
HAL Id: tel-04169703
https://theses.hal.science/tel-04169703

Submitted on 24 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient solution approaches and uncertainty estimation
for the project resource leveling problem

Ilia Tarasov

To cite this version:
Ilia Tarasov. Efficient solution approaches and uncertainty estimation for the project resource leveling
problem. Other [cs.OH]. Institut National Polytechnique de Toulouse - INPT, 2021. English. �NNT :
2021INPT0018�. �tel-04169703�

https://theses.hal.science/tel-04169703
https://hal.archives-ouvertes.fr

En vue de l'obtention du

DOCTORAT DE L'UNIVERSITÉ DE TOULOUSE
Délivré par :

Institut National Polytechnique de Toulouse (Toulouse INP)
Discipline ou spécialité :

Présentée et soutenue par :

Titre :

Rapporteurs :

Membres du jury :
M. ALEXANDRE DOLGUI, ECOLE NLE SUP DES MINES SAINT ETIENNE, Président

M. ALAIN HAÏT, ISAE-SUPAERO, Membre
M. ALEXANDER LAZAREV, V. A. TRAPEZNIKOV ICS RUSSIAN AS, Membre

MME OLGA BATTAÏA, ISAE-SUPAERO, Membre

M. ILIA TARASOV

Informatique et Télécommunication

Approches de résolution efficaces et estimations d’incertitude pour le
problème de lissage de ressources

le lundi 1 février 2021

Ecole doctorale :
Mathématiques, Informatique, Télécommunications de Toulouse (MITT)

Unité de recherche :
Département d'Ingénierie de Systèmes Complexes (DISC-ISAE)

Directeurs de Thèse :
M. ALAIN HAÏT

MME OLGA BATTAÏA

M. FRANÇOIS CLAUTIAUX, UNIVERSITE BORDEAUX 1
M. JEAN-CHARLES BILLAUT, UNIVERSITE DE TOURS

Efficient solution approaches and
uncertainty estimation for the project

resource leveling problem

Ilia Tarasov

Thesis defended February 1, 2021

2

Acknowledgments

At the very beginning of this extensive work, I could not even imagine how many inter-
esting people I would meet. The incredible experience of working together and commu-
nicating with them is a great addition to the new knowledge and results achieved.

First and foremost, I wholeheartedly appreciate my supervisors for their guidance and
motivations. Professors Alain Haït and Olga Battaïa helped me throughout the work
on the thesis with both administrative questions and the research plan. Under their
guidance and with their advice, I studied the subject in depth, while being able to choose
the direction to explore. My thesis would not have been possible without their support
and inspiration.

I am grateful to the members of the defense committee. I thank deeply Professors
François Clautiaux and Jean-Charles Billaut for accepting to serve as the reviewers of my
thesis and their attention to my work, and Professor Alexandre Dolgui for chairing the
committee. I would like to especially thank Professor Alexander Lazarev for his valuable
consults and help.

I would like to extend my gratitude to all my collaborators. I appreciate the team of
the ISAE Department of Complex Systems Engineering. It was great to do my research
in such a warm atmosphere, and I had many productive and fascinating conversations on
research and life. I thank Franco Peschiera for very helpful discussions during our work.

My thanks go to my dear family and friends, who have always supported me, no matter
how far away they are from me. Vladimir, my old friend, gave me wise advice many times.
The lively and erudite Alexey showed me an example of how to overcome difficulties and
get through a challenging third year of work. I would like to give my special thanks to
Dmitrii. He inspired me to start this research work and helped me a lot at the beginning
with organizational issues.

3

Contents

Résumé en français 7

1 Introduction 14

2 Project planning and scheduling: State-of-the-art 20
2.1 Resource-Constrained Project Scheduling Problem 21

2.1.1 Problem description . 21
2.1.2 Mathematical formulations . 23

2.2 Resource Leveling and Allocating . 28
2.2.1 RLP objective functions and constraints 28
2.2.2 Evolution of RLP models . 29

2.3 Solution methods . 30
2.3.1 Branch and Bound/Branch and Cut 30
2.3.2 Benders decomposition . 32
2.3.3 Constraint programming . 35
2.3.4 Heuristics . 36

2.4 Uncertainty modeling in project planning 36
2.4.1 Sensitivity analysis . 37
2.4.2 Metric approach in scheduling theory 39

3 A generalized RLP: MILP formulation 43
3.1 Flexible resource allocation in RLP . 44

3.1.1 Illustrative examples . 44
3.1.2 Problem statement . 45

3.2 Mathematical Model . 47
3.2.1 Problem data . 47
3.2.2 Generalized Model description . 49

3.3 Generalized model properties . 54
3.3.1 Model instance . 54

3.4 Computational experiments . 55

4

3.4.1 Tests on existing benchmarks for RLP 55
3.4.2 Generation of new instances . 58
3.4.3 Comparison of time-indexed RLP formulations 60
3.4.4 Results of flexible resource allocation 61
3.4.5 Discrete Resource Case . 64

3.5 Conclusions . 66

4 Benders decomposition for RLP 67
4.1 Basic approach . 67
4.2 Benders decomposition for a generalized RLP 70

4.2.1 Subproblem . 70
4.2.2 Master problem . 71

4.3 Algorithm improvements . 73
4.3.1 LB for the Master problem: occupied work volume estimation . . . 73
4.3.2 LB for the Master problem: resource constraints relaxation 74
4.3.3 Disaggregation of the cuts . 74
4.3.4 Branch&Benders cuts: using single search tree 75

4.4 Computational tests . 77
4.4.1 Models and settings . 77
4.4.2 Generation of specific large-scale datasets 78
4.4.3 Impact of number of resource types on the method performances . . 80
4.4.4 Evaluation of the impact of the available resource limit 81

4.5 Conclusions . 83

5 Uncertainty and Metric approach 85
5.1 Notations, definitions and goals . 85
5.2 Fluctuations in parameters . 87

5.2.1 Extra resource cost changes . 88
5.2.2 Fluctuations in available resource levels 90
5.2.3 Estimations for the job-related parameters 92

5.3 A generalized metric estimation . 97
5.4 Feasibility and properties of the space of problem instances 100
5.5 Experiments . 103

5.5.1 Datasets . 103
5.5.2 Results . 104

5.6 Conclusions . 108

6 General conclusions 109

5

7 Bibliography 112

6

Résumé en français

Introduction

Cette thèse se concentre sur le développement des méthodes d’optimisation afin d’amé-
liorer les processus de planification de ressources et d’ordonnancement de tâches dans des
projets complexes. Bien que les plans ne soient pas toujours faciles à réaliser sans dévia-
tion en pratique, le processus de planification est nécessaire pour toute activité complexe.
La modélisation mathématique de la prise de décision permet de rechercher de meilleures
solutions. Le développement de telles modèles et méthodes est le sujet principal de la
recherche opérationnelle (RO) et de l’optimisation. La digitalisation des processus et les
systèmes informatiques actuels facilitent l’expansion de ces méthodes en pratique, car la
complexité de la planification et de l’ordonnancement dans un environnement dynamique
et incertain rend indispensable l’utilisation des outils d’aide à la décision appropriés dans
de nombreux secteurs notamment fabrication, construction et transport. Dans ce qui suit
nous présentons les éléments principaux de l’état de l’art.

Problème de planification des projets à ressources limitées

Le problème est défini comme suit. Les modèles existants peuvent différer dans les fonc-
tions objectif et les contraintes, mais impliquent généralement les éléments suivants :

• l’ensemble de tâches J (activités), chacune ayant une durée pj ;

• l’ensemble de ressources R (opérateurs, machines, etc.), chacune ayant un montant
limité cr, r ∈ R ;

• une tâche donnée j ∈ J nécessite un montant donné ajr de la ressource r ∈ R pour
sa réalisation ;

• les relations de priorité précisant l’ordre d’exécution acceptable de tâches et éven-
tuellement les décalages souhaitables entre elles sous forme d’ensembles Prec(j) et
Succ(j), j ∈ J ;

• les contraintes liées à la disponibilité des ressources ;

7

• l’objectif est de construire un calendrier (c’est-à-dire de définir les dates de début de
toutes les tâches Sj, ∀j ∈ J) qui minimise le temps d’exécution du projet en tenant
compte des contraintes définies. Si le moment d’achèvement d’une tâche est défini
comme Cj = Sj + pj, l’objectif correspondant à la fin du projet peut être exprimé
de la manière suivante :

Cmax = max
j∈J

Cj → min .

Les ressources peuvent être renouvelables ou pas. Les ressources renouvelables seront à
nouveau disponibles après l’achèvement de l’activité dans laquelle ils sont impliqués, par
exemple, des équipements ou opérateurs. Les ressources non renouvelables, par exemple
les matériaux consommables, comme leur nom l’indique, seront consommés pendant l’exé-
cution d’une tâche.

Pritsker a proposé la première formulation mathématique de ce problème [1]. Blazewicz
a démontré que ce problème est NP-difficile au sens fort [2]. Les approches de résolution
les plus courantes sont basées sur la modélisation MILP [3, 4]. Des algorithmes Branch
and Bound ont été développés [5] ainsi que des algorithmes de Branch and Cut (B&C).
La décomposition de Benders a aussi été utilisée pour des cas pratiques de problèmes de
planification [6, 7, 8, 9]. Sont également fréquemment utilisées les méthodes heuristiques
avec des solutions sous-optimales [10, 11, 12], ou la programmation par contraintes (CP)
[13].

Problème de nivellement des ressources

Le problème du nivellement des ressources (RLP) est complémentaire au RCPSP, ce
problème considère la fin du projet comme une contrainte et optimise l’utilisation des
ressources nécessaires pour la respecter. Rieck et Zimmermann [14] ont analysé trois types
de fonctions objectif les plus utilisés pou ce problème (cr > 0 est le coût par unité de
ressource r ∈ R et Urt est l’utilisation de la ressource r ∈ R sur la période t ∈ T) :

• minimiser la somme des variations (lissage de l’utilisation Urt de la ressource r ∈ R
sur des périodes t ∈ T)

Fv =
∑
r∈R

cr
∑
t∈T

U2
rt. (1)

• minimiser les changements entre les périodes

Fa =
∑
r∈R

cr
∑
t∈T

max{0, Urt − Ur,t−1}. (2)

8

• minimiser la surcharge totale (si l’utilisation des ressources Urt dépasse la limite des
ressources Yr prévues initialement, r ∈ R, t ∈ T)

Fo =
∑
r∈R

cr
∑
t∈T

max{0, Urt − Yr}. (3)

Dans cette thèse, nous nous concentrons sur le modèle RLP ayant pour objectif de
minimiser l’utilisation de ressources supplémentaires, c.f. eq. (3).

A la différence de la formulation classique, nous considérons que la durée de la tâche
dépend de la quantité de la ressource qui peut être allouée pour l’exécution de la tâche.
Plus cette quantité est importante, plus vite la tâche sera terminée. En pratique, ça per-
met de modéliser les projets avec des ressources telles que l’énergie, la chaleur, la capacité
de transfert de données, le temps CPU, etc. Par exemple, un problème de planification
de consommation énergétique pour une usine de fabrication de tuyaux a été étudié par
Artigues et al. [15]. Nattaf et al. [16] ont également fourni de nouveaux résultats po-
lyédriques pour les modèles MILP avec allocation de ressources énergétiques. Un autre
exemple vient de l’industrie spatiale, la gestion du transfert de données du réseau de sa-
tellites aux stations optiques au sol nécessite une allocation de paires satellite-station et
une planification du transfert dans des fenêtres de temps limitées, en utilisant un tampon
de données et en ajustant la vitesse du transfert [17].

Précédemment, Baydoun et al. ont étudié un problème proche et ont développé le mo-
dèle du problème de minimisation des coûts de surcharge avec des contraintes de priorité
et de chevauchement des tâches [18] qui est également similaire au problème présenté par
Bianco et al. dans [19]. Baydoun et al. ont enrichi l’idée de la fonction de chevauchement
avec plusieurs options spécifiques (par exemple, le chevauchement est autorisé si une par-
tie de l’emploi précédent a déjà été mise en œuvre). Un autre problème proche, appelé
RCPSP agrégé par période avec des contraintes de ressources considérées globalement
sur des périodes de temps, a été décrit par Morin et al. [20], avec la fonction objectif de
minimiser makespan, donc du RCPSP, qui est la principale différence avec notre étude.

Modélisation de l’incertitude

Dans une grande partie des applications de la vie réelle, le processus de planification des
projets se heurte à des données inexactes ou à des changements inattendus. L’approche la
plus courante consiste à représenter les données incertaines comme une valeur aléatoire et
à appliquer certains modèles de la théorie des probabilités. Nous nous référons à l’article
de Bruni et al. [21] avec une analyse des méthodes stochastiques pour un RCPSP. Une
alternative consiste à construire une solution robuste (acceptable pour tout scénario) ou
à construire une solution de base, adaptable à tout scénario possible. Un cas de RCPSP
robuste avec un ensemble de scénarios impliquant des durées diverses a été présenté par

9

Artigues et al. [22]. Hazir et al. [23] ont formulé trois modèles d’optimisation robuste pour
un problème de compromis temps discret/coût avec une structure similaire. Ces approches
sont également qualifiées de réactives et proactives. Hazir et Ulusoy ont publié une récente
revue de la littérature [24] sur la modélisation de l’incertitude dans la gestion de projets.

Une approche inverse est l’analyse de sensibilité qui étudie la réaction du modèle LP
ou MILP aux changements de paramètres [25, 26]. Dawande et Hooker ont présenté une
méthode générale d’analyse de sensibilité pour le MILP [27]. Cette méthode a ensuite été
développée par Jia et Ierapetritou [28, 29]. Emelichev et al. [30] ont également étudié un
vecteur LP combinatoire et le cas des perturbations des coefficients des fonctions linéaires
et ont proposé un rayon de stabilité comme fonction. Plus tard, cette approche a également
été utilisée par Gurevsky et al. [31] pour un problème d’équilibrage de chaîne de montage,
fournissant des mesures de stabilité et de faisabilité.

Lazarev [32] a présenté une approche de résolution approximative pour les problèmes
d’ordonnancement basée sur l’approche métrique. Il s’agit d’un schéma qui construit des
solutions sous-optimales avec une précision estimée garantie dans un temps polynomial
pour un problème qui est NP -difficile en général mais qui a quelques sous-classes d’ins-
tances polynomialement solvables. L’idée principale est d’utiliser une solution d’une ins-
tance "proche" solvable comme approximation de la solution pour une instance arbitraire.
L’instance solvable "la plus proche" est trouvée à l’aide d’une fonction métrique. Elle
montre une précision de cette approximation, c’est-à-dire une limite supérieure de la dif-
férence de la valeur d’une fonction objectif entre cette solution sous-optimale et une vraie
solution optimale.

Il y a donc deux étapes. Tout d’abord, l’instance solvable la plus proche est construite
avec une fonction métrique. Et deuxièmement, un algorithme polynomial correspondant
est appliqué pour résoudre cette instance. La méthode originale fonctionne si plusieurs
conditions sont remplies :

• il est possible de fournir des estimations efficaces de la précision lorsque nous uti-
lisons la solution optimale d’une instance comme solution sous-optimale pour une
autre instance ;

• il existe des sous-classes d’instances polynomialement solvables, qui fournissent des
solutions de bonne précision à toute instance arbitraire de même taille.

Cette dernière approche a été testée sur certains problèmes d’ordonnancement, plusieurs
exemples ont été présentés dans [32], notamment pour le problème de la minimisation de
la somme des retards [33] et le problème d’ordonnancement sur une seule machine [34].
Dans cette thèse, nous étudions l’utilisabilité de cette méthode pour notre problème qui
est présenté ci-dessous.

10

RLP généralisée : une nouvelle formulation MILP

Dans cette thèse, nous proposons une nouvelle généralisation de la formulation du RLP
minimisant les coûts supplémentaires d’utilisation des ressources proposée par Baydoun
et al. [18] et Bianco et al. [19]. Toutefois, notre modèle permet de gérer les contraintes de
précédence sans problème de chevauchement. Une autre différence et nouveauté de notre
modèle réside dans la manière d’affecter les ressources. Notre formulation permet une
allocation plus souple grâce à l’introduction de variables de décision supplémentaires. Les
modèles antérieurs utilisent une seule variable de décision pour chaque tâche et chaque
période, présentée comme une fraction de la charge de travail [18, 19]. La quantité de toutes
les ressources allouées à cette tâche durant cette période est définie par cette variable de
décision.

Toutefois, lorsque plusieurs ressources sont nécessaires pour exécuter une tâche qui
dure plus d’une période, dans le cas général, elles peuvent être utilisées à un rythme
différent pendant une même période. Dans ce cas, l’affectation des différents types de
ressources avec un coefficient proportionnel peut restreindre l’espace de solutions. Au
contraire, la liberté d’affectation complémentaire peut permettre de mieux gérer le dépas-
sement des quantités des ressources disponibles. Nous avons proposé un nouveau modèle
mathématique pour cette formulation en utilisant l’indexation sur le temps. Des expé-
riences réalisées avec le solveur CPLEX 12.8 ont montré que l’allocation indépendante
des ressources permet de réduire les coûts de 7 % en moyenne pour les instances utilisées
qui sont des instances de référence. Comme ce nouveau modèle emploie plus de variables,
la résolution est légèrement plus longue. Des tests supplémentaires sur les instances gé-
nérées aléatoirement ont montré le potentiel du modèle pour certaines instances où les
coûts ont été réduits de 50 % en moyenne.

Cette première contribution a également été présentée dans les publications suivantes :

• Tarasov, I. ; Haït, A. ; Battaïa, O. Period-Aggregated Resource-Constrained Schedu-
ling Problem with variable job duration. 19ème Congrès annuel de la Société Fran-
çaise de Recherche Opérationnelle et d’Aide à la Décision (ROADEF 2018), Feb
2018, Lorient, France. ;

• Tarasov, I. ; Haït, A. ; Battaïa, O. A Generalized MILP Formulation for the Period-
Aggregated Resource Leveling Problem with Variable Job Duration. Algorithms 2020,
13, 6.

Algorithme de décomposition de Benders pour RLP

L’algorithme de décomposition de Benders sépare le problème initial en un problème
principal MILP et un sous-problème LP. Les sous-problèmes LP utilisent les solutions

11

partielles du problème maître pour construire des coupes supplémentaires. Pour notre
problème RLP généralisé, nous avons élaboré un ensemble d’améliorations de l’algorithme
tant au niveau structurel qu’au niveau de l’implémentation technique. Un point important
est l’utilisation d’un seul arbre de recherche au lieu de plusieurs exécutions du problème
maître (appelé Branch&Benders cuts). Les inégalités valides éliminent les solutions par-
tielles du problème maître non réalisable et réduisent donc le nombre d’itérations. Les
bornes inférieures pour le problème maître accélèrent la convergence de la résolution.

Nous avons effectué des expériences numériques avec le solveur CPLEX 12.10. Notre
algorithme a été comparé à la décomposition de Benders du solveur intégré et à la norme
B&C. Les résultats des expériences numériques montrent la supériorité de notre algo-
rithme. Il surpasse de manière significative la décomposition de Benders intégrée et la
norme B&C, en particulier avec un nombre croissant de types de ressources. Ainsi, il est
plus adapté pour la résolution des instances de taille plus importante. Par exemple, il a
résolu de manière optimale des instances avec 50 tâches et 10 types de ressources.

Cette deuxième contribution a également été présentée dans les publications suivantes :

• Tarasov, I. ; Haït, A. ; Battaïa, O. Benders decomposition algorithm for a gene-
ralized Resource Leveling Problem. 21ème Congrès annuel de la Société Française
de Recherche Opérationnelle et d’Aide à la Décision (ROADEF 2020), Feb 2020,
Lorient, France. ;

• Tarasov, I. ; Haït, A. ; Battaïa, O. Benders decomposition for a Period-Aggregated
Resource Leveling Problem with variable job duration. Computers & Operations re-
search, submitted, passing second minor revision.

Incertitude des données et approche métrique

Nous proposons une approche métrique pour notre problème RLP généralisé. Cette ap-
proche cherche à répondre à la question suivante : que devrait faire un décideur si au
moment de l’application de la solution optimale les données d’entrée observées ne sont
pas exactement les mêmes que celles utilisées lors de l’optimisation ? Nous avons suggéré
deux options : conserver la solution complète ou uniquement l’ordonnancement des tâches.
La deuxième option présente plusieurs avantages. Elle nous permet d’adapter l’allocation
des ressources à des nouvelles conditions grâce à des calculs en temps polynomial (avec
le sous-problème LP). Nous développons des métriques permettant d’estimer l’écart en
terme de la valeur de la fonction objectif obtenue et la valeur optimale.

Les expériences numériques ont été réalisées pour le cas de la disponibilité des res-
sources en supposant une variation possible entre 10 et 100 %. La faisabilité et l’optima-
lité de la solution initiale a été conservée pour 30 à 45 % des instances avec une seule

12

variation, et jusqu’à 15 % des instances avec plusieurs variations.
Cette approche a également été présentée dans la publication suivante :

• Tarasov, I. ; Haït, A. ; Battaïa, O. Metric Estimations for a Resource Leveling Pro-
blem With Variable Job Duration. 17th International Workshop on Project Mana-
gement and Scheduling (PMS) 2020/2021 (postponed), submission accepted.

Perspectives de recherche

Dans cette thèse, nous avons principalement utilisé la modélisation MILP, il sera intéres-
sant de comparer les résultats obtenus avec les résultats fournis par des approches basées
sur la programmation par contraintes (CP).

En ce qui concerne le sujet de la variation des données, il sera intéressant d’étudier
l’impact des modifications dans les relations de précédence. Si dans ce cas, l’optimalité
ne pourra pas être garantie pour les données modifiées, cela appellera au développement
d’une méthode efficace de replanification. Dans le contexte où des replanifications sont
possibles, les approches employant des méthodes d’apprentissage automatique semblent
avoir du potentiel à explorer.

13

Chapter 1

Introduction

Plans are worthless, but planning is
everything.

Dwight D. Eisenhower

Although the plans are not always achievable, the planning process is a mandatory part
of everyone’s life. Our performance highly depends on effective planning. The planning
of large projects for organizations is much more difficult. The impact of planning quality
also scales in this case. Planning is the process that involves defining a goal and the
instruments, methods, and set of actions required to achieve it. The planning process is
valuable because it forces a clear set of goals and allows one to analyze them.

Two terms are close, but they are not equal: planning and scheduling. Planning is
more general and answers the questions “what?”, “how?” and potentially “why?”. We
dedicate scheduling to the question “when?”. Scheduling is the timetabling of steps under
the plan. These terms always appear together, because they define each other. There
should be no inconsistencies, as the effective plan requires an effective and achievable
schedule.

This research focuses on the mathematical methods that improve planning and schedul-
ing processes. Mathematical modeling of the decision-making allows us to get complex
results for which we can justify and guarantee their advantage over other options. Math-
ematical apparatus and modern computing systems make it possible to implement these
methods more and more widely. It is the principal subject of Operations Research (OR)
and Optimization.

In this chapter, we briefly discuss the evolution of planning techniques, models, and
methods. Then, we will illustrate the effect of implementing these methods and some
results, with the motivation to the current research.

At the beginning of the 20th century, people performed manually the planning and
scheduling. It required fewer efforts. The development of science and technology signif-
icantly accelerated the pace of life in all spheres: the volume, complexity, and scale of

14

production increased. The pace of everyday life and the speed of people’s movement also
sped up.

The planning and scheduling included an increasing number of elements that had to
be organized over time, operated with more and more data and parameters of intercon-
nected operations. It became increasingly difficult to make high-quality planning in many
industries such as manufacturing, construction, and transportation. We associate the
emergence of research in planning and management with these factors.

Naturally, there were attempts to systematize knowledge and use a scientific approach
to the organization of work. American scientists Henry Gantt and Frederick Taylor con-
ducted one of the first studies on methods of production organization. Frederick Taylor
is the founder of the scientific organization of labor and management. He described the
fundamental aspects of this approach in his monograph [35]. Taylor was one of the first
to point out the need to use a scientific approach to solving organizational problems,
describing management as a science with its laws. He tried to present some of these rules
on formalized mathematics language in the form of laws and equations.

Henry Gant published a series of scientific papers from 1903 to 1919 where he pro-
posed a novel way of presenting schedules, named after him: “Gantt Chart” [36]. It is a
schematic representation of a schedule that presents jobs as rectangles placed along the
time axis, with the length of the rectangle corresponds to the time required to perform
the corresponding job. Nowadays it is well-known and widely used in many areas as a
standard for visualizing sequences of operations.

Kelley and Walker [37] developed a modeling technique to test the duration of the
project, named as Critical Path Method (CPM). The project has a set of project steps
(operations) with a defined duration. It is also a set of events (milestones). A project
network graph represents the ordering requirements (precedence relations). This method
calculates the longest path within the project network from the start to the end.

In the Fig. 1.1 there is an example of a project Gantt chart with an illustration of the
CPM. Precedence relations form the project network. We also mark them in the Gantt
chart as green vertical lines. Some critical operations determine the project duration
(colored in orange). If they change their duration or start time, it will change the project
duration. In contrast, other operations (colored in blue) might float in some range (grey-
colored zone) with no impact on the overall duration.

Malcolm et al. [38] introduced the Project Evaluation and Review Technique (PERT)
for the U.S. Navy. It has the same concept; it represents the project as a network formed
by activities and milestones. CPM is used to estimate the duration of the project with
additional statistical analysis. PERT exploits three processing time estimations for each
operation: optimistic, expected, pessimistic. Based on that, PERT helps to validate the
plans and to estimate the risks caused by the uncertainty, i.e. the probability of meeting

15

a
b
c
d
e
f

g
h
i
j

op
er

at
io

n

operation type: critical floating shift range

Gantt chart

Figure 1.1: An example of Gantt chart and CPM diagram.

an existent schedule. It was a bridge from describing analytics to predictive modeling.
Mathematical methods supplemented analytical tools to perform planning in different

cases. It started with the so-called job shop scheduling problem, described as follows.
We define a set of jobs (orders, products), each job comprises operations, and a set of
devices (machines, processors) process these operations. They can process a job with only
one machine. There might be a route with the order of operations. Besides, we know
the duration of all operations. A special case with a defined operation processing order
is named flow shop scheduling. This problem applies to the lean assembly lines. It is
necessary to define the schedule, i.e. assign the order of operations. Bellman introduced
the term “scheduling theory” in 1956 [39] and Conway et al. [40] published the first book
on scheduling.

This kind of combinatorial problem was classified in terms of complexity with the
notions of P and NP classes, NP-completeness and NP-hardness. Cook and Levin proved
that the Boolean satisfiability problem is NP-complete [41, 42]. Karp [43] introduced 21
combinatorial problems that are also NP-complete.

Gradually, the researchers enriched scheduling problem formulations in line with prac-
tical challenges. They expanded the models with the notions of operational resources and
requirements. The concept of a project appeared, Pritsker et al. [1] linked it with the
job-shop scheduling terms. The project has several defined elements:

• the set of resource types with limited availability;

16

• the set of jobs with resource requirements, precedence relations, and due dates;

• the objectives might be varied:

– to minimize the project completion time (makespan);

– to minimize the total completion time for all jobs;

– to minimize total lateness (exceeded due dates);

The makespan minimizing problem was studied as a basic formulation. It was defined as
a Resource-Constrained Project Scheduling Problem (RCPCP).

Next, financial and resource management aspects were studied in different branches
[44]. For example, the net present value (NPV) maximization problem counted negative
or positive cash flow (a payment or a profit) to the operations. Resource availability
cost problem (RACP) minimized the cost of used resources with a strict project deadline
constraint. Resource Leveling Problem (RLP) managed the variation of resource usage
over time periods.

Project scheduling problems were proved to be NP-hard. So, building solutions to
these problems have become a serious challenge and remains so to this day. Most common
approaches are based on MILP modeling [5, 3, 4], heuristic methods with suboptimal
solutions [10, 11, 12], or constraint programming (CP) [13].

Machine Learning (ML) technology is increasingly used in OR. However, it was less
frequently adapted for combinatorial planning problems. And there are only a few results
close to the project scheduling topic. We can refer to the review of ML in production
planning and control by Cadavid et al. [45] and applications for maintenance scheduling
by Peschiera et al. [46]. There were several ML applications for other areas: facility
locations by Lodi et al. [47], offshore wind parks by Fischetti and Fracaro [48].

The topic of data uncertainty was also developed for project planning [24]. There are
several directions. Stochastic optimization expands the initial problem with statistical
analysis [21]. Robust optimization gives priority to the stability and acceptability of
the solution in case of accidents. Usually, the space of possible changes is considered
as a finite set of scenarios [22]. There are several results for RCPSP and RLP [49, 50].
The importance of modeling data uncertainty is attested by industry case reviews that
show that most of the projects overrun their budgets and violate pre-defined deadlines
simultaneously. It is especially notable for large construction projects. The study1 of
McKinsey & Company illustrated that for mining, oil, and infrastructure projects with a
budget of more than one billion dollars, see Fig. 1.2.

1The construction productivity imperative https://www.mckinsey.com/business-
functions/operations/our-insights/the-construction-productivity-imperative#

17

https://www.mckinsey.com/business-functions/operations/our-insights/the-construction-productivity-imperative
https://www.mckinsey.com/business-functions/operations/our-insights/the-construction-productivity-imperative

Figure 1.2: Cost overruns and delays of 1B$+ construction projects. Source: McKin-
sey&Company.

In this thesis, we study the problem of the overrun of budgets. The consideration of
the flexible assignment of resources may help to avoid management risks and reinforce
the most important milestones and critical resources. For this purpose, we present a
new formulation for a generalized Resource Leveling Problem (RLP) and develop solution
methods for it. The thesis is organized in the following manner.

Chapter 2 presents a state-of-the-art for RCPSP and RLP. We discuss the solution
methods and uncertainty modeling.

