLS

u,v♣τ, tq ✜ hsh
u,v♣tqhPL

u,v♣τq, (1.3)

where hPL
u,v♣τq and hsh

u,v♣tq are respectively the path-loss and the shadowing components.

1.3.1.1 Path-Loss

The path-loss is a specular channel with the attenuating power gain gPL
u,v, and the propa-

gation delay τprop
u,v such that

hPL
u,v♣τq ✜

❜
gPL

u,vδ♣τ ✁ τprop
u,v q, (1.4)

where δ♣tq is the Dirac delta function. Denoting the distance between u and v as du,v, the
propagation delay is given by τprop

u,v ✜ du,v④c, with the velocity of light, c ✏ 3✂ 108 m/s.

Most widespread models of the path-loss gain are given in the logarithmic domain, hence
the log-domain path-loss gain is denoted PLu,v④10, and we have gPL

u,v ✜ 10✁PLu,v④10. Friis’
transmission equation describes the free-space electromagnetic wave propagation law between
the transmission and the reception antenna, and it follows

PLFS
u,v ✜ 20 log10

4π103

c
� 20 log10

fc

1MHz
� 20 log10

du,v

1km
. (1.5)

However, in real-world propagation environments, the refractive index of different propagation
mediums change the slope of the log-domain path loss, especially in terrestrial communica-
tions, there is a very sharp change of slope between the Line of Sight (LoS) and Non Line of
Sight (NLoS) propagation regions [DL10] [Itub].

Network configurations considered in this thesis are either exclusively located in LoS
region (e.g. Air to Air (A2A) communications), or in NLoS region (e.g. terrestrial Ground to
Ground (G2G) communications with dense obstacles), hence we keep a simpler, single-slope,
frequency-dependent log-distance path-loss model given by

PLu,v ✜ PLFS
u,v � PLcorr � 10♣α✁ 2q log10

du,v

1km

✏ 32.44� PLcorr � 20 log10

fc

1MHz
� 10α log10

du,v

1km
, (1.6)

where the values of ♣PLcorr, αq are dependent on the propagation medium.

For the A2A channels in airborne MANETs, the free-space path-loss model is sufficiently
accurate, according to experiments on the field [GRW12], hence ♣PLcorr, αq ✏ ♣0, 2q.

On the other hand, for terrestrial communications, many parameters, such as the antenna
height or the propagation environment [Fis16] [Itua], impact the path-loss model parameters.
Here we are interested in radios with low antenna height, typically at 2 meters high above
ground. ITU-R-1546 recommendation provides reference measurements and prediction meth-
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ods for point-to-area terrestrial transmissions, however results therein has to be extrapolated
to low antenna heights, which involves a lot of environmental assumptions. To simplify the
modeling, we rather rely on D2D channel measurements carried out in [Fis16], where 2 meters
high antennas were used, and four different environments were tested within the Very High
Frequency (VHF) and the UHF bands. Indeed, we will use

• ♣PLcorr, αq ✏ ♣30.0, 4.68q for urban environments,

• ♣PLcorr, αq ✏ ♣26.0, 3.36q for rural environments,

• ♣PLcorr, αq ✏ ♣19.5, 3.34q for hilly environments,

• ♣PLcorr, αq ✏ ♣17.3, 3.23q for mountainous environments.

The urban case is seemingly in accordance with the ITU-R-1546 recommendations, which
indicates ♣PLcorr, αq ✏ ♣27.5, 4.6q, for 3 meters high antennas, when measured at 400 MHz.

1.3.1.2 Shadowing

Shadowing is of crucial importance for modeling the behavior of wireless mobile networks,
as it captures spatial correlations of different links. If neglected, a considerable difference
between simulated and real-word performance would be observed. The disruptive effect of this
category of fading has to be mitigated with smart protocol design, and it has been the subject
of studies on cooperative communications in order to increase link availability [DPB13]. This
component is treated a real-valued random variable as the result of a multitude of obstacle
layout configurations on the channel, strongly correlated in time and in space.

When the presence of a high number of random obstacles is considered, the shadow fading
can be modeled as a zero-mean Gaussian distributed variable in the log-domain path-loss, due
to the central limit theorem, and thus gsh

u,v♣tq ✜ ♣hsh
u,v♣tqq2 is a log-normal distributed random

process, i.e. 10 log10♣gsh
u,v♣tqq ✒ N ♣0, σ2

Sq. It is possible in some simulation scenarios to
consider that 10 log10♣gsh

u,v♣tqq has non-zero mean µS , in order to account for fixed obstacles.

The standard deviation of the log-domain variations is both dependent on the environ-
ment, and on the frequency. For instance, based on mobile to mobile measurements in UHF,
[Fis16] proposes the following model

σ2
S ✏ 0.65 log2 fc

1MHz
✁ 1.3 log

fc

1MHz
�KS (1.7)

with KS ✏ 6.1 for urban, KS ✏ 6.9 for rural, KS ✏ 7.9 for hilly and KS ✏ 6.2 for mountainous
environments. Alternatively, ITU-R-1546 recommendations indicate, σ2

S ✏ 1.6 log fc

1MHz �KS ,
with KS ✏ 2.1 for urban and KS ✏ 3.8 for sub-urban or hilly environments [Itua] . In our
simulations, the model in [Fis16] will be used, as its measurements are made in a more similar
context to our topic of interest.
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The shadowing environment is assumed to be temporally fully correlated, as environmental
obstacles are mostly static, or moving slowly relative to the users. Hence, when evaluating the
asymptotic behavior of a protocol, the environment will remain static for the duration of a
whole MAC frame, and then change randomly, otherwise, when evaluating a certain mobility
configuration, the environment can remain static over multiple MAC frames.

As previously stated, spatial correlation plays a significant role in modeling MANETs
behavior A simple approach to account for these effects is the use of an exponential auto-
correlation on each link (auto-regressive process), which follows adequately the evolution
of shadow fading as nodes move [Eri+14]. Nevertheless this approach neglects inter-link
correlations, which is detrimental for predicting the outage behaviors [Fis+13b]. Such effects
can be captured through two-dimensional mapping of shadow fading by also accounting for the
angular orientation of links for with spatial link correlation [FSA04]. This practical approach,
originally devised for cellular networks, causes the link between two radios to be asymmetric
in MANETs, which goes against common design assumptions used for protocol design.

An alternative approach uses stochastic two-dimensional mapping, through the use of a
random obstacle generator, where obstacles have different shapes and sizes, and are modeled
as random processes [Fis+13a]. In this case simulated shadow fading can emulate outage
behavior that is very close to real-terrain measurements, by determining the obstacle shapes,
sizes and density through D2Ds measurements [Fis16]. Such considerations are well-suited to
the terrestrial scenarios that will be considered in this thesis, but for aeronautical scenarios
there is no shadowing.

1.3.2 Small-Scale Propagation Channel

The small-scale propagation component hss
u,v♣τ, tq is caused by scattering and reflections

of the transmitted wave, which induces time and frequency selectivity. This component is
modeled as a wide-sense stationary channel with uncorrelated scattering [TV05].

In this thesis, a channel model with time-invariant Lss discrete components and with
time-invariant delays is considered, such that

hss
u,v♣τ, tq ✜

Lss➳
l✏1

ass
u,v,l♣tqδ♣τ ✁ τ ss

l q, (1.8)

where ass
u,v,l♣tq ✒ CN ♣mss

l , σ
ss
l

2q, and the power spectral density of ass
u,v,l♣tq is the Doppler

spectrum f ÞÑ Sss
l ♣fq. Kss

l ✜ ⑤mss
l ⑤2④σss

l
2 denotes the Rice factor of the lth tap, with delay

τ ss
l and Ess

l ✜ ⑤mss
l ⑤2 � σss

l
2 denotes the lth tap power. In this case, the channel is fully

characterized by the channel power-delay profile given by tτ ss
l , E

ss
l ,K

ss
l , S

ss
l ♣fq✉Lss

l✏1.

With this model, hss
u,v♣τ, tq is independent from radios u and v, and it can be considered

as an independent and identically distributed random process, between any links, for a given
environmental power-delay profile. For accounting for static nodes, it is made dependent on
node positions, through a simplified spatial “correlation model”, such that, for any node v,
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Model Small-Scale Parameters

EPA

Delay (µs) t0, 0.03, 0.07, 0.09, 0.11, 0.19, 0.41✉
Power (dB) t0.0,✁1.0,✁2.0,✁3.0,✁8.0,✁17.2,✁20.8✉
Rice (dB) ✁✽
Doppler Jakes

EVA

Delay (µs) t0, 0.03, 0.15, 0.31, 0.37, 0.71, 1.09, 1.73, 2.51✉
Power (dB) t0.0,✁1.5,✁1.4,✁3.6,✁0.6,✁9.1,✁7.0,✁12.0,✁16.9✉
Rice (dB) ✁✽
Doppler Jakes / Bi-Gaussian 1

ETU

Delay (µs) t0, 0.05, 0.12, 0.20, 0.23, 0.50, 1.60, 2.30, 5.00✉
Power (dB) t✁1.0,✁1.0,✁1.0, 0.0, 0.0, 0.0,✁3.0,✁5.0,✁7.0✉
Rice (dB) ✁✽
Doppler Jakes / Bi-Gaussian 1

Table 1.1: 3GPP Standardized Terrestrial Radio Access Channels.

Model Small-Scale Parameters

Hilly

Delay (µs) t0, 0.9, 1.5, 4.8, 5.4, 6.4, 7.2, 8.8, 10.3, 12.2, 13.8, 16.5✉
Power (dB)

t0.0,✁1.0,✁7.6,✁5.4,✁1.6,✁2.5,✁4.0,
✁2.7,✁6.0,✁17.1,✁14.3,✁14.9✉

Rice (dB) ✁✽
Doppler Jakes / Bi-Gaussian 1 / Bi-Gaussian 2

Mountain

Delay (µs) t0, 1.1, 3.2, 4.7, 13.0, 15.1, 16.1, 21.4, 25.4, 26.9, 31.7, 35.6✉
Power (dB)

t✁5.1,✁0.9,✁0.5,✁8.2,✁5.1,
0.0,✁0.5,✁6.3,✁7.3,✁8.5,✁11.4,✁13.6✉

Rice (dB) ✁✽
Doppler Jakes / Bi-Gaussian 1 / Bi-Gaussian 2

Table 1.2: Measured Terrestrial Radio Access Channels for D2D.

hss
u,v♣τ, tq ✏ hss

u✶,v♣τ, tq, if du,u✶ ↕ dǫ, where dǫ is a small constant [Eri+14].

In the following, we expose some channel profiles that will be considered in this thesis.
For G2G and other terrestrial environments, the standardized models of the 3GPP for LTE
are considered with the pedestrian, vehicular and typical urban channels, as seen in Table 1.1
[3gpb]. These models can be complemented with the hilly and mountainous terrain models,
shown in Table 1.2 and suited to D2D transmissions in the UHF band, based on measurements
in [Fis16]. Note that all taps in these models are assumed to be NLoS components.

For A2A transmissions modeling, a two-tap power-delay profile is considered [Haa02], such
that the delay spread is given by the geometric ray tracing, the first tap is a fully deterministic
LoS component and the second path is a Rayleigh fading NLoS component. The ratio of power
between the two paths corresponds to a more generalized definition of the Rice factor, and it
increases with the height of vehicles [GW15a].
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The category of Doppler spectrum for NLoS paths, referenced in the terrestrial channel
tables above, are selected with the following rule: for taps with delays below 1µs, Jakes
spectrum is user, for those with delay between 1µs and 10µs Bi-Gaussian 1, and for those with
delay above 10µs, Bi-Gaussian 2 spectrum are used. For LoS paths, the Doppler spectrum
is equivalent to a frequency shift, and the expression of these spectra are given in [Fis16].
These models are characterized by the maximum Doppler shift frequency, which depends on
the relative speed between the two nodes.

1.3.3 Overall Propagation Channel Expression

To conclude on this section, the complete wireless propagation channel model is sum-
marized. Recalling that the propagation channel is related to the large and small scale
components with hu,v♣τ, tq ✜ ♣hLS

u,v ✝ hSS
u,vq♣τ, tq, the propagation channel is as follows

hu,v♣τ, tq ✏
Lss➳
l✏1

au,v,l♣tqδ♣τ ✁ τu,v,lq, (1.9)

where τu,v,l ✜ τ ss
l � τprop

u,v , and au,v,l♣tq ✜
❜
gPL

u,vg
sh
u,v♣t✁ τ ss

l qass
u,v,l♣tq, where the path-loss,

shadowing and small-scale parameters are computed according to configurations above.

1.4 Physical Layer Model

In this section we discuss the considered physical layer assumptions for addressing a multi-
user Single Carrier (SC) TDMA system over channels selective in time and frequency. With
the objective of having a sufficiently flexible layout, a structure slightly inspired from the
uplink architecture of LTE [Zha+15b] is used.

For the core PHY operation, we consider the use of BICM [CTB98] with memoryless
Quadrature Amplitude Modulation (QAM). A generic SC waveform is considered, in order
to make a more efficient use of the high-power amplifier, thanks to lower Peak to Average
Power Ratio (PAPR) [SKJ94]. This formalism will allow later in this dissertation to address
different instantiates of block SC transmissions. The considered system typically operates
around the carrier frequency fc ✏ 400 MHz, where we focus on transmissions over a frequency
band of width W , which is shared by all the users. The pseudo-random frequency-hopping
is carried out, at the level of each transmitted data block, with shifts greater than W0, with
W0 → W being the occupied bandwidth. In order to have a reasonable ratio between the
occupied and effective bandwidth, the use of pulse-shaping is considered.

A CRC-based error detection functionality is also used along with channel coding at
PHY, in order to be able to carry out selective Decode & Forward (DF) relaying capability
for cooperation (explained in detail in the upcoming section).
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Figure 1.5: Block diagram of a single carrier transmitter with BICM encoding.

In the following, the mathematical description of baseband PHY transmitter and receiver
models is provided for the transmission of a data block.

1.4.1 Transmitter

For nodes u P Ztx, the transport block bu, of length Kb, is first processed by a BICM
encoder to obtain after modulation B encoded data-blocks x♣bq

u of length K each. Next, a
generic SC waveform is used to generate baseband a transmit signal s♣bqu ♣tq, for each data
block. The illustration of the transmitter structure is given in Figure 1.5.

First bu is encoded into a codeword c, of length Kc, through forward error correction with
a channel code Cu : FKb

2 Ñ F
Kc
2 , of rate Rc ✏ Kb④Kc. Code families that will be typically

considered in this thesis are (punctured) convolutional codes, LTE turbo-code (parallel con-
catenation) with rate-matching or Low-Density Parity Check (LDPC) codes [RL09; RK18].
The resulting codeword is interleaved by an interleaver Πu which is a bijective function from
t1, . . . ,Kc✉ to itself, and we abusively denote the interleaved codeword du ✏ Πu♣cuq to intend
du,j ✏ cu,Πu♣jq, for j ✏ 1, . . . ,Kc. In numerical simulations, besides LTE rate-matcher, ran-
dom interleavers are typically used, either using a uniformly random permutation generator
or a uniformly s-random permutation generator [DD95].

This interleaved codeword is then segmented into B coded blocks, d♣bq
u of length Kd,

b ✏ 1, . . . , B, such that Kc ✏ BKd and d
♣bq
u,j ✜ du,♣b✁1qKd�j . Next we consider a QAM

constellation X ⑨ C, with M ✏ ⑤X ⑤, such that memoryless mapper ϕ : F
Q
2 Ñ X , with

Q ✏ log2M , maps the sub-vector d♣bq
u,k ✜ rd♣bq

u,Q♣k✁1q�1
; . . . ; d♣bq

u,Q♣k�1qs of the bth coded block

to the symbol x♣bqu,k P X , and we use ϕ✁1
q

✁
x
♣bq
k

✠
or d♣bqu,k,q to refer to d♣bq

u,k♣Q✁1q�q
. The resulting

data blocks x♣bq
u , b ✏ 1, . . . , B, are of length K ✏ Kd④Q, and assuming Identically and

Independently Distributed (IID) symbols, the constellation X is such that, the symbol random
process has zero mean (i.e. Erx♣bqu,ks ✏ ➦

αPX α④M ✏ 0) and unitary variance (i.e. σ2
x ✏

Varrx♣bqu,ks ✏
➦

αPX ⑤α⑤2④M ✏ 1). Hence, the overall encoding rate of the transport block can
be also rewritten as R ✏ RcQ.

At this point of the thesis a generic single-carrier waveform modulator FWF,u P C
N ✶✂K

is considered, this will enable focusing on Zero Padding (ZP)-SC transmissions in Chapter 3
and on circulant transmissions in Chapter 4, by either using Cyclic Prefix (CP) or ZP-SC
with Overlap and Add (OLA). Each data block x♣pq

u P X K is mapped to N ✶ ➙ K complex
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Figure 1.6: Block diagram of a single carrier receiver.

baseband samples by a block linear operator with

x✶♣bq
u ✜ FWF,ux♣bq

u ✏ rx✶♣bqu,1 ; . . . ;x✶♣bqu,N ✶s. (1.10)

The signal constituted by these samples, at sample rate W , is represented by a Dirac comb

x✶♣bqu ♣tq ✜
N ✶➳

n✏1

x✶♣bqu,nδ

✂
t✁ n✁ 1

W

✡
, (1.11)

which is an infinite-bandwidth signal but with limited channel uses, such that N ✶④W ↕ Tdwell.
This waveform can be an up-sampled or a spread version of x♣bq

u , or its transposition into a
specific frequency band.

In order to transmit a band-limited signal, for respecting available spectral resources, and
to minimize the ISI at the receiver following Nyquist criterion, a root raised-cosine filter is
used for pulse shaping, and the baseband output of the emitter is

s♣bqu ♣tq ✜ ♣h♣α0q
RRC ✝ x✶♣bqu q♣tq, (1.12)

with h♣α0q
RRC♣τq being the normalized root-raised-cosine filter of roll-off 0 ↕ α0 ↕ 1, with a

Nyquist bandwidth of W and the occupied bandwidth of the system is W0 ✜ ♣1 � α0qW .

Considering the transmit power Pu (in Watts) of the uth radio, assuming a power loss due
to a back-off of OBOdB is required at the output of the high power amplifier and a transmit
antenna gain of Gtx

dB, the effective isotropic radiated power (EIRP) is

Etx,u ✜ Pu10♣G
tx
dB✁OBOdBq④10. (1.13)

In conclusion, the baseband signal transmitted by the node u is
❛

Etx,us♣bqu ♣tq.

1.4.2 Receiver

For nodes u P Zrx, assuming an ideal carrier recovery, the observed equivalent baseband
signal at the receiver is given by

r♣bqu ♣tq ✏
➳

vPZtx

❛
Erx,u

✁
h♣bqu,v ✝ s♣bqv

✠
♣tq � z♣bqu ♣tq, (1.14)
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where, Erx,u ✏ 10♣G
rx
dBq④10Etx,v, Grx

dB is the receive antenna gain, and zu♣tq is the noise process
at the receiver antenna output, which is a zero-mean Additive White Gaussian Noise (AWGN)
with variance whose doubly-sided power spectral density is N0④2. The channel impulse re-
sponse h♣bqu,v♣τ, tq is obtained with the propagation phenomena described in Section 1.3, and
the superscript with the block index b is added in order to distinguish baseband channels used
for each data block, in case they are separated through TDMA and the FH.

The considered receiver architecture, given in Figure 1.6, consists in matched filtering and
sampling stages, followed by waveform processing for demodulating signal to the baseband
and a BICM decoder. Although, for optimal detection, a full match filter on the channel and
the pulse shaping is needed, but as the availability continuous channel state is unlikely for
many practical real-world systems, we consider a partial matched-filtered receiver [Lat98], i.e.
matched-filtering only to the transmit pulse shape filter, with

y✶♣bqu ♣tq ✏
✁

h♣α0q♣✁✝q
RRC ✝ r♣bqu

✠
♣tq, (1.15)

✏
➳

vPZu,dec

✁
h✶♣bqu,v ✝ x✶♣bqv

✠
♣tq � w✶♣bq

u ♣tq, (1.16)

where h✶♣bqu,v ♣τ, tq ✜
❛

Erx,u

✁
h♣α0q♣✁✝q

RRC ✝ h♣bqu,v ✝ h♣α0q
RRC

✠
♣τ, tq, with h♣α0q♣✁✝q

RRC ♣tq ✏ h♣α0q
RRC♣✁tq✝. User

signals to be decoded, by the BICM decoder, are collected in the set Zu,dec, and the remaining
interferers are treated as noise and grouped into w✶

u♣tq, along with noise

w✶♣bq
u ♣τ, tq ✏

➳
vPZtx③Zu,dec

✁
h✶♣bqu,v ✝ x✶♣bqv

✠
♣tq �

✁
h♣α0q♣✁✝q

RRC ✝ z♣bqu

✠
♣tq. (1.17)

In the following, the delay spread of h✶♣bqu,v ♣τ, tq is assumed to be less than a constant limit,
known by the receiver.

The received continuous signal is sampled at a rate mupW , where mup ➙ 1 is an up-
sampling factor, which will is equal to 1 for the remainder of this chapter and along most of
the thesis1. Hence, with mup ✏ 1, when considering sampling at an instant t0, the observed
samples are given by

y✶♣bqu,n ✏ y✶♣bqu ♣t0 � n④W q, (1.18)

✏
➳

vPZu,dec

✁
h✶♣bqu,v ✝ x✶♣bqv

✠
♣t0 � n④W q � w✶♣bq

u ♣t0 � n④W q, (1.19)

✜
➳

vPZu,dec

L➳
l✏1

h
✶♣bq
u,v,n,lx

✶♣bq
v,n✁l�1 � w✶♣bq

u,n , (1.20)

for n ✏ 1, . . . N ✶, and where 0 ↕ t0 ➔ 1④W is given by an adequate fine synchronization
algorithm2, and the equivalent discrete baseband channel has a delay spread limited to L

1It will serve its purpose when a fractionally-spaced equalization case will be discussed in Chapter 4.
2Here we have assumed that a coarse synchronization algorithm already compensates any delays above a

sample period 1④W , through the use of synchronization signalling.
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samples, i.e. h
✶♣bq
u,v,n,l ✏ 0 for l → L. The detailed relationship between the discrete and

the time-continuous channel models is given in the Appendix A, which is followed by some
insights on synchronization and model uncertainties.

In this case, the Channel Impulse Response (CIR) is also described by the vector h✶♣bq
u,v,n ✏

rh✶♣bqu,v,n,1, . . . , h
✶♣bq
u,v,n,LsT , and the convolution operations on discrete sequences can be rewritten

with the help of a channel matrix as

y✶♣bq
u ✏

➳
vPZdec

H✶♣bq
u,v x✶♣bq

v � w✶♣bq
u , (1.21)

where baseband samples are vectorized x✶♣bq
u ✏ rx✶♣bqu,1 ; . . . ;x✶♣bqu,N ✶s, y✶♣bq

u ✏ ry✶♣bqu,1 ; . . . ; y✶♣bqu,N ✶�L✁1s
and w✶♣bq

u ✏ rw✶♣bq
u,1 ; . . . ;w✶♣bq

u,N ✶�L✁1s and the ♣N ✶ � L✁ 1q ✂N ✶ channel matrix is given by

H✶♣bq
u,v ✏

✔
✖✖✖✖✖✖✖✖✖✖✖✖✖✖✖✖✖✖✕

h
✶♣bq
u,v,1,1

h
✶♣bq
u,v,2,2 h

✶♣bq
u,v,2,1

...
. . . . . .

h
✶♣bq
u,v,L,L . . . h

✶♣bq
u,v,L,1

. . . . . . . . .

h
✶♣bq
u,v,N,L . . . h

✶♣bq
u,v,N,2 h

✶♣bq
u,v,N,1

. . . . . .
...

h
✶♣bq
u,v,N�L✁1,L h

✶♣bq
u,v,N�L✁1,L✁1

h
✶♣bq
u,v,N�L,L

✜
✣✣✣✣✣✣✣✣✣✣✣✣✣✣✣✣✣✣✢

, (1.22)

considering that the transmitted signals are not subject to any interference from a previous
block. When the channel is quasi-static, i.e. h

✶♣bq
u,v,k,l ✏ h

✶♣bq
u,v,k✶,l, for all k, k✶, l, this channel

matrix is a tall Toeplitz matrix.

The noise component in the equation above, when mup ✏ 1, the impact of zu♣tq remains
AWGN, after the receiver matched filter, thanks root-raised cosine filters’ properties. Hence
w✶♣bq

u is assimilated to a zero-mean Gaussian noise process with the covariance matrix

Σ♣bq
w✶,u ✏ σ2

wIN ✶�L✁1 � σ2
x

➳
vPZtx③Zu,dec

H✶♣bq
u,v H✶♣bq

u,v
H , (1.23)

with σ2
w ✏ N0W being the contribution of the AWGN noise power.

The baseband waveform demodulator applies the block linear operator GWF,u P C
K✂N ✶

in order to yield the effective observation model

y♣bq
u ✜ GWF,uy✶♣bq

u ✏
➳

vPZdec

H♣bq
u,vx♣bq

u � w♣bq
u , (1.24)
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where the equivalent baseband channel matrix is given by

H♣bq
u,v ✏ GWF,uH✶♣bq

u,v FWF,u, (1.25)

and the noise and interference covariance matrix is Σ♣bq
w,u ✏ Varrw♣bq

u s ✏ GWF,uΣ♣bq
w✶,uGH

WF,u.

Finally, the last step at the receiver of the node u consists in BICM detection and decoding,
which attempts to recover estimates of bv for v P Zdec, denoted b̂u,v. The design of this
detection and encoding stage is the main focus of this thesis, with a focus on frequency-
selective channels.

For evaluating the performance of a such receiver, SNR, Bit Error Rate (BER) and Packet
Error Rate (PER) metrics are introduced. By considering the transmission of Ktr transport
blocks at the PHY layer, we have

PERu,v ✜
1
Ktr

Ktr➳
ktr✏1

✶
b̂u,vrktrs✘bvrktrs

✓ P

✑
b̂u,v ✘ bv

✙
, (1.26)

and

BERu,v ✜
1

KbKtr

Ktr➳
ktr✏1

Kb➳
j✏1

✶
b̂u,v,jrktrs✘bv,jrktrs

✓ P

✑
b̂u,v,jrktrs ✘ bv,jrktrs

✙
, (1.27)

where brackets are used to index different transmit blocks.

There can be multiple definitions of the SNR, depending on the considered receiver stage
of node u for observing the signal from a source node v. At the output of the matched-filter,
the continuous signal is observed within the band B, and we have

SNR♣bq
u,v ✜

⑥h✶♣bqu,v ⑥2σ2
x

♣1 � α0qσ2
w �➦

v✶PZtx③v
⑥h✶♣bqu,v✶⑥2σ2

x

, (1.28)

where the norm is defined on the second order Lebesgue space, i.e. ⑥h✶♣bqu,v ⑥2 ✏ ➩✽
✁✽ ⑤h✶♣bqu,v ♣tq⑤2dt

and following baseband sampling of the complex envelope (i.e. band W ) we define

Es

N0

✞✞✞✞♣bq
u,v

✜

✎✎✎H♣bq
u,v

✎✎✎2
σ2

x➦
v✶PZdec③v

✎✎✎H♣bq
u,v✶

✎✎✎2
σ2

x � σ2
w

, (1.29)

where the matrix norm function is the Frobenius norm. Finally, the definition of the SNR at
the bit level is given by defining the energy of a bit as Eb ✜ Es④R, and

Eb

N0

✞✞✞✞♣bq
u,v

✜
1
R

Es

N0

✞✞✞✞♣bq
u,v

. (1.30)
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1.5 Cooperation in MANETs

In this section we overview the fundamental limits and metrics for wireless communica-
tions, and then discuss major developments related to cooperative transmissions and their
implications. A main observation is that successful cooperative protocols require a significant
amount of coordination overhead, which is prohibitive for a variety of real-world applications.
Finally, examples of practical distributed cooperative protocols suited to MANETs are given.

1.5.1 Fundamental Limits on Peer-to-Peer Communications

For the past 30 years, there has been a surge of innovative radio access techniques at
the PHY and MAC layers, which allowed the spectral efficiency to increase by few orders
of magnitude. Part of this success is due to state-of-the-art signal-processing algorithms for
precoding, detection or channel estimation and Forward Error Correction (FEC) techniques.
These innovative techniques are the fruit of years of theoretical research which has looked for
solutions for maximizing the spectral efficiency of communications systems. This sub-section
provides a summary of fundamental metrics for characterizing wireless communications.

1.5.1.1 Mutual Information and Channel Capacity

A key metric for evaluating communications efficiency is the Mutual Information (MI).
Considering random variables x and y that model respectively a transmitted and a received
signal, with a joint Probability Density Function (PDF) p♣x, yq, then MI is defined as

I♣x; yq ✜ Ep♣x,yq

✒
log2

p♣x, yq
p♣xqp♣yq

✚
✏ Ep♣x,yq

✒
log2

p♣y⑤xq
p♣yq

✚
, (1.31)

which is a non-negative quantity, measured in bits, and the term p♣y⑤xq is the channel tran-
sition probability density for a discrete memoryless channel [CT12]. I♣x; yq ✏ 0 if and only
if x and y are independent, and otherwise this quantity can be interpreted as the amount
of information y (or x) conveys about x (or y). More formally, the mutual information is
a pseudo-distance between distributions p♣x, yq and the product of the marginals p♣xqp♣yq,
with I♣x; yq ✏ DKL♣p♣x, yq⑥p♣xqp♣yqq, where DKL is the Kullback-Leibler divergence, defined
for two not-necessarily normalized PDFs p♣xq and q♣xq by

DKL♣p♣xq⑥q♣xqq ✜ Ep♣xq

✒
log2

p♣xq
q♣xq

✚
� Eq♣xqr1s ✁ Ep♣xqr1s. (1.32)

Although this measure is a directed divergence, i.e. DKL♣p♣xq⑥q♣xqq ✘ DKL♣q♣xq⑥p♣xqq in
general, mutual information is a symmetric measure. Note that, the two latter terms in Equa-
tion (1.32) are correction factors for improper distributions (i.e. un-normalized) [Min+05].

The capacity of a discrete memoryless channel p♣y⑤xq is the maximum amount of mutual
information possible, between the input x and the output y, for any possible input distribu-
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tions p♣xq, with a power constraint Er⑤x⑤2s ↕ Px, i.e.

C ✜ max
p♣xq,Er⑤x⑤2s↕Px

I♣x; yq. (1.33)

Given these definitions, the formalization of the communication theory and information theory
began with the fundamental noisy-channel coding theorem [Sha48] , which states the existence
of a channel code of rateR ↕ C which can achieve error-free communications over this channel.
These concepts can be directly extended to distributions on random vectors.

In the case of a real AWGN channel, with input x P R and output y P R, such that
y ✏ hx� w, with w ✒ N ♣0, σ2

wq, and h P R, then the maximum achievable channel capacity
is reached for p♣xq ✏ N ♣0, Pxq and it is given by

C ✏ 1
2

log2

✂
1 � h2Px

σ2
w

✡
. (1.34)

The extension to the complex AWGN channel, with input x P C and output y P C, such that
y ✏ hx� w, with w ✒ CN ♣0, σ2

wq, and h P C, results in the following capacity expression

C ✏ log2

✂
1 � ⑤h⑤2Px

σ2
w

✡
, (1.35)

which is reached for p♣xq ✏ CN ♣0, Pxq. For a Gaussian vector channel with input x P C
k,

and output y P C
n, such that y ✏ Hx � w, w ✒ CN ♣0n,Σwq, and H P C

n✂k, the maximum
achievable capacity is reached for p♣xq ✏ CN ♣0n,Σxq, and it is given by

C ✏ max
tr♣Σxq↕nPx

log2 det
�
I � HΣxHHΣ✁1

w

✟
. (1.36)

This maximization problem can be solved by applying the water-filling algorithm on the LDL
decomposition of covariance matrices [CT12].

In many real-world systems, the input symbol distribution of a discrete memoryless chan-
nel cannot be optimized due to many hardware constraints, such as the PAPR limitations
caused by the high power amplifiers. In this case, constellation-constrained achievable rates
of the system yield a more meaningful measure of system capacity. For instance, the coded
modulation capacity is computed by considering uniform IID symbols from the constellation
X , hence CCM ✜ I♣x; yq with p♣xq ✏ ➦

αPX ⑤X ⑤✁1δ♣x ✁ αq. In this case, the capacity on a
scalar memoryless channel p♣y⑤xq is rewritten as

CCM ✏ Q✁ 1
M

➳
xPX

Ep♣y⑤xq

✒
log2

➦
x✶PX p♣y⑤x✶q
p♣y⑤xq

✚
. (1.37)

Another practical capacity measure is the BICM capacity, CBICM which is computed at the
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bit-level, considering uniform IID bits [CTB98],

CBICM ✏ Q✁ 1
2

Q➳
q✏1

1➳
β✏0

Ep♣y⑤xq

✓
log2

➦
x✶PX p♣y⑤x✶q➦
xPX

β
q
p♣y⑤xq

✛
, (1.38)

with X β
q ✏ tα P X , ϕ✁1

q ♣αq ✏ β✉, β P F2. In general, constellation-constrained achievable
rates do not have closed-form expressions, and although they can be computed for discrete
memoryless channels with small dimensions, their computation in more real-world situations
(e.g. frequency-selective channels) is quite involved. In Chapter 2, a practical approach for
estimating CBICM through Extrinsic Information Transfer (EXIT) analysis will be presented.

1.5.1.2 Characterization of Fading Channels

Previously described notions of capacity were given with the assumption that the channel
remains static for the whole duration of communications. This is rarely the case in wireless
networks, as explained in sections above, and in particular, the considered system uses P
separate data blocks to transmit a codeword, along with FH, during which channel state is
likely to change abruptly. Hence alternative capacity metrics are needed for evaluating the
achievable performance in such channels.

In the following, in addition to the noise, other channel parameters are also random
processes, and to discuss the characteristics of a system, the instantaneous information rate
I♣Ēs④N0q is defined, as a random process parameterized by the average received baseband
SNR Ēs④N0 [TV05; KMY+07].

When the coherence time of the channel is small enough with regards to the transmission
length, the channel is fast fading, and typical values of the channel have likely occurred on
the codeword. Hence the expected value of the mutual information is defined as the ergodic
capacity of the channel, with Cerg ✜ ErI♣Ēs④N0qs.

Alternatively, when a received codeword has only gone through a small number of random
channel states, the notion of delay-limited capacity is used, along with the concept of outage
probability [TV05; KH00]. The outage probability is defined as Po♣Ēs④N0, Rq ✏ PrI♣Ēs④N0q ↕
Rs, for R ➙ 0, and the system is characterized by the triplet ♣Ēs④N0, R, Poq. Then, the ǫ-
outage capacity is defined as follows

Cǫ ✏ max
R

✏
Po♣Ēs④N0, Rq ✏ ǫ

✘
, (1.39)

and note that this notion of capacity does not guarantee error-free communications.

Let us consider that a system is designed to communicate at a rate R♣Ēs④N0q, a function
of the Ēs④N0, then, the multiplexing gain ρ of the system is the SNR-normalized rate

ρ♣Ēs④N0q ✜ R♣Ēs④N0q
log Ēs④N0

. (1.40)
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Moreover the triplet ♣Ēs④N0, R, Poq of slow fading channels, imposes the notion of the diversity
gain ∆, through the diversity-multiplexing trade-off

∆♣ρq ✜ lim
Ēs④N0Ñ✽

✁ logPo♣Ēs④N0, ρ♣Ēs④N0q log Ēs④N0q
log Ēs④N0

. (1.41)

The diversity gain is the asymptotic slope of the outage probability at high SNR, and the fun-
damental trade-off above describes the link between the spectral efficiency and the robustness
of a wireless communication scheme [TV05]. This metric is used to evaluate the efficiency of
multi-antenna or multi-user wireless transmission protocols, which is especially practical for
cooperative communications [LTW04], however, some recent schemes have generalized this
concept to finite-SNR diversity-multiplexing trade-off [FL15].

1.5.2 On Cooperative Communications and Network Information Theory

In this section, a overview of major information theoretical results is provided for com-
munications networks with more than two nodes. This discussion outlines how conventional
multiple-access and broadcast operations were affected by the concept of cooperation.

First, we summarize known results on the capacity of multiple access and broadcast chan-
nels. For evaluating the limits of multiple-user systems, the concept of capacity region is used,
which consists in set of simultaneously achievable rates of involved users. For instance, when
considering a two-user access channel with input messages x1 and x2, and output y, such
that y ✏ H1x1 � H2x2 � w, with w P C♣0,Σwq, the achievable rate regions with perfectly
known channels at the receivers is the set of tuples ♣R1, R2q that satisfy

R1 ➔ I♣x1; y⑤H1,H2,x1q, (1.42)

R2 ➔ I♣x2; y⑤H1,H2,x2q, (1.43)

R1 �R2 ➔ I♣x1,x2; y⑤H1,H2q, (1.44)

and such regions for multiple-access can be generalized to any number of users [TV05]. The
capacity of such channels can be achieved through superposition coding and either joint
decoding, or separate decoding with Successive Interference Cancellation (SIC), and practical
mechanisms for doing doing so, is among the focus of ongoing research on NOMA [Wan+15].
A PHY design problem with multiple-access is discussed in the Section 4.6 of this thesis.

The dual problem of multiple-access is broadcasting from one node to multiple nodes. The
capacity of such channels are not known to this day, but the best known rates are given by
the dirty paper coding technique [Cos83], which uses superposition coding at the transmitter,
with the full channel knowledge, and also requires either a joint decoder or a SIC at the
receivers. Rate-splitting is a sub-optimal variant, which uses simpler linear precoding and
partial CSI, and it is being theoretically evaluated for future networks [Cle+16; Liu+19a].

There are only few configurations where the explicit capacity of wireless networks are
known, however, the proofs used for achievable rates still provide hints on operations required
by spectrally-efficient protocols. Alternatively, cut-set bound provides an upper bound to the
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capacity, which is an important reference for evaluating transmission strategies [KMY+07].

In multi-node transmissions mechanisms based on broadcasting or multiple-access, the
notion of cooperation is weak, and it is often simply called facilitation. The explicit notion of
cooperative transmissions arose in the information theory community with the three terminal
models of Van der Meulen [Meu71], where a source communicates with a destination, with
the help a of third node, which is dedicated to relaying. The capacity of this “relay channel”
is still not known to this day, there are well-known achievable rate theorems which have
gathered a lot of attention in the literature [CG79]. In particular,

• Decode & Forward (DF) is a two round scheme where the source transmits its message
in two phases. The relay decodes the message during the first phase, and then helps to
the source on the second phase with a well-suited codebook. This scheme operates well
when the relay is close to the source, otherwise it can even degrade the direct link.

• Compress & Forward (CF) removes decoding at the relay, such that the relay reliably
transmits its compressed observations in the second phase, alongside the source’s mes-
sage. This scheme offers interesting gains when the relay is close to the destination.

• Partial DF is a variant of DF, where the relay only decodes a portion of the source’s
message, to avoid degrading the performance when the source-relay channel is poor.

• Hybrid CF-DF scheme combines partial DF and CF, by enabling the relay to joint
decode a portion of source’s message, and compress the remainder. This scheme achieves
the best known rates for a full-duplex relay.

The schemes described above are information theoretical theorem proofs, enabled through
block-Markov and superposition encoding, and backward joint-decoding. Moreover, partial
DF based schemes require perfect CSI at the transmitter and the relay, and CF based schemes
require perfect CSI at the destination and the relay. These schemes were extended to full and
half duplex relay networks [KGG05], but their closeness to the cut-set bound is unknown.

On the other hand, the concept of network coding [ALY00] proved that cut-set bound is
achievable on multi-source, multi-relay networks with noiseless links, through block-Markov
superposition coding across messages of different sources. A decade later, quantize-map & for-
ward (QMF) has extended both network coding and CF, through the use of a novel approach
to modeling Gaussian channels as deterministic linear models [ADT11], which also enabled
proving that partial DF and CF achieve capacity within a few bits [OD13]. Alternatively,
noisy network coding (NNC) has also emerged [Lim+11; KH11], and it appears to be one of
the multiple-access schemes closest to the relay network capacity. The hybrid CF-DF scheme
for single relay channel is extended to general networks by combining noisy network coding
with partial DF [LC15b]. Distributed DF (DDF) has been proposed recently as an extension
of partial DF for one-source multi-destination relay networks [LKK17], and it appears to be
one of the techniques closest to the capacity, for carrying out broadcast on relay networks.
The coding theorems above were later unified by a general coding scheme in [LC15a].
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Nevertheless, the coding strategies above are not mature enough for practical code design
in various situations. For instance, all the schemes above are for full-duplex radios, and many
of them require perfect CSI on each link at the transmitter, or worse, at each active node
of the network. To address these issues, some recent works focus on more specifically in
finding schedules for optimally using half-duplex nodes [CTK16], whereas others attempt to
find practical encoding and decoding schemes for block-Markov superposition codes [Ma+15].
But there needs still to be years of investigations before characterizing, from an information
theoretical point of view, the robustness or vulnerability of these schemes for the wireless
medium. To this end, a significant portion of the literature focused on sub-optimal, but
simpler cooperative protocols,by using practical coding schemes and half-duplex relaying.

A practical cooperation scheme based on DF has been proposed for code division multiple
access in [SEA03], with the use of block Markov coding and interference cancellation. Cooper-
ative protocols for TDMA and FDMA is proposed in [LW03; LTW04], using selective DF and
amplify & forward relaying with distributed space-time block codes. Selective DF is a simpli-
fied sub-optimal implementation of partial DF, where the relay uses a CRC check to decide
whether to forward the decoded codeword or not, and amplify & forward behaves similarly to
a naive CF relaying with a unitary compression rate and some power allocation. Asymptotic
diversity-multiplexing trade-off of these schemes are evaluated in fading channels. A coded
cooperation scheme was proposed in [HN02], where the concept of DF is incorporated into
channel code design, which provides jointly diversity gain and coding gain. A soft DF strategy
is proposed in [SV05], where probabilistic, “soft” symbol estimates are relayed, outperform-
ing both selective DF and Amplify & Forward (AF). A practical coding scheme was also
proposed for CF relaying in [HL06], through Wyner-Ziv coding. In [ZV05], the asymptotic
performance of various selective DF relaying strategies are evaluated on a network scale, as a
generalized Hybrid Automatic Repeat Request (HARQ), that can use diversity combining or
code combining, along with different cross-layer relay selection strategies. On another note,
[WGV06] showed that cooperative diversity is also available through delay dithering, as it can
create frequency-selective diversity. A review of practical network coding techniques is given
in [TB+16], and implementations of noisy network coding are given in [MVB16; HMH16].
DF-based cooperation has also been theoretically incorporated in a variant of 5G NOMA
[DPP15], and partial DF has been theoretically evaluated for D2D transmissions [Tho+17].

1.5.3 Some Distributed Cooperative Cross-Layer Protocols for MANETs

The non-exhaustive examples of practical cooperative schemes above do indeed show
promising results for the communications networks they have been investigated for, by aban-
doning the traditional concept of MAC-layer, based on interference avoidance. Cooperative
approaches either enable constructive interference at the receiver, or they facilitate interfer-
ence cancellation at the destinations.

However, even with practical code design and half-duplex radios, most of the schemes
above require perfect CSI between many channels, and optimal code parameters are strongly
dependent on topology, and coordination required for this is ill-suited to MANETs. On top of
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node scheduling overhead, one needs to account for the loss of spectral efficiency that would
be caused by such coordination and information exchange for networks where the topology
and physical channels are dynamic. Such issues have been considered as major limitations for
system design [And+08], and the need for reconsidering the concept of “information theory”
for MANETs was underlined. In particular, for fair comparisons of protocols, three items are
needed for evaluating network capacity

• finite-length/delay-constrained outage evaluation,

• accounting for the concept of multi-nodal and multi-hop links, and exploit them to more
efficiently (e.g. constructive interference, virtual MIMO or network coding),

• accounting for overhead and channel estimation, as they have significant impact on the
protocol performance.

This is a very complex design problem, and such complete studies have only been carried out
for some particular protocols to this day. Moreover, differences in modeling physical layer
abstraction limit the ability to compare different works. It is important to define appropriate
performance metrics for evaluating the capabilities and limits of cooperative protocols for
MANETs [Rau13; NS12]. Due to these difficulties, the literature on cooperation in MANET
is more limited, especially when high throughput or high fidelity applications are targeted,
and most of the practical schemes seek distributed DF relay selection techniques either to
perform unicast or multicast/broadcast transmissions.

For instance, for unicast transmissions, various centralized and decentralized protocols for
DF relay selection are compared in [XC11; XC12; FXC13], by accounting for the overhead for
relay selection and the channel estimation, whereas the literature on relay selection for 4G
D2D has moved on the study higher layer aspects related to buffering, power allocation or
network coding etc. While in the centralized scheme, the destination uses a control signal to
elect the best relays, depending of the CSI it has at hand, in the decentralized scheme, relays
use timers that are initialized according the CSI they have obtained from destination’s pilot
sequence. In both cases there are risks of collision or interference and for fair comparison,
these strategies have to be compared with relevant metrics and accurate PHY model. Relay
selection techniques for unicast can further be enhanced with HARQ strategies, by carrying
out code or diversity combining at potential relays [ZV05].

As evoked in Section 1.2.1, for MANETs considered in this thesis, broadcast traffic plays
a more significant role, cooperative techniques for flooding is an important research axis.
Indeed traditional non-cooperative flooding is inefficient due to excessive occurrence of con-
tention periods [Tse+02] or due to unnecessary repetitions caused by resource-inefficient naive
flooding [WC02]. A more popular method to achieve broadcast traffic in MANETs is to use
optimized link state routing (OLSR) protocol’s multi-point relay functionality [Cla+03]. In
this category of algorithms, each radio elects its relay nodes in order to cover its entire two-
hop neighborhood. Such protocols use control messages to update each radio’s elected relay
topology, and for optimizing these protocols’ parameters, and for fairly assessments their
performance, refined system-level simulators are needed [NS12; NS15].
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(a) Phase 1: a source transmits and two ra-
dios decode, and become relays.

(b) Phase 2: source and two relays transmit,
two radios decode, another one fails.

(c) Phase 3: source and four relays transmit,
two radios decode and the last node fails.

(d) Phase 4: source and six relays transmit,
the last node decodes.

Figure 1.7: Cooperative broadcast example, with the illustration of CIR.

Alternatively, in [MY04], accumulative broadcast was considered for minimum-energy
broadcasting in loosely-synchronized networks with limited local information, thanks to the
use of selective DF [LTW04]. Other approaches [SH03; Jak+06] use simultaneous partic-
ipation (i.e. non-orthogonal access) of multiple nodes for the re-transmission of a broad-
cast packet, which is referred to as cooperative broadcast. Such techniques are attractive for
MANETs [Ram05]. However non-orthogonal cooperative broadcast generates at the receiver
an artificial multi-path channel given by the combinations of the signals from all active re-
lays, thus potentially increasing the frequency and time selectivity perceived by the receiver
[WGV06; HKW04].

This concept is illustrated in Figure 1.7 and it has been formulated for WSNs with Op-
portunistic Large Array concept [SH03], for tactical networks with Barrage Relay Networks
[HC10] and its variants [GHK16; Yen+11], and for WLANs with Constructive Interference for
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Low Rate Wireless Personal Area Networks [Cha+19]. However while Cooperative Broadcast-
ing (CB) achieves a significant amount of robustness, there is a loss of maximum throughput,
due to the underlying diversity-multiplexing trade-off [LW03].

1.6 Conclusion

In this chapter, we have discussed the ongoing change of design paradigm based on coop-
eration in wireless networks, through the use of relaying functionalities at the PHY-layer.

Theoretical works on these techniques reveal that cooperative transmissions could signifi-
cantly increase the effective system load in wireless networks, by making use of non-orthogonal
access techniques, and advanced PHY layer coding and interference mitigation algorithms.
As such techniques often use theoretical bounds to assess their gain in system performance,
the problem of designing near-capacity PHY receiver algorithms needs to be addressed, in
order to cope with the intra-system interference generated by such protocols.

Hence, the first objective of this thesis is to identify powerful techniques from the state-of-
the-art PHY signal processing literature, and to propose practical low-complexity solutions.

Another major roadblock for cooperative wireless transmissions is brought by the amount
of control signalling they require, in order to share parameters such as the CSI. When consid-
ering decentralized networks, with MANETs being an example, even the most fundamental
aspects of cooperation, such as relay selection, becomes a highly complex problem to solve
due to the lack of infrastructure. Indeed, it is non-trivial to determine whether overhead re-
quired by cooperative protocols remain reasonable when compared to the real-world potential
improvements brought by cooperative relaying, with the use of realistic PHY behavior. Hence
it is necessary for MANET protocol design, to be able to evaluate the impact of cooperative
cross-layer transmissions within a system-level simulator.

Consequently, the second major objective of this thesis is to propose receivers with pre-
dictable behavior for enabling assessing distributed cooperative protocols’ performance with
system level simulators.

With these two objectives at hand, this chapter introduced a MANET system model
with homogeneous radios and single-carrier waveforms with BICM-based PHY layer, and the
related channel model is presented.
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2.1 Introduction

This chapter discusses the advances in PHY layer iterative receiver design techniques,
with a promising category of algorithms for achieving near-optimal detection performance
with reasonable complexity. Although our major technical contributions in this thesis revolve
around the use of Expectation Propagation (EP) message passing algorithm for turbo detec-
tion, there exists a shared background with a variety of other signal processing techniques
which are increasingly used in communications theory. This chapter provides a synthesis on
fundamentals of iterative detection and decoding, and as we were often required to compare
our approach to these techniques, this chapter goes beyond a simple state of the art: it ana-
lytically discusses the differences and similarities of some categories of approximate statistical
inference and message-passing algorithms in the context of turbo detection. Moreover these
algorithms are discussed along with other emerging techniques from the broad area of ma-
chine learning, with similar objectives and notations, to discuss the potential use of emerging
deep learning techniques for receiver design.

Indeed, while receiver techniques that achieve optimal detection and decoding perfor-
mance are well-founded within the classical estimation and detection theory [Kay93], their
computational and memory complexity is a major roadblock for the majority of practical
applications with real-time embedded receiver platforms. In some cases, even the complexity
involved for offline computation of optimal performance bounds is prohibitive. Hence, over-
coming this complexity limitation of modern receivers is a major objective for enabling their
implementation on practical radio platforms with scarce resources.

With the emergence of turbo codes, and the associated probabilistic decoding algorithm
in early nineties [BGT93], near-optimal and practical channel coding techniques have become
possible, with an affordable complexity, after nearly half a century later from the formulation
of the noisy channel coding theorem of Shannon [Sha48]. This has led to a surge of interest in
the turbo principle and the related “soft” signal processing algorithms at PHY-layer receivers
that aim to approach the theoretical link capacity by iteratively refining detection and/or
decoding performance. More specifically, we have witnessed the re-discovery of LDPC codes,
with effective iterative decoders and optimized code design techniques [Gal62; MN96; RSU01],
and the emergence of turbo demodulators [BSY98], turbo equalizers [GLL97; Fij+00; LGL01;
TSK02; LB03; TS11], multi-antenna or multi-user turbo detectors [WP99; BC02; Wit+02;
CVB04] that achieve outstanding performance, even in extreme channels.

In this chapter, different theoretical concepts that has led to development of receivers
based on the turbo principle are discussed, and recent advances that can further refine these
techniques are investigated. Beyond a simple overview of state of the art techniques, one
major objective of this chapter is to provide a unified view of different existing and emerging
detection techniques, and these fundamentals simplify the derivations in next chapters and
also provide a clearer view on our contributions. To this end, we first define the optimal
receiver and then discuss sub-optimal but practical receiver architectures that are investigated
in the literature. In particular, Bit Interleaved Coded Modulation (BICM) systems play an
enabling role for the aforementioned turbo principle and iterative detection and decoding
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architectures constitute a promising approach to carry out near-optimal decoding [CTB98].

We then take a step back and discuss the concept of probabilistic graphical models, in
order to introduce the well-established Belief Propagation (BP) algorithm and show how
such models are used for probabilistic receiver design [KFL01a]. The resulting BICM receivers
consists of the well-known iterative structure with a Soft Input Soft Output (SISO) detector
and a SISO decoder that exchange probabilistic information. The success and the limitations
of BP for deriving these structures is discussed, along with their asymptotic analysis, through
the concept of Extrinsic Information Transfer (EXIT) function analysis [TB00; Hag04].

Next, the broader area of approximate Bayesian inference methods is summarized in or-
der to outline the design of alternative SISO detector algorithms, which in particular use
low-complexity self-iterations. Unlike traditional turbo receivers, BICM receivers involving
these detectors have a double-loop architecture and the inner-detection loop can bring several
performance enhancements. Although Bayesian inference problems arise in many artificial in-
telligence topics, most of the theoretical results on algorithm analysis, such as BP, was enabled
by the progress made for free energy approximation in statistical physics [YFW03]. Indeed,
several techniques used for the optimization of the approximate free energy has contributed
to the generalizations of BP and to alternative approximate inference algorithms. In order
to clarify the specificity of these algorithms, we briefly summarize conclusions drawn in this
field and overview developments that has led to the Expectation Propagation (EP) algorithm
[Min01; Min+05]. Receivers based on EP has started seeing light even in 3GPP specification
procedures [3gpd] , hence investigating its uses goes beyond academic ventures. Recent trends
in parsimonious signal detection with Approximate Message Passing (AMP) algorithms are
also discussed [DMM09; Ran11; MP17], along with their implications for self-iterated re-
ceiver design. In particular, using state-evolution techniques devised for these algorithms, the
asymptotic behavior of EP-based self-iterated algorithms appear to be predictable.

Finally, we also discuss the implications of recent developments on deep learning for PHY
layer receiver design [OH17], by drawing attention to some interesting parallels between suc-
cessful deep convolutional neural networks and the self-iterated detectors based on approxi-
mate inference and AMP. Next, the concept of deep unfolding is discussed, which appears to
be a promising approach for near-optimal practical receiver design [HLW14].

To illustrate these concepts without loss of generality and clearly, through this chapter
we will consider a single-user BICM system which encodes a transport block b into a single
complex data block x P C

K , following the procedure depicted in Section 1.4.1, with B ✏ 1.
The receiver observes, at the baseband, y P C

N with a linear detection model

y ✏ Hx � w, (2.1)

where H P C
N✂K and w ✒ C♣0N✂1,Σwq. This is a simplified presentation of the receiver

model in Section 1.4.2, in Equation (1.21), but even more complex multi-user detection prob-
lem could be rewritten as a linear detection problem through vectorization, and the physical
distinctions between systems are incorporated in H and on the encoding of x1.

1This is illustrated in an example in Chapter 4.



50 Advanced Receiver Design: from Approximate Inference to Learning

2.2 On Receiver Structures

In this section, some major categories of receiver architectures are discussed with regards
to their closeness to the optimal detection performance and computational complexity.

2.2.1 Optimal Detection and Decoding

The receiver that operates with minimum PER performance will be called the optimum
receiver and it consists in satisfying the Maximum A Posteriori (MAP) criterion. Indeed,
assuming the knowledge of perfect CSI, we have

b̂ ✏ arg min
b̃

P
✏
b̃ ✘ b⑤y,H,Σw

✘ ✏ arg max
b̃

P
✏
b̃ ✏ b⑤y,H,Σw

✘
,

✏ arg max
b

p ♣b⑤y,H,Σwq , (2.2)

where p ♣b⑤yq is the a posteriori Probability Density Function (PDF) on b given the obser-
vation y. Moreover, as transport block bits are uniformly and identically distributed, this
criterion is also equivalent to Maximum Likelihood (ML) criterion, i.e.

b̂ ✏ arg max
bPF

Kb
2

p ♣y⑤H,Σw,bq . (2.3)

The implementation of this receiver for any generic transceiver would require evaluating
values of y for 2Kb possible transport block b. Although this might be doable for very short-
block communications systems, in general, its implementation complexity is prohibitive.

2.2.2 Separate Detection and Decoding

Earlier tricks to circumvent optimal receiver’s complexity consisted in decoupling the
problem of detection and decoding. Indeed, due to the transmitter structure, ML criterion
can be rewritten as a marginal of the joint distribution on intermediary variables

p♣y⑤H,Σw,bq ✏
➺

x,d,c

p♣y,x,d, c⑤H,Σw,bq dc dd dx (2.4)

where the argument can be factored through conditional independence as

p♣y,x,d, c⑤H,Σw,bq ✏ p♣y⑤x,H,Σwq❧♦♦♦♦♦♦♦♠♦♦♦♦♦♦♦♥
channel

p♣x⑤dq❧♦♦♠♦♦♥
mapping

p♣d⑤cq❧♦♦♠♦♦♥
interleaver

p♣c⑤bq❧♦♦♠♦♦♥
FEC

. (2.5)

Thanks to BICM encoding, considering that

p♣d⑤cq ✏ δ♣d ✏ Π♣cqq ✏
Kc➵
j✏1

δ♣dj ✏ rΠ♣cqsjq ✏
Kc➵
j✏1

δ♣cj ✏ rΠ✁1♣dqsjq, (2.6)



2.2. On Receiver Structures 51

when Kc is sufficiently large, and the interleaver is random, coded bits at either side of
the interleaver are considered to be uncorrelated. Separate detection and decoding takes
advantage of this property and further assumes that the detection stage ignores the channel
code by considering the coded bits to be IID. Thanks to this approximation, the detection
is carried out only based on observations and the channel, and then the outcome is used for
decoding the transport block. However, an important limitation of this approach comes from
the loss of capacity due to the use of BICM [CTB98], compared to the coded modulation
capacity. The use of Gray mapping significantly reduces the loss of capacity, but the loss can
still remain important for energy-efficient systems operating at low spectral efficiency.

In earlier approaches, the separate detectors seek to satisfy MAP or ML criteria (which
are equivalent as p♣dq is treated as a uniform distribution) by constraining estimated code
bits to lie in F2, which results in hard decisions. For instance, in the context of ISI channels,
ML sequence estimation has been carried out by the Viterbi algorithm [Vit67]. Alternatively,
a sub-optimal approach is to perform ML solely on the channel likelihood to estimate a
transmitted symbol xk, constrained to belong to C rather than X , and then perform ML bit
demapping to get dk. This latter approach leads to filter-based structures.

Soft-Output Detection However, more advanced receivers with separate detection archi-
tectures avoid the use of hard decisions in order to prevent loss of information at the detection
step. To circumvent this issue, “soft” information on detected coded block bits is carried by
bit Log-Likelihood Ratios (LLRs)

L♣dj ⑤y,H,Σwq ✜ log
Prdj ✏ 0⑤y,H,Σws
Prdj ✏ 1⑤y,H,Σws , (2.7)

which convey probabilistic information on the quality of estimation of binary variables. This
output is characteristic of a Bernoulli-distributed prior PDF, with

p♣djq ✏ 1
1 � e✁L♣djq

δ♣djq � e✁L♣djq

1 � e✁L♣djq
δ♣dj ✁ 1q, (2.8)

which is to be used for channel decoding through the PDF p♣cjq ✏ p♣dΠ✁1♣jqq. This operation
can either be carried out with soft-output estimators to compute the Equation (2.7), which,
for the ISI channel case consists in soft-output Viterbi or Balk Cocke Jelinek Raviv (BCJR)
algorithms [HH89; Bah+74]. For filter-based structures, the filtering stage also estimates
uncertainty on equalized symbols x̂ P C

K , i.e. Σx̂ ✏ Cov♣x̂q, in order to carry out soft-output
ML demapping.

Soft-Input Channel Decoding Soft-input channel decoding is derived from the marginal
bj of the joint MAP estimation of having a codeword c and a transport block b, i.e.

p♣bjq ✏
➳
b
③bj

➳
c

p♣b⑤cq
Kc➵
j✏1

p♣cjq, (2.9)
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which yield APP LLRs

L♣bjq ✏ log
Prbj ✏ 0s
Prbj ✏ 1s . (2.10)

Note that p♣b⑤cq ✏ δ♣c ✏ C♣bqq is another hard constraint based on Dirac distribution,
and the computation of this marginals changes drastically according to the structure and
properties of the codebook [RL09]. Hence, final decisions are taken on the sign of LLRs with

b̂j ✏
✧

0 if L♣bjq ➙ 0,
1 otherwise.

(2.11)

In this situation, the soft-input decoding require probabilistic algorithms that account for
probabilistic information on coded bits in order to carry out channel decoding.

2.2.3 Joint Detection and Decoding

The concept of joint detection and decoding architectures consists in designing detectors
and decoders that are aware of one another, and that carry out their operations accordingly.

For BICM transmissions, the coded bits at either side of the interleaver can no longer
be considered to be IID, as the correlations brought by the code or the channel has to be
accounted for. Hence a particular instance of this category of receivers are iterative detection
and decoding architectures, which uses separate modules for detection and decoding but by
ensuring that they exchange probabilistic information on coded bits [TB00; Hag04]. This
process is implemented through Soft Input Soft Output (SISO) modules and through Belief
Propagation (BP), a.k.a. the sum-product message passing algorithm, which leads to turbo-

like receivers that will be the focus of remainder of this chapter.

In detail, a SISO detector and a SISO decoder approximately resolve the optimal esti-
mation problem, through iterative processing where they exchange extrinsic information on
coded bits. More specifically, as cj and dj are binary variables, the evolution of their es-
timated statistics are characterized by the bit LLRs, as illustrated in Figure 2.1. A SISO
module treats extrinsic LLRs provided by the other SISO module as its prior information,
and it computes extrinsic LLRs on coded bits, Le♣☎q, by ensuring that they are independent
from the prior LLRs, denoted by Lp♣☎q. The interleaver ties extrinsic and prior LLRs through
Le♣djq ✏ Lp♣cΠ♣jqq and Le♣cjq ✏ Lp♣dΠ✁1♣jqq.

The reasoning behind the derivation of such architectures will be discussed in the next
section, Example 1, with the introduction of graphical models and the belief propagation
algorithm. Some examples of SISO decoders are provided in [RL09] and regarding SISO
modules for detection, the optimal SISO receiver for ISI channels, and some examples of
sub-optimal filter-based SISO equalizers are exposed in the next chapter. The remainder
of this chapter will discuss the derivation of SISO detectors in general, through the use of
approximate statistical inference or estimation techniques.
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Figure 2.1: Comparison of separate and iterative detection and decoding architectures.

2.3 Conventional SISO Detection for BICM with Iterative De-
coding

In the previous section the concept of BP, also known as the sum-product algorithm was
mentioned as the justification for the use of iterative detection and decoding architectures for
BICM. This section discusses graphical stochastic models, and in particular factor graphs, in
order to introduce BP more formally, in the context of the design of a SISO detector.

2.3.1 Probabilistic Graphical Models

Probabilistic graphical models provide a means to describe complex statistical systems
that incorporate observed and latent variables, and constraints that govern relationships
between them. Through specific factorization of joint probability distributions that describe
the stochastic model, such graphs can be constructed and then used for designing Bayesian
inference algorithms. Our motivation being the computation of near-optimal SISO detectors,
let us recall the optimum detector based on MAP inference

x̂k ✏ arg max
xk

p♣xk⑤yq. (2.12)

Moreover, the desired marginal PDF needs to be computed through

p♣xk⑤yq ✏
➳

x③xk

p♣x⑤yq, (2.13)

where p♣x⑤yq is the joint posterior PDF, which involves K discrete-valued latent random
variables txk✉K

k✏1, and N complex-valued observed variables tyn✉N
n✏1. Both of the equations

above, and the joint posterior itself, are often computationally intensive, and approximate
estimates are computed through message passing algorithms. These algorithms use the under-
lying structure within the joint PDF in order to estimate approximate posteriors with lower
complexity. In order to discuss this structure concept, we will first briefly review different
graphical models that are used on such problems [YFW03].

Bayesian networks and Markov random fields are two categories of graphical models which
have played important roles in the development and analysis of message passing techniques
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[CR14]. However the graphical models we will discuss are factor graphs, a category of bipartite
undirected graphs consisting of squares and circles which respectively represent factor nodes
and variable nodes. Moreover, observation variables are illustrated as filled dark circles and
latent variables by empty circles, and when a factor depends on a variable, they are connected
with an edge. In this case, the joint posterior is factorized into Nf factors as

p♣xq✾
Nf➵
i✏1

fFi
♣xFi

q, (2.14)

where fFi
is a non-negative function which depends on xFi

, a sub-vector of x, with Fi being
the denomination of the factor node, and the operator V♣☎q denotes the set of neighbors of
a node. Factor graphs possess a more flexible capacity for modeling stochastic systems, and
Bayesian networks or Markov random fields have equivalent factor graph models [CR14].

As the use of factor graphs are more widespread in the communication theory community
[KFL01b; Loe+07; WP99; Wal06; Sen+11; HEA11], in the remainder of this thesis inference
problem are modeled with this tool, in order to discuss approximate iterative algorithms.
Moreover, in Section 2.4.1, an important property of factor graphs is discussed with regards
to the BP and EP algorithms, whose fixed points correspond to the local minima of the Bethe
free energy, which is directly depends on the selected factor graph.

2.3.2 Loopy Belief Propagation

Belief propagation, also known as the sum-product algorithm aims to provide an approxi-
mate posterior PDF q♣xq of the true posterior p♣xq. This algorithm’s development is directly
related to the use of graphical models, and its particular cases have been re-discovered in-
dependently in different scientific communities. An example of its earliest uses is in coding
theory with Tanner graphs [Tan81], derived for Gallager’s LDPC codes [Gal62], or with Trel-
lis diagrams [Bah+74] for representing convolutional codes. Pearl’s approach to Bayesian
networks is an alternate formulation where BP has been derived for solving various artificial
intelligence problems [Pea88], and another formalism is given through Markov random fields
for image processing [YFW03]. It has been also formulated as the “generalized distributive
law” [AM00], which rather considers modeling of stochastic processes as junction trees. As
briefly covered in the previous sub-section, different graphical models can be converted among
each other, and we will primarily focus on factor graph formalism of BP [KFL01a], as it en-
ables to explicitly expose how graphs differ from one-another, by exposing different factor
PDFs constituting the true joint posterior. Further motivation for the use of this model
will be presented in the next section which discusses approximate Bayesian inference from a
slightly different point of view.

This algorithm computes extrinsic messages from a nodes to its adjacent nodes, which are
perceived as approximate prior distributions at the receiving end. Then the destination node
computes a “local” approximation of its associated marginal density, called belief, which
is later used to carry out approximate inference. These messages are improper (i.e. non-
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normalized) distributions but beliefs are normalized as regular probability distributions.

The extrinsic message mFiÑxk
♣xkq sent from a factor node Fi towards a variables node xk

consists in the product of the true factor fFi
and all incoming messages from its neighboring

variable nodes, except for xk itself, marginalized down to the variable xk.

More explicitly, BP prior and extrinsic messages, from a factor node’s point of view,
exchanged between vn and Fi are respectively

mxkÑFi
♣xkq ✜

➵
FjPV♣xkq③tFi✉

mFjÑxk
♣xkq, (2.15)

mFiÑxk
♣xkq ✜

➳
x
③xk
Fi

fFi
♣xFi

q
➵

xlPV♣Fiq③txk✉

mxlÑFi
♣xlq. (2.16)

The “sum-product algorithm” denomination comes from the expression of the message from
a factor node to a variable node, and this algorithm is executed usually by initializing all
messages with mxkÑFi

♣xkq ✏ mFiÑxk
♣xkq ✏ 1 for all k and i, and then iteratively updating

messages over the factor graph. The belief of a variable node xk is the approximate posterior

q♣xkq of the true posterior p♣xkq, and it is given by

q♣xkq ✏ 1
Zk

➵
FjPV♣xkq

mFjÑxk
♣xkq, (2.17)

where Zk is the normalization constant, called evidence, given by

Zk ✏
➳
xk

➵
FjPV♣xkq

mFjÑxk
♣xkq. (2.18)

BP message passing achieves exact inference on acyclic graphs, when the message update
schedule is well-adapted to the graph structure. In such cases, the sum-product algorithm is
merely an optimization algorithm for the marginalization of p♣xq, by organizing the order of
operations. In particular, for tree-structured graphs, exact inference with BP message-passing
is completed by a single forward and then backward pass from one end to the other of the
graph. This has been known as the forward-backward algorithm for hidden Markov models.

In the more general case, where the factor graph has cycles, BP message passing is carried
out iteratively until convergence, or until a stop criterion. In this case, this algorithm is rather
called “loopy BP”, and its convergence is not guaranteed, and its performance is sub-optimal
compared to exact inference. Indeed, loopy BP computes an approximate posteriors which
is potentially a solution to a distributed optimization problem over each factor of the true
posterior, but the local optima of factors might not coincide with the global optimum.

Example 1 (Iterative Detection and Decoding)
Here we provide the proof that the use of BP on the optimal detection (joint ML in Equation

(2.3)) leads to an iterative structure with SISO modules. Thanks to BICM, the joint likelihood

is equivalent to the factorized as in Equation (2.5), and an associated factor graph, illustrated
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Figure 2.2: Factor graph of the BICM system, for iterative detection and decoding.

in Figure 2.2, is constructed with

p♣y,x,d, c⑤H,Σw,bq ✏ p♣y⑤x,H,Σwqp♣x⑤dq❧♦♦♦♦♦♦♦♦♦♦♦♦♠♦♦♦♦♦♦♦♦♦♦♦♦♥
✜fDET♣y,dq

p♣d⑤cq❧♦♦♠♦♦♥
Π

p♣c⑤bq,❧♦♦♠♦♦♥
✜fDEC♣c,bq

(2.19)

where we introduce the factors fDET♣y,dq and fDEC♣c,bq, respectively for detection and de-

coding, by omitting some parameters, to alleviate their notations and focus on estimation of

c and d.

When BP is applied to this factor graph, the update messages of the coded and interleaved

bit dk,q is given by

mDETÑdk,q
♣dk,qq✾

➳
d
③dk,q

fDET♣y,dq
K➵

k✏1

➵
q✶✘q

mdk,q✶ÑDET♣dk,q✶q, (2.20)

and similarly the message from DEC to ck,q is as follows

mDECÑck,q
♣ck,qq✾

➳
c
③dk,q

fDEC♣c,bq
K➵

k✏1

➵
q✶✘q

mck,q✶ÑDEC♣ck,q✶q, (2.21)

under the interleaving constraints

mdjÑDET♣djq ✏ mDECÑcΠ♣jq
♣cΠ♣jqq, (2.22)

mcjÑDEC♣cjq ✏ mDETÑdΠ✁1♣jq
♣dΠ✁1♣jqq. (2.23)

Hence the optimal detection problem can be approximated through this iterative process, by

initializing mdjÑDET♣djq✾ 1 and mcjÑDEC♣cjq✾ 1, i.e. with uniform IID distributions, and

following a serial scheduling where DET and DEC are successively updated.

From the point of view of the factor node DET, mdjÑDET♣djq and mDETÑdk,q
♣dk,qq are

respectively considered as a priori and extrinsic PDFs, and this constitutes the principle of

operation of a Soft Input Soft Output (SISO) module. Moreover, as cj and dj are binary vari-

ables, the evolution of their extrinsic messages is characterized by the bit LLRs, as illustrated

in Figure 2.1 where, Le♣djq ✏ Lp♣cΠ♣jqq and Le♣cjq ✏ Lp♣dΠ✁1♣jqq are respectively LLRs of

the extrinsic PDF mdjÑDET♣djq and a priori PDF mcjÑDEC♣cjq.
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Figure 2.3: Factor graph of the BICM decoder with a SISO detector at symbol level.

Despite its limitations, loopy BP has been widely used for near-optimal resolution of a
variety of complex probabilistic problem, from statistical physics to signal processing, in-
formation theory or artificial intelligence fields. In some particular graph structures, loopy
BP can offer more interesting performance complexity trade-offs, than the general situation
above. For instance, in the context of communication theory, it is used for practical SISO
channel decoding of different family of codes, such as LDPC codes or turbo-codes [RL09]. In
the context of detector design for ISI channels, the underlying graph can be represented as an
acyclic factor graph, or more traditionally a Trellis, which leads to the derivation of optimal
MAP detection algorithms such as BCJR.

