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Résumé

De nombreuses approches ont été développées pour analyser la quantité croissante de don-

née image disponible. Parmi ces méthodes, la classification supervisée a fait l’objet d’une

attention particulière, ce qui a conduit à la mise au point de méthodes de classification ef-

ficaces. Ces méthodes visent à déduire la classe de chaque observation en se basant sur une

nomenclature de classes prédéfinie et en exploitant un ensemble d’observations étiquetées

par des experts. Grâce aux importants efforts de recherche de la communauté, les méthodes

de classification sont devenues très précises. Néanmoins, les résultats d’une classification

restent une interprétation haut-niveau de la scène observée puisque toutes les informations

contenues dans une observation sont résumées en une unique classe. Contrairement aux

méthodes de classification, les méthodes d’apprentissage de représentation sont fondées sur

une modélisation des données et conçues spécialement pour traiter des données de grande

dimension afin d’en extraire des variables latentes pertinentes. En utilisant une modélisation

basée sur la physique des observations, ces méthodes permettent à l’utilisateur d’extraire des

variables très riches de sens et d’obtenir une interprétation très fine de l’image considérée.

L’objectif principal de cette thèse est de développer un cadre unifié pour l’apprentissage

de représentation et la classification. Au vu de la complémentarité des deux méthodes, le

problème est envisagé à travers une modélisation hiérarchique. L’approche par apprentissage

de représentation est utilisée pour construire un modèle bas-niveau des données alors que la

classification, qui peut être considérée comme une interprétation haut-niveau des données,

est utilisée pour incorporer les informations supervisées. Deux paradigmes différents sont

explorés pour mettre en place ce modèle hiérarchique, à savoir une modélisation bayésienne

et la construction d’un problème d’optimisation. Les modèles proposés sont ensuite testés

dans le contexte particulier de l’imagerie hyperspectrale où la tâche d’apprentissage de

représentation est spécifiée sous la forme d’un problème de démélange spectral.

Mots clés : analyse d’image, classification, apprentissage de représentation, télédétection,

imagerie hyperspectrale.
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Abstract

Numerous frameworks have been developed in order to analyze the increasing amount of

available image data. Among those methods, supervised classification has received consid-

erable attention leading to the development of state-of-the-art classification methods. These

methods aim at inferring the class of each observation given a specific class nomenclature

by exploiting a set of labeled observations. Thanks to extensive research efforts of the

community, classification methods have become very efficient. Nevertheless, the results of

a classification remains a high-level interpretation of the scene since it only gives a single

class to summarize all information in a given pixel. Contrary to classification methods,

representation learning methods are model-based approaches designed especially to han-

dle high-dimensional data and extract meaningful latent variables. By using physic-based

models, these methods allow the user to extract very meaningful variables and get a very

detailed interpretation of the considered image.

The main objective of this thesis is to develop a unified framework for classification and

representation learning. These two methods provide complementary approaches allowing to

address the problem using a hierarchical modeling approach. The representation learning

approach is used to build a low-level model of the data whereas classification is used to

incorporate supervised information and may be seen as a high-level interpretation of the

data. Two different paradigms, namely Bayesian models and optimization approaches, are

explored to set up this hierarchical model. The proposed models are then tested in the

specific context of hyperspectral imaging where the representation learning task is specified

as a spectral unmixing problem.

keywords: image analysis, classification, representation learning, remote sensing, hyper-

spectral imaging.
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Introduction (in French)

Au cours des dernières décennies, d’importants progrès ont été accomplis dans le domaine

connu actuellement sous le nom d’intelligence artificielle ou d’apprentissage automatique.

L’un des moteurs de cette révolution a été le développement d’algorithmes pour l’interpréta-

tion automatique d’images. Il est par exemple possible de citer l’émergence dans les années

90 des machines à vecteurs de support (SVM), introduites d’abord pour la reconnaissance

de chiffres manuscrits [BGV92]. Dans les années qui suivirent, les réseaux de neurones pro-

fonds convolutionnels ont également été conçus pour résoudre ce même problème [LeC+98]

et sont maintenant l’une des méthodes d’apprentissage les plus populaires.

L’attention croissante dont ont bénéficié ces technologies de pointe a amené les chercheurs

et les utilisateurs à appliquer ces méthodes d’interprétation automatique dans de nombreux

domaines d’application. En imagerie, de nombreuses méthodes d’analyse d’images ont été

développées depuis la reconnaissance de chiffres manuscrits pour de nombreux cas d’appli-

cation, par exemple la génération de cartes thématiques [LKC15], la segmentation d’images

médicales [Ban08], la reconnaissance faciale [JL11], etc. Les méthodes de classification très

populaires, telles que les SVMs ou les réseaux de neurones profonds, fournissent dorénavant

de très bons résultats pour bon nombre de ces tâches.

Cependant, même si ces méthodes se sont révélées très efficaces, elles sont encore confron-

tées à des problèmes délicats comme la grande dimension des données, le manque de don-

nées labellisées, leur mauvaise labellisation ou encore le caractère multi-modale des classes

considérées. Il a également été avancé que les résultats fournis par un classifieur, qui sont

généralement un unique label par élément (un pixel, une image, . . .), sont quelque peu li-

mités. En particulier, nombre de ces algorithmes restent très obscurs dans leur processus

de décision. Les réseaux de neurones profonds sont par exemple souvent considérés comme

des algorithmes “boîte noire”, bien que leur décision soit très précise [Cas16 ; Moo+17]. De

plus, les méthodes de classification les plus utilisées ne recourent généralement pas à une

modélisation du signal observé. Pour cette raison, il est difficile pour un spécialiste de guider

l’interprétation par des connaissances experts sur la donnée observée.

1



Introduction (in French)

Pour surmonter ces limitations, une alternative consiste à recourir à des approches fondées

sur une modélisation des données. Les méthodes de classification sont principalement em-

piriques, c’est-à-dire que la règle de décision est uniquement apprise à partir d’un ensemble

d’exemples. Au contraire, les approches de type modélisation reposent sur une modélisation

physique des données (signaux observés, images ou mesures). Par exemple, en imagerie mé-

dicale, les modalités d’image sont généralement associées à un modèle physique du signal

mesuré, dérivé des modalités particulières d’acquisition et d’un bruit spécifique [Cav+18b].

Parmi les approches basées sur des modèles, les méthodes d’apprentissage de représentation

ont fait l’objet d’une attention importante.

Ces méthodes sont fondées sur l’hypothèse que les observations ne couvrent pas tout

l’espace d’observation, mais sont en réalité contenues dans un sous-espace [BN08]. L’ap-

prentissage de représentation vise à identifier ce sous-espace et à estimer la représentation

de chaque observation dans celui-ci afin d’obtenir une représentation plus compacte, c’est-

à-dire de dimension plus faible. Cette représentation de faible dimension est vue comme un

ensemble de facteurs latents. Lorsque le modèle est construit à l’aide de connaissances a

priori sur le domaine d’application, ces facteurs latents ont généralement une signification

physique. Du point de vue de l’utilisateur, la possibilité de guider la méthode d’analyse

afin d’estimer des paramètres spécifiques permet une interprétation beaucoup plus riche des

résultats. Les produits annexes de ces méthodes d’apprentissage de représentation peuvent

en effet présenter un grand intérêt. Par exemple, dans le cas du démélange hyperspectral,

chaque vecteur de la base du sous-espace latent est associé à un matériau présent dans la

scène observée [Bio+12].

Bien que la classification et l’apprentissage de représentation sont deux méthodes cou-

ramment utilisées, elles n’ont que très rarement été envisagées conjointement. L’objectif de

cette thèse est d’introduire le concept d’apprentissage de représentation et de classifica-

tion conjoints. Les modèles unifiés développés sont ensuite testés sur un cas d’application

particulier qu’est l’analyse d’images hyperspectrales.

Structure du manuscrit

La première approche envisagée vise à mettre en place un nouveau modèle bayésien permet-

tant d’estimer simultanément les classes et les représentations latentes. Pour cela, l’algo-

rithme d’apprentissage de représentation considéré intègre une segmentation spatiale selon

l’homogénéité des vecteurs de représentation latente. Dans l’approche proposée, le modèle

de segmentation est complété de sorte à dépendre également des classes. La classification
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est donc intégrée au modèle et exploite à la fois la donnée supervisée et la segmentation,

qui intègre l’information bas-niveau, obtenant ainsi un classifieur robuste aux erreurs sur

les données externes. L’algorithme fournit alors une description hiérarchique de l’image en

termes de vecteurs latents, de segmentation spatiale et de classification thématique.

La deuxième approche considérée s’appuie sur la même description hiérarchique mais

l’inférence est formulée comme un problème d’optimisation. La fonction de coût comprend

alors trois termes principaux correspondant aux trois tâches considérées : l’apprentissage

de représentation, la segmentation et la classification. Le problème obtenu s’apparente à

un problème de cofactorisation de matrices avec un terme de segmentation liant les activa-

tions des deux factorisations agissant respectivement comme modèle de représentation et de

classification. Une solution de ce problème non-convexe et non-lisse est ensuite approchée à

l’aide d’un algorithme de descente de gradient proximal alternée.

Le troisième travail réalisé vise à intégrer dans le processus de démélange hyperspectral

une information spatiale complémentaire. L’originalité de la proposition réside dans le fait

que l’information spatiale n’est pas introduite via un terme de régularisation mais comme

un second terme d’attache aux données calculé à partir d’une image panchromatique de la

scène. Ce modèle complète en particulier les deux approches précédentes en mettant en place

une méthode de démélange permettant une bonne estimation des spectres élémentaires en

capitalisant sur la méthode de cofactorisation développée précédemment.

Principales contributions

Chapitre 1. La principale contribution de ce chapitre réside dans l’introduction d’un

cadre bayésien pour unifier les approches de modélisation physique bas-niveau et de classi-

fication. Le modèle propose une utilisation de champs de Markov aléatoires pour relier tous

les niveaux de modélisation afin de réaliser une estimation conjointe. La deuxième contri-

bution est la conception d’une méthode de classification permettant de tenir compte des

erreurs de labellisation dans l’ensemble d’apprentissage et de les corriger. Enfin, la dernière

contribution réside dans le potentiel d’interprétation du modèle, notamment grâce à des

produits annexes intéressants. En particulier, une des matrices estimées décompose cha-

cune des classes en un ensemble de clusters chacun caractérisé par son vecteur d’abondance

moyen. L’utilisateur peut ainsi analyser clairement la structure des données considérées.

Chapitre 2. Un modèle de cofactorisation est utilisé pour développer un cadre unifié al-

ternatif. Ce modèle diffère des autres modèles de cofactorisation principalement par le terme
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de couplage proposé. Premièrement, il permet une interprétation riche des résultats avec

à nouveau l’idée de décomposer les classes en un ensemble de clusters. Et deuxièmement,

il permet de conserver une flexibilité entre les deux tâches à accomplir contrairement aux

modèles précédemment proposés [ZL10] où le modèle introduit deux objectifs antagonistes

au lieu d’objectifs coopératifs. La dernière contribution réside dans la proposition d’une

méthode d’optimisation avancée pour minimiser la fonctionnelle proposée. En effet, un al-

gorithme de minimisation proximale linéarisée alternée est utilisé pour résoudre le problème

à la fois non convexe et non lisse, avec une garantie de convergence vers un point critique

de la fonction objectif.

Chapitre 3. La principale contribution de ce chapitre est une nouvelle proposition pour

enrichir directement le modèle de démélange spectral avec de l’information spatiale. Elle

consiste à utiliser un terme supplémentaire d’attache aux données au lieu de recourir à des

méthodes de régularisation. Ce nouveau modèle améliore les résultats du démélange. Mais

plus important encore, le modèle produit une carte de clustering caractérisant différentes

zones de l’image par leur signature spectrale et leur configuration spatiale. Cela permet

d’obtenir une représentation compacte, complète et visuelle de la scène analysée. À notre

connaissance, cette méthode introduit pour la première fois le concept de démélange spatial

et spectral conjoint.
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Over the last decades major progresses have occurred in the field of artificial intelligence.

Many man-made activities have been successfully replaced by algorithms that are able to

learn a given task directly from data. In particular, advances in image interpretation algo-

rithms have been one of the driving force in this revolution. In the nineties, kernel methods,

such as support vector machines (SVMs), were introduced firstly to identify handwritten

digits [BGV92] and consisted in a major breakthrough. Specifically, SVMs highlighted non-

probabilistic methods by proposing to minimize both a convex loss function while exploiting

a set of labeled examples, and additional regularization terms to ensure a better separability

of the classes. Following this trend, convolutional deep neural networks (CNN), which can

automatically learn spatial features from the data, have become the top ranked methods

for image recognition [LeC+98] and are now at the foundation of the most popular family

of methods. Contrary to SVMs, the decision function of CNNs is a non-convex function

composed of a sequence of differentiable operations. The parameters of this function are

then optimized by minimizing a loss function, generally by using stochastic gradient descent.

Although there is usually no convergence guarantee, CNNs manage to benefit from the huge

quantity of available data to get state-of-the-art results.

The always increasing attention brought by these breakthrough technologies has pushed

researchers and end-users to consider automatic interpretation methods in many fields of

application such as remote sensing imaging [LKC15], medical imaging [Ban08], face recog-

nition [JL11]. In particular, classification methods have received considerable attention.

These methods aim at attributing a class to each elements of the analyzed dataset. These

elements can take many forms ranging from simple pixels [Pla+09] to objects [ALL17] or

images [KSH12]. The first step in classification generally consists in extracting a represen-

tation of each element of the dataset either automatically as with CNNs [BCV13], or with

handcrafted features [DT05; Low99; PB01]. Then, two main cases may come forth. The first

case is unsupervised classification methods for which no additional information is available

with the dataset. The concept behind these methods is generally to try to identify groups

5



Introduction

of similar elements to which the same class is assigned. A typical case is a clustering task

trying for example to separate organs in a medical image [Thi+14]. The second case occurs

when a so-called training set is available with the data. This training set is a collection of

observations that were classified manually by an expert. The set of examples is then used

to train the classification model for the considered task. Many recent works have pointed

out that the use of large training set is indeed very beneficial to the classification [KSH12;

Mag+16].

However, even if supervised classification methods have proven to be very efficient, they

still face challenging issues:

• The dimension of the observation is usually a major issue. The work of [Hug68]

introduced the so-called curse of dimensionality. It showed in particular that statisti-

cal methods made for low or moderate dimensional spaces do not adapt well to high

dimensional spaces. The rate of convergence of the statistical estimation decreases

when the dimension grows while the number of parameters to estimate simultane-

ously increases, making the estimation of the model parameters very difficult [Don00].

Beyond a certain limit, the classification accuracy actually decreases as the number

of features increases [Hug68]. These problems may arise when considering observa-

tions with redundant information such as hyperspectral images [Cam+14] or video

stream [Kar+14].

• The dependence to ground-truth data is also a recurrent limiting factor. The

production of labeled data by experts is a critical work which is usually costly and

time consuming. It is therefore common to be confronted with a lack of labeled data.

For this reason, it is necessary to develop methods that leverage their dependence

to GT data and are robust to overfitting [FM04; CFB08]. Semi-supervised methods

are for example an attempt to deal with the lack of labeled data by using unlabeled

data [CK05].

Another issue regarding the training data is the presence of incorrect labels [BF99;

FV13]. This can be due to ambiguity regarding the set of classes or mistakes of the

expert. In any case, the robustness to such labeling noise can be an interesting feature

to characterize the performance of a classification algorithm [BG09].

• Handling multi-modal and/or composite classes with intrinsic intra-class vari-

ability is also a recurrent issue [HT96a]. For instance, for a generic classification

task, a class referred to as humans gathers distinct genders, or physical attributes.
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When using too basic classifier, e.g. linear classifiers, it may actually be impossible to

regroup the different modes in a single class [MP17].

It has also been argued that the outputs provided by a classifier, which are generally a

unique label per elements (a pixel, an image,. . . ) of the dataset, are somehow limited. In

particular, many of these algorithms remains very obscure in their decision process. First

among them, CNN algorithms are nowadays often seen as black box algorithms although

very accurate in their decision [Cas16; Moo+17]. Moreover, the most used classification

methods are usually model-free, i.e., they are not based on a modeling of the observed

signal. For this reason, when considering a specific task, it is difficult for a specialist to

guide the interpretation by some prior knowledge.

To overcome this limitations, one alternative consists in resorting to model-based ap-

proaches [Idi13]. Model-free classification methods are mostly empirical in the sense that

the decision rule is only learned from a set of examples. On the contrary, model-based

approaches rely on a modeling of the data (observed signals, images or measurements).

For example, in medical imaging, image modalities are generally associated with a specific

physics-based model of the measured signal, derived from the acquisition process and partic-

ular noise corruption [Cav+18b]. Among model-based approaches, representation learning

methods have received a considerable attention. Depending on the research community,

representation learning has been referred to as dictionary learning methods [RPE12], ma-

trix factorization [LS99], source separation [Bob+07], factor analysis [Cav+18b] or subspace

learning [Li+15b]. These names denote representation learning methods differing mainly

by the specific set of considered constraints enforced to ensure the physical interpretation

of the data.

Representation learning – Representation learning is generally considered for modeling

high-dimensional data. The main assumption underlying these methods is that the observa-

tions do not span the whole observation space but are actually located in a subspace [BN08].

Representation learning aims at identifying this subspace and at estimating the represen-

tation of each observation in this subspace to get a more compact representation, i.e., of

lower dimensionality [Ess+12]. This compact low-dimensional representation is a collection

of latent factors. When the model is built in accordance with knowledge about the appli-

cation field, these latent factors usually carry some physical meaning [El +06]. From the

end-user point-of-view, the possibility to guide the analysis method in order to estimate

specific parameters offers a richer interpretation of the results. The byproducts provided by

representation learning methods can indeed be of the highest interest. For example, in the
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case of hyperspectral unmixing, each vector of the basis spanning the subspace is identified

to a material present in the observed scene [Bio+12].

However, a major drawback of this family of methods is the complexity of the targeted

results. First, generally, representation learning results in very challenging estimation prob-

lems. Indeed, physics-based models often introduce non-convex problems [RCP14; Bob+15].

When considering optimization frameworks, such problems remain difficult to tackle and it

is generally impossible to ensure convergence to a global optimum of the objective function.

Some advanced methods can at least guarantee convergence to some local optimum [BST14;

WYZ19]. However, the quality of the results then highly depends on the possibility to pro-

pose an initialization point close enough to the solution. Additionally to the non-convexity

issues, representation learning commonly includes non-smooth terms because of the con-

straints inherent to compact representations, such as sparsity, or the constraint imposed

on the search space, such as non-negativity constraints. One possibility to deal with this

second issue is to resort to advanced optimization tools such as proximal methods [CP11].

To avoid estimation problems related to non-convexity or non-smoothness, one possibil-

ity is to resort to Markov chain Monte Carlo (MCMC) methods [Per+12; Per+15; EDT11].

Contrary to optimization methods, these methods use a Bayesian modeling of the prob-

lem. Each estimated variable is assigned a prior distribution model and the main concept of

MCMC algorithm is to generate samples according to the joint posterior distribution [RC04;

Bro+11]. The Bayesian estimators of the parameters of interest can then be approximated

using these samples. Besides, these samples can be used to provide a full description of the

posterior distribution of interest, beyond a simple point estimation (e.g., maximum a poste-

riori estimators). For example, it gives the possibility to provide confidence sets. Moreover,

the convexity of the problem is not required to ensure convergence of the estimation. Never-

theless, one major drawback of these methods is that, even if the convergence is guaranteed,

it is not possible to predict when convergence will be reached. MCMC methods thus allow

users to deal with complex settings but fail in many cases to scale to real practical problems

due to the extensive computational burden needed to get the results [Per+15].

Additionally to estimation problems, another recurrent issue is the difficulty to include

exogenous data into a representation learning task [MBP12]. As discussed previously, super-

vised classification methods are nowadays considered the most efficient methods to extract

information from data. It could be argued that this efficiency comes from the ability of

these methods to incorporate the information coming from the examples provided by the

user. Unfortunately it would be tedious to copy such a process to representation learning

methods. The problem comes in particular from the difficulty to gather handmade exam-
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ples. Most of the time it is impossible for experts to estimate the expected output from the

image. In order to get a rich output and to benefit from exogenous data, a possibility is to

consider the development of joint methods [Mai+09]. Such methods have the advantages to

solve the problem of high-dimensional data for the classification by producing meaningful

low-dimensional representations. Besides, some of the information contained in the classi-

fication training set is likely to be transfered to the representation learning problem and

help solve it. The development of image analysis methods proposing a joint classification

and representation learning approach is one of the key interest of this manuscript. For this

reason it is interesting to get a closer look at the works which have already proposed in the

literature to conduct classification and representation learning jointly.

Joint classification and representation learning – Many of the works on joint ap-

proaches have been published in the dictionary learning community, in which representation

learning is actually referred to as dictionary learning [AEB06; RBE10]. In these approaches,

it is usual to identify the subspace containing the observations by inferring a so-called dic-

tionary. This dictionary is a collection of elementary vectors, referred to as atoms, spanning

the representation subspace. The idea of supervised dictionary learning has been popu-

larized in particular by the work of Mairal et al. [Mai+09; MBP12]. The core concept of

supervised dictionary learning is to develop models in which the dictionary is built for a

specific classification application. The dictionary should both demonstrate a reconstruc-

tion ability and a discriminative ability. The Discriminative K-SVD (DKSVD) described

in [ZL10] proposes for instance to directly consider an optimization problem composed of a

data fitting term and a linear classification term. Authors performed a face recognition task

with a two-step algorithm including a training step to learn a relevant dictionary followed

by an inference step to classify unknown samples using the learned representation. This

work was implemented for the same task in [JLD11] with the difference that the learned

dictionary promoted the use of different dictionary atoms for each class.

Going further, some works aimed at recovering class-specific dictionaries. These class-

specific dictionaries are learned to ensure a good discrimination of the classes. To solve

an object classification problem, the authors of [FRZ18] proposed for example to promote

structural incoherence between the dictionaries of the various classes using an orthogonality

penalization between the dictionary atoms. Further attempts were also made to exploit

the training set of the classification task more thoroughly. For example in [CNT11], all

the pixels of the training set were used as dictionary and a sparse representation of the

unknown pixels was then inferred. Moreover, since dictionary atoms were associated with a
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class label, the contribution of each class for the reconstruction of each pixel was computed

using a reconstruction error metric. Finally, pixels were assigned to the class contributing

the most to their reconstruction.

Broadly speaking, the idea of performing two complementary tasks simultaneously has

already been investigated and has resulted into a family of models called cofactorization

models [HDD13]. In particular, joint representation learning and classification can be cast

as a cofactorization problem. Both tasks are interpreted as individual factorization prob-

lems and a coupling term and/or constraints between the dictionaries and coding matrices

associated with the two problems are then introduced. These cofactorization-based models

have proven to be highly efficient in many application fields, e.g., for text mining [WB11],

music source separation [Yoo+10], and image analysis [YYI12; AM18].

A common thread found in all the aforementioned works is the perspective chosen to

tackle the problem of joint classification and representation learning. The main objective is

generally to design a classification method and the representation learning process is only

considered as a mean to this end [BCV13]. More specifically, representation learning is

used to solve the statistical issues occurring with high-dimensional data. It operates as a

dimensionality reduction method aiming at providing the best low-dimensional representa-

tion for the classification [LC09]. Such perspective is very likely to be detrimental to the

representation learning process since it appears as secondary. Indeed, the discriminative

and reconstruction abilities of the dictionary are often seen as adversarial in these models.

The work presented in this manuscript gathers new strategies to tackle the problem of

joint approaches. The main objective is to provide truly cooperative joint representation

learning and classification methods by considering a coherent hierarchical modeling using

both methods. To illustrate the relevance of the methods proposed in this manuscript, an

application to hyperspectral image analysis has been considered through the dual scope of

spectral unmixing and classification.

Analysis of hyperspectral images – Hyperspectral images are particularly well-suited

to be studied with representation learning methods due to the high dimension of the pixels

of this specific modality of images. As a reminder, conventional color imaging has been

designed in order to mimic human eye and, for this reason, these images are composed of

three bands corresponding each to the reflectance measured for the blue, green and red

wavelengths. However the spectral information contained in such an image is eventually

very limited. Indeed, the reflectance, defined as the fraction of incident electromagnetic

power that is reflected, varies for each wavelength depending on the electromagnetic prop-
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erties of the observed scene [SM02; Lan02]. It is actually possible to measure this reflectance

spectrum for hundreds of specific wavelength and thus obtain a very accurate electromag-

netic characterization of the scene [Pla+09]. In the case of hyperspectral imaging, hundreds

of measurements are performed in order to get a fine sampling of the reflectance spectrum

of the area underlying each pixel. Moreover, measurements are not limited to the visible

domain but usually include a larger part of the electromagnetic spectrum, e.g., the infrared

domain [Van+93].

The study of the electromagnetic properties of matter has shown that every material can

actually be characterized by a specific reflectance spectrum [Hap93]. Unfortunately, due to

the limited spatial resolution of the hyperspectral sensors, the area described by a given

pixel usually includes a collection of materials. The result is the creation of mixels, i.e.,

pixels representing a mixture of elementary reflectance spectra of pure material, usually

referred to as endmembers, as shown in Figure .1. Spectral unmixing aims at identify-

ing these endmembers and estimating the proportions of each pure material inside each

pixel [Bio+12]. This method of interpretation actually fits in the family of representation

learning methods where the learned representation subspace is the subspace spanned by the

identified endmembers and the latent representation is the vector of proportions of pure

materials, generally called abundance vector.

Spectral unmixing is widely-used to interpret hyperspectral images particularly because

of the richness of the data that allows a physical interpretation of the results. Moreover,

the high dimension and high redundancy of the hyperspectral pixels may make it diffi-

cult to perform a classification [Cam+14; Fau+13]. Therefore, it is often necessary to use

dimensionality reduction methods prior to classification [ZD16; LFG17].

Bearing in mind the aim to propose joint representation learning and classification meth-

ods, reviewing the previous works that attempted to link both methods in the specific

context of hyperspectral imaging appeared of great interest. The frameworks proposed in

the literature for a joint use of spectral unmixing and classification are generally based on

a sequential use of the two approaches. The most simple way to implement a sequential ap-

proach is to use spectral unmixing as a feature extraction method. The abundance vectors

can be used as feature vectors for the classification which is then performed with the help

of a conventional classifier, as done with SVM in [LC09; Vil11; Dóp+11; Dóp+12] or with a

deep neural network in [Ala+17]. Spectral unmixing as feature extraction method presents

the benefit of reducing drastically the dimension as well as proposing features with physical

meaning. However, these features remain rather simple and do not maximize the separabil-

ity of the classes. Additionally, spectral unmixing does not profit at all from any information
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Figure .1.: Hyperspectral images are images with a fine spectral resolution. The measured
reflectance spectrum of a pixel is explained as a mixture elementary components each rep-
resenting a specific material.

coming from the classification. The classification map is actually the only considered result

and spectral unmixing is only a tool to help the classification.