Our first contribution, a new mathematical formulation for a generalized RLP is pre-
sented in Chapter 3. The idea behind this formulation is to allow a more flexible assign-
ment of resources and thus to produce solutions with reduced extra costs.

Chapter 4 describes our second contribution, which is the Benders decomposition algo-
rithm that effectively solves the problem we introduced. It involves several improvements
designed to accelerate the resolution.

Chapter 5 is dedicated to our third contribution which is a metric approach to manage
the data uncertainty for the considered generalized RLP. The realized theoretical study

18

provides the estimations that allow us to analyze the consequences of data variations and
make partial rescheduling.

Finally, Chapter 6 presents general conclusions, proposals, and perspectives for future
research.

19

Chapter 2

Project planning and scheduling:
State-of-the-art

Project Scheduling is represented in combinatorial optimization by two principal prob-
lems: Resource Constrained Project Scheduling Problem (RCPSP) and Resource Leveling
Problem (RLP). The former seeks to minimize the duration of the project and the latter
minimizes the resource usage required to respect a fixed project deadline. Both of them
are well-known combinatorial optimization problems actively studied in the literature.
The existing models differ in the objective functions and the constraints, but usually
involve several entities:

• a set of jobs (activities) which must be processed;

• a set of resources (workers, machines, etc.) required to implement the jobs;

• precedence relations that specify the acceptable execution order and time lags;

• resource-related constraints caused by limited available resources;

• an objective function, the mathematical formulation of the goal used to evaluate
the quality of the solutions.

A solution must specify the scheduling and resource-job assignments (in particular cases).
In the following, we discuss RCPSP first, since many modeling general project schedul-

ing notations, concepts, and solution approaches were firstly introduced for RCPSP. Then,
we focus on RLP which generalization will be introduced and studied in this thesis. In the
end, we discuss the management of data uncertainty and how it is covered in combinatorial
optimization in general and particularly in project scheduling and resource leveling.

20

2.1 Resource-Constrained Project Scheduling Problem

2.1.1 Problem description

The RCPSP is a well-known problem that arises in many real-life planning problems in
various industries. Its original formulation is as follows: a set of jobs has to be executed
without preemption, each job requires renewable resources of limited capacity and has
some precedence constraints.

The basic goal for this problem type is to construct a schedule that minimizes the
project duration under resource constraints. A schedule might be represented in different
forms. Usually, the starting moment of job j is noted as Sj, ∀j ∈ J . The duration of job
j is usually denoted as pj, j ∈ J . In the basic formulation, there is a fixed job duration
and it is not allowed to interrupt the jobs. Using these notations, the objective might
be formulated as the completion time of the last job (also defined as a makespan). The
completion time of job j ∈ J is directly derived from starting time Sj:

Cj = Sj + pj

A feasible solution must satisfy all the constraints namely the precedence and resource
constraints. Precedence constraints, i.e. the ordering relationship between the jobs, are
usually represented as a set of predecessors or successors, denoted as Prec(j) and Succ(j),
j ∈ J , respectively. An alternative is to define it as a set of pairs (j, i) ∈ P . So there
is a corresponding directed acyclic graph of precedence G = (V,A), where the vertices of
V = j1, ..., jn are the jobs of set J . Arcs A = {(i, j)|i, j ∈ V ; i → j} form the structure
of the precedence constraints. Besides, so-called dummy jobs have been introduced to
simplify the calculation of the makespan objective function. These are the "zero" and
"n+1" jobs, which have a processing time of zero and require no resources. Basically, the
"zero" job is a project start pointer and is executed first, and the "n+ 1" is representing
a project finish and so it is executed last. This is achieved with additional precedence
relations between these dummy jobs and all other jobs j ∈ J . The makespan (the project
completion time) is denoted as Cmax, and in this case, it is determined by the completion
time of "n+ 1" job:

Cmax = max
j∈J

Cj = Cn+1.

The planning horizon T represents the time interval available for the project comple-
tion. Resource constraints might be divided into two groups: renewable resources (which
will be available again after the completion of a job in which they are involved, i.e. equip-
ment and workforce) and nonrenewable resources (materials, fuel, etc.). Resources may
be of different types (i.e., skills, type of material, type of equipment) and a given number
of resources of a given type might be required to perform a given job. The set of resources

21

is usually denoted as R. A job j ∈ J requires a specific amount ajr of resource r ∈ R for
its completion. For the renewable resources these constraints are formulated as follows:
for a schedule π = {S1, ..., Sn}, in any point of time t ∈ T and for any resource r ∈ R, the
total occupied resource amount is less than the available limit cr.

The complexity of RCPSP

Pritsker mathematically formalized the classical project management problem with the
resource limitation [1], and its NP-completion was later proved by Blazewicz [2]. In the
three-position task designation scheme of Scheduling Theory proposed by Graham [51],
the basic RCPSP is denoted as PS|prec|Cmax. In this scheme, of the three characteristics
α|β|γ, the first one denotes the model of actors and resources, the second characteristic
defines the model and conditions of the job, and the third characteristic points to the
objective function. In this case PS – "project scheduling", prec – short form for the
precedence relationship, and the Cmax is a makespan.

RCPSP might be polynomially reduced to the partition problem, which is evidence of
the NP-hardness of the RCPSP. The definition of the NP-complete partitioning problem
[52]. It is necessary to deside if for a given set of n integers A = {a1, a2, ..., an}, there are
two sets of indexes I and J , I ∪ J = {1, 2, ..., n}, I ∩ J = ∅, such that∑

i∈I

ai =
∑
j∈J

aj. (2.1)

There is a PSPLIB library [53, 54] for input test examples for which the best results are
known.

Extensions of the basic model

The duration of a job may depend on the intensity of the job execution, determined by
the number of resources used. More resources are used at the same time, the faster the
job is completed. Different modes of execution can be defined. In the latter case, the
RPCSP is called multimodal and is referred to as MRCPSP.

The jobs may also have specific time windows for their execution, defined between
release times rj and deadlines Dj (must be distinguished from the non-strict due dates
dj that are usually involved in the objective function). For project scheduling there is
a more common notation of the earliest and the latest starting and completion times:
ESTj, ECTj, LSTj, LCTj, respectively. These parameters were used in two ways. On
the one hand, they were used as an input parameter involved in constraints with Sj and
Cj. On the other hand, many preprocessing techniques use these values and tighten them,
for example, to find the so-called compulsory intervals [LSTj, ECTj). With a given set of

22

precedence relations and the bounded planning horizon, these values might be calculated
from the structure of the precedence graph and job durations.

The number of resources available at a given point of time may not be fixed by a
constant cr, in this case, a certain function Cr(t), r ∈ R, t ∈ T is introduced to de-
fine the value. This corresponds to a situation where non-renewable resources are being
replenished, and workers and equipment can be available according to a specific schedule.

Precedence constraints may be considered in a generalized form with an additional
arbitrary δij parameter for any precedence relation i→ j, (i, j ∈ J). This case is denoted
as generalized precedence relations (GPR), that may involve the so-called start-to-start,
start-to-finish, finish-to-start, and finish-to-finish precedence constraints with a minimal
required δij time lag between these events. In other words, this approach extends the
basic idea that it is not allowed to start job j before job i was finished with a given
i → j precedence constraint. The basic precedence formulation thus is a particular case
of the GPR, described as a start-to-start precedence i → j with δij = pi, or a finish-to-
start constraint with zero δij. These precedence relations were introduced in the pioneer
publication of Korbush et al. [55] and later studied by Neumann and Schwindt [56].
Bartush et al. [57] used a notion of temporal constraints and proposed the notation of
temporal constraints with minimal and maximal time lags dijmin and dijmax.

2.1.2 Mathematical formulations

Mixed Integer Linear Programming (MILP) is one of the most common ways to formulate
RCPSP concurrently with Constraint programming (CP). In the following, we discuss the
most used formulations for RCPSP. We refer to the RCPSP MILP formulations review of
Artigues et al. [22] for a deeper description of these models and their properties.

Time-indexed formulations

From the pioneer studies of Pritsker and Watters [58] and Pritsker et al. [1], this approach
was used to formulate the scheduling problems with a planning horizon divided into
discrete periods, including the RCPSP. The models with time-indexed variables involved
0-1 decision variables as a pointer to the status of the job. Basically, with binary variables,
there are two options: to point out that the job was started or not in the particular time
period (and possibly the same that it was finished) or to point out that the job is in
progress in a given time period. If the start-end pointers are used, there are also several
options to describe them in the model. We will use the notions from Artigues et al. [22]
to illustrate these concepts and the difference. So, there are three basic approaches:

• "pulse" variables xjt, j ∈ J , t ∈ T , such that xjt = 1 if and only if activity j starts
at time period t;

23

• "step" variables ξjt, j ∈ J , t ∈ T , such that ξjt = 1 if activity j was started at time
period t or before;

• "on-off" variables µjt, j ∈ J , t ∈ T , such that µjt = 1 if activity j is processed at
time period t.

For pulse variables xjt we represent the starting time period Sj of activity j ∈ J as a

Sj =
∑
t∈T

txjt;

so, with a dummy "n+1" job with a zero processing time (meaning that Cj = Sj), the
makespan objective function is represented as

Min
∑
t∈T

txn+1,t.

and the constraints for the precedence relations and the resource requirements:∑
t∈T

txjt −
∑
t∈T

txit ≥ pi; ∀(i, j) ∈ A∑
j∈J

t∑
τ=t−pj+1

ajkxjτ ≤ cr; ∀t ∈ T ; ∀r ∈ R∑
t∈T

xjt = 1; ∀j ∈ J

xjt ∈ {0, 1}; ∀j ∈ J ; ∀t ∈ T

This formulation might also involve the constraints that use the earliest and latest time
intervals, for example:

xit = 0; ∀j ∈ J ; ∀t ∈ T\{ESTj, . . . , LSTj});

and the precedence constraints might be rewritten in a form with a stronger LP relaxation,
see the paper of Christofides et al. [59]:

t−pi∑
τ=0

xiτ −
t∑

τ=0

xjτ ≥ 0; ∀(i, j) ∈ E; ∀t ∈ T.

Pritsker and Watter [58] compared step variables to pulse decision variables. Basically,
"step" variables ξjt point to the starting period with a step change of values. If activity j
was started at time period t or before, then ξjt = 1, otherwise ξjt = 0. The step decision

variables ξjt might be produced from pulse variables
t∑

τ=0

xjτ , and xjt = ξjt − ξj,t−1. These

decision variables require an additional set of constraints to define proper non-decreasing
variables: ξj,t−1 ≤ ξjt, ∀j ∈ J , ∀t ∈ T . They are connected with the original start time

24

Sj of a job j ∈ J in the following form:

Sj =
∑
t∈T

t(ξjt − ξj,t−1);

so the objective is built in a same way as for pulse variables (Sn+1 = Cn+1):

Min
∑
t∈T

t(ξn+1,t − ξn+1,t−1).

The constraints are redefined according to the expressions above. For example, the prece-
dence relations have a form

ξj,t−pj ≥ ξjt; ∀(i, j) ∈ E; ∀t ∈ T.

For the "on-off" formulation we use the binary decision variable µjt, j ∈ J , t ∈ T , to
illustrate that job j is being processed in time period t ∈ T or not. So, µjt = 1 if activity
j is processed at time period t and µjt = 0 otherwise. Based on that, ∀j ∈ J , t ∈ T ,

µjt = ξjt − ξj,t−pj =
t∑

τ=t−pj+1

xjt.

For dummy jobs with pj = 0 ξjt = µjt and thus the objective function has a form

Min
∑
t∈T

t(µn+1,t − µn+1,t−1).

And for other jobs it is necessary to consider another case, when pj ≥ 1, ∀j ∈ J . To get
an expression for xjt and ξjt, it is necessary to consider all the periods in a range of pj,
i.e. τ = t− αpj, with α ∈ [0, ..., bt/pjc]:

ξjt =

bt/pjc∑
α=0

µj,t−αpj .

and with xjt = ξjt − ξj,t−1 so

xjt =

bt/pjc∑
α=0

µj,t−αpj −
b(t−1)/pjc∑

α=0

µj,t−1−αpj .

To define the starting period Sj, the same structure is used for xjt:

Sj =
∑
t∈T

t(

bt/pjc∑
α=0

µj,t−αpj −
b(t−1)/pjc∑

α=0

µj,t−1−αpj).

25

These basic formulations were modified and upgraded, remaining applicable to gen-
eralized problem formulations. For example, to deal with an RCPSP with various jobs’
duration. Klein [60] presented another variable γjt. It is defined so that γjt = 1 if a job
j ∈ J is implemented at time period t ∈ T or after, then ξjt + γjt − 1 = µjt for all jobs
j ∈ J and ξjt + γjt − 1 = xjt for dummy activities. The combination of these variables
with ξjt makes it possible to construct a model with various job duration.

Time-indexed formulations were improved. Cutting plane inequalities improved these
models, as it was stated in the papers of Demassey et al. [61] and Hardin et al. [62].

These models were also widely used and reviewed for particular cases of RCPSP.
For example, see the study of Artigues [63], the RCPSP formulation with step variables
presented by Bianco and Caramia [64], Bianco et al. [65]. Artigues [66] later clarified
the results of polyhedral analysis and the strength of LP-relaxations for these models.
Although it was noted that LP-strength is not guaranteeing better results for the corre-
sponding MILP, it was stated that this strict consideration allows distinguishing a real
improvement from an equivalent reformulation.

Naber and Kolish studied the time-indexed RCPSP models with varied resource avail-
ability [67]. Kyriakidis et al. [68] reviewed the MILP formulations of RCPSP with re-
newable and non-renewable resources, also with a model for the multi-mode case with a
variety in the number of consumed resources. Kreter et al. [69] studied the mathematical
formulations for RCPSP with GPR and calendars, with preemptions caused by calendar
breaks. Javanmard et al. [70] considered a preemptive multi-skilled resource investment
project scheduling problem with the same approach. The model involved a cost objective
function and it was significantly more complicated with worker skill levels, it was noticed
from the chemical production industry. Garcia-Nieves et al. [71] worked with a model
from the construction industry with repetitive activities, considering multiple goals: the
resource allocation, the makespan, or the costs.

There are also other ways to use time-indexes variables. A feasible subset approach
was introduced by Mingozzi et al. [72]. The concept is to find the subsets of jobs that are
allowed to be executed in parallel (i.e., without any precedence relations) with respect to
resource constraints. With a set of feasible subsets, it is possible to construct a schedule in
the following way. It is necessary to decide in each time period whether a given subset is
implemented or not, so a binary decision with a time index is required to implement this
technique. There is a drawback that the size of the general set might be exponentially
large with respect to the job set size. This model is used with column generation to
generate lower bounds [52].

Chain-decomposition formulation is another technique presented by Kimms [73]. With
a baseline idea to decompose the graph into several chains, so that each precedence pair is
involved in one chain once. Binary variables are used to assign a schedule (a permutation)

26

to a chain and to point out the completion time of a job in a given period within a given
chain. The main drawback is also that the number of these variables is not polynomial,
so these models are used with column generation to calculate the bounds.

Sequencing formulations

These formulations directly use a continuous variable of Sj to define the starting moment
combined with binary variables. The binary variable may be used to deal with precedence
relations only, or it may be also involved in the resource constraints. It was used for
continuous-time planning horizons, for example, see the study of Queyranne and Schulz
[74].

We can refer to the two forms.

• With a minimal forbidden set, a set of jobs that violate the resource limitations
whereas any subset does not imply that. As in the previous examples, this approach
states that the number of sets is exponential, which makes it difficult to use in
practice. It was proposed by Alvarez-Valdés and Tamarit.

• The flow-based formulation uses the notion of resource flows to represent the de-
manded and returned amount of resources when a job is started or finished. The
continuous decision variable is used to represent the flow coming from one job to
another, so it is defined for all possible pairs. It was presented by Artigues et al.
[75] and improved by Demassay [61].

We note that in later studies these two described methods were combined. Resource
leveling related models involve a combination of continuous starts and binary variables
that are used to assign resources correctly. For example, the model of Baydoun et al. [18],
which is used to deal with a problem that is close to the problem considered in this work.

Event-based formulations

This concept exploits the idea that all possible events (the start and the end of the job)
belong to a bounded set of time moments, the so-called set of events E. It might be
achieved with a notion of active schedules when we state that all jobs start at the earliest
moment that does not violate the constraints and the ordering of job processing. With
given duration and release times, we can tighten the set of possible processing start and
end times for any job j ∈ J . This concept is also implemented with different types of
binary decision variables.

• Start-end events involves the binary variables a+je and a−je that are used to define
an event e ∈ E for the start and the end of job j processing. It was introduced by
Koné et al. [76] and later precised by Artigues et al. in [77].

27

• On-off events were also presented by Koné et al. [76]. As for the time-indexed
formulation, the binary decision variables aje were introduced to point if job j ∈ J
was processed at event e ∈ E.

To sum up, there is a range of commonly used and well-studied practices to formulate
the scheduling problems. The development of a new model for this kind of problem should
begin with the analysis of close statements and the selection of the most promising models.
There are also general modeling recommendations, for example, see the papers of Klotz
and Newman [78] and Vielma [79].

2.2 Resource Leveling and Allocating

Another frequently studied problem formulation in project scheduling is the Resource
Leveling Problem (RLP) aimed at controlling resource usage over time and avoiding over-
loads, undesired oscillations in resource usage, or minimizing total resource usage. These
formulations were also proved to be NP-hard in the strong sense [80].

2.2.1 RLP objective functions and constraints

The main difference between RLP and RCPSP comes from the fact that they use different
objective functions. Thus RLP uses supplementary decision variables related to resource
allocation. In the paper of Rieck and Zimmermann [14], three classic types of objective
function were analyzed: variations in resource utilization within project duration, total
(squared) overload cost, and the total adjustment cost (costs arising from increasing and
decreasing resource utilization). So, these objective functions are related either to resource
usage oscillations or to the total resource usage. Within a time-indexed formulation they
have the following form:

• total variations (smoothing resource r ∈ R utilization Urt over periods t ∈ T)

Fv =
∑
r∈R

cr
∑
t∈T

U2
rt. (2.2)

• total adjustment (cumulative price of changes in utilization Urt)

Fa =
∑
r∈R

cr
∑
t∈T

max{0, Urt − Ur,t−1}. (2.3)

• total overload (if resource usage Urt exceeded resource limit Yr, r ∈ R, t ∈ T)

Fo =
∑
r∈R

cr
∑
t∈T

max{0, Urt − Yr}. (2.4)

28

Here cr > 0 is the cost per unit of resource r ∈ R.
In each case, there is a specified project deadline that is fixed. Resource assignment is

performed with additional variables describing the resource usage profile of the schedule.
It has a form of a step function Urt defined on periods t ∈ T for each resource r ∈ R.

2.2.2 Evolution of RLP models

Hans in [81] studied RLP with varying intensities of jobs resulting in their variable pro-
cessing times. In this work, a branch and price approach was developed to solve this
problem. Further, this model was considered by Kis [82], who constructed a Branch
and Cut algorithm. He described the feasible intensity assignments polytope and outper-
formed the Branch and Price approach which is dual to B&C. In the model presented by
Kis, the jobs were specified in discrete-time intervals, and the precedence relations were
period-aggregated making impossible to assign two adjacent jobs to the same time period.
These models were used to minimize resource overload.

For practical problems, researchers develop heuristic methods to construct acceptable
solutions in a reasonable time. Christodoulou et al. [83] provided an overview of heuristic
methods applied to RLP. There are several recently published studies inspired by in-
dustrial problems. For example, the construction resource leveling model was solved by
meta-heuristic genetic solution approach by Selvam and Tadepalli [84]. Piryonesi et al.
[85] developed a simulated annealing algorithm for the same type of applications. Li et
al. [86] studied the RLP with uncertain job duration and possible overlapping and pro-
posed a genetic algorithm. Cherkaoui et al. [87] studied tactical scheduling and resource
management with minimization of variations in project costs. They considered uncertain
resource availability and denoted the general problem as Rough Cut Capacity Planning
(RCCP). It is close to the RLP model, with the objective to minimize the resource cost.
Baydoun et al. [18] also used this notation. More generally, the management of data
uncertainty is an important challenge in the decision-making process and in particular in
project scheduling. In the next section, we discuss the methods developed to address it.

In our research, we focus on the RLP model with a goal to minimize extra resource
usage for the case of a fixed deadline, see eq. (2.4). We consider that the decision-maker
can adjust the amount of resources allocated to a job between a lower and upper bound
and this amount becomes a decision variable for each job, resource, and time period (this
intensity can be changed from one time period to another). This decision impacts the job
duration: more resources are involved in job execution, the faster it is completed.

An industrial case of such management in energy scheduling for a pipe-manufacturing
plant was presented by Artigues et al. [15]. This formulation included almost the same
goal as RLP: to minimize the overload costs represented as electricity bills that included
penalties for power overload. They applied an optimization approach with two stages:

29

the assignment with sequencing was realized with a CP model and MILP was used for
energy consumption planning. Later, Nattaf et al. [88] developed this concept with
energy resource allocation and studied several MILP formulations. Nattaf et al. [16] also
provided new polyhedral results: a set of valid inequalities and polytope description. We
can cite another example from the space industry presented by Capelle et al. [17]. The
management of data transfer from satellite networks to ground optical stations requires an
allocation of pairs satellite-station and transfer planning. It is possible within limited time
windows, data buffer, and transfer speed. A control system for such applications should
involve simultaneous resource allocation and planning with the objective to minimize the
total costs.

From the theoretical side, the previous studies close to our research are the following.
Baydoun et al. [18] developed a model for overload cost minimization problem with prece-
dence constraints and job overlap. It is also similar to the problem presented by Bianco
et al. in [19]. Baydoun et al. enriched the idea of the overlapping feature with several
specific options. For example, overlapping was allowed if some part of the predecessor’s
job has already been implemented. Morin et al. [20] formulated the problem with resource
constraints considered globally on time periods as Period-Aggregated RCPSP with basic
RCPSP makespan objective function.

The main difference of our formulation is the possibility to manage properly precedence
constraints and to allocate the resources with more freedom during the different time
periods.

2.3 Solution methods

2.3.1 Branch and Bound/Branch and Cut

This approach was firstly introduced by Land and Doig [89]. The researchers studied and
improved Branch and Bound algorithms, for example, see a recent survey of Morrison
et al. [5] for details. This technique exploits the idea to decompose the problem and
consider the smaller subproblems (nodes, or branches). Furthermore, it is possible to
significantly reduce the number of iterations, and thus sometimes avoid the consideration
of full exponential search space by pruning non-promising subproblems, i.e. removing
them from the search space without loss of potential solutions. It is done with a help
of bounds, the estimations of the best possible solution of a node. For the minimization
(maximization) problem, a lower (upper) bound is calculated for a node and compared
to the best-known solution. If a node is not promising to produce better solutions than
already known, it is pruned.

This algorithm is recursive, the decomposition is repeated for the subproblems. As

30

a result, the set of subproblems has a form of a tree and it is defined as a search tree.
At each iteration, the procedure to follow is defined by answering the following three
questions:

• How to choose a subproblem in the search tree?

• How to construct a bound?

• How to decompose the subproblems?

The choice of the subproblem is not straightforward and there is no globally best
procedure. With a form of a search tree, these procedures may be related to graph
search methods, like depth-first search (DFS) and Breadth-first search (BrFS), plus the
best bound searching. Clausen and Perregaard [90] firstly compared two DFS strategies.
Morrison et al. [5] made some conclusions about both methods.

There are some typical ways to construct bounds and perform branching for a MILP.
Bounds are usually made from an LP relaxation of the subproblem (ignoring integrality
constraints). It is also used to make the branching, as the branching idea is to cut off
the non-integral solutions in further relaxed subproblems. If the subproblem produces a
solution with variable x and it is not integral and has a value β, the branching is made as
follows. Two equal subproblems are created with additional cuts x ≤ bβc and x ≥ dβe.

Furthermore, Branch and Cut (B&C) is a B&B approach expanded with a cutting
plane method. When an LP relaxation produces a non-integral solution, there exists
a linear inequality that cuts off this non-integral solution without impacting integral
solutions. In other words, this linear inequality is a cut that separates this solution from
the real feasible set (the convex hull). It may be added to the LP relaxation that will
avoid the previous non-integral solution and produce another one that is closer to a convex
hull of integral solutions. The cutting planes method was firstly presented by Gomory
[91]. Several cutting plane types were developed. Chvatal-Gomory cuts were presented
by Chvátal [92], advanced and strengthened by Caprara and Fischetti [93], Letchford and
Lodi [94]. Gomory mixed-integer Cuts were improved by Wesselman et al. [95]. Balas
et al. [96] introduced Lift-and-project inequalities and later outperformed the original
result in Balas et al. [97]. A survey on valid inequalities may be found in the paper of
Cornuéjols [98], Dey and Molinaro [99].

For the RCPSP, there are particular studies related to B&B and its components.
The researchers try to strengthen the lower bounds and provide effective cutting planes.
An overview of lower bounds calculation methods for the basic RCPSP formulation was
prepared by Néron et al. [3] and then by Knust [4]. Demassey et al. [61] improved the
LP relaxation with cutting planes derived from a constraint propagation preprocessing
method. Arkhipov et al. [100] constructed a pseudo-polynomial algorithm providing a

31

new lower bound based on the estimation of related consumption of two resources. Tesch
[101] introduced a general class of valid cutting planes for RCPSP compact MIP models
and evaluated by computational experiments. Araujo et al. [102] also used a preprocessing
algorithm to strengthen known cutting planes.

The researchers also studied particular types of RCPSP, extensions, and job-shop
scheduling subcases that have the same nature of constraints and bounds. Bianco and
Caramia [103] dedicated their review on the RCPSP version with generalized precedence
relations and without resource constraints. Carlier et al. [104] described the relations
between the basic RCPSP and the event scheduling problem. It is an extended formulation
with jobs replaced by the events, having an impact on resource availability. Ainbinder
et al. [105] presented new lower bounds for Resource Sharing and Scheduling Problem
(RSSP). In this formulation, a job consists of a set of partially ordered activities with
different resource demands.

In the next contributions, [106] and [107], a project scheduling problem with the
project duration minimization objective function was studied with respect to variable job
duration and possible overlapping. In [19], the classic total overload objective function
with generalized precedence relations with time lags (GPR) was presented. Naber and
Kolish considered the discrete-time model of RCPSP with flexible resource distribution
in [67], then Naber studied the version of the model with continuous starts and ends of
jobs in [108].

2.3.2 Benders decomposition

Benders decomposition, also named variable partitioning and outer linearization, is also a
classic partitioning method applicable to mixed-integer programming problems [109]. In
this method, the original MILP is separated into two simpler problems: a smaller "master"
MILP and a "subproblem" LP. Master problem and dual subproblem are solved in the
loop, the master problem solution forms the dual subproblem, and the dual subproblem
solution is used to provide cuts for the master problem. The process continues until lower
and upper bounds are equal, i.e. the iteration resulting in the equal values of the objective
functions in both problems.

This approach demonstrated good results for various problems, such as the hub loca-
tion problem [110] and project scheduling problems.

A resource flow-based formulation of the RCPSP was studied in [6]. In contrast to
a more common RCPSP modeling approach (such as time-indexed or event-indexed),
this formulation was proposed especially for being used with a Benders decomposition
approach. In the proposed decomposition scheme, all decision variables and constraints
except the resource flow part were used in the master problem, with a resource flow part
forming the subproblem.

32

Boschetti et al. [7] studied a multi-mode resource-constrained project scheduling prob-
lem (MRCPSP). This problem is based on the RCPSP with an additional feature: a set of
possible modes to implement each job, with varying duration and resource requirements.
The decomposition scheme for MRCPSP was designed in the following manner: the mas-
ter problem included the definition of the distribution modes for each activity and the
subproblem represented the part of RCPSP with a fixed given duration value for each
activity.

In the paper of Li [111], a Benders decomposition approach was used to solve an
RCPSP-extension model with a resource-assignment objective function instead of an ob-
jective involving scheduling variables. These problems arise in a personnel assignment
and staffing. The decomposition scheme included the assignment decisions in the master
problem and scheduling decisions in the subproblem.

Benders decomposition was employed for the robust version of RCPSP by Bruni et
al. [112]. The decomposition was designed as a separation of the decisions for scheduling
and uncertainty management. The authors modeled the solution of RCPSP in terms of
additional arcs in the precedence graph. The master problem dealt with the sequencing
of possible additional arcs. The subproblem dealt with the uncertainty of parameters.

Emde et al [113] investigated a batching single machine scheduling problem with prece-
dence, minimizing maximum lateness. The model was proposed for the single crane in
an automated storage and retrieval system (AS/RS). The decision-making process in-
cluded the assignment to batches and also the ordering of batches. The algorithm was
constructed with one search tree for a cut generation. This method was denoted as a
branch&Benders cut. Benders decomposition was also implemented for assignment and
scheduling in medical operation disruption management. This research was presented in
the paper of [114] with a heuristic algorithm to assign and plan operating room blocks.
The algorithm was tested on empirical data.

Time-window vehicle routing problem was modeled by Fachini and Armentano [115]
with a total cost objective function. The decomposition scheme followed the model struc-
ture: all assignments were produced in the Master, with a traveling salesman type Sub-
problem.

Guney et al. [116] modeled propagation of information in social networks, denoted as
an influence maximization problem or a stochastic maximal covering location problem. On
the primary level, it involved probabilities of interaction (transition), but the considered
model required a scenario-based approach. The authors studied the form of Benders
optimality cuts for this model and preprocessing.

Power production is also an active application area for optimization with Benders
decomposition. Giuntoli et al. [8] used this type of decomposition for the grid distri-
bution problem. The model was constructed to control the battery storage systems in

33

order to deal with the uncertainty of renewable resource sources. Short-term hydropower
maintenance scheduling problem was resolved with Benders decomposition in the study
of Rodriguez [9], with a parallelized accelerated algorithm, configured according to the
empirical results.

