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Abstract

Two-phase suspensions encountered in various engineering applications(like crude oil extraction, elaboration of food, concrete or cosmetics), can exhibit rich dynamics when submitted to flow in complex geometries. Predicting the response of such heterogeneous material under flow is an important issue in view of applications. To build these predictive models, basic understanding of the different scales is required for configurations such as pipe flow through an elbow or T-shape section, mixing a solid-liquid dispersion by a rotating impeller, etc. Suspension flows normal to an obstacle have seen limited attention with the carrier fluid being liquid phase. In this context, we examined particle dynamics in the well-known Hiemenz boundary-layer flow, with the aid of numerical simulations. We focused essentially on one or two neutrally buoyant particles, which are of finite size compared to the boundary layer thickness δ (particles have a finite inertia near the wall because they are forced to stop at the wall), and which are located at the symmetry axis of the flow. We used direct numerical simulations in order to measure the particle slip with respect to the local flow, the hydrodynamic force experienced by the particle and the energy loss during solvent-mediated particle-wall interaction. All these quantities were determined as unique functions of the ratio between the particle size and the thickness of the viscous boundary layer. When the particle size is increased, the simulations highlighted a transition of the particle dynamics from viscous damping to rebound, occurring for particle size O(δ). We established a model for the hydrodynamic force experienced by the incident particle, and for the restitution coefficient in wall-normal flow. For two identical particles on the axis, certain separations lead to particle collision before the lower (closer to wall) particle hits the wall; the resulting momentum exchange leads to larger impact velocity than for one particle. The simulations reveal that dynamics of the colliding pair includes unexpected rebound without contact with the wall for the lower of two particles, due to sheltering by the upper particle from drag allowing the pressure force to dominate.

Résumé

Les suspensions rencontrées dans diverses applications d'ingénierie (telles que l'extraction de pétrole brut, l'élaboration d'aliments, de béton ou de produits cosmétiques) peuvent présenter une dynamique riche lorsqu'elles sont soumises à un écoulement dans des géométries complexes. Il est important de savoir prédire la réponse de ces matériaux hétérogène sous écoulement compte tenu des applications. Pour construire des modèles prédictifs, il est indispensable de comprendre les phénomènes à différentes échelles, dans diverses configurations telles que l'écoulement d'une dispersion solide-liquide dans un coude ou dans un canal en forme de T, le mélange de cette dispersion par un agitateur, etc. Les écoulements de suspension normaux à un obstacle ont reçu peu d'attention (le fluide porteur étant liquide). Dans ce contexte, nous avons examiné la dynamique des particules dans l'écoulement de Hiemenz (un écoulement de type couche limite incident à une paroi), à l'aide de simulations numériques. Nous nous sommes concentrés essentiellement sur une ou deux particules de même densité que le fluide, et de taille finie comparée à l'épaisseur de couche limite δ (les particules ont une inertie finie près de la paroi car elles sont forcées de s'arrêter à la paroi). Nous avons utilisé des simulations numériques directes afin de mesurer le glissement des particules par rapport à l'écoulement local, la force d'interaction de nature hydrodynamique ainsi que la perte d'énergie. Toutes ces quantités ont été déterminées en tant que fonctions uniques du rapport entre la taille des particules et l'épaisseur de la couche limite visqueuse. Les simulations ont mis en évidence que l'approche d'une particule vers la paroi, suivant l'axe de symétrie de l'écoulement, subit une transition d'un régime de ralentissement dominé par les effets visqueux à un régime de type rebond, cette transition prenant place pour une taille de particule O(δ). Nous avons établi un modèle pour la force hydrodynamique exercée sur la particule s'approchant de la paroi et pour le coefficient de restitution en écoulement normal à la paroi. Pour deux particules identiques sur l'axe, certaines séparations conduisent à une collision de particules avant que la particule inférieure (la plus proche de la paroi) ne touche la paroi; l'échange de quantité de mouvement qui en résulte conduit à une vitesse d'impact supérieure à celle d'une particule particule isolée. Les simulations révèlent que la dynamique de la paire inclut un rebond sans contact de la particule inférieure avec la paroi, en raison de la mise à l'abri par la particule supérieure contre la traînée, permettant à la force de pression de dominer.