2.3.3 Generic MAP SISO Detector

Let us consider a SISO detector based on BP by addressing the factor graph of the
detection factor fDET♣y,x,dq of the generalized linear system in Equation (2.1). From the
system model, we have the observation model

p♣y⑤x,H,Σwq ✏ CN ♣y; Hx,Σwq ✏ 1
π det♣Σwq exp

�✁⑥y ✁ Hx⑥2
Σw

✟
, (2.24)

the mapping constraints

p♣xk⑤dkq ✏ δ♣xk ✁ ϕ♣dkqq ✏
Q➵

q✏1

δ♣dk,q ✁ ϕ✁1
q ♣xkqq, (2.25)

and the prior information from the decoder

p♣dk,qq ✏ 1
1 � e✁Lp♣dk,qq

δ♣dk,qq � e✁Lp♣dk,qq

1 � e✁Lp♣dk,qq
δ♣dk,q ✁ 1q ✏ e✁dk,qLp♣dk,qq

1 � e✁Lp♣dk,qq
. (2.26)
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Then the joint posterior at the SISO detector is factorized as

p♣x,dq ✏ p♣y⑤x,H,Σwq
K➵

k✏1

p♣xk⑤dkq
Q➵

q✏1

p♣dk,qq,

✾ exp
�✁⑥y ✁ Hx⑥2

Σw

✟❧♦♦♦♦♦♦♦♦♦♦♦♦♠♦♦♦♦♦♦♦♦♦♦♦♦♥
✏fEQU♣xq

K➵
k✏1

Q➵
q✏1

δ♣dk,q ✁ ϕ✁1
q ♣xkqq❧♦♦♦♦♦♦♦♦♦♦♦♦♠♦♦♦♦♦♦♦♦♦♦♦♦♥

✏fDEMk
♣xk,dkq

exp♣✁dk,qLp♣dk,qqq❧♦♦♦♦♦♦♦♦♦♦♦♠♦♦♦♦♦♦♦♦♦♦♦♥
✏fDECk,q

♣dk,qq

, (2.27)

with xk P X , ❅k and dk,q P F2, ❅k, q, illustrated in Figure 2.3. In this case, messages from
factor nodes DEMk and EQU are

mDECÑdk,q
♣dk,qq ✏ fDECk,q

♣dk,qq, (2.28)

mDEMkÑxk
♣xkq ✏

➳
dk

fDEMk
♣xk,dkq

Q➵
q✏1

mDECÑdk,q
♣dk,qq,

✏
➳

αPX

Q➵
q✏1

exp
�✁ϕ✁1

q ♣αqLp♣dk,qq
✟
δ♣xk ✁ αq, (2.29)

mEQUÑxk
♣xkq ✏

➳
x③xk

fEQU♣xq
➵
k✶✘k

mDEMk✶Ñxk✶ ♣xk✶q,

✏
➳

αPX

➳
x③xk

exp

✄
✁⑥y ✁ Hx⑥2

Σw
✁
➳

k✶✘k

Q➳
q✏1

ϕ✁1
q ♣xk✶qLp♣dk✶,qq

☛
δ♣xk ✁ αq,

(2.30)

mDEMkÑdk,q
♣dk,qq ✏

➳
xkPX

➳
d

③dk,q

k

fDEMk
♣xk,dkqmEQUÑxk

♣xkq
➵
q✶✘q

mDECÑdk,q✶ ♣dk,q✶q,

✏
1➳

β✏0

➳
xkPX

β
q

➳
x③xk

exp

☎
✆✁⑥y ✁ Hx⑥2

Σw
✁
➳

♣k✶,q✶q✘♣k,qq

ϕ✁1
q✶ ♣xk✶qLp♣dk✶,q✶q

☞
✌δ♣dk,q ✁ βq,

(2.31)

with X β
q ✏ tα P X , ϕ✁1

q ♣αq ✏ β✉, β P F2. The latter message being proportional to a Bernoulli
distribution, it is used to compute extrinsic LLRs Le♣dk,qq of the SISO module.

Note that the marginalization over x③xk constitutes the computational bottleneck of loopy
BP for this generalized linear model, as it implies computation of KMK✁1 metrics (i.e.
arguments of the exponential). For some well-structured channel matrices H, these marginals
can be computed more elegantly, as we will discuss in the next chapter for ISI channels with
the derivation of the SISO BCJR algorithm [Bah+74; DJB+95; CB05].
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2.3.4 Gaussian Approximated Belief Propagation

The generalization of the sum-product algorithm, through factor graphs has allowed ex-
tending the message passing concept beyond discrete-valued distributions, with a formalism
on the summary operation. Indeed, message-passing rules of BP in Equations (2.15-2.16) are
extended to continuous PDFs with

mxkÑFi
♣xkq ✜

➵
FjPV♣xkq③tFi✉

mFjÑxk
♣xkq, (2.32)

mFiÑxk
♣xkq ✜

➺
x
③xk
Fi

fFi
♣xFi

q
➵

xlPV♣Fiq③txk✉

mxlÑFi
♣xlq dx③xk

Fi
. (2.33)

This generalization can be of significant interest, in situation where the product of a family
of PDFs and their marginals remain tractable through computations. This is often the case
with random variables belonging to the exponential family, and in particular, for Gaussian-
distributed random variables for whom computed messages always describe a Gaussian PDF.

In this particular context, when considering a Gaussian distribution, MAP inference is
equivalent to the Minimum Mean Square Error (MMSE) estimate of the posterior, i.e. if x is
jointly Gaussian, then

arg max
x

p♣xq ✏ E rxs , (2.34)

which leads to attractive computational properties when carrying out approximate inference
with Gaussian-distributed variables. This has led to a category of message passing algorithms,
called Gaussian-approximated Belief Propagation (GaBP), where prior messages are projected
to Gaussian distributions, when computing extrinsic message on a factor which represents a
Gaussian PDF.

More explicitly, let us consider GaBP on a factor graph where factors are either Gaussian
or categorical PDFs, and denote the BP extrinsic messages m✝

FiÑxk
♣xkq (from Eq. (2.33))

where xk is assumed to be Gaussian distributed. The original BP message is then transformed
into Gaussian distribution mFiÑxk

♣xkq, with reverse-information projection, also known as
moment projection, with

mFiÑxk
♣xkq ✏ projCN

✏
m✝

FiÑxk
♣xkq

✘
✜ arg min

q♣xkqPCN
DKL♣m✝

FiÑxk
♣xkq⑥q♣xkqq. (2.35)

This criteria is equivalent to carrying out moment-matching, and by denoting mFiÑxk
♣xkq ✏

CN ♣xk;µx,k, σ
2
x,kq, we have

µx,k ✏ Em✝
FiÑxk

rxks, σ2
x,k ✏ Varm✝

FiÑxk

rxks. (2.36)

If the factor node Fi is already a Gaussian PDF, this operation is identity, otherwise if Fi is
a categorical PDF, then its first and second order statistics have to be computed.

The use of GaBP on linear detection structures yields receiver structures that share sim-
ilarities with well known Wiener/Kalman filters from the estimation theory [Kay93; WP99;
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TSK02], or with Kalman smoothing when considering a dynamic linear system [Loe+07;
SSS02; OT02]. In communications theory, this approach has been used to derive sub-optimal
SISO detectors for linear channel channels, which has led to very popular turbo-equalization
structures based on MMSE filters with prior information.

2.3.5 Generic Linear MMSE SISO Detector

This section discusses a less complex alternative to the optimal MAP SISO detector de-
scribed in subsection 2.3.3, for the problem of SISO detector design for the the BICM system
with generic linear observation model of Equation (2.1). Here, through the use of GaBP, an
MMSE-like filter-bank structure is obtained with the use of Gaussian-distributed assumption
on the symbol variable xk.

Let us recall the factorization of the model

p♣x,dq✾ exp
�✁⑥y ✁ Hx⑥2

Σw

✟❧♦♦♦♦♦♦♦♦♦♦♦♦♠♦♦♦♦♦♦♦♦♦♦♦♦♥
✏fEQU♣xq

K➵
k✏1

Q➵
q✏1

δ♣dk,q ✁ ϕ✁1
q ♣xkqq❧♦♦♦♦♦♦♦♦♦♦♦♦♠♦♦♦♦♦♦♦♦♦♦♦♦♥

✏fDEMk
♣xk,dkq

exp♣✁dk,qLp♣dk,qqq❧♦♦♦♦♦♦♦♦♦♦♦♠♦♦♦♦♦♦♦♦♦♦♦♥
✏fDECk,q

♣dk,qq

, (2.37)

where dk,q P F2, ❅k, q but we assume unconstrained xk P C. This factor graph involving
also the data symbols xk explicitly is illustrated in Figure 2.3. This assumption relaxes the
constraints of the factor node EQU but it does not affect DEM, as fDEMk

uses hard constraints
to force xk P X . The extrinsic BP message from DEM

m✝
DEMkÑxk

♣xkq ✏
➳

αPX

Q➵
q✏1

exp
�✁ϕ✁1

q ♣αqLp♣dk,qq
✟
δ♣xk ✁ αq, (2.38)

which is an improper PDF, to be normalized for computing its sufficient statistics. Let us de-
note Pk♣αq the normalized prior Probability Mass Function (PMF) associated tom✝

DEMkÑxk
♣xkq,

for α P X

Pk♣αq ✜ 1➦
α✶PX

➧Q
q✏1 exp

�✁ϕ✁1
q ♣α✶qLp♣dk,qq

✟ Q➵
q✏1

exp
�✁ϕ✁1

q ♣αqLp♣dk,qq
✟
, (2.39)

and its projection onto the Gaussian PDF CN ♣xk;xp
k, v

p
x,kq, yields

x
p
k ✜ EPk

rxks ✏
➳

αPX

αPk♣αq, v
p
x,k ✜ Var Pk

rxks ✏
➳

αPX

⑤α✁ x
p
k⑤2Pk♣αq. (2.40)

Consequently, the projected message is as follows

mDEMkÑxk
♣xkq✾ exp

✄
✁⑤xk ✁ x

p
k⑤2

v
p
x,k

☛
, (2.41)
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and, the message from the node EQU becomes

mEQUÑxk
♣xkq ✏

➺
x③xk

fEQU♣xq
➵
k✶✘k

mDEMk✶Ñxk✶ ♣xk✶q dx③xk,

✾ 1
mDEMkÑxk

♣xkq
➺

x③xk

exp

✄
✁⑥y ✁ Hx⑥2

Σw
✁
➳
k✶

⑤xk✶ ✁ x
p
k✶ ⑤2

v
p
x,k✶

☛
dx③xk

❧♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♠♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♥
✜qk♣xkq

. (2.42)

Indeed, we have

qk♣xkq✾
➺

x③xk

exp
�✁xH

✏
HHΣ✁1

w H � Vp✁1
x

✘
x � 2ℜ

�
xH

✏
HHΣ✁1

w y � Vp✁1
x xp

✘✟✟
dx③xk ,

✾
➺

x③xk

CN ♣x; µx,Γxq dx③xk , ✾ CN ♣xk;µx,k, γx,kq, (2.43)

where Vp
x ✜ Diag♣rvp

x,1, . . . , v
p
x,Ksq and

Γx ✜ ♣HHΣ✁1
w H � Vp✁1

x q✁1 ✏ Vp
x ✁ Vp

xHH♣Σw � HVp
xHHq✁1HVp

x, (2.44)

µx ✜ Γx♣HHΣ✁1
w y � Vp✁1

x xpq ✏ ♣IK ✁ Vp
xHH♣Σw � HVp

xHHq✁1Hq♣Vp
xHHΣ✁1

w y � xpq
✏ xp � Vp

xHH♣Σw � HVp
xHHq✁1♣y ✁ Hxpq. (2.45)

Consequently, the marginal PDF on xk can be obtained by

γx,k ✜ eH
k Γxek ✏ v

p
x,k♣1 ✁ v

p
x,keH

k HH♣Σw � HVp
xHHq✁1Hekq, (2.46)

µx,k ✜ eH
k µx ✏ x

p
k � v

p
x,keH

k HH♣Σw � HVp
xHHq✁1♣y ✁ Hxpq. (2.47)

Finally, the message from EQU becomes

mEQUÑxk
♣xkq✾ qk♣xkq

mDEMkÑxk
♣xkq ✏ CN ♣xk;µx,k, γx,kq

CN ♣xk;xp
k, v

p
x,kq

✾ CN ♣xk;xe
k, v

e
x,kq, (2.48)

with

xe
k ✜

v
p
x,kµx,k ✁ γx,kx

p
k

v
p
x,k ✁ γx,k

, ve
x,k ✜

v
p
x,kγx,k

v
p
x,k ✁ γx,k

. (2.49)

By using Equations (2.46-2.47) with Equation (2.49), and ξk ✜ eH
k HH♣Σw�HVp

xHHq✁1Hek,
we have

ve
x,k ✏ 1④sk ✁ v

p
x,k, (2.50)

xe
k ✏ x

p
k � ξ✁1

k eH
k HH♣Σw � HVp

xHHq✁1♣y ✁ Hxpq. (2.51)

Note that GaBP parameters can be computed with a linear filter-bank, that involves
a non-negative symmetric matrix inversion with quadratic complexity O♣K2q, followed by
a stage of parallelized arithmetic operations. Hence it is much more affordable than the
exponential complexity of loopy BP.
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Figure 2.4: Turbo receiver based on the generic linear MMSE SISO detector.

Once the message from EQU is computed, the extrinsic output of this SISO module can
be computed through factor node DEM, with

mDEMkÑdk,q
♣dk,qq ✏

➺
xk

➳
dk③dk,q

fDEMk
♣xk,dkqmEQUÑxk

♣xkq
➵
q✶✘q

mDECÑdk,q✶ ♣dk,q✶q dxk,

✏
1➳

β✏0

➳
αPX

β
q

exp

✄
✁⑤xe

k ✁ α⑤2
ve

x,k

✁
➳

q✶✘q

ϕ✁1
q✶ ♣αqLp♣dk,q✶q

☛
δ♣dk,q ✁ βq. (2.52)

By denoting Dk♣αq the normalized posterior PMF, such that

Dk♣αq✾ exp

✄
✁⑤xe

k ✁ α⑤2
ve

x,k

✁
Q➳

q✏0

ϕ✁1
q ♣αqLp♣dk,qq

☛
, (2.53)

for α P X , the extrinsic LLRs can be computed as

Le♣dk,qq ✏ ln

➦
αPX 0

q
Dk♣αq➦

αPX 1
q

Dk♣αq ✁ Lp♣dk,qq. (2.54)

The equations above correspond to the symbol-wise MAP SISO demapper [BSY98], and the
turbo detection scheme with the linear MMSE SISO detector is illustrated in Figure 2.4.

2.3.6 Asymptotic Analysis for Iterative BICM Receiver: EXIT

For facilitating the design of SISO modules, and for the link abstraction with receivers
based on iterative detection and decoding, prediction and analysis tools are needed. Hence
various approaches were proposed to analyze the decoding dynamics of BP based BICM
systems, and to characterize the behavior of SISO modules. For instance, in channel coding,
density evolution was proposed for tracking the dynamics of PDFs of exchanged bit LLRs
within advanced channel decoders for turbo codes or LDPC codes [RSU01] and by extension,
of turbo receivers [BC02].

Density evolution is affordable on sparse and asymptotically large graphs, that involve
random variables characterized by a small amount of parameters. However, the signal pro-
cessing dynamics of such algorithms are often computationally prohibitive on more general
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Figure 2.5: EXIT function equivalent model of a turbo receiver.

factor graphs and simpler alternatives are used. Extrinsic Information Transfer (EXIT) anal-
ysis simplified density evolution to an asymptotic single-parameter tracking problem, and it
has lead to great achievements on the design and analysis of BICM systems with iterative
detection [Bri99; TB00].

EXIT functions are MI transfer functions of a SISO module, that track the evolution of
MI of extrinsic LLRs and the transmitted bits, as a function of the MI of prior LLRs and the
transmitted bits [TB00].To illustrate how EXIT charts work, let us consider a turbo receiver
with a SISO detector and a SISO decoder, that is iterated for τ ✏ 0, . . . , T turbo-iterations.
The iteration index is incremented after each round of decoding, until T is reached, and
the extrinsic LLRs of the detector (also the prior LLRs of the decoder) are L

♣τq
e ♣djq (i.e.

L
♣τq
p ♣cΠ✁1♣jqq) and the extrinsic LLRs of the decoder (also the prior LLRs of the detector) are

L
♣τq
e ♣cjq (i.e. L♣τq

p ♣dΠ♣jqq), for all j ✏ 1, . . . ,Kc.

The SISO detector is then described by the transfer function TDET, which depends on the
channel parameters with

I
♣τq
E ✏ TDET♣I♣τqA ; H,Σwq, (2.55)

where the prior information IA and the extrinsic information IE are the average MI between
coded bits and respectively the a priori and extrinsic LLRs of the module, given as

I
♣τq
A ✜

1
KQ

➳
k,q

I♣dk,q;L♣τq
p ♣dk,qqq, (2.56)

I
♣τq
E ✜

1
KQ

➳
k,q

I♣dk,q;L♣τq
e ♣dk,qqq. (2.57)

The SISO decoder’s EXIT function TC is similarly given by

I
♣τ�1q
A ✏ TDEC♣I♣τqE q, (2.58)

and the correspondence between the iterative turbo receiver and the EXIT model is illustrated
on Figure 2.5.

EXIT functions are synthesized through a Monte-Carlo method, by isolating the concerned
SISO module and feeding it with prior LLRs, matching the desired IA, and then computing
an histogram on extrinsic LLRs, to estimate IE . Hence, to implement this approach, a prior
LLRs sequence generator is needed, and the following assumption and property provide a
solution to this end [TB00].
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Figure 2.6: EXIT function synthesis method.

Assumption 1
A priori LLRs of a SISO module are IID with L

♣τq
p ♣dk,qq ✒ N ♣d̄k,qµ

♣τq
p , σ

2♣τq
p q, such that

d̄k,q ✜ 1 ✁ 2dk,q and µ
♣τq
p , σ

2♣τq
p ➙ 0.

Property 1
If Assumption 1 holds, then, as LLRs are symmetrically distributed (more specifically, in the

sense of exponential symmetry), i.e. P♣L♣τqp ♣dk,qq⑤dk,q ✏ 0q ✏ P♣✁L♣τqp ♣dk,qq⑤dk,q ✏ 1q, then

we have σ
2♣τq
p ✏ 2µ♣τqp . Hence, we have

I♣dk,q;L♣τqp ♣dk,q,qq ✏ J♣µ♣τqp q, (2.59)

with J♣µq ✜ 1 ✁ ➩
L

log2♣1 � e✁LqN ♣L;µ, 2µq dL.

Property 1 states that µa needed for input LLR generation at IA can be obtained by the
binary MI function J✁1♣☎q. Hence an experimental setup would generate Ntry blocks of KQ

LLRs, L♣τqp ♣dk,qqrns, n ✏ 1, . . . , Ntry from a pseudo-random generator which follows the PDF

N ♣d̄k,qµ
♣τq
p , 2µ♣τqp q, with µ♣τqp ✏ J✁1♣IAq. The considered SISO module is fed with L♣τqp ♣dk,qqrns

and outputs L♣τqe ♣dk,qqrns, which does not follow a conditional Gaussian distribution in general.

Hence, an histogram is computed for p♣L♣τqe ♣dk,qq⑤dk,qq, which is used to estimate IE through
the use of Equation (1.31). Indeed, the MI between an LLR L and a bit d is

I♣L; dq ✏ Ep♣d,Lq

✒
log2

p♣L⑤dq
p♣lq

✚
, (2.60)

✏ 1
2

1➳
d✏0

➺
LPR

log2

p♣L⑤dq
p♣L⑤d ✏ 0q � p♣L⑤d ✏ 1qp♣L⑤dq dL, (2.61)

✏ 1 ✁
➺

LPR
log2

�
1 � e✁L

✟
p♣L⑤d ✏ 0q dL, (2.62)

where respectively hypotheses of d being i.i.d. uniform distributed, and of L being distributed
with exponential symmetry, i.e. p♣L⑤d ✏ 0q ✏ p♣✁L⑤d ✏ 1q, are used. Hence by inserting
the measured histogram of p♣L♣τqe ♣dk,qq⑤dk,qq into equation above, I♣τqE ✏ I♣L♣τqe ♣dk,qq; dk,qq is
estimated. This EXIT synthesis procedure is illustrated in Figure 2.6.
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The area theorem [AKt02] is a major property of EXIT analysis for assessing the asymp-
totic limits of serially-concatenated SISO modules, consisting of an inner and an outer decoder
(in the general sense). The achievable rate Rin over the channel through the inner code sat-
isfies

Rin ✓
➺ 1

0

Tin♣IAq dIA, (2.63)

such that if the code rate of the inner module is the unity, then Cin is also the receiver-

constrained achievable rate over the channel. Moreover, the code rate of the outer decoder
satisfy

Rout ✓
➺ 1

0

T ✁1
out ♣IAq dIA, (2.64)

and if Rout ➔ Rin, such that the curves of Tin and T ✁1
out do not intersect, then iterative

detection and decoding can achieve asymptotically error-free communications at rate Rout, as
illustrated in Figure 2.7. This important result has paved the way for code design techniques
which adapt the shape of T ✁1

out to the channel transfer function Tin in order to achieve the
desired rate at a target operating point [TB00; RL09]. Moreover, if T ✁1

out ♣1q ✏ 1, then the
communications are asymptotically (infinite-length codeword) error-free, which is practical
indicator for assessing the presence of an error-floor in BER or PER performance. When the
EXIT of an optimal MAP SISO detector is computed, the receiver-constrained achievable
rate coincides with the symmetric information rate of the channel, under BICM constraints,
which generalizes the BICM capacity evoked in Section 1.5.1.1 of the previous chapter. Note
that, if H ✏ IK , Σw ✏ σ2

wIK and MAP symbol demapper [BSY98] is used as the inner code,
then BICM capacity of the constellation X can be estimated through the area theorem.

Another major use of EXIT analysis is for the asymptotic prediction of decoding perfor-
mance through the use of a Lookup Table (LUT) that links the decoder prior information to



66 Advanced Receiver Design: from Approximate Inference to Learning

its BER or PER. In this case, for large K, the asymptotic error-rate performance of turbo
receivers can be evaluated across turbo-iterations τ .

The consistent Gaussian model (Assumption 1) accurately characterizes EXIT functions
for many cases, and in particular for the MAP detector, but some sub-optimal receivers’ EXIT
charts yield accurate predictions only when this technique is limited to small values of τ or
for the asymptotic limit τ Ñ �✽. Indeed, as one SISO module’s prior inputs are provided
from another SISO module’s extrinsic outputs, the prediction accuracy depends on whether
the following assumption is true.

Assumption 2
There exists µ

♣τq
e → 0, such that extrinsic LLR of a SISO module are approximately IID with

L
♣τq
e ♣dk,qq ✒ N ♣d̄k,qµ

♣τq
e , 2µ♣τqe q, and µ

♣τq
e ✓ J✁1♣I♣τqE q.

The IID assumption is often true, in the large system limit thanks to interleaving, and
Gaussian model holds for demapper output with Binary Phase Shift Keying (BPSK) and
Gray-mapped Quadrature Phase Shift Keying (QPSK) constellations. However, the consistent
Gaussian approximation of LLRs at the decoder output is lost across turbo iterations due to
non-linear dynamics of channel decoders [Fu05]. Hence, EXIT can remain accurate for a few
iterations, but its accuracy needs to be experimentally evaluated for sub-optimal detectors.

2.4 Self-Iterated SISO Detection with Approximate Inference

Within the last decade, there has been a variety alternative techniques to BP that are used
for the design of emerging SISO detectors [QM07; Sen+11; SA11; SA12; Rie+13; SZW+15;
Han+18]. These techniques belong to the general field of approximate Bayesian inference,
which simplifies MAP inference in a complex stochastic system, through an approximated
estimate of the posterior distribution. In particular, we are interested in variational Bayesian
methods, which use deterministic approximations for carrying out inference, as opposed to
sampling-based pseudo-random methods [Per+15]. Indeed, while the latter have a potential
of yielding more precise approximations, they are a poor candidate for usage in embedded
real-time platforms of practical receivers.

In this section, we will discuss how various approximate inference techniques could be used
to derive self-iterated SISO receivers, which leads to a category double-loop turbo receiver
architectures, as illustrated in Figure 2.8. Traditionally, algorithms with multiple-loops were
avoided in turbo receiver design, due to drawbacks in computational complexity or due to
absence of performance prediction mechanisms [TK+02; BC02; IB10; NVB12]. Such struc-
tures have recently gathered interest in the literature, due to their attractive performance,
and thanks to the emergence of low-complexity implementations.

To this end, we first expose the concept of variational approximate inference on graphical
models, which has its roots in statistical physics, and which seeks for the optimal approximate
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Figure 2.8: Doubly iterative turbo detection with self-iterated SISO detection.

but tractable posterior for carrying out inference on the true posterior. Through the use of
mean-field and Bethe methods on graphical models, this optimization problem is transformed
into a distributed local optimization problem whose optimum values are given by fixed-points
of message passing algorithms. We show that BP belongs to this category of algorithms and
discuss its potential, limitations and its variants that can overcome its issues [Min+05].

In particular, EP is a category of solutions that generalizes BP through a very flexible ap-
proach for computing local approximations, and we thus review some low-complexity instances
of EP, mainly diagonal-EP and scalar-EP, for the considered linear detection model. The
resulting SISO detector is a self-iterated module that generalizes the detector based on GaBP.
We then discuss alternative self-iterated detector design techniques, based on Probabilistic
Data Association (PDA) and an emerging category of parsimonious signal recovery algorithms
called Approximate Message Passing (AMP). In particular, AMP-like algorithms have been
thoroughly investigated for compressed sensing, and partially for communications. AMP has
strong links to variational inference techniques and their asymptotic behavior can be predicted
through state-evolution, which is a counterpart of density evolution or EXIT analysis.

2.4.1 On Approximate Inference with Variational Bayesian Methods

Variational methods are iterative techniques, used along with graphical models, for analyt-
ically approximating some intractable integrals that appear during Bayesian MAP inference.
In this section, we have chosen to outline the differences of these algorithms from this free
energy minimization point of view [YFW03; OW05], that has its roots in statistical physics.

Notion of free energy emerges in statistical mechanics, when considering a discrete physical
system (e.g. modeling particles in a fluid) described by a discrete-valued state vector x ✏
rx1, x2, . . . , xKs, with an energy functional E, which maps each possible state x to an energy
E♣xq [YFW05]. In thermal equilibrium, the PDF of the state vector follows a Boltzmann
distribution

p♣xq ✏ 1
Z

exp
✂
✁E♣xq
kBT

✡
, (2.65)

where T is the temperature, kB is the Boltzmann’s constant and Z is the normalization
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constant of the PDF (i.e. evidence in statistics), called the partition function

Z ✏
➳

xPtstates✉

exp
✂
✁E♣xq
kBT

✡
. (2.66)

Then the Helmholtz free energy FH ✜ ✁kBT logZ is the useful work obtainable from a closed
system, at constant temperature and volume, and it can be used to identify macroscopic
characteristics of the system. However, the direct computation of Z is prohibitive for systems
with a large number of states and to approximate logZ, statistical physicists have developed
variational techniques which replaces p♣xq by a simpler distribution q♣xq. To this end, for a
given proper PDF q♣xq (i.e.

➩
x
q♣xq dx ✏ 1), the variational Gibbs energy is defined by

FG♣qq ✏ Eq♣xq rE♣xqs❧♦♦♦♦♦♦♠♦♦♦♦♦♦♥
variational average energy

✁ kBTEq♣xq r✁ log q♣xqs❧♦♦♦♦♦♦♦♦♦♦♦♦♠♦♦♦♦♦♦♦♦♦♦♦♦♥
variational entropy

, (2.67)

and considering that E♣xq ✏ ✁kBT ♣log p♣xq� logZq, Gibbs and Helholtz free energies follow

FG♣qq ✏ FH � kBTDKL♣q♣xq⑥p♣xqq. (2.68)

Variational techniques aim to estimate Helmholtz free energy by attempting to minimize
the variational Gibbs free energy, its minimum being FG♣pq ✏ FH , as DKL♣q♣xq⑥p♣xqq ➙ 0.
To this end q♣xq is constrained to belong to a particular family of PDFs which simplifies
computation of the evidence and marginals of q♣xq.

Variational Free Energy Variational Bayesian inference methods have been inspired from
this approach, when considering an inference problem with the joint posterior p♣x,yq ✏
p♣x⑤yqp♣yq ✏ p♣y⑤xqp0♣xq, and assuming, as in many real-world problems, that the likelihood
p♣y⑤xq and the prior p0♣xq are available. The computation of the posterior p♣x⑤yq and its
marginals is intractable due to integrals over high-dimensional latent variables, and to alleviate
this, variational methods aim to approximate the true posterior p♣x⑤yq by an approximate
posterior q♣xq, whose eventual dependence on y is omitted for notations, and which has a
structure that ensures low-complexity computation of marginals q♣xkq, for k ✏ 1, . . . ,K.

Hence, for any given true posterior p♣x⑤yq, the following optimization problem has to be
addressed

q✍♣xq ✏ arg min
qPQ

DKL♣q♣xq⑥p♣x⑤yqq, (2.69)

where Q is the family of PDFs of the approximate posterior, and F ♣qq ✜ DKL♣q♣xq⑥p♣x⑤yqq is
known as the variational free energy [YFW01; Per+15]. In the following, we will discuss how
the choice of Q impacts the free energy, to introduce popular message passing methods such
as the MF approximation, loopy BP or EP, and then briefly discuss their generalizations.

When using a factor graph tFi✉i, txk✉k to model the true posterior, it has been shown
that common instances of the variational energy minimization problem is solved by mes-
sage passing algorithms [Min+05; KFL01a], that carry out local energy minimization in a
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distributed manner, on factor marginals pFi
♣xFi

q ✜ ➩
x
③xFi

p♣xq dx③xFi , and/or on variable

marginals pk♣xkq ✜
➩
x③xk

p♣xq dx③xk . The general form of these algorithms exchange messages
that satisfy

qk♣xkq✾mFiÑxk
♣xkqmxkÑFi

♣xkq,❅Fi P V♣xkq, (2.70)

qk♣xkq✾
➵

FiPV♣xkq

mFiÑxk
♣xkq, (2.71)

where qk♣xkq is an approximation of pk♣xkq. Then, we have [Min+05]

mxkÑFi
♣xkq ✜

➵
FjPV♣xkq③tFi✉

mFjÑxk
♣xkq, (2.72)

and it is sufficient to define mFiÑxk
♣xkq, in order to characterize a message passing algorithm.

The expression of approximate posterior qFi
♣xFi

q of factors marginals depends on the specific
energy minimization method.

Mean-Field Energy The simplest category of approximate posteriors, for carrying out
variational inference, is the set of fully-factorized posteriors without any constraints, i.e.

q♣xq ✏
K➵

k✏1

qk♣xkq, such that
➺

xk

qk♣xkq dxk ✏ 1 (2.73)

and resulting optimized distributions yield the mean-field approximation. In this case, the
optimization problem becomes that of minimization of the mean-field energy, given by

FMF♣qq ✜
➺

x

✓
K➵

k✏1

qk♣xkq
✛

log
1

p♣x,yq dx ✁
K➳

k✏1

E r✁ log qk♣xkqs . (2.74)

When the minimization of this energy is considered on the factor-graph of p♣x⑤yq, its
optima are given by the fixed points of the following message passing algorithm

mFiÑxk
♣xkq ✜ exp

☎
✆➺

x
③xk
Fi

rlog fFi
♣xFi

qs
➵

xlPV♣Fiq③txk✉

ql♣xlq dx③xk

Fi

☞
✌. (2.75)

This is known as variational message passing, and it is a message passing algorithm that oper-
ates within the log-domain, which is particularly suited for many practical PDFs belonging to
the exponential family. This algorithm is always convergent and it uses posterior information
for updating factor nodes. Moreover, if the true factors are all of the same exponential family
of distributions, then by restricting qk♣xkq to belong to the same family, the steady-state
solution is given by moment matching with the true factor’s marginals [Per+15; Min+05].

When there are hard constraints (e.g. delta distributions) underlying in the true posterior
p♣x,yq, or more generally, when the true posterior is a multi-modal distribution, the MF
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approximation becomes loose and its use is undesirable. Indeed, this technique locks on a
mode of a PDF, and it approximates its non-zero behavior around the mode, ignoring any
information that might lie elsewhere.

Bethe Free Energy with Strong Constraints (BP) Another intuitive category of ap-
proximate posteriors consists in mimicking the factorization structure of the true posterior, fol-
lowing a factor graph Equation (2.14), with local posterior approximations, such that qFi

♣xFi
q

approximates fFi
♣xFi

q, for i ✏ 1, . . . , Nf , and qk♣xkq approximates pk♣xkq, for k ✏ 1, . . . ,K,
such that

➩
xk
qk♣xkq dxk ✏ 1, and

➩
xFi

qFi
♣xFi

q dxFi
✏ 1 [YFW03]. Moreover, the following

strong consistency constraints need to be satisfied

qk♣xkq ✏
➺

x
③xk
Fi

qFi
♣xFi

q dx③xk

Fi
, ❅xk P V♣Fiq,❅i ✏ 1, . . . , Nf . (2.76)

If the factor graph has a tree structure, the joint approximate posterior is given by

q♣xq ✏
➧Nf

i✏1 qFi
♣xFi

q➧K
k✏1 qk♣xkq⑤V♣xkq⑤✁1

, (2.77)

and the variational Bayes problem reduces to the minimization of Bethe free energy

FB♣qq ✜
Nf➳
i✏1

DKL♣qFi
♣xFi

q⑥fFi
♣xFi

qq �
K➳

k✏1

♣⑤V♣xkq⑤ ✁ 1qE r✁ log qk♣xkqs . (2.78)

A major property is that, for tree-structured (acyclic) factor graphs, Bethe free energy is
strictly equivalent to the Gibbs free energy FG♣qq, and approximating local posteriors of
factors will yield the optimal solution, and q♣xq ✏ p♣x⑤yq. In the general case, where the
factor graph has cycles, the Bethe approach is only an approximation of the Gibbs free energy,
and the original global optimization problem is replaced by sub-optimal local approximation
problems on each factor, and the joint approximate posterior expression is unavailable.

It was shown that the fixed-points tqk♣xkq✉, tqFi
♣xFi

q✉ of the Bethe free energy optimiza-
tion coincides exactly with the fixed-points of the loopy Belief Propagation (BP) algorithm.
As previously introduced, the message passing rules of BP are

mFiÑxk
♣xkq ✜

➺
x
③xk
Fi

fFi
♣xFi

q
➵

xlPV♣Fiq③txk✉

mxlÑFi
♣xlq dx③xk

Fi
, (2.79)

and the approximate posteriors on factors are given by

qFi
♣xFi

q✾ fFi
♣xFi

q
➵

xlPV♣Fiq

mxlÑFi
♣xlq. (2.80)

Unlike mean-field approximation, message updates are based on extrinsic information, and it
is very-well suited for handling hard constraints.
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However, computations in BP can become intractable in the general case, if underlying
PDFs, are not Gaussian or categorical distributions, and its complexity significantly increases
when continuous and discrete distributions are mixed. This greatly limits the scope of applica-
tion of BP, and it ends up being commonly used either on full discrete graphs or full-Gaussian
graphs. Gaussian-approximated Belief Propagation (GaBP) somewhat goes beyond this lim-
itation by projecting extrinsic Gaussian messages and discrete messages from one to another.

Generalizations of BP address the sub-optimality of the Bethe approach, by grouping
variable and factor nodes into clusters, such that each factor or variable only belong to a
cluster [YFW05]. If the clusters are chosen such that there are no cycles between regions,
then Gibbs free energy is replaced by the region-based Bethe free energy, which can be
minimized. And if there is no way to construct cycle-free regions, then it is still possible to
optimize BP by finding the region which has the lowest region-based Bethe free energy.

Bethe Free Energy with Weak Constraints (EP) Due to the attractive capability of
Bethe free energy being equal or close to the Gibbs free energy, and the limited scope of
BP, alternative techniques that have looser constraints were proposed. In particular, analytic
tractability of these constraints enable working with clusters of variable nodes more easily, for
modeling correlations among the variables. Following [YFW05], if there are different variable
nodes xk and xk✶ that appear together, i.e. V♣xkq ✏ V♣xk✶q, it is possible to create a non-
overlapping partition txVk

✉Kc

k✏1 of x by grouping them together, with Kc being the number
of clusters. Simple clustering options are the trivial partition with tx✉, or the full partition
txk✉K

k✏1.

The computationally intensive parts of BP reside in the strong consistency constraints,
which require the marginals of the approximate posterior of a factor, i.e. qFi

♣xFi
q, to be

equal to the approximate posteriors of connected variable clusters, i.e. qk♣xVk
q. An alterna-

tive approach, called weak consistency constraint, consists in simplifying this into a moment
matching constraint between the marginals, for approximate factors belonging to the expo-
nential family [RMO14; Per+15].

The exponential family of PDFs is defined by any distribution belonging to the set

Q ✏
★
q♣xq ✏

Kc➵
k✏1

hk♣xVk
q exp

�
θT

k φk♣xVk
q � gk♣θkq

✟✰
, (2.81)

for any complex vector x ✏ txVk
✉Kc

k✏1, with each cluster having a real-valued natural param-
eter vector θk, a real-valued sufficient statistics function φk♣xVk

q, of same dimension as θk,
a real scalar log-partition function gk♣θkq and a real positive base measure hk♣xVk

q. Real or
complex valued Gaussian distributions and gamma distributions belong to this family, and
as a counter-example the student’s t-distribution does not belong to this family.

Then, in this case, the factor graph based approximation of local posteriors is such that
qFi

♣xFi
q approximates fFi

♣xFi
q, for i ✏ 1, . . . , Nf , and qk♣xVk

q approximates pk♣xVk
q, for k ✏

1, . . . ,K, such that
➩
xVk

qk♣xVk
q dxVk

✏ 1, and
➩
xFi

qFi
♣xFi

q dxFi
✏ 1. Moreover qFi

♣xFi
q P Q,
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❅i, and qk♣xVk
q P Q, ❅n, and the following weak consistency constraints are satisfied

Eqk
rφk♣xVk

qs ✏ EfFi

➧
j✘i qFj

rφk♣xVk
qs ,❅xVk

P V♣Fiq. (2.82)

The variational Bayes problem still remains as the optimization of Bethe free energy, but
under these looser constraints, the approximate posteriors of variables need only to share the
same sufficient statistics (moments) with the approximate joint PDF. Moreover, the joint
approximate posterior and factor node approximations are factorizable into cluster marginals

q♣xq✾
Nf➵
i✏1

qFi
♣xFi

q✾
Kc➵
k✏1

qk♣xVk
q, qFi

♣xFi
q✾

➵
xVk

PV♣Fiq

qk,i♣xVk
q. (2.83)

This optimization problem’s solutions are shown to be the fixed-points of the Expectation
Propagation (EP) message passing algorithm, given by [HZ02]

mFiÑxVk
♣xVk

q ✜ 1
mxVk

ÑFi
♣xVk

qprojQ

✔
✕➺

x
③xVk
Fi

fFi
♣xFi

q
➵

xVmPV♣Fiq

mxVmÑFi
♣xVk

q dx
③xVk

Fi

✜
✢ ,

(2.84)

where the argument of the projection operator is the pre-projection posterior of xVk
(also

known as the BP posterior), at factor Fi, denoted

q̃Fi
♣xVk

q ✜
➺

x
③xVk
Fi

fFi
♣xFi

q
➵

xVmPV♣Fiq

mxVmÑFi
♣xVm

q dx
③xVk

Fi
. (2.85)

The projection operation carries out Kullback-Lieber minimization as reverse-information
projection (as opposed to the information-projection in the variational free energy), which
results in moment matching over the sufficient statistics of the selected PDFs family Q.

From a solely factor node approximation point of view, EP operates by resolving

qFi
♣xFi

q ✏ arg min
qFi

♣xFi
qPQ

DKL

✔
✕fFi

♣xFi
q

Nf➵
j✏1,j✘i

qFj
♣xFj

q
✎✎✎✎✎✎ qFi

♣xFi
q

Nf➵
j✏1,j✘i

qFj
♣xFj

q
✜
✢ , (2.86)

for all i ✏ 1, . . . , Nf . The Kullback-Leibler divergence in the expression above is also known
as the expectation consistent approximation of free energy [OW05], which is an alternative
variational bound to the Gibbs free energy.

EP is an approximate method, with no convergence guarantee on graphs with cycles, as
with BP, but unlike BP, the computational complexity of EP is traded off depending on the
choice of the PDF on which the approximate posteriors are projected into. This provides
a large selection of performance-complexity trade-off, depending on the size of the sufficient
statistics, and it provides a tractable solution to complex graphical models.

The selection of the PDF to which approximations are projected can also be seen as a
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choice of expectation consistent free energy to be minimized, and some common variants
include [OW05; ÇO18]:

• diagonal free energy (or, diagonal EP), which uses uncorrelated Gaussian distributions,
i.e. q♣xq ✏ CN ♣µx,Σxq, with Σx ✏ Diag♣rσ2

x1
, . . . , σ2

xNv
sq.

• diagonal-restricted free energy (or, scalar EP), with “white” IID Gaussian distributions,
i.e. q♣xq ✏ CN ♣µx,Σxq, with Σx ✏ σ2

wINv .

More complex energy choices include correlations between latent variables, likely with a tree-
like structure for simplifying message passing complexity [OW05]. A remarkable property
of diagonal EP is that under some category of random matrix ensembles it can be shown
that variances of the approximated variable distributions asymptotically converge towards
the same value [Çak+16]. This suggests that the use of scalar EP, with some adjustments,
could be sufficient in some applications.

Generalization of Variational Methods (Power EP) In [Min+05], an alternative
perspective to the free energy approach is provided for deriving variational Bayesian inference
techniques, by the means of a generalized divergence metric, called α-divergence, given by

Dα♣p♣xq⑥q♣xqq ✏ 1
α♣1 ✁ αq

➺
x

✏
αp♣xq � ♣1 ✁ αqq♣xq ✁ p♣xqαq♣xq1✁α

✘
dx, (2.87)

with α P R. Then generic variational inference method consists in finding q♣xq in a fam-
ily of distributions Q, such that q♣xq ✏ arg minq♣xqPQDα♣p♣xq⑥q♣xqq. In other words, the
Kullback-Leibler divergence that appear in the free-energy minimization for classical varia-
tional methods is extended to a generalized divergence metric.

When the Bethe approach is selected, by considering q♣xq such that its marginals on factors
and variables approximate that of the true posterior, a generic message passing algorithm is
obtained, also known as the power Expectation Propagation (EP) algorithm. When α ✏ 0,
this approach coincides with the mean-field approximation, otherwise, for α ✘ 0 the pre-
projection posterior of a variable node is given as

q̃Fi
♣xkq✾

➺
x
③xk
Fi

fFi
♣xFi

qα
➵

xmPV♣Fiq

mFiÑxm
♣xmq1✁αmxmÑFi

♣xmq dx③xk

Fi
, (2.88)

and the associated factor messages are

mFiÑxk
♣xkq ✜ 1

mxkÑFi
♣xkqprojQ rq̃Fi

♣xkqs . (2.89)

This perspective allows for relating previously-discussed message passing approaches between
each other, indeed, when α ✏ 1, we get the EP algorithm. If Q is selected to be the same
family of PDF as the original posterior (ensuring that projection operation is the identity),
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then the generic message passing is also known as fractional Belief Propagation (BP) [WH03],
and for α ✏ 1, we get the classical BP algorithm.

The advantage of this approach lies in the empirical observation that some divergence
measures are better-suited to a factor graph, than others depending of the graph structure.
Note that α ✏ 1 (i.e. EP/BP) is the only value for which the evidence, mean and the variance
of the true posterior can be matched by those of the approximate posterior. More generally,
it may be more advantageous to use different divergence metrics at each factor of a graph,
either to improve performance, or to make computations tractable. An example to this is
the hybrid BP and mean-field message passing framework, for complex factor graphs where
different message passing rules are attributed to different regions [Rie+13].

Damped Message Passing Algorithms In general, there is no guarantee of convergence
on variational inference algorithms based on factor-graph message passing. To circumvent
this issue, the use of a certain amount of damping parameters is recommended in order to
improve convergence to the global minimum [Min+05; Hes04]. This consists in smoothing
the update of either messages, beliefs or their parameters using a certain weight β, which can
be considered as a learning rate on local approximations of factors.

Indeed, due to Bethe free energy being non convex (due to the concave entropy term),
its optimization requires a double-loop concave-convex optimization [Hes04]. While BP/EP
(depending on the consistency conditions) has the same fixed points as the Bethe free energy,
their iterative dynamics are different, and message passing algorithms are prone to getting
stuck on erroneous local extrema. It can be shown that the “convexification” of the Bethe
free energy with the double loop solution can be cast into an equivalent single-loop BP/EP
algorithm where damping is used on the update rules of approximate posteriors [Pre05].

For instance, when damping extrinsic messages are sent from a factor, either a geometric
weight could be used, with

mnew
FiÑxk

♣xkq ✏ mold
FiÑxk

♣xkq1✁βmFiÑxk
♣xkqβ , (2.90)

or an arithmetic weight could be used, with

mnew
FiÑxk

♣xkq ✏ ♣1✁ βqmold
FiÑxk

♣xkq � ♣βqmFiÑxk
♣xkq. (2.91)

The geometric-approach can also be called feature-based damping as, for the exponential
family, it results in arithmetic average of its sufficient statistics, and the arithmetic weight
results in the exponential smoothing of the message.

When operating with the exponential family, in many practical message passing algo-
rithms, instead of computing messages or probabilities, simply the sufficient statistics of re-
lated PDFs are computed. Hence, for simplicity, we could also consider exponential smoothing
directly on the sufficient statistics of such PDFs.
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While for optimized values of damping, the selection of the damping method itself has a
small impact, the sensitivity of the inference accuracy to changes in damping parameter is
drastically different from one method to another [Pre05].

2.4.2 Self-Iterated SISO Detector Design with Expectation Propagation

We have seen that GaBP-based SISO detector has the structure of linear estimator with
IC, where soft symbol estimates based on decoder’s extrinsic messages are used for regener-
ating the interference. However, repeatedly using SISO decoding can have significant com-
putational or latency costs, hence the idea of iterating the detection process on its own can
be attractive, if it has affordable computational complexity. This idea of self-iterating the
detection process is already present in many fundamental techniques such as the well-known
Decision Feedback Equalizer (DFE) structures used for ISI mitigation [Bel+79; Cio08; BT05],
or the SIC structures in Multiple-User Detectors (MUDs) [TV05; CVB04; VBL08]. However
there exist various approaches to the exact manner of designing the linear symbol detector
(MMSE, zero-forcing, matched-filtering) and the interference re-generator (hard decisions,
soft estimates). Different possibilities will be compared and discussed in detail in following
chapters, and in this subsection, the derivation of a double-loop BICM receiver is discussed, for
the linear model with the generic channel, through the use of Expectation Propagation (EP)
message passing.

Similarly to GaBP, let us recall the factorization of the model

p♣x,dq✾ exp
�✁⑥y ✁ Hx⑥2

Σw

✟❧♦♦♦♦♦♦♦♦♦♦♦♦♠♦♦♦♦♦♦♦♦♦♦♦♦♥
✏fEQU♣xq

K➵
k✏1

Q➵
q✏1

δ♣dk,q ✁ ϕ✁1
q ♣xkqq❧♦♦♦♦♦♦♦♦♦♦♦♦♠♦♦♦♦♦♦♦♦♦♦♦♦♥

✏fDEMk
♣xk,dkq

exp♣✁dk,qLp♣dk,qqq❧♦♦♦♦♦♦♦♦♦♦♦♠♦♦♦♦♦♦♦♦♦♦♦♥
✏fDECk,q

♣dk,qq

, (2.92)

where dk,q P F2, ❅k, q but we assume xk P C, unconstrained at first. Given this factor
graph, for applying EP, we need first to choose a family of distributions Q associated to each
variable node. For dk,q, we keep using Bernoulli-distributed mode, hence messages involving
this node will not incorporate projection, and for symbol variables, we consider the diagonal

EP approach, among the previously discussed two options. To this end, we denote

qDEMk
♣xkq✾ CN ♣xk;µd

x,k, γ
d
x,kq, (2.93)

mDEMkÑxk
♣xkq✾ CN ♣xk;xd

k, v
d
x,kq, (2.94)

qEQU♣xkq✾ CN ♣xk;µe
x,k, γ

e
x,kq, (2.95)

mEQUÑxk
♣xkq✾ CN ♣xk;xe

k, v
e
x,kq, (2.96)

which ensures that the family of symbol variables are de-correlated, and the joint distribution
on x has a diagonal covariance matrix.
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At the DEM factor node, the pre-projection posterior on xk is given by

q̃DEM♣xkq ✏
➳
dk

fDEMk
♣xk,dkqmEQUÑxk

♣xkq
Q➵

q✏1

mDECÑdk,q
♣dk,qq,

✾
➳

αPX

exp

✄
✁⑤xe

k ✁ α⑤2
ve

x,k

✁
Q➳

q✶✏1

ϕ✶✁1
q ♣αqLp♣dk,q✶q

☛
δ♣xk ✁ αq ✏

➳
αPX

Dk♣αq, (2.97)

where Dk♣αq is the posterior PMF defined in Equation (2.53). Then the projection of this
PDF onto qDEMk

♣xkq enforces moment matching with

µd
k ✜ EDk

rxks ✏
➳

αPX

αDk♣αq, γd
x,k ✜ VarDk

rxks ✏
➳

αPX

⑤α✁ xd
k⑤2Dk♣αq. (2.98)

Hence the extrinsic message of DEM is given by the division of the Gaussian PDFs, referred
to as “Gaussian division”

mDEMkÑxk
♣xkq ✏ qDEMk

♣xkq
mEQUÑxk

♣xkq ✏
CN ♣xk;µd

x,k, γ
d
x,kq

CN ♣xk;µe
x,k, γ

e
x,kq

✾ CN ♣xk;xd
k, v

d
x,kq (2.99)

with

xd
k ✜

ve
x,kµ

d
x,k ✁ γd

x,kx
e
k

ve
x,k ✁ γd

x,k

, vd
x,k ✜

ve
x,kγ

d
x,k

ve
x,k ✁ γd

x,k

. (2.100)

At the EQU factor node, similarly, the pre-projection posterior is given by

q̃EQU♣xkq ✏
➺

x③xk

fEQU♣xq
➵
k✶

mDEMk✶Ñxk✶ ♣xk✶q dx③xk ,

✾
➺

x③xk

exp

✄
✁⑥y ✁ Hx⑥2

Σw
✁
➳
k✶

⑤xk✶ ✁ xd
k✶ ⑤2

vd
x,k✶

☛
dx③xk ,

✾ CN ♣xk;µe
x,k, γ

e
x,kq, (2.101)

γe
x,k ✜ eH

k Γxek ✏ vd
x,k♣1 ✁ vd

x,keH
k HH♣Σw � HVd

xHHq✁1Hekq, (2.102)

µe
x,k ✜ eH

k µx ✏ xd
k � vd

x,keH
k HH♣Σw � HVd

xHHq✁1♣y ✁ Hxdq. (2.103)

Finally, as q̃EQU♣xkq already belongs to the diagonal-Gaussian family, qEQU♣xkq ✏ q̃EQU♣xkq,
and the extrinsic message from EQU is given by

mEQUkÑxk
♣xkq ✏

qEQUk
♣xkq

mDEMÑxk
♣xkq ✏

CN ♣xk;µe
x,k, γ

e
x,kq

CN ♣xk;µd
x,k, γ

d
x,kq

✾ CN ♣xk;xe
k, v

e
x,kq, (2.104)

ve
x,k ✜ 1④ξk ✁ vd

x,k, (2.105)

xe
k ✜ xd

k � ξ✁1
k eH

k HH♣Σw � HVd
xHHq✁1♣y ✁ Hxdq. (2.106)

where ξk ✜ eH
k HH♣Σw�HVd

xHHq✁1Hek. Finally, the extrinsic messages from the demapper
is computed with the same approach as GaBP with Equation (2.54).



2.4. Self-Iterated SISO Detection with Approximate Inference 77

It can be seen that these expressions bear great resemblance to the SISO detector based
on GaBP, and the main difference lies in the soft feedback that is used for interference re-
generation and cancellation in Equations (2.105-2.106), which uses DEM’s extrinsic estimates
♣xd,vd

xq, from Equation (2.100), rather than DEC’s extrinsic estimates (the whole detector’s
priors) ♣xp,vp

xq, from Equations (2.40).

An important advantage of ♣xd,vd
xq is their dependence on EQU’s outputs ♣xe,ve

xq, un-
like DEC’s estimates ♣xp,vp

xq. This opens up to possibility to compute EQU’s and DEM’s
messages iteratively to refine symbol estimates, whereas such an inner iteration has no im-
pact on the GaBP SISO detector. Hence, with EP messages, we can derive a turbo receiver
where the SISO detector carries out S self-iterations (with messages between EQU and DEM
factor nodes), before computing extrinsic messages towards the SISO decoder. Algorithm 1
illustrates such a detector with the diagonal EP example given above, denoted Double-Loop
Diagonal EP (DL-DEP).

Algorithm 1 Double-Loop Diagonal Expectation Propagation

Require: y, H, Lp♣dq
Ensure: Le♣dq

1: xe
k ✏ 0, ve

x,k ✏ ✽, for k ✏ 1, . . . ,K
2: for s ✏ 0 . . .S do
3: Compute the posterior PMF Dk♣αq with Eq. (2.53), for α P X , k ✏ 1, . . . ,K
4: Compute µd and γd with Eq. (2.98)
5: Get symbol estimates xd and vd

x with Equation (2.100)
6: Ξ ✜ Diag

�
diag

�
HH♣Σw �HVd

xHHq✁1H
✟✟

7: xe ✏ xd �Ξ✁1HH♣Σw �HVd
xHHq✁1♣y✁Hxdq

8: ve
x ✏ diag

�
Ξ✁1

✟✁ vd
x

9: end for
10: Compute the posterior PMF Dk♣αq with Eq. (2.53), for α P X , k ✏ 1, . . . ,K
11: Compute extrinsic LLRs with Eq. (2.54)

In practice, the computation of extrinsic messages from DEM can be numerically unstable,
or yield negative values due to poor realizations of noise and channel. To increase EP-
based algorithms’ robustness to these issues, several heuristic methods have been explored in
the literature. When ve

x,k is detected be negative, common heuristics either change its sign
[SZW+15], replace DEM extrinsic estimates with DEC’s extrinsic estimates [C+́14] or use

DEM’s APP estimates [Sen+11].

For ill-conditioned channel matrices, the iterative behavior of this receiver can be oscilla-

tory, and it may converge towards sub-optimal fixed-points, and to overcome this, damping

heuristics are useful [Min+05; C+́14], at the expense of convergence speed.

If scalar EP would have been used, instead of diagonal EP, then approximate joint pos-

teriors and extrinsic messages on x has a scalar variance, implying that the estimation error

is white (uniform power density). This case will be discussed in more detail in Chapter 4.
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2.4.3 Probabilistic Data Association

Probabilistic Data Association (PDA) is a filtering technique, originally used in signal-
processing sub-fields related to target tracking, where measurements incorporate uncertainties
that destabilize the tracking filter (e.g. Kalman filter) [BDH09]. The whole uncertainty is
approximated by PDA as a single multi-variate Gaussian signal, and then its parameters are
accounted for better estimation of the originally desired measurement. In communications
applications, PDA has been used to approximate and then mitigate interference iteratively,
and it has led to derivation of several self-iterated SISO detectors [Luo+01; GM08]. Although
not explicitly stated, various other iterative algorithms or heuristics that use IC based on APP
estimates can be more “formally” derived with the PDA framework, such as the iterative block
DFE in [BT05] or time-domain DFE receivers discussed in Section 3.4.1.

The MMSE estimate µd
x,k of the transmitted symbol xk, and the estimation error variance

γd
x,k are given by the conditional expectations of the symbol given the observations y, with

µd
x,k ✏ Erxk⑤ys ✏

➳
αPX

αP♣xk ✏ α⑤yq, γd
x,k ✏ Er⑤xk ✁ µx,k⑤2⑤ys. (2.107)

These APP estimates are the mean and the variance of the posterior PDF of xk, given by
p♣xk⑤yq ✏ p♣y⑤xkqp♣xkq, and by rewriting the observations in Equation (2.1), the likelihood
of xk is given by

p♣y⑤xkq✾
➳

x③xk

exp
�✁⑥y ✁ hkxk ✁ ωk⑥2

Σw

✟
, (2.108)

with ωk ✜
➦

k✶✘k hk✶xk✶ , and hk ✏ rHs:,k. This likelihood has prohibitive computational
complexity, due to x having a high number (MK✁1) of discrete values. Previous sections in
this chapter discussed the estimation of the posterior through variational inference, but PDA
proposes an alternative approach through this likelihood, based on the assumption that

ωk ✒ CN ♣µd
ω,k,Σ

d
ω,kq, (2.109)

µd
ω,k ✏ Erωks ✓

➳
k✶✘k

hk✶µd
x,k✶ , Σd

ω,k ✏ Varrωks ✓
➳

k✶✘k

γd
x,k✶hk✶hH

k✶ , (2.110)

where previously MMSE APP estimates are used when available, otherwise µd
x,k ✏ 0, and

γd
x,k ✏ σ2

x,❅k. This assumption ensures that y ✒ CN ♣hkxk � µd
ω,k,Σw � Σd

ω,kq, and the
likelihood p♣xk⑤yq becomes

p♣y⑤xkq ✏ 1
π det♣Σw � Σd

ω,kq
exp

✂
✁⑥y ✁ hkxk ✁ µd

ω,k⑥2
Σw�Σd

ω,k

✡
,

✾ exp

✄
✁⑤xk ✁ hH

k ♣Σw � Σd
ω,kq✁1hkµ

d
x,k ✁ hH

k ♣Σw � Σd
ω,kq✁1♣y ✁ Hkµd

xq⑤2
hH

k ♣Σw � Σd
ω,kq✁1hk

☛
,

✾ CN ♣xk;xe
k, v

e
x,kq, (2.111)

where the squared Mahalanobis distance is expanded, and terms independent of xk are re-
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moved. Moreover, by applying the Woodbury matrix inversion lemma, we have

xe
k ✏ µd

x,k � ♣hH
k Σ✁1

y hkq✁1hH
k Σ✁1

y ♣y ✁ Hkµd
xq, ve

x,k ✏ ♣hH
k Σ✁1

y hkq✁1 ✁ γd
x,k, (2.112)

with Σy ✏ Σw�➦K
k✏1 γ

d
x,khkhH

k , which has the well-known linear MMSE-IC estimator struc-
ture, based on APP estimates.

The next step for the APP MMSE estimation consists in accounting for the prior p♣xkq.
In the context of BICM receiver with iterative detection, a prior PDF on symbols can be
obtained through the extrinsic outputs of the SISO decoder pa

DET♣dk,qq, described by the
detector’s prior LLRs Lp♣dk,qq. Then a prior PDF on xk can be obtained following the same
computations carried out for the DEM factor node’s message for xk in the examples provided
for BP/GaBP/EP in sections above (Equation (2.39)), with

p♣xkq✾
➳

αPX

Q➵
q✏1

exp
�✁ϕ✁1

q ♣αqLp♣dk,qq
✟
δ♣xk ✁ αq. (2.113)

Consequently, the posterior PDF on xk is

p♣xk⑤yq✾
➳

αPX

exp

✄
✁⑤xe

k ✁ α⑤2
ve

x,k

✁
Q➳

q✏1

ϕ✁1
q ♣αqLp♣dk,qq

☛
δ♣xk ✁ αq, (2.114)

which is proportional to the posterior PMFs Dk♣αq seen before for GaBP and EP in Equa-
tions (2.53) and (2.97), but with ♣xe

k, v
e
x,kq being computed differently to those methods.

Consequently, the APP MMSE estimates are given as

µd
x,k ✏ EDk

rxks ✏
➳

αPX

αDk♣αq, γd
x,k ✏ Var Dk

rxks ✏
➳

αPX

⑤α✁ µd
x,k⑤2Dk♣αq. (2.115)

Equations (2.112) and (2.115) constitute fixed point equations for iteratively estimating
µd

x,k and γd
x,k, and when the maximum number of inner iterations are reached (or PDA has

converged), the extrinsic LLRs of coded bits can be computed following Equation (2.54).

2.4.4 On the links with Approximate Message Passing Algorithms

Recently, there has been a significant amount of contributions on iterative message pass-
ing algorithms for low complexity detection of parsimonious high-dimensional data. This
sub-section discusses the application of theses algorithm for BICM detection in digital com-
munications, while alluding to their strong ties to classical variational inference methods.

Approximate Message Passing (AMP) algorithms have been originally designed to esti-
mate x on a noise-free linear model y ✏ Hx, with N ↕ K and a given prior distribution
p0♣xq. In typical use cases of these methods, x is sparse, and p0♣xq is a distribution that
holds the prior knowledge on the sparsity of the high-dimensional data vector.
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AMP-like techniques have been extended to handle the generalized linear model (i.e. any
likelihood p♣y⑤Hxq), which bodes well for symbol detection, with the assumption Σw ✏ σ2

wI.
Their algorithmic structure shares similarities to the self-iteration detection techniques in
digital communications, based on variational inference, where data lies in a finite set X ,
and various recent PHY algorithm proposals exploit these techniques [Guo+13; Wu+14;
Zha+15a]. In this section, we summarize AMP-like iterative methods in the context of SISO
detector design. In order to provide a clear view of each algorithm, notations have been unified
with mostly the hat accent “̂ ” being used for the outputs of a linear estimation component,
and the bar “̄ ” being the non-linear estimator (denoiser or shrinkage function) counterpart.

Iterative Thresholding Earlier approaches for low-complexity estimation of x consists in
iterating a linear estimator with IC, and a non-linear component-wise estimator, in order to
reconstruct sparse-solutions for under-determined systems [DDDM04; MD10].

Algorithm 2 Iterative Thresholding

Require: y, H, κ, η♣☎q, p0♣xq
Ensure: x̄

1: x̄♣✁1q Ð Ep0rxs
2: for s ✏ 0 . . .S do
3: x̂♣sq Ð x̄♣s✁1q � κHH♣y ✁ Hx̄♣s✁1qq
4: x̄

♣sq
k Ð η♣x̂♣sqk ; vx̂q,❅k ✏ 1, . . . ,K

5: end for

Iterative thresholding is given in Algorithm 2, where S is the number of iterations, κ a
constant parameter and η♣☎q is a non-linear shrinkage or threshold function. This algorithm
consists of a linear estimation step at line 3, which is more specifically a linear interference
cancellation scheme with matched-filtering. Indeed estimates are provided by the non-linear
function of line 4 are used to regenerate and cancel interference, similar to the use of demod-
ulator or decoder feedback in GaBP/EP or PDA.

In the classical context of parsimonious estimation, the threshold function is given by a
regularized least-squares

η♣x̂k; vx̂q ✏ arg min
xkPC

✒⑥x̂k ✁ xk⑥2

vx̂
� fs♣xkq

✚
, (2.116)

where vx̂ is a weight, that can be interpreted as an estimated variance of residual error between
x̂ and x, and fs♣xq is a regularization function, such as the ℓ1-norm, or a function related to
the prior constraint p0♣xq. Iterative thresholding is guaranteed to converge for convex fs♣☎q
[DDDM04], for some values of vx̂.

In a digital communications context, one can consider a shrinkage function related to the
finite set X of xk, which acts as a decision device. One option is to use

fs♣xq ✏
✧

0 x P X ,

�✽ otherwise,
(2.117)
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where xk is projected into the constellation set X , i.e. a hard decision is taken. Alternatively,
to prevent loss of information, we can use the multinomial logistic regularization with the
prior log-probabilities from the Equation (2.39), i.e.

fs♣xq ✏
★ ➦Q

q✏0 ϕ
✁1
q ♣xqLp♣dk,qq x P X ,

0 otherwise,
(2.118)

which carries out Bayesian regularization, and performs the APP MMSE estimation η♣x̂k; vx̂q ✏
Erxk⑤x̂k, vx̂s by assigning prior constraints to p0♣xq from the prior PMF of the Equation (2.39).
In the following, we refer to this case as Iterative Soft Thresholding (IST)2.

Both of these functions require x̂k to be unbiased, and to this end, κ ✏ 1④
✁➦N

n✏1 ⑤hk,n⑤2
✠

is enforced, which enables the assumption that x̂♣sqk ✏ xk �ν♣sqk , where ν♣sqk is an AWGN, with

vx̂ ✏ Var♣ν♣sqk q ✓ σ2
wκ. The latter assumption neglects the impact of the residual interference,

which is the default approach in iterative thresholding. It has been shown that iterative soft
thresholding with the APP MMSE estimator, as the threshold function above, has the same
fixed points as the mean field energy minimization [Krz+14].

The performance of iterative thresholding can be significantly improved by estimating the
noise and residual interference with vx̂ ✏ tr♣HHHq✁1♣⑥y✁Hx̂⑥2q [DHD12], where the variance
estimation directly depends on the processed samples. Note that iterative thresholding and
PDA both use APP estimates to carry out IC, but with different estimates on noise variance
and while the former uses the normalized matched filter for the linear estimation, PDA uses
an MMSE estimator. Consequently, iterative thresholding is a mean-field method and it is a
sub-optimal variant of PDA which avoids matrix inversion by using a matched-filter as the
linear estimator, instead of a conditional MMSE filter.

Algorithm 3 Approximate Message Passing

Require: y, H, κ, η♣☎q, p0♣xq
Ensure: x̄

1: x̄
♣✁1q
k Ð Ep0rxks, ǫ♣✁1q

k Ð 0 for k ✏ 1, . . . ,K
2: for s ✏ 0 . . .S do
3: x̂♣sq Ð x̄♣s✁1q � κHH♣y ✁ Hx̄♣s✁1qq � ǫ♣s✁1q

4: x̄
♣sq
k Ð η♣x̂♣sqk , vx̂q,❅k ✏ 1, . . . ,K

5: ǫ
♣sq
k Ð K

N

✂
1
K

➦K
k✶✏1

❇η

❇x̂
♣sq

k✶

✁
x̂
♣sq
k✶ ; vx̂

✠✡✁
x̂
♣sq
k ✁ x̄

♣sq
k

✠
,❅k ✏ 1, . . . ,K

6: end for

Approximate Message Passing While iterative thresholding has an attractive computa-
tional complexity, it fails to operate under ill-conditioned channels and its behavior cannot
be accurately predicted. In [DMM09], Approximate Message Passing (AMP) is proposed to

2This denomination should not be confused with the convention used in compressed sensing literature,
where it refers to the use of a rectified linear unit is used for shrinkage with ℓ1 norms. For us IST refers to the
generic Bayesian thresholding case in [Krz+14].
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address these, by using an additive memory (or momentum) term called the Onsager reaction

term, which was originally used to improve mean field techniques in statistical physics.

AMP is given in Algorithm 3, where the addition of the reaction term vector ǫ is the main
difference compared to iterative thresholding. Indeed, as we expect to have x̂k ✏ x̄k ✏ xk at
ideal convergence, this component is an additive quantity that amplifies the estimation error,
relative to the local sensitivity (i.e. rate of change) of the thresholding function. For SISO
detection with the APP estimator function η♣x̂k; vx̂,kq ✏ Erxk⑤x̂k, vx̂,ks, one still has to enforce

κ ✏ 1④
✁➦N

n✏1 ⑤hk,n⑤2
✠

in order to keep the estimates unbiased. Moreover, the derivative of
the threshold function is ❇η♣x̂k; vx̂q

❇x̂k
✏ 1
vx̂

Varrxk⑤x̂k, vx̂s, (2.119)

which can be fairly easily computed through a soft APP demapper, and AMP maintains
the advantage of not having any matrix inversion. Similarly to iterative thresholding, the
performance AMP can be significantly improved if the thresholding function accounts for the
noise estimation vx̂ ✏ tr♣HHHq✁1♣⑥y ✁ Hx̂⑥2q,❅k.

AMP has the advantage of being accurately predictable for mildly-conditioned channel
matrices. The iterative dynamics can be evaluated through its asymptotic Mean Square
Error (MSE) on xk of x̂♣sqk and x̄

♣sq
k , and yields scalar fixed-point equations which allows

finding fixed-points. These aspects will be discussed in the next section.

Generalized Approximate Message Passing GAMP extends AMP to any observation
model p♣y⑤Hxq which can be fully-factorized on yn, and it is also known as Bayesian AMP

[Ran11]. It can be derived, with the use of the auxiliary variable z ✏ Hx, on the factor
graph of p♣x⑤yq✾ ➧

n p♣yn⑤znqδ♣z✁Hxqp0♣xq, through BP message passing, followed by some
simplifications. More precisely, messages from the factor p♣yn⑤znq are simplified with the
central limit theorem, and messages from variable nodes xk are simplified through second order
Taylor expansion [Ran11]. GAMP is given in Algorithm 4, and unlike AMP it incorporates
the prediction of uncertainties, with diagonal covariance matrices Vx̂ ✏ Diag♣rvx̂1 ; . . . ; vx̂K

sq,
which avoids the need of having a heuristic for vx̂k

, and also similarly for x̄, ẑ and z̄.

The MSE-optimal implementation of GAMP uses the threshold functions ηin ♣x̂,Vx̂q ✏
Erx⑤x̂,Vx̂s and ηout ♣ẑ,Vẑq ✏ Erz⑤ẑ,Vẑs, where x̂ and ẑ are respectively considered to be
uncorrelated noisy estimations of x and z (e.g. with diagonal covariance matrices). Moreover,
p♣y⑤zq being an Gaussian noise channel in our context, we have

ηout ♣ẑ,Vẑq ✏ Erz⑤ẑ,Vẑs ✏ ♣Σw � Vẑq✁1♣Σwẑ � Vẑyq, (2.120)
❇ηout

❇ẑ
♣ẑ,Vẑq ✏ Covrz⑤ẑ,Vẑs ✏ ♣Σw � Vẑq✁1ΣwVẑ, (2.121)

ηin ♣x̂,Vx̂q ✏ Erx⑤x̂,Vx̂s ✏ EDrxs, (2.122)
❇ηin

❇x̂
♣x̂,Vẑq ✏ Covrx⑤x̂,Vx̂s ✏ CovDrxs, (2.123)

where D is the posterior PMF on x, from the Equation (2.53). Moreover, in this case GAMP is
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Algorithm 4 Generalized Approximate Message Passing

Require: y, H, κ, η♣☎q, p0♣xq
Ensure: x̄

1: x̄
♣✁1q
k Ð Ep0rxks, v♣✁1q

x̄k
Ð Varp0rxks, ǫ♣✁1q

k Ð 0 for k ✏ 1, . . . ,K
2: for s ✏ 0 . . .S do
3: ẑ♣sq Ð Hx̄♣s✁1q ✁ V♣sq

ẑ ǫ♣s✁1q, V♣sq
ẑ Ð Diag♣diag♣HHV♣s✁1q

x̄ Hqq
4: z̄♣sq Ð ηout

✁
ẑ♣sq,V♣sq

ẑ

✠
, V♣sq

z̄ Ð V♣sq
ẑ

✁
1
N

➦N
n✏1

❇ηout

❇ẑ
♣sq
n

✁
ẑ
♣sq
n , v

♣sq
ẑn

✠✠
5: ǫ

♣sq
k Ð V♣sq✁1

ẑ ♣z̄♣sq ✁ ẑ♣sqq, V♣sq
ǫ Ð V♣sq✁1

ẑ ♣I ✁ V♣sq
z̄ V♣sq✁1

ẑ q
6: x̂♣sq Ð x̄♣s✁1q ✁ V♣sq

x̂ HHǫ♣sq, V♣sq
x̂ Ð Diag♣diag♣HHV♣sq

ǫ Hqq✁1

7: x̄♣sq Ð ηin

✁
x̂♣sq,V♣sq

x̂

✠
, V♣sq

x̄ Ð V♣sq
x̂

✂
1
K

➦K
k✏1

❇ηin

❇x̂
♣sq
k

✁
x̂
♣sq
k , v

♣sq
x̂k

✠✡
8: end for

shown to have the same-fixed points as the Bethe free energy, in the large-system limit where
N,K Ñ✽, with K④N remaining constant [Krz+14]. Remarkable properties of this algorithm
are its provable and fast convergence for IID zero-mean Gaussian channel matrices, and the
accurate predictability of its dynamics through state evolution. However the convergence
of GAMP in general is strongly dependent on the singular values and conditioning of H.
In particular, when p0♣xq and p♣y⑤zq are Gaussians, and damping is applied on GAMP,
through exponential smoothing of x̄ and z̄, there is always a value of damping that guarantees
convergence, for any channel [RSF14]. In addition, the amount of necessary damping increases
with the peak-to-average ratio of squared singular values of H.

