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Abstract

This thesis is devoted to the study of the motion of small bubbles in ho-
mogeneous isotropic turbulent flows. The work addresses several questions
related to the statistical description of the hydrodynamic forces exerted on
a bubble as well as the stochastic modeling of their high frequency fluc-
tuations. First, we propose a model for the acceleration of micro-bubbles
(smaller than the dissipative scale of the flow) subjected to the drag and
the fluid inertia forces. This model, that depends on the Stokes number,
the Reynolds number and the density ratio, reproduces the evolution of the
acceleration variance as well as the relative importance and alignment of the
two forces as observed from Direct Numerical Simulations (DNS). Second,
based on the observation that acceleration statistics conditional to the local
kinetic energy dissipation rate are invariant with the Stokes number and
the dissipation rate, we propose a stochastic model for the instantaneous
bubble acceleration vector accounting for the small-scale intermittency of
the turbulent flows. The norm of the bubble acceleration is obtained by
modeling the dissipation rate along the bubble trajectory from a log-normal
stochastic process, whereas its orientation is given by two coupled random
walk on a unit sphere in order to model the evolution of the joint orienta-
tion of the drag and inertia forces acting on the bubble. Furthermore, the
proposed stochastic model for the bubble acceleration is used in the context
of large eddy simulations (LES) of turbulent flows laden with small bubbles.
It can effectively reproduce effect of turbulent motion at scales smaller than
the mesh resolution by adding a random contribution depending on local
average dissipation rate. Comparisons with DNS and standard LES, show
that the proposed model improves significantly the statistics of the bubbly
phase. Third, we extend the previous results in the case of bubbles with
large Reynolds number by considering non-linear drag laws. We define an
effective relaxation time based on the drag coefficient to characterize bubble
motion (acceleration,velocity). Eventually we study the effect of buoyancy
and lift force on the bubble dynamics, and analyze the reduction of the
average rising velocity in turbulent flow compared to quiescent flows. It is
observed that bubbles preferentially explore region having downward fluid
acceleration which contributes through the inertia force to reduction of the
rising velocity. In addition, as already observed, the lift force brings prefer-
ably bubbles into downstream fluid motion which also reduce their rising
velocity.
Key words: Bubble dynamics, isotropic turbulence, LES, sub-grid model,
two-phase flow.
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Résumé

Cette thèse est consacrée à l’étude du mouvement de bulles dans des écoulem-
ents turbulents homogènes isotropes. Le travail aborde différentes questions
liées à la description statistique des forces hydrodynamiques exercées sur
une bulle ainsi qu’à leur modélisation stochastique tenant compte des effets
d’intermittence. Nous proposons un modèle pour l’accélération de bulles de
taille inférieures à l’échelle Kolmogorov soumises à la trâınée et aux forces
d’inertie du fluide. Ce modèle, qui dépend du nombre de Stokes, du nombre
de Reynolds et du rapport de densité, reproduit l’évolution de la variance
d’accélération ainsi que l’importance relative et l’alignement des deux forces
observées à partir de DNS. Deuxièmement, sur la base de l’observation selon
laquelle les statistiques d’accélération conditionnelles au taux de dissipation
de l’énergie cinétique locale sont invariantes avec le nombre de Stokes et
le taux de dissipation, nous proposons un modèle stochastique du vecteur
d’accélération instantanée de la bulle, qui tient compte de l’intermittence
à petite échelle de la turbulence. La norme de l’accélération de la bulle
est obtenue en modélisant le taux de dissipation le long de la trajectoire
de la bulle à partir d’un processus stochastique log-normal, tandis que son
orientation est donnée par deux marches aléatoires couplées sur une même
sphère afin de modéliser l’évolution de l’orientation conjointe la trâınée et
les forces d’inertie agissant sur la bulle. Le modèle stochastique proposé
pour l’accélération des bulles permet d’améliorer les simulations de grandes
turbulences (LES) d’écoulements turbulents transportant de petites bulles.
Il peut reproduire efficacement l’effet des échelles turbulentes inférieures à
la résolution du maillage en ajoutant une contribution aléatoire en fonction
du taux de dissipation moyen local. Les comparaisons avec le DNS et les
LES standard montrent que le modèle proposé améliore considérablement
les statistiques de la phase de formation de bulles. Troisièmement, nous
étendons les résultats précédents dans le cas de bulles à plus grand nombre
de Reynolds en prenant en compte les lois de trâınée non-linéaires. Nous
définissons un temps de relaxation effectif basé sur le coefficient de trâınée
pour caractériser le mouvement de la bulle (accélération, vitesse). Finale-
ment, nous étudions l’effet de la flottabilité et de la force de portance sur
la dynamique des bulles et analysons la réduction de la vitesse moyenne
ascensionnelle dans les écoulements turbulents par rapport aux écoulements
au repos. On observe que la bulle explore de préférence une région ayant
une accélération de fluide vers le bas qui contribue, par le biais de la force
d’inertie, à réduire la vitesse de montée. De plus, comme déjà observée,
la force de portance amène de préférence les bulles dans un mouvement de
fluide en aval qui réduit également leur vitesse de montée.
Mots clés: Dynamiques des bulles, turbulence isotropie, LES, modèle de
sous-maillage, écoulement diphasique.
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My gratitude to Rémi Zamansky for sharing his rich knowledge of turbu-
lence, math and computational skills. Also the numerical code used in this
work is developed based on his program FieldZ. His vision of physics and the
way he works thought me how to initiate my research career. His brilliant
ideas and advises guided me throughout this whole project and also he gave
many suggestions for my future career.

I wish to thank Chao Sun and Michael Gorokhovski, the rapporteurs of this
manuscript, for their careful reading and their pertinent remarks. Also the
discussions with Professor Gorokhovski enlightened me greatly during the
studies. Thanks to Professor Sun for travailing thousands kilometers from
Beijing to my thesis defense and he gave me so many valuable suggestions.

I also thank Aurore Naso and Sergio Chibbaro for having accepted to be
members of my jury. Many appreciations for their comments and interesting
questions during the thesis defense.

I warmly thank my dear friends and colleagues in IMFT for their accompany
and exchanges of working skills.

Thanks to my parents for supporting me in making this professional choices.
Know that I am infinitely grateful to you.

Yang, thank you for sharing my life and for your encourages.



Contents

1 Introduction 1

2 Quick introduction to turbulent flows 9

2.1 Statistical description of turbulence . . . . . . . . . . . . . . . 10

2.2 Homogeneous and isotropic . . . . . . . . . . . . . . . . . . . 10

2.3 Statistical stationary . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Correlation functions and characteristic length scales . . . . . 12

2.5 The Kolmogorov Theory and the Turbulence Intermittency . 13

2.6 Stochastic characteristic of dissipation rate . . . . . . . . . . 15

2.7 Stochastic process to model dissipation rate . . . . . . . . . . 17

3 Point particle approach 21

3.1 Drag force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 History force . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Fluid inertia force . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Lift force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 The limit of the point particle approach . . . . . . . . . . . . 27

4 Numerical simulation 29

4.1 Eulerian solver . . . . . . . . . . . . . . . . . . . . . . . . . . 29

v



vi CONTENTS

4.2 The large eddy simulation . . . . . . . . . . . . . . . . . . . . 32

4.3 The Lagrangian solver . . . . . . . . . . . . . . . . . . . . . . 38

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Model for the dynamics of micro-bubbles in high-Reynolds-
number flows 43

6 Bubble dynamics with nonlinear drag 69

6.1 Statement of the problem . . . . . . . . . . . . . . . . . . . . 69

6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7 Gravity on the bubble motion 85

7.1 Average rising speed from DNS . . . . . . . . . . . . . . . . . 87

7.2 Model for the preferential sampling . . . . . . . . . . . . . . . 90

7.3 Acceleration statistics under buoyancy force . . . . . . . . . . 95

7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

8 Lift force on the bubble motion 101

8.1 The influence of lift force on bubble acceleration statistics . . 102

8.2 The lift force effect on rising velocity . . . . . . . . . . . . . . 108

8.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

9 General conclusions 119



Chapter 1

Introduction

Small bubbles dispersed in turbulence can be found in many natural phe-
nomena and a lot of real life applications. The studies of the bubble dynam-
ics in turbulent flows can improve the understanding of climate changing
and optimization of industrial design.

For example, the environmental change due to human activities brings a lot
of attention in the scientific society. Recent researches of climate change
review the importance of the transfer of the CO2 from the atmosphere to
the ocean which will acidify the water body. And a portion of the CO2 is
captured by trapping of small bubbles of atmospheric gases in the ocean by
breaking waves. The smallest typical ocean dissipative scale η0 ∼ O(1mm)
and the typical bubble size vary from 1− 100µm. Studies of these bubbles
motion under the buoyancy and oceanic turbulence are of great interests to
estimate qualitatively the CO2 transfer across the ocean surface [1, 2] as
illustrated in figure 1.1.

Micro-bubbles are also used for improving industrial design, such as drag
reduction of the turbulence boundary layer [3, 4]. The concept is to inject
small bubbles with comparable size of Kolmogorov scale of the turbulent
boundary layer. An experimental characterization of the turbulent boundary
layer over a flat plate in the presence of small amounts of micro-bubbles has
proved that, even at a small void fraction, the interaction between bubbles
and turbulence leads to significant modifications of the underlying flow field.
This concept can be wildly used in maritime vessel fabrication, see figure
1.2.

Besides, the micro-bubble turbulence system can also be fund in chemical
reactors, water treatment, steam generators, etc. These above examples
demonstrate the crucial importance of understanding the dynamics of bub-

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Photography showing a bubble cloud under the surface of the
ocean. [1]

bles in turbulence. The ultimate objective is to understand and model the
physical mechanism in order to prediction and optimal design. The devel-
opment of computational technology not only change our lifestyle but also
introduce a brand new approach for scientific research. The high perfor-
mance supercomputer is widely used in both fundamental studies of basic
physical mechanisms and engineering analyses. Especially in fundamental
studies, numerical simulations can help us to understand the mechanisms
and further to establish mathematical models to describe physical phenom-
ena. In order to simulate realistically the physical phenomena, it requires
sometime extremely high accuracy and resolution. For instance, in fluid
dynamic problems, the motion of the fluid can be simulated by numerically
resolving the Navier-Stokes equations. The full resolution of the system of
equations needs to resolve the smallest scales to capture all the information
of the fluid field which is often referred as a Direct Numerical Simulation
(DNS). However, in bubbly turbulent flows, the Reynolds number is gener-
ally large and the complexity of such flows lies in the coupling between the
various physical phenomena. When the Reynolds number of the flow is very
large, the continuous phase presents strong fluctuations of the velocity at the
scale of the bubble. Despite its crucial position in the academic research, the
DNS for high Reynolds number two phases or multi-phase turbulent flows
can hardly be considered as practical in industrial applications due to the
limitation of the computational capacities. Therefore, in numerical study,
we usually seek to simplify the problem as long as the assumptions that we
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Figure 1.2: Illustration of air lubrication technology Copyright c© 2019 Silver-
stream Technologies

made are adequate to the specific problem that we are interested in.

The present work focus on a particular situation where the bubble diameter
is smaller than the Kolmogorov scale db � η so that such a bubble is called
micro-bubble. Among all the existing numerical methods, the point-wise
particle approximation is often used to deal with small dispersed bubbles
with diameter smaller than the Kolmogorov scale. One good reason is that,
a DNS resolves only the turbulent fluid motion of length scales equal or
greater than the Kolmogorov length scale and the fluid seen by the bub-
ble in such case can be approximately regarded as uniform at the bubble
scale. The bubbles we consider in such context will be regarded as no-
deformable spherical particles with slip or no-slip boundary condition, with
density and viscosity are much smaller than the carrier flow. The concept of
this method consists in computing the turbulent field by resolving Navier-
Stokes equations as if there is no dispersed phase. And then the resolved
fluid information interpolated at the positions of the bubbles are used to
solve their Lagrangian trajectory by considering the force balance applied
on each bubble [5].

This approximation is a classic method for numerical studies of the particle-
laden turbulence. For heavy particles, [6] used this approach to study the
settling of aerosol particles for moderate Reynolds (drag and gravity) and
they have found that the settling velocity of heavy particles will be increased
in the turbulence compared to that in the quiescent flow. Later [7] included
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the Basset force in the equation of motion to study this effect for the par-
ticle settling in turbulence and found that the Basset force has virtually no
influence on the structure of the fluid velocity fluctuations seen by the parti-
cles and on particle diffusivity. [8] studied the turbulence effect on the drag
force and concluded that the drag force estimated by this method is only
applicable for small particles. [9] Investigated the preferential concentration
effect with this approach, and analysis the threshold of the Stokes number
for the clustering effect. [10] studied heavy particle acceleration statistics
and found that the variance of heavy particle acceleration sharply falls off
from the fluid tracer value at quite small Stokes numbers and the tails of the
probability density function of the normalized acceleration decreases with
the Stokes number.

For bubbles or light particles in turbulence, [11] found that the bubble rising
velocity is reduced by the turbulence. [12] and [13] showed that the lift
force along with gravity makes the bubble preferably sampling the down
flow region of the turbulence and use two-way coupling to study bubble
influence backward to the carrier flow. They found that the small wave-
numbers are attenuated and the large ones are enhanced by the bubble
which is due to the bubble clustering in down-flow regions. Considering
bubble acceleration statistics [14], showed that the forces acting on bubbles
are strongly intermittent, and they argued that this holds in particular for
the lift force that is proved to be a very intermittent quantity.

The development of Large Eddies Simulation (LES) provides another ap-
proach to further simplify the problem. The method has a great poten-
tial for being a prediction tool for the engineering interest, because of its
efficiency compared to direct numerical simulation. It demands less com-
putational resources and can estimate the large scale feature of very high
Reynolds number based on a scale separation hypothesis [15]. The largest
scales are directly conditioned by the boundary conditions and are thus ”case
dependent” while the small scales are believed to present the universality
(locally homogeneous and isotropic). In the meantime, most of the kinetic
energy is contained in the large scales and thus contributes significantly to
dispersion phenomena at long time. In LES, the unresolved scales can be
modeled by the turbulent viscosity ν∆ which is responsible for the energy
flux to the smaller scales. However, the model can only provide an estima-
tion of the influence of these small scales on the fluid motion at larger scales.
The instantaneous velocity ui, governed by the Navier-Stokes equations, is
composed of filtered and residual components:

ui = ui + u′i

This decomposition into filtered and residual components can also be applied
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to the material acceleration (or total acceleration) ai = ∂ui
∂t + uk

∂ui
∂xk

[16]:

ai = ai + a′i

In LES, only ui and ai are explicitly resolved and the residual contribution
u′i and a′i are not resolved. When we compute the hydrodynamic forces
on a bubble to track its trajectory, only the filtered (resolved) parts are
accounted for in standard LES, while the small scales’ contributions to the
bubble acceleration a′b are discarded.

abi(ufi, afi) = abi(ufi, afi) + a′bi(u
′
fi, a

′
fi)

The experimental studies of fluid tracer Lagrangian acceleration [17, 18, 19]
reported that Lagrangian acceleration presents probability density distribu-
tions with stretched tails, depending on the Reynolds number. Also, the
intermittent Lagrangian acceleration may induce strong fluctuations to the
bubble. [14] and [20] reported that the bubble acceleration is even more
intermittent than the fluid tracer. This intermittency is mainly manifested
by those small scale fluctuations. Those small scales are typically associated
with the large fluctuations of the dissipation rate of turbulent kinetic energy
ε [21, 22, 23, 16]. As a consequence, if we want to obtain predictive results
by LES-type methods, a sub-grid model is needed to reproduce the inter-
action of the bubble with the small-scale fluid motion, namely the residue
bubble acceleration a′bi(u

′
fi, a

′
fi) in LES.

A sub-grid stochastic acceleration model has already been proposed for
heavy particle in THI [24]. In heavy particle dynamics, only the drag force is
taken into account. However, the bubble dynamic is different because of the
presence of the fluid inertia force. According to the theory of Tchen (1947)
[25], light particle amplifies the high frequency fluctuations of the fluid field.
Bubbles basically have no inertia and thus are extremely sensitive to the
fluctuations of the velocity field around them. It is like a ”hole” moving in
the continuous media which granted a force that suppose to act originally
on the same volume of fluid substance who shall occupy this ”hole”. Sup-
plemented with the added mass force, the bubble has an acceleration even
larger than the fluid particle due to its small density. The theory has been
confirmed in later investigation [26], and it has also been found that the
light particle’s acceleration fluctuation is even more intense than that of the
fluid tracer [20, 27, 28].

Therefore, we focus on this research topic to develop a tool for numerical
simulations of large scales (LES) for homogeneous isotropic turbulent flow
laden with point-wise bubbles. The question then arises to correctly esti-
mate the turbulent fluctuations of the carrier flow in sub-mesh scale and
in particular those ”seen” by the bubbles. This is our motivation to use
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stochastic model of phenomena related to unresolved scales. The interest of
coupling LES with the sub-grid acceleration stochastic models is to give ac-
cess to the unresolved and intermittent structures of the turbulent flow and
at the same time to take into account the general organization of Large-scale
flows.

We will present in this document how to account for the contribution of
the fluid inertia force into such sub-grid model. The concept of the sub-
grid model is to take account the filtered field contribution and along with
a random force reproducing the fluctuations of small-scale fluid structure.
The decomposition can be represented by

ab = ab + |a∗b | · e∗ (1.1)

where ab is the bubble acceleration, the over-bar denotes the resolved large
scale contribution and the unresolved small scale contribution a′b is modeled
by |a∗b |·e∗ with |a∗b | is the amplitude and e∗ is a random orientation. Variable
with ’∗’ denote a variable obtained with the model. The resolved large
scale contribution is computed by interpolating on the coarse mesh. Based
on the time scale separation between the evolution of the norm and the
orientation [18, 29] the unresolved contribution can be expressed by the
product of two stochastic processes, one for the amplitude and the other for
its orientation vector. Due to the times correlation of the amplitude and the
orientation which are very different, we can assume that the two variables
are independent [24, 23, 22].

Outline of the document: In Chapter 2, we begin with a short intro-
duction on isotropic and homogeneous turbulence to recall the usual defini-
tion of the intermittency of the turbulence acceleration and its influence to
the dispersed phases. We present a classic stochastic process to model the
variable having a log-normal distribution. In Chapter 3, the point-particle
approximation (Euler-Lagrangian method) is presented and we discuss the
hypothesis to use this method to track micro-bubbles in turbulence. In
Chapter 4, we provide the detail of the numerical code to resolve the sta-
tistical stationary IHT field in a 3D box with periodical conditions. The
Lagrangian statistics of a fluid tracer is presented in this part. Chapter 5 is
presented in a form of a standalone article on studying the bubble dispersed
in THI with a DNS using the point particle approach. The hydrodynamic
forces are only taking account of the drag and inertia forces. The main ques-
tion is to understand the statistical features of these forces and the relation
between them. We propose a model for the acceleration of micro-bubbles
(smaller than the dissipative scale of the flow) subjected to the drag and
the fluid inertia forces in a homogeneous and isotropic turbulent flow. This
model accounts for the effects of the Stokes number, the Reynolds number
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and the density ratio. In Chapter 6, we use DNS to study the influence of the
bubble Reynolds number corrections to the drag law, while in Chapter 7, we
study the bubble motion with the presence of gravity. We discuss the finite
Reb effect as well as the fluid inertia force effect to the rising velocity. Also
we present the acceleration statistics of the bubble when considering the
gravity. In Chapter 8, the influence of the lift force on the bubble dynamics
is considered.
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Chapter 2

Quick introduction to
turbulent flows

A flow can be generally classified in two regimes: laminar or turbulence.
Laminar flows are calm and smooth and the flow field is organized in a de-
terministic manner at any position of the fluid and any time. The counter-
part is called turbulent flow or turbulence. It is a general characterization of
that fluid field having highly fluctuated velocity, pressure or other mechanic
quantities.

In order to measure the competition between the fluid inertia and the viscous
effect, George Stokes introduced a dimensionless parameter, the Reynolds
number Re = U.L

ν , where U(m/s) denotes the characteristic velocity, L(m)
denotes the characteristic length and ν(m2/s) is the kinetic viscosity. For
given boundary conditions, the Reynolds number is the only control pa-
rameter of the flow. The flow is expected to be turbulent when Re it is
sufficiently large. The concept of Reynolds number greatly simplifies the
investigation of flows with similar geometrical configuration. In the context
of this paper, we focus on flows with large Reynolds number.

Based on the fundamental physical laws, the Navier-Stokes equations have
been introduced. It is a set of two partial differential equations: the mass
conservation Eq. (2.1) and momentum conservation Eq. (2.2), describing
the motion of a viscous fluid named Navier-Stokes equations after Claude-
Louis Navier and George Stokes.

∂ui
∂xi

= 0 (2.1)

9
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∂ui
∂t

+ uk
∂ui
∂xk

= −1

ρ

∂P

∂xi
+ ν

∂

∂xj

(
∂ui
∂xj

+
∂uj
∂xi

)
+ fi (2.2)

In the equation the velocity ui(x, t) for i = 1, 2, 3 is a vector of 3 compo-
nents and the pressure P (x, t) is a scalar. These variables are function of
space x = xi for i = 1, 2, 3 and time t. In the present study, we consider in-
compressible Newtonian flow, which is a classical assumption in the studies
of hydrodynamic. The incompressible hypothesis assumes that the density
ρ of the fluid substance depends only on the temperature and in the con-
text, without considering the temperature effect, it remains constant. The
Newtonian flow assumes that the shear stress in the fluid is proportional to
the local velocity gradient at a rate of µ the dynamics viscosity depending
only on temperature. The kinematic viscosity ν appeared in the equation is
defined as the ratio of dynamic viscosity and the volume mass ν = µ/ρ. f
is the external force depending on x and t, which could be the perturbation
that have been mentioned before. When these equations are supplemented
with appropriate boundaries conditions and initial conditions, they are sup-
posed to provide an accurate description of flows. However, there is no exact
analytical solution of this system of equations due to it’s non-linearity and
non-locality.

2.1 Statistical description of turbulence

One of the characteristic features of the turbulent motion is highly unpre-
dictable. Two same realizations could result in completely different values
of the dynamic quantities at certain locations and instant. It is necessary
to use statistical method to study the turbulence. The use of time-space
averaging to statistically study the fluid dynamic quantity of turbulence is
a good way to qualitatively analyze some physical phenomenons, because it
greatly simplifies the problem by eliminating the time and space dependence
of these random variables. Before talking turbulence statistical properties,
let’s revisit some important assumption.

2.2 Homogeneous and isotropic

In a fully developed turbulence far enough from the boundary, there exists a
region of turbulence where the dynamic quantities can be defined as isotropic
and homogeneous. The concept of isotropic homogeneous turbulence is an
ideal assumption to study the turbulent theory. Let’s make an example of
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the velocity which is a random variable and the time dependence is not
considered here so the velocity is noted as u(x). The probability mean
value of the velocity denotes as 〈u(x)〉, it is the average over repeatedly
realizations and it should converge to zero, when the statistical sample base
is sufficiently large. For a fully developed turbulence, this value should
be identical to the space averaging mean value at all point in the space.
Whereas, the space averaging mean value of the variable over a control
volume A, where x) ∈ A, can be written as

ũ(x)) =
1

A

∫

A
u(x)dx (2.3)

Secondly, the correlation function of two points in all the domain depends
only on the norm of the vector between these two points. Finally, if the
mean value of all possible function of the values of the field at several points
of space may be obtained by space averaging, it is necessary that the N-
dimensional probability density function of the velocity being invariant to
any kind of transformation (displacement or rotation or mirror reflection)
in the domain. The turbulence field satisfying all the above conditions is
referred as isotropic homogeneous turbulence (IHT). Since the isotropic ho-
mogeneous turbulence presences superior statistical features, it becomes a
popular subject of scientific research to help us have a better understanding
of the turbulence. In this paper, we will focus on such isotropic homoge-
neous turbulence and it will be referred as IHT. Although this turbulence
regime can be hardly found or produced in the real life, since fluid in real
life must have boundaries even though it is very faraway. It is challenging
to experimentally verify the turbulence theory based on IHT.

2.3 Statistical stationary

The definition of the statistical steady state follows the same way of defining
the IHT. But this time we focus only on time dependence u(t). Firstly, the
time average in a period of time T

ũ(t) =
1

T

∫

T
u(t+ τ)dτ

will converge to the statistical average of velocity 〈u(t)〉. If 〈u(t)〉 it is a
constant and independent to instant t. The time correlation function of two
instant t1 and t2 depends only on the time increment ∆t = t2 − t1.

〈u(t1)u(t2)〉 = 〈u(0)u(∆t)〉
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The fluid field reaches its statistical steady state when the above conditions
are satisfied. In order to reaches this statistical steady stat, two conditions
must be satisfied. Firstly, the external force needs to inject energy continu-
ally into the flow field to balance the energy dissipation lose.

2.4 Correlation functions and characteristic length
scales

The IHT presents same interesting statistical features. In this section, the
statistical feature in IHT will be presented. The most important feature
is the two-point correlation function. In IHT, it depends only the distance
between the two separate points. It was introduced by G.I.Taylor in 1935
and is a starting point of statistical approach to study the turbulence. In
general form, the two-point correlation tensor separated by a vector r can
be noted as

Rij(r) = 〈u2
x〉
[
ρuδij +

r

2

dρu
dr

(δij −
rirj
r2

)

]
(2.4)

where ρu is the longitudinal correlation function

ρu(r) =
Rxx(r~ex)

〈u2
x〉

=
〈u(~x)u(~x+ r~ex)〉

〈u2
x〉

(2.5)

The figure 2.1 is a typical illustration of ρu, for r = 0, ρu(0) = 1 which means
the velocity perfectly correlated to itself and for r →∞, ρu(∞) = 0 means
the velocities at two separated points with a long-distance are compliantly
uncorrelated. They are independent in terms of statistical description. The
reason why should the correlation function is important is that it is easy to
measure with experimental approach. The correlation function can help us
to determine an important characteristic length scale in turbulence. Cor-
relation length associated with the progressive decorrelation Integral scale
Lint of the flow:

Lint =

∫ ∞

0
ρu(r)dr (2.6)

This corresponds to the characteristic scale of the largest turbulent struc-
tures of the flow or Macro-scale. Another length scale can be determined
by the correlation function, the Taylor micro-scale λ.

1

λ2
=
dρ2

u

d2r

∣∣∣∣
r=0

The Taylor scale λ is often used to estimate the average dissipation rate of
kinetic energy.

〈u2
x〉
λ2
∼ 〈
(
∂ux
∂x

)2

〉
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Figure 2.1: The longitudinal correlation function (-) THI field

The dissipation rate is denoted as ε

ε =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)2

the mean dissipation rate can be estimated as

〈ε〉 ∼ 15ν
〈u2
x〉
λ2

The Taylor scale is also used as the characteristic scale to define the Reynolds
number of fully developed turbulence Reλ = urmsλ

ν , which is widely accepted
the so-called micro-scale Reynolds number. The Fourier transform of the
longitudinal correlation function return to one dimension density spectral of
the velocity.

