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Abstract

Colloidal clays are hydrous magnesium phyllosilicates (sometimes aluminum), usually bear-

ing a negative structural charge coming from isomorphic substitution compensated by the

presence of cations in the basal spacing or on the surface of the colloid. These nanoparticles

have a platelet shape with an aspect ratio going from 20 to 100. When immersed in water,

clays hydrate and swell, leading to the release of the cations. The hydroxyl group presents

on the edge of the particles are sensitive to the pH (titrable sites) resulting in an amphoteric

edge charge. At low pH the rim is positively charged and becomes neutral or negative at pH

11. Therefore, suspensions of colloidal clays have both charge and shape anisotropies. Thanks

to these features, clay dispersions exhibit interesting optical properties (ochreous clays), me-

chanical properties (tile manufacturing, surface coating) and even cleaning properties (grease-

removing). Although studied for decades, the behavior of colloidal clays remains controver-

sial. In this manuscript, we propose a coarse-grained model to simulate particles with both

structural and charge anisotropy. This model allows studying the behavior of colloidal sus-

pensions at equilibrium and under shear flow. Contrary to the Monte-Carlo method usually

employed to model the equilibrium behavior of anisotropic particles, the model presented in

this thesis takes into account hydrodynamic interactions, allowing the dynamics of the sys-

tem to be studied. The particles are coarse-grained as clusters of spheres bound by springs

or constrained to a rigid body motion thanks to solid mechanics equations. The dynamics of

the particles are computed using the Accelerated Stokesian Dynamics code (ASD), and the

electrostatic interactions are computed in a pairwise additive fashion with a Yukawa potential.

The implementation of this coarse-grained model in the ASD method allows studying the mi-

crostructure of anisotropic particles presenting similar features than Laponite, a 2:1 synthetic

smectite clay widely studied experimentally and numerically in the literature. Several studies

are presented here while varying the volume fraction and the range of electrostatic interac-

tions. The dynamics of formation of the observed structures (Wigner glass, gel, overlapping

coin, etc.) and their structural evolution behavior are then discussed. Finally, the rheologi-

cal response of the different structures to a start-up shear has been studied, highlighting the

importance of the ratio between the electrostatic and the hydrodynamic forces. For initially

percolated systems, it has been shown that the stress response on the applied strain depends on

the initial microstructure at short times, and exhibits shear-thinning and final viscous response

independent of the initial structure.



ii

Résumé

Les argiles colloïdalles sont des phillosilicates d’hydrure de magnésium (ou d’aluminium)

pouvant, de part des substitutions isomorphiques, acquérir une charge négative structurale

compensée par la présence de cations au niveau de l’espace interfoliaire ou en surface même

du colloïde. Ces nanoparticules ont une forme de palet avec un rapport de forme pouvant varier

entre 20 et 100. Lors de leur mise en suspension, les colloïdes s’hydratent provoquant ainsi

leur gonflement et le relargage des cations. Les groupements hydroxyles présents en bordure

des argiles sont extrêmement dépendants du pH et peuvent ainsi générer une charge de bord

positive à bas pH, ou négative à pH élevé. Ainsi les argiles colloïdales en suspension présentent

à la fois une anisotropie de forme et de charge. Ces caractéristiques confèrent aux dispersions

d’argile des propriétés optiques (argiles ocreuses), mécaniques (fabrication de tuile, enduit) ou

même nettoyantes (pouvoir dégraissant) intéressantes. Bien qu’étudié depuis de nombreuses

années, le comportement des argiles en suspension reste controversé. C’est dans ce contexte

que s’inscrit cette thèse dont l’objectif est de proposer un modèle de simulation « gros-grains »

de particules présentant une anisotropie à la fois structurale et de charge et ainsi d’étudier le

comportement à l’équilibre et hors équilibre d’une suspension de particules anisotropes. Con-

trairement au modèle Monte-Carlo habituellement utilisé pour modéliser le comportement à

l’équilibre d’une suspension de particules anisotropes, le modèle présenté ici tient compte des

interactions hydrodynamiques et permet ainsi d’étudier la dynamique du système, que ce soit

lors de la formation de structures à l’équilibre ou suite à l’application de force de cisaillement.

Les particules sont modélisées à l’aide d’agrégats de sphères liées entre elles par des ressorts,

ou contraintes à un mouvement de corps rigide via les équations de la mécanique du solide.

La dynamique des agrégats est étudiée à l’aide du code de simulations de type Accelerated

Stokesian Dynamics (ASD) et les interactions électrostatiques modélisées suivant le principe

d’additivité de paires avec un potentiel de Yukawa. L’implémentation du modèle à « gros-

grain » de particules anisotropes dans le code ASD a ainsi permis d’étudier les structures à

l’équilibre et sous écoulement de particules présentant des caractéristiques communes avec la

Laponite, une smectite de type 2:1 largement étudiée expérimentalement et numériquement

dans la littérature. Dans ce manuscrit, des études concernant ces particules anisotropes sont

présentées pour différentes fraction volumique et portées d’interactions électrostatiques. La

dynamique de formation des structures au repos (Wigner glass, gel, overlapping coin...) ainsi

que leurs évolutions sont discutées. Enfin, la réponse rhéologique de ces structures lors de

l’application d’un écoulement cisaillant est étudiée, mettant en lumière l’importance du ra-

tio entre les forces électrostatiques et hydrodynamiques au sein de la dynamique du système.

Pour des structures initialement percolées, la réponse du stress à la déformation du système

dépend de la microstructure initiale aux temps courts, et possède un comportement rhéofluid-

ifiant ainsi qu’une viscosité finale indépendants de la microstructure initiale.
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Introduction

A colloidal suspension refers to a heterogeneous mixture composed of small particles considered as

the dispersed phase in a continuous phase. Particles of the dispersed phase are sensitive to the thermal

fluctuations of the molecules belonging to the continuous phase. Such particles have a typical diameter

ranging from 1 nm to 1 µm and are called colloids. The suspending fluid, the continuous phase, can be

gaseous (fog, clouds, aerosol), liquid (ink, milk, paints) or solid (butter, cranberry glass, aerogel).

Colloids originate either from the natural environment or can also be synthesized in laboratories.

Natural colloids are everywhere, and where used well before even the word colloid existed. One of the

first traces of the use of colloidal suspensions goes back to ancient Egypt and China several thousand

years ago. In those ancient times, humans were using an ink mainly composed of soot (dispersed phase)

mixed with vegetable oils or animal glue (suspending medium) [1]. One can also cite the Lycurgus cup

from the 4th century AD, which is certainly, among the oldest applications, the most famous. The glass

of this cup presents a dichroic effect due to the presence of gold and silver nanoparticles: when the cup

is front lighted, it has a green color, whereas a reflected light produces a red color. Although the colloids

were widely used in everyday life (yogurt, wiped cream, etc.), one had to wait for the end of 19th century

to attend the first use of the term colloid, from the Greek "Kolla" meaning glue, by Thomas Graham in

1861. This author used this term to describe a suspension that cannot diffuse through a membrane [2].

Since, one has realized that colloids were responsible for numerous physico-chemical phenomena, such

as the beautiful color of a colloidal crystal of silica (SiO2) also known as opal, or the "ouzo effect"

[3] in the pastis [4] due to the natural colloidal droplets of anethole, a flavoring substance which can

be extracted from licorice. Natural colloids are also part of the human body, as viruses, bacterias, or

thrombocytes (these small platelets are one of the blood component that clump blood vessel injured).

Finally, to conclude this non-exhaustive list of examples, one can cite the family of clays as colloids.

Clays are platelets with a thickness of the order of a nanometer and a radius of several dozen to several

hundreds of nanometers. These particles bear negative charges on the faces and a rim charge, which can

be either positive or negative, depending on the pH of the suspension. Under specific conditions, clays

can form a gel, or a glass, well below the classic isotropic to nematic transition. Indeed, due to the edge to

face interactions, clay particles can, for instance, generate a house of card structure spanning the totality

of the system. Such a structure provides rheological characteristics to the suspension close to a solid

state. For uncharged disk-shaped particles, the transition from a liquid-like to a solid-like state normally

occurs when particles do not have a positional order, but are on average aligned which correspond to

the nematic state mentioned earlier. These hallmarks make clay particles an exciting candidate, for
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example, as a rheology-modifier in technological applications as a surface coating. However, to really

optimize their use, one should be able to predict the macroscopic behavior of clay suspensions, which is

strongly related to the interactions at the microscopic scale. Due to the polydispersity and the complex

chemical heterogeneity of natural clays, researchers sometimes investigate the role of physico-chemical

parameters, such as the pH or the ionic strength on simpler systems such as synthesized model clays.

Non-natural colloids can either be synthesized chemically or through self-assembly and are interest-

ing for studying and understanding the behavior of natural particles, but are also used to provide specific

properties to other systems owing to their well defined characteristics. Among them, one can cite the use

of metallic colloids such as silver nanodisk for the detection of organic species using Surface Enhanced

Raman Spectroscopy (SERS) [5], the use of lignin colloidal spheres prepared by self-assembly in sun-

screens [6], the use of fumed silica for its strong thickening effect in the plastic industry and the use of

Laponite, a synthesized clay in numerous applications such as paints, household cleaners, and personal

care product.

To summarize colloids are everywhere, and their technological applications seem limitless. There-

fore, it is essential to understand the behavior of colloidal suspensions in order to use them wisely. If the

macroscopic behavior of a suspension is relatively easy to observe, it cannot be foreseen unless the mi-

croscopic interactions between colloidal particles are known and understood. For a given set of particles,

the microscopic interactions can generate complex microstructures, which will tremendously influence

the flow of the suspension. The study of this flow in the response of an applied force is called rheology.

Due to the small size of the colloids and the complex physico-chemical parameters involved in a col-

loidal suspension, the experimental study of the microstructure requires measuring statistical quantities,

which could be difficult to interpret. That is why researchers often try to model the system to carry-out

numerical simulations. The difficulty of modeling a system of interacting particles lies in the fact that a

too complex model can be impossible to simulate due to a tremendous computational time or a lack of

knowledge, while a too simple model might not be able to capture the correct physics. Consequently,

the researcher’s work is to propose the simplest model to correctly capture both the microscopic and

macroscopic behavior of the colloidal suspension.

In this Ph.D. thesis, we propose a coarse-grained model to simulate the suspension of particles with

both charge and structural anisotropy. Such particles are quite close to clays, and so they will be called

"clay-like" particles in this work. We have thus decided to compare our results with a synthetic clay

particle already mentioned, Laponite. However, we emphasize that the model can be used for any other

anisotropic particle.

This thesis is composed of four chapters and is organized as follows.

In the first chapter, the basic theoretical concepts in colloidal sciences are introduced. The forces and

the equations governing the colloidal suspensions are presented. These forces drive the spatial arrange-

ment of the particles, referred to as the microstructure of the suspension. The complexity of the study

of colloidal suspensions lies in the fact that the microstructure is influenced by the forces and the forces

by the microstructure. Changing the concentration in particles or the concentration in salt of a suspen-

sion of repulsive spheres can induce a drastic change of the microstructure and consequently influence

its mechanical response to an applied shear. Owing to the relation between microscopical behavior and
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spatial arrangement, it is common to define a phase diagram to illustrate the effect of parameters such

as concentration, temperature or ionic strength on both microstructure and macroscopically behavior.

To give an insight into the different existing phases, relatively simple phase diagrams are presented for

isotropic colloids, and the difficulty of producing a phase diagram for complex systems such as clay is

discussed. Then, the most common rheological behaviors of non-Newtonian suspensions are described.

In the second chapter, numerical methods used to simulate anisotropic particles are presented. These

methods comprise many-body hydrodynamic interactions using the Accelerated Stokesian Dynamics

(ASD) developed by Sierou & Brady [7] and Banchio & Brady [8]. As the ASD method was originally

designed for suspensions of spheres, two different models are presented to generate anisotropic rigid

objects: the first one relies on the coupling of spheres using springs, and the second one mathematically

constrains the motions of a cluster of spheres arranged in a hexagonal close-packed fashion to enforce

the rigid body motion. Then, validations of these coarse-graining methods are carried out, and their

limitations are discussed.

In the third chapter, the structure of suspensions of clay-like particles without any background flow

is studied. Such a study is commonly realized with Monte Carlo (MC) simulations. The main goal of

this chapter is to prove that despite the limitations of the numerical method developed in the second

chapter and the coarse-graining of the particles, the approach developed in this work is able to produce

phase diagrams for clay-like suspensions similar to the ones obtained with Monte Carlo methods. The

limitations essentially come from a CPU cost much higher than that of MC methods, but such a cost is

the price to pay to obtain accurate hydrodynamic interactions. If these hydrodynamic interactions are

not necessary to study the phases of a suspension without background flow (MC method), they cannot

be neglected to predict the dynamics and the rheology of a suspension. Thus, obtaining similar phases

diagram using the method developed in the second chapter validates its use for suspension under shear.

Finally, in the fourth chapter, these new simulation capabilities are exploited to study the dynamics of

suspensions of clay-like particles with and without shear flow. The analysis of the kinetics of aggregation

at rest and under flow allowed us to better understand the physical phenomena involved. For example,

despite the complexity introduced by the shape and the charge anisotropy of the particles, aggregation

under shear is well described by orthokinetic arguments using a particular effective volume fraction.

Then, the dependence of the rheological properties of a suspension of clay-like particles is investigated

as a function of the ratio between the viscous forces arising from the shear flow and the electrostatic

forces. This balance of forces drastically influences the microstructure of the suspensions, as well as

mechanisms with significant effects on suspensions properties. The clay-like suspensions can exhibit

an elastic regime, overshoot stress, behave as a thixotropic material, or even formed a two-dimensional

hexagonal crystalline structure with strings aligned to the flow direction, with both positional and orien-

tal correlations observed. To our knowledge, this last phenomenon has been observed previously neither

experimentally nor using simulations. The dependence of the structure and rheology of clay-like suspen-

sions on the balance of forces and the different mechanisms involved in the numerous behaviors observed

are explained in this last chapter.
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Introduction to colloidal suspensions 1
As mentioned in the introduction, a colloidal suspension refers to a heterogeneous mixture of fine parti-

cles, in a suspending medium. One particularity of these particles is that they are small enough to have

their motions influenced by the thermal fluctuations arising from the surrounding continuous medium.

As for any multiphasic system, the phases interact, and the study of a colloidal suspension requires to

determine the physic of each phase and to relate these physics through a coupling relation.

It has been proved that these microscopic interactions between particles and between the fluid and

the particles drive the macroscopic behavior of a colloidal dispersion. Interactions generate physical and

physico-chemical forces, which lead to the spatial arrangement of the colloids, known as the microstruc-

ture of the suspension, and has a ubiquitous role in the macroscopic behavior. Broadly speaking, the

microscopic interactions influence the structure, and the structure influence the microscopic interactions.

In this first chapter, the theoretical concepts used to describe colloidal suspensions are introduced.

Firstly the equations describing both the particles and the fluid motions are presented. Then the forces at

play in colloidal suspensions are developed. Finally, some macroscopic behaviors of colloidal suspen-

sions are enumerated.

1 Flow of a colloidal suspension

A colloidal suspension is composed of particles embedded in a viscous fluid. The interactions between

particles and between the fluid and the particles drive the macroscopic behavior of the suspension. In this

section, we introduce the basic properties and equations used to study the fluid behavior of a colloidal

suspension.

1.1 Low-Reynolds-number hydrodynamics

Consider a suspension of rigid (non-deformable) particles in an incompressible fluid. This suspension

can be considered as an effective monophasic viscous fluid governed by the Navier-Stokes equations, i.e.

the continuity equation for an incompressible fluid:

∇ · u = 0 (1.1)
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and the equation of the conservation of the momentum:

ρ
∂u
∂t

= f +∇ · σ (1.2)

where u is the fluid velocity, ρ the density of the suspension, f the external body force per unit volume,

and σ the Cauchy stress tensor. This tensor is symmetric and can be split into a diagonal part repre-

sentative of the hydrostatic pressure and a deviatoric part related to the distortion of the system. For a

Newtonian fluid, the Cauchy stress tensor is given by:

σ = −PI + 2ηE∞ (1.3)

with P = (−1/3)tr(σ), I the identity matrix, η the fluid viscosity and E∞ the rate-of-strain tensor

defined as:

E∞ =
1

2

(
∇u +∇uT

)
(1.4)

where∇u is the velocity gradient, and∇uT its transpose.

One should keep in mind that the fluid is a mixture between a Newtonian fluid and particles. Thus, as

in any multiphase flow, each phase has a direct effect on the behavior of the other. Therefore, σ needs to

account for a so-called particle stress tensor described later. With a view to simplification, particles are

considered spherical, rigid (as noted above), and with a radius a. The following dimensionless numbers

are defined, to characterize the consequences of the presence of particles on the system:

• Re = Ua/ν - the Reynolds number, characterizing the relative importance of inertial and viscous

forces. U is the velocity of the flow, ν = η/ρ the kinematic viscosity and η the dynamic viscosity.

Given that colloids have a typical length scale between 1 nm to 1 µm, it is correct to consider

Re << 1.

• St = a2/(Tν) - the Stokes number, characterizing the ratio between the particle’s motion intrin-

sic time-scale and the characteristic time for momentum transport by viscous diffusion. In other

words, this number characterizes the capacity of the particle to follow the streamlines of the fluid.

For the same reason as for the Reynolds number, the Stokes number of a colloidal suspension is

small (St << 1).

• Pe = Ua/D - the Péclet number, characterizing in that study the ratio of viscous forces and

Brownian forces exerted on the colloids. D is the diffusion coefficient from the Stokes-Einstein

law which for hard spheres equals to kbT/(6πηa) where kb is the Boltzmann constant and T the

absolute temperature.

In this manuscript, both the Reynolds and the Stokes number are considered small. Only the influence of

the Péclet number is studied.

1.2 The Stokes equations

At low Reynolds and Stokes numbers, the Navier-Stokes equations become the Stokes equations:

∇ · u = 0,

∇ · σ + f = 0
(1.5)
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Some properties of flows verifying the Stokes equations, called creeping flows, are enumerated hereafter

(more detail can be found in [3, 5]):

• the linearity principle: let a force f1 be applied on a particle and U1 the particle’s velocity induced

by this force. Doubling the force, i.e., f2 = 2f1 doubles the velocity of the particle U2 = 2U1.

This property leads to the following two principles.

• the superposition principle: the sum of the solutions satisfying the Stokes equations satisfies the

Stokes equations too. A general flow field, for example a shear flow, can be split into two simpler

flows: a rotational and a strain flow.

• the reversibility principle: due to the impossibility of crossing flow lines, the application of iden-

tical successive forces with opposite sign brings particles back to their starting point. If the same

protocol is applied one, ten or one hundred times, particles always go back to their initial positions.

• the instantaneity principle: in the Stokes equations, time is not present, and the flow can be con-

sidered as quasi-static, i.e., the flow’s history has no role to play.

Due to the superposition principle, any flow can be defined as a sum of a translational, rotational and

straining flow:

u∞(x) = U∞ + Ω∞ · x + E∞ · x (1.6)

with

Ω∞ij =
1

2

[
∂ui
∂xj
− ∂uj
∂xi

]
and E∞ij =

1

2

[
∂ui
∂xj

+
∂uj
∂xi

]
(1.7)

where Ω∞ and E∞ are respectively the rotational and rate of strain tensors. In this manuscript, Stokes

equations are always valid for any boundary conditions, and from the uniqueness corollary, each bound-

ary condition (e.g., set of forces on colloids) corresponds to one Stokes flow.

The fundamental solution of the Stokes equations is called the Stokeslet. It represents a tensorial

relation between point forces and the velocities of the points. Let’s consider a spherical particle of radius

a translating in a Stokes flow with an effective external force Fe acting on its center of gravity. Far from

the particle, points on its surface cannot be distinguished from its center of gravity. Then, forces acting

on its surface can be relocalized to its center. The disturbance field in x created by the presence of the

particle can be assimilated to the disturbance field of a point force or any superior moments (multipole

expansion). The Stokeslet can be written using the Green’s function G:

uPF (x) =
Fe (0)

8πη
· G (x) (1.8)

where uPF is the fluid flow field induced by the particle motion. The Green’s function for a translating

sphere in an infinite medium (no rotation nor stresslet) is called the Oseen-Burgers tensor and is equal

to:

G =
I
r

+
xx
r3

(1.9)

with r the distance to the center of gravity, I the identity matrix and x the position vector of the particle.
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Let us now consider several interacting particles. The flow field acting on one particle is equal to the

background flow field, plus the sum of the disturbance flows generated by the neighbors of the particle

studied. Given the fact that disturbance flows can also be represented as forces, knowing the initial spatial

arrangement of the spheres allows computing the forces and the dynamic behavior of the particles at any

time using the Langevin equation.

1.3 The Langevin equation

Whereas the fluid velocity field is calculated using the Stokes equations, the trajectories of particles

embedded in a fluid are governed by the Newtonian physics:

m · dU
dt

= Fh + Fb + Fp

i · dΩ
dt

= Th + Tb + Tp
(1.10)

where m and i represent the mass and moment of inertia of the particles respectively, U and Ω the particle

translational and rotational velocity vectors, F the forces and T the torques applied to the particles.

The superscript h stands for hydrodynamic and corresponds to the force/torque on a particle due to its

motion relative to the ambient fluid, b corresponds to the Brownian term and comes from the thermal

agitation of the fluid. Finally, p stands for interparticle forces acting on the particles. One should be

aware that external forces such as gravity can also be captured in this term. In this manuscript, particles

are considered as inertialess. Thus, the left-hand parts of the previous equations vanish, leading to the

"overdamped Langevin" equation:

0 = Fh + Fb + Fp (1.11)

where we have used the combined force/torque expression F = (F,T). To understand how this equation

can help us to compute the trajectories of the colloids numerically, we first need to describe the different

forces.

2 Forces in a colloidal suspension

The microstructure of colloidal suspensions depends on the forces between particles, fluid and particles,

and any forces coming from an external potential (magnetic field, gravitation). In a colloidal suspension,

the volume fraction and characteristics of the colloids (shape, charge, density) determine the complexity

and the amplitude of the forces, and ultimately the microstructure. At equilibrium and really low volume

fraction, particles act like they are alone, and therefore interparticle forces are insignificant. The only re-

maining forces come from external potentials, thermal disturbances (Brownian motion), and interactions

with confining walls. In the next paragraphs, the usual forces involved in a suspension are presented.

2.1 Gravity

A uniform gravitational field g acting on a particle generates the following force:

Fg = ρpgVp (1.12)



2 Forces in a colloidal suspension
2.2 The hydrodynamic force, torque and stresslet

9

C
ol

lo
id

al
su

sp
en

si
on

s

with Vp the volume of the particle and ρp its density. For immersed particles, Archimedes’ principle

indicates that a buoyance force associated with the pressure field acts in the opposite direction and the

resultant of both forces is:

Fr = FA + Fg = (ρp − ρf )gVp (1.13)

where ρf is the density of the fluid, Fr the resultant force and FA the buoyancy force. The ratio RA/g =

FA/Fg determines the behavior of the colloids. If RA/g < 1, colloids settle down, while if RA/g > 1,

the buoyancy is the most important force and the colloids move toward the surface and float. Finally, if

RA/g = 1, both buoyancy and gravity are equal (Fr = 0) and do not have any effect on the motion of the

colloids. In this work, we assume RA/g = 1. Based on these facts, the behavior of colloids only depends

on all the other forces applied, such as the hydrodynamic force.

2.2 The hydrodynamic force, torque and stresslet

In a suspension, the fluid stress field σ exerts a traction f = σ · n (n the surface normal made precise

below) on immersed particles. The integral of this traction over the surface of the particles results in

the hydrodynamic force Fh, torque Th and the complete first moment M. The definitions of the hydro-

dynamic force, torque and first moment are given below for rigid and spherical particles. For soft and

anisotropic particles (spheroids), the reader is referred to the book from Kim & Karilla [5]. The force

corresponds to the integral of the surface tractions on the particle’s surface:

Fh =

∫

Sp

σ · n dS =

∫

Sp

fdS (1.14)

where Sp is the surface of the particle, f = σ · n is the surface traction and n the normal surface vector

pointing in the fluid’s direction. The torque generates angular momentum on particles and can be written

using the Einstein notation:

T h
k = −εijk

∫

Sp

fixjdS (1.15)

where εijk is the Levi-Civita tensor and x the position vector. Lastly, the complete first moment is a

second rank tensor given by:

Mij =

∫

Sp

fixjdS (1.16)

The first moment can be split into a symmetric and anti-symmetric part Mij = Aij + Sij . The anti-

symmetric part and the torque are directly related through the relation:

Aij =
1

2

∫

Sp

(σikxj − σjkxi)nkdS = −1

2
εijkT

h
k (1.17)

As the stress tensor is symmetric and the particle spherical, it clearly appears that in the absence of any

external torque Aij = 0. The symmetric part, commonly named stresslet is defined as [1]:

Sij =
1

2

∫

Sp

(σikxj + σjkxi)nkdS (1.18)

The hydrodynamic force, torque and stresslet are the mainstays of the method used to solve the Langevin

equation. Indeed, as the Stokes equations are linear, the resulting velocity fields and tractions are linear
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functions of the boundary conditions. Maybe the most useful result of this fact is the existence of a

mobility matrix coupling all the moments of the hydrodynamic force density on the particle surface

(force, torque and stresslet) to the moments of the particle velocities (translational, rotational and rate of

deformation): 


U− u∞(x)

ω − ω∞(x)

E− E∞(x)


 = −



MUF MΩF MEF

MUT MΩT MET

MUS MΩS MES


 ·




Fh

Th

Sh


 (1.19)

where U and ω are, respectively, the particle translational and rotational velocities, E the particle rate

of strain which is equal to zero for rigid particles, u∞(x) the ambient fluid velocity field in the absence

of any disturbance due to the particles, ω∞ = (1/2)∇ × u∞ the ambient rotational fluid velocity and

finally E∞(x) the rate of strain of the ambient fluid (see equation (1.7) ). The grand mobility tensorM
is positive-definite and symmetric. Due to its symmetry, the grand mobility tensor can be inverted which

gives the grand resistance tensor denoted:

R =



RFU RFω RFE

RTU RTω RTE

RSU RSω RSE


 (1.20)

The switch between the resistance and mobility formulation can be really helpful in numerical algo-

rithms, but one must be careful of the fact thatM−1
UF 6= RFU. The grand resistance and grand mobility

tensors take into account the totality of the interactions of the particles, i.e., the near and the far-field

many-body interactions. The detail about the functions used for the construction of both the grand mo-

bility and grand resistance tensors of spheres and axisymmetric particles can be found in the book from

Kim & Karrila [5]. However, the resistance and the mobility tensors remain unknown for particles with

complex shapes.

2.3 The Brownian force

The fluid constitutive of the continuum medium is composed of molecules in motion. This motion is due

to the thermal disturbances of the molecules, which is related to the temperature of the fluid: the lower the

temperature is, the slower the molecules move. While molecules are discovering the surrounding space,

they hit colloids and transfer some kinetic energy to them. For small colloidal particles, this energy is

important enough to generate a random displacement, the Brownian motion. The word random refers to

the fact that the average displacement over a long period of time must be equal to zero. The Brownian

displacement depends on the shape of the particle, the temperature, and on the local concentration of

colloids.

For a dilute suspension of hard spheres, Einstein and Smoluchowski gave at the beginning of the 20th

century the expression of the mean square displacement
〈
(∆r(t))2

〉
using the diffusion coefficient D :

lim
t→∞

〈
(∆r(t))2

〉
= 6Dt (1.21)

where t is the time, r the displacement vector of the particles, and with the surrounding brackets <>

standing for the ensemble average. For an isolated hard spheres, D = kbT/(6πηa).
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When the concentration of hard spheres is high enough to not allow considering the suspension as

dilute, self-diffusion is commonly split into a short and a long time part. The short time self-diffusion

coefficient is determined by the average instantaneous mobility of an individual particle as Ds
0 = kbT <

M11 >. In contrast, the long time self-diffusion stands for a more complex behavior where the colloid

interacts with other colloids under conditions of interest.

A few years after the discovery of Einstein and Smoluchowski, Langevin proposed a microscopic

model of the Brownian motion using a Brownian force applied directly to the particles. This force must

have a zero average and a non-zero temporal correlation approximated by white noise. In other words,

the Brownian force must satisfy:
〈

Fb(t)
〉

= 0 and
〈

Fb(0)Fb(t)
〉

= Fcδ(t) (1.22)

where Fc is the correlation force amplitude and δ(t) the Dirac delta function1. The value of Fc is deter-

mined from the equipartition principle (at thermal equilibrium, the kinetic energy of a particle is kbT/2

for each degree of freedom). The correlation force is related to the drag force on the particle which is a

clear demonstration of the fluctuation-dissipation theorem:

Fc = 2kbTRFU (1.23)

The entire demonstration can be found on page 121 in the book of Guazzelli & Morris [3].

2.4 Van der Waals forces

Van der Waals (vdW) forces are electrodynamic forces between atoms and molecules. These forces act

on every atom and molecule, even uncharged ones, and are effective from interatomic spacing (∼ 0.2nm)

to long-range distances (∼ 10nm in water) and depend on both the material properties of the particle and

the surrounding medium. Between two permanent dipoles, the forces are called the Keesom forces,

between one permanent and one induced dipole the Debye forces, and finally, the forces between two

induced dipoles are called the London forces. The free energy of each of these forces varies in function

of the distance between the two atoms as 1/r6. For a monodisperse suspension of colloids, these forces

are generally attractive but remain cumbersome to calculate. Indeed, the principle of additivity is not

correct for many-body system. One can understand this by considering two molecules. The vdW on

the first molecule are simply due to the presence of its neighbor. If a third molecule is now added,

it will generate an instantaneous field coming from the differences between the exact positions of the

electrons compared with the positions of the protons, which will polarize the two other molecules and

then modify the electrodynamic forces. To overcome this problem, Lifshitz suggested a theory where the

atomic structure of the particles is not taken into account. Then particles are considered as a continuum

medium, and the interparticle forces only depend on the dielectric constant and the refractive index of

the volume studied. For a complete description of the vdW forces, and for the description of the Lifshitz

theory, the reader may refer to the book of Parsegian [8]. Van der Waals forces are not taken into account

in the hydrodynamic code used in this thesis (see section 1.1) as we will consider them to be negligible

compared to electrostatic forces.
1In equation 1.22, δ(t) has the dimension of s−1
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2.5 Electrostatic forces

Surface charges of colloids can exist due to reactions on the surface of the colloid (e.g. (de)protonation

of surface groups), or the adsorption of ions (replacement of an ion from the crystal with another ion with

a different valence for example). Most colloids have a surface charge, which has the effect of modifying

the local distribution of ions in the solution. Indeed, counterions are attracted by the opposite charges

on the surface of the colloid (Coulomb’s forces) and can form a dense layer known as the Stern layer.

Thermal agitation tends to restore a uniform concentration of ions in the solution. A second layer where

both Coulomb’s attraction and thermal diffusion compete appears: the Gouy-Chapman or diffuse layer.

If the ions can be assimilated to uncorrelated diffuse charges and the potential of the mean force is equal

to the mean of the local potentials, then the repartition of ions in the diffuse layer follows the Boltzmann

distribution:

nk = n∞k exp

(
−ezkψ
kbT

)
(1.24)

where zk is the valence of the ionic species k, nk the local number density of ions, n∞k the number

density of ions far away from the surface of the colloid where ψ = 0, ψ the electrostatic potential, and e

the elementary charge of an electron ( −1.605× 10−19 C). Charges on colloids produce an electric field

E given by the Maxwell-Gauss equation reduced for electrostatics:

∇ · (εE) = ρ (1.25)

with ε the permittivity of the medium, ρ the density of charges defined as




ρ = 0 in particles

ρ =
N∑

k=1

ezknk in the fluid
(1.26)

where N is the number of different ionic species in the solution. The electric field E derives from the

electrostatic potential ψ:

E = −∇ψ (1.27)

If we insert equations (1.24), (1.26) and (1.27) in equation (1.25), we obtain the Laplace and Poisson-

Boltzmann equations:




∇ · (−ε∇ψ) = 0 in particles

∇ · (−ε∇ψ) =

N∑

k=1

ezkn
∞
k e
− ezkψ
kBT in the fluid

(1.28)

These equations allow calculating the electrostatic potential of a charged particle in an electrolyte. This

theory is mostly valid only for monovalent ions (z+ = 1 and z− = −1) which allows considering the

number densities of the two ionic species where ψ = 0 as equal: n∞ = n∞+ = n∞− . If ε is constant, it is

straightforward to show:

∆ψ =
2en∞

ε
sinh

(
eψ

kBT

)
(1.29)
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with ∆ the Laplacian. To obtain a non-dimensional equation, we introduce the characteristic thickness

of the double layer, the Debye length κ−1 =
[
(εkBT )/(2e2n∞)

]1/2, the dimensionless operator ∆∗ =

1/κ2∆ and the non-dimensional electrostatic potential (ψ∗ = eψ
kBT

). Finally the previous equation can

be written in a non-dimensional form:

∆∗ψ∗ = sinhψ∗ (1.30)

The excess of ions in the double layer and the electric field generate a stress field on the colloids. The

resulting stress tensor can be written with the Einstein notation as:

σij = −Πδij +Mij i, j ∈ {1, 2, 3} (1.31)

with Mij the Maxwell tensor defined as:

Mij = ε

(
EiEj −

1

2
E2δij

)
(1.32)

and Π the local osmotic pressure due the ions equal to:

Π = 2n∞kBT (coshψ∗ − 1) (1.33)

As the electric field derives from the electrostatic potential, solving the PB (see equation (1.30)) allows

calculating the full stress tensor. From this definition of the osmotic stress tensor, electrostatic forces,

torques and first moments can be derived as in equations (1.14) to (1.16).

In this section, we have presented the forces driving the spatial arrangement of the particles. These

microscopic interactions are responsible for the microstructure and influence the macroscopic behavior

of the suspension. The microstructure can have specific hallmarks allowing the introduction of the idea

of the existence of phases of a suspension.

3 Phase behavior

The forces described above have the effect of driving the spatial arrangement of the particles referred to

as the microstructure. This microstructure depends on the particle shape, polydispersity, volume frac-

tion, and the forces applied to the system. Microscopic interactions have an impact on the macroscopic

behavior of the suspension, which is often characterized by different phases. To have an insight into

the different existing phases and the complexity of some colloidal systems, we will start with the easiest

system and make it progressively more complex.

Let us first consider a monodisperse suspension of hard spheres without background flow. We assume

the resulting structure to be independent of the temperature, and with an infinite interaction potential

between two spheres if the particles are in contact, else zero. Then, the phase diagram only depends on

the volume fraction. At low volume fraction, φ < 0.494, the suspension is in a fluid state, and particles

are uniformly distributed due to Brownian motion. Increasing the volume fraction, 0.494 . φ < 0.58,

leads to a glassy state where the amorphous suspension is solid with no large distance order. Finally,

above φ = 0.58 the suspension becomes a crystal, i.e., with long-range order, and reaches its maximal
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compact fraction (Face-Centered Crystal, FCC) at φ = 0.74. The transition between two states is not

instantaneous, and the coexistence of two phases is observed, e.g., the liquid to solid transition occurs

for 0.494 . φ < 0.54. Even for the simplest suspension, the phase diagram is not easily predictable as

shown in Figure 1.1.

Φ
0.494

Fluid

Liquid/solid
 Transition

0.54 0.58 0.638 0.74

CristalGlass

  FCC
crystal

Increase order

    Phases
coexistence

Figure 1.1: Hard sphere suspension phase diagram

Let us now make the system more complicated by considering a suspension of spheres with elec-

trostatic interactions. If the interactions are repulsive, the transition from the liquid state to a solid-like

phase occurs at a smaller volume fraction. When this transition occurs at a very low volume fraction

due to strong and long-range repulsive electrostatic interactions the phase is called a Wigner glass. In

an attractive system, sticky spheres with attractive short-range interactions can percolate and form a floc

even at low volume fraction. The formation of the floc mainly depends on the ratio between the attraction

forces and the Brownian forces. The dynamics of a floc depend on its size: the bigger the floc is, the

slower it diffuses, but the faster it settles due to gravitation if present. The settling often leads to a phase

separation between flocs, with a phase rich in colloids and a liquid state poor in colloids. When the flocs

span the available space, they form a gel. As the range of electrostatic interactions can be tuned through

the addition of salt, the characteristics of the final gel such as its density depend on both the volume

fraction of particles and on the salt concentration [9].

One should keep in mind that many colloids exhibit a shape anisotropy, which drastically increases

the number of possible phases. For example, Jabbari-Farouji et al. count no less than eight different

phases for infinitely thin repulsive hard disks modeled with Monte-Carlo [4]. When colloidal particles

have both shape and charge anisotropy, and if at the same time, the suspension is sensitive to experimental

protocols, establishing the phase diagram of the colloidal suspension can be challenging. That is why,

even after years of research, some discrepancies still exist concerning the phase diagram of the Laponite

as shown in Figure 1.2. Laponite is a synthetic hectorite-type smectite clay with a platelet shape and an

aspect ratio of approximately 30. Its faces are negatively charged while the rim bears a positive charge.

Therefore, Laponite has both shape and charge anisotropy.

To describe the phases of such a complex suspension, researchers often need to make use of several

measured quantities (see Figure 1.2) obtained using Dynamic Light Scattering (DLS), Static Light Scat-

tering (SLS) and Small Angle-X ray Scattering (SAXS) [6]. Thanks to these experimental methods, it

is possible to determine the spatial arrangement of the particles, their diffusion, the existence of arrested

states, etc.
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Figure 1.2: Laponite phase diagram proposed by Ruzicka and coworkers in [9].

In this section, we have only presented some phases of suspensions without background flow. How-

ever, different structures can be observed when a flow is applied to the suspension. Indeed, the mi-

crostructure depends on the forces applied to the suspension, and therefore the hydrodynamic stresses

coming from the flowing fluid can modify the structure. The study of the flow of a colloidal suspension

when stress is applied is called rheology.

4 Rheology of colloidal suspensions

Knowledge of microscopic interactions allows pushing further the comprehension of the macroscopic

behavior of colloidal suspensions, especially its rheological behavior. The flowing behavior of colloidal

suspensions is usually not Newtonian due to the numerous and complex interactions between particles

and between fluid and particles. Some of these behaviors are interesting for industrial processes and

in everyday life. That is why non-Newtonian suspensions are so common, e.g., the toothpaste has yield

stress, the mix of cornstarch with water undergoes a shear-thickening behavior, and the tomato ketchup is

a thixotropic fluid. The suspension behavior is determined using experiments carried out with rheometers

and allows measuring the response of the material to applied forces. Numerous types of rheometers exist

depending on the flow applied (shear or extensional) and on the geometry (plate-plate, cylindrical, cone-

plate, etc.). In this manuscript, we will only study the simple shear flow (Couette flow). The latter is

easily obtained by confining a suspension between two parallels plates (see Figure 1.3). The application

of a tangential force on the top plate generates its motion while the bottom plate is kept motionless.

Then, considering no-slip conditions, the first layer of particles near the moving plate goes to the same

velocity as the plate itself, dragging at its turn through viscous effects the other streamlines of the system

and creating a velocity gradient in the y-direction. If the velocity is low enough to avoid turbulence, the

fluid flows parallel to the plates, and the velocity gradient in the y-direction is constant. The strain rate

is then defined as:

γ̇ =
vplate
h

(1.34)
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where vplate is the velocity of the moving plate and h the distance between the two plates. The shear

stress is simply the force applied to the upper plate (F in blue in Figure 1.3), divided by the surface

of contact between the fluid and the plate. In this study, calculations are realized at an imposed shear

rate in an infinite medium which means that we simulate the case that the plates are far enough to have

negligible effects on the flow (red box on the Figure 1.3).

Mobile rigid plate

y

x
h

vx

Stationary plate

Tangential shear force F

Typical simulation

        box

Figure 1.3: Simple shear flow between a moving and a stationary plate.

The relation between the shear stress and the shear rate defines the fluid behavior. A few classical

examples are provided in the following paragraphs.

4.1 Newtonian fluids

The most simple fluids are Newtonian and are omnipresent in everyday life (water, olive oil, fruit juice,

wine). In such fluids, the shear rate γ̇ is linearly related to the shear stress σ through the constant viscosity

of the fluid η:

σ = ηγ̇ (1.35)

Colloidal suspensions usually undergo more complex behavior even if the pure fluid phase is Newtonian.

4.2 Shear thinning and shear thickening fluids

The viscosity of some fluids increases (shear thickening) or decreases (shear thinning) with the shear rate.

When the relation between the shear rate and the shear stress is a power law, those fluids are referred to

as "generalized Newtonian fluids":

σ = kγ̇n (1.36)

with k a constant depending on the fluid and n the power-law index. When n is equal to 1, one can

recognize the Newtonian behavior described earlier. In such a case, k is simply the viscosity of the

suspension. If 0 < n < 1, shear-thinning is observed, i.e. the viscosity decreases when the shear stress

increases. For 1 < n one can observe a shear-thickening fluid: the more the shear rate increases, the

more the viscosity increases. The behavior of a colloidal suspension depends on its microstructure and

of the shear stress applied. The same suspension can behave as a shear-thinning fluid, a Newtonian

fluid and a shear-thickening fluid while varying the shear stress and the shear rate. Such a behavior is

quite prevalent for colloidal suspensions and is reported for a suspension of latex spheres embedded in a
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Newtonian fluid in Figure 1.4.

Figure 1.4: Viscosity of colloidal latex dispersions in function of the shear stress from [10].

At relatively low volume fraction (φ < 0.2) the suspension is Newtonian: the viscosity remains

constant whatever the shear stress (orange, purple and green curves). Increasing the volume fraction

leads to shear thinning at low shear stress (curves in pink and cyan) and shear thickening at high shear

stress (blue, red and black curves). At high volume fractions (φ > 0.43), the suspension does not flow

if the shear stress is not beyond a critical shear stress (σ ∼ 10−1 Pa for the red curve corresponding to

a suspension with a volume fraction of φ = 0.47). This critical stress is called the yield stress of the

suspension.

4.3 Yield stress fluids

A yield stress fluid requires a critical stress to flow. The corresponding force to reach this critical value

corresponds to the energy needed by the system to break enough inter-particular bonds to allow flow.

Once this energetic threshold is crossed, the fluid can undergo a Newtonian behavior (Bingham model),

shear-thinning or shear-thickening (Herschel-Bulkley models). The shear stress and the shear rate are

frequently related through the following law:

σ = σy + kγ̇n (1.37)

where σy is the yield stress. The viscosity of an ideal yield stress fluid diverges at the vicinity of the

critical stress. Nevertheless, this divergence is never observed in a real fluid as shown in Figure 1.5.

4.4 Thixotropic fluids

Let us consider a colloidal suspension without any background flow. The final microstructure is reached

once the Helmholtz free energy of the system is minimized, and could be trapped in a local minimum

as in a gel. The application of a shear stress, referred to later as the first shear, can break bonds with
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Figure 1.5: Viscosity of an ideal and a real yield stress fluid [2].

the smallest energy, and therefore modify the microstructure of the suspension leading to the reduction

of the viscosity in a time-dependent fashion. Stopping the flow allows the microstructure to tend back

to an energy minimum, which can be the same as the original one, or different. During this period of

rest of the suspension, the viscosity increases. When a new shear is applied, if the suspension undergoes

the same behavior as during the first shear, i.e., the time-dependent viscosity and the same final viscosity

after a long shear period of time, the suspension is then considered as thixotropic [7]. For example, one

can cite tomato ketchup, latex paints, and Laponite suspensions as thixotropic fluids.

5 Conclusion

In this first chapter, the basic theoretical concepts of colloidal suspensions have been introduced. It has

been highlighted that the microscopic interactions drive the spatial arrangement of particles that influence

the macroscopic behavior of the suspension. A better understanding of the microscopic scale is crucial

to define the phases of a suspension and to foresee their behaviors under stress.