Finally, GAMP is an extension of the previously discussed AMP, which exhibits the same
APP estimate-based linear IC structure, but with refined tracking of uncertainties in addition
to the Onsager reaction term. While it does not use MMSE filtering as in PDA, it uses
an enhanced matched-filter structure where the noise and residual interference uncertainties
are accounted for, but by neglecting underlying inter-correlations. The presence of a bias
compensation term remains as a considerable advantage for GAMP over PDA, but their
behavior should be numerically compared for concluding in a given setting.

Orthogonal Approximate Message Passing In order to understand how AMP manages
to outperform iterative thresholding and to alleviate the unpredictability issues for handling
more general channel matrices, [MP17] proposes Orthogonal Approximate Message Passing
(OAMP). The correlations between the linear and non-linear estimation errors are suggested
to be among the underlying causes behind the prediction errors of state evolution for AMP.
Thus, OAMP is proposed to ensure orthogonality between these errors, and removes the need
for computing an Onsager reaction term, while also enabling predictability and convergence
for a wider category of channels.

This technique is shown in Algorithm 5, where η✍♣☎q and W✍ are respectively the con-
strained non-linear and the linear estimators. OAMP ensures the residual error at the output
of the linear estimator to be orthogonal to the non-linear estimator’s residual error, with the
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Algorithm 5 Orthogonal Approximate Message Passing

Require: y, H, η✍♣☎q, W✍

Ensure: x̄
1: x̄

♣✁1q
k ✏ Ep0rxks, v♣✁1q

x̄ Ð tr♣HHHq✁1♣⑥y ✁ Hx̄♣✁1q⑥2 ✁Nσ2
wq

2: for s ✏ 0 . . .S do
3: x̂♣sq Ð x̄♣s✁1q � W✍♣y ✁ Hx̄♣s✁1qq
4: v

♣sq
x̂ Ð Ktr♣W✍Hq✁1 ✁ v

♣s✁1q
x̄

5: if s ➔ S then
6: x̄

♣sq
k Ð η✍♣x̂♣sqk , v

♣sq
x̂⑤xq,❅k ✏ 1, . . . ,K

7: v
♣sq
x̄ Ð tr♣HHHq✁1♣⑥y ✁ Hx̄♣sq⑥2 ✁Nσ2

wq
8: else
9: x̄

♣sq
k Ð ηout♣x̂♣sqk , v

♣sq
x̂ q,❅k ✏ 1, . . . ,K

10: end if
11: end for

latter being IID and independent of A and w. For any given linear filter-bank W P C
K✂N

and non-linear component-wise function η♣☎q, these requirements are satisfied by

• a “de-correlated” linear estimator, i.e. tr♣IK ✁ WHq ✏ 0,

• a divergence-free non-linear estimator, i.e. Er❇η♣x̂kq
❇x̂k

s ✏ 0, with x̂k ✒ CN ♣xk, vx̂q, x ✒
p0♣xq.

Such uncorrelated estimators η✍♣☎q and W✍, can be constructed from any given shrinkage
function η♣☎q and linear estimator W with

W✍ ✏ K

tr♣WHqW, η✍♣x̂kq✾ η♣x̂kq ✁ x̂kE

✒❇η♣x̂q
❇x̂

✚
. (2.124)

The divergence-free constraint ensures that the non-linear estimator incorporates naturally
the impact of the Onsager reaction term, and the de-correlated constraint on the linear filter-
bank removes the estimation bias. As seen in other AMP-like algorithms, estimators need to
use the uncertainty of its priors as a parameter, and OAMP models uncertainty in x̂ and x̄
as AWGN with respectively a variance of vx̂ and vx̄.

In particular, the MSE-optimal parameters are given by

W✍ ✏ K

tr♣HH♣σ2
w � vx̄HHHq✁1HqHH♣σ2

w � vx̄HHHq✁1, (2.125)

η✍♣x̂kq ✏ vx̂µx,k ✁ γxx̂k

vx̂ ✁ γx
, (2.126)

η✍out♣x̂kq ✏ µx,k, (2.127)

where µx,k ✏ Erxk⑤x̂ks and γx ✏ Varrxk⑤x̂ks. It is seen that the MSE-optimal linear and
non-linear estimators share similar expressions with respectively the equalizer’s and the de-
modulator’s extrinsic messages in EP algorithm. Main differences lie in the estimation of
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the non-linear estimation reliability vx̄, and on the fact that OAMP uses scalar covariances.
Indeed, while EP computes the variance of estimation noise at the demodulator’s output
through message-passing with Equation (2.100), OAMP uses least-squares estimation to es-
timate this variance. Consequently OAMP and the scalar-EP algorithms are very similar
when the channel noise is white, and their differences would emerge from the use of damping
heuristics in EP, or due to the impact of short block length on the estimation of vx̄.

Vector Approximate Message Passing Another AMP-like algorithm that is closely
tied to EP is the Vector Approximate Message Passing (VAMP), proposed concomitantly
to OAMP in [RSF17]. It can be seen as a more robust but computationally complex vari-
ant of GAMP: VAMP is derived directly from the application of scalar-EP message-passing
on the linear detection model, along with the use of Singular Value Decomposition (SVD)
on the channel matrix. Indeed, as the primary objective of AMP techniques is to perform
low-complexity parsimonious detection in large systems, matrix inversions involved in EP is
considered to be prohibitive.

Algorithm 6 Vector Approximate Message Passing

Require: y, H, ηin♣☎q
Ensure: x̄

1: Perform compact SVD with UDiag♣sqVH ✏ H, with s P R
R
�, R ✏ rank♣Hq, UHU ✏ IR,

VHV ✏ IR

2: Compute ỹ Ð Diag♣sq✁1UHy
3: for s ✏ 0 . . .S do

4: µ
♣sq
x̄ Ð ηin

✁
x̂♣sq, v♣sqx̂

✠
, γ

♣sq
x̄ ✏ v

♣sq
x̂

✂
1
K

➦K
k✏1

❇ηin

❇x̂
♣sq
k

✁
x̂
♣sq
k , v

♣sq
x̂

✠✡
5: x̄♣sq Ð ♣µ♣sq

x̄ v
♣sq
x̂ ✁ x̂♣sqγ♣sqx̄ q④♣v♣sqx̂ ✁ γ

♣sq
x̄ q, v

♣sq
x̄ Ð ♣v♣sqx̂ γ

♣sq
x̂ q④♣v♣sqx̂ ✁ γ

♣sq
x̄ q

6: f ♣sq Ð Diag♣σ2
w � v

♣sq
x̂ s❞ sq✁1♣s❞ sq, ξ♣sq Ð R

K

✁
1
R

➦R
k✏1 eH

k f ♣sq
✠

7: x̂♣sq Ð x̄♣sq � ξ♣sq✁1f ♣sq ❞ ♣ỹ✁VH x̄♣sqq
8: v

♣sq
x̂ Ð ξ♣sq✁1 ✁ v

♣sq
x̄

9: end for

If SVD can be carried out on H, then linear estimator’s output (equivalent to the EQU
node’s extrinsic message in Equation (2.106)) can be computed with orthogonal transforma-
tions and element-wise parallel operations. More specifically, [RSF17] uses the compact SVD
where non-positive singular values are removed, and orthogonal transformations are trun-
cated. VAMP therein, given in Algorithm 6, also proposes the use of exponential smoothing
on the APP mean of DEM node, in Eq. (2.98), and to the extrinsic variance of EQU node,
in Eq. (2.105), with β being the damping factor. To handle potentially negative extrinsic
variances of the DEM node, its values are saturated to lie between 10✁11 and 1011.
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2.4.5 Asymptotic Analysis for Self-Iterated Detection and Conclusions

Predictability of AMP-like algorithms has an important role in their analysis and opti-
mization, and single-parameter state-evolution techniques were developed to this end [BM11].
Rigorous formalism for state-evolution is out-of-scope for this thesis, we will simply discuss
their usage and implications.

State evolution consists in computing the fixed-point equations of the asymptotic Mean
Square Error (MSE) at output of linear and non-linear estimators, in the large system limit,
where K,N Ñ �✽ with K④N remaining constant. More explicitly, the state evolution
consists in analyzing the dynamics of ε♣sqx̄,k ✜ x̄

♣sq
k ✁xk and of ε♣sqx̂,k ✜ x̂

♣sq
k ✁xk, with x̄♣sq

k and x̂♣sq
k

being the estimates in AMP, VAMP or OAMP algorithms (for GAMP additional metrics are
needed), through the characterization of vx̄ ✜ Var♣ε♣sqx̄,kq and vx̂ ✜ Var♣ε♣sqx̂,kq, as self-iteration
index s goes from 0 to S. In the large system limit, components of error vectors are assumed
to behave as independently distributed scalar random processes, and yield simple fixed-point
equations, but rarely with analytical closed-form expressions. Random matrix theory is often
used in such studies in order to remove the dependence of these scalar quantities from the
channel matrix H, and obtain equations that only depend on the ratio K④N , σ2

w and prior
parameters.

Thanks to this asymptotic analysis technique, SISO detectors based on AMP have been
used to evaluate the achievable rates of turbo receivers in [Liu+19b]. The resulting transfer
functions are used for optimized LDPC code design, and it is seen that state evolution yields
relatively accurate analysis and prediction of achievable rates and decoding threshold.

A concomitant work to the contributions in this thesis has outlined these advantages
in [Ma+18], where OAMP-based state evolution is shown to be accurate in the context of
iterative detection for AWGN MIMO communications systems. Indeed, APP estimate based
systems are shown to be poorly predicted, and OAMP is shown to significantly outperform
conventional turbo detection based on GaBP.

Besides, OAMP and VAMP are known to remain robust for a wider selection of channel
matrices, while remaining accurately predictable with asymptotic analysis, which is enabled
by the use of extrinsic estimates, instead of APP estimates. OAMP provides a framework
proving that Bayes optimal MMSE AMP technique is based on direct application of EP, but
it also enables decorrelating and removing the bias of any couple of linear and component-wise
separable non-linear estimators [Ma+18]. On the other hand, VAMP enables analyzing tech-
niques that can go beyond MMSE inference, by possibly generalizing the “linear estimator”
to a more general shrinkage function, using MAP detectors as shrinkage functions [Pan+19].
This makes them an interesting candidate for predictable SISO detector design, which is
one of our main motivations for studying EP-based approximate inference for receiver design
throughout this thesis.
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Figure 2.9: Parallels between neural network architectures and iterative detection

2.5 Unfolded Deep Receivers

2.5.1 On Deep Learning for PHY Receivers

Wireless communications networks are man-made, model-based systems, and more specif-
ically, as PHY layer transmitters use deterministic encoding and modulation techniques, re-
ceivers designed with model-based statistical algorithms are expected to be robust, when the
physical channel modeling is accurate.

However as the computational complexity of the optimal receiver is prohibitive in most
cases, and as practical transmission medium can incorporate poorly modeled phenomena, due
to approximations used in receiver design. The application of emerging machine learning and
deep learning techniques for mitigating these aspects gather a lot of attention for communi-
cations system design [ZDRD19]. The applications of machine learning in wireless systems
are vast, here we will mainly discuss its usage for PHY layer receivers for data transmission
[Dö+18].

Purely data-based deep learning strategies have been investigated for transceivers through
auto-encoders, however practical interest for an end-to-end use remains limited, especially due
to the prohibitive training costs required for channel coding [OH17]. Indeed, the required size
of the training set for the the encoder-decoder network scales exponentially with the transport
block size, hence auto-encoder techniques are more attractive when they are only partially
used to handle the mitigation of neglected channel phenomena or system imperfections [CB19].

Alternatively model-oriented learning is more practical, when considered for learning ex-
isting algorithms’ hyper-parameters, in order to optimize the receiver to account for neglected
interference, correlations or other challenges in the underlying system [HLW14; NBB16;
SDW19]. In these approaches, a neural detection or decoding networks is typically initialized
with parameters from a conventional algorithm, and then optimization methods are used to
fine tune some of the hyper-parameters of the network. Alternatively, there is a category
of neural architectures that incorporates variational inference principles, but by also updat-
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Figure 2.10: Multi-layer perceptron as a universal approximator.

ing parameters of the underlying PDFs that characterize the probabilistic model, based on
observed data [Zha+18; CB18]. These are out-of-scope of this thesis, but in the following sec-
tion, the reasons why deep learning has seen such an important success will be discussed and
their similarities with iterative algorithms commonly used for receiver design are underlined.

2.5.2 On Neural Networks and Growing Interest for Deep Learning

Early concepts of neural networks used multi-layer perceptrons to perform machine learn-
ing, which consists in identifying defining features of the observed process from the training
data. The structure of an elementary layer of a perceptron is given in Figure 2.9, where the
input signal is denoted y ✏ ry1; . . . ; yN s and the output signal is denoted x̂ ✏ rx̂1; . . . ; x̂Ks,
to stay consistent with the inverse problem at hand of estimating transmitted data x from
observations corrupted by noise and interference. This layer consists of a linear filter-bank
W, a bias vector b and a non-linear component-wise activation function η, with an associ-
ated parameter vector Θ ✏ rθ1; . . . ; θKs. The input of the activation function is an affine
transformation, and the non-linearity of the activation functions play a key role in bringing
learning capabilities when there are one or more hidden layers.

Indeed, a multi-layer perceptron with one-hidden layer, consisting of D components, is
a universal approximator, [Hor91], meaning that the structure in the Figure 2.10-(a) can
approximate any given function, with adequately chosen parameters, for a sufficiently large,
but finite depth D. However, due to the potentially prohibitive complexity of such structures,
early developments in neural networks has led to multi-layer perceptrons with more than one
hidden layers, which keep the same approximation capability, but with smaller depths at
hidden layers, as illustrated in the Figure 2.10-(b). In this case, filter-banks W♣sq, biases
b♣sq and parameters Θ♣sq of the activation function η♣sq for layers3 s ✏ 1, . . . ,S need to be

3We use the same indexing for layers and inner iterations due to their somewhat similar algorithmic roles.
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Figure 2.11: A residual layer with 2 inner layers, for building residual networks [He+16].

optimized through training techniques, such as back-propagation

Nevertheless, fully-connected layers suffer from over-fitting problems, and historically the
use of convolutional layers is preferred for overcoming this issue. In this case W♣sq is forced
to be a Toeplitz matrix, and the number of parameters to be trained is significantly reduced.
Moreover, a certain local behavior is introduced through the filter-like nature of this affine
transform, which increases robustness against some imperfections, such as delays in the ob-
served signal. With the use of a succession of convolutional layers followed by pooling layers
(i.e. down-sampling), convolutional neural network architectures have emerged and played a
pivotal role in the field of machine learning since their discovery in 1980s [LeC+89]. More re-
cently, convolutional networks have re-emerged in 2012, where deep architectures were shown
to significantly overcome feature learning performance, by using a high number of hidden lay-
ers [KSH12]. Since then deep learning community is focused on seeking methods that enable
further performance gain with additional layers [He+16].

This development has been possible thanks to several improvements on convolutional
networks, such as pre-processing is used to de-correlate, whiten4 and normalize the input of a
layer. Moreover, the use of non-saturated activation functions, based on rectified non-linear
unit, and the increased use of residual layers, where the input of a previous layer also impacts
the activation function of the next layer, as illustrated in Figure 2.11, enabled increasing
the number of hidden layers. The residual processing is particularly important as it enabled
neural layers to approximate a function that can be close to the identity, which enabled
further increasing the number of layers without degrading the performance of deep networks
[He+16]. Finally, another major factor behind the revolution of deep learning lies in the
emergence of advanced stochastic convex and non-convex optimization techniques that have
facilitated learning of more complex architectures [DHS11; KB15].

2.5.3 Deep Unfolding: the Marriage of Iterative Inference and Deep Net-
works

When considering the developments in deep learning, with the previously discussed self-
iterated SISO architectures in mind, one can draw strong parallels. First, the similarity
between convolutional networks and self-iterated algorithms is significant; the linear estima-
tor/filtering operation followed by a non-linear estimator is structurally similar to a convolu-

4Whitening refers to the pre-processing required to enforce a stationary behavior to the covariance of the
concerned signals.
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Figure 2.12: Deep unfolding of the iterative thresholding algorithm.

tional layer, as emphasized in Figure 2.9. There is also a strong similarity between the use of
interference cancellation and damping operations in self-iterated filtering algorithms, and the
use of residual connections in convolutional networks. Moreover the fact that normalization,
decorrelation and whitening constraints further improve the capabilities of neural networks is
an interesting parallel to the (MMSE) optimal iterative thresholding techniques [MP17]. The
importance of having de-correlated and normalized inputs bears similarity to the use of the
Onsager term in AMP or the derivation of constrained modules for OAMP.

These similarities are a source of motivation for evaluating deep learning techniques for
deriving self-iterated detectors for PHY layer receivers. Indeed, recent results in [SDW19]
explored the use of fully-connected networks and a more refined architecture based on resid-
ual networks and gradient-descent algorithm, to carry out iterative MIMO detection. This
approach significantly outperforms AMP both in an ill-conditioned difficult channels and ran-
dom mild-channels, and operated fairly close to sphere-detection performance. However, the
design of such neural network architectures can require many trial-and-error experimentation,
and requires expertise on how to choose right layers or dimensions to effectively resolve the
detection problem.

For instance, through the use of a “soft-max” activation function, successive of convolu-
tional layers within a multi-layer perceptron can be seen as an extension of iterative thresh-
olding with a soft demapper. This has in fact gathered attention in the field of sparse signal
recovery, where iterative soft thresholding has been used as an inspiration to develop deep
networks [GL10], to get more robust detection structures. Recalling the update steps of iter-
ative thresholding in the Algorithm 2, one can define A♣sq ✜ H, B♣sq ✜ κHH and Θ♣sq ✏ vx̂,
and rewrite these steps as

ŵ♣sq Ð y✁A♣s✁1qx̄♣sq, (2.128)

x̂♣sq Ð x̄♣sq �B♣sqŵ, (2.129)

x̄♣sq
k Ð η♣sq♣x̂♣sq; Θ♣sqq. (2.130)

Then the principle of unfolding is used, by considering A♣sq, B♣sq, Θ♣sq as unknown parameters
to be trained, for a given set of activation functions η♣sq, and thus building a potentially fully-
connected neural layer with residual links, as in Figure 2.12, for deep networks.

This concept have been generalized and investigated based on various iterative algorithms
for designing deep detection networks for PHY layer is deep unfolding [HLW14]. It consists
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in generating a multi-layer neural network architecture from a given iterative algorithm that
is used as a baseline for identifying the connections and parameters of the architecture. Then
the parameters of the original algorithm can be left “free" for optimization through training.
More specifically, we consider the state-space representation of an iterative algorithm with
input vector y P C

N and an output vector x̂ P C
K , such that

x̂
♣sq
k ✏ gk♣y,φ♣sq,θ

♣sq
k q, k ✏ 1, . . . ,K (2.131)

φ♣sqm ✏ fm♣y,φ♣s✁1q,θ
✶♣sq
k q, m ✏ 1, . . . ,M, (2.132)

where φ♣sq ✏ rφ♣sq1 , . . . , φ
♣sq
M s is a state vector with fm and gk being respectively state and

output functions. Deep unfolding consists in representing such iterative algorithms as multi-
layer deep feedforward networks, with parameters Θ♣sq to be chosen and then optimized, as
illustrated in Figure 2.13.

This strategy has been applied to damped BP for channel decoding [NBB16] and MIMO
detection [Tan+18; He+18], where exponential smoothing and other damping parameters are
optimized through learning. Alternatively, unfolded OAMP is evaluated for MIMO detection,
where an attenuating factor on non-linear estimations is learned. These works have shown
performance benefits of fine-tuning iterative algorithms through deep learning, and in this
thesis, it will be discussed in Chapter 4, for the optimization of proposed EP-based algorithms.

2.6 Conclusion

Near-optimum iterative detection has seen light for practical Soft Input Soft Output
(SISO) detector and decoder design, with the discovery of turbo codes in 1993 [BGT93].
The following decade has seen the derivation of a variety of SISO algorithms for addressing
different communications problems through BP and GaBP [DJB+95; WP99; TSK02]. In
particular powerful EXIT analysis tools enabled optimizing channel codes for operating at
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Figure 2.14: Mind map of iterative detection/estimation techniques discussed in this chapter.
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the near-capacity achievable rate bounds of these receivers [TB00; Hag04; Ngu+15].

Meanwhile with the popularization of approximate statistical optimization methods, a
wide selection of iterative detection or estimation algorithms [Sen+11; SA11; GM08; Guo+13]
were designed based on variational Bayes methods, PDA or AMP algorithms, for addressing
the problem of Equation (2.1). On one hand, variational Bayes methods address the issue
of approximately computing MAP estimation through message passing algorithms based on
graphical models, and provide a wide selection of methods with varying complexity, depending
on the concerned problem. On the other hand, iterative thresholding algorithms, originally
designed for regularized least-squares problems have given birth to various approximate mes-
sage passing algorithms, which share strong ties. In Figure 2.14, a schematic provides a
summary of relationships between these iterative algorithms, and following conclusions can
be drawn about their advantages and their limits:

• BP is optimal when the system has an acyclic factor graph, otherwise it might yield al-
gorithms of appropriate complexity if all the variables of the graph are either categorical
(discrete) or continuous, from the exponential family.

• MF methods with variational message passing, enable carrying out message passing on
graphs with variables belonging to one or more categories of continuous distributions,
but it drastically fails with discrete variables.
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• EP provides a means to manually decide which category of distributions each variable
belongs to, which is enabled by moment matching for distributions in the exponential
family. Although it is obtained from a looser approximation than BP, for loopy graphs
it provides an alternate approach to seek fixed points of Bethe free energy.

• IST is a relatively simple algorithm for carrying out constrained regression by selecting a
regularization function. Complexity and convergence depend strongly on the constraint
at hand, in a turbo detection context, it behaves as a matched filter with APP estimate
based interference cancellation.

• AMP/GAMP improves iterative thresholding through the use of a decorrelating Onsager
term. They are provably predictable for IID Gaussian channel matrices.

• OAMP shows that Onsager term is not needed when the AMP components are decor-
related and divergence free, and in the MSE optimal case, it yields similar results to
scalar EP.

• VAMP simplifies the use of scalar EP on linear models through the use of SVD, and
provides a generic framework where shrinkage functions could go beyond the limitation
of EP to exponential families.

Among those, EP message passing, and related algorithms such as OAMP or VAMP, have
proven to improve detection performance in various scenarios, while having the remarkable
property of being asymptotically predictable.

This chapter looks into signal processing techniques from different communities (commu-
nications theory, compressed sensing, artificial intelligence) with a common goal of resolving
the problem of low-complexity detection of a constrained signal for use in the context of
turbo detection of BICM transmissions. Hence it is aimed to be a synthesizing contribution
to underline the strong and weak aspects of various emerging techniques.

In the remainder of this thesis, we are interested in investigating turbo detectors that also
use an inner feedback from the demodulator. Thus, the above-mentioned strategies provide
a means to derive doubly-iterative turbo receiver structures through the use of self-iterated
detection algorithms. Moreover, following the emerging trends in using artificial intelligence
for digital communications, we have briefly discussed the reasons behind the success of deep
learning, their similarities to the model-based algorithms, and the concept of deep unfolding
that could be used to optimize previously existing iterative algorithms with structure.
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3.1 Introduction

In this chapter, the mitigation of Inter-Symbol Interference (ISI) is discussed with the use
of turbo equalization techniques. Such receivers incorporate Soft Input Soft Output (SISO)
detectors that either exploit the sparsity of the channel impulse response, or that use filtering
structures to compensate the ISI. We have come to note that the literature on FIR filter-based
turbo equalizers have only been studied for low rate applications. Hence, our broad objective
is to investigate the capabilities of turbo FIR equalizers, and propose novel techniques, to
push the achievable rates of such structures closer to the capacity bound, while trying to
maintain a low computational complexity. In summary, the contributions brought by this
chapter are as follows:

• a survey on turbo-equalization, where BP and GaBP message passing algorithms, from
Chapter 2, have been used for detection in ISI channels, with

– a brief discussion on trellis-based detection, underlining its links with the message
passing framework, in Section 3.2,

– followed by a discussion on classical block and FIR structures in Section 3.3.1,

– and completed by a review of conventional turbo FIR solutions in Section 3.3.2,

• discussion on turbo DFE issues, derivation of novel solutions and their analysis:

– generalization of turbo FIR equalizer model in Section 3.4.2,

– proposal of an APP-feedback based novel DFE-IC solutions in Section 3.4.3,

– the use of a factor graph framework to obtain an original DFE structure with a
novel EP-based soft feedback in Section 3.4.4,

– a novel matrix inversion technique is proposed in Section 3.4.5 to reduce complexity
of exact (i.e. with dynamics filters) turbo FIR equalizers, by exploiting Cholesky
decomposition and rank-1 updates with Givens rotation matrices [GVL96],

• derivation of self-iterated EP-based exact FIR LE and DFE, followed by finite-length
performance and complexity analysis, and asymptotic EXIT analysis, in Section 3.5,

• an online-prediction approach for implementing a low-complexity FIR DFE (i.e. DFE
with static filters), with APP or EP feedback, where the reliability of feedback symbols
are predicted with a novel semi-analytic online prediction technique, in Section 3.6.

To better illustrate our contributions with respect to the literature, the case of time-

domain equalization is discussed throughout this chapter, for single-user single-carrier trans-
mission, and with a base-band channel model corrupted by time-varying ISI and AWGN,
without interference from other blocks.

This model belongs to the general context of this thesis by considering the PHY model
presented in Figures 1.5 and 1.6, by using a SC waveform with Zero Padding (ZP), with

FZP ✏ r0L✁1✂K ; IK ; 0L✁1✂Ks , GZP ✏ ✏
0♣K�L✁1q✂L✁1, IK�L✁1

✘
, (3.1)



3.2. On MAP Turbo Equalization 97

where the baseband channel memory is L✁1. The resulting N ✏ K�L✁1 observed baseband
samples are given by

yk ✏
L➳

l✏1

hk,lxk✁l�1 � wk, ❅k ✏ 1, . . . ,K � L✁ 1, (3.2)

by assuming x✁L�1 ✏ ☎ ☎ ☎ ✏ x0 ✏ 0 and xK�1 ✏ ☎ ☎ ☎ ✏ xK�L ✏ 0. Then, this time-domain ISI
model can be cast into the general linear channel model in Equation (2.1) as

y ✏ Hx � w, (3.3)

where y ✏ ry1; . . . ; yK�L✁1s, w ✒ CN ♣0N✂1, σ
2
wIN q and H is a sparse ♣K�L✁1q✂K matrix

given by

H ✏

✔
✖✖✖✖✖✖✖✖✖✖✖✖✖✖✖✖✕

h1,1

h2,2 h2,1

...
. . .

hL,L . . . hL,1

. . .
. . .

hK,L . . . hK,1

. . .
...

hK�L✁2,L hK�L✁2,L✁1

hK�L✁1,L

✜
✣✣✣✣✣✣✣✣✣✣✣✣✣✣✣✣✢

. (3.4)

When the channel is static, time-invariant, i.e. hk,l ✏ hk✶,l, for all k, k✶, l, this channel matrix
is a tall Toeplitz matrix.

3.2 On MAP Turbo Equalization

The problem of optimal MAP SISO detector design with Belief Propagation (BP) for a
generic linear channel has been discussed in the previous Chapter, Section 2.3.3. That brute-
force approach is discouraging due to the prohibitive computational costs of marginalization
operations involved in message computations at the detection factor node, denoted EQU.

In this section, we discuss how the flexibility of factor graph formalism enables simplifying
these problems thanks to the inherent sparsity of the channel model [Dec01; CB05]. Through
this approach we recover well-known trellis-based optimal detection algorithms from the lit-
erature, and we then discuss how their complexity can be further reduced, at the expense of
poorer performance.

This section shows that a same problem can have multiple solutions of varying complexity,
depending on the graph and the schedule for which the message passing derivations are
resolved.
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3.2.1 Factor Graph Modelling of ISI Channels and BCJR

ISI mitigation on the time-domain observations is a sparse problem where each column
of the channel matrix has only L non-zero elements. Hence it is possible to alleviate the
complexity bottleneck of this problem, to an extent, by exploiting the sparsity of the problem,
and the white noise assumption1, which leads to the use of a category of techniques such as
the Viterbi algorithm for ML detection, or BCJR algorithm for MAP detection [Bah+74;
DJB+95]. In the following, a factor graph derivation of BCJR is given to illustrate the links
between the general message passing framework and these algorithms.

First, the EQU factor node in Equation (2.27) is factorized thanks to the AWGN properties

fEQU♣xq✾ p♣y⑤x,H, σ2
wq ✏

K�L✁1➵
k✏1

p♣yk⑤x,H, σ2
wq. (3.5)

Next, by rewriting Equation (3.2) to isolate the term on xk, we have

yk ✏ hk,1xk � h③1
k

T xk✁1
k✁L�1 � wk, (3.6)

where h③1
k ✏ rhk,2; . . . ;hk,Ls, and xk✁1

k✁L�1 ✏ rxk✁1; . . . ;xk✁L�1s, and the auxiliary variable
sk ✜ xk✁1

k✁L�1 is introduced for tracking the channel memory with xk P X ❨ t0✉2. sk is in
the set Sx ✏ ➅L✁1

l✏1 ♣X ❨ t0✉q, which has a cardinality of ♣M � 1qL✁1. This state variable is
subject to a hidden Markov model, such that values of sk�1 directly depend on sk and xk,
which is a hard constraint on allowed transitions through the state-space model

sk�1 ✏
✒

01✂♣L✁2q 0
IL✁2 0♣L✁2q✂1

✚
sk �

✒
1

0L✁2

✚
xk ✜ T ♣sk, xkq (3.7)

In the conventional view of the BCJR algorithm, the state transition is modelled on a trellis
graph, where this functional T : Sx ✂ ♣X ❨ t0✉q Ñ Sx, such that ♣s, xq ÞÑ s

✶ ✏ T ♣s, xq,
indicates the reachable future states on the Trellis from the previous state s and the input x
is transmitted. Considering this, likelihood on yk, for k ✏ 1, . . . ,K is rewritten as

p♣yk⑤x,H, σ2
wq ✏ p♣yk⑤xk, sk,H, σ2

wq, (3.8)

✏ p♣yk⑤sk�1, sk,H, σ2
wqδ♣sk�1 ✏ T ♣sk, xkqq, (3.9)

✾ exp♣✁⑤yk ✁ hk,1xk ✁ h③1
k

T
sk⑤2④σ2

wqδ♣sk�1 ✏ T ♣sk, xkqq❧♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♠♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♥
✜fEQUk

♣sk�1,sk,xkq

, (3.10)

with the initial state s1 ✏ xn✁1
k✁L�1 ✏ 0♣L✁1q✂1, due to zero-padding assumption, and for

1This is ensured by the partial matched-filter assumption, but in general, a Forney observation model would
be required [For72].

20 is an additional value for handling zero-padding boundary effects of the data block.
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Figure 3.1: The factor graph of equation (3.12).

trailing observations, for k ✏ K � 1, . . . ,K � L

p♣yk⑤x,H, σ2
wq ✏ p♣yk⑤sk�1, sk,H, σ2

wqδ♣sk�1 ✏ T ♣sk, 0qq❧♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♠♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♥
✜fEQUk

♣sk�1,skq

. (3.11)

Considering this, a novel factor graph is constructed by involving the intermediate variables
s1, . . . , sK�L, with

p♣x,dq✾
✄

K➵
k✏1

fEQUk
♣sk�1, sk, xkqfDEMk

♣xk,dkq
Q➵

q✏1

fDECk,q
♣dk,qq

☛
K�L➵

k✏K�1

fEQUk
♣sk�1, skq,

(3.12)

which results in a Wiberg-type graph, as illustrated in Figure 3.1 [Wib96] .

This factor graph is acyclic, hence a scheduling consisting of a forward pass on sk, followed
by a backward pass on sk will yield the optimal SISO MAP detection.

The equivalence of this factor graph representation to the BCJR algorithm becomes appar-
ent, when message passing rules are applied. Denoting γk♣sk, sk�1, xkq ✜ fEQUk

♣sk�1, sk, xkq,
priors as pa♣xkq ✜ mDEMkÑxk

♣xkq, forward messages as αk♣skq ✜ mskÑEQUk
♣skq, with

mskÑEQUk
♣skq ✏ mEQUk✁1Ñsk

♣skq, and backward messages as βk�1♣sk�1q ✜ msk�1ÑEQUk
♣sk�1q,

with msk�1ÑEQUk
♣sk�1q ✏ mEQUk�1Ñsk�1

♣sk�1q, BP message passing rules yield

αk♣skq ✏
➳

sk✁1,xk✁1

αk✁1♣sk✁1qγk✁1♣sk✁1, sk, xk✁1qpa♣xk✁1q, (3.13)

βk♣skq ✏
➳

sk�1,xk

βk�1♣sk�1qγk♣sk, sk�1, xkqpa♣xkq, (3.14)
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and the extrinsic symbol message in Equation (2.30) is simplified into

mEQUÑxk
♣xkq ✏

➳
sk,sk�1

αk♣skqγk♣sk, sk�1, xkqβk�1♣sk�1q. (3.15)

Finally, the extrinsic coded bit messages of the MAP detector are given by

mDEMkÑdk,q
♣dk,qq

✏
1➳

β✏0

✓ ➳
sk,sk�1,xk

αk♣skqγk♣sk, sk�1, xkqβk�1♣sk�1q
➵
q✶✘q

e
✁ϕ✁1

q✶
♣xkqLp♣dk,q✶ q

✛
δ♣dk,q ✁ βq, (3.16)

which is used to compute extrinsic LLRs Le♣dk,qq. These equations show that MAP detection
for ISI channel requires computing and storing roughly KML metrics3, which are considerably
less complex than the metrics of the brute force approach given by Equations (2.30) and (2.31).

Unlike [Bah+74; DJB+95; Dec01; CB05], forward-backward messages are given on the
symbol level, i.e. through extrinsic message on xk, in Equations (3.15), rather than directly
marginalizing states over the coded bits dk,q. We have made this choice in order to make
different detection structures discussed in this thesis easily comparable among each other.
As filter-based structures (discussed below) operate on the symbol level, this allows exposing
differences and similarities of SISO detectors, through the same factor graph formalism.

This optimal detector has been theoretically investigated thoroughly for characterizing
the extent and the limits of its convergence [SRF08; SRF06]. An important property of this
forward-backward algorithm is its ability to yield an estimate of the Symmetric Information
Rate (SIR) of ISI channels, i.e. the supremum of all rates. While the Equation (1.36) is
an analytical a upper bound on ISI channel capacity with Gaussian distributed symbols,
computing constellation-constrained capacity of ISI channels (i.e. SIR) is computationally
prohibitive when L is greater than a few symbols. Hence the SISO BCJR algorithm alleviates
this issue, to an extent, through the use of the area theorem of its EXIT chart, as explained
in Section 2.3.6. Moreover, it has been shown that the SIR can be simply estimated by a
forward recursion of this receiver’s messages over the factor graph in Figure 3.1 [ALV+06].

While SIR is an effective bound for evaluating equalization performance, its computation
can be prohibitive on channels with large delay spread. An alternative, but a looser upper
bound for turbo detection performance is given by the Matched Filter Bound (MFB), which
corresponds to the receiver behaviour, when only a single, interference-free symbol is trans-
mitted, and matched-filter is used at the detector. When the mutual information of LLRs
provided by the decoder gets close to 1, the BCJR performance converges towards MFB, and
this property is also true for various sub-optimal turbo equalizers.

3The additional metrics needed due to xk ✏ 0 at the boundaries is neglected here.
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3.2.2 Reducing the Computational Complexity of BCJR

Although BCJR is less complex than the generic MAP detection with brute-force enu-
merations, its computational and memory complexity still increases exponentially with L and
in polynomial scale with M . While this receiver’s use might be affordable for non-frequency
selective channels, or for channels with memory using BPSK or QPSK constellations, for high-
spectral efficiency systems or for channels with high delay spreads, alternative structures with
less complexity are needed.

Among existing strategies for reducing the complexity of the BCJR detector, a wide
category of receivers keep the Trellis graph structure, and make simplifications [FA98; CFR01;
SC05; VAP06; Rad18]. These reduced-complexity structures seek to reduce the cardinality
of Sx, by removing the number of possible transition states [FA98], or by ignoring the impact
some channel memory components (i.e. reducing L), and thereby reducing the number of
possible states [CFR01]. These strategies can also be applied simultaneously, and possibly by
self-iterating the detection process, as in [VAP06; Rad18], or alternatively L can be reduced
with a channel-shortening filter [HR18; AFR18].

On the other hand, BCJR can be completely replaced by filter-based channel equalizers,
such as turbo linear structures in [GLL97; WP99; BC02; Wit+02; TS11]. This is a limit-
case of the BCJR simplified by channel-shortening, where the filter is designed in order to
completely remove interference (i.e. L ✏ 1), which enables the use of memoryless symbol-wise
MAP soft demapper [BSY98].

There is also an alternative factor-graph and BP-based receiver, that carry out estimation
only through symbol variable nodes xk, either with a parallel or a sequential message passing
schedule [CG05]. This iterative algorithm is sub-optimal due to the cycles of the graph, but
with channels that satisfy some sparsity conditions, the cycle-girth becomes large enough,
and this approach can approach BCJR performance. Moreover, by omitting some edges on
the factor graph, the complexity of this approach is regulated [CFP11].

3.3 Filter-Based Turbo Equalization

Equalization of frequency-selective channels through filter-based receiver architectures has
been a well-studied topic, as it is often related to the fundamentals of the estimation theory
[Kay93]. Such techniques also enable (partially or completely) analytical analysis of receiver
performance, which is an attractive property, for prediction and for quantifying properties of
communications channels (diversity, spectral decomposition, etc.), through the use of infinite-
impulse response channel models [Bel+79; Cio+95].

Extension of filtering techniques to finite-length architectures is obtained through opti-
mization of filter-banks (block processing) or Finite Impulse Response (FIR) filters (windowed
processing), with an optimization criteria such as least-squares or Minimum Mean Square Er-
ror (MMSE), and the latter leads to the optimal equalization performance, when combined
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Figure 3.2: Block equalization with filter-banks.

with a MAP symbol-wise demapper [Kal95; AC95b]. An interesting link with MAP detec-
tion and these techniques appears when transmitted symbols are assumed to be Gaussian-
distributed, for which case, the unbiased MMSE filtering corresponds to the MAP estimation
[Kay93], as also previously discussed in Section 2.3.5.

In this section, filter-based TD equalization is investigated by reviewing the classical
structures and their extension to turbo equalizers, in order to point out some singularities
between the behaviors of the SISO LE and DFEs receivers in the state of the art. This
motivates the forthcoming investigations that is carried out in the remainder of this chapter.

3.3.1 On Classical Equalization

In this subsection, classical filter-based equalization architectures are summarized, to out-
line the technical vocabulary adopted in this thesis, with a focus on block and FIR equalizers.

3.3.1.1 Block Equalization

Block equalization structures process the whole received block simultaneously in order to
mitigate the impact of ISI over each symbol [Kal95]. These structures apply filter-banks on
observations and on available prior data estimates in order to remove interference, and they
have the ability to follow the time-selectivity of the channel, by using the knowledge of H.
These structures are illustrated in Figure 3.2.

Block Linear Equalizer The block LE’s structure consists of a filter-bank F P C
N✂K

applied on y along with an additive bias vector g P C
K , with equalized estimates being

x̂ ✜ FHy� g. (3.17)
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The zero forcing block LE is given by the solution to the least-square criterion

rFzf,gzfs ✏ arg min
F,g

⑥y ✁ Hx̂⑥2 ✏ arg min
F,g

⑥♣I ✁ HFHqy � Hg⑥2, (3.18)

which is straightforwardly shown to be Fzf ✏ H♣HHHq✁1 and gzf ✏ 0 . Alternatively, the
zero forcing equalizer can also be derived with the peak distortion criterion which seeks F
such that FHH ✏ I, which yields the same pseudo-inverse solution for the tall channel matrix
[Kal95]. However, zero forcing approach completely neglects noise, and in channels with
spectral nulls the noise is amplified and performance is severely degraded.

In the remainder of this chapter, we will only investigate filters based on MMSE criterion.
However, as MMSE solutions are biased by nature, in order to simplify the use of soft demap-
ping, it is more attractive to use unbiaised-MMSE solutions. Following [Kay93; Kal95], the
unbiased MMSE block LE is given by

Fble ✏ Σble✁1HΞble✁1, (3.19)

gble ✏ ♣IK ✁ FbleHHqµx,

with Σble ✜ σ2
wIN �HΣxHH , Ξble ✏ Diag♣ξble

1 , . . . , ξble
K q and ξble

k ✜ rHHΣble✁1Hsk,k, where
µx ✏ Erxs, Σx ✏ Diag♣rσ2

x,1, . . . , σ
2
x,Ksq, with σ2

x,k ✏ Varrxks by assuming x is uncorrelated.

The amount residual interference at the equalizer output is given by

σ2
x̂k⑤xk

✜ Varrx̂k⑤xk ✏ xs ✏ eH
k FbleH♣σ2

wIN � HVarrx ✁ µx⑤xk ✏ xsHHqFbleek

✏ 1④ξble
k ✁ σ2

x,k, (3.20)

and we denote Σx̂⑤x ✏ Diag♣rσ2
x̂1⑤x1

; . . . ;σ2
x̂K ⑤xK

sq. This is the optimal solution for block linear
structures but the complexity of inverting a K ✂K matrix can be prohibitive for real-time
implementation, depending on the symbol rate and the block size K. In classical usage, the
symbol statistics are selected with IID assumption over the constellation, i.e. µx,k ✏ 0 and
σ2

x,k ✏ σ2
x ✏ 1, for k ✏ 1, . . . ,K [Kal95].

Block Decision Feedback Equalizer The use of a decision feedback4 from the output of
a detection device, in order to improve equalization, by removing the interference caused by
causal symbols, was initially proposed and thoroughly analysed on infinite impulse response
filters [Aus67; FF73; Bel+79]. It has been also used to reduce the complexity of the Maximum
Likelihood Sequence Estimation (MLSE) [WH77], and later extended to be applicable to
FIR receivers in [AC95b], where the feedforward filter minimizes the impact of ISI from the
pre-cursor symbols, and the feedback filter cancels the impact of remaining ISI from the
post-cursor symbols.

Block DFE structure is a block extension of the FIR DFE (see below), analogous to the
block LE, where in addition to the feedforward filterbank F P C

N✂K , a feedback filterbank
4Here the term “decision feedback” refers to a feedback provided by a demodulator, and not to the prior

feedback provided to the SISO detector.
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Figure 3.3: Sliding window equalization with Finite Impulse Response (FIR) filters.

Gd P C
K✂K is used, such that equalized estimates are [Kal95]

x̂ ✜ FHy ✁ GdHxd, (3.21)

with xd ✏ rxd
1, . . . x

d
Ks, and Gd is restricted to be a strictly upper triangular matrix. Without

the latter constraint, this approach would lead to a block IC structure (discussed below for
FIR) where the decision feedback would be needed over the whole block in parallel. How-
ever the one of the key reasons behind FIR DFE’s success is the successive cancellation of
interference, which enables the possibility of removing interference using the ongoing equaliza-
tion session’s (probably) higher quality estimates. Hence to enforce similar characteristics on
block structures, this structural constraint is needed, however this also makes the resolution
of MMSE criterion non-trivial. Nevertheless, by maintaining the classical perfect decision
feedback assumption (see the description of the FIR DFE), an unbiaised MMSE optimal
solution is given by a two-step optimization process [Ver98; Rou00],

Fbdfe ✏ ♣I ✁ D✁1
ǫ Σ✁1

x q✁1σ✁2
w HL✁H

ǫ D✁1
ǫ , (3.22)

Gd-bdfe ✏ ♣I ✁ D✁1
ǫ Σ✁1

x q✁1Lǫ ✁ IK , (3.23)

where LǫDǫLH
ǫ ✜ Σ✁1

x � HH♣σ✁2
w qH, is the LDL decomposition. The residual ISI variance

at the output of this equalizer is

σ2
x̂k⑤xk

✜ Varrx̂k⑤xk ✏ xs ✏ ♣1 ✁ rDǫs✁1
k,kσ

✁2
x,kq✁2rDǫs✁1

k,k. (3.24)

Remark 1
Block DFE structures can be implemented through a noise-predictive architecture, where the

feedback filterbank processes ♣xd ✁ FHyq instead of xd alone. In this case, the block MMSE

DFE feedfoward filter is given by Fbdfe ✏ ♣I ✁ D✁1
ǫ Σ✁1

x q✁1Σble✁1HΣx, which establishes a

direct link between block DFE and block LE, up to diagonal matrix product, which enables the

use of the same inverted matrix for both block LE and DFE, while the feedback filterbank does
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not change. This technique is also applicable to the FIR DFE [Cio08].

3.3.1.2 FIR Equalization

Finite Impulse Response (FIR) equalizers reduce the complexity of block filter-bank tech-
niques by constraining observations to belong to a limited window around the desired symbol
to be detected. In order to be able to formalize this approach, the TD ISI channel model in
Equation (3.3) is rewritten as a linear model with a fat Toeplitz-like channel matrix

y ✏ H̃x̃ � w, (3.25)

where w ✒ C♣0N✂1, σ
2
wIN q, x̃ ✏ r0♣L✁1q✂1; x; 0♣L✁1q✂1s and H̃ is a sparse ♣K �L✁ 1q✂ ♣K �

2L✁ 2q matrix given by

H̃ ✏

✔
✖✖✖✖✖✖✖✖✕

h1,L h1,L✁1 . . . h1,1

h2,L . . . h2,2 h2,1

. . . . . . . . . . . .
hN,L . . . hN,2 hN,1

. . . . . . . . .
hN�L✁1,L . . . hN�L✁1,1

✜
✣✣✣✣✣✣✣✣✢
. (3.26)

This model exploits SC ZP transmissions by also accounting for the trailing time instants
in order to complete the channel impulse response. Then FIR structures can be modelled
by windowed processes; applying a sliding window r✁Np, Nds on the observation vector y,
we define yk ✏ ryk✁Np

, . . . , yk�Nd
sT . Np and Nd are respectively the number of pre-cursor

and post-cursor observed samples, and we denote Nw ✜ Np �Nd � 1 to refer to the window
length. By using the same window on w, and by applying the window r✁N ✶

p, Nds on x, with
N ✶

p ✜ Np � L✁ 1, the channel model, for k ✏ 1, . . . ,K, becomes

yk ✏ Hkxk � wk, (3.27)

with Hk ✜ rH̃sk✁Np : k�Nd, k✁N ✶
p : k�Nd

. These structures are shown in Figure 3.3.

FIR Linear Equalizer The FIR LE’s structure consists of a filter fk P C
Nw✂1, such that

fk ✏ rfk,Np
, . . . , fk,✁Nd

s, applied on yk along with an additive bias gk P C, with equalized
estimates being [Hay14; Cio08]

x̂k ✜ fH
k yk � gk. (3.28)

Then similarly to the block case, the unbiased optimal FIR LE is given by

f le
k ✏ Σle

k
✁1hkξ

le
k
✁1, (3.29)

gle
k ✏ µx,k ✁ f le

k
HHkµx,k, (3.30)
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where Σle
k ✜ σ2

wINw � HkΣx,kHH
k , hk ✏ rHks:,k, µx,k ✏ Erxks and Σx,k ✏ Covrxks, ξle

k ✜

hH
k Σle

k
✁1hk and, also similarly to the block LE, the variance of residual ISI and noise on the

equalized estimates are

σ2
x̂k⑤xk

✜ Varrx̂k⑤xk ✏ xs ✏ 1④ξle
k ✁ σ2

x,k. (3.31)

This FIR structure replaces the inversion of a N ✂ N matrix, by K inversions of Nw ✂ Nw

matrices, which might be less or more advantageous, depending on the time-selectivity of the
channel and the uniformity of statistics of x. In the traditional usage, where µx,k ✏ 0 and
σ2

x,k ✏ σ2
x ✏ 1, for k ✏ 1, . . . ,K, FIR equalizer is clearly much more computationally efficient,

and the complexity of FIR receivers in more general situation will be discussed in more detail,
in paragraphs below related to turbo equalization.

Note that, the number of post-cursor samples Nd causes a delay for this equalizer, and
its value could be optimized by evaluating the amount of residual ISI and noise for Nd ✏
0, . . . , Nw, for a fixed value of Nw. A typical rule of thumb is to use the Nd ✏ Np � L ✁ 1
constraint, along with a window size Nw ✏ ♣2m✁1q♣L✁1q�1, where m is a positive integer.
This ensures that the window on x has a size of 2m♣L ✁ 1q � 1, such that an equal amount
of post-cursor and pre-cursor data symbols are processed. Unless specified otherwise, this is
how these equalizers are configured in this thesis.

FIR Decision Feedback Equalizer The FIR DFE architecture incorporates a feedforward
filter fk P C

Nw✂1 and a feedback filter gd
k P C

Nb✂1, with gd
k ✏ rgd

k,Nb
, . . . , gd

k,1s, such that
equalized estimates are

x̂k ✏ fH
k yk ✁ gd

k
Hxd

k � gk, (3.32)

where xd
k ✏ rxd

k✁Nb
, . . . , xd

k✁1s is the decision vector. For resolving the MMSE criterion, some
assumptions are needed on feedback symbols. Traditionally the feedback consists of hard
decisions, i.e. xd

k ✏ µ̂x,k ✜ arg minx ⑥x̂k✁x⑥. Moreover, perfect decision assumption simplifies
these equations, by taking xd

k ✏ xk during the resolution of the criterion, which also gives
Erxd

ks ✏ Erxks ✏ µx,k and Varrxd
ks ✏ Varrxks ✏ σ2

x,k. Then the unbiased FIR MMSE DFE is

fdfe
k ✏ Σdfe

k
✁1hkξ

dfe
k

✁1, (3.33)

gd-dfe
k ✏ Hd

k
Hfdfe

k , (3.34)

gdfe
k ✏ µx,k ✁ fdfe

k
H♣Hkµx,k ✁ Hd

k µxd,kq. (3.35)

where ξdfe
k ✜ hH

k Σdfe
k

✁1hk, with

Σdfe
k ✜ σ2

wINw � HkDiag♣rσ2
x,k✁N ✶

p
; . . . ;σ2

x,k✁min♣N ✶
p;Nbq

; 0Nb✂1;σ2
x,k; . . . ;σ2

x,k�Nd
sqHH

k ,

Hd
k ✏ HkEdT , and Ed ✏ rINb

, 0Nb,Nw s. For DFE with the traditional assumptions (µx,k ✏ 0
and σ2

x,k ✏ σ2
x ✏ 1), for k ✏ 1, . . . ,K, the covariance matrix Σdfe

k is non trivial to invert, due
to the non-uniform diagonal caused by the decisions. However, efficient inversion algorithms
exist by exploiting Cholesky decomposition of these matrices with Shur’s algorithm [AC95a].
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Under these assumptions, the variance of post-equalization residual ISI is

σ2
x̂k⑤xk

✜ Varrx̂k⑤xk ✏ xs ✏ 1④ξdfe
k ✁ σ2

x,k. (3.36)

In addition to the delay parameter Nd, DFE has another degree of freedom on the length
Nb of the feedback filter. An analysis on the optimal selection of these values [VLC96] shows
that when Nb is large enough to cover the delay spread of the channel, the optimal delay
value is Nd ✏ N ✁ 1. Hence, for channels with moderate L, Nb ✏ L✁ 1 is a practical choice.

Interference Cancellers Interference Cancellation (IC) structures are a different category
of data-aided equalizer, which unlike DFE, does not use a feedback that is computed serially,
as equalization goes on, but in a parallelized approach, where estimates of the whole data block
or the window (for FIR receivers) are available beforehand. It has been originally proposed
in [GL81; MS81], as a technique which regenerates interference from data estimates, and
completely cancels it. Unlike DFE, which is unable, in general, to reach the MFB with perfect
decision feedback [LB03], equalizers with IC are able to completely remove the interference
when given perfect data estimates.

In its FIR instantiation, equalized estimates are given by

x̂k ✏ fH
k yk ✁ gd

k
Hxd

k , (3.37)

where xd
k ✏ rxd

k✁N ✶
p
, . . . , xd

k�Nd
s and gd

k ✏ rgd
k,N ✶

p
, . . . , gd

k,Nd
s is a filter of size N ✶

p � Nd � 1,

with constraint gd
k,0 ✏ 0, in order to avoid the trivial solution where the desired data xk is

cancelled. Hence FIR IC can be rewritten to outline mitigation of ISI from anti-causal and
causal symbols with

x̂k ✏ xd
k � fH

k yk ✁ gc
k

Hxc
k ✁ ga

k
Hxa

k , (3.38)

such that gd
k ✏ rgc

k; 0; ga
ks and xd

k ✏ rxc
k, x

d
k,x

a
ks. In practice, the prior estimates xd

k for IC can
be provided by the output of the demapper of a previous LE stage, and thus it also denoted
as LE-IC. However, to simplify the resolution of this system, the classical approach is to
assume prior estimates to be perfect [GL81], as in the DFE case, hence xa

k ✏ xc
k ✏ xk, and

the unbiased MMSE IC equalizer is given by

f ic
k ✏ ♣σ2

w � hH
k Σx,khkq✁1hkξ

ic
k
✁1,

gc-ic
k ✏ Hc

k
Hf ic

k , ga-ic
k ✏ Ha

k
Hf ic

k , (3.39)

where ξic
k ✜ ♣σ2

w � hH
k Σx,khkq✁1⑥hk⑥2 and Hc

k ✜ HkEcT and Ha
k ✜ HkEaT , with

Ec ✜ rIN ✶
p
, 0N ✶

p,Nd�1s, Ea ✜ r0Nd�1,N ✶
p
, INd�1s. (3.40)

The variance of the residual ISI at the output of this equalizer is

σ2
x̂k⑤xk

✜ Varrx̂k⑤xk ✏ xs ✏ 1④ξic
k ✁ σ2

x,k ✏ σ2
w④⑥hk⑥2. (3.41)
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Figure 3.4: Behaviour of FIR equalizers in Proakis C with respect to MLSE and MFB.

This corresponds to the MFB of the ISI channel, but this is only true under the assumption of
perfect data estimates at the receiver, which is rarely the case for real-world communications
systems. However IC structure plays an important role in the development of turbo equalizers,
and it can be used for analysing turbo equalizer performance, as it will be shown below.

Figures 3.3 and 3.2 illustrate the architectures of filter-based equalization techniques de-
scribed in this section. Separate detection and decoding (see Section 2.2.2) with these filter-
based structures have been used as the default approach for communications in ISI channels
with affordable receiver costs. However, while the theoretical bounds on the post-equalization
SNR of non-linear structures such as the DFE and IC are very attractive, the perfect decisions
assumption is only met at high SNR i.e. asymptotically, and the true detection thresholds
can be severely degraded in highly selective channels. These aspects have been discussed with
more detail in [LB03], and an illustration is reproduced in Figure 3.4 where FIR LE, IC and
DFE receivers are used in uncoded system, over the the infamous Proakis C channel [Pro+94]
with BPSK, and compared to the MFB and the MLSE, with parameters being taken from
[LB03].

To improve upon these performance, the idea of using low complexity joint detection
and decoding architectures goes back to the early years of DFE. Indeed, to minimize the
issue of error propagation in DFE, while the possibility of including the channel code within
the feedback loop is an attractive idea, it is unrealistic, due to the excessive decoding delay
needed for each feedback symbol. A solution to this problem is provided in [Eyu88], where
the noise-predictive structure of a zero-forcing DFE is exploited, by separating the linear
equalization component and the noise-predictive feedback component with an interleaver,
and by incorporating the channel decoder in this loop. This is later extended to MMSE
DFE [ZPL90], and these techniques were iteratively able to reach the lower bound of DFE
performance (i.e. perfect decision feedback). However, DFE with perfect feedback does not
reach the MFB, unlike an IC detector, as shown in Figure 3.4.
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Table 3.1: Classification of FIR Turbo LE-IC vs. the Usage of Prior Information.

Linear Structures

Update Type TI IV TV

References [GLL97; TK+02]
[Fij+00; Rou00; BC02; TSK02;

TH01; Vis+05; LB03]
[TSK02; TK+02; BC02;

WP99; DV02; OT04]

Considering the observations above, in the following, we will only consider iterative filter-
based receivers based on an Interference Cancellation (IC) structure.

3.3.2 Overview on Turbo Equalization: Linear Structures

Turbo equalization structures have emerged thanks to the concept of probabilistic iterative
processing with Soft Input Soft Output (SISO) modules, that was originally used for turbo
codes [BGT93], and, in particular, Finite Impulse Response (FIR) filter-based turbo Linear
Equalizers (LEs), which have attractive computational complexity trade-off, have been widely
investigated from mid-90s up to 2010s [TS11]. There also block turbo equalizers and more
general turbo detectors, which will be mentioned briefly in the following, but the focus of this
chapter will be on FIR receivers, due to their extensive use in the literature, which makes
comparisons easier, and due to their generally lower complexity.

There are numerous variants to the FIR turbo equalizer, and they could be categorized
in multiple ways, however, in this thesis, we adopt a categorization based on the nature of
the filter updates with prior information, proposed in [Jeo11; LB03]. This nomenclature is
attractive as it directly relates to the assumptions involved in the derivation of the equal-
izer, and it also gives an indication on its computational complexity. Time Invariant (TI)
structures update their filters only once at each block reception, using the available channel
state information. Iteration Variant (IV) equalizers are updated at each turbo iteration, by
additionally using an overall estimate of the prior information on the processed block and its
filters remain static for a given iteration. Time Varying (TV) structures update their filters
at each symbol within a block, using both symbol-wise prior information and CSI, making
them particularly suitable for doubly selective channels, where the impulse response varies
over time. The latter approach is also referred to as the exact FIR turbo equalizer [TSK02].

FIR Turbo MMSE LE-IC The first filter-based turbo equalizer is derived in [GLL97],
through the use of Finite Impulse Response (FIR) filters that use matched-filter based IC
[GL81], where soft-symbol estimates, computed by the decoder, are used for regenerating
and then removing the ISI. In [LGL01] this TI structure is studied from a frequency-domain
infinite-impulse response filter point of view, and in [Fij+00], it is extended to an IV structure,
where the filters are optimized with an MMSE criterion through online-estimation of prior
soft symbols’ statistics. Finally an extension to TV MMSE IC is carried out in [LB03].

An alternative approach to turbo detection is the Wang-Poor’s work where a MMSE linear
estimator is used with signal statistics computed from the decoder’s feedback, and the residual
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Figure 3.5: Stucture of FIR turbo TV MMSE LE-IC.

estimation error is assumed to be Gaussian distributed [WP99]. This consists in resolving the
MMSE criterion with expectations conditioned on the a priori information provided by the
decoder, and it has been applied for equalization with FIR filters in [RW01; TSK02] and the
resulting TV MMSE LE is further investigated in [TK+02; TS11], which has led to formal
derivation of optimal IV and TI LE structures. The equivalence between these approaches
and the MMSE IC-based techniques were shown in [LB03], which has led to the denomination
“MMSE LE-IC” for these techniques. This FIR structure has been extended to high-order
modulations, time-varying channels and to frequency domain structures, and also to MUD
for MIMO systems [DV02; TH01; OT04; Vis+05]. The SISO equalizer in the Wang-Poor
approach is also known as an “Elementary Symbol Estimator” (ESE), which comes from its
equivalence to the jointly Gaussian turbo detection technique in [LLL03]. The classification
of the bibliography above, with regards to the filter update schedule is given in Table 3.1.

Following the approach in [WP99; TSK02], the FIR MMSE LE-IC can be obtained from
the equations of the classical FIR LE in the previous section, by removing the simplifying
assumptions on the signal statistics, and replacing the signal statistics by those indicated by
the decoder’s extrinsic message, i.e.

µx,k ✏ x
p
k, σ2

x,k ✏ v
p
x,k, (3.42)

where xp
k and vp

x,k are the mean and the variance of the SISO decoder’s extrinsic PMF, defined
in Equations (2.39)-(2.40). Then by assuming the output of the equalizer to be Gaussian-
distributed, and denoting xe

k ✏ x̂k and ve
x,k ✏ Varrx̂k⑤xk ✏ xs, the MAP symbol demapping

can be used with Equations (2.53)-(2.54). The resulting turbo equalization algorithm is given
in Algorithm 7, for turbo iterations τ ✏ 0, . . . , T , and illustrated in Figure 3.5.

This algorithm is the Time Varying (TV) version, and it needs inverting the matrix
Σle-ic♣τq

k , for each k ✏ 1, . . . ,K, and τ ✏ 0, . . . , T . Following [TSK02], an Iteration Variant
(IV) structure can be obtained, by using the assumption

v
p♣τq
x,1 ✓ ☎ ☎ ☎ ✓ v

p♣τq
x,K ✓ 1

K

K➳
k✏1

v
p♣τq
x,k ✜ vp♣τq

x , (3.43)

which reduces equalization complexity significantly, as filters becomes static per iteration (IV),
f le-ic♣τq
k ✏ f le-ic♣τq,❅k, if the channel is static. Furthermore, if one uses the Time Invariant (TI)
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Algorithm 7 FIR Turbo TV MMSE LE-IC

Input y, H
Output b̂

1: L
♣0q
p ♣dq ✏ 0Kc

2: for τ ✏ 0 . . . T do
3: Compute prior PMFs P

♣τq
k ♣αq with Eq. (2.39) and L

♣τq
p ♣dq, for α P X , k ✏ 1, . . . ,K.

4: Compute xp♣τq and vp♣τq
x with Eq. (2.40).

5: for k ✏ 1 . . .K do
6: Σle-ic♣τq

k Ð σ2
wINw � HkDiag♣rvp♣τq

x,k✁N ✶
p
; . . . ; vp♣τq

x,k�Nd
sqHH

k

7: ξ
le-ic♣τq
k Ð hH

k Σle-ic♣τq
k

✁1hk

8: f le-ic♣τq
k Ð Σle-ic♣τq

k
✁1hkξ

le-ic♣τq
k

✁1

9: g
le-ic♣τq
k Ð x

p
k ✁ f le-ic♣τq

k
HHkxp

k

10: xe
k Ð f le-ic♣τq

k
Hyk � g

le-ic♣τq
k

11: ve
x,k Ð 1④ξle-ic♣τq

k ✁ v
p♣τq
x,k

12: end for
13: Compute the posterior PMF D

♣τq
k ♣αq with Eq. (2.53), for α P X , k ✏ 1, . . . ,K

14: Compute extrinsic LLRs L♣τqe ♣dq with Eq. (2.54)
15: Execute de-interleaving, SISO decoding and interleaving to get L♣τ�1q

p ♣dq
16: end for

approach [TK+02], and needs to keep static filters for all τ , then v
p♣τq
x,1 ✓ ☎ ☎ ☎ ✓ v

p♣τq
x,K ✓ σ2

x,

and f le-ic♣τq
k ✏ f le,❅k, τ .

Block Turbo MMSE LE-IC In [LL04], an extending-window LE-IC structure is pro-
posed, which is shown to converge faster than the FIR approach (i.e. fixed window) and
it asymptotically reaches lower detection error rates, at the cost of increased memory and
computational complexity. An alternative formalization of LE-IC is provided in [BC02], in
the context of an iterative MUD design, where this method is linked with the use of a MAP
criterion on Gaussian-approximated data symbols. This connection is also independently
pointed out in [GP08], for BPSK, by establishing links with the GaBP formalism [Loe+07]
by deriving a block-structured turbo LE-IC.

This framework is later generalized to any constellation for BICM in [GH11], which in-
volves the likelihood over the whole observed block, and thus naturally outperforms both
FIR, and extending-window LE-IC, at the cost of increased computational complexity due
the observation covariance matrix inversion. Block LE-IC is also provided in [TS11], as an
intermediary step for deriving frequency-domain structures (which will be the subject of the
next chapter). This turbo receiver can be obtained by the direct application of the generic
MMSE-like turbo detector, obtained through GaBP in Section 2.3.5 to the ISI channel model.

Note that block LE-IC can also be implemented in the time-domain as a Kalman smoother
[Kay93], which minimizes the computational complexity [QPL05], if a state-space model-based
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Figure 3.6: Finite-length and asymptotic behaviour mismatch with the DFE-IC [TK+02].

factorization is used (similar to a Wiberg graph) along with the use of GaBP. This is an exact
implementation of the block receiver, when used with a forward-backward serial schedule,
but with significantly reduced complexity thanks to the sparsity of the channel. It is shown
to outperform the sub-optimal BP receiver of [CG05], which underlines the importance of
selecting a well-suited factorization for applying message passing algorithms, but at the cost
of complexity [CFP11]. Note that alternative parallel, or hybrid schedules can be considered
for this Kalman smoother structure, without loss on asymptotically reachable performance,
but with slower convergence speed [GP08].

We will not discuss further discuss these structures in this chapter, but they are par-
tially addressed in the next chapter, when discussing Frequency Domain (FD) solutions, and
Kalman smoothers are not investigated in detail, in this thesis, due to lack of time.

3.3.3 Limits of Conditional MMSE for Turbo DFE

As DFE is traditionally known as a remarkable improvement over LE , seeking its turbo
extensions is hence a topic of interest. However, to point out the difficulty and the complexity
of this design problem, the earliest turbo DFE structure of the literature is presented here,
with regards to its behaviour versus the turbo LE. Indeed, this FIR DFE-IC is obtained
through direct application of the Wang-Poor approach, and other techniques will be discussed
afterwards, separately, in Section 3.4.

FIR Turbo MMSE DFE-IC The derivation of a SISO equalizer based on the FIR DFE
structure is a complex problem due to the assumptions used in its derivation. Following, the
conditional MMSE approach, [TK+02] extended the FIR MMSE DFE to use prior information
from the decoder. This results in a DFE-IC structure that uses hard decisions µ̂x,k, as a
classical DFE, for mitigating interference caused by causal symbols, and it uses IC with prior
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Figure 3.7: Achievable rates of LE-IC and classical LE and DFE in Proakis C with BPSK.
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Figure 3.8: Bit error rate performance of LE-IC and DFE in Proakis C with 8-PSK.

information for handling the ISI from anti-causal symbols. In order to derive this structure,
Wang-Poor approach is used with perfect decision assumption, by taking Erxks ✏ Erxd

ks ✏ x
p
k

and Varrxks ✏ Varrxd
ks ✏ v

p
x,k, but while xd

k ✏ µ̂x,k being the output of a hard demapper.

Turbo DFE-IC structure is known for its error propagation issues which makes its exact
TV implementation even less efficient than TI LE, and its EXIT analysis yields contradictory
results [TK+02, Fig. 14]. Indeed, finite-length analysis shows that the MI transfer function
predicted obtained with EXIT methodology and the actual MI trajectories do not match. This
is reproduced here in Figure 3.6, in the Proakis C channel, with the Recursive Systematic
Convolutional (RSC) code of polynomial r1, 5④7s8 with BPSK, and this illustrates that turbo
DFE-IC cannot be predicted with EXIT analysis asymptotically.

Another interesting fact appears when one compares the achievable rates of the classical
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DFE to the turbo LE-IC, as shown in Figure 3.7. Although LE-IC brings significant im-
provements over classical filtering and it appears to be capacity achieving at low spectral
efficiency operating points (i.e. with strong channel codes, Rc ✦ 1④2), it falls far behind
classical DFE with channel coding, at high spectral efficiency operating points ( Rc ✧ 1④2
). Moreover classical DFE falls significantly behind classical LE at low spectral efficiency
operating points. These observations can be verified at finite-length simulations, as shown
with BER simulations for K ✏ 256 symbols, in Figure 3.8, in Proakis C with 8-Phase Shift
Keying (PSK), and RSC r1, 5④7s8 punctured optimally up to rates 2④3 and 5④6 [Fre+98].

From these observations, there are various important questions that can arise:

• For non-iterative classical receivers, DFE falls behind LE at low rates. Perfect-decision
assumption and/or hard decisions must be behind this drawback, as they incur a loss
of information.

• At high spectral efficiency LE-IC falls considerable behind the SIR bound, and even
classical DFE outperform it above a certain point. There should be room here for
improving achievable rates with filter-based turbo detector, that involves feedback from
a demodulation.

To improve the behaviour of DFE-IC, various soft decision feedback techniques were proposed,
but their advantages and shortcomings has not been exhaustively investigated in the literature
[Jeo11; LB06; Tao16]. In particular, it is unknown if the EXIT functions of these receivers
are accurate or not, and their achievable rates are not available. These design issues on FIR
DFE-IC will be mainly investigated in the remainder of this chapter.

Block Turbo MMSE DFE-IC The extension of block DFE structure has received very
little attention in the literature. Not only the Wang-Poor approach faces the same issues
as the FIR DFE-IC, due to perfect decision assumption and hard decisions, but also the
structural constraint required by the feedback filterbank is non-trivial to model.

Note however that a block turbo DFE has been proposed in [WZ07; WZ08] where prior
information is used, similarly to the Wang-Poor approach, to characterize the statistics of
both transmitted symbols and decisions (i.e. perfect decision assumption). This results in
a detector with TV filterbanks and a sequence-based symbol detector, which computes soft
APP feedback. This receiver has a computational complexity order of O♣K4q, and a reduced
complexity IV version, with an order of O♣K3q, is also proposed. Hence, its derivation is
similar to that of the FIR DFE-IC of [TK+02], except for the type of decision device (soft
APP vs. hard), which is similar to a shortened BCJR. Due to the complexity of this structure
remaining too high, it will not be investigated in this thesis, and left for future work.
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3.3.4 Discussion and Conclusions

There is a great number of filter-based equalization structures in the literature. These
can be classified with respect to their architectures ( block filter-banks vs. FIR filters vs.
Kalman smoothers), their design criterion (MMSE or least-squares/zero-forcing) and based
on whether a serial feedback from the demodulator is used or not (LE vs. DFE).

FIR structures have received particular attention, with regards to their usage as a SISO
detector for turbo equalization, and in this chapter we focus on this case of MMSE FIR
turbo structures, for easier comparison to the literature. Moreover, with regards to perfor-
mance issues between the behavior of LE-IC and DFE-IC underlined above, we propose to
focus on what has been previously done for DFE-IC with soft feedback, investigate possible
improvements, and perform a numerical and analytical analysis on their behavior.

3.4 FIR Turbo MMSE DFE with Soft Feedback

This section focuses on the developments on turbo DFE-IC equalizer, and more specifically
those which try to address the aforementioned issues on excessive error propagation and
unpredictability. More specifically, we are foremost interested in TV FIR structures, which
constitutes the most refined implementation of turbo FIR equalizers, in order to evaluate the
performance of turbo DFE with respect to the optimal detector. Such receivers are of interest
when doubly-selective channels are involved, such as high frequency (HF) channel [ESN13].

Following a short review of previously existing DFE with soft feedback, this section pro-
vides a generic derivation for turbo MMSE FIR DFE and LE structures, with a generalized
conditional MSE minimization approach, using the conjugate prior property of Gaussian dis-
tributions in Bayesian inference. This enables extending various suboptimal DFE-IC with
soft APP feedback into TV structures that operate on any constellation X . Next, consider-
ing the flexibility of this approach, and the links between block turbo LE-IC and the GaBP
message-passing, an alternative factor graph for the BICM model of Equation (2.27) in Sec-
tion 2.3.3 is proposed, which enables deriving FIR LE-IC through GaBP message passing.
In particular, this connection is exploited by extending the message passing algorithm to use
Expectation Propagation (EP), which leads to novel a FIR DFE-IC structure with an origi-
nal soft feedback. Furthermore, a low-complexity filter-computation approach for TV FIR is
provided, which significantly reduces these receivers’ computational complexity, by exploiting
the Cholesky decomposition of the observation covariance matrix. Finally, the performance
of these receivers is analysed theoretically with analytical and numerical methods.

3.4.1 Previous Works on Turbo DFE Structures

DFE proposals mainly differ with the nature of decision feedback, and with the filter up-
dating method. Hence, for clarity, we propose to classify related works in two sub-categories.
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Table 3.2: Classification of FIR Turbo DFE-IC vs. the Usage of Prior Information.