Nomenclatures

The following varibles are the frequent usages, the list is not exhausted. 
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Nomenclature

General background: mixture flow

The fluid dynamics of mixtures plays an important role in environmental settings as well as chemical, biomedical and environmental engineering applications, as indicated by the images in Figure 1.1. As examples of the relevance of mixture flows in natural environments, consider sandstorms, sediment transport, and blood flow. Sandstorms generate clusters of dust particles suspended in the atmospheric boundary layer, causing economic damage and inconvenience as well as health hazards in daily life. Sediment transport by rivers can induce soil erosion as well as wear on bridge pillars. As an important biological fluid, blood is a mixture of red and white blood cells in plasma. The knowledge of the blood rheology in the vascular system is crucial for better medical treatment or design of medical devices. In chemical engineering, fluidized beds are multiphase systems where the dispersed phase contains solid particles that are frequently made of catalytic materials to achieve chemical reactions, combustion for electricity, carbon gasification, and various material transformations. In general, the mixture flow of suspensions in industrial applications is in relatively more complex geometries, such as pipe bends and junctions, past impellers, to name some of the most common cases.

Understanding the physics of suspensions of solid particles in liquids within complex geometries is thus of clear practical importance. Suspensions are liquidparticle mixtures, and this means the interstitial fluid effect cannot be neglected. In addition, the finite size of the particles has an effect on the perturbations to the flow when the particles are dilute and major impact on the fluid flow properties (rheology) when they are concentrated. In this respect, suspensions are quite different from, and demand a different methodology for description than such gas-solid flows as found in fluidized beds, for which models typically consider the interstitial fluid flow effect is negligible beyond a drag force. In order to develop models to account for suspension flows in industry, we need to understand the physics of the individual particles in fluid flow, i.e. how they behave individually and the hydrodynamic interactions play a role in the suspension dynamics. This requires a consideration of how the suspension properties change with varies parameters, such as particle size, density ratio between solid and liquid, shear rate, and the role of the boundary geometry. Among all the physical parameters, the inertia of particle is one of the most important but least studied factors in suspensions flowing in complex geometries. Advancement of understanding of basic dynamics of particles in inertial flows is needed to develop models of continuum form for liquid-solid two phase flow, and this work contributes to this understanding. Suspensions of neutrally buoyant particles in a shear flow are one fundamental flow which can give basic insight into the suspension physics. This topic is relatively well-studied. An early demonstration of the influence of inertia on the mixture properties is found in [START_REF] Bagnold | Experiments on a gravity-free dispersion of large solid spheres in a newtonian fluid under shear[END_REF], where the stress in a neutrally-buoyant suspension was found to be linear in shear rate, γ, at small rates, transitioning to a γ2 dependence as shear rate increased; however, [START_REF] Hunt | Revisiting the 1954 suspension experiments of ra bagnold[END_REF] point out that this finding does not hold any more for larger particle inertia. In addition, [START_REF] Wang | Modulation of large-scale structures by neutrally buoyant and inertial finite-size particles in turbulent couette flow[END_REF] conducted particle-resolved numerical simulations based on the Force Coupling Method [START_REF] Lomholt | Force-coupling method for particulate two-phase flow: Stokes flow[END_REF] and [START_REF] Yeo | Dynamics and rheology of concentrated, finite-reynolds-number suspensions in a homogeneous shear flow[END_REF]. to study the effect of finite-size particles on turbulent plane Couette flow. This work showed that the shape of the streaks and the intermittent character of the flow are all altered by the particle presence, and especially by the inertial ones. In a different direction where the particle concentration is close to maximum packing, recently [START_REF] Morris | Lubricated-to-frictional shear thickening scenario in dense suspensions[END_REF] developed a model for the influence of particle contact in concentrated or dense suspensions of solid particles to predict reasonably the discontinuous shear thickening phenomenon. This work suggests that the breakdown of the lubrication force model between particles is important and still poorly understood. Thus, while there is much prior work in the area, the topic has many open questions related to the fluid effects on surface interactions of particles. Pressure-driven pipe or channel flow is another fundamental configuration to study particle suspensions. Its wide applications and importance in industry make this flow a topic of much research. A key observation in early work on neutrally-buoyant suspensions was that of [START_REF] Segre | Behaviour of macroscopic rigid spheres in poiseuille flow part 2. experimental results and interpretation[END_REF], who have shown that due to finite inertia, particles are subject to radial displacements, outwards from the centre of the tube and inwards from its wall, for pipe Reynolds number Re < 520. There exists an equilibrium radial position at about 0.6 tube radii from the axis for small Re with increase of the radial position as Re increases as shown by [START_REF] Matas | Inertial migration of rigid spherical particles in poiseuille flow[END_REF], who extended the experimental pipe Reynolds number up to Re ≈ 2000. This latter study found an inner annulus of particle accumulation, closer to the centre of the pipe, at elevated Re. Later, [START_REF] Loisel | Inertia-driven particle migration and mixing in a wall-bounded laminar suspension flow[END_REF] has studied the dynamics and particle migration of a suspension in a channel flow in the laminar regime with numerical simulations. This work points out that the suspension becomes stratified forming two concentrated layers close to the channel walls separated by a nearly pure fluid region in the core of the channel. In addition, [START_REF] Shao | Fully resolved numerical simulation of particle-laden turbulent flow in a horizontal channel at a low reynolds number[END_REF] performed fully resolved numerical simulations of particle-laden turbulent flow in a horizontal channel. The effects of large particles of diameter 0.05 and 0.1 times the channel height on the turbulence statistics and structures were investigated for the channel Reynolds number of 5000. This work classified the role of the particles on the modulation of turbulence for different settling coefficients. Concerning suspensions in more complex geometries, a particularly important topic is the flow associated with a wall-normal velocity. While much less studied for liquid-solid suspensions than gas-solid mixtures, there has been significant recent attention to this topic. [START_REF] Haugen | Particle impaction on a cylinder in a crossflow as function of stokes and reynolds numbers[END_REF] has studied particle impaction on a cylinder as a function of the Stokes and Reynolds numbers and identified three modes of impaction on the front side of the cylinder, which illustrates the essential role of the particle inertia in suspensions in complex geometries. Further, [START_REF] Haddadi | Suspension flow past a cylinder: Particle interactions with recirculating wakes[END_REF] studied the flow of a suspension of monodisperse neutrally buoyant particles over a cylindrical obstacle, focusing on particle location within a recirculating wake flow. He found that a particledepleted wake arises, and this is controled by interaction between particle inertia and wake structure, with the close interaction of the suspended particles and cylinder surface playing a major role. Recently, [START_REF] Vigolo | An experimental and theoretical investigation of particle-wall impacts in a t-junction[END_REF] studied the impact of particles entrained in a fluid with the wall as they passed through the bifurcation in a symmetrical T-shaped channel, as shown in Figure 1.2. This work illustrated that the viscous boundary layer has a significant effect on the trajectories of particles that are comparable to or smaller than the thickness of the boundary layer, which means the particle inertia effect is essential. A point particle model was developed to predict the impact position and impact velocity in the vicinity of the stagnation point in the bifurcation of the channel; such a model has clear utility for assessing the possible erosion damage induced by solid particle impact. The work of [START_REF] Vigolo | An experimental and theoretical investigation of particle-wall impacts in a t-junction[END_REF] is of practical interest, but we note that the more fundamental question of how neutrally buoyant particles behave in this flow has not yet been examined, motivating part of the study described in this thesis.