Due to the small size of the colloids, the direct observation of the microstructure is often not possi-

ble. Moreover, the tremendous number of parameters in a colloidal suspension is really challenging to

monitor (e.g., polydispersity, ionic strength, pH, volume fraction, etc.). That is why experimental studies

are not always suited to the microscopic study of a colloidal suspension. To overcome this difficulty,

researchers have modeled colloids numerically and to study the influence of specific parameters such

as the size or the polydispersity on the microstructure. In the next chapter, numerical models used to

simulate suspensions of particles with both shape and charge anisotropy are presented.
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Numerical models of colloidal

suspensions 2
Experimental study of colloidal suspensions is a complicated task due to numerous parameters affecting

the behavior of the particles. Among them, one can cite the difficulty of having a perfectly monodisperse

suspension with the desired shape (aspect ratio) or the same instantaneous charge on every particle. Other

difficulties, such as monitoring the local pH affecting the surface charge, the aging of the suspension,

and broadly speaking a modification of the experimental protocol used to prepare and study the col-

loidal suspension can lead to discrepancies between groups of research concerning the behavior of the

"same" colloidal suspension. Moreover, it is challenging to study the influence of only one parameter

experimentally, as most of them are interdependent.

One alternative is to carry out numerical simulations resolving the dynamics of the colloidal suspen-

sion. Numerical simulations are especially useful to study colloidal suspensions of particles with both

shape and charge anisotropy. Indeed, the simulations allow fixing some parameters such as the charges

and the shape of the particles while focusing the study of only one parameter, e.g., the electrostatic in-

teraction range. However, a lot of assumptions and simplifications are often considered to model this

kind of colloidal suspension due to the lack of theories concerning anisotropic particles. The model

used to describe the colloids, their interactions with other particles and with the surrounding fluid can

be more or less complicated and time-consuming, depending on the accuracy required for the study. For

example, the more accurate way to compute the hydrodynamic stress tensor on the particles is to mesh

the system and then to solve in every point of space Stokes equations using direct numerical simulations

(DNS). The negative side of this method lies in its tremendous computational cost coming from the three-

dimensional resolution of the Stokes equations. Moreover, the Brownian motion is difficult to compute

– e.g. using fluctuating hydrodynamic (see Landau & Lifshitz [23]); that is why DNS is rarely used to

model colloidal suspensions. An alternative way to compute the dynamics of a colloidal suspension is

to coarse-grain the system into elementary objects for which the theory is known and relatively "easy"

to compute. Disregard this highlighting, in the first chapter, it has been stated that the mobility tensor of

spherical objects is known, which makes evident the use of spheres as elementary objects to coarse-grain

anisotropic colloids. To illustrate the coarse-graining of a particle, let us consider a rod-shaped colloid.

Instead of considering the rod as a unique object, it can be described by a stack of spheres as shown on

the middle rod in Figure 2.1 or even coarse-grained in a finner way, as shown for the right-most rod in

the same figure. Of course, using a fine description increases the computational cost. That is why the
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principle of this kind of simulation is to coarse-grain the system as much as possible while keeping the

physics unchanged. In practice the dynamics of interconnected spheres will be considered instead of that

of the original rods.

Figure 2.1: Coarse grain examples of a rod shaped colloid.

Although this coarse-graining of the particles allows computing hydrodynamics, studies from litera-

ture are mainly focused on the behavior of suspensions without background flow and have been carried

out using Monte-Carlo (MC) or Brownian Dynamics (BD) simulations. Given that the rheology of a

suspension is the study of its flow in response to an applied force, the hydrodynamic interactions can

be taken into account in the model to compute rheological quantities such as the viscosity or the normal

stress differences. We will present in this chapter a numerical method allowing the computation of the

rheological quantities for a suspension of particles with both shape and charge anisotropy.

To this end, the numerical method used to compute the spherical colloidal dynamics is first presented.

Then, the explanation of how this method is used to coarse-grain anisotropic particles with both structural

and charge anisotropy is described. Finally, the two different models implemented in this thesis are

described and compared with results from the literature.

1 Numerical simulation of suspensions of spherical colloidal

Although the dynamics of spherical colloids including many-body interactions can be computed using

different methods such as the force coupling method (FCM) or even using DNS, the oldest method in

our knowledge is the one introduced in the early 1980s by Bossis and Brady [7]. In their method, these

authors proposed to numerically compute the Langevin equation in writing the hydrodynamic force using

the grand resistance matrix (see Chapter 1 section 2.2). This method is known as the Stokesian Dynamics.

1.1 Stokesian Dynamics

We note that due to the linearity of the Stokes equations the hydrodynamic force and torque on a par-

ticle are coupled with the disturbance flow Fh = −RFU (Up − u∞) +RFEE∞ where we have used

the force/torque notation Fh = (Fh,Th), the translational/rotational velocity notation Up = (Up,Ωp),

and whereRFU andRFE are part of the grand resistance tensor. The resistance expression of the hy-

drodynamic force can be inserted into equation (1.11), giving the final expression of the overdamped

Langevin equation used by Bossis & Brady [7] for the calculation of the dynamical behavior of a sheared
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suspension of spheres:

0 = −RFU (Up − u∞) +RFEE∞ + Fp (2.1)

where Fp represents interparticle forces, Up the velocity of the colloids and E∞ the bulk rate-of-strain

tensor. In the following equations, the net interparticle force on the suspension is assumed to vanish:
∑

Fp = 0. To compute the velocity and therefore solve equation (2.1), we need to generate the grand

resistance tensorR and invertRFU . One should remember that the grand resistance matrix must take

into account both the near- and far-field many-body interactions. In their first work Bossis & Brady

[7, 9], did not consider the stresslet for the computation of the grand resistance matrix. In order to

decrease the leading error of such an assumption, Durlofsky and Brady [12] proposed a new method

where the resistance tensor is computed in two steps. To develop this method, we first need to explain

how the velocity and the forces are linked through the grand mobility matrix. Let us now consider N

rigid particles in an ambient flow u∞. The integral equation of the velocity field at any point x in the

fluid or within the particles is given by [22]:

ui(x)− u∞i (x) = − 1

8πη

N∑

α=1

∫

Sα

Gij(x− y)fi dSy (2.2)

where Sα represents the surface of the particle α, and y the point on the particle surface. Expanding

Gij(x − y) about y = 0 and introducing the definitions of the zeroth (the hydrodynamic force) and

first moment of the surface traction f given respectively by equations (1.15) and (1.16), we obtain the

multipole expansion:

ui(x)− u∞i (x) =

N∑

α=1

{
−F hj

(
1 +

a2

6
∇2

) Gij(x)

8πη
+Mjk

(
1 +

a2

10
∇2

)
∂

∂xk

Gij(x)

8πη
+ ...

}
(2.3)

The exact solution requires the full Taylor expansion, corresponding to the addition of higher moments

symbolized by the "..." in the equation (2.3). In what follows the expansion is truncated up to the "dipole

version" as only the first two moments (zeroth and first order) are considered. Then we define the

disturbance velocity field uαi (x) generated by all the particles except the particle α, without taking into

account the background flow:

uαi (x) =
N∑

β=1,βα

{
−F hj

(
1 +

a2

6
∇2

) Gij(x)

8πη
+Mjk

(
1 +

a2

10
∇2

)
∂

∂xk

Gij(x)

8πη

}
(2.4)

The Faxén laws for spheres [4] allow writing the motion Uα of the particle α as a function of the distur-

bance velocity field given in equation (2.4):

Uαi − u∞i (xα) = − F
h,α
i

6πηa
+

(
1 +

a2

6
∇2

)
uαi (xα)

ωαi − ω∞i (xα) = − T h,αi

8πηa3
+

1

2
∇× uαi (xα)

−E∞ij (xα) = − 3

20πηa3
Sh,αij +

1

2

(
1 +

a2

10
∇2

)[
∂uαi
∂xαj

+
∂uαj
∂xαi

]
(2.5)
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Introducing equation (2.4) into equation (2.5) allows writing the velocity of particle α as a function of

the zeroth and first moment. If we write equation (2.5) for each particle, the tensorial relation between

the velocities and the hydrodynamic force, torque, and stresslet of the particles correspond to the far-field

approximation of the grand mobility matrixM∞:



Up − u∞(x)

ωp − ω∞(x)

−E∞(x)


 = −M∞ ·




Fh

Th

Sh


 (2.6)

One should notice thatM∞ is a purely geometric tensor and only depends on the position of the particles.

Moreover, emphasize on the fact that M∞ must be defined as symmetric and positive definite, and

special attention must be paid to the signs of the forces. The terms "approximation" and "far-field" are

used to represent the fact that the multipole expansion was truncated to the dipole order. Due to that

truncation, the lubrication interactions are not taken into account. That is why, after the inversion of the

grand resistance matrix to form (M∞)−1, Durlofsky and Brady [12] proposed to introduce in a second

step and in a pairwise additive fashion a two-body resistance tensor1 R2B . However as the far-field

two-body interactionR∞2B was already taken into account into (M∞)−1, it must be subtracted, which

lead to the final equation for the grand resistance matrix:

R = (M∞)−1 +R2B −R∞2B (2.7)

where the last two terms depict near-field interactions for a distance within a cutoff radius generally

equals to 4 particle radii. For larger distance, the entry is simply zero, and therefore we obtain a sparse

near-field lubrication matrixRnf =R2B −R∞2B .

The same year Durlofsky et al. developed this method, Bossis & Brady worked on adding the Brow-

nian force to equation (2.1) while respecting the fluctuation-dissipation theorem [5]. With the Brownian

force, the Langevin equation becomes:
[
0

S

]
= −R ·

[
Up − u∞

−E∞

]
+

[
Fb + Fp

−rFp

]
(2.8)

where r is the center to center vector for a pair of spheres and −rFp the stress known in molecular dy-

namics as the "pressure tensor". It is important to emphasize that all the forces, torques, and stresslets are

applied to the centers of gravity of the spheres. Particles are considered as "overlapping" each other if

the distance between two centers is inferior to the sum of the radii. Lubrication forces are sometimes not

sufficient to avoid such non-physical behavior without use of a very small time step not suitable for nu-

merical simulations. To overcome this difficulty, a repulsive short-range force is added and corresponds

to one of the interparticle forces Fp as first described in early work by Brady and coworkers [7]. The

integration of the first line of equation (2.8) twice over a time step ∆t (smaller than the time needed by

the microstructure to change, and larger than the relaxation time) leads to the displacement ∆x of the

particle [6, 7, 9, 12, 14]:

∆x = (u∞ +R−1
FU · [RFE : E∞ + Fp])∆t+ kbT∇ ·R−1

FU∆t+ X (∆t)

with 〈X〉 = 0 and 〈X (∆t) X (∆t)〉 = 2kbTR−1
FU∆t



 (2.9)

1The exact formulation of the two spheres resistance tensor is given in the book of Kim & Karrila [20].
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with X (∆t) the random displacement of the particle due to Brownian motion, and kbT∇ ·R−1
FU a mean

drift term coming from the simple forward time-stepping (displacement due to the configuration space

divergence of the N -particle diffusivity). Most of the numerical cost of the resolution of this equation

stems from the generation of the far-field mobility matrixM∞ involvingO(N2
s ) operations, its inversion

O(N3
s ) and in the inversion ofRFU, a (6Ns×6Ns) tensor whereNs represents the number of individual

spheres in the suspension. It clearly appears that this method is not adequate for the computation of a

large system with hundreds of particles. That is the reason why a new method with a more favorable

scaling was developed in the early 2000s referred to as Accelerated Stokesian Dynamics.

1.2 Accelerated Stokesian Dynamics

The ASD method was developed by Sierou et al. [35] to reduce the computational cost. Sierou & Brady

proposed to compute the far-field hydrodynamic force and stresslet directly, thus avoiding the calculation

ofM∞ and its inversion. The expression of the hydrodynamic force is given by

Fh = −RFU,nf · (Up − u∞) +RFE,nf : E∞ + Fhff , (2.10)

where the subscript "nf" means near-field and "ff" far-field. It is important to emphasize that the far-

field force also refers to many-body interactions. Its computation is realized in an iterative fashion in

O(N1.25
s ) operations. We stress that RFU,nf is a sparse matrix and its inversion can be done using an

iterative solver such as the conjugate gradient method scaling as O(Ns) if implemented with a Cholesky

preconditioner. For a complete explanation of the computation of the far-field hydrodynamic force,

torque and stresslet, the reader may refer to Sierou’s article [35] and thesis [34]. In a few words, the

computation of Fhff is based on the work from Hasimoto [16]. The author wrote the periodic fundamental

solutions of the Stokes equations for point forces (recall that spheres can be approximated by point forces

at a large distance, see Chapter 1 section 1.2). Next, Hasimoto used the Ewald’s summation technique to

write the velocity of a sphere as a sum of both a real space and a wave space part: uff = uRS + uWS

where the superscript RS and WS stand for respectively the real space and the wave space sum part.

Comparing this expression of the velocity with the point force solution leads to the expressions for the

periodic Stokeslet in the real (GRS) and in the Fourier space (GWS). The real sum contribution to the

velocity is straightforward using multipole expansions with the successive derivatives of the Stokeslet

GRS . The wave sum contribution to the velocity is more complex and is computed in three steps. Firstly,

the moments of the particle (force, doublet, quadrupole and octupole) are distributed on the nodes of a

grid and described by point forces. Secondly, the application of the Fourier transform of the point forces

allows writing the wave part velocity in the Fourier space ûWS . Finally, the inverse Fourier transform

of ûWS gives uWS , the wave-space contribution to the total velocity. Concerning the nodes on which

the moments are distributed, Sierou and Brady have shown that the moments conservation requires 125

nodes per spheres. However, it will be demonstrated later in this manuscript that for anisotropic particles,

the use of a coarser grid does not change the results significantly (see Chapter 2 section 3). Thanks to the

far-field velocity uff Sierou and Brady were able to calculate the far-field hydrodynamic force, torque,
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and stresslet using the Faxén laws:

F h,α
ff = −6πηa (Uα − u∞(xα) ) + 6πηa

(
1 +

a2

6
∇2

)
uαff (xα)

T h,αff = −8πηa3 (ωαi − ω∞i (xα)) + 4πηa3∇× uαff (xα)

Sh,αff =
20πηa3

3

[
E∞(xα) +

(
1 +

a2

10
∇2

)
eff (xα)

]
(2.11)

One should note the similarities with the equation (2.6). Thus, introducing the grand mobility matrix the

previous equation becomes:



Fhff
Thff
Shff


 = −(M∞)−1 ·




Up − u∞

ωp − ω∞
−E∞


 (2.12)

The hydrodynamic far-field forces, torques and stresslets are computed in an iterative fashion involving

O(N1.25
s ). We have reported in Appendix 1 the flow chart given by Sierou [34]. Finally equation (2.8)

becomes in the Accelerated Stokesian Dynamics (ASD) developed by Sierou and Brady:
[
0

S

]
= −R̃nf ·

[
Up − u∞

−E∞

]
+

[
Fp + Fhff − λ(Up − u∞)

−rFp + Shff

]
(2.13)

with the near-field resistance matrix:

R̃nf =

[
R̃FU,nf RFE,nf

RSU,nf RSE,nf

]
(2.14)

where a diagonal tensor λI was added theRFU,nf to ensure its positiveness and its invertibility: R̃FU =

RFU + λI. Following Swan [37], a value of 1 for λ is always sufficient.

The method developed by Sierou was only for non-Brownian particles. The Brownian part was

added by Banchio & Brady who proposed two methods to extend the ASD to suspensions with Brownian

motion. The authors used the linearity of the Stokes flows to superimpose effects and to split Up − u∞

into a hydrodynamic velocity Uh, an interparticle velocity Up and a Brownian velocity Ub. Thus, the

authors obtained two equations, the first one including the hydrodynamic and interparticle parts, and a

second one including only the Brownian part written as:
[

0

Sh + Sp

]
= −R̃nf ·

[
Uh + Up

−E∞

]
+

[
Fp + Fhff − λ(Uh + Up)

−rFp + Shff

]
(2.15)

[
0

Sb

]
= −

[
(M∞)−1 +R2B −R∞2B

]
·
[

Ub

0

]
+

[
Fb

0

]
(2.16)
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where we have used the developed form of the grand resistance matrix given in equation (2.7). The

first method consists in replacing the Brownian far-field mobility matrix M∞ by a diagonal matrix

with effective values depending on the volume fraction. These values are the translational and rotational

short-time self-diffusivity for spheres at equilibrium without any interparticle interactions, equivalent to

a sphere in an infinite medium. Concerning the computation of the Brownian motion for anisotropic

particles, we have made the choice of considering the far-field mobility matrix as a diagonal matrix,

even if it can have the consequence of slightly violating the fluctuation-dissipation theorem. Naturally,

identifying the diffusion coefficients with those of plate-like particles is non-sense. Thus, we decided

to consider those parameters as free parameters to mimic the theoretical average diffusion coefficient of

the desired particle in an infinitely dilute system. If this method is not physically rigorous it drastically

decreases the computational cost. Indeed, the inverse of a diagonal matrix is trivial to compute and

can easily be added to the near-field resistance matrix before being inverted using the conjugate gradient

method. The key step in the second method consists in replacing (M∞)−1 by its Chebyshev polynomial

approximation. The details can be found in Banchio & Brady’s paper [1].

The ASD method was widely used in the last decade. For example, one can cite the study of repulsive

electrostatic interactions by Nazockdast et al. [29], oscillatory flows by Marenne and coworkers [24, 25],

self-propelled particles by Swan et al. [37] who also adapted the ASD to confined geometry in his thesis

[36]. Recently, Brady’s group developed a far-field computation of a polydisperse suspension [41] which

could allow using polydisperse spheres to coarse grain anisotropic particles.

1.3 Summary

The Stokesian Dynamics (SD) method was originally designed to compute the dynamics of a small

number of spheres ( 64 spheres). The limitation concerning the latter lies in the important computation

cost for the construction of the grand resistance matrix and its inversion. Indeed, its computation requires

the formation of the far-field approximation of the mobility matrixM of size (11Ns × 11Ns) and its

inversion scaling respectively as O(N2
s ) and O(N3

s ). Then, solving the velocities of the spheres requires

the inversion of the grand resistance matrixR of size (11Ns × 11Ns) scaling also as O(N3
s ). Given the

fact that a typical simulation carried out in the current study comprises 2220 spheres, computing then

invertingM of size (24420 × 24420) is too expensive, and therefore this method will not be used for

systems with such a high number of spheres. Nonetheless, one should keep in mind that this method is

the reference, and the ASD method was developed only for the purpose of decreasing the computational

cost. This accelerated version avoids computing directly the far-field approximation of the grand mobility

matrix, and therefore the grand resistance matrix. The far-field hydrodynamic force, torque, and stresslet

are computed in an iterative fashion. The Brownian motion is either computed using a diagonal matrix

instead ofM or using the Chebyshev decomposition of the latter. In this work we have made the choice

to use a diagonal matrix in the ASD method to simulate anisotropic coarse-grained particles.

Using the ASD method allows reducing the scaling of the code from O(N3
s ) for the SD version to

O(N1.25
s ). However, attention should be paid to the way the Brownian motion is computed in ASD, and

the SD method should always be used to validate the physical behavior of the suspensions, especially at

low Péclet number due to the approximate treatment of Brownian effects in ASD. In order to study the
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dynamics of coarse-grained anisotropic particles, we have extended these methods to model the dynamics

of rigid-bodies composed of spherical particles.

2 Coarse-grained model of anisotropic particles

Now that we have introduced the SD and ASD methods to compute the dynamics of spherical particles,

we will present two different approaches to generate particles with both shape and charge anisotropy

using spheres as elementary objects. The coarse-grained particles will also be called clay-like particles

as it refers to a plate-like shape with some anisotropic charge distribution but we emphasize that the

method developed allows simulating any shape. In this section, we will first describe how the coarse-

grained particles are generated. Then two different methods used to keep a particle rigid are presented.

Finally, the way to implement the charge anisotropy is developed.

2.1 Generation of a coarse-grained particle

The first step of the coarse-graining consists in the generation of a 2D hexagonal compact crystal of

spheres, as shown in Figure 2.2 (a). The centers of gravity of three touching spheres form an equilateral

triangle, which is the optimal way to place spheres to reach the maximum sphere packing fraction. Then,

this hexagon is duplicated and stacked to form multiple layers, as shown in Figure 2.2 (b) and (c). Layers

are stacked in a hexagonal close-packing (HCP) lattice to maintain the highest density. Finally, spheres

are taken off from the crystal using a level-set method to obtain the final shape.

(a) Hexagonal sphere packing (b) HCP: z direction (c) HCP: y direction

Figure 2.2: Generation of a HCP crystal.

In this work, as the desired shape is a plate-like particle, the level-set function of an ellipsoid is used

(in red in Figure 2.3): the distance between the center of each sphere and the surface of the ellipsoid

is computed following the equations given by Eberly [13]. A positive distance means that the sphere is

outside the ellipsoid and must be removed, whereas a negative distance means the sphere is inside the

ellipsoid and has to be kept. Depending on the desired shape, the characteristics of the ellipsoid (semi-

minor and semi-major axis) can be changed, and one can choose between an oblate or a prolate spheroid

as shown in Figure 2.3.
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(a) Oblate particle (b) Prolate particle

Figure 2.3: Oblate and prolate spheroids generated from an HCP crystal and a level-set method. The

oblate particle (a) will be considered as the coarse-graining of a plate-like particle.

The oblate spheroid in Figure 2.3 (a) is composed of 37 spheres and will be considered as the coarse-

graining of the clay-like particle studied in this thesis. It will be referred to as AR7 particle in this

manuscript due to its Aspect Ratio close to 7 (7.3 exactly due to small interparticle spacing). The prolate

spheroid will be used as a validation test of the hydrodynamic behavior of the coarse-grained model at

infinite Péclet number. We recall once again that the ASD code is originally designed for free spheres. To

keep the object rigid, we developed two different methods. The first one consists in adding forces acting

like springs between spheres of the same object. The second method consists of constraining the system

by reducing the number of degrees of freedom for spheres of the same object using solid mechanics

equations.

2.2 Spheres bound with springs - (A)SD-SBS

Binding spheres with springs to form a rigid coarse-grained object is quite common in the literature

[8, 33]. The tied points of the springs on the surface of the spheres will be referred to as binding points.

The number of binding points determines the number of springs for a pair of spheres. The computation

of the positions of the N binding points for a pair of spheres is realized in two steps:

1. Firstly a reference point Cm1 is created at the intersection between the surface of the sphere m

and the center to center line between the two particles. This point is considered as the pole in a

spherical coordinates frame.

2. Then N − 1 points are created around Cm1 . These points Cmi with 1 ≤ i ≤ N are set, such as

keeping both the latitude between Cm1 and Cmi constant and the difference of longitude between

two consecutive points constant too.

To ensure the stiffness of the anisotropic particle, each pair of particles must be rigid, and we have found

that five binding points are necessary to avoid rolling, bending and stretching between two spheres. The

springs are represented in red in Figure 2.4.
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Figure 2.4: Rod and plate-like particle with springs binding spheres. Each red arrow represents a spring.

Using Hooke’s law, the force on particle 1 due to a spring between particle 1 and particle 2 is equal

to:

F1 = k
(∥∥C2 − C1

∥∥− L0

)
· (C2 − C1)∥∥C2 − C1

∥∥ (2.17)

where k is the spring constant, C1 and C2 the positions of the binding points on, respectively, particle 1

and 2 and L0 is the length of the spring at rest. This force induces a torque on the particle 1:

T1 =
(
C1 − C1

g

)
× F1 (2.18)

where C1
g is the center of gravity of the sphere and × stands for the cross-product. The total force and

torque on a sphere are simply equal to the sum of the forces and torques generated by the springs tied on

the particle. As the forces and the torques are applied to the center of the spheres in (A)SD, the sum of

the spring forces is also applied to the center and can be considered as an interparticle force. This method

will be referred to as the (A)SD-SBS (Spring-Bound Spheres) method. The advantage of this method is

that almost no development is required in the code. Indeed, the force and the torque due to the springs

on each pair of particles are simply added to the existing interparticle force Fp.
Unfortunately, the (A)SD-SBS method has numerous weaknesses concerning numerical computation

and computational time consumption. To illustrate the negative points of this method, let us first consider

a pair of particles bound with springs. The springs react to the perturbations: they push back if they are

compressed or pull back if stretched. From a numerical point of view, the objective is to keep a spring

close to its rest length and to avoid any relative internal motions of the particles. Thus, the translational

and rotational motions of the pair of spheres must be small enough to modify the length of the spring

by only a few percent. Perfect rigidity is reached for an infinite spring constant k, requiring a time step

going to zero. In practice, the object cannot be perfectly rigid, and the spring constant must be adapted to

have a characteristic relaxation time much smaller than the time needed by the spheres to move by a few

percent of their radius. It appears clearly that the spring constant depends on both the time step and the

regime used for the simulation (Brownian or not). A bad set of the time step and spring constant can lead

to the overlap between particles or massive oscillation. For example, let us consider a dumbbell with only

translational Brownian motion. At the time step (i) the Brownian motion moves spheres further apart,

then at the next time step (i+1), springs are stretched and create a force to bring back the spheres to their
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original positions. If the Brownian motion at the time step (i + 1) moves particles closer with the same

direction as the restoring force, the two forces (Brownian and spring) can generate a motion resulting

in the overlap of the two spheres at the end of the time step (i + 1). The easiest solution could have

been to reduce the time step. Nonetheless, it may not be sufficient as there always exists a probability, to

generate an overlap coming from the addition of the displacements due to the springs and the Brownian

motion. The time step should be reduced in an adaptive fashion to avoid any overlap. However, one

should recall that the spheres are always close-packed in a particle, and therefore only a very small

time step could avoid overlap to happen. Given the fact that in the condition of the simulations carried

out in this manuscript (number of particles and time step), 1 iteration is realized in approximatively 10

seconds, reducing the time step drastically or iterating the same time step multiple times would blow up

the computational time. Consequently, the use of spring to bind particles together does not seem adapted

to the Brownian regime.

2.3 Rigid body motion - (A)SD-RBM

The principle of the second method was first described by Meng & Higdon [27, 28]. These authors

added constraints to the Langevin equation to force the spheres making up a plate-like particle to move

as a rigid body (no relative translational and rotational motion between spheres of the same object). They

applied a rigid body constraint implicitly, i.e. by relating the motion of each sphere of the anisotropic

particle, also called a cluster, with the motion of the cluster itself defined by three translational and three

rotational velocities. In the following equations, the subscript s and c relate respectively to spheres and

clusters, Nc refers to the number of clusters in the system and Ns to the number of spheres. From solid

mechanics, the translational and angular velocities of points (spheres) belonging to a rigid body (cluster)

are expressed as:

Us − u∞s = (Uc − u∞c ) + (ωc −Ω∞c )× (xs − xc)− E∞ · (xs − xc) (2.19)

ωs −Ω∞s = ωc −Ω∞c (2.20)

where u∞s and u∞c are the background velocities at, respectively, the center of the sphere xs and the

center of gravity of the cluster xc. These equations can be written in a compact (6Nc × 6Ns) matrix

form:

Us − u∞s = ΣT · (Uc − u∞c )− E∞ · (xs − xc) (2.21)

where Us is now a (6Ns) vector and take into account both translational and rotational velocities,

E∞ · (xs − xc) is also a (6Ns) vector with terms corresponding to rotational velocity set to 0, and ΣT

the transpose of the rigid body tensor Σ. The latter is composed of Nc blocks of size (6 × 6Ns) which

can be split in Ns blocks of size (6 × 6), i.e., one block per sphere. If the sphere does not belong to the

cluster, the block is simply filled with 0, whereas if the sphere belongs to the cluster, the corresponding
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block ΣT
s∈c is given by:

ΣT
s∈c =




1 0 0 0 (xs − xc)3 −(xs − xc)2

0 1 0 −(xs − xc)3 0 (xs − xc)1

0 0 1 (xs − xc)2 −(xs − xc)1 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1




(2.22)

Note that the force and the torque on a cluster Fc are directly related to the forces and the torques on its

constituent spheres. The relation between these values is made through the (6Nc × 6Ns) tensor Σ:

Fc = Σ · Fs (2.23)

Inserting equation (2.21) into the equations for spheres used in the (A)SD methods gives new equations

involving the cluster velocities Uc as unknowns.

2.3.1 SD-RBM

The insertion of equation (2.21) into equation (2.8) gives:
[
0

S

]
= −R ·

[
ΣT · (Uc − u∞c )− E∞ · (xs − xc)

−E∞

]
+

[
Fbs + Fps
−rFps

]
, (2.24)

Then, the matrix Σ can be applied on the first line of the previous equation (force and torque) to constrain

the system. This line becomes in a non-compact form:

0 = −Σ ·RFU ·
[
ΣT · (Uc − u∞c )− E∞ · (xs − xc)

]
+ Σ ·RFE,nf : E∞ + Σ · (Fo) (2.25)

where Fos stands for other forces and is equal to Fos = Fbs + Fps . As in the original code used for spheres,

the Brownian part is computed in a second step and therefore Fos = Fps . Solving equation (2.25) consists

in inverting the square (6Nc × 6Nc) and positive matrix
(
Σ ·RFU ·ΣT

)
representing the resistance

tensor of the coarse-grained anisotropic particle. This is done using the DGETRS subroutine from the

LAPACK library. Once the velocities of the clusters are calculated, the velocities of the constituent

spheres are straightforward to obtain using equation (2.21). This method will be referred to as the SD-

RBM. Note that in SD-RBM, the cluster velocity is not computed in an iterative fashion, no term is added

to the diagonal ofRFU and the system to solve is much smaller.

Concerning the Brownian motion, the velocities ubs of individual unconstrained spheres are first com-

puted as described by Banchio [1]. Then the corresponding Brownian forces are calculated using the

grand resistance matrix Fbs = RFU · ubs. Finally, using equation (2.23) and the mechanical velocity

definition ubs = ΣT · ubc we compute the Brownian cluster velocity: ubc =
(
Σ ·RFU ·ΣT

)−1 · ubs.

2.3.2 ASD-RBM

The same reasoning can be applied to the ASD method. Considering the split of the hydrodynamic force

into a near and a far-field contribution, equation (2.25) becomes:

0 = −Σ · R̃FU,nf ·
[
ΣT · (Uc − u∞c )−Σ · E∞ · (xs − xc)

]
+RFE,nf : E∞+ Σ ·

(
Fhff + Fo

)
(2.26)
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where Fos =
[
Fbs + Fps − λ(Us − u∞s )

]
. As in the original code, a term λ is added to the diagonal of

the resistance tensor in order to ensure it is positive definite and allow the quick inversion of the square

(6Nc × 6Nc) matrix
(
Σ · R̃FU,nf ·ΣT

)
. However, we noticed that a value of 1 is not enough for the

system of clusters, and λ was finally set to 2. As with the SD-RBM method, the Brownian velocity is

computed in a second step. Based on this, in the code Fos = [Fps − λ(Us − u∞s )]. The translational and

rotational hydrodynamic velocities of the cluster are obtained by solving equation (2.26). This is the

ASD-RBM method:

Uc − u∞c =
(
Σ · R̃FU,nf ·ΣT

)−1
·

[
R̃FU,nf · {E∞ · (xs − xc)}+RFE,nf : E∞ + Σ ·

(
Fhff,s + Fos

)] (2.27)

One should notice the simple dot used before the tensor {E∞ · (xs − xc)}. The latter is in reality a

(6Ns) vector where the terms corresponding to rotational velocity are set to 0. The hydrodynamic far-

field force, torque and stresslet are computed as in the code of Sierou [35], but instead of satisfying

equation (2.12) they must satisfy:

−


M∞ +


ΣT ·

(
Σ · R̃FU,nf ·ΣT

)−1
·Σ 0

0 0




 ·

[
Fhff
Shff

]
=


ΣT ·

(
Σ ·RFUnf ·ΣT

)−1
·Σ ·

[
RFUnf · {E∞ · (xs − xc)}+RFEnf : E∞

]
− E∞ · (xs − xc)

−E∞




(2.28)

The hydrodynamic far-field force, torque, and stresslet are solved using an iterative method following

the same algorithm as the one described by Sierou. We implemented a bi-conjugate gradient stabilized

method (BiCG-stab [39]) to replace the conjugate gradient method as recommended by Ichicki [17] when

solving problems with particles moving as a rigid body.

2.3.3 Summary of the RBM methods

The SD-RBM and ASD-RBM methods are supposed to give similar results. However, one could expect

some differences in the Brownian motion as the grand mobility matrix used to compute the Brownian

velocity of the spheres is not computed in the same way. We emphasize on the fact that the SD-RBM

method is the method of reference. The ASD-RBM is only used to reduce the computational cost.

Even if the RBM methods require more development than the SBS, they possess several advantages.

The first positive point concerns the lower computational cost for the inversion of Σ · R̃FU,nf ·ΣT than

R̃FU,nf due to its lower dimension :(6Nc × 6Nc) vs. (6Ns × 6Ns). For example, in this work, a typical

calculation will involve 60 plate-like clusters with 37 spheres each, which requires solving (360× 360)

systems with the presented method instead of (13320 × 13320) systems. The second advantage of

the RBM methods stems from the impossibility of the spheres of the same cluster to undergo relative

translational or rotational motion whatever the time step and the regime (Brownian or not): the particle

is perfectly rigid. As a consequence, this method is not adapted to compute the dynamical behavior of

non-rigid particles (e.g. blood cell). In such case, the spring method, or a mix between springs and
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rigid body can be used. For example, Swan & Brady [37] applied a combination of both methods in a

Stokesian dynamics code to model many rigid assemblies (dumbbells) with linear springs representing

a self-propelled non-Brownian particle and to study their dynamics. For the reader information, the

difference between our RBM method and the one from Meng & Higdon lies in the fact that these authors

solved both the far-field hydrodynamics and the velocity of the constrained particles at the same time,

which leads to a larger number of iterations to invert the matrix.

Now that the different methods to create a rigid anisotropic object composed of spheres and to com-

pute hydrodynamic interactions between them have been presented, we will turn to the modeling of

anisotropic electrostatic interactions.

2.4 Electrostatic forces

Electrostatic interactions are typically computed between liquid-suspended spheres in a pairwise additive

fashion with a Yukawa potential whatever the volume fraction. Charge anisotropy is usually modeled

considering point charges distributed on the surfaces of particles (site model). Some researchers started to

study clay-like particles which can present, under specific chemical conditions, a charge anisotropy. Rim

charges of Laponite, for example, are positively charged at pH ∼ 10, and increasing the pH decreases

the values of the charges [38]. The charges on the faces are always negative. Thus, the rim and the faces

can have opposite charges, and the range of interactions between two charged clay particles depends on

the salt concentration of the suspension coming from both the added salt and the counterions released

by the particle. Therefore, the phase diagram of Laponite suspensions at equilibrium depends on the

range of interactions, and various phases such as Wigner glasses, gel, or liquid states can be observed at

the same volume fraction just by varying the salt concentration (see Figure 1.2). Kutter et al. [21] have

used Monte-Carlo simulations of Laponite suspensions and have been able to reproduce some of the

characteristic phases obtained experimentally. The authors modeled particles as plate-like with a finite

number of point charges: 19, 37 and 61 sites. Following this work numerous Monte-Carlo simulations

have been run considering the pairwise additive point charge model (site model) to investigate the state

diagram of clay-like particles and the influence of both the charge anisotropy and the salt concentration

[10, 11, 19, 32, 31]. In this study, we will also use a hard core Yukawa potential model to compute the

electrostatic interactions between plate-like particles. However, we have to keep in mind that it might

be quite far from reality, especially at a short distance, and only allows a qualitative insight on clay-like

electrostatic interactions.

2.4.1 For a suspension of spheres

In both the ASD and SD code the electrostatic forces are referred to as the interparticles forces. Nazock-

dast & Morris [29] studied the effect of soft repulsive forces (Fpy) on the stress of suspensions of spheres

and on their microstructure using a Yukawa potential. The expression of the electrostatic repulsive forces

used in (A)SD is:

Fpy = −
(
kbT

a

)
A
e−(κa) h

r/a

(
1 + (κa) r/a

r/a

)
r̂ (2.29)
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where the superscript p refers to the interparticle forces, h = (r/a − 2) to the distance between the

surfaces, r̂ = rij/r where rij is the center to center vector and r its norm, and with a the radius of the

particle. κ−1 is the screening length, and A is the amplitude of the force. In their study, Nazockdast and

Morris used (κa) = 3.8, 6, 12 to compare the radial distribution function and the stress of the suspension

obtained with the ASD code with theoretical developments. To understand the physical meaning of A,

one should recall the original expression of the Yukawa force between two spheres in dimensional form:

Fpy =
Z1Z2lBe

2κa

a2 (1 + κa)2 e
−κar/a 1 + κa (r/a)

(r/a)2 kbT r̂ (2.30)

with Zi the charge on the particle i. By identification, A is equal to:

A = Z1Z2
e2

4πε0εr (1 + τ)2 a2
(2.31)

So A is related to the charges of the colloids, to the range of electrostatic interactions, to the properties

of the medium, and to the size of the colloid. The electrostatic forces of particles with both shape and

charge anisotropy are also computed using a Yukawa potential.

2.4.2 Suspension of particles with charge anisotropy

As already mentioned, the centers and the rim of clay-like particles can bear opposite charges. To model

in the (A)SD code the distribution of the anisotropic charges on the plate-like particles, we drew our

inspiration from the work of Kutter [21]. The distribution is shown in Figure 2.5, where the faces

of a plate-like particle are represented by the inner, red, negatively charged spheres, while the rim is

represented by the external, green, positively charged spheres.

Z1 Z1 Z1

Z1

Z1Z1 Z2 Z2

Z1Z1 Z2

Figure 2.5: Charge anisotropy used in the ASD code to represent attractive and repulsive interactions

between particles using hard core Yukawa potential.

Electrostatic interactions are turned off between the spheres of the same plate-like particle, and a

repulsive Hard-Sphere (HS) force is added to avoid the interpenetration of the particles. The HS repulsive
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force used in the simulations is:

FpHS = −
(
kbT

a

)
200

e−κ
HS(r̃−2aHS)

1− e−κHS(r̃−2aHS)
(2.32)

where κHS and aHS are parameters slightly depending on the interaction range. Their effect is simply to

decrease the occurrence of overlap between particles. Besides the two parameters κHS and aHS , a buffer

zone also depending on the interaction range is introduced. The buffer zone is a zone where electrostatic

interactions, other than HS, are turned off if two surfaces are too close. All of these modifications must

verify the following assertions to have no impact on the physical behavior of the suspension:

(i) the increase of the size of the radius is small compared with the actual radius of the sphere(
aHS − a

a
� 1

)
,

(ii) the increase of the size of the radius is small compared with the double layer
(
aHS − a
κ−1

� 1

)
,

(iii) the range of the HS repulsion force is small compared with the double layer
( κa

κHSa
� 1

)
,

(iv) the range of the buffer zone dbuff is small compared to the double layer (κdbuff � 1).

2.4.3 Limitations of the electrostatic coarse-grained model

The site model used in this thesis to describe the electrostatic interactions between clay particles is a

coarse-grained model, and therefore knowing its limitations is important for establishing the validity of

the predictions of the simulations.

(a) Cylindrical particles (b) Plate-like particles

Figure 2.6: Comparison of "exact" electrostatic potential between two anisotropic particles.

The first limitation is purely geometric and comes from the use of the spheres to coarse-grain a

disk-shaped particle. Therefore, the distance between the surfaces of the particles is not the same as for

real disk-shaped particles, implying a different charge distribution and dielectric constant. Moreover,

the spheres belonging to the same object are close-packed, and many-body interactions involving the

exclusion of ions from the double layers of one sphere due to the presence of its neighbor should in
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principle be taken into account. As many-body electrostatic interactions have no analytical expression,

we have used the PoBoS code (Poisson-Boltzmann Solver) developed at Laboratoire de Génie Chimique

(LGC) to compute the electrostatic many-body interactions between plate-like particles composed of

spheres, as shown in Figure 2.6b and referred to as AR3 (aspect ratio ≈ 3). This code solves the full

three-dimensional electric field using coupled Laplace and Poisson-Boltzmann equations for charges

on the surface of particles of any shape (no pairwise additivity assumption) as presented in chapter 1

section 2.5. Using the PoBoS code, we have computed the electrostatic potential for repulsive plate-like

particles with many-body interactions, which has been compared with the one obtained for the disk-

shaped particles, as shown in Figure 2.6. Both the disk-shaped particles and the AR3 particles have the

same diameter d. The charge of one true platelet was taken equal to Zd, and the charge of one sphere

was Zs = Zd/Ns where Ns the number of spheres in one coarse-grained particle. It appears clearly that

the potential in Figures 2.6a and 2.6b are not the same, and as the forces stem from these potentials, the

forces will also be different. Thus, the coarse-graining of a disk as a cluster of spheres induces an error

despite the use of many-body interactions.

(a) Initial configuration

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
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−1
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e c

(N
)
×

10
−

11

True Force

DLVO

(b) Electrostatic forces

Figure 2.7: Initial configuration of two AR7 particles (a) and the different electrostatic forces (b) com-

puted using the pairwise additivity of the DLVO theory and the Particle-field method of the PoBoS code

also referred to as the "True force" in Figure (b). The colors in Figure (a) represent the value of the

potential of the surfaces: the blue color is for a positive potential while the red for a negative potential.

The distance in Figure (b) stands for the minimal distance between the surfaces of the two AR7.

The second limitation of the model is related directly to the pairwise additivity of the Yukawa po-

tential. Indeed, this potential is valid for distant spheres interacting in an infinitely dilute medium. As

already mentioned, even for two distant plate-like particles, spheres composing one cluster are in a close

packed configuration, and their double layers interpenetrate strongly (see Figure 2.6b), which is outside

of the validity domain of the DLVO theory. So in principle, the total interaction between two clusters can-

not be modeled as a sum of sphere-sphere interaction, i.e., F TMB 6=
∑
F py where F TMB is the total force

implying many-body interactions and
∑
F py the total force computed using DLVO theory (see equation
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(2.30)). To illustrate the importance of the many-body electrostatic interactions, let us considered two

AR7 plate-like particles initialized in a face to face configuration as shown in Figure 2.7a. The charge

of each sphere is set to obtain the electro-neutrality of the particle: −22e and 23.22e respectively for the

internal and the external spheres. The thickness of the Debye length is taken equal to κ−1 = a. The

dynamical behaviors of the particles are computed using the SD-RBM method. The electrostatic forces

used to compute the motion of the particles are calculated with both the Yukawa pairwise additive model

and the PoBoS code. These options are referred to as "DLVO" and "True force" respectively in Figure

2.7b. The corresponding total forces applied to the centers of gravity of the particles F ec are reported in

Figure 2.7b. The computation of these forces required the coupling of the PoBoS code with ASD. One

can notice that both the "DLVO" and the "True Force" have similar behaviors as long as the minimal

distance between the surfaces of the particles is larger than κ−1. When particles are getting closer, the

"DLVO" force increases more quickly than the force computed with PoBoS and is overestimated by ap-

proximatively a factor two at very short-range distances. As none of these methods are exact at contact,

the force at a distance below 0.05a does not deserve to be commented. The difference concerning the

electrostatic force amplitude provides the proof that the total interaction between two clusters cannot be

modeled quantitatively as a sum of sphere-sphere interactions with a sphere charge being equal to the

one used for many-body calculations.

To summarize, the site model used to model clay particles induces two kinds of limitations. The first

one is purely geometric and is due to the coarse-graining of the shape of the particle from a disk-shaped to

cluster of spheres. The second limitation lies in the use of the pairwise additivity of the Yukawa potential.

To study electrostatic interactions between clay-like particles by a pairwise additive model, one should

consider carefully the choice of the charges applied to the spheres. The charges must be set to generate

a similar interaction force between two clusters like the one produced by two real clay particles. With

this definition, the right choice of the charges should allow a good insight into the behavior of clay-

like particles using the pairwise additive model of Yukawa potential. An example of the calculation of

effective charges is given in the third chapter (see section 1.3.2).

2.5 Conclusion concerning the coarse-grained methods

In this section, we have first described a method to coarse-grain a particle with spheres. Then we have

presented two different methods to keep the particle rigid. The first model consists in binding spheres

with springs (SBS) and the second one in constraining the motion of the spheres to enforce rigid body

motion (RBM). These models were implemented in both SD and ASD methods. We emphasize once

again the fact that the SD method is more accurate as the grand resistance matrix is directly computed.