Decision Feedback Structures

Update Type Dec. Type TI IV TV

References
Hard [JM11; JM10] [JM11; JM10] [TK+02; JM11; JM10]

Soft APP [Bal99]
[Tao16; LB06; LX11;

TW+11], Section 3.6
Section 3.4.3

Soft EP Section 3.6 Section 3.4.4

Iterative Hard DFE-IC In [JM11], the previously discussed DFE-IC structure of [TK+02]
is enhanced with a powerful soft demapper that uses the distribution of residual ISI sequences
for symbol detection. This modified structure outperforms turbo LE-IC, but the residual ISI
distribution is very difficult to derive even in the simple BPSK case. A more practical solution,
proposed in [JM10], consists in approximating the residual ISI, at the output of DFE-IC, as
an AWG noise, which simplifies the symbol-wise demapper. While this solution challenges
TV LE-IC on BPSK, its extension to multilevel modulations has not been explored so far. To
the authors’ knowledge, until our contributions, this is the only DFE-IC outperforming exact,
TV LE-IC in the reference scenario of Proakis-C channel with BPSK symbols. DFE-ICs in
[JM10; JM11] were later used as constituent elements for more advanced receivers such as
bi-directional DFE, or structures obtained by parallel concatenation of FIRs [JM13].

Iterative Soft DFE-IC Literature on turbo soft DFE-IC is more diverse; although feed-
back is mostly based on the use of the posterior symbol distribution at the demapper (see
Equation (2.53)), there is no common strategy for evaluating its variance [LB06; Tao16;
TRK05]. Such an iterative structure is first presented in [Bal99], where various TI DFE with
soft feedbacks are evaluated with a perfect decision hypothesis, within a sub-optimal iterative
receiver that uses hard decoder feedback. In particular, it is seen that soft demapper feedback
mitigates to some extent the error propagation in DFE, despite ignoring decision errors in
filter computation. Another notable structure is the IV soft Interference Cancellation (IC)
in [LB06]; using both prior and posterior LLRs for filtering, and for IC with BPSK, this
scheme significantly outperforms IV LE-IC, but it requires stochastic methods for estimating
the correlation properties of posterior LLRs. Several other IV soft feedback structures exist
[TRK05; LX11], with alternative heuristics for feedback quality assessment. Structural com-
parison of IV DFE with posterior feedback is given in [Tao16], extending [LB06] and [LX11]
to higher order modulations, but requiring a new heuristic based on a LE-IC pre-equalization
step for filter computation. The drawbacks of these approaches are their limitations in usable
constellations [LB06; TRK05; LX11], or the sub-optimal heuristics used in filter computation
[LB06; LX11; Tao16]. Indeed, IV structures need static statistics of its soft feedback for
computing its filters, which naturally requires approximations, as the feedback itself depends
on filter coefficients, this issue is addressed in Section 3.6.

Time Varying (TV) soft posterior feedback structures do not have such issues; they can
update their filters after each symbol is detected, as it had been done for MIMO receivers
in [Cho+08]. For equalization of ISI channels, the structure closest to [Cho+08] is a block-
feedback turbo DFE in [TW+11], which updates its filters every Ps symbols. A classification
of the references above, and where our contributions will stand, is given in Tables 3.2.
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3.4.2 Derivation of FIR MMSE LE and DFE with Conjugate Priors

Below, a generic structure of an unbiased MMSE FIR receiver is given for comparing
different structures and their dynamics in the remainder of this chapter. The availability of
prior data estimates on x is assumed, with estimates’ values being x̄fir

k ✜ rx̄fir
k✁N ✶

p
, . . . , x̄fir

k�Nd
s,

and variance of estimation noise (uncertainty) being v̄fir
x,k ✜ rv̄fir

x,k✁N ✶
p
, . . . , v̄fir

x,k�Nd
s. Then

MMSE FIR receivers which use these prior estimates for IC, provide an output estimate on
xk as xe

k, with the variance of the residual interference and noise being ve
k, such that

xe
k ✏ ffir

k
Hyk � gfir

k

ve
x,k ✏ 1④ξfir

k ✁ v̄fir
x,k

,

✩✬✬✫
✬✬✪

ffir
k ✜ Σfir

k
✁1hk④ξfir

k ,

gfir
k ✜ x̄fir

k ✁ ffir
k

HHkx̄fir
k ,

ξfir
k ✜ hH

k Σfir
k

✁1hk,

(3.44)

where Σfir
k ✜ kwσ

2
wIN � HkV̄fir

x,kHH
k , V̄fir

x,k ✜ diag♣v̄fir
x,kq, hk ✜ Hkek, ek ✏ r0N ✶

p,1; 1; 0Nd,1s,
and kw ✏ 1④2 when signals with one real degree of freedom are used (e.g. X is BPSK), and
otherwise kw ✏ 1 [Cio08]. Note that x̄fir

k and v̄fir
x,k completely characterize such receivers.

When x̄fir
k✶ and v̄fir

x,k✶ are independent of xe
k, v

e
x,k,❅k✶, k (within the current turbo iteration), we

call this receiver a LE-IC, and when x̄fir
k✶ and v̄fir

x,k✶ are dependent on xe
k, v

e
x,k, ❅k✶ → k, we refer

to it as a DFE-IC.

The proof of this general form resembles to the Wang-Poor approach [WP99], but we
make no assumption on the nature, or origin of prior estimates, and show that this approach
can be used to model either DFE or LE structures. FIR equalization with IC is derived by
minimizing the Bayesian conditional MMSE criterion

J ✏ E⑤p0
k
♣xkq

r⑤xk ✁ xe
k
✶⑤2s, (3.45)

where, xe
k
✶ ✏ f ✶k

Hyk � g✶k is the equalized linear estimate, and the expectation is taken over
the observation noise and on non-uniform prior p0

k♣xkq, a joint multivariate Gaussian prior
distribution on xk defined with means x̄fir

k and variances v̄fir
x,k. The Gaussian assumption

on this distribution is needed to exploit the conjugate prior rules on the Gaussian likelihood
of observations [Kay93], which is the reason why this criteria is denominated as “Bayesian”.
Solution to this criterion, is given through inference on Gaussian distributions, by xe

k
✶ ✏

Ep0
k
♣xkq

rxk⑤yk,Hks, i.e. the expectation over the distribution p♣xk⑤yk,Hkq, the marginal of
the joint conjugate Gaussian posterior p♣xk⑤yk,Hkq, for likelihood p♣yk⑤xk,Hkq and prior
p0

k♣xkq, where

p♣xk⑤yk,Hkq✾ p♣yk⑤xk,Hkqp0
k♣xkq

✾ CN ♣yk; Hkxk, σ
2
wIN qCN ♣xk; x̄fir

k , V̄fir
x,kq
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k Hkq✁1HH

k yk, σ
2
w♣HH

k Hkq✁1qCN ♣xk; x̄fir
k , V̄fir

x,kq
✾ CN ♣xk; Γfir

x,k♣σ✁2
w HH

k yk � V̄fir
x,k

✁1x̄fir
k q,Γfir

x,kq, (3.46)
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where V̄fir
x,k ✏ Diag♣v̄fir

x,kq and with the use of Gaussian distributions’ conjugacy

Γfir
x,k ✏ ♣σ✁2
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where Σfir
k ✏ σ2

wINw �HkV̄fir
x,kHH

k . As p♣xk⑤yk,Hkq is a Gaussian PDF, Ep0
k
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w HH

k yk � V̄fir
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✁1x̄fir
k q is the MAP estimate of xk, and xe

k
✶ is then deduced by multi-

plying the MMSE estimator of xk [Kay93], by ek:
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k
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k ♣yk ✁ Hkx̄fir

k q
✏ f ✶Hk yk � g✶k (3.48)

where the filter coefficients are identified as

f ✶k ✏ v̄fir
x,khH

k ♣Σfir
k q✁1, (3.49)

g✶k ✏ x̄fir
k ✁ f ✶k

HHkx̄fir
k , (3.50)

with Σfir
k ✏ kwσ

2
wINw � HkV̄fir

x,kHH
k and V̄fir

x,k ✏ Diag♣v̄fir
x,kq. This receiver is biased, as its

MMSE estimators’ nature, and the bias terms are given by

E⑤p0
k
♣xkq

rxe
k
✶⑤xk ✏ xs ✏ ♣1 ✁ v̄fir

x,kξ
fir
k qx̄fir

k � v̄fir
x,kξ

fir
k x,

with ξfir
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k Σfir
k
✁1hk. Removing additive and multiplicative biases with xe
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k
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x,kξ

fir
k qx̄fir

k q④♣v̄fir
x,kξ

fir
k q yields the estimator given in Equation (3.44), which completes the proof.

Let us show how this generalized FIR model can be used to address both LE and DFE
structures. Recalling p0

k♣xkq ✏ CN ♣x̄fir
k , v̄

fir
x,kq, if

• x̄fir
k ✏ x̄le

k ✜ 0♣Nw�L✁1q✂1 and v̄fir
x,k ✏ v̄le

x,k ✜ σ2
x1♣Nw�L✁1q✂1, then the resulting structure

is the classical MMSE Linear Equalizer (LE),

• x̄fir
k ✏ x̄dfe
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x,k✁1; 0Nw✂1s and v̄fir
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µ̂d
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Feedback Equalizer (DFE) with perfect feedback assumption,
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x,k being some prior estimates (e.g. decoder feedback), then this structure
is the MMSE Interference Cancellation (IC) with perfect feedback assumption. When
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p
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p
x,k ✏ VarPk

rxks, this is the low-complexity turbo
matched-filter TI LE-IC structure in [TK+02],
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p
k ✏

EPk
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rxks, then this is the turbo TV MMSE LE-IC [TSK02],
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(called LC - low complexity, therein),
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rxks, vp
x,k ✏ VarPk

rxks and µ̂d
x,k being hard demapper decision, then this is the

turbo TV MMSE DFE-IC with perfect feedback assumption in [TK+02],

• x̄fir
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k�Nd
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rxks, vp
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k✏1 VarPk
rxks, µd
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rxks, with Dk being the posterior PMF

in Equation (2.97), and γd
x is an pre-estimation of K✁1

➦K
k✏1 VarDk

rxks, making this
structure a turbo IV MMSE DFE-IC. Indeed, this value γd

x cannot be exactly computed,
without already having carried out the detection over the data block, hence [LB06;
LX11; Tao16] use different heuristics to estimate it.

The generality of this model remains limited, for instance the TV DFE-IC structures of
[JM10; JM11] cannot be directly compared with the one proposed by [TK+02], as it uses
an alternate approach for computing the variance of the post-equalization residual ISI ve

x,k.
However, it still remains a powerful way of addressing FIR turbo receivers, as it allows clear
comparison of their underlying differences with few parameters. In particular, in the next
subsection, it will allow us to generalize various IV or hard feedback DFE-IC schemes, into
various TV soft feedback structures, in merely few paragraphs.

3.4.3 Time-Varying Turbo DFE based on APP Estimates

In the literature review on TV DFE-IC structures, we can note the lack of structures with
soft feedback, and as hard decisions appear to be degrading the receiver performance with
respect to LE-IC [TK+02], we are interested in extending these schemes to soft feedback.
Moreover [Bal99] showed improvements with soft posterior feedback on non-turbo, invariant
filters, and IV DFE-IC structures with soft APP feedback [LB06; Tao16] outperform IV LE-
IC, but do not meet the performance of TV LE-IC for BPSK transmissions in the Proakis
C channel. Hence, in this subsection, DFE-IC schemes from the literature [TK+02; JM10;
Tao16] are extended to Time Varying (TV) structures that use soft APP feedback, and their
characteristics are assessed with analytical, asymptotic and finite-length analysis.

References on TV DFE-IC with soft feedback are limited, and to our knowledge, soft pos-
terior (APP) feedback was the only imperfect decision feedback, with a reasonable complexity
in the literature, applicable to any constellation [Bal99; LB06]. Nevertheless, it is not possible
to derive a structure using such feedback within the classical Wang-Poor formalism, but here
its usage is justified with the generalized FIR model provided in Equation (3.44).
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Figure 3.9: Structure of FIR DFE-IC with soft APP feedback.

One can consider the equalization problem within a Bayesian inference framework, as in
the Chapter 2, where a particular realization of a random data symbol is estimated through
noisy observations. Then the Wang-Poor framework [BC02] can be generalized, with the use
of any Gaussian-distributed prior p0

k♣xkq, on data symbols. Hence in continuation of the list,
at the end of Section 3.4.2, one could consider the sequential MMSE estimator, which uses
its previously estimated posteriors to improve the estimations of future data (Section 12.6 in
[Kay93]). This can be achieved by using the extrinsic output of the SISO decoder as priors
on anti-causal symbols and the desired symbol, and A Posteriori Probability (APP) estimates
at the equalizer’s output, as priors on causal symbols, i.e.

p
seq
k ♣xkq✾

k�Nd➵
l✏k

CN ♣xp
l , v

p
x,lq

k✁1➵
l✏k✁N ✶

p

CN ♣µd
l , γ

d
x,lq, (3.51)

where xp
k ✏ EPk

rxks, vp
x,k ✏ VarPk

rxks, µd
x,k ✏ EDk

rxks, with Dk being the posterior PMF
in Equation (2.97), and γd

x,k ✏ VarDk
rxks. Note that this concept of refining estimates with

posteriors, is also the core idea behind the concept of PDA, discussed in Section 2.4.3, but
instead of using it in a block-by-block schedule, here it is applied sequentially symbol-wise. In
the following, turbo DFEs with soft feedback are derived, by using this sequential estimator
with the model of Equation (3.44), with different approaches on the selection of v̄fir

x,k.

Exact TV DFE-IC with APP Feedback This equalizer is obtained by the direct usage
of the sequential APP priors, and it is a generalization of invariant schemes originally proposed
in [LB06; Tao16] to TV structures. It is derived by using the joint posterior pseq

k ♣xkq with
the model (3.44). The resulting exact TV APP FIR structure is fully defined by

x̄dfe-app
k ✏ rµd

k✁N ✶
p
, . . . , µd

k✁1, v
p
k, . . . , x

p
k�Nd

sT ,
v̄dfe-app

x,k ✏ rγd
x,k✁N ✶

p
, . . . , γd

x,k✁1, v
p
x,k, . . . , v

p
x,k�Nd

sT .
(3.52)

This structure will be referred to as DFE-IC APP in the remainder of this chapter, and it can
also be rewritten in the three-filter Interference Cancellation (IC) form of Equations (3.38)
and (3.39), with xe

k ✏ x
p
k � fdfe-app

k
Hyk ✁ gc-dfe-app

k
Hµd

k ✁ ga-dfe-app
k

Hxp
k (where the sizes of
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feedback vectors are implied), and

fdfe-app
k ✏ ♣σ2

w � hH
k Σdfe-app

x,k hkq✁1hkξ
dfe-app
k

✁1,

gc-dfe-app
k ✏ Hc

k
Hfdfe-app

k , ga-dfe-app
k ✏ Ha

k
Hfdfe-app

k ,

where ξdfe-app
k and Σdfe-app

x,k are given as in Equation (3.44), and it is illustrated in Figure 3.9.
Optimal filter parameters for this case appear to be the same as for FIR LE-IC, when N ✶

p and
Nd have the same value by fixing Nw ✏ ♣2m✁ 1q♣L✁ 1q � 1, for positive integer m.

TV DFE-IC with Perfect APP Feedback Here we propose to generalize [TK+02;
Bal99] to APP feedback, with perfect decision hypothesis, which imposes covariances associ-
ated to the APP feedback to 0, and focuses the forward filter to the mitigation of anti-causal
symbol interference. This case named DFE-IC PAPP, differs from the DFE-IC APP with
the variance estimates:

x̄dfe-papp
k ✏ x̄dfe-app

k ,

v̄dfe-papp
x,k ✏ r0T

N ✶
p
, v

p
x,k, . . . , v

p
x,k�Nd

sT . (3.53)

In this case, similar to the classical DFE, optimal filtering performance appears to be given
by Np ✏ 0, which yields N ✶

p ✏ L✁ 1 and Nd ✏ Nw.

Hybrid TV DFE-IC with APP Feedback This is an extension of the hard decision TV
structure in [JM10] to APP feedback. In [JM10], the DFE-IC with perfect hard decisions from
[TK+02] is improved by adding an estimate of the amount of decision errors to the equalizer’s
output variance ve

x,k. This quantity is given by VarDk
rgc

k
H♣rx✁µd

xsk✁N ✶
p:k✁1qs, using Equation

(2.97). Moreover, this structure checks whether this increase in variance, causes sign changes
in extrinsic LLRs, and sets ambiguous LLRs to zero. This receiver is extended to use APP
soft feedback, instead of hard decisions, and it is denoted DFE-IC HAPP.

3.4.4 Time-Varying Turbo DFE with Expectation Propagation

In Section 3.4.2, we have shown that the rules of conjugacy of Gaussian distributions can
be exploited to carry out inference on the windowed observation model in Equation (3.25) for
deriving FIR SISO equalization structures. Hence, in the following, we propose an alternative
factorization for p♣x,dq to enable deriving FIR receivers with message passing algorithms.
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Figure 3.10: Factor graph for the posterior PDF (3.55) on xk and dk.

Factor Graph Modelling for FIR Turbo Equalization

Let us recall the factorization of generic detection problem from the Section 2.3.5 in the
previous chapter

p♣x,d⑤yq ✏ p♣y⑤xq❧♦♦♠♦♦♥
✏fEQU♣xq

K➵
k✏1

p♣xk⑤dkq❧♦♦♦♠♦♦♦♥
✏fDEMk

♣xk,dkq

Q➵
q✏1

p♣dk,qq❧♦♦♠♦♦♥
✏fDECk,q

♣dk,qq

, (3.54)

where GaBP was used to derive a SISO detector based on an MMSE filter-bank. When
applied to the specific case of the ISI channel in Equation 3.3, the resulting structure is a
block turbo MMSE LE-IC [GH11; TS11].

In order to modify this factorization to design FIR structures, we rely on the sparsity of
the channel, which allows us to assume that elements of the vector y which will impact xk

are likely to be localized in a sub-vector of y, around the index k and with a length that
depends on the channel spread L. With this line of thought, the windowed observation model
in Equation (3.25) can be used to perform inference, considering that we have

p
�
d̄k,xk⑤yk

✟ ✾ p♣yk⑤xkq
k�Nd➵

k✶✏k✁N ✶
p

p♣xk✶ ⑤dk✶q
q✁1➵
j✏0

p♣dk✶,jq, (3.55)

where d̄k ✏ dk✁Np✁L�1:k�Nd
and p

�
d̄k,xk⑤yk

✟ ✓ p
�
d̄k,xk⑤y

✟
is assumed.

Note that working with p
�
d̄k,xk⑤y

✟ ✓ p
�
d̄k,xk⑤yk

✟
is not the only option for estimating

xk. Indeed xk can be estimated through inference on any xk✶ , with k✶ ✏ k ✁Nd, . . . , k �N ✶
p,

i.e. on any window containing xk, but by selecting xk as the default data window, this option
is indirectly translated to the choice of window parameters, which is a common aspect of FIR
equalizers, as discussed above.
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By denoting

fEQUk
♣xkq ✜ p♣yk⑤xkq✾ exp

✂
✁xH

k HH
k Hkxk

σ2
w

� 2R

✂
xH

k HH
k yk

σ2
w

✡✡
, (3.56)

where the dependence on yk is omitted, as observations are fixed during the message-passing
procedure, the posterior (3.55) yields the factor graph shown in Fig. 3.10. Note that, when
considering the factor node fEQUk

♣xkq, only variable node xk is to be updated through a
message passing algorithm, while xk✁N ✶

p
, . . . , xk✁1, xk�1, . . . , xk�Nd

provide prior information.

EP and Serial Scheduling for a Novel Decision Feedback Equalizer

The use of GaBP, as in Section 2.3.5, on this new factor graph yields the FIR LE-IC SISO
equalizer, when variable nodes xk are updated either in parallel or serial schedule. However,
as EP’s extrinsic messages from the factor node DEMk to EQUk✶ , for k✶ ✏ k✁Nd, . . . , k�N ✶

p,
are directly dependent on the extrinsic message from EQUk to DEMk, selecting a serial or a
parallel structure significantly changes the receiver behavior, which is a feature that appears
when loopy graphs are under consideration.

Hence following a similar approach to the diagonal EP in Section 2.4.2, for nodes involving
data symbol variables, we have

qDEMk
♣xkq✾ CN ♣xk;µd

x,k, γ
d
x,kq, (3.57)

mDEMkÑxk
♣xkq✾ CN ♣xk;xd

k, v
d
x,kq, (3.58)

qEQUk
♣xkq✾ CN ♣xk;µe

x,k, γ
e
x,kq, (3.59)

mEQUkÑxk
♣xkq✾ CN ♣xk;xe

k, v
e
x,kq, (3.60)

which ensures that the family of symbol variables are de-correlated, and the joint distribution
on xk has a diagonal covariance matrix.

The computation of messages from DEMk to xk is identical to the computations in Section
2.4.2, and following the “Gaussian division” in the computation of mDEMÑx♣xkq from (2.100),
its mean and variance are denoted

x✝k ✏
µd

x,kv
e
x,k ✁ xe

kγ
d
x,k

ve
x,k ✁ γd

x,k

, and, v✝x,k ✏
ve

x,kγ
d
x,k

ve
x,k ✁ γd

x,k

. (3.61)

These quantities are the major novelty in using EP for FIR receivers, instead of GaBP, be-
cause of their direct dependence on xe

x,k and ve
x,k. Moreover, note that we were reluctant to

use xd
k and vd

x,k to denote the statistics of the “Gaussian division" involved for computing
mDEMÑx♣xkq, because due to the potential occurrences of contradicting messages between
EQUk’s outputs and the mapping constraints, there could be estimates where ve

x,k ↕ γd
x,k.

The occurrence of negative variances is a classical aspect of EP-based algorithms which arises
from the use of projections towards restrictive family of distributions. To avoid their destruc-
tive effect, [C+́14] suggests replacing the concerned ♣xd

k, v
d
x,kq with priors from the decoder
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♣xp
k, v

p
x,kq, and [Sen+11] suggests replacing with posteriors ♣µd

x,k, γ
d
x,kq. From experimentations

not exposed here, we have found the latter case to be more advantageous asymptotically, and
thus we use

♣xd
k, v

d
x,kq ✏

★
♣x✝k, v✝x,kq if ve

x,k → γd
x,k � ε,

♣µd
x,k, γ

d
x,kq otherwise,

(3.62)

where ε is a small constant.

At the factor node EQUk, similar to EQU in Section 2.4.2, the pre-projection posterior is
obtained by using Equation (2.85), with

qEQU♣xkq ✏
➺

x
③k

k

fEQU♣xkq
k�Nd➵

k✶✏k✁N ✶
p

mxÑEQU♣xk✶qdx③kk . (3.63)

The integrand of the equation above is a multivariate Gaussian distribution CN ♣µµµe,Γeq
(whose diagonal elements follow Equation (3.59), due to the moment-matching aspect of
EP), hence, using eq. (3.56), its covariance and mean should satisfy

Γe
x,k ✏ ♣Vd

x,k
✁1 � σ✁2

w HH
k Hkq✁1,

µµµe
x,k ✏ Γe

x,k♣Vd
x,k

✁1xd
k � σ✁2

w HH
k ykq,

(3.64)

where Vd
x,k ✏ Diag♣vd

x,kq, with vd
x,k ✏ rvd

x,k✁N ✶
p
, . . . , vd

x,k�Nd
s, and xd

k ✏ rxd
k✁N ✶

p
, . . . , xd

k�Nd
s.

Using some matrix algebra, and Woodbury’s identity on Γe
x,k [GVL96], the mean µe

x,k and
the variance γe

x,k of the marginalized PDF qEQUk
♣xkq, in Equation (3.59), are given by

γe
x,k ✏ eH

k Γe
x,kek ✏ vd

x,k♣1✁ vd
x,khH

k Σd
k
✁1hkq,

µe
x,k ✏ eH

k µµµ
e
x,k ✏ xd

k � vd
khH

k Σd
k
✁1♣yk ✁Hkxd

k q,
(3.65)

with Σd
k ✜ kwσ

2
wIN � HkVd

k HH
k . Message to the demapper, in Equation (3.60), is then

computed with the Gaussian density division in Equation (2.84) with

ve
x,k ✏

γe
x,kv

d
x,k

vd
x,k ✁ γe

x,k

, and, xe
k ✏

vd
x,kµ

e
k ✁ γe

x,kx
d
k

vd
x,k ✁ γe

x,k

. (3.66)

Developing these equations, one obtains a FIR receiver expression as in Equation (3.44), with
x̄d

k ✜ rxd
k✁N ✶

p
, . . . , xd

k�Nd
s and v̄d

x,k ✜ rvd
x,k✁N ✶

p
, . . . , vd

x,k�Nd
s for IC.

Note that in the absence of any information from the EQUk factor node, i.e. when
mxkÑDEM♣xkq✾ 1, which is equivalent to having ve

x,k ✏ �✽, and xe
k ✏ 0 (or any other

placeholder finite constant), we have Dk ✏ Pk and consequently x✝k ✏ µd
x,k ✏ x

p
k and v✝x,k ✏

γd
x,k ✏ v

p
x,k. This is the conventional prior information in GaBP, or the Wang-Poor approach,

hence to innovate with EP, a serial update schedule is needed, in order of exploit messages
mxÑDEM♣xkq on causal symbols. Thus, variables xk have to be updated sequentially from
both factor nodes DEMk and then EQUk, and this yields the proposed DFE-IC EP, given in
Algorithm 8.
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Algorithm 8 Proposed DFE-IC EP receiver.

Input y, H
Output b̂

1: L
♣0q
p ♣dq Ð 0Kc , v

d♣0q
x,k Ð σ2

x, v
p♣0q
x,k Ð σ2

x, k ✏ 1, . . . ,K.
2: for τ ✏ 0 . . . T do
3: Compute prior PMFs P

♣τq
k ♣αq with Eq. (2.39) and L

♣τq
p ♣dq, for α P X , k ✏ 1, . . . ,K.

4: Compute xp♣τq and vp♣τq
x with Eq. (2.40).

5: for k ✏ 1 . . .K do
6: Σdfe-ep♣τq

k Ð σ2
wINw � HkDiag♣rvd♣τq

x,k✁N ✶
p
; . . . ; vd♣τq

x,k✁1; vp♣τq
x,k ; . . . ; vp♣τq

x,k�Nd
sqHH

k

7: ξ
dfe-ep♣τq
k Ð hH

k Σdfe-ep♣τq
k

✁1hk

8: fdfe-ep♣τq
k Ð Σdfe-ep♣τq

k
✁1hkξ

dfe-ep♣τq
k

✁1

9: gc-dfe-ep♣τq
k Ð Hc

k
Hfdfe-ep♣τq

k , ga-dfe-ep♣τq
k Ð Ha

k
Hfdfe-ep♣τq

k

10: x
e♣τq
k Ð x

p♣τq
k � fdfe-ep♣τq

k
Hyk ✁ gc-dfe-ep♣τq

k
Hxd♣τq

k ✁ ga-dfe-ep♣τq
k

Hxp♣τq
k

11: v
e♣τq
x,k Ð 1④ξdfe-ep♣τq

k ✁ v
p♣τq
x,k

12: Compute the posterior PMF D
♣τq
k ♣αq with Eq. (2.53), for α P X , k ✏ 1, . . . ,K

13: Generate EP feedback ♣xd♣τq
k , v

d♣τq
x,k q with (3.61)-(3.62).

14: end for
15: Compute extrinsic LLRs L♣τqe ♣dq with Eq. (2.54)
16: Execute de-interleaving, SISO decoding and interleaving to get L♣τ�1q

p ♣dq
17: end for

To clarify the dynamics of the proposed receiver, τ ✏ 0, . . . , T denotes turbo iterations,
i.e. exchanges between the DEM and DEC factor nodes. Exchanges between EQU and DEM
factor nodes sequentially update the whole block x as in Algorithm 8, and this acts as a FIR
receiver which uses the following means and variances for IC

x̄dfe-ep
k ✜ rxd

k✁N ✶
p
, . . . , xd

k✁1, x
p
k, . . . , x

p
k�Nd

sT ,
v̄dfe-ep

x,k ✜ rvd
x,k✁N ✶

p
, . . . , vd

x,k✁1, v
p
x,k, . . . , v

p
x,k�Nd

sT ,
(3.67)

for k ✏ 0, . . . ,K ✁ 1. This layout shows that this structure indeed follows a TV DFE-IC
evolution, with decoder’s extrinsic messages being used for compensating the ISI caused by
anti-causal symbols, and the EP feedback from the demapper handles interference generated
by causal symbols. This DFE-IC structure, using a novel kind of soft feedback, is unlike any
hard or soft APP feedback previously used in the literature [TK+02; JM10; JM11; LB06;
Tao16; TRK05; Bal99; LX11]. The demapper’s extrinsic symbol-wise feedback is obtained
by jointly using the prior information of the SISO detector, and the past equalized symbol
estimates xe

k (see (2.98), (3.61) and (3.62)). As for DFE-IC APP, this EP-based receiver an
also be rewritten in the three-filter Interference Cancellation (IC) form of Equations (3.38)
and (3.39), with xe

k ✏ x
p
k � fdfe-ep

k
Hyk ✁ gc-dfe-ep

k
Hxd

k ✁ ga-dfe-ep
k

Hxp
k , and

fdfe-ep
k ✏ ♣σ2

w � hH
k Σdfe-ep

x,k hkq✁1hkξ
dfe-ep
k

✁1,

gc-dfe-ep
k ✏ Hc

k
Hfdfe-ep

k , ga-dfe-ep
k ✏ Ha

k
Hfdfe-ep

k ,
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Figure 3.11: Structure of FIR DFE-IC with soft EP feedback.

Algorithm 9 Recursive inverse algorithm for LE-IC [TSK02]

Input Σ✁1
k✁1, σ

2
w, V̄x,k,Hk

Output Σ✁1
k

1: {Separate previous inverse into sub-matrices}

2:

✒
U u
uH u

✚
Ð Σ✁1

k✁1

3: {Matrix manipulation for removing the previous element and adding the new one}
4: U Ð U✁ uuH④u
5:

✒
u
u

✚
Ð

✒
0Nw✁1

σ2
w

✚
�HkV̄x,kHH

k

✒
0Nw✁1

1

✚
6: u✶ Ð Uu
7: uÐ 1④♣u✁ uHu✶q
8: u Ð ✁uu✶

9: U Ð U� uu✶u✶H

10: {Reassemble sub-matrices into the updated inversed matrix}

11: Σ✁1
k ✏

✒
u uH

u U

✚
.

where ξdfe-ep
k and Σdfe-ep

x,k are given as in Equation (3.44), and it is illustrated in Figure 3.11.

3.4.5 Reducing the Complexity of Exact FIR Equalizers

TV FIR turbo equalizers, as in Algorithm 7, or 8 have excessive computational complexity
due to the symbol-wise filter updates. Before going further into their analysis, in this sec-
tion we investigate on a low complexity implementation. Symbol-wise filter updates require
recursive matrix inversion methods to more efficiently carry out the computation of the filter
fk�1. This is done by exploiting the previous filter fk, considering the filters are of the form
fk ✏ Σ✁1

k hk, where Σk is the conditional covariance of windowed observations.
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Shortcomings of Existing Approaches

In [TSK02], Tüchler et al. propose for turbo FIR MMSE LE-IC, a recursive matrix
inversion algorithm, based on common sub-matrices between successive inverses, similar to
Levinson’s algorithm [GVL96]. This procedure requires the computation of an initial in-
verse (Gauss-Jordan inversion) with a complexity order5 of 4N3

w④3, but further recursions’
complexity is 2N2

w. Detailed description of the update procedure is given in Algorithm 9.

A shortcoming of the approach above, is then need to carry out the non-sparse product
Σ✁1

k hk for each symbol and iteration. On the other hand, practical matrix inversion im-
plementations avoid direct inversion by solving the system Σkfk ✏ hk for fk with triangular
factorizations [SF+11] and using forward/backward substitutions. This approach is even more
advantageous in equalization where the system is sparse. However, the matrix decomposition
can be as expensive, if it needs to be carried out for each symbol.

In this section a novel recursive inversion strategies are proposed for LE-IC and DFE-IC,
based on an initial Cholesky decomposition, and followed by sparse rank-1 updates/downdates
of the Cholesky factors of following filter computations. Unlike [SF+11], our algorithm is able
to deal with channel matrices evolving in time, making it more efficient for turbo TV FIR.
For LE-IC the complexity order is of N2

w, hence, asymptotically around 50% less complex
than [TSK02].

Proposed Cholesky Update Algorithm for FIR MMSE LE-IC

We consider a LE-IC with priors variances v̄x,k, let Lk✁1 be the lower triangular Cholesky
decomposition of the covariance matrix Σk✁1, i.e. Lk✁1LH

k✁1 ✏ Σk✁1. Algorithm 10 uses
Lk✁1 and the latest values v̄x,k�Nd

and eH
k�Nd

Hk (new row with hrk � Nds) appended to
the sliding window, to compute Lk. Impact of latest generated value is appended to the
decomposition using lH12 and l22, then past data is removed. The resulting updated Cholesky
decomposition is a rank-1 update [GVL96] of L22, defined within algorithm 10. These steps,
followed by forward/backward substitutions fk ✏ L✁H

k L✁1
k hk, allow fpr low complexity filter

computation.

Proposed Cholesky Update Algorithm for FIR MMSE DFE-IC

In the case of DFE-IC, the diagonal of the covariance matrix V̄tdfe
x is composed of two

independently sliding parts: one for causal symbols v̄c
x,k, between symbols k✁N ✶

p and k✁1, the
other for anti-causal v̄a

x,k, between symbols k and k�Nd. The LE-IC update procedure above

handles the addition of v̄a
x,k�Nd

and the removal of v̄c
x,k✁N ✶

p✁1, but the change in ♣k ✁ 1qth

symbol remains to be updated.

5“Order” means asymptotic expansion as Nw Ñ �✽, assuming Nw ✾ 3L, i.e. sliding window operating on
4L symbols.
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Algorithm 10 Cholesky update algorithm for LE-IC.

Input Lk✁1, σ
2
w, v̄x,k�Nd

,Hk✁1,Hk, V̄x,k✁1

Output Lk

1: {Add a row and a column}
2: rh1k, h2ks Ð r0, eH

k�Nd
Hks

3: w Ð Hk✁1V̄x,k✁1h1k

4: l12 Ð L✁1
k✁1w

5: l22 Ð
❜

h1
H
k V̄x,k✁1h1k � v̄x,k�Nd

⑤h2k⑤2 ✁ l12
H l12 � σ2

w

6: {Build augmented matrix and remove row & column}

7:

✒ ✂ 01,N

l21 L22

✚
Ð
✒

Lk✁1 0N,1

l12
H l22

✚
8: {Rank-1 update LkLH

k ✏ L22L22
H � l21l21

H}
9: for l ✏ 1 to N do

10: r Ð
❜
rL22s2l,l � ⑤rl21sl⑤2, cÐ rL22sl,l

r
, sÐ rl21s

✝
l

r

11: rL22sl:N,l Ð crL22sl:N,l � srl21sl:N
12: rl21sl:N Ð crl21sl:N ✁ s✝rL22sl:N,l

13: end for
14: Lk Ð L22

Algorithm 11 Cholesky update algorithm for DFE-IC.

Input L̃k, v̄
a
x,k✁1, v̄

c
x,k✁1, rHks:,✁1

Output Lk

1: w Ð
❜
⑤v̄a

x,k✁1 ✁ v̄c
x,k✁1⑤rHks:,✁1

2: for l ✏ Np to N do
3: if v̄c

x,k✁1 ➔ v̄a
x,k✁1 then

4: {Rank-1 downdate LkLH
k ✏ L̃kL̃H

k ✁wwH}

5: r Ð
❜
rL̃ks2l,l ✁ ⑤rwsl⑤2, cÐ rL̃ksl,l

r
, sÐ rws✝

l

r

6: rL̃ksl:N,l Ð crL̃ksl:N,l ✁ srwsl:N
7: else if v̄c

x,k✁1 → v̄a
x,k✁1 then

8: {Rank-1 update LkLH
k ✏ L̃kL̃H

k �wwH}

9: r Ð
❜
rL̃ks2l,l � ⑤rwsl⑤2, cÐ rL̃ksl,l

r
, sÐ rws✝

l

r

10: rL̃ksl:N,l Ð crL̃ksl:N,l � srwsl:N
11: end if
12: rwsl:N Ð crwsl:N ✁ s✝rL̃ksl:N,l

13: end for
14: Lk Ð L̃k

Algorithm 11 gives this update procedure for DFE-IC, by applying either a rank-1 update
or downdate on L̃k, the Cholesky factor who has already been updated by algorithm 10,
depending on the sign of v̄c

x,k✁1 ✁ v̄a
x,k✁1. Such updates are carried out using Givens plane

rotations [GVL96].
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Figure 3.12: Complexity of LE-IC and DFE-IC with the proposed matrix inversion algorithm.

Theoretical Computational Complexity Analysis The computational complexity of
the proposed algorithm is evaluated with the number of required multiply and accumulate
units, estimated by the number of real additions and multiplications, amounting to half a
Floating Point Operations (FLOPs) each.

FLOP counting ratios between different FIR implementations are plotted in Figure 3.12,
depending on the channel spread, with a block length K ✏ 2048 and a FIR window given by
Nw ✏ 3L�2, Nd ✏ 2L. The blue dashed curves show the FLOP count ratio of a LE-IC using
our strategy relative to using the algorithm in [TSK02], for different constellation orders. Up
to 50% saving is observed as channel spread increases.

DFE-IC FLOP count is compared to LE-IC, both using the proposed inversion strategies,
with red solid lines. This ratio is high for a low number of channel taps, but decreases to 7%
as L increases, more or less quickly depending on the modulation order M . Finally, MAP
detector is seen to be an interesting alternative to FIR receivers for BPSK/QPSK signalling,
in channels with very short channel spreads.

3.4.6 Asymptotic and Finite-length Analysis of FIR Turbo Equalizers

Following the proposed technique to implement FIR turbo receivers with lower complexity,
we will now perform a performance comparison of TV DFE-IC with soft feedback to the
previously established TV FIR techniques in the literature.

Analytic Comparison of DFE-IC vs. LE-IC

This paragraph semi-analytically assesses the behaviour of a DFE-IC relative to a LE-IC
to underline the interest in jointly using decision feedback and a generic prior information for
IC as in Equation (3.44).
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Figure 3.13: Prv̄c
x,k → v̄x,ks ➔ for DFE-IC APP and EP with random channels and QPSK.

In fact, we investigate whether LE-IC operating with priors ♣x̄k, v̄x,kq provides a lower
bound for the achievable information rate of a DFE-IC structure, using the same prior in-
formation for its anti-causal symbols ♣x̄a

k, v̄
a
x,kq ✏ ♣x̄k, v̄x,kq, alongside decision feedback esti-

mates ♣x̄c
k, v̄

c
x,kq. The mean post-equalization SNR of a FIR receiver is given by SNRfir

out ✜

σ2
x④Erve♣firq

x,k s, where the priors vfir
x,k ✏ v̄ ✏ rv̄a

x,k✁N ✶
p
; . . . ; v̄a

x,k✁1; v̄c
x,k; . . . ; v̄c

x,k�Nd
s are used as

the basis of the FIR equalizer. By exploiting the structural similarities between DFE-IC and
LE-IC, the causal feedback’s impact is characterized by a ratio of mean post-equalization
SNRs6

G ✜
SNRdfe

out

SNRle
out

✏ σ2
x

Erve♣dfeq
x,k s

Erve♣leq
x,k s
σ2

x

✏ ξdfe

ξle

1✁ v̄xξ
le

1✁ v̄xξdfe
(3.68)

where v̄x ✏ Erv̄x,ks and ξXX ✏ ErξXX
k s, where XX stands for “le” or “dfe”. This gain is greater

than unity if and only if ξdfe ➙ ξle, or equivalently if and only if ErV̄le
x,k ✁ V̄dfe

x,k s is positive
semi-definite. Hence having v̄x → v̄c

x ✏ Erv̄c
x,ks is required for achieving improvements with a

DFE-IC. Based on empirical and experimental evaluations, the conjecture Prv̄c
x,k → v̄x,ks ➔ 0.5

has been verified over a wide range of channels, SNRs, and for different constellations, for
v̄c

x,k ✏ vd
x,k (DFE-IC EP) and for v̄c

x,k ✏ γd
x,k (DFE-IC APP) (see Figure 3.13). This ensures

v̄x → v̄c
x asymptotically and thus, LE-IC output SNR is a lower bound on DFE-IC EP/APP.

G is plotted in Fig. 3.14, with Nw ✏ 17, Nd ✏ 10 and σ2
x ✏ 1 for the static Proakis C

channel, h ✏ r1, 2, 3, 2, 1s④❄19; when decisions are more reliable than priors, G increases,
otherwise DFE-IC brings small improvements. When v̄a

x Ñ 1, there is no prior information,
and decisions bring a significant gain. Oppositely, when v̄a

x Ñ 0, prior information is already
close to the ideal, and DFE-IC cannot improve further. This indicates boosted performance
at initial turbo-iterations, especially at low SNR.

6SNRXX
out ✏ σ2

x④Erv
e♣XXq
x,k s is the post-equalization SNR, where XX is “dfe” or “le”, (see Equation (3.44)

for ve
x,k). Superscript “le” refers to the use of ♣x̄k, v̄x,kq for IC, and “dfe” refers to the use of ♣x̄a

k, v̄a
x,kq and

♣x̄c
k, v̄c

x,kq for IC, as in Equations (3.38) and (3.39).
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Figure 3.15: EXIT curves and average MI trajectories of FIR equalizers with BPSK in Proakis
C channel at Eb④N0 ✏ 7dB.

Asymptotic Analysis and Performance Prediction

To assess the full potential of DFE-IC, asymptotic analysis is used to evaluate its achiev-
able rates. Extrinsic Information Transfer (EXIT) analysis [TB00], summarized in Section
2.3.6, is used to characterize the asymptotic limits of this receiver.

In Figure 3.15, transfer curves TR are plotted in solid lines for considered receivers along
with the reverse transfer T ✁1

D of the BCJR decoder of a Recursive Systematic Convolutional
(RSC) code. DFE-IC APP yields a higher IE than LE-IC for all IA, unsurprisingly given the
posterior feedback, and there is little difference with DFE-IC EP, which has slightly lower
rates at low prior information. In particular, the improvement at IA ✏ 0 lets us conjecture a
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Figure 3.16: Achievable spectral efficiency on deterministic Proakis C channel with BPSK.

lower waterfall threshold in BPSK, and the higher slope of the TR curve at low IA hints an
improved convergence speed for DFE-IC across turbo iterations, relative to LE-IC.

Another use of EXIT analysis is performance prediction, however this involves strong as-
sumptions on prior inputs, that often cannot be met for FIR turbo equalizers (Assumption 2
of Section 2.3.6 is needed). Hence, EXIT curves merely provide an upper-bound on informa-
tion rates, for receivers other than the MAP detector. In this respect, it is then interesting
to compare transfer curves, with actual finite-length mutual trajectories (in dashed lines in
Figure 3.15), in order to assess the accuracy of EXIT prediction for a given receiver.

It had been noted in [TK+02], that trajectories of DFE-IC with hard feeback, and with
filters designed with “perfect” decision assumption, do not follow EXIT curves (see Figure
3.6). This issue remains with DFE-IC PAPP, although less severely, indicating that the
perfect decisions assumption causes a severe information loss, despite using a soft decision
feedback. Other FIRs’ trajectories overall follow receiver and decoder curves and reach the
MFB. Nevertheless, following a number of iterations, these trajectories no longer fits with
transfer curves, and lose convergence speed. This is a common disadvantage of FIR equalizers,
attributed to short cycles in the associated factor graph, which causes neglected correlations
with the neighbouring symbols, as shown in Figure 16 in [TK+02]. However note that among
different DFE-IC receivers, EP feedback yields trajectories that remains closest to EXIT
curves, making it relatively easier to predict.

As discussed previously, in Section 2.3.6, the achievable spectral efficiency for a given
receiver can be measured with the help of the area theorem for EXIT charts. In Figure 3.16,
achievable rates for BPSK constellation are plotted, alongside the SIR of the channel, given
by the SISO MAP detector (which is accurate). As non-iterative FIR do not depend on prior
inputs, their achievable rates are also accurately computed. For turbo FIR, upper bounds are
obtained by combining results of area theorem with the channel SIR; indeed, for APP based
receivers, the area theorem predicts that these receivers can surpass the channel SIR, which
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Figure 3.17: BER and convergence performance of the proposed DFE-IC in Proakis C channel
with BPSK constellation.

is not physically plausible (this is shown in red dotted lines in Figure 3.16). In this case, the
achievable rates obtained with EXIT must be limited to that of MAP, but this significantly
puts into question the accuracy of these bounds for DFE-IC APP.

Tightness of these bounds depend on the closeness of true MI trajectories to EXIT charts in
Figure 3.15, so APP feedback’s asymptotic performance is most likely overestimated compared
to EP feedback. This observation is in accordance with emerging theoretical work on the
analysis of detectors using APP estimates or EP techniques (e.g. OAMP) [Ma+18].

Finite-Length Comparison with Existing Schemes

Monte Carlo based performance analysis remains the most reliable analysis approach,
hence finite-length evaluation of joint detection and decoding for BPSK symbols is considered
with parameters in section 3.4.6, and Kb ✏ 2048, coded with a terminated r7, 5s8 RSC code.
Bit Error Rate (BER) of various receivers are plotted in Figure 3.17. For the reported
iterations, the DFE-IC APP outperforms other APP feedback DFE structures, and their
convergence speeds are compared on the right side of the figure, at a Packet Error Rate (PER)
of 10✁2. EP-based feedback provides further improvement of the threshold by 0.5 dB relative
to APP, and it is shown to reach MFB limit within 7 iterations, earlier than DFE-IC APP.

Assessing DFE-IC performance at low spectral efficiency conditions, as above, is of in-
terest, to remedy the poor behaviour of classical DFE at those operating points (see Figure
3.16). Indeed, well-designed turbo processing helps DFE structures to outperform LE at all
rates.

A higher spectral efficiency case is plotted on the left side of the Figure 3.18, with 8-PSK
constellation in the same configuration; DFE-IC APP is shown to improve LE-IC waterfall
threshold by 2 dB, and DFE-IC EP asymptotically provides an additional 1.2 dB. On the
right side of the Figure 3.18, 16-QAM is considered; showing that DFE-IC EP provides further
performance enhancements for one or more iterations.
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Figure 3.18: BER performance of the proposed DFE-IC in Proakis-C with 8-PSK and 16-
QAM constellations.
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Figure 3.19: Performance complexity trade-off in Proakis C.

Finally, the coded performance of DFE-IC is balanced with complexity considerations. In
Figure 3.19, the receiver computational complexity (Floating Point Operation (FLOP) per
symbol) required to decode with a PER of 10✁2 is plotted as a function of Eb④N0. These
values are computed, assuming the use of the proposed matrix inversion algorithm in section
3.4.5, and by accounting for the equalization, the demapping and the decoding costs. A curve
represents the evolution of PER and the complexity of a receiver across turbo iterations.

DFE-IC provides a better trade-off than LE-IC; at any given amount of computationally
complexity, it is more energy efficient, especially at initial iterations, and the asymptotic
Eb④N0 gap between LE-IC and DFE-IC increases with the modulation order M . The use of
EP feedback is more advantageous at higher iterations, for higher order constellations, while
APP is more cost-effective for non-iterative receivers.

In conclusion, DFE-IC outperforms LE-IC in various aspects: it converges faster towards
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MFB, has a lower decoding threshold than LE-IC, especially at higher spectral efficiencies.
Among DFE-IC with APP feedback, exact derivation DFE-IC APP is superior according
to both finite-length and asymptotic analysis. Although EXIT charts show little difference
between DFE-IC EP and APP, in practical simulations EP feedback tends to outperform
APP. This is justified by the tightness of EP-based receiver’s MI trajectories to corresponding
EXIT curves; APP is overestimated. Although DFE-IC EP appears to be able to reach
channel SIR at low to medium spectral efficiencies, there is still a gap to MAP performance
qt very high rate.

Performance Over a Doubly Selective Standardized Channel

In this paragraph, a PHY layer inspired by the LTE uplink is discussed, with single carrier
transmissions, but with time-domain receivers and perfect channel knowledge. Symbol rate is
1.08 Mbauds, i.e. 6 physical resource blocks in LTE, corresponding to an occupied bandwidth
of 1.35MHz with shaping filters of 0.35 roll-off factor. The 1 ms subframe format from [3gpa]
is used for the uplink data only, and 15 Modulation and Coding Schemes (MCSs) with QPSK,
16-QAM and 64-QAM constellations are used, with rate matching on the LTE turbo code.
Transport block size has been selected from [3gpa], in order to satisfy code rate requirements
per subframe.

The achievable throughput defined as

ηthroughput ✏ ♣1 ✁ PERqηeff-MCS, (3.69)

where ηeff-MCS is spectral efficiency of an MCS, and PER is obtained through Monte Carlo
simulations in the extended typical urban (ETU) channel [3gpb]. Its independent paths
experience a Jakes Doppler spectrum, with a maximum Doppler shift of 300Hz, corresponding
to a velocity of 135km/h for a carrier at 2.4GHz. This causes strong time variations over the
subframe length of 1ms. The scheduling of joint detection and decoding at the receiver is one
turbo code iteration (inner code iteration with memory) for each turbo equalization recursion.
For both equalizers we use Nw ✏ 34, Nd ✏ 22, corresponding to a sliding window span over
four times the channel spread. Fig. 3.20 shows the maximum achievable throughput (best
MCS is selected) as a function of Es④N0. Operation region limits of the fifteen MCS are
delimited with dash-dotted lines.

With non-iterative receivers, DFE-IC EP and APP are equivalent, and provide less than
20% energy saving w.r.t. LE-IC, for early QPSK MCS (1-6, up to 1.28Mbps). For 16-QAM
MCS (7-9), this steadily increases from 15% up to 65%, and LE-IC can barely operate above
MCS 10 due to the limited filter span. Finally, with five turbo iterations, DFE-IC APP
provides less than 10% energy savings for QPSK schemes, around 15% for MCS 11, up to
60% for MCS 12, and LE-IC fails to follow further than 4.5Mbps. DFE-IC EP brings an
additional improvement of around 0.5-1dB. Computational burden of DFE-IC with a time-
varying channel is increased by 0.12%, 0.51% and 2.0% w.r.t to LE-IC, for respectively QPSK,
16-QAM and 64-QAM.
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Figure 3.20: Achievable throughput in ETU300 with LTE-like coding and turbo FIR at PHY.

3.4.7 Conclusions

This section addresses the irregularities of the behaviour of turbo FIR DFE-IC based on
soft feedback, and proposed alternative solutions to mitigate these problems.

To achieve this, a generic model for turbo FIR is given, through conjugate priors on
Gaussian distributions, and APP feedback schemes from the literature are generalized to TV
exact structures. Moreover, a factor graph view of FIR receivers is proposed, which enabled
deriving a novel DFE-IC with soft feedback based on EP. This receiver is later extended
to also cover Fractionally-Spaced (FS) DFE [Cas+97], by taking mup → 1, in the sampling
model of Figure 1.6, and removing the matched-pulse-shaping-filter at the receiver [Pet+19].

Numerical results show that the soft feedback and the TV modelling of prior estimates’
uncertainty allows to solve previously encountered issues. Next, a matrix inversion strategy
is proposed for addressing the time-varying filtering dynamics of these equalizers, and nu-
merical and analytical results indicate that APP based techniques remain poorly predicted
and difficult to analyse unlike EP. Indeed, this section provides another example to the
importance of using extrinsic estimates in iterative systems, which is well suited for predic-
tion and outperforms other alternatives in very selective channel configurations. Expectation
Propagation (EP) framework enables computing such feedback in this problem.
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3.5 Self-Iterated FIR Receivers with Expectation Propagation

3.5.1 On Self-Iterated Turbo Equalizers

As mentioned in the heart of the previous chapter, in Section 2.4.1, self-iterated detection
structures have been gathering interest lately, thanks to either well-designed information
combining techniques, or through advanced iterative algorithms, such as EP, which enables
iteratively improving extrinsic messages, when mixed discrete/continuous PDFs are involved
in a factor. A more general introduction to the concept of inner detection iterations is
provided in Section 2.4.2, and further examples to this will be clear when discussion Frequency
Domain (FD) strucutres in the next chapter.

Regarding DFEs, the idea of inner detection loop, in addition to the serial symbol-wise
decsion feedback, was discussed in [JM13] for SISO DFE-IC, where parallel concatenation
of previously discussed FIRs [JM10; JM11], is shown to significantly improve performance,
or it is used to build bi-directional DFE, which itself can be used in concatenation. These
structures have become possible thanks to the improve DFE-IC of [JM10], which is the sub-
obtimal hard decision version of DFE-IC HAPP of the previous section, where the amount
of residual ISI is more realistically assessed, compared to the classical DFE-IC [TK+02],
enablling accurate MMSE combining of different FIR receivers.

As initially evoked in Section 2.4, EP has been introduced for communications systems
with various applications such as Kalman smoothers for detection in time-varying channels
[QM07], or in frequency-selective channels [SZW+15]. In particular, self-iterations through
EP, which has been previously exploited for MIMO detection in [Sen+11; C+́14], has also been

shown to considerably improve performance with block LE-IC [SMF+17a], and with Kalman

smoothers [SZW+15; SMF+17b]. In particular, a concomitant work [SMF+18] has recently

extended the schemes in [C+́14; SMF+17a; SMF+17b] to use prior information, and also

propose a Self-Iterated (SI) FIR LE-IC7. The receivers above use EP in a parallel interference

cancellation scheduling through self-iterations, i.e. the whole data block is detected, and then

detection process is repeated using EP feedback from the demapper.

These structures are not decision feedback structures as in [Bel+79], which are natural

successive interference cancellers. In this section, as in [Sen+11], we present a factor-graph

based derivation of self-iterated FIR receivers with EP, which provides an alternative view

of the simultaneously developed SILE-IC in [SMF+18], and which also allows derivation of

a novel SIDFE-IC. The asymptotic and finite-length performance of this new structure is

analysed, and it is shown to significantly approach the SIR of the channel, and outperform-

ing even block SILE-IC structures (or their equivalent Kalman smoothing implementations)

[SMF+17a; SMF+17b; SMF+18] when communicating at the high spectral efficiency oper-

ating points of the channel.

7This work was unavailable in any format to the public, when the contents of this chapter were being
written as a journal article, and submitted for publication.
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3.5.2 FIR Self Iterated DFE-IC with EP

A Doubly-Iterative Message-Passing Schedule for SISO Detection

It has been argued, with the derivation of a generic diagonal EP detection in Section 2.4.2,
that self-iterated detection process can provide attractive performance-complexity trade-offs
in turbo receiver design. Originally, a Soft Input Soft Output (SISO) MIMO detector based
on this approach with one self-iteration has been proposed in [Sen+11], and it has been
generalized to multiple self-iterations in [C+́14], where the authors note importance of using

damped EP feedback for IC, for achieving better convergence. In the following, this concept

is investigated for FIR receiver design, and as the demapping process is computationally less

intensive than channel decoding, such structures have significant practical interest.

Following the recommendations on damped message passing in Section 2.4.1, and con-

sidering the successful use of feature-based damping in [C+́14], the EP-based feedback in

Equation (3.62) is replaced with

v
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x,k ✏
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(3.70)

where 0 ↕ β ↕ 1 configures the damping and x
d♣currq
x,k and v

d♣currq
x,k are given by Equation (3.62).

EP message passing algorithm consists in minimizing global divergence through iterative

minimization of simpler local divergences, and it might lock on undesirable fixed points, thus

a damping heuristic, as recommended in [Min+05, eq. (17)], is used to improve accuracy, and

its effectiveness has been verified in [SMF+18].

In this section, we consider the use of self-iterations with FIR receivers, through the

FIR EQUk factor node in Equation 3.56, illustrated in the factor graph of Figure 3.10. To

clarify the dynamics of the proposed receivers, τ ✏ 0, . . . , T denotes turbo iterations (TI),

i.e. exchanges between the DEMk and DEC factor nodes for updating extrinsic LLRs, for

k ✏ 1, . . . ,K, with a parallel schedule. Each TI consists of s ✏ 0, . . . ,Sτ self-iterations (SI)

(may vary with τ), i.e. exchanges between EQUk and DEMk factor nodes. In the following,

EQUk and DEMk messages, derived previously in Section 3.4.4, are appended a superscript

♣τ, sq for denoting iterative dynamics.

Self-Iterated LE-IC with Expectation Propagation

When following a parallel message passing schedule between factor nodes EQUk and

DEMk, messages to variable nodes mEQUkÑxk
♣xkq are sequentially or simultaneously com-

puted, for k ✏ 1, . . . ,K, first, and then and only then, DEMk factor nodes can start computing

their messages. This structure corresponds to a LE-IC, within each self-iteration, when con-
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Algorithm 12 Proposed Self-Iterated DFE-IC EP receiver.

Input y, H
Output b̂

1: L
♣0q
p ♣dq ✏ 0Kc

2: for τ ✏ 0 . . . T do
3: Compute prior PMFs P

♣τq
k ♣αq with Eq. (2.39) and L

♣τq
p ♣dq, for α P X , k ✏ 1, . . . ,K.

4: Compute xp♣τq and vp♣τq
x with Eq. (2.40), and set ♣xd

k
♣τ,0q, vd

x,k
♣τ,0qq Ð ♣xp

k
♣τq, v

p
x,k

♣τqq.
5: for s ✏ 0 to Sτ do
6: for k ✏ 1 . . .K do
7: Σdfe-ep♣τ,sq

k Ð σ2
wINw � HkDiag♣v̄dfe-ep♣τ,sq

x,k qHH
k

8: ξ
dfe-ep♣τ,sq
k Ð hH

k Σdfe-ep♣τ,sq
k

✁1hk

9: fdfe-ep♣τ,sq
k Ð Σdfe-ep♣τ,sq

k
✁1hkξ

dfe-ep♣τ,sq
k

✁1

10: gc-dfe-ep♣τ,sq
k Ð Hc

k
Hfdfe-ep♣τ,sq

k , ga-dfe-ep♣τ,sq
k Ð Ha

k
Hfdfe-ep♣τ,sq

k

11: x
e♣τ,sq
k Ð x

p♣τ,sq
k � fdfe-ep♣τq

k
Hyk ✁ gc-dfe-ep♣τ,sq

k
Hxd♣τ,s�1q

k ✁ ga-dfe-ep♣τ,sq
k

Hxd♣τ,sq
k

12: v
e♣τ,sq
x,k Ð 1④ξdfe-ep♣τ,sq

k ✁ v
p♣τ,sq
x,k

13: Compute the posterior PMF D
♣τq
k ♣αq with Eq. (2.53), for α P X , k ✏ 1, . . . ,K

14: Generate EP feedback ♣xd♣τ,s�1q
k , v

d♣τ,s�1q
x,k q with Eqs. (3.61)-(3.62), and if

v
✝♣τ,s�1q
x,k ↕ 0, store k in the set I

♣sq
err , and then apply damping with Eq. (3.70).

15: end for
16: ❅k P I

♣sq
err , ♣xd♣s�1q

k , v
d♣s�1q
x,k q Ð ♣x✝♣sqk , v

✝♣sq
x,k q.

17: end for
18: Compute extrinsic LLRs L♣τqe ♣dq with Eq. (2.54)
19: Execute de-interleaving, SISO decoding and interleaving to get L♣τ�1q

p ♣dq
20: end for

sidering the generic FIR model in Equation (3.44), and the associated prior estimates and
their reliabilities for IC are

x̄le-ep
k

♣τ,sq ✏ rxd♣τ,sq
k✁N ✶

p
, . . . , x

d♣τ,sq
k�Nd

sT ,
v̄le-ep

x,k
♣τ,sq ✏ rvd♣τ,sq

x,k✁N ✶
p
, . . . , v

d♣τ,sq
x,k�Nd

sT .
(3.71)

Independently of our work, this EP-based FIR structure is derived in the concomitant work
[SMF+18], and unlike the message passing formalism used in Section 2.4.1, structure in
[SMF+18] is obtained by approximating a self-iterated block receiver. If the computations of
messages on EQU is carried out only once (Sτ ✏ 0), this SILE-IC receiver yields the same
result as the conventional turbo LE-IC [TSK02], as ♣xd♣τ,0q

k , v
d♣τ,0q
x,k q ✏ ♣xp♣τq

k , v
p♣τq
x,k q.

Self-Iterated DFE-IC with Expectation Propagation

In this paragraph, a serial scheduling across variable nodes xk, k ✏ 1, . . . ,K is considered.
In detail, when EQUk updates a variable node xk, the factor node DEMk is immediately
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activated in order to provide its own extrinsic estimation of xk, jointly using prior information
from the decoder and the equalizer’s extrinsic output. When detection across the whole block
is completed, this serial scheduling can be repeated by keeping the previously updated DEMk

messages, yielding a SIDFE-IC structure.

The proposed scheduling, given in Algorithm 12, generates an EP FIR receiver which uses
the following means and variances for interference cancellation

x̄dfe-ep
k

♣τ,sq ✜ rxd♣s�1q
k✁N ✶

p
, . . . , x

d♣τ,s�1q
k✁1 , x

d♣sq
k , . . . , x

d♣sq
k�Nd

sT ,
v̄dfe-ep

x,k
♣sq ✜ rvd♣s�1q

x,k✁N ✶
p
, . . . , v

d♣s�1q
x,k✁1 , v

d♣sq
x,k , . . . , v

d♣sq
x,k�Nd

sT ,
(3.72)

for k ✏ 0, . . . ,K ✁ 1. This layout shows that this structure indeed follows a TV DFE-IC
evolution, with anti-causal symbols using demapper’s output from the previous self-iteration,
and causal symbols using current EP feedback from the demapper. The extrinsic feedback
from the demapper is obtained by using jointly the prior information of the SISO decoder, the
extrinsic outputs of the demapper from the previous self-iteration, and the equalizer’s outputs
on causal symbols of the current self iteration (see (3.62) and (3.70)). The Algorithm 12
also incorporates a mechanism to deal with EP-based feedback’s infamous negative variances
[Sen+11; SMF+17a], with the set I

♣sq
err which stores their indexes. In the case of the self-

iterated receiver, a hybrid approach is used where these erroneous values are replaced with
APP-based variances in the current self-iteration, and then replaced again with their previous
values for the next self-iteration.

This self-iterated receiver can be rewritten in the three-filter IC form of Equations (3.38)
and (3.39), with

x
e♣τ,sq
k ✏ x

p♣τ,sq
k � f sidfe-ep♣τ,sq

k
Hyk ✁ gc-dfe-ep♣τ,sq

k
Hxd♣τ,s�1q

k ✁ ga-dfe-ep♣τ,sq
k

Hxd♣τ,sq
k , (3.73)

such that the filters are given by

fdfe-ep♣τ,sq
k ✏ ♣σ2

w � hH
k Σdfe-ep♣τ,sq

x,k hkq✁1hkξ
dfe-ep♣τ,sq
k

✁1,

gc-dfe-ep♣τ,sq
k ✏ Hc

k
Hfdfe-ep♣τ,sq

k , ga-dfe-ep♣τ,sq
k ✏ Ha

k
Hfdfe-ep♣τ,sq

k ,

where ξdfe-ep♣τ,sq
k and Σdfe-ep♣τ,sq

x,k are given as in Equation (3.44).

3.5.3 Asymptotic and Finite-Length Analysis on Self-Iterations

Asymptotic Comparison

First, we look into the achievable rates of SILE-IC and SIDFE-IC EP to identify operating
points where self-iterations have an advantage.

We consider 8-PSK signalling on the Proakis C channel, and use the area theorem to obtain
an upper bound on asymptotic achievable rates (i.e. τ Ñ ✽), plotted on the left side of the
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1 Self. Iter.
2 Self. Iter.
5 Self. Iter.

MAP Detector
LE-IC
DFE-IC EP
SI LE-IC
SI DFE-IC EP
Classical-DFE

Asymptotic:
τ → +∞

Non Iterative:
τ = 0

Figure 3.21: Achievable Rates of Self-iterated LE-IC and DFE-IC in Proakis-C with 8-PSK.

Figure 3.21. Information rates of the optimal MAP detector, LE-IC and DFE-IC EP without
self iterations, and SILE-IC and SIDFE-IC are considered. For self-iterated receivers, a static
damping with β ✏ 0.6 is used. Numerical results show that self iterations are no needed for
LE-IC up to 0.75 bits/s/Hz (i.e. using a code rate less than 1/4), as LE-IC is already close
to the channel SIR, whereas DFE-IC EP reaches MAP detector’s rates up to 1 bit/s/Hz (up
to a code rate of 1/3). On the other hand, when using 5 self iterations, DFE-IC EP follows
SIR within 0.5 dB up to 2.25 bits/s/Hz, while LE-IC follows it up to 1.85 bits/s/Hz. It is
also interesting to note that DFE-IC EP with 2 self iterations outperforms LE-IC with 5 self
iterations, at all rates, indicating at faster convergence of DFE-IC EP towards asymptotic
limits of FIR IC structures.

At the right side of the Figure 3.21, non-turbo iterative achievable rates of these receivers,
and those of the classical DFE [Bel+79], are compared. These rates are accurate, and not
an upper bound, unlike asymptotic rates, and note that SISO MAP detector is a mere ML
detector in this case. Although self iterations significantly improve LE-IC performance, at
rates above 2.75 bits/s/Hz, classical DFE still outperforms these receivers. DFE-IC EP on
the other hand outperforms alternative FIRs at any given self iteration.

Note that the gap to capacity still remains significant for non turbo iterative rates, and
to some extent, for asymptotic rates. Hence with the objective of deriving capacity achieving
practical receivers in mind, future work should explore the usage of the proposed DFE-IC EP
as a constituent element for the bidirectional DFE of [JM11], or for paralellely concatenated
FIRs [JM13] receivers.

Finite-Length Comparison

In this section, numerical finite-length results complete the previous analysis. In addition
to receivers above, the SI block LE-IC (SI BLE-IC), denoted nuBEP in [SMF+18], is consid-
ered. Without self iterations, this receiver is equivalent to turbo block LE-IC[TS11], and it
outperforms the self iterated block receiver and Kalman smoother in [SMF+17a; SMF+17b].
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Figure 3.22: SILE-IC and SIDFE-IC with LDPC coded 16-QAM for 5 turbo iterations.
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Figure 3.23: Performance complexity trade-off for self-iterations in LDPC coded Proakis C.

SIBLE-IC provides a lower bound to the BER performance of SILE-IC.

A LDPC coded 16-QAM transmissions over the Proakis C channel, with rate 1/2 and
3/4 encoding of Kb ✏ 2048 bits (Figure 3.22). The proposed SIDFE-IC EP uses respectively
β ✏ min♣0.5, 1✁eτ④2.5④10q and β ✏ min♣0.1, 1✁eτ④1.5④10q for damping, in these two cases,
whereas the optimized damping reported in [SMF+18] is kept for SIBLE-IC and SILE-IC. The
LDPC codes are obtained by Progressive Edge Growth methods, and a BP decoder up to a
100 iterations is used. The low rate case, with a (3,6) regular LDPC, shows that while all self-
iterated receivers reach the same asymptotic performance as Sτ increases, DFE-IC converges
much faster at intermediary iterations. On the other hand, at the high rate configuration,
with a (3,12) regular LDPC, DFE-IC is strictly superior to LE-IC, even without self-iterations.
Asymptotically even the exact SIBLE-IC is 3.8 dB behind the proposed SIDFE-IC.

These numerical performance results are completed with computational complexity con-
siderations in Figure 3.23, where decoding threshold for BLER ✏ 10✁2 is evaluated for



3.6. Low Complexity FIR Turbo DFE with Online Prediction 143

τ ✏ 0, . . . , 5, for each receiver. In the medium rate (2 bits/s/Hz: 16-QAM with rate 1/2
code) case the three considered receivers converges to the same asymptotic limit near 17 dB,
but DFE-IC offers lower complexity at intermediary iterations. At 3 bits/s/Hz configuration
(16-QAM with rate 3/4 code), with 5 turbo iterations and 3 self iterations, DFE-IC requires
3 dB less energy, and 3 times less computational resources than BLE-IC. With τ ✏ s ✏ 0,
LE-IC is unable to decode, BLE-IC decodes around 39 dB, and DFE-IC decodes with 13 dB
less energy.

These numerical results confirms conclusions drawn by the asymptotic analysis; the pro-
posed SIDFE-IC is of a significant interest for high data rate applications where linear struc-
tures are less efficient. Using the efficient implementation method of section 3.4.5, DFE-IC
outperforms prior work in terms of both complexity and performance.

3.5.4 Discussion

This section evaluated the principle of double-loop turbo equalization with EP based
self-iterations with FIR DFE-IC structures. Numerical results attest that self-iterations sig-
nificantly boost equalization performance and achievable rates of the system further get closer
to the channel SIR.

The process of detection being often less computationally intensive than decoding, self-
iteration are a mean to accelerate the turbo process, and possibly achieve required perfor-
mance behaviour with lower number of turbo iterations. Moreover, DFE-IC based on EP
was already an impressive receiver, which outperformed non-self iterated alternatives, and
through this extension it also outperforms, especially at high spectral efficiency operating
points, or behaves similarly to various powerful equalization structures. The further rein-
forces the conjecture that the impact of serial demodulation feedback is very significant for
high-spectral efficiency near-capacity systems. Thanks to finite-length and asymptotic anal-
ysis, DFE-IC EP, with SIs or not, sets new upper limits in achievable performance among
FIR turbo receivers. At high data rates, even self-iterated block linear receivers fall over 3 dB
behind the proposal.

Finally, the gap of achievable rates by turbo DFE-IC to the channel capacity remains still
significant at very high spectral efficiencies. Mayhaps the proposed technique could further
be improved by extending it as a bidirectional DFE, or by concatenating it with other FIR
structures [JM13].

3.6 Low Complexity FIR Turbo DFE with Online Prediction

Up to this point, we have discussed novel techniques for improving the performance of
Time Varying (TV) turbo FIR DFE structures, and in the remaining sections, we will discuss
the design of an improved Iteration Variant (IV) FIR DFE, by extension of the proposed
exact TV DFE-IV with APP and EP feedback.
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3.6.1 Previous Works on FIR turbo DFE with Static Filters

The literature on turbo DFE-IC has been discussed in Section 3.4.1, but here we would
like to recall some developments, and focus on the sub-optimal heuristics that has been used
for IV filter design [LB06; LX14; Tao16]. The derivation of optimum turbo IV DFE-IC
receivers is non-trivial, as static filters should depend on the decision feedback reliability,
and the decision feedback naturally depends on the filters. As a consequence, there does not
exist a closed-form expression of the optimal filter due to this non-linear ’chicken-and-egg’
inter-dependence.

For DFE with hard decisions, the conventional approach is to assume a perfect feed-
back, but this causes error propagation and performance degradation with tentative decisions
[TK+02]. The use of soft APP “decisions”, while still assuming perfect feedback, partially
mitigates error propagation, as soft symbols’ magnitudes scale down with unreliability [Bal99].
In this case, an FIR receiver corresponds to the previously evoked IV DFE-IC with APP feed-
back, with x̄fir

k ✏ rµd
x,k✁N ✶

p
; . . . ;µd

x,k✁1;xp
k; . . . ;xp

k�Nd
s and v̄fir

x,k ✏ rγd
x1N ✶

p✂1; vp
x1ND✂1s, with

regards to the model in Equation (3.44) and with x
p
k ✏ EPk

rxks, vp
x ✏ K✁1

➦K
k✏1 VarPk

rxks
and µd

x,k ✏ EDk
rxks, with Dk being the posterior PMF in Equation (2.97), and γd

x ✏ 0.
However such a perfect feedback assumption, for the TV case, still resulted in poor and
unpredictable iterative behaviour, as seen in Figure 3.15-(a). If it were possible to replace
γd

x with a predicted estimation of the average posterior variance K✁1
➦K

k✏1 VarDk
rxks, then

optimal MMSE DFE-IC FIR with APP-based feedback could be derived.