Objectives of current study

The examples mentioned above are far from exhaustive, as we seek to narrow the focus to one interesting and poorly explored topic: what is the near-wall dynamics of neutrally-buoyant particles in a wall-normal flow configuration, and what is the physical mechanism leading to collision of the particle with the wall in this scenario. The work presented here is motivated by the need for fundamental understanding to support modeling of inertial flows of liquidsolid mixtures in general bounded geometries: the T-junction noted above or a pipe bend are obvious examples, while mixing of suspended particles by a mobile impeller provides an example involving similar physical considerations. We focus in this work on the case of inertial effects on the motion of neutrallybuoyant particles in a flow with a strong wall-normal component, a case which has been the subject of remarkably limited study. In this flow, a boundary layer of roughly uniform thickness δ is developed by the balance of diffusion and the linear extensional flow confining the wall-induced vorticity: δ ∼ ν/B where ν is the liquid kinematic viscosity (vorticity diffusivity) and B is the strain rate of the extensional flow.

The objectives of the current investigations are as follows:

• Particle-fluid interaction far from the wall

The hydrodynamic behavior of a neutrally-buoyant particle in a wallnormal flow at distances large compared to either of the natural scales, i.e. the particle size a or the viscous boundary layer thickness δ, is a problem of interest. The wall-normal flow involves a deceleration toward a rigid wall, at which forms a viscous boundary layer, often called a Hiemenz boundary layer. Although wall-normal flow contains the viscous boundary layer effect, far from the wall the fluid flow may be considered a purely inviscid extensional flow. As it can be inferred from the introduction of This results from the force balance on the particle: the force exerted on the rigid particle results from the sum of ambient pressure and added mass contributions (both being dependent on the finite size of the particle, the fluid and particle acceleration). But when it comes to the wall-normal flow configuration, the rigid wall is critical, and we do not know when the wall effect comes into play at an appreciable level, which would lead to a breakdown of the assumptions and conclusions from [START_REF] Auton | The force exerted on a body in inviscid unsteady non-uniform rotational flow[END_REF]. The basic question is, at what condition will the wall effect begin to play • Particle-fluid interaction in the near wall region As noted above, the presence of the rigid wall causes a breakdown of the inviscid extensional flow assumption of [START_REF] Auton | The force exerted on a body in inviscid unsteady non-uniform rotational flow[END_REF], and the particle deceleration is no longer equal to that of the local fluid flow. The question of interest is then what is the hydrodynamic interaction between particle and wall, and how does the hydrodynamic interaction vary as a function of the particle size and the 'gap', i.e. the distance between the particle surface and the wall? We expect that the singular lubrication force due to the squeeze film will occur, as indicated by [START_REF] Brenner | The slow motion of a sphere through a viscous fluid towards a plane surface[END_REF].