However, this method is computationally too expensive and cannot be used for the study of suspensions

of anisotropic particles. For this case we need to use the ASD method. Concerning the computation of

the Brownian motion with the ASD method, we have chosen to approximate the grand mobility matrix

by a diagonal matrix with two free parameters. The free parameters have been set to reproduce the

Brownian diffusion of the particle studied using the SD-RBM. Finally, we have presented and discussed

the coarse-graining of the electrostatics used in this manuscript.
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The aim of the next section is to validate the numerical implementation of the models presented

above.

3 Validation of the physical behavior of coarse-grained models

3.1 Hydrodynamic behavior

From the linearity of the Stokes flows, hydrodynamic effects can be superimposed. Therefore, if both the

Brownian and non-Brownian behaviors are correct, the behavior at any intermediate Péclet is also correct,

assuming only these effects are active. Consequently, only two different tests are required to verify the

hydrodynamic behavior of anisotropic particles: one at infinite Péclet and the other at vanishing Péclet,

i.e., Pe =∞ and Pe = 0.

3.1.1 Infinite Péclet number

The first test consists in studying the rotation period of an ellipsoid in an infinite Péclet number shear

flow (non-Brownian system). In 1922, Jeffery described the dynamics of ellipsoidal particles in a viscous

fluid and Re = 0 mathematically [18]. His theory is based on the fact that in the absence of external

forces and torques, an ellipsoid translates at the velocity of the undisturbed fluid at the position of its

center of gravity u∞(x). The director of the ellipsoid p = (px, py, pz) corresponding to the unit vector

in the direction of the symmetry axis (major axis for a prolate spheroid and minor axis for an oblate

spheroid), describes periodic orbits also called Jeffery’s orbits:

px = sin θ1 sinφ1

py = sin θ1 cosφ1

pz = cos θ1

(2.33)

where angles θ1 and φ1 are time-dependent and equal to:

φ1 = arctan

(
r tan

[
γ̇t

r + (1/r)

])

θ1 = arctan

(
Cr

(
sin2 φ1 + r2 cos2 φ1

)2

) (2.34)

with r = a/b the aspect ratio, a and b the semi-axis respectively parallel and perpendicular to the director,

γ̇ the rate of strain, t the time and C an integration constant depending on the initial configuration as

shown in Figure 2.8b.

A prolate coarse-grained particle (see Figure 2.3b) is placed in an infinite shear flow with its director

aligned with the y axis corresponding to a constant of integration C = 0. The norm of respectively, the

semi-major and semi-minor axes are 9.4 a and 4.63 a. The evolution of φ1 and θ1 is plotted in Figure 2.9

for the different numerical methods :ASD-RBM, SD-RBM and ASD-SBS. The values of the computed

angles are compared with the theory in red on the figure, and referred to as "Jeffery". The theoretical

rotation period is 15.85 (1/γ̇) and is determined from equation (2.34).
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(a) Axis and polar angles (b) Integration constant and Jeffery’s or-

bits

Figure 2.8: Coordinate system (a) used for the computation of Jeffery’s orbits (b), from the book of

Guazzelli and Morris [15] p. 76.
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Figure 2.9: Comparison to theory of numerically computed θ1 and φ1 values for a prolate spheroid.

It appears clearly that angles θ1 and φ1 are in a good agreement with the theory. In Table 2.1, we

compare the numerical methods quantitatively with the theory and with each other. The maximal error

with the theory is below 4%. The ASD methods have less than 2% of difference with the SD method,

which indicates a correct implementation of the far-field hydrodynamic force. One can notice that the

ASD methods seem slightly more accurate than the SD on the prediction of the rotation period, but no

conclusion can be drawn as the theory is known for true ellipsoids and not for the present coarse-grained

ellipsoids. Moreover, ASD is an approximation of SD and is supposed to give the same results at best, in

principle. The difference can be due to two numerical approximations canceling each other for example.

Some of the numerical parameters used for the calculations with the ASD methods must be detailed:

while Sierou and coworkers [35] advised a mesh of 125 nodes per sphere for the computation of the
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Relative error

Methods
SD-RBM ASD-RBM SD-SBS ASD-SBS

Theory 3.08% 1.19% 3.79% 2.98%

SD-RBM 1.96% 0.72%

SD-SBS 0.72% 0.84%

Table 2.1: Comparison of the theoretical rotation period of a prolate spheroid of aspect ratio equal to

2.027 (see Figure 2.3b) with different methods.

far-field hydrodynamics, we used here a coarse mesh of 17 nodes per sphere to reduce the computational

time. A calculation realized with the advised number of nodes gives a rotation period of 15.42 (1/γ̇)

corresponding to a relative error with the theory of 2.71%. This rotation period is close to the one

computed with the coarse grain mesh 15.65 (1/γ̇). This surprisingly small difference could stem from

the fact that the object is not a unique sphere, and even if one sphere has only 17 nodes, an ellipsoid is

composed of 119 spheres, which involves no less than 2023 nodes for the entire particle. We consider

acceptable the error induced by a coarser mesh for the computation of the many-body hydrodynamic

interactions of coarse-grained particles.

3.1.2 Low Péclet number

The second test consists in validating the Brownian motion of an oblate spheroid with an aspect ratio

of 7.3 corresponding to an AR7 particle. One should recall that the SD method computes the grand

resistance matrix directly, and therefore the Brownian motion should be correctly calculated. Concerning

the ASD method, we have chosen to consider the far-field mobility matrix as diagonal with two free

parameters. These parameters are set to mimic the theoretical average diffusion coefficient of the real

oblate spheroid.

In 1934 Perrin published an article about the Brownian motion of ellipsoidal particles [30] in which

he gave the two translational frictional coefficients, i.e., parallel and perpendicular to the director of the

particle, and the rotational frictional coefficient of both the oblate and prolate spheroids. The diffusion

coefficient D and the frictional coefficient f are linked through the Einstein-Smoluchowski relation

D = kbT/f . The theoretical and numerical diffusion coefficients of an oblate spheroid of radius 7.3 a

are given in Table 2.2. They have been made non-dimensional using the translational and rotational

diffusion coefficients of a sphere of radius a and given by the Stokes-Einstein equation, respectivelyDt,0

and Dr,0. The theoretical rotational diffusion is small enough to be negligible. Thus, only translational

coefficients are compared with computational results. In Table 2.2, D⊥ and D‖ are respectively the

translational coefficients perpendicular and parallel to the direction vector of the particle, and R⊥ and

R‖ are the rotational coefficients.

One can notice that the SD-RBM is in excellent agreement with the theory. It can reproduce the

anisotropic diffusion behavior of an oblate spheroid. With the SD-SBS method, the translational diffu-

sion coefficients are almost doubled compared to the theory. The presence of springs seems to increase

the diffusion of the spheroid while raising the computational time drastically due to the necessity of a
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Theory SD-RBM SD-SBS ASD-RBM

D⊥/Dt,0 2.17 10−1 2.24 10−1 4.14 10−1 1.72 10−1

D‖/Dt,0 1.60 10−1 1.44 10−1 2.41 10−1 1.75 10−1

R⊥/Dr,0 1.64 10−3

R‖/Dr,0 1.88 10−3

Table 2.2: Translational and rotational diffusion coefficients of an oblate spheroid of radius 7.3 a.

smaller time steps to allow the springs to react to the internal Brownian motion. That is one of the main

reasons that made us choose the RBM method instead of the SBS. As the SD-SBS is not correct, the

ASD-SBS method was not investigated.

Thanks to the tuned parameters, the ASD-RBM method generates the correct order of magnitude for

the translational diffusion coefficients but is not able to reproduce their anisotropy properly. Retrieving

a correct anisotropic diffusion coefficient is possible but requires the following developments. First, two

different mobility matrices must be built, one for any perpendicular motion and the other for the parallel

motion. Then, the Brownian force must also be split into two parts, one parallel to the direction vector

of the platelet and the other perpendicular. Finally, two different motions should be computed (parallel

and perpendicular) with the inversion of two different grand resistance tensors. Basically, it doubles the

computational time required for one iteration. Moreover, the anisotropy of the diffusion coefficient for

an oblate ellipsoid of aspect ratio 7.3 is ∼ 25% and considering only the mean value of both the parallel

and perpendicular coefficients already give a correct approximation of the Brownian motion. Therefore,

the proposition to take into account the anisotropic diffusion was not implemented.

3.1.3 Summary of the hydrodynamic validation

To conclude this part, binding spheres with springs, i.e., the SBS method, allows reproducing a correct

behavior at infinite Péclet number but overestimates the Brownian motion, in addition to being time-

consuming.

The RBM method is excellent at infinite Pe. Both the ASD and SD methods reproduce perfectly the

Jeffery’s period of rotation of an oblate spheroid. At a low Péclet number, the SD-RBM method retains

the anisotropic diffusion behavior of the Brownian motion of an AR7 particle. The ASD-RBM method

does not reproduce the anisotropic diffusion of the anisotropic particle but captures the correct average

diffusion coefficient.

The hydrodynamic behavior of coarse-grained anisotropic particles has been validated for the RBM

method, which is consequently the one chosen to carry out the rest of the simulations reported later in

this manuscript.

3.2 Validation of the rheology of a suspension of platelets

Electrostatic, hydrodynamic, and Brownian interactions generate motions of particles and stresses. The

stresses determine the viscosity of the suspension and the normal stress differences. The stress arises



3 Validation of the physical behavior of coarse-grained models
3.2 Validation of the rheology of a suspension of platelets

43

N
um

er
ic

al
m

od
el

s

from interactions between particles and between fluid and particles and is the central quantity studied in

the field of rheology. Validating its correct computation is essential for this work. As previously men-

tioned, Stokesian Dynamics already computes the bulk stress (average stress) of a suspension of spheres.

However, the total stress on a cluster is not due simply to the sum of the stresses of the constituent spheres

of the particle. Indeed, due to its particular shape, the cluster exhibits a second stress contribution related

to the hydrodynamic force.

In this section, the physical description of the total stress on a coarse-grained particle is first given.

Then, to validate the correct implementation of the stress calculation in the code, the bulk stress of dilute

suspensions of spheroids is compared with theory. Finally, the bulk stress of concentrated suspensions

of clusters is compared with results from the literature.

3.2.1 Average stress calculation for coarse-grained particles

The final formula of the stress for coarse-grained particles can be found in several papers [27, 33] but its

origin is difficult to find described in detail. That is why, we have decided to dedicate a paragraph on its

origin. Let us consider a suspension of non-Brownian perfectly rigid clusters composed of constrained

spheres with no internal motion, in a Stokes flow. Such assumptions allow considering the clusters as

both force and torque-free:

Fhc + FIc = 0, and Thc + TIc = 0 (2.35)

where the superscript h means hydrodynamic and I interparticle forces. The force on a cluster is

equal to the sum of the forces on every one of its spheres. The torque on a cluster can be written as

Tc =
∑

s∈c (Ts + (xs − xc)× Fs), where
∑

s∈c is the sum over the constituting spheres of the coarse-

grained particle. One should remark that the internal constraints are not taken into account. Indeed, the

mechanical picture of internal forces could be the cohesive forces between molecules or atoms of a rigid

object acting like contact forces. Such forces sum to zero for each cluster and do not generate a bulk

stress. As particles are considered inertialess, the equation of conservation of momentum is written:

∇ · σh = −fext (2.36)

with fext the external force per unit volume. For a suspension of identical colloids in a linear shear flow,

the average of the bulk stress can be written as:

Σ = Σh ≡ <σh> =
1

V

∫

V
σhdV (2.37)

The volume of integration can be split into a fluid (Vf ) and a particle (Vp) part (see Batchelor [2]) equal

to the sum of the volumes of all spheres s belonging to all clusters c: Vp =
∑

c Vc =
∑

c

∑
s∈c Vs:

Σ ≡ <σh> =
1

V

[∫

Vf

σhdV +
∑

c

∫

Vc

σhdV

]

= I.T.+ 2µ<eh>+ Σp

(2.38)

where I.T. is an isotropic term, <eh> the mean rate of strain and Σp the stress arising from the presence

of the particles. The definition of the stress of a Newtonian fluid was used to go from the first to the
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second line. For clarity, as only the local hydrodynamic stress tensor is considered, we replace σh by σ.

Then, using the relation ∂xj/∂xk = δjk it is easy to demonstrate:

σij =
∂

∂xk
(σikxj)−

∂σik
∂xk

xj (2.39)

Inserting equation (2.39) in the particle stress (Σp) gives the expression:

Σp
ij =

1

V

∑

c

∫

Vc

[
∂

∂xk
(σikxj)−

∂σik
∂xk

xj

]
dV (2.40)

Using the divergence theorem on the first term of the right-hand side and inserting equation (2.36), it can

be shown that:

Σp
ij =

1

V

∑

c

[∫

Sc

σikxjnkdS +

∫

Vc

(∇σ)i xjdV

]

=
1

V

∑

c

[∫

Sc

σik (xj − xc,j)nkdS + xc,j

∫

Sc

σiknkdS −
∫

Vc

−fextxjdV
]

=
1

V

∑

c

[∫

Sc

σik (xj − xc,j)nkdS − xc,jF exti + xc,jF
ext
i

]

=
1

V

∑

c

[∫

Sc

σik (xj − xc,j)nkdS
]

=
1

V

∑

c

∑

s∈c

[∫

Ss

σik (xj − xs,j)nkdS +

∫

Ss

σik (xs,j − xc,j)nkdS
]

=
1

V

∑

c

∑

s∈c

[∫

Ss

σik (xj − xs,j)nkdS + (xs,j − xc,j)F hs,i
]

(2.41)

One can recognize the first term of the previous equation as the complete hydrodynamic traction first

moment on a sphere s given by Batchelor [3]. We remind that this moment can be decomposed into a

symmetric portion, the stresslet Sij , and an antisymmetric portion Aij , the rotlet:

Shij =
1

2

∫

Ss

[σik(xj − xs,j) + σjk(xi − xs,i)]nkdS

Aij =
1

2

∫

Ss

[σik(xj − xs,j)− σjk(xi − xs,i)]nkdS = −1

2
εijkT

h
s,k

(2.42)

The sum of the torques for the cluster suspension is equal to:
∑

c

(
T hc,k + T Ic,k

)
=
∑

m

[
T hs,k + T Is,k + εkij x̂i(F

h
s,j + F Is,j)

]

=
∑

m

[
T hs,k +

(
x̂iF

h
s,j − x̂jF hs,i

)
+
(
x̂iF

I
s,j − x̂jF Is,i

)] (2.43)

where we have introduced x̂ = xs − xc. To go from the first to the second line, we used the fact that

the interparticle forces sum to zero for each pair of spheres (equal but opposite direction). Then it is

straightforward to write that the mean interparticle torque is equal to zero,
∑

m

(
x̂iF

I
s,j − x̂jF Is,i

)
= 0.

Thus equation (2.43) can be simplified to:

T hs,k = −
(
x̂iF

h
s,j − x̂jF hs,i

)
(2.44)
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Using the definition of the first moment and the hydrodynamic torque, equation (2.41) becomes:

Σp
ij =

1

V

∑

m

[
Shij +Aij + x̂jF

h
s,i

]

=
1

V

∑

m

[
Shij −

1

2
εijkT

h
k + x̂jF

h
s,i

]

=
1

V

∑

m

[
Shij +

1

2
εijk

(
x̂iF

h
s,j − x̂jF hs,i

)
+ x̂jF

h
s,i

]
(2.45)

Then the average bulk stress is equal to:

Σij = I.T.+ 2µ<eij>+
1

V

∑

m

[
Sbij + SIij + Shij +

1

2

(
x̂iF

h
s,j + x̂jF

h
s,i

)]
(2.46)

To compute the bulk viscosity of a suspension under steady shear flow, the relative viscosity is only

related to Σ12, where 1 is the flow direction and 2 its gradient :

ηr =
Σ12

2η0E∞12

= 1 +
1

V

∑

m

[
Sb12 + SI12 + Sh12 +

1

2

(
x̂1F

h
s,2 + x̂2F

h
s,1

)]
(2.47)

with η0 the fluid viscosity and E∞ the bulk rate of strain tensor. This equation only differs from the one

for spheres by the presence of the last terms between the parentheses and involving the hydrodynamic

force.

3.2.2 Rheology of dilute suspensions

The theoretical stress of an oblate particle at infinite Péclet number shear flow is based on the fact that

oblate spheroids follow Jeffery’s orbit of period T . Thus, if the initial configuration is known, the spatial

configuration, represented by the polar coordinates θ, φ, is also known at any time and described by the

orientation distribution function P (θ, φ1, t). Moreover, as the stress generated by an oblate spheroid is

known for a specific spatial configuration, the average stress of a dilute suspension can be calculated as:

〈S〉 =
1

T

∫ T

0

∫ 2π

0

∫ π

0
S(θ, φ1)P (θ, φ1, t)dθdφ1dt (2.48)

Details on the computation of the stress can be found in Meng [26]. The author compared the theoreti-

cally and numerically obtained viscosity coefficients ( ηr − 1) /φ, where ηr is the relative viscosity and

φ the volume fraction, of AR3, AR5 and AR7 plate-like particles (see Figure 2.10).

We have used the same coarse-grained model as Meng & Higdon for plate-like particles (see Figure

2.3a). This similarity allows us to compare our results directly with those of Meng & Higdon. The

computation of the mean stress requires sampling distinct spatial configurations (θ, φ), and at least a

simulation time of one Jeffery’s period. The volume fraction of the suspension is set to 1% to avoid

as much as possible interparticle interactions, and the particles are initialized randomly. At such a low

volume fraction, particles do not interact with each other, i.e., the lubrication and many-body terms

vanish. Thus, the viscosity is only due to the influence of individual particles. To keep a constant number

of spheres, we have carried out simulations with 12 AR7, 23 AR5 and 63 AR3 which corresponds to

∼ 440 spheres in each case. As the SD method is suitable only for the computation of less than a hundred

of spheres due to its important computational cost, only the ASD methods were tested.
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Figure 2.10: Model of plate-like particles used by Meng & Higdon [26, 27, 28] .

Concerning the case of spheres bound with springs (SBS), internal stresses generated by spring forces

should sum to zero for each platelet. Due to the time-shifted scheme, springs react to perturbations at

time i+ 1. Then, the sum of the stresses due to the hydrodynamic disturbances at time i and to springs at

time i+ 1 should sum to zero. However, the hydrodynamic stress has a leading force term coming from

the squeezing of two particles scaling as 1/r, and summing numerically diverging forces rarely goes to

0. The internal stress was not observed to vanish in simulations, and the viscosity was miscalculated.

Therefore viscosity coefficients for SBS are not reported in Table 2.3. This issue is the second main

reason why we have chose to carry out our simulations of clay-like suspensions with the RBM method.

Relative viscosity results are given for the ASD-RBM on coarse and fine meshes, respectively 17 and

134 nodes per sphere. They are compared with the theory and with Meng & Higdon’s results in Table

2.3. The agreement between RBM and Meng & Higdon’s results is excellent in all cases.

Aspect ratio 3 5 7

Dilute theory 3.66 4.07 4.32

Meng & Higdon 3.89 4.32 4.80

ASD-RBM coarse 3.62 4.13 4.83

ASD-RBM fine 3.61 4.14 4.90

Table 2.3: Comparison of the viscosity coefficients obtained from theory with results from [27] and with

the ASD-RBM method.

The refinement of the mesh used for the calculation of the far-field hydrodynamics does not improve

the accuracy of the computed velocity of a dilute suspension of plate-like particles. As already mentioned

this can be due to the fact than even for the smallest aspect ratio, the coarser mesh represents 17 nodes per

sphere for the AR3, i.e. 119 nodes per anisotropic particle which is close to the 125 nodes per particle

suggested by Sierou [35]. For aspects ratios 3 and 5, results from ASD are closer to the theory than the

ones from Meng & Higdon. Both numerical simulations (ASD and M&H) overestimate the viscosity by

∼ 10% for an aspect ratio of 7. This difference comes probably from the fact that simulations are carried

out for a volume fraction of 1%. For particles with a high aspect ratio, a 1% volume fraction may not

be small enough as particles can be dilute but touch each other nonetheless , and therefore generate an

important stress. Thus, it is not surprising to slightly overestimate the stress when considering particles

with a high aspect ratio. The consistency of the ASD results with those of M&H indicates that the drag
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force is correctly computed in our code. The calculation of the stress with equation (2.47) for anisotropic

particles for the ASD-RBM method is therefore validated.

3.2.3 Rheology of concentrated suspensions

One should be aware that no theory exists for concentrated suspensions of plate-like particles. Thus

results from ASD can only be compared with the ones obtained by M&H. From moderate to high volume

fraction, the viscosity is mainly due to lubrication interactions. Treating the contacts, the lubrication

term and the hard sphere repulsion in the same manner in ASD and M&H is essential to compare the two

methods. The same repulsive force as the that used by Meng & Higdon [40] is implemented in the ASD

code for this test:

FHig =





4

3
Cp
(
δmin
r − 2

)(
η − 1

2
η2

)3

r̂ if (r − 2) < δmin

0 if δmin ≤ (r − 2)

(2.49)

where Cp is the strength of the repulsive force, r the distance between two particles with r̂ the corre-

sponding vector, δmin the minimum gap triggering the repulsive force and η = 1 − (r − 2)/δmin. For

the present calculations, Cp = 5 and δmin = 10−3. We have carried out simulations of suspensions of

spheres and AR3 plate-like particles for different volume fractions with the ASD code using the repul-

sive force given in equation (2.49). The viscosities obtained for each of these calculations are compared

with Meng and Higdon results [27] in Figure 2.11.
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Figure 2.11: Evolution of the viscosity as a function of the volume fraction for suspensions of spheres

andAR3. Dotted lines represent ASD calculation while full line represents Meng & Higdon calculations.

Both methods are using the repulsive force given in the equation (2.49).

From low to moderate volume fraction (∼ 20%), results are in a perfect agreement. At higher volume

fraction, the calculations carried out with the ASD method have a viscosity slightly lower than the one

obtained by Meng & Higdon. This difference can come from the use of a different time step (we do not



N
um

ericalm
odels

48 CHAPTER 2. NUMERICAL MODELS OF COLLOIDAL SUSPENSIONS

know the value used by M&H), the different numerical schemes (ASD: simple forward time-stepping;

M&H: Runge-Kutta 4) or any other small difference between the two codes.

One should be aware that the force FHig is extremely steep and requires a small time step to be

triggered and to avoid the overlap between particles correctly. The comparison between the repulsive

hard force initially used in the ASD code FHS (see equation (2.32)) and the one used by Meng &

Higdon FHig is given in Figure 2.12.
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Figure 2.12: Comparison of the hard sphere repulsive force used by M&H FHig (full line) with the

repulsive hard sphere force FHS initially implemented in the ASD code (dotted line).

The repulsive hard force originally used in ASD is almost four orders of magnitude bigger than

FHig. Moreover, at a distance of separation of ∼ 10−2, FHS is already significant enough to avoid

particles going closer. Consequently the particles are expected to approach more closely when using

the Meng & Higdon force. In Figure 2.13 we have compared the viscosities of both AR3 and spheres

suspensions computed for the two different forces, FHig and FHS , as a function of the volume fraction.

The calculations were carried out with the ASD code only while varying the model of the repulsive force.

The viscosity is slightly underestimated when using the repulsive force FHS . However, the differ-

ence is only significant at high volume fraction (φ > 20%). As we will not launch any calculation with

φ > 15%, and given the fact that FHS allows using a larger time step, we have decided to carry out

the simulations of anisotropic coarse-grained particles using FHS . To conclude this section, compar-

isons with numerical results from M&H show that, at least for the range of volume fraction that we will

investigate, the ASD-RBM method is validated for the computation of the rheology of suspensions of

plate-like particles.
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Figure 2.13: Evolution of the viscosity in the function of the volume fraction for suspensions of spheres

and AR3. The calculations were carried out with the ASD code only.

4 Conclusion

In this chapter, the numerical methods used to compute the dynamics and the rheology of spherical

colloidal suspensions, the Stokesian Dynamics (SD), and its approximate version the Accelerated Stoke-

sian Dynamics (ASD) have been presented. These methods have been extended in this thesis to model

coarse-grained particles with both shape and charge anisotropy. The charge anisotropy was introduced

through the use of a site model based on a Yukawa potential. Two different methods were presented

and implemented in the (A)SD code to keep the particles rigid. The first one consists in binding spheres

with springs (SBS) represented in the code as forces and torques applied to the center of gravity of the

particles. The second method consists in constraining the degrees of freedom of the spheres constituting

the anisotropic colloids mathematically, to enforce the spheres belonging to the same cluster to move as

a rigid body (RBM). Then, the hydrodynamic behavior of ellipsoids and plate-like particles was com-

pared with the theory and results from the literature to be certain of the correct implementation of the

methods and the physical behavior of the coarse-grained models. Due to the linearity of the Stokes flow,

the hydrodynamic behavior can be studied as two distinct parts: the non-Brownian regime (high Péclet

number) and the purely Brownian regime (low Péclet number, no background flow). At high Péclet num-

ber, Jeffery’s orbits of prolate spheroids were studied at infinite dilution, and both methods, the SBS and

RBM are in a perfect agreement with the theory. At low Péclet number, the SD of particles bound with

springs overestimates the diffusion of plate-like colloids, contrary to the rigid body model. The latter is

even able to reproduce the anisotropic diffusion behavior of an oblate spheroid. It is important to stress

that the ASD is an approximation of the SD, and therefore if the SD is not able to reproduce a physical

behavior, ASD can not be expected to do so. Therefore ASD-SBS was not studied at low Péclet. Due to

the use of a diagonal matrix with free parameters to model the far-field Brownian mobility in the ASD

code, the RBM model is not able to reproduce the anisotropic diffusion of an oblate spheroid. However,
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the mean diffusion coefficient can be tuned to match the theory. Finally, the rheological behavior of

coarse-grained rigid body particles was studied in dilute and concentrate regimes for plate-like particles

with different aspect ratios (AR3, AR5, AR7) to validate calculations of stresses, and in particular the

shear stress. Concerning dilute suspensions, results from the RBM model used in this manuscript were

compared with the theory and with the works from Meng and Higdon [26, 27, 28]. For particles with the

lowest aspect ratio, results are in close agreement with both M&H’s results and the theory. For particles

with an aspect ratio equal to 7, the viscosity is slightly overestimated compared to the theory but matches

well with M&H’s results, which confirms the correct implementation of the model. As no theory exists

for dense suspensions of anisotropic plate-like particles, the ASD results were compared with the ones

from Meng and Higdon [27, 28] and appear once again in satisfactory agreement.

The rigid body model described in this chapter allows study of the microstructure of suspensions of

particles with both structural and charge anisotropy. Moreover, using the extended ASD method, it is

possible to explore numerically for the first time the dynamics of formation of this structure and the full

rheological behavior of the suspension, including many-body hydrodynamics.

In the next chapter, we will focus on the final state of a suspension of clay-like particles without

background flow and the dynamics of the formation of this structure. The last chapter will consist of the

rheological study of a suspension of clay-like particles under shear flow.
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Structure of suspensions of clay-like

particles without background flow 3
Particles belonging to the clay family have both a structural and a charge anisotropy. These anisotropies

are responsible for very complex behaviors leading to a rich phase diagram, highly sensitive to the

experimental conditions, such as the volume fraction, the ionic strength, and the aging of the suspen-

sion. The macroscopic phases of clay suspensions are relatively "easy" to characterize experimentally.

However, the study of the microstructure is more complex due to the small size of the particles and

requires measuring some statistical quantities which could be difficult to interpret. For instance, the

overlapping coin (OC) configuration between two clay-like particles has been observed for the first time

numerically by Odriozola and coworkers [31] while authors were only expecting house-of-cards (HOC)

configuration. Afterward, OC configuration has been observed experimentally thanks to cryo-SEM for

Na-montmorillonite suspension, a natural clay, where OC and HOC configuration formed a honeycomb-

like network in a wide range of salt concentration (10 to 100 mM) [3]. Therefore, it is interesting to

use a numerical model to study the effect of a varying parameter on the microstructure of suspensions of

clay-like particles.

In this chapter, we focus on the behavior of plate-like particles with charge anisotropy without back-

ground flow. In such conditions, hydrodynamics are not supposed to modify the phase diagram [9], which

has been classically studied with Monte Carlo simulations (MC). The final configuration (microstructure)

is reached once the Helmholtz free energy is minimized and stabilized. This method is known to be effi-

ciently analyzed by parallel methods, leading to a low numerical cost per iteration. Therefore, it allows

carrying out simulations with a large number of particles (several thousands) and MC cycles. Conse-

quently, simulations carried out with MC are able to reach equilibrium and are equivalent to an almost

infinite aging time of the suspension. However, the kinetics of the formation of the microstructure and

its rearrangement cannot be studied with MC as hydrodynamic interactions are ignored.

On the other hand, the ASD-RBM method solves the dynamics of the clay-like particles taking into

account both the Brownian motion and many-body hydrodynamic interactions, and therefore, allows

studying the formation of the microstructure. The ASD-RBM method is computationally expensive, and

only a relatively small number of particles (commonly 60 platelets formed of 37 spheres, in this work)

can be simulated over a short period of time. Thus, some structures requiring long aging are impossible

to reach with this method. Moreover, the small number of particles can lead to unphysical structures

related to the simulated size box.
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Although the ASD method is certainly not the most effective method to study equilibrium structure,

we have chosen to use it to provide a better understanding of the microstructure formation and to validate

our model by comparing the results with the ones from MC simulations. The results from the ASD-RBM

method for suspensions of clay-like particles without background flow will validate the method for its

use for suspensions under shear.

The main goal of this chapter is, therefore, to prove that despite the limitations coming from the

ASD-RBM method, suspensions of clay-like particles simulated with the method undergo similar be-

havior (phase diagram) as with MC simulations. As a first step, the system studied, and the numerical

parameters are defined and placed in context with respect to results in the literature. Then, in a second

step, the equilibrium structure is studied as a function of the range of electrostatic interactions and the

volume fraction.

1 Models and simulations set up

When no flow is applied, a suspension of particles with both shape and charge anisotropy has a phase

diagram depending on the excluded volume, and on the competition between electrostatic, Brownian,

and van der Waals forces (see chapter 1). One should recall that the electrostatic forces depend on both

the Debye length κ−1 and the surface charge of the particles Zi. The Brownian force depends on the tem-

perature of the system, as well as the size and the shape of the colloids. For a prescribed surface charge

density distribution, the phase diagram of a suspension of anisotropic particles must be represented in a

three-dimensional diagram with the range of interactions (involving the total ionic strength) compared to

particle size, the volume fraction, and the temperature on different axes. In experiments and simulations,

the temperature is most often considered to be at room temperature (∼ 20 ◦C). Thus, the phase diagram

is usually presented in two dimensions, volume fraction and ionic strength.

1.1 A model clay: Laponite

Colloidal clays are hydrous magnesium (sometimes aluminum) particles, usually bearing a negative

structural charge coming from isomorphic substitution compensated by the presence of cations in the

basal spacing or on the surface of the colloid. These nanoparticles have a platelet shape with an aspect

ratio ranging from 20 to 100. When dispersed in water, clays hydrate and swell, leading to the release of

the cations. Note that there are clays which swell a significantly (> 100%, bentonite) and ones which do

not swell much (0.05, kaolin). The hydroxyl groups present on the edge of the particle are sensitive to

the pH (titratable sites), resulting in an amphoteric edge charge. At low pH, the rim is positively charged

and becomes neutral or negative in basic solutions. Natural clays are often very complex to study due to

their polydispersity and chemical heterogeneity. To understand the role of physicochemical parameters

such as the pH or the ionic strength, researchers often focused their studies on a synthesized model clay

particle with low polydispersity which is well-characterized chemically: Laponite.

Laponite is a hectorite-type smectite clay widely used in industrial processes as a rheology-modifier

for paints, ceramic glazes, household cleaners, and surface coatings. Laponite is composed of rigid

disc-shaped crystals with an aspect ratio of approximatively 28 and the empirical chemical formula
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Na+
0.7 [(Si8Mg5.5Li0.3)O20(OH)4]−0.7, where the exponent −0.7 comes from the fact that the sodium

cation is shared in the interlayer region between adjacent crystals [30, 38]. Once dispersed in water,

Laponite hydrates, swells, and releases a part of the Na+ cations leading to a net structural negative

charge. At pH ≤ 9, Laponite dissolves in water [38]. For pH ≥ 10, the protonation of the OH groups

forms a positive rim charge, which slightly decreases while increasing the pH up to approximately 11.

Above pH 11, the value of the charge is still debated as some authors consider the charge as neutralized

[37] while others consider it negative [27] due to the formation of MgO−2 on the rim.

To estimate the value of the positive rim charge at 10 ≤ pH ≤ 11, Tawari and coworkers added

Laponite to pure water in order to reach a concentration of 2 g L−1 [37]. The pH of the solution increased

from 7 (pure water) up to a value of 9.97, which indicates a capture of H+ ions to form OH1/2+ groups

on the rim. Given the density of Laponite equals to 2.2 g cm−3 and the mass of Laponite added to the

solution, authors could calculate the corresponding OH− concentration. Thus, the positive rim charge

was found to be approximately 50 e per particle. The authors also measured the negative charge of the

Laponite, corresponding to the number of Na+ released, by means of conductivity measurements and

found a value of approximately −500 e per particle, that is 10 times the rim charge. This value must be

compared to the structural charge obtained if all the Na+ ions were dissociated from the colloid. The

structural charge has a value depending directly on the number of unit cells in the composition of one

Laponite platelet and on the elementary charge of a unit cell: ' −0.7 e. The number of unit cells depends

on the size of the particle and is between 1000 and 2000. Bipus and coworkers considered that Laponite

RD (a type of Laponite) is composed of 1000 unit cells [6], Brunier and coworkers that Laponite is a

crystal composed of about 1500 unit cells [7] and the supplier BYK gives the number of 2000 unit cells

[8]. If we take the chemical formula Na+
0.7 [(Si8Mg5.5Li0.3)O20(OH)4]−0.7, a thickness of a particle of

1 nm and an average diameter for the Laponite of 30 nm, considering the density of the Laponite RD

produced by Laporte Industries equals to 2.57 g cm−3 as given by Ruzicka [33], we find a number of

unit cells of 1430 corresponding to a total structural charge of −1000 e. From their all-atom model,

Leote de Carvalho and Skipper [25] obtained a charge density of 0.25 C m−2 which would translate to

−1060 e for Laponite with a 30 nm diameter. The same calculations with the data from Tawari give a

structural charge of −860 e. Various types of Laponite actually exist (including RD, XLG, XLS) with

slightly different densities, which can explain some variability about structural charges reported in the

literature.

For this study, the negative structural charge is considered equal to ∼ 1000 e. However, as a part of

the Na+ ions is never released, one can consider these ions as part of the colloid and reduce the charge

accordingly. The corresponding reduced charge is equal to −700 e, and is in agreement with Dijkstra

et al. [13]. It will be referred to as the "net charge" which is actually necessary for practical force

calculations and the charge on the rim must also be accounted for. The positive charge of the rim is taken

equal to 10% of the negative charge in line with most of the literature [13, 24, 31, 37].

To provide the context of the study, we first describe some important numerical works from the

literature about Laponite suspensions. These works will be used as references for the rest of this chapter

and will be used as a comparison for our results.
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1.2 Previous numerical works on Laponite suspension

A pioneering work on Laponite simulation is from Dijkstra and coworkers [13], who modeled Laponite

particles as infinitely thin disks of diameter σ = 25 nm. The disks were not allowed to intersect each

other, and the electrostatic interactions were reduced to quadrupolar interactions between fixed points

in their centers. The interactions were tuned to favor the face to edge attractions compared to any other

arrangement (e.g., stacking or edge to edge attraction). A repulsive Coulomb force was added to avoid the

collapse of the disks for distances less than σ/2. Dijkstra and coworkers calculated the reduced osmotic

pressure (Π∗) as a function of the reduced density (ρ∗) for different quadrupolar coupling constants, i.e.,

for different ratios of electrostatic and Brownian forces. These authors observed a drastic increase of Π∗

below the nematic transition obtained for bare disks by Eppenga and Frenkel [14], indicating a nearly

incompressible phase, referred to as gel. If this model is at first sight very crude, it provides insight

into how the formation of a gel phase at low Laponite concentration might occur. It also pointed out the

importance of the electrostatic interactions on the structure of the suspension.

Some years later, Kutter and coworkers proposed a more complex electrostatic model [24] to reduce

the errors induced by the quadrupolar interactions at short and long-ranges. Their approach consisted

of modeling the Laponite as a rigid hexagonal disk with discrete charge sites, as shown in Figure 3.1a.

The values of the charges were chosen to reach a total charge of −700 e for the plate-like particles, and

the aspect ratio of the Laponite was conserved (thickness 1 nm, diameter 25 nm). These authors have

made the assumption of pairwise additivity for the computation of the electrostatic interactions between

two disks, and therefore the total interaction was simply the sum of the site-site screened Coulomb

potential of the Yukawa form. This electrostatic interaction corresponds to the site model described in

chapter 2 (see section 2.4). In their study, Kutter and coworkers used Monte-Carlo simulations to study

the influence on the microstructure of the number of charged sites, the volume fraction, the range of

electrostatic interactions, and the presence (model B) or absence (model A) of charges with an opposite

sign on rim sites. They observed for the model B at high ionic strength and low particle concentration

a phase separation with a phase rich in colloids (cluster phase) and a phase poor in colloids, a spanning

network with a house of card structure at higher concentration, a fcc crystal phase (Face Centered Cubic)

at low concentration and long interaction range for the model A. This study emphasized the importance

of the model (A or B) on the final structure obtained.

In 2004, Odriozola and coworkers used a code based on Brownian Dynamics (BD) to simulate a

suspension of platelets having the same aspect ratio as Laponite (1:25), and with 469 available charge

sites [31]. However, as a first approach, these authors only considered the 61 sites represented in Figure

3.1b. Odriozola et al. considered as their predecessors two types of particles, i.e., with (model A) and

without (model B) opposite charges on the rim. In their simulations, these authors varied the volume

fraction in the range 0.01 to 0.15, and the number of the charged sites from 61 to 469, allowing the

comparison with Kutter and coworkers. All the calculations were realized with screening lengths (κ−1)

of 1 and 3 nm. For such interaction ranges, particles of model B (attractive particles) are expected

to aggregate in a T-shape configuration following the work of Kutter et al. However, Odriozola and

coworkers observed an unexpected spatial arrangement of particles, now referred to as the overlapping
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(a) Kutter’s model [24] (b) Odriozola’s model [31]

Figure 3.1: Charge sites model used by Kutter (left) and the bead model used by Odriozola (right) to

compute electrostatic interactions. The dark spheres on the right picture interact through both Yukawa

and Hard Sphere potentials, while the light ones only interact through Hard Sphere potential, which

avoids the interpenetration of the particles.

coin configuration (OC). Kutter and coworkers did not observe such a spatial arrangement due to the fact

that they considered spaces between charges allowing platelets to interpenetrate and facilitating at the

same time the T-shape configuration.

The observation of both OC and HOC configurations by Odriozola and coworkers at high salinity

(κ−1 = 1 nm and 3 nm) motivated the work from Jönsson et al. [23] in which they calculated the free

energy of interaction for a pair of model clay particles. They used a model with 656 charged sites with

556 negative sites (faces) and 100 positive sites (rim), as shown in Figure 3.2a. These authors introduced

the van der Waals forces in addition to the Coulomb screened potential to model the electrostatic inter-

actions between particles and to be more representative of experimental conditions. These authors have

defined the bond energy (free energy of interaction) by summing the totality of the potential acting on

the particles. They have used MC simulations to generate the radial and random rotational displacements

of the particles. These authors were able to determine the bond energy as a function of the distance

between the centers of gravity of the particles. Jönsson and coworkers have found that vdW interactions

play a minor role for a salinity less than 100 mM. Above this concentration, vdW interactions dominate

the attraction phenomena and favor the OC configuration. These authors have also shown that at low

salt concentration, 1 mM, the system is purely repulsive. However, they emphasized that such a low

salinity cannot be reached experimentally just by immersing particles in pure deionized water, as the

counterions released by Laponite particles lead to an increased ionic strength. At moderate salinity, the

system becomes attractive and is best described by the overlapping coin configuration. Finally, at high

salinity, electrostatic interactions are screened, and the vdW forces drive interactions. Therefore the mi-

crostructure at high salt concentration should mainly depend on the volume fraction and the temperature

of the system. Indeed, increasing the temperature will increase the Brownian motion of the particles, and

therefore increases the ratio between thermal energy and bond energy, i.e., the reduced temperature T ∗.

In 2010, Ruzicka and coworkers reported for the first time the experimental observation of empty
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(a) Jönsson’s model [23] (b) Ruzicka’s model [35, 4]

Figure 3.2: Schematic picture of the clay-like particles used by Jönsson (left) and Ruzicka (right). In

the left figure, the blue sites are positively charged, and the red sites are negatively charged. The patchy

particle model used by Ruzicka and Angelini is composed of patches in blue in the right figure, and sites

in red.

liquids and equilibrium gel in a colloidal clay suspension [35]. The empty liquid phase is described by

Bianchi and coworkers as a spanning network with a high density fluctuation probability resulting in a

very small overall density [5]. Such a phase is supposed to be favored for particles with a low valence

number. The experiments of Ruzicka et al. consisted in the preparation of samples with a weight con-

centration in Laponite ranging from 0.1% to 1.2% immersed in pure deionized water, corresponding

respectively to Debye lengths of 9 nm and 4.8 nm. These authors observed the suspension over 30 000

hours visually and measured the evolution of the structure factor as a function of the waiting time over

11 000 hours. ForCw ≤ 1% the system undergoes a phase separation with a phase rich in colloids (a gel),

and a phase poor in colloids (liquid). This phase separation is also indicated by the continuous increase

of the static structure factor S reaching S > 1 at low scattering vector q. The residual turbidity of the gel

phase, even after 30 000 hours, indicates the formation of large density fluctuations whose length scales

are commensurate with the visible light providing the evidence of empty liquids. For a concentration

Cw = 1.2%, the system is totally percolated, and the sample remains transparent throughout the experi-

mental time. The static structure factor at low wavenumber q saturates after one year, indicating that the

system has reached its long time equilibrium structure. Its low q value remains below 1, indicating an

important resistance to compression of the particle structure. Given that empty liquids are favored for

particles with low coordination number [5], Ruzicka and coworkers tried to reproduce the static structure

evolution inside and outside the phase separation using MC simulations of patchy-particles with low va-

lence number. The patchy-particle has an aspect ratio equal to 1:5 (see Figure 3.2b) and is composed of

19 sites represented by the spheres in red, and five charged patches, three on the rim and two on the faces,

represented in blue in Figure 3.2b. The sites interact only through a HS potential, while the patches inter-

act through a short-range square-well potential acting only between the rim and the face patches. Ruzicka

and coworkers have reported on a phase diagram the binodal and the percolation lines for a suspension

of their patchy-particles as a function of both the reduced temperature T ∗ and the reduced density ρ∗ (the

number density scaled by the close-packed density). Such a diagram allows pointing out the importance
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of the accurate definition of the reduced temperature for simulations as the simple increase of T ∗ can

lead to a phase transition from phase separation to an empty liquid or a liquid-like state. Ruzicka et al.

carried out numerical simulations for reduced density inside (ρ∗ < 0.114) and outside (ρ∗ > 0.114) the

phase separation region. The first step consisted in applying high reduced temperature to the suspen-

sions to generate thermal energy larger than the bond energy and therefore, to preserve particles isolated

and in a liquid-like state. In a second step, the suspensions were instantaneously quenched to low T ∗,

and the evolution of the static structure factor, S(q) was tracked as a function of the number of MC

cycles. The patchy-particle model was able to reproduce the low q continuous increase inside the phase

separation region and its saturation outside, obtained experimentally. However, the numerical model

drastically overestimates the values of lim
q→0

S(q), certainly due to the numerous assumptions considered

for the model. The aspect ratio of the patchy-particles model is, for instance, five time lower than for

Laponite particles. Moreover, the patchy model only allows the creation of T-bonded structures, while

Jönsson and al. have highlighted the importance of OC configurations [23].