The first reference to incorporate APP soft feedback reliability γd
x, in filter computations,

is the receiver proposed in [LB06], for the special case of BPSK modulation. The direct
dependencies between soft symbols and LLRs for the BPSK constellation enable the use of a
tractable density evolution on the APP LLR distribution, given a prior LLR distribution from
the decoder. This property is used by the BPSK receiver of [LB06] to estimate the decision
feedback reliability, before equalization, to compute its filter coefficients.

However, this scheme cannot be directly generalized to high-order constellations; hence
[LX14] proposed a two-tiers receiver, that implements an IV LE-IC at the first turbo iteration,
and then it uses previous turbo iteration’s demapper’s APP LLRs to estimate soft-symbol
statistics (i.e. γd

x ) for IV DFE-IC. Note that this approach is only possible with Gray mapped
constellations.

More recently, [Tao16] proposed to perform pre-equalization with LE-IC over a few sym-
bols, and then to compute APP probability mass function, Dk of these symbols, to estimate
APP soft-feedback reliability γd

x, to be used for the IV DFE-IC filter computation, due to the
underlying bit-wise independent mapping model.

In the remainder, we provide a general view on how IV DFE-IC structures could be
computed with an accurate estimation of the APP covariance γd

x, or more generally the
covariance of causal symbol feedback v̄c

x, and we propose solutions based on semi-analytic
receiver prediction techniques. To this end, the channel is assumed to be static, such that
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hk ✏ h0, for all k ✏ 1, . . . ,K.

3.6.2 Predictive FIR DFE with Soft Feedback

In the case of generic DFE-IC, with anti-causal symbol priors x̄a
k ✏ rx̄a

k; . . . ; x̄a
k�Nd

s,
and causal estimates x̄c

k ✏ rx̄c
k✁N ✶

p
; . . . ; x̄c

k✁1s, with associated variances v̄a
x,k and v̄c

x,k for
k ✏ 1, . . . ,K, when the IV DFE-IC is rewritten in the three-filter IC form, with all filters, f ,
gc and ga, being invariant per iteration, we have

xe
k ✏ x̄a

k � f iv-dfeHyk ✁ gc✁iv-dfeH x̄c
k ✁ ga✁iv-dfeH x̄a

k ,

ve
x ✏ 1④ξ ✁ v̄a

x,
,

✩✬✬✬✬✫
✬✬✬✬✪

f iv-dfe ✜ Σiv-dfe✁1h0ξ
iv-dfe✁1,

gc✁iv-dfe ✜ Hc
k

Hf iv-dfe,

ga✁iv-dfe ✜ Ha
k

Hf iv-dfe,

ξiv-dfe ✜ hH
0 Σiv-dfe✁1h0,

(3.74)

where Σiv-dfe ✜ kwσ
2
wIN � HkDiag

�
v̄iv-dfe

x

✟
HH

k , and where the variances of soft interference
cancellation estimates are

v̄iv-dfe
x ✏ rv̄c

x1N ✶
p,1, v̄

a
x1Nd�1,1s, (3.75)

where v̄a
x and v̄c

x are respectively the overall reliability of anti-causal and causal estimates.

For interference cancellation, the set of anti-causal estimates are available before equal-
ization, and an accurate value of their reliability is given by the least-squares estimate

v̄a
x ✏ 1

K

K➳
k✏1

v̄a
x,k. (3.76)

In most SISO DFE-IC structures, the anti-causal estimates are the prior estimates given by
the decoder, xp

k ✜ EPk
rxks, vp

k ✜ VarPk
rxks. However, note that in the case of the self-iterated

DFE-IC EP of Section 3.5, the anti-causal estimates are the causal estimates of previous
iterations.

The core of the problem lies in the computation of v̄c
x. A simple, but inaccurate solution

is the “perfect decision assumption” : x̄c
k are all assumed to be equal to xk, yielding v̄c

x ✏ 0.
This approach is sufficient at very high SNR operating points, but as shown in [TK+02], and
in previous sections, it degrades performance in moderately or severely selective channels.
Hence, in the remainder of this section, we aim to use novel prediction methods to compute
it, for enabling enhancement of the the IV DFE performance.

APP Soft Feedback Computation Let us recall that for APP-based soft feedback, es-
timates are given by the mean and the variance of the posterior symbol PMF Dk, with
Equations (2.97)-(2.98). For the IV DFE-IC APP filter computation, an invariant variance
γd is needed, as the predicted causal reliability v̄c. Unlike the anti-causal reliability measures,
γd cannot be estimated using the causal estimates ♣x̄c

k, v̄
c
kq ✏ ♣µd

k, γ
d
kq, as these can only be

generated once the filter is computed. Thus, a predictive estimation is required, and the
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Figure 3.25: Soft-Input Soft-Output IV DFE EP receiver structure.

corresponding predictive DFE is illustrated in the Figure 3.24.

Predictive EP-based Soft Feedback Computation Unlike APP estimates, EP-based
estimates carry only the extrinsic information brought by the demapper, and prevents DFE-
IC from relying on its own bias. For TV DFE-IC EP, these estimates are obtained by a
“Gaussian division”, following Equations (3.61) and (3.62). For an IV DFE-IC EP structure,
this feedback is not well-suited, as the invariant filter is unable to vary its coefficients to handle
the strong variations of vd

x,k, which depends on instantaneous APP variance γd
x,k. Hence it is

preferable to use scalar EP, rather than diagonal EP, with extrinsic estimates

xd
k ✏

µd
x,kv

e
x ✁ xe

kγ
d
x

ve
x ✁ γd

x

, and, vd
x,k ✏ vd

x ✜
ve

xγ
d
x

ve
x ✁ γd

x

, (3.77)

where a predicted invariant APP variance γd
x is used to generate the feedback, as shown on

Figure 3.25. Moreover EP-based estimates have an invariant variance vd
x ✏ vd

x,k,❅k as the
causal reliability, directly related to the predicted APP variance.
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3.6.3 Semi-Analytic Abstraction of FIR DFE

In this section, a prediction model for the turbo DFE-IC structure in Equation (3.74)
is exposed, without loss of generality, for the case where anti-causal estimates are given by
decoder’s extrinsic LLRs, i.e. v̄a

x ✏ vp
x. Such models are conventionally used for taking link

adaptation decisions with low computational complexity, but here it will be exploited for
online estimation of the reliability of causal estimates.

General Structure and Analytical Equalizer Model

SISO DFE-IC is modelled with two independent components; an analytical model for the
equalizer and a numerical model for the soft demapper. Unlike asymptotic models (K Ñ �✽)
used in EXIT analysis, finite-length models are used for the demapper, as prior works on
performance prediction noted their impact on accuracy [SF09; VB+10].

Following Equation (3.74), the IV DFE-IC reliability ve
x is modelled by φREC as

ve
x ✏ φREC♣σ2

w,h, v
p
x, v̄

c
xq

✜ ♣hH
0 rσ2

wIN � Hdiag♣v̄dfe
x qHHs✁1h0q✁1 ✁ vp

x,
(3.78)

where v̄dfe
x is given by Equation (3.75). This function is strictly increasing with v̄c

x P r0, σ2
xs.

The demapper is modelled with a Lookup Table (LUT) referred to as φDEM

v̄c
x ✏ φDEM♣ve

x, ☎q, (3.79)

where v̄c
x is the expected value of causal estimates’ variance, taken over realizations of the

channel noise, the equalizer outputs and the prior LLRs. The second argument ‘☎’ in Equation
(3.79) models prior information, and its exact nature depends on the selected prediction
approach and improvements proposed in the upcoming subsections concern this module.

Since the equalizer and the demapper iteratively exchange reliabilities, the two functions
representing their model must be composed to yield a recursive equation on v̄c

x:

v̄c
xrn� 1s ✏ φDEM♣φREC♣σ2

w,h, v
p
x, v̄

c
xrnsq, ☎q ✜ fpred♣v̄c

xrnsq, (3.80)

where n ✏ 0, . . . , Npred denotes iterations for the fixed point equations. If fpred admits a
unique fixed-point on v̄c

x, then the desired predicted reliability estimate is this fixed-point.
Moreover, the optimality of IV DFE-IC strongly depends on v̄c

x and hence on the accuracy of
ΦDEM. Figure 3.26 illustrates causal reliability estimation structures using two semi-analytical
models that will be introduced below.

Numerical Demapping Models for APP/EP

Modelling the demapper with prior information is challenging due to the high amount
of non-linearity it incorporates, and due to strong simplifying assumptions. The main focus



148 Turbo Equalization and Closing the Gap on Achievable Rates

h
vex
v̄cx ΦDEM

µp ML
Est.

h
vex
v̄cx ΦDEM

σ2
w

vpx Soft
Map

Lp σ2
w

vpx Soft
Map

Lp

ΦREC ΦREC

Figure 3.26: Binary (left) and symbol-wise (right) causal reliability prediction.

of the numerical model will be the characterization of APP variance γd
x required for using

APP feedback, in the predictive receiver of Section 3.6.2. Similarly, as the variance vd
x of

the proposed predictive EP feedback in Section 3.6.2 is analytically linked to γd
x, numerical

assessment of APP estimates is a common aspect required for both types of feedback.

Mutual Information based Prediction (Binary) In the BPSK receiver of [LB06], a
prediction scheme is considered, assuming input/output LLRs of the demapper to be con-
sistent Gaussian, i.e. L♣☎q♣dk,jq ✒ N ♣d̄k,jµ♣☎q, 2µ♣☎qq, where d̄k,j ✏ 1 ✁ 2dk,j , and where ♣☎q is
p, e or void, depending on concerned LLRs. Using a semi-analytical density evolution, pa-
rameter µe of extrinsic LLRs is predicted using µp. The parameter µp is bijectively linked to
the average prior mutual information IA between prior LLRs and the associated coded bits,
as defined in Section 2.3.6, with the function J♣☎q, which is usable for binary prediction, as
shown in [VB+10]. Hence using such formalism, the approach of [LB06] can be extended to
any constellation and mapping.

More specifically, the demapper behaviour is numerically integrated for each γd
x,k, k ✏

1, . . . ,K, over realizations of consistent Gaussian prior LLRs Lp♣dk,jq given µp, and of Gaussian-
approximated equalized symbols xe

k ✒ CN ♣xk, v
e
xq, and a LUT on µp and ve

x is built with

v̄c
x ✏ φDEM♣ve

x, µpq ✜ 1
K

K➳
k✏1

ELp,xerv̄c
ks, (3.81)

where v̄c is the APP/EP variance of soft symbols and µp represents prior information, which
can be measured with a ML estimator (see Fig. 3.26, left)

µp ✓
❣❢❢❡1 �

K➳
k✏1

q✁1➳
j✏0

|Lp♣dk,jq|2 ✁ 1. (3.82)

Prior Variance based Prediction (Symbol-wise) The binary prediction scheme above
appeared to yield too optimistic estimates in [LB06], and they instead decided to obtain
µe and µp through BPSK channel estimators, which circumvents consistent Gaussian LLR
approximation.

More specifically, this problem ensues from well known issues with regards to performance
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Figure 3.27: Binary (blue, ✂) and symbol-wise (red, +) prediction.

prediction of turbo iterative systems, for which the consistent Gaussian approximation of
LLRs was shown to be inaccurate across turbo iterations due to the internal non-linear dy-
namics of channel decoding [Fu05]. To overcome this prediction bias, performance prediction
based on a two-parameter LLRs’ model has been shown to be much more accurate [IB10].
Such models consider L♣☎q♣dk,jq ✒ N ♣d̄k,jµ♣☎q, η♣☎qµ♣☎qq, where η♣☎q is no longer 2. The ML
estimator used for measuring µp in the binary prediction is very sensitive to ηp, which is the
reason why the binary prediction is not enough robust in practice.

For our context, two-parameters models are too complex as they require expensive online
parameter estimators to get both µp and ηp. Hence, a single-parameter demapper model with
reasonable estimation complexity has been preferred. We searched for the parameter which
is the most robust to the variations of prior LLRs’ variance-to-mean ratio ηp.

Following a thorough and almost exhaustive study of the different alternative parameters
for tracking evolution of v̄c

x, anti-causal variance vp
x has been found to be less sensitive to the

changes on ηp, very similarly to v̄c
x, with the advantage of vp

x being directly computable online
using a simple least-squares estimation. Hence, we propose the following LUT

v̄c
x ✏ φDEM♣ve

x, v
p
xq,

★
v̄c

x ✜ K✁1
➦K

k✏1 ELp,xerv̄c
x,ks,

vp
x ✜ K✁1

➦K
k✏1 ELprvp

x,ks,
(3.83)

where both input vp
x and output v̄c

x are numerically integrated using prior LLRs generated
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Figure 3.28: Numerically assessed fixed-points of the symbol-wise fpred for SNR varying from
6 to 10 dB, for each value of prior reliability.

for a fixed value of ηp. Indeed, as ηp cannot be accurately measured online, the conventional
consistent approximation [VB+10] is kept with ηp ✏ 2, and in the following, we will assess
its impact on the prediction accuracy.

Robustness of demapper prediction The sensitivity of the considered prediction schemes
to variations in ηp is evaluated. This aspect is important for characterizing the robustness of
iterative receiver prediction schemes, as the hypothesis ηp ✏ 2, used for LUT generation, is
only true at the initial turbo-iteration and then it varies [Fu05].

An AWGN channel is simulated with blocks of 16-QAM symbols with K ✏ 1024, to
emulate the output xe of the equalizer, for ve

x varying from ✁15 to 15 dB, along with Gaussian-
distributed prior LLRs generated with IA varying from 0 to 1 bit, with ηp varying from 1
to 3. The average MSE between the predicted causal covariance and true causal covariance
is measured, and plotted in Figure 3.27. The left side of the figure provides results for
APP feedback, and the right side for EP-based feedback. The binary approach is seen to
be severely impacted by the changes in ηp, whereas the symbol-wise approach, although not
perfect, remains more robust. Considerable differences are seen at low to medium SNR for
high prior information, which suggests that symbol-wise schemes would have an advantage at
the decoding threshold in asymptotic behaviour, i.e. when a high number of turbo-iterations
are used. Oppositely, without any turbo-iteration, both schemes would perform identically.

Convergence Analysis

The convergence of the proposed iterative semi-analytical prediction schemes could be
assessed formally through fixed-point analysis of Equation (3.80). However, due to the un-
tractable non-linear expression of ΦDEM, an analytic approach is not possible, and one has to
resort to numerical methods.

Numerical evaluations of the proposed fpred show that we can reasonably conjecture that
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Figure 3.29: Evolution of APP covariance prediction γd
xrn� 1s ✏ fpred♣γd

xrnsq for SNR varying
from -5 to 25 dB, with 5 dB steps (towards lower plots).

this function is continuous on the interval r0,�✽r, with a Lipschitz constant strictly less
than 1, for all σ2

w ➙ 0 and 0 ↕ vp
x ↕ σ2

x. This ensures that eq. (3.80) reaches a unique fixed-
point v̄c

x P r0,�✽r for any initial guess. This conjecture has been checked for various common
channels h and Figure 3.28 plots fpred for the Proakis C channel (h ✏ r1, 2, 3, 2, 1s④❄19), using
the symbol-wise demapper model for Gray-mapped 16-QAM.

The convergence speed of the prediction scheme is also evaluated numerically. The fixed-
point v̄c

x ✏ v̄c
xr✽s is reached more or less quickly depending on if the initial value v̄c

xr0s is close
to v̄c

xr✽s. In particular, due to the near flat evolution of fpred for vc
x close to σ2

x ✏ 1, initializing
with v̄c

xr0s ✏ 1 results in fast convergence at low SNR, and high anti-causal covariance, but
slow convergence otherwise. Oppositely with v̄c

xr0s ✏ 0 faster convergence is achieved for high
SNRs and low anti-causal covariance. This behaviour is illustrated for Proakis-C 16-QAM
APP covariance in Figure 3.29.

We propose to use the heuristic v̄c
xr0s ✏ min♣1, σwq, when vp

x → 0.5, where the standard
deviation of the channel noise is experimentally shown to serve as a convergence accelerating
heuristic. Otherwise using v̄c

xr0s ✏ 0 is preferable for faster convergence.

3.6.4 Numerical Results

Uncoded equalization behaviour

In this paragraph, the uncoded finite-length behaviour of the proposed IV DFE-IC with
online prediction is evaluated. Exact TV DFE-IC counterparts are used as lower-bound
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Figure 3.30: Uncoded BER performance of proposed predictive IV DFEs.

references on BER, to assess the prediction accuracy.

Block transmission in Proakis C channel is considered with K ✏ 256 and with QPSK,
8-PSK and 16-QAM constellations. In Figure 3.30, BER of TV DFE-IC with APP and EP
feedback are compared to the proposed predictive IV implementations. IV DFE-IC converges
towards the curve of TV counterparts, especially at high SNR, but it is seen that a gap
remains at medium BER for some constellations, due to dynamic filtering capabilities of TV
receivers. EP feedback is shown to be mostly equivalent to APP feedback in this uncoded use
case, but at high BER, EP-based feedback has an advantage over APP-based one, for both
TV and IV receivers, which suggests that improved decoding thresholds can be obtained with
channel coding.

On the Operating Regions of FIR Receivers

A previous work on TV FIR turbo equalizers concluded that TV DFE-IC significantly
outperforms TV LE-IC at high data rates, as seen in Section 3.4, whereas TV LE-IC remains
preferable at very low rates, as it achieves same performance with less complexity. In the fol-
lowing, the asymptotic behaviour and the computational complexity of the proposed receiver
is evaluated in a similar manner, along with those of other IV FIR receivers.

Considering that for filter-based receivers which violate the extrinsic message principle of
turbo detection, the rates predicted by EXIT can be too optimistic. This has been already
observed with the TV APP feedback based receivers in Section 3.4, but the TV EP-based
DFE did not suffer from this phenomenon. Hence in the following, the proposed predictive
EP-based IV DFE-IC is evaluated.

IV DFE-IC EP, with symbol-wise prediction scheme, is used for 8-PSK transmissions in
the Proakis C channel, and numerically obtained achievable rates are plotted in solid lines
in Figure 3.31. Dotted plots illustrate the achievable rates without turbo-iterations, for each
receiver. IV receivers are shown to follow the behaviour of their TV counterpart within a gap
of about 0.1 bits/s/Hz for both LE-IC and DFE-IC, but IV DFE-IC still keep a significant
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Figure 3.32: Rate-1/2 coded BER with proposed binary and symbol-wise prediction.

upper hand over TV LE-IC at medium and high spectral efficiency operating points. Using
IV FIR receivers to operate at a given rate requires about 1.5 dB more energy than TV FIR,
but with significant complexity savings.

Table 3.3: Computational Complexity of FIR Receivers

Structure Filter Computation Filtering and Detection

TV LE T K♣5L3 � 56L2q T K♣25L � ♣11 � 3qqMq

TV DFE T K♣5L3 � 71L2q T K♣25L � ♣18 � 3qqMq

IV LE T ♣6L3 � 28L2q T K♣25L � ♣11 � 3qqMq

IV DFE Pred. T ♣Npred � 1q♣6L3 � 34L2q T K♣25L � ♣18 � 3qqMq

Approximate computational complexity of considered FIR receivers is given in the Ta-
ble 3.3, where T denotes the number of turbo-iterations, and Npred denotes the number of
prediction iterations. TV LE-IC and DFE-IC receivers use the reduced-complexity TV matrix
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Figure 3.33: Coded 8-PSK BER performance comparison of turbo FIR receivers across turbo-
iterations for different code rates.

inversion algorithms in Section 3.4.5, and IV receivers exploit a single Cholesky decomposition
for matrix inversion.

Finite-Length Turbo-Equalization Performance

In this section, the prediction accuracy is assessed for transmissions encoded with Non-
Recursive Non-Systematic Convolutional (NRNSC) code with polynomials r7, 5s8. Note that
IV FIR receivers might outperform TV FIR structures, in some cases [JM13], as the latter
are more sensitive to the decoder errors.

First, the impact of using symbol-wise or binary prediction is assessed through finite-
length BER evaluations. The block size is kept at K ✏ 256, similarly to the uncoded case,
and a MAP decoder based on BCJR algorithm is used as a SISO decoder. Fig. 3.32 shows the
case of the EP-based feedback with 8-PSK, and the use of symbol-wise prediction is shown
to accelerate convergence of the IV DFE-IC performance towards TV DFE-IC.

However, despite the improvements brought by the symbol-wise prediction, covariance
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estimations tend to be too optimistic for high prior information at high SNR (following, 1 or
2 turbo iterations), and degrade BER performance. A similar observation has been made for
the semi-analytic prediction of turbo linear MMSE receivers in [NVB12], where a calibration
step is applied to correct the predicted prior covariance with a multiplicative factor. After
some ad hoc damping, this yields more smoothed predictions that improve BER performance.

Here, this mechanism is adapted to the proposed online prediction. To avoid over-
estimation of the causal covariance, the anti-causal covariance can be exploited to derive
a “lower-bound” to estimated causal covariances. Empirically, turbo detection systems bring
most of the improvements at the initial iterations, hence the improvements after a certain
number of iterations can no longer be substantial. Thus, the predicted causal covariance v̄c

x

of the current turbo iteration is modified with v̄c
x ✏ max♣v̄c

x, βv̄
a
xq, with β ➔ 1. The pro-

posed heuristic is integrated with the symbol-wise prediction, with 3 prediction iterations
and β ✏ 0.2, and the IV DFE-IC with EP is displayed in turquoise in Figure 3.32.

Finally, to compare our proposal to the prior work and to evaluate its behavior in dif-
ferent operating regimes, the previously used rate-1/2 encoding with NRNSC code r7, 5s8 is
punctured to get rate-2/3 encoding with r11; 01s puncturing pattern and rate-5/6 encoding
with r10001; 01111s puncturing pattern. The BER performance of the proposed IV DFE-IC
APP and IV DFE-IC EP receivers are shown in red in Figure 3.33, for 8-PSK transmissions
in Proakis C channel, with above mentioned codes of rate 1/2, 2/3 and 5/6, and for 0, 1 and 4
turbo-iterations. Proposed predictive IV DFE-IC receivers use symbol-wise prediction with 3
iterations, and the heuristic parameter is β ✏ 0.2. IV DFE-IC APP significantly outperforms
other APP-based DFE-IC receivers when there are no turbo iterations, as this is the operat-
ing point where the prediction scheme is the most accurate. In Figure 3.34, the evolution of
BER is plotted as the number of turbo-iterations increases. During intermediary iterations
of the rate 2④3 system, previous works of Tao et al. [Tao16] and Lou et al. [LX14] close
most of the gap of iteration zero, with the receiver of [LX14] slowly converging to the same
limit as the proposed receiver. At high rate systems (rate 5/6) the gap between them and
our proposal increases, even for 4 turbo-iterations, and from Figure 3.34 it is seen that the
receiver of [Tao16] cannot converge to the same asymptotic limits, probably due to the usage
of only a few samples for covariance estimation heuristic. The use of EP-feedback instead of
APP does not bring significant improvement for high-rates, or without turbo-iterations, but
at medium and low rates, it allows for an additional asymptotic gain over 0.5 dB. However,
the predictability of the EP feedback over a wider set of configurations (see Section 2.4.4)
makes it a more attractive solution.

3.6.5 Discussion

This section discussed an original approach to the design of turbo DFE receivers with static
filters, through the use of online prediction, based on semi-analytic performance prediction
techniques as used in physical layer abstraction methods. Due to the lack of a closed-form
solution for such receivers, various heuristics are used throughout the literature, but here we
raise the question on the accuracy or optimality of such approaches.



156 Turbo Equalization and Closing the Gap on Achievable Rates

0 2 4 6 8 10

10-4

10-3

10-2

10-1

0 2 4 6 8 10

10-4

10-3

10-2

10-1

Figure 3.34: Coded 8-PSK BER performance across turbo-iterations.

Here, semi-analytical performance prediction of exact TV turbo DFE with dynamic filters
is exploited to derive static DFE filters. This approach has been carried out for DFE with
APP-based or EP-based soft feedback and their detection performance has been evaluated in
various configurations. This framework could also be applied to self-iterated FIR DFE from
Section 3.5 for further improved performance, by updating anti-causal variances with causal
EP variance of the last self-iteration.

This receiver brings significant complexity savings with respect to TV DFE, while offering
reasonably close performance. Moreover, our method is compatible with any constellation,
and spectrally efficient on a large interval of coding rates and with or without turbo-iterations.

3.7 Conclusion

This chapter provides a very brief survey of the literature on turbo equalizers, by starting
with the optimal SISO detector for ISI channel based on MAP criterion [BF98], equivalent to
the originally derived ML turbo equalizer [DJB+95], which is an extension of the soft-output
Viterbi algorithm. Next, the complexity reduction of the optimum detector is discussed, with
a focus on filter-based MMSE turbo equalizers. In particular, we point out the importance of
equalization architecture for the complexity-performance trade-off, and expose the limits of
widely used Finite Impulse Response (FIR) linear MMSE equalizer, with Interference Cancel-
lation (IC) with a priori information [TSK02]. Indeed, this equalizer and its extensions based
on linear MMSE criterion are widely acclaimed as the main reference for turbo-equalization,
even including 3GPP standardization performance evaluation reports [3gpc], and their DFE
extensions did not receive a lot of attention. In particular, it is shown that the performance of
the MMSE LE-IC is rather poor for at high spectral efficiency applications, remaining behind
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the capabilities of the 40 year-old classical DFE [Bel+79].

Hence, to address this problem, the state-of-the art in FIR turbo-equalizers is investigated,
and based on observed improvements and shortcomings, various novel DFE turbo-equalizers
are proposed by incorporating the use of Expectation Propagation (EP). The performance-
complexity trade-off brought by the proposed DFE receivers and their asymptotic performance
are analysed, which favours solutions with EP-based soft feedback. Finally, we conclude that
FIR DFE-IC structures are of interest when the target operating region on the the spectral-
efficiency versus energy-efficiency plane corresponds to the use of high code rates. Otherwise,
for robust codes, FIR LE-IC is sufficient to reach capacity achieving performance, but if faster
convergence is needed, or the number of turbo-iterations has to be reduced, DFE-IC could
become more attractive.
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4.1 Introduction

Although the detection complexity in ISI channels is significantly reduced when using FIR
or block equalization, relative to the optimal detectors, such filtering architectures are still at
the heart of receiver computational bottleneck. Among those structures, block receivers offer
better performance but with a computational cost scaling at best quadratically in block length,
and approximate FIR receivers have quadratic complexity in channel spread. Moreover, when
considering DFEs, even with static filters, there would be a considerable amount of latency
on the feedback from the soft decision device, which would require large buffers for handling
this sequential process in the hardware. For exact turbo equalizers or TV channels, this
latency would be higher when considering the underlying matrix inversion updates for filter
computation, even with the low cost methods presented in Section 3.4.5.

To alleviate these issues, Frequency Domain (FD) receivers are used to transform the
TD convolution operation into a single-tap filtering (element-wise multiplication of Channel
Frequency Response (CFR)) in the FD, through the use of Fast Fourier Transform (FFT) and
Inverse Fast Fourier Transform (IFFT), enabling low complexity receiver design. In particular
in the 3GPP’s LTE uplink, sidelink, D2D or vehicule-to-vehicle communications standards for
4G, SC-FDE, or its multi-user extension, Single-Carrier Frequency Division Multiple Access
(SC-FDMA) have been successfully used for mitigating ISI in quasi-static wideband channels
[SKJ94; Baz+17]. Moreover, various investigations for upcoming 5G uplink NOMA strategy
with low-cost terminals also involve the use of SC-FDE [Liu+19a].

In this chapter, we discuss an original use of scalar EP message passing, along with self-
iterated schedule and damped message computation principles for FD receiver design. This
approach yields a doubly iterative receiver architecture which is shown to yield attractive
performance-complexity trade-off, and we believe this to be the contribution of this thesis
having the highest potential for impact in practical applications. Indeed, as single-carrier
transmissions using FD receiving algorithms are widely used in technical specifications for
various wireless systems standards such as LTE, proposing plausible extensions of those is an
interesting development axis in the PHY layer. Existing low-cost linear MMSE receivers are
a particular case of this structure, and self-iterations incorporate lower computational costs
and lower latency compared to turbo-iterations, which makes proposed receivers a practical
extension of the baseline. In summary, the contributions brought by this chapter are:

• a review on existing single-tap iterative FDE structures, in Section 4.2,

• proposal of a scalar EP framework for FD receiver design, in Section 4.3.2, explained
through the derivation of an elementary FDE, and the analysis of its finite-length and



4.2. On Iterative Frequency Domain Receivers 161

asymptotic performance, and complexity,

• optimization of the proposed structure through deep learning techniques, through the
use of deep unfolding, in Section 4.4,

• extension and application of this receiver to various common SC waveforms, with Cyclic
Prefix (CP), Zero Padding (ZP) or Unique Word (UW), also with upsampled waveforms
with Fractionally-Spaced (FS) equalization, Frequency Domain Oversampling (FDO) or
SC-FDMA, in Sections 4.5.1 and 4.5.2,

• FD equalization of time-varying channels is discussed in Section 4.5.3,

• extension of the framework to a multi-user and multi-antenna NOMA system in Sec-
tion 4.6, through the use of Space-Time Bit Interleaved Coded Modulation (STBICM),

• discussion on the impact of practical channel estimation on the performance of these
algorithms in Section 4.7.

4.2 On Iterative Frequency Domain Receivers

In this section frequency-domain filtering based receiver architectures for the linear chan-
nel model in Equation (2.1) is discussed, with a particular focus for the case of ISI mitigation,
as in Equation (3.3). Extensions for handling Inter-Block Interference (IBI), Inter-Carrier In-
terference (ICI), Multiple-Antenna Interference (MAI) and Multiple-User Interference (MUI)
will be discussed in the later sections of the chapter.

When the channel is quasi-static relative to a data block (i.e. hk,l ✏ hk✶,l ✏ hl), the trans-
mission is said to be circular if the Equation (3.2) can be rewritten as a circular convolution

yk ✏
L➳

l✏1

hlx①k✁l②K
� wk, ❅k ✏ 1, . . . ,K, (4.1)

with w ✒ CN ♣0K ,Σwq and ①k②K ✜ 1 � rk ✁ 1 mod Ks, for performing modulo operation
between 1 and K. Practical examples of how circular transmissions take place is discussed in
the Section 4.5.1 of this chapter.

In this situation, if the statistics of prior estimates on data symbols is white (i.e. the
reliability of prior estimates is static over the TD block, with Σx in Equation (3.19) being
a scaled identity matrix), then block MMSE LE is efficiently implemented via FFTs as the
FD LE [WS73; SKJ94], with the so-called “one-tap” filters where frequency bins (also called
sub-carriers) are processed in parallel. The major benefit in doing so is the avoidance of block
matrix inversion of block filter-banks and reduce the computational complexity from the
quadratic scaling (e.g. O♣K2q) (at best), to quasi-linear scaling (e.g. O♣K logKq). However,
this comes with a limitation on the channel delay spread to the block length, i.e. L ↕ K.
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Frequency Domain Linear Equalizer In detail, when the circular time-domain ISI mod-
elv of Equation (4.1) can be cast into the general linear channel model in Equation (2.1), the
block observation model of Equation (3.3) becomes

y ✏ Hx � w, (4.2)

where y P C
K , w ✒ C♣0K✂1,Σwq and by denoting h ✏ rh1, . . . , hLs, the sparse K ✂ K

circulant matrix H is given by

H ✏ Circ♣rh; 0♣K✁Lq✂1sq ✜

✔
✖✖✖✖✖✖✖✕

h1 0 . . . hL . . . h3 h2

h2 h1 0 . . . hL . . . h3

h3 h2 h1 0 . . . hL

...
. . .

. . .
. . .

hL . . . h3 h2 h1 0
0 . . . hL . . . h3 h2 h1

✜
✣✣✣✣✣✣✣✢
. (4.3)

Consequently, the channel matrix has some attractive algebraic properties through the use
of the K-point DFT matrix FK , with H ✜ FKHFH

K ✏ Diag♣hq where h ✏ rh1; . . . ;hKs ✏❄
KFKrh; 0K✁L✂1s is the K-point CFR with

hk ✏
L➳

l✏1

hl exp♣✁2jπ♣k ✁ 1q♣l ✁ 1q④Kq, k ✏ 1, . . . ,K. (4.4)

Then an equivalent Frequency Domain (FD) transmission model is given by

y ✏ Hx � w, (4.5)

with x ✏ FKx, y ✏ FKy, w ✏ FKw.

Recalling the MMSE block LE, given in Equation (3.19), the estimated data symbols are

x̂ ✜ FbleHy � gble ✏ µx � Ξble✁1HHΣble✁1♣y ✁ Hµxq. (4.6)

where µx ✏ Erxs, Σx ✏ σ2
xIK , with σ2

x ✏ Varrxks,❅k (i.e. white/uniform statistics) and with
the assumption of x being uncorrelated, Σble ✏ Σw�σ2

xHHH and Ξble ✏ Diag♣ξble
1 , . . . , ξble

K q
with ξble

k ✏ rHHΣble✁1Hsk,k. These equations are simplified through the use of the FD
channel matrix’s properties, and by neglecting non-diagonal elements of Σw and Ξble

x̂ ✏ FH
K

✁
FKµx � FKΞble✁1FH

K FKHHFH
K FKΣble✁1FH

K ♣FKy ✁ FKHFH
K FKµxq

✠
,

✓ FH
K

✁
µ

x
� ξfde✁1HH♣σ̄2

wIN � σ2
xHHHq✁1♣y ✁ Hµ

x
q
✠
, (4.7)

where µ
x
✜ FKµx are FD prior data estimates, σ̄2

w ✏ K✁1
➦K

k✏1 σ
2
w,k is the variance of noise

and interference in the frequency domain, ξfde ✏ K✁1
➦K

k✏1 ⑤hk⑤2④♣σ̄2
w�σ2

x⑤hk⑤2q. Equivalently,
this equalization process can be written in a parallelized form for the FD estimates

x̂k ✏ µ
x,k

� ξfde✁1h✝k♣σ̄2
w � σ2

x⑤hk⑤2q✁1♣y
k
✁ hkµx,k

q. (4.8)
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Figure 4.1: Achievable rates of BCJR, FD LE-IC and classical FD-LE in Proakis C.

This structure replaces large matrix inversions of the time-domain block receiver to element-
wise scalar affine operations in the frequency domain, which reduces the computational bot-
tleneck to the use of FFTs.

There is a long research track on FDE, starting from very the low-complexity linear
FDE above, up to non-linear FD turbo equalizers. Table 4.1 lists chronological milestones
on developments regarding how Interference Cancellation (IC) with either decoder or deci-
sion (demapper) feedback is used. The “schedule” column indicates in which manner the
decoder/demapping feedback is used by the equalizer, with “parallel” meaning block-wise
feedback, and “serial” referring to a symbol-wise feedback (like FIR DFE-IC). The position
of the novel FDE that will be derived in Section 4.3.2 is also shown in the table.

4.2.1 From Block LE-IC to Single-Tap Turbo Equalization

The FD receiver structure has been naturally extended to turbo equalization following
the Wang-Poor approach [WP99; TSK02], discussed in Chapter 3, by whitening the estimates
used for block LE-IC (following the Equation (3.43) for computing vp

x, as for IV FIR structure)
[TH01; TS11]. The resulting receiver is an EXT feedback based receiver, denoted FD LE-
EXTIC, and it is given by

xe
k ✏ x

p
k � ξfdle-ic✁1f fdle-ic

k
✝♣y

k
✁ hkx

p
kq, (4.9)

where f fdle-ic
k

✝ ✏ ξfdle-ic✁1♣σ̄2
w � vp

x⑤hk⑤2q✁1hk, with ξfdle-ic ✏ K✁1
➦K

k✏1 ⑤hk⑤2④♣σ2
w,k � vp

x⑤hk⑤2q,
and vp

x is the variance of the SISO decoder’s extrinsic PMF, defined in Equations (2.39)-
(2.40). This is a simplified variant of block turbo MMSE LE-IC, where the exact prior data
covariance matrix Diag♣rvp

x,1; . . . ; vp
x,Ksq is replaced by vp

xIK . As stated for IV FIR equalizers,
although this simplification slightly reduces the achievable rates of the receiver, it does not
necessarily mean a loss in finite length performance, as exact structures are more sensible to
errors when the SISO decoder erroneously converges towards a bad codeword.
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Table 4.1: Developments Related to Iterative Single-tap FDE.

Reference Contribution on single-tap FDE
Decoder
Feedback

Decision
Feedback

Schedule

[WS73]
Initially proposed frequency domain equaliza-
tion.

- - -

[SKJ94]
Revived FDE through the comparison of SC-
FDE relative to multicarrier signalling.

- - -

[TH01]
Derived the turbo iterated FD LE-IC. De-
noted as FD LE-Extrinsic (EXT)IC.

EXT - Parallel/-

[Fal+02]
[BT02]

A hybrid DFE with a frequency domain feed-
forward filter and a time domain feedback fil-
ter is proposed.

- Hard -/Serial

[KSW03]
Simplifies hybrid DFE by using noise predic-
tion.

- Hard -/Serial

[BT05]
Proposed a non-linear receiver with FD feed-
forward and feedback filters, called iterative
block DFE IBDFE.

- Hard/APP -/Parallel

[VBC06]
Proposed a turbo FD MIMO receiver. It uses
APP estimates from the decoder instead of ex-
trinsic. Denoted as FD LE-APPIC.

APP - Parallel/-

[NLF07]

Compared FDE with FD feedforward and
TD/FD feedback filters. TD/FD are equiva-
lent (parallel schedule). Soft better than hard.

EXT Hard/APP
Parallel/-
or -
/Parallel

[GM08]
Proposed a self-iterated BPSK turbo receiver
with APP estimates, based on PDA.

EXT APP Par./Par.

[Guo+13]
Derived a self-iterated turbo receiver based on
GAMP, that exploits APP estimates at each
turbo iteration.

EXT APP Par./Par.

[Che+15]
Equivalence of coded IBDFE to FD LE-
EXTIC is shown.

- - -

[Tao15]
Extended results in [TH01; BT05; GM08] to
a turbo FDE with a APP-based self-iteration,
denoted as FD SILE-APPIC.

EXT APP Par./Par.

Section

4.3.2
Proposes a self-iterated FD LE-IC with EP. EXT EXT Par./Par.

When quantifying the achievable rates of FD LE-EXTIC, it is seen that this receiver
achieves the channel SIR for low coding rates, as its FIR counterpart in Section 3.3.3. How-
ever, despite the improvements brought by the turbo-iterations, there is a significant gap
between its achievable rates and the channel SIR, especially in moderately or highly selective
channels, at high spectral efficiency operating points. These observations are illustrated in
Figure 4.1, where the achievable rates for 8-PSK are compared between optimal turbo re-
ceiver (MAP), optimal one-shot detector (MLSE) and turbo and non-turbo FD-LE, for the
Proakis C channel. Note that the gap of the baseline turbo FDE receiver to the SIR is very
significant in this channel, as the spectral efficiency increases. Indeed, for rates lower than
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0.75 bits/s/Hz (which translates into code rates lower than 1④4), conventional FD-LE is very
close to the optimal receiver, however at 2 bits/s/Hz (code rate of 2④3) there is a gap over
7 dB for the turbo FD-LE to SIR, and about 10 dB for the non-iterative FDE to the MLSE
rates.

Consequently, we will discuss below non-linear extensions of the FD LE that have been
explored to improve performance for high-spectral efficiency operating points [Fal+02; BT02;
KSW03; BT05; VBC06; NLF07; GM08; Tao15].

An improvement upon this well-known turbo FDE reference is given in [VBC06], which
uses APP LLRs as feedback from the decoder, instead of EXT LLRs. This is based on
the observed improvement in turbo detection in [Wit+02] by the use of APP feedback, and
this FDE structure is denoted FD LE-APPIC. Nevertheless, APP feedback violates the
independence principle of turbo iterative systems [DJB+95], so theoretical background for
such structures is absent, and its asymptotic performance is non-trivial to predict [BC02].

4.2.2 On Decision Feedback in the Frequency Domain

Independently of the emerging turbo equalization literature, given that TD block DFE
structures outperformed block LE [Kal95], derivation of non-linear FDE was of interest. In
particular, a hybrid implementation of block DFE was carried out in [Fal+02; BT02]. This
structure uses a FD feedforward filter and a TD feedback filterbank, which carries out symbol-
wise, i.e. serial, IC with hard decisions. The use of noise prediction in [KSW03], simplifies
the computation of hybrid DFE, by forcing the feedforward filter to be the same as the FD
LE filter, while the overall structure remained equivalent to block DFE, as briefly mentioned
in Chapter 3.

In [BT05], the frequency domain feedback concept was introduced, and denoted Iterative
Block DFE (IBDFE). This structure uses decision feedback in a blockwise, parallel schedule,
allowing the use of FFTs over feedback symbol block, and significantly reducing complexity.
Despite its name, this structure is a LE-IC, with the decision feedback being used for inter-
ference cancellation, and it is not related to the TD block DFE in [Kal95]. Indeed, the TD
block DFE of [Kal95] uses serial symbol-wise hard decision feedback via a fairly complicated
feedback filterbank, and thus it is unrelated to the linear IC scheme of [BT05]. In [NLF07],
variations of IBDFE were evaluated with hard or soft APP, and TD or FD feedback. It is
noted in [NLF07; BDF+10] that when used with forward error correction in the feedback
loop, this structure is equivalent to FD LE-EXTIC.

In [GM08], PDA is used to derive a non-linear FDE for BPSK, through a self-iterated
MMSE LE-IC using APP feedback from previous detections, before computing extrinsic LLRs
for decoding. This structure, and IBDFE [BT05; NLF07; Che+15] were later extended to
generalized constellations in [Tao15]. In the latter work, non-linear block FDEs were evalu-
ated, using APP decision feedback with serial and parallel schedules. These results are then
used to derive a single-tap FD self-iterated LE-IC with an initial IC carried out with EXT
feedback from the decoder, followed by a second round of IC carried out with APP feedback



166 A Framework for Frequency Domain Receiver Design with EP

from the detector. Here, this structure is denoted as FD SILE-APPIC.

4.2.3 Approximate Inference for Frequency Domain Receivers

Following the development of FD SILE-IC with APP estimates, thanks to PDA in [GM08],
an alternative APP-based iterative FDE were derived through GAMP [Guo+13]. This struc-
ture benefits from the use of an Onsager reaction term (see Section 2.4.1) for compensating
the impact of APP estimates’ correlations, which improves the convergence of the algorithm.

Another category of iterative FD receivers, based on approximate inference techniques, is
given in [Zha+15a] with a hybrid BP-MF framework [Rie+13]. In these receivers MF is used
for handling channel observations, and BP for demapping, in an iterative way, and this yields
an APP-based IC receiver, with similarities to iterative thresholding techniques, with the use
of a matched-filter as the linear component. When it is used in a parallel schedule it is shown
to remain behind the capabilities of the GAMP-based FDE, but with a serial scheduling it
can close the gap or even outperform it if a noise estimation step is included.

Finally, Expectation Propagation (EP) has been used in FD turbo detection in [Zha+16;
WRM+17] mainly for the mitigation of inter-band interference, between multiple users. The
former reference uses it for a generalized frequency division multiplexing receiver, as an iter-
ative block receiver, with cubic complexity in block length. That structure is extended for
SC-FDMA in [WRM+17] under the acronym of joint-EP (J-EP). The latter reference also in-
cludes a single-tap simplification of that receiver, denoted distributed-EP (D-EP), which was
however obtained through a zero-forcing type derivation, which makes it severely vulnerable
to spectral nulls [WRM+17, eq.(48)]. These turbo receivers do not perform multiple inner
iterations for the detection step.

4.3 Scalar EP for Doubly Iterative FD Turbo Equalization

The literature review above shows that although several doubly-iterative turbo FDE at-
tempts have been explored in the literature, it has been only limited to APP feedback related
techniques (PDA, GAMP, BP-MF). These approaches are suboptimal and harder to pre-
dict than techniques based on extrinsic feedback, which makes the exploration of EP-based
approaches an attractive direction for improvement, based on conclusions in Section 2.4.1.
Moreover, in the previous chapter, the derivation of a self-iterated FIR receiver enabled im-
proving the reachable rates of filter-based turbo equalizers with respect to the channel SIR,
with the use of the diagonal EP technique (Section 2.4.2) for FIR, in Section 3.5.

In this section we will discuss the use of scalar EP message passing for deriving a similar
receiver but with a FD single-tap equalization architecture.
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Figure 4.2: Factor graph for the posterior density function in Equation (4.10).

Table 4.2: Posteriors and messages of variables nodes.

Description Notation PDF

Posterior at OBSk qOBSk
♣xkq CN ♣xk; µo

x,k, γo
x,kq

Extrinsic from OBSk mOBSkÑx
k
♣xkq CN ♣xk; xo

k, vo
x,kq

Posterior
at DFTx

qDFTx♣xq CN ♣x; µe
x, γe

xIKq

qDFTx♣xq CN ♣x; µe
x, Γe

xq

Extrinsic
from DFTx

mDFTxÑx♣xq CN ♣x; xe, ve
xIKq

mDFTxÑx♣xq CN ♣x; xe, Ve
xq

Posterior at DEMk qDEMk
♣xkq CN ♣xk; µd

x,k, γd
xq

Extrinsic from DEMk mDEMkÑxk
♣xkq CN ♣xk; xd

k, vd
xq

4.3.1 On Factor and Variable Node Assumptions for Single-Tap FDE

By reconsidering the factor graph of p♣x,d⑤yq, for the generic detection problem in the
Section 2.3.5, the EQU factor node that uses time-domain observations can be replaced by
FD observations following Equation (4.5). Then a new graph is obtained with

p♣x,d⑤yq✾

☎
✝✝✆

K➵
k✏1

p♣y
k
⑤xkq❧♦♦♦♠♦♦♦♥

✏fOBSk
♣xkq

☞
✍✍✌ p♣x⑤xq❧♦♦♠♦♦♥

✏fDFTx♣x,xq

K➵
k✏1

p♣xk⑤dkq❧♦♦♦♠♦♦♦♥
✏fDEMk

♣xk,dkq

Q➵
q✏1

p♣dk,qq❧♦♦♠♦♦♥
✏fDECk,q

♣dk,qq

, (4.10)

where the FD symbols xk are introduced as intermediary unconstrained variables in C, as
illustrated in Figure 4.2. More specifically the EQU factor node considered in the generic
case is split into K symbolwise FD observation factors tOBSk✉K

k✏1, with

fOBSk
♣xkq✾ exp

✁
✁⑤y

k
✁ hkxk⑤2④σ̄2

w

✠
, (4.11)

and a transform factor node DFTx bring hard constraints on data vectors

fDFTx♣x,xq ✏ δ♣x ✁ FKxq ✏ δ♣x ✁ FH
K xq. (4.12)

Diagonal EP is used for handling Frequency Domain (FD) data symbols x, similar to
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the Section 2.4.2, and scalar EP message passing is used for handling TD data symbols x,
to benefit from the low complexity of single-tap FDE structures. To this end, for the pro-
posed framework, our simplifying assumption is that variable nodes x lie in multivariate white
Gaussian distributions. Hence, a message involving these variable nodes is fully characterized
by a vector mean and a scalar variance. Then along with the remainder of the self-iterated
approach in Section 2.4.2, these assumptions yield the distributions in Table 4.2, where covari-
ance matrices Γ☎☎ and V☎

☎ are diagonals with components v☎☎,k which ensures that the covariance
matrices of variables x and x have respectively an unconstrained diagonal structure, and a
matrix proportional to the identity.

Following Expectation Propagation (EP) message-passing procedure in Section 2.4.1, at
the OBSk factor node, the pre-projection posterior on variable xk is given by

q̃OBSk
♣xkq ✏ fOBSk

♣xkqmDFTxkÑxk
♣xkq,

✾ exp

✄
✁⑤yk

✁ hkxk⑤2
σ̄2

w

✁ ⑤xk ✁ xe
k⑤2

ve
x,k

☛
✾ CN ♣xk;µo

x,k, γ
o
x,kq, (4.13)

γo
x,k ✏

✄
⑤hk⑤2
σ̄2

w

� 1
ve

x,k

☛✁1

✏ σ̄2
wv

e
x,k

σ̄2
w � ve

x,k⑤hk⑤2
, (4.14)

µo
x,k ✏

σ̄2
wv

e
x,k

σ̄2
w � ve

x,k⑤hk⑤2
✄
h✝kyk

σ̄2
w

� xe
k

ve
x,k

☛
✏ σ̄2

wx
e
k � ve

x,kh
✝
kyk

σ̄2
w � ve

x,k⑤hk⑤2
. (4.15)

This distribution on x already belongs to the family of Gaussian distributions with diagonal
covariance matrices, hence diagonal EP can be applied with qOBSk

♣xkq ✏ q̃OBSk
♣xkq, and the

extrinsic messages from OBSk are

mOBSkÑxk
♣xkq ✏

qOBSk
♣xkq

mDFTxkÑxk
♣xkq

✾
CN ♣xk;µo

x,k, γ
o
x,kq

CN ♣xk;xe
k, v

e
x,kq

✾ CN ♣xk;xo
k, v

o
x,kq, (4.16)

vo
x,k ✏

σ̄2
w

⑤hk⑤2
, (4.17)

xo
k ✏

h✝kyk

⑤hk⑤2
. (4.18)

At the factor node DFTx, the pre-projection posterior on variable x is given by

q̃DFTx♣xq ✏
➺

x

fDFTx♣x,xq
K➵

k✏1

mDEMkÑxk
♣xkqmOBSkÑxk

♣xkq dx,

✾ CN ♣FH
K x; xd, vd

xIKqCN ♣x; xo,Vo
xq,

✾ CN ♣x; µe
x,Γ

e
xq, (4.19)

Γe
x ✏ vd

xVo
x♣vd

xIK � Vo
xq✁1, (4.20)

µe
x ✏ ♣vd

xIK � Vo
xq✁1

✁
Vo

xxd � vd
xxo

✠
, (4.21)
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where µe
x ✏ rµe

x,1; . . . ;µe
x,Ks and Γe

x ✏ rγe
x,1; . . . ; γe

x,Ks and xd ✜ FKxd. This distribution
readily belongs to the family of Gaussian distributions with diagonal covariance matrices,
hence diagonal EP directly yields the extrinsic messages from DFTx to xk with

mDFTxÑxk
♣xkq✾ CN ♣xk;xe

k, v
e
xq, (4.22)

ve
x,k ✏ vd

x, (4.23)

xe
k ✏ xd

k ✏ ekFKxd. (4.24)

Still considering the same factor node, the pre-projection posterior on variable x is simi-
larly obtained by

q̃DFTx♣xq ✏
➺

x

fDFTx♣x,xq
K➵

k✏1

mDEMkÑxk
♣xkqmOBSkÑxk

♣xkq dx,

✾ CN ♣x; xd, vd
xIKqCN ♣FKx; xo,Vo

xq,
✾ CN ♣x; µe

x,Γ
e
xq, (4.25)

Γe
x ✏ vd

xVo
x♣vd

xIK � Vo
xq✁1, (4.26)

µe
x ✏ FH

K ♣vd
xIK � Vo

xq✁1
✁

Vo
xxd � vd

xxo
✠
, (4.27)

µe
x ✏ rµe

x,1; . . . ;µe
x,Ks and Γe

x ✏ rγe
x,1; . . . ; γe

x,Ks. This distribution readily belongs to the
family of Gaussian distributions with diagonal covariance matrices and it needs to be projected
into the family of Gaussian distributions with diagonal-restricted (“whitened”) covariance
matrices. To this end, it is needed to find γe

x ✏ γe
x,k, for all k ✏ 1, . . . ,K, and an approximate

solutions to this overdetermined system of equations is given by the least-squares solution,
which coincides with sample average

γe
x ✏ 1

K

K➳
k✏1

γe
x,k ✏ 1

K

K➳
k✏1

vd
xv

o
x,k

vo
x,k � vd

x

✏ vd
x♣1 ✁ ξxv

d
xq, (4.28)

where ξx ✜ K✁1
➦K

k✏1♣vo
x,k �vd

xq✁1. Then qDFTx♣xq✾ CN ♣x; µe
x, γ

e
xIKq, and scalar EP is used

to compute the extrinsic messages from DFTx to xk with

mDFTxÑxk
♣xkq✾

CN ♣xk;µe
x,k, γ

e
xq

CN ♣xk;xd
k, v

d
x,kq

✾ CN ♣xk;xe
k, v

e
xq, (4.29)

ve
x ✏ 1④ξx ✁ vd

x, (4.30)

xe
k ✏ ekFH

K

✑
xd � ξ✁1

x ♣Vo
x � vd

xIKq✁1♣xo ✁ xdq
✙
. (4.31)

It can be seen that these expressions have some similarities with a MMSE FDE receiver,
in the next section this will be shown explicitly by defining a message passing schedule for
deriving a receiver with this framework.

Finally, the computation of messages from DEMk to xk is considerably different than the
computations in Section 2.4.2, as the projection of messages has to be made through scalar
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EP. This involves projecting CN ♣x; µd
x,Γ

d
xq, from Equation (2.98), with µd

x ✏ rµd
x,1; . . . ;µd

x,Ks
and Γd

x ✏ Diag♣rγd
x,1; . . . ; γd

x,Ksq, and the resulting distribution is CN ♣x; µd
x, γ

d
xIKq, which is,

similarly to the Equation(4.28), given by

γd
x ✏

1
K

K➳
k✏1

γd
x,k. (4.32)

Then, unlike in the Equation (2.100) for diagonal EP, the “Gaussian division” in scalar EP
for the computation of mean and the variance of extrinsic messages mDEMkÑx♣xkq yields

x✝k ✏
µd

x,kv
e
x ✁ xe

kγ
d
x

ve
x ✁ γd

x

, and, v✝x ✏ ve
xγ

d
x

ve
x ✁ γd

x

, (4.33)

with the heuristic of using APP estimates for negative variance occurrences

♣xd
k, v

d
xq ✏

✧ ♣x✝k, v✝xq if ve
x → γd

x � ε,

♣µd
x,k, γ

d
xq otherwise,

(4.34)

where ε is a small constant, as recommended by [Sen+11].

This extrinsic message is one of the major aspects of our contribution; as the estimation
variance is assumed to be static over a data block, these estimates are computationally less
intensive. Moreover, due to the averaged variance, the occurrences of ve

x ↕ γd
x is less likely than

the occurrences of ve
x,k ↕ γd

x,k (from diagonal EP), which improves the detector robustness to
erroneous feedback, and there are improvements in decoding performance due to the reduced
sensitivity to decoder error propagation (especially for weak codes).

4.3.2 FD Self-Iterated LE-IC based on EP (FD SILE-EPIC)

As the considered factor graph has cycles, and it is a finite graph, the scheduling matters,
the convergence speed of the iterative algorithm and the possible error floors will depend
on the schedule which coordinates the update of variable and factor nodes. To keep the
equalization complexity reasonable, a parallel scheduling across variables nodes xk and xk is
considered, in line with conventional FD LE or block LE receivers. Note that the use of a
serial schedule would yield a DFE-like structure as in Section 3.4.4.
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The parallel schedule across variables xk and xk enable us to simplify messages by com-
bining the updates of DFTx node and tOBSk✉K

k✏1 nodes1. In the remainder of this section,
for the sake of simplifying the readability of our proposal, we redefine xe

k as the kth subcarrier
of corresponding to the frequency domain response of the variable node xe

k, whereas it has
been used as a separate variable node above, hence xe

k ✜ eH
k FKxe. Indeed when inserting

Equations (4.17)-(4.18) into Equations (4.30)-(4.31), we get a LE-IC structure given by

xe
k ✏ xd

k � f ep
k
✝♣y

k
✁ hkx

d
kq, (4.35)

ve
x ✏ 1

ξ
ep
x

✁ vd
x, (4.36)

where the FD filter and normalization parameters are given by

f ep
k

✏ 1
ξ

ep
x

hk

σ̄2
w � vd

x⑤hk⑤2
, (4.37)

ξep
x ✏ 1

K

K➳
k✏1

⑤hk⑤2
σ̄2

w � vd
x⑤hk⑤2

. (4.38)

These equations bear great similarity to the conventional MMSE FD LE-IC structure, with
interference cancellation being carried out using extrinsic EP feedback xd

k.

To fully exploit the benefits of the feedback computed by the demapper, as for the self-
iterated DFE in Section 3.5, a flexible double-loop FDE structure is proposed. The first
loop refers to the exchange of extrinsic information between the decoder and the demapper
in a turbo-iteration, while the second loop refers to the message exchange in a self-iteration
between the demapper and the equalizer.

As for FIR DFE with SIs in Section 3.5, damped message passing recommendations from
the Section 2.4.1 are used. In this case, along with the feature-based damping in [Min+05;
C+́14], the EP-based feedback in Equation (3.62) is replaced with

vd♣nextq
x ✏

✒
♣1 ✁ βq 1

vcurr
x

� β
1

v
d♣prevq
x

✚✁1

,

x
d♣nextq
k ✏ vd♣nextq

x

✓
♣1 ✁ βqx

d♣currq
x

vd♣currq
� β

x
d♣prevq
k

vd♣prevq

✛
,

(4.39)

where 0 ↕ β ↕ 1 configures the damping and x
d♣currq
x,k and v

d♣currq
x are given by Equation (4.33).

Alternatively, as evoked in Section 2.4.1, exponential smoothing of message parameters (linear

1In this previously published journal and conference article versions of this contribution [Şa+18a; Şa+18b;
Şa+18e], this receiver is exposed more succinctly, due to lack of space, by having a EQU factor node between
FD observations and TD symbols. The interest in having tOBSk✉

K
k✏1 and DFTx nodes separate is to enable

an easier and clearer generalization of this framework to more complex systems.
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Algorithm 13 Proposed Self-Iterated FD LE-EPIC receiver.

Input y, H
Output b̂

1: L
♣0q
a ♣dq ✏ 0Kc

2: for τ ✏ 0 . . . T do
3: Compute prior PMFs P

♣τq
k ♣αq with Eq. (2.39) and L

♣τq
a ♣dq, for α P X , k ✏ 1, . . . ,K.

4: Compute xp♣τq and vp♣τq
x with Eq. (2.40), and set ♣xd♣τ,0q, vd

x
♣τ,0qq Ð ♣xp♣τq, vp

x
♣τqq.

5: for s ✏ 0 to Sτ do
6: Apply FFT on xd♣τ,sq to get xd♣τ,sq.
7: ξ

ep♣τ,sq
x Ð K✁1

➦K
k✏1 ⑤hk⑤2④♣σ̄2

w � vd
x
♣τ,sq⑤hk⑤2q

8: ve
x
♣τ,sq Ð ξ

ep♣τ,sq
x

✁1 ✁ vd
x
♣τ,sq

9: for k ✏ 1 . . .K do
10: f

ep♣τ,sq
k Ð ξep

x ♣τ, sq✁1hk④♣σ̄2
w � vd

x
♣τ,sq⑤hk⑤2q

11: x
e♣τ,sq
k Ð xd

k
♣τ,sq � f

ep♣τ,sq
k

✝♣y
k
✁ hkx

d
k
♣τ,sqq

12: end for
13: Apply IFFT on xe♣τ,sq to get xe♣τ,sq.
14: for k ✏ 1 . . .K do
15: Compute the posterior PMF D

♣τq
k ♣αq with Eq. (2.53), for α P X , and APP esti-

mates ♣µd♣τ,s�1q
x,k , γ

d♣τ,s�1q
x,k q with Eq. (2.98).

16: end for
17: Generate EP feedback ♣xd♣τ,s�1q, v

d♣τ,s�1q
x q with Eqs. (4.32)-(4.34).

18: Apply damping with either Eq. (4.39) or (4.40), for s → 0.
19: end for
20: Compute extrinsic LLRs L♣τqe ♣dq with Eq. (2.54)
21: Execute de-interleaving, SISO decoding and interleaving to get L♣τ�1q

a ♣dq
22: end for

combination with memory) is considered with

vd♣nextq
x ✏ ♣1✁ βqvcurr

x � βvd♣prevq
x ,

x
d♣nextq
k ✏ ♣1✁ βqxd♣currq

x � βx
d♣prevq
k .

(4.40)

Similarly to the Section 3.5, each turbo-iteration τ ✏ 0, . . . , T consists of Sτ self-iterations
(may depend on τ), where DFTx and DEM factor nodes are updated in parallel schedule, for
s ✏ 0, . . . ,Sτ , and then the DEC factor nodes are updated with a selected SISO decoder. To
clarify this, Algorithm 13 above explicitly describes the proposed scheduling, where involved
quantities are indexed by ♣τ, sq in the superscript.

The iterative FDE derived in this section, by applying the EP framework in the FD, with
the family of white Gaussian distributions, yields the low-complexity single-tap receiver struc-
ture shown in Figure 4.3. In the next section, the behaviour of this receiver will be assessed
with achievable rate analysis and comparisons with structures from the prior work. A the
scalar EP modelling of extrinsic messages over data symbols, and the considered double loop
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Figure 4.4: EXIT curves and finite-length average MI trajectories of the proposed equalizer
with 8-PSK in Proakis C channel at Eb④N0 ✏ 15dB.

schedule are at the core of this FD SILE-EPIC detector, and its extensions, this framework
is also denoted as Double Loop - Scalar EP (DL-SEP).

4.3.3 Asymptotic and Finite-Length Analysis

Here, the receiver derived in the previous section is used with a fixed number of SIs Sτ ✏ S

per turbo-iteration, and this structure is referred as the S-self-iterated FD LE-IC with EP
(FD S-SILE-EPIC).

Asymptotic Analysis In order to evaluate asymptotic behaviour (τ Ñ✽) of the proposed
receiver, Extrinsic Information Transfer (EXIT) analysis [TB00], summarized in Section 2.3.6,
is used to characterize the asymptotic limits of this receiver.

In Figure 4.4, EXIT charts of the proposed receiver, for S ✏ 0, 1, 3, 5, 10, using a fixed
damping with exponential smoothing (see eq. (4.40)), with β ✏ 0.75, is provided in solid
curves, within the highly selective Proakis C channel, h ✏ r1, 2, 3, 2, 1s④❄19, using the Gray-
mapped 8-PSK constellation. Self-iterations are seen to significantly improve the extrinsic
mutual information for high IA, which indicates a boosted convergence speed and an improved
achievable rate. However, improvements for IA ✏ 0 is relatively small, thus, the finite-length
performance improvement will strongly depend on the EXIT chart of the decoder.

This figure also shows the reverse transfer curve of the RSC code r1, 5④7s8. Moreover,
in dashed curves, the finite-length MI trajectories of this receiver with data blocks of length
Kb ✏ 768 bits, using this channel decoder is plotted. The trajectories of the proposed EP-
based receiver appears to follow the predicted transfer function fairly well, despite the short
packet length, unlike the APP-based receivers as observed in Section 3.4. This suggests that
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(b) Non-turbo iterative achievable rates (T ✏ 0).

Figure 4.5: Achievable rates of the proposed receiver in Proakis C with 8-PSK and 64-QAM.

this receiver’s EXIT analysis reflects its practical behaviour.

Achievable rates of the FD LE-EXTIC and the proposed receiver are given in Figure 4.5,
for the Proakis C channel with 8-PSK and 64-QAM constellations. The Gaussian capacity
of this channel, without transmit power optimization, is also plotted in dashed lines, it is
computed using Equation (1.36) with the vector-input AWGN channel capacity. Channel
SIR with 8-PSK is given by the MAP detector curve in 8-PSK, but it is not plotted with
64-QAM due to the excessive computational resources it requires [ALV+06]. A feature-based
damping (see eq. (4.39)) with β ✏ 0.7 ✂ 0.9s is used for 8-PSK, whereas a linear damping
(see eq. (4.39)) with β ✏ 0.8 is used for 64-QAM.

For 8-PSK, while the conventional FD LE-EXTIC [TH01] follows the SIR limit within
0.5 dB up to 0.75 bits/s/Hz, proposed EP-based self-iterations increase this range up to
2 bits/s/Hz. In the 64-QAM case, FD LE-EXTIC follows the channel capacity within 1 dB
up to 1 bit/s/Hz and 3.33 bits/s/Hz becomes achievable with 20 self-iterations. For a rate-1④2
coded usage, the proposed receiver with sÑ �✽ brings over 3.9 dB and 10.7 dB improvement,
over the conventional turbo FD LE in this channel, for respectively 8-PSK and 64-QAM
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Figure 4.6: PER comparison of single-tap FD equalizers in Proakis C channel, with K ✏ 256
coded with rate-1/2 RSC r1, 5④7s8.

constellations. In the non-turbo iterative case, the proposed receiver does not reach the MLSE
performance, but there are still non-negligible performance improvements. These rates are
achievable with properly designed coding schemes.

Comparison with Single Tap FDE in Prior Work In this paragraph, observations in
the previous section are completed with finite-length results within the same channel with
a RSC code with soft MAP decoder. In particular, as APP feedback based receiver can-
not be reliably analysed with EXIT analysis, this is the main approach for assessing their
performance.

PER is obtained by Monte-Carlo simulations, with 30000 sent packets per point. Unlike
in asymptotic analysis, here we use dynamic damping that also depends on turbo-iterations,
τ , and accelerates convergence. A feature-based damping with βτ,s ✏ 0.7✂ 0.9s�τ is used for
8-PSK, and a hybrid damping, consisting of a linear smoothing in the first turbo-iteration,
and feature-based damping afterwards, is applied with βτ,s ✏ 0.851�s�τ , for 64-QAM. Sev-
eral single-tap FD equalizers are compared to our proposal in Figure 4.6: the conventional
linear equalizer [TH01] (LE-EXTIC), the LE-IC with APP feedback [VBC06; Wit+02] (LE-

APPIC), and the self-iterated LE-IC of [GM08; Tao15] (SILE-APPIC), based on PDA. The
equalization complexity of these receivers has the same order of computational complexity
scaling of K log2K, at a given SI and turbo-iteration, with slight differences underlying in
the feedback computation.
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Results in Figure 4.6 show that our proposal brings significant improvement on the de-
coding threshold, that grows with the number of SIs, at all turbo-iterations. On the contrary,
multiple SIs with APP feedback degrades this threshold (not shown here due to lack of space).
Without turbo-iterations, 3 SIs bring respectively 9 dB and 6 dB gains for 8-PSK and 64-
QAM, compared to LE-EXTIC, at PER ✏ 10✁1. Performance in 64-QAM is limited at
low PER without turbo-iterations, but our proposal with a single turbo-iteration and 3 SIs
reaches PER the prior work reach with 6 turbo-iterations, e.g. with six times lower decod-
ing complexity. Besides, “asymptotically” (6 turbo-iterations), SIs with EP bring over 8 dB
gain with respect to SILE-APPIC, and about 5 dB gain over LE-APPIC, for 64-QAM, at
BLER ✏ 10✁2. Compared to FD LE-EXTIC, 3 self-iterations bring around 4 dB and 11.5 dB
gain, respectively for 8-PSK and 64-QAM, which are close to the 1/2-rate gains observed in
the asymptotic analysis above.

These results encourage replacing turbo-iterations with self-iterations as demapping com-
plexity is often insignificant relative to decoding.

Comparison with EP-based Receivers in Prior Work There are numerous emerg-
ing EP-based receivers in the literature, as stressed in the Chapter 2, and in previous sec-
tions. In this paragraph the proposed FDE is compared with self-iterated time-domain linear
block (SIBLE-EPIC, denoted nuBEP in [SMF+18]) and filter (SIFLE-EPIC, denoted EP-F
in [SMF+18]) receivers and to the single-tap FD receiver D-EP in [WRM+17]. The proposed
receiver is not compared to the exact FD receiver, J-EP in [WRM+17; Zha+16], as that
receiver is equivalent to the SIBLE-EPIC with a single SI, without damping, making it sub-
optimal compared to the SIBLE-EPIC. The block receiver in [SMF+17a], denoted BEP, is a
sub-optimal receiver, where the demapper ignores prior information from the decoder, when
computing EP-based feedback at each SI.

In Figure 4.7, the BER of the proposed receiver is compared with alternatives listed above.
We consider 8-PSK constellation, and the LDPC coded Proakis C scenario from [SMF+18].
The regular ♣3, 6q LDPC code is obtained by Progressive-Edge Growth (PEG) algorithm, and
the decoder uses BP algorithm up to 100 iterations. The FD receiver, D-EP, cannot decode in
Proakis-C channel, up to very high signal to noise ratios due to its sensitivity to channel nulls
[WRM+17, eq. (48)]. Our FD proposal performs nearly as good as the TD EP-based block
filterbank receivers, with an order of computational complexity of ♣S � 1qK log2K instead
of 3LK2 (SIBLE-EPIC, 2 SIs) and or 27KL2 (SIFLE-EPIC, 2 SIs). For τ ✏ 5, block and
filter TD receivers have around 0.2 dB gain over FD 3-SILE EPIC, but they are respectively
around 500 and 16 times more complex.

Another LDPC-coded scenario in the Proakis C, with 16-QAM and with rate 1/2 and
3/4 encoding over Kb ✏ 2048 bits is reported in Figure 4.8. All receivers use feature-based
damping with the optimized parameters in [SMF+18], i.e. β ✏ min♣0.3, 1 ✁ eτ④1.5④10q.
The regular ♣3, 12q LDPC code is also obtained by the PEG algorithm. In the rate-1/2 case,
the proposed FDE is lower-bounded in BER by the block receiver, and following one SI, the
difference between FD SILE-EPIC and SIFLE-EPIC is negligible. For the high rate case, at
the right side of the figure, filter receiver’s performance is over 1 dB worse for BER ➔ 10✁3,
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Figure 4.7: BER comparison in Proakis C with 8-PSK, Kd ✏ 4096 and ♣3, 6q LDPC code.
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and although SIBLE-EPIC still has a better decoding threshold, it recovers less diversity than
the proposed FD SILE-EPIC. This phenomenon should not be surprising, as exact receivers
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can be more prone to error propagation when decoder provides erroneous feedback, as also
observed in filter receivers [JM13].

These error rate results are completed with detailed computational complexity estimations
in Figure 4.9. This is evaluated with the number of multiply and accumulate units required
to implement the receiver, estimated by the number of real additions and multiplications,
amounting to half a floating point operation (0.5 FLOPs) each. Complexity is plotted versus
the required Eb④N0 to decode transmitted packets with PER ✏ 10✁2, for τ ✏ 0, . . . , 5. These
FLOP-counts also include the decoder complexity, which is considerably higher than equalizer
complexity. The proposed receiver performs overall efficiently, both complexity and energy-
wise, compared to the SIBLE-EPIC, with respectively 2.5, 4 and 5.4 times lower complexity
for S ✏ 0, 1 and 2 in the rate 3/4 case, and with respectively 2, 3.1 and 4.1 times lower
complexity for the rate 1/2 case. This ratio is around ten times bigger, if the decoding
complexity is not accounted for.

4.3.4 Comparison with work on Approximate Message Passing

There is a great number of contributions on iterative message-passing algorithms for low
complexity parsimonious detection. In this section the extension of these algorithms for
SC-FDE BICM detection is discussed, in order to establish their theoretical links to the
proposed EP-based self-iterated inference methods. These algorithms have all roughly the
same computational cost order of O♣SK log2Kq.

AMP based algorithms originally do not address (de)mapping aspects of turbo detection,
and they output APP symbol estimates, as they are intended for providing estimates for other
signal processing fields such as compressed sensing or data classification. These estimates can
be directly fed to a soft-demapper, but the decoding performance is significantly degraded
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Algorithm 14 Turbo FDE with Iterative Thresholding.

Input y, H
Output b̂

1: L
♣0q
a ♣dq ✏ 0Kc .

2: for τ ✏ 0 . . . T do
3: Compute prior PMFs P

♣τq
k ♣αq with Eq. (2.39) and L

♣τq
a ♣dq, for α P X , k ✏ 1, . . . ,K.

4: Compute xp♣τq and vp♣τq
x with Eq. (2.40), and set µd

x
♣τ,0q Ð xp♣τq.

5: for s ✏ 0 to Sτ do
6: Apply FFT on µ

d♣τ,sq
x to get µd♣τ,sq

x
.