Spectral unmixing has also been used to improve classification results, more precisely

to perform sub-pixel mapping [Vil+11b; Vil+11a]. The main idea is to identify mixed

pixels, i.e., pixels representing areas containing several classes, and then split these pixels

to increase the spatial resolution. Spectral unmixing is used to assign classes to the newly

created pixels. For example, if unmixing shows that a pixel contains 80% of vegetation and

20% of soil, 80% of the underlying new pixels are assigned to class vegetation and 20% to

soil. A major limitation to these methods is that an endmember has to be equivalent to a

class.

Nevertheless, several works used this assumption of equivalence between classes and end-

members. In the semi-supervised classification methods proposed in [Dóp+14; Li+15a], the

spectral unmixing method was used directly as a classifier where the abundance vectors were

directly interpreted as vectors collecting the probabilities to belong to each of the classes.

Spectral unmixing was used side-by-side with a multinomial logistic regression (MLR). Be-

sides, the two classifiers were used in an active learning method combining them to increase

the size of the training set by generating labels to identified informative pixels.

Andrejchenko et al. [And+16] also exploited spectral unmixing as a classifier. This work,
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focusing on classification problems with small training sets, introduced the idea of using

all the pixels of the training set as endmembers. A sparse spectral unmixing method was

then used to infer the abundance vectors. Finally, for each unlabeled pixel the predominant

endmember was identified and its class was attributed the unlabeled pixel.

The same authors also proposed in [And+19] a classification method based on a decision

fusion framework where the results of two classifiers were merged with the help of Markov

or conditional random fields. The first classifier was a conventional MLR classifier and the

second was similar to the one of [And+16] with the difference that fractional abundances

were computed by summing all the abundances of endmembers of a same class yielding a

probability vector to belong to each of the classes.

Another family of methods makes the link between classification and spectral unmixing by

assuming that all the pixels of a given class live in a class-specific subspace. In particular, the

early work [LBP12] proposed a segmentation method combining projection in class-specific

subspaces with a MLR algorithm. From an unmixing point of view, this assumption also

means that it is possible to use class-specific endmember matrices. Authors of [Sun+17]

thus proposed to use a training set to estimate an endmember matrix for each class, then

to concatenate all these endmember matrices to get a global endmember matrix and finally

to use a sparse spectral unmixing method and classification method based on fractional

abundances to get both unmixing results and classification results. The idea developed in

these two latter works were combined in [Xu+19] in which the authors proposed to evaluate

class-specific endmember matrices and the identified subspaces were then used to create a

transformation function applied to the data, then used to feed a MLR algorithm.

This brief overview shows that very few attempts have been conducted to propose a joint

spectral unmixing and classification method. Moreover, these methods generally tackle the

problem by using the two approaches sequentially and, in most cases, with the final idea to

get an improved classification method. Convinced that the representation learning results

are as worthy of consideration as classification results for an end-user, the work presented in

this manuscript is an attempt to propose truly joint representation learning and classification

methods. The aim of these methods is to provide a hierarchical description of the considered

data.

The work presented in this manuscript has been carried out within the Signal and Com-

munications group of the Institut de Recherche en Informatique de Toulouse. This thesis

was funded by the Centre National d’Études Spatiales (CNES) and Région Occitanie.
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Structure of the manuscript

Chapter 1 introduces a hierarchical Bayesian model, inspired by [EDT11], to jointly

perform low-level modeling and supervised classification. The low-level modeling intends to

extract the latent structure of the data whereas classification is considered as a high-level

modeling. These two stages of the hierarchical model are linked through a clustering stage

which aims at identifying groups of pixels with similar latent representation. A Markov

random field (MRF) is then used to ensure a spatial regularity of the cluster labels and a

coherence with classification labels. The final stage used for classification exploits a set of

possibly corrupted labeled data provided by the end-user. The parameters of the overall

Bayesian model are estimated using a Markov chain Monte Carlo (MCMC) algorithm in

the specific case where the image is an hyperspectral image and the low-level modeling is a

spectral unmixing model.

Chapter 2 considers a different approach by using of a cofactorization model. The repre-

sentation learning task and the classification task are both modeled as factorization matrix

problems. A coupling term is then introduced to enable a joint estimation. Based on the

same idea developed in model of Chapter 1, the coupling term is interpreted as a clus-

tering task performed on the low-dimensional representation vectors. Finally, the cluster

attribution vectors are used as features vectors for classification. The overall non-smooth,

non-convex optimization problem is solved using a proximal alternating linearized minimiza-

tion (PALM) algorithm ensuring convergence to a critical point of the objective function.

The quality of the obtained results is finally assessed on synthetic and real data for the

analysis of hyperspectral image using spectral unmixing and classification.

Chapter 3 intends to enrich the previous model by adding spatial information. In the

previous models, the spatial information is only exploited through regularization terms such

as Potts-MRF or total variation regularization. With this mechanism, spatial information

is introduced at a late stage in an indirect manner. To introduce a more direct spatial

information, a cofactorization model with two data fitting terms is considered. The first

term is a spectral mixture model based on the hyperspectral image and thus accounts for the

spectral information. The second term is a representation learning model based on an image

aggregating the spatial information. This image can be computed from a panchromatic

image, e.g., by extracting spatial features or by concatenating the neighborhood of each

pixel. The coupling term is again a clustering task identifying groups of pixels with similar

spectral and spatial signatures. The resulting model performs an unsupervised unmixing

14



Introduction

task and could be merged with the model of Chapter 2 to derive a richer supervised model.

Main contributions

Chapter 1. The main contribution of this chapter lies in the introduction of a Bayesian

framework to unify representation learning and classification approaches. The model pro-

poses a resourceful use of MRF to link all the levels of the model to conduct a joint esti-

mation. The second contribution is the design of a classification method robust to labeling

errors in the training set. The method additionally proposes a correction of erroneous la-

bels. Finally, the last contribution is in the potential of interpretation of the results due to

meaningful byproducts. In particular, a matrix decomposing the classes into a collection of

clusters is estimated and each of these clusters are characterized by their mean abundance

vector. These byproducts allow the user to clearly visualize the structure of the considered

data.

Chapter 2. A cofactorization model is used to develop another unified framework for

representation learning and classification. This model differs from other cofactorization

model mainly by the proposed coupling term. Firstly, it allows a rich interpretation of

the results with again the idea of decomposing classes in a collection of clusters. And sec-

ondly, it keeps flexibility between the two tasks at hand, contrary to previous models such

as DKSVD [ZL10] where the model introduces two adversarial goals instead of coopera-

tive ones. The final contribution lies in the proposition of a powerful optimization method

dedicated to the criterion to be minimized. Indeed, a proximal alternating linearized mini-

mization algorithm (PALM) is used to solve the non-convex, non-smooth problem at hand

with guarantee of convergence to a critical point of the objective function.

Chapter 3. The main contribution of this chapter is a new proposition to enrich spectral

mixture model with spatial information directly using an additional data fitting term instead

of resorting to regularization methods. This new model tends to improve the results of

the unmixing process. But more importantly, the model produces a segmentation map

identifying several areas by their spectral signature and their spatial pattern. We actually

obtain a very compact, complete and visual representation of the analyzed scene. Up to our

knowledge, this method introduces the new concept of joint spatial-spectral unmixing.
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Chapter 1. Hierarchical Bayesian model for joint classification and spectral unmixing

1.1. Introduction (in French)

Dans le contexte de l’interprétation d’images, de nombreuses méthodes ont été dévelop-

pées pour extraire l’information utile. Parmi ces méthodes, les modèles génératifs ont reçu

une attention particulière du fait de leurs solides bases théoriques, mais aussi de la facilité

d’interprétation des modèles estimés en comparaison des modèle discriminatifs, comme les

réseaux de neurones profonds. Ces méthodes sont basées sur une modélisation statistique

explicite des données. Ils permettent la construction de modèles dédiés pour chaque appli-

cation [WG13], ou bien la construction de modèles plus génériques comme les modèles de

mélange de gaussiennes pour la classification [Ker14]. L’utilisation de modèles spécialisés ou

génériques représente deux approches différentes pour obtenir une description interprétable

des données. Par exemple, lorsqu’on analyse des images, les modèles spécialisés visent à

reconstituer la structure latente (potentiellement basée sur un modèle physique) de cha-

cune des mesures pixeliques [DTC08] tandis que la classification produit une information

haut-niveau réduisant la caractérisation des pixels à un unique label [FCB12].

La principale contribution de ce chapitre réside dans la définition d’un nouveau mo-

dèle bayésien développant un cadre unifié pour réaliser classification et modélisation des

structures latentes de manière jointe. Ce modèle a l’avantage d’estimer des descriptions

bas-niveau et haut-niveau cohérentes de l’image en réalisant une analyse hiérarchique de

l’image. De plus, il est possible d’espérer une amélioration des résultats de chacune des

méthodes grâce à la complémentarité des approches. En particulier, l’utilisation de données

labellisées n’est plus limitée à l’analyse haut-niveau, i.e., la classification. Il est également

possible d’informer l’analyse bas-niveau, c’est-à-dire, la modélisation des structures latentes,

qui profite en général mal de telles informations a priori. D’autre part, les variables latentes

de la modélisation bas-niveau peuvent être utilisées comme descripteurs pour la classifica-

tion. Un effet collatéral direct est la réduction de dimension explicite réalisée sur les données

avant la classification [JL98]. Enfin, le modèle hiérarchique introduit permet de rendre la

classification robuste à la corruption des labels d’entraînement. En effet, les performances

d’une méthode de classification supervisée peuvent se dégrader si ces derniers ne sont pas

entièrement fiables comme c’est souvent le cas puisque ces labels sont estimés par des experts

humains pouvant commettre des erreurs. Pour cette raison, le problème de développer des

méthodes de classification robustes aux erreurs de labellisation a été largement considéré

dans la communauté [BG09 ; Pel+17]. S’inscrivant dans ce cadre, le modèle proposé tient
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explicitement compte de la présence de labels corrompus.

L’interaction entre les modèles bas-niveau et haut-niveau est géré par l’utilisation de

champs de Markov aléatoires (MRF) non-homogènes [Li09]. Les MRFs sont des modèles pro-

babilistes largement utilisés pour décrire des interactions spatiales. C’est pourquoi, lorsqu’ils

sont utilisés comme a priori dans une modélisation bayésienne, ils sont tout à fait adaptés

pour capturer les dépendances spatiales entre les structures latentes des images [ZBS01 ;

Tar+10 ; And+19 ; Che+17]. Le modèle proposé inclut lui deux instances de MRFs assurant

(i) la cohérence entre les modélisations bas-niveau et haut-niveau, (ii) la cohérence avec les

labels fournis par les experts comme donnée d’entraînement et (iii) une régularité spatiale.

La suite de ce chapitre est organisée de la manière suivante. La Section 1.3 présente le

modèle bayésien hiérarchique proposé comme cadre unifié pour l’interprétation bas-niveau et

haut-niveau d’images. Une méthode de Monte Carlo par chaîne de Markov est explicitée dans

la Section 1.4 pour permettre l’échantillonnage selon la loi postérieur jointe des paramètres

du modèle. Ensuite, une instance particulière du modèle est considérée dans la Section 1.5

où, en se recentrant sur le cas d’étude de ce manuscrit, des images hyperspectrales sont

analysées à la fois du point de vue du démélange et de la classification. La Section 1.6

présente les résultats obtenus avec la méthode proposée et les compare à ceux obtenus

avec des méthodes établies en utilisant des données synthétiques puis réelles. Finalement,

la Section 1.7 conclut ce chapitre et ouvre quelques perspectives de recherche dans la suite

de ce travail.

1.2. Introduction

In the context of image interpretation, numerous methods have been developed to extract

meaningful information. Among them, generative models have received a particular atten-

tion due to their strong theoretical background and the great convenience they offer in term

of interpretation of the fitted models compared to some model-free methods such as deep

neural networks. These methods are based on an explicit statistical modeling of the data

which allows very task-specific model to be derived [WG13], or either more general models

to be implemented to solve generic tasks, such as Gaussian mixture models for classifica-

tion [Ker14]. Task-specific and classification-like models are two different ways to reach

an interpretable description of the data with respect to a particular applicative issue. For

instance, when analyzing images, task-specific models aim at recovering the latent (possibly

physics-based) structures underlying each pixel-wise measurement [DTC08] while classifi-

cation provides a high-level information, reducing the pixel characterization to a unique
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label [FCB12].

The contribution of this chapter lies in the derivation of a unified Bayesian framework

able to perform classification and latent structure modeling jointly. This framework has the

primary advantage of recovering consistent high and low level image descriptions, explicitly

conducting hierarchical image analysis. Moreover, improvements in the results associated

with both methods may be expected thanks to the complementarity of the two approaches.

In particular, the use of ground-truthed training data is not limited to driving the high level

analysis, i.e., the classification task. Indeed, it also makes it possible to inform the low level

analysis, i.e., the latent structure modeling, which usually does not benefit well from such

prior knowledge. On the other hand, the latent modeling inferred from each data as low

level description can be used as features for classification. A direct and expected side effect

is the explicit dimension reduction operated on the data before classification [JL98]. Finally,

the proposed hierarchical framework allows the classification to be robust to corruption of

the ground-truth. As mentioned previously, performance of supervised classification may be

questioned by the reliability in the training dataset since it is generally built by human expert

and thus probably corrupted by label errors resulting from ambiguity or human mistakes.

For this reason, the problem of developing classification methods robust to label errors has

been widely considered in the community [BG09; Pel+17]. Pursuing this objective, the

proposed framework also allows training data to be corrected if necessary.

The interaction between the low and high level models is handled by the use of non-

homogeneous Markov random fields (MRF) [Li09]. MRFs are probabilistic models widely-

used to describe spatial interactions. Thus, when used to derive a prior model within

a Bayesian approach, they are particularly well-adapted to capture spatial dependencies

between the latent structures underlying images [ZBS01; Tar+10; And+19]. For example,

Chen et al. [Che+17] proposed to use MRFs to perform clustering. The proposed framework

incorporates two instances of MRF, ensuring (i) consistency between the low and high level

modeling, (ii) consistency with external data available as prior knowledge and (iii) a more

classical spatial regularization.

The remaining of the chapter is organized as follows. Section 1.3 presents the hierarchical

Bayesian model proposed as a unifying framework to conduct low-level and high-level image

interpretation. A Markov chain Monte Carlo (MCMC) method is derived in Section 1.4 to

sample according to the joint posterior distribution of the resulting model parameters. Then,

focusing on the problem at hand in this manuscript, a particular and illustrative instance of

the proposed framework is presented in Section 1.5 where hyperspectral images are analyzed

under the dual scope of unmixing and classification. Section 1.6 presents the results obtained
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with the proposed method and compares them to the results of well-established methods

using synthetic and real data. Finally, Section 1.7 concludes the chapter and opens some

research perspectives to this work.

1.3. Hierarchical Bayesian model

In order to propose a unifying framework offering multi-level image analysis, a hierarchical

Bayesian model is derived to relate the observations and the task-related parameters of

interest. This model is mainly composed of three main levels. The first level, presented in

Section 1.3.1, takes care of a low-level modeling achieving latent structure analysis. The

second stage then assumes that data samples (e.g., resulting from measurements) can be

divided into several statistically homogeneous clusters through their respective latent struc-

tures. To identify the cluster memberships, these samples are assigned discrete labels which

are a priori described by a non-homogeneous Markov random field (MRF). This MRF com-

bines two terms: the first one is related to the potential of a Potts-MRF to promote spatial

regularity between neighboring pixels; the second term exploits labels from the higher level

to promote coherence between cluster and classification labels. This clustering process is de-

tailed in Section 1.3.2. Finally, the last stage of the model, explained in Section 1.3.3, allows

high-level labels to be estimated, taking advantage of the availability of external knowledge

as ground-truthed or expert-driven data, akin to a conventional supervised classification

task. The whole model and its dependences are summarized by the directed acyclic graph

in Figure 1.1.

Y

υ

A

θ

z

β1 Q

ω

β2

η

cL

Observations
Low-level

task Clustering
High-level

task

Figure 1.1.: Directed acyclic graph of the proposed hierarchical Bayesian model. (User-
defined parameters appear in dotted circles and external data in squares).
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1.3.1. Low-level interpretation

The low-level task aims at inferring P R-dimensional latent variable vectors ap (∀p ∈ P ,

{1, . . . , P}) appropriate for representing P respective d-dimensional observation vectors yp
in a subspace of lower dimension than the original observation space, i.e., R ≤ d. The task

may also include the estimation of the function or additional parameters of the function

relating the unobserved and observed variables. By denoting Y = [y1, . . . ,yP ] and A =

[a1, . . . ,aP ] the d×P - and R×P - matrices gathering respectively the observation and latent

variable vectors, this relation can be expressed through the general statistical formulation

Y|A,υ ∼ Ψ (Y; flat (A) ,υ) , (1.1)

where Ψ(·,υ) stands for a statistical model, e.g., resulting from physical or approximation

considerations, flat(·) is a deterministic function used to define the latent structure and υ

are possible additional nuisance parameters. In most applicative contexts aimed by this

work, the model Ψ(·) and function flat(·) are separable with respect to the measurements

assumed to be conditionally independent, leading to the factorization

Y|A,υ ∼
P
∏

p=1

Ψ (yp; flat (ap) ,υ) . (1.2)

It is worth noting that this statistical model will explicitly lead to the derivation of the

particular form of the likelihood function involved in the Bayesian model.

The choice of the latent structure related to the function flat(·) is application-dependent

and can be directly chosen by the end-user. A conventional choice consists in considering a

linear expansion of the observed data yp over an orthogonal basis spanning a space whose

dimension is lower than the original one. This orthogonal space can be a priori fixed or

even learnt from the dataset itself, e.g., leveraging on popular nonparametric methods such

as principal component analysis (PCA) [FCB06]. In such case, the model (1.1) should

be interpreted as a probabilistic counterpart of PCA [TB99] and the latent variables ap
would correspond to factor loadings. Similar linear latent factors and low-rank models have

been widely advocated to address source separation problems, such as nonnegative matrix

factorization [CNJ09]. As a typical illustration, by assuming an additive white and centered

Gaussian statistical model Ψ(·) and a linear latent function flat(·), the generic model (1.2)
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can be particularly instanced as

Y|A, s2 ∼
P
∏

p=1

N
(

yp; Map, s2Id
)

(1.3)

where Id is the d× d identity matrix, M is a matrix spanning the signal subspace and s2 is

the variance of the Gaussian error, considered as a nuisance parameter. Besides this popular

class of Gaussian models, this formulation allows other noise statistics to be handled within

a linear factor modeling, as required when the approximation should be envisaged beyond

a conventional Euclidean discrepancy measure [CJ11], provided that

E [Y|A] = flat(A).

From a different perspective, the generic formulation of the statistical latent structure

(1.2) can also result from a thorough analysis of more complex physical processes underlying

observed measurements, resulting in specific yet richer physics-based latent models [Per+12;

Alb+14]. For sake of generality, this latent structure will not be specified in the rest of this

manuscript, except in Section 1.5 where the linear Gaussian model (1.3) will be more deeply

investigated as an illustration in a particular applicative context.

1.3.2. Clustering

To regularize the latent structure analysis, the model is complemented by a clustering step

as a higher level of the Bayesian hierarchy. Besides, another objective of this clustering stage

is also to act as a bridge between the low- and high-level data interpretations, namely latent

structure analysis and classification. The clustering is performed under the assumption

that the latent variables are statistically homogeneous and allocated in several clusters,

i.e., identities belonging to a same cluster are supposed to be distributed according to the

same distribution. To identify the membership, each observation is assigned a cluster label

zp ∈ K , {1, . . . ,K} where K is the number of clusters. Formally, the unknown latent

vector is thus described by the following prior

ap|zp = k,θk ∼ Φ(ap;θk), (1.4)

where Φ is a given statistical model depending on the addressed problem and governed by

the parameter vector θk characterizing each cluster. As an example, considering this prior

distribution as Gaussian, i.e., Φ(ap;θk) = N (ap;ψk,Σk) with θk = {ψk,Σk}, would lead
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to a conventional Gaussian mixture model (GMM) for the latent structure, as in [EDT11]

(see Section 1.5).

One particularity of the proposed model lies in the prior on the cluster labels z =

[z1, . . . , zP ]. A non-homogeneous Markov Random Field (MRF) is used as a prior model to

promote two distinct behaviors through the use of two potentials. The first one is a local and

non-homogeneous potential parametrized by a K-by-J matrix Q. It promotes consistent

relationships between the cluster labels z and some classification labels ω = [ω1, . . . , ωP ]

where ωp ∈ J , {1, . . . , J} and J is the number of classes. These classification labels as-

sociated with high-level interpretation will be more precisely investigated in the third stage

of the hierarchy in Section 1.3.3. Pursuing the objective of analyzing images, the second

potential is associated with a Potts-MRF [Wu82] of granularity parameter β1 to promote

a piecewise consistent spatial regularity of the cluster labels. The prior probability of z is

thus defined as

P[z|ω,Q] =
1

C(ω,Q)
exp





∑

p∈P

V1(zp, ωp, qzp,ωp) +
∑

p∈P

∑

p′∈V(p)

V2(zp, zp′)



 (1.5)

where V(p) stands for the neighborhood of p, qk,j is the k-th element of the j-th column of Q.

The two terms V1(·) and V2(·) are the classification-informed and Potts-Markov potentials,

respectively, defined by

V1(k, j, qk,j) = log(qk,j)

V2(k, k′) = β1δ(k, k′)

where δ(·, ·) is the Kronecker function. Finally, C(ω,Q) stands for the normalizing con-

stant (i.e., partition function) depending of ω and Q and computed over all the possible z

fields [Li09]

C(ω,Q) =
∑

z∈KP

exp





∑

p∈P

V1(zp, ωp, qzp,ωp) +
∑

p∈P

∑

p′∈V(p)

V2(zp, zp′)





=
∑

z∈KP

∏

p∈P

qzp,ωp exp



β1

∑

p′∈V(p)

δ(zp, zp′)



 (1.6)

The equivalence between Gibbs random fields and MRF stated by the Hammersley-

Clifford theorem [Li09] provides the prior probability of a particular cluster label condi-
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tionally upon its neighbors

P[zp = k|zV(p), ωp = j, qk,ωp
] ∝ exp



V1(k, j, qk,j) +
∑

p′∈V(p)

V2(k, zp′)



 (1.7)

where the symbol ∝ stands for “proportional to”.

The elements qk,j of the matrix Q introduced in the latter MRF account for the connec-

tion between cluster k and class j, revealing a hidden interaction between clustering and

classification. A high value of qk,j tends to promote the association to the cluster k when the

sample belongs to the class j. This interaction encoded through these matrix coefficients is

unknown and thus motivates the estimation of the matrix Q. To reach an interpretation

of the matrix coefficients in terms of probabilities of inter-dependency, a Dirichlet distribu-

tion is elected as prior for each column qj = [q1,j , . . . , qK,j ]
T of Q = [q1, . . . ,qJ ] which are

assumed to be independent, i.e.,

qj ∼ Dir(qj ; ζ1, . . . , ζK). (1.8)

The nonnegativity and sum-to-one constraints imposed to the coefficients defining each

column of Q allows them to be interpreted as probability vectors. The choice of such a prior

is furthermore motivated by the properties of the resulting conditional posterior distribution

of qj , as demonstrated later in Section 1.4. In the present work, the hyperparameters

ζ1, . . . , ζK are all chosen equal to 1, resulting in a uniform prior over the corresponding

simplex defined by the probability constraints. Obviously, when additional prior knowledge

on the interaction between clustering and classification is available, these hyperparameters

can be adjusted accordingly.

1.3.3. High-level interpretation

The last stage of the hierarchical model defines a classification rule. At this stage, a unique

discrete class label should be attributed to each sample. This task can be seen as high-level

in the sense that the definition of the classes can be motivated by their semantic meaning.

Classes can be specified by the end-user and thus a class may gather samples with signif-

icantly dissimilar observation vectors and even dissimilar latent features. The clustering

stage introduced earlier also allows a mixture model to be derived for this classification

task. Indeed, a class tends to be the union of several clusters identified at the clustering

stage, providing a hierarchical description of the dataset.
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In this chapter, the conventional and well-admitted setup of a supervised classification is

considered. This setup means that a partial ground-truthed dataset cL is available for a

(e.g., small) subset of samples. In what follows, L ⊂ P denotes the subset of observation

indexes for which this ground-truth is available. This ground-truth provides the expected

classification labels for observations indexed by L. Conversely, the index set of unlabeled

samples for which this ground-truth is not available is noted U ⊂ P, with P = U + L
and U ∩ L = ∅. Moreover, the proposed model assumes that this ground-truth may be

corrupted by class labeling errors. As a consequence, to provide a classification robust to

these possible errors, all the classification labels of the dataset will be estimated, even those

associated with the observations indexed by L. At the end of the classification process, the

labels estimated for observations indexed by L will not be necessarily equal to the labels cL

provided by the expert or an other external knowledge.

Similarly to the prior model advocated for z (see Section 1.3.2), the prior model for the

classification labels ω is a non-homogeneous MRF composed of two potentials. Again, a

Potts-MRF potential with a granularity parameter β2 is used to promote spatial coherence of

the classification labels. The other potential is non-homogeneous and exploits the supervised

information available under the form of the ground-truth map cL. In particular, it intends

to ensure consistency between the estimated and ground-truthed labels for the samples

indexed by L. Moreover, for the classification labels associated with the indexes in U (i.e.,

for which no ground-truth is available), the prior probability to belong to a given class is

set as the proportion of this class observed in cL. This setting assumes that the expert

map is representative of the whole scene to be analyzed in term of label proportions. If

this assumption is not verified, the proposed modeling can be easily adjusted accordingly.

Mathematically, this formal description can be summarized by the following conditional

prior probability for a given classification label ωp

P[ωp = j|ωV(p), cp, ηp] ∝ exp



W1(j, cp, ηp) +
∑

p′∈V(p)

W2(j, ωp′)



 . (1.9)

As explained above, the potential W2(·, ·) ensures the spatial coherence of the classification

labels, i.e.,

W2(j, j′) = β2δ(j, j′).
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More importantly, the potential W1(j, cp, ηp) defined by

W1(j, cp, ηp) =





























log(ηp), when j = cp

log(1−ηp

J−1 ), otherwise
, when p ∈ L

log(πj), when p ∈ U

encodes the coherence between estimated and ground-truthed labels when available (i.e.,

when p ∈ L) or, conversely for non-ground-truthed labels (i.e., when p ∈ U), the prior

probability of assigning a given label through the proportion πj of samples of class j in cL.

The hyperparameter ηp ∈ (0, 1) stands for the confidence given in cp, i.e., the ground-truth

label of pixel p. In the case where the confidence is total, the parameter tends to 1 and

it leads to ωp = cp in a deterministic manner. However, in a more realistic applicative

context, ground-truth is generally provided by human experts and may contain errors due

for example to ambiguities or simple mistakes. It is possible with the proposed model to

set for example a 90% level of confidence which allows to re-estimate the class label of the

labeled set L and thus to correct the provided ground-truth. By this mean, the robustness

of the classification to label errors is improved.