Later, Angelini, Ruzicka, and coworkers observed a glass-glass transition of Laponite suspension

experimentally at low ionic strength [4] and fixed weight fraction Cw = 3%. The transition occurs

approximately three days after the first arrested state is reached (Wigner glass) and leads to what the

authors called a Disconnected House of Card glass (DHOC). During dilution experiments of the two ar-

rested states, these authors observed that the first state fluidized with time, whereas the second remained

solid, indicating attractive interactions between particles. To support the assumption of a DHOC spatial

arrangement, these authors "upgraded" the patchy model: they added a Yukawa repulsive potential be-

tween the sites of different particles and a long-range orientational attraction between the patches in such

a way that particles minimize their energy when they are orthogonal. These authors fixed the reduced

temperature to one, and just by varying the screening length and the effective charges of the sites, they

were able to reproduce the position of the first peak in experimental S(q) of a Wigner glass. In such a

case, the particles were randomly organized. Then, reducing T ∗, Angelini et al. observed some DHOC

arrangement of particles. However, they were not able to reproduce the aging behavior of a Wigner glass,

as the continuous reduction of T ∗ leads to the shift of the peak in S(q) to higher q, which is the opposite

experimentally observed behavior.

The phase diagram of purely repulsive charged colloidal platelets was reported by Jabbari and

coworkers [22]. Despite the lack of attractive interactions, this study can be representative of clay sus-

pensions under specific conditions. Indeed, the rim charges of the Laponite are neutralized at pH> 11 or

with the addition of peptizers so that Laponite can act as repulsive disks. Many industrial processes using

clays add polymers to neutralize the rim charges and therefore stabilize the suspension [28]. Although

the totality of the phase diagram presented by Jabbari et al. is not representative of clay-like particles

system at any pH, some similar behaviors should be observed with Laponite suspension, especially at

long-range interactions where Laponite is supposed to act as a Wigner glass. These authors considered

infinitely thin platelet particles (cf. Figure 3.3) with anisotropic charge interactions. Jabbari and cowork-

ers used the model developed by Agra et al. [2], where two platelets interact through a modified screened

Coulomb potential involving an anisotropic function taking into account the orientational dependence of

the potential. The higher the salinity, the more sensitive the anisotropic function is to the angle between
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two platelets. This function avoids the implementation of the site model and only depends on the center

to center distance between two platelets and their angle with the connecting centerline. The model used

by Jabbari and coworkers requires less computational time than the site models mentioned before and

accounts for surface charge renormalization. However, it is not able to distinguish all the possible con-

figuration angles - e.g., two platelets with the same angle of 45 degrees with respect to their connecting

line can be parallel or can form a kind of right-angled triangle.

Figure 3.3: Schematic picture of two infinitely thin disks interacting through Yukawa potential with an

orientational dependence developed by Agra et al. [2], and used by Jabbari and coworkers [21, 22].

One should keep in mind that decreasing the pH below 11 increases the rim charges. Then, the

charge anisotropy of Laponite varies as a function of the pH. The influence of the charge anisotropy

on the phase diagram of a dispersion of clay-like particles was investigated by Delhorme and coworkers

[10]. These authors have studied the microstructure of platelet suspensions as a function of the added salt

while varying both the charge anisotropy and the volume fraction. They have used a multi-level coarse-

graining site model where site-site interactions are computed through a Yukawa potential (see Figure

3.4). A Lennard-Jones potential is applied between sites to avoid the interpenetration of the particles.

Delhorme et al. have shown that the microstructure is sensitive to the details of the charge anisotropy and

reported four different phases at strong charge anisotropy and three phases at lower charge anisotropy. In

their work, Delhorme and coworkers varied the volume fraction based on the volume of the constituent

spheres of one platelet from 0.01 to 0.105. They did not observe a Wigner glass, neither at high volume

fraction (0.105) and low salinity as proposed by Ruzicka et al. at long waiting time [35] nor at low

volume fraction and low ionic strength as reported experimentally for Laponite [26] and another kind

of clay, Montmorillonite [36]. The authors also investigated the suspension behavior at higher volume

fraction, ranging from 0.11 to 0.29, and proposed a phase diagram mostly composed of liquid crystal

phases [12]. They observed different phases as a function of the added salt up to a volume fraction

equal to 0.21. Above this threshold, both the high concentration of counterions driven by the release of

Na+ coming from the swelling of the Laponite, and the crowding effect, avoid the emergence of new

phases and only an interpenetrated rectangular columnar phase is observed. Two years later, Delhorme

and coworkers [11] studied the influence of the size and the charge anisotropy on the transition from an

isotropic state to solid phases or nematic states using the multi-level coarse-graining mentioned earlier

(see Figure 3.4). They have shown that large particles favored the liquid-gel transition with a strong

charge anisotropy. In contrast, the liquid-glass transition is favored for small particles bearing only
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negative charges. The isotropic to nematic transition is favored for particles with a higher aspect ratio

and a lower charge anisotropy.

Figure 3.4: Schematic picture of the clay-like particles used by Delhorme [10, 11, 12]. The green sites are

positively charged, and the red sites are negatively charged. The sites are used to compute electrostatic

interactions at short range. At long range, the electrostatic interactions are computed between the patches

composed of a group of sites (5 negative patches and 14 positive patches).

All of the models we have just presented were used to study disk-shaped particles with charge

anisotropy using Monte Carlo simulations [10, 11, 12, 23, 22, 35] or Brownian Dynamics simulations

[29, 31]. The relatively low computational cost of the MC and BD methods allowed the authors to model

a large number of particles (from 100 for Odriozola et al. (BD) to more than 1000 for Jabbari et al. (MC))

with a relatively large aspect ratio (25 for Odriozola and coworkers, 15 for Delhorme and coworkers).

All of these studies provide a good insight into the expected phases for clay-like particles suspensions as

a function of the volume fraction and the interaction ranges.

1.3 System simulated

1.3.1 Description of a suspension of clay-like particles

As mentioned in the second chapter, we use Np
s = 37 spheres to coarse-grain one clay-like particle

(see Figure 3.5). This particle will be referred to as AR7 due to its aspect ratio of 7.3. Clearly, these

model particles have a smaller aspect ratio than the smallest aspect ratio of 9 studied by Delhorme

and coworkers [11], and they are one-fourth the ratio of Laponite. Therefore, we expect it to be more

difficult to observe in the present work a transition from any isotropic to a nematic state at equilibrium

[11]. Nevertheless, the aspect ratio is still larger than the one used by Ruzicka et al. or Angelini et al.

(5 - [35, 4]), which did not prevent them from observing a complex phase diagram. Coming back to the

system we choose to simulate, one should notice that in Figure 3.5 the center of gravity of the plate-like

particle is also the center of gravity of the red sphere. The position and the orientation of a platelet are

fully described by the position of the center of gravity and the vector director n of the platelet. The

consideration of hydrodynamic interactions in the ASD method drastically increases the computational
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cost compared to MC and BD, and therefore we had to limit the number of platelets Np to 60 for most of

the simulations, which represents already 2220 spheres. Due to this small number of particles, statistical

noise is sometimes important. Some simulations with the same volume fraction were carried out with

twice as many particles to be sure not to observe structures correlated to the size of the box or to the

low number of particles. Following Delhorme et al., the volume fraction is based on the volume of the

spheres constituting the particle:

φ =
NpVp
Vb

=
4NpN

p
s πa3

3L3
(3.1)

where L is the length of the simulation box, Vb its volume, and Vp is the volume of an AR7 particle.

We have decided to vary the volume fraction from φ = 0.05 to φ = 0.124 to be able to compare our

results with the paper from Delhorme and coworkers [10]. Note that these volume fractions correspond

respectively to the reduced densities ρ∗ = 6.75 and ρ∗ = 16.71, which allows also comparison with

the work from Ruzicka and coworkers [35]. Since we want to study the phases without background

flow, we set Pe = 3πηR3γ̇/(kbT ) � 1, taking 3.89 10−3. All the simulations are carried out over a

time τ = 50 a2/(2D0), where D0 is the diffusion coefficient of one individual sphere. By considering

the mean translational diffusion coefficient of a plate-like particle, the center of gravity of an AR7 can

only cover a distance of 0.49R in nondimensional time of τ = 50 if thermal effects are the only source

of motion. Because this distance is small, we can only compute systems with high volume fraction to

generate significant interactions between particles in the time window of the simulation. One should

know that 50 a2/(2D0) corresponds to approximately 74 ns. Although this real time is extremely low,

the suspensions of AR7 undergo similar behaviors to the ones obtained with Monte-Carlo and presented

in section 1.2.

vector director n

X

Z

Y

Figure 3.5: Clay-like particle coarse-grained with 37 individual spheres referred to as AR7.

1.3.2 Set up of the particles charges

As previously explained, due to the high computational cost of the ASD method we are not able to

carry out simulations with plate-like particles having the same aspect ratio as Laponite. One should also

remember that Ruzicka and coworkers [35] have pointed out the importance of the ratio between the bond
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energy, directly related to the electrostatic forces, and the thermal energy, related to the Brownian forces.

This ratio can be written with a non-dimensional number F eR/(kbT ), where F e is the electrostatic

force scale and R the radius of the particle, and is actually the inverse of the reduced temperature T ∗.

We have chosen in our model to preserve the value of F eR/(kbT ) of the Laponite. It is necessary first to

compute the electrostatic force scale of a Laponite particle. Let us recall that we assume a total negative

charge of −700 e, and a positive charge of 70 e. Knowing the negative charges are normally situated

between the basal planes, we assume a symmetric repartition of the charges between the surfaces. As a

result, a Laponite particle could be modeled as a disk-shaped particle of aspect ratio 1 : 30 with −350 e

charges per face and 70 e charges spread on the rim. Due to the strong charge anisotropy, there are two

crucial types of F eR/(kbT ): the one in the repulsive face-face configuration (see Figure 3.6b), and the

one in the attractive face-edge configuration (Figure 3.6a). In Figure 3.6, only a quarter of the domain

is modeled owing to symmetries of the system. Using the PoBos code (Poisson-Boltzmann Solver)

developed at Laboratoire de Génie Chimique (LGC) we have solved the three-dimensional non-linear

Poisson-Boltzmann equations and, therefore, the electrostatic potential field ψ as shown in Figure 3.6 (a

blue color stands for a negative potential and a red color for a positive). From the potential field, it is

possible to compute the forces applied to the particles as a function of the distance between their centers

of gravity. These forces are reported in Figure 3.7 as the blue points (discrete values). As expected, the

forces are attractive in the T-shape configuration and repulsive for the face-face arrangement.

(a) Face-edge arrangement (T-shape) (b) Face-face arrangement

Figure 3.6: The 3-dimensional electrostatic potential between two disk-shape particles computed by

Poisson-Boltzmann Solver (PoBoS). The particles are arranged in (a) face-edge and (b) face-face config-

uration. The surface charges are set to −350 e per face and 70 e spread on the rim. The Debye length is

set to κ−1 = 1 nm.

Now that we have computed F e of Laponite for different spatial configurations, we want to ensure

the preservation of F eR/(kbT ) in our model. As the radius of an AR7 particle is approximately four

times smaller than a Laponite particle, the electrostatic force scale applied to an AR7 particle must
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be multiplied by four to preserve F eR/(kbT ) of the Laponite. We recall that electrostatic interactions

betweenAR7 particles are modeled by a Yukawa potential between charged sites, as described in section

2.4. Both short and long-range attractive and repulsive interactions are taken into account as in the model

used by Jönsson and coworkers and later by Delhorme and coworkers. Consequently, the preservation

of F eR/(kbT ) of the Laponite in our model will be ensured by the attribution of effective charges

to the spheres making up an AR7 particle. To determine these effective charges, AR7 particles are

positioned with the same spatial configuration as the disks. The charges attributed to the face and rim

spheres are estimated to generate a force four times larger than the force computed with PoBoS for

disk-shaped particles, thanks to an optimization solver. The fitted AR7 forces are reported in Figure

3.7 (full black line). Note the difference in the order of magnitude between the face-edge and the face-

face configuration. The fits are in very good agreement with the real forces between Laponite particles,

indicating that despite their small aspect ratio, AR7 particles capture both the short- and long-range

electrostatic behavior of the latter. The procedure described above leads to the definition of "effective"

charges to be used in the Yukawa site model of an AR7 particle. By design, these effective charges

generate the same F eR/(kbT ) as computed with the non-linear PB theory for Laponite. It appears

clearly that neither the total net charge nor the charge density of an AR7 particle will be the same as for

a Laponite particle.

1 2 3 4 5
κd

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

F
R
/k
T

=
T
∗−

1

×104

AR7 model

Face-Face force

Face-Rim force ×100

Figure 3.7: Electrostatic forces between two disk-shaped particles of aspect ratio 30 and two AR7 plate-

like particles as a function of the distance. The blue and orange points stand for the forces computed

by Poisson-Boltzmann Solver (PoBoS), the black curves are the forces computed using the linear theory

and the Yukawa potential for optimized charges. The small d in the x-axis legend stands for the distance

between surfaces, and r between the centers of gravity.

One should recall that the electrostatic forces depend on the screening length, and therefore the

charges of a Laponite particle and the effective charges of an AR7 particle should be computed for
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each of the interaction ranges studied. In the current study, the charges were optimized only for the

range of κD = 7.3, equivalent to κ−1 = 1 nm. Although considering the same charges for other

range of interactions is not strictly correct, we have used the following total charges for all simulations:

Ztface = −178.6 e and Ztrim = 108 e. Given that the face is composed of 19 sites, and the rim 18 sites,

the charge per site is equal to Zsface = −15.4 e and Zsrim = 6.0 e (see Figure 2.5).

Now that the system used to simulate clay-like particles is fully described, we will present in the next

section all the quantities used to characterize it quantitatively.

1.4 Computed quantities

Due to the anisotropy of particles, the local structure must be described with both positional and orien-

tational correlation functions. As we are able to track at any time the position of the center of gravity of

the particles, the radial distribution function can be computed. This function represents the probability

of finding a plate-like particle at a position r from the center of gravity of any particle:

g(r) =
1

4πr2Npρ

〈 Np∑

i=1

Np∑

j 6=i
δ(r − rij)

〉
(3.2)

where the bracket 〈.〉 denotes an ensemble average, Np the number of particles, ρ the mean density, rij
the distance between the centers of gravity of particles i and j, and δ the Dirac delta function. A value

below 1 corresponds to a depletion zone, whereas g(r) > 1 corresponds to an elevated probability of

finding a particle.

In the Fourier space, the density-density correlation is defined as [15]:

SL(q) =

Np∑

i=1

Np∑

j=1

〈 exp [−iq · rij ] 〉 (3.3)

where q stands for the incident scattering vector, rij = rj − ri, and the subscript L refers to the system

size, i.e., a three dimensional simulation box of length L and volume L3. Due to the finite size of the

system and its periodicity, the microscopic density is enforced to be a periodic function. Thus, the values

of admissible q must be commensurate with the box length, corresponding to the periodicity of the

system [39] and can be defined as:

q =
2π

L
(nx, ny, nz) (3.4)

where nx, ny and nz are any integers. It is important to stress that any vector ‖q‖ smaller than 2π/L is

unphysical. The static structure factor will often be represented as a function of the modulus q = ‖q‖
to provide information concerning the arrangement of percolated structures and glassy states. The static

structure factor allows knowing the position of the first neighbor and the limit of q going to 0 reflects

the compressibility of the system: if lim
q→0

SL(q) = ρkbTχT where ρ is the number density and χT the

isothermal compressibility [15]. One should be aware of the fact that due to the relatively small number of

particles simulated and the small box size, the function SL(q) could sometimes appears to be sampled too

coarsely at low scattering vector. The only way to improve this is to increase the size of the box. However,

increasing the latter while keeping the volume fraction constant increases the number of particles and,
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consequently, the computing cost. Moreover, the far-field hydrodynamic interactions are computed by

FFT on a grid with 64×64×64 nodes, and these numbers must be powers of two, increasing the volume

of the box by 20% requires doubling the mesh size, which is extremely computationally demanding. As

mentioned in section 1.3, some calculations were carried out with twice as many particles while keeping

the volume fraction constant to be sure that we are able to capture the correct behavior with 60 particles.

The incoherent (one particle) part of the intermediate scattering function F (q, t, tw) is the time cor-

relation function of the density in the Fourier space:

FL(q, t) =

Np∑

i=1

〈 exp [−iq · (ri(t+ tw)− ri(tw)) ] 〉 (3.5)

where t and tw are respectively the time and the waiting time. The latter corresponds to the aging time

at which the intermediate scattering function starts to be computed. This function provides information

concerning the dynamic behavior of the particles. When particles can move freely, the position of the

particles will progressively lose correlation with their initial positions: lim
t→∞

FL → 0, the system is con-

sidered as ergodic. From a statistical point of view, the system is ergodic if the time average correlation

functions are equal to their ensemble-averaged values. The aging time needed experimentally for sus-

pensions of Laponite to reach the ergodic regime varies from hours to months or even years, depending

on the volume fraction and the ionic strength. Although we are working at higher concentrations com-

pared to experiments, we do not expect to be able to reach an ergodic state and, therefore, to evaluate

the ergodicity breaking time. Despite the fact our simulations are short compared to experiments, we are

able to capture similar qualitative behaviors as the one obtained experimentally for both gels and glasses

by Jabbari and coworkers [18, 20], Ruzicka et al. [33] and numerically using Brownian dynamics by

Mossa and coworkers [29].

The orientational correlation function is represented by the average of the second Legendre polyno-

mial of the azimuthal angle θ between the normals of two plate-like particles. Thus, cos(θ) = ni · nj ,
where ni and nj are the normal vectors of particles i and j. Then, the orientational distribution function

is defined as:

P2(r) =

〈
1

2

(
3cos2 θ(r)− 1

)〉
. (3.6)

When P2(r) = −1/2 the particles are perpendicular while P2(r) = 1 refers to parallel particles. The

combination of the radial distribution and orientation pair distribution functions provides a good insight

into the microstructure of the system. Nevertheless, these functions do not furnish any information

concerning the formation of a gel state, or any percolated structure.

We introduced a criterion of distance to determine when two particles are connected and form

a cluster: if the gap between two spheres of distinct plate-like particles is less than 0.2 a, where

a is the radius of one sphere, the particles are considered in contact. It is interesting to compute

the mean azimuthal angle < θ > defined previously for the second Legendre polynomial function

between touching particles. This allows investigating the possible correlation between this angle and the

position of the contact relative to the center of gravity of the particles. The distance between the contact

point in red in Figure 3.8 and the center of gravity of the particle will be referred to as the "touching

distance". This combination of both the angle and the touching distance allows a complete insight into
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the spatial arrangement between particles in contact.

Figure 3.8: Definition of the touching distance between two disk-shaped particles. The red point corre-

sponds to the contact point, and the touching distance is defined as the distance between the center of

gravity of particle i and the contact point.

Other useful quantities are the size and number of aggregates, which are computed using the criterion

of distance mentioned above. We present some snapshots of the obtained structure, where particles

belonging to the same cluster will be represented using the same color (see Figure 3.9). A particle

without any contact will be colored in white, as pointed out by the red circle in Figure 3.9.

Figure 3.9: Example of a snapshot of the microstructure. Each color represents a cluster except for the

white color which represents particles without contact (see the particle in the red circle).

The number of neighbors of a particle belonging to a cluster is also called the coordination number,

and is simply equal to its number of contacts with distinct particles. Based on the criterion of dis-

tance previously mentioned, we can calculate the average number of neighbors for a platelet in a cluster

< Nnei >, which varies in the present simulations from zero (no connection) to four. One should no-

tice the similarity of our coordination number with the model used by Ruzicka and coworkers, where

the valence number is equal to five. We can also compute the average number of platelets in a cluster

< N cl
p > and the number of clusters Ncl. These parameters provide a good insight into the dynamics of

the formation of the clusters. It is possible to measure N(t)/N0 with N0 the initial number of individual
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particles and N(t) the number of distinct entities (a cluster of disks is defined as a unique entity) at time

t:
N(t)

N0
= 1 +

Ncl

(
1− < N cl

p >
)

N0
(3.7)

At t = 0, the value is equal to 1 and decreases to 1/N0 if all the particles are in the same cluster. With

these pieces of information at hand, we will be able to quantify and compare the kinetics of aggregation

as a function of the volume fraction and the range of electrostatic interactions. This is one of the topics

of the last chapter.

Finally, to investigate the transition from an isotropic to a nematic state we track the evolution of the

nematic order parameter Snem defined as the largest eigenvalue of the second rank tensorQαβ:

Qαβ =
1

Np

Np∑

i=1

1

2

(
3niαn

i
β − δαβ

)
(3.8)

When the nematic order parameter is greater than 0.4, the suspension is considered to be in a nematic

phase, while below 0.4 it is considered to be isotropic. The eigenvector corresponding to the largest

eigenvalue of Qαβ is the director n̂ and characterizes the dominant orientation of the particles. The

nematic order parameter Snem is also used as a convergence parameter: when it stops fluctuating, the

suspension has reached an arrested state that can correspond to a thermodynamic equilibrium or not.

2 Equilibrium structure

We have seen in chapter 1 that the final microstructure of a suspension of particles with both shape

and charge anisotropy depends on the range of electrostatic interactions (ionic strength) and the volume

fraction. Ionic strength is often used as an axis in a phase diagram, but it is not so well adapted to

compare different results as it sets the interaction range, which should be compared to any other length

scale of the system. That is why instead of using the ionic strength, results will be presented as a function

of the non-dimensional number κD involving the inverse of the Debye length κ and the diameter of a

particleD. The values of κD studied are κD = [1.46; 7.3; 14.6; 29.2; 44; 73] and the volume fractions

are φ = [0.05; 0.075; 0.10; 0.124]. The statistical measured quantities used to compare the different

structures are averaged over the last 25 time units of the simulation.

We stress once again that we simulate clay-like particles with a different aspect ratio than Laponite,

so some discrepancy can be expected relative to experimental results. Nevertheless, as the ratio between

the Brownian force and the electrostatic force is preserved, the clay-like particles simulated in the current

study allow reproducing a phase diagram (see Figure 3.10) similar to those obtained in experiments. In

Figure 3.10 one can observe four different phases: A-repulsive glass, B-phase separation, C-equilibrium

gel, D-liquid-like structure. The full description of the phase diagram is developed and compared with

the literature (see section 1.2) following the qualitative terms: long-range, intermediate-range, and short-

range electrostatic interactions. These qualitative terms are based on the size of the Debye length relative

to the mean distance between the surfaces of the particles. The latter is measured at the beginning of

the simulation and varies from 0.14 R at φ = 0.124 to 0.28 R at φ = 0.05. When the double layers

of the particles fully overlap and also include their center of gravity, the interaction is considered as
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long-ranged, and corresponds to the first line of the phase diagram, i.e., κD = 1.46. When the double

layers overlap but do not include the center of gravity of the particles, interactions are considered as

intermediate-ranged and are found in the second line, κD = 7.3. Finally, when the double layers do not

superimpose on average, such that displacement due to the Brownian motion is necessary to cause the

overlapping of the double layers, the interaction is referred to as short-ranged. This corresponds to the

cases κD = [14.6; 29.2; 44; 73].

0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13
φ

0

10

20

30

40

50

60

70

80

κ
D

CB

A

D

Figure 3.10: Phase diagram proposition: A-repulsive glass, B-phase separation, C-equilibrium gel, D-

liquid-like structure. The brick-colored star (the lowest κD point at φ = 0.05) represents a classic

Wigner glass, the blue triangles a repulsive structure with particles in contact with overlapping coin

configurations, the red square a structure with particles mainly in an overlapping coin configuration, the

green diamonds for particles in both overlapping coin and house of card configuration, the purple crosses

stand for HOC configuration, and finally the black filled circles a liquid-like phase.

2.1 Long-range electrostatic interactions

Long-range electrostatic interactions are obtained experimentally when no salt is added to colloidal sus-

pensions. Then, the screening of the charges is only due to the counterions released by the colloids and

therefore depends on the volume fraction. As Laponite is highly charged, the number of counterions

released is important enough to prevent the electrostatic interaction range from being several times the

radius of the particle unless the suspension is dialyzed. In such conditions, a solid-like structure is ob-

served experimentally for different ranges of interaction, concentration, and aging. The dynamical route

followed by the suspension to reach its final arrested state was widely studied by Jabbari and coworkers

[18, 19, 20], Ruzicka et al. [33, 34] and Angelini and coworkers [4]. To increase the range of interactions

in experiments, Levitz and coworkers [26] added ion exchange resins to their suspension of Laponite to

reduce the ionic strength and therefore increase the interaction range, which also led to the appearance of
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a soft solid-like phase, the Wigner glass, at low volume fraction instead of a phase separation commonly

observed at sufficiently low volume fraction (< φ = 0.4%). Our simulations are carried in the same

interaction range as the experiments of Levitz, as the long-range electrostatic interaction (κD = 1.46)

corresponds to a screening length equivalent to 1.37 times the radius of the particle. Consequently, the

double layers strongly overlap.
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1 2
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1
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(a) Spatial configurations
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(b) Electrostatic Force

Figure 3.11: Electrostatic forces on a plate-like particle as a function of the distance between the centers

of gravity, at κD = 1.46, for three different spatial configurations: T-shape (purple color), face-face

(green color), and OC (blue color). The inset is simply a zoom to distances where some attractions

occur.

To provide an idea of the forces between particles, let us consider two AR7 particles in a face-face

configuration (see the left configuration in Figure 3.11a) and in a T-shape configuration (see the right

configuration in Figure 3.11a). In Figure 3.11a, the red points correspond to the center of gravity of

particles 1 and 2, and the arrows plotted with a full line correspond to the direction of the displacements

considered. Starting from the initial face-face configuration, if the particle 2 moves toward the direction

represented with the blue arrow, the configuration is referred to as OC configuration, while a displace-

ment toward the green arrow is referred to as a face-face configuration. The center to center distances

are referred to as r/R and therefore are different for each of the three spatial configurations studied.

The normal forces to the particle 1 are reported in Figure 3.11b as a function of the distance r/R with

the second particle. A positive value of the force stands for a repulsive behavior (pushing outward and

increasing r if unrestrained) while a negative value means that particles are attracted one to the other.

One can see that for both the T-shape and the face-face configuration the system of two AR7 particles is

purely repulsive. Concerning the OC configuration, for r/R < 1.2 particles are repulsive, then become

attractive for 1.2 < r/R < 1.55 and repulsive at larger distances. The system of two interacting particle

is mainly repulsive but a narrow attraction field exists for the OC configuration. To reach this attractive

state, the system must overcome the small energy barrier corresponding to repulsive forces at distance

larger than r/R = 1.55. Therefore we could expect this attractive configuration to be favored for dense



2 Equilibrium structure
2.1 Long-range electrostatic interactions

73

St
ru

ct
ur

e
w

ith
ou

t
ba

ck
gr

ou
nd

flo
w

systems where particles are crowded to a short distance from one another. Obviously these pair forces

are just a first approach to be able to understand more complex systems.

As explained in paragraph 1.4, the nematic order parameter is used as a criterion of convergence:

when this parameter reaches a plateau, the microstructure is assumed to be at equilibrium. The evolution

of the nematic order parameter is reported in Figure 3.12. Note the tremendous difference of the nematic

order parameter at the two extremes concentration: Snem(φ = 0.05) and Snem(φ = 0.124). At the

lowest concentration, the system is nematic, Snem(φ = 0.05) > 0.4. After having reached a first plateau

ranging from 3 to 10 units of non-dimensional time, the system slowly evolves toward a nematic state.

This slow organization is undoubtedly due to the strong electrostatic interactions creating local cages,

and therefore drastically slowing down the system. To be certain of the final state, we have extended the

calculation for φ = 0.05 up to 66 units of non-dimensional time. The value of the nematic order does not

appear to evolve anymore and slightly oscillates around Snem = 0.5. At intermediate concentrations, the

nematic order parameters reach a plateau with similar values for φ = 0.075 and φ = 0.10 indicating the

same degree of order. At the highest volume fraction, the system is isotropic and exhibits the lowest final

value. Quite surprisingly, the nematic order parameter is not a monotonic function of the volume fraction

and does not exhibit a sigmoid shape as it is commonly observed [11]. This sigmoid shape is normally

due to crowding effects, and we can wonder if the face-rim attraction occurring at short distance and for

OC configurations prevents the isotropic to nematic transition (see Figure 3.11b)
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Figure 3.12: Evolution of the nematic order parameter as a function of the non-dimensional time for

κD = 1.46.

The evolution of the system towards an arrested state is particularly noticeable on the incoherent

intermediate scattering function reported in Figure 3.13 for φ = 0.124. We have chosen the smallest

accessible scattering vector, i.e. q = 2π/LwithL the length of the cubic box, and F (q, t, tw) was plotted

for four different waiting time tw. One should notice that the value of F never relaxes significantly

on the available time window. Therefore, the ergodicity breaking time cannot be estimated even if it

seems almost instantaneous in our conditions of simulation. However, it seems clear that the system



Structure
w

ithout
background

flow

74 CHAPTER 3. STRUCTURE OF SUSPENSIONS OF CLAY-LIKE PARTICLES WITHOUT
BACKGROUND FLOW

has evolved towards a non-ergodic, arrested state. The same dynamical behavior is observed for lower

volume fractions but the curves are not reported here.
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Figure 3.13: Incoherent (one particle) intermediate scattering function for φ = 0.124 and κD = 1.46.

The term tw stands for the waiting time in non-dimensional time units.

Several methods exist to determine if the system has evolved toward a glass or a gel. One can

cite for instance the method which consists in fitting the intermediate scattering function with a sum

of a fast decaying exponential and a stretched exponential [19, 20, 29]. When the ratio τ2/τ1 of the

characteristic time τ2 (stretched exponential) with the characteristic time τ1 (fast decaying exponential)

remains constant over at least half of the ergodicity breaking time, the system has evolved toward a

glass. In contrast, an increase of the ratio means the system evolves toward a gel [20]. As we are

not able to predict the ergodicity breaking time in the present work, this method is not adapted. We

will instead study the evolution of the translational short-time diffusion coefficient as a function of the

waiting time. Jabbari and coworkers [20] observed that the translational short-time diffusion coefficient

Ds was remaining approximately constant and equals to its initial value Ds,0 (0.7 < Ds/Ds,0 < 1).

This behavior is referred to as the "rattling in the cage". Concerning the structures evolving toward a

gel, Jabbari et al. observed a decrease of Ds/Ds,0 with the aging times. Values of Ds/Ds,0 < 0.6 are

observed close to the ergodicity breaking time. In this case, the reduction of the diffusion is induced by

the development of a gel network.

Although both the translational perpendicular and parallel diffusion coefficients in infinitely dilute

suspension have almost the same value, we have decided to study separately their evolutions with the

waiting time. Indeed, due to the strong charge anisotropy, we could expect different behaviors concerning

the displacements parallel and perpendicular to the normal of the particle (vector n in Figure 3.8). The

parallel and perpendicular short-time translational diffusion coefficients in the absence of interparticle

interactions are respectively equals to D(⊥,0)/D0 ≈ 1.72 10−1 and D(‖,0)/D0 ≈ 1.75 10−1 (see Table

2.2) whereD0 is the diffusion coefficient of non interacting sphere of radius 0.137R. In the present study,

we do not have access to the short-time self diffusion defined as kbT <M11 > all along the simulations.
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We have computed instead both the translational parallel and perpendicular mean square displacements1

of the platelets over a certain time-window. Then, we have calculated the slope of these mean square

displacements at short-time which will be referred to as the diffusion coefficients of the particles. These

coefficients are reported in Figure 3.14 as a function of the waiting time. The coefficients at the beginning

of the simulations, tw = 0, are not reported, because the strong long-range electrostatic interactions were

generating "diffusion" 20 times larger than the diffusion of the particle without interaction. One can

observe parallel diffusion coefficients (filled symbols) almost constant with the waiting time. Concerning

the perpendicular coefficients (empty symbols), they seem to slightly decrease with the waiting time

for the two higher volume fractions. However, one can wonder if this decrease could not be due to

the fact that at high volume fraction, the motions parallel to the direction vector could be inhibited by

the electrostatic forces. In contrast, motions perpendicular to the direction vector are less constrained.

Although a slight decrease is observed for the perpendicular diffusion coefficient at high volume fraction

with the waiting time, the diffusion coefficients remain close to their infinitely dilute values. Following

the criterion from Jabbari and coworkers [20], as D/D0 > 0.6 for all volume fractions, the structures

observed with long-range interactions are glasses.
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Figure 3.14: Evolution of the parallel (empty symbols) and perpendicular (filled symbols) diffusion

coefficient normalized to its infinitely dilute value, (D(⊥,0) and D(‖,0)), at κD = 1.46.

Among these glass structures, two different final arrested states are observed: a disconnected struc-

ture corresponding to a classic Wigner glass at φ = 0.05 and a system highly compressed with intercon-

nected structure at higher concentration (see Figure 3.10). Then, the study is divided into two parts, each

one leading to a distinct structure.

2.1.1 Classic Wigner glass

In Figure 3.15 is reported the snapshot at φ = 0.05 at the end of the simulation. Considering this

snapshot along with observation of the dynamics, one can clearly notice a classic Wigner glass: particles
1the displacements include the effects of hydrodynamics, electrostatics and thermal fluctuations.
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are disconnected and seem trapped in electrostatic cages. Indeed, at low volume fraction, the free volume

per particle particle is important enough to allow particles to remain far away from one to another, and

no contact between particles was observed.

Figure 3.15: Snapshot of the microstructure at equilibrium for φ = 0.05 at long-range of interactions.

Analyzing both the radial and angle distribution functions presented in Figure 3.16 provides a good

insight into the microstructure. The maximal peak of the radial distribution function is reached between

2.27 R and 2.43 R. Over this range of distance, one can observe in Figure 3.16b that the orienta-

tional correlation function exhibits a kind of plateau at P2(r) = 0.43 indicating that a proportion of the

particles are nearly parallel to each other. Note also the peak of the orientational correlation at 1.9 R

indicating again the preferential parallel orientation of the particles. Broadly speaking, the particles are

disconnected and an important proportion of them are parallel one to another.

We hypothesize that the particles are jammed in a kind of electrostatic cage as classically observed for

a Wigner glass. To verify this assumption, we have reported in Figure 3.17 the mean square displacement

over the last five units of non-dimensional time. The dotted curve in Figure 3.17 corresponds to the

diffusion of non-interacting particles, and was taken equal to D/D0 =
(
D(‖,0) +D(⊥,0)

)
/(2D0). One

can clearly notice that the diffusion of the particles at a short time is similar to D/D0 and decreases at a

longer time, indicating a caging effect. One should remark that the translational perpendicular diffusion

seems less impacted by the caging effect than the parallel coefficient. Remember that at this volume

fraction, the closest particles are mainly parallel, so motions parallel to the normal vector are expected

to be inhibited by the electrostatic forces, while motions perpendicular to the direction vector are less

constrained.

Finally, we have reported in Figure 3.18 the static structure factor for different time windows. Firstly,

note that the static structure factor does not evolve with the increase of the "aging" time. This result is in

agreement with the assumption of a non-ergodic arrested state within the available simulation time win-

dow. The low q behavior indicates that the system has a low compressibility. The first peak corresponds
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Figure 3.16: Center of mass radial distribution (left) and second Legendre polynomial function (right)

for φ = 0.05 and κD = 1.46.
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Figure 3.17: Mean square displacement of particles at φ = 0.05, < x2
⊥ > and < x2

‖ > stand for

respectively the perpendicular and parallel translational mean square displacement.

to the position of the nearest neighbor and reaches a value of SL ≈ 2.6, a value indicating the suspension

is almost frozen according to the empirical Hansen-Verlet rule (SL,max ∼ 3.2 for a spherical suspension;

see e.g. [16, 17] and references therein for a discussion of this criterion for Yukawa spheres).

Owing to all the pieces of information cited above, we can conclude that a classic Wigner glass forms

at the lowest volume fraction and for long-range interaction, i.e., for φ = 0.05 and κD = 1.46. This

result is in line with experimental results, where a classic Wigner glass was observed at low volume frac-

tion and very long-range interactions by Levitz et al. [26], or for volume fractions larger than φ = 0.008

equivalent to Cw = 2% and smaller ionic strength by Ruzicka and coworkers [32] and Jabbari et al. [20].
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Figure 3.18: Static structure factor at φ = 0.05 and κD = 1.46, computed over different time windows.

2.1.2 Repulsive glass with particles in overlapping coin configuration

We have reported the final structures obtained at φ = 0.075, 0.10 and 0.124 in Figure 3.19. One can no-

tice that the compression of the Wigner glass obtained at φ = 0.05 leads to a higher number of contacts

between particles as the volume fraction increases. At φ = 0.075, the particles seem to minimize the

bulk energy by forming small clusters and frequently adopting OC configurations (see the two particles

in olive color on the center in Figure 3.19a). At φ = 0.10 and 0.124, most of the particles are inter-

connected, and at the highest volume fraction for instance, one can only observe three different clusters

(light blue, purple, and green) and two isolated particles (in white in Figure 3.19c).

(a) φ = 0.075 (b) φ = 0.10 (c) φ = 0.124

Figure 3.19: Snapshot of the microstructure at equilibrium for φ = 0.075, 0.10 and 0.124 at κD = 1.46.

The observation of contacts for long-range interactions is not surprising. Indeed, Ruzicka and

coworkers [34] observed the development of long-range and long time attractions for a suspension of

Laponite at fixed concentration of salt Cs = 10−1 mM equivalent to κD = 3, and a concentration of

Cw = 2.4%. These authors considered that despite the long-range attractions, particles were still dis-
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connected. Such an assumption has led to the study by Angelini et al. [4], where the authors called

the obtained structure Disconnected House of Card (DHOC, see section 1.2). However, we want to ex-

pose a different point of view based on our numerical results: we think that the aging phenomenon does

not preserve the disconnected structure of the repulsive glass. Indeed, the structure factor obtained by

Ruzicka and coworkers exhibits a peak at q ≈ 0.18 nm−1 corresponding to a distance of 1.40 R, with

R = 25 nm, which could be due to particles in OC configuration, as shown later in this section. This

assumption could explain the strengthening of the glass and the fact that no rejuvenation was observed.

Let us go back to the present simulations. Note the vanishing value of the static structure factor

reported in Figure 3.20 for low scattering vectors. As for φ = 0.05, the static structure factors do not

evolve with time (not shown here). Such behaviors indicate that the systems evolved toward an arrested

state with a vanishing compressibility. These observations are in line with the assumption of a glass

structure as mentioned before. Therefore, we will call it a glass with contacts.
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Figure 3.20: Static structure factor for φ = 0.075, 0.10 and 0.124 and κD = 1.46.

Let us now characterize the contacts observed for φ = 0.075, 0.10 and 0.125. In Figure 3.21a,

one can clearly notice that increasing the volume fraction above 0.05 shifts drastically the peak of the

radial distribution to lower values. Most of the particles are at a distance equal to r/R ≈ 1.5 to their

neighbors. The intensity of the peak increases and is slightly shifted to lower values with the increase of

volume fraction. This could presumably be attributed to an aggregation effect. If one considers the radial

distribution functions of the particles in contact (see Figure 3.21b), they exhibit a peak at 1.5R with an

intensity several times lower than the usual g(r) (see Figure 3.21a) indicating that only a small fraction

of the particles located at this distance are in contact. A brief discussion concerning the classic evolution

of the peak as a function of the volume fraction is reported in Appendix 2.

The angular correlation functions are reported in Figure 3.22 for all the particles on the left-hand

side figure, and only for particles in contact on the right-hand side figure. Concerning the larger peak

intensity observed a distance r = 1.5R in Figure 3.22a, note that it slightly decreases as the volume frac-

tion increases indicating multiple configuration angles for isolated particles. In contrast, P2(r) seems
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Figure 3.21: Center of mass radial distribution for the totality of the particles (left) and only for touching

particles (right) for long-range electrostatic interactions: κD = 1.46.
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Figure 3.22: Second Legendre polynomial function for all the particles (left) and only for particles in

contact (right) for long-range electrostatic interactions, κD = 1.46.

independent of the volume fraction for particles in contact (see Figure 3.22b) which are in OC configura-

tion, in line with the low energy state expected for OC configuration at this distance (see Figure 3.11b).

Concerning the orientation of closest particles (P2(rmin) in Figure 3.22a), they are parallel to one an-

other for φ = 0.075, while almost perpendicular for higher volume fraction. As these negative values of

P2(rmin) for touching particles disappear, we can assume that the small number of particles forming the

T-shape are disconnected. Such a structure appears very similar to the structure described by Angelini

and coworkers as Disconnected House Of Card (DHOC) [4].

The mean square displacements are reported in Figure 3.23 to provide an idea of the dynamics of the

system. As already discussed in section 2.1, the perpendicular diffusion coefficient is similar to its value
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for an infinitely dilute particle. In contrast, the parallel coefficients are slightly lower than their infinitely

dilute value. This is consistent with the OC structures observed whose displacements toward parallel

directions to their normal vector are drastically slowed by the electrostatic attractions.
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Figure 3.23: Mean square displacement computed for particles with long-range interactions, κD = 1.46.

2.1.3 Summary

For suspensions of clay-like particles with long-range electrostatic interactions, two different structures

have been reported. The first one concerns the most dilute system simulated, i.e. φ = 0.05, where a clas-

sic Wigner glass was observed: the particles are disconnected and trapped in a local energy minimums

corresponding to an electrostatic cage (see Figure 3.24).

The second structure concerns volume fractions ranging from 0.075 to 0.124. At these concentra-

tions, the free volume is not significant enough to allow the system to behave as a classic Wigner glass.

Then, to minimize the total free energy of the system, particles form clusters through OC interactions.

Delhorme and coworkers have observed in this range of volume fraction and for slightly shorter interac-

tion range the formation of a smectic B phase for AR15 particles [10]. We could wonder if the systems

simulated have reached their final spatial arrangement or if the OC configuration obtained here was the

first step towards the formation of the smectic B phase. However, the incoherent structure factor seems

to indicate that we already have reached an arrested state, and therefore we do not think that our system

would be able to reach such a phase. As the translational perpendicular and parallel diffusion coefficients

do not sharply decrease with the waiting time, the structures obtained can be considered as glasses with

particles in OC configuration.

The organization of the present mainly repulsive disks into clusters highlights the importance of the

charge anisotropy on the final microstructure. Indeed, Jabbari and coworkers [22] observed a plastic

BCC crystal for purely repulsive particles at an equivalent density and low ionic strength. This phase

cannot be reached by a suspension with strong charge anisotropy.
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Figure 3.24: Construction of the phase diagram: the star represents a Wigner glass, the triangles a

repulsive glass with overlapping coin configurations, and the circle the phases not studied yet.

2.2 Intermediate-range electrostatic interactions

We start this section by recalling that here "intermediate-range electrostatic interactions" stands for

κD = 7.3. This regime can be obtained in experiments by adding a small amount of salt to the sus-

pension.

2.2.1 Qualitative observations of the structure

In Figure 3.25a can be seen the snapshot corresponding to the final structure at φ = 0.05. Note that the

majority of the particles are in an OC configuration. The particles are forming a kind of open structure

with multiple layers. Once again, we could wonder if the final structure is reached or if the system

could have evolved towards a smectic B phase as observed by Delhorme and coworkers [10]. These

authors have considered salt concentrations corresponding to 13.93 < κD < 14.65. They found the

smectic B structure at the same volume fraction, φ = 0.05, the same Debye length, κ−1 = 1 nm but

for particles with a higher aspect ratio (AR15). They have since studied the influence of the aspect ratio

on the phases of the suspension and obtained the smectic B phase only for aspect ratios greater than 9

[11]. The particles studied here have a lower aspect ratio, but remember that we use a different surface

charge distribution so the achieving of a smectic B phase at longer times cannot be completely ruled out.