2.5 The Kolmogorov Theory and the Turbulence
Intermittency

The idea of energy cascade model in the turbulence is widely accepted and
it becomes a basic assumption in turbulence modeling. The concept was
initially introduced by Richardson (1922). The fluid volume is being called
eddy in this context. In such viewpoint, the turbulence can be considered to
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be composed of eddies of different sizes. Eddies of size l0 have a characteris-
tic velocity u0 and timescale τ0 = l0/u0. These eddies have energy of order
u2

0. The notion of l0 means the energy contains scale in this context. The
energy transfer in turbulence associated to the breakdown consecutively of
large size eddies to smaller size of eddies at a rate of εl0 = u2

0/τn. Dur-
ing this process the energy transfer from the large eddies to small eddies.
Afterward, these smaller eddies undergo a similar break-up process, and
transfer their energy to even smaller eddies. This successive energy cascade
or eddies breakdown process will eventually stop where the viscosity effect
becomes predominant. At the smallest scale of the turbulence, the energy
dissipates into heat under the viscosity. The dissipation rate denoted as ε is
assumed to be approximately equal to the energy transfer rate ε ∼ εl0 . The
smallest scale is also referred as dissipative scale is a characteristic scale of
turbulence. Under this frame work, Kolomogorov proposed the famous Kol-
mogorov turbulent theory in 1941. The turbulent theory is based on three
hypotheses and one consequence of this hypothesis. The detail of these hy-
potheses can be found in many references. The introduction of the theory is
significant. It provides tools to studies in a universal way the turbulent flow.
It has answered some important questions when does this energy cascade
process end. At large Reynolds number, the statistical propriety for small
scale motion only depends on average dissipation rate 〈ε〉 and the kinetic
viscosity η. At the smallest scale the fluid inertia forces reach equilibrium
with the viscous forces with the Reynolds number based on the dissipative
scale equal to unity Reη = ηuη/ν = 1. η is the dissipative length scale,
which is often referred as the Kolmogorov dissipative scale, as well as the
time scale associated with the dissipation length scale are defined.

η = (ν3/〈ε〉)
1
4

τη = (ν/〈ε〉)
1
2

The Kolomogorov scale is conventionally used to characterize the turbulence.
The Kolmogorov velocity uη = η/τη and Kolmogorov acceleration aη =
uη/τη will also be used in the following. The Reynolds number Rel0 =
l0ul0/ν is a measurement of the scale separation, with the assumption of
〈ε〉 ∼ u3

l0
/l0

η/l0 ∼ Re−
3
4

At large Reynolds number Rel0 � 1, the Kolmogorov scale is much smaller
than the energy contained scale. And there exists a sub-range where the
characteristic length l satisfying η � l� l0. The sub-range is called as iner-
tia sub-range, where the energy only transfer from large scales to small scales
and is not affected by the viscosity ν. Which means that within this range
the statistical properties only are affected by 〈ε〉. The study of the second
order moment of velocity increment or structure function is a good illustrate
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the Kolmogorov similarity hypotheses [30]. Later Kolmogorov hypothesis is
refined [31, 32] by replacing 〈ε〉 by local averaged value of dissipation rates
εr(x) define in equation (2.7). The conditional probability distributions for
the velocity increments depends on the local average dissipation rate εr.

εr(x) =
3

4πr3

∫

|h|<r
ε(x+ h)dh (2.7)

For a length scale r � l0, the variable εr(x) is a random variable and
presents very large fluctuations and is heterogeneous. And also the small
scale component of turbulent flow must also be affected by the probability
distribution of ε. It has been suggested to have a log-normal distribution
form. The experimental observation also suggests that the turbulence is
highly intermittent [33]. The figure 2.2 shows a typical dissipation snapshot
of a IHT field. We can see that, in most of the area of the field, there
is no dissipation while the dissipation concentrates on a small area. The
dissipation rate in the strong dissipative region can reach to five times or
even larger of the root-mean-square of the dissipation rate. This means that
the dissipation rate presents a very large fluctuation through the area. Now
imagining a bubble drift through the boundary between strongly dissipative
area and weak dissipative area, it will experience a very strong acceleration.
The figure 2.3 shows that following a fluid tracer, the evolution of the in-
stantaneous dissipation rate with time. We can find that the dissipation rate
can occasionally be 100 times to its root-mean-square. The figure 2.4 shows
the correlation function between two points in the space. It shows a corre-
lation distance of order integral scale. This implies that the dissipation rate
depends locally on the large scale motion of the fluid. The intermittency is
mainly affected by the small-scale motion of the turbulence or namely the
dissipation quantities, the Lagrangian velocity increments with a separation
time scale τ in the space ∆τu, for example, presents a non-Gaussian behav-
ior in the pdf and the non-Gaussian behavior increased with decreasing scale
[17, 18]. The intermittency of the turbulence is expected to be introduced
to bubble motion by the interaction of the bubble to the small scale motion.

2.6 Stochastic characteristic of dissipation rate

As the turbulent small scale components depend on the local dissipation rate,
we consider the statistical feature of the local dissipation rate εr. Based on
the theory of self-similar breakdown of turbulent eddies model, introduced
by [34]. ε0 = 〈ε〉 is the mean energy dissipation rate in a cube with length
of a typical turbulence large-eddy of characteristic length L0. And then
the large-eddy breakdown successively into n smaller sub-cube with n an
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Figure 2.2: A snapshot of the dissipation rate normalized by its root-mean-
square value on a xz-plan of turbulent fluid field with Reλ ' 200

arbitrary number. At the j step of breakdown the length of j-order cube is
Lj = L0n

−j/3. Let εj be the dissipation rate averaged over the volume of
one cube of order j. Following the self-similarity, when j it is sufficiently
large the variable εj is independent of j. Provided that the value of the εj−1

is fixed, the αj = εj/εj−1 is a random variable independent of j.

εj = ε0α1α2...αj

and apply a logarithm operation on both side of the equation

lnεj = lnε0 +

j∑

i=1

lnαi

Based on the central limit theorem the sum of independent random variables
will have an approximately normal probability distribution with mean µj =
−σ2

j /2 (to make sure 〈εj〉 = 〈ε〉 = exp(µj+σ
2
j /2)) and variance σ2

j depending
on the deepness of the cascade process L/rj .

The local averaged dissipation rate εr, for r � l0 is therefore suggested
having a log-normal probability distribution function Eq. (2.8). Which
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Figure 2.3: The dissipation rate at the position of a fluid tracer normalized
with its root-mean-square value varies with time of turbulent with Reλ '
200.

means that the ln εr distribute in a normal fashion and the variance for
large Reynolds number is

σ2
r = A(x, t) + µ ln(L/r)

where A(x, t) depends on the large scale motion and L is the external tur-
bulent length scale r is the length in the inertial range, µ is a constant.

pdfεr(ε) =
1√

2πσ2
rε

exp

[
− (ln ε− µr)2

2σ2
r

]
(2.8)

2.7 Stochastic process to model dissipation rate

Inspire by the Kolmogorov theory, the dissipation rate can be modeled by
an Orstein-Ulenbeck process [23, 16, 24]. The random variable χ = (ln ε∗)
have a Gaussian distribution with variance σ2

χ and mean value µχ and the
stochastic process gives

dχ = −(χ− µχ)
dτ

Tχ
+

√
2σ2

χ

Tχ
dW (τ) (2.9)
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Figure 2.4: The correlation function of the dissipation rate for turbulence
with Reλ ' 200 presented in log-log scale, in the insertion is the normal
scale

with dW (τ) the increments of the Winner process with 〈dW (τ)〉 = 0 and
〈dW (τ)2〉 = dτ/2. The increments of Winner process gives independent
variable for different realizations. The first term on the right hand of Eq.
(2.10) related to a time scale Tχ provides the correlation with the previous
time step. The auto-correlation time of χ is controlled by Tχ and the auto-
correlation function of χ is exponential. In the figure 2.5, the pdf of χ
and the Lagrangian autocorrelation function ρχ is presented. The pdf is a
Gaussian distribution and the ρχ can be fitted by exp(−t/Tχ).

Put χ = (ln ε∗) into the equation (2.9) and using the Itô transform of the
stochastic differential equation we have

dε∗
ε∗

= (− ln ε∗ + µχ + σ2
χ)
dτ

Tχ
+

√
2σ2

χ

Tχ
dW (τ) (2.10)

The mean value of 〈ε∗〉 = 〈ε〉 = exp(µχ + σ2
χ/2). Then the parameter

µχ = ln〈ε〉 − σ2
χ/2 and σ2

χ ∼ ln(L/η) represent the depth of the turbulent
cascade .
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Figure 2.5: (left) The pdf of χ model by the Orstein-Ulenbeck process and
compared to a (- -) Gaussian distribution. (right) The autocorrelation func-
tion of χ compared to an exponential function (–) is the curve of exp(−t/Tχ)
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Chapter 3

Point particle approach

The Lagrangian point particle approach has a long history in numerical
studies of dispersed multi-phase turbulent flow. The particle in such context
generically denotes an element of the dispersed phase. The particle can
physically correspond to solid particles, droplets, bubbles or material points.
Each of these objects is primarily characterized by its density ρ and viscosity
µ compared to the carrier phase:

Φρ = ρb/ρf , Φµ = µb/µf (3.1)

Typically for heavy solid particles Φρ � 1 and Φµ � 1 while for bub-
bles Φρ � 1 and Φµ � 1 and for a fluid particle one has Φρ = O(1) and
Φµ = O(1). It should be remarked that while a dirty bubble in a con-
taminated liquid flow behaves like a rigid particle, a clean bubble in an
uncontaminated liquid behaves quite differently, the primary difference is in
the mobility of the surface of the sphere. This will affect the drag and lift
coefficients. Conventionally, a clean bubble often refers to a bubble with a
free stress at the interface, and a contaminated bubble refers to a bubble
with an immobilized surface.

In the point particle approach (also called Euler-Lagrangian approach), the
evolution of the dispersed phase is given by Newton’s equation. To close
this momentum balance, one need to provide an expression to calculate the
various forces acting on each particle. The force acting on the particles
can be decomposed into hydrodynamic force, which depends on the fluid
velocity fields and its derivatives in the vicinity of the particle, and non-
hydrodynamic force, which are independent of the velocity field. Thus,
to compute the hydrodynamic forces, it is necessary to first compute the
Eulerian fluid fields, thanks to DNS or LES, and then interpolate the value
of the fields at the particle position.

21
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The hydrodynamic force is formally the integration of fluid action (shear
stress and pressure) on the surface of the particle. However, in the point
particle approach the flow is not solved around the particle and we do not
have access directly to the fluid stress applied on the particle. Therefore,
it is necessary to use effective relations to obtain an estimation of the hy-
drodynamic force on a particle from the value of the resolved flow field at
the particle’s position. Obtaining such expressions with general validity
in turbulent flow remains challenging. The usual approach is to restrict
the studies to sufficiently small particles in order to consider that the flow
around them is quasi-homogeneous and stationary, so that the expression
obtained analytically for particles in such condition can be used. Following
[5], the forces on a particle can be decomposed into several contributions

mb
dub
dt

= FD + FTchen + FMA + FL + FH + Fg (3.2)

with bubble velocity ub, drag forces FD and history force FH are viscosity
induced force. Force Tchen FTchen and added-mass force FMA are caused by
the fluid inertia, and the effect together of these two forces will be called fluid
inertia force. The lift force FL is due to the non-uniformity of surrounding
flow field. And the buoyancy force Fg is induced by gravity.

Bellow we discuss each of these forces and recall usual expression for them.
In order to generalize the notions, in this chapter, ub is the generalize expres-
sion of particles (bubbles, droplets and solid particles), uf is the generalize
expression of the fluid velocity at the particle position. The Reynolds num-

ber based on the particle scale is noted as Reb =
db|uf−ub|

ν with db = 2R is
the bubble diameter.

3.1 Drag force

For a particle moving with a velocity uf in uniform flow of velocity ub, the
drag force is generally expressed as:

FD = CD
πR2

2
ρf |uf − ub|(uf − ub) (3.3)

The force orientation is given by uf − ub. CD is the drag coefficient. It
is a function Reb, Φµ and Φρ. For the case Reb � 1 called Stokes regime,
a solution is provided by Stokes in 1851 and has been extended later by
Taylor and Acrivos (1964) to fluid particles. It is often referred as the
Stokes solution.

FD = 6πµR
2 + 3Φµ

3 + 3Φµ
(uf − ub) (3.4)
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which gives

CD =

{
24
Reb

for Φµ � 1
16
Reb

for Φµ � 1
(3.5)

When Reb increases, the Stokes solution will be far from the reality and
empirical expression for the drag coefficient will be used. The drag coefficient
CD will be corrected with a function of Reb and φµ. For small inertial effects
Reb < 1, Oseen (1910) has developed analytically the drag coefficient by
linearizing the convection term of Navier-Stokes equations U∇U = U∞∇U .
The drag coefficient is then [35]

CD =
24

Reb

[
1 +

3

16

(
2 + 3Φµ
3 + 3Φµ

)
Reb +

9

160

(
2 + 3Φµ
3 + 3Φµ

)2

Re2b lnReb +O(Re2b)

]
(3.6)

First let’s consider the case of a bubble with Reb � 1 and assuming that
the boundary layer do not detach (corresponding clean spherical bubble
case), [36] have resolved an analytical coefficient in potential flow and later
modified by [37].

CD =
48

Reb
[1− 2.211Re

−1/2
b +O(Re

−5/6
b )] (3.7)

An empirical correlation of drag coefficient for bubbles (slip interface with
Φρ = 0 and Φµ = 0) is proposed by asymptotically matching the CD to low
and high Reb ( for Reb < 1 Eq. (3.6) and for Reb � 1 Eq (3.7)):

CD =
16

Reb

[
1 +

(
8

Reb
+

1

2
(1 +

3.315

Re
1/2
b

)−1

)]
(3.8)

The correlation of [38] has been confirmed by other numerical simulation
and is applicable for any value of Reb for a clean bubble.
For solid particles the problem is more complicated, because the boundary

condition is no-slip which means it is easy to have a detachment in the
boundary layer. For Reb < 800, Schiller and Nauman (1978) [39] proposed
an empirical correlation of the drag coefficient for solid particles based on
experiments:

CD =
24

Reb
(1 + 0.15Re0.687

b ) (3.9)

The drag force computed with these expressions of the drag coefficient is
often called no-linear drag while the Stokes solution is called linear drag. In
figure (3.1), the evolution of the drag coefficient for solid particles and for
clean bubbles is plotted. We notice that the drag coefficient for a sphere
with no-slip interface increases faster with the increasing of Reb compared
to the drag coefficient of a clean bubble. In Chapter 6, we will discuss the
influence of these no-linear drag forces.
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Figure 3.1: The drag coefficient versus Reb (- ) Eq. (3.8) (- ·) Eq. (3.9)
(- -) clean bubbles in Stokes regime (· · · ) Stokes solid particles Eq. (3.7).
Insert: compares the non-linear drag law for (-) clean bubbles and (- ·) solid
particles respectively Eq. (3.8) and Eq. (3.9) to their respective Stokes drag
law Eq. (3.5)

3.2 History force

The history force or Basset-Boussinesq force is an hydrodynamic force in-
duced by viscosity and the no-stationary relative movement of the particle
in the surrounding fluid. It describes the force due to the lagging boundary
layer development with changing relative velocity (acceleration) of bodies
moving through a fluid. The Basset term accounts for viscous effects and
addresses the temporal delay in the boundary layer development as the rel-
ative velocity changes with time. In Stokes regime Reb � 1 and uniform
flow field, for a spherical body the history force can be expressed as

FH = 6πµfR

∫ t

0
K(t− τ)(

∂uf
∂t
− dub

dt
)dτ (3.10)

or a more general form in non-uniform flow condition [40]

FH = 6πµfR

∫ t

0
K(t− τ)(

∂uf
∂t

+ ub.∇uf −
dub
dt

)dτ (3.11)

where K(t− τ) is the kernel which depends on the properties of the particle.
For solid particles, Boussinesq and Basset (1885) have calculated analytically
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the expression of the kernel for a solid spherical particle with a limit of
Reb � 1.

K(t− τ) =
R√

πν(t− τ)

For a clean bubble ( Φµ = 0 ) and Reb < 1, the expression of the kernel is
[41]

K(t− τ) =
3

4
exp

[
9ν(t− τ)

R2

]
erfc

[√
9ν(t− τ)

R2

]

[42] have recently proposed an expression that makes possible the description
of the history kernel for a fluid particle with any value of Φµ. [43] argues that
the history force for a bubble is negligible compared to the drag force when
Reb > 50. And usually in numerical research, the history force is neglected
for a reason of simplification as we do in the present research. Nevertheless,
the historical force effect might be important for the motion of the bubble
with St ∼ 1, for fluid particles of any viscosity ratio

3.3 Fluid inertia force

FAM and FTchen are two hydrodynamic forces induced by inertia effects in
unsteady and non-uniform flows.
The added mass force writes

FAM = CMVbρf (
Duf
Dt
− dub

dt
) (3.12)

where Vb is the bubble volume. The added-mass coefficient CM depends on
the geometry of the particle, and for a spherical particle CM = 0.5. The
Tchen force FTchen is related directly to the fluid acceleration as:

FTchen = Vbρf
Duf
Dt

(3.13)

If we write expression (3.12) and (3.13) into the force balance equation (3.2)
and move the term containing the particle acceleration dub

dt to the left side
we have

(mb + CMmf )
dub
dt

= (CM + 1)mf
Duf
Dt

+
∑

otherforces (3.14)

with mb = ρbVb and mf = ρfVp. The term containing
Duf
Dt depends only on

the fluid inertia force at the position of the particle and will be called fluid
inertia force in this manuscript. We can see that if Φρ � 1, (mb+CMmf ) '
mb, and the added mass has no effect. On the contrary, if Φρ � 1, the fluid
inertia effect is much more important. This is the situation of interest in
the present study.
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3.4 Lift force

The lift force is induced by the velocity gradient (or vorticity) in the flow
field. Often it is referred as shear-induced lift force to distinct from other
lift effects. The general expression of the lift force on a spherical particle in
an steady simple shear flow can be written as

FL = CLρfVb(uf − ub)×Ωf (3.15)

where Ωf = ∇ × uf is the vorticity, CL is the lift coefficient. There have
been few experimental studies able to measure the lift coefficient for a bub-
ble or rigid particle in undistributed rotational flow or simple shear flow. In
steady shear flows the coefficient is related to Reb and the normalized shear

Sr =
R|Ωf |
|uf−ub| .

For Stokes regime, there is no lift (CL = 0).
For Reb < 1 (moderate inertia), [44] has proved analytically that the coeffi-
cient can be expressed as (3.16) with the limit of

√
RebSr � 1

CReb<1
L =

6

π2

2 + 3Φµ

2 + 2Φµ

J(α)√
RebSr

(3.16)

with α =
√
Sr/Reb and

J(α) =
J(∞)

(1 + 0.2α−2)3/2

In the limit of Φµ →∞ and α→∞ an analytic lift force of a solid particle
can be found at J(∞) = 2.255 and recover the Saffman solution [45]. The
numerical simulations have proved this expression is appropriate up to Reb ∼
1.
For large Reynolds numbers, Reb > 50, the lift coefficient of a clean spherical
bubble (particle with Φµ � 1) depends only on the Reynolds number and
the empirical expression is [46]

CReb>50
L =

1

2

1 + 16Re−1
b

1 + 29Re−1
b

(3.17)

The expression asymptotically approaches to the analytical solution of Au-
ton for inviscid limit CL = 0.5. Providing the coefficient expression for
different range of Reb, an expression for spherical bubble matching asymp-
totically the low (3.16) and high Reynolds number (3.17) is proposed to
approximately extend the applicable range of the lift coefficient expression
[46]:

CL =

√
(CReb<1

L )2 + (CReb>50
L )2 (3.18)
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Although, all the above CL expressions are based on simple shear flow,
the lift force expression in the equation (3.15) has been shown to correctly
describe lift effects. In the following, the lift force coefficient of Eq. (3.18)
will be used to describe the lift force over a wide range of Reynolds number.

3.5 The limit of the point particle approach

Using these force coefficient expressions along with the buoyancy force (mb−
mf )g, with g the gravity in equation (3.2) and regroup certain terms, we
obtain the trajectory equation:

(mb +mfCM )
dub
dt

= CD
πR2

2
ρf |uf − ub|(uf − ub)

+mf (1 + CM )
Duf
Dt

+ CLmf (uf − ub)×Ωf

6πµfR

∫ t

0
K(t− τ)(

∂uf
∂t
− dub

dt
)dτ

+ (mb −mf )g

(3.19)

In this work, we focus on the case of a bubble, air bubble in water for
example. Bubble is a specific case of the dispersed phase. First, when
the liquid is pure enough, it has the possibility to slip along the surface
of the bubbles, in contrast to the flow past rigid bodies where the no-slip
condition is imposed. Second, owing to the very weak relative density of
bubbles compared to that of the liquid, almost all the inertia is contained
in the liquid, making inertia-induced hydrodynamic forces FTchen and FAM
particularly important in the prediction of the bubble motion. Third, the
bubble is always assumed to be spherical, which is true only when the bubble
is small enough that the surface tension can predominate over other forces
on the bubble, typically for air bubbles in water with db < 1(mm). All these
considerations together imply that µf � µb, mf � mb and CM = 0.5. mb

in the equation can be neglected and dividing by mfCM on both side and
neglecting the historical force, the equation of motion for a bubble per unit
of displaced fluid writes

ab =
dub
dt

=
uf − ub

τb
+ 3

Duf
Dt

+ 2CL(uf − ub)×Ωf − 2g (3.20)

where ab is the bubble acceleration and τb is the bubble relaxation time scale

τb =
2d2b

3νCDReb
. Physically, it is the time necessary for a bubble to smooth

out the relative velocity. The general assumptions of using this equation to
track bubble motion in turbulent flow are:
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• The fluid at the scale of the bubble must be uniform or quasi-uniform.
This demands that the bubble size must be much smaller than the
Kolmogorov db � η. In practical, this limit could be extended up to
db ∼ 10η [27]. Because in practical situations the smallest structure of
turbulence has a length scale of order 10η.

• Stokes regime: The Reynolds number calculate with the bubble size is
much smaller than unity Reb = db|uf −ub|/ν � 1. This is the Stokes
regime of the bubble. For Reb = 0 the lift force is zero. This leads to
a further simplification of Eq. (3.20)

dub
dt

=
uf − ub

τb
+ 3

Duf
Dt
− 2g (3.21)

The drag coefficient is then CD = 16/Reb, the solution for a bubble in
Stokes regime. The drag term is thus linear, and the relaxation time
depends only on the bubble size and the viscosity of the fluid:

τb =
d2
b

24ν
(3.22)

This assumption actually is a consequence of the first one, because
for a bubble when the diameter is much smaller than the Kolmogorov
scale db � η, the time that takes a bubble to relax fluid velocity is
much smaller compared to the characteristic time scale of the fluid

field. With the Stokes number defined as St = τb
tη

=
d2b

24η2
, we can see

that St converge to zero at order of (db/η)2. The relative velocity is
suppose to be of order the Kolmogorov velocity |uf − ub| � uη with
uη = η/τη. Then we can prove that Reb � Reη = 1.

The present study does not consider the effect of the influence of the bub-
ble to the fluid field. Conventionally this is called ”one-way coupling”
of point particle approach. And this is valid when the concentration is
sufficiently diluted that the bubble cannot feel the existence of the oth-
ers. For a specific situation where the turbulent intensity is very intense,
where the Kolomogrov acceleration is much more important than the grav-
ity aη = uη/τη � |g|, the gravity can also be neglected. By neglecting the
gravity, the motion of the bubble does not depend on direction and this
provides a convenient situation for statistical study of the acceleration. All
these assumptions are considered to conduct the study presented in Chapter
5.

In Chapter 6, we will discuss the influence of the non-linear drag force ef-
fect by using equation (3.21) where the relaxation time will be modified by
considering different drag laws. In Chapter 7, the effect of buoyancy will be
considered, while in Chapter 8 the effect of the lift force is discussed.



Chapter 4

Numerical simulation

This chapter is devoted to present the feature of the numerical solver used
in this study. The solver is designed to obtain a numerical simulation of the
evolution of a dispersed phase in an homogeneous and isotropic turbulent
flow. It uses a spectral method to solve Navier-Stokes equations enforcing
the constraint of divergence free for the velocity fields in a 3D box with pe-
riodic boundary conditions. The evolution of the bubble phase is obtained
by the point particle approach. This solver has been used for several previ-
ous researches on numerical studies of heavy or light particles dispersed in
turbulence [47, 24, 48, 49].

4.1 Eulerian solver

The Eulerian solver is designed to use spectral discretizations to solve Navier-
Stokes (N-S)equations enforcing the divergence free constraint for the veloc-
ity fields in 3D box with periodic boundary conditions. The use of the
periodic boundary conditions enable the possibility to use Fourier modes
representation for the various fields leading to a very accurate and efficient
way to compute the space derivative by assuming the smoothness of the
physical space. It has been used extensively in the numerical study of IHT
and proved to be efficient as well as having very good accuracy [50].

The û and p̂ are the Fourier coefficients of the velocity and pressure fields,
respectively. The Fourier coefficients are obtained with the fast Fourier
transform algorithm. In Fourier space, the N-S equations Eq. (2.1) and Eq.
(2.2), become

ikiûi = 0 (4.1)

29



30 CHAPTER 4. NUMERICAL SIMULATION

∂tûi = −ikjÛij − ikip̂− νk2ûi + f̂i (4.2)

with i2 = −1 and kj is the wave number in three directions i, j = (1, 2, 3) =
(x, y, z) and k2 = kjkj , the repeated indices implicitly implying the sum-
mation (Einstein notations). Ûij = ûiuj is the non-linear convective term.
This term is obtained with pseudo-spectral approach [50, 51]. It is more effi-
cient compared to a direct calculation of the convolution term Ûij = ûi ? ûj .
The pseudo-spectral technique requires an order of 3N3log2N

3 operations
to compute the non-linear term, while the direct computation of the convo-
lution requires an order of (N3)2 operations.

The strategy is first to compute the uiuj in the physical space. Then we
compute the fast Fourier transform (FFT) Ûij = ûiuj and then multiply
ikj . The problem is that the product uiuj contained mode of wave length
smaller than ui and the subsequent FFT is prone to introduce aliasing error.
It is essential to remove the aliasing since all the modes (even at large
wavelength) can be affected. A de-aliasing techniques have been proposed
to remove the aliasing error: zero padding 3/2-rule [52]. In practice the
FFT are computed with the library P3DFFT [53], and we use the implicit
zero-padding technique consisting of adjusting the size of the arrays to only
keep meaningful terms, the other modes, which would have been set to zero,
are discarded. This results in a significant reduction in computational time.