Is the lubrication force the only, or is it always the dominant, force which contributes to the near wall particle dynamics? Finally, we want to see how the particle inertia play a role: what is the key parameter for determining impact conditions?

• Particle hydrodynamic interactions and collision dynamics

The interaction of neutrally-buoyant particles with wall in a wall-normal flow of viscous liquid is key to understanding of inertial flows of liquidsolid mixtures in general bounded geometries. The boundary conditions that need to be applied to a continuum description of the mixture flow is ultimately dependent on the particle-wall interaction. The question of interest is whether solid contact between the neutrally buoyant particle and the wall is likely to take place or not in viscous liquid, and in case it takes place how much kinetic energy is recovered after the rebound, and does this lead to collisions with trailing particles? In addition, how does the particle inertia play a role in these processes?

With these topics and questions in mind, we study the particle dynamics in a wall-normal flow under inertial conditions, centering the investigation on particle-resolved numerical simulations. We investigate in detail the dynamics of neutrally-buoyant rigid spherical particles approaching a stagnation point on a flat wall, with possible rebound, in Hiemenz flow. In this flow, kinetic energy is converted into elevated pressure which decelerates the flow, as sketched in figure 1.3. This is well-described for the pure fluid by the well-known Hiemenz boundary layer analysis, [START_REF] Schlichting | Boundary layer theory[END_REF], [START_REF] White | Viscous fluid flow[END_REF], and thus we center our study on this base flow as a convenient case in which to address the previously posed questions. Key results obtained from the work to follow include:

Configuration under study: neutrally-buoyant particle(s) in Hiemenz flow

• Particle-fluid interaction far from the wall As expected, when far from the wall a neutrally buoyant particle in a wall-normal flow behaves essentially as it would in an unbounded inviscid extensional flow. The neutrally-buoyant particle is only subject to the ambient pressure force, and behaves like a fluid tracer that decelerates with the ambient flow. The fluid tracer behavior in the far field of wallnormal flow is independent of particle inertia. The deviation from tracer behavior is modest until the particle reaches a distance for which the gap is about one radius between particle and wall, at which point the particlewall interaction begins to come into play, and the fluid deviates strongly from fluid tracer behavior. Below one particle radius gap size, the particle inertia plays a key role and leads to different hydrodynamic behavior depending on its value, which determined strictly by its size relative to the boundary layer, a/δ, because of the neutrally-buoyant condition. We also examine in detail the slip velocity in the far field, where the slip is due to the Faxén effect.

• Particle-fluid interaction in the near wall region

The near-wall dynamics of a neutrally-buoyant particle in a wall-normal flow is considered in detail to reveal the conditions for which the particle reaches close to the wall with a significant velocity, such that one would expect it to impact the wall if any finite roughness of particle and wall were present. For a smooth particle, the near-wall dynamics depends only on the ratio between the particle size and viscous boundary thickness a/δ, which as noted is a measure of the particle inertia relative to viscous effects, i.e. it is related to the particle Reynolds number as Re ∼ (a/δ) 2 . When the particle inertia is small, i.e. when the particle size is small relative to the viscous boundary layer or a/δ 1, after fluid tracer behavior breaks down the particle will be decelerated, moving slower than ambient fluid, and finally reaching the wall with vanishing velocity. For such conditions, it is not expected that a collisional rebound would occur. A more inertial particle, one which is larger than the viscous boundary layer thickness (a/δ > 1), will reach the wall with finite velocity at distances comparable to expected roughness length scales, which suggests that rebound would be likely to occur. We investigate the force and stress profile in the near wall region, concluding as follows: apart from the lubrication pressure force at the thin gap and persistent ambient pressure due to wall-normal flow, a wall-directed hydrodynamic force also contributes to the particle dynamics. We have considered a particle dynamics model assuming the total force on the particle is the sum of lubrication, ambient pressure and an added mass force which accounts for the unsteady effect, to recover the total force calculated by a well calibrated particle resolved DNS method. A discrepancy has been found between this model and the detailed numerical results, as the wall-directed hydrodynamic force is due to the hydrodynamic stress on the particle surface outside the thin gap, and this is not properly captured by such a model. Finally, we found that the particle inertia as represented by with a/δ is the only control parameter to determine whether the particle decelerates effectively or would be expected to impact the wall. This opens a path to understanding the next question.