Increasing the volume fraction to 0.075 leads to the appearance of both the HOC and OC configurations,

respectively encircled in yellow and in red in Figure 3.25b. Above φ = 0.075, the structure is difficult to

analyze with a simple snapshot as the latter totally spans the available space. Corresponding snapshots

are therefore not reported here.

The previous qualitative observations are in line with the behavior of the electrostatic forces between

two particles (see Figure 3.26). A strong attraction occurs for a pair of particles in OC configuration for

distances ranging from 1.1 R to 1.6 R as shown in Figure 3.26. Over this range of distance, the T-shape



2 Equilibrium structure
2.2 Intermediate-range electrostatic interactions

83

St
ru

ct
ur

e
w

ith
ou

t
ba

ck
gr

ou
nd

flo
w

(a) φ = 0.05 (b) φ = 0.075

Figure 3.25: Snapshot of the microstructure at equilibrium for φ = 0.05 and φ = 0.075 at intermediate-

range electrostatic interactions, κD = 7.46. Example of particles in T-shape configuration encircled in

yellow and particles in OC configuration encircled in red.

configuration is attractive but its intensity is 10 times smaller than for the OC configuration. Finally,

the face-face configuration is always strongly repulsive, and therefore we do not expect to observe any

stacking of particles in the present study. We recall that the definitions of the configurations are given in

Figure 3.11a. We emphasize the fact that Figure 3.26 provides an overview of the favored structures in

simulations, as only three very specific spatial configurations are studied.
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Figure 3.26: Electrostatic forces on a plate-like particle as a function of the distance between the centers

of gravity, at κD = 7.3, for three different spatial configurations: T-shape (purple color), face-face

(green color), and OC (blue color) (see Figure 3.11a). The inset is simply a zoom to distances where

attraction occurs.



Structure
w

ithout
background

flow

84 CHAPTER 3. STRUCTURE OF SUSPENSIONS OF CLAY-LIKE PARTICLES WITHOUT
BACKGROUND FLOW

As for the long-range case, the microstructure at the lowest volume fraction is slightly different from

the one obtained for concentrated suspensions. However, in both cases, particles aggregate, and only the

spatial configuration of the touching particles differs. Therefore, we have decided to describe the case of

intermediate-range electrostatic interactions for all the volume fractions at once.

2.2.2 Study of the microstructure

The nematic order parameter is related to the dynamic of evolution of the microstructure: when it reaches

a plateau, the microstructure has reached its final spatial arrangement. For the higher volume fractions,

φ = 0.10 and 0.124, Snem behaves the same way, and quickly reaches a plateau which is also its final

value, Snem ≈ 0.15 corresponding to an isotropic structure (see Figure 3.27). The reduction of the

volume fraction to 0.075 leads to a slightly different behavior as we do not observed any plateau, but

Snem still converges toward ∼ 0.15. Note for Snem(φ = 0.05) that after having reached a plateau equal

to 0.25 between 12 and 40 time units, Snem seems to decrease toward the same final value as for higher

volume fractions. This could be explained with the slowing down of the dynamics of the system with the

reduction of the volume fraction. The nematic order parameter remains below the value of 0.4 at each

volume fraction, meaning that the suspensions are quite isotropic.
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Figure 3.27: Evolution of the nematic order parameter with non-dimensional time at κD = 7.3.

The difference in the microstructure between the suspension at φ = 0.05 and suspensions at higher

volume fractions is notable on the radial distribution function given in Figure 3.28a. If g(r) exhibits a

unique peak at a distance of 1.35R irrespective of the volume fraction, one should focus on the peak

intensity. The increase of the volume fraction reduces the latter, pointing out a reduction of the strong

radial correlation observed at low volume fraction. The spatial arrangement correlation is not particularly

obvious when studying the angular correlation functions presented in Figure 3.28b. Indeed, the curves

are quite similar: the closer plate-like particles are at a distance of 1.1R in a T-shape configuration
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as P2(r) = −0.5, then at 1.35R the second Legendre polynomial increases to ≈ 0.5 except at φ =

0.05 where the peak is slightly more intense indicating a preferential overlapping coin configuration.

This difference in the peak intensity of the P2(r) must be interpreted as an increase of the observed

orientational configurations. The particles interact through contact angles above 40 degrees, and structure

in HOC configuration.
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Figure 3.28: (a) Center of mass radial distribution and (b) second Legendre polynomial function for

intermediate range of electrostatic interactions.

In Figure 3.29 is reported the probability that two touching particles take a certain angle at their

contact point for φ = 0.05 and φ = 0.075. In this figure, the mean distance to contact (cf. section 1.4) is

also reported and is referred to as 〈r/R〉. Note a similar θ dependence of this mean distance to contact

for all volume fractions. One can observe a striking difference in the angular distribution function at low

angles values.

At φ = 0.05, Pθ exhibits a sharp peak for angles from θ = 5 to 12 degrees corresponding to the

OC configuration. Then, the probability of having a contact angle θ > 20 degrees slightly decreases

up to 45 degrees where two consecutive broad peaks centered at respectively 55 and 78 degrees can be

observed. These peaks are only half the intensity of the peak observed at low contact angle, and one can

wonder if they are related to the coarse-graining of the particles. The drop of 〈r/R〉 and Pθ at 90 degrees

indicates that configurations close to a perfect right angle seem almost forbidden. It may be an unstable

configuration.

At φ = 0.075, Pθ does not exhibit a sharp peak at low θ values indicating that the OC configuration is

not favored anymore. One can also notice the fairly equiprobability of the angle at contact. Consequently,

contrary to what is observed at φ = 0.05, increasing the volume fraction leads to a higher number of

particles in a HOC than in an OC configuration. This can be explained as follows: consider three AR7

plate-like particles stacked with their normal vector pointing to the positive y-direction. When the system

evolves, the platelets will move further apart, and given that OC configuration is the global minimum of

energy (see Figure 3.26), the particles will slide and arrange in an OC configuration in a second time
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period. Now consider that the top and bottom platelets are submitted to a considerable pressure in the

y-direction preventing them to move by more than a quarter of radius: once the platelets are as far apart

as they can be, the top platelet will move for instance to the right direction and the bottom platelet to the

opposite direction to reduce the repulsive electrostatic forces coming from the faces of the particles and,

the one in the middle will simply reduce its free energy by creating a bond between the top and bottom

particles forming a HOC structure.

0 10 20 30 40 50 60 70 80 90

θ (degrees)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

P
θ

0.1

0.2

0.3

0.4

0.5

0.6

0.7

<
r/
R
>

(a) φ = 0.05

0 10 20 30 40 50 60 70 80 90

θ (degrees)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

P
θ

0.1

0.2

0.3

0.4

0.5

0.6

0.7

<
r/
R
>

(b) φ = 0.075

Figure 3.29: Angle probability Pθ and mean distance to contact 〈r/R〉 for κD = 7.3 .

The small differences in the first peak position noticeable on the static structure factors in Figure

3.30a and corresponding to the mean nearest neighbor must be considered with caution. Indeed, one

should recall that increasing the volume fraction leads to a reduction of the size of the simulated box,

and therefore to a lower discretization of the scattering vector q (see section 1.4). Considering the

position of the first peak as the distance of the nearest neighbor is risky as the differences can only be

due to the poor q discretization.

The behavior of the static structure factor at low q is striking. Increasing the volume fraction reduces

the value of SL(0), indicating a direct correlation between the compressibility of the system and the

volume fraction. At φ = 0.05 and φ = 0.075 the value of SL(0) is greater than one, which could be

interpreted as a system evolving toward a phase separation. The structures at higher volume fraction are

in a more compressed state (SL(0) < 1) due to the net colloidal charges and to smaller inter-particle

distances. Such structures could be considered as equilibrium gels.

To verify the assumption of the presence of a phase separation below φ = 0.08 and a gel above,

we have reported in Figure 3.30b the evolution of the static structure factor at the smallest scattering

vector. Note that for φ = 0.05 and φ = 0.075, SL(0) keeps increasing with time, while a saturation

is observed for higher volume fraction. Such a behavior was obtained in experiments by Ruzicka and

coworkers who observed a phase separation and a static structure factor greater than one at low q for

suspensions of Laponite at low volume fraction [34]. In a more concentrated system, these authors

reported an equilibrium gel state [35] with lim
q→0

SL(q) < 1. These authors obtained the same behavior
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with the primitive model of patchy particles mentioned in section 1.2 in chapter 3.
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Figure 3.30: Static structure factor (left) and its vanishing scattering vector evolution (right), at

κD = 7.3. Recall that lim
q→0

q = 2π/L.

2.2.3 Summary

With intermediate-range electrostatic interactions, a phase separation was observed at φ = 0.05 and

φ = 0.075, and a compressed gel at higher volume fraction. At φ = 0.05, the phase rich in colloids

is composed of particles mostly interconnected in an overlapping coin configuration, whereas a mix

between between OC and house of card configuration is observed at φ = 0.075. The structure observed

for the gels is a mix of OC configuration and HOC. This is in line with the results of Delhorme and

coworkers [10] who also observed a transition from what the authors called a liquid phase with particles

in OC configuration to a gel with particles in HOC configuration at φ = 0.08 and κD = 15 (κ−1 = 1 nm

as the aspect ratio is equal to 15). Our results are qualitatively in line with those of Ruzicka and coworkers

[35], as we also observed a phase separation at the lowest volume fractions and an equilibrium gel at

higher concentration.

We want to stress that we are not able to determine if the structure is an equilibrium gel or an empty

liquid [5] due to the low number of particles modeled in our simulations. Indeed, the fluctuation of the

particle density cannot be conclusive as we only simulate 60 particles.

The different phases observed in this section are reported in Figure 3.31 on the second line starting

from the bottom of the phase diagram as a red square for the phase separation with particles in OC

configuration, and green diamonds for the mixes between OC and HOC configurations.
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Figure 3.31: Construction of the phase diagram: the star represents a classic Wigner glass, the triangles a

repulsive glass with overlapping coin configurations, the square a phase separation defined by SL(0) > 1

with particles mainly in overlapping coin configuration, the diamonds an equilibrium gel above φ = 0.08

(SL(0) < 1) and a phase separation below, with particles in both overlapping coin and house of card

configuration, and finally the circle the phases not studied yet.

2.3 Short-range electrostatic interactions

For short-range interactions, the double layers of the particles do not overlap on average at the beginning

of the simulation and correspond here to κD = [14.6; 29.2; 44; 73]. We have reported in Figure 3.32

the forces acting on a pair of particles for the two extremes ranges: κD = 14.6 and 73. The oscillations

of the curves in Figure 3.32b are due to the coarse-graining of the particles. One can see that only the

very short-range interaction is sensitive to the coarse-graining. For both ranges, face-face interactions are

always repulsive, and T-shape configuration is favored compared to OC configuration at short distances.

Note that forces at κD = 73 are one order of magnitude less intense than at κD = 14.6.

The differences in the amplitude of forces play a crucial role in the dynamics of the system, and

influence the final microstructure. We have reported in Figure 3.33 snapshots of the final structure as a

function of the interaction range for φ = 0.05. At κD = 14.6 and irrespective of the volume fraction,

the system is fully percolated, and the particles appear to be in a T-shape configuration, as expected from

the study of the electrostatic forces between two particles. The reduction of the range to κD = 29.2

leads to the appearance of isolated clusters and particles for φ = 0.05 and 0.075, while higher volume

fractions still generate a fully percolated spanning network. Interestingly, Delhorme and coworkers [10]

have noticed the same phase transition from a liquid cluster phase to a gel phase despite the higher shape

anisotropy used in their work. At κD = 43, the bond energy is not important enough compared to the

Brownian motion to create durable clusters, and for instance, not even a dimer is observed at the end of

the simulation at φ = 0.05 (see Figure 3.33c). Indeed, by watching the movie, we can see that transient

clusters are formed, but the Brownian motion prevents particles from remaining in contact. Therefore,

we can conclude that Brownian energy is several times higher than the bond energy for interactions
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shorter than κD = 43. For such short-range interactions corresponding to high ionic strength, the vdW

forces should certainly be taken into account to produce similar results to experiments as recommended

by Jönsson and coworkers [23].
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Figure 3.32: Electrostatic forces on a plate-like particle as a function of the distance between the centers

of gravity, at κD = 14.6 (left) and κD = 73 (right), for three different spatial configurations: T-shape

(purple color), face-face (green color), and OC (blue color) (see Figure 3.11a). The inset is simply a

zoom to distances where attraction occurs.

(a) κD = 14.6 (b) κD = 29.2 (c) κD = 44 (d) κD = 73

Figure 3.33: Snapshot of the final microstructure obtained for φ = 0.05 and short-range electrostatic

interactions: κD = [14.6; 29.2; 44; 73].

To summarize, in the short-range interaction regime, the two longest ranges of interaction generate

aggregation whereas the two shortest ranges lead to a liquid-like phase. Then, the study of short-range

electrostatic interactions cases is split into two parts, the first one corresponding to aggregated systems,

and the second one to liquid-like states.
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2.3.1 Aggregated system

In this section only κD = 14.6 and 29.2 are investigated. Considering the evolution of the nematic order

parameters, one can note that they seem to converge to approximately 0.07 at κD = 14.6 (see Figure

3.34a), whereas they do not stabilize for κD = 29.2 (see Figure 3.34b). However, one can assume the

structures to be isotropic as the nematic order parameters remain well below 0.4.
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Figure 3.34: Nematic order parameter for κD = 14.6 (left) and κD = 29.2 (right).

The fact that Snem never stabilizes at κD = 29.2 during the entire simulations indicates that the

suspensions is stil evolving, in contrast to simulations at κD = 14.6. One can assume that the reduction

of the convergence speed is due to a shorter interaction range. This assumption can be verified owing to

the incoherent structure factors reported in Figure 3.35 for φ = 0.10 (the same behavior is observed for

other volume fractions). Note that the system has already evolved toward an arrested state at κD = 14.6,

whereas at κD = 29.2, the curves perfectly superimpose, indicating that the dynamics of the system is

larger than the simulated time window. Therefore, as expected, the shorter the interaction, the longer the

simulation must be to capture the evolution of the system towards an arrested state. Nevertheless, as we

have stopped the simulations at 50 units of non-dimensional time for all the simulations, we can compare

the behavior of different suspensions qualitatively at this common final time. However, we expect some

measures, such as the static structure factor, to be noisy, especially at low q and κD = 29.2.

To determine if the arrested states observed at κD = 14.6 were either a gel or a glass, we have studied

the translational diffusion coefficients reported in Figure 3.36. Both the translational perpendicular and

parallel diffusion coefficients decrease with time and stabilize below 0.7. If we compare the global

behavior of the diffusion coefficients with the one reported for aggregated systems at low ionic strength

(κD = 1.46, see Figure 3.14), one can notice that the reduction of the interaction range has induced a

decrease of the values of the coefficients. Following the study of Jabbari and coworkers on the diffusion

coefficients [20], the lower coefficients are generated by the integration of particles into a gel network.

Thus, the arrested structures observed at κD = 14.6 are gels.
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Figure 3.35: Incoherent (1 particle) structure factor for κD = 14.6 (left) and κD = 29.2 (right) at

φ = 0.10.
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Figure 3.36: Translational diffusion coefficients for κD = 14.6.

To characterize these gels, we have reported their static structure factors in Figure 3.37a. Firstly,

note that the peaks at qR ≈ 7.4 correspond to a dimer in a T-shaped configuration. The relatively

low q dependence on the volume fraction is quite surprising considering that we would have expected to

observe SL(0) > 1 for low volume fractions, and SL(0) < 1 for high volume fractions. If we now look at

the evolution of the static structure at vanishing scattering vector (see Figure 3.37b), two different routes

can be observed for concentrations either above or below φ = 0.08. Below φ = 0.08, lim
q→0

SL(q) keeps

increasing with waiting time and reaches a final value greater than two. Then, we can assume that these

systems are evolving toward a phase separation. Above φ = 0.08, one can observe a kind of saturation of

lim
q→0

SL(q), indicating that the systems are evolving toward an equilibrium gel. Such assumptions could

allow being in line with Ruzicka and coworkers [35]. Indeed, they obtained numerically SL(0) > 1 for

an equilibrium gel at φ = 0.119.
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Figure 3.37: Static structure factors for different volume fractions for κD = 14.6 (left) and the evolution

of its vanishing scattering vector value as a function of the waiting time (right).

Concerning the static structure factor at κD = 29.2 (see Figure 3.38), one can observe peaks ranging

from qR = 1.9 to qR = 2.1 corresponding to signatures of clusters. The observation of such peaks is

the consequence of the slowing down of the dynamics of aggregation with the reduction of the Debye

length. As mentioned earlier, the static structure factors at κD = 29.2 and low q are really noisy and

no conclusion can be drawn concerning the formation of a phase separation or an equilibrium gel (see

Figure 3.38). Nonetheless, we made the assumption that the spanning networks observed at φ = 0.10 and

φ = 0.124 will evolve toward equilibrium gels while the cluster phases observed at lower concentrations

will evolve toward a phase separation.
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Figure 3.38: Static structure factor for different volume fractions and κD = 29.2.

We will now quantitatively characterize the differences due to the interaction ranges on the mi-

crostructure. At φ = 0.05, the latter is strongly impacted by the electrostatic interaction range as shown

in the radial distribution functions reported in Figure 3.39a. At κD = 14.6, the radial distribution
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function exhibits a sharp and very intense peak at exactly one radius of distance. At this distance, the

corresponding value of the second Legendre polynomial reported in Figure 3.39b is −0.4, which indi-

cates that particles are in a T-shape configuration. Note the absence of a peak at r/R ≈ 1.35 of the

radial distribution function, corresponding to the specific distance of the OC configuration observed ear-

lier for longer interaction ranges. The radial distribution function exhibits a small second peak at 2R

corresponding to the second neighbor in a chain of particles in a T-shape configuration (e.g.: –|–), which

corroborates with the peak on P2(r) at that same distance. To conclude, at φ = 0.05 and κD = 14.6

particles are mostly in the T-shape configuration.
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Figure 3.39: Radial distribution and angle correlation functions at φ = 0.05 for two range of electrostatic

interactions.

Reducing the range of electrostatic interaction to κD = 29.2 decreases the intensity of the peak

of g(r) located at one radius of distance. The latter is also broadened at shorter distances, which is

only possible for angles lower than 90 degrees. This change of configuration is linked to the double

layer thickness. To illustrate this, consider two particles composed of spheres with specific double-layer

ranges. In Figure 3.40 the ratio between the range of the double layers and the size of the spheres are

respected compared to the systems simulated: κD = 14.6 corresponds to κa = 1 with a the radius of one

sphere and κD = 29.2 to κa = 2. The red spheres are negatively charged, and the green ones positively

charged. The dotted lines represent qualitatively the double layers. The configuration presented in Figure

3.40a is not favored as both the red and the green double layers overlap, which would induce strong

repulsions. The top platelet must move to a vertical position closer to the center of the horizontal particle,

as shown in Figure 3.40b to avoid any double layer interpenetration and, therefore, to minimize the

repulsive electrostatic forces. Now, consider the same configuration as in Figure 3.40a but with a shorter

interaction range, as shown in Figure 3.40c. In this case, the double layers do not interpenetrate as much

as before, and therefore the configuration displayed is more acceptable than before. Then, decreasing the

range of electrostatic interactions increases the number of possible configurations between platelets and,

statistically, generates denser clusters.
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(a) κD = 14.6 (b) κD = 14.6 (c) κD = 29.2

Figure 3.40: Examples of configurations of two particles with different ranges of interactions. The red

color stands for negative spheres, the green for positive, and the double layers are represented with dotted

lines. The ratio between the size of the sphere and the double layer are respected.

The increase of the number of possible configurations with the reduction of the electrostatic inter-

action range is confirmed by the study of the density of probability of the angle between particles in

contact presented in Figure 3.41. For θ < 20 degrees, Pθ remains almost equal to zero for both inter-

action ranges. It confirms that the overlapping coin configuration is not favored for these short-range

interactions. At κD = 14.6, the formation of T-shape configurations with angles closer to 90 degrees is

greatly favored, whereas κD = 29.2 exhibits an equiprobability for contact angles ranging from 55 to

90 degrees.
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Figure 3.41: Angle probability Pθ and mean distance to contact 〈r/R〉 at φ = 0.05 for κD = 14.6 and

κD = 29.2.

Note that particles in a T-shape configuration are in contact closer to the center of gravity

(〈r/R〉 = 0.2) compared to OC configurations described in Figure 3.29 (〈r/R〉 = 0.5). However, we

want to stress the fact that these distances are certainly influenced by the coarse-graining of platelets

in assemblies of spheres. With seven spheres along a diameter, there are only two preferred contact

distances. They are represented in Figure 3.42 where we have drawn diagrams with two halves of
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AR7 particles. One can notice that the positive double layers (green doted lines) slightly overlap in

Figure 3.42b, and therefore this configuration will be less favored on average than the one represented

in Figure 3.41a. If we consider that the first configuration corresponds to 75 percent of the T-shape

configurations, we obtain an average distance of contact equal to (0.75 ∗ 1a + 0.25 ∗ 3a) = 1.5a

equivalent to 〈r/R〉 = 0.2. For a particle with a smoother surface, obtained for example by using many

small spheres to coarse-grain the platelet, many contact distances will be observed and the average

contact distance 〈r/R〉 will not be 0.2 anymore. For a perfectly flat surface, it should be zero.

1a

(a) 1st T-shaped configuration

3a

(b) 2nd T-shaped configuration

Figure 3.42: Diagram of the two possible T-shaped configurations for AR7 particles at κD = 14.6. The

red color stands for negative spheres, the green for positive, and the double layers are represented with

dotted lines. The full red spheres represent the center of gravity of the particles.

Increasing the volume fraction from 0.05 to 0.075 does not change the microstructure significantly.

However, the intensity of the peaks at one radius of distance in Figure 3.43a drops by approximately

50% when increasing the volume fraction from 0.05 to 0.075, certainly due to crowding effects which

prevent the T-shape configuration from being reached. The value of P2(r) at R is slightly less negative

corresponding to more possible angles configurations at this distance than for φ = 0.05 (see Figure 3.41b

).

At φ = 0.10 and κD = 14.6, the main peak of g(r) is still located at a distance R, and the increase

of the volume fraction reduces its intensity. The corresponding P2(R) indicates that particles are in av-

erage in a T-shaped configuration (see Figure 3.44b). The main difference with the structure observed at

φ = 0.075 lies in the presence of two secondary peaks situated at 1.15R and 1.3R (see Figure 3.44a).

The first peak exhibits a value of the second Legendre polynomial equal to −0.2 indicating that parti-

cles are probably close to a T-shape configuration. At 1.3R, orientations of the particles do not seem

strongly correlated as P2(R) ≈ 0.2. The arrangement of the particles is verified by the angle probability

density between particles in contact reported in Figure 3.45. This helps to explain the shape of the radial

distribution function. As expected from the correlations functions, the highest probability of contact

angle is found above 80 degrees and corresponds to T-shape configuration. Then, the secondary peak of
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the radial distribution function situated at 1.15R corroborates with the peak in Figure 3.45a for angles

ranging from 50 to 70 degrees. Finally, the small peak at ∼ 1.3R in Figure 3.44a might correspond to

contact angles ranging from 0 to 40 degrees. One should also note that 〈r/R〉 is more important for a

low contact angle, and reaches its minimal value for a contact angle of 90 degrees.
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Figure 3.43: Radial distribution function at the angle correlation at φ = 0.075 for two range of electro-

static interactions.
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Figure 3.44: Radial distribution function at the angle correlation at φ = 0.10 for two range of electrostatic

interactions.

The structure at φ = 0.10 and κD = 29.2 is very similar to the one obtained for the same interaction

range and lower volume fraction (see Figure 3.43a). Surprisingly the intensity of the peak at a distance

R is the same as for φ = 0.075, but still remains much lower than for κD = 14.6 and φ = 0.10. The

small number of particles situated at a distance less than 0.8R are parallel as indicated by the angular

correlation function in Figure 3.44b. We can expect some particles at distance R to be close to a T-shape
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configuration. Still, the low value of P2(r) does not allow a clear conclusion on the particle’s average

orientation. If we look at the angle probability in Figure 3.45b, we can observe a very low probability

for contact angles θ < 20 degrees. Then, the probability increases up to θ = 50 degrees. Finally an

equiprobability is observed for contact angles ranging from 50 < θ < 90 degrees. As for lower volume

fractions, reducing the size of the double-layer shifts the probability distribution to lower angle values.

The increase of the volume fraction from 0.075 to 0.10 has more impact on the structure at κD = 14.6

than at κD = 29.2.
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Figure 3.45: Angle probability Pθ and mean distance to contact 〈r/R〉 at φ = 0.10 for κD = 14.6 and

κD = 29.2. The three colored circles in (a) correspond to the peaks observed in the radial distribution

function in Figure 3.44a: the purple circle corresponds to particles in OC configuration at distance 1.35R,

the yellow circle to particles in HOC configuration at distance 1.15R and the green circle to particle in a

T-shape configuration at distance R.

The increase of the volume from φ = 0.10 to 0.124 does not influence the intensity of the peak

situated at a distance R on the radial distribution function (see Figure 3.46a) but slightly decreases the

intensity of the secondary peak visible at 1.15R. The angular correlation function in Figure 3.46b does

not seem to be impacted by the increase of the volume fraction. As already observed at lower φ, reducing

the interaction range favors denser clusters and the peak on the distribution function at R is broadened to

smaller values.

To conclude this section concerning short-range electrostatic interactions generating aggregation, we

emphasize the fact that at short but sufficiently extended interaction range, the T-shape configuration with

an angle close to 90 degrees is preferred to configurations with smaller angles. Finite volume fraction

effects prevents particles from forming local arrangements with the lowest free energy. Indeed, the 90

degree angle between two particles in contact is no longer accessible due to the higher spatial occupation,

and therefore the angle density probability function is shifted to lower angle values, but never as low as

OC configuration. It has been shown that the reduction of the range of interaction allows new denser

configurations with smaller angles between two particles in contact (cf. Figure 3.40). Broadly speaking,
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the house of cards configuration has been observed at all volume fractions, with a phase separation below

φ = 0.08 and a system-spanning above. Due to the small size of the box and the low number of particles

simulated we were not able to determine if the phase was empty liquid or an equilibrium gel. We have

chosen to refer the phase as an equilibrium gel. These results are in line with Delhorme and coworkers

[10] and Ruzicka et al. [35].
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Figure 3.46: Radial distribution and the angle correlation functions at φ = 0.124 for κD = 14.6 and

κD = 29.2.

2.3.2 Liquid like system

When reducing even more the range of electrostatic interactions, i.e., κD = 44 and κD = 73, the

ratio between the attraction forces and the Brownian forces is not high enough to allow the formation

of permanent clusters. Particles feel the attractions but never create a permanent bond. This state was

described by Ruzicka and coworkers [35] and was placed above the percolation line, in the liquid phase.

In such conditions, increasing φ increases the number of clusters created, but these are not permanent,

and it is only a question of time before the particles in contact separate. However, as mentioned before,

even if the bond energy is not sufficient to create permanent clusters, electrostatic interactions have an

impact on the microstructure of the suspension has shown in Figure 3.47 where the radial distribution

function is reported for φ = 0.05. The results are compared with hard disks, i.e., κD →∞.

Overall, we see that interactions with such a short range do not influence the structure significantly.

Note that in practice, and as emphasized by Jönsson and coworkers [23], van der Waals interactions will

play an important role in such high salt conditions.
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Figure 3.47: Radial distribution and angular correlation functions at φ = 0.05 for very short-range

interactions . The black line stands for hard disks.

3 Conclusion

By application of the numerical method and coarse-grained model of platelets presented in chapter 2,

we have been able to produce a rich "phase diagram" (with quotes because the simulation time does

not always allow us to reach an equilibrium state) for a suspension of particles with both shape and

charge anisotropy. We paid attention to the parameters emphasized in the literature as important, such

as the number of charged sites per particle [11, 23, 24] and the ratio between attractive interactions

and Brownian energy [35]. We have also chosen particular ranges of electrostatic interactions to obtain a

phase diagram in line with several published studies: a purely repulsive system [4, 22], a phase separation

with particles in overlapping coin configuration [10], an equilibrium gel with particles in house of card

configuration [10, 35] or even a liquid-like phase. These different phases were studied as a function of

the qualitative terms: long, intermediate, and short-range of interactions.

For long-range electrostatic interactions, a Wigner glass was observed at low volume fraction as

already noticed experimentally by Levitz and coworkers [26] for deionized suspensions. Increasing the

volume fraction leads to the appearance of a glass, following the definition of Jabbari et al. [20], with

interconnected particles in an overlapping coin configuration with a vanishing compressibility. Although

such a phase was never observed numerically in the previous works, we suggest that this could explain

the static structure factor shape obtained experimentally by Angelini and coworkers [4].

For electrostatic interactions in the intermediate range and low volume fraction, a phase separation

with a spatial arrangement of the clusters dominated by particles in overlapping coin configuration was

observed. Increasing the volume fraction leads to the appearance of more diverse spatial configurations

and a mix between the house of card and overlapping coin configurations. These observations are in

agreement with the work from Delhorme and coworkers [10]. Moreover, we observed a phase separation

at low volume fraction and an equilibrium gel at higher volume fraction, in line with the work from
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Ruzicka et al. [35].

For short-ranged electrostatic interactions, the house of cards configuration is observed for all volume

fractions studied, which is once again in agreement with the works from Delhorme et al. and many

historical experiments on Laponite. At large enough interaction range and low volume fraction, particles

are in a T-shape configuration and form an angle close to 90 degrees at contact. Increasing the volume

fraction shifts the mean contact angle to lower values due to crowding, thus compressing the system

(S(0) < 1). Reducing the electrostatic range of interactions allows lower angles between particles in

contact. Thus, a lower interaction range leads to denser aggregate structures. Finally, at very short range,

electrostatic interactions slightly impact the orientation of the particles but do not allow the creation of

permanent bonds between particles, corresponding to a liquid-like structure.

We have been able to reproduce the majority of the phases observed in simulations performed with

Monte-Carlo for suspensions of clay-like particles (cf. Figure 3.48). Nonetheless, it is important to stress

that the ASD method used here is far from being the best method to study equilibrium phases. Indeed,

due to its high computational cost, only a small number of particles can be simulated and for a limited

physical time, and therefore the simulations may have not reached their equilibrium, and the statistical

correlations are often noisy. However, the advantage of using such a costly method is it capacity to

compute accurate dynamical quantities depending in particular on the complex many body hydrodynamic

interactions, such as aggregation rates, viscosity and normal stresses. This is the topic of the next chapter.
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Figure 3.48: Phase diagram proposition: A-repulsive glass, B-phase separation, C-equilibrium gel, D-

liquid-like structure. The star (the lowest κD point at φ = 0.05) represents a classic Wigner glass, the

triangles a repulsive structure with particles in contact with OC configurations, the square a structure with

particles mainly in an OC configuration, the diamonds for particles in both OC and HOC configuration,

the purple crosses a structure with mainly HOC configuration, and finally the filled circles a liquid-like

phase.
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Rheology and dynamics of a suspension

of clay-like particles 4
In the previous chapter, we have been able, using the ASD method to reproduce the majority of the

phases observed in simulations performed with Monte-Carlo for suspensions of clay-like particles. The

characterization of a suspension at rest represents only a small part of its complete description, but it is

crucial to understand its rheological behavior. The latter is related to the dynamics of the system and,

therefore, to complex many-body hydrodynamic interactions. One can cite, for example, the ability of

a clay suspension to form a gel at rest, as observed in the previous chapter, and then, when sheared, to

exhibit yield stress and to shear-thin in a time-dependent fashion. The microscopic interactions between

particles drive all of these macroscopic behaviors. Therefore, relating some macroscopic quantities, such

as the viscosity, to microscopic observations may provide some information to predict the rheological

properties of suspensions of clay-like particles.

In this chapter, we focus on the dynamics of a suspension of clay-like particles. As a first step,

the aggregation rate with and without flow is studied. This study allows us to emphasize the physical

phenomenon involved in the different aggregation processes. Then, the origin of the thixotropic behavior

classically observed for suspensions of clays is investigated numerically using the ASD method. The

dependence of the rheological properties observed during start-up shear on both the initial microstructure

and the ratio between the hydrodynamics and the electrostatics is studied. Finally, the shear-ordering

observed at long-range interaction is analyzed.

1 Kinetics of aggregation of clay-like particles

Aggregation can be seen as a chemical reaction between two species, which may have different sizes and

different number densities. A species can be a single particle, a dimer, or a cluster composed of more

than two particles. The aggregation process occurs when two species encounter one another through

transport phenomena and remain in contact owing to particle-particle interactions. Therefore, aggrega-

tion depends on the collision rate between species and on the collision efficiency, which corresponds to

the probability of two species to remain in contact after a collision. Three common aggregation processes

exist: perikinetic aggregation driven by the diffusion of the particles, orthokinetic aggregation induced

by shear flow, and differential settling due to sedimentation. Since gravity is not considered in this work,

differential settling is not presented. For perikinetic and orthokinetic aggregation, one can prove that the
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number of species can be written at a very short time:

NT (t) =
N0

1 + t
τ

(4.1)

where NT is the total number of objects irrespective of their size, N0 the initial number of objects,

t the time and τ = 2/(N0 k
mech) a characteristic aggregation time scale depending on the transport

mechanism leading to the aggregation through the rate constant kmech. For spherical particles, models

exist to estimate the rate constant kmech. For perikinetic aggregation kperi ' 8kbT/(3ηW ), with η the

fluid viscosity and W the stability ratio, where 1/W represents the proportion of contacts leading to the

formation of a permanent bond. For orthokinetic aggregation kortho ' (32/(3W )) γ̇a3, with γ̇ the shear

rate and a the radius of a particle. This theory is valid at a very short time, i.e., during the formation

of dimer and trimer. Note that W involves hydrodynamic interactions, the Brownian energy and the

potential of interaction between particles. Given the fact that the potential of electrostatic interactions

in Laponite suspension depends on the ionic strength, W also varies with the salt concentration. Huang

and Berg [9] estimate this ratio experimentally for a Laponite suspension with different concentration of

BaCl2. These authors defined W as the ratio between kperi of a classical perikinetic law for spherical

particles, and the initial growth rate of the mean hydrodynamic radius of aggregates. To this end, they

used a concentration of 1011 particles of Laponite per milliliter in deionized water at pH 10 and reported

the evolution of the mean hydrodynamic radius with time. Huang & Berg have found that the stability

ratio was first reduced from 40 to 1 with the increase of the concentration of BaCl2 from 10−3M to

10−1M, then W exhibits a plateau up to 2 10−1M and increases at higher salt concentration. In the

present study, we directly compute τ and we do not now the formula of kmech of particles with both

shape and charge anisotropy. Therefore the only way to compute a sort of stability ratio would be to

consider the rate constant kmech of spheres of an arbitrarily radius. Note that we did not try to compute

the stability ratio from our simulations.

No theory exists concerning the estimation of a characteristic time scale for suspensions of particles

with both charge and shape anisotropy. Using the ASD method, we have been able to study the kinetics

of aggregation of a suspension of clay-like particles with and without background flow and to compare

the characteristic aggregation time scale of clay-like particles with the one classically used for spherical

particles. We were also able to determine a minimal system able to capture the characteristic aggregation

time scale of clay-like particles.

1.1 Without background flow

When no background flow is applied to the suspension, the competition between attraction and repulsion

forces can either slow down or speed up aggregation. The kinetics of aggregation depend mostly on the

range of electrostatic interactions κ−1 and on the volume fraction.

1.1.1 Short-range interactions

At a small interaction range compared to the average distance of the closest approach 〈d〉, the particles

must diffuse one another before electrostatics collapse them together. This regime could not be captured
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with the ASD method. Indeed, as mentioned earlier, the limited maximum simulation time requires using

fairly concentrated suspensions to observe a significant structuring in a short period of time. Thus, the

average distance of the closest approach is often of the same order of magnitude as the screening length,

and therefore the condition of a large interparticle distance compared to κ−1 is never fulfilled.

For very dilute suspensions, the distance to travel before electrostatics collapses particles together is

d′ = 〈d〉 − 2/κ which must be read as the average initial distance between the surfaces of the particles

minus twice the Debye length. This distance d′ is covered on a time scale τ = d′2/(2D) where D is the

diffusion coefficient of a plate-like particle. The expected time scale could be written as:

τ =
〈d〉2(1− 2/(κ〈d〉))2

2D . (4.2)

1.1.2 Long-range interactions

Large interaction ranges correspond to salt-free cases. The double layers of the particles overlap, and

the motion is therefore driven by electrostatics. Particles move towards each other with a velocity scale

MF eT whereM = 1/6πηR is the mobility scale of the particles, R the radius of a particle, and F eT the

sum of all the electrostatic forces acting on the particle. Then, we can write the associated aggregation

time scale as:

τ =
〈d〉
MF eT

. (4.3)

The calculation of the estimated time scale is straightforward for spherical particles bearing opposite

charges and interacting through a Yukawa potential. To simplify the system, we first consider plate-

like particles with a vanishing net total charge. Thus, particles do not feel any long-range repulsion, so

favoring aggregation whatever the interaction range. Moreover, as the number of sites situated on the rim

(18) is almost equal to the number of sites on the face (19), the sites are bearing similar charges. Then, for

plate-like particles with vanishing total net charge, competition occurs between attractive face-rim and

repulsive face-face and rim-rim forces. The total attractive force F eT depends on the number of charged

sites interacting, and, therefore, the larger the screening length, the stronger the competition between

attraction and repulsion. The electrostatic force between two spheres i and j of radius a, and carrying

respectively a charge Zi and Zj is equal to:

F e =
kbTZiZjlB
(1 + κa)2

e−κ〈d〉
1 + κ〈d〉+ 2κa

(〈d〉+ 2a)2
. (4.4)

Assuming each pair of interacting sphere generates an attraction, equation (4.3) can be written

τ =
6πηR〈d〉

n2
i

(1 + κa)2

kbTZiZjlB
eκ〈d〉

(〈d〉+ 2a)2

1 + κ〈d〉+ 2κa
(4.5)

for interacting plate-like particles, where ni stands for the number of interacting spheres per platelet and

is considered as a free parameter in this model.

To verify this scaling model, we carried out simulations of suspensions of plate-like particles bearing

a vanishing net charge. We considered three different volume fractions, φ = 0.035, 0.055, and 0.07

and different interaction ranges. The initial spatial configurations were set to minimize the interparticle

surface distance distribution, while maximizing this distance at the same time as shown in Figure 4.1.
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Figure 4.1: Initial distribution of the nearest neighbor distances r/R with R the radius of a particle and

for φ = 0.055.

For each simulation, the aggregation time scale was estimated and compared with the one obtained

using equation (4.5). The characteristic time scales obtained from the simulations were estimated by

fitting the variation of N(t)/N0 versus time with the function f = 1/(1 + t/τ) as shown in Figure 4.2.

One should recall that this function is usually valid for perikinetic and orthokinetic aggregation at short

times. We have therefore chosen to fit N(t)/N0 with f over the time window ranging from t = 0 to the

time corresponding to N(t)/N0 = 0.6. For example, in Figure 4.2b the time window considered goes

from t = 0 to 1 unit of time.
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Figure 4.2: Evolution ofN(t)/N0 as a function of the time for φ = 0.05 and for κD = 7.3 and 14.6. The

orange points are numerical results, and the dark blue curve is a fit with the function f = 1/(1 + t/τ)

where τ is the optimized parameter.
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The characteristic time scales obtained numerically for the different interaction ranges, and volume

fraction are reported in Figure 4.3. Note that the horizontal axis is presented in scaled form as the inverse

of the screening length multiplied by the mean distance κ〈d〉. This non-dimensionalization allows a

reasonable collapsing of the curves. The grey curve in Figure 4.1 corresponds to the model given by

equation (4.5) computed for φ = 0.055. The parameters used for this model are the mean distance

〈d〉(φ = 0.055) = 3.22a and the number of interacting spheres ni taken equal to 1.3. One can notice

that the model is slightly off at a large interaction range (κ〈d〉 ∼ 0), probably due to the expected strong

competition between attractive and repulsive forces. However, the model clearly captures the aggregation

behavior, so the characteristic time scaling proposed in equation 4.5 is validated. Note that although the

diffusive regime could not be simulated as stated before, the curves in Figure 4.3 tend to asymptote

reasonably well towards these values.

100 101

κ < d >

10−2

10−1

100

101

1/
τ

model

φ = 7%

φ = 5.5%

φ = 3.5%

Figure 4.3: Characteristic aggregation time scale as a function of the interaction range for plate-like

particles with vanishing total charge. The symbols correspond to simulations data and the grey dashed

curve to the model given in equation (4.5). The horizontal lines correspond to the very short range

interaction regime given by equation (4.2) and expected to be obtained at value of κ〈d〉 larger than those

investigated in simulations.

Let us now focus on the aggregation kinetics of the clay-like AR7 particles studied in the previous

chapter (see section 2), and presenting a significant negative net charge, Znet = −185e. We have seen

that this net charge prevents aggregation from occurring at κD = 1.46. Then, only the interaction ranges

leading to aggregation are studied, here κD = 7.3, 14.6 and 29.2. The corresponding characteristic

aggregation time scales are reported in Figure 4.4. The black dotted curve in Figure 4.4 corresponds to

the model given by equation (4.5) with 〈d〉(φ = 0.05) = 1.66a and ni = 0.5. This model must be

compared with the "model Znet = 0" used for particles with vanishing net charge defined for 〈d〉(φ =

0.055) = 3.22a and ni = 1.3. One should recall that the positions of the particles used to model the

suspensions of clay-like particles in the third chapter were initialized randomly without any optimization

concerning the minimal particle distance, leading to an initial mean distance 〈d〉(AR7, φ = 0.05) equals
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to half the mean distance used in the vanishing net charge model 〈d〉(Znet = 0, φ = 0.055). Note that the

number of interacting particles is one-third of the "model Znet = 0". The low value of ni can certainly

be attributed to the strong and complex competitions between attractive and repulsive interactions.

The "model AR7" fairly well captures the reduction of the inverse of the characteristic aggregation

time scales for κ〈d〉 > 2. Note that the expected asymptotic behavior at a very short interaction range

(see horizontal lines in Figure 4.4) seems slightly overestimated. One should recall that the asymptotic

behavior corresponds to perikinetic aggregation, where collision efficiency is assumed equal to one. For

suspensions of particles with a significant negative net charge this assumption is obviously incorrect

and the real aggregation time scale is much larger than that given by equation (4.2) due to inefficient

collisions. This is consistent with the low value of 1/τ at high κ〈d〉 observed in Figure 4.4.

For larger interaction ranges, 1/τ reaches a plateau. Values of the characteristic aggregation time

scales for κ〈d〉 < 2 are dispersed and do not collapse as well as for higher κ〈d〉 on the curve of "model

AR7". This is not surprising as the increase of the interaction ranges leads to numerous competitions

between attractive and repulsive interactions not captured by the model.

If we compare these results with the characteristic aggregation time scales obtained for particles

with vanishing net charge, it is obvious that the presence of a net charge drastically slows down the

aggregation process, irrespective of the volume fraction and the interaction range.

100 101

κ < d >

10−2

10−1

100

101

1/
τ

φ = 0.05

φ = 0.075

φ = 0.10

φ = 0.124

model AR7
model Znet = 0

Figure 4.4: Characteristic aggregation time scale as a function of the interaction range for AR7 clay-

like particles. The horizontal lines correspond to the very short range interaction regime given by

equation (4.2).

1.1.3 Summary

We have proposed a scaling model of the characteristic aggregation time for particles with a charge

anisotropy. This model is based on the idea that two different transport phenomena can be involved in

the aggregation process when no flow is applied to the suspension: Brownian diffusion and migration to

reduce electrostatic energy.
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At short interaction range compared to the initial average distance of the closest approach, the aggre-

gation is expected to be driven by diffusion and might follow perikinetic aggregation. This assumption

could not be verified using simulations as too short-range electrostatic interactions lead to a transient

liquid-like phase that does not evolve significantly during the limited simulation time. However, the sim-

ulations involving the shortest interaction ranges values tested seem to converge relatively well towards

this model.