A survey of the studies on the application of Benders decomposition was presented in
[117]. It should be noted that the separation between the master problem and subproblem
is based on the analysis of the structure of the initial problem. Although a basic version of
Benders decomposition provides good results for particular types of combinatorial prob-
lems [110, 7], for others, the general scheme may not be efficient and requires additional
improvements in order to accelerate the resolution and convergence. In [117], the authors
describe these improvement techniques in the following way. The parts of the decomposi-
tion scheme are studied with a description of opportunities to advance. According to the
structure of this approach, we point out the following components:

1. Instructions for Subproblem separation;

2. Master/Subproblem solution procedure;

3. Master model modifications;

4. Method for cuts generation.

The first point defines the structure of partitioning. The choice of variables for Master
and Subproblem significantly affects the performance and the convergence. For example,
Benders decomposition was effectively implemented to solve facility-location problems,
with more than 90% of computation time spend to solve the Master (see [118, 110]). On
the other hand, Master simplification leads to the growth of the number of iterations.

Secondly, there is a list of possible procedures to solve the Master and Subproblem.
For example, it is possible to implement column generation for Master and use it in
the Subproblem. The Master problem can be effectively implemented with a Constraint
Programming formulation, see the paper of Maher [119] with a description of a Benders
decomposition framework involved in SCIP solver.

Another important feature is the implementation of the algorithm without multiple
runs of the Master model, i.e. using suboptimal incumbent solutions to make cuts within
one branching tree. This method was denoted as Branch&Benders Cuts [120] and success-
fully implemented for facility location problem. As the resolution of the master problem
even within one tree is a computational challenge, a significant effort was made to acceler-
ate the branching process with an improved model and bounds. The master model might
be modified or enriched with valid inequalities, or implemented with heuristic approaches,
for example, see the paper of Emami et al. [121] with a robust Benders approach provided
for a scheduling problem with order acceptance.

34

The cuts can be improved both in terms of quality and quantity. In some cases, it is
even possible to avoid the generation of feasibility cuts with an improved Master model.
Magnati and Wong proposed an accelerating scheme based on the construction of pareto-
optimal cuts [122] and tested them on a class of facility location problems. In addition,
the authors discussed some equivalent reformulations. The approach of Fischetti et al.
[120] also involved an improved cut generation based on interior points. An iteration
can also produce multiple cuts that contribute to faster convergence. In contrast, some
approaches use heuristics clean-up strategies to delete useless cuts.

Tang, Jiang, and Saharidis proposed further improvement for the decomposition scheme
for the facility location problem in [123]. Firstly, they considered the master problem
without objective function and formulated valid inequalities in order to accelerate the
initial progress of lower bounds provided by the master problem. Secondly, the disag-
gregation approach was applied for the subproblems with the construction of multiple
cuts at each iteration of the decomposition. This technique helped to accelerate problem
resolution. An approach based on multi-cut generation in case of subproblem infeasibility
was developed in [124]. Its effectiveness was demonstrated on the scheduling problem of
the multipurpose multiproduct batch plant. The general idea was to generate additional
optimality cuts in case of unboundedness of the dual subproblem.

To sum up, Benders decomposition is an efficient solution method that to the best of
our knowledge has not been applied yet to RLP.

2.3.3 Constraint programming

Constraint programming (CP) is another paradigm to design and solve scheduling prob-
lems, actively developed in recent years. A CP model includes decision variables, domains
for variables, and constraints among the decision variables (defined as a Constraint Satis-
faction Problem, CSP). It uses such search schemes as constraint propagation and some
problem-specific add-ons. Constraint propagation is an iterative process that makes the
correspondence between the domains of different variables and linking constraints. The
goal is to eliminate the values of variables that do not allow to satisfy all the constraints.
The procedure is stopped if it is impossible to make the domains tighter. Constraint prop-
agation is combined with search procedures, for example, backtracking, Branch&Bound,
local search methods. The modules that are responsible for each part of the algorithm
may vary, and CP does not require a linear form of constraints inside the model.

This approach has already demonstrated good results for scheduling problems from
theoretical and practical sides. From the theoretical side, a set of effective constraint
propagators was created. See the thesis of Vilím [125] and the paper of Laborie [13] for
the overview of existing approaches, based on the resource usage and precedences. Several
important terms were introduced for the Cumulative Scheduling Problem (CuSP) with

35

a single resource in the pioneer studies: compulsory part by Lahrichi [126] and resource
profiles by Fox [127]. In a more recent study of Letort et al. [128] a sweep algorithm
tightened the earliest (latest) start (end), and Gay et al. [129] updated complexity results
for the time-labeled cumulative constraints. Carlier et al. [130] studied the energetic
reasoning for the CuSP and a set of jobs with a given duration and implementation time
window. The energetic reasoning method tightened the time windows for jobs with respect
to the schedule feasibility.

For several datasets for RCPSP, CP models outperform the Mathematical Program-
ming techniques. Recent results of Hauder et al. [131] also showed the potential of
CP formulations for project scheduling problems with makespan and resource balancing
objectives.

2.3.4 Heuristics

Heuristic methods are frequently used for NP-hard problems. A comprehensive review of
heuristic approaches may be found in the papers of Agarwal et al. [10] and Pellerin et al.
[11]. The researchers develop heuristics to specific and large RCPSP-cases: a tabu search
for extended multi-mode RCPSP by Servranckx and Vanhoucke [132], evolving heuristics
for the RCPSP with dynamic resource disruptions, approximate dynamic programming
for RCPSP with overlapping by Chu et al. [133], priority rule method for RCPSP with
fuzzy processing times by Bhaskar et al. [134]. Guo et al. [135] provided a decision
approach to identify the best RCPSP priority rules.

An overview of construction project scheduling quantitative methods was presented by
Briskorn and Dienstknecht [12], with a significant part devoted to RCPSP and MRCPSP
heuristics.

2.4 Uncertainty modeling in project planning

The uncertainty of the data is one of the important issues for project planning. In the liter-
ature, proactive, reactive, and proactive-reactive approaches are distinguished to address
this issue. Proactive approaches try to anticipate the data variations, reactive approaches
seek to react quickly to the effective changes. Proactive-reactive approaches build a gen-
eral plan with some anticipation and provide also a reactive method to adapt this plan
to the observed data changes.

Hazir and Ulusoy presented a recent literature review [24] on common uncertainty
sources and ways to model them in project scheduling. The most frequently used proactive
approaches are to represent the uncertain data as a random value or to construct a robust
(acceptable for any scenario) solution, or to build a baseline solution, adaptable to any

36

possible scenario. Another possibility is to study the sensitivity of the model and describe
the impact of variations in input parameters. The less frequently used approach is the
metric approach discussed in detail here below.

Existing stochastic methods for RCPSP were analyzed by Bruni et al. [21]. Li et al.
[49] presented two scheduling policies for RLP with uncertain job times, minimizing the
total variation of the occupied resource. The first one solved a deterministic equivalent
of the stochastic problem, and the second applied a tabu search directly to the stochastic
formulation. The same authors later studied a robust version of RLP and proposed a
genetic algorithm [50]. Recent results present a metaheuristic procedure for a formulation
of RLP with a variation affecting both duration and minimum time lags between the jobs.
Ke and Zhao [136] also studied uncertain job times and proposed a heuristic approach. A
case of RCPSP with a set of scenarios with various duration was presented by Artigues
et al. [22], with two algorithms, an exact and a heuristic scenario-relaxation procedure.
Hazir et al. [23] formulated three robust optimization models for a discrete-time/cost
trade-off problem with a similar structure: a set of jobs with a precedence graph and a
set of modes characterized by different processing time and cost. The goal is to schedule
the jobs and assign the modes to minimize the total cost with respect to a given project
deadline.

2.4.1 Sensitivity analysis

Sensitivity analysis is performed in order to study the impact of variations of parameters
on the quality of the solution. In the case of MILP, sensitivity analysis can be performed
for a model in the following form:

min (c+ ∆c)Tx

s.t. (A+ ∆A)x ≥ (b+ ∆b)

x ≥ 0

xi ∈ Z,∀i ∈ I
where: c,∆c ∈ Rn, A,∆A ∈ Rm×n, and b,∆b ∈ Rm

(2.5)

Dawande and Hooker [27] introduced a general method for sensitivity analysis for MILP
with any kind of perturbation allowed (∆c, ∆A, ∆b). They proposed two approaches:
the first one to change the solution while keeping the same objective function value (or
shifted in some given range), it was defined as dual analysis; and the second one to find
an upper bound for the objective function value for a given perturbation of parameters,
it was defined as a primal analysis.

This method was later developed by Jia and Ierapetritou [28, 29]. They studied the
batch plant scheduling problem. The dual analysis method of Dawande and Hooker [27]
was used to calculate allowed changes. They also used a metric to describe the robustness

37

of considered schedules. Furthermore, this approach was upgraded and used for the same
class of batch plant scheduling problem [137]. Experiments were carried for two use cases:
single product production line and two-product line.

We can also refer to the paper of Emelichev et al. [30], who studied a vector combina-
torial linear problem and the case of perturbations of coefficients of linear functions and
proposed a stability radii as a function. Later this approach was also used by Gurevsky
et al. [31] for an assembly line balancing problem, providing stability and feasibility
measures in case of possible processing times variations.

Sensitivity is investigated empirically in many areas when operation research methods
are applied. For example, it was used by Ren and Gao [138] for the planning of distributed
energy systems. The sensitivity of the model was determined for major parameters, such
as the demand, prices, and carbon tax rate. Kouvelis et al. [139] constructed a predictive
tool, based on a facility network design MILP. This tool allowed us to obtain some data
estimations without the execution of a large MILP that describes the process precisely.
The hydrothermal energy generation network of Ghana was modeled and studied by
sensitivity analysis in the paper of Etwire and Twum [140]. The energy management
topic was also reviewed by Moser et al. [141]. They presented a novel modular modeling
approach for urban energy management systems with complex system configurations.
The model was prepared to resolve the problem of growing sources, storage centers, and
consumers. The total cost was improved with an approach that takes into account forecast
errors of user’s demand or weather errors.

Sensitivity analysis was applied to a large-scale MILP describing the process of pricing
and ordering for new customers [142]. It was conducted for a firm with a continuous-flow
production process with complex scheduling. The main result consisted of the pricing
and planning policies and the identification of the key parameters with a high impact on
production volume.

We can note that this topic is closely related to planning in case of unexpected disrup-
tions, as it is the most frequent "unexpected" parameter change in the model. On the one
hand, model sensitivity allows us to evaluate the range of acceptable parameter changes.
On the other hand, it is used to construct stable models to simplify the calculation of new
solutions. Railway scheduling timetabling is an important application area of operations
research. MILP models are used to construct the schedules and to revise the schedules
in case of urgent disruptions. Khoshniyat and Krasemann [143] made a research about
rescheduling policies for a railway network in Southern Sweden. The primary goal was to
make a better model to allocate the time slots for urgent maintenance and reschedule the
trains properly, but it also involved the analysis of model sensitivity to the values of the
big-M constant. Another model dealing with interruptions in the electricity distribution
network was presented by [144]. Although the term "sensitivity" was used in a different

38

meaning as a particular parameter of the model to describe client reactions, this model
is also relevant to the topic of disruption resolving. Chaojue and Ming [145] studied the
sensitivity in the case of earth-moving and temporary haul road layout design. The real
project case was modeled as a MILP, with two goals: to categorize input parameters in
several classes of impact and to analytically define the stability region for each parameter.

In some cases, sensitivity analysis is combined with another approach to tackle uncer-
tainty, the scenario-based method. Instead of the infinite number of input data combi-
nations, the uncertainty is discretized into a finite set of scenarios. Silvente et al. [146]
illustrated this approach for non-linear programming optimization models. The main idea
lied in a reduction of the scenario set with a sensitivity analysis to keep the same quality
of results, i.e. to have the same cover of possible changes with fewer scenarios. Two cases
were used to demonstrate this method: pricing and extraction optimization for OPEC
and household optimization.

2.4.2 Metric approach in scheduling theory

A metric approach for scheduling problems was presented by Lazarev [32]. It is an approx-
imation scheme that builds sub-optimal schedules with guaranteed estimated accuracy in
a polynomial time for a problem that is NP -hard in general but has some polynomially
solvable sub-classes of instances. The idea is based on the construction of a metric func-
tion on a space of instances, that shows an upper bound of an objective function value
difference. With this metric function, an approximation scheme consists of two stages:
firstly, by solving an LP with the objective to minimize the metric distance to find the
closest solvable instance; and secondly to apply a corresponding polynomial algorithm to
this instance.

More specifically, in this approach, any problem instance is represented with a point
in f(n)-dimensional space Ω, where n is the number of jobs in the instance. The metric
function is defined in the following way. If the same schedule π is used as the solution for
two different instances A and B, it is possible to make the estimation of the difference
between objective function values VA(π) and VB(π) for these instances. This estimation
is formed as metric ρ(A,B) defined on Ω× Ω:

|VA(π)− VB(π)| ≤ ρ(A,B). (2.6)

The second step is used to estimate the deviation from the optimal value for the instance
that is not solved. Suppose there are two schedules πA and πB which are the optimal
solutions for instances A and B, respectively. VA(πB) is the value of the objective function
for instance A if schedule πB is applied (optimal for instance B) and VA(πA) is the optimal
value of the objective function for instance A since schedule πA is an optimal schedule for

39

instance A.

VA(πB)− VA(πA) ≤ ∆(ρ(A,B)). (2.7)

The following Lemma proves that this deviation depends on ρ(A,B).

Lemma 1. If two schedules πA and πB are the optimal solutions for instances A and B,
respectively, and there is a defined metric upper bound ρ(A,B) (see eq. 2.6), then

VA(πB)− VA(πA) ≤ 2ρ(A,B). (2.8)

Proof. We will transform the expression in the following way:

VA(πB)− VA(πA) =

(VA(πB)− VB(πB)) + (VB(πA)− VA(πA)) + (VB(πB)− VB(πA)).

Here the first and the second group in brackets is less or equal to ρ(A,B), and

VB(πB)− VB(πA) ≤ 0

since VB(πB) is the optimal schedule for instance B.

Therefore, we can define ∆(A,B) = 2ρ(A,B) as the absolute upper bound for accuracy
for the case when πB is used as the solution for instance A instead of the real optimal
solution. The original idea is to use schedule πB that is optimal for some polynomially
solvable instance B as the solution for the original NP-hard problem instance A, such that
the difference between the objective function values is minimal, i.e., for the minimal value
of ρ(A,B). In other words, the resolution of the initial NP-hard problem for instance A
is transformed into the resolution of a polynomially solvable instance B and its research
by solving an LP minimizing ∆(ρ(A,B)) to search the instance B with the minimal value
for metric function ρ(A,B). All known solvable classes are defined by the set of linear
inequalities with parameters of instance, therefore the new problem is linear programming.
This algorithm is applicable to particular scheduling problems for which proper metric
functions can be defined.

To sum up, the method proposed by Lazarev [32] for scheduling problems works if the
following conditions are satisfied:

• it is possible to build a proper metric function ρ(A,B), i.e. to construct the es-
timations of the difference between the objective function values when an optimal
solution for one instance is applied to a different problem instance;

40

• it is possible to provide effective estimations when we use the optimal solution for
instance B as the solution for instance A:

VA(πB)− VA(πA) ≤ ∆(A,B);

• there are some "simple" subclasses of the original problem which are solvable in
reasonable time and could provide the solutions with good accuracy to an arbitrary
instance of the same size.

This metric approach has been shown to be effective in dealing with some NP -hard
scheduling problems (several examples presented in [32]), including the total tardiness
minimization problem [33] and the single-machine scheduling problem [34].

Further, in [147], the metric approach was combined with a study of the space of
problem instances. It was shown that for a classic scheduling problem there are some sets
of instances with the same optimal schedule and shifted/scaled values of parameters. So,
it is possible to consider a compact subset of instances with a normalization procedure,
guaranteeing that any instance can be projected on this subset while keeping its properties
such as the structure of the optimal solution and the objective, multiplied by some scale
coefficient.

In this thesis, we study the applicability of the metric approach for our generalized
version of RLP. We explore the properties of our model and the input data instances.
Although in the case of RLP as for RCPSP, it is difficult to specify the solvable subclasses,
the first two necessary conditions are still correct and can be used for the theoretical
development. We note that for RCPSP, small differences in some parameters may lead to
significant step changes in the objective function value. The key issue is the feasibility of
the solution: there are strict resource limits and any fluctuation of either job parameters
or available resource level may significantly modify the set of feasible solutions. In a
generalized version of RLP as well as in basic RLP formulation with the possibility of the
use of extra resources, the ratio of available and required resources does not affect the
feasibility.

Therefore, for our research we define the following goals:

1. to show that it is possible to apply the original metric approach, i.e. to provide
estimations ∆(A,B) for arbitrary instances A and B to our generalized formulation
of RLP;

2. to improve the basic concept ∆(A,B) ≤ 2ρ(A,B) and provide better estimations;

3. to demonstrate how the fluctuations in problem parameters impact the feasibility
of known solutions (similar to the stability radii used by [31]).

41

These contributions are presented in Chapter 5, but before we introduce the mathe-
matical formulation of the problem that we study in this thesis and its MILP model in
the next chapter.

42

Chapter 3

A generalized RLP: MILP formulation

We consider a new generalization of the RLP minimizing extra resource usage cost for-
mulation proposed by Baydoun et al. [18] and Bianco et al. [19]. Our formulation solves
the problem with job overlapping in case of precedence constraints and manages them
in a normal way. Another difference and novelty of our model lie in the way of resource
assignment. On the base of a similar set of constraints and objective function, we propose
to allocate resources more flexibly with an additional separation of decision variables.
Resource allocation per period has lower and upper limits for each job. For each resource
type, there is also a total required amount for each job. The models studied in these
papers use one decision variable for each job and each time period. They denoted it as
a fraction of realized workload. This variable represents the progress made by the job in
each time period. The amount of resource allocated to the period for the job depends on
this decision variable, multiplied by the total required amount of this resource type for
this job. So, all resources are allocated proportionally in the same time period, i.e. all
resource types depend on one decision variable.

However, when multiple resources are needed to execute a job, in the general case, a
job can spend them at a different speed. In this case, the allocation of different resource
types with one proportional coefficient can excessively restrict solution space and require
extra resources to satisfy this constraint. We propose a new generalized formulation where
it is not required to spend different resources at the same speed in each time period.This
model is a generalization of the resource leveling problem. The contribution of this chapter
was also presented in the following works:

• Tarasov, I.; Haït, A.; Battaïa, O. Period-Aggregated Resource-Constrained Schedul-
ing Problem with variable job duration. 19ème Congrès annuel de la Société Française
de Recherche Opérationnelle et d’Aide à la Décision (ROADEF 2018), Feb 2018,
Lorient, France.;

• Tarasov, I.; Haït, A.; Battaïa, O. A Generalized MILP Formulation for the Period-

43

Aggregated Resource Leveling Problem with Variable Job Duration. Algorithms 2020,
13, 6.

3.1 Flexible resource allocation in RLP

3.1.1 Illustrative examples

We will use two examples to explain the concept of flexible resource allocation. Fig. 3.1
presents an example of solution obtained with the use of job fraction decision variable.
There is a schedule above in a form of a Gantt chart, and a resource usage plot with the
resource allocation profile and available resource level. Job fraction is defined in resource
profile with % sign and it is used to define the job progress with both resources.

20%

20%

10%
30%

20%

0

job j

job i

L

Deadline

27%
40% 33%

Start of the project

d

Gantt chart

Resource 1 consumption

Availability of resource 1

di8dj2 dj3 dj4 di4 di5 di6 di7

L

Availability of resource 2
27%

40%
33%

20%

30% 20% 20% 10%

The job fraction is fixed for all
resources in every period

It might not be efficient, as different
resource types have different

peaks and drops of availability

Resource 2 consumption

Figure 3.1: Resource allocation with job fraction decision variables

The periods with higher available resource amounts vary for both resources. So, if
in some period we utilize all available amounts for one resource, we get another resource
type overloaded over the limit. It is feasible, but it is not an optimal solution if we unfix
the job fraction and define the progress independently. Fig. 3.2 shows how the resource
usage can be improved. In this case, the progress made by a given resource type for a
given job in a given time period is a separate decision variable. Thus, it becomes possible
to use more available resources and avoid overloads due to this flexible allocation.

44

20%

20%

10%
30%

20%

0

job j

job i

L

Deadline

27%
40% 33%

Start of the project

d

Gantt chart

Resource 1 consumption

di8dj2 dj3 dj4 di4 di5 di6 di7

The job fraction is independent
for all resources in every period

It provides a better solution

Availability of resource 1

L

Availability of resource 246%
27% 27%

20%

30% 20% 20% 10%

Resource 2 consumption

Figure 3.2: Independent resource allocation: job progress is different.

Let’s show another example. Suppose there is a problem with one job j and two
resources. Job j requires for its completion one unit of resource r1 and two units of
resource r2. We start with the models considered in previous studies. If the job is
implemented in 2 time periods, a solution defines a unique job fraction per period. It is
the same for all resources. In any solution, for this job, there will be a constant ratio of
1/2 of involved r1 and r2 units in each period. We can set the fraction in the first period
as 0.3 and in the last period as 0.7. With this solution, job j uses 0.3 units of r1 and
0.6 units of r2 in the first period (total demand multiplied by a fraction). In the second
period, job j gets 0.7 units of r1 and 1.4 units of r2.

Our model constructs the solutions avoiding any fixed relations between the resources
involved to complete the job in one time period. For example, we can use 0.5 units of
resource r1 and 0.5 units of resource r2 in the first period, 0.5 units of resource r1 and 1.5
units of resource r2 in the second period. This solution has independent ratios of used
resources: 1/1 and 1/3 in each period. We use more resource r1 in the first period and
more resource r2 in the second period. We obtain a more flexible solution that better fits
the resource availability constraints.

3.1.2 Problem statement

Our formulation avoids job overlapping for jobs linked by precedence constraints, so we
do not consider a subcase with allowed overlapping described by Baydoun et al. [18].
Aggregated resource constraints are used as well as the following assumptions: variable

45

job duration, flexible resource distribution, and varying job intensities from period to
period.

Time indexing

In our model, the project deadline is fixed. Our problem is defined for a planning horizon
divided into T = {1, ...,m} periods of given length d. The input parameter d was defined
in the model instead of unit length interval for the further perspective of studying the
models with different values of d (for example, make a bigger period including several
initial periods to make relaxation of the model). We consider the case where all jobs
have their minimal duration superior to the period length of d, as it has an impact on
the structure of precedence constraints. Briefly, a potential chain of more than two jobs
(caused by duration less than d) inside one period requires special constraints and variables
to handle the precedence relations correctly. To get correct precedence constraints, we
have to expand a model and choose a special design of decision variables: add continuous
start and end variables for each job. We mention the minimal duration in our model
because the job duration might be varied in some range, determined by the resource
requirements and assignment limits.

Variable job duration: work volume

In the model, we deal with the notion of work volume to define the jobs and availability of
resources. In other words, we do not specify the job as an operation with a fixed duration
and resource requirement per period. We set the total required volume of work and the
range for job processing intensity. The job intensity inside one period also depends on
the period length, it might be multiplied if we change the period length in the model. In
this case, the job duration and intensities in a period are decision variables, also defining
required resources in each moment.

It could be explained in terms of energy and power, as the origin of such models comes
from the practical cases in the energy management industry. For example, we have to
manage the distribution of electricity or heat to execute certain jobs. Jobs are defined
by the required amount of energy, and in all time periods, there is a limited amount of
energy that can be spent without penalties. Besides, there are lower and upper power
limits applied to each job. A job can be implemented in less time but with higher required
power, or we can use lower power and process it longer. It is also important to mention
that the allocated power can be different from one period to another.

We expand the formulation for the case when the resource type is not necessarily the
energy. The concept of the workload allows us to deal with discrete resources involved
in some continuously measured work (for example, as the case of a person-hour value).

46

However, we keep the same approach, considering the job work volume on the resource as
the aggregation of the required amount of this resource and the time when it is occupied
by the job. In the rest of the thesis, we will use the work volume instead of energy.

3.2 Mathematical Model

3.2.1 Problem data

Resources and Jobs

In our formulation, the project duration (and planning horizon T) is limited by a hard
deadline and the optimization objective is to respect this deadline with the minimal cost
of extra resources used. All resources are renewable. The availability of resource r ∈ R is
limited by amount Lrt for each period t ∈ T . An extra amount can be acquired for each
resource r ∈ R but it will have an additional cost er. In each period, the completed work
volume of each job may be different under the constraint that in total for all periods the
work volume is equal to the required value.

This approach corresponds to the practical case where for one job in different time
periods different numbers of workers may be assigned. Accordingly, the duration of the
job is also a decision variable. It depends on the amount of completed work volume
by each resource for this job in each period. The set of jobs J is defined with three
parameters for each job j ∈ J : required work volume Wjr on each resource r ∈ R and
minimum and maximum limits of assigned resource r ∈ R per period, pmin,jr and pmax,jr,
which defines the lower and upper power limits. So, the duration of job j is limited by the
relation of required work volume Wjr and the lower and upper limits pmin,jr and pmax,jr
(for each resource type). Briefly, the minimum duration is achieved if the job is executed
with an upper limit of assigned resource during all processing time, as well as the maximal
duration is achieved if the job is processed with minimal allowed utilization of resources in
each period. We introduce a more detailed description of these relations when we present
the model.

Precedence relations

There are also precedence instructions. We use an "activity-on-node" notation and define
the set of pairs predecessor-successor as P . A job precedence graph is given and it has to
be acyclic. Classic approach with dummy zero and |J | + 1 activities is used to calculate
the minimum required duration of the project and possible job execution time windows
according to the precedence graph, we use it only in preprocessing.

There is also a second point that makes this model novel. In related publications
of Bianco et al. [19] and Baydoun et al. [18] precedence relations were considered in a

47

different way, on a different level of accuracy. A basic 0-1 scheduling variable approach
for discrete-time models (firstly introduced by Pritsker [1]) is applicable for these mod-
els: it is possible to point out the first and the last period index of a processed job to
form a schedule and make a correct allocation of resources. Without any supplementary
continuous variables, precedence relations are defined only between starting and ending
periods. Bianco et al. [19] used this model structure. Generalized precedence relations
with time lags (GPR) used by Bianco et al. [19] can be also used in the model.

This approach lacks accuracy, especially if the periods are relatively long. Additional
continuous scheduling variables that directly define the starts and ends of job processing
lead to more flexible scheduling and thus to the solutions with the better objective function
value. For example, they allow a "safe" intersection of preceding and succeeding jobs in
one "end-start" period, fixing the condition that in this period the processing of the
successor will not start before the end of the predecessor. Baydoun et al. [18] implement
this approach with a larger set of decision variables.

In our case, we involved fewer variables than Baydoun et al. [18] while maintaining
these capabilities. Precedence relations are defined between binary indexes of starting
and ending periods of jobs, and also inside periods with the use of continuous variables to
set the duration of the job in a given period. Thus, we consider the "precise" precedence
relations. We define them between periods and inside periods. In other words, if (j1, j2) ∈
P , jobs j1 and j2 might be implemented in one period (the last period when job j1

is executed). Hans qualified the case with precise precedence relations as "a formidable
computation challenge" [81]. Indeed, this assumption makes the model larger as it requires
additional variables.

The list of all parameters in our mathematical model is presented in Table 3.1.

Table 3.1: Model nomenclature: Parameters notation.

Parameters

T planning horizon, T = {1, ...,m}
d period length
R resources set
Lrt availability of resource r ∈ R in period t ∈ T
er extra resource cost
J jobs set
Wjr job j ∈ J work volume with resource r ∈ R
pmin,jr job j ∈ J minimal requirement per period in resource r ∈ R
pmax,jr job j ∈ J maximal requirement per period in resource r ∈ R
P set of arcs in the given precedence graph

48

3.2.2 Generalized Model description

For any kind of RLP, it is possible to separate the set of variables into two subsets,
related to job scheduling and resource allocation. The subset of scheduling variables for
discrete-time period models is well studied in project scheduling (starting from pioneer
introduction of a 1-0 variable approach by Pritsker et al. [1]). Usually, it is a set of
binaries that configure staring and ending periods. If we consider conventional precedence
relations and allow the successor to start at the same period where the predecessor ends,
we also need to use continuous duration variables responsible for the duration inside the
period. We define binary variables responsible for the job starts and ends as Sjt and Ejt,
respectively. They may be used in several ways.

• As a step pointer, i.e., if job j starts at period t, then ∀t1 < t Sjt1 = 0 and ∀t2 ≥ t

Sjt2 = 1. In this case the same logic is implemented for Ejt, if a job ends at period
t, than for ∀t1 ≤ t Ejt = 0 and ∀t2 > t Ejt = 1. To the best of our knowledge, in
similar resource leveling models step pointer to job start and end periods is more
common (for example, it was used by Baydoun et al. [18], Bianco et al. [19]).

• As an on–off (also referred as pulse) pointer, i.e., if job j starts at period t, then
∀t1 6= t Sjt1 = 0 and Sjt = 1 (the same logic for Ejt). This approach was considered
by Tamas Kis and Marton Drotos, [148]. There is an alternative way, with an on–
off function Ujt, where Ujt = 1 if job j is implemented at period t, and Ujt = 0

otherwise.

These approaches were also presented and compared in the literature related to project
scheduling, for example, see [108, 22].

The second subset defines resource-allocation decision variables. We propose to gener-
alize it. We introduce separate fraction decision variables cjrt for each job j, resource type
r and time period t instead of aggregated job fraction decision variables. This approach
makes an independent allocation of each resource type for every job. It leads to more
flexible utilization of resources. However, it increases the size of the model. We present
all decision variables in Table 3.2.