1.4. Gibbs sampler

To infer the parameters of the hierarchical Bayesian model introduced in the previous sec-

tion, an MCMC algorithm is derived to generate samples according to the joint posterior

distribution of interest which can be computed according to the following hierarchical struc-

ture

p (A,Θ, z,Q,ω|Y) ∝ p(Y|A)p(A|z,θ)p(z|Q,ω)p(ω)

with Θ , {θ1, . . . ,θK}. Note that, for conciseness, the nuisance parameters υ have been

implicitly marginalized out in the hierarchical structure. If this marginalization is not

straightforward, these nuisance parameters can be also explicitly included within the model

to be jointly estimated.

The Bayesian estimators of the parameters of interest can then be approximated using

these samples. The minimum mean square error (MMSE) estimators of the parameters A,

Θ and Q can be approximated through empirical averages

x̂MMSE = E[x|Y] ≈ 1
NMC

NMC
∑

t=1

x(t) (1.10)
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where ·(t) denotes the tth samples and NMC is the number of iterations after the burn-in

period. Conversely, the maximum a posteriori estimators of the cluster and class labels, z

and ω, respectively, can be approximated as

x̂MAP = argmax
x

p(x|Y) ≈ argmax
x(t)

p(x(t)|Y) (1.11)

which basically amounts at retaining the most frequently generated label for these specific

discrete parameters [Kai+12].

To carry out such a sampling strategy, the conditional posterior distributions of the

various parameters need to be derived. More importantly, the ability of drawing according

to these distributions is required. These posterior distributions are detailed in what follows.

1.4.1. Latent parameters

Given the likelihood function resulting from the statistical model (1.2) and the prior distri-

bution in (1.4), the conditional posterior distribution of a latent vectors can be expressed

as follows

p(ap|yp,υ, zp = k,θk) ∝ p(yp|ap,υ)p(ap|zp = k,θk)

∝ Ψ (yp; flat (ap) ,υ) Φ(ap;θk). (1.12)

1.4.2. Cluster labels

The cluster label zp being a discrete random variable, it is possible to sample the variable

by computing the conditional probability for all possible values of zp in K

P(zp = k|θk, ωp = j, qk,j) ∝ p(ap|zp = k,θk)P(zp = k|zV(p), ωp = j, qk,j)

∝ Φ(ap;θk)qk,j exp



β1

∑

p′∈V(p)

δ(k, z′
p)



 . (1.13)

30



Chapter 1. Hierarchical Bayesian model for joint classification and spectral unmixing

1.4.3. Interaction matrix

The conditional distribution of each column qj (j ∈ J ) of the interaction parameter matrix

Q can be written

p(qj |z,Q\j ,ω) ∝ p(qj)P(z|Q,ω)

∝
∏K
k=1 q

nk,j

k,j

C(ω,Q)
✶SK

(qj). (1.14)

where Q\j denotes the matrix Q whose jth column has been removed, nk,j = #{p|zp =

k, ωp = j} is the number of observations whose cluster and class labels are respectively k

and j, and ✶SK
(·) is the indicator function of the K-dimensional probability simplex which

ensures that qj ∈ SK implies ∀k ∈ K, qk,j ≥ 0 and
∑K
k=1 qk,j = 1.

Sampling according to this conditional distribution would require to compute the parti-

tion function C(ω,Q), which is not straightforward. The partition function is indeed a sum

over all possible configurations of the MRF z. One strategy would consist in precomputing

this partition function on an appropriate grid, as in [Ris+10]. As alternatives, one could use

to likelihood-free Metropolis Hastings algorithm [Per+13], auxiliary variables [Mol+06] or

pseudo-likelihood estimators [Bes75]. However, all these strategies remain of high compu-

tational cost, which precludes their practical use for most applicative scenarii encountered

in real-world image analysis.

Besides, when β1 = 0, this partition function reduces to C(ω,Q) = 1. In other words, the

partition function is constant when the spatial regularization induced by V2(·) is not taken

into account. In such case, the conditional posterior distribution for qj is the following

Dirichlet distribution

qj |z,ω ∼ Dir(qj ;n1,j + 1, . . . , nK,j + 1), (1.15)

which is easy to sample from. Interestingly, the expected value of qk,j is then

E [qk,j |z,ω] =
nk,j + 1

∑K
i=1 ni,k +K

which is a biased empirical estimator of P [zp = k|ωp = j]. This latter result motivates the

use of a Dirichlet distribution as a prior for qj . Thus, it is worth noting that Q can be

interpreted as a byproduct of the proposed model which describes the intrinsic dataset

structure. It allows the practitioner not only to get an overview of the distribution of

the samples of a given class in the various clusters but also to possibly identify the origin
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of confusions between several classes. Again, this clustering step allows disparity in the

semantic classes to be mitigated. Intraclass variability results in the emerging of several

clusters which are subsequently agglomerated during the classification stage.

In practice, during the burn-in period of the proposed Gibbs sampler, to avoid highly

intensive computations, the cluster labels are sampled according to (1.13) with β1 > 0 while

the columns of the interaction matrix are sampled according to (1.15). In other words,

during this burn-in period, a certain spatial regularization with β1 > 0 is imposed to the

cluster labels and the interaction matrix is sampled according to an approximation of its

conditional posterior distribution1. After this burn-in period, the granularity parameter

β1 is set to 0, which results in removing the spatial regularization between the cluster

labels. Thus, once convergence has been reached, the conditional posterior distribution

(1.15) reduces to (1.14) and the iteraction matrix is properly sampled according to its exact

conditional posterior distribution.

1.4.4. Classification labels

Similarly to the cluster labels, the classification labels ω are sampled by evaluating their

conditional probabilities computed for all the possible labels. However, two cases need

to be considered while sampling the classification label ωp, depending on the availability

of ground-truth label for the corresponding pth pixel. More precisely, when p ∈ U , i.e.,

when the pth pixel is not accompanied by a corresponding ground-truth, the conditional

probabilities are written

P[ωp = j|z,ω\p,qj , cp, ηp] ∝ P[zp|ωp = j,qj , zν(p)]P[ωp = j|ωV(p), cp, ηp]

∝
qzp,jπj exp

(

β2
∑

p′∈ν(p) δ(j, ωp′)
)

K
∑

k′=1
qk′,j exp

(

β1
∑

p′∈ν(p)
δ(k′, zp′)

) , (1.16)

where ω\p denotes the classification label vector ω whose pth element has been removed.

Conversely, when p ∈ L, i.e., when the pth pixel is assigned a ground-truth label cp, the

1This strategy can also be interpreted as choosing C(ω, Q) × Dir(1) instead of the Dirichlet distribution
(1.8) as prior for qj .
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conditional posterior probability reads

P[ωp = j|z,ω\p,qj , cp, ηp] ∝ P[zp|ωp = j,qj , zν(p)]P[ωp = j|ωV(p), cp, ηp]

∝































































qzp,jηp exp

(

β2

∑

p′∈ν(p)

δ(j,ωp′ )

)

K
∑

k′=1

qk′,j exp

(

β1

∑

p′∈ν(p)

δ(k′,zp′ )

) when ωp = cp

(1−ηp)qzp,j exp

(

β2

∑

p′∈ν(p)

δ(j,ωp′ )

)

(C−1)
K
∑

k′=1

qk′,j exp

(

β1

∑

p′∈ν(p)

δ(k′,zp′ )

) otherwise

(1.17)

Note that, as for the sampling of the columns qj (j ∈ J ) of the interaction matrix Q,

this conditional probability is considerably simplified when β1 = 0 (i.e., when no spatial

regularization is imposed on the cluster labels) since
K
∑

k′=1
qk′,j exp

(

β1
∑

p′∈ν(p)
δ(k′, zp′)

)

= 1

in this specific case.

1.5. Application to hyperspectral image analysis

The proposed general framework introduced in the previous sections has been instanced for

a specific application, namely the analysis of hyperspectral images. Hyperspectral imaging

for Earth observation has been receiving increasing attention over the last decades, in partic-

ular in signal/image processing literatures [Cam+14; Man+14; Ma+14]. This keen interest

of the scientific community can be easily explained by the richness of the information pro-

vided by such images. Indeed, generalizing the conventional red/green/blue color imaging,

hyperspectral imaging collects spatial measurements acquired in a large number of spectral

bands. Each pixel is associated with a vector of measurements, referred to as spectrum,

which characterizes the macroscopic components present in this pixel. Classification and

spectral unmixing are two well-admitted techniques to analyze hyperspectral images. As

mentioned earlier, and similarly to numerous applicative contexts, classifying hyperspectral

images consists in assigning a discrete label to each pixel measurement in agreement with

a predefined semantic description of the image. Conversely, spectral unmixing proposes to

retrieve some elementary components, called endmembers, and their respective proportions,

called abundance in each pixel, associated with the spatial distribution of the endmembers in

over the scene [Bio+12]. Per se, spectral unmixing can be cast as a blind source separation
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or a nonnegative matrix factorization (NMF) task [Ma+13]. The particularity of spectral

unmixing, also known as spectral mixture analysis in the microscopy literature [DB12], lies

in the specific constraints applied to spectral unmixing. As for any NMF problem, the end-

members signatures as well as the proportions are nonnegative. Moreover, specifically, to

reach a close description of the pixel measurements, the abundance coefficients, interpreted

as concentrations of the different materials, should sum to one for each spatial position.

Nevertheless, yet complementary, these two classes of methods have been considered

jointly in a very limited number of works [Dóp+14; Vil+11b]. The proposed hierarchical

Bayesian model offers a great opportunity to design a unified framework where these two

methods can be conducted jointly. Spectral unmixing is perfectly suitable to be envisaged

as the low-level task of the model described in Section 1.3. The abundance vector provides

a biophysical description of a pixel which can be seen as a vector of latent variables of the

corresponding pixel. The classification step is more related to a semantic description of

the pixel. The low-level and clustering tasks of general framework described respectively in

Sections 1.3.1 and 1.3.2, are specified in what follows, while the classification task is directly

implemented as in Section 1.3.3.

1.5.1. Low-level model

According to the conventional linear mixing model (LMM), the pixel spectrum yp (p ∈ P)

observed in d spectral bands are approximated by linear mixtures of R elementary signatures

mr (r = 1, . . . , R), i.e.,

yp =
R
∑

r=1

ar,pmr + ep (1.18)

where ap = [a1,p, . . . , aR,p]
T denotes the vector of mixing coefficients (or abundances) asso-

ciated with the pth pixel and ep is an additive error assumed to be white and Gaussian, i.e.,

ep|s2 ∼ N (0d, s2Id). When considering the P pixels of the hyperspectral image, the LMM

can be rewritten with its matrix form

Y = MA + E (1.19)

where M = [m1, . . . ,mR], A = [a1, . . . ,aP ] and E = [e1, . . . , eP ] are the matrices of the end-

member signatures, abundance vectors and noise, respectively. In this work, the endmember

spectra are assumed to be a priori known or previously recovered from the hyperspectral

images by using an endmember extraction algorithm [Bio+12]. Under this assumption, the

LMM matrix formulation defined by (1.19) can be straightforwardly interpreted as a partic-
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ular instance of the low-level interpretation (1.1) by choosing the latent function flat(·) as a

linear mapping flat(A) = MA and the statistical model Ψ(·, ·) as the Gaussian probability

density function parametrized by the variance s2.

In this applicative example, since the error variance s2 is a nuisance parameter and gen-

erally unknown, this hyperparameter is included within the Bayesian model and estimated

jointly with the parameters of interest. More precisely, the variance s2 is assigned a con-

jugate inverse-gamma prior and a non-informative Jeffreys hyperprior is chosen for the

associate hyperparameter δ

s2|δ ∼ IG(s2; 1, δ), δ ∝ 1
δ
✶R+(δ). (1.20)

These choices lead to the following inverse-gamma conditional posterior distribution

s2|Y,A ∼ IG


s2; 1 +
Pd

2
,
1
2

P
∑

p=1

‖yp − Map‖2



 (1.21)

which is easy to sample from, as an additional step within the Gibbs sampling scheme de-

scribed in Section 1.4.

1.5.2. Clustering

In the current problem, the latent modeling Φ(·; ·) in (1.4) is chosen as Gaussian distributions

elected for the latent vectors ap (p ∈ P),

ap|zp = k,ψk,Σk ∼ N (ap;ψk,Σk) (1.22)

where ψk and Σk are the mean vector and covariance matrix associated with the kth cluster.

This Gaussian assumption is equivalent to consider each high-level class as a mixture of

Gaussian distributions in the abundance space. The covariance matrices are chosen as

Σk = diag(σ2
k,1, . . . , σ

2
k,R) where σ2

k,1, . . . , σ
2
k,R are a set of R unknown hyperparameters.

The conditional posterior distribution of the abundance vectors ap can be finally expressed

as follows

p(ap|zp = k,yp,ψk,Σk) ∝ |Λk|−
1
2 exp

(

−1
2

(ap − µk,p)tΛ−1
k (ap − µk,p)

)

(1.23)
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where µk,p = Λk( 1
s2 Mtyp + Σ−1

k ψk) and Λk = ( 1
s2 MtM + Σ−1

k )−1. It shows that the latent

vector ap associated with a pixel belonging to the kth cluster is distributed according to the

multivariate Gaussian distribution N (ap;µk,p,Λk).

Moreover the variances σ2
k,r are included into the Bayesian model by choosing conjugate

inverse-gamma prior distributions

σ2
k,r ∼ IG(σ2

k,r; ξ, γ) (1.24)

where parameters ξ and γ have been selected to obtain vague priors (ξ = 1,γ = 0.1). It

leads to the following conditional inverse-gamma posterior distribution

σ2
r,k|A, z, ψr,k ∼ IG



σ2
k,r;

nk

2
+ ξ, γ +

∑

p∈Ik

(ar,p − ψr,k)2

2



 (1.25)

where nk is the number of samples in cluster k, and Ik ⊂ P is the set of indexes of pixels

belonging to the kth cluster (i.e., such that zp = k).

Finally, the prior distribution of the cluster mean ψk (k ∈ K) is chosen as a Dirichlet

distribution Dir(1). Such a prior induces soft non-negativity and sum-to-one constraints

on ap. Indeed, these two constraints are generally admitted to describe the abundance

coefficients since they represent proportions/concentrations. In this work, this constraint

is not directly imposed on the abundance vectors but rather on their mean vectors, since

E[ap|zp = k] = ψk. The resulting conditional posterior distribution of the mean vector ψk
is the following multivariate Gaussian distribution

ψk|A, z,Σk ∼ NSR



ψk;
1
nk

∑

p∈Ik

ap,
1
nk

Σk



 (1.26)

truncated on the probability simplex

SR =

{

x = [x1, . . . , xR]T |∀r, xr ≥ 0 and
R
∑

r=1

xr = 1

}

. (1.27)

Sampling according to this truncated Gaussian distribution can be achieved following the

strategies described in [AMD14].

Full inference procedure is summarized in Algorithm 1. It should be noticed that MMSE

and MAP estimators are updated online at each iteration after the burn-in period in order

to save storage and thus possibly handle large dataset. Additionally, the number of iteration
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is chosen in order to get a reasonable processing time.

Algorithm 1: Inference using Gibbs sampling

Initialize all variables;
for NMC +Nburn iterations do

foreach p ∈ P do sample ap from N (µk,p,Λk);
foreach p ∈ P do sample zp from (1.13);
foreach j ∈ J do sample qj from Dir(n1,j + 1, . . . , nK,j + 1);
foreach p ∈ P do sample ωp from (1.16) and (1.17);
for k = 1 to K do

sample ψk from NSR

(

1
nk

∑

p∈Ik
ap, 1

nk
Σk

)

;

foreach r ∈ {1, . . . , R} do sample σ2
r,k from

IG
(

nk

2 + ξ, γ +
∑

p∈Ik

(ar,p−ψr,k)2

2

)

;

end

sample s2 from IG
(

1 + Pd
2 ,

1
2

∑P
p=1 ‖yp − Map‖2

)

;

sample δ from IG(1, s2);
if iteration > Nburn then

update MMSE and MAP estimators
end

end

1.6. Experiments

1.6.1. Synthetic dataset

Synthetic data have been used to assess the performance of the proposed analysis model

and algorithm. Two distinct images, referred to as Image 1 and Image 2 and represented

in Figure 1.2, have been considered. The first one is a 100 × 100-pixel image composed of

R = 3 endmembers, K = 3 clusters and J = 2 classes. The second hyperspectral image is

a 200 × 200-pixel image which consists of R = 9 endmembers, K = 12 clusters and J = 5

classes. They have been synthetically generated according to the following hierarchical

procedure. First, cluster maps have been generated from Potts-Markov MRFs to obtain

(b) and (d) from Figure 1.2. Then, the corresponding classification maps have then been

chosen by artificially merging a few of these clusters to define each class and get (a) and

(c) from Figure 1.2. For each pixel, an abundance vector ap has been randomly drawn

from a Dirichlet distribution parametrized by a specific mean for each cluster. Finally

the pixel measurements Y have been generated using the linear mixture model with real
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endmembers signatures of d = 413 spectral bands extracted from a spectral library. These

linearly mixed pixels have been corrupted by a Gaussian noise resulting in a signal-to-noise

ratio of SNR= 30dB. The real interaction matrix Q presented in Figure 1.2 (e) and (f)

summarized the data structure by providing the probability to be in a given cluster when

belonging to a given class.

(a) (b)

(c) (d)
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Figure 1.2.: Synthetic data. Classification maps of Image 1 (a) and Image 2 (b), corre-
sponding clustering maps of Image 1 (c) and Image 2 (d), corresponding interaction matrix
Q of Image 1 (e) and Image 2 (f).
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Figure 1.3 represents the abundance vectors of each pixel in the probabilistic simplex for

Image 1. The three clusters are clearly identifiable and the class represented in blue is also

clearly divided into two clusters.

Figure 1.3.: Image 1. Left: colored composition of abundance map. Right: abundance
vectors in the probabilistic simplex (red triangle) with Class 1 (blue) and Class 2 (green).
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Figure 1.4.: Directed acyclic graph of the proposed model in the described hyperspectral
framework. Part in blue is the extension made to the Eches model.

To evaluate the interest of including the classification step into the model, results pro-

vided by the proposed method have been compared to the counterpart model proposed in

[EDT11] (referred to as Eches model). The Eches model is a similar model which lacks the

classification stage and thus does not exploit this high-level information. Figure 1.4 presents

the directed acyclic graph summarizing the model and its dependences in this particular

hyperspectral framework and outlining the difference with Eches model. The pixels and

associated classification labels located in the upper quarters of the Images 1 and 2 have

been used as the training set L. The confidence in this classification ground-truth has been
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Table 1.1.: Unmixing and classification results for all datasets.

RMSE(A) Kappa Time (s)

Image 1
Proposed model 3.23 × 10−3 (±1.6 × 10−5) 0.932 (±0.018) 171 (±5.4)
Eches model 3.24 × 10−3 (±1.4 × 10−5) 0.909 (±0.012) 146 (±0.7)

Image 2
Proposed model 1.62 × 10−2 (±1.62 × 10−4) 0.961 (±0.04) 950 (±11)
Eches model 1.61 × 10−2 (±2.71 × 10−5) 0.995 (±0.0004) 676 (±2.1)

MUESLI image
Proposed model N\ A 0.837 (±5 × 10−3) 7175 (±102)
Random Forest N\ A 0.879 (±5 × 10−4) 34 (±1.3)
Gaussian model N\ A 0.818 (±8.7 × 10−5) 4 (±0.01)

set to a value of ηp = 0.95 for all the pixels (p ∈ L). Additionally, the values of Potts-MRF

granularity parameters have been selected as β1 = β2 = 0.8. In the case of the Eches model,

the images have been subsequently classified using the estimated abundance vectors and

clustering maps, and following the strategy proposed in [BG09]. The performance of the

spectral unmixing task has been evaluated using the root global mean square error (RMSE)

associated with the abundance estimation

RMSE(A) =

√

1
PR

∥

∥

∥Â − A
∥

∥

∥

2

F
(1.28)

where Â and A denote respectively the estimated and actual matrices of abundance vectors.

Moreover, the accuracy of the estimated classification maps has been measured with the

conventional Cohen’s kappa. Details about evaluation metrics are available in Appendix A.

Results reported in Table 1.1 show that the obtained RMSE are not significantly different

between the two models. Moreover, the comparison between processing times shows a small

computational overload required by the proposed model. It should be noticed that this

experiment has been conducted with a fixed number of iterations of the proposed MCMC

algorithm (300 iterations including 50 burn-in iterations).

A second scenario is considered where the training set includes label errors. The corrupted

training set is generated by tuning a varying probability α to assign an incorrect label, all

the other possible labels being equiprobable. The probability α varies from 0 to 0.4 with a

0.05 step. In this context, the confidence in the classification ground-truth map is set equal

to ηp = 1−α (∀p ∈ L). The results, averaged over 20 trials for each setting, are compared to

the results obtained using a mixture discriminant analysis (MDA) [HT96b] conducted either

directly on the pixel spectra, either on the abundance vectors estimated with the proposed

model. The resulting classification performances for Image 1 are depicted in Figure 1.5 as

function of α. These results show that the proposed model performs very well even when

40



Chapter 1. Hierarchical Bayesian model for joint classification and spectral unmixing

the training set is highly corrupted (i.e., α close to 0.4).
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Figure 1.5.: Classification accuracy measured with Cohen’s kappa as a function of the per-
centage of label corruption α: proposed model (red), MDA with abundance vectors (blue)
and MDA with measured reflectance (green). Shaded areas denote the intervals correspond-
ing to the standard deviation computed over 20 trials.

Moreover, as already explained, another advantage of the proposed model is the inter-

esting by-products provided by the method. As an illustration, Figure 1.6 presents the

interactions matrices Q estimated for each image. From this figure, it is clearly possible

to identify the structure of the various classes and their hierarchical relationship with the

underlying clusters. For instance, for Image 2, it can be noticed that Class 1 is essentially

composed of two clusters which is confirmed by the true interaction matrix presented in

Figure 1.2 (e).

A last scenario has been considered in order to show the interest of the proposed method

in term of spectral unmixing. A more complex synthetic image has been generated to assess

this point. A 100 × 250-pixel real hyperspectral image has been unmixed using the fully

constrained optimization method described in [BF10]. The obtained realistic abundance

maps have been used to generate a new image with new real endmembers signatures of d =

252 spectral bands extracted from a spectral library. The selected endmembers presented

in Figure 1.7 has been chosen in order to be highly correlated (4 vegetation spectra and 2

soils spectra). Moreover the endmembers matrix M has been augmented by 9 endmembers

not present in the image. The obtained data is indeed both realistic and challenging in
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Figure 1.6.: Estimated interaction matrix Q for Image 1 (left) and Image 2 (right).

term of unmixing. A panchromatic view of the resulting image, made by summing all

spectral bands, is presented in Figure 1.8 along with the ground-truth retrieved from the

one provided with the original image with J = 4 classes. A Gaussian noise is finally added

to this semi-synthetic image to get a signal-to-noise ratio of SNR= 10dB.
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Figure 1.7.: Spectra used to generate the semi-synthetic image. 4 spectra are vegetation
spectra and 2 are soil spectra.

Figure 1.9 shows the evolution of RMSE computed at each iteration for 250 iterations

using the sampled Â(t) matrix and the known A abundance matrix. For this experiment,

the whole classification ground-truth was provided to the proposed algorithm as expert

data cL and parameters have been set to β1 = 0.3 and β2 = 1.2 for the proposed model
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(a) (b)

Figure 1.8.: Semi-synthetic image. Panchromatic view of the hyperspectral image (a),
ground-truth (b).

and β1 = 1.2 for Eches model. The evolution of the RMSE is presented in function of the

time since iteration are longer with the proposed model than with Eches model. Contrary

to one would expect, the proposed model appears to be much faster to converge in number

of iterations resulting in a convergence in the same time than Eches model. The increase of

complexity and processing time is compensated by the fact that the classification information

help significantly the convergence. Moreover as shown in Figure 1.10, the error made by the

proposed model tends to be more spatially coherent than the error made by Eches model

which are sometimes scattered in small area. This limitation of the Eches model is induced

by the tendency to over-segment the image in more clusters than necessary.
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Figure 1.9.: Evolution of RMSE of the sampled Â(t) matrix in function of the time for the
proposed model (red) and Eches model (blue). Results are averaged in time and score over
10 trials.
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(a) (b)

Figure 1.10.: Semi-synthetic image. Example of error map (‖âp − ap‖2) for proposed model
(a), example of error map for the Eches model (b).

1.6.2. Real hyperspectral image

Finally, the proposed strategy has been implemented to analyze a real 600 × 600-pixel hy-

perspectral image acquired within the framework of the multiscale mapping of ecosystem

services by very high spatial resolution hyperspectral and LiDAR remote sensing imagery

(MUESLI) project2. This image is composed of d = 438 spectral bands and R = 7 end-

members have been extracted using the widely-used vertex component analysis (VCA) al-

gorithm [ND05] to obtain matrix M. The associated expert ground-truth classification is

made of 6 classes (straw cereals, summer crops, wooded area, buildings, bare soil, pasture).

In this experiment, the upper half of the expert ground-truth has been provided as training

data for the proposed method. The confidence ηp has been set to 95% for all training pixels

to account for the imprecision of the expert ground-truth. The MRF granularity parameters

of the proposed parameters have been set to β1 = 0.3 and β2 = 1 since these values provide

the most meaningful interpretation of the image. Figure 1.11 presents a colored composi-

tion of the hyperspectral image (a), the expert ground-truth (b) and the obtained results in

terms of clustering (c) and classification (d). Quantitative results in term of classification

accuracy have been computed and are summarized in Table 1.1. Note that no performance

measure of the unmixing step is provided since no abundance groundtruh is available for

this real dataset. For comparison purpose, classification has been conducted with two con-

ventional classifier namely random forest (RF) and a Bayesian Gaussian model (GM) using

the scikit-learn library. Parameters of the two classifiers have been optimized using cross-

validation on the training set. Additionally, a principal component analysis has been used in

order to reduce dimension before fitting the Gaussian model. The proposed method appears

to be competitive with these classifiers in term of classification at the cost of an increase of

processing time. It is nevertheless important to note that the proposed method conducts

2http://fauvel.mathieu.free.fr/pages/muesli.html
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(a) (b)

(c) (d)

(e) (f)

Figure 1.11.: Real MUESLI image. (a) colored composition of the hyperspectral image, (b)
expert ground-truth, (c) estimated clustering, (d) training data, (e) estimated classification
with proposed model and (f) estimated classification with random forest.
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Figure 1.12.: Real MUESLI image. Classification accuracy measured with Cohen’s kappa
as a function of the percentage of label corruption α: proposed model (red), random forest
(blue), PCA + Gaussian model (green). Shaded areas denote the intervals corresponding
to the standard deviation computed over 10 trials.

additionally a spectral unmixing and estimates by-products of high interest for the user, for

example matrix Q.

Additionally, the robustness with respect to expert mislabeling of the ground-truth train-

ing dataset has been evaluated and compared to the performance obtained by a state-of-the-

art random forest (RF) classifier. Errors in the expert ground-truth have been randomly

generated with the same process as the one used for the previous experiment with synthetic

data (see Section 1.6.1). Confidence in the ground-truth has been set equal to ηp = 1−α for

all the pixels (p ∈ L) where α is the corruption rate, with a maximum of 95% of confidence.