The pressure term can be eliminated by using divergence free constrain of the
velocity. Taking the divergence of the Navier-Stokes equations, we obtain

p̂ = −kjki
k2

Ûij − i
ki
k2
f̂i (4.3)

Substituting for p̂ into the momentum equation (4.2), we have

∂tûi = −νk2ûi + Pil(f̂l − ikjÛlj) (4.4)

with the projector operator

Pil = δil −
kikl
k2

(4.5)

The viscous term is quite straightforward to compute in the spectral do-
main. The forcing term is used in this context to introduce kinetic energy
to maintain the statistical stationary state of turbulent flow. The strategy
is to force only the largest scale of the flow. Following the method disused in
[54], the Fourier coefficient of the forcing term is proportional to the Fourier
coefficient of the velocity:

f̂i(~k) = α(k)ûi(~k) (4.6)
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with the scale dependent coefficient α computed at each time step by the
following relation:

α(k) =

{
(
√
Eint(k)/E(k)− 1)/T for k L/2π < 3

0 for k L/2π > 3
(4.7)

with k the modulus of the wavevector ~k and Eint(k) is the user defined target
energy density spectra, and E(k) is the computed velocity energy spectra.
As apparent from this definition of the forcing term, when the energy density
of the large scales is smaller than the objective energy defined by the user,
this forcing term will inject energy. On the other hand, when the computed
energy density is larger than the target, the work done by the force will be
negative. Note that the force term is only active at large scale.

The injected energy fluctuates over its average value that keeps the flow
field in statistically steady state. These energy fluctuations distributed to
all turbulent excited length scales and the spectrum of these fluctuations is
shown to have a universal inertial range, proportional to the energy spec-
trum. Further discussion can be found in [49].

The time advancing is using 2-nd Adams Bashforth (AB2). The idea is
based on approximating the integrate with a polynomial within the interval
(tn−1, tn+1) using a kth order polynomial. ∆tn = tn+1 − tn and ∆tn−1 =
tn − tn−1

ûn+1
i = ûni +

[
∂tû

n
i

(
1 +

0.5∆tn
∆tn−1

)
− ∂tûn−1

i

0.5∆tn
∆tn−1

]
∆tn (4.8)

The terms ∂tû
n
i and ∂tû

n−1
i are obtained from the addition of the previously

discussed terms according to the Navier-Stokes equations Eq. (4.4). The
AB2 method requires the information from the (n− 1)th and the nth steps
to find the solution at the (n + 1)th step. This method is explicit so it is
conditionally stable.

The algorithm in one time step at instant tn:

• Begin with computing the convection term → de-aliasing → saving it
with a separate copy for further computing the material acceleration
→ adding to the ∂tû

n
i which are initially set to zero,

• computing viscous terms and adding to the ∂tû
n
i ,

• computing the forcing term and adding to the ∂tû
n
i

• doing time advancing to update the velocity ûn+1
i at the instant tn+1,
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• projecting the velocity with Eq. (4.5) and doing a de-aliasing operation
once more to make sure to remove all the wave-numbers that cause
aliasing error,

• transferring the velocity in physical space and computing the acceler-
ation.

4.2 The large eddy simulation

In the large eddy simulation approach only the large scales of the flow are
explicitly computed while the influence of the small discarded scales on the
resolved scales of the flow are accounted for through a model. The pri-
mary advantage of the LES is the reduced computational cost compared
to a numerical simulation in which all the scales of the flow are properly
resolved (usually called Direct Numerical Simulation) since one can use a
much coarser computational grid. On the other hand, the spatio-temporal
fluctuations of the velocity fluid corresponding to the scales above the cutoff
filter can be accurately predicted by the LES approach. Typically, the char-
acteristic size of the cutoff filter is of the order of the mesh size and should
lie in the inertial range. The purpose of the subgrid scale model is to ensure
the correct energy flux from the resolved scales of the flow to the unresolved
one (and thus the proper mean dissipation rate.) Most models rely on the
concept of the eddy viscosity.

The concept is based on the decomposition of the velocity:

ui = ui + u′i (4.9)

where ui is filtered velocity or large scale motion resolved in LES and u′i is
the residual velocity representing small scale motion which is unresolved in
LES.

ui(x, t) =

∫
ui(ξ, t)G∆(ξ − x)dξ (4.10)

with G∆ a filter. This solver use a sharp spherical truncation in which all
Fourier modes having wavenumber greater than a specified cutoff kcutoff are
removed. The cutoff wavenumber is determined by the LES mesh size ∆.
The filtered N-S equations Eq. (2.1) and Eq. (2.2) in physical space can be
written as

∂ui
∂xi

= 0 (4.11)
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∂ui
∂t

+
uiuj
∂xj

= −1

ρ

∂P

∂xi
+
∂τ ij
∂xi

+
1

ρ
fi (4.12)

with the stress tensor define as

τ ij = 2νSij

and the deformation tensor

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)

Here we suppose that the filter operation can be put in the differential
operation. This is validated only when the filter cutoff wavenumber is based
on the mesh size. Applying the scale decomposition Eq. (4.9) into the
convection term on the left side of Eq. (4.12) is

uiuj = (ui + u′i)(uj + u′j)

The equation (4.11) becomes

∂ui
∂t

+
∂(ui uj)

∂xj
= −1

ρ

∂P

∂xi
+
∂(τij − τSGSij )

∂xi
+

1

ρ
fi (4.13)

where the tensor τSGSij = uiuj − ui uj is the sub-grid contribution of the
constraint and can be decomposed as:

τSGSij = ui uj − ui uj︸ ︷︷ ︸
I

+uiu′j + uju′i︸ ︷︷ ︸
II

+u′iu
′
j︸︷︷︸

III

(4.14)

The term I is the interaction between two vortices of resolved scale and will
transfer its energy to smaller scales the second term (II) is the interaction
between the resolved motion and the unresolved motion (sub-grid motion).
Due to this interaction, the kinetic energy could transfer to two directions
but in average the energy transfer to smaller scales. The third term (III)
is the interaction between the sub-grid motion and it contributes to the
energy transfer from the small scales to large scales. In practice, in order
to compute the filtered convection term ui uj , one need to double the mesh
number which are needed to compute other terms [15]. Thus it is convenient
to define the sub-grid stress tensor as τSGSij = uiuj − ui uj . In Eq. (4.14)
only II and III are left. The sub-grid constrain tensor can be decomposed
to a contribution of isotropic and an anisotropic contribution

τSGSij = τ sgsij +
2

3
Kδij (4.15)

where τ sgsij is the residual tensor of constrain an-isotropic and K is the resid-
ual kinetic energy of unit mass which can be expressed as

K =
1

2
τSGSii =

1

2
(uiui − ui ui) (4.16)
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Note that the term
2

3
Kδij is usually included in the pressure to form the

modified pressure field p = P +2/3K which is implicitly computed to ensure
the divergence free of ui Eq. (4.13) becomes

∂ui
∂t

+
∂(ui uj)

∂xj
= − ∂p

∂xi
+ ν

∂2ui
∂xj∂xj

+
1

ρ
fi −

∂τ sgsij

∂xi
(4.17)

with p = P
ρ + 2

3K is the modified pressure.

The usual approach is to approximate the sub-grid scale stresses with an
eddy viscosity model. With this model, it is assumed that the off-diagonal
terms of the stress tensor are proportional to the resolved rate of strain
tensor Sij = 1

2(∂ui∂xl
+ ∂ul

∂xi
).

τ sgsij +
2

3
Kδij = 2νtSij (4.18)

The trace of τ sgsij +
2

3
Kδij is zero by construction as the trace of Sij which

is zero due to incompressibility condition. The proportionality coefficient is
the eddy viscosity (or turbulent viscosity), νt, and fluctuate a priori in space
and time.

The turbulent viscosity νt can be estimated base on Prandtl’s mixing length
hypothesis, giving the so-called Smagorinski model. The mixing length is
given by the characteristic size of the largest unresolved scales of the flow
motion which is the filter length ∆f , and the characteristic velocity of the

flow at this scale is locally estimated as ∆
√

2SijSji, giving:

νt = (Cs∆f )2
√

2SijSji (4.19)

with Cs = 0.2 a constant of the model [51].

Validation of the Eulerian solver: Firstly, the energy conservation test
is by resolving the equation (4.4) and setting the viscosity and the external
force to zero. We can see that the energy is fluctuating with an amplitude
negligible, see in figure 4.1. And the energy spectral tend to have a equilib-
rium of energy throughout all the wave-numbers figure 4.2. This means that
at each shell of the wavenumbers containing the same amount of energy

∫

|ki|<k<|ki+1|
E(k)dk = Cst

The second test is designed to demonstrate that with the proposed energy



4.2. THE LARGE EDDY SIMULATION 35

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t

0.00005

0.00000

0.00005

0.00010

0.00015

0.00020

∆
T
K
E
/
T
K
E

0

Figure 4.1: The evolution of turbulent kinetic energy fluctuations, by set-
ting the viscosity and the forcing term to zero in N-S equations, versus time.
with ∆TKE = TKE(t)− TKE(t0) and TKE0 = TKE(t0)

injection the fluid field will tend to have a statistical stationary state. The
fluid field is resolved with the forcing term Eq. (4.6) with Reλ ' 200 and
ratio of dissipative scale to the smallest resolved scale η/∆ ' 0.88, with AB2
time advancing with the current number CFL = 0.3 and a deterministic
forcing term Eq. (4.6). The flow field reaches a statistical stationary regime
by 8 ∼ 10 times of the large eddy turn over time, where the fluctuations do
not exceed ±2.5% of the estimated mean kinetic energy, see figure 4.1.

In order to test the model of LES, another direct simulation with a higher
Reλ ' 200 with a resolution of N = 10243 with η/∆ ' 0.725 is computed.
The velocity 3D spectral is shown in figure 4.4. In the same figure the
spectral of LES with Reλ ' 200 N = 643 with η/∆ ' 0.046 is plotted. We
can see that the spectral is cutoff at kη ' 0.1.



36 CHAPTER 4. NUMERICAL SIMULATION

100 101

k

10-9

10-7

10-5

10-3

10-1

101

E
(k

)

Figure 4.2: The evolution of energy spectral, by setting the viscosity and
the forcing term to zero in N-S equation, with time. For the line with color
black, is the initialized spectral. With time increases, the spectral tend
asymptotically to power law the dash line (–) is E(k) = k. The color from
back to orange is the time increasing sense.
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Figure 4.3: Kinetic energy statistics in all the computational domain with
deterministic forcing keeping the volume-averaged energy at the large scales:
tL is the large eddy turn over time scale and U2 is the kinetic energy at the
instant t and Ũ2 is the estimated kinetic energy.
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Figure 4.4: Velocity 3D spectral for Reλ ' 200, (-) DNS (−·), LES, (- -) is
the power law of −5/3.
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4.3 The Lagrangian solver

The solver gives the evolution of the bubbles with the point particle approach
by solving the force balance equation (3.2). By knowing the Eulerian field
and the position of the bubble at the beginning of the time step, the nec-
essary information velocity, acceleration and vorticity can be interpolated
at the positions of the bubbles. Then the ordinary differential equations
(ODE) describing the motion of each of these bubbles are integrated in time
accounting for the value of the carrier phase. The Lagrangian solver is par-
alleled with domain decomposition: each process takes care of the bubbles
that are in his sub-domain. The following steps are done to obtain the
dynamic of the bubbles:

• First, the value of the Eulerian fields is interpolated at the position
of the bubble. This is generally required to compute the ”right hand
side” of the ODE. The interpolation is performed with a 4th-order
cubic spline. In figure 4.5, the material acceleration at the position
of the fluid tracer Dtuf and the acceleration of the fluid tracer dut

dt (t)
is compared. We can see that the interpolating scheme provides a
reasonable accuracy of the interpolation.

10 15 20 25 30 35
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
 acc fluid part
 fluid acc interpolated

Figure 4.5: Compare of (- ·) fluid acceleration Dtuf at the position of the
tracer and (-) the tracer acceleration dut

dt (t).

• Second, integrate in time to obtain the new position, and velocity of
the bubbles. Again the time advance scheme is AB2.
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• Third, if a bubble has crossed the boundary of a sub-domain: this
bubble is sent to the MPI task managing the sub-domain where the
bubble is arrived.

Results of fluid tracer: The normalized fluid tracer velocity has a pdf
close to the Gaussian distribution, figure 4.6. The fluid tracer acceleration

-4 -3 -2 -1 0 1 2 3 4

10 -4

10 -3

10 -2

10 -1

10 0

Figure 4.6: The probability density function of the fluid tracer velocity

probability distribution function is shown in figure 4.7. The acceleration
pdf has been already known to have a no-Gaussian distribution with large
stretched exponential tails corresponding to fluctuations much larger than
the root-mean-value arms [20, 27]. This implies that the acceleration is as
well a highly intermittent quantity in turbulence. The observation has also
been reported in experimental study of fluid tracer acceleration [18] and
numerical study [55]. The pdf of the fluid tracer x-component acceleration
can be fitted with the relation (4.20). This relation is obtained by assuming
that the amplitude of the acceleration has a log-normal distribution and the
orientation of the acceleration vector being isotropic [18, 55]

pdf(ai) =
1

2

∫ ∞

|ai|

pdf|ai|(a)

a
da

The pdf function of the acceleration magnitude is

pdf|ai|(a) =
1

as
√

2π
exp(−(ln(a/µ))2

2s2
)
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with µ = 〈|a|〉 and s is a parameter that depends on Reλ. The accelera-
tion pdf computed with LES lose the intermittency, the distribution form
will tend to a Gaussian distribution if the cut off wavenumber continually
decreases.

pdfai(x) =
exp(1.5s2)

4
√

3

[
1− erf(

ln(|x/
√

3|) + 2s2)

s
√

2
)

]
(4.20)

The acceleration variances resolved with LES are smaller than that of DNS
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Figure 4.7: Acceleration pdfs of fluid tracer acceleration of Reλ ' 100: (-
)DNS (-·) LES (· · · ) standard Gaussian distribution,(–) The relation (4.20)
obtained by assuming the acceleration magnitude has a log-normal distri-
bution.

is shown in figure 4.8. This difference can be explained by the Kolmogorov
scale separation. The basic concept is to define the fluid acceleration as
the smallest velocity increment resolved by the corresponding resolution
dividing the corresponding time scale a ∼ δτu/τ . Consider a fluid tracer
adverting in the turbulence with velocity u after a time lag τ , the fluid
tracer appears at a different place with a distance of r to its position at the
instant t. The velocity increment of time is equal to the velocity increment
in the space δτu = δru. According to the similarity of Kolmogorov, the
velocity fluctuation at scale η < r < L in the inertial range has the velocity
increment δru ∼ (r/L)1/3 and with corresponding time scale τ ∼ (r/L)2/3.
The acceleration of the resolved fluid field is a ∼ (r/L)−1/3. Then we have
a2
f/a

2
η ∼ (r/η)−2/3. This result is proven with our simulation data, as shown

in figure. 4.8.
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Figure 4.8: The acceleration variance of fluid particles from left to right
with respectively the resolution of (LES)N = 322, N = 482, N = 643, and
(DNS)N = 5123for Reλ ' 100 (- -) is a linear fitting with a bent of 5/2.

The Lagrangian auto-correlation is shown in figure 4.9. The acceleration
fluctuation de-correlates much faster than the velocity fluctuation. The
characteristic of correlation time scale is about the Kolmogorov time scale
τη while the velocity correlation time is the energy containing time scale tL.

4.4 Conclusions

In this chapter, the numerical code used to solve the homogeneous isotropic
turbulence has been presented. The Eulerian solver is designed to use spec-
tral discretizations to solve Navier-Stokes equations enforcing the divergence
free constraint for the velocity fields in 3D box with periodic boundary con-
ditions. The Lagrangian solver uses the point-wise particle method to track
the bubble trajectory.

Besides, we also present the simulation results resolved with this code for a
fluid tracer. Comparing the results of the fluid tracer with literature [18, 55],
the code is proved to have a good performance. In the following studies, this
code will be used.
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Figure 4.9: The Lagrangian auto-correlation of (- -) fluid particle velocity,
and of (-) fluid particle acceleration



Chapter 5

Model for the dynamics of
micro-bubbles in
high-Reynolds-number flows

This chapter is presented in the form of a standalone article. We performed
DNS for turbulence with Reλ ' 200 and used the one-way coupling point-
wise particle method considering the drag and the fluid inertia forces to
study the bubble dynamics in turbulent flows. We propose a model for the
acceleration of micro-bubbles (smaller than the dissipative scale of the flow)
in a homogeneous and isotropic turbulent flow. Furthermore, we propose
a sub-grid stochastic model, within the LES framework, as an extension of
the approach of [24] in order to account for the unresolved fluid turbulent
fluctuations in the dynamics of micro-bubbles for locally homogeneous and
isotropic high-Reynolds number flows.
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high-Reynolds-number flows
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We propose a model for the acceleration of micro-bubbles (smaller than the dissipative
scale of the flow) subjected to the drag and fluid inertia forces in a homogeneous and
isotropic turbulent flow. This model, that depends on the Stokes number, Reynolds
number and the density ratio, reproduces the evolution of the acceleration variance
as well as the relative importance and alignment of the two forces as observed
from direct numerical simulations (DNS). We also report that the bubble acceleration
statistics conditioned on the local kinetic energy dissipation rate are invariant with
the Stokes number and the dissipation rate. Based on this observation, we propose a
stochastic model for the instantaneous bubble acceleration vector accounting for the
small-scale intermittency of the turbulent flows. The norm of the bubble acceleration
is obtained by modelling the dissipation rate along the bubble trajectory from a
log-normal stochastic process, whereas its orientation is given by two coupled random
walks on a unit sphere in order to model the evolution of the joint orientation of the
drag and inertia forces acting on the bubble. Furthermore, the proposed stochastic
model for the bubble acceleration is used in the context of large eddy simulations
(LES) of turbulent flows laden with small bubbles. To account for the turbulent
motion at scales smaller than the mesh resolution, we decompose the instantaneous
bubble acceleration in its resolved and residual parts. The first part is given by the
drag and fluid inertia forces computed from the resolved velocity field, and the second
term refers to the random contribution of small unresolved turbulent scales and is
estimated with the stochastic model proposed in the paper. Comparisons with DNS
and standard LES, show that the proposed model improves significantly the statistics
of the bubbly phase.

Key words: bubble dynamics, particle/fluid flow, isotropic turbulence

1. Introduction
In various industrial set-ups, such as chemical reactors, water treatment, steam

generators and systems for drag reduction, the presence of a bubble phase plays
an essential role. The further improvement of these applications rely on our ability
to predict the dynamics of the bubbles in highly turbulent flows. However, even
if the equation for the dynamics of micro-bubbles (i.e. bubbles smaller than the

† Email address for correspondence: remi.zamansky@imft.fr
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dissipative scale of the flow) is well known and only depends on the local velocity
of the fluid and its derivatives (Gatignol 1983; Maxey & Riley 1983; Magnaudet &
Eames 2000), it remains challenging to precisely estimate the statistics of the bubble
acceleration in turbulent flows. These difficulties arise because all the flow scales
affect the bubble motion. In particular, the small scales of the flow play an essential
role. Indeed, for small bubbles, the dominance of the fluid inertia term in the bubble
dynamics equation leads to an increase of the bubble acceleration variance with the
bubble diameter (Calzavarini et al. 2009; Prakash et al. 2012; Mathai et al. 2016)
in contrast with inertial particles for which the fluid inertia terms can be neglected.
Further, the non-Gaussian acceleration probability density functions (p.d.f.s) with
broad probability tails of high bubble acceleration events observed experimentally and
numerically (Mazzitelli & Lohse 2004; Volk et al. 2008a; Prakash et al. 2012) stress
the importance of the intermittent fluctuations characteristic of the small scales of
the flow. In addition, the specificity of bubble acceleration statistics has been shown
to affect, among other important statistical quantities, their dispersion and clustering
properties (Mazzitelli & Lohse 2004; Calzavarini et al. 2008; Tagawa et al. 2012,
2013).

For very large Reynolds-number flows, it remains impossible to resolve all the
turbulent scales with direct numerical simulations (DNS). This is why, when the large
scale features of the flow mainly depend on the specific configuration, the large eddy
simulations (LES) approach is commonly used. In such approaches, the effective
action of the small-scale motions on the large-scale evolution is parameterized.
Models based on the turbulent viscosity have proved to reasonably achieve such
parameterization of the energy transfer rate below the resolved scale (Meneveau &
Katz 2000; Sagaut 2002). Following this procedure, one obtains the evolution of a
coarse-grained filtered velocity field, uf . Within this framework, the standard approach
to perform LES with Lagrangian tracking for the dispersion of micro-bubbles in a
turbulent flow is to substitute the local fluid velocity by the filtered velocity field in
the bubble dynamics equation (Climent & Magnaudet 1999; van den Hengel, Deen &
Kuipers 2005; Hu & Celik 2008; Dhotre et al. 2013). However, doing so, the small
(unresolved) scales of the flow are discarded from the bubble dynamics, resulting in
strong underestimation of the bubble acceleration.

Different approaches were considered to account for the unresolved scales in
the calculation of the drag force on small inertial particles. Most of them rely
on the stochastic estimation of the subgrid fluid velocity along the Lagrangian
trajectory of the particles (Fede & Simonin 2006; Berrouk et al. 2007; Pozorski
& Apte 2009; Minier, Chibbaro & Pope 2014; Breuer & Hoppe 2017; Johnson
& Meneveau 2017; Sawford 1991; Sawford & Guest 1991; Park et al. 2017).
Nevertheless, none of these approaches addressed the issue of the fluid inertia
force, which is essential for bubble dynamics. Aside, approaches have been proposed
to reconstruct the fluid fluctuations in the Eulerian fields which can in turn be used
to advect the dispersed phase (Kerstein 1999; Burton & Dahm 2005a,b; Ghate &
Lele 2017). Among them Sabel’nikov, Chtab & Gorokhovski (2007) introduced the
decomposition of the instantaneous fluid acceleration field into a filtered contribution
and a random contribution to account for the intermittency at small, unresolved, scales
(see also Sabel’nikov, Chtab-Desportes & Gorokhovski 2011; Zamansky, Vinkovic &
Gorokhovski 2013; Sabelnikov, Barge & Gorokhovski 2019). Recently, Gorokhovski
& Zamansky (2018) considered a similar decomposition for the instantaneous
acceleration of dispersed objects,

ab = ab︸︷︷︸
large-scale
contribution

+ a∗b︸︷︷︸
small-scale random

contribution

. (1.1)
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556 Z. Zhang, D. Legendre and R. Zamansky

The temporally and spatially filtered force is obtained from the resolved velocity field,
uf , while the random force accounts for fluctuations at unresolved scales. The filtered
contribution presents much less intense fluctuations than the total acceleration as can
be verified in Lalescu & Wilczek (2018). In line with the Kolmogorov hypothesis,
it is assumed that the main source of randomness in the acceleration is attributed
to the fluctuation of the local energy transfer rate. We then propose to approximate
the instantaneous small scale contribution of the acceleration by the acceleration
conditionally averaged on the local value of the dissipation rate as ‘seen’ along the
Lagrangian path ε∗ : a∗b ≈ 〈ab | ε∗〉. Within the LES framework, ε∗ has to be modelled
since its wide fluctuations cannot be resolved from the filtered velocity field. For solid
inertial particles solely subject to the Stokes drag force, Gorokhovski & Zamansky
(2018) proposed such a model along with a log-normal stochastic process as a
surrogate to the local dissipation rate. In the present paper, we extend this approach
to the dynamics of micro-bubbles dispersed in turbulent flows. We first use DNS to
analyse the statistics of the bubble acceleration and of the two main forces acting on
the bubble (drag and fluid inertia forces). Specifically, we investigate the evolution of
the magnitude of the two forces with the bubble diameter and their relative orientation,
as well as the statistics of the bubble acceleration conditioned on the local dissipation
rate. To estimate the magnitude of the acceleration, we propose a model based on the
bubble spectral response to the fluid velocity fluctuation initially proposed by Tchen
(1947). Further, consistently with the time scale separation between the evolution
of the norm and the orientation (Pope 1990; Mordant, Crawford & Bodenschatz
2004), our modelling is supplemented with a stochastic process for the orientation,
a∗b = |a∗|e∗. The proposed model accounts for intermittency effects, as well as the
correlation and alignment between the drag force and the fluid inertia force.

The outline of the paper is as follows: in § 2 we provide the numerical details of the
DNS and the LES of statistically stationary homogeneous and isotropic turbulent flows.
In § 3, we report the statistics of the acceleration and of the forces obtained from the
DNS for various Stokes numbers. We also present a model describing the dependence
of these statistics. Section 4 gives the formulation of the stochastic models accounting
for the unresolved fluid acceleration. Subsequently the coupling of this model with
LES is assessed by comparison with DNS and standard LES.

2. Details of the numerical simulations

We consider very small bubbles dispersed in an isotropic homogeneous turbulent
flow. The continuous liquid phase is given by the incompressible Navier–Stokes
equation and the dispersed phase is treated with a point particle approach. The
feedback of the bubbles on the carrier phase is disregarded. The carrier flow field is
computed with a pseudo-spectral method in a periodic box (Zamansky et al. 2016;
Gorokhovski & Zamansky 2018; Bos & Zamansky 2019). In order to maintain a
statistically stationary state, a forcing term active at the smallest wavenumbers is
applied to the Navier–Stokes equation (Chen et al. 1993). The flow field is simulated
by DNS and LES for the same Reynolds number, and the details of the simulation
parameters are given in table 1. For the LES, the turbulent viscosity is estimated by
the standard Smagorinsky model, ν∆=Cs∆|Sij|, where Sij is the filtered rate of strain
tensor, ∆ is the cutoff scale and Cs is the model parameter. With the Smagorinsky
model, the energy transfer rate from scale ∆, ε∆= 2(ν+ ν∆)SijSij can give a relatively
good estimate of the average energy flux, 〈ε∆〉 = 〈ε〉, with ε being the local rate of
kinetic energy dissipation. However, the energy transfer rate from scale ∆ typically
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Small-scale dynamics of micro-bubbles 557

Method N ReH Reλ τL/τη
〈ε〉H
K3/2

L/η η/∆ ν∆/ν τ∆/τη

DNS 10243 10 600 216 55.8 1.9 418 0.8 — —
LES 643 10 100 193 51.3 2.09 367 0.045 9.7 52
LES 483 9 800 187 48.4 2.3 336 0.034 14.6 59
LES 323 9 381 175 45.5 2.47 307 0.02 25 80

TABLE 1. The numerical parameters of the DNS and LES. The number of grid points in
each direction is given by N. The size of numerical domain is H = 2π, τL = (2/3K)/ε is
the eddy turnover time, L= (2/3K)3/2/ε is the scale of the large eddies, K is the average
turbulent kinetic energy and ε is the average dissipation rate. The Reynolds number based
on the large scale of the flow is given by ReH , Reλ is Reynolds number based on the
Taylor length scale, η and τη are the Kolmogorov length and time scale and τ∆ =∆2/ν∆.

presents much less intense fluctuations compared to ε when ∆� η. In the following,
it is shown that ε is able to characterize the bubble dynamics, and we use a stochastic
process to estimate the value of ε from ε∆.