For longer screening lengths, we were able to predict the scaling of the characteristic aggregation

time for plate-like particles with a vanishing net charge, using a simple model. However, this model

did not allow us to capture the long-range aggregation kinetics of clay-like particles studied in the third

chapter. The long-range repulsion slows down the aggregation and plays a role in the scaling of the

characteristic aggregation time. The surface charge anisotropy can thus lead to counter-intuitive results

on both the equilibrium structure and the system dynamics depending on the interaction range.

1.2 Shear induced aggregation

To investigate the influence of shear flow on the aggregation kinetics of AR7 particles, it is crucial to

define the main forces correctly, i.e. the viscous, the Brownian and the electrostatic forces. One should

recall that the ratio between the viscous and the Brownian forces is the Péclet number, which is defined

in this work as Pe = 3πηR3γ̇/(kbT ). We choose to associate the variation of Pe to the shear rate γ̇,

and therefore, to set the temperature to T = 293.15 K and the dynamic viscosity of the fluid (water) to

η = 1.00 10−3 Pa s. Note that due to the very small value of R (3.65 nm), even Pe = 1 leads to orders

of magnitude for the shear rates that are not achievable in experiments: γ̇ = 1.1 106 s−1. Therefore, one

should keep in mind that this study is realized from an academic point of view and should not be directly

transposed to experimental systems.

To represent the ratio between the viscous forces and the magnetic forces, the Mason number Ma

is classically defined. In this study, the electrostatic forces replace magnetic forces and so we will use

a Mason number based on the electrostatic force scale F e computed in the third chapter (see section

1.3.2). We arbitrarily select the electrostatic force computed between two AR7 particles in a face-face

configuration (see Figure 3.6), with a distance between the centers of gravity equal to 0.82 R and an

interaction range of κD = 7.3 as the electrostatic force of reference. For a Péclet number1 of 389 the

Mason number is equal to:

Ma(Pe = 389) ∼
F hp
FBp

kbT

F eR
∼
F hp
F e
∼ 389

379
= 1.026. (4.6)

If the Mason number is well defined, Ma << 1 means that electrostatic interactions prevail over hydro-

dynamic interactions.

Then, we have chosen an electrostatic interaction range leading to aggregation of particles,

κD = 14.6, and we have studied the following Péclet numbers: Pe = 3.89 10−3, 38.9, 117, 195, 389,

778, 1556, and 3890. The charges on the particles were adapted to preserve the Mason number constant

and equal to one for Pe > 1 and to preserve F eR/(kbT ) for Pe < 1. The volume fraction was set

1Note that Pe = 389 corresponds to Pes = 1, where Pes is the Péclet number of a sphere of radius a
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to φ = 0.03 and the positions of the particles were initialized to obtain a mean distance of the closest

approach centered at 5a and with low dispersion (see Figure 4.5).
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Figure 4.5: Initial particles distribution as a function of the distance d for φ = 0.03.

As in the previous section, the characteristic aggregation time scales were estimated by fitting

N(t)/N0 with a function f = 1/(1 + t/τ) (see Figure 4.6a). The aggregation scaling for Pe = 38.9,

117 and 195 seems to be linear with a slope decreasing with the reduction of the Péclet number (see

Figure 4.6b). We were not able to explain this change of behavior over this specific range of Péclet

number. These curves were also fitted with the function f (quite poorly), but one should keep in mind

that these results must be considered with caution. The aggregation time for Pe = 38.9, 117 and 195 are

represented with open symbols in Figure 4.7 while the time extracted from Figure 4.6a is represented

with full symbols. The orthokinetic scaling with τ = π/(4φγ̇) for two different φ are reported as

dotted lines in Figure 4.7 for comparison. These two volume fractions correspond to the cases where

the volume fraction of the spheres constituting the particles φspheres = 0.03 and the volume fraction

of the platelets including the spheres plus the double layer φPlatelets+κ−1 = 0.165. For Pe < 100, τ

remains constant, which could be interpreted as the fact that the aggregation process is driven by the

electrostatic forces and, therefore, the interaction range and not by a collision frequency depending on γ̇.

For Pe > 100, the dependence of the characteristic time scale on the Péclet number is well described by

the orthokinetic model using φPlatelets+κ−1 . It is interesting to see that despite the shape and the charge

anisotropy of clay-like particles, the orthokinetic scaling used for spherical particles still works when

using an effective volume fraction based on the volume fraction of the platelets including the spheres

plus the double layers.



1 Kinetics of aggregation of clay-like particles
1.3 Summary

113

Su
sp

en
si

on
s

un
de

rs
he

ar

0 1 2 3 4 5 6

time (s) ×10−8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
(t

)/
N

0

Pe=3.89e-3

Pe=389

Pe=778

Pe=1556

Pe=3890

(a) N(t)/N0

0 1 2 3 4 5 6

time (s) ×10−8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
(t

)/
N

0

Pe=38.9

Pe=117

Pe=195

(b) N(t)/N0 linear scaling

Figure 4.6: N(t)/N0 for different Péclet numbers as a function of time. In the left figure, numerical data

are fitted with f = 1/(1 + t/τ) (full lines) while in the right figure the scaling seems to be linear.
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Figure 4.7: Characteristic times scale of aggregation. The dotted lines represent the orthokinetic scaling

for the volume fraction of the spheres constituting the particles, and the volume fraction of the platelets

including the spheres plus the double layer.

1.3 Summary

In this section we reported simulation data concerning the aggregation process first without shear flow

and by varying the range and strength of electrostatic interactions, and then with increasing shear rates

for a constant Mason number.

When no shear flow was involved, we varied the electrostatic range of interactions and the net charge

of the particles. We have proposed a scaling model based on the idea that electrostatic migration was

the dominant effect driving the aggregation process. This model requires interaction ranges leading to

aggregation and was found satisfactorily accurate for particles with vanishing net charge irrespective

of the interaction range. For particles with a net negative charge, the long-range repulsion slows down
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the aggregation and severely influences the scaling of the characteristic aggregation time. Due to the

long-range repulsion between the particles, the model was only able to capture the aggregation dynam-

ics at intermediate interaction ranges reasonably well but could not capture the long-range interaction

aggregation regime.

Kinetics of aggregation of particles with both shape and charge anisotropy is very complex to foresee

due to the numerous experimental parameters influencing the aggregation process. One can cite the

volume fraction of the suspension, the net charge of the particles, the ionic strength of the suspension,

or even the charge distribution. Indeed, for very similar charge densities, Paineau and coworkers [19]

have observed that tetrahedrally charged clays were undergoing stronger electrostatic repulsions than

clays with octahedrally charged sites. It could be interesting to simulate AR7 particles with the total

negative charge spread over half of the center particles and to verify if the scaling model developed for

vanishing net charge particle would be unchanged. When particles need to be oriented to aggregate,

the mobility of the particles becomes an evident parameter of the aggregation’s kinetics. Note that this

mobility will be influenced by the size and shape of the particle, the hydrodynamic interactions, and

the electrostatic stresses arising from the nearest neighbors. We also emphasize that the lower the ionic

strength, the stronger the influence of the net charge. At very short-range interactions, the aggregation

is driven by the Brownian diffusion, and the net charge might only influence the stability ratio but not

the scaling of the kinetics of aggregation. For intermediate and long-range interactions, a net charge

will slow down the aggregation process and can even prevent any aggregation from occurring. For all

these reasons, no theory perfectly describes the kinetics of aggregations of particles with both shape and

charge anisotropy. The observation of a scaling behavior is already interesting to estimate roughly the

dynamics of aggregation of a complex system.

When the shear flow is significant (Pe > 100), the aggregation is described by orthokinetic argu-

ments with an effective volume fraction based on the volume fraction of the platelets plus the double

layers. This is not a trivial result as the orthokinetic law is originally designed for spheres. However,

anisotropic particles such as platelets follow the Jeffery’s orbits under shear, and therefore the sweeping

volume can be assimilated to a spherical volume. We have shown that the effective volume used to de-

scribe the orthokinetic regime of platelets with charge anisotropy was the volume fraction of the platelets

increased by the double layers. In general, the application of a shear flow to a suspension of clay-like

particles speeds up the first aggregation events, although it can inhibit the formation of large aggregates,

as will be discussed later in this chapter.

2 Thixotropy

As presented in the first chapter, the thixotropy of a suspension is characterized by its structuring ability

during a period of rest (healing process) and by its shear-thinning behavior in a time-dependent fashion

when shear is applied. Such behavior is interesting in many industrial processes, and thixotropic sus-

pensions are used in biomedical products, printing inks, personal-care products, or in the food industry

[16].
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Laponite suspensions exhibit a thixotropic behavior above a certain volume fraction and for ionic

strengths leading to aggregation [1, 13, 23, 24, 30]. The thixotropic behavior observed in Laponite

suspensions is due to their ability to form a gel structure at rest which can be disrupted or even destroyed

when shear is applied. The conclusion of the study from Pignon et al. was that the thixotropic behavior

of Laponite was a reversible aggregation process involving structures of different length scales, ranging

from ∼ 35 nm for the sub-units to microdomains ∼ 1 µm whose assembly forms super-aggregates [24].

Martin and coworkers have shown that thixotropy can be tuned by varying the charge anisotropy of the

particles [13]. These authors compared both the rheological and structural behaviors of suspensions of

Laponite with and without peptizers. The peptizers were used to decrease the edge to face attraction by

reducing the rim charge or even by making it negative. Martin and coworkers observed that the addition

of peptizers weakened the structure network producing the solid-like aspect of Laponite. The presence

of peptizers also impacts the transient response to a small shear rate after a period of rest: the suspension

with peptizers undergoes a viscoelastic behavior while the suspension without peptizers follows a stress

curve characteristic of the thixotropic fluid, which consists of an overshoot stress and a relaxation toward

a steady regime. This study points out the importance of the face-rim interactions in the rheological

response of Laponite suspension to an external drive.

To verify that using the AR7 model particles in the ASD code allows us to reproduce the thixotropic

behavior of clay-like suspension, we applied intermittent shear flows to suspensions of AR7. Due to the

number of particles simulated, we will not be able to observe the behavior at the micron scale. However,

we should be able to capture the destruction of the subunits of the fractal structure composing the gels of

clay particles due to the shear and the healing process of the suspension during rest periods.

2.1 System simulated

For this study, we set the volume fraction to φ = 0.05, and the electrostatic interaction range to

κD = 14.6. As shown in the third chapter (see section 2.3.1), at this specific interaction range and

volume fraction, AR7 particles aggregate with particles mainly in T-shape configuration.

We applied to the suspensions of clay-like particles intermittent flows composed of several periods

of shear and rest. The shear flow is given by u = (γ̇y, 0, 0), and therefore the x-y plane is the plane

of the shear and the y-z plane is perpendicular to the mean flow. The shear disrupts or even destroys

the structure (shear breakdown), while during the rest period, we should observe the rejuvenation of

the structure. One can wonder if the history of the suspension could influence either the structure at

equilibrium or the steady viscosity during shear.

To answer this question, two different regimes of shear were considered and applied to two distinct

suspensions. The first one, referred to as the low Mason regime, has Pe = 389 and Ma = 1. The

second one, the high Mason regime, Pe = 3.89 106 and Ma = 1 104. Both regimes can be considered

as non-Brownian. Given the Mason number’s definition, the electrostatic forces in the low Mason number

regime are of the same order of magnitude as the viscous forces. Therefore, one could expect to observe

a disruption of the aggregate, but with particles remaining in contact and forming several aggregates. In

contrast, the second regime will probably tear every particle assembly apart, as the viscous forces are

four orders of magnitude higher than the electrostatic attractions.
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At the end of the period of shear, the flow is stopped, and we let the suspensions evolve without back-

ground flow. During these periods of rest, the Péclet number was set to Pe = 3.89 10−3 while keeping

F elecR/(kbT ) constant (see section 1.3.2). Consequently, the suspension is expected to aggregate with

particles mainly in T-shape configuration.

We used the same random initialization of the particles for the high and the low Mason regime. Then,

we applied successively periods of shear and rest (intermittent flow), as presented in Figure 4.8. Each

simulation is composed of four periods of shear and three periods of rest. The periods of shear last for

30/γ̇ and the periods of rest for 25 a2/(2D0). Concerning the shearing time, we were confident to reach

a stationary state, as the time to obtain it scales as 1/γ̇ [1]. The resting time is chosen to allow the

suspensions to reach a fully aggregated structure.

The use of the cycles should allow us to answer the following questions: i) is the microstructure of

the suspension at rest sensitive to the history of the suspension? ii) does a suspension of AR7 exhibit a

thixotropic behavior irrespective of the shear regime?

Pe=389

Ma=1

Pe=3.89 10-3

Ma=2.57 10-3

x 3 cycles

Pe=389

Ma=1

Shear ShearRest

(a) Low Mason number

Pe=3.89 106

Ma=1 104

Pe=3.89 10-3

Ma=2.57 10-3

x 3 cycles

Pe=3.89 106

Ma=1 104

Shear ShearRest

(b) High Mason number

Figure 4.8: Flow chart of the simulations used for the study of the Thixotropy.

2.2 Analyze of the cycles

When one looks at the snapshots of the structures at the end of a period of shear, the difference between

the low and the high Mason number regimes is striking (see Figure 4.9). In the low Mason number

regime, one can observe five different colors corresponding to five independent clusters. The particles

seem to be interconnected through the house of card configuration. The particles at the high Mason

number regime are not interconnected due to the strong viscous forces. However, one can notice the

presence of two tactoids circled in red in Figure 4.9b. Note that in the pure hydrodynamic regime Meng

& Higdon found a similar formation of tactoids [14]. Many particles seem to be aligned in the velocity-

vorticity plan.

The snapshots at the end of the first period of rest are very similar, as shown by Figure 4.10. For both

simulations, particles are in a T-shape configuration, and all the particles, except one in Figure 4.10b, are

forming a single aggregate. In a short time, the suspensions were able to reach a similar microstructure.

Although they were started with a visibly different initial state, the suspensions evolved toward the same

arrested state as the one observed in section 2.3.1 which confirms the validity of the results obtained in

the third chapter.
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(a) Low Mason number (b) High Mason number

Figure 4.9: Snapshots at the end of the first shear period for the low Mason number regime (left) and the

high Mason number regime (right). Two tactoids are circled in red in the right figure.

(a) Low Mason number (b) High Mason number

Figure 4.10: Snapshots at the end of the first rest period for the low Mason number regime (left) and the

high Mason number regime (right).

These observations based on the snapshots of the suspensions are verified with the evolution of the

average number of neighbors reported in Figure 4.11. At Ma = 1 and for the first start-up shear, one

can observe a building up of aggregates corresponding to an increase of 〈Nnei〉 up to 2. At rest, the
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suspension structure itself, and the average number of neighbors increases to 2.7 which seems to be a

plateau value common to each period of rest. At the very beginning of the start-up shear after a resting

period, the number of 〈Nnei〉 drops down from 2.7 to 2, indicating a kind of erosion of the structure,

where the particles with the weakest bonds have been separated from the main aggregate.

Concerning the high Mason number regime, 〈Nnei〉 is on average equal to 0.5 which is considerably

lower than the value observed at Ma = 1. As expected, the strong hydrodynamic interactions prevents

particles aggregation. This value of 〈Nnei〉 = 0.5 reached during the first shear must be analyzed with

caution. If it can be related to the presence of tactoids, one should recall that 〈Nnei〉 is based on a

criterion of distance. Owing to the volume fraction considered, particles cannot rotate freely without

encountering another particle. During any rotation of a particle, if the distance between the surfaces

of two particles is less than this criterion, particles will be considered as having a neighbor even if the

contact is brief. Therefore, the average number of neighbors during the periods of shear at Ma = 104

is related to tactoids and brief contacts between particles due to crowding effects. During the cessation

flows, 〈Nnei〉 sharply increases up to 2.1. Note that the final structure does not seem to be reached in

25 a2/(2D0) as the average number of neighbors keeps increasing, which could explain why it is slightly

lower than at Ma = 1. At the very first moments of the start-up flow after a period of rest, 〈Nnei〉 drops

down to 0.6, indicating a total breakdown of the structure.
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Figure 4.11: Evolution of the average number of neighbors 〈Nnei〉 for the low and high Mason number

regime. The time has been made non-dimensional by 1/γ̇ for the periods of shear and by Pe/γ̇ for the

periods of rest.

If we now look at the nematic order parameter and the deviation of the mean direction vector of

the AR7 particles reported respectively in Figure 4.12a and 4.12b, one can note the repetition of the

same pattern throughout with the cycles for the two Mason number regimes. For the low Mason number

regime, the nematic order parameter fluctuates around 0.2 during the shearing periods and drops down to

∼ 0.1 at rest (see Figure 4.12a). The oscillations during the shear are correlated with the alignment of the

particles with the flow direction (see u1
y in Figure 4.12b). This correlation is particularly noticeable for
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the high Mason number regime. During these periods of shear, the y component of the deviation vector

sharply increases to values above 0.5, meaning that such direction is highly favored. Each fluctuation

of the direction vector corresponds to a variation of the nematic order parameter. Broadly speaking, at

the end of the periods of rest, both the nematic order parameter and the deviation of the direction vector

behave in the same manner, irrespective of the shear history: the deviation of the mean direction vector

almost vanishes indicating a relatively isotropic structure (see Figure 4.12b), confirmed by the low value

of Snem (see Figure 4.12a). During the periods of shear, particles align their direction vector with the

gradient velocity vector (y-axis in this study). This alignment is strong for the high Mason number

regime leading to a highly nematic suspension. In the low Mason number regime, the structure remains

fairly isotropic even though the y-axis alignment seems slightly favored.
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(a) Nematic order parameter
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(b) Deviation of the mean direction vector

Figure 4.12: Nematic order parameter (left) and deviation of the mean direction vector (right) during the

intermittent flows. The superscript 1 and 10000 on the right figure correspond to the Mason number. The

time has been made non-dimensional by 1/γ̇ for the periods of shear and by Pe/γ̇ for the periods of rest.

The frequency of the peaks of Snem during the periods of shear can be related to Jeffery’s orbit of an

isolated AR7 particle. We have reported in Figure 4.13a the evolution of the angle φ (see section 3.1.1)

of anAR7 particle in a shear flow with an infinite Péclet number (Pe = 104). The particle was initialized

with its direction vector pointing to the flow direction (x-axis) corresponding to θ = 0 and φ = 0. As

θ remains equal to zero throughout the simulation, it is not reported hereafter. The particle rotates in

28.6 units of strain, however owing to the symmetry of its shape, only a half rotation allows bringing

back the particle to its initial state in 14.3 units of strain. One can notice that this strain corresponds

to the separation of the peaks of Snem in Figure 4.12a. Note that the particle spends on average more

time aligned with the flow, corresponding to angles where the viscosity is lower than when particles are

perpendicular to the flow approximately equal to ∼ π/2 (± ∼ π).

The evolution of the viscosity as a function of the strain for the high Mason number regime is reported

in Figure 4.14b. One can relate, once again, the oscillations of the viscosity to the mean orientation of

the particles. Particles aligned with the flow show an important deviation of the mean direction vector
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in the y direction (see Figure 4.12b). In this case the suspension becomes highly nematic (see Figure

4.12a), and the viscosity is the lowest (see Figure 4.14b). This behavior does not exist in the low Mason

number regime as the suspension remains fairly isotropic throughout the simulation due to the ordering

caused by electrostatic interactions.

0 5 10 15 20 25 30 35 40

strain (γ̇t)

−4

−3

−2

−1

0

1

2

3

4

φ
(r

ad
)

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

η r

(a) Relative viscosity

0 5 10 15 20 25 30 35 40

strain (γ̇t)

−4

−3

−2

−1

0

1

2

3

4

φ
(r

ad
)

−0.04

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

0.04

N
1

(b) N1

Figure 4.13: Viscosity (left) and normal stress difference (right) and angle φ evolution for one AR7

particle as a function of the strain.

0 5 10 15 20 25 30

strain (γ̇t)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

η r

1st shear

2nd shear

3rd shear

4th shear

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.8

1.0

(a) Low Mason number regime

0 5 10 15 20 25 30

strain (γ̇t)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

η r

1st shear

2nd shear

3rd shear

4th shear

0.0 0.1 0.2 0.3 0.4 0.5

0.3

0.4

0.5

0.6

0.7

0.8

(b) High Mason number regime

Figure 4.14: Evolution of the viscosity as a function of the strain for the low Mason number regime (left)

and the high Mason number regime (right) over the four periods of shear. The insets are a zoom over the

first 0.5 strain units.

Let us now focus on the evolution of the viscosity over the different periods of shear. Concerning

the low Mason number regime, the viscosity of the second, third and fourth shear periods behave the

same way (see Figure 4.14a). All these periods of shear have a similar initial viscosity value, indicating

that the microstructure at the end of the periods of rest must be also similar (see the inset in Figure
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4.14a). Then, one can observe a shear-thinning of the suspension in a time dependent fashion over the

first five units of strain, characteristic of thixotropic suspensions. Finally, the viscosity converges around

ηr = 0.65 ± 0.15. The first shear period does not exhibit shear-thinning because the particles were

initialized randomly. On the contrary, one can observe a slight shear-thickening due to the building up of

aggregates. Concerning the high Mason number regime, the shear-thinning behavior is more important

than at low Mason number, and the final viscosity is equal to ηr = 0.3± 0.05 for each of the periods of

shear. The increase of the Mason number reduces both the value and the dispersion of the viscosity.

Note that the initial viscosities at the beginning of the shear periods are the same for both the low

and the high Mason number regime, indicating a similar microstructure at the end of the rest periods.

Moreover, if one relates the viscosity of the high Mason number regimes to the deviation of the mean

vector (see Figure 4.12b), it appears that each average spatial orientation corresponds to a viscosity. This

observation is in line with the works from Bihannic and coworkers [5] and Philippe et al. [22]. These

authors were able to reproduce the experimental shear-thinning behavior of purely repulsive clays (ionic

strength 10−5M) using the following ad hoc modeling. They assumed the viscosity could be written with

Quemada’s model (1−φeff/φ∗)−2 [25] where φeff = αφ, and α would be some shear dependent factor

accounting for the preferred orientation of the platelets. They built some model that will not be detailed

here to associate their SAXS patterns to some average orientation vector (ux, uy, uz) and Philippe et

al. [22] observed experimentally some correlation between alpha and the anisotropy factor (ux/uy)
2,

leading to the model:

ηs = ηf

(
1− (ux/uy)

2φsphere
φ∗

)−2

(4.7)

where ηs is the suspension viscosity, ηf the fluid viscosity, φsphere = 4/3Rφ/t with R the radius of the

particle and t its thickness, and φ∗ stands for the packing volume fraction. In their study, the authors

considered φ∗ = 1. Using this model, Philippe et al. could describe the shear-thinning behavior of bei-

dellite for a volume fraction ranging from φ = 0.0038 to 0.0145 [22]. Note that the model was validated

over the totality of the volume fraction range studied and for high enough shear stress, indicating that it

was able to take into account complex hydrodynamic interactions such as lubrication. The fact that the

model was valid only above a minimal shear stress increasing with the volume fraction indicates that it

is not valid when electrostatic interactions drive the suspension’s behavior. Therefore, one can conclude

that this model is only valid when the hydrodynamic interactions prevail over any other forces (Brownian

or electrostatic), which corresponds to the high Mason number in the present study. Note also that due

to the low ionic strength used by Philippe et al. [22], the model was only validated for non-aggregated

initial structures. We emphasize that the main result of the study from Bihannic et. al [5] and Philippe et

al. [22] is that the viscosity is strongly related to the anisotropic factor (ux/uy).

Although the initial state before the start-up shear is an aggregated structure, we first tried to apply

similar reasoning to compute the viscosity of the suspensions at Ma = 104. The evolution of the

viscosity is only presented for the second and third shear periods as we have seen that the suspensions

were exhibiting similar shear-thinning behavior. We have reported in Figure 4.15 model (4.7) referred

to as "model 1", using the average orientation vector measured in simulation. If this model is able to

capture the shear-thinning and the correlation between viscosity and average orientation qualitatively,



Suspensions
undershear

122 CHAPTER 4. RHEOLOGY AND DYNAMICS OF A SUSPENSION OF CLAY-LIKE PARTICLES

one can see that it overestimates the dependence of the viscosity on the orientation of the particles and

underestimate the average viscosity.

In order to adapt this model to the present system, we replaced the φsphere from equation (4.7) by the

volume fraction of the platelets including the spheres φplatelet and we left the exponent on the anisotropy

factor and the value of φ∗ as free parameters. The model called "model 2" in Figure 4.15 corresponds to

the following equation:

ηr = −1 +

(
1.0− (ux/uy)

αφplatelet
φ∗

)−2

, (4.8)

where ux and uy are the coordinate of the average direction vector of the particles measured in the

simulation, and with φ∗ = 0.65, α = 0.4 and φplatelet = 0.108. This model, based on the evolution of

the average direction vector, captures quite well the shear-thinning behavior and the dependence of the

relative viscosity on the particles’ spatial orientation. One can wonder if the values of α and φ∗ used

for a suspension of AR7 at φ = 0.05 depend on the volume fraction or to the small aspect ratio of the

present AR7 compared to natural clays. Further investigations for different volume fractions and aspect

ratios would be necessary to conclude on the final form of the scaling.

We stress once again that the "model 1" and "model 2" only relate the viscosity to the anisotropy

factor ux/uy. Note that the fit of the viscosity in Figure 4.15 could have been realized with the following

simpler model:

ηr = A+B
ux
uy
, (4.9)

where A corresponds to a constant value sligthly lower than the minimal viscosity observed during the

simulation, and B a free parameter. This model is reffered to as "model 3" in Figure 4.15, and A = 0.17

(ηmin = 0.23) and B = 0.3. We emphasize that this "model 3" does not have any power scaling but

the value of A must be changed according to to the system studied. One can notice that the "model 3"

captures fairly well both the shear-thinning and the correlation between viscosity and average orientation.

To prove that "model 2" and "model 3" can also capture the shear-thinning of non aggregated system,

we have reported in Figure 4.16 the case κD = 1.46 to reproduce similar conditions to the study of

Philippe et al. [22]. As in the experiments of these authors, when no flow is applied to the suspension, it

structures in a Wigner glass. Moreover, the Mason number is important enough to consider electrostatics

insignificant. Note that A = 1.14 for the "model 2", the rest of the parameters remains unchanged for

both models. One can conclude that in this Ma� 1 and Pe� 1 regime the hydrodynamic viscosity of

a suspension of anisotropic particles can be described using only the average direction vector parallel to

the flow and to its gradient, in line with the literature [5, 20, 22].

In this section, we have seen that at low Mason number and for the totality of the applied cycles, the

suspension was quite isotropic, in contrast to the high Mason number regime, for which the suspension

was nematic during the periods of shear. We have seen that during a start-up shear, the suspension was

undergoing a shear-thinning behavior for both regimes, which is characteristic of thixotropy. Finally, we

could relate the shear-thinning and the oscillations of the viscosity to the average orientation direction

vector for the high Mason regime. This is in line with the studies from Bihannic et al. [5] and Philippe

and coworkers [22] although we used simpler viscosity expressions depending only on the orientation

vector. The study of the microstructure will bring us information concerning the origin of the thixotropy
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Figure 4.15: Fit of the relative viscosity obtained during the second shear, with the model proposed by

Bihannic et al. [5] and Philippe and coworkers [22] referred to as ηr Phil. (dotted curve) and a fit of this

model using different parameters (dashed curve).
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Figure 4.16: Relative viscosity for κD = 1.46 using "model 2" (equation (4.8)) and "model 3"

(equation (4.9)) at Ma = 100.

observed for these suspensions of AR7 particles.

2.3 Microstructure of the suspension at rest

In the previous section, we have seen that the microstructure at rest was always very similar irrespective

of the Mason number regime studied during the periods of shear.

The radial and orientational distribution functions during the rest periods are reported in Figure 4.17.

We have also reported in Figure 4.17 the functions of the equilibrium structure studied in section 2.3.1,

for φ = 0.05 and κD = 14.6. These functions are referred to as "Random" in Figure 4.17. The first

number in the brackets of the legends used in these figures corresponds to the Mason number applied

during the periods of shear, and the second to the current period of rest. Then, (104, 3rd) corresponds to
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the third period of rest, for Ma = 104. At first sight, the radial distribution function reported in Figure

4.17a is independent of the Mason number applied during the periods of shear and of the current resting

period studied. One can observe a sharp peak at a distance R characteristic of T-shaped configurations.

This is confirmed by the angular correlation function, which has a value of −0.5 (see Figure 4.17b).

However, one can note the variation of peaks of the radial distribution functions (see the inset in Figure

4.17a). As no clear relation between the Mason regime and the intensity of the peak appears, one could

wonder if this difference comes from a poor statistical convergence.
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Figure 4.17: Radial distribution function (left) and second Legendre polynomial (right) for the two Ma-

son regimes studied. The legend must be read as follow : (Mason number applied during the periods

of shear, Number of the rest period currently studied). Then (1, 2nd) correspond to the second period

of rest of Ma = 1. The term "Random" designs the suspension studied in chapter three, where the

equilibrium structure was studied after a random initialization of the particles. The same legend is used

in both figures and the inset in the left figure corresponds to a zoom on the peaks of g(r).

If one focuses on the structure of particles in contact, one can observe that the contact angle’s prob-

ability function does not depend on the Mason number or the resting period studied (see Figure 4.18a).

The probability of the contact angle remains very low for θ < 50 degrees, then increases and reaches its

maximum value at θ = 90 degrees. Note that some simulations exhibit a small peak at θ = 10 degrees,

corresponding to OC configuration, and others at θ = 70 degrees. We have already seen such behavior

during the study of the microstructure without background flow, but these peaks disappear with a larger

simulation time (see "Random" in Figure 4.18a).

The static structure factor is reported in Figure 4.18b. Note that only the value of lim
q→0

SL(q) varies

with the simulation considered. However, these values do not seem to depend on the Mason number

regime: for Ma = 1, one can observe SL(0) = 3.6 at the first rest, 1.9 at the second and 4 at the

third. Longer simulations should be carried out to really determine if the periods of shear play a role

in the compressibility of the suspension. Nonetheless, we can conclude that the suspensions are evolv-

ing toward a phase separation, as observed in the third chapter and represented in Figure 4.18b as the
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"Random" simulation.
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Figure 4.18: Probability of the contact angle (left) and the static structure factor (right) for the suspen-

sions at rest.

To conclude, the microstructure of the suspensions leading to an aggregated structure at rest seems

to depend neither on the number of cycles nor on the Mason number regime during the periods of shear,

i.e., the microstructure of the suspension of AR7 particles do not depend in a major way on the history

of the suspension. We will see later in this manuscript (see section 4) that suspensions of particles with

long-range repulsions have a strong dependence on their history. We have seen that even if we carry

out intermittent flows over a short period of time, the suspensions structure quickly. The suspensions

undergo a shear-thinning behavior in a time-dependent fashion, and given the fact that the suspensions

structure at rest, we can conclude that suspensions of AR7 particles are thixotropic.

2.4 Microstructure of the suspension under shear

As the suspensions behave differently depending on the Mason number regime studied, we have decided

to study the microstructure of the suspensions at low and high Mason number separately.

2.4.1 High Mason number

In this regime, hydrodynamic interactions are strong enough to prevent the aggregation of the particles

through electrostatic interactions. In section 2.2, we have seen that during the four different periods of

shear composing the entire cycle simulated, the suspension was highly nematic, with particles having

their normal vector pointing to the direction of the gradient of the flow. The snapshots at the end of the

shear periods are reported in Figure 4.19. All of these structures seem similar and it seems impossible

to distinguish them as a function of the number of shear cycles applied. Then, instead of studying

the microstructure at each shear period separately, we have chosen to average the data to increase the

sampling for the statistics of the measured quantities.
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(a) First shear (b) Second shear (c) Third shear (d) Fourth shear

Figure 4.19: Snapshot of the final microstructure obtained after the application of a shear flow with

φ = 0.05, κD = 14.6 and Ma = 104.

As the suspension of particles is no more isotropic, we define a pair distribution function g(r) in the

x-y plane (flow-gradient plane) and a second pair distribution in the y-z plane (gradient-vorticity plane).

The details of the mathematical definition can be found in Appendix 3. To describe the orientation of

the particles, we define an angular distribution function P2(r) on a grid, where the value of this function

on each bin is equal to the average of the second Legendre polynomial of the particles belonging to this

bin (see Appendix 3 for the description of the grid). Note that only extreme values, above 0.8 and below

−0.4, are significant as a value of zero can be obtained either for totally uncorrelated particles, or with

the sum of a pair of particles in a T-shape configuration, for which P2(r) = −0.5, and a pair of nearly

parallel particles, for which P2(r) = 0.5. As for the pair distribution function, the angular distribution

function was defined in both the x-y and y-z plane.

In Figure 4.20 are reported the radial and the orientational distribution functions. One can clearly

observe in Figure 4.20a a layering of the particles in the shear direction for |y| > R, indicating that the

suspension is dilute enough to allow particles to move on average in parallel planes and, owing to the

high value of the orientational function (see Figure 4.20b), particles are parallel to one another. Note

also the high probability of particles forming a kind of "eye" with closed trajectories (see Figure 4.20a

for |x| < R and |y| < R). These particles remain parallel to one another as indicated by P2(r) > 0.9

which is a characteristic of tactoids.

We want to emphasize that even if the number of tactoids is small, the long time needed by a tactoid to

be torn apart induces very large statistical weights. Indeed, just by studying the distribution functions in

the x-y plane, we could have thought that particles were mainly in a tactoid configuration. In contrast, the

radial distribution functions in the y-z plane reported in Figure 4.21a shows that particles are uniformly

spread inside the simulation box. However, one can observe some hot spots at z = 0 and |y| < 0.27R

corresponding to particles parallel to one another (see Figure 4.21b): the tactoids. Note also that most

of these points are at a distance greater than to half of the particles’ thickness, indicating that strong

lubrication occurs between the particles preventing them from stacking and slowing down the sliding

due to the coarse-graining of the AR7 particles.

To summarize, at high Mason number the aggregates formed during the resting periods of the sus-

pension are totally destroyed. This destruction of the structure is often called shear rejuvenation in the
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literature [16] and is in line with the expected behavior of clay particles. During the periods of shear,

the particles are on average aligned with the flow, which is well explained by the fact that particles tend

to minimize their surface tractions by following Jeffery’s orbits resulting in a highly nematic state pre-

viously observed. Note that some tactoids are formed in this regime, which tends to leave more free

volume and lowers overall viscous dissipation, in line with the work from Meng & Higdon [15].

(a) Radial distribution function in the x-y plane (b) Orientational distribution function in the x-y plane

Figure 4.20: Radial (left) and orientational (right) distribution function in the x-y plane averaged over

the periods of shear at Ma = 104.

(a) Radial distribution function in the y-z plane (b) Orientational distribution function in the y-z plane

Figure 4.21: Radial (left) and orientational (right) distribution function in the y-z plane averaged over

the periods of shear at Ma = 104.

2.4.2 At low Mason number

At low Mason number, the shear flow does not generate hydrodynamic forces strong enough to fully

disaggregate the plate particles. Shear tears the particles with the lowest bond energy apart. This event
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seems to be situated in the region with the lowest density. This will have as a consequence the formation

of several aggregates with different sizes. The small number of particles simulated does not allow us

to obtain meaningful statistics on the size distribution of these smaller aggregates. In Figure 4.22 are

reported the snapshots of the microstructure obtained at the end of the shear periods. Note that the

structures do not seem influenced by the history of the suspension.

(a) First shear (b) Second shear (c) Third shear (d) Fourth shear

Figure 4.22: Snapshot of the final microstructure obtained after the application of a shear flow with

φ = 0.05, κD = 14.6 and Ma = 1.

Let us now describe the microstructure during these periods of shear quantitatively. One should recall

that the suspension remains fairly isotropic throughout the periods of shear when Ma = 1 (see Figure

4.12a). Therefore it is consistent to study first the one dimensional radial and orientational distribution

functions reported in Figure 4.23. Note that the radial distribution functions have a sharp peak at a

distance R, as the one observed at rest. These particles are on average in a T-shape configuration as

indicated by the value of the second Legendre polynomial P2(R) = −0.4, and as observed during

healing periods. However, the intensity of the peaks of g(r) ranges from 6.4 to 11.4 while it was ranging

from 19 to 26 during rest. This drop in the intensity indicates that the T-shape configuration is less

favored during shear than during rest. Indeed, if we compute the average probability of having a contact

angle above 85 degrees, we obtain approximately 0.24 at rest and 0.17 when the shear flow is applied

(see Figure 53a in the Appendix).

Broadly speaking, the application of shear flow at Ma = 1 slightly disturbs the microstructure

generated during the healing periods by increasing the number of spatial configurations represented in the

simulations. As most of the particles remain in contact, we cannot talk about shear rejuvenation, which

requires stronger hydrodynamic forces. We also observed that the application of successive periods of

shear and rest do not influence the microstructure as the measured quantities are not correlated with the

suspension’s history. Then for the rest of this section, we will compute quantities as an average over the

four different periods of shear.

We have reported in Figure 4.24 the two dimensional distribution functions in the x-y plane. The

function exhibits a depletion area for distances less than R as already observed in the one dimensional

g(r). Beyond this depletion appears a high density crown corresponding to the peak in Figure 4.23a.

As expected, particles belonging to this high density area are perpendicular to the central particle (see

the orientational distribution in Figure 4.24b). Note also that the probability density is higher in the flow
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direction (y = 0) than in the gradient direction (y = R). We propose the following explanation. Consider

a dimer of particles in a T-shape configuration with the particle on the left perpendicular to the flow and

referred to as particle 1, and the particle 2 on the right aligned with the flow, i.e., "`". At this instant,

the center of gravity of this dimer is situated on the y-z plane defined by the normal of the particle 2.

Following Jeffery’s orbits’ dynamics, the rotation of this dimer is driven by particle 1. This particle starts

to rotate, but its double layers quickly encounter the double layers of opposite charges from particle two.

When the electrostatic pressure is high enough to prevent the reduction of the angle between the two

particles, the dimer will rotate. Note that such a configuration could have led to the creation of a tactoid

at high enough Mason number.
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Figure 4.23: Radial (left) and angular (right) distribution function at Ma = 1, κD = 14.6 and φ = 0.05.

(a) Radial distribution function in the x-y plane (b) Orientational distribution function in the x-y plane

Figure 4.24: Radial (left) and orientational (right) distribution function in the x-y plane averaged over

the shear periods and with Ma = 1.
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Let us now focus on the structure in the y-z plane, normal to the flow direction, represented in

Figure 4.25. Once again, one can observe a depletion area around the particles, indicating that tactoids

are forbidden. Note that the probability of presence is higher in the vorticity plane (y = 0). This is

suggestive of the roller structures described by Pignon and coworkers [23] for a Laponite suspension

below the critical shear rate tearing apart even the micrometer-sized aggregate. This could also be due to

planes of aligned particles sliding one over another.

(a) Radial distribution function in the y-z plane (b) Orientational distribution function in the y-z plane

Figure 4.25: Radial (left) and orientational (right) distribution function in the y-z plane averaged over

the periods of shear at Ma = 1.

From the observations of the microstructure, one can conclude that suspensions do not rejuvenate

during the shear at the lower Mason number reported here, i.e., Ma = 1.

2.5 Summary

In this section, we have studied the thixotropic behavior of two suspensions of AR7 particles with

φ = 0.05 and κD = 14.6. Intermittent flows were applied to both suspensions, with four periods of

shear and three periods of rest. The shear flows applied were at Ma = 1 in one case and Ma = 104 in

the other for the entire protocol for each suspension.

Concerning the high Mason number regime, the application of shear led to a highly nematic phase,

with particles having their normal vector aligned on average with the flow gradient. We observed the

presence of some tactoids, as expected for hard platelets following the work from Meng & Higdon [14].

Note that larger aggregates (i.e. not tactoids) did not survive in the flow, and therefore the flow can be

considered as shear rejuvenation. In contrast, the low Mason number regime allowed the formation of

clusters with particles in T-shape configuration. Note that the history of the suspensions, i.e., the number

of previous periods of shear or rest, did not affect their microstructure.

At rest, the suspensions were once again not influenced by their histories. Particles structured in the

same fashion as the one described in section 2.3.1, i.e., in T-shape configuration and evolving towards

phase separation.
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Following the work from Martin and coworkers [13], the healing process is the key in the thixotropic

behavior of suspensions of AR7 particles. During this period, the formation of aggregates increases

the viscosity of the suspension (expected but not observed in this study), and the sudden application

of shear breaks the most fragile bonds leading to a drop of the viscosity in a time-dependent fashion.

This behavior is expected to occur for thixotropic suspensions. In the high Mason number regime, as

no aggregate survives, the viscosity is lower than at Ma = 1. The viscosity could also be related using

different simple models based on the average spatial orientation of the particles, in line with the studies

from Bihannic and coworkers [5] and Philippe et al. [22].

3 Rheological dependence on the electrostatic range of interactions

We have shown that theAR7 model used with the ASD code was able to capture the thixotropic behavior

of clay particles. Among the hallmarks of clay suspensions, one can cite, for instance, the elastic behavior

at low strain and the shear-thinning at large strain, and the propensity of the suspensions to exhibit

overshoot stress during start-up shear. Both the elastic behavior and the overshoot stress are expected

to be influenced by the initial microstructure of the suspension [16] and by the interactions between

particles. It is therefore interesting to realize a systematic study of the response of different initial spatial

configurations to start-up shear at different Mason numbers.

3.1 System simulated

To study the rheological response of suspensions to start-up shear, the microstructures obtained at

φ = 0.05 in section 2 are sheared while varying the Mason number. Note that for the startup shear

study we used initial microstructures obtained after an equilibration time of 25 a2/(2D0) at zero shear.

It represents half the total time used in the third chapter. One should recall the microstructures as a

function of the electrostatic range of interactions:

• κD = 1.46: Wigner glass with disconnected particles,

• κD = 7.3: percolated structure with particles mainly in OC configuration,

• κD = 14.6: percolated structure with particles mainly in HOC configuration and a contact angle

close to 90 degrees,

• κD = 29.2: flocculated but not fully percolated structure with particles in HOC configuration,

• κD = 73: liquid-like structure,

These structures are sheared considering a Péclet number equal to 3.89 106 and the following Mason

numbers: Ma = 0.25, 1, 4, 100, and ∞, the final corresponding to hard platelets. The high Péclet

number allows to avoid any significant Brownian fluctuation, and therefore to focus on the influence of

the hydrodynamic and electrostatic interactions. Here variations of the Mason number are considered as

variations of the particle charge since we consider fixed particle size, fixed temperature and fixed Péclet

number, so a fixed shear rate. Thus, considering Ma = 1 as the reference, Ma = 0.25 corresponds to
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charges multiplied by two (the electrostatic force scales as the square of the charge), and∞ to charges

set to zero.

The simulations carried out are split into two regimes: a high Mason number regime, Ma = ∞
and 100, where the electrostatic forces are insignificant compared to the hydrodynamic forces, and a

low Mason number regime, Ma = 0.25 and 1 and 4, where competition between hydrodynamic and

electrostatic forces occurs. The rheological behavior will, therefore, strongly depend on the range of

interaction in the low Mason number regime. In contrast, a constant behavior should be observed for

Ma ≥ 100. This rheological behavior is described at low strain by the shear modulus G∗ which is equal

to the sum of the elastic modulus G′ and the viscous modulus G′′. The shear modulus relates the stress

to the strain for a suspension undergoing an oscillatory flow [16]. The application of oscillatory flows

to suspensions of AR7 particles is part of the perspectives offered at the end of this manuscript. The

estimation of the storage modulus G′ is instead calculated as the initial slope of the stress when plotted

as a function of the strain in a startup shear test. To illustrate this we have reported in Figure 4.26 the

evolution of the relative viscosity defined as ηr ≡ σ12/(η0γ̇) where σ12 is the shear stress, using the

convention that 1 and 2 are, respectively, the flow and the gradient directions, η0 is the viscosity of the

fluid, for Ma = 1. Note that the initial linear increases of ηr corresponds to G′/(η0γ̇). This elastic

behavior is represented with the dashed lines of equation ηr = G′/(η0γ̇) γ̇t in Figure 4.26b and is only

observed for γ̇t < 0.1, in qualitative agreement with Paineau and coworkers [20] who demonstrated the

limitation of the elastic regime below 0.1 γ̇t irrespective of γ̇ for suspensions of natural clays. Then,

one can observe in Figure 4.26b an overshoot stress, particularly visible for long-range interactions, i.e.,

κD = 1.46.
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Figure 4.26: Stress over the entire simulation (left) and over the first instants (right) for Ma = 1. The

initial stresses in the right figure are fitted with dashed lines which represent G′/(η0γ̇) γ̇t.