In the next subsections, we describe three different approaches to represent scheduling
constraints with binary variables. A general description of each type is presented in Figure
3.3.

49

Table 3.2: Model nomenclature: Decision variables notations.

Scheduling decision variables

Ujt ∈ {0, 1} on/off, Ujt = 1 if job j ∈ J is executed in period t ∈ T , 0 otherwise
Sjt ∈ {0, 1} pulse start, Sjt = 1 if job j ∈ J starts in period t ∈ T , 0 otherwise
Ejt ∈ {0, 1} pulse end, Ejt = 1 if job j ∈ J ends in period t ∈ T , 0 otherwise
S∗jt ∈ {0, 1} step start, S∗jt = 1 if job j ∈ J starts in ∀t1 ∈ T , t1 ≤ t, 0 otherwise
E∗jt ∈ {0, 1} step end, E∗jt = 1 if job j ∈ J ends in ∀t1 ∈ T , t1 < t, 0 otherwise
djt ∈ [0, d] duration of job j ∈ J in period t ∈ T

Resource allocation decision variables

cjrt ∈ [0, dpmax,jr] work volume of job j ∈ J with resource r ∈ R in period t ∈ T
ort ∈ [0,∞) extra cost of resource r ∈ R in period t ∈ T

Figure 3.3: Three different ways to utilize binary scheduling variables.

Scheduling Constraints: Job On–Off Formulation

This set of constraints is defined as job on–off implementation formulation, as we use
one binary variable implying that the job is implemented inside some period or not.
This definition of binaries in project scheduling problems is denoted as pulse or on–off in
literature. So we use a variable Ujt ∈ {0, 1}, Ujt = 1 if job j is implemented in period t,
Ujt = 0 otherwise. Constraints (3.1) imply that no preemptions are allowed.

(t2− t1− 1) ≤
t2−1∑
l=t1+1

Uil +m(Uj,t1 +Uj,t2 − 2), ∀t1 ∈ T, t2 ∈ T, t1 < t2, ∀j ∈ J.(3.1)

If the job is implemented in some period t1 ∈ T and in some period t2 ∈ T , t1 < t2, then
it must be also implemented in any period t3 ∈ T , t1 < t3 < t2. In other words, if for

50

some job j there exists t1 ∈ T , t2 ∈ T , t1 < t2, such that Ujt1 = 1 and Ujt2 = 1, then
t2−1∑

t3=t1+1

Ujt3 = t2 − t1 − 1.

Further, two constraints make the correspondence between binary scheduling variable
Ujt and job duration djt. Firstly, if job j ∈ J is performed in three or more periods,
then for all periods between start period and end period job duration is the same as
period length, i.e., preemptions inside periods are not allowed. This constraints involve
continuous duration and binaries variables djt = d if Uj,t−1 = 1, Uj,t = 1, Uj,t+1 = 1:

(2− Uj,t+1 − Uj,t−1)d+ djt ≥ dUjt, ∀t ∈ T, ∀j ∈ J. (3.2)

Secondly, if job j ∈ J is not implemented in period t ∈ T , it must have zero duration
inside this period. So djt = 0 is required if Uj,t = 0:

djt ≤ dUjt, ∀t ∈ T, ∀j ∈ J. (3.3)

Precedence constraints are represented on two levels, on periods and inside each period.
Firstly, we state that if there is a precedence {jp, js} ∈ P relation between two jobs,
then it is impossible to implement the successor before the last period when predecessor
is implemented (it is possible to start the successor at the last period of predecessor
implementation). It is represented with the following condition: ∀t1 ∈ T , if Ujp,t1 = 1

then ∀t2 ∈ T , t2 < t1, Ujs,t2 = 0, and the corresponding constraints are:

Ujs,t2 + Ujp,t1 ≤ 1, ∀{jp, js} ∈ P, ∀t1 ∈ T, ∀t2 ∈ T, t2 < t1; (3.4)

Secondly, we state that if these jobs are implemented in one period, total duration of
both jobs is less than period duration. Otherwise, it means that in this period jp and js
cross each other.

dj1t + dj2t ≤ d, ∀t ∈ T, ∀(j1, j2) ∈ P. (3.5)

We note that we use Constraints (3.5) to take into account a case when for a pair of
predecessor-successor, both jobs are implemented in the same period, which is the last
period for the predecessor and the first period for the successor.

Scheduling Constraints: Job Pulse Start–End Formulation

We define this set of constraints as pulse start–end formulation since binaries Sjt and
Ejt take the value 1 only in the periods of the job start and end, respectively. We have
variable job duration, so it is not sufficient to use only the start pulse decision variable
Sjt, we also need the end variable Ejt. Constraints (3.6) and (3.7) for Sjt and Ejt insure
that each job starts and ends exactly once:∑

t∈T

Sjt = 1, ∀j ∈ J ; (3.6)

51

∑
t∈T

Ejt = 1, ∀j ∈ J. (3.7)

We force the job duration variable djt to get zero value in periods t when job j is not
implemented. The index of starting period for job j equals

∑
t∈T

tSjt, and ending period

index is
∑
t∈T

tEjt. So we state that duration djt = 0 outside interval [
∑
t∈T

tSjt,
∑
t∈T

tEjt] with

the following constraints. If job j is started in some period after period t or it is finished
in some period before period t, then djt = 0:

djt ≤ d (1−
m∑

k=t+1

Sjk −
t−1∑
l=1

Ejl), ∀j ∈ J, ∀t ∈ T ; (3.8)

Next constraints have the same sense as Constraints (3.2). In any period between
start and end of job j, it must be implemented without preemption inside the period, so
djt = d inside interval (

∑
t∈T

tSjt,
∑
t∈T

tEjt). If job j was started before period t and it was

finished after period t, djt = d:

djt ≥ d (
t−1∑
k=1

Sjk +
m∑

l=t+1

Ejl − 1), ∀j ∈ J, ∀t ∈ T. (3.9)

The precedence constraints require two constraints for binaries and continuous job
duration for each pair {jp, js} ∈ P , representing precedence constraints for each time
period. In this formulation, we can just compare start period index of successor js and
the end period index of predecessor jp:∑

t1∈T

t1Ejpt1 ≤
∑
t2∈T

t2Sjst2 , ∀(jp, js) ∈ P ; (3.10)

djpt + djst ≤ d, ∀t ∈ T, ∀(jp, js) ∈ P. (3.11)

Scheduling Constraints: Job Step Start–End Formulation

In this case we use step binaries S∗jt and E∗jt with the following rule:

• if job j starts at period t, then ∀t1 < t S∗jt1 = 0 and ∀t2 ≥ t S∗jt2 = 1;

• if job j ends at period t, then ∀t1 ≤ t E∗jt = 0 and ∀t2 > t E∗jt = 1.

This approach is defined as step formulation because for each job the plot with decision
variables looks like a non-decreasing step function. A job may be ended only if it was
started in the same period or before, and the values of start and end step variables S∗jt
and E∗jt must be non-decreasing for each job j ∈ J :

S∗jt ≥ E∗jt, ∀j ∈ J, ∀t ∈ T ; (3.12)

52

S∗jt ≤ S∗j,t+1, ∀j ∈ J, ∀t ∈ T ; (3.13)

E∗jt ≤ E∗j,t+1, ∀j ∈ J, ∀t ∈ T. (3.14)

We set up the correspondence between binaries and decision variables djt ∈ [0, d]. As
in previous cases, djt = 0 if the job is not started before period t or it is finished in some
period before t:

djt ≤ d (S∗jt − E∗jt), ∀j ∈ J, ∀t ∈ T. (3.15)

If a job is implemented in three or more periods, inside all periods between the first
one and the last one job duration is the same as the length of the period:

djt ≥ d (S∗jt + S∗j,t−1 − 1− E∗jt − E∗j,t+1), ∀j ∈ J, ∀t ∈ T. (3.16)

It is also necessary to configure precedence constraints. Successor and predecessor
both can be implemented in one period only if it is the last period of the predecessor and
the first period of the successor:

S∗j2t ≤ E∗j1,t+1, ∀t ∈ T, ∀(j1, j2) ∈ P ; (3.17)

dj1t + dj2t ≤ d, ∀t ∈ T, ∀(j1, j2) ∈ P. (3.18)

Resource Allocation Constraints and Objective Function

In this set of constraints, we use only djt from scheduling decision variables. We denote as
cjrt ∈ [0, pmax,jrd] the volume of work related to job j ∈ J in period t ∈ T done by resource
r ∈ R. It has upper and lower limits defined by the minimal and maximal amount of
assigned resources and job duration:

pmin,jrdjt ≤ cjrt ≤ pmax,jrdjt, ∀j ∈ J, ∀r ∈ R, ∀t ∈ T. (3.19)

All resource types must implement given total amount required to complete each job:

∑
t∈T

cjrt = Wjr, ∀j ∈ J, ∀r ∈ R. (3.20)

We define the cost of the overload of resource r ∈ R in period t ∈ T as ort. In the objective
function, we use the amount of extra usage of each resource ort, defined by the following
constraints:

ort ≥ er(
∑
j∈J

cjrt − Lrt), ∀t ∈ T, ∀r ∈ R. (3.21)

The use of this variable helps to calculate precisely the amount of extra resources needed.
It is impossible to use directly the difference between the sum of cjrt and the available

53

resource Lrt in a given period as we need to cut off the cases when this difference is
negative. The objective function is the minimization of the extra resource allocation cost:

Minimize
∑
r∈R

∑
t∈T

ort. (3.22)

3.3 Generalized model properties

3.3.1 Model instance

A problem instance is described by N parameters (see Table 3.1), where

N = 1 + |R|(|T |+ 1 + 3|J |) + |P |, (3.23)

and in general case |P | is bounded by |J |(|J |−1)
2

.

Definition 1. By instance I, we define the following set of parameters,

I = {dI , LIrt, eIr,W I
jr, p

I
min,jr, p

I
max,jr, (i, j)

I
p; t ∈ T, r ∈ R, j ∈ J, p ∈ P} (3.24)

We will skip the upper instance index for parameters if it is not required for under-
standing.

According to this formulation, the solvability criterion can be defined for a given input
data instance I as follows. We define it in this subsection and later use it to improve the
basic Benders decomposition scheme. An instance I is solvable if it is possible to build a
feasible solution for it respecting all constraints.

To guarantee that a feasible solution exists for a given instance I, we have to consider
the following elements. We can state that resource allocation is guaranteed to be possible
if all processing times are in a correct range, i.e. ∀j ∈ J ,

∑
t∈T

djt ∈ [dmin,j, dmax,j]. These

bounds depend on minimal and maximal resource usage. We define for each job j the
minimal and maximal duration as dmin,j and dmax,j:

dmin,j = max
r∈R

Wjr

pmax,jr
, dmax,j = min

r∈R

Wjr

pmin,jr
, (3.25)

Here we use the maximum function to calculate the value of minimal job duration. Each
ratio Wjr

pmax,jr
defines the minimal duration required to satisfy constraints for resource r. If

multiple resources are involved in the same job, we take the maximal value. The same
logic is applied to calculate the maximal duration.

The solution must also satisfy the precedence relations. Without strict constraints
involving resource limit variables Lrt (used only to evaluate the objective function value),
it is possible to formulate these requirements in the following way. Precedence constraints
form several chains (with possible intersections and branches) of jobs. There is at least

54

one guaranteed feasible solution if it is possible to implement the longest chain within
a given planning horizon (with a deadline as a bound). With various job duration, it is
enough to consider a chain with minimal allowed feasible durations dmin,j to state that
there is at least one feasible solution. To find the minimum required length of the longest
job chain, we introduce several other supplementary parameters in addition to dmin,j and
dmax,j.

We calculate the set of gj1j2 – minimal required intervals between the starts of two jobs
j1 ∈ J and j2 ∈ J , j1 6= j2, these values are determined by the form of the directed acyclic
graph of precedence relations. We apply the method of the longest path calculation in the
directed acyclic graphs with topological sorting. Furthermore, with the classic addition
of dummy "0" and "|J |+ 1" jobs with zero work volumes, we find the chain of jobs with
the longest total minimal required duration in the precedence graph (where "0" job is the
predecessor of all jobs and "|J | + 1" job is the successor of all jobs). In our notations it
equals g0,|J |+1.

Definition 2. Instance I is solvable (i.e. a feasible solution exists), if in this instance:

• obviously, the limits of all assigned resources are defined correctly for all jobs,

pmin,jr ≤ pmax,jr, ∀j ∈ J, ∀r ∈ R; (3.26)

• for every job j ∈ J the minimal duration is less than or equal to the maximal
duration,

dmin,j ≤ dmax,j, ∀j ∈ J ; (3.27)

• the chain of jobs with the longest total minimal required duration in the precedence
graph is less than the total duration of the planning horizon,

g0,|J |+1 ≤ |T |d. (3.28)

Condition (3.27) is necessary to check the feasibility of values of djt if multiple resources
are used for the same job. If each job requires exactly one resource, condition (3.26) is
enough. In Chapter 4, constraints (3.27) extend the model in proposed decomposition
approach. Chapter 5 also exploits these notations to study other model properties.

3.4 Computational experiments

3.4.1 Tests on existing benchmarks for RLP

To evaluate our approach, we firstly evaluated the possibility to use the datasets presented
in [149] and [150]. Kolish et al. [149] described the results on the dataset for the basic

55

RLP formulation. These instances are available online1. Instances were generated with a
tool ProGen/Max that constructs instances for project scheduling problems with minimal
and maximal time lags between jobs. The acyclic precedence graph is constructed in two
different ways (see Schwindt [151]). This dataset includes instances with 10–30 activities
and 1–5 resources, each job requiring only one resource type. There is also a second set
of instances2. The computational results on these instances for basic RLP can be found
in the paper of Rieck et al. [150]. These instances have 10-50 jobs and 1-5 resources.

However, these datasets were built for the formulation of RLP that differs significantly
from our case. For our problem, the following parameters must be additionally defined:

• total job workload, since in basic RLP, each job has a constant allocated resource
volume per period;

• lower and upper bounds for resource allocation, since in basic RLP, job duration is
fixed and these limits are not defined;

• function of resource availability per time period, since in basic RLP, it is fixed for
each resource type.

We also need to test larger instances with 10 resources and 50 jobs. Hans [81] and Bay-
doun et al. [18] are used the same dataset, further called Rough-Cut Capacity Planning
(RCCP) dataset. This dataset is more relevant in terms of scale and data to our problem.
Although there is a lack of some parameters such as lower limits or resource cost, it is
possible to use this dataset to illustrate the structural difference of the solutions provided
by the model of Baydoun et al. [18] and ours. The dataset includes 450 instances in total,
divided into 45 groups. Each group was generated with a given number of jobs, resource
types and average slack. The list of used values is presented in Table 3.3. The average
slack φ is defined as follows where Dj is the deadline and Rj is the release date of job j:

φ =

∑
j∈J

Dj − dmin,j −Rj + 1

|J |
,

Using these parameters, the instances are generated with procedure ProGen. The first
step is to make several branches from the initial activity (defined as 0 or a source) and sev-
eral branches from the activities with no successors to the final one (usually defined as n+1
or a sink). The number of branches in each case defines the structure of the precedence
graph. At the next step, additional arcs are generated to fit defined parameters for the

1https://www.wiwi.tu-clausthal.de/en/chairs/produktion/research/research-areas/
project-generator/rlpmax/

2https://www.wiwi.tu-clausthal.de/abteilungen/unternehmensforschung/forschung/
benchmark-instances/exact-results-for-single-mode-resource-levelling-problems/

56

https://www.wiwi.tu-clausthal.de/en/chairs/produktion/research/research-areas/project-generator/rlpmax/
https://www.wiwi.tu-clausthal.de/en/chairs/produktion/research/research-areas/project-generator/rlpmax/
https://www.wiwi.tu-clausthal.de/abteilungen/unternehmensforschung/forschung/benchmark-instances/exact-results-for-single-mode-resource-levelling-problems/
https://www.wiwi.tu-clausthal.de/abteilungen/unternehmensforschung/forschung/benchmark-instances/exact-results-for-single-mode-resource-levelling-problems/

problem instance. Another important point in the procedure is to avoid the so-called re-
dundant arcs. An arc (j0, js) is called redundant if there are arcs (j0, j1), ..., (js−1, js) ∈ P
and s ≥ 2. In the procedure, this is verified with a set of special rules.

Table 3.3: The scales of parameters in the datasets used by Baydoun et al. [18]

|J| 10 20 50
|R| 3 10 20
φ 2 5 10 15 20

In order to compare our model with the model presented by Baydoun et al. [81] with
the same solver, we create a relaxed version of our model that we refer to as aggregated
fraction model. It is constructed with the use of a fraction decision variable ljt ∈ [0, 1]

instead of generalized separated variables cjrt, and cjrt = Wjrljt, j ∈ J , r ∈ R, t ∈ T . We
run both original and relaxed models using the IBM ILOG CPLEX 12.8 mathematical
programming solver with Java code on a workstation with 4 thread 2.70 GHz processor
and 8 Gb RAM. For each instance I we compare the ratio of objective function values in
both solutions, defined by X(I):

X(I) =
Vc(I)

Vl(I)
, (3.29)

where Vc(I) and Vl(I) are the optimal cost obtained respectively with decision variables
cjrt and ljt).

For our original model, we additionally use the following parameters:

• we use the value of the minimal duration of activity j from RCCP to calculate the
value of pmax,jr;

• with a lack of lower limits in RCCP we assume pmin,jr = 0.4pmax,jr;

• with a lack of prices in RCCP all extra resource cost values er = 1.0.

The results are illustrated in Table 3.4. In the first block (a) we present the results
obtained within time limit of 300 seconds for both models. We can conclude, that for 5/6
of solved instances the generalized model provided better solutions. In the second block
(b) we compare the solutions obtained within the same computational time, required by
the aggregated model to reach an optimal solution. In all cases, the values of X are larger
than the results in the block (a) but still less than 1.0, so we can conclude that: although
our model is larger in terms of a number of decision variables, it provides better solutions
within the same time limit (mostly suboptimal, this means that by relaxing time limit,
better solutions can be found).

57

Table 3.4: X(I) values for instances of RCCP datasets in two cases: (a) without time
limit and (b) with time limit equal to the solution time to optimality for the aggregated
fraction model.

Solution time Data set Min Q1 Median Mean Q3 Max

(a) not fixed

j10_r03 0.76 0.84 0.88 0.88 0.91 0.97
j10_r10 0.93 0.96 0.97 0.96 0.98 0.99
j10_r20 0.99 0.99 1.00 0.99 1.00 1.00
j20_r03 0.71 0.82 0.85 0.84 0.88 0.94
j20_r10 0.87 0.92 0.95 0.94 0.96 0.98
j20_r20 0.97 0.98 0.98 0.98 0.99 1.00

(b) equal

j10_r03 0.81 0.88 0.90 0.91 0.95 1.02
j10_r10 0.93 0.97 0.97 0.97 0.99 1.00
j10_r20 0.99 0.99 1.00 1.00 1.00 1.01
j20_r03 0.73 0.82 0.86 0.86 0.90 0.95
j20_r10 0.87 0.92 0.95 0.94 0.97 0.98
j20_r20 0.96 0.98 0.99 0.99 0.99 1.00

3.4.2 Generation of new instances

Data completenesses and diversity in benchmarks is an important issue, discussed in the
literature as a separated object of research. Here we briefly describe the most important
points and methods that we used to generate new diverse and representative datasets.
We note that in our model there are three major interacting parts of parameters:

1. given resource level Lrt;

2. job-resource linking parameters (Wjr, pmin,jr and pmax,jr);

3. precedence relations P .

A given resource level does not impact the feasibility of a schedule, it only impacts the
range of possible objective function values in a set of solutions. The second part involves
all parameters related to jobs. For these parameters, we have determined the conditions
of solvability (see Definition 2). Precedence relations are important both in terms of
feasibility and the quality of solutions. They are represented as a direct acyclic graph
with activities on nodes. On the one hand, it is necessary to generate a sophisticated
structure that represents precedence relations of activities in real projects. On the other
hand, it is necessary to be able to vary it and provide diverse structures. To generate the
various precedence relations one should not only construct formally different direct acyclic

58

graphs but also vary a set of non-redundant arcs. An arc (jx, jy) ∈ P is called redundant
if there is another chain of arcs starting in jx and ending in jy : (jx, j1), ..., (jk, jy) ∈ P
and k ≥ 1.

Precedence relations are typical for project scheduling problems and were studied both
from the theoretical and practical sides. For example, we can refer to a description of
ProGen/max procedure with some datasets presented and studied by Kolish et al. [152]
and Schwindt [151]. It involved measures of topology complexity and resource occupation.
For a so-called "activity-on-the-arc" representation the complexity was presented as a
ratio of arc number to node number, and for "activity-on-the-node" it was calculated as
a number of nodes to the theoretical maximum of precedence relations in a direct acyclic
graph ((n−1)n

2
). The majority of considered resource estimations were provided for the

RCPSP. There is also a procedure RanGen presented by Demeulemeester et al. [153]
later extended with six topological measures, see [154]. An overview of existing data
sources and methods of generating the topology was presented by Vanhoucke et al. [155].

Our approach is based on the ProGen/max procedure. With the objective to get a
maximal variety of instance precedence topology, we vary two basic measures: a number
of relations and a ratio of jobs executed sequentially in a chain to parallel executable.
These measures are defined in [155] as Order Strength (OS) and Serial-Parallel (SP),
respectively. We also vary the requirements of connectivity in the precedence graph and
construct the graphs involving only non-redundant arcs.

SP = 0.1 SP = 0.8

Figure 3.4: Two examples of precedence graph with 20 jobs and 19 precedences

So we can describe an instance generation process in a following way:

1. construct a precedence graph P ;

2. define lower and upper bounds WL and WU to make random values for all Wjr in
range [WL,WU];

59

3. produce random pmin,jr and pmax,jr such that an instance is solvable, i.e.

• pmin,jr ≤ pmax,jr;

• dmin,j ≥ d;

• resulting job duration bounds are syncronized dmin,j ≤ dmax,j;

• longest path in graph |P | composed with minimal durations is less than the
length of planning horizon.

4. construct Lrt in a range [0,

∑
j∈J

pmax,jrd

SP ·|J |+1
];

Here we define an upper bound for Lrt in the following way:
∑
j∈J

pmax,jrd is the maximal

total required amount for resource r ∈ R if we do not take into account precedence
constraints. With a given number of precedence constraints, the highest consumption is
reached with parallel jobs (SP = 0) and the lowest consumption limit is for a chain (SP
= 1.0). With the denominator, we tune the limit according to the graph structure.

3.4.3 Comparison of time-indexed RLP formulations

We study three different versions of the mathematical model. Each version has the same
Objective Function (3.22), and resource allocation constraints (3.19)–(3.21) and a different
implementation of scheduling constraints:

1. job on–off variables, presented in Section 3.2.2;

2. job pulse start–end variables, presented in Section 3.2.2;

3. job step start–end variables, presented in Section 3.2.2.

To study the impact of these scheduling constraints on the performance of the model,
we run numerical experiments on two datasets. Each dataset includes 100 instances.
Parameters of these datasets are presented in Table 3.5. The instances were generated
using a continuous uniform distribution of parameters. Precedence graphs were created
with the given total number of directed edges under the condition of its acyclicity.

Table 3.5: Instance datasets parameters.

Data Set |T | d |J | |R| |P | Lrt Wjr pmin,jr pmax,jr

inst_j10_r5 15 1 10 5 10 [0.0, 70.0] [30.0, 50.0] [1.0, 5.0] [6.0, 10.0]

inst_j15_r5 20 1 15 5 15 [0.0, 70.0] [30.0, 50.0] [1.0, 5.0] [6.0, 10.0]

60

We define three Mixed-Integer Linear Programming models. These models are im-
plemented using the IBM ILOG CPLEX 12.8 mathematical programming solver with
Java code on a workstation with 4 thread 2.70 GHz processor and 8 Gb RAM. Figure 3.5
presents solution times obtained for these two datasets with three different model versions.

●

●
●

●

●

●

●

●

●

●

●

0.0

0.5

1.0

1.5

2.0

tim
e

(s
)

start/end step start/end pulse on−off

Dataset inst_j10_r5

●

●

●

●

●

●

●
●

0

10

20

30

40

50

tim
e

(s
)

start/end step start/end pulse on−off

Dataset inst_j15_r5

Figure 3.5: Different model formulation time boxplots for instances of datasets
inst_j10_r5 and inst_j15_r5.

We can conclude that the best performance in terms of solution time is obtained
for the generalized model with step formulation of scheduling constraints. This type of
constraint has been also used in models of Baydoun et al. [18] and Bianco et al. [19]. In
next sections, we use the generalized model with step start and end variables (presented
in Section 3.2.2) to compare it with an aggregated fraction approach.

3.4.4 Results of flexible resource allocation

RCCP benchmark tests have already demonstrated that flexible resource allocation leads
to solutions with lower objective function values (see Table 3.4). In this section, the
generalized model is compared to aggregated fraction model again. Additional tests give
a more precise picture for comparison. Firstly, we run both models and compare the time
spent to construct the optimal solution. The results presented in Figure 3.6 confirm that
the larger generalized model is slower.

61

●

●

●

●

0.0

0.2

0.4

0.6

tim
e

(s
)

Generalized model Aggregated fraction model

Dataset inst_j10_r5

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

5

10

15

20

tim
e

(s
)

Generalized model Aggregated fraction model

Dataset inst_j15_r5

Figure 3.6: Time boxplots for datasets inst_j10_r5 and inst_j15_r5.

However, the generalized model provides more flexible solutions that allow to get much
better solutions in terms of the objective function value. In Table 3.6 there is summary
data of X(I) for two new datasets of instances. On average, for both datasets, the solution
provided by the generalized model has two times less objective function value. The same
result is confirmed if the solution time is limited to the time required for faster aggregated
model to reach the optimal solution, the results of this comparison are presented in Table
3.7.

Table 3.6: X(I) values for instances of datasets inst_j10_r5 and inst_j15_r5.

Data Set Min Q1 Median Mean Q3 Max

inst_j10_r5 0.17 0.41 0.49 0.48 0.55 0.71
inst_j15_r5 0.25 0.42 0.51 0.50 0.56 0.72

Table 3.7: X(I) value summary for instances of datasets inst_j10_r5 and inst_j15_r5,
with time limit equal to the optimal solution time for the aggregated fraction model.

Data Set Min Q1 Median Mean Q3 Max

inst_j10_r5 0.19 0.45 0.51 0.53 0.59 0.87
inst_j15_r5 0.25 0.46 0.55 0.55 0.61 0.9

The value of X(I) depends on the instance parameters. For example, if the availability
of resources is higher in periods, then the objective function value decreases for both

62

models. In this case, we obtain lower values of X(I). We can demonstrate this on new
datasets inst_j10_r5_2 and inst_j15_r5_2 with distribution Lrt ∈ [0, 140] instead of
Lrt ∈ [0, 70], see Table 3.8.

Table 3.8: X(I) values for instances of datasets inst_j10_r5_2 and inst_j15_r5_2, in
two cases: a) without time limit and b) with time limit equal to the optimal solution time
for the aggregated fraction model.

Time limit Data set Min Q1 Median Mean Q3 Max

a) Not fixed
inst_j10_r5_2 0.1 0.3 0.36 0.36 0.42 0.63
inst_j15_r5_2 0.04 0.26 0.32 0.32 0.39 0.52

b) Aggregated fraction inst_j10_r5_2 0.1 0.33 0.4 0.41 0.47 0.97
model solution time inst_j15_r5_2 0.09 0.27 0.37 0.36 0.43 0.59

For further analysis, we generate larger instances and vary the number of resource
types: we generate two datasets with 5 and 10 resource types and 30 jobs. In Table 3.9,
we present the ranges used to generate these datasets. Each dataset contains 30 instances.

Table 3.9: Parameters for large datasets

Data Set |T | d |J | |R| |P | Lrt Wjr pmin,jr pmax,jr

inst_j30_r5 35 1 30 5 30 [0.0, 70.0] [30.0, 50.0] [1.0, 5.0] [6.0, 10.0]

inst_j30_r10 35 1 35 10 30 [0.0, 70.0] [30.0, 50.0] [1.0, 5.0] [6.0, 10.0]

In Table 3.10 we present the results for these datasets obtained within 5 minute time
limit. We note that we compare suboptimal solutions, obtained in a given time limit.

Table 3.10: X(I) value summary for instances of datasets inst_j30_r5 and inst_j30_r5,
with a 5 min time limit.

Data Set Min Q1 Median Mean Q3 Max

inst_j30_r5 0.33 0.45 0.48 0.49 0.53 0.62
inst_j30_r10 0.42 0.49 0.51 0.51 0.54 0.58

These results show that within the same time limit, our model provides better solu-
tions in all cases. The worst-case ratio is around 0.6. We illustrate the gap values in
Table 3.11 to make conclusions about the real optimal objective function values. The

63

aggregated fraction model has a low relative gap in all cases. No significant progress
can be achieved by the aggregated fraction model with higher time limits, so it cannot
outperform generalized model in solution quality.

Table 3.11: Relative gap value summary for instances of datasets inst_j30_r5 and
inst_j30_r5, with 5 min time limit.

Data Set Model Min Q1 Median Mean Q3 Max

inst_j30_r5
Aggregated fraction 0.004 0.011 0.016 0.018 0.023 0.053
Generalized 0.05 0.11 0.16 0.16 0.19 0.3

inst_j30_r10
Aggregated fraction 0.007 0.01 0.012 0.014 0.019 0.032
Generalized 0.07 0.12 0.14 0.16 0.18 0.38

Computational experiments confirm that we can achieve better solutions within the
same solution time limit with the same solver if we apply the generalized formulation
approach.