For micro-bubbles in turbulence, the bubble equation of motion is essentially
given by the drag force and the inertia force (Gatignol 1983; Maxey & Riley 1983;
Magnaudet & Eames 2000),

ab(t)=
dub(t)

dt
=−

ub(t)− uf (x= xb(t), t)
τb

+ β
Duf

Dt
(x= xb(t), t);

dxb(t)
dt
= ub(t),

(2.1a,b)
where ab, ub and xb are the bubble acceleration, velocity and position, uf is the fluid
velocity field and Duf /Dt= ∂uf /∂t+ uf · ∇uf is its material derivative. The parameter
β, which compares the mass accelerated by the fluid to the mass accelerated by the
bubble, is defined as β = (1+Cm)/(Γ +Cm), where Γ is the density ratio and Cm is
the added mass coefficient (Cm= 1/2 for a sphere in an unbounded environment). For
a bubble τb=d2

b/(24ν), with ν the kinematic viscosity and db the bubble diameter, and
β= 3, assuming that the gas–liquid density ratio is vanishing, and that the bubbles are
non-deformable spheres with free slip at the liquid interface. For a solid body with
no slip at the interface one has τb = (Γ + Cm)d2

b/(18ν) and for large density ratio
β ≈ 0. In (2.1) the history and lift forces are discarded as they appear less important
(Legendre & Magnaudet 1997, 1998; Magnaudet & Eames 2000; Mazzitelli, Lohse
& Toschi 2003; Calzavarini et al. 2008). Also as shown by Mathai et al. (2016) the
effect of gravity is negligible on the bubble dynamics as long as St/Fr� 1, with St=
τb/τη and Fr= aη/g being the Stokes and Froude numbers, respectively, τη =

√
ν/〈ε〉

and aη=
√
〈ε〉/τη being the Kolmogorov time and acceleration scales, respectively. To

evaluate the right-hand side of (2.1) the value of fluid velocity and total acceleration
fields at the bubble positions are interpolated from the computational grid with the
Hermite interpolation scheme. For each Stokes number we track 1 628 000 bubbles per
Stokes number for the DNS and 62 800 for the LES. In table 2 we give the Stokes
number for our seven sets of simulations. For a bubble with Γ =0, the only possibility
to vary the Stokes number is to change db/η through the relation db/η=

√
24St. As

apparent, for the largest Stokes numbers considered here, the point particles approach
appear unrealistic as db/η > 1. Note, however, that according to Calzavarini et al.
(2009), the finite volume effects appear to be significant for db/η > 10. Moreover, as
seen in table 2 for the largest Stokes numbers, the bubble Reynolds number, Reb =
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558 Z. Zhang, D. Legendre and R. Zamansky

St 0.021 0.074 0.20 0.45 1.01 1.55 2.07
dbη 0.70 1.33 2.19 3.29 4.93 6.10 7.04
Reb 0.06 0.36 1.4 4.2 11.3 18.4 25.1

TABLE 2. The Stokes numbers and non-dimensional diameters of the bubbles used for
the DNS and LES, and the bubble Reynolds numbers computed from the DNS.

√
〈(uf − ub)2〉db/ν, becomes significant, and the Stokes drag law is not strictly valid

for those Stokes numbers. Nevertheless, the drag of a spherical clean bubble needs
corrected by a function of Re ranging between 1 and 3 in the limit of infinite Reynolds
number. Typically for the maximum value reported in table 2, the correction is 1.9. So
we do not expect a qualitative change on the behaviour of the results presented below.
Therefore, we choose to keep a simple drag law in order to simplify the analysis.
Finally let us mention that from a dimensional point of view to have St= 1 and Fr= 1
for bubbles in water, with normal gravity (g = 9.81 m s−2), requires db ≈ 0.0002 m
and ε≈ 0.2 m2 s−3.

The DNS results are detailed in the next section. They will serve as the basis for
the discussion of the stochastic modelling developed in § 4.

3. Statistics of the bubble acceleration and of the fluid forces on the bubbles
Response of small bubbles and particles to turbulence is known to depend on both

Stokes number and β. This is illustrated in figure 1 which presents the normalized
acceleration variance against the Stokes number for various value of β. In this figure
we report the data obtained from our DNS for micro-bubbles (β = 3), the DNS for
Calzavarini et al. (2009) for light particles (β = 2.5) and heavy particles (β = 0.14)
and the DNS of Bec et al. (2010) for heavy particles (β = 0). For the heavy particles
(β <1), it is observed that the acceleration variance decreases when the Stokes number
increases. This is in contrast to the case of bubbles and light particles (β >1) in which
the bubble normalized acceleration variance increases with St.

Based on the dynamics of the bubble given by (2.1) and following the approach of
Tchen (1947) (see also Hinze 1975), one can derive a response function of the bubble
velocity fluctuations to the fluid fluctuations, Hu(ω),

Eb(ω)=H2
u(ω)Ef (ω); H2

u(ω)=
1+ β2ω2τ 2

b

1+ω2τ 2
b
, (3.1a,b)

with ω the pulsation, and where Eb(ω)= ûb(ω)ûb(−ω) and Ef (ω)= ûf (ω)ûf (−ω) are
the Lagrangian spectra of the bubble and fluid velocity and circumflexes are used to
denote the Fourier coefficients. To obtain this relation we assume that the trajectory
of the bubble does not deviate significantly from the trajectory of a fluid element
as we substitute the material derivative of the fluid velocity by its time derivative
along the bubble trajectory. This assumption is questionable as soon as the Stokes
number of the bubble is not vanishingly small, and will be discussed later. Anyway,
it enables us to easily obtain the qualitative behaviour of the bubble dynamics since
in that case, it is not explicitly dependent on the fluid velocity gradient. As shown in
the inset of figure 1, the response function differs significantly for a bubble (β = 3)
and a heavy particle (β = 0). While for β = 0, the inertia of the particle filters the
high frequency fluctuations of the fluid, for a bubble the high frequency fluctuations
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102101100

St
10-1

ø†b

10-2

101

100

10-1

10-2

10-3

¯a
p2 ˘/

¯a
f2 ˘

Hu
2

10210110010-110-2
10-2

10-1

100

101

FIGURE 1. (Colour online) Acceleration variance normalized by the fluid tracer
acceleration variance from our DNS for bubbles (u and continuous line), the DNS data of
Bec et al. (2010) and Lanotte (2011) for heavy inertial particles β = 0, Reλ= 400 (q and
continuous line), the DNS from Calzavarini et al. (2009) for β = 2.5 and Reλ= 180, with
and without the Faxén correction (+ with dotted and dot-dashed lines, respectively), and
β = 0.14 (+ with continuous line), the experimental measurements from Prakash (2013)
for Reλ = 145 − 230 and β ≈ 3 (× with dashed lines). Comparison with the relation
(3.4), 〈a2

b〉(St, β, Re0)/〈a2
b〉(0, 1, Re0) with c1 = 2.8 and Re1/2

0 = 0.08Reλ = 16 for β = 0,
0.14, 0.5, 1, 1.5, 2, 2.5 and 3 from black to orange, in dashed lines, and with c1 = 2.8
and Re1/2

0 = 0.08Reλ = 32, β = 0 in black dotted line. The inset is the response function
(3.1) as a function of ωτb for β = 0, 0.5, 1, 2 and 3 from black to orange, respectively.

of the fluid are amplified. From this relation one can also obtain the response function
relating the bubble acceleration fluctuations to the fluid velocity fluctuations along the
bubble trajectory, Ha(ω),

Ea(ω)=H2
a(ω)Ef (ω); H2

a =ω
2H2

u(ω), (3.2a,b)

with Ea the Lagrangian spectrum of the bubble acceleration. The bubble acceleration
variance is given by 〈a2

b〉 = 2
∫
∞

0 Ea(ω) dω. To compute the variance, one needs
to prescribe the Lagrangian fluid velocity spectrum along the bubble trajectory.
For a fluid tracer the Lagrangian spectrum presents a power law for intermediate
frequencies, Ef (ω)∼ 〈ε〉ω

−2 (Tennekes & Lumley 1972; Yeung 2001). To account for
finite Reynolds number effects, and to have a finite energy density for ω→ 0 we
consider the form for the Lagrangian spectra (Hinze 1975; Mordant, Metz & Michel
2001) as follows:

Ef (ω)≈
k0〈ε〉

ω2 +ω2
0
, (3.3)
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560 Z. Zhang, D. Legendre and R. Zamansky

with k0 a constant, and ω−1
0 the Lagrangian integral time scale. Note that the relation

(3.3) gives, for the velocity Lagrangian autocorrelation, ρ(τ)= exp(−ω0τ). As shown
by Sawford & Yeung (2011), one has (τηω0)

−1
= (ωη/ω0)/2π ≈ 0.08Reλ, with ωη =

2π/τη. For convenience we note in the following Re1/2
0 = (τηω0)

−1. Furthermore the
normalizing condition of the spectra, 〈u2

f 〉 = 2
∫
∞

0 Ef (ω) dω, gives after integration
〈u2

f 〉=πk0〈ε〉/ω0 that imposes k0= 2(τL/τη)(ω0/ωη)≈ 4(τL/τη)Re−1
λ with τL=〈u2

f 〉/〈ε〉
the large eddy time scale. This constant is computed from the DNS to be k0 ≈ 1.04
(see table 1). As seen from figure 2(a), with k0=1.03 and ω0/ωη=0.0092, the relation
(3.3) provides a very good estimation of Ef for the various Stokes number considered
here, for ω�ωη. Nevertheless, the high frequency part of the spectra, which presents
dependence on the Stokes number, is not predicted correctly by (3.3), an increase
in inertia leads to more energy at high frequency. Let us note that for β > 0 the
previous integral only converges if Ef (ω) decreases fast enough at large ω. Therefore
to ensure its convergence, the integral is truncated above k1ωη, independently of the
Stokes number. This gives for the bubble acceleration variance the following relation:

〈a2
b〉 ≈ c0a2

η

[
β2
+

1− β2

1− St2
0

tan−1(c1St)
c1St

−
1− β2St2

0

1− St2
0

tan−1(c1Re1/2
0 )

c1Re1/2
0

]
, (3.4)

with c1 = 2πk1, c0 = 4πk1k0 and St0 = St/Re1/2
0 a Stokes number based on the large

eddy time scale. Note that the previous relation does not present singularities for St0=

1 since in this case the last two terms cancel. Also 〈a2
b〉 remains positive for all St,

Re0 and β. Nevertheless, the assumptions used to derive (3.4) are a priori satisfied
for Re0� St2 and Re0� 1, and in this limit (3.4) becomes

〈a2
b〉 ≈ c0a2

η

[
β2
+ (1− β2)

tan−1(c1St)
c1St

]
. (3.5)

A similar relation is proposed by Zaichik & Alipchenkov (2011). Their derivation
is based on the same approximation for the fluid acceleration and assumes the
fluid velocity correlation in physical space that include a viscous cutoff at small
scale contrary to the relation (3.3) used here. The relation (3.4) with c1 = 2.8 and
Re1/2

0 = 16 is plotted in figure 1 for various St and β. In this figure, the bubble
acceleration variance is normalized by the acceleration variance of fluid tracers
estimated from the model (3.4) by setting St = 0 and β = 1. It is seen that (3.4) is
overall in good agreement with the DNS data sets for β = 3, 2.5, 0.14 and 0. The
discrepancy between the DNS and relation (3.4) observed for the inertial particles
around St = 1, is attributed to the preferential concentration of particles, since this
effect is not accounted for in the model. For the inertial particles at St ≈ 0.5 the
model overestimates the acceleration by approximately 20 %. It is also observed that
for St > 1, (3.4) underestimates the DNS when β = 3 and 2.5. Note also that the
evolution of the acceleration variance with St and β given by the model (3.4) appears
qualitatively similar to the DNS data presented by Volk et al. (2008a). As expected,
the acceleration variance normalized by the acceleration variance of fluid tracer tends
to unity when St goes to 0 for every value of β, indicating that bubbles with bubbles
with extremely small diameter effectively behave as fluid tracers. According to (3.4)
for β = 0, the decrease of the acceleration variance with the Stokes number presents
the same scaling as the relation proposed by Gorokhovski & Zamansky (2018),
namely 〈a2

b〉/a
2
η ≈ 1 for St� 1, 〈a2

b〉/a
2
η ∼ St−1 for 1� St�

√
Re0 and 〈a2

b〉/a
2
η ∼ St−2

for St�
√

Re0 and appears consistent with the relation proposed by Bec et al. (2006).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

66
2

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IM

FT
 - 

In
st

itu
t d

e 
M

ec
an

iq
ue

 d
es

 F
lu

id
es

 d
e 

To
ul

ou
se

, o
n 

02
 O

ct
 2

01
9 

at
 0

7:
35

:3
3,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.



Small-scale dynamics of micro-bubbles 561

10010-110-2

ø/ø˙

100

¯(d
u f(

x=
x p)

/d
t)

2 ˘/¯
(D

u f/
Dt

)2 ˘

10-110-2

St

10010-110-2

St

10-3

105(a) (b)
104

103

102

101

100

10-1

10-2

10-3

E f
(ø

)ø
2 ˙/

¯´
˘

6

5

¯((
u f

 -
 u

b)
 · 

◊
u f

)2 /a
2 ˙

4

3

2

1

0

101

100

10-1

10-2

¯(Duf(x=xp)/Dt)2˘/¯(Duf/Dt)2˘

FIGURE 2. (Colour online) (a) Lagrangian fluid velocity spectra along the bubble
trajectory from the DNS for St = 0.02, 0.074, 0.20, 0.45, 1.01, 1.55 and 2.07 (from
black to red, respectively). Comparison with the power law ω−2 and the relation
(3.3), k0/((ω/ωη)

2
+ (ω0/ωη)

2) with k0 = 1 and ω0/ωη = 0.0092 in grey dot-dashed and
dashed lines, respectively. (b) Evolution with the Stokes number of the variance of the
material derivative of fluid velocity at the bubble position (black circles) and of the
Lagrangian time derivative along the bubble trajectories of the fluid velocity (red crosses).
Both quantities are normalized by the global variance of the fluid tracer acceleration. The
inset is the variance of the difference between these two quantities in logarithmic scales
normalized by the Kolmogorov acceleration and comparison with the St and St1/2 power
laws.

In contrast, for a bubble (β = 3), according to (3.4), the normalized acceleration
variance increases as 〈a2

b〉/a
2
η − 1∼ St2 and saturates to β2 for St� 1. Note, however,

that the limit St� 1 does not make sense, since for a bubble it implies d2
b/η

2
� 1

which disagrees with the pointwise model. From the experimental results of Prakash
et al. (2012) and the numerical simulations with a Faxén correction term (Calzavarini
et al. 2009), also plotted in figure 1 for completeness, it appears that the finite
size effect becomes important from St ≈ 2 or db/η ≈ 7, and leads to a decrease of
the acceleration variance with a further increase of the bubble diameter (or Stokes
number).

To analyse the substitution of the fluid velocity material derivative at the
bubble position, Duf /Dt, by its Lagrangian derivative along the bubble trajectory,
duf /dt, implied in (3.1), we remark that the material derivative can be written as
Duf /Dt = duf /dt + (uf − up) · ∇uf . We estimate that the order of magnitude of the
last term is O((uf − up) · ∇uf )= 〈F2

d〉
1/2St, Fd being the drag force. Therefore, based

on the previously disused scaling of the inertial particle acceleration we expect that
this term grows linearly with St for St � 1 and as St1/2 for 1 � St �

√
Re0 (see

also the relation for the variance of the drag force proposed latter in (3.6)). Note
that to obtain the previous estimation we have assumed that velocity gradients are
of order 1/τη and thus we neglected intermittency effects which probably leads to
an underestimation at large Reynolds numbers. As shown in the inset of figure 2(b)
the proposed scaling for the difference appears to be consistent with the DNS. To
analyse further the error due to the simplification of the fluid inertia term we have
computed, from the DNS, the variances of Duf /Dt and duf /dt. It is seen in figure 2(b)
that for St < 0.2 the variance of the time derivative of the fluid velocity along the
bubble trajectory remains sizable to the variance of the fluid acceleration at the
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562 Z. Zhang, D. Legendre and R. Zamansky

bubble position (around 10 % of difference) while, for St= 1, it is larger by a factor
of roughly 3. Moreover, the normalized p.d.f. of these two quantities (not shown)
remains quite similar even for the largest Stokes number considered here. We can
then conclude that our approximation is reasonable for St < 1 and could lead to
an overestimation of the fluid inertia term for larger St. Nevertheless, the range of
validity of the substitution and of the pointwise bubble approximation are seen to
coincide.

The expression (3.5) does not include any intermittency effects and Reynolds
number dependence (Yeung et al. 2006). The intermittent behaviour of the dissipation
rate which is accounted for by the stochastic models discussed in § 4 is associated
with large fluctuations of the acceleration (Kolmogorov 1962; Castaing, Gagne &
Hopfinger 1990; Lukassen & Wilczek 2017). This is seen in figure 3 presenting
the bubble acceleration p.d.f. obtained from the DNS. It is observed that the bubble
acceleration p.d.f. clearly presents a non-Gaussian behaviour with stretched tails
indicating the occurrence of very intense acceleration events as pointed by Volk et al.
(2008a), Prakash et al. (2012) and Loisy & Naso (2017). For intermediate Stokes
number (St≈ 0.5) the bubble acceleration p.d.f. appears even more stretched than the
p.d.f. of fluid tracer acceleration. While a further increase of St gives again a p.d.f.
very similar to the p.d.f. of fluid tracer acceleration. Correspondingly, figure 3(b)
shows that the bubble acceleration flatness (Fla = 〈(ab − 〈ab〉)

4
〉/〈(ab − 〈ab〉)

2
〉

2)
presents a maximum for a Stokes number around 0.2. Note that a peak was also
observed in Calzavarini et al. (2009) but with a smaller maximum value and for a
larger value of St. The difference is attributed to the smaller value of β and Reλ
(β = 2.5 and Reλ = 75) used in Calzavarini et al. (2009). In this figure we also
compare the flatness of fluid acceleration at the bubble position (or equivalently the
flatness of the inertia force). It is observed that its value increases with St, but remains
much smaller than the bubble acceleration flatness for intermediate Stokes numbers.
As discussed below, the non-monotonic evolution of the bubble acceleration flatness
is attributed to specific geometrical arrangements of the hydrodynamic forces applied
to the bubble, rather than to a preferential concentration of bubbles in special regions
of the flow (Calzavarini et al. 2008; Tagawa et al. 2012). Given the very large values
taken by the flatness, this statistic might not be well converged, nevertheless there is
no doubt that the flatness of the acceleration of the bubbles is much greater than that
of the acceleration of the fluid at the bubble position.

From the relation (3.1) it is as well possible to obtain an estimate for the variance
of the two terms on the right-hand side of (2.1), the drag force FD=−(1/τb)(ub(t)−
uf (x= xb(t), t)), and the fluid inertia effect FI = β(Duf /Dt)(x= xb(t), t),

〈F2
D〉 ≈

∫ k1ωη

0
Ef (ω)

ω2(1− β)2

1+ω2τ 2
b

dω

≈ c0a2
η

(1− β)2

1− St2
0

(
tan−1(c1St)

c1St
−

tan−1(c1Re1/2
0 )

c1Re1/2
0

)
(3.6)

〈F2
I 〉 ≈

∫ k1ωη

0
Ef (ω)ω

2β2 dω

≈ c0a2
ηβ

2

(
1−

tan−1(c1Re1/2
0 )

c1Re1/2
0

)
. (3.7)
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FIGURE 3. (Colour online) (a) The p.d.f.s of the bubble acceleration normalized by its
root-mean-square value in black for St = 0.02, 0.074, 0.20, 0.45, 1.01, 1.55 and 2.07
(shifted upward by two decades from each other for clarity, respectively) and comparison
with the p.d.f.s of the acceleration of fluid tracers in red. (b) Flatness of the bubble
acceleration (u) and of the fluid acceleration at the bubble position (+) against St from
our DNS.

These relations are plotted in figure 4(a) and are compared with the variance of the
forces obtained from our DNS. Similar to the estimation of the acceleration variance
expressions (3.6) and (3.7) are seen to provide a good estimation of the variances of
FD and FI although the drag force is overestimated and the inertia force given by
(3.7) is independent of the Stokes number which disagrees with the observation of
figure 2(b). It is seen that for small Stokes numbers the variance of the two forces
are commensurate, although the fluid inertia effect is dominant. Precisely, for St→ 0
the variance of the drag force is (2/3)2 of that of the inertia term. It is also observed
that the sum of the variance of the two forces is much larger than the variance of
the bubble acceleration indicating a significant correlation between the two terms. As
expected, when the Stokes number is increased, the drag force becomes negligible and
the bubble acceleration is essentially given by the fluid inertia term.

Figure 4(b) presents the p.d.f. of both drag and fluid inertia forces for the various
Stokes numbers. It is observed that for vanishingly small Stokes numbers (St= 0.02)
the p.d.f.s of the two forces are essentially identical, and present both developed tails.
The increase of the Stokes number results in a significant reduction of the tails of the
drag force’s p.d.f. whereas the p.d.f. of the inertia force presents very little variation
(see also its flatness in figure 3). It is also worth mentioning that the p.d.f. of both
forces remain symmetrical for all Stokes number indicating that the average and the
skewness values of the two forces are zero. Because the bubbles sample regions of
the flow in which the fluid acceleration variance is slightly below its overall value
(see figure 2) and that the p.d.f. of the fluid acceleration at the bubble position is
nearly invariant with the Stokes number, we conclude that the maximum of the bubble
acceleration flatness is not caused by preferential concentration effects but is rather
due to the alignment of the hydrodynamic forces on the bubble.

In figure 5(a), we plot the evolution of the correlation between FD and FI with the
Stokes number obtained from the DNS. It is seen that for small St the two forces are
completely anticorrelated, while they progressively decorrelate as St increases. Indeed
requiring that for St= 0 the acceleration is equal to the acceleration of a fluid tracer,
we obtain from (2.1) that FD = (1− β)/βFI , that gives an anti-alignment for β > 1.
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FIGURE 4. (Colour online) (a) Evolution with the Stokes number of the variance of the
drag force (circle) and inertia force (crosses) relative to the bubble acceleration variance
according to our DNS and comparison with (3.6) and (3.7) normalized by (3.4) with c1=

2.8 and Re1/2
0 = 16 in dashed and dot-dashed lines, respectively. (b) The p.d.f. of the fluid

inertia forces (black) and of the drag force (red) normalized by their root-mean-square
value for St= 0.02, 0.074, 0.20, 0.45, 1.01, 1.55 and 2.07 (shifted upward by one decade
from each other for clarity, respectively).

Further, the correlation can also be readily estimated for larger Stokes numbers from
(3.6), (3.7) and (3.4) as follows:

〈FD ·FI〉 ≈ c0a2
η

β(1− β)
1− St2

0

(
tan−1(c1St)

c1St
−

tan−1(c1Re1/2
0 )

c1Re1/2
0

)
. (3.8)

Figure 5(a) shows that the relation (3.8) is in good agreement with the DNS results.
Further, if the persistence of the temporal autocorrelation of the norms of the two
forces is much longer than for their orientation, then the correlation between the two
forces could be approximated by their relative orientation,

〈FD ·FI〉 ≈ 〈cos θ〉(〈F2
D〉〈F

2
I 〉)

1/2, (3.9)

where θ is defined as cos θ =FD ·FI/|FD||FI| = eI · eD, with eI and eD the orientation
vectors of the inertia term and of the drag force, respectively. This is confirmed
in figure 5(a) that indeed 〈cos θ〉 remains quite close to 〈FD · FI〉(〈F2

D〉〈F
2
I 〉)
−1/2.

Figure 5(b) reports the evolution with the Stokes number of the p.d.f. of cos θ . For
small Stokes numbers, the two forces appear to be essentially anti-aligned as the
p.d.f. presents a sharp peak around −1 consistent with its averaged value. When the
Stokes number is increased, the distribution of cos θ becomes flatter, indicating that
the relative orientation of the two forces becomes progressively statistically isotropic.
Note that according to (3.8) we should expect a positive correlation between the two
forces for β < 1 and small St.

In figure 6(a), we present the evolution of the Lagrangian autocorrelation of the
bubble acceleration for the various Stokes numbers. It is observed that an increase of
the Stokes number produces a faster decorrelation, as already reported by Volk et al.
(2008b), although for 0< St< 2 it is seen that the correlation time remains of order τη.
It is worth mentioning that this behaviour departs significantly from the evolution of
inertial particles which present larger correlation time with increasing St (Gorokhovski
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FIGURE 5. (Colour online) (a) Evolution with St of the coefficient of correlation between
the drag and inertia forces (dots) and of 〈cos θ〉 (θ being the relative orientation of the
forces) (crosses) from the DNS and comparison with relation (3.8) normalized by (3.6)
and (3.7) with c1 = 2.8 and Re1/2

0 = 16 in blue lines. (b) The p.d.f.s of the cosine of the
angle θ between the two forces, for St= 0.02, 0.074, 0.20, 0.45, 1.01, 1.55 and 2.07 (from
black to red, respectively).

& Zamansky 2018). To further analyse this point, we also present, in figure 6(a), the
autocorrelation along the bubble trajectory of the two forces acting on the bubble. It is
observed that for vanishingly small Stokes number, the two forces present exactly the
same evolution of their Lagrangian correlation, because of the almost instantaneous
response of the drag force to the inertia force. With increasing the Stokes number,
one sees a clear difference in the autocorrelation of the drag force and of the inertia
forces. Increasing the Stokes number gives a longer persistence time for the drag
forces which can be directly attributed to the increase of τb. On the other hand, the
faster decorrelation of the inertia force is explained by the deviation of the bubble
trajectories from the fluid tracer trajectories.