We have gathered in Figure 4.27 the information concerning both the relative viscosity and the elastic

modulus for all the interaction ranges studied, κD = 1.46, 7.3, 14.6, 29.2, 73, and for the different

Mason numbersMa = 0.25, 1, 4, 100,∞. Note that the red triangles in Figure 4.27 were extracted from
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Figure 4.26.
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Figure 4.27: Elastic modulus G′ (left) and the relative viscosity ηr with its error bars (right) as a function

of the non-dimensional Debye length (κD)−1.

The elastic modulus is reported in Figure 4.27a as a function of the non-dimensional Debye length

(κD)−1. We stress the fact that the origin of the elasticity is different for the aggregated structures and

the Wigner glass. Indeed, for the aggregated structures, elasticity comes from the separation of particles

previously in contact due to the shear flow while for the Wigner glass, the elasticity is related to the

deformation of the electrostatic cages. Consequently, the dependence of G′ on the range of interactions

can be interpreted only when the same physical mechanism is involved.

Then, for a purely repulsive system in a glassy state, the stronger the repulsions, the more the system

is elastic. Note that for such a case, G′ increases roughly linearly with the Mason number, i.e., G′ is

multiplied by four between Ma = 4 and Ma = 1 and between Ma = 1 and Ma = 0.25.

The behavior of the elastic modulus for the aggregated structures deserves attention. At Ma = 0.25,

electrostatic stresses strongly prevail over the hydrodynamic stresses and control the elasticity of the sys-

tem. The increase of the range of interactions also increases the attractive interactions and consequently

the elasticity of the system as shown in Figure 4.27a. Note that this remark is also valid for κD = 29.2

corresponding to (κD)−1 = 3.4 10−2 despite the fact that the initial configuration is not percolated (we

recall that we observed isolated clusters with particles in HOC configuration). One possibility is that the

observed elasticity comes from the electrostatic interactions between clusters. For 4 ≥Ma ≥ 1, hydro-

dynamic forces are strong enough to tear the particles with the most fragile bonds apart and to break the

percolated structure. Note that as the structure is not percolated at (κD)−1 = 3.4 10−2,G′ ≈ 0 due to the

fact that isolated clusters are free to rotate We propose to relate the elastic modulus of larger interaction

ranges to the resistance of the bonds to the breakage. The stiffness of the bonds are related to the attrac-

tive electrostatic forces of the particles with their neighbors. Given that attractive forces of particles in

T-shape configuration at (κD)−1 = 6.8 10−2 and in OC configuration at (κD)−1 = 1.4 10−1 are of the

same order of magnitude (see section 2.3.1), the elastic modulus is also of the same order of magnitude.
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Finally, for Ma >> 4, the structures are instantaneously destroyed by the strong hydrodynamic forces

and none of the suspensions at these conditions exhibit an elastic behavior.

Concerning the evolution of the relative viscosity reported in Figure 4.27b, one can observe that

ηr is fairly constant in the high Mason number regime and increases with the reduction of the Mason

number. This increase is due to both the modification of the microstructure generated by the electrostatic

interactions and by the increase of the electrostatic stress. For example, the sharp increase between

(κD)−1 = 1.4 10−2 and (κD)−1 = 3.4 10−2 is due to the formation of clusters and therefore to the

increase of the hydrodynamic stress. Note also the reduction of ηr during the transition from HOC to OC

configuration. The details and the origin of these observations are studied in the next sections.

Let us now consider the relative viscosity as a function of the Mason number reported in Figure 4.28a.

At κD = 1.46, we observe that the viscosity scales as γ̇−0.9. For smaller interaction ranges, ηr scales

as γ̇−1/4. Understanding this will require further investigations. Note also that this exponent my be

dependent on the volume fraction. Suspensions undergo a shear-thinning behavior, and do not exhibit

any shear-thickening at a high shear rate most probably because φ is too low.
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Figure 4.28: Relative viscosity as a function of the Mason number from the simulations of AR7 sus-

pensions at φ = 0.05 (left) and relative viscosity of a suspension of montmorillonites at 10−5 M as a

function of the rate of strain (right), reproduced from the Figure 5 B in ref. [20]. The black line in the

left figure stands for the infinite Mason number limit.

To verify that the scaling observed was not unphysical, we compared our results with the ones from

Abou et al. [1]. These authors studied Laponite suspensions and observed a shear-thinning following a

scaling behavior ηr ∝ γ̇−α where α = 0.5±0.1. Abou and coworkers studied the rheological behavior of

two suspensions, one with φ = 0.015 and 10−4 M added salt and the second with φ = 0.006 at 7 10−3 M

added salt. Note that at the highest volume fraction, the Laponite suspension is nematic [17], while the

suspensions at the lowest volume fraction are in a gel state [26]. It is possible that the discrepancy of the

scaling observed by Abou and coworkers with the scaling obtained in this study for AR7 suspensions

(for example at κD = 14.6), is due to the volume fraction considered or to the different aspect ratio of
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the AR7 particles compared to Laponite. Due to a lack of time, we could not study the volume fraction

dependence of the exponent α during this work, but it should definitely be done to complete this study.

Then, we compared our results with the study from Paineau and coworkers [19, 20] who analyzed

the rheological behavior of natural clays: one type of beidellite and three different montmorillonites. We

have reproduced in Figure 4.28b the evolution of the viscosity of a suspension of montmorillonites with

an average aspect ratio of 188, and ionic strength of 10−5 M. Note that particles are highly repulsive

at such a low ionic strength, and therefore the solidification of the suspension observed at high concen-

tration is due to its evolution toward a Wigner glass state. One can observe that for the three higher

concentrations of montmorillonites, the suspensions exhibit yield stress, and the viscosities follow the

same power-law as the one observed for AR7 suspensions with long-range interactions, i.e., ηr ∝ γ̇−0.9.

The natural clay suspensions do not exhibit any yield stress for lower concentrations, which indicates

that particles are not trapped in electrostatic cages. Consequently the exponent of the power slightly

decreases with the reduction of the volume fraction, ranging from γ̇−0.25 at φ = 0.0082 to γ̇−0.15 at

φ = 0.0031. These cases can be compared to the behavior of AR7 suspension at κD = 73, as it is the

only condition where particles do not strongly interact on average with their neighbors. In our simula-

tions, we observed a scaling behavior of γ̇−0.25, which seems to be in fair agreement with the results

from Paineau and coworkers.

Our model seems to capture the rheological behavior of suspensions of clay-like particles fairly well

and is in surprisingly good agreement with Paineau and coworkers [19, 20] considering the difference

of aspect ratio. This might be attributed to the fact that suspensions of particles with larger aspect

ratio get similar behavior to suspensions of particles with smaller aspect ratio at higher volume fraction.

Moreover, the low ionic strength and long-range interactions could make the real platelets act as thicker

ones. In the next sections, we will study in detail the influence of the Mason number on the rheology of

suspensions of AR7 particles.

3.2 High Mason numbers

The high Mason number regime cases studied in this work are Ma = ∞ and 100. In such a regime,

electrostatic interactions are insignificant compared to hydrodynamic interactions. The stress due to

interactions between particles only arises from lubrication and long-range hydrodynamics. Note that this

regime is similar to the one used in the previous section concerning thixotropic behavior.

In Figure 4.29a we report the evolution of the relative viscosity ηr as a function of the strain at

Ma = ∞. The same behavior is observed at Ma = 100 which confirms that for both Ma = ∞ and

100 the hydrodynamic forces strongly prevail over the electrostatic forces. As expected for thixotropic

suspensions, the suspensions undergo a shear-thinning behavior for aggregated structures corresponding

to κD = 7.3, 14.6 and 29.2. The liquid-like structure also exhibits a shear-thinning due to the alignment

of the particles toward the flow-vorticity plane. One can notice that ηr of a suspension with an initial

Wigner glass configuration (κD = 1.46) slightly decreases with time. The relative viscosities of the

suspensions, for both Ma = ∞ and Ma = 100, converge toward ∼ ηr = 0.3 irrespective of the initial

microstructure and range of interactions.
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Figure 4.29: Relative viscosity (left) and deviation of the average normal vector (right) as a function of

the strain at Ma =∞. The colors used in on both figures relate to the same κD.

The initial spatial configuration seems to determine the initial viscosity and to play a role only over

the initial strain, up to 12 strain. Concerning the initial value, one can note that at κD = 1.46 and

κD = 7.3 the particles are initially more aligned with the flow direction (respectively u2
y − 1/3 = 0.22

and u2
y − 1/3 = 0.165) whereas for others interaction ranges, the microstructures are fairly isotropic

(u2
y − 1/3 ≈ 0). The more the particles are aligned with the flow, the lower is the stress, and therefore,

the lower will be the shear-thinning of the suspension. Let us now focus on the shear-thinning behavior.

The shear-thinning is related to the tilting of the director towards the direction of the gradient of the flow,

as shown in Figure 4.29b. The rotation velocity of the normal vector seems independent of the initial

microstructure except for κD = 7.3 which exhibits a slower dynamics (see the initial slope of uy in

light blue color in Figure 4.29b). One possible explanation for the intensity of the shear-thinning may

be related to the easiness for the particles to rotate toward the flow direction. Investigating the rotation

dynamics of a pair of particles in T-shape and OC configuration could be interesting.

To conclude, one can assume that two phenomena influence the intensity of the shear-thinning: i)

an aggregated structure exhibits a stronger shear-thinning behavior than a non-percolated structure, ii)

an isotropic structure exhibits a stronger shear-thinning behavior than an ordered one. Then, the mi-

crostructure only influences the initial viscosity value and the shear-thinning intensity and not the steady

viscosity.

Note that the shear-thinning seems to exhibit a similar relaxation time irrespective of the initial

microstructure. The relaxation time τ is obtained from a fit of the relative viscosity with

ηr = (η0
r − η∞r )exp(−t/τ) + η∞r (4.10)

where η0
r stands for the viscosity once ηr begins decaying, and η∞r the viscosity at the end of the first

decay. In these simulations, η0
r = ηr(γ̇t = 1) and η∞r = ηr(γ̇t = 8). The values of η0

r , η∞r and τ are

reported in Table 4.1 as a function of the initial microstructure depending on the value of the interaction

ranges κD at Ma =∞ and Ma = 100. Note that τ has been made non-dimensional by γ̇. Surprisingly
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the relaxation time is fairly independent of the initial microstructure even for the case at κD = 1.46

where the shear-thinning was the less intense. It indicates that the same physical phenomenon is probably

involved irrespective of the initial microstructure: the tilting of the director towards the gradient direction.

One can observe some small differences between Ma = 100 and Ma = ∞ for the longest interaction

ranges. However, these differences are not significant and validate the assumption that the suspensions

at these two Mason numbers behave similarly.

Ma = 100 Ma =∞
κD η0

r η∞r τ η0
r η∞r τ

1.46 0.31 0.21 3.33 0.29 0.20 2.71

7.3 0.49 0.20 2.18 0.49 0.19 2.33

14.6 0.59 0.27 2.69 0.51 0.28 2.70

29.2 0.44 0.23 2.67 0.44 0.23 2.67

73 0.43 0.22 2.16 0.43 0.22 2.17

Table 4.1: Relative viscosity once ηr begins to decay (η0
r ) and at the end of the first decay (η∞r ), and

the related relaxation time τ for different initial microstructures depicted by the interaction ranges κD at

Ma =∞ and 100. Note that τ has been made non-dimensional by γ̇.

The first normal stress difference at Ma =∞ is reported in Figure 4.30a. N1 sharply increases and

reaches a peak at γ̇t ≈ 3. Then, it decreases and reaches vanishing or negative values at γ̇t = 13. The

same dynamics were observed in Figure 4.13b for an isolated platelet in unbounded shear flow follow-

ing Jeffery’s orbits. However, N1 in Figure 4.30a does not exhibit successive peaks related to Jeffery’s

period, probably due to the fact that this first peak reflects an instantaneous collective behavior of the par-

ticles aligning with the flow direction. Such behavior is not observed later in the simulation because the

dynamics of the particles is not driven by a collective motion anymore. Moreover, particles spend most of

their time aligned with the flow (see Figure 4.30a), i.e., for angles ranging from−π/4 ≤ φangle ≤ 3π/4,

and the average of N1 over these configurations vanishes. This could explain why the normal stresses

also tend to zero with time (see Figure 4.30a). Concerning the second normal stress difference, one

can observe a sort of overshoot at very short time, then N2 decreases and vanishes at long time within

statistical uncertainty (see Figure 4.30b).

To conclude, at high Péclet and Mason numbers, the microstructure at the beginning of the start-up

shear influences the initial values of the viscosity but does not influence the viscosity and the normal

stress differences at long times. Note that the normal stress differences go to zero at long time. As

expected for clay-like suspensions, aggregated suspensions exhibit a higher initial viscosity. Note that

at low Péclet number and for aggregated systems, a yield stress is often observed for clay suspensions.

The initial configuration does not have any effect on the shear-thinning behavior, as it exhibits the same

relaxation time irrespective of the microstructure. The shear-thinning was found once again related to

the tilting of the normal vector towards the gradient of the flow, in line with most of the literature studies

concerning Laponite suspensions [5, 21, 22, 23] and natural clays such as montmorillonites and beidellite

[20].
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Figure 4.30: Normal stress differences at Ma = ∞ for different initial microstructures related to the

interaction ranges κD.

3.3 Low Mason numbers

The reduction of the Mason number leads to more complex systems because of the increasing competi-

tion between the hydrodynamic and electrostatic interactions. The modifications of the structures formed

during the healing periods is expected to be strongly related to the Mason number.

3.3.1 Ma = 4

At Ma = 4, the electrostatic forces are important enough to influence the microstructure of the suspen-

sions, as shown in Figure 4.31. At κD = 73, particles behave the same at Ma = 4 as at Ma > 100,

i.e. they rotate freely, form some tactoids, and are on average aligned with the flow. For κD = 7.3,

14.6, and 29.2 one can observe several aggregates indicating that the application of the shear broke the

percolated structure observed at rest. Note that at κD = 1.46 we observed a shear-ordering of the sus-

pension. The particles are forming lines in the flow direction and a slightly tilted hexagonal structure

in the gradient-vorticity plane (not shown here), as commonly observed in shear-ordering suspensions

of spheres [11]. However, although particles seem trapped in their cages, we could notice that some of

them were free to rotate due to the shear. Such behavior is reminiscent of the study of Liu and coworkers

[12] who observed a multitude of crystalline structures for long-range electrostatic repulsive rods. In this

study, the particles were trapped in a cage but could rotate (plastic crystal), which was associated with

a modification of the spatial arrangement of the nearest neighbors. We will not extend the discussion

concerning the shear-ordering as we have dedicated a section to this phenomenon later in this chapter

(see section 4).
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(a) κD = 1.46 (b) κD = 7.3 (c) κD = 14.6 (d) κD = 29.2 (e) κD = 73

Figure 4.31: Snapshot of the final microstructures after a start-up shear at Ma = 4 in the flow-gradient

plane.

As expected, at Ma = 4, the relative hydrodynamic viscosity ηhr prevails over the interparticle

viscosity ηfr arising from the interparticle electrostatic interactions (see Figure 4.32). Note that we

observe a slight shear-thinning of ηhr , which can be interpreted as the reduction of the hydrodynamic

radius of the largest aggregates. Indeed, one should recall that hydrodynamic viscosity is due to

long-range interactions, lubrication, and the drag resistance of the particles and aggregates to the

flow. Surprisingly, both the long and very short-range interaction cases, κD = 1.46 and κD = 73

respectively, exhibit a final hydrodynamic viscosity equal to the one observed in the high Mason

regime, i.e., ηhr = 0.3. One explanation could be that particles do not aggregate in under these

conditions for the φ studied. Then, one can observe that the final hydrodynamic viscosity follows

the order ηhr (κD = 14.6) > ηhr (κD = 7.3) ≈ ηhr (κD = 29.2). This difference must be related to the

microstructure of the suspension when sheared. Indeed, shearing an aggregated structure breaks it in

many smaller aggregates, decreasing the hydrodynamic radius of the initial aggregate and, therefore, the

net many-body stresslet. Consequently, it is crucial to study the number of aggregates and their spatial

arrangement to understand the origin of the difference of ηhr .

The number of clusters is equal to ∼ 11 irrespective of the interaction range, but the average number

of particles per cluster varies with κD. It is approximately equal to five at κD = 7.3 and 14.6 and to

three at κD = 29.2. Then, if the number of particles per cluster was the only parameter driving the

hydrodynamic viscosity, we would observe ηhr (κD = 14.6) ≈ ηhr (κD = 7.3) > ηhr (κD = 29.2). That

is why one should also characterize the structure of these aggregates. At κD = 7.3, the OC configuration

is highly favored compared to HOC configuration, in contrast to cases κD = 14.6 and κD = 29.2 whose

particles are in HOC configuration (see Figure 53b). For the same number of particle per cluster, an

aggregate with particles in HOC configuration will have a larger hydrodynamic radius than if the particles

were in OC configuration, and therefore a higher viscosity. Then, although κD = 7.3 generates larger

clusters than κD = 29.2, they probably exhibit a similar hydrodynamic radius, which could explain why

they have the same final hydrodynamic viscosity. To conclude, this qualitative discussion shows that the

viscosity cannot be linked easily to only one parameter such as the number of clusters or the average

number of particle per cluster. We observe that a more complete description of the microstructure of the

suspensions is required, in particular at the level of the internal structure of the clusters that survive the

shear flow. One solution could have been to use the same reasoning as Seto and coworkers [27]. These

authors studied the restructuring of colloidal aggregates composed of attractive spheres in shear flow



Suspensions
undershear

140 CHAPTER 4. RHEOLOGY AND DYNAMICS OF A SUSPENSION OF CLAY-LIKE PARTICLES

using Stokesian Dynamics. In their model, authors take into account neither the lubrication forces nor

the Brownian motion, which are very demanding computationally. To characterize a cluster they used

two parameters, the first one being its radius of gyration, and the second one being its effective volume

fraction (see Appendix A in ref. [27]) used to represent its compaction. The application of this reasoning

for clay-like particles requires larger simulation boxes to allow clusters to rotate, and an increase of the

number of particles to increase the sampling for the statistics of the measured quantities. However, given

the number of particles require and the computational cost of hydrodynamic interactions, such a study is

not doable with the current ASD version.
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Figure 4.32: Relative hydrodynamic (left) and interparticle viscosity (right) at Ma = 4 for different

initial microstructures related to the interaction ranges κD.

Let us now focus on the interparticle viscosity ηfr reported in Figure 4.32b and arising from the xF

stress, i.e., the electrostatic stress. This stress is a monotonic function of the interaction range except for

κD = 1.46 which exhibits strong oscillations with a period of approximately 1 strain unit. To understand

the origin of these oscillations, one should recall that the suspension is ordered, with particles forming

lines in the flow direction and hexagonal structure in the gradient-vorticity plane. Note that particles

are separated roughly by one diameter in both the extensional and gradient to the flow direction. The

double layer of a particle belonging to one of these lines overlaps with the double layer of particles

belonging to another line. Consider only two particles in a shear flow moving on a straight line, parallel

to one another, and in a simulation box with periodic boundaries of length equal to exactly one particle’s

diameter. It is obvious that the electrostatic stress is higher when the distance between the centers of

gravity is minimized, and lower when the distance between the centers is maximized which will generate

oscillations with period commensurate to the size of the box. In the simulations, this corresponds to the

average separation between particles. One can conclude that the oscillations observed in Figure 4.32b

are related to the successive encounters of the double layers of particles in separate lines in this ordered

structure.
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Figure 4.33: Relative viscosity over the entire simulation (left) and the first strain unit (right) at Ma = 4

for different initial microstructures related to the interaction ranges κD.
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Figure 4.34: First (left) and second (right) normal stress differences at Ma = 4.

As the suspensions are considered as non-Brownian, the total relative viscosity reported in

Figure 4.33 is obtained by summing ηhr and ηfr . Focusing attention on the first strain unit (see Figure

4.33b) allows the observation of a well-defined elastic regime preceding the overshoot stress, particularly

visible at low ionic strength. One can conclude that the origin of the overshoot stress is a combination

of the collective tilting of the particles toward the direction of the flow and the break-up of bonds or

electrostatic cages. The overshoot stress is therefore expected to increase with the reduction of the

Mason number. Concerning the elastic regime, note that G′ is independent of the initial structure

even though its origin is totally different. Indeed, one can easily imagine that the elastic component at

κD = 1.46 corresponds to the energy needed to deform the electrostatic cages of the nearest neighbors

since the initial equilibrium structure is a repulsive glass. In contrast, for larger κD, G′ is associated to
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the energy needed to break the most fragile bonds in the initially percolated network.

These assumptions are confirmed by the normal stress differences at κD = 1.46. N1 exhibits a

positive peak at the strain corresponding to the overshoot stress, indicating that the cages are initially

compressed in the direction of the gradient to the flow when the shear reorganizes them and that repulsive

electrostatic forces try to prevent this deformation. Then, N1 relaxes to a lower value after cage breakup

and oscillates around 0.3. N2 seems to slightly decrease with the strain and longer simulations are

necessary to conclude about these normal stresses. For shorter interactions ranges N1 relax to zero after

12 units of strain, indicating a fairly isotropic stress.

3.3.2 Ma = 1

At Ma = 1, the hydrodynamic and the electrostatic forces are comparable. The bonds between the

particles in contact are strengthened, and the energy brought by the flow is not sufficient to break as

many bonds as at Ma = 4 (see Figure 4.35).

At κD = 1.46 the shear-ordered structure is more ordered due to the increase of the electrostatic

interactions, and the particles are not able to rotate around the vorticity axis. Note also that shear brings

a sufficient amount of energy to overpass the repulsive barrier allowing particles to aggregate in OC

configuration. We emphasize that this configuration was not observed at κD = 1.46 without flow in the

third chapter.

At κD = 7.3 and 14.6, the system, which was percolated before the start-up shear, is composed of

approximately three different clusters at the end of the simulation. This increase in the number of clusters

is due to the break-up of some attractive bonds caused by the flow. Note that a kind of layer at the bottom

of the simulation box in Figure 4.35b appeared at κD = 7.3, preventing particles belonging to it to

rotate. At κD = 29.2, the shear allowed the creation of larger aggregates, probably due to the speed-up

of aggregation kinetics (see section 1.2 of the current chapter). At κD = 73, the tactoids disappeared,

and one can observe the formation of some OC configuration.

(a) κD = 1.46 (b) κD = 7.3 (c) κD = 14.6 (d) κD = 29.2 (e) κD = 73

Figure 4.35: Snapshot of the final microstructures in the flow-gradient plane after a start-up shear at

Ma = 1.

Let us now focus on the influence of these structures on the viscosity. Firstly, one should note that ηhr
does not increase in a monotonic fashion with the interaction ranges. If we compare the hydrodynamic

viscosities obtained for κD = 1.46 and κD = 73 at Ma = 1 with the ones observed at Ma = 4

(compare Figure 4.32a and 4.36a), it only increases from ηhr = 0.3 to 0.35. However, the increase
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with the reduction of the Mason number is more striking at κD = 29.2, where ηhr increases from 0.35

to 0.6. This increase can be related to the formation of larger clusters due to the stronger electrostatic

interactions and therefore to the increase of the average hydrodynamic radius of the aggregates. Although

the hydrodynamic viscosity is relatively noisy, we observed that interaction ranges leading to complete

aggregation which correspond to κD = 7.3, 14.6 and 29.2 exhibit a similar final hydrodynamic relative

viscosity ≈ 0.6, while the other ranges exhibit a smaller hydrodynamic viscosity.
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Figure 4.36: Relative hydrodynamic (left) and interparticle viscosity (right) at Ma = 1 for different

initial microstructures related to the interaction ranges κD.

As expected, the electrostatic stress is more impacted by the reduction of the Mason number (see

Figure 4.36b). The ηfr of the suspension with long-range interactions exhibits a sharp and very intense

peak at the same strain than at Ma = 4 indicating a higher G′ than at higher Mason number. Then,

ηfr decreases toward ≈ 0.2 and oscillates around this value as observed for Ma = 4. Note that the

interparticle viscosity is, on average, the same for all the interaction ranges except at κD = 7.3. Such a

result was not obvious a priori, as we would have expected to observe a higher interparticle viscosity for

longer interaction ranges, as it is commonly observed for a repulsive system of spherical particles (see

the study from Nazockdast & Morris [18]). Here, contrary to these repulsive systems, interactions are

essentially attractive for most interaction ranges. It is possible that under strong shear flow the important

parameter is the strength of interactions at contact, which controls the erosion of aggregates and their

final size. It could explain why the viscosity does not depend that much on the range of interactions. The

only purely repulsive system we considered is κD = 1.46 and it has the peculiarity to shear-order so its

viscosity cannot be compared directly to that of the other systems.

To summarize, the total viscosity increases with the reduction of the Mason number but is still domi-

nated by the hydrodynamic viscosity. However, we have seen that ηhr also depends strongly on the Mason

number and, therefore, on the electrostatic interactions.

Let us now focus on the normal stress differences reported in Figure 4.37. The first normal stress

difference (see Figure 4.37a) is on average equal to zero for suspensions having κD > 14.6. The increase
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of the interaction range leads to a small positive value of N1 with strong oscillations. One should be

aware that the electrostatic first normal stress difference is negative while the hydrodynamic contribution

is positive. The oscillations arise only from the electrostatic contributions. The second normal stress

differences is, on average, equal to zero for κD ≥ 14.6. For κD = 7.3 it was equal to zero until the last

five strain units, where it seems to decrease. Once again, longer simulations are required to conclude on

its behavior. At κD = 1.46, N2 shows a comparable intensity to N1 but its precise value depends on the

tilt of the cristal relative to the simulation box and will thus not be commented further. To resume, both

N1 and N2 are, on average, equal to zero for κD ≥ 14.6 indicating that the stresses of these systems are

fairly isotropic.
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Figure 4.37: First (left) and second (right) normal stress differences at Ma = 1.

3.3.3 Ma = 0.25

At Ma = 0.25, the electrostatic forces strongly prevail over hydrodynamic forces. The Mason number

reduction does not strongly influence the microstructure at κD = 1.46, as the long-range repulsions

already determined it at Ma = 1. However, one can note that the energy brought by the flow is not

important enough anymore to overpass the energy barrier allowing particles to aggregate with an OC

configuration. Note that we do not observe the same spatial configuration of the particle belonging to

the bottom string in Figure 4.38a compared to Figure 4.35a due to the fact that this string is composed

of four particles at Ma = 0.25 and five particles at Ma = 1. For the ranges κD = 7.3 and 14.6 one can

observe two distinct aggregates, one above the other. Note that particles percolate in the flow direction

for the top clusters and both the extensional and vorticity direction for the bottom cluster. One could

wonder if the clusters do not aggregate due to the strong repulsions. Such behavior was already observed

for a system of spherical particles with long-range interactions and short-range attractions by Varga &

Swan [28] and it also resembles the smectic B phase observed by Delhorme and coworkers [6, 7]. At

κD = 29.2, one can observe a unique aggregate, while at the shortest interaction range, particles form a

multitude of small-sized clusters.
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(a) κD = 1.46 (b) κD = 7.3 (c) κD = 14.6 (d) κD = 29.2 (e) κD = 73

Figure 4.38: Snapshot of the final microstructures after a start-up shear atMa = 0.25 in the flow-gradient

plane.

Concerning the viscosities (see Figure 4.39), note that the hydrodynamic viscosity is higher at

κD = 7.3 than for shorter interaction ranges leading also to aggregated structures, and at the same time

the electrostatic viscosity is smaller than that observed for any other interaction ranges. It can seem quite

surprising at first sight. This system has a very special structure with aggregated planes sliding one over

the other, so we could understand these viscosities by imagining solid-like planes with hydrodynamic

forces tearing particles apart but with a structure stabilized by the electrostatic interactions. The viscous

dissipation is therefore concentrated in the shear flow between the planes. This kind of structure is quite

reminiscent of the shear-banding phenomenon that can be observed in dense hard sphere suspensions.

One can also wonder if the hydrodynamic viscosity could be related to the microstructure observed. At

κD = 29.2, we observed the successive formation and destruction of a percolated structure, and the

number of clusters was varying from three to one, while the average number of neighbors was remaining

approximately constant and equal to 2.7. At κD = 14.6 and κD = 7.3, the suspensions are composed of

two distinct clusters, one with 44 (34) particles and the other 16 (26) particles at κD = 14.6 (7.3). Sur-

prisingly, the suspension with the biggest cluster has a lower hydrodynamic viscosity which highlights

the point made above that the hydrodynamic viscosity does not only depend on the radius of the largest

cluster. We also observed that 〈Nnei〉 was equal to 2.9 for κD = 14.6 and 3.3 for κD = 7.3. Therefore,

we observe a correlation between the hydrodynamic viscosity and the average number of neighbors, as a

higher viscosity seems related to denser clusters.

The interparticle viscosity behaves very similar at Ma = 0.25 and at Ma = 1 for the interaction

ranges shorter than κD = 1.46 (see Figure 4.39b). In contrast, ηfr at κD = 1.46 is four times higher at

Ma = 0.25 than at Ma = 1. This is not a surprising result, given that ηfr arises mainly from repulsive

interactions. Then increasing the electrostatic force by four also increases the xF stress by four. Note that

the overshoot stress is observed once again after 0.48 strain units, as for Ma = 1 and 4. Consequently,

as the viscosity at κD = 1.46 is driven by the electrostatic forces, the elasticity of the suspension, which

corresponds to the deformation of the electrostatic cages, also increases by a factor four. For repulsive

systems, the elasticity is directly related to the Mason number.
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Figure 4.39: Relative hydrodynamic (left) and interparticle viscosity (right) at Ma = 0.25 for different

initial microstructures related to the interaction ranges κD.
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Figure 4.40: First (left) and second (right) normal stress differences at Ma = 0.25.

The normal stress differences are reported in Figure 4.40. N1 is equal to zero for the shorter inter-

action ranges indicating fairly isotropic stresses in the flow and gradient direction, and exhibits positive

values for κD = 14.6, 7.3 and a strong negative value for κD = 1.46. Note that N1 at κD = 14.6

and κD = 7.3 exhibit similar value of ∼ 2.65. One could wonder if the first normal stress differences

observed at such ranges arises from the flow-induced stretching exerted on the two separate aggregates

which are percolated in the flow direction (see Figure 4.38b and 4.38c) and sliding one over the other.

The origin of the strong negative value of N1 at κD = 1.46 comes from the shear-ordering of the sys-

tem. It will be discussed latter in section 4.2.1 that the hydrodynamic component of N1 is positive, while

the electrostatic interactions highly compress the system in the flow direction and generate a negative

Nf
1 . Previously, at Ma = 1, N1 was positive because hydrodynamic interactions slightly prevailed over
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electrostatic interactions which is not the case at Ma = 0.25. That is why we can observe a change of

the sign of N1 while decreasing the Mason number. The second normal stress vanishes for all the ranges

of interactions except for κD = 1.46 where it seems to keep evolving. Simulations in larger domains,

with different initial configurations should be undertaken in order to analyze normal stress differences

properly.

3.4 Summary

In this section we have studied the rheological response of suspensions of AR7 clay-like platelets with

different initial microstructures to start-up shear while varying the Mason number, i.e., the strength of

electrostatic interactions relative to the shear flow as well as the interaction range.

When the electrostatic forces are insignificant compared to hydrodynamics, the initial microstructure

only influences the initial viscosity value. However, it is not involved in the shear-thinning dynamics

because the flow is strong enough to break all the interparticle bonds instantaneously. The shear-thinning

was related to the tilting of the particles toward the direction of the flow with the same relaxation time

irrespective of the initial microstructure.

When the Mason number is reduced, electrostatic forces strongly influence both the microstructure

and the stresses of the suspensions. We observe a shear-ordering of the suspension for long-range inter-

actions corresponding to a repulsive system, which will be studied in the next section. We found that

the corresponding viscosity was following a power law ηr ∝ γ̇−0.9, in line with the results from Paineau

and coworkers on suspensions of beidellite at low ionic strength [20]. For smaller interaction ranges,

we observed a scaling in ηr ∝ γ̇−0.25 in fair agreement with the results from Paineau and coworkers

[20] for very dilute suspension but underestimated compared to the scaling observed by Abou et al. [1]

on Laponite suspensions (one nematic and the other percolated). Further investigations are necessary to

study the likely dependence of the power-law coefficient on the volume fraction studied and to clarify

the effect of the aspect ratio of the colloids.

The elastic behavior of a suspension could be related to the Mason number for a repulsive sys-

tem (long-range interactions). For low Mason numbers, the first normal stress was found positive at

4 > Ma ≥ 1 and negative below. The electrostatic first normal stress difference is always negative while

the hydrodynamic normal stress difference is always positive. Thus, the sign of the first normal stress

difference depends strongly on the ratio between electrostatic and hydrodynamic forces. Therefore it is

not surprising to observe a sign inversion of N1 close to Ma = 1. In contrast, the second normal stress

seem to vanishes and further investigations are require to study it properly.

Using the ASD method, the origin of the stresses could be studied, and the main conclusion is that

it is very difficult, maybe impossible, to determine a unique parameter which could allow to foresee

the viscosity of a system with both a charge and a shape anisotropy. Indeed the variation of either the

interaction range or the Mason number strongly influences the microstructure of the suspensions and

even changes the physical mechanisms involved in the systems response. For example, the reduction of

κD could melt the glassy state observed at very long-range interactions, leading to a percolated structure,

or even a liquid-like structure when particles behave as hard sticky platelets. The stresses involved in

these suspensions would be dominated either by the electrostatic interactions or by the hydrodynamic
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interactions. Moreover, even for a system dominated by hydrodynamic forces, we have shown that the

stresses related to the latter are not only dependent on the state of the suspensions (percolated or not),

but also on the size of the clusters and on their own spatial arrangement.

To summarize, one important result of this study is the important complexity introduced by

anisotropic interactions. In more classical systems such as repulsive spheres, there is hope to relate

variations of the mechanical response of the system to some physico-chemical parameter because the

system hardly changes its out of equilibrium structure, or "phase". Although a phase change can happen

in some circumstances, there are large domains in the parameter space in which the microstructure

is only deformed, and therefore one might be able to relate a mechanical response to a variation of

a physico-chemical parameter. In the present system, the anisotropy of interactions and the fact that

they change from repulsive to attractive with salt concentration makes the system prone to frequent and

drastic microstructure changes, or say, "phase changes". Consequently, understanding and modeling the

mechanical response of such systems should be done using small parameter variations, taking care to

avoid unexpected major microstructure changes. In the next section, we will focus on one peculiar phase

that could be obtained only by shearing the suspension initially in a Wigner glass state.
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4 Shear-induced ordering

In this section, we study the formation and the relaxation of a shear-ordered structure from an initial

Wigner glass state. This ordering is only observed for orientable objects experiencing long-range inter-

actions, which corresponds to a suspension ofAR7 clay-like particles at κD = 1.46. The shearing of the

Wigner glass structure leads to the formation of strings in the flow direction and a hexagonal structure

in the gradient-vorticity plane with angular correlations between particles. To our knowledge, such a

shear-ordering of clay-like particles into a two-dimensional crystal of strings was observed neither using

simulations nor experimentally. Indeed, most of the simulations of particles with both shape and charge

anisotropy leading to ordered systems were carried out without flow using MC simulations. One can

cite for example the study from Delhorme et al. [8] on clay-like particles in which the suspensions ex-

hibit crystalline structures for volume fraction above 0.2, or the work from Jabbari et al. [10] where a

columnar hexagonal crystal is observed at high density and high ionic strength for purely repulsive and

infinitely thin platelets accounting for anisotropy of the repulsions.

From a more general point of view, the study of colloidal crystals goes back to the early eighties

with, for example, the work from Ackerson and Clark [4]. These authors experimentally observed that

highly repulsive spheres ordered into body-centered cubic crystal at rest (BCC crystal) formed a two-

dimensional hexagonal close-packed crystal at high shear rate with strings along the flow direction, due to

the competition of the viscous and the electrostatic forces. If the applied shear is too strong, the structure

can melt (this obviously depends on the volume fraction considered). The observation of the evolution of

an ordered structure toward another ordered structure under shear is quite "intuitive". More surprisingly,

several authors reported the oscillatory-shear-induced ordering of suspensions originally in a liquid-

like state. Ackerson and Pusey [3] observed for a suspension of hard-spheres (PMMA) the formation

of face-centered cubic structure (fcc) owing to oscillatory-shear flow. Such a crystalline structure was

also observed for repulsive silica spheres by Yan and coworkers [31] at lower volume fraction. The

formation of ordered structure is, therefore, typically associated with particles that are either forced

to interact due to flow or having strong repulsive interactions corresponding to an important effective

volume fraction. The complexity of experimental studies of shear-induced structures lies in the fact

that it is challenging to relate the observed colloidal structure to the balance between the Brownian,

hydrodynamic, and interparticle interactions [29].

Using the ASD method, we are able to understand how the hydrodynamic and electrostatic interac-

tions influence the structure of clay-like particles, without and with background shear flow. The forces

involved during the transition from a Wigner glass to the ordered structure can be analyzed, and the

interesting question of the history dependence of ordered suspensions after the cessation of the flow can

be answered.

4.1 Microstructure under flow

To provide an insight of the shear-ordered structure obtained κD = 1.46, we first study its microstruc-

ture. Simulation is carry out over 30 strain units atMa = 1 and Pe� 1 to only focus on the influence of

the shear flow. The structure obtained will be compared to the cases κD = 7.3 and κD = 14.6 leading
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to aggregated structures, with particles in OC configuration and with particles mainly in HOC configura-

tion respectively. In contrast to the classical structure deformation observed for other interaction ranges,

when shear is applied to the glassy system, strong ordering is observed, as shown in Figure 4.50d. For

a specific size simulation box studied, the structure is composed of 13 strings of four particles each, one

string of three particles, and one string of five particles. The string composed of five particles is the only

string with the totality of its particles in contact (see the bottom line in light blue color with particles

in OC configuration in Figure 4.41b). This non-identical number of particles per line can be seen as a

crystalline defect. Defaults are also present at Ma = 4 (12 lines with four particles and four lines with

three particles) but disappear at Ma = 0.25, where 15 lines of exactly four particles each are observed.

Note that the modification of the Mason number also influences the orientation of the particles. For

example, at Ma = 4 one can observe the rotation of some particles around the vorticity axis, while for

lower Mason number, rotations are forbidden by the strong electrostatic stresses. A complete description

of the ordered structure at Ma = 1 is presented in the following paragraphs.

(a) Rest, x-y plane (b) Shear, y-z plane

(c) Rest, x-y plane (d) Shear, y-z plane

Figure 4.41: Snapshot at rest just before the start-up shear (a,c) and average of the last five strain units

(b,d) for κD = 1.46.
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4.1.1 Pair distribution function

The pair distribution function was computed in both the x-y and y-z planes. The mathematical descrip-

tion of the two-dimensional pair distribution function used here can be found in Appendix 3. The pair

distribution of the suspension at rest is averaged over a time 5 a2/(2D0) and over 25 < γ̇t < 30 under

flow.

In Figure 4.42 we report the pair distribution functions in the x-y plane at rest (first column) and

under flow (second column) for κD = 1.46, 7.3, 14.6.

Concerning the structure at rest, one can observe that the increase of κD reduces the depletion zone

around the central particle. One should recall from the third chapter that suspensions at κD = 7.3

and κD = 14.6 are isotropic which is consistent with Figures 4.42c and 4.42e. The suspension at

κD = 1.46 is nematic, and its radial distribution function exhibits a broad, intense peak between 2.2R

and 2.5R. We would have expected the positional isotropy of this Wigner glass structure. However, note

that the spots centered around (1, 2) and the symmetry values at (−1,−2). These spots seem to break

the expected isotropy. While one could argue that this may be due to weak shear flow, in the rest period,

the flow is Pe = 3.86 10−3 and is too small to displace the particles sufficiently to yield this structure.

Instead, one should recall that such suspensions have an almost instantaneous ergodicity breaking time

and are consequently very sensitive to the initialization of the particles. Therefore we assume that the

spots mentioned before came from the lack of sampling events. Numerous simulations with random

initialization are certainly required to observe an isotropic structure in a particular plane.

When these structures are sheared, the competition between electrostatic forces and hydrodynamic

forces leads to new structures which involve different physical mechanisms as a function of the inter-

action ranges. The glassy system evolves toward a shear-ordered state and forms strings in the flow

direction visible in the pair distribution function (see Figure 4.42b). Only one string is observed due to

the fact that the crystalline structure in the gradient-vorticity direction is slightly tilted relative to planes

of fixed y. Note that due to the crystalline structure, the pair distribution function exhibits unusually large

values under shear. We stress that for such a structure, the pair distribution function must be analyzed

while taking into account the structure observed in the snapshots. Indeed, as we only consider a limited

volume for the bins, long-range correlation can sometimes not be captured by the pair distribution func-

tion. For example, the spots 1 and 4 of coordinates (1.57, 0) and (3.14, 0) correspond to the OC string

line observed in the bottom line of Figure 4.41b. This string is not perfectly aligned with the shear, that is

why the spot 4 is less intense and the pair distribution function is not able to capture the high probability

of presence. Spot 3 is located with center in (2.6, 0), which can easily be related to the structure observed

in the box. Indeed, the length of the box is 7.82 R, and we have seen that one of the strings had only

three particles on its line. Hence 7.82/3.0 ≈ 2.6 which is consistent with the position of the spot and

also to the fact that this point has the lowest statistics. Finally, spots 2 and 5 of coordinates (1.97, 0)

and (3.94, 0) correspond to the 14 strings composed of four platelets. Note that the distance between

two particles is less than twice the radius, which can be surprising at first sight. However, one should

recall that particles are not perfectly spherical and are, in reality, closer to ellipsoidal. We have chosen

to use the largest radius as a reference, and the semi-axis of the ellipsoid are (R, 0.88 R). That is why
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particles can be at a distance of 1.97 R on average without being in contact. Note that the possibility

of having particles in OC configuration is not considered owing to the snapshots of the suspension (see

Figure 4.41b and 4.41c). As already mentioned, reducing the Mason number prevents structural defects

in the crystal from occurring and therefore spots 1, 3, and 4 disappear at Ma = 0.25 (not shown here).

To summarize, each position of the spots observed in Figure 4.42b and their intensity can be related to

the structure observed in the snapshots.

In comparison, the percolated structures (see Figure 4.42d and 4.42f) appear fairly uniform in the y

direction and have a higher probability of presence in the extensional direction. Note that the depletion

areas visible at rest for κD = 7.3 and 14.6 are still visible, due to the strong electrostatic interactions.

These interactions are able to prevent particles from approaching too close to one another and to preserve

some aggregated structures corresponding to the circles of high probability with a radius of R for κD =

14.6 and 1.35 R for κD = 7.3.

Let us now focus on the pair distribution functions in the gradient-vorticity, or y-z, plane. In general,

the percolated structures at rest are quite similar to the ones observed in the x-y plane, which is consistent

with the fact that these suspensions are isotropic. The structure in the y-z plane at κD = 1.46 is slightly

different from that observed in the x-y plane, but as explained earlier, this difference is certainly due to

the fact that the final structure of suspension with such long-range repulsions is strongly related to the

initial configuration of the particles and might disappear if the pair distribution functions were averaged

over a large number of simulations.

When sheared, the Wigner glass state evolves toward a hexagonal structure with spots separated by

a distance of 2.1 R which is roughly of the same order of magnitude as the separation of the spots 2

and 5 in the x-y plane in Figure 4.42b. In contrast to what was observed in the flow-gradient plane,

the structure does not possess any defect, and we observe a perfect hexagonal lattice. Each spot of high

intensity corresponds to a string of particles observed in Figure 4.42b. Only three spots are numbered as

the others are enforced by the symmetry of the pair distribution function.