• Particle hydrodynamic interactions and collision dynamics

Unlike the settling problem, in which the particle is driven by constant volume force, neutrally-buoyant particle motion in the wall-normal flow problem is flow-driven. As mentioned above, far from the wall, the particle behaves like a fluid tracer, while in the near wall, the particle inertia will determine whether the particle could impact the wall. After it has been well-calibrated using the detailed numerical simulation, the solid contact model serves as a tool for study of conditions when continuum fluid mechanics break down. By this model, we have investigated the collision dynamics of an individual spherical particle and a pair of equal size neutrally-buoyant particles in wall-normal flow, restricting attention to the case of motion on the axis of symmetry of the axisymmetric Hiemenz flow. We have found that the particle inertia is the control parameter of the rebound restitution of one or a pair of particles. With a concept of effective radius based on the equivalent volume, we have unified the rebound restitution of one single particle and two identical particles for certain conditions, which is a straightforward evidence to support the notion that particle inertia, or size relative to the viscous boundary layer, is the control parameter. In addition, we have found rather surprising dynamics in which the closer of two spherical particles to the wall can experience a contactless rebound. This dynamics is explained by the shielding from the flow force by the farther particle leaving an unbalanced ambient pressure force which pushes the closer particle away from the wall without contact.

The remainder of this work presents the results outlined above in detail, along with their interpretation.We briefly describe the structure the thesis to give a broad overview of the entire study.

Structure of the manuscript

Chapter 2 will introduce the numerical method that is used to study the coupled flow and particle motion. This is complemented by the results of validation tests.

Chapter 3 discusses the near-wall dynamics of a neutrally-buoyant particle in Hiemenz flow before touching the wall. This chapter focuses on the hydrodynamic interaction between the particle and wall, focusing on the critical role of the particle size relative to the Hiemenz boundary layer in determining the form of the forces and particle motion.

Chapter 4 addresses the dynamics of a single and a pair of neutrally-buoyant particles in Hiemenz flow upon collision with the wall. Special attention is given to the particle-wall collision time and the rebound velocity. We discuss the similarity and difference between the neutrally-buoyant particle in Hiemenz flow, and a particle settling under its own weight.

Chapter 5 contains a summary on the findings of the current research and a discussion of some perspectives developed from the research.

The single phase flow solver

In the current study, direct numerical simulation of the Navier-Stokes equations is performed, using the code Jadim developed at IMFT Calmet and Magnaudet (1997). The fluid flow solver uses the finite volume method with a staggered grid to solve the unsteady 3D Navier-Stokes equations in terms of velocity-pressure variables. Time integration of convection terms uses a third-order Runge-Kutta method, with the viscous term integrated by a second-order semi-implicit Crank-Nicolson scheme. After each time step (n), a Poisson equation for the pressure is solved, and then the pressure correction on the velocity is applied to satisfy fluid incompressibility [START_REF] Calmet | Analyse par simulation des grandes échelles des mouvements turbulents et du transfert de masse sous une interface plane[END_REF]. Here, u is fluid flow velocity, P is pressure, ν is kinematic viscosity, g is external force density (ex: gravity) and ρ f is the fluid density assumed constant. The fluid velocity and pressure are calculated following a projection method. The intermediate velocity u n+1 obtained at the end of three substeps of Runge-Kutta scheme is used in order to calculate the auxiliary potential Φ n+1 . The final velocity at step (n + 1), based on eq. 2.5 satisfies the fluid flow incompressibility ∇ • u n+1 = 0.

∇ • u = 0 (2.1) ∂u ∂t + u • ∇u = g - ∇P ρ f + ∇ • (ν(∇u + ∇u T )) (2.2) ∇ • ( ∇Φ n+1 ρ f ) = ∇ • u n+1 ∆t (2.3) P n+ 1 2 = P n-1 2 + Φ n+1 (2.4) u n+1 -u n+1 ∆t = ∇Φ n+1 ρ f (2.5)

Immersed Boundary Method

The Immersed Bounadry method used in this work has been developed by [START_REF] Bigot | A simple immersedboundary method for solid-fluid interaction in constant-and stratified-density flows[END_REF], and adapted in the thesis of [START_REF] Pierson | Traversée d'une interface entre deux fluides par une sphère[END_REF] and published in [START_REF] Pierson | Inertial settling of a sphere through an interface. part 2. sphere and tail dynamics[END_REF]. It is described briefly here and in the next chapter for completeness. The fluid is assumed to fill the entire space including the particle volume. The rigid body motion of the particle is ensured by adding a force density term in order to compensate the momentum difference between the rigid solid and fluid at the interface, where negligible slip condition is desired.