The response of the drag force to the inertia term is analysed in figure 6(b)
which presents the plot of the cross correlation of the orientation of the two
forces along the bubble trajectory. The cross-correlation is defined as ρeD,eI =

〈−eI(t) · eD(t + τ)〉/(〈e2
I 〉〈e2

D〉)
1/2. This figure confirms that the orientation of the

drag forces responds to the inertia term. The temporal lag between the two forces
can be estimated from the time shift of the peak, maxτ (ρeD,eI (τ )) = ρeD,eI (τlag). In
the inset of figure 6(a), we present the evolution of τlag with St. It is seen that τlag
presents a linear evolution for small τb. Indeed for vanishingly small Stokes number,
the drag responds instantaneously. For larger Stokes number, the growth rate of τlag
reduces. We observe that τlag ≈ τη(β − 1)−1 tan−1((β − 1)St) is a relatively good
approximation of the lag of the drag force compared to the inertia effect. Clearly
a further check of this speculative relation would require simulations for different
values of β. We remark that one could estimate the autocorrelation of the bubble
acceleration or hydrodynamic forces as well as the cross-correlation presented in
figure 6 from the spectral response model of (3.1). However, this would require a
more precise estimation of the Lagrangian fluid velocity spectra at high frequency
than the relation (3.3), as the decorrelation is controlled by the dissipative range of
the spectra which depend on St as seen in figure 2.

The anti-alignment of the forces at small Stokes can be explained as follows. For
vanishingly small Stokes number, the relaxation time τb of the bubble velocity to the
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FIGURE 6. (Colour online) (a) Autocorrelation coefficient of the bubble acceleration, drag
force and fluid inertia terms (shifted upward by one unit from each other, respectively, for
clarity) from our DNS. (b) Cross-correlation between the drag force and the fluid inertia
term as given by our DNS. The inset is the evolution of the time lag (defined as the
time of the peak of cross-correlation) with St, and comparison with the τlag/τη = St and
τlag/τη = (β − 1)−1 tan−1((β − 1)St). For both figures St = 0.02, 0.074, 0.20, 0.45, 1.01,
1.55 and 2.07 (from black to red, respectively).

local fluid velocity is much smaller than the persistence time of the fluid inertia term,
which is of order τη (Pope 1990; Mordant et al. 2004). Therefore, the drag force
will very quickly respond, leading it to be statistically opposed to the fluid inertia
term. On the other hand, for St � 1 we should expect that the orientation of the
two forces becomes independent because the relaxation time of the particle becomes
much larger than τη. In the meantime, we have observed that the amplitude of the
drag forces becomes negligible as the Stokes number is increased. This conjunction
of the evolution of the relative orientation and magnitude of the two forces, leads to
the increases of the bubble acceleration flatness, observed in figure 3 for St around 0.5.
For these Stokes numbers, the amplitude of the drag forces remains significant while
its orientation already presents a wide distribution, leading to the strong intermittency
of the acceleration, when the two forces, of similar magnitude, are anti-aligned the
acceleration will be close to zero whereas in case of an alignment of the forces intense
acceleration will result.

We have proposed above a relation between the bubble acceleration variance
and the average dissipation rate. However, in line with the Kolmogorov theory,
the instantaneous acceleration depends a priori on the local energy dissipation rate
ε. To discuss this point we present in figure 7 statistics of the bubble acceleration
conditioned on the local value of the dissipation rate. This is also motivated to provide
supports for a stochastic modelling of the bubble acceleration that accounts for the
large fluid fluctuations in small-scale motions, as discuss in the following section.
We consider in figure 7(a) the variance of the bubble acceleration conditioned on
the local dissipation rate. We first observe that for ε larger than its average value,
〈a2

b|ε〉 appears to be independent of the Stokes number, and increases as ε3/2, while
it presents little dependence on both ε and St for small value of ε,

〈a2
b|ε〉 ≈ 〈a

2
b〉

(
ε

〈ε〉

)3/2

; ε > 〈ε〉. (3.10)
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FIGURE 7. (Colour online) (a) Variance of the bubble acceleration conditioned on the
local value of the dissipation rate ε for the various Stokes number St= 0.02, 0.074, 0.20,
0.45, 1.01, 1.55 and 2.07 (from black to red, respectively) normalized by unconditional
bubble acceleration variance, and comparison with the relation 〈a2

b|ε〉/〈a2
b〉= (ε/〈ε〉)

3/2 with
a dashed line. (b) The p.d.f.s of acceleration conditioned on the dissipation rate for St= 1.
Eight values of ε are reported, ε/〈ε〉=0.17, 0.28, 0.46, 0.77, 1.3, 2.1, 3.5 and 5.8 (shifted
upward by two decades from each other, respectively) and comparison with unconditioned
bubble acceleration p.d.f. with dashed lines.

This behaviour is similar to previous observations for fluid tracers from Yeung et al.
(2006). The invariance with St observed for the micro-bubbles is therefore attributed
to dominance of the fluid inertia term. It was reported by Yeung et al. (2006) that the
exponent of the power law for the conditional acceleration is reduced for low values
of Reynolds numbers. Also Yeung et al. (2006) showed that the value at which the
acceleration variance converge for ε→ 0 decreases with Reynolds number, indicating
that the acceleration in the weakly dissipative regions is primarily influenced by the
large-scale sweeping. In figure 7(b) the conditional p.d.f. normalized by its standard
deviation is shown to be approximately self-similar with ε. The conditional p.d.f.s
present slightly less developed tails than the unconditional p.d.f., similarly to the
observation of Yeung et al. (2006) for fluid particles. Note that in figure 7(b), the
conditional p.d.f.s are shown for St = 1 but a similar conclusion holds for the other
Stokes number studied here.

4. Stochastic modelling of the dynamics of micro-bubbles
Following the proposition of Gorokhovski & Zamansky (2018) (see also Sabel’nikov

et al. 2007, 2011; Zamansky et al. 2013), the instantaneous acceleration of each
bubble is decomposed into filtered and stochastic parts. The first term corresponds to
the contribution to the sweep imposed by the large (resolved) scales of the flow, and
the second term accounts for the unresolved fluctuations of the carrier phase

ab = ab + a∗. (4.1)

The residual contribution a∗ is determined by the drag forces and the fluid inertia
effect (added mass and Tchen force), a∗ = F∗D + F∗I , which are both considered as
random processes. The stochastic forces are both decomposed into a norm and an
orientation process, F∗D= |F

∗

D|e∗D and F∗I = |F
∗

I |e∗I . These decompositions are supported
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568 Z. Zhang, D. Legendre and R. Zamansky

by the separation of time scale of the evolution of the autocorrelation for the norm
and the orientation, suggesting that the norm and orientation of each force can be
treated as independent processes, similarly to Pope (1990), Mordant et al. (2004) and
Sabel’nikov et al. (2011). However, as mentioned previously, the two forces present
significant correlation (both for their norm and their orientation) and could not be
considered as independent.

First, in line with the refined Kolmogorov assumption, the main source of
randomness in the instantaneous norms of the forces is attributed to the local energy
dissipation rate. Then by analogy with relation (3.10), we propose the following:

|F∗D| ≈ 〈F
∗2
D |ε∗〉

1/2
≈ 〈F∗2D 〉

1/2

(
ε∗

〈ε〉

)3/4

, (4.2)

|F∗I | ≈ 〈F
∗2
I |ε∗〉

1/2
≈ 〈F∗2I 〉

1/2

(
ε∗

〈ε〉

)3/4

. (4.3)

In these relations, ε∗ is obtained from a stochastic process mimicking the evolution
of the dissipation rate along the bubble trajectory. Since it is observed that the norm
of the two forces are strongly correlated, ε∗ is the same stochastic variable in both
relations (4.2) and (4.3). It was indeed observed from the DNS that the norms of
the two forces remain strongly correlated for all the Stokes numbers considered here,
consistent with (3.9). In order to only consider the contribution from the unresolved
fluctuations in the estimation of 〈F∗2D 〉 and 〈F∗2I 〉, the integrals (3.6) and (3.7) are
truncated for ω < k22π/τ∆ with τ∆ = ∆

2/ν∆ the time scale of the smallest eddies
resolved by the mesh. And, as before, the integrals are also truncated for ω> k1ωη to
ensure its convergence. Considering, for simplicity, the high Reynolds limit Re0� 1
and Re0� St2, the estimation for the instantaneous norms are then given by

|F∗D| = c1/2
0 ε3/4

∗
ν−1/4
|1− β|

(
tan−1(c1St)

c1St
−

tan−1(c1StRe−1/2
∆ )

c1St

)1/2

, (4.4)

|F∗I | = c1/2
0 ε3/4

∗
ν−1/4β(1− Re−1/2

∆ )1/2, (4.5)

where Re1/2
∆ = (k2/k1)τ∆/τη is a Reynolds number characteristic of the subgrid scale

motion. This gives for a∗,

a∗ = c1/2
0 ε3/4

∗
ν−1/4

[
|1− β|

c1St

(
tan−1(c1St)− tan−1

(
c1St

Re1/2
∆

))1/2

e∗D + β(1− Re−1/2
∆ )1/2e∗I

]
.

(4.6)
Note that when the mesh is refined (∆→ η), Re∆→ 1 and the amplitude of the

residual contributions vanish as expected, since for a sufficiently fine mesh the bubble
dynamics should be captured by the resolved contribution. Concerning the evolution
of the stochastic variable ε∗, assuming that it is given by a log-normal process that
depends on the local value of ε∆ computed from the coarse LES mesh, one obtains
the following stochastic process for ε3/4

∗
similar to Pope & Chen (1990) (see also

Gorokhovski & Zamansky 2018):

dε3/4
∗

ε
3/4
∗

=
dε3/4

∆

ε
3/4
∆

−

(
ln
(
ε3/4
∗

ε
3/4
∆

)
−

3
16
σ 2

)
dt
τ∆
+

√
9
8
σ 2

τ∆
dW, (4.7)
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Small-scale dynamics of micro-bubbles 569

where dW is the increment of the Wiener process and dε3/4
∆ is the increment of

ε
3/4
∆ along the bubble trajectory. This stochastic process ensures that 〈ε∗〉 = 〈ε∆〉 (see

the details in Gorokhovski & Zamansky (2018)), and the parameter σ is given by
σ 2
= 0.36 ln Re1/2

∆ materializing the depth of the cascade process (Kolmogorov 1962;
Castaing 1996), with the value of the coefficient in front of the logarithm set in order
to reproduce the Reynolds number dependence reported by Yeung et al. (2006). The
time scale τ∆ imposes the temporal correlation of ε∗. Note that more sophisticated
multiplicative models have been proposed for ε∗ (Pereira, Moriconi & Chevillard
2018); however, in the present paper we have used the simple log-normal process
(4.7).

The orientation vectors e∗D and e∗I appearing in (4.6) are given by two joint
stochastic random walks on the unit sphere

de∗I = γIe∗I × αI dt+ (γI − 1)e∗I , (4.8)
de∗D = γDe∗D × αD dt+ (γD − 1)e∗D, (4.9)

with αI and αD the angular velocities of the evolution of e∗I and e∗D on the
sphere and where the factors γI = (1 + αI.αI dt2

− (αI · e∗I )2 dt2)−1/2 and γD =

(1+ αD.αD dt2
− (αD · e∗D)2 dt2)−1/2 correspond to a projection ensuring that the norms

of both e∗I and e∗D remain unity (Gorokhovski & Zamansky 2018). The coupling of
these two random walks, through the evolution of their angular velocities, is intended
to reproduce the anti-alignment between the two orientation vectors observed for small
Stokes number, and their decorrelation when St is increased as well as the correlation
of the orientation with the coarse-grained (resolved) fluid acceleration. Moreover
the temporal evolution of the random walks provides a temporal autocorrelation
for the two orientations. The evolution of αI and αD is given by the following
Ornstein–Uhlenbeck process presenting restoring terms, damping terms and diffusion
terms:

dαI =−e∗I ×
Dtuf

∆
dt− αI

dt
τI
+

√
σ 2

I

τI
dWI, (4.10)

dαD =−e∗D × e∗I
dt
τ 2

r

− αD
dt
τD
+

√
σ 2

D

τD
dWD, (4.11)

with dWI and dWD the increments of two independent three-dimensional Wiener
processes. The diffusion terms provide a return to isotropy of both orientations as
the randomness of the angular velocities lead e∗D and e∗I to visit every point of the
sphere. The temporal autocorrelation of both e∗D and e∗I is then related to the diffusion
coefficient of the angular velocity. On the other hand, the restoring terms tend to
align e∗D and e∗I with some equilibrium orientation.

For small values of τ∆/τη, we expect to have an alignment of the fluid acceleration
model onto the coarse-grained fluid acceleration, while for τ∆/τη large, the alignment
with the resolved acceleration should be weak, in agreement with the local isotropy
assumption (Kolmogorov 1941). Therefore, in our model, we propose to have an
alignment of the orientations of the subgrid contribution of the fluid acceleration to the
coarse-grained fluid acceleration orientation Dtuf /|Dtuf |. The alignment between them
is controlled by the restoring term in (4.10) and the time scale (|Dtuf |/∆)

−1/2
≈ τ∆.

The restoring term in (4.11) will tend to align e∗D on −e∗I in agreement with the
observations of § 3. The rate of alignment is given by the parameters τr. Since the
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FIGURE 8. (Colour online) (a) The p.d.f.s of e∗I · e∗D for St= 0.02, 0.074, 0.20, 0.45, 1.01,
1.55 and 2.07 (from black to red, respectively) as obtained from model (4.8)–(4.11). The
inset is the evolution of 〈e∗D · e∗I 〉 with St as given by the stochastic model, and comparison
with the relation (3.8). (b) Cross-correlation between e∗D and e∗I obtained from the model
(4.8)–(4.11). The inset is the evolution of the time lag between e∗D and e∗I against St, and
comparison with τη(β − 1)−1 tan−1((β − 1)St).

latter should coincide with the time lag observed in the cross-correlation between the
orientation of the two forces (see figure 6), we set τr = τη(β − 1)−1 tan−1((β − 1)St).
This ensures that the drag force correlation time increases with the Stokes number as
observed in figure 6.

The other parameters in (4.10) are set to τI = τη and σ 2
I = τ

−2
η which ensure that the

temporal autocorrelation of the fluid acceleration orientation is of the order of τη in
agreement with the experimental findings of Mordant et al. (2004) and our DNS (see
figure 6). In (4.11) the parameters are set to τD = (τb + τη)/4 and σ 2

D = (τb + τη)
−2/2

consistent with Gorokhovski & Zamansky (2018).
Figure 8(a) presents the evolution of the p.d.f. of the relative orientation between

the two forces cos θ∗ = e∗D · e∗I , obtained from numerical integration of the stochastic
orientation model (4.8)–(4.11) (and setting Dtuf = 0 in (4.8)). We clearly observe
that at small Stokes number the model predicts an anti-alignment between the two
orientation vectors while their relative orientation becomes more isotropic when the
Stokes number increases. This behaviour is in agreement with the statistics computed
from the DNS (see figure 5b), although the p.d.f. from the DNS present a more
stretched tail. It is also confirmed in the inset of figure 8(a) that the proposed
stochastic model gives the correct evolution of the average relative orientation with
the Stokes number, since as in the DNS case 〈cos θ∗〉 follow the relation (3.8). The
cross-correlation between e∗D and e∗I is also presented in figure 8(b). The behaviour
of the DNS observed in figure 6 can be qualitatively reproduced by the stochastic
model with an increase of the time lag with the Stokes number.

The resolved contribution in (4.1) is obtained from a spatially and temporarily
averaged version of (2.1). The spatial average arises from substituting the actual
velocity field uf to the coarse-grained velocity field uf in this equation. In addition,
a temporal filter is also explicitly applied to prevent the term a developing high
frequencies that would correlate with the residual term. Removing the frequencies
above 1/τ∆ results in the following expression for a (see also Gorokhovski &
Zamansky 2018):

a=−
ub − uf

max(τb, τ∆)
+ β

Duf

Dt
, (4.12)
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Small-scale dynamics of micro-bubbles 571

where Dtuf = ∂tuf + uf · ∇uf is the fluid total acceleration computed from the coarse
mesh. Note that one does not have to necessarily consider the coupling with the LES
to use the proposed model. Indeed, by considering the limit ∆→ L, L being the
integral length scale, the term a vanishes and (4.1) becomes ab = a∗. As well, in
this limit one can replace ε∆(t) in (4.7) by the constant value 〈ε〉. For example, one
can estimate the Reynolds number dependence for the intermittency correction in (3.5)
from the moments of a log-normal variable, to be 〈a2

b〉/a
2
η ∝ exp(3/8 σ 2)= Re0.135

λ , as
proposed by Yeung et al. (2006).

In order to assess the approach (4.1) as well as the stochastic model proposed
in (4.6)–(4.11), we present a comparison of the statistics of the bubble dynamics
obtained from the DNS, the standard LES (without modelling of the residual bubble
acceleration i.e. setting a∗ = 0 in (4.1)), and the LES with the proposed model. All
the comparisons are made for Reλ ≈ 200 and three resolutions are used for the LES
(323, 483 and 643) while the resolution of the DNS is 10243. The details of the LES
are given in § 2.

We first present in figure 9(a) the evolution of the bubble acceleration variance
with the Stokes number. We observe that the standard LES largely underestimates
the bubble acceleration variance compared to the DNS. As expected the discrepancy
increases as the mesh resolution is made coarser. This points out that the residual term
in (4.1) is dominant. In contrast, the LES supplemented by the stochastic modelling
is in very good agreement with the DNS. Moreover, with the stochastic model, the
LES presents a very small dependence on the grid resolution. This confirms that the
effects of the unresolved small scales of the flow are correctly accounted for by the
model.

Figure 9(b) presents the p.d.f. of the bubble acceleration for the various Stokes
numbers. It is seen that the standard LES predicts p.d.f.s that depart significantly from
the DNS and remain much closer to the Gaussian distribution. On the other hand, the
p.d.f.s from the LES with the stochastic model overlap very well with the p.d.f.s of
the DNS over the whole range of Stokes numbers considered here. This shows that the
intermittent behaviour of the bubble acceleration can be reproduced with the proposed
stochastic model.

We consider in figure 10 the autocorrelation of the acceleration component. As
illustrated for St = 1, the decorrelation of the acceleration is much slower from the
LES than from the DNS. This is expected since the decorrelation of the acceleration
component is attributed to the small-scale motions of the flow which are discarded in
the LES. For the LES supplemented with the model the evolution of the correlation
coefficient presents qualitative agreement with the DNS. This behaviour is confirmed
in the inset of figure 10 which presents the correlation time, defined as the zero
crossing time, against the Stokes number. It is observed that the correlation times
obtained from the DNS and from the LES with the model both remain of the order
of τη, whereas the standard LES predicts a much larger correlation time. We observe
that the orientation model plays an essential role in obtaining an accurate estimation
of the decorrelation time, and it is likely that an improvement of the model given
by (4.8)–(4.11) could reduce the small discrepancies seen between the LES using the
model and the DNS.

To evaluate the capability of the stochastic approach to accurately reproduce the
time structure of the bubble velocity, we report in figure 11 the statistic of the
velocity increments along the bubble trajectory. For that, we consider the structure
function for a component of the bubble velocity Sq(τ ) = 〈(ub,x(t + τ) − ub,x(t))q〉. In
figure 11(a) we present the evolution of the variance of the velocity increments, S2,
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FIGURE 9. (Colour online) (a) Bubble acceleration variance normalized by the
Kolmogorov acceleration (a2

η) versus Stokes number in logarithm scale. Open symbols
are LES with the proposed model; filled symbols are LES without model; for the three
meshes we have 323 (circles), 483 (triangles) and 643 (diamonds). Comparison with our
DNS blue stars. (b) The p.d.f. of the bubble acceleration normalized by its variance for
St= 0.02, 0.074, 0.20, 0.45, 1.01, 1.55 and 2.07 (shifted upward by one decade each other,
respectively). The DNS is a dashed black line, LES with the proposed model for 643 is
a solid red line and LES without model for 643 is a blue dashed line.
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FIGURE 10. (Colour online) Autocorrelation of the bubble acceleration for St= 0.07. The
DNS is a solid black line, LES with model for 643 is a dashed red line and LES without
model for 643 is a dot-dashed black line. The inset is the evolution of the corresponding
integral time scale normalized by the Kolmogorov time with the Stokes number. The DNS
are circles, LES with the proposed model are stars, LES without model are crosses. The
mesh size for the LES is 643.

with the time shift. The results from the LES with the proposed model follow very
well those obtained from the DNS, whereas with the standard LES, the variance of
the velocity increments is largely underestimated. Moreover, we observe that with the
stochastic model the LES can reproduce the inertial range as observed from the DNS
contrary to the standard LES. Figure 11(b) shows the evolution of the flatness of the
bubble velocity increments, S4/S2

2. We see that with the standard LES the flatness
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FIGURE 11. (Colour online) (a) Evolution of the second-order Lagrangian structure
function with the time lag. (b) Evolution of the flatness of the Lagrangian velocity
increments with the time lag. Comparison between the DNS (solid blue line), the Standard
LES (black dot-dashed lines) and LES with the proposed model (dashed red lines). For
both figures, for St= 0.02, the mesh size for the LES is 643.

remains close to its Gaussian value at all time shifts. In contrast, the LES with
the proposed model gives an evolution of the flatness in agreement with the DNS,
presenting a value close to 3 at large τ and a significant increase with a reduction
of the time shift. One can then conclude that intermittency effects associated with
the small scales of the velocity field can be captured by the LES supplemented by
the proposed model. Note that in figure 11 we have presented the evolution of the
structure function for St= 1, but the same behaviour is obtained for the other values
of Stokes number considered here.

We present in figure 12, 〈a2
b|ε∗〉, the variance of the bubble acceleration conditioned

on the value of the instantaneous value of the dissipation rate ε∗ estimated from the
stochastic model (4.7). It is observed that similar to the DNS results reported in the
figure 7, the bubble acceleration from the LES with the model increases as ε3/2

∗
for

large values of the dissipation rate, and is independent on ε∗ for the small values of
the latter. This behaviour shows that the acceleration of the bubbles in the weakly
dissipative regions can be computed by the resolved contribution ab, indicating the
influence of the large-scale sweeps, while the largest fluctuation of the acceleration
are correctly estimated with the stochastic model.

5. Conclusion
In this paper, we study the statistics of the acceleration and forces of micro-bubbles

(η > db) subject to the drag and fluid inertia forces in a homogenous and isotropic
turbulent flow. For small Stokes numbers, the two forces are commensurate and are
found to be preferentially anti-aligned, whereas for larger Stokes numbers the drag
force becomes negligible and the bubble acceleration is essentially given by the fluid
inertia forces resulting in a bubble acceleration variance larger than for fluid tracers.
We propose an analytical model, depending on the Stokes number, Reynolds number
and the density ratio, describing qualitatively these observations. The model based
on the spectral response of the bubble to the fluid fluctuations (similar to the Tchen
theory) assumes firstly the shape for the frequency spectra of the fluid velocity along
the bubble position (with a ω−2 power law), and secondly that the material derivative
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FIGURE 12. (Colour online) Variance of the total bubble acceleration ab = ab + a∗
conditioned on the stochastic value of the dissipation rate ε∗ obtained from the LES with
the stochastic model (black line) and comparison with the bubble acceleration variance
conditioned on the local dissipation rate obtained from the DNS (red line), with St= 0.02
and a mesh size of 483 for the LES.

of the fluid velocity at the bubble position can be substituted by the time derivative
along the bubble trajectories. These assumptions lead to fairly accurate estimations for
small St, and some deviations are observed for St≈ 1 as the preferential concentration
of bubbles is not accounted for. This effect could be taken into account in the model,
by providing more precise, St dependent, estimation of the high frequency part of
the Lagrangian fluid velocity spectra and of the fluid acceleration variance at the
bubble position. It is further observed that the micro-bubble acceleration conditioned
on the local dissipation rate presents a surprising invariance. For values of the local
dissipation rate similar or larger than the average one, the conditional acceleration
variance appears to be invariant with the Stokes number and increases with the
dissipation rate, whereas the conditional p.d.f. are observed to be nearly invariant
with the dissipation rate and the Stokes number when normalized by the conditional
variance. Such invariance was not expected because of the very intense clustering
of the bubbles reported by Calzavarini et al. (2008) around St = 1. Indeed, at small
Stokes number the bubbles behave like fluid tracers, whereas for Stokes numbers
of order 1 (for which one can neglect the drag force) the acceleration of a bubble
is roughly β = 3 times that of a tracer at the same position. Nevertheless the near
invariance of the conditional statistics implies that in the two cases the bubbles sample
fluid regions in which the fluid acceleration conditional statistics are the same as in
the entire domain. This observation can provide some help in studying the β and
St dependence of the clustering morphology of the bubbles presented by Calzavarini
et al. (2008).

Based on these observations, we propose, within the LES framework, an extension
of the approach of Gorokhovski & Zamansky (2018) in order to account for
the unresolved fluid turbulent fluctuations in the dynamics of micro-bubbles for
locally homogenous and isotropic high-Reynolds numbers flows. To this end, the
instantaneous acceleration of the bubble is decomposed into a filtered contribution
given by the resolved fluid velocity field and a random contribution. The stochastic
part is given by the sum of two correlated random processes, one for the drag forces
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and the second for the fluid inertia terms. For the instantaneous norm of both forces,
we consider the fluctuations of the energy transfer rate, relying on the fact that the
fluctuations of the norm are self-similar for a given value of the energy transfer rate.
For the latter a surrogate is obtained by a log-normal stochastic process evolving
along the bubble trajectory. Whereas the former, which is observed to be invariant,
is estimated from the variance of the forces conditioned on the dissipation rate as
obtained from the model derived in this paper. The residual part is supplemented
by a stochastic process for the orientations of the two forces. The model is given
by two coupled random walks on the surface of the unit sphere, which enables us
to reproduce the progressive decorrelation of the force components, their correlation
with the large-scale motion, as well as the return to local isotropy for sufficiently
large-scale separation, and the preferential anti-alignment of the two forces observed
for St < 1. To summarize, the model depends on the Stokes number and the β
parameter of the bubbles as well as a local Reynolds number Re∆ based on the mesh
size. In addition few parameters of the model need to be prescribed from the DNS.

The comparisons of the statistics obtained with LES supplemented by the proposed
stochastic model with the ones obtained from DNS confirmed that the dynamics of
the bubbles can be accurately computed by this approach even for very coarse meshes
while the standard LES approach (without stochastic modelling for the high frequency
fluctuations) fails to reproduce the statistics of the DNS. Nevertheless, the bubble
clustering at subgrid scales or short-time relative dispersion are not improved by the
modelling presented in this paper because the estimation of the dissipation rates along
each bubble trajectory is obtained by independent stochastic processes.