7: for k ✏ 1 . . .K do
8: f

it♣τ,sq
k Ð

✁➦K
k✏1 ⑤hk⑤2

✠✁1
hk

9: x
e♣τ,sq
k Ð µ

d♣τ,sq
x,k � f

it♣τ,sq
k

✝♣y
k
✁ hkµ

d♣τ,sq
x,k q

10: end for
11: Apply IFFT on xe♣τ,sq to get xe♣τ,sq.
12: ve

x
♣τ,sq Ð max

✁
r➦k ⑤yk

✁ hkx
e♣τ,sq
k ⑤2 ✁Kσ̄2

ws④
➦

k ⑤hk⑤2,Kσ̄2
w④
➦

k ⑤hk⑤2
✠

.
13: for k ✏ 1 . . .K do
14: Compute the posterior PMF D

♣τq
k ♣αq with Eq. (2.53), for α P X , and APP esti-

mates µd♣τ,s�1q
x,k with Eq. (2.98).

15: end for
16: end for
17: Compute extrinsic LLRs L♣τqe ♣dq with Eq. (2.54).
18: Execute de-interleaving, SISO decoding and interleaving to get L♣τ�1q

a ♣dq.
19: end for

due to the processing of biased APP estimates2. As an alternative to the direct application
of AMP algorithms for turbo FDE, a better thought approach is to replace the final APP
estimation step with extrinsic bit LLR demapping as done in [Guo+13] for GAMP. Here we
discuss the application of the same method to iterative thresholding, AMP, and the recently
proposed EP-based VAMP and OAMP algorithms.

Iterative Soft Thresholding (IST) When IST is applied to turbo FDE, with single-tap,
normalized matched-filtering and it generates APP-based feedback for IC. As mentioned in
Section 2.4.1 and in [DHD12], instead of following this algorithm’s original unknown noise
variance assumption, for fair comparison with other FDE, a maximum-likelihood sample
variance estimator is used for improving the convergence

However, as previously mentioned, this technique is a suboptimal, but low-complexity vari-
ant of PDA, hence FDE based on iterative thresholding should not be expected to outperform
FD SILE-APPIC [GM08; Tao15], and for the FD implementation, the gain in computational
complexity is small. As shown in Algorithm 14, there is no need to compute the covariance
associated to the soft feedback for this receiver, and lines corresponding to the adaptation of
AMP algorithms to a BICM system are faded out with a gray color.

2This fact illustrated below in Figure 4.10.
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Algorithm 15 Turbo FDE with Approximate Message Passing (AMP)

Input y, H
Output b̂

1: L
♣0q
a ♣dq ✏ 0Kc , ǫ

d♣τ,0q ✏ 0K ,❅τ.
2: for τ ✏ 0 . . . T do
3: Compute prior PMFs P

♣τq
k ♣αq with Eq. (2.39) and L

♣τq
a ♣dq, for α P X , k ✏ 1, . . . ,K.

4: Compute xp♣τq and vp♣τq
x with Eq. (2.40), and set ♣µd

x
♣τ,0q, γd

x
♣τ,0qq Ð ♣xp♣τq, vp

x
♣τqq.

5: for s ✏ 0 to Sτ do
6: Apply FFT on µ

d♣τ,sq
x to get µd♣τ,sq

x
.

7: for k ✏ 1 . . .K do
8: f

amp♣τ,sq
k Ð

✁➦K
k✏1 ⑤hk⑤2

✠✁1
hk

9: x
e♣τ,sq
k Ð µ

d♣τ,sq
x,k � f

amp♣τ,sq
k

✝♣y
k
✁ hkµ

d♣τ,sq
x,k q � ǫ

d♣τ,sq
k

10: end for
11: Apply IFFT on xe♣τ,sq to get xe♣τ,sq.
12: ve

x
♣τ,sq Ð max

✁
r➦k ⑤yk

✁ hkx
e♣τ,sq
k ⑤2 ✁Kσ̄2

ws④
➦

k ⑤hk⑤2,Kσ̄2
w④
➦

k ⑤hk⑤2
✠

.
13: for k ✏ 1 . . .K do
14: Compute the posterior PMF D

♣τq
k ♣αq with Eq. (2.53), for α P X , and APP esti-

mates ♣µd♣τ,s�1q
x,k , γ

d♣τ,s�1q
x,k q with Eq. (2.98).

15: ǫ
d♣τ,s�1q
k Ð rγd♣τ,s�1q④ve♣τ,sqs

✁
x

e♣τ,sq
k ✁ µ

d♣τ,s�1q
x,k

✠
.

16: end for
17: end for
18: Compute extrinsic LLRs L♣τqe ♣dq with Eq. (2.54).
19: Execute de-interleaving, SISO decoding and interleaving to get L♣τ�1q

a ♣dq.
20: end for

Approximate Message Passing (AMP) AMP improves iterative thresholding by com-
pensating the impact of neglected correlations through the use of an Onsager reaction term
(see Section 2.4.1). When applied in the context of a turbo FDE, this results in the computa-
tion of the estimation error between the equalizer’s output and the demodulator’s soft APP
estimate, which is scaled by the ratio of associated estimates’ variances.

Algorithm 15 gives the details of this technique for turbo FDE, and as the computation of
the Onsager term involves the use of the covariance of soft APP estimates, the computational
complexity of this receiver is higher than iterative thresholding, and it is close to that of FD
SILE-APPIC or FD SILE-EPIC.

The major drawbacks of this technique lie in the use of a sub-optimal matched-filter as
an equalizer, and the use of a heuristic estimator for computing the covariance of equalized
estimates ve

x. Although among APP-based receivers, FD SILE-APPIC, based on PDA, seems
to be a more robust solution, with filters designed with MMSE criterion, the decorrelated
iterations of AMP could improve the performance of self-iterations.
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Algorithm 16 Turbo FDE with Generalized Approximate Message Passing (GAMP)

Input y, H
Output b̂

1: L
♣0q
a ♣dq ✏ 0Kc , ǫ

d♣τ,0q ✏ 0K ,❅τ.
2: for τ ✏ 0 . . . T do
3: Compute prior PMFs P

♣τq
k ♣αq with Eq. (2.39) and L

♣τq
a ♣dq, for α P X , k ✏ 1, . . . ,K.

4: Compute xp♣τq and vp♣τq
x with Eq. (2.40), and set ♣µd

x
♣τ,0q, γd

x
♣τ,0qq Ð ♣xp♣τq, vp

x
♣τqq.

5: for s ✏ 0 to Sτ do
6: Apply FFT on µ

d♣τ,sq
x to get µd♣τ,sq

x
.

7: ξ
gamp♣τ,sq
x Ð K✁1

➦K
k✏1 ⑤hk⑤2④♣σ̄2

w � γ
d♣τ,sq
x,k ⑤hk⑤2q

8: ve♣τ,sq Ð ξ
gamp♣τ,sq
x

✁1

9: for k ✏ 1 . . .K do
10: f

gamp♣τ,sq
k Ð ξ

gamp♣τ,sq
x

✁1hk④♣σ̄2
w � γ

d♣τ,sq
x,k ⑤hk⑤2q

11: x
e♣τ,sq
k Ð µ

d♣τ,sq
x,k � f

gamp♣τ,sq
k

✝♣y
k
✁ hk♣µd♣τ,sq

x,k ✁ ǫ
d♣τ,sq
k qq

12: end for
13: Apply IFFT on xe to get xe.
14: for k ✏ 1 . . .K do
15: Compute the posterior PMF D

♣τq
k ♣αq with Eq. (2.53), for α P X , and APP esti-

mates ♣µd♣τ,s�1q
x,k , γ

d♣τ,s�1q
x,k q with Eq. (2.98).

16: ǫ
d♣τ,s�1q
k Ð rγd♣τ,s�1q④ve♣τ,sqs

✁
x

e♣τ,sq
k ✁ µ

d♣τ,s�1q
x,k

✠
17: end for
18: end for
19: Compute extrinsic LLRs L♣τqe ♣dq with Eq. (2.54).
20: Execute de-interleaving, SISO decoding and interleaving to get L♣τ�1q

a ♣dq.
21: end for

Generalized Approximate Message Passing (GAMP) A GAMP based turbo FDE
has been formulated in [Guo+13], which combines the advantages of AMP and PDA, by
yielding a structure with both MMSE filters and decorrelating Onsager reaction term. The
details of this technique is provided in Algorithm 16, and it will be shown to yield the most
robust equalization performance among any receivers that use APP-based estimates.

Orthogonal Approximate Message Passing (OAMP) MMSE-optimal solution of OAMP
yields an iterative algorithm that uses EP-like soft feedback for Interference Cancellation (IC).
Indeed such a feedback is found to be divergence-free [MP17] and by coupling it with a heuris-
tic for covariance estimation, an alternative self-iterated algorithm is obtained.

Algorithm 17 shows this technique’s instantiation for turbo FDE has multiple similarities
to the proposed FD SILE-EPIC, and the main differences are the use of an exact computation
of covariance and damping in our method. Lack of a damping parameter can be seen as a
simplifying advantage, and the heuristic ML estimation of the covariance is more robust, after
a certain number of iterations, to poor noise realizations on short or medium length packets.
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Algorithm 17 Turbo FDE with Orthogonal Approximate Message Passing (OAMP)

Input y, H
Output b̂

1: L
♣0q
a ♣dq ✏ 0Kc .

2: for τ ✏ 0 . . . T do
3: Compute prior PMFs P

♣τq
k ♣αq with Eq. (2.39) and L

♣τq
a ♣dq, for α P X , k ✏ 1, . . . ,K.

4: Compute xp♣τq and vp♣τq
x with Eq. (2.40), and set ♣x✝♣τ,0q, v✝x

♣τ,0qq Ð ♣xp♣τq, vp
x
♣τqq.

5: for s ✏ 0 to Sτ do
6: Apply FFT on x✝♣τ,sq to get x✝♣τ,sq.
7: ξ

oamp♣τ,sq
x Ð K✁1

➦K
k✏1 ⑤hk⑤2④♣σ̄2

w � v✝x
♣τ,sq⑤hk⑤2q

8: ve
x
♣τ,sq Ð ξ

oamp♣τ,sq
x

✁1 ✁ v✝x
♣τ,sq

9: for k ✏ 1 . . .K do
10: f

oamp♣τ,sq
k Ð ξ

oamp♣τ,sq
x

✁1hk④♣σ̄2
w � v✝x

♣τ,sq⑤hk⑤2q
11: x

e♣τ,sq
k Ð x✝k

♣τ,sq � f
oamp♣τ,sq
k

✝♣y
k
✁ hkx

✝
k
♣τ,sqq

12: end for
13: Apply IFFT on xe♣τ,sq to get xe♣τ,sq.
14: for k ✏ 1 . . .K do
15: Compute the posterior PMF D

♣τq
k ♣αq with Eq. (2.53), for α P X , and APP esti-

mates ♣µd♣τ,s�1q
x,k , γ

d♣τ,s�1q
x,k q with Eq. (2.98).

16: end for
17: Generate the raw EP feedback x✝♣τ,s�1q with Eqs. (4.32)-(4.33), and estimate its

reliability with v̂✝♣τ,sq Ð r➦k ⑤yk
✁ hkx

✝♣τ,sq
k ⑤2 ✁Kσ2

ws④
➦

k ⑤hk⑤2.
18: end for
19: Compute extrinsic LLRs L♣τqe ♣dq with Eq. (2.54).
20: Execute de-interleaving, SISO decoding and interleaving to get L♣τ�1q

a ♣dq.
21: end for

Vector Approximate Message Passing (VAMP) Another EP-related AMP technique
is VAMP [RSF17], whose main distinguishing aspect is its SVD-based implementation and
its damping heuristics [RSF17].

When VAMP is cast into the turbo FDE problem, the compact SVD decomposition in
Algorithm 18 is roughly equivalent to DFT, with the singular values tsr✉R

r✏1 corresponding
to non-zero absolute values of the channel frequency response t⑤hk⑤✉K

k✏1, ordered with a de-
creasing norm. Hence the main difference with the proposed double-loop EP based technique
is the damping. VAMP damping procedure (eqs. (26)-(27) in [RSF17]) applies exponential
smoothing on the non-linear APP estimate µd

k, and on the linear estimator’s precision 1④ve

(lines 11 and 20 of Algorithm 18), unlike our proposed approach which smooths the extrinsic
non-linear estimator’s mean and variance (line 18 of Algorithm 13).

While, in a sense, VAMP generalizes the proposed framework of using scalar EP for TD
variables and diagonal for FD variables to a general transform domain, its scope is limited to
the generalized linear model, while EP message passing is applicable to more complex graph-
ical models. In [Li+19], the proposed FD SILE-EPIC receiver is studied with the damping
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Algorithm 18 Turbo FDE with Vector Approximate Message Passing (VAMP)

Input y, H
Output b̂

1: L
♣0q
a ♣dq ✏ 0Kc .

2: Perform the compact SVD rU,V, ss Ð H, such that H ✏ UDiag♣sqVH is of rank R.
3: Compute the transform of observations ỹ ✏ UHy.
4: for τ ✏ 0 . . . T do
5: Compute prior PMFs P

♣τq
k ♣αq with Eq. (2.39) and L

♣τq
a ♣dq, for α P X , k ✏ 1, . . . ,K.

6: Compute xp♣τq and vp♣τq
x with Eq. (2.40), and set ♣xd♣τ,0q, vd

x
♣τ,0qq Ð ♣xp♣τq, vp

x
♣τqq.

7: for s ✏ 0 to Sτ do
8: Apply the transform on data estimates with x̃d ✏ VHxd.
9: ξ

vamp♣τ,sq
x Ð K✁1

➦R
r✏1 s

2
r④♣σ̄2

w � v✝x
♣τ,sqs2

rq
10: ve

x
♣τ,sq Ð ξ

vamp♣τ,sq
x

✁1 ✁ vd
x
♣τ,sq

11: Apply damping with ve
x
♣τ,sq Ð ♣β④ve

x
♣τ,s✁1q � ♣1 ✁ βq④ve

x
♣τ,sqq✁1, for s → 0.

12: for r ✏ 1 . . . R do
13: fvamp♣τ,sq

r
Ð ξ

vamp♣τ,sq
x

✁1sr④♣σ̄2
w � vd

x
♣τ,sqs2

rq
14: x̃

e♣τ,sq
r Ð x̃d

r
♣τ,sq � fvamp♣τ,sq

r
✝♣ỹr ✁ srx̃

d
r
♣τ,sqq

15: end for
16: Apply the inverse transfrom on data with xe ✏ Vx̃e.
17: for k ✏ 1 . . .K do
18: Compute the posterior PMF D

♣τq
k ♣αq with Eq. (2.53), for α P X , and APP esti-

mates ♣µd♣τ,s�1q
x,k , γ

d♣τ,s�1q
x,k q with Eq. (2.98).

19: end for
20: Apply exp. smoothing on µ

d♣τ,s�1q
x,k Ð βµ

d♣τ,sq
x,k � ♣1 ✁ βqµd♣τ,s�1q

x,k .

21: Set ♣xd♣τ,s�1q, vd
x
♣τ,s�1qq Ð ♣x✝♣τ,s�1q, v✝x

♣τ,s�1qq with the raw EP feedback computed
with Eqs. (4.32)-(4.33).

22: end for
23: Compute extrinsic LLRs L♣τqe ♣dq with Eq. (2.54).
24: Execute de-interleaving, SISO decoding and interleaving to get L♣τ�1q

a ♣dq.
25: end for

heuristics of VAMP, with a focus on proposing an adaptive damping strategy. However in the
following it is shown that the considered damping schemes enable reaching lower error rates
than VAMP, for which a learning-based optimization method is given in the next section.

Conclusions on AMP-like algorithms AMP-like methods have been derived to reduce
the complexity of original inference algorithms, but for the considered communications prob-
lem, inference methods have similar complexity. BER performance of turbo receivers based
on AMP-like algorithms, PDA, and those derived with approximate inference methods such
as GaBP and EP are provided in Figures 4.10 and 4.11, with a block length K ✏ 256 and
RSC channel code r1, 5④7s8, in the Proakis C channel.

In Figure 4.10, FDEs based on AMP methods are compared with the proposed FD SILE-



184 A Framework for Frequency Domain Receiver Design with EP

 1  2  3  4  1  2  3  4  1  2  3  4  1  2  3  4  1  2  3  4

10
-5

10
-4

10
-3

10
-2

10
-1

Figure 4.10: BER for coded 8-PSK, with static BER-optimized damping over iterations.
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Figure 4.11: Coded 8-PSK optimized BER (at left) and damping sensitivity (at right).

EPIC, obtained with DL-SEP, with both exponential smoothing (linear combination, denoted
“lin”) damping from Equation (4.40) and feature-based (geometric combination, denoted
“feat”) damping from Equation (4.39). Receivers that involve damping parameters are opti-
mized, by brute-force search, for each value of SNR, S and T . Numerical results show that
our original proposal FD SILE-EPIC converges to further lower error rates than AMP-based
alternatives, and the decrease is BER is faster. It is seen that the exponential smoothing-
based damping achieves lower error rates, but feature-based damping still remains attractive
for a few turbo iterations. Moreover, the original formulations of GAMP and VAMP with
the APP outputs are compared (denoted with “-APP”) and numerical results indicate that
they are not the best suited for turbo-detection use-case originally (but rather minimizing
the MSE of estimates).

In Figure 4.10, at left, the same situation is evaluated for varying SNR, and GaBP (i.e.
FD LE-EXTIC) and BCJR algorithms respectively provide an upper and a lower bound on
achievable BER performance as conventional methods, and AMP methods and DL-SEP (with
exponential smoothing) are compared. While GAMP, OAMP and VAMP approach DL-SEP
performance as self-iterations increase, GAMP has a slower convergence speed, and OAMP
has a diversity loss at high SNR, due to the sub-optimal feedback variance estimation. The
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right side of Figure 4.11 shows the sensitivity of BER to the changes in a static damping
parameter β, showing that there are locally robust optimum damping values.

4.3.5 Discussion

Finite-length error rate performance and the asymptotic analysis show that the proposed
SC-FDE receiver, obtained by the considered EP-based message passing framework, DL-SEP,
is able to bring significant performance improvements for the mitigation of ISI for circular
single carrier transmissions. This receiver outperforms similar alternative receivers (single-
tap FDE), and performs almost identically to the exact TD block receivers while having a
significantly lower computational complexity. Similarities between EP-based approximate-
inference and AMP-like algorithms are laid out, and for the considered FDE problem, EP-
based inference is shown to reach lower error rates among other self-iterated turbo-receivers.

DL-SEP framework, which instantiates EP with multivariate white Gaussian distributions
for TD variables, has been exposed in this elementary SC-FDE system to improve readability
and to simplify the analysis. In the following sections, the extensions and applications of this
framework to more complex communication systems is discussed.

4.4 Optimizing FD SILE-EPIC with Deep Unfolding

4.4.1 Optimality of EP-based Detectors for Deep Networks

In Section 2.5.3, the concept of deep unfolding and the improvements it had brought
upon iterative thresholding and AMP algorithms was briefly discussed. Indeed, when the
whole matrix parameters are considered as trainable parameters, such structures are shown
to behave like multi-layer perceptrons with residual feedforward connections [GL10; BS16].
These networks are well-suited for detection, and in particular for the learned-AMP net-
work, the feedforward connection that corresponds to the Onsager reaction term is shown to
“Gaussianize” residual error at the output of the each layer.

In [BS16], this concept has been extended to VAMP, with it being unfolded as a layer
that consists of a fully-connected layer with a residual feedforward connection from the input
followed by a decoupling function, an activation function and another decoupling function, as
shown in Figure 4.12. The decoupling functions compute extrinsic estimates by performing
division of a Gaussian PDF corresponding to the two previous outputs of fully-connected
layer and the activation function. This structure outperforms previous deep networks based
on AMP or iterative thresholding. When trained with well-selected activation functions it also
has the remarkable property of yielding the performance of the VAMP algorithm itself (with
genie channel knowledge) [BSR17]. This indeed implies that the EP-like VAMP algorithm
naturally yields the optimal parameters of the structure in Figure 4.12, consisting of an affine
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Figure 4.12: Deep unfolding of Vector Approximate Message Passing (VAMP).
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Figure 4.13: “Learned-DL-SEP”: Unfolded deep EP network at the τ th turbo iteration.

layer, an extrinsic decoupler, a non-linear function, and another decoupler3.

Returning into an iterative detection context, this observation suggests that when channel
parameters are available, VAMP/OAMP/EP-like algorithms (with no damping) that use
extrinsic estimates, can perform as good as deep networks that would require exhaustive
training for learning underlying fully-connected layers. Hence these iterative algorithms can
be used to determine an architecture for a neural network, by prescribing involved connections,
and initializing such detection networks’ main parameters, and deep learning can be used to
learn remaining additional parameters in order to fine-tune these architectures.

Note that this observation is for raw VAMP/OAMP/Scalar EP-like algorithms (β ✏ 0),
but as Figure 4.11 attests, exponential smoothing improves these algorithms, and the BER
sensitivity is a smooth function with a local extrema on β. Hence, unfolding the detection
graph of DL-SEP is investigated, by considering each self-iteration as a neural layer, where
most parameters are computed through EP, as they should be near-optimal, but damping
coefficient become learning parameters Θ ✏ rβ♣1q, . . . , β♣Sqs as shown in Figures 4.13 and 4.14.
The corresponding neural structure is akin to a network of convolutional layers with residual
connections and where layer outputs are linearly mixed with its inputs, with weight β.

3Note that this has been numerically verified in [BSR17] for Bernoulli-Gaussian symbols, and we base our
investigations on the conjecture that this would be same for zero-mean constellations.
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4.4.2 An MI-based Cost Function for Unfolding Turbo Receivers

To optimize DL-SEP, a loss function L is proposed, to track the turbo detection and de-
coding dynamics within the SISO detector, by taking into consideration the decoder outputs.
The main idea is to use a loss metric that is correlated to the output BER that also accounts
for a quality indicator on a priori LLRs fed from the decoder.

The binary-cross entropy between soft-bit outputs and the transmitted bits is a commonly
used bit-wise measure; hence to access SISO capabilities of DL-SEP, it can be used to assess
soft-bits on the extrinsic LLRs of the module, with

ℓ♣dk,q, d̂k,qq ✜ ✁ log
✁
♣d̂k,qq♣1✁dk,qq♣1 ✁ d̂k,qqdk,q

✠
,

where d̂k,q ✜ 1④♣1� exp♣✁Le♣dk,qqq is the extrinsic soft bit. This loss function corresponds to
the Kullback-Leibler divergence between transmitted and estimated bits.

For the complete loss metric, inspired from EXIT function synthesis methodology [TB00]
(also see Figure 2.6), the neural network is fed with a set of Ns sample codewords of Gaussian-
distributed prior LLRs, corresponding to a priori information IA, Lp♣dk,q, IAqrns ✒ N ♣♣1 ✁
2dk,qqµp, 2µpq, n ✏ 1, . . . , Ns, with µp ✏ J✁1♣IAq where J is the binary MI function, defined
in Property 1 of Section 2.3.6. Then the detector’s extrinsic LLRs, for these samples, are
Le♣dqrIA, ns, and the learning cost function is

L♣d, d̂, IAq ✜ 1
QKNs

➳
k,q

➳
n

ℓ♣dk,q, d̂k,qrIA, nsq, (4.41)

where d̂k,qrIA, ns is the soft-bit related to Le♣dqrIA, ns.

This loss function enables learning optimal values of Θ for a given IA, and there is a
bijective mapping between IA and the prior variance va♣τq ✜ K✁1

➦
k Var

P
♣τq
k

rxks, where P
♣τq
k

is the PMF in Equation (2.39). Thus, trained parameters are tabulated as a function of
va P r0, σ2

xs, and the receiver adjusts its weights Θ♣τq, with the measured va♣τq and linear
interpolation, at the ongoing turbo-iteration τ .
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Figure 4.15: Values of β optimized through learning with respect to IA for S ✏ 1, . . . , 4.

4.4.3 Learning for the Deep EP Network

Training is carried out with the ADAM optimizer [KB15], with an initial learning rate of
0.025 and mini-batches consisting of 200 samples of:

• a value of σ2
w, from uniformly distributed SNRc ✏ 20 log10 σx④σw, on an interval of SNR

of interest,

• a “dummy codeword” d from 2Kd i.i.d. possible sequences,

• a noise vector w and a channel realization H according to σ2
w and the channel profile,

• prior LLRs realizations on the codeword La♣d, Iaqrns, with n ✏ 1, . . . , Ns samples.

This learning strategy enables fine optimization of the DL-SEP algorithm, when considered
as a deep network.

Hence, we investigate the proposed unfolded DL-SEP, to check whether deep learning can
automatically optimize DL-SEP parameters to predict its optimum behaviour. For consid-
ering a highly-selective situation, training is considered in the fixed Proakis C channel, with
K ✏ 256, RSC code with polynomial r1, 5④7s8 and SNRc P r5, 20s dB. Prior LLRs realization
samples of N ✏ 25 is found to be sufficient, with 150 training iterations, to have a precision
within 0.05 on β. Weights are learned for IA P t0, 0.33, 0.67, 0.78, 0.89, 0.94, 0.99, 1✉, and the
learned parameters are plotted in Figure 4.15.
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Figure 4.16: Comparison, in Proakis C with coded 8-PSK, of DL-SEP with static damping
and 3 self-iterations. and Learned-DL-SEP with 3 layers.

5 6 7 8 9 10 11 12 13 14 15

B
it
E
rr
or

R
at
e

10
-4

10
-3

10
-2

10
-1

10
0

Eb/N0 (dB)
5 6 7 8 9 10 11 12 13 14 15

B
it

E
rr
or

R
at
e

10
-4

10
-3

10
-2

10
-1

BCJR
GABP
Learned DL-SEP ProakisC
Learned DL-SEP UniRay5

Proakis C

UniRay5

Figure 4.17: Comparison of Learned-DL-SEP with 3 layers for 8-PSK, trained and evaluated
in two different channels, at 5 turbo-iterations.

The performance of “Learned-DL-SEP” is shown in Fig. 4.16 along with DL-SEP with
static damping β (across self-iterations), with β varying between 0 and 1 with 0.1 steps. While
DL-SEP with low damping has good detection threshold, it suffers from error propagation at
high SNR, oppositely high damping slows down convergence. “Learned-DL-SEP” manages
thus to dynamically adapt to the situation, as deep learning allows us to find optimal values
of β♣s,τq as a function of va♣τq (dynamic damping). In Fig. 4.16, DL-SEP appears to reach the
convex-hull of its feasible set of BER performance. In the end, the “learned-DL-SEP” with 3
layers, is within 1.5 dB of BCJR, at BER ✏ 10✁3 for T ✏ 5.

To pursue the analysis of the Deep EP network, training is now carried out on a Rayleigh
fading channel with uniform power profile with L ✏ 5 (denoted UniRay5), and hence, the
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Figure 4.18: Power spectral density for Proakis C and UniRay5 channels.

learning process accounts for many different channel realizations. In previous works, it was
noted that training in variable channels still ensures good detection performance for difficult
channels (ill-conditioned channel matrix) [SDW17]. In this work, we are also interested in
seeing how would a network, trained in a difficult channel, would perform in random channels.

To evaluate this, in Figure 4.17, the performance of Proakis-C-trained network and UniRay5-
trained network are compared in both Proakis C and UniRay5 validation sets. It is shown
that while UniRay5-trained network performs within 0.3-0.5 dB of the Proakis C trained
network’s BER, in the Proakis C channel, the Proakis-C-trained network performs identically
to the UniRay5-trained network. Fig. 4.18 shows the power spectral density of 200 random
UniRay5 channels, and the Proakis C channel; the latter has a significant spectral null region.
This suggests that training sets with highly selective, difficult channels should possibly enable
a learned receiver to perform near-optimally also in less selective channels.

4.4.4 Discussion

Deep unfolding is shown to be a means to optimize the performance of FD SILE-EPIC with
relative ease, and a reasonable complexity. This is enabled by the proposed turbo-oriented
learning loss function, whose utility goes beyond the scope of this specific application and
receiver, to any soft-input soft-output detector. Finally, the impact of choosing the training
set in more or less mild conditions is shown to impact the scope of optimality of such receivers.

4.5 Extensions and Applications of SC-FDE with EP

4.5.1 Direct Applications of FD-SILE-EPIC for CP or ZP Insertion

As the proposed receiver is derived with a generic circular channel model, it can be applied
to numerous signalling schemes related to SC-FDE which we will discuss in this section. These
strategies that consist in pre-processing and post-processing a transmitted data block in order
to transform the impact of the typical channel convolution into a circular convolution, for
enabling the underlying hypotheses used for FD processing.
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CP SC-FDE The use of a Cyclic Prefix (CP) or a cyclic suffix is a widely used approach for
obtaining and ideal circular channel model at the base-band, with uncorrelated noise. Thus
the proposed receiver in Algorithm 13 can be applied, as it is, on any SC schemes involving
CP. This approach belongs to the model of the general context of this thesis, by considering
the PHY model presented in Figures 1.5 and 1.6, by using a SC waveform with

FCP ✏ r0KCP✂K ; IKs , GCP ✏ r0K✂KCP
, IKs , (4.42)

where the CP length is KCP ➙ L, and the number of baseband samples in Equation (1.11) is
N ✶ ✏ K �KCP.

ZP SC-FDE An alternative to CP is the use of Zero Padding (ZP) transmissions, as in
Chapter 3, with the transmitter side using

FZP ✏ r0KZP✂K ; IK ; 0KZP✂Ks , (4.43)

for waveform generation, with KZP being the number of zeroes padded before and after the
data block. In this case, there are three options for the receiver:

1. First approach is to operate on ♣K � KZPq-point FFT blocks, considering the latter
KZP zeros as “symbols” to be equalized, and apply Algorithm 13 on the extended data
block, by considering that priors on zeroes have zero mean and IID variance σ2

x. Hence

GZP ✏ ✏
0♣K�KZPq✂KZP

, IK�KZP

✘
, (4.44)

2. An alternative is to keep operating on K �KZP symbols, with the same GZP as above,
but by including the prior knowledge on these zeros, i.e. zero-mean and null variance,
which modifies the overall priors in Equation (4.32), with γd

x Ð K♣K �KZPq✁1γd
x, and

it is more suitable when K ✧ KZP. This is an extension of the “FAST” method in
[MWG+02] to iterative equalization.

3. Final approach for ZP SC-FDE, is to use an Overlap and Add (OLA) at the receiver,
to artificially circularize the channel over the data blocks with

rys1:KZP
Ð rys1:KZP

� rysK�1:K�KZP
, (4.45)

and then use K-point FFT to operate on the data block, which will yield the model in
Equation (4.1) with correlated noise. This can be obtained with the operator

GZP ✏ r0K✂KZP
, IK ,0K✂KZP

s � ✏
0KZP✂♣K�KZPq, IKZP

; 0♣K✁KZPq✂♣K�2KZPq

✘
, (4.46)

and receiver can still treat the noise as uncorrelated, and yield similar performance to
CP SC-FDE [MWG+02], or alternatively σ̄2

w is replaced by ♣K�KZPqK✁1σ̄2
w to account

for the increase in noise power at early symbols (while still neglecting correlations).

When an exact ZP SC-FDE receiver is used (a block structure without any approximations
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on the covariance), then CP SC-FDE is almost always outperformed, as Kzp additional zeroes
reduce the probability of detection errors [MWG+02]. But the three low-complexity schemes
described above have comparable performance to CP without clear-cut conclusions on one of
them outperforming the other.

Common block transmission schemes, such as UW SC or pseudo-noise extended SC insert
respectively fixed and varying pilot sequences between data-blocks, to avoid IBI and provide
means for channel estimation. These schemes can be effectively detected by the ZP SC-FDE
receivers above, when pilots and the ISI generated by them are removed as pre-processing.
The case of UW transmission will be discussed in Section 4.7.1.

4.5.2 FD-SILE-EPIC for Upsampled Single Carrier Waveforms

Fractionally-Spaced (FS) SC-FDE While the work in this thesis is focused in symbol-
spaced detection, by taking mup ✏ 1, in the sampling model of Figure 1.6. In this paragraph,
the extension of the proposed FD method to the case where mup → 1 is discussed, with
Fractionally-Spaced (FS) equalization [Cio08; BCT15]. In this case, for integer mup, with
ideal synchronization, the sampling operation in Equation 1.20 provides multiple observations
of data symbols, with

yk,m ✏
L➳

l✏1

hl,mx①k✁l②K
� wk,m, ❅k ✏ 1, . . . ,K, ❅m ✏ 1, . . . ,mup (4.47)

and by vectorizing over time with ym ✏ ry1,m; . . . ; yK,ms and wm ✏ rw1,m; . . . ;wK,ms, there
exists a circulant channel model between ym and x, which can be diagonalized through
DFT. Then by denoting CFR components as hk,m for k ✏ 1, . . . ,K and m ✏ 1, . . . ,mup,
and then vectorizing FD observations over fractional samples with y

k
✏ ry

k,1
; . . . ; y

k,mup
s,

hk ✏ rhk,1; . . . ;hk,mup
s and wk ✏ rwk,1; . . . ;wk,mup

s, we have

y
k
✏ hkxk � wk. (4.48)

Then FS receiver design is carried out with the following factorization of the joint posterior
density of Equation (4.10), but symbolwise FD observation factors are replaced by

fOBSk
♣xkq ✜ p♣xk⑤yk

q✾ exp

✄
✁⑥y

k
✁ hkxk⑥2

σ̄2
w

☛
, (4.49)

where Cov♣wkq is assumed to be σ̄2
wImup . Note that, in the time domain, noise samples can

be strongly correlated due to the (partial) matched filter in Figure 1.6, and it could be better
in FS systems to avoid matched-filtering if mup ➙ 2, and let the detector handle ISI. Here
we detail the case where noise samples are decorrelated for exposing low-complexity detector
expressions, but this framework is applicable to the case where Cov♣wkq is a non-diagonal
matrix, by incorporating a whitening filterbank at the equalizer through its inverse.

Thus, the computations at the OBSk factor node are updated for FS observations, which
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replaces Equations (4.14)-(4.15) with

γo
x,k ✏ σ̄2

wv
e
x,k

σ̄2
w � ve

x,khH
k hk

, µo
x,k ✏ σ̄2

wx
e
k � ve

x,khH
k y

k

σ̄2
w � ve

x,khH
k hk

. (4.50)

and the parameters of the extrinsic messages from OBSk in Equations (4.17)-(4.18) are re-
placed by

vo
x,k ✏ σ̄2

w

hH
k hk

, xo
k ✏ hH

k y
k

hH
k hk

. (4.51)

Finally, by inserting these new parameters into Equations (4.30)-(4.31), the equalization
structure of Equations (4.35)-(4.38) become

xe
k ✏ xd

k �
mup➳
m✏1

f ep
k,m

✝♣y
k,m

✁ hk,mx
d
kq, ve

x ✏ 1④ξep
x ✁ vd

x, (4.52)

with

f ep
k,m

✏ 1
ξ

ep
x

hk,m

σ̄2
w � vd

x

➦mup

m✶✏1 ⑤hk,m✶ ⑤2 , (4.53)

ξep
x ✏ 1

K

K✁1➳
k✏0

➦mup

m✶✏1 ⑤hk,m✶ ⑤2
σ̄2

w � vd
x

➦mup

m✶✏1 ⑤hk,m✶ ⑤2 . (4.54)

This passage shows the extension of the proposed DL-SEP framework to FS equalization,
which has an important role to play for closing the gap to optimal BCJR detection, and it can
be of used for low complexity detection of emerging Faster-than Nyquist (FTN) waveforms
[TPB16; Rad18]. FS equalization is also widely used for detection non-linear modulations such
as the continuous phase modulation signals [Cha19]. However FS processing poses difficult
problems in channel estimation (in a larger band than the baseband), synchronization and
overall spectral efficiency (neighbouring frequency bands should not be occupied).

Remark 2
Note that at the baseband, FS observation model shares a lot of similarities to Single-Input

Multiple-Output (SIMO) channel model. Hence this receiver can be, for instance, used for sin-

gle transmit-antenna and multiple receive-antenna node systems, with mup being the number

of receive-antennas.

SC-FDE with Frequency Domain Oversampling (FDO) Frequency Domain Over-
sampling (FDO) is an extension of ZP SC-FDE from the previous section, where the first
approach is used at the receiver, with zeroes being considered as zero-mean IID data sym-
bols. It proposes to append an additional K ✶

ZP zeroes to the received block y in order to
increase the resolution of the FFT and better mitigate channel ISI. In [BY16] it is shown
that, under perfect CSI, increasing the size of the FFT can further improve the performance of
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ZP SC-FDE compared to CP SC-FDE. Moreover the validity of the assumption that padded
zeroes are zero-mean IID, used for the first approach of ZP detection, is verified by using a
receiver that appends IID unit-variance Gaussian variables instead of zeroes, which causes
small degradation.

The proposed FD SILE-EPIC can also be extended to cover this case, by increasing the
resolution of FFT at the factor node DFTx to work with K � KZP � K ✶

ZP TD and FD
symbols. Padded FD symbols are connected to the factor nodes OBSk to use zero-padded
and transformed FD observations, and padded TD symbols are not connected to DEMk, but
to a novel ZPk factor node such that fZPk

♣xkq ✜ CN ♣xk; 0, σ2
xq.

Single-Carrier Frequency Division Multiple Access (SC-FDMA) The SC-FDMA
modulation enables transmitting data on different frequency bands, possibly for different users
or services, by mapping K symbols, of a user or a service, to K sub-carriers among a total of
N → K, through the use of

• a K-point DFT,

• a sub-band mapping matrix FSB, of size N ✂K,

• an N -point inverse DFT for going back into the time domain.

The sub-band mapping matrix satisfies rFSBsn,k ✏ δ♣n ✁ fSB♣kqq, where fSB is an injective
function from t1, . . . ,K✉ to t1, . . . , N✉. In this case, the waveform processing operation at
the transmitter (Figure 1.5) becomes

FSC-FDMA ✏ FH
N FSBFK , (4.55)

which generates an up-sampled, or spread variant of the data block, depending on the sub-
band mapping scheme [Zha+15b], and a CP of KCP samples is appended to it. Hence an
SC-FDMA data block occupies N ✶ ✏ N � NCP channel uses, without accounting for other
control signals and pilot sequences.

At the receiver (Figure 1.6), the baseband SC-FDMA demodulator applies a N -point
DFT, then the sub-band demapper FH

SB provides a FD observation model, if FD detection is
performed, as in this chapter, with

GSC-FDMA ✏ FH
SBFN . (4.56)

Otherwise if a time-domain detection will be carried out, as in Chapter 3, then an additional
K-point inverse DFT is performed

GSC-FDMA ✏ FH
K FH

SBFN . (4.57)

Note that the use of a sub-band mapping can significantly change the perception of a
physical channel at the receiver, especially in the FD. For instance, considering a wideband
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CIR of h✶l, for l ✏ 1, . . . , L, (over the whole band with N subcarriers) generating a circulant
channel matrix H✶, the baseband SC-FDMA channel at the FD is given by

H ✏ FKH✶FH
K ✏ FH

SBFN H✶FH
N FSB ✏ Diag♣hq, (4.58)

with the channel frequency response component at the kth subcarrier being

hk ✏
L➳

l✏1

h✶l exp ♣✁2jπfSB♣kql④Nq , (4.59)

which can be quite different from the CFR in Equation (4.4), depending on N , and the
sub-band mapping method.

Numerical examples with this waveform will be given, when discussing the Multi-User
Multiple Input Multiple Output (MU-MIMO) problem in Section 4.6.

4.5.3 Time-Varying Channel Equalization with SC-FDE and EP

A notable issue of FDE is its inability to mitigate time-varying channels whose coherence
time is shorter than the processing block duration. In this case the FD channel matrix is no
longer diagonal, and inter-carrier interference is generated.

On TV Equalization in the Frequency Domain When the channel is time-varying
the FD channel matrix has multiple non-zero diagonals, and EP-based receiver design would
result in a block linear MMSE structure as in [SMF+18].

A possible, intermediary complexity solution is to use banded FDE, where only J upper
and lower diagonals of the FD channel matrix H are accounted for (in addition to the main
diagonal), and the remaining channel components are neglected [Sch04; RBL05; RBL06;
Cha19]. In this case low complexity matrix inversion techniques that can be used to extend
DL-SEP framework above for TV channels, through LDL decomposition.

To achieve this, observation factor nodes OBSk have to be replaced by a single factor node
OBS which links x to y through fOBS♣xq✾ CN ♣y; Hx, σ2

wIKq, assuming AWGN. In this case,
the posterior parameters over the FD data vector is

q̃OBS♣xq ✏ fOBS♣xq
K➵

k✏1

mDFTxkÑxk
♣xkq,

✾ exp

✄
✁⑥y ✁ Hx⑥2

σ̄2
w

✁
K➳

k✏1

⑤xk ✁ xe
k⑤2

ve
x,k

☛
✾ CN ♣x; µo

x,Γ
o
xq. (4.60)

Then following projection onto fully-factorized FD symbol data set, posteriors estimates of
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Figure 4.19: Overlap FDE processing scheme with sub-blocks.

factor node OBS on node xk is qOBS♣xkq✾ CN ♣x;µo
x,k, γ

o
x,kq, where

γo
x,k ✏ eH

k

✂
HHH
σ̄2

w

� Ve
x
✁1

✡✁1

ek ✏ ♣1 ✁ ve
x,keH

k Σ✁1
y ekqve

x,k, (4.61)

µo
x,k ✏ eH

k

✂
HHH
σ̄2

w

� Ve
x
✁1

✡✁1
✄

HHy
σ̄2

w

� Ve
x
✁1xe

☛
✏ xe

k � ve
x,kHHΣ✁1

y ♣y ✁ Hxeq, (4.62)

where Σy ✏ σ̄2
wIK � HVe

xHH , and then these Equations have to be inserted into Equation
(4.16) and then Equations (4.30)-(4.31) to compute equalized estimates. With banded pro-
cessing, Σy is limited to J upper and lower diagonals also, and its inversion through LDL
decomposition can be carried out with an order of complexity of O♣J2Kq [Cha19].

Finally, overlap FDE is another possible approach for mitigating problems above, with
quasi-linear receiver complexity in the FD, by keeping the use of single-tap equalizers. This
technique consists in using N -point FFTs, with N ➔ K, to carry out baseband processing, on
virtual overlapping sub-blocks of received samples [VHG01; Mar+03]. This strategy inher-
ently generates IBI between sub-blocks, which is mitigated either by selecting an appropriate
sub-block length N , or by using additional signal processing. Some recent usage examples in-
clude its usage with faster-than-Nyquist signalling [FH15], and with doubly selective channels
[RNM17].

In the remainder of this section, various EP-based overlap FDE receivers are derived and
evaluated.

Conventional Overlap FDE with “No-Interference” Overlap FDE, also called FDE
with overlap-and-save or overlap-and-cut, carries out a linear deconvolution with multiple
circular convolutions. Given a signal block v P C

K , its No-point sub-blocks are denoted
ṽk ✏ rvk, . . . , vk�No✁1sT , with vk ✏ 0, for all k ➔ 0 or k ➙ K. SC-FDE model with sub-blocks
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Figure 4.20: IBI mitigation capabilities of overlap FDE schemes.

is written as
ỹk ✏ Hkx̃k �Gk♣x̃k✁N ✁ x̃kq � w̃k, (4.63)

where Hk is a No ✂ No circular channel matrix as in Equation (4.1), and Gk is an No ✂
No matrix, whose L ✁ 1 upper diagonals are equal to those of Hk, and other elements are
zeros. Unlike the channel model in Equation (4.1), here the channel may quasi-statically
vary between sub-blocks. Hence with a small enough No, a time-varying frequency selective
channel can be approximated by this model.

SC-FDE is used on sub-blocks, by ignoring the IBI term, and Nl symbols from the head
and Nr symbols from the tail of the equalized sub-block are thrown away. Nl�Nr symbols are
overlapping between two successive sub-blocks, as shown in Figure 4.19, and by extracting
the remaining Nd ✏ No ✁ Nl ✁ Nr symbols, this procedure is repeated for Nb ✏ rK④Nds

sub-blocks in parallel. For extending this scheme to use the proposed EP-based framework
from the previous sections; one could implement each equalizer of length No using FD SILE-
EPIC. Hence each sub-equalizer would have its own self-iteration loops, and independently
evolving estimate variances. But as BICM is used across all sub-blocks, differences of estimate
variances between sub-blocks is small, hence, for simplicity, all the sub-equalizers (FD SILE-
EPIC) are assumed to use a common SI loop, with the common output variance denoted
ve

x ✜ N✁1
b

➦Nb

n✏1 v
e
x,n, where ve

x,n is the nth sub-equalizer’s output variance, and the common
demodulator feedback variance is vd

x.

We denote this overlap FDE scheme, no-interference (NI), its performance at a given
SNR can be close to that of SC-FDE with K-point FFT, if No, Nl and Nr are sufficient to
remove all residual IBI over Nd extracted symbols [VHG01; Mar+03; FH15]. However, for
moderately or highly selective channels, the IBI spread can be very large, requiring No ✧ Nd.
Otherwise, residual IBI is present, and causes detection errors, whose occurrence increases
with the SNR, due to interference enhancement caused by mismatched filter weights.

Overlap FDE with Interference Rejection Interference enhancement caused by overlap
FDE NI causes prohibitive constraints for selecting No, Nl and Nr, in order to avoid residual
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IBI. Moreover, for channel with severe spectral nulls, IBI spread can be as large as No, making
overlap FDE unusable with any parameters. If the channel is also time-varying, coherence
time constraints on No are imposed, which may cause overlap FDE NI to have no viable
solution, due to excessive complexity costs, or increased latency.

In this paragraph, the interference rejection (IR) strategy, which mitigates interference en-
hancement, is exposed by designing filters that account for the presence of IBI. The equivalent
noise which also includes the IBI is

w̃✶
k ✜ Gk♣x̃k✁N ✁ x̃kq � w̃k. (4.64)

Considering the noise model (see eq. (4.1)) used in the FDE design, in section 4.3.2, one can
compute a SC-FDE equalizer, as in Equations (4.35)-(4.38), by using the equivalent noise
covariance

Σw̃✶
k
✏ Σw̃k

� 2σ2
xFN GkGH

k FH
N , (4.65)

assuming IID transmitted symbols. The equalizer neglects noise correlations between differ-
ent subcarriers, but accounts for the FD colored noise with diagonals of matrix (4.65). IR
was applied using the whitened covariance of the IBI in [TTA06], however using a colored
representation, as in this Chapter, was shown to significantly improve performance [OA11].
This strategy does not suffer from error enhancement at high SNR, and produce steady error-
floors. Nevertheless IR can perform slightly worse than NI at low SNR, due to pessimistic
representation of IBI covariance.

Overlap FDE with Interference Cancellation To completely remove residual IBI in
overlap FDE with limited overlap interval, IC is needed, especially for highly selective chan-
nels, where equalization filter has time response of length comparable to FFT, and spreads
IBI over all symbols.

There are various approaches to IBI cancellation in overlap FDE, either with serial decision
feedback for joint ISI/IBI cancellation [Tom05], with hard decision feedback for successive IBI
cancellation [WLL08], or with hybrid turbo and hard successive decision feedback [RNM17].
Unlike these references, which uses decisions on previously processed sub-blocks, here we
focus on parallel IBI cancellation, using solely a feedback generated from the previous self or
turbo iteration, for ensuring parallel processing of sub-blocks in practical implementations.
Moreover, EP-based feedback is used, as its overall superiority compared to EXT or APP
feedback was shown in the previous section.

At τ ✏ s ✏ 0, IR is used via (4.65), then IBI is removed before the No-point FFTs with

ỹ✶
k ✜ ỹk ✁Gk

✁
x̃d♣τ ✶,s✶q

k✁N ✁ x̃d♣τ ✶,s✶q
k

✠
, (4.66)

where τ ✶ and s✶ denote the previous turbo and self iteration indexes.

Moreover, unlike prior work on overlap FDE-IC, we use adaptive IR, by accounting for
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the residual IBI in filter weight computations with

Σw̃✶
k
✏ Σw̃k

� 2vd♣τ ✶,s✶qFN GkGH
k FH

N . (4.67)

As in overlap FDE NI/IR strategies above, Nb parallel equalizers are operated concurrently
for detecting all sub-blocks. Finally, it is possible, depending on the channel coherence time,
to set Nl ✏ Nr ✏ 0, for τ → 0, to reduce Nb, as in [RNM17], to reduce the receiver complexity.

Inter-block interference mitigation performance In this section, K-block quasi-static
channels are considered, to focus on the EP-based overlap FDEs’ IBI mitigation capabilities.
The benefits of self-iterations are compared to the conventional FD LE-EXTIC (i.e. S ✏ 0),
for overlap FDE, possibly equipped with IR and/or IC. The IC strategy of setting Nl ✏ Nr ✏
0 for τ → 0 for overlap FDE IC is used for these simulations.

First we consider an uncoded scenario, similar to the benchmark [OA11], with QPSK
constellation in a quasi-static Rayleigh fading frequency-selective channel with symbol spaced
16-path uniform power delay profile (EQU16). Transmission parameters are K ✏ 2048,
No ✏ 256 and Nl ✏ Nr ✏ 16, and 80000 block transmissions per SNR are used to numerically
approximate the BER for S ✏ 0 . . . 3 in Figure 4.20-(a). The conventional scheme (NI) is
unusable, as the overlap interval is insufficient to contain all IBI, and SIs (β ✏ 0.25✂ 0.5s�τ )
do not resist to IBI amplifications. But IR significantly benefits from SIs, as it further reduces
the error floor. Finally, overlap IC with SIs removes most of the interference, even with a
single SI.

A more extreme case, with strong IBI, is considered in Figure 4.20-(b) (16-QAM, RSC
r1, 5④7s8), within a 7-path static AWGN channel, with uniform power delay profile. We
consider 50000 block transmissions with K ✏ 1024, No ✏ 128, and Nl ✏ Nr ✏ 7, to evaluate
the BER. In this case, SIs (β ✏ 0.75 ✂ 0.9s�τ ) alone cannot remove error floors even with
IC and channel coding, but with the help of a single turbo-iteration, even IR’s error floor,
with EP-based SI, becomes at least two order of magnitudes smaller than traditional FD
LE-EXTIC.

Performance in a doubly-selective channel The behaviour of the overlap FDE with the
proposed EP-based self-iterations is evaluated within a MANET scenario where mobile-to-
mobile communications between two high-speed vehicles is considered in a harsh environment.
The mountainous channel model from [Fis16, Tab. 5.10] is used. Vehicles are assumed to
move at 130 km/h each, in opposing directions, hence generating a maximum Doppler shift of
96 Hz, assuming the use of a carrier frequency at 400 MHz. A snapshot of a random channel
realization is plotted in Figure 4.21-(a).

SC transmissions with 1/2-rate-coded 16-QAM constellation is considered, with a baud-
rate of 1 Mbauds/s, and a root raised-cosine pulse-shaping with a roll-off factor of 0.35. In this
case, the base-band channel spread is L ✏ 45 symbols. No ✏ 256 symbol is chosen to ensure
that the channel remains static on each sub-block. We consider K ✏ 1536 and Nl ✏ Nr ✏ 18,
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Figure 4.21: EP-based overlap FDE performance in the doubly-selective mountainous channel.

an ovelap length of 18 symbols is chosen as most significant paths of the mountainous channel,
(and other urban, hilly or rural channels in [Fis16]) are contained within 18 µs.

In Figure 4.21-(b), the PER of overlap FDE IR/IC are plotted. It can be seen that
IR cannot get rid of the error floor but using overlap IC and one turbo-iteration, robust
transmissions are possible. In this case, one and two SIs (β ✏ min♣0.5, 0.71�s�τ q) respectively
bring 2.7 dB and 3.9 dB improvements, at PER = 3.10✁3. The use of SC-FDE with six block
transmissions of K ✏ 256, with cyclic prefix and guard intervals to avoid IBI, instead of using
the considered overlap FDE, would have required 90 additional symbol slots per block, and
would have caused a loss of throughput and energy-efficiency of respectively 12 % and 0.6 dB.

4.5.4 Discussion and Conclusions

This section has illustrated the proposed receiver design technique various telecommuni-
cations applications where the proposed framework could either be applied directly, or be
extended, through the message passing framework, to handle detection problem.

4.6 Extension to Multi-antenna and Multiple Access Systems

In this section, the extension of the FD detection framework for handling Multiple-User
Detector (MUD) is discussed, with also the possibility of incorporating multiple transmit or
receive antennas. To this end, first, to cover a practical use case of transmit and receive
antennas, transmission schemes that extend BICM to multiple-antennas and multiple users
for spatial multiplexing is discussed, and then receiver design for SC-FDMA in a MU-MIMO
context is investigated, with the use of the proposed DL-SEP framework.
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Figure 4.22: Non-orthogonal versus orthogonal power allocation with SC-FDMA.
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Figure 4.23: Non-orthogonal transmission mechanisms based on BICM.

4.6.1 On NOMA based on BICM and SIC

As already discussed in broad terms, in the general introduction and the Chapter 1,
embracing interference has become a necessity to increase throughput for future wireless
communications systems, due to resource scarcity. Fundamental techniques to increase the
system load include the use of spatial multiplexing with multiple transmit and receive anten-
nas [TV05], and generalizing this idea, the non-orthogonal sharing of resources by multiple
users [Hig+15]. This concept has been known as spatial division multiple-access [TV05] and
it is today somewhat related to power-domain NOMA. An illustration of this concept for a
multi-user system SC-FDMA is provided in Figure 4.22, where the non-orthogonal stacking
of users enable using larger spectral resources, but this also requires handling the ISI caused
by frequency-selective channels in the MUD, in addition to the MAI and MUI.

Computationally-efficient FD receivers designed with the MMSE criterion and Successive
Interference Cancellation (SIC) can perform quite efficiently in such situations, when received
powers between users are sufficiently different [TV05]. But more generally, the resolution of
MAI, and handling of NOMA when users are received with similar SNRs push the research
community towards the exploration of more advanced techniques. In particular, to enable a
more efficient separation of users and antennas at the MUD, the concept of Interleave Division
Multiple Access (IDMA) [Pin+06; PWW07; Wan+19] extends BICM scheme to encoding
mechanisms over users and antennas. One such technique is STBICM [Ton00], which directly
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Figure 4.24: MU-MIMO transmissions over a frequency-selective wideband channel.

extends single-antenna single-user receiver design techniques for BICM to higher dimensions,
by interleaving coded bits over antennas, and using different interleavers at each user, as shown
in Figure 4.23-(a). Alternatively, conventional MIMO signalling schemes based on BLAST
architectures are extended to Turbo-BLAST [SH00], which is rather destined for spreading
different codewords over antennas through diagonal layering [TV05], as illustrated in Figure
4.23-(b), but it can be considered as a specific code construction approach for STBICM.

With the use of iterative receiver design methods, such as EXIT charts, high performance
MUD were proposed in [Yua+08; VBC06]. Similarly to the single-user single-antenna turbo
FDE case, discussed earlier in this chapter, various turbo receivers based on decoder’s EXT
feedback [VBC06], decoder’s APP feedback [Wit+02; VBC06], or demodulator’s APP feed-
back [Tao15] were proposed as FD MUD.

In the following the derivation of a low-complexity MUD with DL-SEP framework is
discussed for NOMA in the presence of ISI and MAI.

4.6.2 SC-FDMA MU-MIMO System Model

Let us consider a synchronous, open-loop, multi-user spatial multiplexing system with
U independent users, possibly with multiple antennas, each employing a Space-Time Bit
Interleaved Coded Modulation (STBICM) SC-FDMA modulation to transmit a single data
block (P ✏ 1) in a multiple-access scenario, simultaneously over a shared frequency-selective
channel to a multi-antenna receiver node, equipped with a MUD, as in Figure 4.24, to decode
all of the U users.

Each user u in t1, . . . , U✉ has Tu transmit antennas, with the total number of antennas
being T ✜

➦U
u✏1 Tu, and all users share K sub-carriers and N time samples for the SC-FDMA.
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The STBICM scheme for the uth produces the user’s data block xt,u, and the associated
coded blocks dt,u, for the antennas t ✏ 1, . . . , Tu. In this scheme, users’ interleavers may
be different (which results in IDMA [Pin+06; PWW07; Wan+19] and helps performing SIC
more efficiently), but it is not necessary in general.

The receiver is equipped with R antennas, it is ideally synchronized both in time and
frequency and perfect channel knowledge is available. Using a CP of sufficient length for the
SC-FDMA, the received signal at the rth antenna, following SC-FDMA FD demodulation at
the baseband

y
r
✏

U➳
u✏1

Tu➳
t✏1

FT
SBFN Hr,t,uFH

N FSBFKxt,u � wr, (4.68)

where the N✂N matrix Hr,t,u is the circulant matrix generated by the L-tap channel impulse
response rh1,r,t,u, . . . , hL,r,t,us between uth user’s tth antenna, and the receiver’s rth antenna,
FSB is the sub-band mapping matrix from the Section 4.5.2 and the noise wr ✒ CN ♣0, σ2

wIN q,
i.e. a circularly symmetric AWGN with covariance σ2

wIN .

Denoting Hr,t,u ✏ FT
SBFN Hr,t,uFH

N FSB as the equivalent FD baseband channel, and
by stacking transmitted, received and noise FD samples by antennas and by user, on a
time instant as y

k
✏ ry

k,1
; . . . ; y

k,R
s, xk ✏ rxk,1,1; . . . ;xk,T1,1;xk,1,2; . . . ;xk,Tu,us and wk ✏

rwk,1; . . . ;wk,Rs, then we have
y

k
✏ Hkxk � w, (4.69)

where Hk is the R ✂ T MU-MIMO matrix such that rHksr,t✶ ✏ hk,r,t,u, such that t✶ ✏➦u✁1
u✶✏1 Tu✶ � t.

Remark 3
Note that this MU-MIMO model is equivalent to that of our contribution in [Şa+18e], where

we have preferred to work with time-stacked vectors to obtain block partitioned receivers. That

approach enabled to identify an exact diagonal EP solution and then carry out approximations

to get the receiver we will describe below, whereas here, the DL-SEP framework is applied to

directly derive the low-complexity solution.

4.6.3 Multi-User Detection with EP

Factor Graph Model and Message Passing Resolution This section aims to approx-
imate the optimum MAP FD joint detection and decoding for this MUD design problem by
using the DL-SEP framework.

Firstly, the factor graph of this system is obtained by factorizing the joint posterior PDF
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Figure 4.25: MU-MIMO STBICM factor graph with users u and u✶.
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✉u,t

✠
✾

☎
✝✝✆

K➵
k✏1

p♣y
k
⑤xkq❧♦♦♦♠♦♦♦♥

✏fOBSk
♣xkq

☞
✍✍✌

U➵
u✏1

Tu➵
t✏1

p♣xt,u⑤xt,uq❧♦♦♦♦♦♠♦♦♦♦♦♥
✏fDFTxt,u

♣xt,u,xt,uq

K➵
k✏1

p♣xk,t,u⑤dk,t,uq❧♦♦♦♦♦♦♦♠♦♦♦♦♦♦♦♥
✏fDEMk,t,u

♣xk,t,u,dk,t,uq

Q➵
q✏1

p♣dk,q,t,uq❧♦♦♦♦♠♦♦♦♦♥
✏fDECk,q,t,u

♣dk,q,t,uq

, (4.70)

where the observation factor node OBSk operates on antenna and user stacked data symbols
xk of size T ✂ 1, for k ✏ 1, . . . ,K, and the transform nodes DFTxt,u operates on time-stacked
data symbols xt,u of size K ✂ 1 and frequency-stacked data symbols xt,u of size K ✂ 1, for
t ✏ ➦u✁1

u✶✏1 Tu✶ � t✶, for u ✏ 1, . . . , U , and t✶ ✏ 1, . . . , Tu. The factor graph associated to
this model is given Figure 4.25 and following Expectation Propagation (EP) message-passing
procedure in Section 2.4.1 with these factor nodes, the distributions on variables of interest
are updated.

Factor nodes DFTxt,u, DEMk,t,u and DECq,k,t,u (regrouped over bits of each symbol, in
the figure, for readability as DECk,t,u) keep the same message passing parameters as in the
Section 4.3.2. However, at the OBSk factor node, the observations are subject to MAI and
MUI and the pre-projection posterior on variable xk is given by

q̃OBS♣xkq ✏ fOBS♣xkq
U➵

u✏1

Tu➵
t✏1

mDFTxkÑxk,t,u
♣xk,t,uq,

✾ exp

✄
✁⑥y

k
✁ Hkxk⑥2

σ̄2
w

✁
U➳

u✏1

Tu➳
t✏1

⑤xk,t,u ✁ xe
k,t,u⑤2

ve
x,k,t,u

☛
✾ CN ♣x; µo

x,k,Γ
o
x,kq. (4.71)

Then following projection onto fully-factorized FD symbol data set, posteriors estimates of
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factor node OBS on node xk is qOBS♣xkq✾ CN ♣x;µo
x,k, γ

o
x,kq, where

γo
x,k,t,u ✏ eH
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x,k,t,u, (4.72)

µo
x,k,t,u ✏ eH

t,u

✂
HH

k Hk

σ̄2
w

� Ve
x,k

✁1

✡✁1
✄

HH
k y

k

σ̄2
w

� Ve
x,k
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k Σ✁1
y,k♣yk

✁ Hkxe
kq, (4.73)

with Σy,k ✜ σ̄2
wIK�HkVe

x,kHH
k and ξx,k,t,u ✜ eH

t,uHH
k Σ✁1

y,kHket,u. Then the extrinsic messages
from the observation nodes can be computed as

mOBSkÑxk
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qOBSk
♣xkq

mDFTxkÑxk
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✾
CN ♣xk;µo

x,k, γ
o
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CN ♣xk;xe
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e
x,kq

✾ CN ♣xk;xo
k, v

o
x,kq, (4.74)
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✁ 1
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☛✁1

✏ 1④ξx,k,t,u ✁ ve
x,k,t,u, (4.75)
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k,t,u ✏ vo

x,k,t,u

✄
µo

x,k,t,u
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x,k,t,u

✁ xe
k,t,u

ve
x,k,t,u

☛
✏ xe

k,t,u � ξ✁1
x,k,t,ueH

t,uHH
k Σ✁1

y,k♣yk
✁ Hkxe

kq.

(4.76)

These computations over spatial dimensions are explicitly written to reveal the underlying
MMSE receive beamformer, as in Figure 4.26. Let use denote the residual observations

ỹ
k,r
✜ y

k,r
✁

U➳
u✏1

Tu➳
t✏1

hk,r,t,ux
d
k,t,u, (4.77)

obtained from IC, then we have the beamformer filter-bank

xe
k,t,u ✜ eH

k FKxe
t,u ✏ xd

k,t,u �
R➳

r✏1

f✝k,r,t,uỹk,r
, (4.78)

where the MMSE filter-bank coefficients are

fk,r,t,u ✏ ξ✁1
x,t,u

R➳
r✶✏1

λk,r,r✶hk,r✶,t,u, (4.79)

ξx,t,u ✏ 1
K

K➳
k✏1

ξx,k,t,u ✏ 1
K

K➳
k✏1

R➳
r✏1

hk,r,t,u

R➳
r✶✏1

λk,r,r✶hk,r✶,t,u, (4.80)

with λk,r,r✶ ✜ rΣ✁1
y,ksr,r✶ the covariance of FD observations between rth and r✶th antennas.

Finally, K-point IFFT is performed over the data blocks of each user and antenna to
recover the TD data blocks and perform EP-based demodulation and decoding. DL-SEP
framework assigns a scalar parameter for the reliability of each data block xt,u, with vd

x,t,u ✏
ve

x,t,u and ve
x,t,u, being respectively the prior and extrinsic estimates’ reliabilities for DFTxt,u.
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Figure 4.26: A constituent MMSE beamformer for Successive Interference Cancellation (SIC).

4.6.3.1 Computationally-Efficient Multi-user Covariance Matrix Inversion

In the expression of the novel factor node OBSk’s messages, there is an inversion of a
R✂R covariance matrix, for decorrelating observations corrupted by MAI and MUI. If typ-
ical Gauss-Jordan inversion is performed, filter-bank computation involves a computational
complexity order of O♣KR3q, and if LDL decomposition based inversion is used while the in-
version complexity can be reduced to the order of O♣KR2q, there would be K decompositions
of R✂R matrices to perform.

To alleviate this computational problem, the inversion of the covariance matrix can be
simplified by exploiting the nature of DL-SEP based Interference Cancellation (IC). Indeed, as
MUD decoding procedure characterizes each antenna and user with a single scalar parameter,
the update operation on Σ✁1

y,k can be investigated when ve
x,t,u is updated. This is inspired from

a method originally used with Code Division Multiple Access (CDMA) receivers in Table 1
of [WP99], and considered for FD MUD in [Yua+08], we propose a recursive update strategy
for handling turbo or self iterations.

Let Σ♣oldq
y,k ✏ σ̄2

wIK � HkVe♣oldq
x,k HH

k denote the previous value of the covariance matrix,

and let ∆ve
x,t,u ✜ v

e♣newq
x,t,u ✁ v

e♣oldq
x,t,u . Then Woodbury’s matrix inversion lemma states

✁
Σ♣oldq

y,k �∆ve
x,t,uhk,t,uhH

k,t,u

✠✁1
✏ Σ♣oldq

y,k
✁1 ✁ δve

k,t,uφk,t,uφH
k,t,u (4.81)

where hk,t,u denotes the ♣➦u✁1
u✶✏1 Tu✶ � tqth column of Hk, δve

k,t,u ✏
✁

∆ve
x,t,u

✁1 � hH
k,t,uφk,t,u

✠✁1

and φk,t,u ✜ Σ♣oldq
y,k

✁1hk,t,u. Hence, by denoting the inverse Λk ✜ Σ✁1
y,k, we have

Λ♣newq
k ✏ Λ♣oldq

k ✁ δve
k,t,uφk,t,uφH

k,t,u, (4.82)

and this algorithms could be initialized with Λk ✏ σ✁2
w IR, for all k, and then updated with

∆ve
x,t,u ✏ σ2

x, for all u and t, at the zeroth iteration of the receiver. Then, on upcoming
turbo and inner iterations, Λk is updated either sequentially on u and t at each iteration, or
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updated right away on all u and t, depending on whether a serial or a Parallel Interference
Cancellation (PIC) scheduling is used. Existing schemes [WP99] did not store updated values
of the covariance inverse between iterations, and had to recompute the whole procedure for
all antennas/users at each iteration. Hence for Successive Interference Cancellation (SIC) or
hybrid schedules, this update brings significant complexity savings, with a single matrix-vector
product, two inner products, three scalar products and two scalar sums.

4.6.3.2 Scheduling

Although the messages exchanged between the factor nodes are defined, due to the multiple
cycles present on the graph a scheduling is required. A robust MUD is proposed via a flexible
structure, achieved by exploiting the presence of two loops: the first one refers to turbo-
iterations between the DECq,k,t,u and the DEMk,t,u factor nodes, while the second one refers
to self-iterations between the DEMk,t,u and the OBSk nodes.

Within each turbo iteration τ ✏ 0, . . . , T , each user u’s data is decoded successively,
with the information provided by variable nodes dk,t,u to the factor node DECq,k,t,u (i.e.
Le♣dq,k,t,uq), for q ✏ 1, . . . , Q, k ✏ 1, . . . ,K and t ✏ 1, . . . , Tu. A natural ascending decoding
order is used, for notation convenience, but in practice, a reliability-based ordering could be
used [TV05].

In detail, while decoding a user u, the factor nodes OBSk, DFTxt,u and DEMk,t,u are
updated in a parallel scheduling, for joint ISI, MAI and MUI cancellation, and detection
of data symbols xk,t,u. This is enabled by factor node DEMk,t,u’s extrinsic outputs xd

k,t,u,
computed with prior inputs from DECq,k,t,u of users u✶ ➔ u already decoded in the current
turbo iterations, and prior inputs of users u✶ ➙ u, decoded in the previous turbo iteration.
Messages between OBSk, DFTxt,u factor nodes and between DFTxt,u and DEMk,t,u factor
nodes are self-iterated, for all k, t, u, for improving uth user’s detection by processing all users,
with s ✏ 0, . . . ,S denoting self-iterations. At initial self iteration, s ✏ 0, OBSk, DFTxt,u and

DEMk,t,u factor nodes’ messages are reset with, in particular xe♣s✏0q
k,t,u ✏ 0 and v

e♣s✏0q
k,t,u ✏ �✽.

When s ✏ S, current self iterations messages on users other than u are discarded, and their
variable nodes are reinitialized to their previous values from factor node DECq,k,t,u, whereas
the user u’s data are given to DECq,k,t,u by DEMk,t,u.

Selection of S and T allow for a control over the processing latency and the required
computational complexity. As self iterations of a FD MUD consist of detection (with single-
tap filters) and demapping, they are computationally less complex than decoding, and this
makes turbo iterations less desirable.

Combination of the simplified messages from the previous subsection with this schedule,
yields the proposed low-complexity MUD with hybrid IC, displayed on Figure 4.27, which
extends FD SILE-EPIC to MU-MIMO spatial multiplexing.
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R
{xe

t,U}t
Soft Demapper XU

Le (DU )
Π(U)−1

La (cU )

{xd
t,1}t Damping

β
Gauss.

Division

Soft Map

X1

Lp (D1)
Π(1)

Le (c1)

{xd
1,U}t Damping

β
Gauss.

Division

Soft Map

XU

Lp (DU )
Π(U)

Le (cU )

K-Point

FFT

Bank

K-Point

IFFT

Bank

Soft

Decoder

C1

Soft

Decoder

CU

MMSE

One-tap

Filterbank

fk,r,t,u

Regenerate

Interfer-

ence

hk,r,t,u

+

+

σ2
w

H

+

+

b̂1

b̂U

EP-based Demapper/Mapper

..

. R ant.
..
. U users . . .

..

.
..
.

..

.

..

. . . . . . . . . .. . .

..

.

..

.

..

.{Pk,t,u}k,t,u

{(xe
t,u, v

e
x,t,u)}t,u

{(µµµt,u, γx,t,u)}t,u{vdx,t,u}t,u

{vex,t,u}t,u

{x∗
t,1}t

{v∗x,t,1}t

{v∗x,t,U}t

{x∗
t,U}t

+

+

−

−

Figure 4.27: Proposed iterative MU-MIMO SC-FDMA receiver with bin-wise filterbank and
interference cancellation based on EP.

4.6.3.3 Performance Analysis

In this subsection, the proposed MUD extension of FD SILE-EPIC is compared in terms of
finite-length BER performance with similar bin-wise FD receivers from the literature, which
all the same order of complexity for filter computation (per self and turbo iteration).

Comparison with Prior Works and the Impact of Scheduling As references, LE-
EXTIC, and its APP-based variant LE-APPIC [Wit+02; VBC06] are considered. Among
recent structures, we consider the self-iterated LE with APP feedback SILE-APPIC [Tao15;
BT05] (denoted “Subopt SD-FDE-SIC-III” in [Tao15]). Note that, for fair comparison, SILE-

APPIC is extended to multi-antenna users, and all receivers use our proposed hybrid schedul-
ing with random interleavers.

In this paragraph we consider SC-FDE signalling with K ✏ N , with the scenario from
[Tao15], with two single-antenna users, where a 2-antenna MUD, and a non-systematic
convolutional encoder r17, 13s8 are used, in a generalized AWGN Proakis B channel. Up
to two self-iterations are considered with the exponential smoothing damping parameter
β ✏ max♣0.3, 0.5✂♣0.8qs�τ q, and average BER performance per user is plotted in Figure 4.28.

In Figure 4.28-(a), interference is mitigated with a PIC schedule, as in [Tao15], i.e. with
simultaneous detection over antennas in each SI, and simultaneous decoding of all antennas
in each turbo-iteration. Our proposal displays remarkable gains over APP-based prior work,
with over 2 dB and 2.5 dB gains at 4 TIs, at BER ✏ 10✁5, with respectively 1 and 2 SIs.

In Fig. 4.28-(b), the MAI is mitigated with the proposed hybrid PIC/SIC schedule, which
is expected to converge faster. Our proposal outperforms concurrent structures for all TI,
with over 1.5 dB margin for BER ✏ 10✁5. Moreover, SILE-APPIC with either SIC or PIC,
at 4 turbo-iterations, is outperformed by either 1-SILE-EPIC with T ✏ 1 with PIC or SIC.



4.6. Extension to Multi-antenna and Multiple Access Systems 209

7 8 9 10 11 12 13 14 15 16
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

A
b
e
ra
g
e
B
E
R

p
e
r
a
n
te
n
n
a

 

 

7 8 9 10 11 12 13 14 15 16
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

 

 

LE-EXTIC
LE-APPIC
SILE-APPIC
1-SILE-EPIC
2-SILE-EPIC

No Turbo Iter.
1 Turbo Iter.
4 Turbo Iter.