Parameters of the RF classifier have been optimized using cross-validation on the training

set. Classification accuracy measured through Cohen’s kappa is presented in Figure 1.12

as a function of the corruption rate α of the training set. From these results, the pro-

posed method seems to perform favorably when compared to the RF classifier. It is worth

noting that RF is one of the prominent methods to classify remote sensing data and that

the robustness to noise in labeled data is a well-documented property of this classification

technique [Pel+17].
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1.7. Conclusion and perspectives

This chapter proposed a Bayesian model to perform jointly low-level modeling and robust

classification. This hierarchical model capitalized on two Markov random fields to promote

coherence between the various levels defining the model, namely, i) between the clustering

conducted on the latent variables of the low-level modeling and the estimated class labels,

and ii) between the estimated class labels and the expert partial label map provided for

supervised classification.

The proposed model was specifically designed to result into a classification step robust to

labeling errors that could be present in the expert ground-truth. Simultaneously, it offered

the opportunity to correct mislabeling errors.

A specific application of this model has been considered in the context of hyperspec-

tral images to conduct hyperspectral image unmixing and classification jointly. Numerical

experiments were conducted first on synthetic data and then on real data. These results

demonstrate the relevance and accuracy of the proposed method. The richness of the re-

sulting image interpretation was also underlined by the results. Future works include the

generalization of the proposed model to handle fully unsupervised low-level analysis tasks.

In the context of hyperspectral unmixing, it means including the estimating of the endmem-

ber matrix in the model. Instantiations of the proposed model in other applicative contexts

will be also considered.

1.8. Conclusion (in French)

Ce chapitre introduit un modèle bayésien permettant d’effectuer conjointement une modéli-

sation bas-niveau et une classification robuste d’une image. Ce modèle hiérarchique repose

sur la mise en place de deux champs de Markov aléatoires promouvant une cohérence entre

les différents niveaux de modélisation, à savoir, i) entre le clustering effectué sur les variables

latentes de la modélisation bas-niveau et les labels de classes estimés, et ii) entre les labels

de classes estimés et la donnée labellisée fournie par les experts utilisée dans la cadre de la

classification supervisée.

Le modèle proposé a été construit de sorte à obtenir une classification robuste aux er-

reurs de labellisation potentiellement présentes de les données d’apprentissage. De plus, la

méthode introduite va plus loin en proposant une correction de ces erreurs de labellisation.

Une instance particulière du modèle a été considérée dans le contexte de l’imagerie hyper-

spectral pour effectuer conjointement le démélange spectral et la classification d’une image.

Une évaluation quantitative et qualitative a ensuite été réalisée sur des images synthétiques
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puis réelles. Les résultats montrent la pertinence et les bonnes performances de la méthode

introduite. La possibilité d’une interprétation très riche des résultats a également été mise

en lumière. Une piste de travail envisagée pour la suite de ce travail est la généralisation

du modèle pour gérer un cas entièrement non-supervisé pour la modélisation bas-niveau.

Dans le contexte du démélange hyperspectral, cela équivaudrait à inclure l’estimation de

la matrice des endmembers dans le modèle. Des instanciations du modèle dans d’autres

contextes applicatifs seront également envisagées.
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Chapter 2.

Matrix cofactorization approach

for joint classification and spectral

unmixing

This chapter has been adapted from the journal paper [Lag+19c]. This work was carried out

in cooperation with Pr. José M. Bioucas-Dias, partly during a one month stay in Instituto

de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa. This work has

also been discussed in the conference papers [Lag+19b; Lag+19a].
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2.1. Introduction (in French)

Continuant à explorer les idées introduites dans le chapitre précédent, ce chapitre met en jeu

des concepts similaires mais sous une perspective différente. En effet, la modélisation bas-

niveau des données peut être vue comme un problème d’apprentissage de représentation. Ce

problème a été traité sous différentes perspectives et sous différentes dénominations telles

que l’apprentissage de dictionnaires [AEB06], la séparation de sources [ZP01], l’analyse

de facteurs [Cav+18a], la factorisation de matrices [KBV09] ou l’apprentissage de sous-

espaces [EV13]. Nombre de ces méthodes visent à identifier un dictionnaire et un mélange

en minimisant, à l’aide d’un méthode d’optimisation, une erreur de reconstruction mesurant

une divergence entre le modèle et les données. Un des avantages de recourir à une méthode

d’optimisation est le possibilité de s’appuyer sur des schémas d’optimisation rapides, bien

documentés et bien établis comme les méthodes de splitting de variables [Boy+11], les

méthodes proximales [BST14], etc. L’intérêt pratique de ces méthodes est généralement

préféré à une estimation plus précise mais coûteuse comme celle réalisée avec une méthode

MCMC.

De plus, comme expliqué dans l’introduction, l’idée de combiner l’apprentissage de re-

présentation et la classification a déjà été considérée dans ce contexte [MBP12]. Certains

travaux ont même introduit l’idée de réaliser ces tâches de manière simultanées [Zha+18b ;

ZL10 ; JLD11]. En particulier, l’apprentissage de représentation et la classification conjoints

peuvent être exprimés comme un problème de cofactorisation. Les deux tâches s’écrivent

individuellement comme des problèmes de factorisation puis des contraintes entre les diction-

naires et les matrices de codage des deux problèmes sont imposées. Ces modèles de cofacto-

risation ont prouvé leur efficacité dans de nombreux champs d’application, tels que la fouille

de texte [WB11], la séparation de sources audio [Yoo+10], ou l’analyse d’images [YYI12 ;

AM18].

Cependant, le plupart de ces méthodes se focalisent sur les résultats de la classification

et opposent les capacités de reconstruction et de discrimination des modèles au lieu de

construire une structure cohérente qui permettrait de concilier ces deux capacités. Capitali-

sant sur le modèle bayésien développé dans le chapitre 1, ce chapitre propose une méthode

de cofactorisation pour l’analyse d’images. L’apprentissage de représentation et la classifica-

tion sont liés par les matrices de codage des deux problèmes de factorisation. Un clustering

des représentations de faible dimension est réalisé et les vecteurs d’attribution aux clusters

sont utilisés comme vecteurs de codage du problème de classification, c’est-à-dire comme

de descripteurs. Cette méthode de couplage novatrice engendre un modèle hiérarchique co-

50



Chapter 2. Matrix cofactorization approach for joint classification and spectral unmixing

hérent et entièrement interprétable. Pour résoudre le problème d’optimisation non-convexe

et non-lisse résultant, un algorithme de minimisation linéarisée alternée proximale est mis

en place de sorte à fournir la garantie de convergence vers un point critique de la fonction

objectif [BST14].

Ce chapitre s’organise de la façon suivante. La Section 2.3 pose les deux modèles de

factorisation utilisés pour effectuer respectivement l’apprentissage de représentation et la

classification puis expose le problème de cofactorisation. Le schéma d’optimisation utilisé

pour trouver une solution au problème non-convexe résultant est également détaillé. Reve-

nant ensuite au cas d’étude de ce manuscrit, une application au cas de l’analyse d’images

hyperspectrales est considérée dans la Section 2.4 en considérant la classification et le dé-

mélange spectrale conjoints. Les performances sont illustrées à l’aide d’expérimentations

sur données synthétiques puis réelles dans le Section 2.5. Enfin, la Section 2.6 conclut se

chapitre et présente quelques perspectives de recherche.

2.2. Introduction

Following the work presented in the previous chapter, this chapter introduces similar con-

cepts but proposes a different perspective. Indeed, representation learning has been consid-

ered from different perspectives, in particular known as dictionary learning [AEB06], source

separation [ZP01], factor analysis [Cav+18a], matrix factorization [KBV09] or subspace

learning [EV13]. Many of these methods attempt to identify a dictionary and a mixture

by minimizing a reconstruction error measuring the discrepancy between the chosen model

and the dataset with the help of an optimization method. One of the advantage to rely

on an optimization approach is the possibility to rely on fast, well-established and well-

documented optimization schemes such as variable splitting methods [Boy+11], proximal

methods [BST14], etc. The practical interest of these methods is generally preferred to the

exhaustive estimation produced by Bayesian model with MCMC estimation.

Moreover, as explained in the introduction section, the idea of combining the representa-

tion learning and classification tasks has already been considered in this context [MBP12].

Some works introduce the idea of performing the two tasks simultaneously [Zha+18b; ZL10;

JLD11]. In particular, joint representation learning and classification can be cast as a co-

factorization problem. Both tasks are interpreted as individual factorization problems and

constraints between the dictionaries and coding matrices associated with the two problems

can then be imposed. These cofactorization-based models have proven to be highly efficient

in many application fields, e.g. for text mining [WB11], music source separation [Yoo+10],
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and image analysis [YYI12; AM18].

However, most of the available methods tends to focus on classification results and oppose

reconstruction and discriminative ability of the models instead of building a coherent hier-

archical structure allowing to conciliate both abilities. Capitalizing on the Bayesian setting

proposed in Chapter 1, this chapter proposes a particular cofactorization method, with a

dedicated application to multivariate image analysis. The representation learning and clas-

sification tasks are related through the coding matrices of the two factorization problems. A

clustering is performed on the low-dimensional representations and the clustering attribu-

tion vectors are used as coding vectors for the classification. This novel coupling approach

produces a coherent and fully-interpretable hierarchical model. To solve the resulting non-

convex non-smooth optimization problem, a proximal alternating linearized minimization

(PALM) algorithm is derived, yielding guarantees of convergence to a critical point of the

objective function [BST14].

This chapter is organized as follows. Section 2.3 defines the two factorization problems

used to perform representation learning and classification and further discusses the joint

cofactorization problem. It also details the optimization scheme developed to solve the

resulting non-convex minimization problem. Focusing on the use case in this manuscript, an

application of the introduced generic framework to hyperspectral image analysis is conducted

in Section 2.4 through the dual scope of spectral unmixing and classification. Performance

of the proposed framework is illustrated thanks to experiments conducted on synthetic and

real data in Section 2.5. Finally, Section 2.6 concludes the chapter and presents some

research perspectives to this work.

2.3. Proposed generic framework

The representation learning and classification tasks are generically defined as factorization

matrix problems in Sections 2.3.1 and 2.3.2. To derive a unified cofactorization formulation,

a third step consists in drawing the link between these two independent problems. In this

work, this coupling is ensured by imposing a consistent structure between the two coding

matrices corresponding to the low-dimensional representation and the feature matrices,

respectively. As detailed in Section 2.3.3, it is expressed as a clustering task where the

parameters describing the attribution to the clusters are the feature vectors, i.e., the coding

matrix resulting from the classification task. Particular instances of these three tasks will

be detailed in Section 2.4 for an application to multiband image analysis.
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2.3.1. Representation learning

The fundamental assumption in representation learning is that the P d-dimensional samples,

gathered in matrix Y ∈ Rd×P , belong to a R-dimensional subspace such that R ≪ d. The

aim is then to recover this manifold, where samples can be expressed as combinations of

elementary vectors, herein the column of the matrix M ∈ Rd×R sometimes referred to as

dictionary. These samples can be subsequently represented thanks to the so-called coding

matrix A ∈ RR×P . Formally, identifying the dictionary and the coding matrices can be

generally expressed as a minimization problem

min
M,A

Jr(Y|ψ(M,A)) + λmRm(M) + ıM(M) + λaRa(A) + ıA(A) (2.1)

where ψ(·) is a mixture function (e.g., linear or bilinear operator), Jr(·) is an appropriate

cost function, for example derived from a β-divergence [CJ11], R·(·) denote penalizations

weighted by the parameter λ· and ı·(·) is the indicator functions defined here on the respec-

tive sets M ⊂ Rd×R and A ⊂ RR×P imposing some constraints on the dictionary and coding

matrices.

In the case of a linear embedding adopted in this work, the mixture function writes

ψ(M,A) = MA. (2.2)

In this context, the problem (2.1) can be cast as a factor analysis driven by the cost function

Jr(·). Depending on the applicative field, typical data-fitting measures include the Itakura-

Saito, the Euclidean and the Kullback-Leibler divergences [CJ11]. Assuming a low-rank

model (i.e., R ≤ d), specific choices for the sets A and M lead to various standard factor

models. For instance, when M is chosen as the Stiefel manifold, the solution of (2.1) is given

by a principal component analysis (PCA) [Jol86]. When M and A impose nonnegativity

of the dictionary and coding matrix elements, the problem is known as nonnegative matrix

factorization [LS99; PT94].

Within a supervised context, the dictionary M can be chosen thanks to a end-user exper-

tise or estimated beforehand. Without loss of generality but for the sake of conciseness, the

framework described in this chapter assumes that this dictionary is known, possibly over-

complete as proposed in the experimental illustration described in Section 2.5. In this case,

as in many applications, it makes sense to look for a sparse representation of the signal of

interest to retrieve its most achievable compact representation [MBP12; BEZ08]. Following

this strategy, we propose to consider an ℓ1-norm sparsity penalization on the coding vectors,
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leading to representation learning task defined by

min
A

Jr(Y|MA) + λa ‖A‖1 + ıA(A) (2.3)

where ‖A‖1 =
∑P
p=1 ‖ap‖1 with ap denoting the pth column of A.

2.3.2. Supervised classification

To clearly define the classification task, let first introduce some key notations. The index

subset of samples with an available groundtruth is denoted as L while the index subset of

unlabeled samples is U such that L∩U = ∅ and L∪U = P with P , {1, . . . , P}. Classifying

the unlabeled samples consists in assigning each of them to one of the C classes. This can be

reformulated as the estimation of a C×P matrix C whose columns correspond to unknown

C-dimensional attribution vectors cp = [c1,p, . . . , cC,p]
T . Each vector is made of 0 except for

ci,p = 1 when the pth sample is assigned the ith class.

Numerous classification rules have been proposed in the literature [HTF09]. Most of them

rely on a K ×P matrix Z = [z1, . . . , zP ] of features zp (p ∈ P) associated with each sample

and derived from the raw data. Within a supervised framework, the attribution matrix CL

and feature matrix ZL of the labeled data are exploited during the learning step, where ·L
denotes the corresponding submatrix whose columns are indexed by L. For a wide range of

classifiers, deriving a classification rule can be achieved by solving the optimization problem

min
Q

Jc(CL|φ(Q,ZL)) + λqRq(Q) + ıQ(Q) (2.4)

where Q ∈ RC×K is the set of classifier parameters to be inferred, Rq(·) and ıQ(·) refer re-

spectively to regularizations and constraints imposed on Q and Jc is a cost function measur-

ing the quality of the classification such as the quadratic loss [ZL10] or cross-entropy [KB05].

Moreover, in (2.4), φ(Q, ·) defines a element-wise nonlinear mapping between the features

and the class attribution vectors parametrized by Q, e.g., derived from a sigmoid or a

softmax operators. In this work, the classifier is assumed to be linear, which leads to a

vector-wise post-nonlinear mapping

φ(Q,ZL) = φ(QZL) (2.5)

with

φ(X) = [φ(x1), . . . , φ(xp)] . (2.6)
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Once the classifier parameters have been estimated by solving (2.4), the unknown at-

tribution vectors CU can be subsequently inferred during the testing step by applying the

nonlinear transformation to the corresponding predicted features ẐU associated with the un-

labeled samples. The obtained outputs are relaxed attribution vectors ĉp = φ(Qẑp) (p ∈ U)

and the most probable predicted sample class can be computed as argmaxi ci,p.

Under the proposed formulation of the classification task, the learning and testing steps

can be conducted simultaneously, a framework usually referred to as semi-supervised, with

the beneficial opportunity to introduce additional regularizations and/or constraints on the

submatrix of unknown attribution vectors CU . The initial problem (2.4) is thus extended

to the following one

min
Q,CU

Jc(C|φ(QZ)) + λqRq(Q) + λcRc(C) + ıQ(Q) + ıC(CU ) (2.7)

where C = [CL CU ] and C ⊂ RC×|U| denotes a feasible set for the attribution matrix CU .

In particular, nonnegativity and sum-to-one constraints can be introduced such that each

attribution vector cp (p ∈ U) can then be interpreted as a probability vector of belonging

to each class. In such a case, the feasible set is chosen as C = S
|U|
C where

SC ,

{

u ∈ RC
∣

∣∀k, uk ≥ 0 and
C
∑

k=1

uk = 1

}

. (2.8)

2.3.3. Coupling representation learning and classification

Up to this point, the representation learning and supervised classification tasks have been

formulated as two independent matrix factorization problems given by (2.2) and (2.5),

respectively. This work proposes to join them by drawing an implicit relation between two

factors involved in these two problems. Inspired by hierarchical Bayesian models such as

the one proposed in [Lag+18], both problems are coupled through the activation matrices

A and Z, as illustrated in Figure 2.1. More precisely, the coding vectors in A are clustered

such that the feature vectors in Z are defined as the attribution vectors to the K clusters.

Ideally, clustering attribution vectors zp are filled with zeros except for zk,p = 1 when ap
is associated with the kth cluster. Thus, the vectors zp (p ∈ P) are assumed to be defined

on the K-dimensional probability simplex SK similarly defined as (2.8) and ensuring non-

negativity and sum-to-one constraints. Many clustering algorithms can be expressed as

optimization problem such as the well-known k-means algorithm and many of its variants

[Con17; Pom+14]. Adopting this formulation, and denoting θ the set of parameters of the
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Figure 2.1.: Structure of the cofactorization model. Variables in blue stand for observations
or available external data. Variables in olive green are linked through the clustering task
here formulated as an optimization problem. The variable in a dotted box is assumed to be
known or estimated beforehand in this work.

clustering algorithm, the clustering task can be defined as the minimization problem

min
Z,θ

Jg(A,Z;θ) + λzRz(Z) + λθRθ(θ) + ıSP
K

(Z) + ıΘ(θ) (2.9)

where Θ defines a feasible set for the parameters θ.

It is worth noting that introducing this coupling term is one of the major novelty of the

proposed approach. When considering task-driven dictionary learning methods, it is usual

to intertwine the representation learning and the classification tasks by directly imposing

A = Z [ZL10; SNT15]. Since these methods generally rely on a linear classifier, one ma-

jor drawback of such approaches is their unability to deal with non-separable classes in

the low-dimensional representation space. In such cases, the underlying model cannot be

discriminative and descriptive simultaneously and the resulting tasks become adversarial.

When considering the proposed coupling term, the cluster attribution vectors zp offer the

possibility of linearly separating any group of clusters from the others. As a consequence,

the model benefits from more flexibility, with both discriminative and descriptive abilities

in a more general sense.
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2.3.4. Global cofactorization problem

Unifying the representation learning task (2.3) and the classification task (2.7) through the

clustering task (2.9) leads to the following joint cofactorization problem

min
A,Q,CU ,

Z,θ

λ0Jr(Y|MA) + λa ‖A‖1

+ λ1Jc(C|φ(QZ)) + λqRq(Q) + λcRc(C)

+ λ2Jg(A,Z;θ) + λzRz(Z) + λθRθ(θ)

+ ıA(A) + ıQ(Q) + ı
S

|U|
K

(CU ) + ıSP
K

(Z) + ıΘ(θ) (2.10)

where λ0, λ1 and λ2 control the respective contribution of each task data-fitting term. All

notations and parameter dimensions are summarized in Table 2.1. A generic algorithmic

scheme solving the problem (2.10) is proposed in the next section.

Table 2.1.: Overview of notations.
parameter

P∈ R number of observations
d∈ R dimension of observations
C∈ R number of classes
K∈ R number of features/clusters
P= {1, . . . , P} index set of observations
L⊂ P index set of labeled samples

Li⊂ L index set of labeled samples in the ith class
U= P\L index set of unlabeled samples
Y∈ Rd×P observations
M∈ Rd×R dictionary
A∈ RR×P coding matrix
Q∈ CC×P classifier parameters

CL∈ RC×|L| attribution matrix of labeled data
CU∈ RC×|U| attribution matrix of unlabeled data

C= [CL CU ] class attribution matrix
Z∈ RK×P cluster attribution matrix
θ∈ Θ clustering parameters

2.3.5. Optimization scheme

The minimization problem defined by (2.10) is multi-convex, i.e., convex according to each

variable independently, but not globally convex. To reach a local minimizer, we propose
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to resort to the proximal alternating linearized minimization (PALM) algorithm introduced

in [BST14]. This algorithm is guaranteed to converge to a critical point of the objective

function even in the case of non-convex problem. This means that, if the initialization is

good enough, it is expected to likely converge to a solution close to the global optimum. To

implement PALM, the problem (2.10) is rewritten in the form of an unconstrained problem

expressed as a sum of a smooth coupling term g(·) and separable non-smooth terms fj(·)
(j ∈ {0, . . . , 4}) as follows

min
A,θ,Z,
Q,CU

f0(A) + f1(θ) + f2(Z) + f3(CU ) + f4(Q) + g(A,θ,Z,CU ,Q) (2.11)

where

f0(A) = ıA(A) + λa ‖A‖1

f1(θ) = ıΘ(θ)

f2(Z) = ıSP
K

(Z)

f3(CU ) = ı
S

|U|
K

(CU )

f4(Q) = ıQ(Q)

and the coupling function is

g(A,θ,Z,CU ,Q) = λ0Jr(Y|MA)

+ λ1Jc(C|φ(QZ)) + λqRq(Q) + λcRc(C)

+ λ2Jg(M,Z;θ) + λzRz(Z) + λθRθ(θ). (2.12)

To ensure the stated guarantees of PALM, each of the independent non-smooth term

has to be a proper, lower semi-continuous function fj : Rnj → (−∞,+∞], which ensures

in particular that the associated proximal operator is well-defined. Additionally, sufficient

conditions on the coupling function are that g(·) is a C2 function (i.e., with continuous first

and second derivatives) and that its partial gradients are globally Lipschitz. For example,

partial gradient ∇Ag(A,θ,Z,CU ,Q) should be globally Lipschitz for any fixed θ, Z, CU ,

Q, that is

‖∇Ag(A1,θ,Z,CU ,Q) − ∇Ag(A2,θ,Z,CU ,Q)‖ ≤
LA(θ,Z,CU ,Q) ‖A1 − A2‖ , ∀A1,A2 ∈ RR×P (2.13)

where LA(θ,Z,CU ,Q), simply denoted LA hereafter, is the Lipschitz constant. For the

sake of conciseness, we refer to [BST14] to get further details.

The main idea of the algorithm is then to update each variable of the problem alternatively

using a proximal gradient descent. The overall scheme is summarized in Algorithm 2. For a
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practical implementation, one needs to compute the partial gradients of g(·) explicitly and

their Lipschitz constants to perform a gradient descent step, followed by a proximal mapping

associated with the non-smooth terms fj(·). The objective function is then monitored at

each iteration and the algorithm is stopped when convergence is reached. Note that, when

a specific penalization R·(·) is non-smooth or non-gradient-Lipschitz, it is possible to move

it into the corresponding independent term fj(·) to ensure the required property of the

coupling function g(·). This is for instance the case for the sparse penalization used over A

which has been moved into f0(·). Nonetheless, as mentioned above, the proximal operator

associated with each fj(·) is needed. Thus, even when the function consists of several terms,

a closed-form expression of this operator should be known. Alternatively, one should be able

to compose the proximal operators associated with each term of fj(·) [Yu13].

Algorithm 2: PALM
Initialize variables A0, θ0, Z0, CU

0 and Q0;
Set α > 1;
while stopping criterion not reached do

Ak+1
∈ proxαLA

f0
(Ak

−
1

αLA
∇Ag(Ak, θk, Zk, Ck

U , Qk));

θk+1
∈ prox

αLθ

f1
(θk

−
1

αLθ
∇θg(Ak+1, θk, Zk, Ck

U , Qk));

Zk+1
∈ proxαLZ

f2
(Zk

−
1

αLZ
∇Zg(Ak+1, θk+1, Zk, Ck

U , Qk));

Qk+1
∈ prox

αLQ

f3
(Qk

−
1

αLQ
∇Qg(Ak+1, θk+1, Zk+1, CU

k, Qk));

Ck+1
U ∈ prox

αLCU

f4
(Ck

U −
1

αLCU

∇CU
g(Ak+1, θk+1, Zk+1, Ck

U , Qk+1));

end

return Aend, θend, Zend, Qend, Cend

U

2.4. Application to hyperspectral images analysis

A general framework has been introduced in the previous section. To illustrate, a particular

instance of this generic framework is now considered, where explicit representation learn-

ing, classification and clustering are introduced. The specific case of hyperspectral images

analysis is considered for this use case example.

Contrary to conventional color imaging which only captures the reflectance measure for

three wavelengths (red, blue, green), hyperspectral imaging makes it possible to measure

reflectance of the observed scene for several hundreds of wavelengths from visible to invisible

domain. Each pixel of the image can thus be represented as a vector of reflectance, called

spectrum, which characterizes the observed material.

One drawback of hyperspectral images is usually a weaker spatial resolution due to sensor

limitations. The direct consequence of this poor spatial resolution is the presence of mixed
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pixels, i.e., pixels corresponding to areas containing several materials. Observed spectra are

in this case the result of a specific mixture of the elementary spectra, called endmembers,

associated with individual materials present in the pixel. The problem of retrieving the

proportions of each material in each pixel is referred to as spectral unmixing [Bio+12]. This

problem can be seen as a specific case of representation learning where the dictionary is

composed of the set of endmembers standing for the endmember spectra and the coding

matrix is the so-called abundance matrix containing the proportion of each material in each

pixel.

Spectral unmixing is introduced as a representation learning task in Section 2.4.1. The

specific classifier used for this application is then explained in Section 2.4.2 and finally

Section 2.4.3 presents the clustering adopted to relate the abundance matrix and the clas-

sification feature matrix.

2.4.1. Spectral unmixing

As explained, each pixel of an hyperspectral image is characterized by a reflectance spectrum

that physics theory approximates as a combination of endmembers, each corresponding

to a specific material, as illustrated in Figure 2.2. Formally, in this applicative scenario,

the d-dimensional sample yp denotes the L-dimensional spectrum of the pth pixel of the

hyperspectral image (p ∈ P). Each observation vectors yp can be expressed as a function of

the endmember matrix M (containing the R elementary spectra) and the abundance vector

ap ∈ RR with R ≪ d.

In the case of the most commonly adopted linear mixture model, each observation yp is

assumed to be a linear combination of the endmember spectra mr (r = 1, . . . , R) corrupted

by some noise, underlying the linear embedding (2.2). Assuming a quadratic data-fitting

term, the cost function associated with the representation learning task in (2.1) is written

Jr(Y|MA) =
1
2

‖Y − MA‖2
F . (2.14)

The abundance vector ap is usually interpreted as a vector of proportions describing

the proportion of each elementary component in the pixel. Thus, to derive an additive

composition of the observed pixels, a nonnegative constraint is considered for each element

of the abundance matrix A, i.e., A = RR×P
+ . In this work, no sum-to-one constraint is

considered since it has been argued that leaving this constraint offers a better adaptation

to possible changes of illumination in the scene [Dru+16]. Additionally, as the endmember

matrix M is the collection of reflectance spectra of the endmembers, it is also expected to
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Figure 2.2.: Spectral unmixing concept (source US Navy NEMO).

be non-negative. When this dictionary needs to be estimated, the resulting problem is a

sparse non-negative matrix factorization (NMF) task. When the dictionary is known or

estimated beforehand, the resulting optimization problem is the nonnegative sparse coding

problem

min
A

1
2

‖Y − MA‖2
F + λa ‖A‖1 + ı

R
R×P
+

(A) (2.15)

where the sparsity penalization actually supports the assumption that only a few materials

are present in a given pixel.