3.4.5 Discrete Resource Case

In the Objective Function (3.22), continuous overloading variables are used to calculate
the cost of extra resources. It is compliant with such continuous resources as electricity
or heat. However, in practice, such resources as machines or human operators can be
only available in discrete units. For this case, two possible models can be used. Firstly,
decision variable ort can be defined as integer with the minimal unit of each resource qr.
New variables o∗rt set the number of extra units used and they replace ort in Objective
Function (3.22) and Constraint (3.21):

Minimize
∑
r∈R

∑
t∈T

erqro
∗
rt; (3.30)

qro
∗
rt ≥

∑
j∈J

cjrt − Lrt, ∀t ∈ T, ∀r ∈ R. (3.31)

We define this model as DO (discrete objective). This case can be used not only for
discrete resources, but it also suits the usual practice when additional resources could be
demanded in some packages, for example, the batteries. Secondly, it is also possible to
define other decision variables related to resource allocation as integers. This corresponds
to the case when we have discrete resources and we allocate a discrete amount of workload
to all periods. We define this model as DO&R (discrete objective and resources).

A computational experiment has been run to compare the behavior of continuous
and discrete versions of the model. Seven models with different types and parameters of

64

overload variables were considered: The original model with continuous overload variables,
three versions of the discrete model with different resource unit size qr = q, ∀r ∈ R, equal
to 1, 3, and 5, defined as DO, and the same values of q for the discrete resource allocation
case defined as DO&R.

●●●●●

●●●●●

●

●

●

●

●

●●●●●●

●

●

●●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●●●●●

●

●

●●●

●

●●

●

●●●●●●●●●●

●

●●●●

●

●

●

●●●

●

●●

0

25

50

75

100

tim
e

(s
)

Continuous
DO q=1

DO q=3
DO q=5

DO&R q=1
DO&R q=3

DO&R q=5

Dataset inst_j10_r5

Figure 3.7: Time boxplot for different cases of discrete objective and allocation for dataset
inst_j10_r5.

Figure 3.7 presents the computational results for dataset inst_j10_r5 with a time
limit of 90 s for all models. Each column is a boxplot that aggregates the data about the
solution time, defining the median, lower and upper values, and quartiles. In addition,
Table 3.12 provides the mean values of the objective function, solution time, and gap
which was not presented in Figure 3.7.

Table 3.12: Mean values for different models.

Model Overload Type Objective Time, s Gap δ

Continuous 471.5 0.18 0 -
DO q = 1 474.1 38.3 0.001 0.006
DO q = 3 487.4 18.6 0.001 0.04
DO q = 5 502.6 8 0.0005 0.02
DR&O q = 1 482.5 0.9 0 0.06
DR&O q = 3 469.9 20.3 0.001 0.07
DR&O q = 5 471.5 12 0.001 0.09

Here we also compare the values of the optimal solutions provided by discrete model

65

VDO and continuous generalized model (VC), and calculate relative delta. For example,
for instance I and model DO it is

δVDO
(I) =

VDO(I)− VC(I)

VC(I)

As it could be expected, the computation time for the discrete model is higher than for the
basic continuous model. For some instances, no optimal solution has been reached in 90 s
for the discrete model, while all the instances were solved for the basic continuous model
faster than in a second. However, the information about the gap provided by the solver
shows that the main issue is in the proof of optimality: all instances had a very small
gap value when the time limit was reached. It is also interesting to note that the second
model type DO&R with the discrete allocation of resources provides optimal solutions
much faster than the first type DO. Consequently, it is possible to use these discrete
models with some reasonable small gap tolerance.

3.5 Conclusions

In this chapter, we propose a new mathematical formulation for a Resource Leveling
Problem with a variable duration of jobs. We consider the extra resource usage cost
as the objective function which has to be minimized. Extra resources are needed in
case of a lack of available resources, as jobs must be processed within a fixed planning
horizon before a deadline. The main idea behind this new formulation is to provide a
more flexible allocation of different resources to jobs, which allows minimizing the total
cost. We consider different time-indexed formulations for scheduling decision variables
and constraints.

This new formulation approach is compared to other RLP formulations with overload
which were found in the literature. We defined them as aggregated fraction models to
underline the main difference. The numerical experiments show that, even if the gener-
alized formulation uses more variables and constraints, it provides better solutions. The
same conclusion has been made for different numerical experiments for various datasets.
We have also proposed and evaluated the variant with discrete resources.

In other words, this chapter described the idea of generalizing the model and its
properties. The next chapter offers an accelerated solution algorithm based on Benders
decomposition.

66

Chapter 4

Benders decomposition for RLP

This chapter presents a new solution approach based on Benders decomposition for the
generalized RLP model introduced in the previous chapter. We enhance our algorithm
with several improvements, such as valid inequalities reducing the number of iterations,
and resource-disaggregated subproblems with multi-cut generation and additional lower
bounds accelerating the convergence at each iteration. We present our approach and
evaluate its performance in a numerical experiment.

The contribution of this chapter was also presented in the following works:

• Tarasov, I.; Haït, A.; Battaïa, O. Benders decomposition algorithm for a gener-
alized Resource Leveling Problem. 21ème Congrès annuel de la Société Française
de Recherche Opérationnelle et d’Aide à la Décision (ROADEF 2020), Feb 2020,
Lorient, France.;

• Tarasov, I.; Haït, A.; Battaïa, O. Benders decomposition for a Period-Aggregated
Resource Leveling Problem with variable job duration. Computers & Operations
research, accepted for publication.

4.1 Basic approach

The original Benders decomposition is applicable to MILP, e.g. in this form:

min fTy + cTx

s.t. Ay = b

By +Dx = d

y ∈ Zn1
+

x ≥ 0, x ∈ Rn2

where: f ∈ Rn1 , c ∈ Rn2 ,

A ∈ Rm1×n1 , and b ∈ Rm1

B ∈ Rm2×n1 , D ∈ Rm2×n2 , and d ∈ Rm2 .

(4.1)

67

Two types of decision variables are involved. There is an integer vector y ∈ Zn1
+ and a

continuous x ∈ Rn2 , both with positive values. The constraint set can be also separated:
there are constraints related to the integer vector only, and also the connecting constraints
defining the values of continuous vector x. It is possible to reformulate it as a master
problem:

min fT ȳ + η

s.t. Ay = b

y ∈ Zn1
+ ;

(4.2)

whereas the values of η for a given ȳ are derived from the subproblem:

min η = cTx

s.t. Dx = d−Bȳ
x ≥ 0, x ∈ Rn2 .

(4.3)

If model (4.3) does not have a solution, then there is no feasible solution for model (4.2).
Otherwise, if (y∗, x∗) is an optimal solution of the original MILP (4.2), then x∗ is an
optimal solution of subproblem (4.3).

Subproblem (4.3) is LP. With vector π corresponding to the original constraint Dx =

d−Bȳ its dual has a form

max πT (d−Bȳ)

s.t. πTd ≤ c

π ∈ Rm2 .

(4.4)

This dual subproblem has several important properties according to the duality theory.

• The optimal value of the objective function is the same for an LP and its dual form
(strong duality theorem). In this case, cTx∗ = π∗T (d − Bȳ), if x∗ and π∗ are the
optimal vales.

• The space of feasible solutions does not depend on the values of ȳ.

• If LP (4.3) does not have a solution, then its dual LP (4.4) is not bounded. If LP
(4.3) has a finite solution, then dual LP (4.4) also has a finite solution.

• With a nonempty space of feasible solutions πTd ≤ c, the dual LP can be either
unbounded or bounded. The unbounded dual subproblem states that a given vector
ȳ is not feasible.

• Infeasible vectors ȳ can be eliminated from the solution space of the master problem
with additional cuts, if we get all the set of extreme rays Pf :

rTp (d−By) ≤ 0; ∀p ∈ Pf . (4.5)

These cuts are defined as feasibility cuts.

68

• With a finite optimal objective function value of the dual subproblem (4.4), the
optimal solution π is used to define the contribution to the objective function η

within a set of extreme points Po:

πTp (d−By) ≤ η; ∀p ∈ Po. (4.6)

These cuts are defined as optimality cuts.

Figure 4.1 illustrates the general idea of Benders decomposition.

Original MILP
problem

Master
partial
solution

Master problem
(MILP) Integer variables

+ constraints
+ objective part

(with integer variables)

LP Subproblem
Continuous variables

+ constraints
+ objective part

(with continuous variables)

Optimality
cuts

&
Feasibility

cuts

LP Dual Subproblem
dual variables

Iterative process

Figure 4.1: General scheme of a Benders decomposition

Finally, we can represent the master problem separately from the subproblem:

min fTy + η

s.t. Ay = b

rTp (d−By) ≤ 0; ∀p ∈ Pf ;
πTp (d−By) ≤ η; ∀p ∈ Po;
y ∈ Zn1

+ .

(4.7)

In order to avoid the consideration of full sets Po and Pf in one model, an iterative
approach is realized [109]. In each step, the master problem is solved and the optimal
solution y is analyzed. A given solution y may lead to an unbounded dual subproblem,
then an extreme ray is used to cut off this solution with an additional constraint of the
form (4.5). Otherwise, an optimal solution of the dual subproblem is used to extend
second set Po and add new constraint of the form (4.6).

Basically, in each iteration, this process updates the lower bound of the objective
function (formed by the master problem) and an upper bound (derived from the dual
subproblem). Thus, it is possible to evaluate the gap and stop the process when the gap

69

is low enough or equals zero. In other words, the process stops with a decision that there
is no need to add new cuts.

4.2 Benders decomposition for a generalized RLP

We propose the following realization of the Benders decomposition for the generalized
formulation of RLP introduced in the previous chapter: scheduling decision variables Sjt,
Ejt, djt are assigned to the master problem, and remaining workload distribution decision
variables cjrt and ort are assigned to the subproblem. This approach makes a compromise
between the complexity of the master problem and the number of iterations required.

In our Benders decomposition scheme, the master problem and the dual subproblem
are solved in the loop, in each iteration a feasibility cut or an optimality cut is generated.
With the proposed decomposition scheme, we make the partial solution provided by the
master problem always feasible, so we never use the generation of feasibility cuts. We
achieve it with two additional cuts, bounding the overall duration of the job with values
dmin,j and dmax,j, which were calculated in preprocessing. In the next sections, there is a
description of master MILP and subproblem LP. We start with the subproblem to explain
the cuts first, and then introduce the master problem.

4.2.1 Subproblem

Consider the subproblem first. In the primal subproblem PS(d̄jt), the values of djt from
the master problem are used as input given data:

Minimize
∑
r∈R

∑
t∈T

ort (4.8)

pmin,jrd̄jt ≤ cjrt, ∀j ∈ J, ∀r ∈ R, ∀t ∈ T ; (4.9)

cjrt ≤ pmax,jrd̄jt, ∀j ∈ J, ∀r ∈ R, ∀t ∈ T ; (4.10)∑
t∈T

cjrt = Wjr, ∀j ∈ J, ∀r ∈ R; (4.11)

ort ≥ er(
∑
j∈J

cjrt − Lrt), ∀t ∈ T, ∀r ∈ R; (4.12)

ort ≥ 0, ∀t ∈ T, ∀r ∈ R. (4.13)

Let αjrt ≥ 0, βjrt ≥ 0, γjr, µrt ≥ 0 be the dual variables associated with constraints
(4.9), (4.10), (4.11), (4.12), respectively. Dual subproblem DS(d̄jt), which is the dual of
PS(d̄jt), can be stated as follows:

Maximize
∑
j∈J

∑
r∈R

γjrWjr−
∑
r∈R

∑
t∈T

µrterLrt−
∑
j∈J

∑
t∈T

djt
∑
r∈R

(βjrtpmax,jr−αjrtpmin,jr)(4.14)

70

αjrt − βjrt + γjr − µrter ≤ 0, ∀j ∈ J, ∀r ∈ R, ∀t ∈ T ; (4.15)

µrt ≤ 1, ∀r ∈ R, ∀t ∈ T. (4.16)

4.2.2 Master problem

Let us define the set of dual subproblem solution points (αjrt, βjrt, γjr, µrt) as Po. This set
is updated after each iteration with new points provided by the solved dual subproblem.
An extra variable η is the representation of the objective function in the master problem
which links it with the corresponding set of optimality (4.18) cuts. In this case, master
problem MP is presented in the following way:

Minimize η (4.17)

η ≥
∑
j∈J

∑
r∈R

γjrWjr −
∑
r∈R

∑
t∈T

µrterLrt −
∑
j∈J

∑
t∈T

djt
∑
r∈R

(βjrtpmax,jr − αjrtpmin,jr),(4.18)

∀(αjrt, βjrt, γjr, µrt) ∈ Po;

We use all the constraints related to scheduling decision variables:

Sjt ≥ Ejt, ∀j ∈ J, ∀t ∈ T ; (4.19)

Sjt ≤ Sj,t+1, ∀j ∈ J, ∀t ∈ T ; (4.20)

Ejt ≤ Ej,t+1, ∀j ∈ J, ∀t ∈ T. (4.21)

djt ≤ d (Sjt − Ejt), ∀j ∈ J, ∀t ∈ T. (4.22)

djt ≥ d (Sjt + Sj,t−1 − 1− Ejt − Ej,t+1), ∀j ∈ J, ∀t ∈ T. (4.23)

Sj2t ≤ Ej1,t+1, ∀t ∈ T, ∀(j1, j2) ∈ P ; (4.24)

dj1t + dj2t ≤ d, ∀t ∈ T, ∀(j1, j2) ∈ P. (4.25)

To achieve guaranteed feasibility of the solutions provided by the master problem (and
to reach the bounded dual subproblem), we add the following constraints:∑

t∈T

djt ≥ dmin,j, ∀j ∈ J ; (4.26)

∑
t∈T

djt ≤ dmax,j, ∀j ∈ J. (4.27)

71

If the problem instance is solvable and the master problem includes constraints (4.26-
4.27), the subproblem will always be bounded and therefore we can skip the stage of
adding feasibility cuts to the master problem.

The solution of the master problem generates the values for Sjt, Ejt and djt that
describes the schedule, and the subproblem provides the best corresponding resource
allocation. We denote the objective function value of the solution for the master problem
as v(MP n) and for the dual subproblem as v(DS(d̄jt)). The Benders scheme for our
problem is presented in Figure 4.2. In blue blocks, we describe the partial solutions
provided by the master and dual subproblem. We skip the condition of an unbounded
master problem solution and the generation of feasibility cuts (red-colored part) as we
use additional constraints to guarantee the feasibility of the master problem solution (and
therefore the boundness of the dual subproblem). The stopping criterion is marked with
green color: the optimal solution is obtained if the lower (LB) and upper (UB) bounds are
equal. In our case, each iteration provides a new LB, which is the value of the objective
obtained for the master problem, and an updated UB obtained with the dual subproblem
(marked with a violet color).

Solve	a	Master	MILP		MPn

no

yes Master is solvable?

Stop, no solution exists

Save Sjt, Ejt, djt and V(MPn)

Solve dual LP Subproblem DS(dj̅t)

noyes
DS(dj̅t) is solvable?

yes
noDS(dj̅t) is bounded? Make a feasibility cut

from unbounded ray

Make an optimality cut
with (αjrt,	βjrt,	γjrt,	μjrt)

Add the cut to MPn

n := n + 1

Save (αjrt,	βjrt,	γjrt,	μjrt) and V(DS(dj̅t))

no

yes
UB - V(MPn) < ε

Stop, the solution zn,yn is optimal

Save a MP solution and
objective value V(MPn)

(a lower bound, LB)

Not necessary, MP always
provides feasible solutions,
guranteed by the cuts with

dmin,j and dmax,j
yes noUB > V(DS(dj̅t))

UB := V(DS(dj̅t))

Update the UB

UB = LB

DS solution and objective
value V(DS(d̅jt))

(an upper bound, UB)

There is no
objective part
from the MP

Figure 4.2: Basic Benders algorithm for considered problem

72

4.3 Algorithm improvements

In order to enhance the performances of our Benders decomposition, we develop the
following improvements to the initial scheme. Firstly, we develop advanced procedures
for calculating the lower bound for the master problem. One of the main reasons for
the low performance of the decomposition scheme is the absence of the objective function
component in the master problem. This slows progress in the lower bound produced by the
master problem (we study a minimization problem). We propose some master problem
upgrades to take into account lower bounds, as it is possible to give some estimations
of the initial objective function value based only on the values of djt in the candidate
solution. Such a construction of valid inequalities was described in [123]. Secondly, we
present multi-cut generation from the disaggregation of the dual subproblem. Finally, the
basic Benders decomposition scheme is reformulated to be used with the CPLEX callback
technology.

4.3.1 LB for the Master problem: occupied work volume estima-

tion

The idea of our procedure for calculating the lower bound can be described in the following
way: for each resource, we compare the work volume required to perform all jobs with
the estimated total work volume available with given resource capacity. In this case, the
overload is equal to the difference between these two values.

We define as Urt the total usage of resource r in time period t which is affordable with
respect to the workload capacity in this period and the set of jobs which are scheduled in
this period. An appropriate estimation can be achieved with two constraints:

0 ≤ Urt ≤ Lrt, ∀r ∈ R, ∀t ∈ T ; (4.28)

Urt ≤
∑
j∈J

pmax,jrdjt, ∀r ∈ R, ∀t ∈ T. (4.29)

Constraints (4.28) set up the general bounds for Urt which should not exceed the available
resource limit in each period, and (4.29) define the upper value from the maximal possible
consumption of the resource by jobs scheduled in the given period. The lower bound valid
inequality has the following form:

νr ≥ er(
∑
j∈J

Wjr −
∑
t∈T

Urt), ∀r ∈ R, (4.30)

where νr is the lower bound contribution of resource r. This formulation provides a
good lower bounds using only the scheduling part of the problem without taking into
consideration job work volume distribution.

73

4.3.2 LB for the Master problem: resource constraints relaxation

The second option is to use several additional constraints in the master problem, defining
the distribution of work volume (which are presented directly in the primal subproblem):
aggregated (3.19), (3.20) and (3.21). We define decision variables Crt, aggregating the
contributions of all jobs, i.e. Crt =

∑
j∈J

cjrt. We add the following constraints to the master

problem:∑
j∈J

pmin,jrdjt ≤ Crt ≤
∑
j∈J

pmax,jrdjt, ∀r ∈ R, ∀t ∈ T ; (4.31)

∑
t∈T

Crt =
∑
j∈J

Wjr, ∀r ∈ R; (4.32)

ort ≥ er(Crt − Lrt), ∀t ∈ T, ∀r ∈ R; (4.33)

This set of constraints also provides the lower bounds for the resource overload from the
schedule.

These two approaches use a different logic: in 4.3.1 we take the difference between
total required and available work volume with no direct consideration of work volume
constraints, whereas in 4.3.2 we significantly simplify the original model with the work
volume constraint disaggregation. Both approaches are used in tests separately.

4.3.3 Disaggregation of the cuts

In addition to the master problem lower bound improvements, it is possible to perform
disaggregation and consider the resources separately due to the subproblem structure.

At each iteration of the algorithm, we solve |R| subproblems DS(d̄jt)r and produce
|R| optimality cuts. The dual subproblem DS(d̄jt)r is the disaggregated part of DS(d̄jt):

Maximize
∑
j∈J

γjrWjr −
∑
t∈T

µrterLrt −
∑
j∈J

∑
t∈T

djt(βjrtpmax,jr − αjrtpmin,jr) (4.34)

αjrt − βjrt + γjr − µrter ≤ 0, ∀j ∈ J, ∀t ∈ T ; (4.35)

µrt ≤ 1, ∀t ∈ T. (4.36)

According to the lower bound improvements and changes of the subproblem, we obtain
a new master problem MP ∗ with new sets of points (αjt, βjt, γj, µt) ∈ Po,r for optimality
cuts. The set of decision variables also includes the original scheduling decision variables
Sjt Ejt djt plus the lower bound decision variables, for occupied estimation LB (see 4.3.1)
it is Urt and νr for the objective function, for resource-distribution LB (see 4.3.2) it is

74

Crt and ort for the objective function. We demonstrate the formulation of MP ∗ with the
occupied estimation LB from 4.3.1 below.

Minimize
∑
r∈R

νr (4.37)

Since our master problem always leads to a bounded dual subproblem, only optimality
cuts are used. With new disaggregated dual subproblems, we add |R| new cuts to the
master problem (new points to the Po,r) instead of one cut presented in (4.18):

νr ≥
∑
j∈J

γjrWjr −
∑
t∈T

µrterLrt −
∑
j∈J

∑
t∈T

djt(βjrtpmax,jr − αjrtpmin,jr), (4.38)

∀(αjrt, βjrt, γjr, µtr) ∈ Po,r, ∀r ∈ R;

We add the lower bound calculation scheme

νr ≥ er(
∑
j∈J

Wjr −
∑
t∈T

Urt), ∀r ∈ R; (4.39)

0 ≤ Urt ≤ Lrt, ∀r ∈ R, ∀t ∈ T ; (4.40)

Urt ≤
∑
j∈J

pmax,jrdjt, ∀r ∈ R, ∀t ∈ T. (4.41)

If we use the second resource-distribution LB, then these three constraints will be replaced
by constraints (4.31)–(4.33) with additional variable Crt and νr will be replaced by

∑
t∈T

ort

in the objective function (4.37) and the constraint (4.38). In MP ∗, we also use all the
original constraints (4.19)–(4.25) plus additional feasibility constraints (4.26)–(4.27).

4.3.4 Branch&Benders cuts: using single search tree

Branch&Benders cuts are implemented in order to exploit a single search tree of the
master problem instead of an iterative resolution to optimality. Technically, the single
search tree is implemented with the so-called callback interfaces.

IBM ILOG CPLEX solver v12.10 was used to implement our model. Callback func-
tions were implemented to generate Benders cuts for the Branch&Bound search. A call-
back is a user function that can be executed during the optimization process to get and
modify such data as:

• Candidate – the solver has found a new integer-feasible candidate for an incumbent
solution;

• GlobalProgress (LocalProgress) – progress in global (local thread) search;

• Relaxation – the solver has found a new solution which is not feasible;

75

• ThreadUp – new thread was activated;

• ThreadDown – the thread was deactivated;

ThreadUp and ThreadDown contexts are used to make the calculations with the dual
subproblems thread-safe. If a thread was activated with the context ThreadUP, the
dual subproblem copy is created and stored separately, and this copy is deleted with the
ThreadDown context.

Integer-feasible	candidate	solution	found	with	provided	data:	
1)	job	durations	djt
2)	master	objective	v(MP*)
3)	contribution	of	resource	r	in	objective	v(MP*)r
Global	additional	data	stored:	variable	UB	(is	not	CPLEX	data)

VDS		=	0

yes

no

VDS < UB? UB	=	VDS

VDS		=	VDS	+	v(DS(dj̅t)r)

yes no
v(MP*)	=	UB	?

noyes Checked	all
resources?

Solve	DS(dj̅t)r	

yes

no

v(DS(dj̅t)r) = v(MP*)r?

cut	=	optimality	cut	from	DS(dj̅t)r	solution

Choose	unchecked
resource	r

Finish	candidate	callback

reject	candidate,	add	cut

Figure 4.3: Callback procedure algorithm

We run master problemMP ∗ and set up the Candidate context. In our decomposition,
the Candidate context is used as a pointer to start the resolution of the dual subproblem,
see Figure 4.3. If a new integer-feasible solution was found in the master problem during
the process, then we follow the basic part of our scheme. We consider the resource set
and for all r ∈ R, we perform the following steps. The dual subproblem for resource r is
constructed based on the candidate solution. An optimality cut is added to the master
problem in the case where the optimality is not reached by the master problem, i.e. if
the candidate objective function component value from resource r is not equal to the
subproblem value.

76

The basic part of the scheme is marked in blue, and the blocks referring to the ad-
ditional termination condition are marked in green. This additional condition allows us
to skip several iterations in the loop when MP ∗ integer-feasible candidate with optimal
objective function value was found. The condition skips the loop and leaves the context
callback procedure when the value of the candidate’s objective function v(MP ∗) is equal
to the UB, i.e. when a candidate solution for the master problem has reached the minimal
value of the global objective function which has been found before by the dual subprob-
lems. As the v(MP ∗) is nondecreasing lower bound in the decomposition, and UB is the
upper bound produced by dual subproblems, it is the termination condition.

We can also mention several additional important (in terms of performance) technical
aspects:

• in JAVA a thread-safety requires to have a separated copy of a Subproblem (in our
case, a set of |R| subproblems);

• we rely on the example of a new Benders implementation with callbacks provided
by IBM ("BendersATSP2.java" in a CPLEX code example pack);

• in this example a new Subproblem object is created when a thread is launched
and destroyed when the thread is down, we improve it by keeping the same set of
Subproblem objects with an iterative modification.

4.4 Computational tests

4.4.1 Models and settings

We run the experiments with IBM ILOG CPLEX solver version 12.10 on the workstation
with an 8-core 2.60 GHz processor and 16 Gb RAM. Four models are compared, Table
4.1 provides the list of models and short notations. We compare the original model
from Section 3.2.2 with three algorithms that use Benders decomposition. Firstly, the
Benders decomposition scheme is implemented in the IBM ILOG CPLEX solver starting
from version 12.7. It is possible to tune it with annotations, we annotate it to follow
the proposed subproblem disaggregation by the resources. Secondly, we consider the
algorithm which uses the master problem from the basic decomposition scheme with the
callback Benders procedure and all the improvements. We proposed two different ways
to implement the lower bounds and study them separately. Both LB approaches used
simultaneously overconstrain the MP ∗ and lead to bad performance.

77

Table 4.1: List of compared solution approaches and their descriptions

Notation Description

M1 the original model, presented in Section 3.2.2
M1+BD original model with CPLEX included Benders decomposition
BC1 improved Benders Callbacks + lower bound 1 (see 4.3.1)
BC2 improved Benders Callbacks + lower bound 2 (see 4.3.2)

4.4.2 Generation of specific large-scale datasets

To evaluate our decomposition approach, we needed to test it on large-scale problem
instances with a fully consistent set of required parameters. Since such instances were
not available in the literature, we generated them in the following way. We used the same
approach of data generation as in the RCCP dataset, especially for the generation of the
precedence graph. Figure 4.4 illustrates two examples of precedence graph: the first was
taken from this RCCP dataset and a second was generated on the same base for our
instances.

Figure 4.4: Two precedence graphs: the 1st one for an instance from RCCP dataset and
the 2d one generated for our dataset

In order to evaluate our decomposition approach, three following aspects were impor-
tant for data generation:

• a number of feasible solutions depends on the density of precedence graph and job
duration upper and lower limits;

• the efficiency of Benders decomposition depends on the number of resource types
(since we disaggregate the cuts by resources);

78

• a ratio of available resource amount and demand of activities has a strong influence
on the objective function value.

Taking into account these aspects, we generated our dataset by varying the following
parameters:

• the structure of the precedence graph;

• a number of resources;

• the distribution of ressources through time periods.

The values of parameters were taken at random within feasible intervals in order to create
feasible instances. For example, according to condition (3.27) and equations (3.25) it
is necessary to consider the following relation between amount and limits of different
resources:

max
r∈R

Wjr

pmax,jr
≤ min

r∈R

Wjr

pmin,jr
, (4.42)

so

∀j ∈ J, ∀r1, r2 ∈ R :
Wjr1

pmax,jr1
≤ Wjr2

pmin,jr2
(4.43)

To guarantee these conditions we have to set up the following intervals to generate the
values of problem parameters:

Wjr ∈ [WL
jr,W

U
jr],

pmin,jr ∈ [pLmin,jr, p
U
min,jr],

pmax,jr ∈ [pLmax,jr, p
U
max,jr],

with an additional condition for the bound values (maximal possible for the left side and
the minimal possible for the right side)

∀j ∈ J, ∀r1, r2 ∈ R :
WU
jr1

pLmax,jr1
≤

WL
jr2

pUmin,jr2
. (4.44)

Condition (4.44) defines the correspondence between the limits of intervals (marked with
L and U) to generate a feasible instance.

In total, we generated 6 different data sets with 50 different problem instances each.
Three first data sets of the problem instances were generated to evaluate the performance
of the basic model and the decomposition scheme depending on the number of resources.
Each data set includes 50 problem instances having the same size of sets T , J , R, P . All
other parameters were randomly generated taking into account the problem properties
(e.g. pmin,jr was always less than pmax,jr, etc.). The parameters of these data sets are
presented in Table 4.2 where |P | reports the number of direct precedence relations in
graph P .

79

Table 4.2: Impact of the resources: parameters of datasets

Data set |T | d |J | |R| |P |

inst_j40_r1 40 2 40 1 40
inst_j40_r5 40 2 40 5 40
inst_j40_r10 40 2 40 10 40

Secondly, we generated three datasets of larger instances with 50 jobs and 10 resources.
We considered different ranges of Lrt, since the correspondence between available resources
Lrt and the demand represented by Wjr and limits (pmin,jr and pmax,jr) has an important
impact on the solution process. The parameters of these data sets are presented in Table
4.3. Each dataset consists of 50 instances.

Table 4.3: Parameters for datasets of large instances

Data set |T | d |J | |R| |P | Lrt

inst_j50_r10a 60 2 50 10 50 [0,80]
inst_j50_r10b 60 2 50 10 50 [0,100]
inst_j50_r10c 60 2 50 10 50 [0,120]

4.4.3 Impact of number of resource types on the method perfor-

mances

According to our structure of the Benders decomposition scheme, the number of cuts
generated in each iteration depends on the number of resources in the problem. Therefore,
the first factor evaluated in the numerical experiment is the impact of the number of
resources on the performance of the decomposition approach. The evaluation is made on
the data sets presented in Table 4.2. We use the time box plots to represent the median,
quartiles, maximal, and minimal computation time or gap values in the data sets.