The derivation of the proposed model is made for arbitrary density ratio, although,
in this paper we only focus on the micro-bubble regime (β = 3). It can be shown
that for β = 0 our model becomes equivalent to the formulation proposed for inertial
particles in Gorokhovski & Zamansky (2018). Moreover, for neutrally dense particles
(β = 1), the proposed model would provide results equivalent to those obtained for
vanishingly small Stokes number, as expected for particles much smaller than the
Kolmogorov scales. The assessment of the model for intermediate values of β is also
interesting but is postponed for future work. Also interesting is to account for other
forces that can have a non-negligible role on the bubble dynamics (buoyancy, lift and
history). As well, accounting for the deformation of the bubbles is necessary if one is
interested in bubbles larger than the micro-scale of the flow (db>η). Finally, we have
focused on the modelling of the subgrid scale for homogenous and isotropic turbulent
flow. Nevertheless, we think that the model proposed in this paper could provide
acceptable results for flows that can be considered locally isotropic and homogenous
at the scale of the mesh, since the main parameters of the model are defined locally.
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Chapter 6

Influence of nonlinear drag
law to the bubble dynamics

In this chapter, we will discuss the nonlinear drag law effects to the bubble
dynamics (mostly the velocity and acceleration statistics). The results will
enable to extend the scope of the modeling proposed in the previous chapter
to larger bubbles Reynolds number for which the Stokes regime does not
holds.

6.1 Statement of the problem

Let’s clarify first the definition of linear drag and nonlinear drag. From the
definition of the drag coefficient and the viscous relaxation time, the drag
force per unit of displaced mass (i.e. accounting for added mass effect) can
generally be expressed as:

FD = CDReb
uf − ub
τ0

(6.1)

where uf is the velocity of the fluid at the position of the bubble and ub is

the bubble velocity and the characteristic time is τ0 =
4

3
(
ρb
ρf

+ CM )
d2
b

ν
.

As discussed previously the drag coefficient of a bubble depends essen-
tially on the Reynolds number Reb = db|uf − ub|/ν and on the mobility
of the interface (no-slip or free slip). For example, in the Stokes regimes
(Reb � 1), the drag coefficient varies as CD = 24/Reb in case of no-slip
or as CD = CD,0 = 16/Reb for free-slip conditions, which gives the stan-
dard drag law for a clean bubble in Stokes regime, obtained by Hadamard
and Ribczynsky in 1911 [56, 57]. This is sometimes called linear drag law
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as the resulting drag force varies linearly with the relative velocity. In
the following, we only consider the case of bubbles and we will therefore
take the limit ρb/ρf = 0. We recall that for a clean spherical bubble
(with free-slip condition and CM = 1/2) the relaxation time was defined
as τb = d2

b/24ν = τ0/CD,0Reb. For larger value of the Reynolds number the
drag coefficient varies as presented by the correlation of (3.9) for no-slip,
corresponding to a fully contaminated bubble interface and the correlation
of Mei for free slip, corresponding to a clean bubble interface, see equations
(3.9) and (3.8) above. These drag laws are denoted as non-linear as the drag
force no longer varies linearly with the relative velocity. Equation (6.1) can
be re-expressed as:

FD =
CD
CD,0

uf − ub
τb

(6.2)

where τb is the relaxation time of a clean bubble and CD,0 = 16/Reb is the
drag coefficient in the stokes regime for free-slip conditions. As apparent
from this equation, in this section we intend to study how the deviation
of the drag coefficient from the Stokes regime affect the dynamics of the

bubbles. For convenience we note F(Reb) =
CD
CD,0

. We will consider three

expressions for F(Reb). The Stokes regime (Reb < 1):

F(Reb) = 1 (6.3)

will be our reference, and correspond to the results obtained in the previous
chapter. The no-slip correction:

F(Reb) = (1 + 0.15Re0.687
b ) (6.4)

corresponds to a bubble with a fully contaminated interface for Reb < 800
[39]. The free-slip case:

F(Reb) = 1 +

(
8

Reb
+

1

2

(
1 +

3.315√
Reb

))−1

(6.5)

is the correction to account for the modification of the drag coefficient at
large Reynolds number for a clean bubble. In figure 6.1, the function F(Reb)
is plotted for the last two cases. We clearly see that F ≥ 1 which implies
that the drag is larger than the Stokes drag would be at the same Reynolds
number.

Since the Reynolds number can fluctuate along the bubble trajectory, the
correction function, F(Reb), also takes random values which will affect the
dynamic of the bubble. In order to investigate the influence of the fluctua-
tions of F , we performed DNS with the various expressions proposed above,
see eq. (6.3)-(6.5). In these simulations we only accounted for the drag
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Figure 6.1: Function F(Reb) from Eq. (6.3) (- -) and from Eq. (6.4)(–).

force and the fluid inertia effect, therefore the bubble momentum balance
equation reads:

ab =
dub
dt

=
uf − ub

τb
F(Reb) + 3

Duf
Dt

(6.6)

We believe that this simplified equation of motion is sufficient for a first
analysis of the finite Reynolds number effects. The flow conditions are iden-
tical to the simulations of the three sets of bubbles and are reported in the
table 6.1. The bubble diameters normalized by the Kolmogorov scales are
listed in table 6.2. As well we define a Stokes number based on the ”Stoke-
sian clean bubble” characteristic time τb, St = τb/τη. However it is to note
that for large bubble Reynolds number F becomes significantly larger than
1 and fluctuates therefore τb is not physically meaningful.

N ReH Reλ τL/τη
〈ε〉H
K3/2 L/η η/∆

5123 2475 100 26 1.97 133 1.06

Table 6.1: The simulation parameters of the turbulent flow field, N is the
number of grid points in each direction. H = 2π is the size of numerical
domain, τL = (2/3K)/ε is the eddy turnover time, L = (2/3K)3/2/ε is the
scale of the large eddies, K is the average turbulent kinetic energy and ε
is the average dissipation rate. ReH is the Reynolds number based on the
large scale of the flow, Reλ is the Reynolds number based on the Taylor
length scale, η and τη are the Kolmogorov length and time scale.
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St 0.021 0.074 0.20 0.45 1.01 1.55 2.07

db/η 0.70 1.33 2.19 3.29 4.93 6.10 7.04

Table 6.2: The Stokes number of the bubble is defined as St = τb
τη

with

τb =
d2b
24ν and τη is the Kolmogorov dissipative time scale, db is the diameter

of the spherical bubble

6.2 Results

We first present the statistics of the bubbles Reynolds number. We present in
figure 6.2 the evolution of the mean and standard deviation of the Reynolds
number with St for the three drag law (Eq. (6.3), (6.4) and (6.5)). As
expected, the relative velocity increases with the Stokes number, and both
quantities are shown to increase almost linearly with St, for the range of St
studied here at least, for the three drag laws. As apparent for St > 1, it
appears that the Reynolds number can be significantly larger than 1 which
confirms as discuss in the previous chapter than the drag law for Stokes
regime is not valid for bubbles with large Stokes number. We also remark
that the RMS is of the order of the average. Finally, when we compare the
curve for the various drag laws, we can conclude that for a fixed bubble size,
or St value, the relative velocity is larger with the drag law in the Stokes
regime and the relative velocity is the smallest in the no-slip case.
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Figure 6.2: (left) mean (right) root-mean-square of the bubble Reynolds
number for the three drag law considered here as a function of the Stokes
number, St = (db/24η)2. (◦) obtained with the drag law for clean bubbles
in Stokes regime (6.3) (∗) obtained with drag law (6.4), (4) obtained with
drag law (6.5), such that the root-mean-square value of both distribution is
unity.

In figure 6.3 we show the pdf of the bubble Reynolds number obtained in
the case of the slip drag law (6.5). It is observed that the form of the pdf
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of Reb normalized by its standard deviation depends weakly on the Stokes
number. With increasing St, the probability of having large fluctuations
of Reb reduces a bit. But overall, the distribution is quite close to the
log-normal distribution. Therefore, we could say that the bubble Reynolds
number presents intermittent fluctuations. This is confirmed by comparing
the Maxwell distribution, which corresponds to the norm of a vector having
a Gaussian distribution.

0 5 10 15 20 25
10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

Figure 6.3: The pdf of Reb from the simulation for non-linear drag force
(clean bubble) and inertia force, with different St from black to red as
the Stokes number increases. (- -) is a pdf of log-normal distribution with
parameters of σ2 = ln 2, µ = −σ2/2, (- ·) is a pdf of Maxwell distribution

with parameter a =
√

π
3π−8

We now present in figure 6.4 the influence of the drag law on the statistics
of the drag forces. We can see in this figure that despite the reduction of
the relative velocity reported previously, both the mean and the standard
deviation of the drag forces increase when considering the non-linear drag
compared to the linear drag.

We now propose to redefine the characteristic relaxation time to account
for the finite bubble Reynolds number effect on the dynamics. As will be
shown later, this new time scale enables to obtain a behavior similar to the
one found for Stokes regime, for various statistical quantities. We proceed
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Figure 6.4: Mean value of drag force amplitude normalized by the Kol-
mogorov acceleration scale versus the Stokes number. (◦) obtained with
drag law for Stokes regime (6.3) (∗) obtained with no-slip surface bubble
law(6.4).

as follows. We decompose the bubble Reynolds number into its mean and
fluctuating part: Reb = 〈Reb〉 + Re′b. And using a Taylor expansion of the
function F around F(〈Reb〉) we can write

F(Reb) = F(〈Reb〉) +Re′bF ′(〈Reb〉) + . . . (6.7)

with F ′(〈Reb〉) =
dF
dReb

∣∣∣∣
Reb=〈Reb〉

. The drag force, can therefore be ex-

pressed as:

FD =
uf − ub
τ∗b

+Re′bF ′(〈Reb〉)
uf − ub

τb
+ . . . (6.8)

where we introduce the redefined characteristic time τ∗b :

τ∗b = τb/F(〈Reb〉) (6.9)

It is worth mentioning that this time scale does not fluctuate in time and
remains constant. This is contrary to the proposition of [24], who have
introduced a random relaxation time scale. Namely, for the drag law in the
Stokes regime, we have:

τ∗b = τb (6.10)
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while for the bubble with contaminated interface, we found:

τ∗b =
R2

9ν

(
1 + 0.15〈Reb〉0.687

)−1

(6.11)

and for a clean bubbles interface:

τ∗b =
R2

6ν

[
1 +

( 8

〈Reb〉
+

1

2

(
1 +

3.315√
〈Reb〉

))−1
]−1

(6.12)

We will show latter how to estimate the value of 〈Reb〉 and thus to obtain
an a priori estimation of τ∗b . In order to neglect the fluctuations of Reb in
the evolution of F(Reb), we compare the magnitude of the second order and

the first order term in Eq. (6.8). We plot in figure 6.5 the ratio 〈Reb〉F
′(〈Reb〉)

F(〈Reb〉)
against 〈Reb〉. Note that we have estimated the order of magnitude of the
fluctuations of Reb as O(Re′b) = 〈Reb〉. We found that, in the simulation
for free slip bubble using drag law (6.5), the largest value for the ratio is
0.2 and it is found for the bubble with St = 1.55, and in the simulation for
no-slip surface bubble using drag law (6.5), the largest ratio 0.32 is found
for the bubble with St = 2.06. This confirms that the second term on
the right-hand side of (6.8) is negligible when focusing on the low order
moments of the statistics of FD. This is also confirmed in figure 6.6 which
presents the mean and variance of the norm of the relative velocity against
St∗ = τ∗b /τη for the three drag laws considered here. We observe that the
three curves present a relatively good collapse. As well, figure 6.7 shows
that the mean and standard deviation of the norm of the drag force present
the same evolution for the non-linear drag law as the drag law for Stokes
regime when plotted against St∗.

The bubble acceleration variance is reduced when taking account for the
nonlinear drag law compared to the case of the drag law of Stokes regime,
as presented in figure 6.9. With the increase of St, the drag force becomes
more and more reduced. This may appear surprising since we observed
that the drag force variance was increased when considering one of the non-
linear drag laws. The explanation can be found in the correlation between
the fluid inertia force and the drag force, already discussed in Chapter 5.
The variance of the bubble acceleration can be decomposed as 〈a2

b〉 = 〈F 2
D〉+

2〈FDFI〉 + 〈F 2
I 〉, and it appears that with the non-linear drag law the two

forces are more anti-correlated, see cross-correlation between two forces in
figure 6.12. In the meantime, the increase of the variance of the drag force
remains small such that the sum 〈F 2

D〉+ 2〈FDFI〉 is reduced when applying
the non-linear drag laws, explaining the reduction of the bubble acceleration
variance.

Similarly, to the previous analysis of the statistics of the drag forces, when
plotting the evolution of the acceleration variance as a function of the ef-
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Figure 6.5: The ratio between the second term on the right-hand side of

(6.8) to the first term 〈Reb〉F ′(〈Reb〉)
F(〈Reb〉) against 〈Reb〉, (4) simulation with no-

slip surface bubble law (6.4), (◦) simulation with slip surface bubble law(6.5).
(- -) Analytical results of (6.8) for (red) (6.4) and (black) (6.5).

fective relaxation time τ∗b , it is observed in figure 6.9 that the curves of the
three drag laws almost collapse when plotted with St∗. Therefore based on
the estimation of the bubble acceleration variance obtained from the Tchen
formula in the previous chapter, one can obtain an estimation of the accel-
eration variance when using the modified drag law by substituting St by St∗

in formula (3.4) of Chapter 5.

It appears that the modification of the drag law has a more important
influence to the higher order moment. In figure 6.10, the flatness of the
bubble acceleration versus St presents the same tendency. The flatness
increases firstly with St reaching a peak around St = 0.5 and then decrease
for larger St. When the non-linear drag law is applied, the peak value is
reduced and is shifted to larger St. As discuss in the previous chapter,
the non-monotonous evolution of the flatness is primarily attributed to the
randomness of the alignment between the two forces. When the two forces
with commensurate magnitude are anti-aligned, the resulting acceleration
is small. But if suddenly the forces tend to align, it results in a very strong
acceleration. In case of the non-linear drag laws we measure that the anti-
correlation between the two forces is stronger than with the drag law for
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Figure 6.6: (Left) The mean value of the norm of the relative velocity nor-
malized by the RMS of the fluid velocity, (right) The variance of the norm
of the relative velocity normalized by the variance of the fluid velocity ver-
sus the modified Stokes number St∗. (◦) obtained with drag law for Stokes
regime (6.3) (∗) obtained with no-slip surface bubble law (6.4), (4) obtained
with slip surface bubble law(6.5).

Stokes regime and therefore we think that the two forces are less prone to
align. To confirm this point, we plot the pdfs of the cosine angle between the
orientation of the drag force and fluid inertia force for both the simulations
using slip bubble drag law (6.5) and the no-slip bubble drag law (6.4) in
figure 6.8. The pdf of cos θ for clean bubbles in the Stokes regime can be
found in figure 5 of Chapter 5. As expected, the anti-correlation between
the two forces with no-slip bubble drag law (6.4) is stronger than that with
slip bubble drag law (6.5). Compared to the results of the drag law for
clean bubbles in the Stokes regime in figure 5 of Chapter 5, the two forces
of non-linear drag law are indeed less prone to align.

For completeness, we also present in figure 6.10 the evolution of the flatness
versus St∗. We observe in this plot that the peak seems to occur for the
same value of St∗ which corroborate the previous explanations.

The nonlinear drag laws also have some influences on the Lagrangian statis-
tics. The acceleration autocorrelation function for the three drags is pre-
sented in figure 6.11 for St = 0.02 and St = 1. It is observed that for small
St the decorrelation of the acceleration remains quite similar for the three
laws, but for St = 1 the Stokes regime drag laws gives the fastest decorre-
lation. This is attributed to the fact that the effective relaxation time τ∗b is
increased when using the non-linear drag laws.

We also present the cross-correlation function between these two forces in
figure 6.12 for St = 0.02 and St = 1. Once again for St = 0.02 no signif-
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Figure 6.7: Mean value of the drag force amplitude normalized by the
Kolmogorov acceleration scale versus the modified Stokes number St∗. (◦)
obtained with drag law for clean bubbles with Stokes regime (6.3), (∗) ob-
tained with no-slip surface bubble law (6.4).

icant difference is observed, as expected. But at St = 1, we see that with
the non-linear drag law the two forces present stronger anti-correlation phe-
nomenon, and the correlation time lag, defined as ρcross(τlag) = Max(ρcross),
is reduced. In figure 6.13, we plot the evolution of τlag for the three drag
laws against St and St∗. We observe that the evolution of the time lag is
similar when plotted against St∗ which confirms once again that most of the
effects of the Reynolds number correction to the drag law can be accounted
for by a rescaling of the bubble relaxation time.

We now show how to estimate the value of St∗ a priori, that is to say
without the need to first compute the bubble trajectories with the DNS.
In the previous chapter we have shown that from the Tchen theory we can
predict fairly well the linear drag force variance, see the relation (3.6) and
the figure 4 in Chapter 5. Therefore the relative velocity, for the Stokes
regime drag case is readily estimated as

〈(uf − ub)
2〉 = (Stτη)

2c0a
2
η

(1− β)2

1− St20

(
tan−1(c1St)

c1St
− tan−1(c1Re

1/2
0 )

c1Re
1/2
0

)

(6.13)
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Figure 6.8: The pdfs of the cosine angle between the orientations of the drag
force and fluid inertia force defined as cos θ = FI ·FD

|FI ||FD| , (left) is obtained from

the simulation using slip bubble drag law (6.5) and (right) is obtained from
the simulation using the no-slip bubble drag law (6.4). For both figure, St
= 0.02, 0.074, 0.020, 0.45, 1.01, 1.55 and 2.07 from black to red, respectively
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Figure 6.9: (Left) the variance of the bubble acceleration normalized by
the Kolmogorov acceleration a2

η = ε3/4ν−1/4 versus St. (Right) the variance
of the bubble acceleration normalized by the Kolmogorov acceleration a2

η =

ε3/4ν−1/4 versus St∗. For both figures (◦) is obtained with drag law for
Stokes regime (6.3), (∗) is obtained with no-slip surface bubble law (6.4),
(4)obtained with slip surface bubble law (6.5).
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Figure 6.10: (Left) is the 4th order moment of the bubble acceleration
normalized by the square value of the acceleration (flatness) versus St.

(Right) is the variance of the material fluid acceleration
Duf
Dt at the po-

sition of the bubble normalized by the variance of Kolmogorov acceleration
a2
η = ε3/4ν−1/4 versus St∗. For both figures (◦) is obtained with drag law for

Stokes regime (6.3), (∗) is obtained with no-slip surface bubble law (6.4),
(4)obtained with a slip bubble interface law (6.5).
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Figure 6.11: Lagrangian auto-correlation of acceleration 〈abx(t)abx(t+τ)
〈a2bx〉

〉 for

St = 0.02 left figure and St = 1 right figure. For both figure, (-) is obtained
with drag law for Stokes regime (6.3), (- ·) is obtained with no-slip surface
bubble law (6.4), (- -) obtained with slip surface bubble law(6.5).
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Figure 6.12: The Lagrangian cross correlation between inertia force and
drag force − 〈FDx(t+τ)·FIx(t)〉

|FD||FI | for St = 0.02 left figure and St = 1 right figure.

For both figures (-) is obtained with drag law for the Stokes regime (6.3), (-
·) is obtained with no-slip surface bubble law (6.4), (- -) obtained with slip
surface bubble law(6.5).

On the other hand, we observe in figure 6.6 that the relative velocity from
the three different drag laws collapse fairly well when plotted against St∗.
This means that the relative velocity in the case of the non-linear drag laws
can be estimated also from the formula (6.13) if one substitute St by St∗.
We can therefore estimate the average bubble Reynolds number from the
following relation:

〈Reb〉 = (St∗τη)
db
ν
aη

√√√√c0
(1− β)2

1− St20,∗

(
tan−1(c1St∗)

c1St∗
− tan−1(c1Re

1/2
0 )

c1Re
1/2
0

)

(6.14)
Since St∗ depend on the average value of the Reynolds number, St∗ =
St/F(〈Reb〉), the relation (6.14) cannot provide an explicit estimation of
〈Reb〉. However it can easily be solved iteratively by taking as initial guess
St∗ = St. We compare the results of 〈Reb〉 estimated with (6.14) and the
results computed with DNS in figure 6.14. The results show a fairly good
estimation.
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Figure 6.13: The time lag τlag defined as ρcross(τlag) = Max(ρcross) versus
(left) St (Right) St∗. For both figures (◦) is obtained with drag law for the
Stokes regime (6.3), (∗) is obtained with no-slip surface bubble law (6.4),
(4)obtained with a slip surface bubble law (6.5).
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Figure 6.14: Comparison of the 〈Reb〉 computed from DNS and estimated
from (6.14). For a slip surface bubble with drag law (6.5), (◦) is the value
obtained from the DNS, (x) is the value estimated with (6.14). For a no-slip
surface bubble with drag law (6.4), (4) is the value obtained from the DNS,
(+) is the value estimated with (6.14).
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6.3 Conclusions

In this section we have considered correction to the drag force due to the
effect of finite bubble Reynolds number 1 < Reb < 200. It has been assumed
that the instantaneous drag coefficient can be estimated from empirical rela-
tions that depend on the bubble Reynolds number and on the contamination
of the interfaces by surfactants. We observe that the deviations of the drag
coefficient from the Stokes expression can have a significant impact on the
bubble dynamics leading to a reduction of the characteristic relative velocity,
an increase of the drag force variance as well as a diminution of the bubble
acceleration variance. We have shown that these local Reynolds number
effects could be accounted for, to first order, by rescaling the characteristic
relaxation time of the bubble. This scaling factor is a function of the average
bubble Reynolds number, and results in an effective relaxation time smaller
than the original Stokes relaxation time.

In the derivation of these results a critical assumption was made. Indeed the
validity of the above-mentioned expressions for the drag coefficient requires
that the flow around the bubble is, at least locally, homogenous and station-
ary, which for a bubble with St > 1 is not the case since it also implies d > η.
This important remark call for a refined treatment of the finite size effect
of the bubble. Such modeling was recently proposed in [24] by introducing
a random relaxation time that accounts for the turbulent structure of the
flow around a solid particles. It is a priori not straightforward to extend
this approach to large bubbles, since they are likely to deforms which would
require to also account for the non-spherical bubble, its rotation as well as
the induced lift force.

Nevertheless there is a particularly important case in which the bubbles can
be considered smaller than the Kolmogorov scale but present a Reynolds
number larger than one. When the bubbles are subject to the gravity force
their slip velocity can become large without necessarily implying that their
Stokes number becomes large. In the next section, we will study the rising
of bubbles in turbulent flows capitalizing on the results presented here to
account for finite bubble Reynolds number effects.
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Chapter 7

Gravity effect on the bubble
motion in turbulence

In this section, we discuss the buoyancy effect on a small bubble in isotropic
homogeneous turbulent flow. The investigation will focus on the rising veloc-
ity and the Lagrangian statistics of acceleration under the effect of gravity,
drag and fluid inertia force. The bubble rises in the opposite direction of
gravity due to the buoyancy force. The rising terminal velocity in quiescent
flow is then defined as

Vterm = (β − 1)gτb (7.1)

τb is the relaxation time scale of a bubble, in the Stokes regime it is defined as
τb = d2

b/24ν. The terminal velocity corresponds to the stationary velocity
reach by a bubble (particle) rising in quiescent fluid. Note that for large
bubble Reynolds numbers, due to the deformation of the bubble, the rising
velocity can present path oscillation resulting in non-steady vertical velocity
even in the absence of any other imposed fluctuations in the liquid [58]. A
bubble rising in a turbulent flow will obviously present fluctuations in its
rising velocity, due to others hydrodynamic forces, such as fluid inertia force
and drag force.

It has been observed that in turbulent flows, bubbles experience a reduction
of their average rising speed [11, 12, 59, 13, 60, 61]. Likewise, numerical
[62, 6, 38, 63] and experimental studies [64] have shown that the settling
velocity of heavy particles have been observed to be enhanced. However,
recent experimental studies have also provided evidence that turbulence can
reduce the settling velocity of heavy particles with large St [65]. In the
experimental study of oil droplet rising in water, with Φρ < 1 [66], the
mean rising velocity of the droplets was found to be larger or smaller than
the quiescent rise velocity, depending upon the turbulence intensity, droplet
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size and upon the droplet Stokes number.

Focusing back on the small bubbles, it was summarized by [67] that the
reduction of their rising velocity can be attributed to the following reasons.

• The bubbles under the lift force effect tend to go to the downward
stream, which causes an oversampling of negative vertical velocity (op-
posite direction to the buoyancy force).

• The regions where the bubbles tend to accumulate are prone to yield
in a downward direction lift force component.

• Bubbles can be trapped in the strong vortex for a significant time.

We propose to study as well the influence of high Reynolds turbulent flow
on the rising velocity. In this chapter we ignore the lift force 1 and consider
only the buoyancy force, drag force and fluid inertia forces in the equation
of motion Eq. (7.2). Specifically, we will discuss the effects of the inertia
forces on the rising velocity. It is interesting because even without lift force,
the average rising velocity is also observed to be smaller than the Stokes
terminal velocity [60, 11].

We performed DNS of the fluid field with the same configuration as already
reported in table 6.1 and the force balance equation for the bubbles reads:

dub
dt

=
uf − ub

τb
F(Reb) + β

Duf
Dt

+ (1− β)g (7.2)

We are only interested in the case of light bubbles for which β = 3. As
discussed in the previous chapter, the function F(Reb) stands for the finite
Reb effects in the drag force of the bubbles. Specifically, we consider the case
of a bubble experiencing free slip conditions at its interface, for which the
expression of F is given in Eq.(6.5). We denote this simulation as simulation
I.

Remark that the effects of buoyancy generate a significant slip velocity (or
relative velocity), and in consequence the bubble Reynolds number could
mostly be larger than unity and the drag law in Stokes regime (6.3) do not
hold. Nevertheless, for comparison, the DNS has also been performed with
drag law for the Stokes regime, F = 1, along with Reλ = 100, denoted
hereafter simulation II. Finally, we analyze the effect of the flow Reynolds
number by performing a DNS for a larger Reλ = 200, still with the drag law
in the Stokes regime (named simulation III). The details of the carrier flows
can be found in TABLE 1 of Chapter 5.

1Note, however, that the next chapter is dedicated to the effect of the lift force.
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The gravity will be characterized using the Froude number Fr =
aη

(1−β)g
that compare the fluid acceleration at the Kolmogorov scale to the buoyancy
force per unit subject to gravity. For the simulations with Reλ = 100 (i.e.
Simulations I and II) the Froude number is set to Fr = 0.185 while for the
simulation III with Reλ = 200 the Froude number is larger: Fr = 0.716
and therefore the effect of buoyancy on the bubbles is reduced because of
more intense turbulent fluctuations. For each simulation, we will study the

effect of the bubble Stokes number St = τb
τη

and the effect of St∗ =
τ∗b
τη

. The
parameters of the simulations are shown in the tables 7.1 for the Simulation
I and 7.2 for the simulations II and III.

db/η 0.70 1.33 1.72 2.19 2.74 3.29 3.91 4.92 6.10 7.04

St 0.02 0.074 0.12 0.20 0.31 0.45 0.64 1.01 1.55 2.07

St∗ 0.02 0.07 0.11 0.17 0.24 0.32 0.41 0.58 0.81 1.01

Table 7.1: Simulation (I) using no-linear drag law for Reλ = 100, Fr =
0.185

db/η 0.69 1.33 2.19 3.29 4.92 6.10 7.05

St 0.02 0.07 0.20 0.45 1.01 1.55 2.07

St∗ 0.02 0.07 0.20 0.45 1.01 1.55 2.07

Table 7.2: Simulation (II) using drag law in the Stokes regime for Reλ =
100, Fr = 0.185, and simulation (III) using drag law in the Stokes regime
for Reλ = 212, Fr = 0.716. Note: St = St∗ because using drag law in
Stokes regime.