2.4.2. Classification

In the considered application, two loss functions associated with the classification problem

have been investigated, namely quadratic loss and cross-entropy loss. One advantage of

these two loss functions is that they can be used in a multi-class classification (i.e., with

more than two classes). Moreover, this choice may fulfill the required conditions stated in

Section 2.3.5 to apply PALM since, coupled with an appropriate φ(·) function, both loss

costs are smooth and gradient-Lipschitz according to each estimated variables.
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Quadratic loss

The quadratic loss is the most simple way to perform a classification task and have been

extensively used [JLD11; ZBS01; Yan+11]. It is defined as

Jc(C|Ĉ) =
1
2

∥

∥

∥CD − ĈD
∥

∥

∥

2

F
(2.16)

where Ĉ denotes the estimated attribution matrix. In (2.16), the P × P matrix D is

introduced to weight the contribution of the labeled data with respect to the unlabeled one

and to deal with the case of unbalanced classes in the training set. Weights are chosen to be

inversely proportional to class frequencies in the input data. The weight matrix is defined

as the diagonal matrix D = diag[d1, . . . , dP ] with

dp =







√

1
|Li|

, if p ∈ Li;
√

1
|U| , if p ∈ U ;

(2.17)

where Li denotes the set of indexes of labeled pixels of the ith class (i = 1, . . . , C). Thus,

considering a linear classifier, the generic classification problem in (2.7) can be specified for

the quadratic loss

min
Q,CU

1
2

‖CD − QZD‖2
F + λcRc(C) + ı

S
|U|
C

(CU ) (2.18)

where no additional constraints nor penalization is applied to the classifier parameters Q.

Besides, when samples obey a spatially coherent structure, as it is the case when analyzing

hyperspectral images, it is often desirable to transfer this structure to the classification map.

Such a characteristics can be achieved by considering a spatial regularization Rc(C) applied

to the attributions vectors. Following this assumption, this work considers a regularized

counterpart of the weighted vectorial total variation (vTV), promoting a spatially piecewise

constant behavior of the classification map [Liu+18]

‖C‖vTV =
∑

m,n

βm,n

√

∥

∥

∥[∇hC]m,n
∥

∥

∥

2

2
+
∥

∥

∥[∇vC]m,n
∥

∥

∥

2

2
+ ǫ (2.19)

where (m,n) are the spatial position pixel indexes and [∇h(·)]m,n and [∇v(·)]m,n stand for

horizontal and vertical discrete gradient operators evaluated at a given pixel1, respectively,

1With a slight abuse of notations, c(m,n) refers to the pth column of C where the pth pixel is spatially
indexed by (m, n).
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i.e.,

[∇hC]m,n = c(m+1,n) − c(m,n)

[∇vC]m,n = c(m,n+1) − c(m,n).

The weights βm,n can be computed beforehand to adjust the penalizations with respect to

expected spatial variations of the scene. They can be estimated directly from the image to be

analyzed or extracted from a complementary dataset as in [UFD18]. They will be specified

during the experiments reported in Section 2.5. Moreover, the smoothing parameter ǫ > 0

ensures the gradient-Lipschitz property of the coupling term g(·), as required in Section

2.3.5.

Cross-entropy loss

The quadratic loss has the advantage to be expressed simply and the associated Lips-

chitz constant of the partial gradients are trivially obtained. However, this loss function is

known to be highly influenced by outliers which can result in a degraded predictive accu-

racy [Hub64]. A more sophisticated way to conduct the classification task is to consider a

cross-entropy loss

Jc(C|Ĉ) = −
∑

p∈P

d2
p

∑

i∈C

ci,p log (ĉi,p) (2.20)

combined with a logistic regression, i.e., where the nonlinear mapping (2.5) is element-wise

defined as

[φ (X)]i,j =
1

1 + exp(−xi,j)
(2.21)

with i ∈ {1, . . . , C} and p ∈ P. This classifier can actually be interpreted as a one-layer

neural network with a sigmoid non-linearity. Cross-entropy loss is indeed a very conventional

loss function in the neural network/deep learning community [Goo+16]. In the present case,

the corresponding optimization problem can be written

min
Q,CU

−
∑

p∈P

d2
p

∑

i∈C

ci,p log

(

1
1 + exp(−qi:zp)

)

+ λqRq(Q) + λc ‖C‖vTV + ı
S

|U|
C

(CU ) (2.22)

where qi: ∈ R1×K denotes the ith line of the matrix Q. The penalization Rq(Q) is here

chosen as Rq(Q) = 1
2 ‖Q‖2

F to prevent the loss function to artificially decrease when ‖qi:‖2 is

increasing. This regularization has been extensively studied in the neural network literature

where it is referred to as weight decay [Goo+16]. In (2.22), the regularization Rc(CU )
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applied to the attribution matrix is chosen again as a vTV-like penalization (see (2.19)).

2.4.3. Clustering

For the considered application, the conventional k-means algorithm has been chosen because

of its straightforward formulation as an optimization problem. By denoting θ = {B} a R×K
matrix collecting K centroids, the clustering task (2.9) can be rewritten as the following

NMF problem [Pom+14]

min
Z,B

1
2

‖A − BZ‖2
F + λzRz(Z) + ıSP

K
(Z) + ı

R
R×K
+

(B) (2.23)

where Rz(Z) should promote Z to be composed of orthogonal lines. Combined with the

nonnegativity and sum-to-one constraints, it would ensure that zp is a vector of zeros except

for its kth component equal to 1, i.e., meaning that the pth pixel belongs to the kth clus-

ter. However, handling this orthogonality property within the PALM optimization scheme

detailed in Section 2.3.5 is not straightforward, in particular because the proximal operator

associated to this penalization cannot be explicitly computed. In this work, we propose to

remove this orthogonality constraint since relaxed attribution vectors may be richer feature

vectors for the classification task.

2.4.4. Multi-objective problem

Based on the quadratic and cross-entropy loss functions considered in the classification task,

two distinct global optimization problems are obtained. When considering the quadratic

loss of Section 2.4.2, the multi-objective problem (2.10) writes

min
A,Q,Z
CU ,B

λ0

2
‖Y − MA‖2

F + λa ‖A‖1 + ı
R

R×P
+

(A)

+
λ1

2
‖CD − QZD‖2

F + λc ‖C‖vTV + ı
S

|U|
C

(CU )

+
λ2

2
‖A − BZ‖2

F + ıSP
K

(Z) + ı
R

R×K
+

(B). (2.24)
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Instead, when considering the cross-entropy loss function proposed in Section 2.4.2, the

optimization problem (2.10) is defined as

min
A,Q,Z
CU ,B

λ0

2
‖Y − MA‖2

F + λa ‖A‖1 + ı
R

R×P
+

(A)

− λ1

2

∑

p∈P

d2
p

∑

i∈C

ci,p log

(

1
1 + exp(−qi:zp)

)

+
λq

2
‖Q‖2

F + λc ‖C‖vTV + ı
S

|U|
C

(CU )

+
λ2

2
‖A − BZ‖2

F + ıSP
K

(Z) + ı
R

R×K
+

(B). (2.25)

Both problems are particular instances of nonnegative matrix co-factorization [YYI12;

Yoo+10]. To summarize, the hyperspectral pixel is first described as a combination of

elementary spectra through the learning representation step, aka spectral unmixing. Then,

assuming that there exist groups of pixels resulting from the same mixture of materials,

a clustering is performed among the abundance vectors. And finally, attribution vectors

to the clusters are used as feature vectors for the classification supporting the idea that

classes are made of a mixture of clusters. For both multi-objective problems (2.24) and

(2.25), all conditions required to the use of PALM algorithm described in Section 2.3.5 are

met. Details regarding the two optimization schemes dedicated to these two problems are

reported in the Appendix.

2.4.5. Complexity analysis

Regarding the computational complexity of the proposed Algorithm 2, deriving the gradients

shows that it is dominated by matrix product operations. It yields that the algorithm has

an overall computational cost in O(NK2P ) where N is the number of iterations.

2.5. Experiments

2.5.1. Implementation details

Before presenting the experimental results, it is worth clarifying the choices which have been

made regarding the practical implementation of the proposed algorithms for the considered

application. Important aspects are discussed below.
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Convergence diagnosis and stopping rule – In all experiments conducted hereafter,

the value of the objective function is monitored at each iteration to determine if convergence

has been reached. The normalized difference between the last two consecutive values of the

objective function is compared to a threshold and the algorithm stops when the criterion is

smaller than this threshold (set as 10−4 for the conducted experiments). Figure 2.3 shows

one example of the behavior of the objective function along the iterations as well as the

behavior of several terms composing this overall objective function. As it can be observed

from the figure, the global objective function is decreasing over the iteration, which is the-

oretically ensured by the PALM algorithm.
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Figure 2.3.: Convergence of the various terms of objective function (representation learning,
clustering, classification, vTV, total).

Initialization – As PALM algorithm only ensures convergence to a critical point and not a

global optimum, it remains sensitive to initialization, which needs to be carefully chosen to

reach relevant solutions. The initialization of the parameters associated with the learning

representation and clustering steps relies on the self-dictionary learning method proposed in

[GL18]. This method proposes to use observed pixels of the image as dictionary elements.

The underlying assumption is that the image contains pure pixels, i.e., composed of only a
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single material. Formally, the initial estimate A0 of A is chosen as

A0 = argmin
A

1
2

∥

∥

∥Y − ỸA
∥

∥

∥

2

F
+ α ‖A‖1,2 (2.26)

where ‖A‖1,2 =
∑R
r=1 ‖ar,:‖2 promotes the use of a reduced number of pixels as dictionary

elements and Ỹ is a submatrix of Y containing the pixel candidates to be used as dictionary

elements. Following the strategy similarly proposed in [GL18], this subset Ỹ is built as

follows: i) for each class of the training set, a k-means is applied to the labeled samples

to identify J clusters, ii) within a given class, one candidate is retained from each cluster

as the pixel the farthest away from the centers of the other clusters (in term of spectral

angle distance). This procedure provides a subset Ỹ composed of J × C spectrally diverse

candidates extracted from the labeled samples.

Then, regarding the representation learning step, only active elements in Ỹ, i.e., those

associated with non-zero rows in A0, are kept to define the dictionary M. Finally, to ini-

tialize the variables involved in the clustering step, a k-means is conducted on A0 and the

identified centroids are chosen as B0 while the corresponding attribution vectors define Z0.

Finally, the classification parameters Q0 and attribution vectors C0
U are randomly initial-

ized.

Weighting the vTV – As explained in Section 2.3.2, the classification is regularized by a

weighted smooth vTV regularization. When all not fixed to the same value, the weights offer

the possibility to account for natural boundaries in the observed scene, i.e., variations in the

classification map are expected to be localized at the edges in the image. As in [UFD18],

an auxiliary dataset informing about the spatial structure of the image can be used to

adjust these weights. Instead, in this work, we assume that no such external information is

available. Thus these weights are directly computed from the hyperspectral image. More

precisely, a virtually observed panchromatic image yPAN ∈ RP , i.e., a single band image, is

first synthetized by averaging the bands of the hyperspectral image Y. Then, the weights

are chosen as

βm,n =
β̃m,n

∑

p,q β̃p,q
with β̃m,n =

1
∥

∥

∥[∇yPAN]m,n
∥

∥

∥

2
+ σ

(2.27)

where ∇(·) = [∇h(·) ∇v(·)]T is the gradient operator and σ is an hyperparameter chosen as

σ = 0.01 to avoid numerical problems and to control the adaptive weighting (the larger σ,

the less variation in the weighting) [SBC97].

67



Chapter 2. Matrix cofactorization approach for joint classification and spectral unmixing

Hyperparameter scaling – To balance the size and the dynamics of the matrices involved

in the cofactorization problem, the hyperparameters λ0 and λq in (2.24) and (2.25) have

been set as

λ0 =
1

d ‖Y‖2
∞

λ̃0, λq =
P

C
λ̃q. (2.28)

Then, for each experiment presented hereafter, the parameters λ̃· have been empirically

adjusted to obtain consistent results.

(a) (b)

(c) (d)

Figure 2.4.: Synthetic image: (a) colored composition of the hyperspectral image Y, (b)
panchromatic image yPAN, (c) classification ground-truth, (d) training set.

2.5.2. Synthetic hyperspectral image

Data generation – First, to assess the relevance of the proposed model, experiments have

been conducted on synthetic images. These synthetic images have been generated using

a real hyperspectral image which has been unmixed using the well-established unmixing

method SUNSAL [BF10]. The extracted abundance maps and a set of 6 pure spectra

from the hyperspectral library ASTER have been used to build a synthetic hyperspectral

images with a realistic spatial organization. The resulting 100-by-250 pixel image presented

in Figure 2.4 is composed of d = 385 spectral bands. The image is associated with a

classification groundtruth (C = 4) based on the groundtruth of the original real image and

a subpart of this groundtruth is assumed known and therefore used as training dataset for

the supervised classification step.

Moreover, in this experiment, the endmember matrix M comprises the 6 spectra actually
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Table 2.2.: Synthetic data: unmixing and classification results.

Model F1-mean Kappa RMSE(Â) RE Time (s)

RF 0.913 (±1.4 × 10−3) 0.907 (±1.3 × 10−4) N\A N\A 0.9 (±0.08)

FC-SUNSAL 0.893 (±6.4 × 10−4) 0.912 (±3.7 × 10−4) 0.120 (±3.1 × 10−6) 0.37 (±5.1 × 10−5) 6 (±0.3)

CSR-SUNSAL 0.888 (±1.0 × 10−3) 0.911 (±5.0 × 10−4) 0.125 (±3.0 × 10−6) 0.36 (±4.2 × 10−5) 9 (±0.5)

D-KSVD 0.520 (±3.1 × 10−3) 0.653 (±3.4 × 10−2) N\A 0.23 (±4.1 × 10−2) 382 (±9)

LC-KSVD 0.879 (±3.7 × 10−4) 0.904 (±1.0 × 10−4) N\A 30.4 (±1.0 × 10−4) 96 (±1)

Cofact-Q 0.911 (±3.5 × 10−3) 0.893 (±3.5 × 10−3) 0.0528 (±1.1 × 10−4) 0.32 (±8.9 × 10−4) 80 (±6)

Cofact-CE 0.899 (±5.4 × 10−2) 0.880 (±6.2 × 10−2) 0.0524 (±1.3 × 10−4) 0.27 (±2.2 × 10−3) 61 (±4)

used to generate the image. To evaluate the robustness of the method in a challenging sce-

nario, these 6 initial endmember spectra are complemented with 9 endmembers not present

in the image but very correlated with the 6 actually used ones. The endmember matrix is

thus composed of R = 15 spectra depicted in Figure 2.5.
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Figure 2.5.: Spectra used as dictionary M to generate the synthetic image. The 6 color
spectra have been used to generate the semi-synthetic image (4 vegetation spectra and 2
soil spectra).

Compared methods – The proposed methods with quadratic (Q) and cross-entropy (CE)

classification losses, denoted respectively by Cofact-Q and Cofact-CE, have been compared

with state-of-the-art classification and unmixing methods. First, one considered competing

method is the random forest (RF) classifier, which has been extensively used for the hy-
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Figure 2.6.: Synthetic data: abundance maps of the 6 actual endmembers (from left to
right): (1st row) ground-truth, (2nd row) Cofact-Q, (3rd row) Cofact-CE, (4rd row) FC-
SUNSAL and (5th row) CSR-SUNSAL.
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perspectral image classification. Parameters of the random forest (depth, number of trees)

have been tuned using cross-validation with a grid-search strategy and the implementation

provided in the scikit-learn Python library has been used [Ped+11]. Then, two unmixing

methods proposed in [BF10] has been tested, namely the fully constrained least squares

(FC-SUNSAL) and the constrained sparse regression (CSR-SUNSAL). FC-SUNSAL basi-

cally relies on the same data fitting term (2.14) considered in the proposed cofactorization

method, under non-negativity and sum-to-one constraints applied to the abundance vectors.

Conversely, the CSR-SUNSAL problem removes the sum-to-one constraint and introduces

a ℓ1-norm penalization on the abundance vectors. It thus solves (2.15) where the associated

regularization parameter λa is tuned using a grid-search strategy. These two methods use an

augmented Lagrangian splitting algorithm to recover the abundance vectors. Additionally,

these abundance vectors are subsequently used as input features of a multinomial logistic

regression classifier. This classifier is linear and its combination with the SUNSAL-based

unmixing algorithms yields a sequential counterpart of the proposed Cofact-CE method.

Besides, the proposed method has been also compared with the discriminative K-SVD (D-

KSVD) method proposed in [ZL10]. The D-KSVD problem has strong similarities with the

proposed cofactorization problem. Indeed, it corresponds to a ℓ0-penalized representation

learning and a classification with a quadratic loss. It aims at learning a dictionary suitable

for the classification problem and performs a linear classification on the coding vectors. For

this reason, the dictionary M is only used as an initialization for D-KSVD, while it remains

fixed for the unmixing and proposed cofactorization methods. Similarly, the label consis-

tent K-SVD (LC-KSVD) is also considered [JLD11]. This model has been proposed as an

improvement of D-KSVD where an additional term ensures that the dictionary elements are

class-specific. Hyperparameters of D-KSVD and LC-KSVD have been manually adjusted

in order to get the best results. When implementing the PALM algorithm proposed in Sec-

tion 2.3.5, the normalized regularization parameters in (2.28) have been fixed as λ̃0 = 100,

λ1 = λ2 = 1, λa = λq = 0.1 and λ̃c = 10−3. Finally, the number of clusters has been set to

K = 10.

Figure-of-merits – Several metrics are computed to quantify the quality of the classifica-

tion and unmixing tasks (see Appendix A for details). For classification, two widely-used

metrics are used, namely Cohen’s kappa and the averaged F1-score over all classes [CG08].

For unmixing, reconstruction error (RE) and root global mean squared error (RMSE) are
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computed as follows

RE =
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where Atrue and Â are the actual and estimated abundance matrices.
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Figure 2.7.: Synthetic data, classification maps: (a) groundtruth, (b) RF, (c) Cofact-Q, (d)
Cofact-CE, (e) LC-KSVD, (f) D-KSVD.

Performance evaluation – Quantitative results obtained on the synthetic dataset are re-

ported in Table 2.2 and are visually depicted in Figures 2.7 and 2.6 for the classification and

abundance maps, respectively. Metrics and their standard deviation have been computed

over 20 trials. For each trial, a Gaussian white noise is added the observed image such that

the SNR = 30 db. From these results, the proposed method appears to be competitive

with the compared state-of-the-art methods. In term of classification results, even though
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the spatial regularization is very weak in this setting, the cofactorization methods are as

good as the RF classifier, which is very satisfying since this latter classifier is one of the

most prominent one to deal with HS images. However, classification results of FC-SUNSAL

and CSR-SUNSAL show that a classifier using abundance vectors can already perform well

on this toy example where classes are linearly separable. As for LC-KSVD, it slightly per-

forms worse regarding the F1-mean score whereas results of D-KSVD are clearly the worst.

In term of unmixing performance, FC-SUNSAL, CSR-SUNSAL, Cofact-Q and Cofact-CE

obtain very similar REs. Note however this metrics only evaluates the quality of the re-

constructed data. However, the RMSE is lower with the cofactorization methods and the

abundance estimations provided by FC-SUNSAL and CSR-SUNSAL significantly degrade.

Even if it is not possible to produce a quantitative evaluation of the representation learnt by

D-KSVD and LC-KSVD, REs tends to show that D-KSVD successfully estimated a repre-

sentation of the data (without being easily interpretable) whereas LC-KSVD seems to focus

mostly on the discriminative power of the representation at the price of an inaccurate rep-

resentation. Moreover, the results produced by LC-KSVD have been obtained by increasing

the dimension of the representation R to 40 while the results obtained by the other methods

have been obtained for R = 15 to get good classification performances. The rather poor

performance obtained by these two dictionary learning methods, when compared to the pro-

posed cofactorization model, can be explained by the lack of flexibility of the corresponding

models which try to recover a descriptive and discriminative representation simultaneously.

On the contrary, some flexibility is offered by the clustering step included in the proposed

method. Finally, comparison in term of processing times shows that D-KSVD, LC-KSVD

and the proposed cofactorization methods are significantly slower, which is expected since

these methods conducts representation learning and classification jointly. Nonetheless, the

cofactorization methods appears faster than D-KSVD and LC-KSVD. It should be also

noted that it is necessary to tune manually the number of iterations when using the two

latter methods. Conversely, standard convergence criterion can be implemented for the

proposed optimization-based methods.

2.5.3. Real hyperspectral image

Description of the dataset – The Aisa dataset was acquired by the AISA Eagle sensor

during a flight campaign over Heves, Hungary. It contains d = 252 bands ranging from 395

to 975nm. A set of C = 7 classes have been defined for a total of 358, 534 referenced pixels,

according to the class-wise repartition given in Table 2.3. To split the full dataset into two

test and train subsets, special care has been taken to ensure that training samples are picked
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(a)

(b)

Figure 2.8.: AISA dataset: (a) colored composition of the hyperspectral image Y, (b)
ground-truth [arable land: dark blue, forest: orange, grassland: red, fallowland: brown,
leguminosae: pink, reed: green, row crops: light blue].

out from distinct areas than test samples. The polygons of the reference map are split in

smaller polygons on a regular grid pattern and then 50% of the polygons are taken ran-

domly for training and the remaining 50% for testing (see [LFG17] for a similar procedure).

Figure 2.8 shows a colored composition of the image and the classification ground-truth.

Several reasons justify the choice of this particular dataset. First, it is very challenging

both in term of classification and unmixing mostly because the spectral signatures of the

classes are very similar, leading in particular to very correlated endmember spectra in M.

Secondly, the ground-truth associated to this image is composed of two levels of classifica-

tion. Thus, an additional ground-truth is available where the 7 considered classes have been

subdivided into 14 classes also detailed in Table 2.3. These subclasses could be compared
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Table 2.3.: AISA data: information about classes.

Class Nb. of samples Subclasses

Arable land 177,350
millet, rape, winter
barley, winter wheat, oat

Forest 9,274 forest
Grassland 25,399 meadow, pasture

Green fallowland 44,370
fallow treated last year,
fallow with shrubs

Leguminosae 17,628 leguminosae
Reed 4,776 reed
Row crops 79,737 maize, sunflowers

Table 2.4.: AISA data: unmixing and classification results.

Model F1-mean Kappa RE Time (s)

RF 0.711 (±1.4 × 10−2) 0.835 (±1.2 × 10−2) N\A 41 (±1)

FC-SUNSAL 0.339 (±2.7 × 10−2) 0.433 (±3.8 × 10−2) 0.298 (±1.9 × 10−3) 512 (±96)

CSR-SUNSAL 0.535 (±5.0 × 10−2) 0.618 (±8.0 × 10−2) 0.304 (±2.0 × 10−5) 529 (±61)

D-KSVD 0.224 (±2.1 × 10−2) 0.406 (±9.9 × 10−2) 0.303 (±7.6 × 10−6) 10475 (±129)

LC-KSVD 0.350 (±3.1 × 10−2) 0.594 (±3.0 × 10−2) 0.303 (±4.0 × 10−6) 3780 (±320)

Cofact-Q 0.503 (±4.7 × 10−2) 0.652 (±2.5 × 10−2) 0.310 (±1.6 × 10−4) 7303 (±139)

Cofact-CE 0.697 (±4.5 × 10−2) 0.759 (±3.5 × 10−2) 0.310 (±1.4 × 10−4) 4382 (±257)

to the clustering outputs obtained by the proposed cofactorization method, e.g., to verify

either the clusters are consistent with the underlying subclasses.

Compared methods – The proposed algorithm is compared to the same methods intro-

duced above. However, note that the D-KSVD method has experienced some difficulties

to scale with the size of this new dataset, which is significantly bigger. Thus to obtain

results in a decent amount of time, the algorithm has been interrupted prematurely; i.e.,

before convergence. For the proposed cofactorization method, regularization parameters

have been set to λ̃0 = λ̃1 = λ̃2 = λ̃c = 1. and λ̃a = λ̃q = 0.01 and the number of clusters

to K = 30. The initialization step described in Section 2.5.1 has been performed and the

resulting dictionary M is depicted in Figure 2.9 (R = 13). The same dictionary has been

used for the compared unmixing methods.

Performance evaluation – All quantitative results are presented in Table 2.4. Metrics
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Figure 2.9.: AISA data: spectra used as the dictionary M identified by the self-dictionary
method.

and their standard deviation have been computed over 5 trials. RMSE metrics have been

removed since no groundtruth is available to assess the quality of the estimated abundance

maps. RE is thus the only used figure-of-merit to assess the quality of the representation

learning. Note however, as previously explained, RE does not directly evaluate the correct-

ness of the abundance maps. In the present case, REs appear to be very similar for all

algorithms. Contrary to the previous dataset, this is also the case for LC-KSVD, which can

be explained by the fact that spectra are similar in the whole image and it is thus quite easy

to get a very low RE with any estimated dictionary. This is the reason why qualitative eval-

uation remains interesting. Figure 2.11 shows a subset of the estimated abundance maps.

It is difficult to draw any incontestable conclusion but it is clear that, despite similar REs,

significantly different result are obtained for each method. This behavior is strengthened

by the very high correlation between the endmembers in this dataset, which may lead to

probable mismatch between endmember spectra. Nevertheless the Cofact methods seems

to give slightly more consistent results. Indeed, edges in the abundance maps appear to

be more consistent with boundaries observed in the hyperspectral image. Additionally, for

the compared methods, some abundance maps seem to be influenced by the presence of

two flight lines in the image. This phenomenon clearly appears in the abundance maps

recovered by FC-SUNSAL (3rd row).

Concerning classification results, the results reported in Table 2.4 show that the classifica-
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(a) (b)

(c) (d)

(e) (f)

Figure 2.10.: AISA image, classification maps:(a) groundtruth, (b) RF, (c) Cofact-Q, (d)
Cofact-CE, (e) LC-KSVD, (f) D-KSVD.

tion maps recovered by the Cofact-CE is very closed to the one obtained by RF. Figure 2.10

shows in particular that the cofactorization methods encounter some trouble distinguishing

very similar classes, for example grassland (red) from fallowland (brown). Nevertheless, the

obtained classification appears to be consistent and it seems reasonable to expect a lesser

degradation of the classification results when considering less correlated spectral signatures.

This confusion explains the less convicing results of the proposed method with quadratic

loss. The results also show that the proposed method is beneficial to the classification since
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Figure 2.11.: AISA dataset, abundance maps of the 6 components: (1st column) Cofact-Q,
(2nd column) Cofact-CE, (3rd column) FC-SUNSAL and (4th column) CSR-SUNSAL.
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FC-SUNSAL, CSR-SUNSAL and Cofact-CE use the same classifier and the latter performs

clearly better. The comparison between the representation learning-based algorithms is

clear and the both Cofact methods perform better than LC-KSVD and D-KSVD.

In term of processing time, LC-KSVD, D-KSVD and the Cofact methods are clearly

more time consuming. Nevertheless, all those methods provide more outputs than the other

methods. The comparison between these methods seems to give an advantage for LC-KSVD.