Figure 4.5 shows that in the case of one resource the original model demonstrates
a better performance than decomposition schemes with callbacks. Automatic Benders
decomposition is slower than the other models. However, when the number of resources
increases, we can observe different results. With 5 resources, Benders decomposition per-
forms better than the basic model. In case of 10 resources, Callback schemes with Benders

80

●

●
●

●

●

●

0.0

2.5

5.0

7.5

10.0

tim
e

(s
)

inst_j40_r1

0

25

50

75

100

tim
e

(s
)

inst_j40_r5

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

0

100

200

300

tim
e

(s
)

inst_j40_r10

BC1 BC2 M1 M1+BD

Figure 4.5: Time box plots for datasets with 40 jobs and different number of resources
(1, 5 and 10)

decomposition outperform the basic model and built-in CPLEX procedure. The decom-
position algorithm provides a significant advantage in the mean and minimal/maximal
computation time as well as in the value distribution.

4.4.4 Evaluation of the impact of the available resource limit

To evaluate the impact of the available resource limit on the performances of solution
methods, we use datasets from Table 4.3. For each instance, computation time was
limited to 10 minutes.

We present the results of calculations for each dataset in the form of two boxplots,
with the values of the time and relative gap.

81

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

200

400

600

tim
e

(s
)

BC1 BC2 M1 M1+BD

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

re
la

tiv
e

ga
p

BC1 BC2 M1 M1+BD

Figure 4.6: Time and relative gap box plots for the data set inst_j50_r10a

In Figure 4.6, we see the results for dataset inst_j50_r10. Our Benders decom-
position scheme with callbacks significantly outperforms the original model and built-in
CPLEX Benders (both versions). The built-in CPLEX Benders procedure provided op-
timal solutions within a significantly larger time, and the majority of the instances have
not been solved to optimality by the original MILP model within a 10-minute time limit.

●

●

●

●● ●

0

200

400

600

tim
e

(s
)

BC1 BC2 M1 M1+BD

●

0.00

0.25

0.50

0.75

1.00

re
la

tiv
e

ga
p

BC1 BC2 M1 M1+BD

Figure 4.7: Time and relative gap box plots for the data set inst_j50_r10b

82

In Figure 4.7 we present the results for the dataset with the increased available resource
limit. The first version of Benders decomposition scheme (BC1) with callbacks solves all
instances to optimality in 60 seconds at average. All other tested approaches have not
reached optimal solutions within a 10-minute time limit. In the Figure 4.8, we can notice
the same results for the last dataset with a higher resource limit.

●

●

●

●

●

●●● ●●

0

200

400

600

tim
e

(s
)

BC1 BC2 M1 M1+BD

●

●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

re
la

tiv
e

ga
p

BC1 BC2 M1 M1+BD

Figure 4.8: Time and relative gap box plots for the data set inst_j50_r10c

To sum up, this is a brief review of observations made on the base of numerical
experiments:

• the decomposition with resource-disaggregated cuts works better (all versions BC1,
BC2, M1+BD) with a growing number of resources (the same was proposed accord-
ing to the decomposition scheme structure);

• on relatively large instances (50 jobs, 10 resources) Benders decomposition with
callbacks (BC1) is significantly better in terms of performance on all datasets with
various ranges of available resource values (compared by both time and gap).

4.5 Conclusions

In this chapter, we presented a Benders decomposition approach for a generalized version
of a Resource Leveling Problem with an independent and flexible resource usage through
the time periods. The Benders decomposition algorithm was enhanced with lower bound
procedures and the generation of multiple cuts at each iteration. We also implemented

83

valid inequalities for the master problem. The decomposition algorithm was implemented
with a single search tree (with CPLEX 12.10 callback functions) the cuts were generated
for each feasible integer candidate with our algorithm instead of iterative master problem-
solving.

The numerical experiments showed that the efficiency of our decomposition method
in comparison to the basic model depends on the number of resources in the problem.
Our method performs better for problem instances with a high number of resources.
This is explained by the fact that the number of cuts generated at each iteration of the
decomposition scheme depends on the number of resources. In the results obtained in the
computational experiments, the decomposition algorithm provides a significant advantage
in comparison to the basic model for instances with a larger number of resources. For
the instances with 50 jobs and 10 resources, it provided optimal solutions, and other
tested approaches didn’t reach optimality within a significantly higher computational time
limit. The next chapter discusses the variety of input data from a different perspective
considering the issue of its uncertainty.

84

Chapter 5

Uncertainty and Metric approach

In this chapter, we present an approach defined as a metric estimation, which initially
was proposed for scheduling problems by Lazarev [32]. If we consider a space of problem
instances, we can represent any fluctuation in input data as a transfer from one point
to another within this space. We study how such a transfer can be used for a Resource
Leveling Problem to estimate the feasibility and optimality of solutions found for one
point applied to another point.

The contribution of this chapter was also presented in the following work:

• Tarasov, I.; Haït, A.; Battaïa, O. Metric Estimations for a Resource Levelling Prob-
lem With Variable Job Duration. 17th International Workshop on Project Manage-
ment and Scheduling (PMS) 2020/2021 (postponed), submission accepted.

5.1 Notations, definitions and goals

The following definitions and notations will be used in this chapter. In Tab. 5.1 we recall
the decision variables of our MILP model for generalized RLP.

Decision variables
Sjt binary, if j starts at period t, then ∀t1 < t Sjt1 = 0, ∀t2 ≥ t Sjt2 = 1;
Ejt binary, if j ends at period t, then ∀t1 ≤ t Ejt = 0, ∀t2 > t Ejt = 1;
djt duration of job j ∈ J in period t ∈ T , djt ∈ [0, d]

cjrt work volume of job j ∈ J on resource r ∈ R in period t ∈ T
ort extra cost of resource r ∈ R in period t ∈ T , ort ≥ 0

Table 5.1: Model decision variables

85

Definition 3. By solution σ we define the set of values of the decision variables:

σ = {djt, cjrt; t ∈ T, r ∈ R, j ∈ J} (5.1)

In the solution, we do not consider binary variables Sjt, Ejt, overload cost ort, because the
solution is fully determined by job duration djt, and contribution cjrt per period, other
variables are used to form linear constraints in the model.

We will also use the partial solution with the scheduling variables.

Definition 4. By schedule π we define the set of decision variable values

π = {djt; t ∈ T, j ∈ J} (5.2)

The necessary conditions to be satisfied to realise a substitution of a schedule (or a
full solution) of one problem instance to another instance are defined as follows:

Definition 5. The schedule π is applicable to instance I, if:

• instance I is solvable;

• schedule π is feasible, i.e.
∑
T

djt ∈ [dmin,j, dmax,j], j ∈ J ;

• the schedule satisfies all the precedence relations, i.e. if dj2t ≥ 0, then
|T |∑
k=t

dj1k = 0

for all (j1, j2) ∈ P , t ∈ T .

Definition 6. The solution σ is applicable to instance I, if:

• the scheduling part of σ is applicable to I;

• the following inequalities are correct

djtpmin,jr ≤ cjrt ≤ djtpmax,jr, j ∈ J, r ∈ R, t ∈ T ; (5.3)

∑
t∈T

cjrt = Wjr, j ∈ J, r ∈ R. (5.4)

We will also make a following definition to use it in next sections.

Definition 7. Define the LP part of the considered RLP model, with

• a set of decision variables cjrt, ort;

• all the constraints related to these variables, see equations (3.20), (3.19), (3.21);

• an original objective function (3.22);

86

as a subproblem PS(d̄jt).

We note that this LP defines the resource allocation part based on a fixed scheduling
part with given job times d̄jt. The following notations will be further used:

• for a schedule π or a solution σ a superscript indexAmeans that this solution/schedule
is optimal for instance A;

• for all estimations, a superscript index σ or π means an estimation for a solution or
a schedule (for example, ρσe (A,B) or ρπe (A,B));

• σA(π) is an optimal resource allocation provided by the LP subproblem on the basis
of schedule π for instance A.

• V A(σ) is the value of the objective function for solution σ and instance A, and
V A(σA(π)) is the value of the objective function for solution σ produced on the
basis of schedule π.

Firstly, we study the difference in solution quality for two similar instances of the same
size containing some differences in parameters. We demonstrate that for the considered
model with aggregated objective function this difference is bounded and we can provide
estimations of the bounds with a linear dependence on the difference in values of the
concerned parameters.

5.2 Fluctuations in parameters

In this section, we define the fluctuations in the parameters of problem instances that will
be considered in our study.

First of all, we do not consider the fluctuations in precedence constraints.
Secondly, we consider that the scale of the problem does not change, it means that

neither number of jobs nor the number of types of resources changes.
The parameters that will be considered as possibly fluctuating are listed here below:

• er – extra cost of resource r ∈ R;

• Lrt – availability of resource r ∈ R in period t ∈ T ;

• pmin,jr – job j ∈ J minimal requirement per period in resource r ∈ R;

• pmax,jr – job j ∈ J maximal requirement per period in resource r ∈ R;

• Wjr – job j ∈ J work volume with resource r ∈ R.

We consider that fluctuations in these parameters are independent.

87

5.2.1 Extra resource cost changes

Here below, we evaluate the impact of fluctuations in extra resource cost.

Lemma 2. Consider instances A and B, which differ only by parameters er. If we apply
the same solution σ to the both instances, the upper bound for objective function values
difference can be evaluated as follows:

|V A(σ)− V B(σ)| ≤ ρσe (A,B), (5.5)

where ρσe (A,B) is represented in the following form

ρσe (A,B) = max{
∑
r∈R

[eAr − eBr]−
∑
j∈J

Wjr,
∑
r∈R

[eAr − eBr]+
∑
j∈J

Wjr}. (5.6)

We use [..]− and [...]+ to define [x]− = min{x, 0}, and [x]+ = max{x, 0}.

Proof.
|V A(σ)− V B(σ)| = |

∑
r∈R

∑
t∈T

eAr o
A
rt −

∑
r∈R

∑
t∈T

eBr o
B
rt|,

here ort = max{0,
∑
j∈J

cjrt − Lrt},

|V A(σ)− V B(σ)| =
∑
r∈R

|eAr − eBr |
∑
t∈T

max{0,
∑
j∈J

cjrt − Lrt}.

The right side is still solution-dependent, since for each resource type, the extra cost
difference is multiplied by actual overload volume in solution σ. We can form a solution-
independent estimation with an upper bound for each r ∈ R∑

t∈T

max{0,
∑
j∈J

cjrt − Lrt} ≤
∑
j∈J

Wjr.

Therefore, we have a solution-independent aggregated upper bound:

|V A(σ)− V B(σ)| ≤
∑
r∈R

|eAr − eBr |
∑
j∈J

Wjr. (5.7)

Moreover, we note that with this objective function form the aggregated positive and
negative values of difference eAr − eBr compensate each other. If there exists two resource
types r1, r2 ∈ R, and eAr1 < eBr1 , e

A
r2
> eBr2 , then the total objective function values difference

will be in a range
[(eBr2 − e

A
r2

)
∑
j∈J

Wjr2 , (e
B
r1
− eAr1)

∑
j∈J

Wjr1].

In general, with an arbitrary set R, we can estimate ρσe (A,B) as

ρσe (A,B) = max{
∑
r∈R

min{eAr − eBr , 0}
∑
j∈J

Wjr,
∑
r∈R

max{eAr − eBr , 0}
∑
j∈J

Wjr}.

88

This estimation is applicable to any solution. Let’s consider an optimal solution for
instance A.

Lemma 3. Consider instances A and B which differ only by parameters er. If we apply the
optimal solution of instance A (σA) to instance B, then the upper bound on the difference
between the values of the objective function can be evaluated as follows:

V B(σA)− V B(σB) ≤ ∆σ
e (A,B) =

∑
r∈R

|eAr − eBr |
∑
j∈J

Wjr. (5.8)

Proof. In this case, we need to compare 4 values: V A(σA); V B(σB); V A(σB); V B(σA).
We note that V B(σA) ≥ V B(σB) and V A(σB) ≥ V A(σA) for any pair of instances A

and B, so there exist six possible cases to be considered:

1. V A(σA) ≤ V A(σB) ≤ V B(σB) ≤ V B(σA);

2. V B(σB) ≤ V B(σA) ≤ V A(σA) ≤ V A(σB);

3. V A(σA) ≤ V B(σB) ≤ V A(σB) ≤ V B(σA);

4. V B(σB) ≤ V A(σA) ≤ V B(σA) ≤ V A(σB);

5. V B(σB) ≤ V A(σA) ≤ V A(σB) ≤ V B(σA);

6. V A(σA) ≤ V B(σB) ≤ V B(σA) ≤ V A(σB);

For cases 1-4, we can use Lemma 2 to prove that considered difference is less than the
right side of inequality (5.7).

We prove the same for case 5 in the following way. We use the same approach as in
Lemma 2. Firstly, we show that:

V A(σA)− V B(σB) ≤
∑
r∈R

[eAr − eBr]+
∑
j∈J

Wjr.

Instance B can provide a better solution in comparison to instance A only by reducing
the total cost, i.e.

V B(σA)− V A(σA) ≤
∑
r∈R

[eAr − eBr]−
∑
j∈J

Wjr.

Solution σA applied to instance B may provide a worse objective function value, with
the difference up to the total reduction of resource amount. These two components are
bounded and form the initial difference V B(σA)− V B(σB). Therefore, in total the upper
bound is the same as in inequality (5.8). The same logic can be applied for case 6.

89

Although er is bounded and the estimation from lemma 3 forms a correct metric
function, there is a nonlinear relation between changes in any other parameter and er.
Moreover, there is another parameter Wjr used in the estimation.

However, since in the objective function, an extra cost is a coefficient of the impact
made by some given resource, in any instance for any r ∈ R we can keep a same schedule
if we multiply er by an arbitrary coefficient k and all resource-related parameters (Wjr,
Lrt, pmin,jr, pmax,jr) by 1

k
.

Suppose there are two instances A and B, and there is a difference eAr1 6= eBr1 for some

resource type r1. We can modify instance B into B̄ by multiplying eBr1 by k =
eAr1
eBr1

, and
Wjr, Lrt, pmin,jr, pmax,jr by 1

k
. There will be the same optimal schedule (or schedules)

for instances B and B̄. A solution (resource allocation) will be the same for all resources
except resource r1, that will differ at the same proportion. Therefore, we can always
consider a pair of instances with equal extra resource usage cost.

5.2.2 Fluctuations in available resource levels

This parameter type defines entire resource supply, however, in contrast to RCPSP, for
RLP, it has no impact on the solution feasibility,

Lemma 4. Consider instances A and B which differ by parameters Lrt. If we apply
the same solution σ to the both instances, the upper bound for objective function values
difference can be evaluated as follows:

|V A(σ)− V B(σ)| ≤ ρσL(A,B), (5.9)

where ρσL(A,B) is a particular metric upper estimation,

ρσL(A,B) = max{
∑
r∈R

er
∑
t∈T

[LBrt − LArt]+,
∑
r∈R

er
∑
t∈T

[LBrt − LArt]−}. (5.10)

Proof. |V A(σ)− V B(σ)| = |
∑
r∈R

∑
t∈T

eAr o
A
rt −

∑
r∈R

∑
t∈T

eBr o
B
rt|, (5.11)

here ort = max{0,
∑
j∈J

cjrt − Lrt}, and taking into account that costs are equal eAr =

eBr = er and |max{a, b} −max{c, d}| ≤ max{|a− c|, |b− d|},

|V A(σ)− V B(σ)| ≤
∑
r∈R

∑
t∈T

|eAr (
∑
j∈J

cjrt − LArt)− eBr (
∑
j∈J

cjrt − LBrt)|. (5.12)

So, with for identical solutions, we obtain the following result:

|V A(σ)− V B(σ)| ≤
∑
r∈R

er
∑
t∈T

|LArt − LBrt|. (5.13)

As in Lemma 2, we propose a precise upper estimation ρL(A,B) with the following ex-
planation. In instance B, several resources are available differently from instance A, each

90

difference ∆Lrt 6= 0 leads to a limited possible impact on the value of the objective func-
tion. Suppose that the first difference is positive, i.e. ∆L1 > 0. Then the objective
function difference lies within [0,∆V1], where ∆V1 is ∆L1 multiplied by corresponding ex-
tra resource usage cost er. If there is another ∆L2 > 0, then the impact on the objective
is [0,∆V1 + ∆V2]. If ∆L3 < 0, then the range left bound is shifted: [∆V3,∆V1 + ∆V2]).

If we take into account all k differences, aggregated range for the objective function
value variation is

[
k∑
i=1

min{∆Vi, 0},
k∑
j=1

max{∆Vj, 0}],

i.e. here bounds are formed by the sum of all negative and positive changes. More
precisely, ∆Vx = er∆Lx if ∆Lx = LBrt − LArt (it was applied at period t for resource r).
Then we can represent the range of possible differences in the values of the objective
function in the following way

[
∑
r∈R

er
∑
t∈T

min{(LBrt − LArt), 0},
∑
r∈R

er
∑
t∈T

max{(LBrt − LArt), 0}].

We can compare absolute values of these bounds to estimate the absolute value of the
difference:

ρσL(A,B) = max{
∑
r∈R

er
∑
t∈T

[LBrt − LArt]−,
∑
r∈R

er
∑
t∈T

[LBrt − LArt]+}.

The estimation (5.10) can be up to 2 times less than the basic estimation (5.13). It
corresponds to the case when

|
k∑
i=1

min{∆Vi, 0}| = |
k∑
j=1

max{∆Vj, 0}|.

We also point out that this estimation does not depend on solution σ. If this solution
is applicable to instance I and the resource availability levels are equal, the objective
function keeps the same value. As it has been presented in the definition, it means that
the required work volume Wjr parameters are also equal∑

t∈T

cjrt = Wjr, j ∈ J, r ∈ R;

and cjrt satisfies the new period contribution limits with pmin,jr and pmax,jr:

djtpmin,jr ≤ cjrt ≤ djtpmax,jr, j ∈ J, r ∈ R, t ∈ T.

91

Lemma 5. Consider instances A and B which differ by parameters Lrt. If we apply
optimal solution of instance A σA to instance B, then the upper bound for the difference
in the value of the objective function an be evaluated as follows:

V B(σA)− V B(σB) ≤ ∆σ
L(A,B) =

∑
r∈R

er
∑
t∈T

|LArt − LBrt| (5.14)

Proof. We rely on the possible orderings, already considered in the proof of Lemma 3.
These options are general and do not depend on the type of parameters that varies.

For cases 1-4, we can again use Lemma 4 to prove that the considered difference is
less than the right side of inequality (5.13).

A special case 5 is considered in the same way. Instance B can provide a better
solution only with additional amount of resources:

V A(σA)− V B(σB) ≤
∑
r∈R

er
∑
t∈T

[LBrt − LArt]+

For instance B, the same solution σA may provide a worse value of the objective function,
in this case, the difference can be estimated as follows:

V B(σA)− V A(σA) ≤
∑
r∈R

er
∑
t∈T

[LBrt − LArt]−

These two components form the initial difference in the inequality (5.13).

5.2.3 Estimations for the job-related parameters

In this subsection, we consider the case where two instances have some differences in the
values of parameters pmin,jr, pmax,jr, orWjr. In contrast to the overload cost and available
resource level, in this case it is necessary to check if a particular solution (or a schedule)
is applicable to a particular instance A or B (see Definitions 5 and 6).

Upper and lower assigned amount

For the assignment limits, we note that the differences in these parameters do not have
any impact on the value of the objective function.

Lemma 6. Consider instances A and B which differ by parameters pmin,jr or (and)
pmax,jr. If a solution σ is applicable to both instances, there is no change for the objective
function value, i.e.

V A(σ) = V B(σ), ρpmin/max
(A,B) = 0.

92

Proof. These parameters are limiting the amount of workload and resource r ∈ R utilized
by job j ∈ J , but do not modify directly the value of the objective function. As it was
mentioned above,

|V A(σ)− V B(σ)| = |
∑
r∈R

∑
t∈T

oArt −
∑
r∈R

∑
t∈T

oBrt|,

and ort = max{0, er(
∑
j∈J

cjrt − Lrt)}. If σ is applicable to A and B, then

dσjtp
A
min,jr ≤ cσjrt ≤ dσjtp

A
max,jr, j ∈ J, r ∈ R, t ∈ T ;

dσjtp
B
min,jr ≤ cσjrt ≤ dσjtp

B
max,jr, j ∈ J, r ∈ R, t ∈ T ;

the values of cσjrt will not be changed, as any other part of |V A(σ)− V B(σ)|.

So, it is possible to formulate the following estimation for the optimal solutions.

Lemma 7. Consider instances A and B which differ by parameters pmax,jr and/or pmin,jr.
Suppose that an optimal solution σA of instance A is applicable to instance B and an
optimal solution σB of instance B is applicable to instance A. If we apply an optimal
solution of instance A i.e. σA as a solution to instance B, then we obtain the same value
of the objective function.

∆σ
a,pmin/max

(A,B) = V B(σA)− V B(σB) = 0 (5.15)

Proof. With the condition that both solutions are applicable to both instances, we can
directly use Lemma 1, as we can estimate all the components (ρp,max(A,B, sigmaA),
ρp,max(A,B, sigma

B), as well as the same values for pmin,jr).
If both solutions are applicable to both instances, it means that it is not necessary to

modify solution σA if it is applied to instance B to reach the optimal value of the objective
function, and the same for σB applied to instance A.

We can also show that the difference can be more than zero if either σA is not applicable
to B, or σB is not applicable to A, as a consequence, it is impossible to use Lemmas 1 and
6. For pmax,jr, if ∆pmax(A,B) > 0, it means that solution σA applied to instance B must
be modified to achieve an optimal solution. If pAmax,jr < pBmax,jr, then in some period t we
are allocating cBjrt > pAmax,jrd

B
jt of resource r for a job j, so a resulting σB is not applicable

to instance A. If there is a difference pAmax,jr > pBmax,jr, then it means that in some period
t we have to reduce an allocation of resource r for a job j, as cAjrt > pBmax,jrd

B
jt, so σA is not

applicable to instance B. It is possible to formulate a similar statement for parameters
pmin,jr.

93

Lemma 8. Consider instances A and B which differ only by parameters pmax,jr (or
pmin,jr). If a schedule π is applicable to both instances, there is an upper bound for the
difference in the values of the objective function can be estimated as follows:

|V A(σA(π))− V B(σB(π))| ≤ ρπpmax
(A,B) (5.16)

where

ρπpmax
(A,B) = mdmax{

∑
r∈R

er
∑
j∈J

[pAmax,jr−pBmax,jr]−,
∑
r∈R

er
∑
j∈J

[pAmax,jr−pBmax,jr]+}(5.17)

Proof. As in proofs of Lemmas 2 or 4, we estimate the impact of one parameter’s fluctu-
ation and then aggregate all fluctuations.

If pAmax,jr < pBmax,jr for some r ∈ R and j ∈ J in instances A and B, the difference in
the values of their objective function will lie within the following range:

[er(p
A
max,jr − pBmax,jr)md, 0],

If pAmax,jr > pBmax,jr, the range will be

[0, er(p
A
max,jr − pBmax,jr)md],

Any arbitrary set of fluctuations will form the following range representing an estimation
of ρπp,max(A,B):

[
∑
r∈R

ermd
∑
j∈J

[pAmax,jr − pBmax,jr]−,
∑
r∈R

ermd
∑
j∈J

[pAmax,jr − pBmax,jr]+]

Lemma 9. Consider instances A and B which differ by parameters pmax,jr. Suppose that
an optimal solution σA of instance A is applicable to instance B and an optimal solution
σB of instance B is not applicable to instance A. If we apply the optimal solution of
instance A σA as a solution to instance B, then the objective function values difference is
bounded above by the following expression

∆σ
n,pmax

(A,B) = V B(σA)− V B(σB) ≤
∑
r∈R

ermd
∑
j∈J

|pAmax,jr − pBmax,jr| (5.18)

Proof. We note that in our case any fluctuations in values pmax,jr (and/or pmin,jr) don not
impact the objective function, as it was shown in Lemma 6, i.e. V A(σA) = V B(σA). We
can use the same approach as in the proof of Lemma 5 to compare V A(σA) and V B(σB).
Firstly, the absolute value of the difference has the form:

|V A(σA)− V B(σB)| ≤
∑
r∈R

er
∑
t∈T

∑
j∈J

|cAjrt − cBjrt|.

94

Secondly, taking into account the limits for cjrt,

pAmin,jrd
A
jt ≤ cAjrt ≤ pAmax,jrd

A
jt

pBmin,jrd
B
jt ≤ cBjrt ≤ pBmax,jrd

B
jt,

we can provide an upper estimation

|V A(σA)− V B(σB)| ≤
∑
r∈R

erm
∑
j∈J

|pAmax,jr − pBmax,jr|d,

as djt ∈ [0, d] and there are m periods inside the planning horizon.

The same expressions can be formed for the lower limit pmin,jr.

Work volume fluctuations

Consider the case where two instances A and B differ by values of Wjr. It is impossible
to apply the same solution σ (with the same values of cjrt) to both instances, so the idea
of a metric estimation is not applicable in the same form. We will provide an estimation
for the case when only the schedule is applied. With this schedule, an optimal resource
allocation is constructed in a polynomial time (an optimal resource allocation with a given
schedule is an LP). The schedule must be applicable to both instances (see Definition 5).

Lemma 10. Consider instances A and B which differ only by Wjr. If we apply the
same schedule π to the both instances, the upper bound for the difference in values of the
objective function can be estimated as follows:

|V A(σA(π))− V B(σB(π))| ≤ ρπW (A,B), (5.19)

where

ρπW (A,B) = max{
∑
r∈R

er
∑
j∈J

[WA
jr −WB

jr]
+,

∑
r∈R

er
∑
j∈J

[WA
jr −WB

jr]
−}. (5.20)

Proof. We can refer to proof of Lemma 4. In this case, it is also possible to evaluate an
upper bound for the difference in the values of the objective function and to consider it
as an independent sum of estimations for fluctuations WA

jr 6= WB
jr .

Each fluctuation WA
jr > WB

jr may lead to the difference in the values of the objective
function within the following range [WB

jr −WA
jr, 0]. An upper bound for an aggregation of

all these changes can be represented with the following range

[
∑
r∈R

er
∑
j∈J

min{(WB
jr −WAjr), 0}, 0].

95

The same approach can be applied for the case where WA
jr < WB

jr . The difference in
the values of the objective function caused by all fluctuations of Wjr:

[0,
∑
r∈R

er
∑
j∈J

max{(WB
jr −WAjr), 0}].

If we regroup the two previous cases, we obtain the following range:

[
∑
r∈R

er
∑
j∈J

min{(WB
jr −WAjr), 0},

∑
r∈R

er
∑
j∈J

max{(WB
jr −WAjr), 0}],

and the following estimation

ρπW (A,B) = max{
∑
r∈R

er
∑
j∈J

max{(WA
jr −WB

jr), 0},
∑
r∈R

er
∑
j∈J

max{(WB
jr −WA

jr), 0}}

Secondly, we construct an estimation for an optimal schedule for instance A applied
to instance B.

Lemma 11. Consider instances A and B which differ only by parameters Wjr. If we
apply the optimal schedule πA of instance A to instance B, then the upper bound for the
difference in the values of the objective function can be estimated as follows:

V B(σB(πA))− V B(σB(πB)) ≤ ∆π
W (A,B) =

∑
r∈R

er
∑
j∈J

|WA
jr −WB

jr |. (5.21)

Proof. As in the proof of Lemma 5, we consider possible orderings of the values of
V A(σA(πA)); V B(σB(πB)); V A(σA(πB)); V B(σB(πA)).

For the cases 1-4 and 6 we use Lemma 10, concluding that the considered difference
is less than the right side of inequality (5.20), that is less than (5.21).

We prove the same for case 5 in the following way. We use the same approach as in
Lemma 10. Firstly, we show that the difference

V A(σA(πA))− V B(σB(πB)) ≤
∑
r∈R

er
∑
j∈J

max{(WA
jr −WB

jr), 0}

Instance B can provide a better solution only with additional amount of resource. Sec-
ondly, we provide the estimation for the difference

V B(σB(πA))− V A(σA(πA)) ≤
∑
r∈R

er
∑
j∈J

max{(WB
jr −WA

jr), 0}

In instance B the same schedule πA may provide worse objective function value, with the
difference up to the total reduction of the resource amount. These two components are

96

bounded and form the initial difference V B(σB(πA))− V B(σB(πB)), therefore, the upper
bound is the same as in inequality (5.20).

5.3 A generalized metric estimation

In previous sections, we have described the upper estimations for all parameters except the
number of periods, jobs, resources, and precedence graph. For each parameter, we have
proved that there exists an upper bound for the difference in the values of the objective
function that linearly depends on the difference in the values of this parameter for two
problem instances.

As it was noticed, in our case of RLP it is necessary to take into account that the fluc-
tuations of some parameters may lead to the infeasibility of a solution or the infeasibility
of a schedule. In Table 5.2, we present the set of considered parameters and the impact
of their fluctuations on the objective function and the feasibility of the solution and the
schedule.

We can conclude that since here we have too strict requirements (for example, any
change of Wjr leads to the infeasibility of a solution), it is reasonable to consider an
estimation for the optimal schedule ∆π(A,B). In addition, since a complete solution can
be obtained from a schedule in a polynomial time, this option is the most acceptable for
an arbitrary difference between a pair of problem instances.

Table 5.2: The summary of all estimations

parameter possible to use? metric
σ π

er any σ any π ∆π
e (A,B)

Lrt any σ any π ∆π
L(A,B)

pmin,jr applicable σ applicable π ∆π
pmin

(A,B)
pmax,jr applicable σ applicable π ∆π

pmax
(A,B)

Wjr impossible applicable π ∆π
W (A,B)

Overall impossible applicable π ∆π(A,B)

Here below, Theorem 1 aggregates the estimations for two instances A and E, varying
in any of the listed parameters.