The momentum conservation of the fluid is modified as:

∂u ∂t + u • ∇u = g - ∇P ρ f + ∇ • (ν(∇u + ∇u T )) + f IBM (2.6)
Equation 2.6 represents the general method of DNS-IBM: the forcing term f IBM is proportional to the local velocity difference between rigid particle and ambient fluid flow. Here α is a smooth function equal to 1 inside particle volume, 0 outside the particle, and it decreases smoothly normally to the particle surface. In order to improve precision, [START_REF] Pierson | Inertial settling of a sphere through an interface. part 2. sphere and tail dynamics[END_REF] introduced the smooth function of [START_REF] Yuki | Efficient immersed boundary method for strong interaction problem of arbitrary shape object with the self-induced flow[END_REF], considering the decay of the function α at the particle interface decays within three meshes. R p is the radius of particle, x p is mass center of particle, n x , n y and n z are the components of normal vector at particle surface, ∆ is the characteristic length of mesh size, σ is the characteristic thickness at particle interface which ensure the numerical smoothness. τ is a small time scale, that is practically considered equal to the subtime step of single phase fluid solver, u D is particle "desired" velocity, u is the local velocity of fluid.

f IBM = α u D -u τ (2.7) α(x) = 0.5(1 -tanh( ||x -x p || -R p λσ∆ )) λ = |n x | + |n y | + |n z | σ = 0.065(1 -λ 2 ) + 0.39 ∆ = ∆ 2 x + ∆ 2 y + ∆ 2 z (2.8)
The particle transitional motion is solved according to Newton second law, following the method of [START_REF] Uhlmann | An immersed boundary method with direct forcing for the simulation of particulate flows[END_REF].

du p dt = g - ρ f (ρ p -ρ f )V p Vp f IBM dV, ρ p ρ f > 1 (2.9)
where u p is particle velocity, V p is particle volume. Equation 2.9 represents the previous version of DNS-IBM of calculation on the particle motion [START_REF] Bigot | A simple immersedboundary method for solid-fluid interaction in constant-and stratified-density flows[END_REF] used for particles heavier than the fluid. Once ρ p ≈ ρ f , then the expression of particle motion diverges. In order to solve this problem, [START_REF] Kempe | Collision modelling for the interface-resolved simulation of spherical particles in viscous fluids[END_REF] suggested to solve the divergence problem by changing calculation of particle motion from equation 2.9 to equation 2.10. Current DNS-IBM used the equation 2.10 by [START_REF] Pierson | Traversée d'une interface entre deux fluides par une sphère[END_REF] to calculate the particle motion. Moreover, [START_REF] Breugem | A second-order accurate immersed boundary method for fully resolved simulations of particle-laden flows[END_REF] suggested to introduce additional inner iteration loops for imposing forcing term f IBM inside Runge-Kutta substep to increase stability of the IBM scheme, [START_REF] Pierson | Traversée d'une interface entre deux fluides par une sphère[END_REF] applied it to current DNS-IBM code.

du p dt = (1 - ρ f ρ p )g + ρ f ρ p V p ( d dt Vp udV + Vp f IBM dV ) (2.10)
Note that the way this method is written leads the volumetric integral to represent the fluid-particle hydrodynamic interaction, without calculating the traction at the particle interface (based on the normal projection of viscous and pressure stress tensors). In some cases, at the post-processing level, we calculated the stress distribution at the particle surface by interpolating the stress from the cartesian grid onto a polar grid centered at the particle center.

The following sections contain the details of validation tests carried in situations relevant for the study of a neutrally-buoyant particle driven by a wallnormal flow and approaching the stagnation point at the wall, which is the main subject of this PhD. In this section, we are going to verify our DNS-IBM method in a situation where the particle center is permanently located at the stagnation point of a 2D axisymmetric extensional flow. In this flow, the velocity field is linear, and there is a stagnation point. The objective is to show the capability of DNS to capture well the hydrodynamic perturbation induced by a finite size particle in a nonuniform flow, which is well-known in the literature in the limit of negligible flow inertia, see for instance [START_REF] Chwang | Hydromechanics of low-reynolds-number flow. part 2. singularity method for stokes flows[END_REF]. Weak flow inertia here can be obtained for Re → 0, where the Reynolds number Re = 2Ba 2 ν , B being the flow characteristic strain rate and a the particle radius. Figure 2.1 shows the DNS setup of strain flow, the Reynolds number is Re = 0.01. The domain size is OZ = OR = 25a, where a is radius of particle. A strain flow has been imposed on all the boundaries of the domain except at the bottom where axisymmetric condition is imposed. The mesh distribution is uniform, and the mesh size ∆ is set such that: a = 40∆ with uniform ∆ for the whole domain. In addition, having a = 40∆, we vary domain size OZ = OR = 5a, 10a, 15a, 25a, 50a, DNS results show that: there is no significant improvement between OZ = OR = 25a and 50a. Equations 2.11 to 2.13 give the extentional flow field perturbed by the particle at the stagnation point (the particle center being at Z = 0 and R = 0).