However, it should be noted that it is very difficult to monitor the convergence of LC-KSVD

and D-KSVD since the value of the objective function over the iteration is not monotonic.

The proposed algorithms and their implementations thus give a practical advantage since

they do not need to be applied with different numbers of iterations to ensure good results.

One of very interesting feature of the Cofact method is the possibility of examining the

clusters obtained as a byproduct. Given the formulation (2.23), the centroids B estimated

by the Cofact method can be interpreted as average behaviors of abundance vectors. Cor-

responding virtual spectral signatures can be obtained by right-multiplying the dictionary

M by this estimated abundance-like matrix B. The first line in Figure 2.12 shows these

spectral centroids for each cluster. Accessing this kind of information is precious in term

of image interpretation since it offers the possibility of visualizing any class multi-modality.

To illustrate, the second line of Figure 2.12 shows the mean spectra associated with the

subclass groundtruth. Clearly, both lines exhibit strong similarities, with spectral diversity

(hence multi-modality) for the 1st, 3rd and 4rd classes. This illustrates the relevance of the

clusters recovered by the proposed cofactorization method.

2.6. Conclusion and perspectives

This chapter proposed a cofactorization model to unify a representation learning task and

a classification task. The coding matrices associated with the two factorization problems,

which respectively are the low-dimensional representations and the feature vectors, were re-

lated thanks to a clustering step. The low-dimensional representation vectors were clustered

and the resulting attribution vectors were used as features vectors. These three tasks were

jointly formulated as a non-convex non-smooth minimization problem, whose solution was

approximated thanks to a PALM algorithm which ensured some convergence guarantees.

This model was instanced for a specific applicative scenario, namely hyperspectral image

analysis, to jointly conduct unmixing and classification. It provided convincing results on

synthetic and real data both quantitatively and qualitatively. Moreover, byproducts of the

model appeared to be a relevant added value to interpret the obtained results.
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Figure 2.12.: AISA data. (a) Groundtruth map of subclasses. (b) Clustering recovered by
Cofact-CE. For each class: (top) spectral centroids recovered by Cofact-CE, (bottom) mean
spectra of all subclasses of the corresponding class evaluated using groundtruth.
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To further improve the developed model, it would be particularly interesting to investigate

the best way to learn an appropriate dictionary. Firstly, it would be relevant to directly ex-

ploit the supervised information to get a better dictionary initialization. Secondly, updating

the dictionary when solving the cofactorization problem would be also of interest.

2.7. Conclusion (in French)

Ce chapitre introduit un modèle de cofactorisation permettant de réaliser conjointement

un apprentissage de représentation et une classification. Les matrices de codage associées

aux deux problèmes de factorisation, contenant respectivement les représentations en faible

dimension et les vecteurs de descripteurs, sont reliées grâce à une étape de clustering. Ce

clustering est effectué sur les représentations en faible dimension et les vecteurs d’attribution

aux clusters sont ensuite utilisés comme vecteurs de descripteurs. Ces trois tâches ont été

formulées conjointement sous la forme d’un problème de minimisation non-convexe et non-

lisse dont la solution est approximée à l’aide d’un algorithme PALM assurant certaines

garanties de convergence.

Ce modèle a été particularisé pour un scénario applicatif, à savoir l’analyse d’images

hyperspectrales, permettant ainsi de réaliser conjointement démélange spectral et classifi-

cation. Des résultats quantitatifs et qualitatifs convaincants ont été obtenus sur données

synthétiques puis réelles. De plus, les produits annexes du modèle permettent une interpré-

tation détaillée des résultats.

Pour améliorer le modèle développé, il apparaît particulièrement intéressant d’envisager

une meilleure manière de réaliser l’apprentissage du dictionnaire. Premièrement, il serait

certainement bénéfique d’exploiter directement l’information supervisée pour obtenir une

meilleure initialisation du dictionnaire. Puis dans un second temps, la mise à jour du dic-

tionnaire au cours de la résolution du problème d’optimisation semble la voie à suivre.
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Chapter 3.

Matrix cofactorization for spatial

and spectral unmixing

This chapter has been adapted from paper [Lag+19e].
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3.1. Introduction (in French)

Ce chapitre se concentre sur le problème d’apprentissage de représentation et en particulier

sur la possibilité d’enrichir le modèle à l’aide de données externes. Dans les chapitres pré-

cédents, le problème de l’apprentissage du dictionnaire a été écarté pour se concentrer sur

la mise en place d’un modèle permettant l’apprentissage de représentation et la classifica-

tion conjoints. Afin de traiter le problème dans sa globalité, ce point crucial du problème

d’apprentissage de représentation est en particulier abordé dans ce dernier chapitre. Afin

de proposer une approche très concrète, les contributions de ce chapitre sont directement

exprimées dans le cadre de notre cas d’étude, c’est-à-dire, l’imagerie hyperspectrale.

Sachant que les images hyperspectrales contiennent une information spectrale riche, de

nombreuses méthodes de démélange se concentrent sur l’idée d’exploiter au mieux cette

information et négligent souvent l’information spatiale disponible. Un grand nombre des

méthodes les plus reconnues traitent les pixels sans tenir compte de l’idée de base selon

laquelle les pixels voisins sont souvent très similaires. La seule information partagée entre

pixels est alors la matrice de endmembers [BF10 ; TDT15]. Néanmoins, plusieurs méthodes

ont déjà été proposées pour effectuer un démélange spatial-spectral [SW14]. L’approche

la plus classique consiste à envisager une régularisation spatiale locale des cartes d’abon-

dances. Plusieurs travaux, tels que SUNSAL-TV [IBP12] ou S2WSU [Zha+18a], ont proposé

d’utiliser une régularisation en norme TV comme régularisation spatiale. L’identification de

groupes de pixels spectralement similaires, dispersés en petits clusters, a également été uti-

lisée pour imposer un lissage spatial des abondances, par exemple dans [Wan+17 ; EDT11 ;

Ech+13]. Avec une approche différente, d’autres travaux ont utilisé un voisinage local pour

identifier le sous-ensemble de endmembers présents dans le voisinage. Cette approche a un

intérêt en particulier dans le cas où on considère un grand nombre de endmembers [Can+11 ;

DW13]. Enfin, dans une moindre mesure, l’information spatiale a également été utilisée pour

faciliter l’extraction des endmembers. En effet, l’extraction des endmembers est souvent ef-

fectuée avant d’estimer les vecteurs d’abondance. Certains prétraitements ont été proposés

pour faciliter cette extraction ou l’identification de pixels purs, tels que prendre la moyenne

des spectres sur des superpixels [Tho+10] ou calculer des indicateurs d’homogénéité spa-

tiale [ZP09].

Dans l’ensemble, il est intéressant de noter que toutes ces approches visent à exploiter

l’idée très simple selon laquelle des pixels voisins sont similaires et ont des variables la-

tentes similaires. Cependant, l’information spatiale est plus riche que cette simple idée. Par

exemple, deux pixels très similaires du point de vue spectral peuvent être discriminés en
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utilisant leur contexte, e.g., une prairie naturelle et une culture sont très proches d’un point

de vue spectral, mais la prairie est spatialement homogène alors que la culture est organi-

sée en rangées. L’exploitation de modèles spatiaux et de descripteurs de textures devrait

donc aider le processus de démélange. Pour exploiter cette idée, ce chapitre propose un mo-

dèle basé sur une approche par apprentissage de dictionnaires couplés permettant d’inférer

conjointement des signatures spatiales et spectrales caractéristiques.

Des méthodes de cofactorisation, parfois appelées apprentissage de dictionnaires couplés,

ont été utilisées avec succès dans de nombreux domaines, tels que la fouille de texte [WB11],

la séparation de source en musique [Yoo+10] ou encore l’analyse d’image [YYI12 ; AM18].

L’idée principale est de définir un problème d’optimisation reposant sur deux modèles de

factorisation, complétés par un terme de couplage imposant une dépendance entre les deux

modèles. La méthode proposée dans ce chapitre, appelée SP2U pour spatial-spectral un-

mixing, considère conjointement un modèle de démélange spectral et une décomposition

de descripteurs contextuelles calculées à partir de l’image panchromatique de la scène. Le

terme de couplage s’interprète comme un clustering identifiant des groupes de pixels parta-

geant des signatures spectrales et des contextes spatiaux similaires. Cette méthode présente

deux avantages majeurs : i) elle fournit des résultats très compétitifs bien qu’elle soit non

supervisée (c’est-à-dire qu’elle estime les endmembers et les cartes d’abondance) et ii) elle

fournit des résultats très complets et pertinents car la scène se retrouve divisée en zones

caractérisées par leurs signatures spectrales et spatiales.

Le reste du chapitre s’organise de la manière suivante. La section 3.3 définit les mo-

dèles spectral et spatial puis introduit le problème de cofactorisation. La section 3.4 détaille

ensuite le schéma d’optimisation développé pour résoudre le problème de minimisation non-

convexe et non-lisse qui en résulte. Une évaluation du modèle proposé est ensuite effec-

tuée sur des données synthétiques dans la section 3.5, puis sur des données réelles dans la

section 3.6. Enfin, la section 3.7 conclut ce chapitre et présente quelques perspectives de

recherche pour ce travail.

3.2. Introduction

In this chapter, the focus is on the problem of representation learning problem and in

particular on the possibility to enrich the model using exogenous data. In the previous

chapters, the problem of learning a relevant dictionary has been left aside and, now that a

method for joint representation learning and classification has been proposed, this key issue

needs to be addressed. In order to be very concrete, the developments are directly presented
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in the context of hyperspectral images.

As hyperspectral images contain a rich spectral information, many unmixing methods

focus on exploiting it and often neglect spatial information. Many well-established methods

process pixels without taking in consideration the basic idea that neighboring pixels are

often very similar. The only shared information between pixels is a common endmember

matrix [BF10; TDT15]. Nevertheless, advanced methods have been proposed to perform

spatial-spectral unmixing [SW14]. The most direct approach is to consider local spatial

regularization of the abundance maps. Several works, such as SUnSAL-TV [IBP12] or

S2WSU [Zha+18a], proposed to use TV-norm regularization to achieve this goal. Identi-

fication of clusters of spectrally similar pixels, scattered in small groups, was also used to

impose spatial smoothing of the abundances, e.g., in [Wan+17; EDT11; Ech+13]. In a

different way, other works used the local neighborhood to identify the subset of endmem-

bers present in the neighborhood. It is especially useful when dealing with a large number

of endmembers [Can+11; DW13]. Finally, at a lesser extent, the spatial information has

also been used to help the extraction of endmembers. Indeed, endmembers extraction is

often performed before estimating the abundance vectors. Some preprocessing were pro-

posed to ease the extraction and identification of pure pixels as the averaging of spectra

over superpixels [Tho+10] or the use of spatial homogeneity scalar factors [ZP09].

Overall it is noticeable that all these approaches tend to exploit the very simple idea that

neighboring pixels should be similar. However, spatial information is richer than this simple

statement. For example, two spectrally very similar pixels can be discriminated using their

context, e.g. a natural grassland and a crop field are spectrally very closed but the first is

spatially homogeneous when the second in organized in rows. Exploiting spatial patterns

and textures descriptors is thus expected to be helpful to the unmixing process. To exploit

this assumption, this chapter proposes a model based on a cofactorization task to jointly

infer common spatial and spectral signatures from the image.

Cofactorization methods, sometimes referred to as coupled dictionary learning, have been

implemented with success in many application fields, e.g., for text mining [WB11], music

source separation [Yoo+10] and image analysis [YYI12; AM18], among others. The main

idea is to define an optimization problem relying on two factorizing models supplemented by

a coupling term enforcing a dependence between the two models. The method proposed in

this chapter, called SP2U for spatial-spectral unmixing, jointly considers a spectral unmixing

model and a decomposition of contextual features computed from the panchromatic image of

the same scene. The coupling term is interpreted as a clustering identifying groups of pixels

sharing similar spectral signatures and spatial contexts. This method exhibits two major

86



Chapter 3. Matrix cofactorization for spatial and spectral unmixing

advantages: i) it provides very competitive results even though the method is unsupervised

(i.e., it estimates both endmember signatures and abundance maps) and ii) it provides

very insightful results since the scene is partitioned into areas characterized by spectral and

spatial signatures.

The remaining of the chapter is organized as follows. Section 3.3 defines the spectral and

the spatial models and further discusses the joint cofactorization problem. Section 3.4 then

details the optimization scheme developed to solve the resulting non-convex non-smooth

minimization problem. An evaluation of the proposed joint model is then conducted first

on synthetic data in Section 3.5 and then on real data in Section 3.6. Finally, Section 3.7

concludes the chapter and presents some research perspectives to this work.

3.3. Towards spatial-spectral unmixing

The main goal of this section is to introduce a model capable of spectrally and spatially

characterizing an hyperspectral image. In particular, instead of incorporating prior spa-

tial information as a regularization [IBP12], the concept of spatial unmixing, detailed in

Section 3.3.2, is introduced alongside a conventional spectral unmixing model in order to

propose a new joint framework of spatial-spectral unmixing.

3.3.1. Spectral mixture model

Spectral unmixing aims at identifying the elementary spectra and the proportion of each

material in a given pixel [Bio+12]. Each of the P pixels yp is a d1-dimensional measurement

of a reflectance spectrum and is assumed to be a combination of R1 elementary spectra mr,

called endmembers, with R1 ≪ d1. The so-called abundance vector ap ∈ RR1 refers to

the corresponding mixing coefficients in this pixel. In a general case, where no particular

assumption is made on the observed scene, the conventional linear mixture model (LMM)

is widely adopted to describe the mixing process. It assumes that the observed mixtures

are linear combinations of the endmembers. Within an unsupervised framework, i.e., when

both endmember signatures and abundances should be recovered, linear spectral unmixing

can be formulated as the following minimization problem

min
M,A

‖Y − MA‖2
F + ı

R
d1×R1
+

(M) + ıSP
R1

(A) (3.1)

where the matrices Y ∈ Rd1×P gathers all the observed pixels, M ∈ Rd1×R1 the endmem-

bers, A ∈ RR1×P the abundance vectors and ı
R

d1×R1
+

(·) and ıSP
R1

(·) are respectively indi-
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cator functions on the non-negative quadrant and the column-wise indicator function on

the R1-dimensional probability simplex denoted by SR1 . The non-negative constraint over

M is justified by the fact that endmember signatures are reflectance spectra and thus non-

negative. The second indicator function enforces non-negative and sum-to-one constraints

on the abundance vectors ap (p = 1, . . . , P ) in order to interpret them as proportion vectors.

It is worth noting that the sum-to-one constraint is sometimes disregarded since it has been

argued that relaxing this constraint out offers a better adaptation to possible changes of

illumination in the scene [Dru+16]. Due to the general ill-conditioning of the endmember

matrix M, the objective function underlying (3.1) is often granted with additional regu-

larizations promoting expected properties of the solution. In particular, numerous works

exploited the expected spatial behavior of the mixing coefficients to introduce spatial reg-

ularizations enforcing piecewise-constant [EDT11; IBP12] or smoothly varying [TDT15;

MIC12] abundance maps, possibly driven by external knowledge [UFD18]. Conversely, this

work does not consider spatial information as a prior knowledge but rather proposes a

decomposition model dedicated to the image spatial content, paving the way towards the

concept of spatial unmixing. This contribution is detailed in what follows.

3.3.2. Spatial mixing model

As previously mentioned, this chapter proposes to complement the conventional linear un-

mixing problem (3.1) with an additional data-fitting term accounting for spatial information

already contained in the hyperspectral image. To do so, for sake of generality, we assume

that the scene of interest is characterized by vectors of spatial features sp ∈ Rd2 describing

the context around the corresponding hyperspectral pixel indexed by p. The features can

be extracted from the hyperspectral image directly or from any other available image of

any modality of the same scene, with possibly better spatial resolution. For instance, one

possibility consists in generating a virtual panchromatic image associated with the scene by

averaging the hyperspectral bands and defining the features as the panchromatic pseudo-

observations in a prescribed neighborhood. As a proof-of-concept but without limitation,

this is the approach followed in Sections 3.5 and 3.6 dedicated to numerical experiments.

To capture common spatial patterns, akin to a so-called spatial unmixing, these P d2-

dimensional spatial features vectors sp gathered in a matrix S ∈ Rd2×P are assumed to be

linearly decomposed according to the following optimization problem

min
D,U

‖S − DU‖2
F + ı

R
d2×R2
+

(D) + ıSP
R2

(U) (3.2)
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where D ∈ Rd2×R2 is a dictionary matrix and U ∈ RR2×P the corresponding coding matrix.

This model can be interpreted as a dictionary-based representation learning task [AEB06].

It means that the image in the considered feature space can be decomposed as a sum of

elementary patterns collected in the matrix D of spatial signatures. The corresponding

coding coefficients are gathered in U. The non-negativity constraints are imposed to en-

sure an additive decomposition similarly to what is done in the context of non-negative

matrix factorization [LS99]. Finally, without any constraint on the norms of U and D, the

problem would suffer from a scaling ambiguity between U and D. Additional sum-to-one

constraints are thus imposed on the columns of U. It is worth noting that a similar model

was implicitly assumed in [Vas+15; Vas+16; Vas+18] where a single-band image acquired

by scanning transmission electron microscopy is linearly unmixed by principal component

analysis [Jol86], independent component analysis [AJE01], N-FINDR [Win99] or thanks to

a deep convolutional neural networks. However, in these works, the spatial feature space is

defined by the magnitude of a sliding 2D-discrete Fourier transform, which unlikely ensures

the additivity, or at least linear separability, assumptions underlying the mixtures.

3.3.3. Coupling spatial and spectral mixing models

After defining the spatial and spectral mixing models, we propose to relate both models by

a coupling term, ensuring a joint spatial-spectral unmixing of the hyperspectral image. In

this work, the coupling term is chosen such that it links the two coding matrices A and

U, corresponding to the spectral and spatial abundances, respectively. More precisely, the

coupling is formulated as the following penalized least-square problem

min
B,Z

∥

∥

∥

∥

∥

(

A

U

)

− BZ

∥

∥

∥

∥

∥

2

F

+
λz

2
Tr(ZTVZ) + ıSP

K
(Z) (3.3)

with V = 1K1TK − IK where IK is the K × K identity matrix, 1K is the K × 1 vector of

ones and Tr(·) is the trace operator. This coupling term can be interpreted as a clustering

task. The two coding matrices are concatenated and the clustering is then conducted on the

columns of the resulting whole coding matrix. Centroids of theK clusters define the columns

of the matrix B ∈ R(R1+R2)×K . Interestingly, each centroid is then the concatenation of a

spatial signature and a spectral signature. In particular, it means that the pixels of a given

cluster share the same spectral properties and a similar spatial context. Finally, the matrix

Z ∈ RK×P describes the assignments to the clusters, where zp gathers the probabilities

of belonging to each of the clusters, hence the non-negativity and sum-to-one constraint
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enforced on it. It is accompanied with a specific regularization (see 2nd term of the right-

hand side of (3.3)). This penalty promotes orthogonality over the lines of Z since it can

be rewritten as Tr(ZTVZ) =
∑

k1 6=k2
〈zk1,:|zk2,:〉. This term becomes minimum when the

assignments to clusters obey a hard decision, i.e., when one component of zp is equal to

1 and the others are set to 0. A strict orthogonality constraint would make the clustering

problem equivalent to a k-means problem [Pom+14].

3.3.4. Joint spatial-spectral unmixing problem

Given the spectral mixing model recalled in Section 3.3.1, the spatial mixing model intro-

duced in Section 3.3.2 and their coupling term proposed in Section 3.3.3, we propose to

conduct spatial-spectral unmixing jointly by considering the overall minimization problem

min
M,A,D,U,B,Z

λ0

2
‖Y − MA‖2

F + ı
R

d1×R1
+

(M) + ıSP
R1

(A)

+
λ1

2
‖S − DU‖2

F + ı
R

d2×R2
+

(D) + ıSP
R2

(U)

+
λ2

2

∥

∥

∥

∥

∥

(

A

U

)

− BZ

∥

∥

∥

∥

∥

2

F

+
λz

2
Tr(ZTVZ)

+ ı
R

(R1+R2)×K

+

(B) + ıSP
K

(Z) (3.4)

where λ0, λ1 and λ2 adjust the respective contribution of the various fitting terms. It is

worth noting that, thanks to the sum-to-one constraints enforced on the spectral abundance

vectors ap and spatial abundance vectors up, all these coding vectors have the same unitary

ℓ1-norm. It has the great advantage of avoiding a reweighing of the A and U in the

coupling term regardless of the number of endmembers and dictionary atoms. However,

it is still necessary to adjust the three parameters λ· to weigh the various contribution

terms. The strategy used in the experimental sections is to simply ensure that all terms as

a similar weight by taking into account the size and dynamic of the involved matrices. The

next section describes the optimization scheme adopted to solve the joint spatial-spectral

unmixing problem (3.4),
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3.4. Optimization scheme

3.4.1. PALM algorithm

The cofactorization problem (3.4) is a non-convex, non-smooth optimization problem. For

these reasons, the problem remains very challenging to solve and requires the use of advanced

optimization tools. The choice has been made to resort to the proximal alternating linearized

minimization (PALM) algorithm [BST14]. The core concept of PALM is to update each

block of variables alternatively according to a proximal gradient descent step. This algorithm

has the advantage to ensure the converge to a critical point of the objective function even

in the case of a non-convex, non-smooth problem.

In order to obtain these convergence results, the objective function has to ensure a specific

set of properties. Firstly, the various terms of the objective function have to be separable

in a sum of one smooth term g(·) and a set of independent non-smooth terms. Then, each

of the independent non-smooth term has to be a proper, lower semi-continuous function

fi : Rni → (−∞,+∞]. Finally, a sufficient condition is that the smooth term is a C2-

continuous function and that its partial gradients are globally Lipschitz with respect to the

derivative variable. Further details are available in the original paper [BST14].

In problem (3.4), the smooth term g(·) is composed of the three quadratic terms and

the orthogonality-promoting regularization. All these terms obviously verify the gradient

Lipschitz and C2-continuous properties. Moreover, the non-smooth terms fi are separable

into independent terms. Moreover, since they are all indicators functions on convex sets,

their proximal operators are well-defined and, more specifically, are defined as the projection

on the corresponding convex set. The projection on the non-negative quadrant is a simple

thresholding of the negative values and the projection on the probability simplex can be

achieved by a simple sort followed by a thresholding as described in [Con16].

A summary of the overall optimization scheme is given in Algo. 3 where LX stands for the

Lipschitz constant of the gradient of g(·) considered as a function of X. Partial gradients

and Lipschitz moduli are all provided in Appendix C.1. Additional details regarding the

implementation are discussed in what follows.

3.4.2. Implementation details

Initialization and convergence – As explained, the PALM algorithm only ensures con-

vergence to a critical point, i.e., a local minimum, of the objective function. Hence, it is

important to have a good initialization of the variables to be estimated. In the following

experiments, the initial endmember matrix M0 has been chosen as the output of the ver-
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Algorithm 3: PALM
Initialize variables M0, A0, D0, U0, B0 and Z0;
Set α > 1;
while stopping criterion not reached do

Mk+1
∈ proxαLM

ı
R

d1×R1
+

(Mk
−

1
αLM

∇Mg(Mk, Ak, Dk, Uk, Bk, Zk));

Ak+1
∈ proxαLA

ı
SP

R1

(Ak
−

1
αLA

∇Ag(Mk+1, Ak, Dk, Uk, Bk, Zk));

Dk+1
∈ proxαLD

ı
R

d2×R2
+

(Dk
−

1
αLD

∇Dg(Mk+1, Ak+1, Dk, Uk, Bk, Zk));

Uk+1
∈ proxαLU

ı
SP

R2

(Uk
−

1
αLU

∇Ug(Mk+1, Ak+1, Dk+1, Uk, Bk, Zk));

Bk+1
∈ proxαLB

ı
R

(R1+R2)×K

+

(Bk
−

1
αLB

∇Bg(Mk+1, Ak+1, Dk+1, Uk+1, Bk, Zk));

Zk+1
∈ proxαLZ

ı
SP

K

(Zk
−

1
αLZ

∇Zg(Mk+1, Ak+1, Dk+1, Uk+1, Bk+1, Zk));

end

return Mend, Aend, Dend, Uend, Bend, Zend

tex component analysis (VCA) [ND05]. Abundance matrix is then initialized by solving

the fully constrained least square problem minA∈SP
R1

‖Y − MA‖2
F. Finally, D0 and U0 are

initialized by performing a k-means algorithm on columns of S. Similarly B0 and Z0 are

initialized by a k-means on the concatenation of U0 and A0.

As stated in Algo. 3, a criterion is needed to monitor the convergence of the optimization

algorithm. In the following experiments, the residual error of the objective function is com-

puted at each iteration and, when the relative gap between the two last iterations is below

a given threshold (10−4 for these experiments), the algorithm is stopped.

Hyperparameters – Several weighting coefficient λ· have been introduced in problem (3.4)

to adjust the respective contribution of each term. In the following experiments, some of

these coefficients have been renormalized to take in consideration the respective dimensions

and dynamics of the matrices defining each term, yielding







λ0 = 1
d1‖Y‖2

∞

λ̃0

λ1 = 1
d2‖S‖2

∞

λ̃1

. (3.5)

3.5. Experiments using simulated data

Performance of the proposed spatial-spectral unmixing method has been assessed thanks to

experiments conducted on both synthetic and real data. The use of synthetic data makes

quantitative validation possible whereas it is not possible with real data since there is no
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reference data.

3.5.1. Data generation

In order to properly evaluate the relevance of the proposed model, two synthetic images

referred to as Image 1 and Image 2 have been generated such that they incorporate consistent

spatial and spectral information. For this reason, the first step of the image synthesis

consists in generating two so-called segmentation maps which separate the images into J

regions. In this work, for each image, the segmentation maps has been randomly generated

according to a Potts-Markov random field [Li09].

Figure 3.1.: Synthetic dataset: textures (forest, wheat) for Image 1 (left) and textures (corn,
grass, forest, rock, wheat) for Image 2 (right).

The second step is to assign specific spatial and spectral signatures to each area of the

segmentation map. In order to get realistic images, grayscale textures are extracted from real

remote sensing images and a distinct texture is assigned to each cluster of the segmentation.
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The textures are depicted in Fig. 3.1 for Image 1 and Image 2. Then, when the pth pixel

belongs to the jth region (j = 1, . . . , J), its spectral abundance vector has been generated

as the convex combination of two predefined extremal spectral behaviors ψi,1 and ψi,2

characterizing the jth region, i.e.,

ap = t(j)p ψj,1 + (1 − t(j)p )ψj,2 (3.6)

where t(j)p is the intensity of the pth pixel of the jth grayscale texture. In other words, the

texture intensity spatially modulates the spectral content differently in each region. The

generated abundance maps are shown in Fig. 3.2.

Im
a
g
e

1
Im

a
g
e

2

Figure 3.2.: Synthetic dataset: abundance maps.

The final step boils down to generating the hyperspectral image according to a linear

mixing model. The endmember signatures have been extracted from the ASTER library.