At κD = 7.3, a higher probability area is located in the vorticity direction at 1.35 R, indicating

the formation of some layers with particles in OC configuration reminiscent of Smectic B phase. This

observation is consistent with the presence of layers at large y distances. In contrast, at κD = 14.6, the

suspension appears fairly uniform at a large distance, and with particles in HOC configuration at shorter

distances represented by the high density crown located at r = R. Note that some particles are in OC

configuration, as shown by the probability area colored in light blue in the vorticity direction.

We could observe that shearing a Wigner glass leads to a more ordered structure, with particles

forming strings in the flow direction and hexagonal structure in the plane perpendicular to the flow. This

behavior is not observed for aggregated suspensions, which allows us to conclude that the shear-ordering

transition occurs between κD = 1.46 and κD = 7.3.
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(a) Rest, κD = 1.46 (b) Shear, κD = 1.46

(c) Rest, κD = 7.3 (d) Shear, κD = 7.3

(e) Rest, κD = 14.6 (f) Shear, κD = 14.6

Figure 4.42: Microstructure at rest before the start-up shear (first column) and averaged of the last five

strain units (second column) for different interaction ranges in the x-y plane corresponding to the flow

direction and its gradient.
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(a) Rest, κD = 1.46 (b) Shear, κD = 1.46

(c) Rest, κD = 7.3 (d) Shear, κD = 7.3

(e) Rest, κD = 14.6 (f) Shear, κD = 14.6

Figure 4.43: Microstructure at rest just before the start-up shear (first column) and average of the last

five strain units (second column) for different interaction ranges in the y-z plane corresponding to the

gradient-vorticity plane.
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4.1.2 Static structure factor

We consider the microstructure of sheared suspensions using the static structure factor in both the x-y

and y-z planes. Such data are related to the form which might be extracted from scattering experiments,

and thus are included for completeness, although the information is present in the pair distribution, as

g and SL are related by Fourier transformation (see section 1.4 chapter 3). The scattering vector in the

gradient direction is characterized by q = (0, qy, 0) and in the vorticity direction by q = (0, 0, qz). All

the data are not plotted on the same graphic due to the huge difference in the peak intensities as a function

of the interaction ranges.

The projected structure factors for κD = 1.46 are reported in Figure 4.44 with a logarithmic y-scale

while insets are the same curves but with a standard linear y-scale. The values of lim
q→0

S(q) are well

below one for qy and qz indicating that the system has low compressibility in both directions. Concerning

the projection on the gradient direction, one can observe two strong peaks located at qyR = 12.1 and

qyR = 24.2, respectively (see Figure 4.44a), indicating a crystalline structure. Note that similar peaks

are observed for SL(qz) but with an intensity approximately 20% lower (see Figure 4.44b), and the

presence of two shoulders around the main peak and the secondary peak, these defaults can be attributed

to the tilting of the structure in the y-z plane.
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Figure 4.44: Projections of the static structure factor for κD = 1.46, averaged over 25 ≤ γ̇t ≤ 30 on

(left) velocity gradient axis and (right) the vorticity axis. The insets reproduce the curves with a linear

y-scale. The dashed lines are added for eyes guidance.

The static structure factors in the gradient direction exhibit for the aggregated structures sharp peaks

at 1.75 qyR and 2.62 qyR for κD = 14.6 and 7.3 respectively indicating the presence of a structure

along the x-y plane. Note that only SL(qy) at κD = 7.3 exhibits a peak at low qz value.
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Figure 4.45: Projections of the static structure factor for κD = 7.3 and 14.6 averaged over 25 ≤ γ̇t ≤ 30

on (left) velocity gradient axis and (right) the vorticity axis.

4.1.3 Orientational correlations

Let us now focus on the orientational correlations for the shear-ordered case, i.e., κD = 1.46. The

probability of the relative angle between a pair of particles is computed between the particle centered at

(0, 0) in the pair distribution function (see Figure 4.42b and 4.43b), and the particles belonging to the

five numbered spots in the x-y plane and the three numbered spots in the y-z plane. As expected from

the analysis of the pair distribution function in the x-y plane particles belonging to spots 1 and 4 are in

OC configuration as shown in Figure 4.46a. We recall that particles belonging to spot 3 are part of the

string comprising only three particles. One can see in Figure 4.46a that these particles do not have a

strong orientational correlation. Concerning the particles located in spots 2 and 5 which are the more

characteristic of the ordered phase, we observe that angles below 10 degrees or around 60 degrees are

greatly favored. It appears that denser strings (i.e. strings with particles packed more closely in the x

direction) exhibit stronger orientational ordering.

The orientational correlation in the y-z plane is striking irrespective of the spot examined. Particles

are either close to the parallel, ≈ 8 degrees, or with an angle of 60 degrees. One can assume that such a

structure allows the suspension to minimize the electrostatic interactions between particles belonging to

the same string and between the different strings of the hexagonal structure.

4.1.4 Summary

In this section, we have reported on a study of the microstructure a shear-ordered suspension. The tran-

sition from an aggregated state under flow to a shear-ordered state occurs between κD = 7.3 and 1.46.

At κD = 1.46, particles arrange and form strings in the flow direction and a hexagonal structure in the

plane perpendicular to the flow. Note that for Ma ≥ 1, the number of particles per string is not constant.

This can be considered as a crystalline defect. At Ma = 0.25, all these defects disappear, and each

string is composed of four particles. We could observe that the presence of defects at Ma = 1 influences
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Figure 4.46: Orientational correlations for κD = 1.46 averaged over 25 ≤ γ̇t ≤ 30 on (left) flow-

gradient plane and (right) the gradient-vorticity plane.

the orientational correlations between the particles as no correlation is observed when the number of

particles per string is lower than four. In this case the structure is a plastic crystal. In contrast, strings

with four particles exhibit two favored angles, 8 degrees, and 60 degrees, and the unique string with five

particles has its particles in OC configuration and therefore with a strong orientational correlation. In

these conditions, the structure is closer to a true crystal with defects.

4.2 Rheological behavior

Now, let us focus on the rheological behavior the suspension exhibiting shear-ordering. Without back-

ground flow, the suspension arranges into a Wigner glass state which is a condition to observe a shear-

ordered structure in our conditions of interest, φ = 0.05, Ma = 1 and Pe� 1. From a structural point

of view, when such a suspension is sheared, the flow can bring additional energy to break some cages,

which can help to reach a lower energy state.

4.2.1 Evolution toward the ordered state

To relate the structural transition to the stresses observed in the suspension, the viscosity, and the normal

stress differences are reported in Figure 4.47 as a function of time in a startup-shear experiment. One

can observe that ηhr slightly increases from 0.27 at zero strain to 0.35 at the end of the simulation (see

Figure 4.47a) which can probably related to the formation of the strings in the flow direction. Indeed,

some particles are very close to another, and we can easily imagine that a small motion induced by

long-range electrostatic interactions can generate lubrication and, therefore, slightly increases the ηhr .

Note that after eight strain units, the relative hydrodynamic viscosity is, on average, higher than the

interparticle relative viscosity arising from the xF electrostatic stress between the particles.

For the viscosity component arising from electrostatic interactions ηfr at low strain, one can notice

an elastic regime and overshoot stress almost equal to ten times ηhr at the same strain. Over this period,
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the stress of the suspension mainly originates from the strong long-range electrostatic interactions and

corresponds to the transition from a Wigner glass state to the crystalline structure described in section

4.1. Then, once the structure is formed, the electrostatic stresses relax and ηfr oscillates between 0 and

0.41. One should recall that these oscillations are related to the structure of the suspension. Indeed, the

distance between particles belonging to the same string and two distinct strings is roughly equal 2 R,

which is consistent with the period of oscillation of one strain observed on ηfr .
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Figure 4.47: Relative viscosity (left) and the normal stresses differences (right) for κD = 1.46 and

Ma = 1.

The evolution from a Wigner glass toward the ordered state is also noticeable on both normal stress

differences N1 and N2. For example, Nh
2 exhibits a lower value during this period compared to the rest

of the simulation, while Nh
1 linearly increases and reaches a positive plateau at the end of this period,

i.e., after eight strain units. The behavior of the first normal stress difference can be explained as follows:

particles arrange in strings in the flow direction and, one can imagine that hydrodynamic interactions tend

to tear these particles apart. Consequently, the hydrodynamic forces tend to generate a higher tension in

the flow direction than in the gradient direction, thus explaining the negative sign of Nf
1 .

Concerning the normal stress differences due to colloidal forces, one can relate the overshoot stress

observed in Figure 4.47a to the positive peak of Nf
1 in Figure 4.47b. When the suspension is sheared,

the strong deformation of the double layers generate a significant force on the gradient direction, pushing

the plates of the rheometer apart and allowing particles to arrange in a crystal structure. Over these first

strain units the system is "dilatant". Then Nf
1 relaxes and reaches a negative plateau while oscillating

with the same period of one strain unit mentioned earlier for the relative viscosity. The absolute value

of the plateau is slightly lower than the one observed for Nh
1 . Therefore Nh

1 and Nf
1 almost compensate

and the total first normal stress difference appears slightly positive, as observed in the previous section

(see Figure 4.37a). Relating the final negative value of Nf
1 to the microstructure is not obvious a priori.

Indeed, the center of gravities of particles belonging to a string have a similar separation than between

two strings (1.95 R in the string and 2.1 R between two strings). However, the distance between two
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charged sites of distinct particles is way shorter on average inside a string than between two strings.

Then, electrostatic repulsions generate a stronger compression along the flow direction than the gradient

direction.

The same kind of behavior is observed for Nf
2 : it first exhibits a small positive overshoot at roughly

the same time as Nf
1 , then it decreases and reaches a first plateau at approximately −0.7, and finally

decreases toward a second plateau at −0.46. As already mentioned, we assume that Nf
2 is related to

the tilt of the hexagonal structure which could explain why we observe that Nf
1 and Nf

2 are strongly

dependent: when the average of one of the normal stress difference increases, the other decreases by

the same amount. To summarize, once the system is structured, Nh
1 is positive and Nf

1 is negative:

the hydrodynamic forces generate a tension in the flow direction which is almost compensated by the

compression arising from the electrostatic repulsions. Nf
1 is approximately equal to zero and Nf

2 is

negative. We assume that Nf
2 depends on the tilting of the hexagonal structure. As this tilt is strongly

related to the conditions of simulation (size of the box, number of particles) its value should not be

generalized to ordered system.

4.2.2 Rest and recovery

After 30 units of shear, we stopped the flow and simulated the evolution of the structure over a time period

of 25 a2/(2D0). During this period of recovery, particles are not subjected to shear forces anymore and

are able to arrange again spatially. Hereafter we will see that contrary to what could be observed for

shorter interaction ranges (see section 2 concerning the thixotropic behavior), the suspension is not able

to recover the initial spatial arrangement obtained from the first equilibration simulation at zero shear.

To provide an overview of the structural evolution from the initial state at zero shear to the end of

the period of recovery we have reported the corresponding snapshots in Figure 4.48. Note that the initial

state at zero shear is referred to as the "period of rest", while the period of recovery after the period of

shear is referred to as "recovery". At first sight, particles have conserved their positional order during the

period of recovery and exhibit a new orientational correlation as most of them are now aligned.

To analyze the evolution of the structure during the period of recovery quantitatively, the pair distri-

bution functions in the x-y plane are reported in Figures 4.49 (a,b), and in the y-z plane in Figures 4.49

(c,d). Concerning the positional order in the x-y plane, one can observe that spots 1 and 4 are slightly less

intense at the end of the period of recovery than during the shear. Recall that these spots are related to

the particles remaining in OC configuration. After the cessation of the flow, these particles slightly lose

their long-range alignment with the x-axis (see the bottom left corner in Figures 4.43b and 4.48f). Given

that we used a bin of 0.27 R, a small displacement can indeed lead to a decrease in statistics, especially

when only five particles built them. The spots 2 and 5 appear of the same intensity as at the end of the

shear, indicating that particles have, on average, conserved their stings structure, which is consistent with

the observation of the snapshot in Figure 4.48c. Note the presence of new spots located in (2.96, 1.93),

(−2.92, 1.95) and their symmetries which indicates that the period of recovery allowed a few particles

to align slightly better in the flow-gradient plane (recall that particles must belong to a specific bin to be

accounted for in the pair distribution function). Such spots might be artifacts of the limited statistics.
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(a) Rest, x-y plane (b) Shear, x-y plane (c) Recovery, x-y plane

(d) Rest, y-z plane (e) Shear, y-z plane (f) Recovery, y-z plane

Figure 4.48: Microstructure at rest just before the start-up shear (a,d), averaged of the last five strain

units (c,e) and at the end of a period of recovery (c,f) for κD = 1.46.

Note that the hexagonal order in the y-z plane is conserved. However, one can observe that spots

1 and 2 are now less intense than the spot 3. The latter corresponds to the fact that particles are still

forming a tilted plane even at the end of the period of recovery (see Figure 4.48e and 4.48f). The loss

of statistics for spots 1 and 2 is related to the perturbation of the structure due to the string circled in red

in Figure 4.48f and composed of three particles. This defect weakens the structure and generates small

displacements of particles belonging to the neighbors’ strings. Note that the perturbation of the order

does not seem to be propagated at a long-range (see the spots in (1.1, 3.68) and (3.67, 0.95)).

To summarize, the positional order in both the x-y and y-z plane acquired during the shearing period

is fairly well conserved during the period of recovery. As expected in crystalline structures, the presence

of defects weakens the structure and slightly disturbs the order of the particles closest to the defect.
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(a) Shear, x-y plane (b) Recovery, x-y plane

(c) Shear, y-z plane (d) Recovery, y-z plane

Figure 4.49: Evolution of the pair distribution function for a suspension of highly repulsive particles

from (a) and (b) the end of the period of shear and (c) and (d) the end of the period of recovery.

Let us focus on the angle distribution for particles belonging to the different spots previously men-

tioned. Concerning the spots in the x-y plane (see Figure 4.50), note that particles belonging to spots 2

and 4 are now mostly aligned with one another which is consistent with the qualitative observation of

the snapshots. As particles belonging to spot 3 are only three in the string, they are more free to rotate

due to lower electrostatic stresses compared to denser strings, which explains why we do not observe

any angular correlation. In general, the angular correlations have changed compared to the end of the

shear period, and we can observe that angles of 60 degrees are now way less favored compared to angles

below 10 degrees (see Figure 4.50). Indeed, most of the particles are aligned at the end of the period of

recovery except the particles of the top left corner in Figure 4.48f, which are influenced by the presence

of the crystalline defect. This alignment of the particles generates a higher nematic order (Snem = 0.81)

than the one observed after 50 a2/(2D0) of the first rest period (Snem = 0.50). These observations
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point out first that the suspension cannot recover the same glassy state observed during the first period of

rest, for the conditions and the simulation time investigated, and second that the shear-induced structure

continues to age during the recovery period. So the shear-induced structure is clearly not optimal in

terms of energy, but it is a starting point that allows a better energy minimization during a subsequent

equilibration period.
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Figure 4.50: Angle distribution for the spots in the x-y plane (a,b) and y-z plane (c,d).

Indeed, the state reached owing to the shear possesses a lower isotropic electrostatic pressure, as

shown in Figure 4.51a than the Wigner glass (first period of rest). Note that during the Wigner glass state

exhibits a fairly isotropic pressure (P (i, i) ≈ 1), while the crystal obtained owing to the period of shear

has a moderately anisotropic pressure along (1, 1) and (2, 2) corresponding to the flow and the gradient

directions during the period of shear. Therefore, we can conclude that the electrostatic pressure of the

system was reduced by the ordering of the suspension. One could wonder if the system might reach

lower energy state after several cycles of shear and rest.
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Figure 4.51: Isotropic pressure (left) and the normalized normal stresses arising from electrostatic inter-

actions of a suspension at κD = 1.46 over one cycle of transient flow composed of two periods of rest

and one period of shear.

To summarize, the positional order is conserved during the period of recovery, or at least evolves

too slowly to be observed during the simulation time. In contrast, the orientational order changes more

quickly, and particles align with one another to form parallel planes but not a smectic B phase that is

quite close in terms of structure. The final spatial configuration reached after the period of recovery is

really different from the one observed at the end of the first simulation at zero shear. Therefore, such

a system shows strong memory effects, and is not thixotropic contrary to what was observed for lower

interaction ranges (see section 2 on thixotropy). If the suspension were sheared again, it should not

exhibit the strong overshoot stress observed in Figure 4.47a and we can also assume that the suspension

should exhibit lower yield stress than during the first shear. Unfortunately, this simulation could not be

carried out and analyzed by the time the writing of this manuscript was finished.

4.3 Summary

In this section we described in detail the shear-induced ordering observed for a system of highly repulsive

orientable particles at Ma = 1. Such an ordering only occurs if the initial state of the suspension is a

Wigner glass formed by long-range electrostatic interactions.

The shear-ordering could be related to a drop of the electrostatic pressure and an overshoot of the first

normal stress difference was observed during the start-up shear indicating the "dilatant" behavior of the

suspension. Then, particles arrange in strings along the flow direction and a hexagonal structure in the

plane perpendicular to the flow. Moreover, we could observe an angular correlation between particles

belonging to different strings. This structure resembles a crystal with the presence of two defects in

its structure (note that the same system with a lower Mason number does not exhibit any defect). It

was shown that the hydrodynamic and electrostatic first normal stress differences are similar but with

opposite signs. Indeed, the hydrodynamic forces compress the system in the gradient direction while
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the electrostatic forces generate a compression in the flow direction, the sum resulting to a very small

positive N1.

The cessation of the flow did not disrupt the positional ordering, and particles were not able to

recover the initial Wigner glass structure. We observed that orientational correlations were impacted by

the flow cessation and particles aligned to form parallel planes, which could remind a Smectic B phase

but without any contact.

The main point of this study is that this repulsive system of orientable particles has a very strong

memory effects. When such a suspension exhibits an arrested Wigner glass state, the suspension shear-

orders. The ordered suspension for the conditions studied here is composed of strings and a hexagonal

structure, but we could also wonder what the observed structure would be if the suspension were sheared

from an already ordered structure. After the cessation of the flow, the suspension cannot heal and pre-

serves its ordered structure over at least a very long time, definitely not reachable using the ASD method.

Such a system is, therefore, not thixotropic, contrary to what was observed for shorter interaction ranges.

Moreover, the final state after a period of shear is even more ordered than what can be obtained with-

out shear or during shear since the system continues to age towards a state with both positional and

orientational order.

5 Conclusion

Using the numerical method developed in the second chapter, we have been able to study the dynamics

of suspensions of clay-like particles with and without external shear flow.

When no shear flow is involved, we could relate the characteristic aggregation time of a suspension of

clay-like particles to both the electrostatic forces and the initial average distance between particles using

a scaling model. This model was based on the idea that electrostatic migration was the dominant effect

driving the aggregation process. It was found accurate for vanishing net charge particles at intermediate-

and long-range interactions, and only at intermediate-range interactions for particles with a net charge,

as the slowing down of the aggregation due to long-range repulsion was not considered in the model.

Concerning the very short-range interactions regime, it cannot be captured using the ASD method, as

it requires either vanishing time-step or very large system, both leading to tremendous computational

times. All these observations made us conclude that the aggregation kinetics are strongly related to the

mobility of the particles and that the lower the ionic strength, the stronger the influence of the net charge.

With a significant shear flow, and for a Mason number equal to one, we were able to describe the

scaling of the characteristic aggregation time with an orthokinetic law originally designed for suspension

of spheres. We have shown that the adapted volume fraction was one of the platelets plus the double layer

and not the sweeping volume fraction of the platelet as commonly used to describe the hydrodynamic

volume of platelets [19]. Although it can inhibit the formation of large aggregates, the application of

shear flow on suspensions of clay-like particles speeds up the aggregation by moving particles closer to

one another.

When the shear flow is too strong compared to the attractive bonds between particles, it destroys the

aggregated structure and generates a nematic structure with particles that are mainly aligned with the
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flow-vorticity plane. This process of destruction can be assimilated to the rejuvenation of the suspension

and is commonly observed for thixotropic materials. After cessation of the flow, thixotropic materials

are able to structure again and to exhibit, after a certain period of rest, always the same structure as the

one observed at the end of any period of rest. Such a behavior was observed experimentally for Laponite

suspensions by numerous authors [2, 13, 23, 24] and was successfully reproduced with our numerical

method. It was shown that in the peculiar conditions leading to aggregated structure, suspensions of

clay-like particles were influenced by their histories neither during the period of flow nor the period of

rest. We observed that such suspensions shear-thin with the increase of the Péclet number. Note that we

could also observe a shear-thinning during start-up shear as classically observed for thixotropic material.

Then, we studied the rheological behavior of clay-like suspensions during start-up shear. We in-

vestigated the responses to shear of the different microstructures obtained in the previous chapter while

varying the balance between the electrostatic and hydrodynamic forces, i.e., the Mason number. At very

high Mason number, the flow instantaneously destroys the structures, aggregated or not, and therefore

no elastic regime is observed. The shear-thinning of these suspensions could be related to the average

spatial orientation of the particles using a very simple model. As the system is driven by the hydrody-

namic forces, a single relaxation time was observed irrespective of the initial microstructure. The final

viscosity also converges toward the same value.

When hydrodynamic and electrostatic forces are of the same order of magnitude, electrostatic forces

strongly influence the microstructure of the suspension and, therefore, its rheological behavior. We have

shown that the study of clay-like suspensions requires the separation of the initially suspensions states

into three different cases: the repulsive (κD = 1.46), the aggregated (κD = 7.3, 14.6 and 29.2) and the

liquid-like system (κ = 73). The liquid-like system exhibits similar behavior to the high Mason number

regime for Ma ≥ 1 while it starts to aggregate at Ma = 0.25 and therefore increases its viscosity. The

initial aggregated structures exhibit an elastic regime and overshoot stress at very low strain related to the

breakage of the most fragile interparticle bonds. It was shown that the viscosities of these suspensions

were strongly influenced by the size of the clusters and by their own microstructure.

Finally, for a suspension initially in a Wigner glass state, we observed a shear-ordering of the sus-

pension into a two-dimensional hexagonal crystal of strings in the flow direction. The application of a

shear flow generates a very intense overshoot of the σ12 stress also noticeable on the electrostatic first

normal stress difference indicating the strong compression of the electrostatic cages in the direction of

the gradient of the flow. The elasticity of such suspensions was found inversely proportional to the Ma-

son number, and it was shown that the relative final viscosity was following a power law ηr ∝ γ̇−0.9

in line with the results from Paineau and coworkers [20]. We observed a change in the sign of the first

normal stress difference between Ma ≥ 1 and Ma = 0.25. In repulsive systems, we observed that the

hydrodynamic component of the first normal stress difference was always positive, while the electrostatic

component was always negative. Once again, the modification of the balance between the forces leads

to a very distinct behavior of the suspension, which is found more compressed in the gradient direction

than in the flow direction for Ma ≥ 1 and the opposite below. Concerning the crystalline structure,

we could observe that the positional correlations survived to the cessation of the flow, while the ori-

entational correlations were impacted by their shear-induced alignment of the particles to form parallel



Suspensions
undershear

166 CHAPTER 4. RHEOLOGY AND DYNAMICS OF A SUSPENSION OF CLAY-LIKE PARTICLES

planes. This final ordered structure is more ordered than the initial Wigner glass or the structure observed

during shear. Moreover, its osmotic pressure is also found to be lower than that of the Wigner glass, but

it is more anisotropic. The final significant result concerning the repulsive suspension of clay-like par-

ticles is that they show very strong memory effects and are not able to heal at rest or rejuvenate under

shear, and therefore, they have lost their thixotropic behavior contrary to what is observed for aggregated

suspensions.

To summarize, the rheological study of clay-like particles exhibits an important complexity intro-

duced by anisotropic interactions. A simple change in the interaction range or the balance between the

different forces involved in the system can lead to new structures governed by different physical mech-

anisms. However, using simulation allowed us to fix some parameters and better understand the role of

the forces on the rheological properties of a clay-like suspension.
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General conclusion and Perspectives

6 Conclusion

Colloidal suspensions are widely used in the industry and everyday life due to their ability to provide

specific properties to other systems. If the presence of colloids can be beneficial, it can also be detri-

mental as they can for example, clog membranes and drastically reduce the performance of water filtra-

tion processes. Understanding the interactions between colloidal particles and between them and their

surrounding media is crucial to optimize their use. Despite years of research, numerous uncertainties

remain concerning the behavior of colloidal suspensions. The complexity of their study lies in the fact

that colloids are so small that it is difficult to observe them with an optical microscope, and the particle

interactions are very sensitive to their physico-chemical environment. A small change of the salinity of a

suspension of Laponite, a synthetic clay, can for example cause either its aggregation and flocculation, or

lead to a glassy state. Therefore, these changes can have a huge influence on the structure of the suspen-

sions and on their response to an external flow, which can be problematic in industrial processes. These

macroscopic changes are fairly easy to observe but cannot be predicted without a correct understanding

of the microscopic interactions. That is why it can be interesting to carry out simulations to fix param-

eters such as the polydispersity of the particles or the salinity of the suspensions to precisely investigate

the influence of the remaining parameters. In this thesis, we have numerically studied the rheology of

particles with both shape and charge anisotropy. As these particles are quite similar to clays, they were

referred to as "clay-like" particles in the manuscript. Moreover, the similarity with clay allowed us to

compare our results with Laponite.

The first step was to find a method to model particles featuring both charge and shape anisotropy. The

first option could have been to try to match the modeled particle as close as possible to a real anisotropic

particle, but such a method is often very computationally expensive. An alternative way to compute

the dynamics of anisotropic particles is to coarse-grain the system into elementary objects for which

the theory is known and relatively "easy" to compute. The anisotropic particles were therefore modeled

using spheres bound together to form platelet.

To compute the rheological behavior of the anisotropic particles, we used a method first introduced

in the early 1980s by Bossis and Brady [2]: Stokesian Dynamics (SD). Since its first development,

this method was improved and accelerated, allowing the simulation of hundreds of particles. It is now

referred to as Accelerated Stokesian Dynamics (ASD). However, as this method was originally designed

for spheres, we developed two different methods to enforce the motion of an assembly of spheres as a
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rigid object. The first method proposed relies on the coupling of spheres using springs, which can be

represented as forces and torques applied to the centers of the spheres composing a particle. This method

was found fairly accurate at high Péclet number but led to an erroneous diffusion of the particle at low

Péclet number, probably due to a viscous dissipation arising from the wobbling of the spheres in the

particle. The second method mathematically constrains the motion of spheres belonging to the same

cluster to enforce rigid body motion. This method was able to reproduce known results for the motion

of anisotropic particles. Its rheological behavior was validated by comparing the viscosity obtained for

a suspension of plate-like particles with numerical and theoretical results from the literature. Due to

the CPU cost required to compute accurately hydrodynamic interactions, the aspect ratio of a clay-like

particle was taken four times smaller than the one of Laponite particles (7 vs. 30). Still, the typical

number of spheres simulated was about 2200, which is quite high for the ASD method.

The charge anisotropy was then introduced. For comparability of the clay-like particles with

Laponite, the rim of the coarse-grained particles was positively charged, and the faces, corresponding

to the spheres in the center, negatively charged. Electrostatic interactions were computed in a pairwise

additive fashion, considering point charges distributed on the surfaces of particles and interacting

through a Yukawa potential. Although this method is widely used to compute interactions between

anisotropic particles, one should keep in mind that it is originally valid for infinitely dilute spherical

objects. Consequently, results obtained for interacting anisotropic particles can be quite far from

reality, especially at a short distance. We discuss the limitations of such pairwise additive methods and,

using a Poisson-Boltzmann Solver (PoBoS) developed at Laboratoire de Génie Chimique (LGC), we

solved the full three-dimensional electric field around a pair of Laponite particles in both face-face and

T-shape configurations. The point charges distributed on the coarse-grained clay-like particles were then

determined such that the balance between electrostatic and Brownian forces (the reduced temperature)

was the same as the one of true Laponite particles. This is crucial to study the structure of a suspension

without background flow.

In the first application of the method to many-body systems, the structure of suspensions of clay-

like particles without any background flow was studied. Such a study is commonly carried out with

Monte Carlo (MC) or Brownian Dynamics (BD) simulations. These numerical methods do not take into

account hydrodynamic interactions and are consequently less computationally expensive, so they can

model clay-like particles with the aspect ratio of Laponite. The point of this study was not to discover

new phases but rather to validate the approach developed here. Indeed, the high CPU cost associated to

the computation of many-body hydrodynamic interactions only allowed us to simulate a small number

of particles with an aspect ratio lower than that of Laponite. Therefore, we had to confirm that a phase

diagram similar to the ones obtained with MC simulations could be recovered despite these limitations.

A brief review of the literature concerning numerical simulations of Laponite suspensions allowed us

to determine a range of volume fractions and interaction ranges to study. By varying these parameters,

we observed numerous phases as: a Wigner glass at low ionic strength and low volume fraction, a

repulsive glass with particles in overlapping coin configuration at high volume fractions and low ionic

strength, two kinds of aggregated structures at intermediate- and short-range electrostatic interactions,

one with particles mainly in house of cards configuration and the other with particles in overlapping coin
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configuration, and a liquid-like structure at very short-range interactions. We observed that the general

macroscopic behavior of the suspension was driven by the range of electrostatic interactions, while the

microstructure was strongly related to the volume fraction considered. For example, we could observe

that suspensions below a critical volume fraction were evolving toward a phase separation while above

this volume fraction, the suspensions could be considered as equilibrium gels. It was shown that the

internal structure of the aggregated or percolated system was dependent on both the volume fraction and

the ionic strength. This result is very important because it can explain why two suspensions with the

same apparent phase, such as a gel, can exhibit a different rheological behavior during start-up shear.

Once the "equilibrium" (i.e., quiescent) results were validated, we studied several aspects of the

out-of-equilibrium dynamics of anisotropic plate-like suspensions. These dynamics could be computed

quantitatively using the accurate computation of hydrodynamic interactions in the ASD method. We

focused first of the aggregation dynamics of percolating systems without background flow while varying

the range of electrostatic interactions and the net charge of the particles. A scaling model based on the

idea that electrostatic migration was the dominant effect driving the aggregation process was proposed.

This model was found to be reasonably accurate for anisotropic particles with a vanishing net charge and

for both long- and intermediate-range of interactions; the very short-interaction range were not captured

well by the ASD code. For clay-like particles, i.e., particles with a net negative charge, the long-range

repulsions strongly influence the scaling of the characteristic aggregation time by slowing down the

aggregation process. Consequently, the model was only able to capture the scaling at intermediate-range

of interactions. This study highlighted that the lower the ionic strength, the stronger the influence of

the net charge on the aggregation process. The aggregation dynamics of anisotropic particles under

significant shear flow was studied in a second time. We observed that the aggregation dynamics were

well described by an orthokinetic law with an effective volume fraction based on the volume fraction of

the platelets plus the double layers. In general, the application of a shear flow to a suspension of clay-

like particles speeds up the initial aggregation process, but also inhibits the formation of a percolated

structure.

Finally, we investigated the mechanical response of clay-like suspensions to a shear flow for different

physico-chemical conditions. A start-up shear was applied to suspensions obtained without background

flow at the lowest volume fraction investigated, and the resulting rheological properties were analyzed.

To reduce the number of forces involved, we effectively turned off the thermal fluctuations of the particles

by increasing the Péclet number to an "infinite" value (Pe = 3.89 106), and focused on the stress

response as a function of the Mason number, the non-dimensional ratio between the hydrodynamic forces

and the electrostatic forces. It was shown that this balance of forces strongly influences the microstructure

of suspensions under flow and, therefore, the stresses obtained.

When the viscous forces strongly prevail over the electrostatic forces (Ma � 1), the shear flow

destroys the aggregates and disrupts the Wigner glass. In such a case, hydrodynamic forces drive the

global behavior of the suspension. Irrespective of the initial microstructure, shear tends to orient particles

into the flow-vorticity direction. This tilt of the average normal vector from the planar face of the particles

toward the gradient direction was found to be responsible for the shear-thinning observed. We related

the evolution of the viscosity to the average spatial orientation of the particles with a simple model. In
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the conditions of investigated, the initial microstructure only influences the initial value of the viscosity

(which depends on the average orientation). In contrast, neither the relaxation time of the suspension nor

its final viscosity value are influenced by the initial microstructure.

The reduction of the Mason number increases the influence of electrostatic forces and drastically

influences the rheology of clay-like suspensions. For a Mason number close to one, the microstructures

are strongly related to the electrostatic ranges considered and consequently to the structure observed

at zero shear. The liquid-like system behaves similarly to the high Mason number regime, except at

very low Mason number (Ma = 0.25) where despite the short-range electrostatic interactions, particles

start to aggregate, which results in an increase of the viscosity of the suspension. The application of

a start-up shear to a percolated structure generates an elastic regime and overshoot stress, both related

to the breakage of the most fragile bonds between particles. It was shown that the final viscosity was

strongly influenced by the size of the remaining clusters and by their own structure (average number of

neighbors per particle, angle of contact between particles). Finally, we observed the shear-ordering of

a suspension initially in a Wigner glass state. When sheared, particles arranged in a two-dimensional

hexagonal crystal of strings aligned in the flow direction. To our knowledge, such a structure has been

observed neither experimentally nor using simulations. This ordering originates from the strong long-

range repulsions between particles, and the structure exhibits both spatial and angular correlations. The

start-up shear generates a very intense overshoot of the shear stress. It was shown that the intensity of the

overshoot and the value of the elastic modulus was inversely proportional to the Mason number. These

observations are related to the electrostatic first normal stress difference, indicating that the electrostatic

cages were strongly compressed in the direction of the gradient of the flow during the initial restructuring

period. The hydrodynamic first normal stress difference was always found positive at long times while,

once the suspension ordered, the electrostatic first normal stress difference became negative, indicating

a strong compression due to electrostatic effects along the strings of particles. We also observed that the

final relative viscosity was following a power law ηr ∝ γ̇−0.9 in line with results from the literature.

The observation of this new and unexpected shear-ordered structure leads us to the fundamental

question of the history dependence of clay-like suspensions. Three different systems were considered,

two leading to a percolated structure without flow and one being the Wigner glass state. Concerning the

former, a shear flow at very high Mason and Péclet number was applied to one suspension (Ma = 104

and Pe = 3.89 106). This results in the complete destruction of the aggregated structures, of the shear-

thinning of the suspension which rejuvenates, i.e., erases its memory. After the cessation of the flow,

we observed that particles arrange as before the shear, indicating the very limited history dependence

of the suspension considered. The same cycles of periods of rest and shear were applied to another

percolated suspension, but this time with a Mason number equal to one and a lower Peclet number

(Ma = 1 and Pe = 389). In such conditions, the percolated structure is disturbed by the flow, but

clusters of particles survive the flow. Once again, this suspension did not exhibit memory effects. Thus,

it was shown that under the specific conditions leading to percolated systems, clay-like suspensions

exhibit a thixotropic behavior. A completely different story happens for the Wigner glass. As mentioned

previously, shearing the Wigner glass leads to the formation of a two-dimensional hexagonal crystal of

strings aligned in the flow direction. In addition to the positional ordering of the particles, we observed
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a relative angular correlation between the particles of the same string and between two strings. Particles

were either aligned or with an angle of 60 degrees. After the cessation of the flow, the positional ordering

remained, and more surprisingly, particles increased their orientational correlation by forming parallel

planes. Consequently, the structure became more ordered than both the initial Wigner glass and the

crystalline structure observed under shear. The osmotic stresses of the shear-ordered structure were lower

than those of the initial Wigner glass, but they were less isotropic. In contrast to percolated suspensions,

the repulsive clay-like suspensions show very strong memory effects and are not thixotropic.

To summarize, we proposed in this manuscript a numerical method able to capture the rheology of

particles with both charge and shape anisotropy. We observed that these anisotropies make the system

drastically more complex because small changes of the conditions can lead to new structures governed

by completely different mechanisms. However, we were able to provide some insight into the structure

and rheology of suspensions of anisotropic particles. This allowed us to understand better the role of the

balance between the hydrodynamic and electrostatic forces involved. This work leaves, as often, many

open questions, so some perspectives are proposed in the following section.
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7 Perspectives

All along this manuscript, the CPU cost of the ASD simulations of anisotropic particles has been an

issue. Because many spheres are needed to represent one anisotropic colloid, simulations involve thou-

sands of spheres even for a few tenth anisotropic particles. The associated high CPU cost limited the

size of the systems studied and the maximum simulated strain, as well as the colloid aspect ratio. It

would be highly desirable to reduce the CPU cost of the method first to improve the statistics presented

here and second to reach aspects ratios closer to those of real systems. Therefore the first perspective of

this work would be to find ways to reduce this CPU cost. A first solution would be to downgrade the

physics simulated, especially hydrodynamic interactions. For similar reasons, some authors decided to

account only for pairwise lubrication interactions [4] or long range hydrodynamic interactions via the

Rotne-Prager-Yamakawa tensor (RPY). The latter is for example used by Varga et al. [5, 6] to study the

microstructure anisotropy in sheared gel composed of attractive spheres. Here we do not think it would

be a good idea because a system of anisotropic particle is on average very dilute, but can also be dense

locally, especially when aggregation occurs. Then, both short- and far-field interactions must be consid-

ered. We could observed for example that without the far-field interactions, aggregation dynamics were

approximately 10 times faster. Another solution is to accelerated again the Accelerated Stokesian Dyan-

mics. It can be done by modifying the method, for example by using the Spectral Ewald Acceleration of

Stokesian Dynamics (SEASD) developed by Wang & Brady in 2016 [7] which allow a speedup of 80%

of the wave-space calculation for several thousands of spheres. This lead seems promising and would

require the implemention of the rigid body method. It can also be done by parallelizing the code more

efficiently. In 2016, Alexis Praga, a postgraduate from the LGC, studied the ASD method performance

for about 500 spheres, a number classical for simulations of isotropic suspensions. He did not find any

major area for optimization except the far-field computation. The latter requires the calculation of FFT

on a grid of point forces. A certain number of point forces are required to capture the physics correctly.

Therefore the size of the grid depends on the system, and more specifically, of the length of the simula-

tion box. Alexis Praga parallelized the computation of the FFT using OpenMP, but as for 500 spheres

on a 32 × 32 × 32 grid the CPU time required for the computation of the far-field interactions is fairly

comparable to the other parts of the code, only a small speedup of the total CPU time was observed. He

has shown that the code might be used with four threads to optimize its performance. If these observa-

tions are valid for the usual number of spheres considered, it is no more the case for anisotropic particles.

Indeed, the typical number of anisotropic particles considered in this work is 60 for a total number of

spheres of approximately 2200, corresponding to point forces distributed into a 64 × 64 × 64 grid. We

notice that this increase in both the number of particles and the size of the grid drastically increases the

CPU cost of the ASD method which was mainly due to the computation of the far-field contribution. One

solution to reduce the CPU cost would be to parallelize the far-field contribution using MPI and parallel

FFT libraries such as P3DFFT.

The anisotropic particles simulated in this work have an aspect ratio of seven, which is four times

less than the one of Laponite. One could wonder if the results observed, such as the phase diagram or

the scaling of the viscosity, strongly depend on the aspect ratio of the particle considered. Indeed, we



7 Perspectives 177

C
on

cl
us

io
n

have found some good agreement with several experimental results on Laponites suspensions despite the

reduced aspect ratio. This surprising observation could be linked to the presence of electrostatic inter-

actions that "thicken" the effective volume of colloids, thus reducing the effective aspect ratio difference

between the simulated and real colloids. One could simulate particles with an aspect ratio of nine and

11 and observed their influence on both the microstructure and the rheological responses of the systems

to shear. The same kind of study could also be realized for different charge anisotropies. Instead of

distributing the charges of a clay-like particles on the totality of the available sites, one can imagine to

reduce the number of charged site and to observe the influence of this new anisotropy as a function of

the range of interaction.

The third perspective presented here is the extension of the work on the shear-ordering presented

in the last chapter. It could be interesting to repeat one or two cycles of the transient flow to observe

both the structure and the rheological response of the suspension to these consecutive cycles. One can

expect to observe less intense overshoot stresses during the next start-up shear periods due to both the

orientational and positional order acquired during the previous periods. The structure could also conserve

its new orientational order, and in such a case we could observe planes of particles sliding one above the

other. In contrast, if particles orient again to form relative angles either below 10 degrees or 60 degrees,

as previously observed during the first period of shear, that would indicate that the hydrodynamic forces

are responsible for this structure. Concerning the preferred angle of 60 degrees under shear, one could

wonder if it its due to the charge anisotropy as it is not classically observed for instance in liquid crystals.

To answer this question, we would consider the same particles but without any charged sites except

at the center of the particle. This charged site should bear the totality of the net charge of a clay-like

particle. Then the interaction ranges should be tuned to obtain a similar effective volume fraction as for

charged clay-like particles. As the system is purely repulsive, we should observe a hexagonal structure

with particles aligned in the flow direction, as reported by Ackerson & Clark [1] for a system of highly

repulsive spheres. If particles exhibit the same orientational behavior, we could conclude on the fact that

the anisotropy do not play an important role in such a system. This simulation would provide an insight

into the importance of the charge anisotropy on a purely repulsive system.

Finally, the last perspective is the investigation of the rheological behavior of clay-like suspensions

under oscillatory shear flow. This should allow us to capture with an increased precision the elastic

regime of the suspensions. It would also allow to analyze the transition from a Wigner glass to the

crystalline structure to those observed experimentally for spherical particles with or without electrostatic

interactions under oscillatory shear. The oscillatory shear flow was already implemented in the ASD

code by Marenne et al. [3] and should not require any supplementary developments.
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1 The ASD method flowchart
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Figure 52: Flow chart reproduced from [2].
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2 Discussion concerning the position of the peak for φ > 0.05

One should have expected the shift of the peak on the radial distribution function to be a function of

the volume fraction, as usually observed in experiments for repulsive systems of disks. In such a case,

the nearest-neighbor distance < rnn > is expected to scale as φ−1/3 at low density and as φ−1 at high

density. Jabbari and coworkers [1] have observed, for purely repulsive thin disks at low-density, the

scaling of < rnn > as φ−1/3, the increase of the density has led to unexpected scaling behaviors. For

concentrated systems, these authors obtained a scaling varying with the interaction range, ranging from

−0.24 at long interaction range to −0.62 at the shortest interaction range. They have attributed this

difference to the fact that in experiments, system are trapped in arrested states which prevent them from

reaching the scaling mentioned above. In previous calculations (not shown here), we observed a scaling

of < rnn > as φ−0.44 for plate-like particles with a higher net charge (twice higher). Such a result is in

qualitative agreement with the scaling observed by Jabbari and coworkers. As this behavior disappears

while reducing the net charge of the particles, one can conclude that < rnn > not only scales as a

function of the volume but also depends on both the charge anisotropy and the total net charge of the

particles.

3 Definition of the two dimensional pair distribution function

The pair distribution function g(r) is defined on a grid where r = (r, θ, z) is the vector between the

centers of gravity and r its norm, 0 ≤ θ ≤ 2π the polar angle measured on a counterclockwise fashion

from the x-axis, and z the projection of r in the y-z plane. Then, taking into account the histograms of

occurrence H(r, θ, z,Ω) where Ω is the number of sampling events equal to four in the present study

(four periods of shear), the pair distribution function can be written as

g(r, θ, z) =
H(r, θ, z,Ω)

ρΩ∆V
, (11)

where ρ is the mean number density and ∆V = r2∆r∆z∆θ is the volume of one bin. Note that the

number of events considered in this study does not allow to obtain results independent of the number of

samples. We have chosen the following values for the discretization mesh: ∆r = 0.039R, ∆θ = 1◦C

and ∆z = 0.27R. The same function was also defined in the y-z plane, where θ is now the angle defined

from the z-axis and with x replacing z.
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4 Probability of the contact angle
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Figure 53: Probability of the contact angles for a transient flow at Ma = 1 and κD = 14.6 (left) and

under steady shear at Ma = 4 (right).
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