Validation tests

Particle at stagnation point in a strain flow

u = U ∞ - 3a 4 [ U ∞ R + (U ∞ • x)x R 3 ]+ a 3 4 ( • U ∞ R ), R = r 2 + z 2 , x = [r, z] T (2.11) u = [u r , u z ] T , U ∞ = [u ∞,r , u ∞,z ] T , u ∞,r = -Br, u ∞,z = 2Bz (2.12) u = u -U ∞ = [u r , u z ] T (2.13)
By symmetry, the particle intitially placed at the stagnation point remains mo- 

Particle fixed in a uniform flow at small Re

We now consider the classic solution of the Stokes equations representing the flow around a fixed particle, the flow being uniform far from the particle. We shall first consider this problem using the natural coordinates for the available symmetry, namely spherical polar coordinates, where a is particle radius. The fluid equation of motion, in absence of flow inertia are given by 2.14. Then we shall re-derive the equation 2.14 by using 2.16 which satisfy mass convervation equation 2.15 in spherical coordinate system. 1975). Red lines are from the DNS-IBM results.

∇ • u = 0 ∇p = µ∇ • ∇u (2.14) 1 R ∂R 2 u R ∂R + 1 sinθR ∂sinθu θ ∂θ = 0 (2.15) u R = 1 R 2 sinθ ∂ψ ∂θ , u θ = - 1 Rsinθ ∂ψ ∂R , ψ = sin 2 θf (R) (2.16) u R = u θ = 0, R = a, ψ ∼ 1 2 R 2 sin 2 θU ∞ , R → ∞ (2.17
ψ = 1 4 U ∞ ( a 3 R -3aR + 2R 2 )sin 2 θ (2.18)
With boundary condition of equations 2.17, we can obtain explicit expression of the stream function of Stokes flow problem as shown in equation 2.18.

Having explicit expression of ψ, then the velocity u = [u R , u θ ] T can be expressed by equations 2.19, and vorticity can be expressed by ω

= ( × u) • e θ . u R = 1 R 2 sinθ ∂ψ ∂θ = U ∞ cosθ 2R 2 ( a 3 R -3aR + 2R 2 ) u θ = - 1 Rsinθ ∂ψ ∂R = - U ∞ sinθ 4R (- a 3 R -3a + 4R) (2.19)
In addition, equations 2.20 show the expression of hydrodynamic stress f h and pressure profile p on the particle surface in Stokes flow, where p ∞ is the reference pressure at far field, f p and f v represent the pressure and viscous [START_REF] Chwang | Hydromechanics of low-reynolds-number flow. part 2. singularity method for stokes flows[END_REF]. Blue lines are from the DNS-IBM results.

contribution of hydrodynamic stress, respectively. Having explicit theoretical expressions of u, p, ω, f h , f p and f v , this allows validating the DNS-IBM method as well as the interpolation scheme which will be used to calculate the contributions to the force distribution at the particle surface.

f v (θ) = 2πa 2 σv • nsinθ f p (θ) = -2πa 2 p • nsinθ f h (θ) = f p + f v p = - 3 2 µU ∞ a cosθ R 2 + p ∞ , σv = µ( u T + u)
(2.20)

Figure 2.6 shows the DNS setup of a particle fixed in a uniform flow U ∞ and its local and global coordinate system. The DNS setup of Stokes flow is in a 2D axisymmetric domain, with OZ = 50a, LZ = 2OZ = 100a, particle lies in the center of the domain, and p ∞ is the reference pressure placed at the up right corner of computational domain. The domain size in radial direction is OR = 50a. The uniform mesh size ∆ is such that: a = 40, 80∆, where mesh independent results has been obstained. The large domain is used here to minimize influence of boundary conditions on the flow field perturbation(that decays like 1 r in Stokes limit). As figure 2.7 shows, the perturbed velocity u of a finite size particle in a 

U 0 = U ∞ : a) u z = u R|θ=90 • at OR ; b) u z = u R|θ=0 • at OZ.
uniform flow U ∞ at Stokes flow is in good agreement with theoretical solution at r < 5a. Equation 2.20 show the details of calculation on the expression of hydrodynamic stress f h and pressure profile p on the particle surface in Stokes 

P 0 = 1 2 ρ f U 2 ∞ and ω 0 = U∞ a .
flow, f p and f v , pressure and viscous contribution of hydrodynamic stress, respectively.