Two images have been generated according to this process. Image 1 is a 200×200-pixel image

composed of R1 = 4 endmembers and J = 2 regions. Image 2 is a 300×300-pixel image with

R1 = 9 endmembers and J = 5 regions. Additionally, corresponding panchromatic images

are generated by normalizing and summing all spectral bands. The generated hyperspectral

and panchromatic images are shown in Fig. 3.3.
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(a) (b) (c)

Figure 3.3.: Synthetic dataset: (a) segmentation map, (b) color composition of the hyper-
spectral image, (c) panchromatic image.

3.5.2. Compared methods

In order to assess the performance of the proposed spatial-spectral unmixing model, referred

to as SP2U, the unmixing results have been compared to several well-established methods.

First, the result of the initialization method has been used as baseline. This method is

conventional [BF10] and consists in extracting endmembers using VCA method [ND05] and

then solving a fully constrained least square (FCLS) problem. This first method is referred

to as by VCA+FCLS hereafter.

The second compared method uses again a FCLS method to estimate the abundance

vectors but uses an alternative endmember extraction algorithm. This method, called

SISAL [Bio09], tries to estimate the minimum volume simplex containing the observed hy-

perspectral data by solving a non-convex problem using a splitting augmented Lagrangian

technique.

The third compared method relies on a similar linear mixing model assumed by VCA+FCLS

and SISAL+FCLS. However, instead of estimating the endmember signatures and abun-

dances sequentially, it performs a joint estimation, yielding a non-negative matrix factoriza-

tion (NMF) task with an additional sum-to-one constraint. This method referred to as NMF

in the sequel, is a depreciated version of the SP2U problem (3.4) where λ1 = λ2 = λz = 0

and has been solved and initialized similarly.
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The fourth method SUnSAL-TV was introduced in [IBP12] and proposes to solve a con-

ventional linear unmixing problem with an additional spatial regularization term to incor-

porate spatial information. The regularization term is chosen as a total variation applied to

the abundance maps A. It promotes in particular similarity of abundance vectors of neigh-

boring pixels. In this case, the local information is used whereas SP2U method relates pixels

sharing the same spatial context, akin to a non-local framework. It is important to note

that this method does not estimate the endmember matrix which is estimated beforehand

using VCA or SISAL.

The fifth method, denoted n-SP2U, is a naive counterpart of the proposed SP2U method.

Instead of using the coupling term introduced in Section 3.3.3, the abundance matrix A

and the coding coefficients U are directly considered equal yielding the following problem

min
M,A,D

λ0

2
‖Y − MA‖2

F + ı
R

d1×R1
+

(M)

+
λ1

2
‖S − DA‖2

F + ı
R

d2×R2
+

(D) + ıSP
R1

(A). (3.7)

This method is considered for comparison since it may come naturally to mind when willing

to couple factorizations associated with spatial and spectral unmixing. However, it actually

appears very unlikely to perform well in real scenarios. It would mean that the mixture

proportions are always similar in the spatial and spectral domains. However a given spectral

signal is obviously expected to appear in various spatial contexts. To account for distinct

spatial patterns of a given spectral content, some endmembers would need to appear several

times in the M matrix, which is generally not a desired property.

3.5.3. Performance criteria

Performance of all methods has been assessed in term of endmember estimation using the

average spectral angle mapper (aSAM)

aSAM(M) =
1
R1

R1
∑

r=1

arccos

(

〈m(ref)
r |mr〉

‖m(ref)
r ‖2‖mr‖2

)

, (3.8)

and also in term of abundance estimation using the root mean square error (RMSE)

RMSE(A) =

√

1
PR1

∥

∥A(ref) − A
∥

∥

2
F, (3.9)
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Table 3.1.: Image 1: quantitative results of unmixing (averaged over 10 trials).

Model aSAM(M) RE RMSE(A) Time (s)

VCA+FCLS 0.180 (±1.1 × 10−2) 6.86 × 10−3 (±6.3 × 10−3) 0.150 (±1.9 × 10−2) 19 (±11)

SISAL+FCLS 0.151 (±3.4 × 10−3) 2.81 × 10−3 (±3.5 × 10−6) 0.114 (±3.9 × 10−3) 23 (±0.1)

NMF 0.175 (±5.6 × 10−3) 3.86 × 10−3 (±9.8 × 10−4) 0.151 (±2.1 × 10−2) 27 (±29)

VCA+SUnSAL-TV 0.180 (±1.1 × 10−2) 7.61 × 10−3 (±4.5 × 10−3) 0.132 (±3.2 × 10−2) 27 (±0.1)

SISAL+SUnSAL-TV 0.151 (±2.9 × 10−3) 4.6 × 10−3 (±1.1 × 10−4) 0.0989 (±4.1 × 10−3) 28 (±0.3)

n-SP2U 0.188 (±1.5 × 10−2) 28.1 × 10−3 (±1.2 × 10−3) 0.192 (±9.6 × 10−3) 93 (±14)

SP2U 0.108 (±2.2 × 10−2) 6.88 × 10−3 (±3.5 × 10−4) 0.166 (±7.2 × 10−2) 409 (±38)

Table 3.2.: Image 2: quantitative results of unmixing (averaged over 10 trials).

Model aSAM(M) RE RMSE(A) Time (s)

VCA+FCLS 0.176 (±5.8 × 10−3) 8.80 × 10−3 (±2.2 × 10−3) 0.246 (±4.2 × 10−3) 100 (±27)

SISAL+FCLS 0.187 (±1.7 × 10−2) 4.61 × 10−3 (±5.0 × 10−6) 0.145 (±2.3 × 10−2) 57 (±0.5)

NMF 0.178 (±5.9 × 10−3) 4.87 × 10−3 (±6.3 × 10−3) 0.246 (±4.2 × 10−3) 109 (±26)

VCA+SUnSAL-TV 0.176 (±5.8 × 10−3) 9.48 × 10−3 (±6.4 × 10−4) 0.229 (±3.6 × 10−3) 81 (±0.7)

SISAL+SUnSAL-TV 0.189 (±9.6 × 10−3) 4.74 × 10−3 (±5.4 × 10−5) 0.131 (±1.2 × 10−2) 81 (±2)

n-SP2U 0.190 (±1.8 × 10−2) 35.3 × 10−3 (±4.1 × 10−3) 0.212 (±3.0 × 10−2) 518 (±77)

SP2U 0.155 (±1.4 × 10−2) 9.74 × 10−3 (±4.3 × 10−4) 0.125 (±3.9 × 10−2) 1174 (±62)

where m(ref)
r and A are the rth actual endmember signature and the actual abundance

matrix, respectively.

Two additional information have also been included in the results. The processing time in-

cludes the initialization, the endmembers extraction and the abundances estimation. More-

over we also consider the reconstruction error which measure how the model fits to the

observed data

RE =

√

1
Pd1

‖Y − MA‖2
F. (3.10)

3.5.4. Results

As stated in Section 3.3.2, the spatial feature matrix S has been generated using the panchro-

matic image. For each pixel, the spatial feature vector is directly obtained by concatenating

the values of the pixels in a 11 × 11-pixel neighborhood around the considered pixel. This

choice is very basic but designing the best spatial feature is out of the scope of this chapter.

Moreover, this choice has the advantage of offering a direct interpretation of the spatial

content and cluster centroids as small 11-by-11 pixels images. For these experiments, the

actual number of endmembers has been assumed known and thus R1 = 4 for Image 1 and
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Figure 3.4.: Image 1: estimated endmembers.

R1 = 9 for Image 2. The number of dictionary atoms and clusters have been empirically

adjusted and set such that R2 = 20 and K = 30 for Image 1 and R2 = 30 and K = 40

for Image 2. It is worth noting that increasing these two parameters tends to improve the

performance up to a certain point where a slow decreasing can be observed. Hence, the

choice of these values is not critical as long as they are high enough. It can be explained

by the fact that a sufficient number of atoms and centroids is needed to explain the data.

However, beyond a certain value, increasing these parameters reduces the regularization

induced by the clustering. In a more general case, using features more robust to rotation

and translation deformation would likely allow to reduce the number of needed clusters and

dictionary atoms. Moreover, the weighting terms of the various methods have been adjusted

manually using a gridsearch algorithm in order to obtain consistent results. In particular,

weighting coefficients of SP2U method have been set to λ̃0 = λ̃1 = λ2 = 1.0 and λz = 0.1.

As the solution of the considered problem suffers from a permutation ambiguity inherent

to factor models, a reordering of the endmembers is thus necessary before any evaluation.

In this experiment, this relabeling is performed such that the aSAM is minimum. The

quantitative results, averaged over 10 trials, has then been computed for Image 1 and Image
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2 and are presented respectively in Tables 3.1 and 3.2.

The first conclusion of these results is that SP2U method gives the best estimation of

the endmember matrix. All other endmember extraction algorithms are clearly behind. In

particular, from Fig. 3.4, we can see that SP2U is the only method identifying that there

are two spectra very different from the others which corresponds to the two soil spectra.

Another interesting remark is that the NMF model barely improves the initializing point

given by VCA+FCLS. It appears to converge in a few iteration to a local minimum close

to initialization. Overall, it seems that including the spatial information allows to identify

more clearly the endmembers in particular in the considered case where the pure pixel

assumption does not hold.

Then, regarding the estimation of abundances, the evaluation is less straightforward since

it depends on the estimation of the endmembers. RMSE is computed after the reordering of

the endmembers and, for Image 1, the best abundance maps are obtained with SISAL+FCLS

but they are not associated with the best estimated set of endmembers. The case of Image 2

is easier to discuss since the best abundance maps, obtained by SP2U, are associated with

the best set of endmembers. It is also interesting to consider a qualitative evaluation of

the obtained abundance maps depicted in Fig. 3.5. Even if the quantitative results seem to

support the quality of the abundance maps retrieved by SUnSAL-TV, the results visually

appear overly smooth. On the other hand, abundance maps estimated by SP2U seem

visually relevant but the corresponding RMSE suffers from an overestimation of abundances

corresponding to soil spectra. Additionally, we can see that the RE is of the same order for

every model except for n-SP2U. This means that all models are equally good at finding a

mixture explaining the observed data excepted n-SP2U, which was expected as explained in

Section 3.5.2. Some methods such as SISAL+FCLS get a slightly lower RE but it is mostly

because the method is simply a direct minimization of the RE and it does not translate

necessarily in a better RMSE. Finally, it is interesting to have a look at the computational

times. SP2U appears as the slowest method since it inherits from a much richer model.

However, the reported computational times should be taken cautiously. Indeed, SUnSAL-

TV and SISAL+FCLS were implemented with a fixed number of iterations and are based on

Lagrangian augmented splitting methods. Conversely, other methods use a PALM algorithm

with a different stopping criterion (see Section 3.4.2).
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Figure 3.5.: Image 1: abundance maps (the colored squares refer to the colors used to plot
endmembers in Fig. 3.4).
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3.6. Experiments using real data

3.6.1. Real dataset

The real aerial hyperspectral image used to conduct the following experiment was acquired

by AVIRIS in 2013 on a site called Citrus Belt 3, California. The image is composed of 224

spectral bands from 400 to 2500 nanometers with a spatial resolution of 3m per pixel. After

removing bands corresponding to water absorption, a 751 × 651-pixel image with d1 = 175

spectral bands has been finally obtained. A panchromatic image of the scene is computed by

normalizing then summing all spectral bands. The resulting image and a color composition

of the scene are presented in Fig. 3.6. It is possible to state that the scene includes a desert

area and several vegetation areas. Thus several soil and vegetation spectra are expected to

be identified.

Figure 3.6.: AVIRIS image: color composition of hyperspectral image (left) and correspond-
ing panchromatic image (right).

3.6.2. Compared methods

As explained in Section 3.3, it is common to consider a sum-to-one constraint for abundance

vectors to interpret them as proportion vectors. However, this assumption is not always

fulfilled in practical scenarios. In the specific case of the considered AVIRIS image, we
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decide to drop this constraint due to important illumination variation in the image. For

example, the desert area on the upper part of the image is a hill and the spectrum energy

is almost doubled on its sunny side. In order to get a well-defined problem after dropping

the sum-to-one constraint, it is necessary to introduce a new constraint such that there

is no scaling ambiguity between M and A. The choice has been made to enforce a unit

norm of the endmember spectra. Thus, the initial sum-to-one constraint was moved from

columns of A to columns of M. Then, to get abundance maps summing to one, it is possible

to normalize the obtained solution a posteriori. Similarly the sum-to-one was removed for

SUnSAL-TV, n-SP2U and NMF. Moreover, similarly to the synthetic case, parameters of

the problem have been adjusted manually and set to λ̃0 = λ̃1 = λ2 = 1 and λz = 0.1,

R1 = 6, R2 = 20 and K = 30.

3.6.3. Results

Since no groundtruth is available for this dataset only qualitative evaluations of the various

methods are performed. First, Fig. 3.7 shows the endmembers estimated by all compared

methods. As explained in the previous paragraph, endmembers have been normalized ex-

cept for SISAL and VCA. Regarding SISAL results, it is possible to note that the method

estimates endmember signatures taking negative values. Negative endmembers can not be

interpreted as real reflectance spectra and SISAL thus appears the worst compared methods.

This method tries to identify a minimum volume simplex containing the observations under

the assumption that the observations belong to a (R1−1)-dimensional affine set. Thus, these

poor results could be explained by a high noise level or non-linear mixtures. It is difficult

to objectively compare the results of the other methods. However, the result obtained with

SP2U method seems consistent with the visual content of the image since we can clearly

identify i) two vegetation spectra (plotted in pink and orange) with strong absorbance in

the visible domain and strong reflectance in the near-infrared domain [Myn+95] ii) two

soil spectra (plotted in blue and brown) with an increase of the reflectance from 0.4µm to

1µm [Bau+86].

Regarding the abundance maps presented in Fig. 3.8, it seems again that the maps pro-

duced by SP2U are consistent with the actual content of the scene. They are in particular

spatially consistent with natural edges in the image. Additionally, SP2U results seem to be

sparse in the sense that only a few endmembers are used for a given pixel while other methods

recover very similar abundance maps with all endmembers, see, e.g., VCA+SUnSAL-TV.

From Table 3.3, it seems that ensuring the sum-to-one constraint makes more difficult to fit

to the observations since VCA+FCLS has the highest RE. And, again as expected, SP2U
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Figure 3.7.: AVIRIS image: estimated endmembers. Note that endmembers estimated by
NMF, n-SP2U and SP2U have been normalized to avoid scaling ambiguity intrinsic of the
estimation method.
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method remains the slowest due to the overload of data to manipulate.

Table 3.3.: AVIRIS image: quantitative results of unmixing.

Model RE Time (s)

VCA+FCLS 2.8 × 10−3 12
SISAL+FCLS 0.14 × 10−3 214
NMF 0.13 × 10−3 2054
VCA+SUnSAL-TV 0.88 × 10−3 471
SISAL+SUnSAL-TV 0.15 × 10−3 455
n-SP2U 1.1 × 10−3 1347
SP2U 1.4 × 10−3 7162

Besides, SP2U is not uniquely a spectral unmixing method and provides much richer

interpretation. In Fig. 3.9, the results of the clustering performed by the coupling term are

displayed. In particular, this figure shows the spatial position of the clusters, the spatial

pattern characterizing the clusters and the mean spectra of the clusters. In this example,

the first three clusters correspond to soil areas whereas the last two are vegetation, more

precisely trees. For instance, the recovered spatial patterns associated with soil are smoother

when the wooded areas are characterized by variations of higher frequencies.

3.7. Conclusion and perspectives

This chapter proposed a new model to interpret hyperspectral images. This method en-

riched the traditional spectral unmixing modeling by incorporating a spatial analysis of the

data. Two data fitting terms, bringing respectively spectral and spatial information, were

considered jointly, yielding a spatial-spectral unmixing. This coupled learning process was

made possible by the introduction of a clustering-driven coupling term linking the two cod-

ing matrices. This clustering process identified groups of pixels with similar spectral and

spatial behaviors.

The experiments conducted on synthetic and real data showed that the proposed method

performed very well both at identifying endmembers and estimating abundances. Moreover

the relevance of this method was not limited to the unmixing results since the outputs of

the clustering task were also of high interest. The identified clusters were characterized by

their average spectral signature and spatial context.

To further explore the potential of the proposed model, it would be particularly interesting

to investigate the use of more complex spatial features instead of using directly observations
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Figure 3.8.: AVIRIS image: estimated abundance maps. The colored squares refer to the
colors used to plot endmembers in Fig. 3.7. However, no reordering has been performed,
i.e., endmembers have no particular relationship between methods.
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Figure 3.9.: AVIRIS image: 5 particular clusters described by their spatial positioning (left),
spatial signature (middle) and spectral signature (right).
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in a given neighborhood. For example, it would be relevant to use features more robust to

rotation and translation in order to identify a texture instead of a fixed spatial pattern.

3.8. Conclusion (in French)

Dans ce chapitre, une nouvelle méthode pour l’interprétation d’images hyperspectrales a été

introduite. Cette méthode enrichi la modèle de mélange spectrale classique en le complétant

par une modélisation spatiale de l’image. Deux termes d’attache aux données, apportant

respectivement des informations spectrales et spatiales, ont été utilisés conjointement, pro-

posant ainsi un démélange spatial et spectral. Le processus d’apprentissage couplé a été

rendu possible par l’introduction d’un terme de couplage, interprété comme un clustering,

qui relie les deux matrices de codage. Ce clustering permet plus précisément d’identifier des

groupes de pixels ayant des comportements spectraux et spatiaux similaires.

Les expériences menées sur données synthétiques puis réelles ont montré que la méthode

proposée permet une bonne identification des endmembers et une bonne estimation des

abondances. De plus, l’intérêt de cette méthode ne se limite pas aux résultats de démélange,

puisque les résultats de la tâche de clustering présentent également un grand intérêt. Les

clusters identifiés sont caractérisés par leur signature spectrale moyenne et leur contexte

spatial.

Pour explorer d’avantage le potentiel du modèle proposé, il serait particulièrement in-

téressant d’étudier l’utilisation de descripteurs spatiaux plus complexes au lieu d’utiliser

directement le voisinage du pixel comme descripteurs. Par exemple, l’utilisation de des-

cripteurs robustes au rotation et translation permettrait de caractériser une texture plutôt

qu’un motif spatial déterminé.
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The problem of building a coherent model for joint representation learning and classification

was addressed in this manuscript. The main objective was to explore the complementarity of

the two image analysis methods. This complementarity was emphasized by the dependence

structure developed in the proposed models.

This hierarchical modeling actually follows an intuitive line of thought. The analysis pro-

vided by a classification algorithm is based on a set of predefined classes. These classes are

built around semantic concepts, such as man-made surfaces or vegetation, usually gathering

heterogeneous observations. It results in multi-modal classes. Each of the modes corre-

sponds to a set of observations, the features of which result from the same distribution. As

expected by a representation learning task, this yields to the estimation of a specific low-

dimensional space where observations are located and can be represented by a few latent

variables, which allows the modes to be to easily identified. The representation learning

process thus appears as a low-level model of the observation, potentially based on physical

concepts, and the classification appears as a high-level semantic interpretation.

These models proved to offer many possibilities and advantages:

1. The multi-modality of the classes was easily handled since it is at the core of the

developed models. As stated in the introduction, multi-modality of classes may be

an issue for classification tasks. In particular, it makes the separation of the classes

in the feature space very difficult, especially when considering linear classifiers as in

the proposed methods. But with the proposed hierarchical model, the classification

problem was decomposed into two steps. The modes/clusters were first identified

in the low-dimensional space where they are the most easy to separate. Then the

classification itself was performed using the cluster attribution vectors. In the case of

a hard clustering, the attribution vectors to different clusters are orthogonal and it is

thus possible to separate any union of clusters from the remaining. It means that the

classification problem is more likely linearly separable in this feature space.

2. The robustness to labeling noise in the training set was studied, especially in chap-
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ter 1. This robustness was mostly due to the clustering step and the semi-supervised

approach. Indeed, clusters are identified using both labeled and unlabeled data and

the large amount of data tends to reduce the influence of outliers or wrongly labeled

data. Then, since it was expected to get a single class per cluster, wrongly labeled

pixels were easily identified and eventually corrected.

3. The possibility to complement the original data with additional information was also

explored in chapter 3. This chapter showed in particular that it is possible to integrate

in the model a set of chosen spatial features within the hierarchical structure. It may

help to get rid of ambiguities appearing when observations are considered individually

and also brought new possibilities in term of interpretation of the results since the

clusters were characterized from a different perspective.

Along with these model considerations, different paradigms of estimation were explored

in this manuscript. Even if the purpose of this work was not to introduce new theoretical

contributions regarding estimation methods, interesting remarks can be made about the

practical implementation of the considered advanced estimation methods.

About MCMC estimation – The first advantage of MCMC estimation is that it allowed

to handle very easily the hyperparameters of the model. Their estimation is included in the

overall estimation and there is no need to rely on time-consuming selection methods such as

gridsearch or cross-validation. The second advantage is the guarantee of convergence to the

actual distribution even in non-convex case. Unfortunately, this nice property is somehow

balanced by the difficulty to monitor the convergence of the Markov chain. It is difficult

to know how many samples are necessary for the burn-in period and also how many sam-

ples are necessary for a correct estimation of the posterior distribution. The consequence

is usually a long processing time. Moreover, the processing time is also strongly impacted

by the distributions used as priors. When possible, it is usually clever to rely on conven-

tional distributions yielding posterior distributions easy to sample from. When dealing with

complex case, it is then necessary to call upon more complex sampling strategies, such as

Metropolis-Hastings methods or Hamiltonian Monte Carlo methods, which tends to increase

significantly the computational burden and the convergence time.

About optimization estimation – One of the major advantages of optimization methods

is that they are easier to set up. This strength comes mostly from the extensive literature

and numerous freely-available softwares. As shown by chapters 2 and 3, they also make

it possible to handle larger datasets because of their shorter processing time. It is also

practically easier to monitor the convergence of the algorithms since it is possible to com-
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pute the value of the objective function and use it to check the convergence. However, if

monitoring the convergence is common, it does not guarantee the convergence to a global

optimum in most cases. Difficulties especially arise in the case of non-convex problems,

where convergence to a local optimum is generally the best to hope for. For this reason,

optimization methods remain very sensitive to initialization. The possibility to get an initial

guess close enough to the global optimum is an indispensable prerequisite to rely on these

methods. Finally, contrary to MCMC methods, the selection of relevant hyperparameters

is a long-lasting problem and often remains a time-consuming and empirical process.

Perspectives and future works

There are many possibilities to continue the work detailed in this manuscript. Some of these

perspectives are summarized in the following sections.

Estimation aspects

Regarding the two paradigms of estimation, namely MCMC and optimization methods,

some conclusions can be drawn from this work. For the considered problem, it seems

that MCMC was not the most optimal solution, in particular because of the very high

computational burden. Even though the images used to test the Bayesian model were

smaller, the processing time remained very long. Acceleration of MCMC methods remains

a challenging problem. The generalization of splitting methods to MCMC inference has been

recently explored [VDC19] and could result in the creation of distributed MCMC methods.

In any case, a complete estimation of the posterior distribution is not of interest for the

problem considered in this manuscript. Providing confidence sets is not as much a priority as

being able to process large dataset. For these reasons, the optimization framework appears

more efficient, with no loss in term of result accuracy or richness of the model.

The optimization framework is also easier to improve. It is for example possible to use

improved version of the PALM algorithm with very little effort and no loss in term of conver-

gence proof and no increase of the computational complexity. The iPALM algorithm [PS16],

standing for inertial PALM, is for instance an interesting option to consider. This algorithm

leverages the same acceleration idea developed by Nesterov [Nes83] in the context of con-

vex optimization methods where an additional term depending on the previous iteration is

introduced in the gradient descent expression.

A second path would be to explore the use of distributed methods [TDT18] in addition

with stochastic optimization approaches which has proved to be very efficient to minimize
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non convex functions in the context of deep neural networks. Stochastic methods have the

advantage of better exploring the search space and are less likely to be trapped in a local

minimum of the objective function. Considering a practical case, the type of problems we

focus on is the following

min
M,A,Q,
Z,CU ,B

λ0

2
‖Y − MA‖2

F + λa ‖A‖1 + ı
R

R×P
+

(A)

+
λ1

2
‖CD − QZD‖2

F + λc ‖C‖vTV + ı
S

|U|
C

(CU )

+
λ2

2
‖A − BZ‖2

F + ıSP
K

(Z) + ı
R

R×K
+

(B), (3.1)

where we recognize the problem of chapter 2 with the additional optimization of matrix

M. It is possible to separate the optimized variables into two groups. The first group

includes A, Z and CU which are defined pixelwise, i.e., each column of these matrices is

related to a specific pixel. The second group is M, B and Q which are global variables of

significantly lower sizes. For the first group of variables, all the columns of these variables,

indexed by pixel, are independent if the TV norm is not considered. It would thus be

possible to distribute the pixels on a collection of independent processing units and possibly

apply the spatial regularization on different areas independently. For the second group of

variables, they could be optimized on a master node using stochastic gradient descent and

then communicated to the slave nodes handling the pixelwise variables. The communication

cost would be fairly limited since only a reduced number of pixels would be used to update

the global variables and these smaller global variables are easy to transmit to slave nodes.

Hyperspectral images analysis

The analysis of hyperspectral images has proven to be a very challenging problem. The main

limitation of the proposed approaches is the endmember matrix estimation. The estimation

of an accurate endmember matrix is both crucial and very difficult due to high correlation

of the endmembers. The most promising path to solve this issue is to try to further exploit

additional data. Two paths emerged from the experience of this manuscript:

1. Exploit the labeled data – One possibility is to extract from the training set a

reduced set of candidate endmembers from each of the classes. Then, imposing group

sparsity penalization could ensure that only a few of the candidate endmembers are

used in the overall image. Such method would be an adaptation of self-dictionary

methods [GL18; GL14] with a specific selection of candidate endmembers. The ad-
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vantages of this method would be the use of the supervised information and the

definition of a convex problem for unmixing. However, the increase of the dimension

of the problem would be a negative side-effect since the dimension of M containing

the candidate endmembers would be increased.

2. Exploit exogenous data – It corresponds to the idea developed in chapter 3 where

additional data of a different modality of image is included in the model. The use

of spatial information has proven to be relevant to improve the estimation of the

endmember matrix. Nonetheless, it is necessary to further explore this contribution.

The next step is to consider more robust spatial features. One possibility, that has

been explored but not included in this manuscript due to too early results, is the

use of scattering transform [Mal12] to extract the features. However, this choice has

the disadvantage of reducing interpretation possibilities since the spatial signature of

the cluster is expressed in the feature space and the scattering coefficients are not

invertible. Another possibility to focus on is the use of real panchromatic images with

spatial resolution finer than the hyperspectral images. It would overcome the lack of

texture of hyperspectral images due to their poor resolution.

Model developments

Before proposing new developments, it would be wise to consider a better evaluation of

the proposed models. Hyperspectral unmixing is very difficult to objectively evaluate and

a new application case may be a good way to assess the accuracy and the generality of

the models introduced in this manuscript. As explained in the introduction, representation

learning results are in general very difficult to evaluate due to the lack of groundtruth data.

Nevertheless, the context of medical imaging seems a promising field to get feedback from the

results of the methods. The medical experts are used to evaluate complex medical problems.