7.1 Average rising speed from DNS

From Eq. (7.2), the average force equation of a bubble reads:

0 = 〈
uf − ub

τb
F(Reb)〉+ β〈

Duf
Dt
〉+ (1− β)g (7.3)

In absence of flow, aside from the perturbation caused by the rising bubble
itself, one has uf = 0 and

Duf
Dt = 0 which allows the mean vertical bubble

velocity 〈ubz〉 to recover the terminal velocity given in Eq. (7.1). From this
equation it is apparent that the alteration of the average rising speed can
be caused by non-zero average fluid velocity and acceleration at the bubble
position. Although the flow remains homogeneous and isotropic on average,
the bubbles can preferentially sample certain regions of the flow which can
result in non-zero average for these quantities. Another cause of alteration
can be found in the Reynolds number dependence on the drag law. Of course
different drag laws results in different relative velocities (keeping unchanged



88 CHAPTER 7. GRAVITY ON THE BUBBLE MOTION

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 7.1: (–) terminal velocity defined as Vterm = (β − 1)gτb with τb =
d2
b/(24ν) (- -) V ∗term = (β − 1)gτ∗b with τ∗b estimated as in the previous

chapter with Eq. (6.5); (∗) is the averaging relative velocity in the z-direction
defined as 〈Wrel〉 = 〈ubz−ufz〉 from simulation II considering the drag force
in the Stokes regime, (+) is 〈ubz〉 from simulation II, (◦) is 〈Wrel〉 of the
nonlinear drag law from simulation I and (4) is 〈ubz〉 from simulation I.
(Left) Evolution with St = τb/τη, (right) the evolution with St∗ = τ∗b /τη.
Note that in the evolution with St∗, Vterm (-) and V ∗term (- -) collapse on the
same curve. All of the velocity values in this figure are normalized with the
RMS of turbulent velocity fluctuations urms.

every other parameters). As a follow-up of the previous chapter, we compare
in this section the average rising velocity of bubbles subject to the drag law
in Stokes regime and to non-linear drag law for clean bubbles.

Neglecting the fluctuation of the bubble Reynolds number around its average
value, we can write the average drag force as:

〈
uf − ub

τb
F(Reb)〉 ≈

〈uf 〉 − 〈ub〉
τb

F(〈Reb〉) =
〈uf 〉 − 〈ub〉

τ∗b
(7.4)

Whereas discussed in Chapter 6, we define an effective relaxation time for
the bubbles based on the average value of Reb: τ∗b = τb/F(〈Reb〉), with
F > 1. From the definition of the terminal velocity Vterm = (1− β)gτb, it is
clear that a rescaling of the relaxation time modifies the terminal velocity.
This means that in still liquid, large bubbles will have smaller rising velocity,
V ∗term = (1−β)gτ∗b compared to the estimation with drag force in the Stokes
regime. In turbulent flows, we observe a similar behavior as well. In figure
7.1, we report the average vertical velocity for different bubble diameters,
and we compare the case of bubbles subject to non-linear drag (Simulation
I) and drag in the Stokes regime (Simulation II). It is observed that, for a
given bubble diameter (or Stokes number), the rising velocity is smaller if
one accounts for the finite Reynolds number effect in the computation of
the drag. It is further observed that bubbles systematically present a rising
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velocity smaller than their terminal velocity. If we use the method proposed
in Chapter 6 to estimate the effective St∗ = τ∗b /τη with the relation (6.5),
we can see that the average rising velocity and the average relative vertical
velocity have approximately the same value.

In order to estimate the effect due to the oversampling of fluid region with
negative vertical velocity by the bubbles, we also report in this figure the
evolution of the average relative vertical velocity 〈Wrel〉 = 〈ubz − ufz〉 for
both drag laws. It is indeed observed that 〈Wrel〉 is slightly larger than the
bubbles average rising velocity. This means that even without lift force the
bubble still over sampling regions where the fluid velocity is negative. How-
ever 〈Wrel〉 remains significantly smaller than the terminal velocity when
St increases. As deduced from (7.3) and (7.4), this means that the average
contribution of the fluid inertia force is comparable, in magnitude, to the
buoyancy force itself. We present in figure 7.2 the average vertical com-
ponent of the fluid inertia force normalized by the buoyancy force, for the
three simulations. For vanishingly small Stokes number bubbles behave as
tracers, even in the presence of the buoyancy force, and therefore the aver-
age inertia force is null. However when the Stokes number is increased, it
is observed that the mean fluid inertia force becomes negative, and presents
important values relatively to the buoyancy force: for St ≈ 1 it is about 1/3
of the buoyancy in absolute value. From (7.3) and (7.4), we can write an
approximate relation between the average drag force and fluid inertia force:

〈Wrel〉
Vterm

= 1 +
β〈afz〉

(1− β)g
. (7.5)

where afz is the z-component total acceleration of the fluid at the bubble
position. It observed in figure 7.3 that 〈Wrel〉/V ∗term seems to decrease with
St∗ as a function of exponential and to be independent of the drag law or
the flow Reynolds number and Froude value. The proposed data fitting

〈Wrel〉
V ∗term

=
exp(−1.2St∗) + 1

2
(7.6)

is purely empirical of such evolution and it should be interesting for further
study to find an explanation.

In figure 7.4, we compare our results concerning the relative velocity with
the results from the DNS of [11]. In their simulation, they have used the
same equation Eq. (7.2) to track very light spherical particles motion. More
specifically, [11] uses the Stokes drag force (F = 1) and τb = d2

b/36ν in the
case of contaminated (no-slip interface bubble), fluid inertia force with β = 3
and the buoyancy force (1 − β)g, with terminal velocity (1 − β)gτb = uη
(Fr = 1) and Reλ = 62. We can see that our results quantitatively agree
with those of [11]. In our simulation, we have surprisingly bubble rising
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Figure 7.2: Average vertical component of the fluid inertia force normalized
by the buoyancy force plotted versus the Stokes number St (left) and the
effective Stokes number St∗ (right) for 3 simulations. (4) Reλ = 200 drag
force in the Stokes regime (simulation III); (∗) Reλ = 100 drag force in the
Stokes regime (simulation II) ; and (◦) Reλ = 100 bubble drag law (6.5)
(simulation I).

velocity larger than the terminal velocity for the smallest St = 0.02. The
explanation is that, for St = 0.02, the value of the fluid vertical velocity
at the bubble position is positive on average 〈ufz〉 > 0. A bubble, with
St = 0.02, responds instantaneously to the ambient flow velocity. We should
remark that, the average value of the fluid vertical velocity at the bubble
position 〈ufz〉 for St = 0.02 is about 0.1% of the large eddy velocity which
could also be caused by a statistical error.

7.2 Model for the preferential sampling of nega-
tive regions

In order to explain why the average fluid velocity and fluid inertia sampled
by the bubble are negative, a primitive analysis of the bubble motion in
a horizontal vortex is proposed [68, 69]. Consider a bubble in a steady
vortex in the xz-plan with a constant angular velocity ω is anticlockwise,
see figure 7.5. In cylindrical coordinate (er, eθ), for a given radial distance r
the velocity is uf = rωeθ and the fluid acceleration is af = −rω2er. After
releasing a bubble in such a vortex, it will reach an equilibrium position
noted (re, θe) so ub = 0 and ab = 0. At such position the drag force is
FD = (0, reωτb ), the fluid inertia force is FI = (−βreω2, 0) and the buoyancy
force components are: Fg = (−(1−β)g sin(θe), −(1−β)g cos(θe)), and they
are in balance: FD + FI + Fg. This gives the two following equations:

0 = 0− βreω2 − (1− β)g sin(θe) (7.7)
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Figure 7.3: The reduction rate 〈Wrel〉/V ∗term versus St∗, (◦) for simulation
I (Reλ = 100), (∗) for simulation II (Reλ = 100), (4) for simulation III
(Reλ = 200). (- -) is an exponential fitting of form (7.6).

0 =
reω

τb
+ 0− (1− β)g cos(θe) (7.8)

which we can rewrite as

sin θe = − βreω
2

(1− β)g
(7.9)

cos θe =
reω

(1− β)gτb
(7.10)

g here is the norm of gravity |g|. From Eq. (7.9) and Eq. (7.10), cos θe is
always negative whereas sin θe is always positive. This means the equilib-
rium position is to be found in the locations where vertical component of
the fluid acceleration is negative and a negative vertical fluid velocity (top
left quadrant of figure 7.5. This model explains first that a bubble can be
trapped in a vortex and that once it is trapped it is likely to experience both
negative vertical component of the drag force and of the fluid inertia force.

We now discuss the relevance of this simple model to analyze the motion
of the bubble in turbulent flows. First we remark that according to the
model an equilibrium position always exists because both the drag force and
the inertia force increases linearly with the radial distance and the radial
extension of the vortex can be arbitrary long in the model. Indeed solving
equations (7.9) and (7.10) for re and θe one obtains:

tan θe = −βωτb (7.11)
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Figure 7.4: The difference of bubble average rising velocity in turbulence
between the rising velocity in quiescent flow (terminal velocity) 〈ubz−Vterm〉Vterm

,
(4) is in our simulation with drag law for clean bubbles in the Stokes regime
andReλ = 100 (◦) is the simulation of [11] with the same method with Stokes
drag for contaminated bubble and Reλ = 62.

re =
(β − 1)g

ω(1/τ2
b + β2ω2)1/2

(7.12)

The first equation confirms that the tangent of the equilibrium position angle
is negative and thus the bubble position is in the top left quadrant. While
the second equation shows that the radial equilibrium position increases
linearly with gravity but reduces with rotation rate. One sees here a possible
limitation of the model: a vortex with given vorticity value has to be large
enough to include the radial equilibrium position of the bubble. According
to the Kolmogorov 41 theory the size `, of a structure and its vorticity ω`
are connected, if one agree to identify the typical vorticity of the structure
as its inverse time scale: ω` = (〈ε〉/`2)1/3. Therefore a condition for the
model is to require that:

re(`)/`� 1 (7.13)

where re(`) is the radial distance between the bubble equilibrium position
and the center of a horizontal vortex of characteristic size ` and vorticity ω`.
Substituting ω` = (〈ε〉/`2)1/3 in place of ω in (7.12) one can express re(`)/`
as:

re(`)

`
=

(
`

η

)−1/3 St

Fr

(
1 + β2St2

(
`

η

)−4/3
)−1/2

(7.14)
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Figure 7.5: Sketch to illustrate bubble equilibrium in a steady rotation with
anticlockwise angular speed of ω, accounting for drag FD, fluid inertia FI
and buoyancy Fg forces acting on the bubble.

with η being the Kolmogorov dissipative scale of the flow. From this formula
we see that for small Fr values (strong gravity) re(`)/` can present values

larger than 1 over a range of scale `. The graph of
re(`)

`
× Fr against `/η

is plotted in figure 7.6 for various values of St, from St = 0.01 to St = 10.

The model can be relevant if
re(`)

`
× Fr � Fr. If this condition is not

satisfied, the bubble may have difficulty to find an equilibrium position in
the structure of size `. From this figure we can conclude that for Fr = 0.185
the model can be considered as relevant only for St < 1, whereas for larger
St the bubble will escape from the vortex.

Another possible limitation of the model lies in its stationary character.
Indeed once a bubble enters in a vortex, it takes a finite time, probably
of the order of τb, to reach its equilibrium position (granted the vortex is
large enough). Therefore the characteristic lifetime of the structure needs
to be larger than the bubble relaxation time. The structure lifetime can be
estimated as ω−1

` , therefore, only the structure of size ` such that

`/η � St3/2 (7.15)

can live long enough to allow the bubble to find an equilibrium position.
As we only consider here St of order unity at most, this condition is a
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Figure 7.6: Equilibrium radials position of a bubble
re(`)

`
× Fr against `/η

for St = 0.01, 0.1, 1 and 10 form black to red color. Vortex model is relevant

for
re(`)

`
×Fr < Fr. The two horizontal lines correspond to (- -) Fr = 0.185

and (- ·) Fr = 0.76 (values of our DNS).
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priori satisfied as it appears as restrictive than the inertial range condition
(`/η � 1).

Numerical studies have shown that small bubbles are indeed trapped in a
vortex [11, 67]. The trapping time is of the order of the structure life-
time, which gives an intermittent picture for the bubble vertical motion, the
bubble experiences successive phases of freely rising motion and phases of
capture by a vortex. Moreover the duration of the capture might be con-
sidered as random as the bubbles can reside in large vortex with large time
scale or in smaller ones (with smaller lifetime). This model appears con-
sistent with the observation of DNS that both the relative velocity and the
fluid acceleration at the bubble position are negative in average (see figures
7.1 and 7.2).

7.3 Acceleration statistics under buoyancy force

The buoyancy force impacts the bubble acceleration statistic, even for very
small bubble St < 1. It has been observed [70] that the gravity can enhance
both vertical and horizontal acceleration variances. In their study, [70] focus
on very small bubbles with St of the order of 10−2. Our numerical simula-
tions are consistent with this result, and extend the range of Stokes number
studied as St varies from 0.02 to 2.07. Figure 7.7 presents the variance of
both the horizontal and vertical acceleration components for Fr = 0.185
along with the bubble acceleration variance in absence of gravity (Fr →∞)
in the case of drag force in the Stokes regime. We confirm the observations
that acceleration variance in any direction is increased by gravity. We can
also remark that the variance of the acceleration in the horizontal direction
is even slightly larger than in the vertical direction. The observation can be
associated to the alternation of capture and rising which could increase the
fluctuation of the acceleration.

However the acceleration flatness, is reduced by the gravity as seen in figure
7.8 which compares the normalized 4th order moment of the acceleration
for Fr = 0.185 and Fr = ∞ in the case of Stokes drag for Reλ = 100 and
200. It is further observed that the horizontal component is more reduced
than the vertical one. It is also seen that the flatness of the fluid accelera-
tion at the bubble position is also smaller than what has been observed in
the simulation without gravity. The reduction also depends on the relative
importance of the gravity to the turbulent intensity, herein the Fr =

aη
(1−β)g

with characteristic acceleration scale of the turbulence aη.

The pdfs of the acceleration, with and without gravity, are presented in
figure 7.9. The reduced flatness is not significantly important to change
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Figure 7.7: Acceleration variance versus the Stokes number St = τb/τη, (◦−)
horizontal component of acceleration with gravity, (4−) vertical component
of acceleration with gravity, (- ∗ -) horizontal component of acceleration
without gravity, (- · -) vertical component of acceleration without gravity.
For all the curve, the drag law is given in the Stokes regime as in simulation
II with Reλ = 100.

the form of the distribution function. The pdfs of acceleration preserve the
log-normal distribution in both x and z directions at least for small enough
fluctuations.

The acceleration Lagrangian auto-correlation is also affected by the buoy-
ancy force. Figure 7.10 shows that the acceleration remains correlated over
a slightly longer period when the bubbles are subject to gravity, and the
difference appears to be larger for large St. However, it is observed that the
vertical and the horizontal acceleration components do not show a significant
difference.
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Figure 7.8: The bubble acceleration flatness versus the Stokes number St =
τb/τη, with (left) Fr = aη/(1− β)g = 0.72, (right)Fr = aη/(1− β)g = 0.19,
(◦−) horizontal component of acceleration with gravity, (4−) vertical com-
ponent of acceleration with gravity, (∗−) vertical component of acceleration
without gravity. The evolution of the flatness of the fluid acceleration at
the bubble position versus St, (•−−) horizontal component of acceleration
with gravity, (N − −) vertical component of acceleration with gravity, (×-
-) vertical component of acceleration without gravity.
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Figure 7.9: The normalized PDFs of the bubble (St = 0.45) bubble accel-
eration (left) and the fluid acceleration at the bubble position(right), (red
color) is horizontal component (black) is the vertical component.
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Figure 7.10: The Lagrangian autocorrelation functions under gravity effects.
The continuous lines are the autocorrelation function with gravity and the
dash line is that without gravity, black is the x-component and red is the
z-component. (left) St = 0.02, (right) St = 1.
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7.4 Conclusions

In this chapter, the gravity effect on the bubble motion in turbulence has
been considered for bubbles with non-vanishing Reb. The finite Reynolds
number effect of the drag force (nonlinear drag) reduces the average rising
velocity by increasing the mean drag force. Following the conclusions of the
previous chapter, we can use the effective relaxation time to estimate the
effective terminal velocity taking account for the finite Reynolds number
effects.

We found that even without lift force the bubble still slightly oversampling
downstream flows. The oversampling effect increases with St and saturate
around St ' 0.5. But the main reason for the reduction of the rising speed
is the negative value of the average vertical component of the fluid inertia
(i.e. fluid acceleration at the bubble position).

Furthermore, we considered the gravity effect to the bubble acceleration
statistics. The gravity increases the bubble acceleration variance and de-
creases its flatness for small Fr < 1. The acceleration is also observed to
remain correlated over a long period compared to the case without gravity.
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Chapter 8

Lift force effect on the
bubble motion in turbulence

In early simulation studies with point-wise particle method to simulate the
bubble motion in turbulence, the lift force is sometimes absent in the equa-
tion of motion, such as in [11, 71] as well as in the study presented in previous
chapters. The stochastic model we proposed in Chapter 5 has neglected the
lift force term. In order to justify this simplification the bubble must be
in the Stokes regime, which imply that Reb � 1. However, when Reb be-
comes non-negligible the lift force might modify the acceleration statistics.
The objective of this chapter is to study the lift force effect on the bubble
motion, in particular, the acceleration statistics.

Numerical simulations of bubble-laden homogeneous and isotropic turbulent
flow accounting for the lift force have shown that the role of the lift force
is important for the study of the bubble dynamic and specifically for their
rising velocity, because the slip velocity is large. According to [67, 13, 60],
lift force results in a strong enhancement of the preferential accumulation of
bubbles in the downward flow side of the vortex. This results in a consider-
able reduction of the bubble rising velocity and an alteration of large-scale
motion and a modification of the spatial distribution of bubble clusters in
turbulence [71]. But the previous studies are mostly concerned with the
interplay between lift and gravity effects. We proposed in this chapter to
first investigate only the lift force effects on the acceleration statistics. We
performed DNS with only drag, fluid inertia and lift force in the equation
of motion. Then in the following section, we will add the buoyancy force, to
see how the lift force conjointly with the gravity affects the bubble motion.

101
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The lift force is computed with

FL = (ρb/ρf + CM )−1CL(uf − ub)×Ωf (8.1)

with the lift force coefficient CL = CL(Reb, Sr) given by eq. (3.18) is a
function of (Reb, Sr) characterizing the relative velocity and the local shear
rate, as presented in Chapter 3 [46, 44]. Note that formally FL is here not
a force but a force per unit of displaced mass and for a spherical bubble
(ρb/ρf + CM )−1 = 2. In the following we will assume that the bubbles are
spherical and have free slip condition on their interface. Since the range
of Reb in our studies do not satisfy the Stokes regime, the drag force in
this chapter will be given by the non-linear drag force for clean bubble Eq.
(3.8). The effective relaxation time, used for post-treatment, is computed a
posteriori as

τ∗b = τb/F(〈Reb〉) (8.2)

with τb =
d2b
24ν , with F of eq. (6.5) and 〈Reb〉 =

db〈|uf−ub|〉
ν where 〈|uf −ub|〉

is obtained from the DNS, and the effective Stokes number St∗ = τ∗b /τη.

8.1 The influence of lift force on bubble accelera-
tion statistics

In this section, we focus on the lift force effect on the bubble acceleration
statistics. The objective is to see how much does the lift force impacts the
small bubble acceleration statistics with the absence of gravity. Because of
the statistical isotropy of the bubble motion, all the acceleration and velocity
statistics have zero mean value. The equation of motion for the bubbles per
unit of displaced mass is:

ab =
dub
dt

=
uf − ub

τb
F(Reb) + 3

Duf
Dt

+ 2CL(uf − ub)×Ωf (8.3)

where the forces per unit displaced mass on the right-hand side are from left
to right the drag FD, the inertia FI and the lift FL. The characteristics of
the carrier phase turbulence are identical to those of the previous chapter
with Reλ ' 100. The simulation parameters are reported in table 6.1 for
the fluid field and table 7.1 for the bubble size and Stokes number. For
reference, simulations are also performed by setting CL = 0 in Eq. (8.3)
which will be referred in this chapter as DNS without lift force.

We start by presenting in figure 8.1, the bubble acceleration variance nor-
malized by a2

η from the DNS with/without lift force. The first remark is that
the lift force does not have a significant impact on the bubble acceleration
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variance, at least for Stokes numbers below 2. The bubble acceleration vari-
ance 〈a2

b〉 increases with St∗ as previously observed without lift force (see
figure 6.9). The acceleration variance is almost the same for vanishingly
small Stokes number (St∗ = 0.02), for which a bubble can be essentially
considered as a fluid tracer. With the St∗ increase, the acceleration vari-
ance increases slightly slower compared to the case without lift force. The
maximal difference in acceleration variance is observed for St∗ = 0.5 and for
larger St∗ the difference becomes progressively smaller.

In figure 8.2, we present the bubble acceleration pdfs obtained from the
DNS with and without lift force. It is observed that in both cases the bub-
ble acceleration pdfs are very similar and present a non-Gaussian behavior
with stretched tails indicating the occurrence of very intense acceleration
events. For Stokes number of order one (St∗ ' 0.65, 0.9, 1.13), the bubble
acceleration pdfs appears nevertheless more stretched with lift force than
without lift force.
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Figure 8.1: Bubble acceleration variance (4) simulation with the lift force
〈a2
l 〉, (×) for bubble acceleration variance of the simulation without the lift

force 〈a2
nl〉. Insert: Acceleration variance R(St∗) =

〈a2nl〉−〈a
2
l 〉

〈a2nl〉
without and

with lift force normalized with the former acceleration variance.

We also compare, in figure 8.3, the Lagrangian acceleration autocorrelation
along the bubble trajectory ρab = 〈ab(t)ab(t+τ)〉

〈a2b〉
with and without the lift

force for various Stokes numbers. It is observed that, the Lagrangian auto-
correlation functions present again a very similar evolution. In both cases,
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Figure 8.2: (- -) pdfs of the bubbles acceleration (without lift force and
gravity) normalized by its root-mean-square value, (–) pdfs of the bubbles
acceleration (with lift force and no gravity) normalized by its root-mean-
square value for St∗ = 0.02, 0.07, 0.18, 0.35, 0.6, 0.90, 1.13 (respectively,
shifted upward by two decades from each other for clarity).

when the Stokes number increases, we observe a faster decorrelation of the
acceleration. In order to analyze further the dynamic of the bubbles when
subject to the lift force, we plot in figure 8.4 the variance of the various forces
(per unit of displaced mass): fluid inertia effect 〈F2

I〉, drag force 〈F2
D〉 and lift

force 〈F2
L〉 in the two cases: with or without lift force. These variances are

normalized by a2
η. From Eq. (8.3), the variance of the bubble acceleration

is related to the variance of the forces with the following expression:

〈a2
b〉 = 〈F2

I〉+ 〈F2
D〉+ 〈F2

L〉+ 2〈FI .FL〉+ 2〈FI .FD〉+ 2〈FL.FD〉 (8.4)

The last three terms are the correlation between the forces and are plotted
in figure 8.4. In this figure, we see that the lift force increases with St∗ and
becomes, at large St∗, comparable to the fluid inertia force, which remains
the dominant force. At St∗ ' 1.1 the variance of the lift force is about
50% of the fluid inertia. We can remark that the fluid inertia force variance
is very slightly reduced when accounting for the lift force. This reduction
is due to the modification of the preferential concentration caused by the
lift force, which is maximum when the bubble relaxation time has the same
order as the Kolmogorov scale. Concerning the drag force, it is observed as
well as the lift force, it has a very reduced impact on the statistics. We notice
a small increase of the drag force when accounting for the lift force. Also to
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Figure 8.3: The auto-correlation function of bubble acceleration ρab =
〈ab(t)ab(t+τ)〉

〈a2b〉
. (Left) DNS without lift force, (Right) DNS with lift force.

St∗ = [0.02, 0.07, 0.18, 0.35, 0.65, 0.90, 1.13] (from black to red respec-
tively).

be remarked is that the variance of the lift becomes more important than
the drag force for St∗ > 0.5. To summarize, we found that although the lift
force variance is quite significant for large St∗, the total bubble acceleration
does not change much.

To explain this, we use the decomposition of the bubble acceleration vari-
ance given in Eq. (8.4). We can see in figure 8.4, the correlation between
drag force and inertia force 2〈FI .FD〉 remains nearly unchanged with or
without lift force, and presents the same behavior as detailed in Chapter 5:
the drag and inertia force are completely anticorreleted for St∗ = 0. And
this anticorreleation progressively return to 0 as the St∗ increases and the
characteristic time scale of the drag force increases. We observe a different
behavior between the lift force and the inertia force. As St∗ increases the
lift force increases but in the same time, the correlation between the two
forces 〈FI .FL〉 becomes more and more negative. It turns out that the sum
of 〈F 2

L〉+2〈FI .FL〉 almost exactly cancel in Eq. (8.4) leaving unchanged the
bubble acceleration variance. This means that as St∗ increases it becomes
more likely to have the fluid inertia force and the lift force in the opposite
direction. Finally, note that the correlation between the drag and the lift is
exactly null because the relative velocity vector and the lift force vector are
orthogonal (see the definition of the forces in (3.3) and (3.15)).