Theorem 1. Suppose there are two instances A and E that differ by parameters Lrt, Wjr,
pmin,jr, and pmax,jr. If we apply a schedule πA that is optimal for instance A to instance

97

E, the upper bound for difference in the values of the objective function can be estimated
as follows:

V E(σE(πA))− V E(σE) ≤ ∆π(A,E); (5.22)

and

∆π(A,E) = ∆π
L(A,E) + ∆π

pmin
(A,E) + ∆π

pmax
(A,E) + ∆π

W (A,E). (5.23)

Proof. It is possible to separate this function and proof this statement with a chain of
additional instances:

• B, all parameters equal to instance A except Lrt, and LBrt = LErt;

• C, all parameters equal to instance B except pmin,jr, pCmin,jr = pEmin,jr;

• D, all parameters equal to instance E except pmax,jr, pDmax,jr = pEmax,jr;

We note that instances D and E differ only in parameters Wjr.
As each expression includes a sum of absolute values, ∆π(A,E) has an addictive

property:
∆π(A,E) ≤ ∆π(A,B) + ∆π(B,C) + ∆π(C,D) + ∆π(D,E).

We take into account that ∆π(A,B) = ∆π
L(A,B), ∆π(B,C) = ∆π

pmin
(B,C), ∆π(C,D) =

∆π
pmax

(C,D), ∆π(D,E) = ∆π
W (D,E), so

V E(σE(πA))− V E(σE) ≤ ∆π
L(A,B) + ∆π

pmin
(B,C) + ∆π

pmax
(C,D) + ∆π

W (D,E),

and as the parameters of all instances B, C, D are either equal to parameters A or E,

V E(σE(πA))− V E(σE) ≤ ∆π
L(A,E) + ∆π

pmin
(A,E) + ∆π

pmax
(A,E) + ∆π

W (A,E).

We formulate linear inequalities guaranteeing the applicability of one schedule found
for one instance to a different problem instance.

Lemma 12. Suppose there are two instances A and B that differ in one of parameters
pmin,jr. pmax,jr or Wjr. Any schedule π, applicable to instance A, is also applicable to
instance B, if B is solvable and:

dBmin,j ≤ dAmin,j; d
A
max,j ≤ dBmax,j; ∀j ∈ J, (5.24)

or it can be reformulated in a linear form for the parameters of B:

WB
jr ≤ dAmin,jp

B
max,jr; d

A
max,jp

B
min,jr ≤ WB

jr ; ∀j ∈ J ; ∀r ∈ R. (5.25)

98

Proof. From Definition 5, we see that a schedule π must guarantee that∑
t∈T

djt ∈ [dBmin,j, d
B
max,j]; ∀j ∈ J.

If is is applicable to A, then∑
t∈T

djt ∈ [dAmin,j, d
A
max,j]; ∀j ∈ J.

Basically, we can guarantee that π is applicable to B if range [dAmin,j, d
A
max,j] is fully

included in [dBmin,j, d
B
max,j], so

dBmin,j ≤ dAmin,j; d
A
max,j ≤ dBmax,j; ∀j ∈ J.

A linear condition for B is obtained from the definition of dmin,j and dmax,j (3.25). If we
consider dAmin,j and dAmax,j given and fixed, we rewrite the conditions (5.24):

max
r∈R

WB
jr

pBmax,jr
≤ dAmin,j; d

A
max,j ≤ min

r∈R

WB
jr

pBmin,jr
; ∀j ∈ J,

and reformulate these conditions without a maximum:

WB
jr

pBmax,jr
≤ dAmin,j; d

A
max,j ≤

WB
jr

pBmin,jr
; ∀j ∈ J ; ∀r ∈ R.

This lemma also allows us to study the robustness of the schedule in relation to these
parameters.

We have proved that the basic approach with metric estimations is applicable to our
version of RLP. The majority of relevant parameters that can fluctuate bring a linearly-
dependent change of the solution quality. Still, for our case of RLP, the main issue consists
of the description of solvable subsets of problem instances.

We can also improve the estimations presented here above for another situation: where
we have instance A and a given (sub)-optimal baseline schedule πA. Instance B represents
a modified version of instance A affected by possible fluctuations.

For this situation, we can provide a non-metric estimation, depending on πA, defined
as ∆π(A,B, πA). Based on the schemes used in the previous lemmas, we provide a list of
improved partial schedule-dependent estimations:

• ∆π
e (A,B, πA) =

∑
r∈R
|eAr − eBr |

∑
t∈T

oBrt(π
A) ≤ ∆π

e (A,B)

• ∆π
L(A,B, πA) = ∆π

L(A,B)

99

• ∆π
p,min(A,B, πA) =

∑
r∈R

er
∑
t∈T

∑
j∈J
|pAmin,jr − pBmin,jr|dAjt ≤ ∆π

p,min(A,B)

• ∆π
p,max(A,B, π

A) =
∑
r∈R

er
∑
t∈T

∑
j∈J
|pAmax,jr − pBmax,jr|dAjt ≤ ∆π

p,max(A,B)

• ∆π
W (A,B, πA) = ∆π

W (A,B)

With a generalized expression (same approach as Theorem 1)

∆π(A,B, πA) = ∆π
e (A,B, πA) + ∆π

L(A,B, πA)+

+∆π
p,min(A,B, πA) + ∆π

p,max(A,B, π
A) + ∆π

W (A,B, πA). (5.26)

5.4 Feasibility and properties of the space of problem

instances

In [31], there is a measure denoted as a stability radius for the feasibility and optimality of
schedules in case of some shifts in parameters. We consider the range of possible changes
providing feasibility and optimality in Table 5.3

Table 5.3: Impact of the fluctuations of parameters: allowed changes guaranteeing feasi-
bility and optimality

parameter changes guaranteeing feasibility
applying π applying σ

er ∞ ∞
Lrt ∞ ∞
pmin,jr Lemma 12 applicable σ
pmax,jr Lemma 12 applicable σ
Wjr Lemma 12 0

Overall Lemma 12 0

Further, we consider some scaling properties of the space of problem instances. We can
show that there are some transformations of instances, leading to the same set of feasible
schedules and the same optimal schedule. In this case, a new optimal value is predictable,
as well as a whole solution.

100

Lemma 13. Suppose that instance B is produced from instance A by the following trans-
formation: all job-resource-related parameters are multiplied by a coefficient k > 0. We
will define it as kA = B meaning that kLArt = LBrt; ∀r ∈ R; ∀t ∈ T ; and kpAmin,jr =

pBmin,jr; kp
A
max,jr = pBmax,jr; kW

A
jr = WB

jr ; ∀j ∈ J ; ∀r ∈ R. In this case, both instances
A and B have a same set of feasible schedules and a set of optimal schedules with scaled
solution variables

kcAjrt = cBjrt; ∀j ∈ J ; ∀r ∈ R; koArt = oBrt; ∀r ∈ R; ∀t ∈ T. (5.27)

Thus, objective function values are also scaled:

V B(σB) = kV A(σA). (5.28)

Proof. Firstly, this transformation does not change any parameter involved in the defini-
tion of a schedule, applicable to an instance (see Def. 5). It does not change precedence
relations nor values of minimal and maximal duration. These values equal to a ratio of
required workload Wjr and a maximal or a minimal amount of allocated resource (pmax,jr
or pmin,jr), both multiplied by k. Thus, such a transformed instance is still solvable.

Secondly, we consider the solutions. If schedule πA with variables dAjt is optimal for
instance A, providing a solution σA(πA) with variables cAjrt, then this schedule is also
applicable to instance B. It produces a scaled optimal solution σB(πA) with variables
cBjrt. This solution is also optimal, as the solution variables cjrt are defined on a base
of a schedule (i.e. variables djt), that are connected by the constraints (3.19). We can
represent these constraints with parameters of instance A:

kpAmin,jrd
A
jt = pBmin,jrd

B
jt ≤ cBjrt

cBjrt ≤ pBmax,jrd
B
jt = kpAmax,jrd

A
jt,

}
∀j ∈ J, ∀r ∈ R, ∀t ∈ T ;

and by Wjr with constraints (3.20)∑
t∈T

cBjrt = WB
jr = kWA

jr, ∀j ∈ J, ∀r ∈ R.

All these linear constraints are scaled for instance B, and it keeps the same ratio between
all these parameters. Finally, objective function (3.22) involves variables: ort ∈ [0,∞)

Minimize
∑
r∈R

∑
t∈T

erort,

defined by constraints (3.21):

ort ≥
∑
j∈J

cjrt − Lrt, ∀t ∈ T, ∀r ∈ R;

101

where both cjrt and Lrt are multiplied by k in instance B:∑
j∈J

cBjrt − LBrt = k(
∑
j∈J

cAjrt − LArt), ∀t ∈ T, ∀r ∈ R.

As we minimize ort, then there is no reason to change neither a structure of a schedule
or a solution in the changed instance B. That is why a solution with variables cBjrt is
optimal, as well as schedule πA providing it with variables dAjt. Therefore, there exists
solution σB with variables cBjrt = kcAjrt based on the same schedule and it is optimal with
the following objective value

V B(σB) = kV A(σA).

We can use this scaling feature to improve the previous estimation. There is an original
instance A that was affected by some changes and transformed into instance B, with a
given (sub)optimal schedule πA (and a solution σA). An original estimation ∆(A,B) is
constructed between two instances A and B for the case where we apply a given schedule
πA to instance B. We can use a two stage-approach:

1. construct a scaled instance kA (k > 0) that will have a better estimation ∆(kA,B) ≤
∆(A,B);

2. apply πA = πkA to B as there are equal optimal schedules in instances A and kA,
estimation ∆(kA,B) can be considered as the estimation in this case.

We illustrate this scheme in Figure 5.1. We consider two points A and B of Ω, space
of problem instances. A metric estimation ∆(A,B) can be improved, if we can find an
instance kA that is closer to B and can keep the same solution. Here we mark two squares
representing a set of instances with a fixed l1 metric, equal to a metric between A and B,
and a metric between kA and B. We define a l1 norm || · ||1 on space Ω based on function
∆(A,B):

||A|| =
∑
r∈R

eAr (
∑
t∈T

|LArt|+md
∑
j∈J

(|pAmin,jr|+ |pAmax,jr|) +
∑
j∈J

|WA
jr|).

Norm axioms are verified for this formula:

||A|| = 0⇐⇒ A = 0;

||kA|| = |k| · ||A||;

||A+B|| ≤ ||A||+ ||B||;

102

Figure 5.1: Representation of scaling case.

and
∆(A,B) = ||A−B||.

5.5 Experiments

5.5.1 Datasets

We perform several tests to evaluate our approach. First, we evaluate the frequency of
situations where an original schedule πA is still applicable to instance B and remains
optimal. Secondly, we determine the accuracy of our estimations in the case when we
partially reconstruct the solution for a new instance with the LP subproblem.

For each instance A we find an optimal solution (or a suboptimal one obtained with
a time limit) and construct an instance B on the basis of A with some changes. We will
vary the absolute value and the number of changes in parameters Wjr and Lrt. These
parameters appear to be the most interesting as they are frequently affected by unexpected
changes in practice. After that, we solve instance B to find a real optimal solution whose
value is used as a baseline measure for comparison.

We use a MILP model that was described in Chapter 3. This MILP model is used to
solve the instances and the LP subproblem (see Definition 7) is used to obtain an optimal
solution σB(πA) based on given schedule πA. The tests are realized with a solver CPLEX
12.10.

We study the relative accuracy G(A,B) of our estimation defined as follows:

G(A,B) =
V B(σB(πA))− V B(σB(πB))

∆π(A,B)
. (5.29)

103

We note that G(A,B) = 0 when V B(σB(πA)) = V B(σB(πB)), meaning that schedule
πA remains optimal and provides an optimal solution for a new instance in a polynomial
time.

Table 5.4: Parameters of datasets

Group |T | d |J | |R| |P | SP

inst_j10_r3 20
2

10 3 5–15
0.2–0.8inst_j15_r3 25 15 3 5–20

inst_j20_r5 30 20 5 5–40

These estimations are evaluated for different fluctuations in terms of modified parameters
and the magnitude of fluctuations. We vary the scale and the structure of the instances
according to the list presented in Table 5.4. There are three groups, having a different
number of resources and jobs, with a varying precedence graph size and structure. We
also define a set of given magnitude |δ| of possible input data changes and a number of
these changes. For each group and each pair magnitude-quantity, we generate 200 random
instances.

5.5.2 Results

We start with dataset inst_j10_r3. The results are presented in Table 5.5. Firstly,
we vary workload Wjr. With a fixed magnitude of changes |δ| = 5.0 (equal to 10% of
WU), we increase the number of changes from 1 to 30, that is the maximal value, as
Nmax = |J | · |R| = 30. The accuracy is predictably decreasing with the growth of changes.
A real value of the difference in the objective function is between 0.18 and 0.3 of our
estimation.

We note that the schedule is quite stable in terms of optimality for one change of higher
magnitude. For about 30-40% of instances, it is possible to reconstruct the solution for a
modified instance with an existing schedule and keep it optimal.

With variations in the given available resource amount Lrt values, we can make the
same conclusion. A lot of variations of low magnitude gradually reduce the percentage of
schedules remaining optimal, with a relative accuracy decreasing from 0.3 to 0.1.

We note that we obtained a surprisingly high percentage of saved schedules (the-
oretically, it should decrease with a growing magnitude) on the highest magnitude of
changes for both parameters. It can be explained by the impact of the restriction that

104

Table 5.5: Results for dataset group inst_j10_r3.

Variations N
changes |δ| % cases πA = πB

(remains optimal)
other cases: G(A,B)
min mean max

Wjr,
with

Nmax = 30

1

5.0

40 0.0001 0.3267 0.7826
5 15 0.0009 0.2713 0.7679
10 3 0.0011 0.2239 0.6551
20 0 0.0466 0.1971 0.4700
30 0 0.0351 0.1817 0.4592

1
10.0 41 0.0222 0.4505 1.0
15.0 28 0.0013 0.3324 0.9310
20.0 39 0.0046 0.3156 0.9756

Lrt,
with

Nmax = 60

1

5.0

60 0.0047 0.3132 0.9636
5 17 0.0012 0.1727 0.5015
10 3 0.0049 0.1554 0.3975
20 0 0.0110 0.1312 0.3099
30 1 0.0017 0.1257 0.2933
40 0 0.0169 0.1096 0.2783

1

10.0 45 0.0015 0.2871 0.9297
20.0 35 0.0009 0.2059 0.6129
30.0 41 0.0001 0.1539 0.6507
40.0 49 0.0028 0.1822 0.6147

reduced the changes to avoid negative values of WB
jr and LBrt: WB

jr = max{WA
jr ± δ, 0},

LBrt = max{LArt ± δ, 0}.

We increase the number of jobs in the second dataset inst_j15_r3. The results are
described in Table 5.6 with the same structure of presentation. For this dataset, we also
note that the schedule is more stable in the case of a single change of higher magnitude
than a set of many relatively smaller changes (even taking into account the limitations of
magnitude to avoid negative parameters).

The results for the third dataset inst_j20_r5, are presented in Table 5.7. For this last
dataset, we note that with an increased scale of instances the mean relative accuracy was
increased, especially for the high-magnitude single shift.

105

Table 5.6: Results for dataset inst_j15_r3.

Variations N
changes |δ| % cases πA = πB

(remains optimal)
other cases: G(A,B)
min mean max

Wjr,
with

Nmax = 30

1

5.0

40 0.0001 0.3267 0.7826
2 34 0.0019 0.2345 0.9629
3 14 0.0001 0.2803 0.7609
4 14 0.0003 0.2506 0.9294
5 15 0.0018 0.2713 0.7679
6 4 0.0016 0.2319 0.7610
7 1 0.0009 0.2023 0.5777
8 4 0.0115 0.2087 0.6459
9 5 0.0057 0.2083 0.6782
10 3 0.0011 0.2239 0.6551
20 0 0.0466 0.1971 0.4700
30 0 0.0351 0.1817 0.4592

1
10.0 41 0.0222 0.4505 1.0
15.0 28 0.0013 0.3324 0.9310
20.0 39 0.0046 0.3156 0.9756

Lrt,
with

Nmax = 60

1

5.0

60 0.0047 0.3132 0.9636
2 40 0.0001 0.2236 0.8172
3 25 0.0016 0.2282 0.7787
4 13 0.0165 0.2404 0.7391
5 17 0.0012 0.2023 0.7119
6 9 0.0006 0.1882 0.5800
7 8 0.0028 0.1774 0.6919
8 6 0.0018 0.1611 0.5672
9 3 0.0037 0.1543 0.4278
10 3 0.0049 0.1554 0.3975
20 0 0.0110 0.1312 0.3099
30 1 0.0017 0.1257 0.2933
40 0 0.0169 0.1096 0.2783

1

10.0 45 0.0015 0.2871 0.9297
20.0 35 0.0009 0.2059 0.6129
30.0 41 0.0001 0.1539 0.6507
40.0 49 0.0028 0.1822 0.6147

106

Table 5.7: Results for dataset inst_j20_r5.

Variations
N

changes
|δ|

% cases πA = πB

(remains optimal)
other cases: G(A,B)
min mean max

Wjr,
with

Nmax = 100

1

5.0

39 0.0015 0.3880 1.0
2 35 0.0024 0.3509 0.9219
3 27 0.0105 0.2896 0.9789
4 22 0.0009 0.2355 0.8836
5 22 0.0014 0.2271 0.9314
6 12 0.0070 0.1976 0.8712
7 14 0.0010 0.1586 0.8450
8 17 0.0003 0.1740 0.8093
9 9 0.0081 0.1577 0.8290
10 9 0.0018 0.1847 0.9628
20 4 0.0021 0.1299 0.6112
30 4 0.0015 0.1121 0.6652
40 3 0.0081 0.1067 0.6300

1

10.0 37 0.0052 0.4120 0.9511
20.0 33 0.0150 0.3929 0.9639
30.0 33 0.0113 0.4455 1.0
40.0 23 0.0073 0.4002 1.0

Lrt,
with

Nmax = 150

1

5.0

53 0.0033 0.4043 1.0
2 32 0.0014 0.3621 0.9964
3 23 0.0034 0.2541 0.9452
4 21 0.0097 0.2257 0.9905
5 15 0.0035 0.2047 0.9604
6 20 0.0083 0.1714 0.6456
7 12 0.0006 0.1842 0.7771
8 10 0.0002 0.1530 0.4659
9 7 0.0051 0.1449 0.5921
20 2 0.0001 0.1124 0.3250
40 0 0.0044 0.1033 0.2825
60 0 0.0218 0.0907 0.1834

1

10.0 41 0.0057 0.3906 1.0
20.0 35 0.0091 0.3502 0.9911
30.0 30 0.0005 0.3309 0.9991
40.0 24 0.0047 0.3052 0.9577

107

Experimental results demonstrate that a schedule has significant stability.The reallo-
cation of resources within the same schedule works better for a single peak change (about
30-45%), but also possible in some multiple-change cases (1-15%).

The value of relative accuracy G(A,B) for the cases where the optimality was not
reached is gradually decreasing with the number and the magnitude of changes. The
percentage of saved optimal schedules is higher for the case of single fluctuation in input
data: with the mean value about 0.3–0.4 for a single fluctuation and 0.1–0.2 for multiple
changes. The accuracy of the method is not decreasing for large-scale problem instances.

5.6 Conclusions

To sum up, we have developed the concept of metric-based estimation for a generalized
formulation of the RLP problem with an objective function minimizing an extra resource
usage cost. The idea is based on the consideration of the instance space and the upper
bound metric accuracy estimations for the case where a solution found for one instance
is applied to another instance.

We developed this method for the resource leveling problems and proved that in our
case some practically significant variations in input data provide linearly bounded changes
in solution quality. It was demonstrated for all resource-job parameters, such as demanded
and available resource amount. We considered the problem as two logical parts: scheduling
and resource allocation. Resource allocation can be performed with an LP model with
a given baseline schedule. We described theoretically the feasibility requirements for a
baseline schedule, and use it as a robust partial solution. Experimental results show that
a significant part of resource-related input data variations still allows us to apply the
baseline schedule fund for one instance to the modified problem instance.

108

Chapter 6

General conclusions

This thesis proposes new modeling techniques to tackle problems with integrated project
planning and scheduling. These problems arise in all areas and become more and more
important nowadays. The scale and complexity of projects are growing, and it increases
the risk of possible losses from poor quality planning. For some systems (e.g., transport),
the mode of operation is usually predicted for a long time but requires a quick response
in case of sudden incidents and changes in the situation. Besides the quality of planning,
the speed of analysis and reaction is also important.

Mathematically justified decision-making can improve both indicators. Chapter 1
illustrates modern practical cases, challenges, and the achievements of planning systems.
It shows that current models aim at efficiency and resource management and the respect
of deadlines. We also note that in many real-life cases, the uncertainty of the data makes
high-quality planning more difficult. Unexpected changes and accidents ruin the plans
and set tough limits on the time given to rebuild alternative solutions.

This thesis is dedicated to the development of mathematical models for project plan-
ning and scheduling with attention to these points. In Chapter 2, we present state-of-the-
art models and methods starting with the original formulation of Resource-Constrained
Project Scheduling Problem. Many modeling techniques and solution methods were de-
veloped for RCPSP, but are also common for a wide class of project planning problems
as Resource Leveling Problems (RLP). In contrast to RCPSP that minimizes the project
completion time, models the objective functions for RLP are oriented to the resource uti-
lization. We also review the uncertainty modeling for these classes of planning problems.

Chapter 3 introduces and describes the particular RLP statement studied in this thesis.
It is a generalized RLP that reduces resource overload costs within a fixed project deadline.
The problem includes additional features: variable job duration and resource allocation
per job over periods. We propose a flexible resource allocation that allows the assignment
of different resource types independently in one time period for each job. On the one
hand, it requires additional decision variables and increases the size of the model. On

109

the other hand, it allows constructing better solutions with lower costs. We study this
model on benchmark instances and compare our model with the basic formulations from
the literature.

Tests on existing RLP benchmarks show that independent resource allocation reduces
the costs by 7% on average. Even if the solution time is longer, however, even within
an equal time limit, our model provides better suboptimal solutions (by 6% on average).
Additional tests on new generated data sets show that for a higher level of available
resources, our model may provide the reduction of costs up to 50% on average.

In Chapter 4, we describe a new solution approach based on Benders decomposition.
It decomposes the problem into the MILP master problem and LP subproblem. Dual LP
subproblems use the partial solutions of the master problem to construct additional cuts.
We combine a set of various improvements, both at the structural level of the algorithm
and at the technical implementation level. An important point is the use of a single search
tree instead of multiple master problem runs (so-called Branch&Benders cuts). Valid
inequalities eliminate infeasible partial solutions for the master problem and therefore
reduce the number of iterations. The lower bounds for the master problem accelerate the
convergence of the approach. On the technical level, we implemented the single search
tree with so-called callback procedures. We performed computational experiments with
CPLEX 12.10 solver.

We compared this algorithm with the built-in solver Benders decomposition and stan-
dard B&C for our RLP model. The results of numerical experiments show the efficiency of
the algorithm. It significantly outperforms built-in Benders decomposition and standard
B&C, especially with a growing number of resource types. It is capable of solving larger
instances. For example, it solved some problem instances with 50 jobs and 10 resource
types to optimality. Within the same time limit, the built-in Benders and B&C had a
relative gap from 1.0 to 0.5.

We discuss the uncertainty of the data for our formulation of RLP in Chapter 5. We
explore a metric approach that uses the solution found for one problem instance in order
to propose it to another problem instance with the estimated difference in the value of
the objective function. For our formulation of RLP, it is difficult to find polynomially
solvable subsets, however, it is possible to construct an estimation of the upper bound for
the error on the optimal value for the problem instance that has not been solved. This
estimation may help to decide if it is necessary to solve this new instance. For example,
if an accident reduces the number of available resources, it is important to decide if the
initially planned solution still can be used without important losses or the project should
be immediately rescheduled in order to avoid significant penalties.

We propose and study two options: either it is possible to keep the initial solution
or a schedule only. The schedule is a set of decision variables defining the start and end

110

times for jobs. The second option has several advantages. It allows us to adapt the
resource allocation to new conditions in polynomial time (by solving an LP subproblem).
Thus, higher accuracy can be achieved with this suboptimal approximation. We study the
conditions where a solution or a schedule found for problem instance A can be applicable
to problem instance B.

First, we provide an upper bound estimation for the case where a solution found
for one problem instance is applied to another problem instance. Second, we formulate
the conditions where it is possible, we assess the robustness of a schedule. We study
variations of all input parameters except for the precedence relations. The computational
experiments are conducted on the instances with variations in resource demand and supply
within the range of 10%–100% in magnitude and with the increasing number of variations
from one to the possible maximum. The option of keeping the schedule is stable both
in terms of feasibility and optimality. It is possible to keep the schedule and guarantee
the optimality of the solution in 30-45% of cases for a single variation, and up to 15% for
multiple variations.

The generalized formulation of RLP studied in this thesis can be enriched with more
practical constraints as consideration of non-renewable resources, discrete resource capac-
ities, different objective functions, etc.

In terms of future solution methods, it would be interesting to implement the whole
problem or its scheduling part with constraint programming, since the current CP solvers
show relatively good results for scheduling problems.

Regarding data uncertainty, experimental results inspire us to find a theoretical de-
scription of conditions that guarantee that the solution remains optimal with given data
variations. Another point is to study the variations of precedence relations. That leads to
the next step, the development of rescheduling procedures for the cases where the known
schedule can no more be applied to a changed instance. For the class of problems that
can be solved in a repetitive way, Machine Learning approaches can be also promising to
anticipate the changes in the input data.

111

Chapter 7

Bibliography

[1] A. Alan B. Pritsker, Lawrence J. Watters, and Philip M. Wolfe. Multiproject
scheduling with limited resources: A zero-one programming approach. Manage-
ment Science, 16(1):93–108, 1969.

[2] J. Blazewicz, J.K. Lenstra, and A.H.G.Rinnooy Kan. Scheduling subject to resource
constraints: classification and complexity. Discrete Applied Mathematics, 5(1):11–
24, 1983.

[3] Emmanuel Néron, Christian Artigues, Philippe Baptiste, Jacques Carlier, Jean
Damay, Sophie Demassey, and Philippe Laborie. Lower Bounds for Resource Con-
strained Project Scheduling Problem, pages 167–204. Springer US, Boston, MA,
2006.

[4] Sigrid Knust. Lower Bounds on the Minimum Project Duration, pages 43–55.
Springer International Publishing, Cham, 2015.

[5] David R. Morrison, Sheldon H. Jacobson, Jason J. Sauppe, and Edward C. Sewell.
Branch-and-bound algorithms: A survey of recent advances in searching, branching,
and pruning. Discrete Optimization, 19:79–102, 2016.

[6] S.E. Terblanche and J.H. Van Vuuren. Benders decomposition of the resource con-
strained project scheduling problem. Technical Report FABWI-N-RA-2017-530,
Centre for Business Mathematics and Informatics, North-West University, South
Africa, 2017.

[7] M. Boschetti and V. Maniezzo. Benders decomposition, lagrangean relaxation and
metaheuristic design. Journal of Heuristics, 15(3):283–312, Jun 2009.

[8] Marco Giuntoli, Milos Subasic, and Susanne Schmitt. Control of distribution grids
with storage using nested benders’ decomposition. Electric Power Systems Research,
190:106663, 2021.

112

[9] Jesús A. Rodríguez, Miguel F. Anjos, Pascal Côté, and Guy Desaulniers. Accel-
erating benders decomposition for short-term hydropower maintenance scheduling.
European Journal of Operational Research, 289(1):240–253, 2021.

[10] Anurag Agarwal, Selcuk Colak, and Selcuk Erenguc. Metaheuristic Methods, pages
57–74. Springer International Publishing, Cham, 2015.

[11] Robert Pellerin, Nathalie Perrier, and François Berthaut. A survey of hybrid meta-
heuristics for the resource-constrained project scheduling problem. European Jour-
nal of Operational Research, 280(2):395–416, 2020.

[12] Dirk Briskorn and Michael Dienstknecht. Survey of quantitative methods in con-
struction. Computers & Operations Research, 92:194–207, 2018.

[13] Philippe Laborie. Algorithms for propagating resource constraints in ai planning and
scheduling: Existing approaches and new results. Artificial Intelligence, 143(2):151–
188, 2003.

[14] Julia Rieck and Jürgen Zimmermann. Exact Methods for Resource Leveling Prob-
lems, pages 361–387. Springer International Publishing, Cham, 2015.

[15] Christian Artigues, Pierre Lopez, and Alain Haït. The energy scheduling problem:
Industrial case-study and constraint propagation techniques. International Journal
of Production Economics, 143(1):13–23, 2013.

[16] Margaux Nattaf, Markó Horváth, Tamás Kis, Christian Artigues, and Pierre Lopez.
Polyhedral results and valid inequalities for the continuous energy-constrained
scheduling problem. Discrete Applied Mathematics, 258, 04 2019.

[17] Mikaël Capelle, Marie-José Huguet, Nicolas Jozefowiez, and Xavier Olive. Ground
stations networks for free-space optical communications: maximizing the data trans-
fer. Electronic Notes in Discrete Mathematics, 64:255–264, 2018. 8th International
Network Optimization Conference - INOC 2017.

[18] G. Baydoun, A. Haït, R. Pellerin, B. Cément, and G. Bouvignies. A rough-cut
capacity planning model with overlapping. OR Spectrum, 38(2):335–364, Mar 2016.

[19] Lucio Bianco, Massimiliano Caramia, and Stefano Giordani. Resource levelling in
project scheduling with generalized precedence relationships and variable execution
intensities. OR Spectrum, 38(2):405–425, Mar 2016.

[20] P.-A. Morin, C. Artigues, and A. Haït. Periodically aggregated resource-constrained
project scheduling problem. European J. of Industrial Engineering, 11:792, 01 2017.