(a) Parallel Interference Cancellation schedule (b) Successive Interference Cancellation schedule

Figure 4.28: BER in AWGN Proakis B with 16-QAM, U ✏ 2, R ✏ 2 and T1 ✏ T2 ✏ 1
(0 TIs: dash-dotted, 1 TI: dashed, 4 TIs: plain).

Table 4.3: Computational costs for the QPSK scenario in Figure 4.29

Receiver
Costs SNR (dB) Total Costs

per TI 1 TI 3 TIs 1 TI 3 TIs

LE-EXTIC 4.739e5 10.8 6.7 2.1e6 4.0e6

LE-APPIC 4.746e5 9.1 6.1 2.1e6 4.0e6

SILE-APPIC 9.070e5 7.8 5.6 2.9e6 5.8e6

0-SILE-EPIC 4.452e5 10.8 6.7 2.0e6 3.9e6

1-SILE-EPIC 8.559e5 7.2 5.1 2.8e6 5.6e6

2-SILE-EPIC 12.665e5 6.8 4.8 3.7e6 7.2e6

Asymptotically (T ✏ 4), SIC improves our proposal’s BER around 0.5 dB over PIC, but SIC
with 1 turbo-iteration is shown to significantly outperform alternatives, which provides an
attractive compromise of fewer decoder iterations, but increased detector iterations, to provide
interesting complexity-performance options, especially when using powerful decoders.

Spatial Multiplexing for MU-MIMO with SC-FDMA Finally, we evaluate the through-
put of two MU-MIMO spatial multiplexing schemes. Two users, with two spatially uncor-
related antennas each, transmit over the EQU4 channel, which has four equal power taps
following Rayleigh statistics. Localized-FDMA is used, with K ✏ 256 and N ✏ 512.

In the first scenario, an under-determined system with a MUD with R ✏ 2 is considered.
Thanks to IC with STBICM, such situations become resolvable [Ton00]. User throughput,
using QPSK with a r1, 5④7s8 encoder, is plotted on the left side of the Figure 4.29. Our
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proposal, with β ✏ 0, requires 0.5 - 1 dB less energy than FD-SILE-APPIC for achieving
1 bit/s/Hz.

At the right side of the figure, a more conventional situation with R ✏ 4, and 16-QAM
constellation, using the same channel encoder is considered. In this case, the interest of our
receiver is more prevalent for T ✏ 0 with over 1 dB gain at 2 bits/s/Hz. Note that, in both
schemes, MUDs without SIs have a significant disadvantage.

In Table 4.3, the computational costs are given in the number of required FLOPs. The
required SNR for reaching 1 bits/s/Hz, and the total detection and decoding FLOPs at the
reported turbo-iteration are given in the latter columns. It is assumed the proposed MUD uses
the matrix-inversion scheme of Section 4.6.3.1, whereas prior works use the one of [Yua+08].
First, 0-SILE-EPIC, equivalent to LE-EXTIC, shows 6% complexity savings thanks to our
update scheme alone. Moreover, it is seen that self-iterations do not cost much (relative to
decoding), and 2-SILE-EPIC with 1 turbo-iteration, is 10% less expensive but offers similar
performance as LE-EXTIC with 3 turbo-iterations.

4.6.4 Discussion

A novel multi-user detector is proposed that exploits the expectation propagation frame-
work, to jointly mitigate MAI and ISI. By writing the factor-graph model of this MIMO
spatial multiplexing system and applying the DL-SEP framework, a low-complex MUD is
obtained. Indeed, the key element of our proposal, is enabled again by the EP-based mes-
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Figure 4.30: Equivalence of UW SC-FDE to SC-FDE with Zero Padding (ZP).

sage passing with statistically whitened Gaussian distributions, which yields simple bin-wise
equalization filterbanks. Moreover, an efficient matrix inversion scheme from the literature
is optimized for iterative MUDs, in order to further reduce the amount of computations for
filter design.

Through finite-length and asymptotic analysis, it is seen that the proposed structure
outperforms other bin-wise FD MUD, and attests the importance of a feedback computed by
using EP. Improvements are seen to be remarkable in especially highly selective channels.
It is shown that exploiting a self-iteration loop between demapping device and the MUD
can improve performance at lesser costs than decoding, and provides novel options for MUD
design. Moreover EP-based SIs are seen to be more efficient than APP-based alternatives.

4.7 Impact of Channel and SNR Estimation

In this section, the performance of the proposed FD SILE-EPIC with imperfect channel
estimation is evaluated. These aspects will be considered through the use of Unique Word
(UW)-padded SC-FDE transmissions, which enable the use of practical CIR and Signal to
Interference and Noise Ratio (SINR) estimation algorithms at the receiver, among others, as
shown in Figure 4.30. In particular, a FD CFR and SINR estimation method is presented and
the concepts of mismatched and robust receivers are discussed for the case of the proposed
doubly-iterative turbo equalizer. The impact of CIR and SINR estimation on self-iterations
is also discussed.

4.7.1 On Channel Estimation for SC-FDE with Unique Word

UW sequences are often chosen to have good deterministic auto-correlation properties
in order to reduce the complexity of channel estimation. Hence we assume a KP -symbol
training sequence xP is available, such that its circular auto-correlation with its k-cyclic
shifted sequence is KP δrks, where δr☎s is the Kronecker’s delta function. This can be satisfied
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with Zadoff-Chu sequences for instance.

Thus, the baseband FD observations for pilot symbols are yP ✏ XPhP � wP, where
XP ✏ Circ♣xT

Pq, is the circulant matrix whose first column is xT
P, wP, and hP ✏ rh; 0KP✁L,1s

and with the KP -point DFT, frequency domain observations are

y
P
✏ XPhP � wP, (4.83)

with XP ✏ FKP
XPFH

KP
, hP ✏ FKP

hP, and wP ✏ FKP
wP, which is assumed to be AWGN.

The auto-correlation properties of the training sequence satisfy XPXH
P ✏ XH

P XP ✏ KP IKP
.

In this system, the CIR is interpolated respectively to KP and to K point CFRs for pilot
and data observations. To model this more succinctly, we denote the truncated DFT matrix
F ✶

K ✏ FKrIL; 0K✁L,Ls, of size K ✂ L such that

hP ✏ F ✶
KP

h, h̃ ✏ F ✶
Kh, (4.84)

where h is TD CIR. Note that while F ✶
K

HF ✶
K ✏ IL, F ✶

KF ✶
K

H is a non-diagonal matrix. Then
pilot and data observations are rewritten as

y
P
✏ APh̃ � wP, y ✏

❄
Kh̃ ❞ x � w, (4.85)

where AP ✜ XPF ✶
KP

F ✶
K

H . In this section, we consider the use of a least-squares criterion
on channel estimation, by assuming a complete lack of prior knowledge on h. Hence the
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frequency-domain channel estimate h̃
LS

is given by

h̃
LS
✜ ♣AH

P APq✁1AH
P y

P
, (4.86)

vLS
h ✜ ♣AH

P APq✁1σ̄2
w, (4.87)

with vLS
h being the estimation error variance caused by the channel noise. By neglecting

correlations caused by DFT interpolation, i.e. with ♣AH
P APq✁1 ✓ K✁1

P IK .

4.7.2 Mistmatched FD SILE-EPIC

The first case for receiver design would be to consider h as a parameter whose true value
is the least-square estimate used above. In this case, one could consider the PDF of h as
p♣hq ✏ δ♣h✁ h̃

LSq which enforces the value of the estimate for receiver design, which ends-up
becoming mismatched to the true channel.

In Figure 4.31, the BER performance of a mismatched receiver is considered for 8-PSK
transmissions with K ✏ 256, for Eb④N0 ✏ 17 dB, in the Proakis C channel, as a function
of the pilot transmission overhead. In this case, channel estimation errors are artificially
generated with the Gaussian process CN ♣0L✂1, v

LS
h IKq being added to the true channel at

each Monte-Carlo step. More specifically, the overhead is defined as KP ④K, and the proposed
FDE proposed in Section 4.3.2 is evaluated for different values of turbo and self iterations. It
is seen that, for a target BER of 10✁2, a significant reduction of overhead is achieved thanks
to EP-based self-iterations; while baseline FDE with 2 turbo-iterations requires around 19%
overhead for channel estimation, using our proposal, one turbo and one self iteration requires
only 8% overhead, and one self and 2 turbo iterations requires 4%. Thus PHY data frames
with shorter number of pilot symbols could be designed to increase spectral efficiency, thanks
to the use of double loop scalar EP based framework.

4.7.3 Robust FD SILE-EPIC

An alternative approach tries to account for the channel estimate uncertainty in filter
design, by modelling the PDF of h as p♣hq✾ CN ♣h̃LS

, vLS
h IKq, which causes changes in the

filter-computations by replacing the noise variance by σ̄2
w � σ2

xv
LS
h . This technique is known

as the robust implementation of the equalizer.

In Figure 4.32, the performance of mismatched and robust receivers are compared for
BPSK transmissions with K ✏ 2048. In this case CAZAC sequences are used to carry out
channel estimation for KP ✏ 16 and KP ✏ 50 symbols (including 5 symbol CP, not used in
estimation), over the Proakis C channel. It is seen that robust structures have little to no
effect when KP ✏ 50 as the variance of the channel estimates is not very high.

While self-iterations improve the PER performance, especially, when turbo-iterations are
unavailable, when comparing the use of perfect CSI performance (genie estimate) with the
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Figure 4.32: BPSK channel estimation with KP ✏ 16 pilots at left, KP ✏ 50 pilots at right.

EP-based receiver, there is still a considerable gap that needs to be to be reduced, which is
left for future work on channel estimation.
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4.8 Conclusion

This chapter starts by outlining the computational benefits of FD receivers and then moves
on to investigate a message passing technique; based on EP [Min01]. Indeed, having discussed
in Chapter 2 the advantages of using scalar EP message passing for doubly-iterative turbo
equalization with improved performance and predictability, here we theoretically investigate
on their benefits for single-carrier FDE and its extensions.

It is shown that, thanks to the better stability of scalar EP messages, with regards to
extrinsic parameter computation, receivers derived with this framework can nearly perform
as efficiently as their TD block filter-banks [SMF+17a]. Similarly to the previous chapter, the
use of EP-based self iterations bring significant performance improvements at the high data
rate applications. Moreover, based on the previously established behaviour of AMP based
algorithms and on emerging techniques in deep learning, it is shown that this FD receiver
can be further optimized by casting into a deep networks and learning damping parameters
through an original turbo-oriented cost function.

Furthermore, extensions of this framework for more complex SC waveforms is discussed,
such as SC-FDMA or fractionally-spaced equalization, handling time-varying channels with
overlap FDE and a multi-user MIMO non-orthogonal access use-case, with spatial multiplex-
ing. And finally, the impact of channel estimation is investigated on the behaviour of this
category of receivers.
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5.1 Introduction

In this final chapter of this thesis, we will discuss methods for the system-level evaluation
of advanced receivers’ impact on a cooperative MANET. As previously addressed, in the
introductory context chapter, although there are various cross-layer cooperative protocols for
MANETs, their fair comparison would require precisely evaluating the impact of protocol
overhead and receiver limitations on a realistic channel model. However, carrying this out
with a complete PHY simulator would cause unpalatable simulation costs, in time or compu-
tational resources, which creates the need for lightweight but relatively accurate PHY layer
and channel abstraction techniques.

To address this problem, this chapter brings various contributions, summarized as follows:
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• a cross-layer simulation framework is proposed, that accounts for the unconventional
characteristics of distributed cooperative transmissions in MANETs by modelling the
positive and negative impacts of non-orthogonal access on the physical channel,

• existing techniques for the semi-analytical prediction of turbo equalizers [VB+10] are
briefly reviewed and applied to the doubly-iterative Frequency Domain (FD) EP based
receiver of the Chapter 4 receiver, by extending state-evolution techniques used in ap-
proximate inference (see Chapter 2),

• an original idea is developed for improving the finite-length prediction of iterative BICM
receivers, by analysing the impact of soft feedback’s dispersion on this receiver.

The contributions on the semi-analytical prediction of FD SILE-EPIC constitute the major
innovative contributions of this chapter, and the simulation framework provides a means for
illustrating its value for communications system design.

More explicitly, the value of prediction techniques is illustrated for distributed cooperation
technique that is very attractive for MANETs: cooperative broadcast. In this context, the
advantages of this cross-layer protocol, and the ensuing challenges are exposed by analysing its
impact on the physical channel, through a novel stochastic model on the frequency-selective
channel properties of cooperative broadcasting. Finally, the importance of advanced PHY
receivers for such protocols is illustrated within some tactical MANET context, with some
off-the-shelf error correction codes.

5.2 A Cross-layer Simulator for Cooperative MANETs

The level of abstraction used by conventional system-level simulators is often limited to
assimilating a link between nodes u and v to a Packet Error Rate (PER) metric PERu,v, that
is estimated by taking in consideration the instantaneous received SINR, denoted SINRu,v.
In particular, when multiple nodes simultaneously transmit in the same frequency resources,
typically, either signals from all interfering nodes are assimilated to noise, or, if the receiver
posses a MUD, SIC decoding model is used.

However, these cases do not enable system-level evaluation of cooperative protocols at the
PHY layer, where relaying with coherent signals can take place, if relay links get activated,
depending on the ongoing network configuration and channel state. To this end, system-level
simulators need to be re-thinked, by not only keeping track of codeword-based performance
metrics, in order to be able to detect and model coherent signal combining at the PHY. More-
over, simultaneous transmissions in real-world channels only results in coherent combining,
if the signal is sufficiently narrowband. Otherwise, signals relayed over frequency-selective
channels, and with propagation delays, create intra-signal interference such as ISI, IBI or
ICI, which takes place on the “cooperative link” [Ram05]. In this case, PHY receiver may be
able to recover some amount of interference, by mitigating the composite Channel Impulse
Response (CIR) of the cooperative link, which is another behavior that needs to be modelled.
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Figure 5.1: Simulation framework for cross-layer cooperative protocols.

Recalling the vocabulary used for describing the network model in Figure 1.3, we consider
the simulation framework illustrated in Figure 5.1. The metrics exchanged between PHY
and MAC protocols, and the channel simulator, enable tracking the states of each payload,
transport block and data block, and keep the underlying links between them (segmentation,
network or channel coding). Moreover, the PHY layer cooperative link abstraction module

• identifies transmitted data blocks that combine coherently, and those that remain as a
noise-like interference, at each dwell, for each receiving radio,

• computes the composite or “artificial” Channel Impulse Response (CIR), corresponding
to the data that coherently combine, seen at each receiving radio,

• tracks baseband channel state for each received data block, at least for the duration of
a MAC slot, in order to be able to perform code combining or SIC, in upcoming dwells.

5.2.1 Protocol and Network Model

Reconsidering the network hypotheses of Section 1.2.3, let us recall that a time-frequency
resource grid is available (see Figure 1.3), where
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• Tframe is the duration of a MAC frame, during which access operations required by the
protocol are periodically carries out,

• Tslot is the duration of a MAC slot, which is the minimum duration of an access opera-
tion, such as transmitting, receiving or remaining idle, such that Tframe ✏ N frame

slot Tslot,

• Tdwell is the lowest granularity of time resource, from the protocol’s point of view, during
which PHY layer carries out its elementary operations, such that Tslot ✏ N slot

dwellTdwell.

Hence the simulator operates as a three-loop algorithm, with the loop on frames being the
main loop, followed by a loop on slots during which protocol access operations are sequentially
scheduled, and finally a loop on dwells, for simulating the PHY layer protocol, along side a
realistic channel and mobility model.

Let us recall that, at any slot ℓs, at the MAC layer there is a set of transmitting node set
Ztxrℓss (sources), receiving node set Zrxrℓss (destinations), such that for all u P Zrxrℓss, there
exists the set of radios whose messages are to be decoded by u, Zu,decrℓss. In this regard,
MAC assigns users to these sets depending on the protocol, and generates transport blocks at
the transmitting nodes from available payloads, and assigns transmit powers. For simplicity,
in this thesis we do not address resource allocation problems, and we simply assume that
frequency resources correspond to different Frequency Hopping (FH) bands, which change in
a pseudo-random manner from one slot to another.

At the PHY level, the protocol operates similarly, such that at each dwell ℓd of each slot
ℓs, PHY also assigns radios to transmit and receive sets, depending on the operating mode of
the cooperative protocol. PHY also assigns the channel, depending on the FH state, for each
data block x♣bq

u to be transmitted.

5.2.2 Channel Model and Cooperative Link Abstraction

Considering the protocol model above, NFH channels are simulated, for each user-destination
link, under the assumptions that frequency hopping bands are decorrelated. For each fre-
quency band, and each dwell, a statistical quasi-static channel model is simulated, with
small-scale aspects being generated following the guidelines of Section 1.3, and Appendix A,
by keeping track of each node’s velocity, for temporal correlations. Large scale features are
simulated by keeping track of nodes positions, in order to compute path-loss, and eventually
use the model of [Fis+13a] for incorporating shadowing.

In the end, for each pair of nodes u and v, a Channel Impulse Response (CIR) hu,v is
obtained at each dwell, and if a same data block is transmitted by multiple nodes, then their
CIRs are combined by accounting for the propagation delays between cooperating nodes.
For simplicity this operation is performed over the samples of the upsampled channel model,
which is later filtered by shaping filters to obtain the equivalent “useful” baseband channel
model. Similarly, for each interfering data block, interference CIRs are computed by the CIR
of different transmitting nodes.
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Thanks to this identification of useful and interfering links, cooperative transmissions
are modelled with better fidelity, by accounting for the composite useful CIR obtained by
simultaneously transmitting nodes, and similarly obtained interfering CIR, caused by the
transmission of data blocks sent for other users. Instead of tracking SINR, tracking the
couple of useful and interfering CIR enable using semi-analytical PHY abstraction models for
prediction.

5.3 FD SILE-EPIC Abstraction for System-Level Simulations

PHY receiver and physical link abstraction play a major role in wireless communication
system design, whether it be for system-evaluation [Bru+05; RV05], or for link-adaptation in
radio-resource management [Jen+10]. In system-level simulators there can be a large num-
ber of simultaneously active links, which is further increased when a cooperative protocol is
involved. Hence to avoid evaluation of each individual link with a complete PHY layer simula-
tor, it is preferable to predict the deployed radio behavior given an instantaneous topology, a
transmission protocol and physical channel states. In this perspective, the physical-layer link
abstraction is of crucial importance, and it has led to a significant amount of research from
the academia [Rou+01], the industry [Bru+05] and the standardization institutions [3gpc;
Ieea; Ieeb]

In this section, we seek an abstraction model for the low-complexity double-loop scalar
EP based Frequency Domain (FD) turbo receiver from the Chapter 4. To this end, we first
briefly overview the broad developments on links abstraction in order to identify key elements
for successful models. Following this step, we conclude that an asymptotic semi-analytic
evolution model of FD SILE-EPIC is needed to be used along with the joint demapping
and decoding model of [VB+10]. An asymptotic model is obtained by revisiting the EXIT
model (see Section 2.3.6) of this receiver, along with considerations from the state-evolution
techniques of AMP-like algorithms (see Section 2.4.4), and finally, we discuss the accuracy of
the resulting finite-length abstraction scheme.

5.3.1 On PHY Link Abstraction for Classical Receivers

Link abstraction strategies for classical non iterative receivers consists in determining
the post-equalization Signal to Interference and Noise Ratio (SINR) from available channel
parameters and to assimilate the equalizer output to an AWGN channel. Moreover, the Packet
Error Rate (PER) versus SNR of the channel decoder in an AWGN is evaluated off-line to
generate a Lookup Table (LUT), which can be then combined with the post-equalization
SINR estimation technique to predict the overall receiver behavior.

However, in many wireless systems, a codeword is transmitted over different dwell periods,
frequency bands or antennas, for increasing the link diversity [Bru+05; Ieea]. This would be
the case in this thesis with the considered TDMA MANET where B → 1 data-blocks are
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transmitted per codeword. In this case, it is non-trivial to propose a simple semi-analytical
model, unlike the B ✏ 1 case described in the previous paragraph. Hence, widespread pre-
diction approaches rely on an approximation based on SINR “compression”, which consists
in combining signal quality indicators of data blocks from different diversity sources (time,
space, frequency etc.) into a scalar codeword quality indicator. This is called the Effective
Signal-to-noise Metric (ESM) compression [Bru+05; Jen+10; Van+15], and it is then used to
identify the corresponding PER of the channel decoder, thanks to off-line generated LUTs.

Exponential ESM (EESM) [Lam+03] and Mutual Information ESM (MIESM) [Bru+05]
figure amount the most common approaches. While EESM is more adapted to optimization
problems in resource management (as it has analytical closed-form expressions), it requires
a significant amount of calibration [CVS08]. MIESM is more accurate and requires less
calibration heuristics, thus it is better-suited for prediction within a system-level simulator.

5.3.2 On PHY Link Abstraction for Iterative Receivers

The predictability of the iterative detection dynamics is of significant importance both
for facilitating algorithm design of advanced receivers, and for physical layer link abstraction.
For instance, as previously evoked in Section 2.3.6, in channel coding, density evolution was
proposed for tracking the dynamics of PDFs of exchanged bit LLRs between SISO modules
[RSU01; BC02]. We have seen that EXIT analysis [TB00] simplifies this problem to an
asymptotic single-parameter tracking problem, and it enabled tracking the achievable rates
of SISO detectors and it also enables the asymptotic prediction of decoders BER or PER
performance across turbo-iterations.

When considering the use of EXIT for predicting the behavior of the considered MANET
model, where a codeword is subject to P independent channel realizations due to fading and
frequency-hopping [KH00], the receiver’s EXIT function becomes an at least B-dimensional
function. Analyzing receiver behavior under such circumstances requires numerical Monte
Carlo integration over each dimension, during the EXIT function synthesis. Moreover, when
the receiver has configurable parameters, the dimensionality of the EXIT function further
increases. Considering the computations involved during the EXIT function synthesis (see
Section 2.3.6), this curse of dimensionality can hinder their efficiency for predicting the be-
havior of turbo receivers in MANETs.

This issue has been addressed for SISO MMSE LE-IC [TS11], by evaluating many ana-
lytical and numerical alternatives to detector’s complete EXIT function, by using analytical
approximations and channel-independent average-MI based EXIT models of its sub-blocks
[KM07; YGP07; VB+10].

In particular [LSS03] proposes a semi-analytical method where an affine analytical approx-
imation of the receiver’s EXIT function is shown to predict accurately linear turbo equalizer
asymptotically (for large blocks) for BPSK constellation. [RV05] captures equalization model
analytically up to the SINR of extrinsic LLRs, then uses only numerical EXIT model to handle
the decoder behavior at the bit-level. [KM07] considers the prediction of turbo FD LE-EXTIC
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with general QAM signals, by modeling the equalizer and the demapper output LLRs analyt-
ically, through an approximation of the constrained BICM capacity, the decoder is modeled
with EXIT and a MI-to-variance mapping model is used for the turbo feedback. Alternatively,
[SF09] aims for the finite-length prediction of turbo FD LE-EXTIC and proposes analytical
models for Gray-mapped QAM constellations, with finite-length BER transfer charts.

Although these methods semi-analytically simplify the SISO detector (equalizer) model,
they still suffer from computationally prohibitive multi-dimensional EXIT models at the de-
coder. This aspect is handled by using an MIESM technique in [YGP07], which studies turbo
FDE and FD MIMO detectors. Receiver behavior is captured by a completely analytical
modeling the equalized BPSK/QPSK symbols’ behavior, and the decoder is modeled through
a SINR-variance transfer function.

The contributions above do not use prior information appropriately at the symbol-wise
demapper, as devised in [BSY98], which is primordial for exact MAP symbol detection on
non-Gray mapped constellations. [VB+10] includes this aspect and unifies the contributions
above, through formal modeling of the STBICM joint detection and decoding with binary and
symbol-wise perspectives, using a finite-length EXIT at the decoder. Their model is applicable
on linear turbo detectors that could either use extrinsic decoder covariance (LE-EXTIC), or
APP decoder covariance LE-APPIC, with the latter requiring a calibration procedure for
reasonable accuracy.

An important contribution of this reference is the accentuation of the importance of
symbol-wise joint demapping and decoding model for accurate tracking of asymptotic turbo
detection dynamics. Indeed, their binary method carries out MIESM on coded bits’ MI, and
allows decoupling of mapping from channel coding, while their symbol-wise method jointly
models of the demapper and the decoder, and uses symbol-wise MIESM compression with
constrained coded-modulation capacity. This approach is more accurate as it captures aspects
of finite-length constellations and mapping that does not fit with the assumption required for
prediction through EXIT functions (see Assumption 2). This method has later been extended
to provide link abstraction for studies carried out on 3GPP standard [NVB13; 3gpc].

5.3.3 FD SILE-EPIC with Finite-Length Prediction

In the remainder of this section, the baseline prediction techniques will be extended for
the FD SILE-EPIC turbo receiver, illustrated in Figure 4.3. To this end, first, an asymptotic
evolution analysis model for this equalizer is developed, to enable semi-analytical prediction
of the SISO detector, with non-analytical LUTs being independent of the channel, and then
the joint demapping and decoding approach of [VB+10] is extended to this receiver.

Indeed, as it has been observed in Chapters 3 and 4, that these turbo-iterative receivers
that exploit APP soft estimates as feedback for IC suffer from various predictability and
significant error-propagation issues. Similar observations have also been made in [Ma+18;
Li+19] very recently. These disadvantages are less of a concern with EP-based receivers.
Indeed, as evoked in Section 2.4.4, message-passing with EP is shown to be asymptotically
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Figure 5.2: EXIT evolution analysis model for the receiver.

predictable through asymptotic MSE state-evolution functions [Tak17; ÇO18], thanks to its
divergence-free “decision device” [Ma+18]. However these proofs are limited to Gaussian IID
channels, and predictability of EP in general is only an experimental conjecture, as seen in
previous chapters with EXIT charts and asymptotic MI trajectory prediction.

5.3.3.1 Asymptotic Evolution Analysis for FD SILE-EPIC

In this subsection, a novel extrinsic information evolution analysis method is proposed,
which simplifies the receiver’s EXIT function into independent inner transfer functions. The
core idea is to track state-evolution dynamics of EP through numerically stable Extrinsic
Variance to Information Transfer (EXVIT) functions. These symbol-wise transfer functions,
along with an analytical receiver model constitutes a novel evolution analysis method which
depends only on channel independent LUT, and analytical closed-form expressions. In the
case of BPSK and Gray-mapped QPSK constellations, a full analytical model can be derived
and remove the need for generating LUTs. The asymptotic prediction capabilities of this
method is illustrated with numerical results.

The Limitations of EXIT Analysis The detection dynamics of EP-based BICM receivers
have already been partially investigated in the previous chapters, through extrinsic message
evolution analysis, in order to deduce achievable rates in the case where B ✏ 1. In the PHY
model considered in this chapter with multi-block transmissions with FD SILE-EPIC receiver,
the EXIT functions of the receiver and the decoder in Section 2.3.6 are replaced as follows

I
♣b,τq
E ✏ TREC♣I♣τqA ; h♣bq, σ♣bq2w , β♣τ,0q, . . . , β♣τ,Sτ qq, b ✏ 1, . . . , B, (5.1)

I
♣τ�1q
A ✏ TDEC♣I♣1,τq

E , . . . , I
♣b,τq
E , . . . , I

♣B,τq
E q, (5.2)

and Figure 5.2 illustrates this model. However as TREC depends on inner iterations and its
damping parameters, an EXIT function has to be computed for each possible configuration.

Synthesis of EXIT functions for evolution analysis of SISO receivers can be impractical
as numerical integrations need to be carried out for each possible channel realization. As
seen above, for FD SILE-EPIC, the number of self-iterations and the damping add additional
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static parameters which further increase the dimensionality of the EXIT generation procedure.
To alleviate this issue, we aim to decompose TREC into a set of functions with a symbol-wise
evolution analysis method is proposed here, removing the dependence of the synthesis process
on channel and on inner loop parameters.

The asymptotic behavior of some EP-based algorithms has previously been investigated
through state evolution where MSE on extrinsic estimates are tracked, but here, the BICM
context with the SISO demodulator with prior information, and damping brings additional
modelling complexity. To address this issue, a symbol-wise extrinsic parameter transfer model
is proposed, which consists in characterizing

• the equalizer output (demodulator input) with the modulation constrained, mutual
information I

♣bq
L of the bth data block,

• the equalizer input (demodulator output) with the covariance vd♣bq
x of the soft symbol

feedback over the bth data block.

The choice of these measures aims to ensure evolution analysis’ ability to track evolution
dynamics with sufficient accuracy, and to keep them numerically stable with values on fi-
nite intervals. Various candidate measures were evaluated for extrinsic evolution dynamics
in [TBH02]. Mutual information and second-order statistics of the extrinsic PDFs (called
“fidelity” therein) are measures that maintain accuracy, by avoiding restrictive assumptions
on the measured extrinsic PDFs. Regarding the numerical stability, we have I♣bqL P r0, Qs,
and v

d♣bq
x P r0, σ2

xs, where σ2
x ✏ 1 is the average symbol power, which enable limited interval

representation of dynamic parameters, similarly to conventional binary EXIT functions.

Transfer Function Synthesis for EXVIT Analysis As equalizer’s extrinsic estimates
are unbiased and decorrelated [Ma+18], and EP is asymptotically Bayes optimal [Tak17], the
following assumption is considered.

Assumption 3
The extrinsic symbol outputs of the bth data block’s equalizer are IID and for k ✏ 1, . . . ,K,

we have x
e♣bq
k ✏ x

♣bq
k � w

e♣bq
k with w

e♣bq
k ✒ CN ♣0, ve♣bq

x q.

Property 2
If Assumption 3 holds, then the modulation constrained mutual information between the equal-

ized symbols x
e♣bq
k and the transmitted symbols is the coded modulation AWGN with

ψX ♣ve♣bq
x q ✜ I♣xe♣bq

k ;x♣bqk q ✏ Q✁
➺

xe

log2

✄➦
xPX CN ♣xe;x, ve♣bq

x q
CN ♣xe;x, ve♣bq

x q

☛
CN ♣xe;x, ve♣bq

x q dxe.

ψX ♣☎q depends on X , and it does not have a closed form in general. It can be obtained by

using Monte Carlo integration.
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The transfer function of the equalizer satisfies

I
♣b,τ,sq
L ✏ TEQU♣vd♣b,τ,sq

x ; h♣bq, σ♣bq2w q, (5.3)

and, it is defined under Assumption 3, with the analytical transfer function

TEQU♣vd♣b,τ,sq
x ; h♣bq, σ♣bq2w q ✜ ψX

☎
✆✄ 1

K

K✁1➳
k✏0

⑤h♣bqk ⑤2
σ
♣bq2
w � v

d♣b,τ,sq
x ⑤h♣bqk ⑤2

☛✁1

✁ vd♣b,τ,sq
x ,

☞
✌, (5.4)

through the use of Equations (4.36) and (4.38). This constitutes a symbol-wise variance to
MI transfer function, as desired, and it is an extension of the semi-analytical equalization
prediction methods from the literature [YGP07; VB+10] which processes soft reliability from
the EP-based SISO demodulator.

To capture the non-linear behavior of demapping and EP-feedback computation with
an extrinsic mutual information to variance transfer function, the dynamics of the extrinsic
symbol PDF CN ♣xd♣b,τ,sq

k , v
d♣b,τ,sq
x q is tracked with

vd♣b,τ,s�1q
x ✏ TEP♣I♣b,τ,sq

L , I
♣τq
A , vd♣b,τ,sq

x ;β♣τ,sqq, (5.5)

given a value for prior information I♣τqA and on extrinsic equalizer output I♣b,τ,sq
L . In particular

the computation of the feedback and the damping procedure can be explicitly separated with
the composition TEP ✜ TDamp ✆ TEP*, with

vd♣b,τ,s�1q
x ✏ TDamp

✁
TEP*♣I♣b,τ,sq

L , I
♣τq
A q, vd♣b,τ,sq

x ;β♣τ,sq
✠
, (5.6)

such that TDamp analytically models damping heuristics, and TEP* characterizes the behavior

of CN ♣x✍♣b,τ,sq
x,k , v✍♣b,τ,sqq, obtained through a Gaussian division with Equation (4.33).

In the case where damping is carried out with an exponential smoothing, the analytical
damping model is given by

TDamp♣v✍♣b,τ,sq, vd♣b,τ,sq;β♣τ,sqq ✜ ♣1 ✁ β♣τ,sqqv✍♣b,τ,sq � βvd♣b,τ,sq, (5.7)

and the transfer function TEP*, of the raw extrinsic EP estimates is obtained with

v✍♣b,τ,sq ✏ TEP*♣I♣b,τ,sq
L , I

♣τq
A q (5.8)

such that TEP* models the extrinsic covariance v✍♣b,τ,sq of Equation (4.33), with

TEP*♣IL, IAq ✜
✔
✕✄ 1

K

K✁1➳
k✏0

TAPP,k♣IL, IAq
☛✁1

✁ 1
ψ✁1

X ♣ILq

✜
✢
✁1

. (5.9)

In the function above, TAPP,k♣I♣b,τ,sq
L , I

♣τq
A q is the expected value of APP covariance of x♣bqk ,

given the equalized estimate xe♣b,τq
k and the prior LLRs L♣d♣b,τq

k q satisfying Assumptions 1
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Figure 5.3: Proposed evolution analysis model for TREC.

and 3. Hence, given IL and IA, we have

TAPP♣IL, IAq ✜ 1
M

➳
xkPX

➺
xe

k
,Lp,k

γd
k♣xk, x

e
k,Lp,kqfγ♣xk, x

e
k,Lp,kq dLp,k dxe

k, (5.10)

fγ♣xk, x
e
k,Lp,kq ✜ CN ♣xe

k;xk, v
eq

Q➵
q✏1

CN
�
Lp,k,q; ♣1 ✁ 2ϕ✁1

q ♣xkqqJ✁1♣IAq, 2J✁1♣IAq
✟
, (5.11)
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q✏0 e

✁ϕ✁1
q ♣α”qLp,k,q

✛
, (5.12)

with Lp,k ✏ rLp,k,0, . . . , Lp,k,Q✁1s. While TEP* has no closed form expression in general, it
exclusively depends on X and on K1.

Finally, to complete the characterization of FD SILE-EPIC, SISO demapper’s extrinsic
LLR output needs to be characterized with respect to the estimates of the final self-iteration.
Following Assumption 3, the equalizer’s output is seen as an AWGN channel, thus we use the
EXIT function of a SISO MAP symbol demapper for AWGN, with

I
♣b,τq
E ✏ TDEM♣I♣τqA , I

♣b,τ,Sτ q
L q. (5.13)

In conclusion, symbol-wise EXVIT analysis consists in applying transfer functions TEP

and TEQU successively, on each block b to obtain tvd♣b,τ,Sτ q✉B
p✏1 and then tI♣b,τ,Sτ q

L ✉B
p✏1, start-

ing with vd♣b,τ,✁1q ✏ 1,❅b. Then, the extrinsic output of the overall receiver is tI♣b,τq
E ✉B

p✏1,
computed with TDEM.

Unlike EXIT analysis, EXVIT depends analytically on the channel th♣bq, σ
♣bq2
w ✉B

b✏1 and on
tβ♣τ,sq✉Sτ

s✏0. Numerical integrations are only needed for the two-dimensional TEP* and TDEM

functions, which only depend on X and on K.

1The dependence on K has no effect at this point, as TAPP,k is independent on k, but in the next section
we will get back to this point.
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Simplifying the decoder’s EXIT function The decoder’s EXIT function in Equation
(5.2) requires as many inputs as B, the number of channel realizations over the codeword,
which elevates synthesis complexity. A similar issue is noted for evolution analysis of BPSK
MIMO systems in [YGP07]. The problem is identical from the MI point of view, hence the
following assumption is made to address it.

Assumption 4
The decoder behavior is identical for inputs constituted from a LLRs of B data blocks of K

symbols, i.e. tLe♣d♣bqk q✉K
k✏1, b ✏ 1, . . . , B, and for LLRs of a single data block of KB symbols,

e.g. tL̃e♣dk✶q✉KB
k✶✏1, if they have the same average MI with respect to d.

Thus the SISO decoder’s EXIT function is reduced to single dimensional mapping with
the effective mutual information

I
♣τ�1q
A ✏ TDEC

✄
1
B

B➳
b✏1

I
♣b,τq
E

☛
. (5.14)

This operation is equivalent to performing MIESM, considering the bijective relationship
between the codeword MI and the post-equalization variance through ψX .

Analytic evolution analysis for BPSK/QPSK This section provides analytical deriva-
tion of TEP* for BPSK constellation (extension to Gray-mapped QPSK is straightforward), in
order to provide an analytical approximation to the computationally intensive numerical inte-
grations within TAPP. Due the symmetry of the constellation, and IID LLRs, γd

k♣x, xe
k, Lp,kq ✏

γd
k♣1, xe, Lpq, xe ✏ 1� we, we ✒ N ♣0, veq, and Lp ✏ µp � wp, with wp ✒ N ♣0, 2µpq. Then

γd♣we, wpq ✜ γd
k♣1, xe, Lpq ✏ 1✁

✞✞✞✞tanh
✂

1
2
♣µd � wdq

✡✞✞✞✞2 , (5.15)

µd ✜ µp � 2④ve, wd ✜ wp � 2we④ve, (5.16)

with µp ✏ J✁1♣IAq, ve ✏ ψ✁1
X ♣ILq ✏ 2④J✁1♣ILq. Thus, we have wd ✒ N ♣0, 2µdq and

TAPP♣IL, IAq ✏ 1✁
➺

wd

✞✞✞✞tanh
✂

1
2
♣µd � wdq

✡✞✞✞✞2 N ♣wd; 0, 2µdq dwd.

and the Gaussian integrals therein can be approximated analytically with an nth
q order Gauss-

Hermite quadrature [SBG69], with

TAPP♣IL, IAq ✓ 1✁
nq➳
i✏1

2i✁1i!
i2H2

nq✁1♣xiq
✞✞✞✞tanh

✂
1
2
♣µd � 2

❄
µdxiq

✡✞✞✞✞2 , (5.17)

where xi is the ith root of the Hermite polynomial Hnq♣Xq. Experimental analysis indicates
that using a small value for nq creates issues at operating points close to ♣vd, IL, IAq ✏ ♣0, 1, 0q,
and that nq ↕ 20 is precise for IL ↕ 0.95.
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Figure 5.4: EXIT & EXVIT functions with r1, 5④7s8 recursive convolutional code.

Numerical Results and Discussion In the following, BPSK and QPSK EXVIT functions
are evaluated analytically, with nq ✏ 15, and 16-QAM EXVIT, and all EXIT functions are
given by Monte-Carlo evaluations.

First, the accuracy of the proposed EXVIT model is evaluated by comparison with the
measured MI trajectories of a coded BPSK system with Kb ✏ 16384 and B ✏ 1. The closeness
of transfer functions to the measured MI trajectories indicates the accuracy of an analysis
method. Equivalent EXIT functions in Proakis C channel, r0.23, 0.46, 0.69, 0.46, 0.23s, are
plotted in Figure 5.4, for a SNR of 5 dB. Both EXVIT and EXIT transfer functions appear
to be close the MI trajectories for the first few turbo-iterations, hence both methods manage
to predict initial turbo-iterations fairly well. Besides, there is a relatively slight difference
between both curves, hence they would predict similar decoding thresholds or achievable
rates.

Next, to assess the accuracy of EXVIT for predicting more quantitatively, transmissions
of Kb ✏ 16384 bits over a 10-tap Rayleigh fading channel with uniform power profile is
considered with β ✏ 0.3. The codeword, obtained with the recursive convolutional code
r1, 5④7s8 is subject to B ✏ 8 channel realizations, and the decoder’s BER and PER are
quantified with regards to its input prior information. Finite-length simulations are plotted
with solid lines on Figure 5.5, and EXVIT is used to track the evolution of the extrinsic
information of the equalizer, which is fed into the decoder, and to predict the corresponding
error rate performance. Predictions are carried out on each channel realization on which
that actual PHY layer is simulated, and the average predicted BER and PER are plotted.
Predictions appear to be close to the actual Monte-Carlo simulations, for QPSK and 16-
QAM constellations, at the zeroeth and the first turbo-iterations. These results attest to the
accuracy of the proposed method.
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Figure 5.5: BER and PER prediction with analytical EXVIT.

In conclusion, a symbolwise extrinsic analysis method for an EP-based, highly non-linear
receiver is proposed. This approach replaces the EXIT function of the receiver, with inner
EXVIT functions having analytical dependence on the channel and the receiver parameters.
The receiver is shown to be predicted with adequate accuracy over multi-block channels only
with a few numerical integrations and independently of the modulation format.

5.3.3.2 Semi-Analytic FD SILE-EPIC Prediction with Joint Demapping and
Decoding

In this subsection, the prediction scheme of [VB+10] is extended to handle double-loop
scalar EP dynamics, through the use of the asymptotic analysis method proposed in the
previous subsection. The schematic of this semi-analytical finite-length prediction scheme is
given in Figure 5.6.

Indeed, asymptotic evolution analysis for filter-based turbo receivers can only accurately
predict the decoding performance when τ ✏ 0 and τ Ñ �✽. Otherwise, as mentioned in
Section 2.3.6, the Assumption 2 is needed for carrying out predictions through asymptotic
extrinsic analysis. However it has been observed in [Fu05] that we cannot consider the condi-
tional distributions of extrinsic LLRs as symmetric Gaussian distribution during intermediary
turbo-iterations. As a consequence, asymptotic prediction is only accurate for the first few
turbo-iterations, and alternative methods are needed for alleviating this issue.
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Figure 5.6: Symbolwise semi-analytical turbo-receiver prediction scheme based on [VB+10].

The symbolwise prediction method proposed in [VB+10], for LE-EXTIC and LE-APPIC,
exploits a joint demapping and decoding model. This model does not directly characterize
the behavior of extrinsic LLRs used during turbo-iterations, in order to avoid making strong
assumptions on the conditional LLR distributions. It makes a symbol-wise abstraction of
demapping and decoding behavior, by taking as input an effective received SNR on the
equivalent AWGN channel (see Assumption 3) at the soft demapper’s input, SNRR, and
the prior information at the LLR input of the soft demapper, IA,DEM. At the output, the
covariance vp

x of the extrinsic soft symbols produced by the SISO decoder and soft mapping
(see Equation (2.40) is used for keeping track of symbol-level turbo dynamics, along with
desired performance metrics such as the predicted BER or PER at the ongoing iteration.
Binary dynamics can also followed by measuring the MI of extrinsic LLRs, denoted IE,DEC.

The effective SNR or SINR is obtained by MIESM [Bru+05] with

SNRR ✏ αESMI
✁1

✄
1
B

B➳
b✏1

I

✄
SNR♣bq

EQU

αESM

☛☛
, (5.18)

where SNR♣bq
EQU is the post-equalization SNR of the bth data block, α is a calibration param-

eter and I♣☎q is a constrained-capacity function, such as the coded-modulation capacity of
Equation (1.37), i.e. I♣SNRq ✏ ψX ♣σ2

x④SNRq, or the BICM capacity of Equation (1.38).

This LUT is synthesized by generating samples from the finite-length BICM encoder of the
PHY layer, from information bits up to data symbols. While this procedure is computationally
intensive, the resulting LUT depends only on the channel code C, the interleaver Π, the soft
mapper φ of constellation X , and the block length K. For a well-defined wireless system,
required LUTs can be generated only once for all available MCS. This model can also track
the iterative dynamics of constituent SISO modules of the channel decoder, such as parallel-
concatenated turbo codes [NVB13], by using a prior information input IA,INT for the inner
code, and measuring the extrinsic information IE,INT at the output.
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Figure 5.7: Proposed semi-analytical detector model for FD SILE-EPIC.

Although this “finite-length” method predicts considerably more accurately than the pure
asymptotic analysis approach, its accuracy seems to depend on the channel parameters and
the link configuration (number of antennas, constellation, code rate etc.). In particular, it has
been observed to significantly overestimate the decoding threshold for very selective channels,
such as the Proakis C, or fading channels with high Rice factors, whereas for Rayleigh fading
the accuracy remains adequate. Moreover, when feeding APP covariances to the analyti-
cal equalization model, this technique loses a considerable amount of precision. To remedy
this, the reference [NVB12] has proposed to use a calibration method on the soft covariance
feedback, as previously discussed in Chapter 3, in the context of the FIR DFE with online
prediction. Following calibration, this method accurately predicts a vast among of configura-
tions and it has been proposed for reviewing turbo receiver performance for 3GPP standard
[3gpc].

We now propose to extend the previously derived asymptotic analysis scheme for FD
SILE-EPIC for operating within this semi-analytic prediction framework. To this end, the
following changes are made to the EXVIT model of this receiver:

• when s ✏ 0, due to the nature of EP-based feedback, we have vd♣b,τ,0q
x ✏ v

p♣τq
x , this has

to be explicitly reflected for the input of the equalization transfer function TEQU, with

a switch, as vp♣τq
x is estimated by the joint demapping and decoding model,

• the output of TEQU is the extrinsic symbol-wise mutual information I
♣b,τ,sq
L , but this

output constraints the MIESM to not use its calibration parameter αESM, hence for
more flexibility, SNR♣b,τ,sq

EQU is used as this function’s output, by redefining

TEQU♣v♣bqx ; h♣bq, σ♣bq2w q ✜ σ2
x

☎
✆✄ 1

K

K✁1➳
k✏0

⑤h♣bqk ⑤2
σ
♣bq2
w � v

♣bq
x ⑤h♣bqk ⑤2

☛✁1

✁ v♣bqx

☞
✌
✁1

, (5.19)

• a switch has to be inserted, in order to affect the post-equalization SINR value at the
final self-iteration, to the output, i.e. SNR♣b,τq

EQU ✏ SNR♣b,τ,Sτ q
EQU .
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Figure 5.8: Comparison of the asymptotic prediction scheme and the finite-length JD2 meth-
ods, as turbo-iterations go from 0 to 2.

This proposed semi-analytical model is illustrated in Figure 5.7, and it is abbreviated as
the joint demapping and decoding (JD2) prediction scheme. In Figure 5.8, we consider the
transmission of four data blocks (B ✏ 4) over a uniform, symbol spaced power-delay profile,
such that each tap is Ricean distributed with KSS

l ✏ 10, for l ✏ 1, . . . , 10, and the 16-
QAM constellation is used along with the convolutional code of polynomial r133, 165, 171s8,
optimally punctured by r1, 0, 1; 1, 0, 1s to obtain a rate 1④2 code [Fre+98], with K ✏ 128.
Asymptotic schemes typically manage to predict finite-length transmission on fading Rayleigh
channels, but as line of sight components become prominent the prediction quality decreases.
In the considered scenario, although the asymptotic prediction mechanisms copes fairly well
with the Rice factor and short blocks, it starts providing too optimistic predictions as the
number self-iterations increase, in this case, JD2 becomes helpful for maintaining accuracy.

5.4 Pseudorandom Finite-Length PHY Layer Prediction

While the symbol-wise semi-analytic finite-length prediction scheme above can yield sat-
isfying accuracy, it may require intensive calibration, which is undesirable for a system-level
simulator to be used in protocol design, where the definitive MCS configurations may not
have been established.

To alleviate this drawback, in this section we investigate a method for naturally incorpo-
rating the impact of data block and codeword lengths, without exhaustive calibration. This
idea is based on the observations of [Rib+15], where a heuristic is characterized for fitting
the predicted performance of the iterative block DFE receiver (FD SILE-APPIC without
turbo-iterations) to the actual finite-length performance. This is achieved scaling the pre-
dicted post-equalization SNR by a compensation factor that is dependent on the multi-path
channel’s delay spread.
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However, the idea of a channel dependent heuristic is unattractive to us, especially when
considering cooperative MANET where the CIR may abruptly change from one block to
another, if a protocol such as cooperative broadcasting is used. To this end, by keeping the
general idea of compensating the post-equalization SNR, that ideally depends on the block
length, we have looked into the works on finite-length coding and short-packet communications
communities for inspirations on heuristics. Following this, the behavior of FD SILE-EPIC
is investigated, when the soft feedback covariance is considered as a random process whose
statistical dispersion depends on the block length. Finally, we propose a novel finite-length
prediction scheme that uses pseudo-random behavior of the soft-feedback in order to take in
account for the performance degradation caused by the lengths of data blocks and codewords.

5.4.1 On Finite-Length Information Theory and Channel Coding

There is increased interest on short-packet communications, in recent years, due to the
emerging ultra-reliable communications (URLLC) and machine-to-machine (M2M) use-cases
for 5G networks [DKP16]. This has gathered significant interest in PHY design for short
blocks through the developments on finite block length information theory [PPV10].

Let us consider x and y as respectively the input and the output of a channel, then let
us recall that according to the noisy channel coding theorem, given in Equation (1.33), there
exists asymptotically a channel code of rate R ↕ C ✏ maxp♣xq I♣x; yq which achieves error-free

communications over the channel defined by p♣y⑤xq, of Shannon capacity C. An alternative
way to look at this problem is to define R✝♣n, εq as the maximum achievable rate for the
channel defined by this channel, by considering that a sequence x of length n is transmitted,
and y of length n is received, with a packet error probability of ε. Then by relying on the
asymptotically error-free definition of capacity, and using Equation (1.31), we have

C ✏ lim
nÑ�✽

lim
εÑ0

R✝♣n, εq ✏ Ep♣x,yq

✒
log2

p♣y⑤xq
p♣yq

✚
. (5.20)

Considering that the capacity appears to be the expected value of what we can assimilate to a
random variable, the information density is defined as i♣x; yq ✏ log2

p♣y⑤xq
p♣yq . This distribution’s

behavior as a function of n constitutes a fundamental challenge for finite-length code design,
as it enables the characterization of upper and lower bounds as a function of n, R✝ and ε.
However this is not simple, as the complexity of determining R✝♣n, εq appears to be doubly
exponential in n.

An attractive idea emerged in [PPV10], where a Gaussian approximation is made for the
distribution i♣x; yq, such that the mean C ✏ Eri♣x; yqs is the capacity, as before, and the
variance V ✏ Varri♣x; yqs is defined as the channel dispersion. Through this approximation,
an explicit expression of R✝♣n, εq simplified the derivation of upper or lower bounds, and the
channel characterization problem is reduced to the computation of the dispersion V .
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5.4.2 On the Impact of Soft Feedback Reliability Dispersion

Following a similar line of thought in the context of turbo detection with FD SILE-
EPIC, the expression of extrinsic variances in computations are exact when block lengths are
asymptotically large. Following the treatment of information density, one can treat the soft
feedback reliability as a random variable whose mean is the asymptotic value vd

x.

First, let ṽd
x ✜ Varrxd ✁ xs be the “instantaneous” covariance of soft estimates computed

at the EP-based demapper, and let the covariance error ǫvd
x

be defined as ǫvd
x
✜ ṽd

x ✁ vd
x, such

that the turbo equalizer is computed by assuming ṽd
x ✓ vd

x, and the value of ǫvd
x

is unknown
for filter computation. In this setting, the filters are mismatched to the true value of prior
estimate covariance, and we then investigate the impact of a covariance error at the equalizer’s
output. Indeed, let us denote ǫxe ✜ xe ✁ x, then following Equations (4.35)-(4.38) we have

ǫxe ✏ xe ✁ x

✏ xd � FH
K FHFK♣H♣x ✁ xdq � wq ✁ x

✏ �
IK ✁ FH

K FHHFK

✟ ♣xe ✁ xq � FH
K FHFKw, (5.21)

where F ✏ Diag♣rf ep
1

; . . . ; f ep
K
sq. By computing the covariance of this vector, we have

Cov ♣ǫxeq ✏ �
IK ✁ FH

K FHHFK

✟
Cov♣xe ✁ xq �IK ✁ FH

K FHHFK

✟H

� FH
K FHFKCov♣wqFH

K FFK

✏ �
IK ✁ FH

K FHHFK

✟ �
IK ✁ FH

K FHHFK

✟H ♣vd
x � ǫvd

x
q � FH

K FHFFKσ
2
w

✏ �
IK � FH

K FHHHHFFK ✁ 2ℜ♣FH
K FHHFKq✟H

ǫvd
x

� �
IK ✁ 2ℜ♣FH

K FHHFKq✟ vd
x � ξep

x
✁1FH

K FHHFK . (5.22)

Considering that eH
k FH

K FHHFKek ✏ 1, by denoting χep
x ✜ eH

k FH
K FHHHHFFKek, we have

Var ♣ǫxe,kq ✏ eH
k Cov ♣ǫxeq ek ✏ 1④ξep

x ✁ vd
x � ♣χep

x ✁ 1qǫvd
x

✏ ve
x � ♣χep

x ✁ 1qǫvd
x
. (5.23)

This expression reveals that if there is a mismatch between the value of prior variance and
the actual variance (or reliabilities) of prior estimates, then the post-equalization variance ve

x

is affected by an additive term proportional to this mismatch. In particular, the quantity χep
x

is the power of the channel-after-equalization (i.e. the channel representing the residual ISI),
which can be considered also as a measure of frequency-selectivity of the physical channel H.
Indeed, when the CFR H does not have spectral nulls and the filter F is able to invert the
channel response, HHF is close to the identity matrix IK , and χep

x is close to 1. Otherwise,
our numerical experimentations indicate that χep

x increases significantly when the channel
cannot be completely inverted (which naturally also depend on the SNR).

The behavior of χep
x with respect to channel selectivity also coincides with the situations

where the behavior of the un-calibrated semi-analytical prediction method of the previous
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section, which loses accuracy on more selective channels, while having no issues in “simple”
channels. These observations have motivated investigating the use of a positive penalty term
ǫvd

x
on the predicted post-equalization residual noise and variance, in order to attempt to

account for the negative impact of short-blocks on the detection performance.

In this regard, we can consider ǫvd
x

to be a random variable such that Varrǫvd
x
s ✏ σ2

vd
x

is
the prior covariance dispersion, or “reliability dispersion”, caused by the finite block length.
Ideally, we would need to impose Erṽd

xs ✏ vd
x to maintain accuracy asymptotically, but it is

preferable to release this constraint, and consider ǫvd
x

as a positive random value, to avoid
optimistic predictions, at the expense of inducing some amount of pessimistic bias to the
average value of prior covariance. Hence, if the value of σ2

vd
x

is known, then it is possible
to describe the post-equalization SINR as a random variable, and perform prediction over a
number of pseudorandom trials. In the next sub-section, we propose an original prediction
scheme based on this idea, which describes an effective method for estimating σ2

vd
x
, and tracking

its value across iterations, in order to perform semi-analytical prediction over pseudorandom
trials of the prior covariance error.

5.4.3 Finite-Length Prediction with Pseudorandom Feedback Dispersion

The proposed prediction scheme is illustrated in Figure 5.9, where double lines indicate
that there areNtry copies of the concerned modules and connections, such than an independent
prediction scheme is carried out for n ✏ 1, . . . , Ntry, corresponding to different realizations of
the random reliability error ǫvd

x
rns.

First, the proposed scheme requires revising the LUT synthesis procedure for the joint
demapping and decoding model, in order to measure the standard deviation of finite-length
(codeword length of KBQ bits) extrinsic soft estimate covariances, in order to characterize
the dispersion σv

p
x

of vp
x as a function of its inputs.

Within the semi-analytical detector model for FD SILE-EPIC, the output SNR of the
analytical equalization model is renamed as SNR✶♣b,τ,sq

EQU , and a new output is added with

χ
♣b,τ,sq
x . And finally, a new module is added for analytically modelling the penalties incurred

by the covariance error on the post-equalization SINR, which operates as follows

SNR♣b,τ,sq
EQU ✏

✩✬✬✫
✬✬✪

✒
1

SNR
✶♣b,τ,sq
EQU

� ♣1 ✁ χ
♣b,τ,sq
x qǫ♣b,τ,sq

vd
x

✚✁1

, if 1

SNR
✶♣b,τ,sq
EQU

➙ ♣1 ✁ χ
♣b,τ,sq
x qǫ♣b,τ,sq

vd
x

,✒
1

SNR
✶♣b,τ,sq
EQU

✁ ♣1 ✁ χ
♣b,τ,sq
x qǫ♣b,τ,sq

vd
x

✚✁1

, otherwise,

(5.24)
where ǫ♣b,τ,sq

vd
x

is the pseudorandom covariance error, of standard deviation σ♣b,τ,sq
vd

x
, and a heuris-

tic is used to avoid negative covariances that may occur due to of ǫ♣b,τ,sq
vd

x
. In this context, it

may be attractive to look into family of PDF that are defined only for positive values, such
that, when the variance of the distribution is set to σ

♣b,τ,sq2
vd

x
, the expected value Erǫ♣b,τ,sq

vd
x

s
remains relatively close to zero. In this regard, exponential and gamma distributions have
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Figure 5.9: Pseudo-random prediction of with joint demapping and decoding LUT.

attractive properties, with the latter having more degrees of freedom.

Next, the EP demodulation LUT measures the standard deviation of finite-length (data
block length of K symbols) extrinsic soft estimate covariances, similarly to the new joint
demapping and decoding model, in order to characterize the dispersion σv✍x of the raw EP
estimate covariance v✍x, as a function of its inputs.

Furthermore, the analytical EP damping model is modified to update the dispersion as
follows

σ
♣b,τ,s�1q
vd

x
✏
❝
♣1✁ β♣τ,sqq2σ♣b,τ,sq2

v✍x
� β♣τ,sq2σ

♣b,τ,sq2
vd

x
� ♣1✁ β♣τ,sqq2♣χ♣b,τ,sq

x ✁ 1q2σ♣b,τ,sq2
vd

x
,

(5.25)
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where the first two terms are naturally obtained by assessing the impact of random variables
for the damping based on the exponential smoothing, given in Equation (4.40). The latter
term, weighed by ♣1✁ β♣τ,sqq2♣χ♣b,τ,sq

x ✁ 1q2 is a heuristic, that captures the error propagation
from the dispersion of post-equalization covariance on the freshly computed raw-estimate
covariance dispersion σv✍x . Indeed, σv✍x is directly obtained with the EP demodulation LUT,
which expects an asymptotic SINR value at its input, but instead it is fed with the post-
equalization SINR with dispersion penalty. Hence potential finite-length block errors are
neglected, and the additive term aims to compensate this negligence.

Considering these modified blocks, it is seen that the output of the prediction scheme of
Figure 5.9-(b) depends on the values of the random reliability errors tǫ♣b,τ,sq

vd
x

✉S
s✏1. Hence if

Ntry different error realizations are considered following the first self or turbo iteration, then
the semi-analytical detector model will predict a post-equalization SINR for each trial. To
his end, we consider the simulation of Ntry general prediction schemes to obtain Ntry copies
of the metrics of interest, which needs to be compressed into a single value, for instance bt
taking their mean with PER♣τq ✏ N✁1

try

➦Ntry

n✏1 PER♣τqrns, with PER♣τqrns being the predicted
PER for the nth trial.

This prediction method is denoted as Pseudo-Random Joint Demapping and Decoding
(PRJD2) prediction, and in Figure 5.10, we have compared the prediction performance of
the conventional JD2 method, with this new method with Ntry ✏ 100. In particular the
exponential distribution (no degree of freedoms) is considered, and the Gamma distribution
of shape 0.05, and scale σvd

x
④❄0.05, is evaluated, which enables having a relatively smaller

mean (i.e. bias). Transmission of QPSK symbols coded at rate 1④2 with the convolutional
code of polynomial r133, 165, 171s8, punctured by r1, 0, 1; 1, 0, 1s, over the Proakis C channel
is considered, with K ✏ 512 and B ✏ 1. As this deterministic channel has spectral nulls, it
is challenging for prediction algorithms to perform accurately with it, as the detector creates
non negligible correlations between symbols. In Figure 5.10, the previously discussed JD2
scheme becomes less and less accurate as the number of turbo or self iterations increases,
and proposed pseudo-random methods appears to compensate this issue to some extent, by
making more pessimistic predictions according to the dispersion of the soft feedback reliability.

5.5 Application: Cooperative Broadcast in MANETs

In order to illustrate the potential impact of our work in a fundamental distributed cooper-
ation technique, here we discuss cooperative broadcasting technique. Indeed this an extreme
example of cooperation where the broadcasting capabilities of these receivers are used at its
full potential, and because of this, this method has been analyzed with different levels of
abstraction over the years.
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Figure 5.10: Comparison of the pseudo-random finite-length prediction PRJD2 scheme with
the finite-length JD2 scheme, for 0 to 2 turbo-iterations.

5.5.1 Impact of Cooperative Broadcasting on the Physical Link

As previously discussed in the epilogue of the Chapter 1, cooperative broadcasting is a
highly robust technique where simultaneous transmission of the same data by multiple trans-
mitters generate an artificial multi-path channel at the receiver. The resulting cooperative
diversity is supposed to the increase link robustness and also the range of the transmission.

Stochastic behavior of multi-hop networks with cooperative broadcast is evaluated with
the assumption of infinite nodes with finite power per area in [SSM06]. Recent models for
finite node densities [ÇGT13; HI12; RGW18] investigate on inter-node distance distributions
and path-loss to evaluate range improvements brought by the cooperative broadcast. These
works assume that transmitted signals coherently combine at destinations, ignoring selective
channels caused by propagation delays, clock offsets and oscillator drifts.

In [WGV06], impact of propagation delays and delay dithering are studied for harvesting
cooperative diversity as frequency diversity with a time-domain DFE. [HH15] considers multi-
hop cooperative broadcasting without frame resynchronization at each hop, and it analyzes
the evolution of time synchronization errors across hops. But this work does not consider the
impact of path-loss, nor the equalization of the artificial channel.

The design of PHY layer receivers for handling cooperative broadcast detection has been
addressed in [VG06; BTV07; WXY09]. A major concern common to these works is the mitiga-
tion of Carrier Frequency Offset (CFO) caused by clock synchronization issues. Nevertheless,
these works either use time-domain serial DFE for single-carrier signalling [VG06; WXY09],
or frequency-domain detection followed by serial DFE for multi-carrier signalling [BTV07].
In all cases, equalization complexity is at least quadratic in block length due to DFE filter
computation, and large-delay spreads would further complicate the design.
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Figure 5.11: A cooperative channel profile with 5 users (each color is a user).

5.5.1.1 General Model

We consider a scenario where radios 1, . . . , U cooperatively broadcast a data block to a
single destination (with selective Decode & Forward (DF) relaying), and here we aim to show
how the cooperative transmission is perceived by the receiver.

Let us assume that, following a network-wide synchronization procedure, each node has its
internal clock shifted by a residual offset of toff

u seconds with respect to an ideal global reference
clock. Moreover, oscillator imperfections cause a frequency drift of foff

u Hertz with respect to
the carrier frequency fc (see Appendix A). Considering these parameters, the channel hu♣tq
between uth node and the destination (see Equation (1.9)), and accounting for the transmit
power, we have

hu♣tq ✏
❛

Erx,ue
j2πtφu

Lss➳
l✏1

au,l♣tqδ♣t✁ τu,lq, (5.26)

where the total delay from the node u, at the lth tap is τu,l ✜ τ ss
l � τ clk

u � τprop
u , with the

component due to clock offsets being τ clk
u ✜ toff

u ✁ toff
0 , and the carrier offset frequency being

φu ✜ foff
u ✁ foff

0 . The received power from uth user is Erx,u ✜ Etxh
PL
u .

Then, by combining the U cooperating transmitters, the cooperative broadcast on the
observed physical channel results in

h♣tq ✏
L➳

l✏1

alu,ll♣tqδ♣t✁ τlu,llq, (5.27)

where lu ✜ r♣lq④LSSs, ll ✜ ♣♣l ✁ 1qmodLSSq � 1, with L ✏ ULSS and

al,u♣tq ✜ 10♣G
rx
dBq④20

❜
Etx,ugPL

u gsh
u ♣t✁ τ ss

l qass
u,l♣tqej2πtφu . (5.28)

The cooperative transmission diversity presents itself in Equation (5.27) as supplementary
frequency diversity, and, if paths are resolvable, it can to be harvested through equalization.
However, equalization success depends on the frequency selectivity of the channel, which can
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be assessed with the delay spread

∆τ ✏ ∆τSS �∆τprp �∆τclk, (5.29)

where the small-scale delay spread is ∆τSS ✜ maxl τ
ss
l ✁minl τ

ss
l and the delay spread compo-

nent caused by large-scale propagation is ∆τprp ✜ maxu τ
prop
u ✁ minu τ

prop
u and the one due

to clock effects is ∆τclk ✜ maxu τ
clk
u ✁minu τ

clk
u .

The ability to equalize the channel also strongly depends on the dynamic power range of
the channel, i.e. expected value of power differences between taps, which is defined in dB as

∆P ✜ ∆PSS �∆Pprp, (5.30)

with ∆Pprp ✜ maxu 10 log10♣Erx,uq ✁ minu 10 log10♣Erx,uq, and ∆PSS ✜ maxl 10 log10♣Ess
l q ✁

minl 10 log10♣Ess
l q.

As ∆τ increases, and ∆P decreases, the Inter-Symbol Interference (ISI) caused by the
channel become more severe. ∆P and ∆τ above describe the frequency-selectivity of the
cooperative channel with dependence on topology and radios, but some practical limitations
at the receiver were omitted.

Indeed, strongly attenuated taps do not impact the frequency-selectivity, hence denoting
the received power in dBm EdBm

rx,u , only taps received from users such that

EdBm
rx,u ➙ SdBm

rx , (5.31)

will be relevant for computing ∆P and ∆τ . The receiver sensitivity in dBm is SdBm
rx ✜

N0 ✁ 10 log10♣Tsq � Lr, where N0 is the noise power spectral density at receiver antenna in
dBm/Hz, Ts is the symbol period, Lr is a constant in dB, including effects of antenna gains,
noise figure and the detection threshold at the receiver.

Moreover, in the presence of strong taps, smaller channel components lose their impact
and can even become neglected in receiver channel estimation algorithms. To account for
such issues, a constraint on the dynamic range is added

∆P ↕ P dB
DRlim, (5.32)

for evaluating the channel selectivity.

Figure 5.11 illustrates these quantities on an instance of a cooperative broadcast channel
with non-frequency-selective small-scale components. Alternatively, Figure 5.11 can be un-
derstood as the representation of the influence of the delay spread component ∆τprp caused
by large-scale propagation. However this case is not restrictive, as the small-scale profile is
independent, and its impact can be incorporated separately.
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Figure 5.12: Topology model illustration.

5.5.1.2 Stochastic Model on Channel Selectivity

In this subsection, statistical characteristics of the cooperative channel in Equation (5.27),
is assessed by assuming emitting node positions and radio imperfections are randomly dis-
tributed.

Emitting nodes 1, . . . , U are uniformly distributed on an annulus, centered on the desti-
nation node u ✏ 0, with an outer radius of d0 meters and the width of the annulus is given
by r ➔ d0, i.e. the inner radius is dr ✜ d0 ✁ r. This is equivalent to a one-dimensional model
where the destination is located at d0 and emitters are uniformly distributed on the segment
r0, rs, shown in Figure 5.12. Moreover toff

u is uniformly distributed on r✁τclk④2, τclk④2s, with
τclk setting the maximum absolute value of ∆τclk.

Here the PDFs of the ∆τ and ∆P are exposed, without including small-scale effects.
Detailed derivations are not given due to lack of space, but a sketch of proof is provided.

∆τprp and ∆P , tied to radio distance distributions, and the clock offset component ∆τclk

can be modeled separately, using change of variables on uniform and general Beta distributed
random variables. However this approach does not consider the practical constraints in Equa-
tions (5.31)-(5.32).

The dynamic range constraint (Equation (5.32)) is relevant on short distances, which is
out of focus in this paper, hence only the impact of receiver sensitivity in Equation (5.31) is
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considered. The latter is equivalent to ignoring radios farther than ds to radio 0, with

ds ✏ dref10
Etx✁Srx✁Pref✁20 log10♣fcq

10α . (5.33)

Thus, ∆τprp and ∆Pprp are defined with respect to constrained minimum and maximum
distances dm ✜ minu,du➔ds

du and dM ✜ maxu,du➔ds
du. When ds ➔ d0, ∆τprp and ∆Pprp are

non-zero iff at least two radios are in rd0s, rs, d0s ✏ d0 ✁ ds. The probability of having less
than two users in this segment is p0s ✏ dU✁1

0s ♣r � ♣U ✁ 1qdsrq④rU , with dsr ✏ ds ✁ dr.

Finally, ∆τprp and ∆τclk are combined to model the PDF of the total delay spread ∆τ .
To this end, the method used in [PGT98] is generalized here with truncated general Beta
random variables to obtain analytical expression of p♣∆τq.

Following computations, the distribution of ∆P is given by

p♣∆P q ✏ log 10
10α

♣U ✁ 1q
rU

dU
0 ✁ dU

r 10
U∆P
10α

10
∆P
10α

✁
1✁ 10

✁∆P
10α

✠2✁U
, (5.34)

for 0 ➔ ∆P ↕ 10α log10♣d0④drq, when ds ➙ d0, and when dr ➔ ds ➔ d0, ∆P follows

p♣∆P q ✏ p0sδ♣0q � log 10
10α

10
∆P
10α✁

10
∆P
10α ✁ 1

✠2

1
rU

✂

r♣U ✁ 1qϕ♣∆P,Uq ✁ Ud0sϕ♣∆P,U ✁ 1qs,
(5.35)

for 0 ➔ ∆P ↕ 10α log10♣ds④drq, with

ϕ♣x, uq ✏
✁
d0 ✁ ds10

✁x
10α

✠u

✁
✁
r ✁ ds � dr10

x
10α

✠u

.

The analytical expression of ∆τ ’s PDF is given in Equations (5.36)-(5.37), on the next page.
The small-scale effects can be incorporated by translating these PDFs by ∆PSS and by ∆τSS.

5.5.1.3 Numerical results on frequency-selectivity

In this section the statistical model above is used to evaluate the behavior of a subset
of a MANET with U ✏ 5 nodes and r ✏ 4 km. We use typical wireless radio parameters
EdBm

tx ✏ 45.5 dBm, SdBm
rx ✏ ✁100 dBm, within the UHF band with fc ✏ 400 MHz, using

a symbol period of Ts ✏ 1 µs. Path-loss parameters are in part based on ITU-R P.1546-1
recommendations with Pref ✏ ✁60 dB, dref ✏ 1 km.