If it is difficult for them to produce groundtruth for the data, it is easier to evaluate the

coherence of the obtained results since they usually have expectations regarding the possible

results. For example, the analysis of PET [Cav+18b] or fMRI images [Cha+12] could be

interesting cases to investigate.

However, regarding the models, there are still possibilities of improvements. First of all,

the suggestions made to enhance the hyperspectral image analysis, i.e., the further exploita-

tion of external data, also stands for the general models. Then, another opportunity is the

improvement of the coupling term. The clustering methods that were used were the very

conventional k-means algorithm and a Gaussian clustering with simplified covariance ma-
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trices. These two clustering methods are easy to integrate in the joint model but remain

very basic. One method to alleviate this limitation without increasing the complexity would

consist in performing a clustering using a more advanced/complex method directly on the

hyperspectral or/and the panchromatic images and then use the result to build a regular-

ization term over the cluster attribution matrix Z. A side-effect of such a regularization

would also be a faster convergence of the estimation and thus a reduced processing time.
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L’objectif principal de ces travaux a été le développement d’un modèle cohérent pour l’ap-

prentissage de représentation et la classification conjoints. Pour cela, la complémentarité de

ces deux méthodes d’analyse d’images a été étudiée ce qui a permis de mettre en place une

structure de dépendance entre les deux approches.

La modélisation hiérarchique proposée correspond à une conception intuitive du problème.

L’analyse fournie par un algorithme de classification est basée sur un ensemble de classes

prédéterminées. Ces classes sont construites autour de concepts sémantiques larges, tels que

surfaces artificielles ou végétation, regroupant généralement des observations hétérogènes

ce qui a tendance à créer des classes multi-modales. Chacun des modes d’une classe cor-

respond à un ensemble d’observations dont les caractéristiques sont générées par la même

distribution. L’objectif de l’apprentissage de représentation est ensuite d’estimer l’espace

de faible dimension dans lequel se trouvent ces observations et où elles peuvent être expri-

mées à l’aide de quelques variables latentes qui permettent de mieux distinguées ces modes.

L’apprentissage de représentation apparaît ainsi comme une modélisation bas-niveau des

observations, qui se basent éventuellement sur des concepts physiques, et la classification

apparaît comme une interprétation sémantique haut-niveau.

Ces modèles ont offert de nombreuses possibilités et avantages :

1. Le caractère multimodal des classes est facilement pris en compte puisqu’il est au

centre des modèles développés. Comme indiqué dans l’introduction, la multimodalité

des classes peut constituer un problème pour les tâches de classification. En particulier,

il peut devenir difficile de séparer les classes dans l’espace des descripteurs, notamment

lorsqu’un classifieur linéaire est utilisé comme c’est le cas dans les méthodes proposées.

La modélisation hiérarchique utilisée permet de décomposer le problème de classifi-

cation en deux étapes. D’abord, les modes/clusters sont identifiés dans l’espace de

faible dimension où ils sont les plus faciles à séparer. Et ensuite, la classification est

effectuée à l’aide des vecteurs d’attribution à ces clusters. Dans le cas d’un clustering

dur, les vecteurs d’attribution aux différents clusters sont en fait orthogonaux et il est
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donc possible de séparer n’importe quelle union de clusters du reste. Cela signifie que

le problème de classification est toujours séparable linéairement dans cet espace de

descripteurs.

2. La robustesse au bruit dans les labels de l’ensemble d’apprentissage a également été

étudiée, notamment dans le chapitre 1. Cette robustesse est principalement obtenue

grâce à l’étape de clustering et à l’approche semi-supervisée considérée. En effet, les

clusters sont identifiés à l’aide de données labellisées et non labellisées et la grande

quantité de données considérées permet de réduire l’influence des données corrompues.

De plus, puisque les éléments d’un cluster sont sensés appartenir à la même classe, il

devient facile d’identifier les pixels mal étiquetés et éventuellement de les corriger.

3. La possibilité de compléter les données par de l’information complémentaire a éga-

lement été explorée dans le chapitre 3. Ce chapitre montre en particulier qu’il est

possible d’intégrer dans le modélisation hiérarchique un ensemble de descripteurs spa-

tiaux. Ces descripteurs peuvent aider à lever les ambiguïtés qui apparaissent lorsque les

observations sont considérées individuellement et indépendamment de leur contexte.

Ils apportent également de nouvelles possibilités d’interprétation des résultats puisque

les clusters sont caractérisés alors de manière beaucoup plus complète.

Parallèlement à ces développement en terme de modèle, différents paradigmes d’estima-

tion ont été considérés dans ce manuscrit. Même si le but de ce travail n’était pas d’intro-

duire de nouvelles contributions théoriques concernant les méthodes d’estimation, ce travail

permet tout de même de tirer des enseignements concrets qu’en à la mise en œuvre des

méthodes d’estimation considérées.

À propos de l’estimation par MCMC – Le premier avantage de l’estimation par MCMC

est qu’elle permet de maîtriser très facilement les hyperparamètres du modèle en incluant

leur estimation dans l’estimation globale. Il n’est donc pas nécessaire de recourir à des

méthodes de sélection coûteuse en temps telles que la méthode de validation croisée. Le

deuxième avantage est la garantie de convergence vers la distribution réelle, même avec des

modèles non convexes. Malheureusement, cette propriété intéressante est contrebalancée par

la difficulté à contrôler la convergence de la chaîne de Markov. Il est en effet très difficile de

savoir combien d’échantillons sont nécessaires pour la période de burn-in tout comme il est

difficile de savoir combien d’échantillons sont nécessaires pour une estimation correcte de

la distribution a posteriori. Les méthodes MCMC s’avèrent donc finalement très coûteuses

en temps de calcul. De plus, le temps de traitement est également fortement influencé

par les distributions utilisées comme prior. Lorsque que c’est possible, il est généralement
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judicieux d’avoir recours à des distributions conventionnelles pour obtenir des distributions a

posteriori faciles à échantillonner. Dans des cas plus complexes, il est nécessaire de recourir

à des stratégies d’échantillonnage plus avancées, telles que les méthodes de Metropolis-

Hastings ou de Hamiltonian Monte Carlo, qui augmentent très significativement la charge

de calcul et le temps de convergence.

À propos de l’estimation par optimisation – L’un des avantages principaux des mé-

thodes d’optimisation est qu’elles sont plus faciles à utiliser. Cette force vient notamment

de la littérature prolifique et des nombreux logiciels disponibles gratuitement. Comme on

peut le voir dans les chapitres 2 et 3, ces méthodes permettent également de gérer des en-

sembles de données plus volumineux en raison de leur temps de traitement plus court. Il est

également plus facile de surveiller la convergence de ces algorithmes dans la mesure où il est

possible de calculer la valeur de la fonction objectif et de l’utiliser pour vérifier la conver-

gence. Cependant, si contrôler la convergence de cette manière est classique, la convergence

vers un optimum global n’est dans la plupart des cas pas assurée. Des problèmes se posent

surtout dans le cas des problèmes non convexes, où la convergence vers un optimum local est

généralement la meilleure garantie qu’on puisse attendre. Pour cette raison, les méthodes

d’optimisation restent très sensibles à l’initialisation choisie. La possibilité d’obtenir une

initialisation suffisamment proche de l’optimum global est une condition indispensable pour

pouvoir compter sur ces méthodes. Enfin, contrairement aux méthodes MCMC, la sélection

d’hyperparamètres pertinents est un problème récurrent et reste souvent un processus long

et imprécis.

Perspectives

Il existe de nombreuses possibilités pour continuer le travail exposé dans ce manuscrit.

Certaines de ces perspectives ont été résumées dans les sections suivantes.

Estimation

En ce qui concerne les deux paradigmes d’estimation testés, à savoir les méthodes MCMC

et les méthodes d’optimisation, plusieurs conclusions peuvent être tirées de ce travail. Pour

le problème considéré, les méthodes MCMC n’apparaissent pas comme le choix le plus

approprié, en particulier en raison de leur très conséquente charge de calcul. En effet, même si

les images utilisées pour tester le modèle bayésien étaient plus petites, le temps de traitement

s’est tout de même avéré très long. De plus, une estimation complète de la distribution a

posteriori n’est pas nécessaire dans les problèmes considérées. La capacité à pouvoir traiter
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de grands ensembles de données est prioritaire devant la possibilité de fournir des intervalles

de confiance. Pour ces raisons, le cadre d’optimisation semble plus approprié et efficace,

d’autant qu’il ne dégrade ni les résultats ni la richesse des sorties du modèle.

Il est également plus simple de suggérer des améliorations de la méthode d’optimisation.

Il est par exemple possible de mettre en place avec très peu d’effort une version améliorée

de l’algorithme PALM, tout cela sans limiter la preuve de convergence ni augmenter la com-

plexité de calcul. L’algorithme iPALM [PS16], pour inertial PALM, propose en particulier

des améliorations intéressantes. Cet algorithme tire parti de la même idée d’accélération

développée par Nesterov [Nes83] dans le contexte de méthodes d’optimisation convexe, où

un terme supplémentaire dépendant de l’itération précédente est introduit dans l’expression

de descente de gradient.

Une seconde voie pourrait être de considérer l’utilisation d’une méthode distribuée [TDT18]

couplée avec des méthodes d’optimisation stochastique. Ces dernières se sont révélées très

efficaces pour optimiser des fonctions non convexes dans le contexte de réseaux de neurones

profonds. Les méthodes stochastiques ont l’avantage de mieux explorer l’espace de recherche

et sont moins susceptibles d’être piégées dans un minimum local de la fonction objectif. Pour

revenir sur un cas pratique, un cas type des problèmes abordés dans ce manuscrit est le sui-

vant

min
M,A,Q,
Z,CU ,B

λ0

2
‖Y − MA‖2

F + λa ‖A‖1 + ı
R

R×P
+

(A)

+
λ1

2
‖CD − QZD‖2

F + λc ‖C‖vTV + ı
S

|U|
C

(CU )

+
λ2

2
‖A − BZ‖2

F + ıSP
K

(Z) + ı
R

R×K
+

(B), (3.1)

où on peut reconnaître le problème du chapitre 2 avec l’optimisation supplémentaire de la

matrice de endmembers M. Il est possible dans ce cas de séparer les variables à optimiser

en deux groupes. Le premier groupe comprend A, Z et CU , qui sont les variables où chaque

colonne de la matrice correspond à un pixel de l’image. Le deuxième groupe est constitué de

M, B et Q, qui sont des variables globales de tailles nettement inférieures. Pour le premier

groupe de variables, toutes les colonnes de ces variables, indexées par pixel, sont indépen-

dantes si la norme TV n’est pas considérée. Il serait donc possible de répartir les pixels sur

un ensemble d’unités de calcul indépendantes et éventuellement d’appliquer la régularisa-

tion spatiale sur différentes zones de manière indépendante. Pour le deuxième groupe de

variables, elles pourraient être optimisées sur un unité de calcul centrale en utilisant une

descente de gradient stochastique, puis communiquées aux nœuds esclaves qui gèrent les va-
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riables au niveau du pixel. Les coûts de communication seraient alors assez limité, puisque

seul un nombre réduit de pixels serait utilisé pour mettre à jour les variables globales et les

variables globales plus petites seraient faciles à transmettre aux nœuds esclaves.

Analyse d’images hyperspectrales

L’analyse d’images hyperspectrales s’est avérée être un problème très complexe. La princi-

pale limite des approches proposées réside dans l’estimation de la matrice de endmember.

L’estimation d’une bonne matrice de endmember est à la fois cruciale et très difficile en

raison de la forte corrélation des endmembers. La voie la plus prometteuse pour améliorer

son estimation consiste à essayer d’exploiter davantage de données externes. Deux pistes se

dégagent en particulier :

1. L’exploitation des données labellisées – Une possibilité serait d’extraire de l’en-

semble d’apprentissage un ensemble réduit de candidats endmembers dans chacune

des classes. L’utilisation d’une pénalisation de parcimonie groupée pourrait ensuite

garantir le fait que seuls quelques candidats endmembers seraient utilisés dans l’en-

semble de l’image. Une telle méthode serait une adaptation des méthodes de self-

dictionary [GL18 ; GL14] avec une sélection spécifique des endmembers candidats.

Cette méthode aurait pour avantage d’utiliser l’information supervisée et de rendre le

problème de démélange convexe. Cependant, un effet secondaire négatif serait l’aug-

mentation de la dimension du problème puisque la dimension de la matrice de end-

members M contenant les candidats serait augmentée.

2. L’exploitation de données exogènes – Cette piste correspond au travail débuté

dans le chapitre 3 où des données supplémentaires d’une modalité d’image différente

sont incluses dans le modèle. L’utilisation d’informations spatiales s’est révélée per-

tinente pour améliorer l’estimation de la matrice de endmembers. Néanmoins, il est

nécessaire d’explorer d’avantage cette contribution. L’étape suivante consiste à s’in-

téresser à l’utilisation des descripteurs spatiaux plus robustes. Une possibilité, qui a

été explorée mais qui n’a pas été incluse dans ce manuscrit en raison de résultats

trop précoces, est l’utilisation de la transformée en scattering [Mal12] pour extraire

les descripteurs. Cependant, ce choix a pour inconvénient de réduire les possibilités

d’interprétation, car la signature spatiale d’un cluster est exprimée dans l’espace des

descripteurs et, étant donné que la transformée en scattering n’est pas inversible, il ne

serait pas possible de visualiser la signature spatiale comme une image.
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Une autre possibilité serait d’étudier l’avantage de recourir à une image panchroma-

tique réelle avec une résolution spatiale plus fine que l’image hyperspectrale. Cela

permettrait notamment de compenser le manque de textures des images hyperspec-

trales en raison de leur faible résolution spatiale.

Modélisation

Avant de proposer de nouveaux développements, une évaluation plus poussée des modèles

proposés semble judicieuse afin d’en identifier plus clairement les limitations. Le démélange

hyperspectral, qui a été utilisé comme cas particulier d’apprentissage de représentation,

est en effet très difficile à évaluer objectivement. Considérer un autre cas d’application

pourrait être un bon moyen d’évaluer plus précisément le modèle et le cadre général dans

lequel il a été introduit. Comme expliqué dans l’introduction, les résultats d’apprentissage

de représentation sont généralement très difficiles à évaluer en raison du manque de vérité

terrain. Néanmoins, le contexte de l’imagerie médicale semble être un domaine prometteur

pour une étude plus poussée des résultats. Les experts médicaux sont en effet habitués à

évaluer/interpréter des résultats médicaux complexes. S’il leur est difficile de produire une

vérité terrain pour les données, il leur est plus facile d’évaluer la cohérence des résultats

obtenus. Ils possèdent généralement une idée précise des résultats potentiels et peuvent

donc en évaluer la cohérence. Par exemple, l’analyse d’images TEP [Cav+18b] ou d’IRM

fonctionnel [Cha+12] pourrait être un cas d’application intéressant à considérer.

Concernant le modèle lui-même, il existe tout de même des possibilités d’amélioration.

Tout d’abord, les suggestions faites pour améliorer l’analyse des images hyperspectrales,

c’est-à-dire l’utilisation plus poussée de données externes, sont également valables pour

le modèle général. Une autre possibilité est l’amélioration du terme de couplage. Des mé-

thodes de clustering très conventionnelles ont été utilisées comme couplage, plus précisément

k-means et un clustering gaussien avec des matrices de covariance simplifiées. Ces deux mé-

thodes de clustering sont faciles à intégrer dans le modèle global mais restent très basiques.

Un moyen d’atténuer cette limitation sans augmenter la complexité serait de réaliser un

clustering en utilisant une méthode plus avancée/complexe directement sur les images hy-

perspectrales ou/et panchromatiques, puis d’utiliser le résultat pour construire un terme

de régularisation sur la matrice d’attribution aux clusters Z. Une telle régularisation per-

mettrait d’incorporer les résultats d’une méthode plus complexe et également d’accélérer la

convergence de l’estimation des termes de clustering et donc de réduire le temps de calcul.
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Appendix A.

Assessing the accuracy

This appendix provides some details regarding the metrics used to assess the quality of the

results of classification methods and classification methods.

A.1. Assessing performance: spectral unmixing

Measuring the quality of a spectral unmixing is a particularly difficult task. It is actually

almost impossible to obtained a reliable groundtruth since it is very difficult for an expert

to evaluate the subpixel information using the image and also very difficult to quantify

the proportion of components on the field. Additionally, the definition of an elementary

component is not straightforward. Depending of the user interest, endmembers can have a

general meaning, e.g. vegetation or rock, or a very precise meaning, e.g. maize and wheat

or granite and limestone. For this reason, the groundtruth is not uniquely defined.

Nevertheless, authors need to evaluate quantitatively their unmixing methods. In order to

do it, they generally resort to synthetic data which are synthetic hyperspectral images gen-

erated using predefined elementary components which are mixed using some specific model.

In this case, groundtruth endmember matrix and abundance matrix, denoted respectively

by Mref and Aref are known and it is possible to define the following metrics,

◮ Average spectral angle mapper (aSAM) – This metric evaluates the quality of

the estimated endmembers using the spectral angle. It means that only the shape

of the endmember are compared to the groundtruth without taking into account the

scale which is usually linked to an illumination factor and thus irrelevant.

aSAM(M) =
1
R

R
∑

r=1

arccos





m(ref)
r

t
.mr

∥

∥

∥m(ref)
r

∥

∥

∥

2
‖mr‖2



 (A.1)
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◮ Root mean square error (RMSE) – The mean square error measures the overall

quality the abundance vectors by comparing to the groundtruth

RMSE(A) =

√

1
PR

‖Aref − A‖2
F (A.2)

◮ Reconstruction error (RE) – The reconstruction error is an indirect measure since

it compares the original data to its inferred modeling. This metric is interesting

because it does not require to have a groundtruth data. However, if RE is low when

endmembers and abundance vectors are well-estimated, a low RE does not imply

necessarily a good estimation. RE thus needs to be considered as a complementary

measure which gives information about the convergence of the estimation and the risk

of overfitting

RE =

√

1
Pd

‖Y − MA‖2
F (A.3)

As explained, it is not always possible to get quantitative measurement of the quality of

the obtained unmixing. It is then very important to use qualitative evaluation. We expect

in particular to obtain abundance map with spatial coherence which respect the natural

boundaries of the observed scene.

A.2. Assessing performance: classification

There are many ways to measure the quality of a classification map [CG08]. As a major

principle, one should always separate the available groundtruth into a training set and a

validation set such that the performances of the algorithm are tested on the validation set

which has not been used as training set. Additional, training and validation pixels should

not be taken randomly in the available labeled data. The two sets should be spatially decor-

related meaning that some area of the image will only be used for training and some only

for validation. Failing to do so would result in an overrated estimation of the performance.

Apart from that, the choice of metrics is mainly a choice of convenience and habit. We

chose in this manuscript the two following metrics, largely used in the remote sensing com-

munity:

◮ Cohen’s kappa (κ) – is a metric measuring agreement between two sets of labels

typically the reference labels and the predicted labels [Coh60]. This metric takes

into account the probability of agreement occurring by chance. Contrary to a basic

percentage of agreement, Cohen’s kappa gives equal importance to all classes even in
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the case of unbalanced classes. Kappa is defined as follows

κ =
po − pe

1 − pe
, (A.4)

where po is the probability of agreement between the two sets of labels estimated by

computing the percentage of identical labels and pe = 1
P 2

∑C
c=1 n

(ref)
c n

(pred)
c is the

probability of random agreement with n
(ref)
c and n

(pred)
c are the number of pixels

belonging to class c respectively in the reference and the prediction, C is the number

of classes and P the number of pixels. Cohen’s kappa is always inferior to 1 with

κ = 1 being a perfect classification and κ = 0 a totally random classification.

◮ Averaged F1-score over all classes (F1-mean) – is an aggregation of the F1-

scores computed for each class [CG08]. The F1-score of a class c is the harmonic

mean between precision and recall, which are respectively the percentage of pixels

classified c that actually belong to class c and the percentage of pixels of class c in the

reference correctly classified as c.

F1 − mean =
1
C

C
∑

c=1

2
precisioncrecallc

precisionc + recallc
. (A.5)

The averaged F1-score is thus between 0 and 1 with F1 − mean = 1 being a perfect

classification and it is also clear that a good accuracy is necessary for all classes to

obtain a good score even in the case of unbalanced classes.
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Appendix to chapter 2

This appendix provides some details regarding the optimization schemes instanced for the

cofactorization model proposed in Chapter 2 with the classification quadratic and cross-

entropy losses.

B.1. Cofactorization model with quadratic loss function

Using notations consistent with (2.11), the smooth coupling term of the quadratic (Q) loss

model can be expressed as

g(H,B,Z,CU ,Q) =
λ0

2
‖Y − WH‖2

F

+
λ1

2
‖CD − QZD‖2

F + λc ‖C‖vTV +
λ2

2
‖H − BZ‖2

F . (B.1)

For a practical implementation, one needs to compute the partial gradients of g(·) explic-

itly and their Lipschitz moduli to perform the gradient descent. Regarding the H and B

variables, these computations are the same for the two models (quadratic and cross-entropy

losses) and lead to

∇Hg(H,B,Z,CU ,Q) = λ0(WtWH − WtY) (B.2)

+ λ2(H − BZ),

∇Bg(H,B,Z,CU ,Q) = λ2(BZZt − HZt), (B.3)
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Regarding the variables Z, Q and CU involved in the classification step with quadratic loss,

they writes

∇Zg(H,B,Z,CU ,Q) = λ2(BTBZ − λ1BTH)

+ λ1(QTQZD2 − QTCD2),

∇Qg(H,B,Z,CU ,Q) = λ1(QZD2ZT − CD2ZT ),

∇CU g(H,B,Z,CU ,Q) = λc∇CU ‖C‖vTV

+ λ1(CUD2
U − QZUD2

U ). (B.4)

For sake of brevity, the gradient ∇· ‖·‖vTV of the vectorial TV regularization is not explicitly

given. Readers are referred to [Get12] for further details.

All partial gradients are globally Lipschitz as functions of the corresponding partial vari-

ables. The following Lipschitz moduli can be derived as

LH =
∥

∥

∥λ0WTW + λ2IR
∥

∥

∥ ,

LB(Z) =
∥

∥

∥λ2ZZT
∥

∥

∥ ,

LZ(B,Q) = max
p

∥

∥

∥λ2BTB + λ1dpQTQ
∥

∥

∥ ,

LQ(Z) =
∥

∥

∥λ1ZD2ZT
∥

∥

∥ ,

LCU = λ1 max
p
d2
p + λc

√
8 maxp βp

ǫ
. (B.5)

B.2. Cofactorization model with cross-entropy loss function

When using cross-entropy as the classification loss function, the coupling term writes

g(H,B,Z,CU ,Q) =
λ0

2
‖Y − WH‖2

F

− λ1

2

∑

p∈P

d2
p

∑

i∈C

ci,p log

(

1
1 + exp(−qi:zp)

)

+
λq

2
‖Q‖2

2 + λc ‖C‖vTV +
λ2

2
‖H − BZ‖2

F (B.6)
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and the specific partial gradients are

∇Zg(H,B,Z,CU ,Q) = −λ1

2
QTG

∇Qg(H,B,Z,CU ,Q) = −λ1

2
GZT + λqQ,

∇CU g(H,B,Z,CU ,Q) = λc∇CU ‖CU‖vTV

− λ1

2

∑

p∈P

d2
p

∑

i∈C

log

(

1
1 + exp(−qi:zp)

)

(B.7)

where G is a C × P matrix with elements given by

gi,p =
d2
pci,p

1 + exp(qi:zp)
. (B.8)

It should be noticed that G depends on Z, Q and C and is only introduced here to get

compact notations. The following Lipschitz moduli can be derived

LZ(B,Q) = λ1

∑

p∈P

d2
p

∑

i∈C

ci,p ‖qj:‖2
2 +

∥

∥

∥λ2BBT
∥

∥

∥ ,

LQ = λ1

∑

p∈P

d2
p + λq,

LCU = λc

√
8 maxp βp

ǫ
. (B.9)

B.3. Computing the proximal operators

For a practical implementation of the PALM algorithm, the proximal operators associated

with each fj(·) in (2.12) need to be computed. It is clear that all these functions are

proper lower semi-continuous functions for both models instanced in Section 2.4.4. The

involved indicator functions are defined on convex sets. Thus, their proximal operators

can be expressed as projections. The projection on the non-negative quadrant is a sim-

ple thresholding of negative values. The projection on the simplices S· can be conducted

as detailed in [Con16]. The case of f0(·) defined by a nonnegativity constraint comple-

mented by a ℓ1-norm sparsity promoting regularization is slightly more complex. It can be

handled using a composition of proximal operators. As stated before, the proximal opera-

tor associated to the positivity constraint is the projection on the non-negative quadrant.

The proximal operator associated with the ℓ1-norm penalization is a soft-thresholding, i.e.,

proxt‖·‖1
(x) = sign(x)(|x| − 1

t
)+ [Jen+11]. These two proximal operators satisfy the condi-
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tions exhibited in [Yu13] required to be allowed to perform their compositions to get the

proximal operator associated to f0(·).

130



Appendix C.

Appendix to chapter 3

C.1. Computation details for optimization

This appendix provides some details regarding the optimization schemes instanced for the

proposed cofactorization model.

Using notations adopted in Section 3.4, the smooth coupling term can be expressed as

g(M,A,D,U,B,Z) =
λ0

2
‖Y − MA‖2

F +
λ1

2
‖S − DU‖2

F

+
λ2

2

∥

∥

∥

∥

∥

(

A

U

)

− BZ

∥

∥

∥

∥

∥

2

F

+
λz

2
Tr(ZTVZ).

For a practical implementation of PALM, the partial gradients of g(·) and their Lipschitz

moduli need to be computed to perform the gradient descent. They are given by

∇Mg(M,A,D,U,B,Z) = λ0(MAAT − YAT ),

∇Ag(M,A,D,U,B,Z) = λ0(MTMA − MTY) + λ2(A − B1Z),

∇Dg(M,A,D,U,B,Z) = λ1(DUUT − SUT ),

∇Ug(M,A,D,U,B,Z) = λ1(DTDU − DTS) + λ2(U − B2Z),

∇Bg(M,A,D,U,B,Z) = λ2(BZZT −
(

A

U

)

ZT ),

∇Zg(M,A,D,U,B,Z) = λ2(BTBZ − BT

(

A

U

)

) + λzVZ,

where B1 and B2 correspond to the submatrices of B defined by the R1 first rows and R2
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last rows, respectively, such that B =

(

B1

B2

)

.

All partial gradients are globally Lipschitz as functions of the corresponding partial vari-

ables. The following Lipschitz moduli can be explicitly derived as

LA(M) =
∥

∥

∥λ0MTM + λ2IR1

∥

∥

∥ ,

LM(A) =
∥

∥

∥λ0AAT
∥

∥

∥ ,

LU(D) =
∥

∥

∥λ1DTD + λ2IR2

∥

∥

∥ ,

LD(U) =
∥

∥

∥λ1UUT
∥

∥

∥ ,

LB(Z) =
∥

∥

∥λ2ZZT
∥

∥

∥ ,

LZ(B) =
∥

∥

∥λ2BTB + λzV
∥

∥

∥ . (C.1)
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