In order to explain the observation, we can rewrite the equation of motion
Eq. (8.3) as follows:

abi =
ubi
dt

= (ufj − ubj)(
δij
τ∗b
− 2CLεijkΩk) + 3Dtufi (8.5)
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Figure 8.4: The different contribution of the hydrodynamic force to the
bubble acceleration variance normalized by the Kolmogorov acceleration a2

η

for different St∗. Results from simulation without lift force: (x) is the fluid
inertia force contribution 〈F 2

I 〉, (*) is the drag force contribution 〈F 2
D〉, (+)

is the the correlation between drag force and fluid inertia force 2〈FI .FD〉;
Results from simulations with the lift force: (4) is the fluid inertia force con-
tribution 〈F 2

I 〉, (◦) is drag force contribution 〈F 2
D〉, (O) is the contribution

of the correlation between drag force and fluid inertia force 2〈FI .FD〉, (�)
is the lift force contribution 〈F 2

L〉, (�) is the contribution of the correlation
between lift force and fluid inertia force 2〈FI .FL〉, (·) is the contribution of
the correlation between lift force and drag force 2〈FD.FL〉.

where uf the fluid velocity, Ωk is the k component of the vorticity and
Dtuf is the fluid acceleration vector at the bubble position. We can define
a tensorial relaxation frequency

φij = (δijτ
∗−1
b − 2CLεijkΩk)

−1 (8.6)

in which we can see two contributions: the contribution of the drag force
δijτ

∗−1
b and the contribution of the lift force −2CLεijkΩk. The contribu-

tion of the drag force tends to reduce the relative velocity by yielding an
acceleration vector aligned with the relative velocity whereas the lift force
contribution results in a rotation of the acceleration vector relatively to the
relative velocity. The three invariants of the tensor φij are:

I1 = 3τ∗−1
b (8.7)

I2 = 3τ∗−2
b + C2

L(Ω2
12 + Ω2

13 + Ω2
23) (8.8)
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I3 = τ∗−3
b + τ∗−1

b C2
L(Ω2

12 + Ω2
13 + Ω2

23) (8.9)

where Ωij is the rate of rotation tensor, Ωij = ∂iufj − ∂jufi. From the Kol-
mogorov scaling and isotropy, we assume thatO(Ω2

12) = O(Ω2
13) = O(Ω2

23) =
τ−2
η which enables to estimate the invariant of the tensor normalized by τη

as
I1 ≈ St∗−1 (8.10)

I2 ≈ 3(St∗−2 + C2
L) (8.11)

I3 ≈ St∗−3 + 3C2
LSt

∗−1 (8.12)

Accordingly, the canonical form of the tensor φ in non-dimensional form is:

φc ≈



St∗−1 −

√
3CL 0√

3CL St∗−1 0
0 0 St∗−1


 (8.13)

Therefore it is clear that the dynamic system given by ẋ = −xφc corresponds
to spiraling motion going inward to the origin. As expected the rate of
rotation is controlled by the value of the lift coefficient while the compression
rate is given by the inverse of the Stokes number. When the Stokes number
is very small the diagonal term are dominant compared to the off-diagonal
terms, since in that case the lift coefficient is very small due to the smallness
of the Reynolds number (see the expression for the lift coefficient in Eq.
(3.18). Therefore the drag force can very quickly adjust to the forcing caused
by the fluid inertia force, resulting in a drag force and an inertia force
in the opposite direction. On the other hand, for larger Stokes number,
the lift coefficient presents larger value and we have the opposite situation
as the lift coefficient dominates over St∗−1. As a consequence, when the
bubble resides in a region of the flow dominated by rotation the lift force
has a centrifugal orientation, pointing outward the vortex while the fluid
inertia is a centripetal force pointing inward and therefore they are both
anti-aligned. This picture explains the negative correlation between lift and
inertia observed in Figure 8.4, and thus the absence of the effect of the lift
force on the bubble dynamics despite the fact that the force itself can have
a non-negligible magnitude.
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8.2 The lift force effect on rising velocity

In this section, we study the motion of a bubble subjected to gravity in
addition to drag, fluid inertia and lift in turbulent flow. We would like
to investigate how the interplay of lift and buoyancy forces can significantly
modify the bubble dynamics, and in first place its rising speed as reported in
the beginning of Chapter 7, whereas we have shown in the previous section
that the lift force has a negligible effect on the motion of a bubble in a
turbulent flow. To carry out this study, we performed DNS of turbulent
flow using again the pointwise particle approximation to track the bubble
motion. In this section we consider the following force balance equation for
the bubbles:

ab =
dub
dt

=
uf − ub

τb
F(Reb) + 3

Duf
Dt

+ 2CL(uf − ub)×Ωf − 2g (8.14)

The simulation parameters can be found in table 6.1 for the fluid field and
table 7.1 for the bubble size and Stokes number. We recall that due to the
non-linear drag terms the effective terminal velocity is expressed as V ∗term =
(1− β)gτ∗b and the relevant Stokes number is St∗ = τ∗b /τη.

We present in figure 8.5, the evolution with St∗ of the average rising velocity
of the bubble 〈ubz〉 normalized by its terminal velocity V ∗term from the DNS
with or without the lift force. It appears that the rising speed is smaller
with the lift force in the budget than without:

V ∗term > 〈ubz〉without lift > 〈ubz〉with lift (8.15)

We observe that for St∗ ≈ 1 the average rising speed can be as low as
0.5V ∗term. Remark that for St∗ = 0.02, the rising velocity in case of no lift
force is slightly larger than the terminal velocity.

In order to study the effect of lift force on the rising velocity, the average
relative vertical velocity 〈Wref 〉 = 〈ubz−ufz〉 is compared in figure 8.6, with
the results obtained without the lift force (and presented in Chapter 7). We
observe that DNS with the lift force, gives 〈Wref 〉 closer to the terminal
velocity than DNS without lift force:

V ∗term > 〈Wref 〉with lift > 〈Wref 〉without lift (8.16)

As a consequence, we can say that the bubbles are more prone to be found
in the region of the flow with negative vertical velocity when the lift force is
accounted for. This is confirmed in figure 8.7 which presents the evolution
with St∗ of the average value of the fluid vertical velocity at the bubble
position for the two sets of simulations. It is observed that without the lift
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Figure 8.5: The average value of the rising velocity 〈ubz〉 normalized by the
terminal velocity V ∗term. (◦): DNS without lift force, (x): DNS with lift
force.

force the average fluid velocity at the bubble position presents a (negative)
minimum value for St∗ ≈ 0.2, while with the lift force the average fluid
vertical velocity decreases continuously up to St∗ ≈ 1.

0 > 〈ufz〉without lift > 〈ufz〉with lift (8.17)

This situation seems surprising as Eq. (8.15) and Eq. (8.17) appear to be
in contradiction with Eq. (8.16). This could be explained by proposing that
two mechanisms can lead to the reduction of the rising speed: (i) bubble
trapping in flow vortex and (ii) oversampling of the downward flow region
by bubbles. The reduction of the average relative velocity compared to the
terminal velocity is attributed to the first mechanism. Therefore the increase
of the relative velocity of the DNS with lift relatively to the DNS without
lift indicates that the addition of the lift force makes the vortex trapping
less efficient. Indeed, as discussed above, when a bubble is in a vortex, the
lift force is centrifugal and can help the bubble to escape from the vortex.

To assess further the trapping by vortex, we plot in figure 8.8 the average
value of the vertical inertia forces acting on the bubble in each case against
St∗. We observe that the average value of the fluid acceleration 〈afz〉 is
negative (except for the two smallest Stokes numbers) and that the values
computed from DNS with lift force are less negative than the results from
DNS without lift force. Following the analysis of the previous chapter, the
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Figure 8.6: The average value of the vertical relative vertical velocity 〈Wref 〉
normalized by the terminal velocity V ∗term. ◦: DNS without lift force, x: DNS

with lift force. (- -) is a empirical fitting with 〈Wrel〉/V ∗term = exp(−1.2St∗)−1
2 .

reduction of the average relative vertical velocity 〈Wref 〉 is related to the
negative average value of the fluid acceleration sampled by the bubbles when
trapped in a vortex. Therefore the observation that the fluid acceleration
at the bubble position is less negative with the lift force accounted for is
consistent with a reduced efficiency of the vortex trapping.

To propose a more quantitative analysis of the effect of the lift force on the
vortex trapping, we consider again the idealized situation of a bubble in a
vortex as discussed in Chapter 7. We consider that the vortex has a steady
rotation rate ω, and we supplement the bubble force equation with the lift
force as sketch in figure 8.9. We recall that in cylindrical coordinate (er, eθ)
at a given radial distance r the velocity is uf = rωeθ, the fluid acceleration is
af = −rω2er and the vorticity is Ω = 2ωey. When the bubble has reached
its equilibrium position, denoted as (re, θe), the drag force is FD = (0, reωτ∗b

),

the fluid inertia force is FI = (−3reω
2, 0), the lift force is FL = (4CLreω

2, 0)
and the buoyancy force Fg = (−(1 − β)gsin(θe),− (1 − β)gcos(θe)). The
resulting dynamic equilibrium yields:

0 = 0− 3reω
2 + 4CLreω

2 + 2g sin(θe) (8.18)

0 =
reω

τ∗b
+ 0 + 2g cos(θe) (8.19)
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Figure 8.7: The average value of the vertical component fluid velocity at
the bubble position normalized by the global fluid velocity RMS. (◦): DNS
without lift force, (x): DNS with lift force.

and transform to

sin θe = −(4CL − 3)reω
2

2g
(8.20)

cos θe = − reω

2gτ∗b
(8.21)

We can see that cos θe is always negative, however, because of the intro-
duction of the lift coefficient, the sign of sin θe is not necessarily positive
contrary to the case without lift force. As seen from the equation above if
CL < 0.75 then sin θe > 0, and the equilibrium position lies in the same top
left quadrant as if there was no lift force. We recall that in that quadrant the
fluid acceleration and velocity are both negative. However if CL > 0.75, the
bubble equilibrium position shift in the region where the fluid acceleration
is positive and the fluid velocity is positive. Of course, the turbulent struc-
ture is much more complicated. The fluid structure will deform in a short
period of time but this analysis helps us to understand the phenomenon. In
the insert of figure 8.8, for small St∗ the mean lift force coefficient is seen
to be larger than 0.75. And indeed, we can see that the mean value of the
fluid acceleration at the first two points is positive. For larger St∗, the mean
value of the lift coefficient becomes smaller than 0.75, and the fluid accel-
eration presents negative mean values. As St∗ increases further the fluid
acceleration becomes comparable to the effective gravity (1− β)g, resulting
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Figure 8.8: The evolution of average value of the vertical component fluid
inertia force 〈3afz〉 normalized by the effective buoyancy force against St∗.
(◦): DNS without lift force, (x): DNS with lift force. Inset: is the evolution
of the average lift coefficient against St∗, dash line shows CL = 0.75.

in a slow down of the bubble rise. For large St∗, a bubble will drift through
the turbulent structure under the buoyancy effect. During this process the
bubble will have a longer time to stay, or just say being trapped, at the up-
per body with the downward stream of the horizontal vortex structure due
to this equilibrium positioning tendency. In other words, it makes the grav-
ity harder to drive the bubble when it is in the equilibrium position. That
explains why this over sampling of the negative fluid acceleration region.

To confirm this picture, we present, for different St∗, in figure 8.10 the aver-
age rising velocity conditioned on vertical component of the fluid acceleration
afz: 〈ubz|afz〉. The conditional average is normalized by the unconditional
average value. We can see that the bubble vertical velocity is faster on av-
erage when it is experiencing a positive fluid acceleration. On the contrary,
the bubble rises slower, on average, or even have negative vertical velocity,
when the fluid acceleration at his position is negative. A further evidence is
provided in figure 8.11, where we plot the iso-contours of joint pdf between
the relative velocity of bubbles in the z-direction normalized by the termi-
nal velocity Wref/Vterm and the z-component of the fluid acceleration at the
bubble position afz/aη. The variance of the vorticity at the bubble position
normalized by the variance of the fluid field is also plotted in figure 8.12.
We found that the variance of the vorticity at the bubble position increases
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Figure 8.9: Sketch to illustrate bubble equilibrium in a steady rotation with
anticlockwise angular speed of ω, accounting for drag FD, fluid inertia FI ,
buoyancy Fg and lift FL forces acting on the bubble.

with St∗ and the increase rate in the z-direction is higher than in the hor-
izontal direction. The reason is that with St∗ increases, it becomes easier
for the bubble to pass between strong vorticity region and weak vorticity
region whereas a bubble with small St∗ behaves simply like a tracer. The
buoyancy force in the z-direction enhances the fluctuations of the vorticity
experienced by a bubble.

When a bubble interacts with an horizontal vortex, when it is in the bottom
part, in which afz > 0, the bubble will spend a shorter time passing this
region and go to the upper part of the vortex, in which afz < 0. Then the
bubble slows down in this region and might therefore spend a longer time in
the area. The bubble will repeat this procedure until the vortex structure
breakup or until the bubble escape from the vortex. Additionally, the lift
force tends to help the bubble to escape the vortex, because the lift force
acts as centrifugal force in the situation.

In figure 8.13, the one component bubble acceleration variance normalized
by the a2

η is presented for the DNS (lift force, drag, fluid inertia force)
results with/without gravity. In general, by enabling the gravity, the bubble
acceleration is enhanced, the observation can be explained by the previous
conclusion that the bubble acceleration variance will be enhanced by gravity.
The enhancement is getting larger with the increase of St∗. In figure 8.14
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Figure 8.10: The average bubble velocity conditioned on the vertical compo-
nent of the fluid acceleration 〈ubz|afz〉, (+) St∗ = 0.17, (x) St∗ = 0.32, (*)
St∗ = 0.42 , (◦) St∗ = 0.60, (4) St∗ = 1.01, in the simulation considering
lift force, drag force, fluid inertia force and gravity.

presents the bubble acceleration pdfs obtained from the same simulations
with/without gravity is reported. It is observed that, the bubble acceleration
pdfs clearly present a non-Gaussian behavior with stretched tails indicating
the occurrence of very intense acceleration events. The pdfs presents a good
collapse for the various St∗.
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Figure 8.11: The iso-contours of joint pdf between the relative velocity of
the bubble in z-direction Wref/Vterm and the z-component fluid acceleration
afz/aη, in the simulation accounting for lift force, drag force, fluid inertia
force and gravity for St∗ = 0.9. From black to red density increases.



116 CHAPTER 8. LIFT FORCE ON THE BUBBLE MOTION

10 -2 10 -1 10 0
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Figure 8.12: The evolution of the vorticity variance at bubble position nor-
malized by the fluid field vorticity variance versus St∗, (4) is the vorticity in
z-direction, (*) is the vorticity in x-direction, in the simulation considering
drag force, fluid inertia force, lift force and gravity.
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Figure 8.13: The evolution of the bubble acceleration variance 〈a2
b〉 normal-

ized with the square of Kolmogorov acceleration a2
η versus St∗, (4) is the

results from the simulation accounting for drag force, fluid inertia force, lift
force and no gravity, (◦) is the results from the simulation accounting for
drag force, fluid inertia force, lift force and gravity.
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Figure 8.14: (- -)pdfs of the bubbles acceleration of the simulation account-
ing for (drag force, fluid inertia force, lift force but no gravity) normalized
by its root-mean-square value, (–) pdfs of the bubbles acceleration of the
simulation accounting for (drag force, fluid inertia force, lift force and grav-
ity) normalized by its root-mean-square value, for St∗ = 0.02, 0.07, 0.18,
0.35, 0.6, 0.90, 1.13 (respectively, shifted upward by two decades from each
other for clarity)
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8.3 Conclusions

In this chapter, we studied the effect of the lift force on the bubble motion
in turbulent flow by using Euler-Lagrangian approach.

In order to investigate the influence of the lift force on the bubble acceler-
ation statistics, we firstly isolate the effect of lift force from the gravity by
only accounting for drag force, fluid inertia force, lift force and setting the
buoyancy force to zero. The results are compared to the simulations where
only drag force and fluid inertia force are considered. The results show
that, the influence of the lift force to the bubble acceleration is very limited.
Despite the fact that for 0.65 < St∗ < 1.1, the lift force have comparable
variance to the fluid inertia force, it has no sizable influence on the bubble
acceleration statistics. Because in the same time the correlation between lift
force and fluid inertia force becomes more and more negative such that the
contribution of lift force on the variance of the total acceleration variance is
neutralized.

In the second part, we performed simulations accounting for drag force, fluid
inertia force, lift force and buoyancy force to investigate how the lift force
influence the bubble motion with the presence of gravity. We have found
that the lift force has a greater impact on the bubble motion compared to
the case where the gravity is disabled. The lift force makes the bubble have
a preferential sampling to the down flow region. This reduces significantly
the bubble rising velocity. The fluid material acceleration at the bubble
position has a negative average value 〈afz〉 < 0, which can contribute to the
fluid inertia force. Compared with the simulation where there are only drag
force, fluid inertia force and buoyancy force, the simulation accounting for
lift force has larger value of 〈afz〉. Based on the analysis of a bubble in a
vortex rotating with a constant rotation rate, we found that the lift force
has a tendency to prevent the bubble from being trapped in the vortex. It
pushes the bubble to the down flow region and act like a centrifuge force
while the bubble is trapping in the vortex by fluid inertia force who is a
centripetal force.

When we are interested in the bubble acceleration statistics for St∗ � 1,
the bubble is so small that only the drag force and the fluid inertia force
are relatively important compared to other forces contribution. Thus, this
study justifies that the lift force can be neglected, if we are only interested
in the motion of small bubbles as in Chapter 5. While the lift force affect
to long-distance transport phenomena, due to it’s influence on the bubble’s
spatial distribution.



Chapter 9

General conclusions

This thesis is focused on the study of micro-bubbles (db < η) motion in
high Reynolds number isotropic and homogeneous turbulent flows by using
numerical approach. The Euler-Lagrange method is used to solve the two-
phase turbulence problems in a one-way coupling approach.

We performed DNS to resolve the turbulent flow field in a 3D box with
periodic boundary conditions. The turbulence field is resolved with two
different Reynolds number Reλ = 100 and Reλ = 200. The spectral method
is applied to resolve the Navier-Stokes equations with a forcing at large scales
to maintain a statistically steady state. The small bubbles are treated as
a sphere with slip boundary condition and is tracked with the equation of
motion which is given by Newton’s equation, using the fluid information
interpolated at the bubble position to compute the different hydrodynamic
forces acting on the bubble.

We first began by considering exclusively the drag force in Stokes regime and
fluid inertia force in the equation of motion. For small Stokes numbers, the
two forces are commensurate and are found to be preferentially anti-aligned,
whereas for larger Stokes numbers the drag force becomes negligible and the
bubble acceleration is essentially given by the fluid inertia forces resulting
in a bubble acceleration variance larger than that for fluid tracers. We pro-
posed a model, depending on the Stokes number, the Reynolds number and
the density ratio, describing qualitatively these observations. The model
based on the spectral response of the bubble to the fluid fluctuations (simi-
lar to the Tchens theory) assumes firstly the shape of the frequency spectra
of the fluid velocity along the bubble position (with a ω−2 power law), and
secondly that the material derivative of the fluid velocity at the bubble posi-
tion can be substituted by the time derivative along the bubble trajectories.
These assumptions lead to fairly accurate estimations for small St < 1, and
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some deviations are observed for St ≈ 1 as the preferential concentration
of bubbles is not accounted for. This effect could be taken into account
in the model, by providing more precise, St dependent, estimation of the
high frequency part of the Lagrangian fluid velocity spectra and of the fluid
acceleration variance at the bubble position. It is further observed that the
micro-bubble acceleration conditioned on the local dissipation rate presents
a surprising invariant. For values of the local dissipation rate similar or
larger than the average one, the conditional acceleration variance appears
to be invariant with the Stokes number and increases with the dissipation
rate, whereas the conditional pdfs are observed to be nearly invariant with
the dissipation rate and the Stokes number when normalized by the con-
ditional variance. Such invariance was not expected because of the very
intense clustering of the bubbles as reported by [71] around St = 1. Indeed,
at small Stokes number bubbles behave like fluid tracers, whereas for Stokes
numbers of order 1 (for which one can neglect the drag force) the accelera-
tion of a bubble is roughly β = 3 times that of a tracer at the same position.
Nevertheless the near invariant of the conditional statistics implies that in
the two cases, bubbles sample fluid regions in which the fluid acceleration
conditional statistics are the same as in the entire domain. This observation
can provide some help to study the β and St dependence of the clustering
morphology of the bubbles.

Secondly, to extend the scope of the studies in Chapter 5, we considered the
effect of finite bubble Reynolds numbers Reb to the acceleration statistics.
It has been observed that the Reynolds number effect to the drag force
is essential for the bubble dynamics when Reb > 1. Computed from the
simulation we found that, even for the bubbles with db < η, it is possible to
observe Reynolds number value lager than unity. Using the drag law in the
Stokes regime to calculate the drag force, in such case, will underestimate
the instantaneous drag force as well as its statistical values. It is necessary
to use nonlinear drag law to compute the drag force.

We have tested two other drag force coefficients in the DNS, one in the case
of clean bubble Eq.(3.8) and another for the case of contaminated surface
bubble Eq.(3.9). With the introduction of the finite Reynolds number effect,
the bubble will response faster to the fluid velocity, resulting in smaller
relative velocity fluctuations and larger drag force fluctuations for the same
value of St compared to the results using Stokes drag force. These differences
are increasing with the increase of St. Besides, the nonlinear drag law leads
to longer decorrelation time of the bubble acceleration due to the reduction
of the effective relaxation time. These above observations provide evidence
that in turbulent flow, the fluid inertia force drives the bubble motion and
the drag force is enslaved.
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We have proposed a method to scale the characteristic relaxation time τ∗b
to account for the finite bubble Reynolds number effect and further the
effective Stokes number St∗ with the average value of 〈Reb〉, by accounting
for the first order effect of the local bubble Reynolds number. This rescaled
characteristic times enables to obtain a similar behavior to the drag law in
Stokes regime for various statistical quantities.

Thirdly, we have investigated how does the buoyancy influence the bubble
dynamics in turbulent flows, by tracking the bubble trajectory with the
equation of motion including drag force (Stokes or nonlinear drag), the fluid
inertia force and the buoyancy force. We found that even without lift force
the bubble still slightly oversampling the downstream of flow. The over-
sampling effect will increase with St and saturate around St ' 0.5. But
the main reason for the reduction of the rising speed is the negative value
of the average vertical component of the fluid inertia (i.e. fluid accelera-
tion at the bubble position). Furthermore, we examined the gravity effect
on the bubble acceleration statistics. The gravity increases the acceleration
variance and decreases its flatness for small Froude number Fr < 1. The
observation is coherent with the results presented in the experimental study
of [70]. The acceleration is also observed to remain correlated over a long
period compared to the case without gravity.

Finally, we have studied the lift force effect on bubble dynamics. In order
to see the lift force effect on the acceleration statistics, we solve the bub-
ble equation of motion including nonlinear drag force, fluid inertia force, lift
force and disabled gravity. We have found that the lift force have a very lim-
ited effect on the bubble acceleration statistics for the bubble with St < 1.1.
Although the lift force variance increases progressively with the increase of
St, its contribution to the total bubble acceleration variance is neutralized
by the correlation between the lift force and the fluid inertia force. Then we
enabled the gravity and we have confirmed that, when a bubble is rising in
turbulent flow, the lift force makes the bubble to preferably move in down
flow regions. Besides, compared with the simulation where there are only
drag force, fluid inertia force and buoyancy force, the simulations accounting
for lift force have larger value of vertical fluid acceleration 〈afz〉. Based on
the analysis of a bubble in a vortex rotating with a constant rotation rate,
we found that the lift force has a tendency to prevent the bubble from being
trapped in the vortex. It pushes the bubble to the down flow region and
acts like a centrifuge force while the bubble is trapping in the vortex by fluid
inertia force who is a centripetal force. Furthermore, we also compared the
bubble acceleration variance of the simulation with and without gravity. We
found that as expected, in the simulation with gravity, the bubble variances
are larger than that in the simulation without gravity. We concluded that
the contribution of the lift force is important for the bubble acceleration
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statistics only when the buoyancy force is important. When St∗ � 1, the
bubble is so small that only the drag force and the fluid inertia force are
relatively important compared to other forces contribution. This study jus-
tifies that the lift force is not important, if we are only interested in the
motion of small bubbles, as in Chapter 5.

Based on the observations of the simulation where only drag force and fluid
inertia force are of interests, we have proposed, within the LES framework,
an extension of the approach of [24] in order to account for the unresolved
fluid turbulent fluctuations in the dynamics of micro-bubbles for locally
homogeneous and isotropic high-Reynolds number flows. To this end, the
instantaneous acceleration of the bubble is decomposed into a filtered contri-
bution given by the resolved fluid velocity field and a random contribution.
The stochastic part is given by the sum of two correlated random processes,
one for the drag forces and the second for the fluid inertia terms. For the
instantaneous norm of both forces, we consider the fluctuations of the en-
ergy transfer rate, relying on the fact that the fluctuations of the norm are
self-similar for a given value of the energy transfer rate. For the latter a
surrogate is obtained by a log-normal stochastic process evolving along the
bubble trajectory. Whereas the former, which is observed to be invariant, is
estimated from the variance of the forces conditioned on the dissipation rate
as obtained from the model which has been proposed based on the Tchen
theory. The residual part is supplemented by a stochastic process for the
orientations of the two forces. The model is given by two coupled random
walks on the surface of the unit sphere, which enables us to reproduce the
progressive decorrelation of the force components, their correlation with the
large-scale motion, as well as the return to local isotropic for sufficiently
large-scale separation, and the preferential anti-alignment of the two forces
observed for St < 1. To summarize, the model depends on the Stokes num-
ber and the β parameter of the bubbles as well as a local Reynolds number
Re∆ based on the mesh size. In addition few parameters of the model need
to be prescribed from the DNS. The comparisons of the statistics obtained
with LES supplemented by the proposed stochastic model with the ones
obtained from DNS confirmed that the dynamics of the bubbles can be ac-
curately computed using this approach even for very coarse meshes while the
standard LES approach (without stochastic modeling for the high frequency
fluctuations) fails to reproduce the statistics of the DNS. Nevertheless, the
bubble clustering at sub-grid scales or short-time relative dispersion is not
improved by the modeling presented in this paper because the estimation of
the dissipation rates along each bubble trajectory is obtained by indepen-
dent stochastic processes. The derivation of the proposed model is made for
arbitrary density ratio, although, in this thesis we only focus on the micro-
bubble regime β = 3. It can be shown that for β = 0 our model becomes
equivalent to the formulation proposed for inertial particles in [24]. More-
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over, for neutrally dense particles β = 1, the proposed model would provide
results equivalent to those obtained for vanishingly small Stokes number, as
expected for particles much smaller than the Kolmogorov scales.

The assessment of the model for intermediate values of β is also interesting
but is postponed for future work. Also interesting is to account for other
forces that can have a non-negligible role on the bubble dynamics (buoyancy,
lift and history). As well, accounting for the deformation of the bubbles is
necessary if one is interested in bubbles larger than the micro-scale of the
flow (db > η). Finally, we have focused on the modeling of the sub-grid scale
for homogeneous and isotropic turbulent flow. Nevertheless, we think that
the model proposed in this paper could provide acceptable results for flows
that can be considered locally isotropic and homogeneous at the scale of the
mesh, since the main parameters of the model are defined locally.
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