The previously derived characteristic PDFs of the composite channel are plotted with the
proposed analytical model and with Monte Carlo simulation results in the Figure 5.13, which
attests to the accuracy the proposed model in Equations (5.36)-(5.37). Moreover, using these
PDFs, the mean value, the 5% and 95% quantiles of the delay spread and the dynamic range
are evaluated for varying d0 and path-loss exponent α, without any clock imperfection. The
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For ds → d0, the delay spread follows

p♣∆τq ✏

✩✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✫
✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✪

∆τ2U✁3♣τm ✁ ∆τqB♣U ✁ 1, U ✁ 1q
τU

mτ
U✁1
M B♣U ✁ 1, 2q2 F1

✂
∆τ

∆τ ✁ τm
,
∆τ
τM

;U ✁ 1;✁1,✁1 : 2U ✁ 2
✡

for 0 ↕ ∆τ ↕ τm,

♣∆τ ✁ τmqU✁2♣τt ✁ ∆τq
τU

MB♣U ✁ 1, 2q F1

✂
τm

τm ✁ ∆τ
,

τm

τt ✁ ∆τ
; 2; 2 ✁ U,✁1;U � 1

✡
for τm ➔ ∆τ ↕ τM ,

♣τt ✁ ∆τq3♣∆τ ✁ τmqU✁2

6τ2
mτ

U
MB♣U ✁ 1, 2q2 F1

✂
τt ✁ ∆τ
τm

,
∆τ ✁ τt

∆τ ✁ τm
; 2; 2 ✁ U, 2 ✁ U ; 4

✡
for τM ➔ ∆τ ↕ τt,

(5.36)
with τm ✏ min♣τr, τclkq, τM ✏ max♣τr, τclkq, τr ✏ r④c, τt ✏ τm � τM , and F1♣x, y; a; b1, b2; cq is
the Appell hypergeometric series of the first kind, and B♣α, βq is the beta function, and for
dr ➔ ds ➔ d0, p♣∆τq ✏ p0sδ♣0q � p✶♣∆τq with

p✶♣∆τq ✏

✩✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✫
✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✪

τU✁2
0s τsr∆τU✁1

τU
r τ

U
clkB♣U ✁ 1, 2q

✔
✖✖✕

∆τF1

✂✁∆τ
τ0s

,
∆τ
τsr

; 2; 2 ✁ U,✁1 : U � 1
✡
�

U♣τclk ✁ ∆τqF1

✂✁∆τ
τ0s

,
∆τ
τsr

; 1; 2 ✁ U,✁1 : U
✡
✜
✣✣✢

for 0 ↕ ∆τ ↕ min♣τclk, τsrq
♣∆τ ✁ τmsqU✁2♣τts ✁ ∆τq

τU
r B♣U ✁ 1, 2q F1

✂
τclk

τms ✁ ∆τ
,

τclk

τts ✁ ∆τ
; 2; 2 ✁ U,✁1;U � 1

✡
for τclk ➔ ∆τ ↕ τsr

τ2
sr♣∆τ ✁ τtsqU✁2

6τ2
r τ

U
clkB♣U ✁ 1, 2q2

✔
✖✖✕
τsrF1

✂
τsr

τsr ✁ ∆τ
,
τsr

τr
; 2; 2 ✁ U, 2 ✁ U : 4

✡
�

3♣τclk ✁ ∆τqF1

✂
τsr

τsr ✁ ∆τ
,
τsr

τr
; 2; 2 ✁ U, 2 ✁ U : 3

✡
✜
✣✣✢

for τsr ➔ ∆τ ↕ τclk

♣τts ✁ ∆τq3♣∆τ ✁ tmsqU✁2

6τ2
clkτ

U
r B♣U ✁ 1, 2q2 F1

✂
τts ✁ ∆τ
τclk

,
∆τ ✁ τts

∆τ ✁ τms
; 2; 2 ✁ U, 2 ✁ U ; 4

✡
for max♣τclk, τsrq ➔ ∆τ ↕ τts

(5.37)
with τts ✏ τclk � τsr, τms ✏ τclk ✁ τ0s, τsr ✏ dsr④c, τ0s ✏ d0s④c. For ds ➔ dr, the delay spread
is zero, i.e. p♣∆τq ✏ δ♣0q.

results are plotted in Figure 5.14-(a) with solid, dashed and dotted lines, respectively for
the mean, the 95% and 5% quantiles. Analytical predictions are illustrated with solid lines
and Monte-Carlo simulation results with respectively cross, upward and downward triangle
markers. Furthermore, for α ✏ 4, the impact of the clock offsets toff

u P r✁τclk④2, τclk④2s on the
mean value of the delay spread is shown in Fig. 5.14-(b).
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Figure 5.13: Simulated and predicted PDFs of the delay spread and the dynamic range of the
composite channel for α ✏ 4 and τclk ✏ 0 µs (lines: predicted, markers: experimental).
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Figure 5.14: Mean values and quantiles of the delay spread and the dynamic range versus
destination distance d0 (lines: predicted, markers: experimental).
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Proposed delay spread prediction model is accurate for medium to high distances, but
experimental and predicted data diverge for small d0, due to neglected constraint in Equa-
tion (5.32). Indeed, at low distances, the clipping effect of this constraint is seen on ∆P ,
as the 95% quantiles saturate near P dB

DRlim ✏ 20 dB. In medium distances, the delay spread
reaches its topological maximum when it is neither constrained by Equation (5.31) nor by
Equation (5.32), and reaches the mean of the delay spread distribution, given by ∆τ ✏
♣τclk � τrq♣U ✁ 1q④♣U � 1q, which yields ∆τ ✏ 8.89 µs for τclk ✏ 0 µs. Finally at high dis-
tances, the delay spread decreases due to the constraint of Equation (5.31), which allows to
neglect paths with received power below receiver sensitivity, i.e. without a significant impact
on detection performance.

Although most cooperative broadcast analysis carried out in the literature are based
on flat-fading assumptions, results above indicate that frequency selectivity caused by such
transmissions can be severe, as ∆τ increases and ∆P decreases. In particular, conclusions
drawn on range-extension capabilities are likely far from reality, for medium to high data rate
applications, as severe ISI is present.

In the following, we discuss low-complexity detection of cooperative broadcast transmis-
sions in MANETs, with frequency domain equalization and off-the-shelf error correction codes.

5.5.1.4 Impact on PHY layer with FD SILE-EPIC

Considering the numerical results above indicating large delay spreads in Figure 5.14,
traditional time-domain strategies for mitigating ISI can have excessive computational costs
[WGV06; VG06]. Usually in the context of large delays spreads, frequency domain equal-
ization is preferable, and thus we propose to investigate apply the FD EP-based receiver in
Chapter 4 strategy in MANETs for cooperative broadcasting.

Considering potential oscillator drifts of cooperating nodes, caused by clock synchroniza-
tion issues, an encoding strategy across multiple short data blocks is needed, for improving
the equalizer’s robustness against time variations of the channel.

In the following, we consider the transmission by U ✏ 5 relays, with r ✏ 4 km, of B ✏ 3
blocks of K ✏ 128 with 8-PSK and 16-APSK constellations, using root-raised-cosine shap-
ing filters with a roll-off of 0.35, Ts ✏ 1 µs, and using an off-the-shelf 3GPP LTE channel
coding and rate matching strategy. Indeed, thanks to the use of LTE turbo-code, and its
rate-matching, we can also investigate the impact of code rate on the detection performance.
The FD SILE-EPIC receiver exponential smoothing with a damping factor of 0.33 (see Equa-
tion (4.40)). The use of iterative detection and decoding is avoided at this stage, to solely
focus on the benefits of self-iterations, with a widespread channel decoder. In Figure 5.15,
the operating points of this PHY in a 5-tap Rayleigh fading channel is provided, for 8-PSK
at rates 2/3 and 3/4, and then for 16-APSK at rates 2/3, 3/4 and 5/6, Indeed, a single
self-iteration is sufficient to bring between 2 to 3 dBs improvement in energy-efficiency. This
change can also be considered as an improvement of the considered modulation and coding
scheme, by switching to higher rate operating modes, and benefiting from a rate improvement
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Figure 5.15: FD SILE-EPIC with a turbo-coder at different code rates. Orange arrows show
gain in spectral efficiency whereas green arrows show gains in energy efficiency.

of about 15%.

In the following, we focus on some test-bench channels which can affect the PHY layer
link robustness, by using the results observed in Figure 5.14.

Ground-to-ground tactical communications scenario First, a ground-to-ground tac-
tical MANET is considered with small-scale channel being a single-tap Rayleigh variable, and
the path-loss exponent being α ✏ 4. For a destination located at d0 ✏ 8 km, the considered
channel power profile r0,✁3.4,✁6.2,✁8.6,✁10.8s in dB corresponds to the average topology
yielding the 95%-quantile of delay spread (∆τprop ✏ 12 µs), i.e. equally 900m-spaced nodes.
This exponentially decreasing channel is fairly easy to equalize, but radio clock offsets toff

u

increase the channel selectivity as observed in Figure 5.14-b, and they can cause a loss of
frequency diversity, if delayed signals become un-resolvable.

In Figure 5.16, the average PER performance of FD LE and FD SILE-EP, with Rc ✏ 2④3,
is displayed in solid lines, by averaging over 150 realizations of uniformly distributed clock
offsets, between r✁τclk④2, τclk④2s, as in Figure 5.14-(b). Some delay realizations which cause
independent taps to become unresolvable cause significant diversity loss, but this only slightly
degrades the average PER.

Nevertheless, for considering the impact of clock offset realizations on the robustness of
the average PER, the outage probability PrPER → 10✁2s is evaluated and it is displayed
in dashed lines. For τclk ✏ 0 µs, the outage only occurs when the average PER is higher
than 10✁2, which yields a SNR threshold-like behavior. It is seen that τclk ✏ 10 µs cause a
significant loss of diversity, but this loss is smaller for τclk ✏ 20 µs. This behavior is natural,
as realizations with unresolvable taps become more unlikely as τclk increases too much.
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Figure 5.16: Impact of clock offset in the tactical scenario with Rc ✏ 2④3.
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Figure 5.17: Impact of CFO on the uncoded BER in the UAV scenario.

Air-to-air UAV communications scenario We now consider an intra-UAV communica-
tion scenario where the small-scale channel is single-tap with a Rice factor of 10 dB [GW15b]
and the path-loss exponent is α ✏ 2. As UAVs need to be equipped with precise localization
systems (e.g. Global Positioning System - GPS), clock offset issues can be greatly reduced
and enable good network-wide synchronization. Thus CFOs can realistically be controlled
to remain less than a ppm. However, challenging receiving conditions may arise when non-
negligible relays signals have significantly different CFOs, thus increasing the time-selectivity
of the received signal. Considering a scenario with d1:5 ✏ r4.0, 2.5, 2.2, 0.7, 0.4s km, corre-
sponding to a realization of the 95%-quantile of ∆τprop, and d0 ✏ 20 km which yields the
near-uniform power profile r0,✁0.78,✁0.93,✁1.6,✁1.8s in dB, which is rich in diversity but
difficult to equalize. For testing, we assume a worst case situation in which close nodes have
very different CFOs, i.e. φ1:5 ✏ rφ,✁φ, φ,✁φ, φs.

In Figure 5.17, uncoded BER performance of considered equalizers is plotted. Increase
in CFO is shown to create an error floor, which is then enhanced as the signal-to-noise ratio
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Figure 5.18: Impact of CFO on the coded performance of the UAV scenario. Rc ✏
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(SNR) increases, due to the channel estimate mismatch at the equalizer. In practice, the
error-floor can be kept at its minimum, by accounting for the channel mismatch errors within
the equalizer filters. It is seen that without CFO (φ ✏ 0 ppm), the FD SILE-EP brings
around 4.2 dB gain over FD LE at BER=10✁3, and regardless of the CFO, FD SILE-EP has
lower error floors and notable SNR gains. The φ ✏ 1 ppm case might be unrealistic for UAVs,
but it allows assessing the limits of considered receiver.

Considering the same scenario with LTE channel coding for Rc ✏ r1④3, 1④2, 2④3, 5④6s,
the trade-off between higher throughput or a more powerful code is assessed in Fig. 5.18.
The Eb④N0 required to decode with PER=10✁3 is plotted as a function of the CFO φ, for
these code rates and the considered equalizers. For φ → 0.8 ppm, both FDE cannot decode
Rc ✏ 5④6, and FD LE can no longer decode Rc ✏ 2④3 for φ → 0.9 ppm. Strong codes manage
to cope with typical values of CFO, and FD SILE-EP bring small improvements, but with
higher code rates the performance is severely degraded, and the benefits of using an iterative
receiver, such as FD SILE-EP, is more significant. In particular, FD SILE-EP considerably
improves spectral efficiency, as it decodes at Rc ✏ 5④6 with better energy efficiency than FD
LE operating at Rc ✏ 2④3, up to φ ✏ 0.7 ppm.

Discussion An analytical model is provided on the distribution of the delay spread and the
dynamic range of cooperative broadcast channels that appear in MANETs with imperfect
radio clock synchronization. This provides a means to assess the frequency selectivity of the
artificial channels generated by such transmissions, and to design the PHY layer accordingly.

We have evaluated the performance of frequency-domain equalization for handling such
transmissions in some scenarios of interest. Numerical results showed how radio imperfections
could impact the link quality and that modern iterative frequency domain receivers could
become viable solutions with significant advantages over conventional FDE, especially when
dealing with high data rate transmissions.
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Our results assume the use of appropriately-sized cyclic prefixes, and this could lead to
some loss of efficiency in certain scenarios. In such cases, the use of an iterative overlap FDE
could be preferred (see Section 4.5.3 of the previous chapter).

Previous works on the analysis of cooperative broadcasting in MANETs often ignore the
impact of the underlying artificial frequency-selective channel. This can potentially overesti-
mate the performance prediction for practical applications if realistic low-cost radios are to be
used. This contribution aims to regain awareness in these issues, and future works will focus
on assessing the impact of these PHY layer considerations on higher layer quality-of-service
metrics of MANETs.

5.6 Conclusion

With this final chapter, we address the problem of cooperative protocol design for MANETs,
by putting in place a system-level simulation framework with a realistic PHY model. In this
regard, a considerable part of this chapter is dedicated to identifying successful approaches
to link abstraction and extending them for our proposed FD SILE-EPIC receiver.

This has been achieved by first establishing an asymptotic evolution analysis model for this
receiver, by combining notions from binary EXIT function techniques and symbol-wise state-
evolution methodology, used by AMP-based algorithms. Then two finite-length prediction
mechanisms are proposed, one of them being based on the symbolwise abstraction method
of [VB+10], where demapping and decoding operations are jointly modelled. The second
method we proposed further extends these approaches by analysing the dispersion of the
covariance of the soft feedback, which is a method loosely inspired from finite-length coding
literature.

In the final part of this chapter, a fundamental distributed cooperation technique, cooper-
ative broadcast, has been on the spotlight, first, in order to show the physical layer challenges
it artificially creates, and then to show that the proposed receiver with an off-the-shelf turbo-
code can achieve significant improvements in this context.
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In this thesis, the design challenges for future MANETs with distributed cooperative
protocols is studied, mainly from a PHY-layer receiver design point of view. Communication
protocols in MANETs inherently require the use of multi-hop relaying functionalities for
coping with mobility and the lack of infrastructure, at the cost of increased latency and
jitter. The use of cooperation at the PHY layer can become a driving force for increasing the
robustness or the spectral efficiency of such networks.

In order to better understand the underlying design challenges and roadblocks for enabling
cooperative relaying, we have provided an overview on major developments involving cooper-
ative transmissions in wireless networks, and in particular MANETs. Firstly, it is noted that
most efficient schemes exploit non-orthogonal access techniques, and do not shy away from in-
terference, as the PHY layer is assumed to use state-of-the-art coding strategies and advanced
interference mitigation algorithms at the receiver. Secondly, as most of these protocols come
with a certain amount of signalling burden, there is a lack of guidance on how to fairly assess
these techniques, and compare them among each other. Without accounting for overhead
penalties, the use of sub-optimal PHY techniques or the use of unrealistic channel models, it
is not possible to determine if a practical implementation of a considered cooperative protocol
is worth the effort.

Considering the aforementioned challenges for enabling the design of cooperative MANETs,
the main problematic of this thesis is tackled by addressing the following objectives:

• identify from the state-of-the-art of PHY receiver design techniques, the strategies that
are likely to be adopted for near-future implementation in real-world platforms, by
considering the BICM scheme with single-carrier transmissions,

• ensure that selected receivers’ behavior can be predicted with link abstraction tech-
niques, for enabling system-level simulators to assess the receiver’s impact within a
realistic implementation of the cooperative protocol.

In order to address the first objective, we have carried out a study that aims to shed light
into various categories of emerging signal processing algorithms, by considering a generic linear
model and an iterative BICM receiver structure. Then various Soft Input Soft Output (SISO)
detectors are designed using approximate Bayesian inference techniques and algorithms based
on AMP for this generic “toy” example, in order to identify their strengths and weaknesses.
To this end we have reviewed over 25 years of developments in algorithms related to turbo
detection, and we have focused our attention to the emerging approximate statistical esti-
mation methods such as BP, EP, MF, PDA and (☎/G/V/O)AMP algorithms. In particular,
we mainly focus on techniques that enabled designing double-loop turbo detectors, and in
order to comply with the second goal of this thesis, we have sought to understand asymp-
totic limits and predictability of these methods, with a unified view. The motivation behind
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the investigation of double-loop receivers stems from the fact that SISO decoder can have
excessive complexity and latency, and we have hoped to be able to replace iterations with
the decoder by a simpler demodulation process. We have also investigated emerging deep
learning techniques for PHY design, with a particular forcus on the method of deep unfolding
which enables optimizing iterative algorithms by assimilating them to deep networks.

The main conclusions drawn from this study is that SISO detectors with inner iterations is
a promising category of algorithms, and in particular those designed with EP message passing,
or the related VAMP or OAMP techniques possess the property of being predictable.

Considering this, in order to specifically address the ISI mitigation problem at hand for
single-carrier transmissions, we have started our investigations for designing an equalizer.
First, the state-of-the-art techniques on turbo-equalization are reviewed, with a focus on Time
Domain (TD) Finite Impulse Response (FIR) structure, and then to address their shortcom-
ings, novel design techniques for FIR DFE turbo-equalizers were proposed by incorporating
the use of Expectation Propagation (EP)-based, and APP-based feedback. Thanks to a novel
strategy for efficient matrix inverse update computation, the performance-complexity trade-
off analysis on these receiver strongly favour FIR DFE receivers with EP-based soft feedback,
thanks to their impressive performance at high spectral efficiency operation points. We have
also explored the design of self-iterated FIR DFE to further push the achievable rate bounds
close to the capacity. These studies were carried out with exact FIR structures which possess
dynamic filters, and in order to reduce computational costs, we have addressed the problem
of turbo DFE design with static filters. While this is a challenging non-linear design problem,
where the optimal filter depends on the outputs of the equalizer, through semi-analytical
prediction, we have proposed an effective method for designing filters with close-to optimal
performance.

Although the proposed FIR DFE structures brought significant performance improve-
ment, their implementability in real-world platforms was doubtful, due to the serial nature
of the decision feedback causing a significant amount of latency with the demodulation step.
To alleviate this we have started investigations on Frequency Domain (FD) structures with
decisions being taken over the whole data block. To this end, we proposed a framework based
on using scalar EP message passing for designing doubly-iterative turbo equalizers with FD
signal processing. Similarly to the previous chapter, the use of EP-based self iterations bring
significant performance improvements at the high data rate applications. These receivers
are shown to achieve significant improvements over traditional FD structures, while achiev-
ing nearly the same performance as its exact TD counterpart. Strengths and weaknesses of
these algorithms have been theoretically analyzed based on finite-length Monte Carlo sim-
ulations and asymptotic EXIT analysis. This most likely is the technical contribution with
the highest potential of having a significant impact, due to this receiver having a simple and
low-complexity structure, and due to the widespread use of FD equalizers in low-cost radios.
The optimization of this receiver’s parameters through an original use of deep unfolding and
learning techniques has been explored, and promising results are obtained through numer-
ical analysis. Finally, the proposed framework has been extended to handle complex SC
problems, such as SC-FDMA, time-varying channel equalization with overlap-and-save, and
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multi-user MIMO spatial multiplexing. The impact of channel estimation is also evaluated
for this receiver.

Finally, having found a suitable candidate for PHY receiver of future MANETs, the sec-
ond objective set for this thesis is addressed, by putting in place a system-level simulation
framework with a realistic PHY model. In this regard, novel link abstraction approaches are
proposed for the self-iterated FD receiver, through the use of asymptotic analysis techniques,
enhanced by some heuristics for increasing finite-length prediction accuracy. In particular, a
method is proposed for tracking the dispersion of the soft feedback and to perform pseudo-
random generation of soft reliability errors, in order to perform semi-analytical prediction
without any calibration. In order to gather attention to the importance of having such simu-
lation tools, a fundamental distributed cooperation technique, called cooperative broadcast, is
explored. This protocol is seen to create significant amount of ISI, along with time-selectivity
at the receiver, and with a simple, off-the-shelf PHY we have illustrated potential improve-
ments that state-of-the-art receivers can bring to cooperative MANETs.

Perspectives

Further improvements on FIRs

In the works of Jeong et. al. [JM13; Jeo11], concatenation of hard DFE FIR was carried
out in order to improve detection performance significantly. In particular concatenation of
two DFEs with reversed time axis yields the bi-directional DFE structure. Extension of these
methods with EP and self-iterations should be explored.

These structures can also be improved through the use of FS equalization [Pet+19], where
challenges on complexity and channel estimation have to be addressed.

Kalman smoothers

We have discussed the links between TD block receivers and Kalman smoothers, and vari-
ous types of Kalman smoothers were proposed for EP in [SZW+15; SMF+17b]. In particular
the latter structure appears to yields the same performance as block filter-banks, hence it
would be interesting to perform a joint complexity-performance analysis and seek potential
improvements for the equalization of time-varying channels.

FD joint channel estimation and detection

Although most part of this thesis is focused on detection, message passing techniques
are also widely using for channel estimation [Han+18]. Considering the practicality of the
self-iterated FD equalizer, it would be interesting to extend it in order to also refine channel
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estimates through self-iterations and approximate inference.

Deep unfolding

In this thesis the use of deep unfolding was justified through the observation that EP-
like VAMP algorithm is already optimal, when perfect CSI is available, for a limited set of
structures and for Bernoulli-Gaussian signals [BSR17]. It would be interesting to re-iterate
this experiment with signals from PSK and QAM constellations in order to ensure that for
digital communications problems, this type of structures do not get improved by learning.

Next, the incorporation of loops and learnable parameters, other than damping, can be
explored, to attempt to further optimize unrolled FD detection networks. The benefits of
deep unfolding should also be explored for channel estimation.

EP for superposition coding and NOMA

In this thesis, BICM systems were under spotlight as they enable using conventional
turbo-detection strategies between a SISO detector and a SISO decoder. However for emerg-
ing NOMA techniques, superposition coding techniques are being explored. Through the
flexibility that EP brings for casting messages into practical family of PDFs one could pro-
vide low-complexity but effective techniques for such modulations.

Evaluate the system-level gains for using advanced receivers in MANETs

A natural continuation of the last chapter of this thesis is the use of the proposed coopera-
tive simulation framework and the performance prediction scheme for evaluating system-level
gains of using self-iterated FDE in MANETs. These evaluations should consider the charac-
teristics of MANET channels, by accounting for the impact of shadowing and mobility.

Multiple-multicast/broadcast protocols for MANETs

Finally, cooperative protocols explicitly mentioned in this thesis either consisted in uni-
cast transmissions through relay selection, or broadcasting/multicasting through cooperative
broadcast. PHY layer abstraction methods for emerging protocols based on NOMA or Phys-
ical Layer Network Coding [Nav18; Liu+19a] should be explored, alongside realistic PHY
design. Such non-orthogonal protocols could enable combining multiple payloads for PHY-
layer transmissions and create simultaneous cooperative links.
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(Français)

Dans cette thèse on étudie les défis de conception pour des MANETs futurs ayant des pro-
tocoles coopératifs distribués, principalement de point de vue des problématiques récepteurs
en couche PHY. Les protocoles de communications pour les MANETs nécessitent naturelle-
ment l’utilisation de fonctionnalités relayage multi-bonds afin d’affronter la mobilité et le
manque d’infrastructure, au prix d’une latence et une gigue plus élevées. La coopération au
niveau de la couche PHY peut alors devenir un point clé pour augmenter la robustesse ou
l’efficacité spectrale de tels réseaux.

Afin de mieux comprendre les défis techniques et les obstacles pour mettre en oeuvre
le relayage coopératif, nous avons fourni une synthèse sur les développements majeurs qui
impliquent des transmissions coopératives dans des réseaux sans-fil, et en particulier, les
MANETs. D’abord, on remarque que les schémas les plus efficaces exploitent des techniques
d’accès non-orthogonal, et ne cherchent pas à éviter l’interférence, puisque la couche PHY
est supposé d’être conçue avec des techniques de codage de pointe et avec des algorithmes
de mitigation d’interférence avancés. Deuxièmement, comme la plupart de ces protocoles
nécessitent de la signalisation, il y a un certain manque de méthodologie afin de pouvoir
évaluer l’apport de ces techniques équitablement, et pour pouvoir les comparer entre eux.
Sans prendre en compte les pénalités de signalisation, ou l’utilisation de techniques couche
PHY sous-optimaux avec des modèles de canal réalistes, il n’est pas possible de déterminer si
l’implémentation pratique d’un protocole coopératif vaut la peine d’être envisagé.

En vue des défis mentionnés au-dessus pour rendre la conception des MANETs coopéra-
tives plus favorable, les problèmes énoncés avec cette thèse sont abordés en poursuivant les
deux objectives suivantes:

• identifier dans l’état de l’art sur les techniques de conception de récepteur PHY les
stratégies qui semblent être les plus vraisemblables d’être choisis pour implémentation
sur une plateforme réel dans le futur proche, dans le cadre des transmissions mono-
porteuses avec la BICM,

• assurer que le comportement des récepteurs choisis peut être prédit avec des techniques
d’abstraction du lien, afin de permettre aux simulateurs système d’évaluer l’impact du
récepteur dans le contexte d’une implémentation réaliste du protocole coopérative.

Pour aborder la première objective, nous avons mené une étude qui cherche à éclair-
cir divers catégories d’algorithmes de traitement du signal, en considérant le problème de
régression sur une modèle linéaire générique sur un signal BICM avec une structure de récep-
teur itérative. Ensuite, plusieurs détecteurs SISO sont conçus avec des techniques d’inférence
bayésienne approximée et des algorithmes basés sur l’AMP pour ce cas d’école, afin d’identifier
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leurs points forts et leurs faiblesses. À cet égard, nous avons effectué une revue sur les 25
années de développements liées aux algorithmes de turbo-détection, et nous avons focalisé
notre attention sur les techniques d’estimation statistique approximés émergents tels que le
BP, EP, MF, PDA et les algorithmes (☎/G/V/O)AMP. En particulier, nous nous focalisons
principalement sur les approches permettant de concevoir des turbo-détecteurs doublement
itératives, et afin de prendre en considération le second objectif, nous avons cherché à com-
prendre leurs limites asymptotiques et la prédictibilité de ces méthodes, avec une analyse
unifiée. La motivation derrière l’étude des récepteurs à deux-boucles provient du fait que
le décodage SISO peut avoir une complexité et une latence prohibitive, et nous espérions
pouvoir remplacer des itérations avec le décodeur par des itérations avec un processus de
démodulation (ou de décision) plus simple. Nous avons aussi brièvement investigué les méth-
odes d’apprentissage profond pour la couche PHY, avec une attention particulière donnée
au concept du dépliement profond qui permet d’optimiser des algorithmes itératives en les
assimilant à des réseaux profonds.

La conclusion principale tiré de cette étude est que les détecteurs SISO avec des itérations
internes constituent une catégorie d’algorithme prometteuse et en particulier, ceux conçus
avec le passage de messages à base de EP, ou liées aux techniques comme le VAMP/OAMP,
qui ont la propriété d’être prédictibles.

Compte tenu de cette conclusion, afin d’aborder spécifiquement le problème de mitiga-
tion de l’ISI pour les transmissions mono-porteuses considérées, nous avons investigué la
conception d’un égaliseur. D’abord, nous avons balayé l’état de l’art sur les techniques de
turbo-égalisation, avec un accent sur les structures domaine temporelles (TD) avec des filtres
à réponse impulsionnelle fini (FIR), et afin de remédier à leur faiblesses, nous avons proposé
des nouvelles turbo-égaliseurs FIR DFE, en exploitant du retour souple à base de EP et des
estimés APP. Grâce à une nouvelle stratégie de calcul efficace de l’inverse de la matrice de
covariance, le compromis performance-complexité est en faveur des structures FIR DFE à
base d’EP, en vue de leurs performances impressionnants à des points de fonctionnement à
haute efficacité spectrale. Nous avons aussi exploré la conception des FIR DFE auto-itérées
afin de davantage pousser les débits atteignables vers la capacité du canal. Ces études ont été
menées avec des structures FIR exactes qui utilisent des filtres dynamiques, et pour réduire
la complexité calculatoire, nous avons aussi abordé la conception de turbo DFE avec des fil-
tres statiques. Alors que cela soit un problème de conception non-linéaire complexe, avec les
coefficients du filtre optimal qui dépendent de la sortie de l’égaliseur elle-même, à travers la
prédiction semi-analytique, nous avons proposé une méthode efficace pour obtenir des filtres
permettant d’atteindre une performance quasi-optimale.

Même si les structures FIR DFE proposés apportent une amélioration significative de
performances, leur capacité à être implémenté dans des plateformes réelles était douteux, à
cause de la mode opérateur de retour de décision série qui cause beaucoup de latence avec
l’étape de démodulation. Pour remédier à cela nous avons mené une étude avec des structures
domaine fréquentielle (FD) avec un retour de décision prise sur l’ensemble de bloc de données.
À cet égard, nous avons proposé une méthode de conception qui consiste à utiliser le passage
de message EP scalaire pour obtenir des turbo-égaliseurs doublement-itératifs avec traitement
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dans la FD. Similairement aux observations sur les FIR DFE, les auto-itérations apportent des
améliorations significatives de performance pour des applications haut-débit. Ces récepteurs
ont montré des gains significatifs comparés à des structures FD plus conventionnels, toute
en atteignant les mêmes limites asymptotiques que les structures domaine temporelles (TD)
exactes. Les points forts et les faiblesses de ces algorithmes ont été analysés théoriquement
et avec des simulations Monte-Carlo à taille fini, et de l’analyse asymptotique de transfert de
l’information extrinsèque (EXIT). Ceci est vraisemblablement la contribution technique qui
a le plus grand potentiel d’avoir un impact significative, puisque ce récepteur a une structure
simple et avec une complexité réduite, adapté à l’usage répandu des structures FD dans des
radios à bas coût. Nous avons aussi exploré l’optimisation des paramètres de ce récepteur
avec un usage original du dépliement et de l’apprentissage profond, et nous avons obtenu
des résultats prometteurs à travers une analyse numérique. Pour finir, l’approche proposé a
été étendu pour traiter des problèmes SC plus complexes, tel que le SC-FDMA, l’égalisation
des canaux temps variants et multiplexage spatiale MIMO multi-utilisateurs. L’impact de
l’estimation du canal a été aussi discuté pour ce récepteur.

Pour finir, ayant trouvé un candidat convenable pour le récepteur PHY des MANETs
futurs, on aborde le second objectif de cette thèse en mettant en place une approche simulation
système avec une modèle de PHY réaliste. À cet égard, des nouvelles approches d’abstraction
du lien sont proposées pour le récepteur FD auto-itérés, en utilisant des techniques d’analyse
asymptotique, renforcés avec quelques heuristiques pour raffiner la précision de la prédiction
à taille-fini. En particulier, une méthode est proposée pour suivre la dispersion statistique du
retour souple afin de générer des erreurs pseudo-aléatoires sur la fiabilité souple afin de mener
une prédiction semi-analytique ne nécessitant pas de calibration. Pour attirer l’attention
sur l’importance de disposer de tels outils de simulation, nous avons exploré une méthode
de coopération distribuée fondamentale, la diffusion coopérative. Nous avons montré que
ce protocole était à l’origine d’une quantité importante de l’ISI, mais aussi de la sélectivité
temporelle au niveau de récepteur, et avec une modèle de PHY simple nous avons illustré
des gains importants de performance que des récepteurs avancés de l’état de l’art peuvent
apporter à des MANETs coopératives.

Perspectives

Améliorations supplémentaires sur les FIRs

Dans les travaux de Jeong et. al. [JM13; Jeo11], ils effectuent la concaténation parallèle
de plusieurs DFEs FIR afin d’améliorer significativement la performance de détection. En
particulier, la concaténation de deux DFEs en renversant l’axe de temps permet d’obtenir la
structure de DFE bidirectionnelle. L’extension de ces approches avec EP et des auto-itérations
mérite d’être explorée.

Ces structures peuvent être aussi améliorées avec l’usage de l’égalisation fractionnaire (FS)
[Pet+19], où de nombreux défis sur la complexité et l’estimation du canal doivent être résolus.
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Lisseurs de Kalman

Nous avons évoqué les liens entre les égaliseurs bloc en domaine temporelle et les lisseurs
de Kalman, et divers variantes de lisseurs de Kalman ont été étudies avec EP dans [SZW+15;
SMF+17b]. En particulier, la dernière structure possède la même performance que des bancs
de filtres temporels, ainsi cela sera intéressant de mener une étude du compromis complexité-
performance afin d’évaluer l’intérêt de ces structures pour des canaux temps-variants.

Estimation du canal et détection conjointe en domaine fréquentiel

Même si la plupart de cette thèse est focalisé sur le problème de détection, les techniques
de passage de messages sont aussi utilisées de manière répandue pour l’estimation du canal
[Han+18]. En vue de la commodité offerte par l’égaliseur FD auto-itérée, cela serait in-
téressant de l’étendre afin d’aussi raffiner les estimés du canal avec des auto-itérations et de
l’inférence approximée.

Dépliement profond

Dans cette thèse, l’utilisation du dépliement profond a été justifiée suivant l’observation
que l’algorithme VAMP, liée à l’EP, est déjà optimal par rapport à sa structure, quand la con-
naissance parfaite du CSI est disponible et pour des signaux bernoulli-gaussiennes [BSR17].
Cela serait intéressant de refaire cette expérience avec signaux issues des constellations PSK et
QAM afin d’assurer qu’il n’y a pas améliorations à travers l’apprentissage sur cette structure
pour des problèmes de communications numérique. Puis, nous pourrons explorer l’inclusion
d’autres boucles et des paramètres entrainables, autre que le lissage du retour, afin de da-
vantage optimiser les réseaux de détection domaine fréquentiels dépliées. Les bénéfices du
dépliement profond devraient être aussi explorés pour l’estimation du canal.

EP pour le codage par superposition et NOMA

Dans cette thèse, les systèmes BICM ont été au coeur des études, comme ils permettent
l’utilisation des stratégies de turbo-détection entre un détecteur SISO et un décodeur SISO.
Néanmoins des techniques de codage par superposition sont en train d’être étudiés pour des
techniques NOMA émergents. À travers la flexibilité que l’EP apporte pour projeter des
messages dans des familles de PDF pratiques, on pourrait explorer des techniques efficaces
mais à faible complexité pour de tels stratégies de modulation.
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Évaluer les gains au niveau système pour l’utilisation des récepteurs avancés
dans les MANETs

Une suite logique au dernier chapitre de cette thèse est l’utilisation de l’approche de sim-
ulation coopérative proposée et de la méthode de prédiction de performance pour évaluer les
gains au niveau-système de l’utilisation des auto-itérations dans les MANETs. Ces évalua-
tions devraient prendre en compte les caractéristiques des canaux MANETs en modélisant le
masquage et la mobilité.

Protocoles de diffusion/multidiffusion multiples pour les MANETs

Pour finir, les protocoles coopératives explicitement mentionnés dans cette thèse consistent
soient des transmissions monodiffusion avec sélection de relai, ou du diffusion/multidiffusion
avec de la diffusion coopérative. Méthodes d’abstraction de couche PHY pour des protocoles
émergents basé sur NOMA ou le codage réseau en couche PHY [Nav18; Liu+19a] devront
être exploré avec un PHY réaliste. Tels protocoles non-orthogonaux pourraient permettre la
mise en commun de plusieurs charges utiles pour une transmission PHY et donc permettre
la création de plusieurs liens coopératifs simultanément.





Appendix A

On Physical Channel Simulation

A.1 Equivalent Upsampled Discrete Channel Model

In practical transceivers, or for numerical simulation, the time-continuous channel and
pulse shaping filtering operations are often replaced by equivalent discrete models, by oper-
ating at a sampling frequency fs higher than the signal bandwidth. In this regard, we need
to convert continuous convolutions to equivalent discrete-time convolutions, as per Equation
(1.20), for generating the impact of h✶♣pqu,v ♣tq on the user signals and the impact of h♣αqRRC♣tq on
the AWGN. For clarity, let us consider a simpler noise-free single-user transmission, which
yields

y✶♣pqu ♣tq ✏ h✶♣pqu,v ♣τ, tq ✝ x✶♣pqv ♣tq, (A.1)

before sampling. The user signal x✶♣pqv ♣tq has infinite-bandwidth, but as the shape filters are
used, the useful signal will be band-limited to B, which is at most 2W , when roll-off factor is
α ✏ 1. Hence, the sampling frequency of the equivalent discrete model has to be upsampled
by a factor ns ➙ 2 greater than the symbol rate, i.e. fs ✏ nsW . Moreover, the equally-spaced
tapped-delay line method presented in [Isk08] is used to discretize the channel, by taking the
cardinal sine expansion of x✶♣pqv ♣tq at rate the fs. We have

y✶♣pqu ♣tq ✏
➺ ✽
✁✽

h✶♣pqu,v ♣τ, tqx✶♣pqv ♣t✁ τq dτ, (A.2)

and by taking the Whittaker–Shannon interpolation expansion of x✶♣pqv ♣t ✁ τq on the delay
domain, we have

x✶♣pqv ♣t✁ τq ✏
✽➳

m✏✁✽

x✶♣pqv

✂
t✁ m

fs

✡
sinc♣fsτ ✁mq. (A.3)

Moreover, by writing the channel explicitly as, h✶♣pqu,v ♣τ, tq ✜
❛

Erx,uh♣αq✝RRC♣✁τq ✝ h♣pqu,v♣τ, tq ✝
h♣αqRRC♣τq with

h✶♣pqu,v ♣τ, tq ✏
❛

Erx,u

Lss➳
l✏1

a
♣pq
u,v,l♣tqh♣αqRC♣τ ✁ τ

♣pq
u,v,lq, (A.4)
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where h♣αqRC is the raised-cosine filter, with roll-off α, we have

y✶♣pqu ♣tq ✏❛
Erx,u

✽➳
m✏✁✽

x✶♣pqv

✂
t✁ m

fs

✡ Lss➳
l✏1

a
♣pq
u,v,l♣tq

➺ ✽
✁✽

sinc♣fsτ ✁mqh♣αqRC♣τ ✁ τ
♣pq
u,v,lq❧♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♠♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♥

✜g
♣p,αq
u,v,l,m

dτ. (A.5)

An important point is about the pulse shaping filters; in practice the are often replaced by
truncated, normalized, finite-impulse response filters of size Lps, that are causal and dis-
cretized at the sampling frequency fs, i.e.

h♣αqRC♣τq ✏
Lps➳
l✏1

h
♣αq
RC,lδ

✂
τ ✁ l

fs

✡
. (A.6)

Finally, by using the expression of circularized transmitted sequence, we have

y✶♣pqu ♣tq ✏
✽➳

m✏✁✽

N ✶➳
n✶✏1

x
✶♣pq
v,n✶δ

✂
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fs
✁ n✶ ✁ 1

W

✡❛
Erx,u

Lss➳
l✏1

a
♣pq
u,v,l♣tqg♣p,αq
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✜h

✶♣p,αq
u,v,m♣tq

, (A.7)

and using this model, we can investigate the computation of sampled observations y✶♣pqu ♣t0 �
n④W q. With a upsampled discrete observations, the synchronization problem of choosing t0
needs to be replaced by choosing the correct downsampling phase m0 among m ✏ 0, ..., ns✁1
possibilities, such that t0 ✏ m0④fs, and we have

y✶♣pqu,n ✜ y✶♣pqu

✁
t0 � n

W

✠
✏

✽➳
m✏✁✽

N ✶➳
n✶✏1

x
✶♣pq
v,n✶h✶♣p,αq

u,v,m

✂
n

W
� m0

fs

✡
δ

✂
n✁ n✶ � 1

W
✁ m✁m0

fs

✡
,

(A.8)
where the Dirac delta function enforces n✶ ✏ ♣m0 ✁ mq④ns � n � 1. Moreover as n✶ is an
integer, only non-zero components of this sum are given for m ✏ m0 � nsl, with l being any
integer, thus

y✶♣pqu,n ✜ y✶♣pqu

✁
t0 � n

W

✠
✏

✽➳
l✏✁✽

h✶♣p,αq
u,v,♣m0�nslq

✂
n

W
� m0

fs

✡
❧♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♠♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♥

✜h
✶♣p,αq
u,v,n,l

x
✶♣pq
v,n✁l�1. (A.9)

By truncating the taps h✶♣p,αq
u,v,n,l that have an average power below a certain threshold, and by

considering the channel and pulse shaping filters to be causal, we finally obtain the discrete
baseband model

y✶♣pqu,n ✏
L➳

l✏1

h
✶♣pq
u,v,n,lx

✶♣pq
v,n✁l�1. (A.10)

Note that the discrete channel model is not unique, there can be ns different impulse responses
depending on the choice of m0, this will be further discussed in the next section.
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As outlined in the SNR formulas in the previous section, the channel power ⑥h✶♣pq
u,v ⑥2 plays

a significant role in it. It is desirable to set the expected value of the small-scale components
to be a unitary constant, such that E

✑
⑥h✶♣pq

u,v ⑥2
✙
✏ Erx,ug

PL
u,vg

sh♣pq
u,v , in order to tie the impact of

large-scale path-loss and shadowing directly to the SNR. To this end, it is not sufficient to nor-
malize the power-delay-profile of the small-scale channel component, because the correspond-
ing discrete channel model are correlated, and they have an un-normalized impulse-response
due to pulse-shaping, up-sampling factor, and the synchronization instant. To circumvent this
issue, in this thesis, we precompute the norm of h✶♣pq

u,v,n ✏ rh✶♣pq
u,v,n,1, . . . , h

✶♣pq
u,v,n,Ls, and normalize

the small-scale channel profile by this factor, in order to control the value of the received
SNR.

A.2 Synchronization and Radio Imperfections

As mentioned in the previous sections, a synchronization algorithm is needed in order to
find the sampling instant t0. Moreover, as the PHY layer front-end operates at a sampling
frequency of fs, it is rather needed to find the ideal sampling phase m0 ✏ 0, . . . , ns ✁ 1.

In this thesis, realistic synchronization techniques are out of scope and instead some sub-
optimal genie techniques will be used. Moreover, an ideal synchronisation would consist in
choosing m0 to minimize the Packet Error Rate (PER), but that would require carrying
out ns decoding operations in order to select the one with optimal performance. Due to the
complexity of this operation, we consider two sub-optimal “genie” approaches (i.e. techniques
that use ideal channel knowledge).

First, in the absence of a frequency-selective channel (L ✏ 1), m0 is selected to maximize
the SNR at the input of the AWGN symbol demodulator, which corresponds to sampling
y✶♣pq

u ♣tq when the corresponding eye diagram is at its maximum. Secondly, in the general case
where the channel is selective, there is no longer a direct correspondence between the channel
and the demodulation (due to underlying equalization or detection procedure), hence m0 is
simply selected to maximize the channel power ⑥h✶♣pq

u,v ⑥2 at the output of the matched filter.

Another important PHY aspect is synchronization errors. Indeed, even when using a “ge-
nie” method, the resolution of the synchronization instant is limited by the upsampling factor
ns. Indeed, ideal synchronization phase is related to the ideal instant with m0 ✏ round♣t0fsq,
with t0 ➔ 1④W , hence small values of ns result in a quantification error on the sampling
instant. Moreover, when considering the use of real-world sub-optimal synchronization algo-
rithm and imperfect local oscillators (especially for low-cost embedded radios), it becomes
necessary to model imperfect synchronization, whose impact on cooperative and/or non-
orthogonal transmissions can be severe.

We assume that local oscillator is calibrated for reference time and carrier frequency
synthesis with a distributed network-wide coarse synchronization algorithm, and the sampling
phase selection at the output of the matched-filter is operated by a fine time-synchronization
algorithm. Following these, relative to an ideal global clock t, each node u has time-offset
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of toff
u seconds, and residual frequency drift of foff

u . Moreover, we will assume, at each MAC
frame, that toff

u is uniformly distributed in r✁τclk④2, τclk④2s, and we define τ clk
u,v ✜ toff

u ✁ toff
v , and

φu,v ✜ foff
u ✁foff

v . Then these imperfections can be incorporated into the propagation channel
model, as

h♣pqu,v♣τ, tq ✏
Lss➳
l✏1

ej2πtφu,va
♣pq
u,v,l♣tqδ♣τ ✁ τ

♣pq
u,v,l ✁ τ clk

u,vq. (A.11)

Finally, to conclude on radio imperfections, for accounting for possible jamming or radio
quantification noise or any other source of interference, the covariance matrix of the considered
interference has to be added to the Equation (1.23), and SNR expressions has to be accounted
for accordingly.



Appendix B

On Receiver Computational
Complexity Estimation

B.1 Introduction

Digital receivers can be implemented on practical platforms either through software in
embedded processors, digital signal processors, or through hardware architectures such as
Digital Signal Processing (DSP), Field Programmable Gate Array (FPGA) or Application
Specific Integrated Circuit (ASIC). Hence, computational, area or latency efficiency of re-
ceiver algorithms is a crucial metric and its accurate estimation is difficult, due to differences
in parallelized implementation possibilities depending on platforms and the algorithm’s type.
Hence, to get a broad idea of complexity in this thesis, we seek a simple approach for com-
putational complexity estimation.

Among different metrics for such evaluations in numerical analysis, the number of FLOPs
and the number of memory accesses are commonly used. Although such metrics ignore the
possibility of concurrency in algorithms, they can model respectively processing frequency
and memory bandwidth requirements.

Here we consider the operation frequency and the occupied area to be main issues, and
thus we use FLOP counts, which we define with regards to an elementary real addition
and real multiplication in order to also evaluation the number of multiply-and-accumulate
units/operations that would be needed for implementation. Hence the Table B.1 below is
built by considering a real addition and a real multiplication to amount to half a floating
point operation (0.5 FLOPs) each.

Receiver algorithms will be analyzed by the means of operations above and memory ac-
cesses will be ignored. Finally, logical tests or maximum/minimum of two real-valued elements

will be each counted as an elementary addition Ar, i.e. 0.5 FLOPs.

B.2 Demapping Operations/Decision Devices

In this section, we are interested in quantifying the complexity of various constellation
related operations that are used in different stages of a receiver.
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Table B.1: Complexity of Basic Operations

Operation Symbol Mult. Add. FLOPs

Real Addition/Substraction Ar 0 1 0.5

Real Multiplication/Division Mr 1 0 0.5

Complex-Real Mult./Div. Mrc 2 0 1.0

Complex Addition Ac 0 2 1.0

Complex Mult. Mc 4 2 3.0

Complex Div. Dc 8 3 5.5

Real Square Root Sr - - 3.0

Squared Complex Norm Pc 2 1 1.5

Real Linear Interpolation Ir 1 2 1.5

Binary Operations Bo - - 0.5

Memory Access Ma - - 0

First, when using prior bitwise information, a soft mapper is also needed on the feedback
path for computing prior distribution. Soft mapping uses prior LLRs La♣dk,jq on coded bits
dk,j , provided from a decoder, to estimate a prior distribution on xk ✏ α, ❅α P X

Pk♣αq✾
➧Q

j✏1 e
✁ϕ✁1

j
♣αqLa♣dk,jq, (B.1)

where X is the symbol constellation with M elements. This distribution could either be
computed in un-normalized log-domain (ln Pk♣αq�Cte) for further processing for demapping,
or in the linear domain for the computation of soft symbol estimates. In the latter case, a
non-linear operation is involved, which is approximated by interpolators, and for normalizing
the distribution M ✁ 1 sums and M products are needed.

A soft demapper is a required in any receiver with a modern, soft-input error correction
code, and it is needed in turbo-equalization to produce soft output extrinsic information, using
symbolwise AWGN MAP criterion. Soft demapper estimates APP symbol distribution

Dk♣αq✾ exp
�✁⑤α✁ xe

k⑤2④ve
x,k

✟
Pk♣αq, ❅α P X , (B.2)

and then this APP distribution is bitwise marginalized in order to compute extrinsic LLRs

Le♣dk,jq ✏ ln
➦

αPX 0
j

Dk♣αq ✁ ln
➦

αPX 1
j

Dk♣αq ✁ La♣dk,jq, (B.3)

with X p
j ✏ tα P X : ϕ✁1

j ♣xq ✏ p✉ where p P F2. First two terms above have each M④2✁ 1 log-
MAP operations, which we approximate with a maximum (logical operation), an interpolator
on the error term and their sum, i.e. ♣M④2 ✁ 1q♣Ir � 2Arq FLOPs.

When considering the computation of hard detection estimate x̃k, the maximum of
Dk♣αq is computed, hence M ✁ 1 logic operations are needed.
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Prior or APP distributions can be used to compute soft estimates and their reliabil-
ities of symbols to be detected. For the prior estimates we have,

x
p
k ✜ EPk

rxks ✏ ➦αPX αPk♣αq,
v

p
k ✜ VarPk

rxks ✏ ➦αPX ⑤α⑤2Pk♣αq ✁ ⑤xp
k⑤2,

(B.4)

and for APP estimates we use

µd
k ✜ EDk

rxks ✏ ➦αPX αDk♣αq,
γd

k ✜ VarDk
rxks ✏ ➦αPX ⑤α⑤2Dk♣αq ✁ ⑤µd

k⑤2.
(B.5)

Usually for APP soft estimate computation, soft demapper’s internal log domain APP distri-
bution is used, hence soft estimate computation should account for the cost of going into the
linear domain in this case.

The computational complexity of the elementary operations above, using the Table B.1
is given below in Table B.2. Note that there different variants of some operations depending
on the availability of priors, or depending on the use of log-probabilities.

Table B.2: Elementary Mapping, Demapping and Decision Operations

Operation Description Details FLOPs

tLa♣dk,jq✉j Ñ ln Pk♣αq � Cte Soft Mapping M♣q ✁ 1qAr 0.5M♣q ✁ 1q

tLa♣dk,jq✉j Ñ Pk♣αq Soft Mapping
M rIr � qAr � Mrs

✁Ar

M♣0.5q � 2q ✁ 0.5

xe
k Ñ ln Dk♣αq � Cte

(no priors)
APP Estimation M♣Ac � Pc � Mrq 3M

♣xe
k, tLa♣dk,jq✉jq

Ñ ln Dk♣αq � Cte
APP Estimation

M♣Ac � Pc � Mr�

qArq
3M � 0.5Mq

ln Dk♣αq Ñ tLe♣dk,jq✉j

(no priors)

Bitwise

Marginalization

q♣♣Ir � 2ArqM

✁2Ir ✁ Arq
q♣2.5M ✁ 3.5q

♣ln Dk♣αq, tLa♣dk,jq✉jq

Ñ tLe♣dk,jq✉j

Bitwise

Marginalization

q♣♣Ir � 2ArqM

✁2Irq
q♣2.5M ✁ 3q

ln Dk♣αq Ñ x̃k Hard Detection ♣M ✁ 1qBo 0.5♣M ✁ 1q

Pk♣αqq Ñ ♣xp

k, v
p

kq

or Dk♣αq Ñ ♣µd
k, γd

kq

Soft Estimates

and Reliabilities

M♣3Ar � 2Mrc � Pcq

✁2Ar

5M ✁ 1

ln Pk♣αqq Ñ ♣xp

k, v
p

kq

or ln Dk♣αq Ñ ♣µd
k, γd

kq

Soft Estimates

and Reliabilities

M♣4Ar � 2Mrc � Pc

�Ir � Mrq ✁ 3Ar

7.5M ✁ 1.5

Finally, combining these different elementary operations, the computational complexity
of common demapping/mapping or decision devices can be computed. Table B.3 presents a
list of such devices.

Soft mapper is a device which combines the estimation of linear prior probability distri-
bution, with the soft estimator which computes the mean and the variance of that distribution.

Soft demapper combines APP estimator with the bitwise marginalization. Moreover,
APP estimator is also used for Hard or Soft detectors, by combining it with the hard
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detection or the log-domain soft estimation.

Finally, in the context of turbo equalization, a turbo demapper module which both
computes prior estimates for interference cancellation, and handles the demapping is consid-
ered. A variant of such devices which also provide soft APP feedback to the equalizer is also
modelled.

Table B.3: Mappers, Demappers and Decision Devices

Operation Description Details FLOPs

tLa♣dk,jq✉j Ñ ♣xp

k, v
p

kq Soft Mapper
M r♣q � 3qAr � Ir � Mr

�2Mrc � Pcs ✁ 3Ar

M♣0.5q � 7q ✁ 1.5

xe
k Ñ tLe♣dk,jq✉j Soft Demapper

M♣Ac � Pc � Mrq�

qM♣Ir � 2Arq ✁ q♣2Ir � Arq
2.5qM � 3M ✁ 3.5q

♣xe
k, tLa♣dk,jq✉jq

Ñ tLe♣dk,jq✉j

Soft Demapper

with Priors

M♣Ac � Pc � Mrq�

qM♣Ir � 3Arq ✁ 2qIr

3qM � 3M ✁ 3q

xe
k Ñ x̃k Hard Detector M♣Ac � Pc � Mr � Arq ✁ Ar 3.5M ✁ 0.5

♣xe
k, tLa♣dk,jq✉jq

Ñ x̃k

Hard Detector

with Priors

M♣Ac � Pc � Mrq � qMAr�

♣M ✁ 1qAr

0.5qM � 3.5M ✁ 0.5

♣xe
k, tLa♣dk,jq✉jq

Ñ ♣µd
n, γd

nq

Soft APP Detector

with Priors

M♣♣q � 4qAr � Ac � 2Pc

�2Mr � 2Mrc � Irq ✁ 3Ar

0.5qM � 10.5M ✁ 1.5

♣xe
k, tLa♣dk,jq✉jq Ñ

♣tLe♣dk,jq✉j , x
p

k, v
p

kq
Turbo Demapper

M♣4Ar � Ac � 2Pc � 2Mr

�2Mrc � Irq � qM♣Ir

�3Arq ✁ 2qIr ✁ 3Ar

10.5M � 3qM

✁3q ✁ 1.5

♣xe
k, tLa♣dk,jq✉jq Ñ

♣tLe♣dk,jq✉j , x
p

k, v
p

k

, µd
k, γd

kq

Turbo Demapper

with APP feedback

M♣8Ar � Ac � 3Pc � 3Mr

�4Mrc � 2Irq � qM♣Ir

�3Arq ✁ 2qIr ✁ 6Ar

18M � 3qM

✁3q ✁ 3

B.3 Trellis and Factor Graph Operations

In this section, the complexity of Trellis-based algorithm BCJR for soft-input soft-output
decoding, and soft-input soft-output detection in frequency selective channels is discussed.

Firstly, on a general purpose implementation of the BCJR algorithm, three types of mes-
sages are computed:

• observation metrics γ♣s, s✶q correspond to the probability of transition from a state
s to state s✶, for states s, s✶ being among Nstate values.

• forward metrics α♣s✶q ✏ ➦sPPstate♣s✶q α♣sqγ♣s, s✶q, with Pstate♣s✶q being the set of states
that can reach to s✶,

• backward metrics β♣sq ✏ ➦
s✶PNstate♣sq

γ♣s, s✶qβ♣s✶q, with Nstate♣sq being the set of
states that can be reached from s.
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When computing the computational complexity of BCJR algorithm, we will neglect transitory
effects of the Trellis, and consider the cardinalities ⑤Pstate♣s✶q⑤ and ⑤Nstate♣sq⑤ to be constant,
and equal to Nin, i.e. number of inputs that cause a transition. Unless the closure of initial
or final symbols of the Trellis do not involve important computations, they are neglected.
Hence, BCJR complexity is dominated by the complexity of computing γ♣s, s✶q. Moreover,
as BCJR implementation is made in the log-domain sum operations will be implemented as
log-MAP operations, which further increase the complexity.

Outputs of the algorithm are computed through the APP probability of transition
given by p♣s, s✶q ✏ α♣sqγ♣s, s✶qβ♣s✶q, and the APP probability of state given by p♣sq ✏
α♣sqβ♣sq. In particular, when seeking the probability of a specific input x which triggers any
transition ♣s, s✶q P Tinput♣xq, with ⑤Tinput♣xq⑤ ✏ Nstate we have p♣xq ✏ ➦♣s,s✶qPTinput♣xq

p♣s, s✶q.

Table B.4: BCJR General Operations

Operation Description Details FLOPs

Cbcjr-fw/bw Forward/Backward Recursion NstateNin♣Ir � 3Arq 3NinNstate

Cbcjr-app APP Input Estimation NinNstate♣Ir � 4Arq 3.5NinNstate

Next, we look in detail the computational costs for SISO decoding and SISO frequency-
selective channel detection.

B.3.1 SISO Decoding of Convolutional Codes

For decoding a convolutional code of constraint length CL, with k input bits and n output
bits, we have Ninput ✏ 2k, Nstate ✏ 2CL✁1. The observation metric is built using prior
information on codewod bits cn and on information bits uk.

The prior information on q-bit words is computed with a similar formula to soft mapping(in
log-domain) of Table B.2, but summed over 2q elements, i.e Cbit-map♣qq ✏ 2q♣q ✁ 1qAr.

Here we consider a two step schedule for the BCJR algorithm: an initial backward
recursion, followed by a joint forward and APP transition probability computation. The
output of BCJR for decoding needs to be bitwise LLRs, hence a final step of marginaliza-
tion over q-bits is required at the end, for q ✏ k for information bits, and for q ✏ n for
code bits. This can be carried out alongside APP computation, for and additional cost of
Cllr-marg♣qq ✏ NstateNin♣q ✁ 1q♣Ir � 2Arq � 2qAr.

The table B.5 below lists the complexity of different BCJR variants for decoding a K-
symbol input (i.e Kk input bits, and Kn code bits).

First variant is the full BCJR decoder, to be used in a turbo decoder, which has both
code and information bit inputs and outputs, such that Cbcjr-full ✏ K♣2Cbcjr-fwbw � Cbcjr-app �
Cbit-map♣kq � Cbit-map♣nq � Cllr-marg♣kq � Cllr-marg♣nqq.

Another variant for turbo detection is the BCJR decoder, with a code input only, which
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Table B.5: BCJR SISO Decoding

Operation Description Details

Cbcjr-full
Code and Info. Input

SISO Decoder

K♣NstateNin♣♣k � n � 1qIr � ♣2k � 2n � 6qArq

�♣k♣2k � 2q � n♣2n � 2q ✁ 2k ✁ 2nqArq

Cbcjr-cin
Code Input Only

SISO Decoder

K♣NstateNin♣♣k � n � 1qIr � ♣2k � 2n � 6qArq

�♣k♣2k � 2q � 2n ✁ 2kqArq

Cbcjr-io
Info. Output Only

SISO Decoder

K♣NstateNin♣♣k � 2qIr � ♣2k � 8qArq

�♣k♣2k � 2q � n2n ✁ 2k ✁ 2nqArq

Cbcjr-ciio
Code In, Info. Out

SISO Decoder

K♣NstateNin♣♣k � 2qIr � ♣2k � 8qArq

�♣k♣2k � 2q ✁ 2kqArq

has both code and information bit outputs, such that Cbcjr-cin ✏ K♣2Cbcjr-fwbw � Cbcjr-app �
Cbit-map♣nq � Cllr-marg♣kq � Cllr-marg♣nqq.

Finally, for non-turbo soft-input decoding of convolutional codes, a variant with code bit
input and information bit output is needed. In detail, Cbcjr-ciio ✏ K♣2Cbcjr-fwbw � Cbcjr-app �
Cbit-map♣nq � Cllr-marg♣kqq.

B.3.2 SISO Decoding of Turbo Codes

In this section we consider turbo codes with Nc constituent codes, all of constraint length
CL, with k input bits and n output bits.

A turbo code based on parallel concatenated convolutional codes (PCCC) requires both
code and information inputs and code bit outputs of SISO convolutional decoders. Hence,
Cpccc ✏ NcCbcjr-io.

For turbo codes based on serial concatenated convolutional codes (SCCC) with Nc ✏ 2,
the outer decoder has to have code input only, and the inner decoder needs code output only
hence Csccc ✏ Cbcjr-cin � Cbcjr-co.

These complexity values need to be multiplied by the number of inner turbo code itera-
tions.

B.3.3 SISO Decoding of LDPC Codes

For regular LDPC codes of codeword length N , with M ✏ N ✁K parity checks, of degree
density ♣dv, dcq, belief-propagation based sum-product decoding complexity is evaluated.

For variable nodes, the complexity of message per code bit is dv♣Ar � Ar � ♣Ir � Arqq,
which respectively correspond to the computation of APP, extrinsic and soft-bit (tanh).

For check nodes, the complexity of message per parity-check bit is dc♣Ar � Arqq � ♣dc ✁
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1q♣Ar � Ir �Arq which respectively correspond to APP estimation, sign estimation, extrinsic
computation and log-likelihood message.

Hence total complexity of LDPC sum-product decoding per inner iteration is Cldpc-sp ✏
Ndv♣Ir � 3Arq �M♣dc♣Ir � 4Arq ✁ ♣Ir � 2Arqq.

B.4 Matrix-Vector Operations for Filtering

In filter based equalizers we commonly find similar sparse matrix operations, hence in
this section we will compute the complexity of common operations with channel matrices,
covariance matrices and equalizer filters. We will consider a transmitted block of K symbols,
with a sliding window size of N with N ✏ Np � Nd � 1, where Np is the number of causal
elements in the window, and Nd is the number of anti-causal symbols.

The channel matrix is the time-varying convolution operator which, in its most general
form, has a “Toeplitz-like” structure. When considered with a sliding window of size N , its
size is N ✂ ♣N �L✁ 1q, it has L non zero elements per row, holding the values of the taps of
the channel at the time index given by the row. When considered on the whole transmitted
block, we have a ♣K �L✁ 1q✂ ♣K � 2L✁ 2q matrix for including both IBI from the previous
block the residual ISI at the end. In some cases where IBI is cancelled, this can be reduced
to a ♣K �L✁ 1q ✂K matrix which has L non zero elements per column. Here is an example
of the two cases with L ✏ 3,K ✏ 5,✔
✖✖✖✖✖✖✖✕

h0,2 h0,1 h0,0 0 0 0 0 0 0
0 h1,2 h1,1 h1,0 0 0 0 0 0
0 0 h2,2 h2,1 h2,0 0 0 0 0
0 0 0 h3,2 h3,1 h3,0 0 0 0
0 0 0 0 h4,2 h4,1 h4,0 0 0
0 0 0 0 0 h5,2 h5,1 h5,0 0
0 0 0 0 0 0 h6,2 h6,1 h6,0

✜
✣✣✣✣✣✣✣✢
,

✔
✖✖✖✖✖✖✖✕

h0,0 0 0 0 0
h1,1 h1,0 0 0 0
h2,2 h2,1 h2,0 0 0

0 h3,2 h3,1 h3,0 0
0 0 h4,2 h4,1 h4,0

0 0 0 h5,2 h5,1

0 0 0 0 h6,2

✜
✣✣✣✣✣✣✣✢
,

the first matrix is full rank in rows, and the second matrix is full rank in columns, and these
imply different properties for the related covariance matrix. In fact to obtain numerically
stable covariance inverses, we use the first representation for computing HHH and the second
for computing HHH but the latter case requires clearing the received symbols for IBI.

The rows of the channel matrices represent different channel states, i.e. “time”, whereas
the columns are channel taps, i.e. “delay”. With time invariant channels, values on each row
are identical but we can also encounter segmented channel matrices, where the channel state
changes every D symbols.

When dealing with sliding window equalizers or the block linear equalizer, the observation
covariance matrix Σ is of the form Σn ✏ σ2

wIN � HnΣxnHH
n , where Σxn is a diagonal

variance matrix and where Hn is full rank in rows. This matrix is hermitian and in order to
ensure this property despite numerical uncertainties we need to compute as the sum of the
noise covariance (diagonal) with a Gramian product (AAH), hence we define the augmented
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channel matrix Gn ✏ Hn

❛
Σxn , where the square root operation is unambiguous assuming

the transmitted symbol covariance matrix is diagonal. Then the complexity of computing the
covariance matrix depends on whether Gn is invariant, segmented or time-varying.

Table B.6: Sparse Covariance Matrix Computation

Operation Description Details

Gr
nGr

n
H or Gc

n
HGc

n Variant Gram
NLPc �N♣L✁ 1qAr � ♣NL2

2
✁ L3

6
✁ NL

2
� L

6
qMc�

♣NL2

2
✁ L3

5
✁ 3NL

2
� L2

2
�N ✁ L

3
qAc

GrGrH or GcHGc Invariant Gram LPc � ♣L✁ 1qAr �
L♣L✁1q

2
Mc �

♣L✁1q♣L✁2q
2

Ac

GrGrH
Segmented Gram

(full rank in row)

Nseg♣LPc � ♣L✁ 1qArq�

♣2Nseg ✁ 1q♣L♣L✁1q
2

Mc �
♣L✁1q♣L✁2q

2
Acq

GcHGc
Segmented Gram

(full rank in column)

♣♣Nseg ✁ 1qL� 1qLPc�

♣♣Nseg ✁ 1qL� 1q♣L✁ 1qAr�

L♣L✁ 1qNseg♣2L✁1q✁2L�4

6
Mc�

♣L✁ 1q♣L✁ 2qNseg♣2L�3q✁2L

6
Ac

Using the full rank in row structure, the complexity of this equalizer in time varying,
time invariant and segmented cases is given in the table B.6. Meanwhile, when dealing
with equalizers such as block DFE, where a Gramian such as AHA is required for covariance
computation, if the channel matrix is in full rank in row format, then the covariance cannot be
inverted with numerical stability, hence we use the full rank in column format and compute its
complexity for variant, invariant and segmented cases. We find that for variant and invariant
cases, the complexity is identical to the full rank in row AAH product, but its complexity
increases for the segmented computation.

Another matrix operation, common in sliding window equalizer design is the computation
of the feedforward filter cn, from which other filters are derived. This operation is commonly
revolves around Σ✁1

n hn where the previously computed sparse covariance matrix’s inverse is
multiplied with the current channel state vector, which has L non zero elements. Especially
when computing this quantity successively, for a time-varying equalizer, we need to consider
practical recursive methods. There are multiple approaches for practical computation of this
quantity:

• Naive method: we invert the covariance matrix and multiply it with the channel vector,

• Linear system solving: Σncn ✏ hn is solved using Gauss-Jordan elimination,

• Simplified system solving: the covariance matrix is decomposed into triangular matrices
with Cholesky decomposition Σn ✜ LnLH

n , then systems Lnrn ✏ hn and LH
n cn ✏ rn

are solved for rn and cn, using forward and backward substitutions respectively.

The complexity of different filter computation approaches are given on the table B.7, we
can compare roughly the complexity of these operations with looking at dominant multipli-
cation terms; inversion follows O♣4

3N
3q, Gauss-Jordan elimination follows O♣1

3N
3q and the
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Table B.7: Sparse Filter Computation

Operation Description Details

Σ✁1
n ✏ inv♣Σnq,

cn ✏ Σ✁1
n hn

Matrix Inversion +

Matrix-Vector Product

8N3�4N
6

Mrc �
8N3✁9N2�N

6
Ac

�NLMc �N♣L✁ 1qAc

cn ✏ solve♣Σncn ✏ hnq
Gauss-Jordan

elimination
2N3�6N2�4N

6
Mrc �

2N3�3N2✁5N
6

Ac

Ln ✏ chol♣Σnq,

rn ✏ solve♣Lnrn ✏ hnq,

cn ✏ solve♣LH
n cn ✏ rnq

Cholesky

Decomposition

+ substitutions

♣NL2

2
✁ L3

3
� NL

2
✁ 3L2

2
✁N � 29L

6
✁ 4qMc

�♣NL2

2
✁ L3

3
� NL

2
✁ 3L2

2
✁N � 35L

6
✁ 4qAc

�♣NL✁ L2

2
� 3L

2
✁N ✁ 1qMrc �NSr

�2♣N ✁ L
2
q♣L✁ 1q♣Mc �Acq � 2NMrc

Cholesky approach follwos O♣1
2NL

2q. The Cholesky decomposition is computed using the
sparsity of the covariance matrix; it has a L✁ 1 bandwidth, i.e. it has 2L✁ 1 non zero diago-
nals. The sparsity effect cannot be included into matrix inversion or Gauss-Jordan elimination
easily because these operations change the positions of zero elements as they are carried out,
hence they provide worst case values.

These methods can be used then to estimate the complexity of filter-based equalizers and
detectors.
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Résumé — Les réseaux ad hoc mobiles (MANETs) sont des systèmes de communication
sans fil rapidement déployables et qui fonctionnent avec une coordination minimale, ceci
afin d’éviter les pertes d’efficacité spectrale induites par la signalisation. Les stratégies de
transmissions coopératives présentent un intérêt pour les MANETs, mais la nature distribuée
de tels protocoles peut augmenter le niveau d’interférence avec un impact autant plus sévère
que l’on cherche à pousser les limites des efficacités énergétique et spectrale. L’impact de
l’interférence doit alors être réduit par l’utilisation d’algorithmes de traitement du signal au
niveau de la couche PHY, avec une complexité calculatoire raisonnable.

Des avancées récentes sur les techniques de conception de récepteurs numériques itératifs
proposent d’exploiter l’inférence bayésienne approximée et des techniques de passage de mes-
sage associés afin d’améliorer le potentiel des turbo-détecteurs plus classiques. Entre autres, la
propagation d’espérance (EP) est une technique flexible, qui offre des compromis attractifs de
complexité et de performance dans des situations où la propagation de croyance conventionnel
est limité par sa complexité calculatoire. Par ailleurs, grâce à des techniques émergentes de
l’apprentissage profond, de telles structures itératives peuvent être projetés vers des réseaux
de détection profonds, où l’apprentissage des hyper-paramètres algorithmiques améliore da-
vantage les performances.

Dans cette thèse nous proposons des égaliseurs à retour de décision à réponse impulsion-
nelle finie basée sur la propagation d’espérance (EP) qui apportent des améliorations signi-
ficatives, en particulier pour des applications à haute efficacité spectrale vis à vis des turbo-
détecteurs conventionnels, tout en ayant l’avantage d’être asymptotiquement prédictibles.
Nous proposons un cadre générique pour la conception de récepteurs dans le domaine fréquen-
tiel, afin d’obtenir des architectures de détection avec une faible complexité calculatoire. Cette
approche est analysée théoriquement et numériquement, avec un accent mis sur l’égalisation
des canaux sélectifs en fréquence, et avec des extensions pour de la détection dans des canaux
qui varient dans le temps ou pour des systèmes multi-antennes. Nous explorons aussi la con-
ception de détecteurs multi-utilisateurs, ainsi que l’impact de l’estimation du canal, afin de
comprendre le potentiel et le limite de cette approche.

Pour finir, nous proposons une méthode de prédiction performance à taille finie, afin de
réaliser une abstraction de lien pour l’égaliseur domaine fréquentiel à base d’EP. L’impact
d’un modélisation plus fine de la couche PHY est évalué dans le contexte de la diffusion
coopérative pour des MANETs tactiques, grâce à un simulateur flexible de couche MAC.

Mots clés : Réseau ad hoc mobile (MANET), communication coopérative, diffusion
coopérative, détection itérative, égalisation, estimation de channel, inférence bayésienne,
propagation de l’espérance, algorithmes de passage de message, dépliement profond, pré-
diction semi-analytique.



Abstract — Mobile ad hoc networks (MANETs) are rapidly deployable wireless commu-
nications systems, operating with minimal coordination in order to avoid spectral efficiency
losses caused by overhead. Cooperative transmission schemes are attractive for MANETs, but
the distributed nature of such protocols comes with an increased level of interference, whose
impact is further amplified by the need to push the limits of energy and spectral efficiency.
Hence, the impact of interference has to be mitigated through with the use PHY layer signal
processing algorithms with reasonable computational complexity.

Recent advances in iterative digital receiver design techniques exploit approximate Bayesian
inference and derivative message passing techniques to improve the capabilities of well-
established turbo detectors. In particular, expectation propagation (EP) is a flexible technique
which offers attractive complexity-performance trade-offs in situations where conventional
belief propagation is limited by computational complexity. Moreover, thanks to emerging
techniques in deep learning, such iterative structures are cast into deep detection networks,
where learning the algorithmic hyper-parameters further improves receiver performance.

In this thesis, EP-based finite-impulse response decision feedback equalizers are designed,
and they achieve significant improvements, especially in high spectral efficiency applications,
over more conventional turbo-equalization techniques, while having the advantage of being
asymptotically predictable. A framework for designing frequency-domain EP-based receivers
is proposed, in order to obtain detection architectures with low computational complexity.
This framework is theoretically and numerically analysed with a focus on channel equalization,
and then it is also extended to handle detection for time-varying channels and multiple-
antenna systems. The design of multiple-user detectors and the impact of channel estimation
are also explored to understand the capabilities and limits of this framework.

Finally, a finite-length performance prediction method is presented for carrying out link
abstraction for the EP-based frequency domain equalizer. The impact of accurate physical
layer modelling is evaluated in the context of cooperative broadcasting in tactical MANETs,
thanks to a flexible MAC-level simulator.

Keywords: Mobile ad-hoc network (MANET), cooperative communications, coopera-
tive broadcast, iterative detection, equalization, channel estimation, Bayesian inference, ex-
pectation propagation, message passing algorithms, deep unfolding, semi-analytic prediction.
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