113

[21] Maria Elena Bruni, Patrizia Beraldi, and Francesca Guerriero. The Stochastic
Resource-Constrained Project Scheduling Problem, pages 811–835. Springer Inter-
national Publishing, Cham, 2015.

[22] Christian Artigues, Oumar Koné, Pierre Lopez, and Marcel Mongeau. Mixed-Integer
Linear Programming Formulations, pages 17–41. Springer International Publishing,
Cham, 2015.

[23] Oncu Hazir, Erdal Erel, and Yavuz Gunalay. Robust optimization models for the dis-
crete time/cost trade-off problem. International Journal of Production Economics,
130(1):87–95, 2011.

[24] Oncu Hazir and Gunduz Ulusoy. A classification and review of approaches and
methods for modeling uncertainty in projects. International Journal of Production
Economics, 223:107522, 2020.

[25] Stan Schenkerman. Sensitivity of linear programs to related changes in multiple
inputs*. Decision Sciences, 24(4):879–891, 1993.

[26] Harvey M. Wagner. Global sensitivity analysis. Operations Research, 43(6):948–969,
1995.

[27] M. W. Dawande and J. N. Hooker. Inference-based sensitivity analysis for mixed
integer/linear programming. Operations Research, 48(4):623–634, 2000.

[28] Zhenya Jia and Marianthi G. Ierapetritou. Short-term scheduling under uncertainty
using MILP sensitivity analysis. Industrial & Engineering Chemistry Research,
43(14):3782–3791, 2004.

[29] M. Ierapetritou and Zhenya Jia. Scheduling under uncertainty using MILP sensitiv-
ity analysis. In European Symposium on Computer-Aided Process Engineering-14,
volume 18 of Computer Aided Chemical Engineering, pages 931–936. Elsevier, 2004.

[30] Vladimir Emelichev, Evgeny Gurevsky, and Andrey Platonov. On stability and
quasi-stability radii for a vector combinatorial problem with a parametric optimality
principle. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, (2),
2009.

[31] Evgeny Gurevsky, Olga Battaïa, and Alexandre Dolgui. Stability measure for
a generalized assembly line balancing problem. Discrete Applied Mathematics,
161(3):377–394, 2013.

114

[32] A. A. Lazarev. Estimates of the absolute error and a scheme for an approximate
solution to scheduling problems. Computational Mathematics and Mathematical
Physics, 49(2):373–386, Feb 2009.

[33] A. A. Lazarev, P. S. Korenev, and A. A. Sologub. A metric for total tardiness
minimization. Automation and Remote Control, 78(4):732–740, Apr 2017.

[34] A. A. Lazarev and A. G. Kvaratskheliya. Metrics in scheduling problems. Doklady
Mathematics, 81(3):497–499, Jun 2010.

[35] Frederick Winslow Taylor. The Principles of Scientific Management. McMaster
University Archive for the History of Economic Thought, 1911.

[36] H.L. Gantt. A graphical daily balance in manufacture. Transactions of the American
Society of Mechanical Engineers, 24:1322–1336, 1903.

[37] James E. Kelley and Morgan R. Walker. Critical-path planning and scheduling.
In Papers Presented at the December 1-3, 1959, Eastern Joint IRE-AIEE-ACM
Computer Conference, IRE-AIEE-ACM ’59 (Eastern), page 160–173, New York,
NY, USA, 1959. Association for Computing Machinery.

[38] D. G. Malcolm, J. H. Roseboom, C. E. Clark, and W. Fazar. Application of a
technique for research and development program evaluation. Operations Research,
7(5):646–669, 1959.

[39] Richard Bellman. Mathematical aspects of scheduling theory. Journal of the Society
for Industrial and Applied Mathematics, 4(3):168–205, 1956.

[40] Richard Walter Conway, W.L. Maxwell, J.A. Cronin, W.L. Maxwell, L.W. Miller,
J.R. Shoenfield, and L.W. Miller. Theory of Scheduling. Addison-Wesley Publishing
Company, 1967.

[41] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings
of the Third Annual ACM Symposium on Theory of Computing, STOC ’71, page
151–158, New York, NY, USA, 1971. Association for Computing Machinery.

[42] L.A. Levin. Universal sequential search problems. Probl. Peredachi Inf., 9(3):115–
116, 1973.

[43] Richard M. Karp. Reducibility among Combinatorial Problems, pages 85–103.
Springer US, Boston, MA, 1972.

[44] Peter Brucker, Silvia Heitmann, and Sigrid Knust. Scheduling railway traffic at a
construction site. OR Spectrum, (24):19–30, 2002.

115

[45] Juan Pablo Usuga Cadavid, Samir Lamouri, Bernard Grabot, Robert Pellerin, and
Arnaud Fortin. Machine learning applied in production planning and control: a
state-of-the-art in the era of industry 4.0. Journal of Intelligent Manufacturing,
31(6):1531–1558, 2020.

[46] Franco Peschiera, Robert Dell, Johannes Royset, Alain Haït, Nicolas Dupin, and
Olga Battaïa. A novel solution approach with ml-based pseudo-cuts for the flight
and maintenance planning problem. OR Spectrum, 2020.

[47] Andrea Lodi, Luca Mossina, and Emmanuel Rachelson. Learning to handle parame-
ter perturbations in combinatorial optimization: An application to facility location.
EURO Journal on Transportation and Logistics, page 100023, 2020.

[48] Martina Fischetti and Marco Fraccaro. Machine learning meets mathematical op-
timization to predict the optimal production of offshore wind parks. Computers &
Operations Research, 106:289–297, 2019.

[49] Hongbo Li, Zhe Xu, and Erik Demeulemeester. Scheduling policies for the stochastic
resource leveling problem. Journal of Construction Engineering and Management,
141(2):04014072, 2015.

[50] Hongbo Li and Erik Demeulemeester. A genetic algorithm for the robust resource
leveling problem. J. of Scheduling, 19(1):43–60, February 2016.

[51] R Graham, E Lawler, J Lenstra, and A Rinnooy Kan. Optimization and approx-
imation in deterministic sequencing and scheduling: a survey. Ann. of Discrete
Mathematics, 5:287–326, 1979.

[52] P. Brucker and S. Knust. Complex Scheduling. Springer-Verlag Berlin Heidelberg,
2012.

[53] R. Kolisch and S. Hartmann. Heuristic Algorithms for the Resource-Constrained
Project Scheduling Problem: Classification and Computational Analysis, pages 147–
178. Springer US, Boston, MA, 1999.

[54] R Kolisch and A. Sprecher. Psplib – a project scheduling problem library. European
Journal of Operational Research, 96(1):205–216, 1997.

[55] J.A.G.M. Kerbosch and H.J. Schell. Network planning by the extended metra poten-
tial method (EMPM). TH Eindhoven. ORS, Vakgr. operationele research : rapport.
Technische Hogeschool Eindhoven, 1975. The Dutch version of this report is also
available; it has been republished in the 1972 April edition of the journal Informatie.

116

[56] Klaus Neumann and Christoph Schwindt. Activity-on-node networks with min-
imal and maximal time lags and their application to make-to-order production.
Operations-Research-Spektrum, 19(3):205–217, 1997.

[57] M. Bartusch, R. H. Möhring, and F. J. Radermacher. Scheduling project net-
works with resource constraints and time windows. Annals of Operations Research,
16(1):199–240, 1988.

[58] A. Alan B. Pritsker and Lawrence J. Watters. A Zero-One Programming Approach
to Scheduling with Limited Resources. RAND Corporation, Santa Monica, CA, 1968.

[59] Nicos Christofides, R. Alvarez-Valdes, and J.M. Tamarit. Project scheduling with
resource constraints: A branch and bound approach. European Journal of Opera-
tional Research, 29(3):262–273, 1987.

[60] Robert Klein. Scheduling of resource constrained projects. Springer US, 2000.

[61] Sophie Demassey, Christian Artigues, and Philippe Michelon. Constraint-
propagation-based cutting planes: An application to the resource-constrained
project scheduling problem. INFORMS Journal on Computing, 17(1):52–65, 2005.

[62] Jill R. Hardin, George L. Nemhauser, and Martin W.P. Savelsbergh. Strong valid
inequalities for the resource-constrained scheduling problem with uniform resource
requirements. Discrete Optimization, 5(1):19–35, 2008.

[63] Christian Artigues. A note on time-indexed formulations for the resource-
constrained project scheduling problem. 15 pages, June 2013.

[64] Lucio Bianco and Massimiliano Caramia. An exact algorithm to minimize the
makespan in project scheduling with scarce resources and generalized precedence
relations. European Journal of Operational Research, 219(1):73–85, 2012.

[65] Lucio Bianco and Massimiliano Caramia. A new formulation for the project schedul-
ing problem under limited resources. Flexible Services and Manufacturing Journal,
25(1):6–24, 2013.

[66] Christian Artigues. On the strength of time-indexed formulations for the resource-
constrained project scheduling problem. Operations Research Letters, 45(2):154–
159, 2017.

[67] Anulark Naber and Rainer Kolisch. Mip models for resource-constrained project
scheduling with flexible resource profiles. European Journal of Operational Research,
239(2):335–348, 2014.

117

[68] Thomas S. Kyriakidis, Georgios M. Kopanos, and Michael C. Georgiadis. MILP for-
mulations for single- and multi-mode resource-constrained project scheduling prob-
lems. Computers & Chemical Engineering, 36:369–385, 2012.

[69] Stefan Kreter, Julia Rieck, and Jürgen Zimmermann. Models and solution proce-
dures for the resource-constrained project scheduling problem with general temporal
constraints and calendars. European Journal of Operational Research, 251(2):387–
403, 2016.

[70] Shima Javanmard, Behrouz Afshar-Nadjafi, and Seyed Taghi Akhavan Niaki. Pre-
emptive multi-skilled resource investment project scheduling problem: Mathemati-
cal modelling and solution approaches. Computers & Chemical Engineering, 96:55–
68, 2017.

[71] Juan Diego García-Nieves, José Luis Ponz-Tienda, Angélica Ospina-Alvarado, and
Mateo Bonilla-Palacios. Multipurpose linear programming optimization model for
repetitive activities scheduling in construction projects. Automation in Construc-
tion, 105:102799, 2019.

[72] Aristide Mingozzi, Vittorio Maniezzo, Salvatore Ricciardelli, and Lucio Bianco. An
exact algorithm for the resource-constrained project scheduling problem based on a
new mathematical formulation. Management Science, 44(5):714–729, 1998.

[73] Alf Kimms. Mathematical Programming and Financial Objectives for Scheduling
Projects, volume 38. 01 2001.

[74] Maurice Queyranne, Maurice Queyranne, Andreas S. Schulz, and Andreas S. Schulz.
Polyhedral approaches to machine scheduling. Technical report, 1994.

[75] Christian Artigues, Philippe Michelon, and Stéphane Reusser. Insertion techniques
for static and dynamic resource-constrained project scheduling. European Journal
of Operational Research, 149(2):249–267, 2003. Sequencing and Scheduling.

[76] Oumar Koné, Christian Artigues, Pierre Lopez, and Marcel Mongeau. Comparison
of mixed integer linear programming models for the resource-constrained project
scheduling problem with consumption and production of resources. Flexible Services
and Manufacturing Journal, 25(1):25–47, 2013.

[77] Christian Artigues, Peter Brucker, Sigrid Knust, Oumar Koné, Pierre Lopez, and
Marcel Mongeau. A note on ”event-based MILP models for resource-constrained
project scheduling problems”. Computers and Operations Research, 40(4):1060–
1063, 2013.

118

[78] Ed Klotz and Alexandra M. Newman. Practical guidelines for solving difficult mixed
integer linear programs. Surveys in Operations Research and Management Science,
18(1):18–32, 2013.

[79] Juan Pablo Vielma. Mixed integer linear programming formulation techniques.
SIAM Review, 57(1):3–57, 2015.

[80] Klaus Neumann, Christoph Schwindt, and Jürgen Zimmermann. Resource-
Constrained Project Scheduling — Minimization of General Objective Functions,
pages 175–299. Springer Berlin Heidelberg, Berlin, Heidelberg, 2002.

[81] E.W. Hans. Resource Loading by Branch-and-Price Techniques. PhD thesis, Twente
University Press (TUP), Netherlands, 10 2001.

[82] Tamás Kis. A branch-and-cut algorithm for scheduling of projects with variable-
intensity activities. Mathematical Programming, 103(3):515–539, Jul 2005.

[83] Symeon E. Christodoulou, Anastasia Michaelidou-Kamenou, and Georgios Ellinas.
Heuristic Methods for Resource Leveling Problems, pages 389–407. Springer Inter-
national Publishing, Cham, 2015.

[84] T. Ch. Madhavi Tadepalli. Genetic algorithm based optimization for resource level-
ing problem with precedence constrained scheduling. International journal of con-
struction management., 2019.

[85] S. Madeh Piryonesi, Mehran Nasseri, and Abdollah Ramezani. Resource leveling in
construction projects with activity splitting and resource constraints: a simulated
annealing optimization. Canadian Journal of Civil Engineering, 46(2):81–86, 2019.

[86] Hongbo Li, Meng Wang, and Xuebing Dong. Resource leveling in projects with
stochastic minimum time lags. Journal of Construction Engineering and Manage-
ment, 145(4):04019015, 2019.

[87] Kaouthar Cherkaoui, Pierre Baptiste, Robert Pellerin, Alain Haït, and Nathalie
Perrier. Proactive tactical planning approach for large scale engineering and con-
struction projects. The Journal of Modern Project Management, 5(1), 2017.

[88] Margaux Nattaf, Christian Artigues, Pierre Lopez, and David Rivreau. Energetic
reasoning and mixed-integer linear programming for scheduling with a continuous
resource and linear efficiency functions. OR Spectrum, 38(2):459–492, 2016.

[89] A. H. Land and A. G. Doig. An automatic method of solving discrete programming
problems. Econometrica, 28(3):497–520, 1960.

119

[90] J. Clausen and M. Perregaard. On the best search strategy in parallel branch-
and-bound: Best-first search versus lazy depth-first search. Annals of Operations
Research, 90(0):1–17, 1999.

[91] R.E. Gomory. An algorithm for integer solutions to linear programs. rl graves and
p. wolfe (eds.) recent advances in mathematical programming, 1963.

[92] V. Chvátal. Edmonds polytopes and a hierarchy of combinatorial problems. Discrete
Mathematics, 4(4):305–337, 1973.

[93] Alberto Caprara and Matteo Fischetti. {0, 1/2}-chvátal-gomory cuts. Mathematical
Programming, 74(3):221–235, 1996.

[94] Adam N. Letchford and Andrea Lodi. Strengthening chvátal–gomory cuts and go-
mory fractional cuts. Operations Research Letters, 30(2):74–82, 2002.

[95] Franz Wesselmann, Achim Koberstein, and Uwe H. Suhl. Strengthening gomory
mixed-integer cuts. In Bernhard Fleischmann, Karl-Heinz Borgwardt, Robert Klein,
and Axel Tuma, editors, Operations Research Proceedings 2008, pages 487–492,
Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[96] Egon Balas, Sebastián Ceria, and Gérard Cornuéjols. A lift-and-project cutting
plane algorithm for mixed 0–1 programs. Mathematical Programming, 58(1):295–
324, 1993.

[97] Egon Balas and Michael Perregaard. Lift-and-project for mixed 0–1 programming:
recent progress. Discrete Applied Mathematics, 123(1):129–154, 2002.

[98] Gérard Cornuéjols. Valid inequalities for mixed integer linear programs. Mathemat-
ical Programming, 112(1):3–44, 2008.

[99] Santanu S. Dey and Marco Molinaro. Theoretical challenges towards cutting-plane
selection. Mathematical Programming, 170(1):237–266, 2018.

[100] Dmitry Arkhipov, Olga Battaïa, and Alexander Lazarev. An efficient pseudo-
polynomial algorithm for finding a lower bound on the makespan for the resource
constrained project scheduling problem. European Journal of Operational Research,
275(1):35–44, 2019.

[101] Alexander Tesch. Improved compact models for the resource-constrained project
scheduling problem. In Andreas Fink, Armin Fügenschuh, and Martin Josef Geiger,
editors, Operations Research Proceedings 2016, pages 25–30, Cham, 2018. Springer
International Publishing.

120

[102] Janniele A.S. Araujo, Haroldo G. Santos, Bernard Gendron, Sanjay Dominik Jena,
Samuel S. Brito, and Danilo S. Souza. Strong bounds for resource constrained
project scheduling: Preprocessing and cutting planes. Computers & Operations
Research, 113:104782, 2020.

[103] Lucio Bianco and Massimiliano Caramia. Lower Bounds and Exact Solution Ap-
proaches, pages 77–111. Springer International Publishing, Cham, 2015.

[104] J. Carlier, A. Moukrim, and A. Sahli. Lower bounds for the event scheduling prob-
lem with consumption and production of resources. Discrete Applied Mathematics,
234:178–194, 2018. Special Issue on the Ninth International Colloquium on Graphs
and Optimization (GO IX), 2014.

[105] Inessa Ainbinder, Gabriel David Pinto, and Gad Rabinowitz. New lower bounds for
solving a scheduling problem with resource collaboration. Computers & Industrial
Engineering, 127:225–239, 2019.

[106] Lucio Bianco and Massimiliano Caramia. Minimizing the completion time of a
project under resource constraints and feeding precedence relations: a lagrangian
relaxation based lower bound. 4OR, 9(4):371–389, Dec 2011.

[107] C.-U. Fundeling and N. Trautmann. A priority-rule method for project schedul-
ing with work-content constraints. European Journal of Operational Research,
203(3):568–574, 2010.

[108] Anulark Naber. Resource-constrained project scheduling with flexible resource pro-
files in continuous time. Computers & Operations Research, 84:33–45, 2017.

[109] J.F. Benders. Partitioning procedures for solving mixed-variables programming
problems. Numerische Mathematik, 4(1):238–252, Dec 1962.

[110] R.S. De Camargo, G. De Miranda, and H. Luna. Benders decomposition for hub
location problems with economies of scale. Transportation Science, 43(1):86–97,
2009.

[111] H. Li. Benders Decomposition Approach for Project Scheduling with Multi-Purpose
Resources, pages 587–601. Springer International Publishing, Cham, 2015.

[112] M.E. Bruni, L.D.P Pugliese, P. Beraldi, and F. Guerriero. An adjustable robust
optimization model for the resource-constrained project scheduling problem with
uncertain activity durations. Omega, 71:66–84, 2017.

121

[113] Simon Emde, Lukas Polten, and Michel Gendreau. Logic-based benders decom-
position for scheduling a batching machine. Computers & Operations Research,
113:104777, 2020.

[114] Mehdi A. Kamran, Behrooz Karimi, and Nico Dellaert. A column-generation-
heuristic-based benders’ decomposition for solving adaptive allocation scheduling
of patients in operating rooms. Computers & Industrial Engineering, 148:106698,
2020.

[115] Ramon Faganello Fachini and Vinícius Amaral Armentano. Logic-based benders
decomposition for the heterogeneous fixed fleet vehicle routing problem with time
windows. Computers & Industrial Engineering, 148:106641, 2020.

[116] Evren Guney, Markus Leitner, Mario Ruthmair, and Markus Sinnl. Large-scale
influence maximization via maximal covering location. European Journal of Oper-
ational Research, 289(1):144–164, 2021.

[117] R. Rahmaniani, T.G. Crainic, M. Gendreau, and W. Rei. The benders decompo-
sition algorithm: A literature review. European Journal of Operational Research,
259(3):801–817, 2017.

[118] Mohammad M. Fazel-Zarandi and J. Christopher Beck. Using logic-based benders
decomposition to solve the capacity- and distance-constrained plant location prob-
lem. INFORMS Journal on Computing, 24(3):387–398, 2012.

[119] Stephen J. Maher. Implementing the branch-and-cut approach for a general pur-
pose benders’ decomposition framework. European Journal of Operational Research,
2020.

[120] Matteo Fischetti, Ivana Ljubić, and Markus Sinnl. Benders decomposition with-
out separability: A computational study for capacitated facility location problems.
European Journal of Operational Research, 253(3):557–569, 2016.

[121] Saeed Emami, Ghasem Moslehi, and Mohammad Sabbagh. A benders decomposi-
tion approach or order acceptance and scheduling problem: a robust optimization
approach. Computational and Applied Mathematics, 36(4):1471–1515, 2017.

[122] T. L. Magnanti and R. T. Wong. Accelerating benders decomposition: Algorith-
mic enhancement and model selection criteria. Operations Research, 29(3):464–484,
1981.

[123] Lixin Tang, Wei Jiang, and Georgios K. D. Saharidis. An improved benders decom-
position algorithm for the logistics facility location problem with capacity expan-
sions. Annals of Operations Research, 210(1):165–190, Nov 2013.

122

[124] Georgios K.D. Saharidis and Marianthi G. Ierapetritou. Improving benders decom-
position using maximum feasible subsystem (mfs) cut generation strategy. Comput-
ers & Chemical Engineering, 34(8):1237–1245, 2010.

[125] Petr Vilím. Global Constraints in Scheduling. PhD thesis, Charles University in
Prague, Faculty of Mathematics and Physics, Department of Theoretical Computer
Science and Mathematical Logic, KTIML MFF, Universita Karlova, Malostranské
náměstí 2/25, 118 00 Praha 1, Czech Republic, August 2007.

[126] Abdelkader Lahrichi. Ordonnancements. la notion de « parties obligatoires » et son
application aux problèmes cumulatifs. RAIRO - Operations Research - Recherche
Opérationnelle, 16(3):241–262, 1982.

[127] B. Fox. Non-chronological scheduling. In 1990 Simulation and Planning in High Au-
tonomy Systems, pages 72–77, Los Alamitos, CA, USA, mar 1990. IEEE Computer
Society.

[128] Arnaud Letort, Nicolas Beldiceanu, and Mats Carlsson. A scalable sweep algorithm
for the cumulative constraint. In Michela Milano, editor, Principles and Practice of
Constraint Programming, pages 439–454, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg.

[129] Steven Gay, Renaud Hartert, and Pierre Schaus. Simple and scalable time-table
filtering for the cumulative constraint. In Gilles Pesant, editor, Principles and Prac-
tice of Constraint Programming, pages 149–157, Cham, 2015. Springer International
Publishing.

[130] J. Carlier, E. Pinson, A. Sahli, and A. Jouglet. An o(n2) algorithm for time-
bound adjustments for the cumulative scheduling problem. European Journal of
Operational Research, 286(2):468–476, 2020.

[131] Viktoria A. Hauder, Andreas Beham, Sebastian Raggl, Sophie N. Parragh, and
Michael Affenzeller. Resource-constrained multi-project scheduling with activity
and time flexibility. Computers & Industrial Engineering, 150:106857, 2020.

[132] Tom Servranckx and Mario Vanhoucke. A tabu search procedure for the resource-
constrained project scheduling problem with alternative subgraphs. European Jour-
nal of Operational Research, 273(3):841–860, 2019.

[133] Zihao Chu, Zhe Xu, and Haitao Li. New heuristics for the rcpsp with multiple
overlapping modes. Computers & Industrial Engineering, 131:146–156, 2019.

123

[134] Tarun Bhaskar, Manabendra N. Pal, and Asim K. Pal. A heuristic method for rcpsp
with fuzzy activity times. European Journal of Operational Research, 208(1):57–66,
2011.

[135] Weikang Guo, Mario Vanhoucke, José Coelho, and Jingyu Luo. Automatic detection
of the best performing priority rule for the resource-constrained project scheduling
problem. Expert Systems with Applications, page 114116, 2020.

[136] Hua Ke and Chenkai Zhao. Uncertain resource leveling problem. Journal of Intel-
ligent & Fuzzy Systems, 33:2351–2361, 09 2017.

[137] Jin Zhu, Xiu Mei Zhang, and Wei Kang. MILP sensitivity analysis for short-term
scheduling of batch plants under uncertainty. In Advanced Materials Science and
Technology, ICMST 2010, volume 181 of Advanced Materials Research, pages 577–
582. Trans Tech Publications Ltd, 3 2011.

[138] Hongbo Ren and Weijun Gao. A MILP model for integrated plan and evaluation
of distributed energy systems. Applied Energy, 87(3):1001–1014, 2010.

[139] Panos Kouvelis, Charles L. Munson, and Shilei Yang. Robust structural equations
for designing and monitoring strategic international facility networks. Production
and Operations Management, 22(3):535–554, 2013.

[140] Christian John Etwire and S. Twum. Sensitivity analysis of a mixed integer linear
programming model for optimal hydrothermal energy generation for ghana. Inter-
national Journal of Scientific & Technology Research, 4:129–141, 2015.

[141] A. Moser, D. Muschick, M. Golles, P. Nageler, H. Schranzhofer, T. Mach, C. Ribas
Tugores, I. Leusbrock, S. Stark, F. Lackner, and A. Hofer. A MILP-based modu-
lar energy management system for urban multi-energy systems: Performance and
sensitivity analysis. Applied Energy, 261:114342, 2020.

[142] Zhili Tian, Panos Kouvelis, and Charles L. Munson. Understanding and managing
product line complexity: Applying sensitivity analysis to a large-scale MILP model
to price and schedule new customer orders. IIE Transactions, 47(4):307–328, 2015.

[143] Fahimeh Khoshniyat and Johanna Törnquist Krasemann. Analysis of Strengths
and Weaknesses of a MILP Model for Revising Railway Traffic Timetables. In
Gianlorenzo D’Angelo and Twan Dollevoet, editors, 17th Workshop on Algorith-
mic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2017), volume 59 of OpenAccess Series in Informatics (OASIcs), pages 10:1–10:17,
Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

124

[144] Z. Song, J. Zhang, and Q. Zhou. Milp method based network reconfiguration consid-
ering customer sensitivity to the service interruptions. In 2016 IEEE Power Energy
Society Innovative Smart Grid Technologies Conference (ISGT), pages 1–5, 2016.

[145] Yi Chaojue and Lu Ming. Mixed-integer linear programming based sensitivity analy-
sis in optimization of temporary haul road layout design for earthmoving operations.
Journal of Computing in Civil Engineering, 33(3):04019021, 2019.

[146] Javier Silvente, Lazaros G. Papageorgiou, and Vivek Dua. Scenario tree reduction
for optimisation under uncertainty using sensitivity analysis. Computers & Chemical
Engineering, 125:449–459, 2019.

[147] A. A. Lazarev and D. I. Arkhipov. Estimation of the absolute error and polyno-
mial solvability for a classical np-hard scheduling problem. Doklady Mathematics,
97(3):262–265, 2018.

[148] Tamás Kis and Márton Drótos. Hard Planning and Scheduling Problems in the
Digital Factory, pages 3–19. Springer International Publishing, Cham, 2017.

[149] Rainer Kolisch, Christoph Schwindt, and Arno Sprecher. Benchmark Instances for
Project Scheduling Problems, pages 197–212. Springer US, Boston, MA, 1999.

[150] Julia Rieck, Jürgen Zimmermann, and Thorsten Gather. Mixed-integer linear pro-
gramming for resource leveling problems. European Journal of Operational Research,
221(1):27–37, 2012.

[151] Christoph Schwindt. Generation of resource-constrained project scheduling prob-
lems with minimal and maximal time lags. Institut fur Wirtschaftstheorie und
Operations Research, Universitat, 1998.

[152] Rainer Kolisch, Arno Sprecher, and Andreas Drexl. Characterization and generation
of a general class of resource-constrained project scheduling problems. Manage. Sci.,
41(10):1693–1703, October 1995.

[153] Erik Demeulemeester, Mario Vanhoucke, and Willy Herroelen. Rangen: A ran-
dom network generator for activity-on-the-node networks. Journal of Scheduling,
6(1):17–38, 2003.

[154] Mario Vanhoucke, José Coelho, Dieter Debels, Broos Maenhout, and Luís V.
Tavares. An evaluation of the adequacy of project network generators with systemat-
ically sampled networks. European Journal of Operational Research, 187(2):511–524,
2008.

125

[155] Mario Vanhoucke, José Coelho, and Jordy Batselier. An overview of project data
for integrated project management and control. The Journal of Modern Project
Management, 3(3), 2016.

126

	Contents
	Résumé en français
	Introduction
	Project planning and scheduling: State-of-the-art
	Resource-Constrained Project Scheduling Problem
	Problem description
	Mathematical formulations

	Resource Leveling and Allocating
	RLP objective functions and constraints
	Evolution of RLP models

	Solution methods
	Branch and Bound/Branch and Cut
	Benders decomposition
	Constraint programming
	Heuristics

	Uncertainty modeling in project planning
	Sensitivity analysis
	Metric approach in scheduling theory

	A generalized RLP: MILP formulation
	Flexible resource allocation in RLP
	Illustrative examples
	Problem statement

	Mathematical Model
	Problem data
	Generalized Model description

	Generalized model properties
	Model instance

	Computational experiments
	Tests on existing benchmarks for RLP
	Generation of new instances
	Comparison of time-indexed RLP formulations
	Results of flexible resource allocation
	Discrete Resource Case

	Conclusions

	Benders decomposition for RLP
	Basic approach
	Benders decomposition for a generalized RLP
	Subproblem
	Master problem

	Algorithm improvements
	LB for the Master problem: occupied work volume estimation
	LB for the Master problem: resource constraints relaxation
	Disaggregation of the cuts
	Branch&Benders cuts: using single search tree

	Computational tests
	Models and settings
	Generation of specific large-scale datasets
	Impact of number of resource types on the method performances
	Evaluation of the impact of the available resource limit

	Conclusions

	Uncertainty and Metric approach
	Notations, definitions and goals
	Fluctuations in parameters
	Extra resource cost changes
	Fluctuations in available resource levels
	Estimations for the job-related parameters

	A generalized metric estimation
	Feasibility and properties of the space of problem instances
	Experiments
	Datasets
	Results

	Conclusions

	General conclusions
	Bibliography