Figure 2.8 shows the pressure and vorticity profiles, obtained from the numerical simulations and Stokes solution. Figure 2.8a shows that: at different distances from the particle surface r = a, 2a, 5a, the pressure profile is in good agreement with theoretical solution. It is worth noting that the pressure decrease with the distance from the surface r increases, is related to the fact that the pressure perturbation is the outcome of viscous dissipation. It is observed that above r = 5a, the pressure is almost negligible. We are then interested in describing stress profile at the particle surface. Figure 2.8b shows the effect of interpolation radius r = 1.00a, 1.01a, 1.02a on the vorticity profile. The vorticity at r = 1.00a agrees the best with theoretical solution.

Figure 2.9 and figure 2.10 show the effect of effective interpolation radius r = 1.00a, 1.005a, 1.01a, 1.025a, 1.04a on the profiles of f h,z , and its viscous and pressure contributions f p,z and f v,z . We can observe that the profiles at r = a have the best agreement with theoretical solution. However the profiles at the surface suffer from numerical oscillations that are partly damped at r = 1.04a.

Particle settling toward a wall in a still fluid

In this section, we will verify our DNS-IBM method by solving the settling problem. There are two experiments to which our simulations will be compared: Ten [START_REF] Cate | Particle imaging velocimetry experiments and lattice-boltzmann simulations on a single sphere settling under gravity[END_REF] focus on the acceleration, steady settling and deceleration due to wall stages. [START_REF] Mongruel | The approach of a sphere to a wall at finite reynolds number[END_REF] cle wall interaction due to lubrication effect. The objective of this section is to demonstrate that current DNS method can capture well the hydrodynamic events along the motion of a particle in a still fluid, and in the presence of a wall. , where V T is steady settling velocity, d p is diameter of particle, ν is cinematic viscosity of fluid. The experimental data of particle velocity in function of time show that, under constant volume force (here due to the gravitational acceleration), a particle will experience different stages: 1. From rest the particle accelerates until reaching steady settling velocity V T ; 2. Steady settling stage; 3. Deceleration due to the wall effect(before collision if this later occurs).

Numerical setup is a 2D axisymmetric domain, with OZ = 21.33a, and OR = 6.66a. The particle falls along the axis of the domain(the gravity is parallel to the axis OZ). The initial particle position is Z p0 = 17a from the bottom wall, and p ∞ = 0 is the reference pressure placed at the up right corner of computational domain. The boundary conditions are conform to the experiment of that of Ten [START_REF] Cate | Particle imaging velocimetry experiments and lattice-boltzmann simulations on a single sphere settling under gravity[END_REF]. The bottom is wall with no slip boundary condition, the side wall is stress free condition assuming the wall effect is already small. Mesh independent results were reached between a = 40∆ and a = 80∆, a being particle radius. The time step dt is to be a small fraction of

t ref = 2a
V T , corresponding to the smallest particle Reynolds numbers considered here(Re = 1.5), dt 10 -4 • t ref .

The figure 2.11 shows that: current DNS method can capture well all the three stages that were observed in Ten [START_REF] Cate | Particle imaging velocimetry experiments and lattice-boltzmann simulations on a single sphere settling under gravity[END_REF] for all cases of Re, which means current DNS-IBM can capture well the hydrodynamic force experienced by the particle under a constant volume force, and at finite Reynolds number. The very near wall effect which contains lubrication singularity is beyond the discussion for this test. We will verify the near wall effect with another canonical test case. ticle in a container for different settling Re number as well, but focusing on the particle dynamic event in the very near wall region, ε → 0, where ε = h a , h is gap distance between particle bottom and wall, a is particle radius. In their experiment: the particle Stokes number St = 1 9 ρp ρ f Re is also of the order of unity, where Re =

V St •2a ν , V St = 2 9 • (ρp-ρ f )ga 2 µ
. In the close vicinity of the wall, however, the particle-wall hydrodynamic interaction decelerates the particle significantly which is due to the very strong lubrication force, as figure 2.14 shown.

We carried out numerical simulations using domain similar to the experi- V St is based on the terminal settling velocity of the smallest particle(St = 1.72). ment of [START_REF] Mongruel | The approach of a sphere to a wall at finite reynolds number[END_REF]: 2D axisymmetric domain, with OZ 6a for largest particle, particle falls on the axis of the domain, and is initially placed at 5a from the bottom wall. p ∞ = 0 is the reference pressure placed at the up right corner of computational domain; OR 6a for largest particle, the mesh here is irregular. Far from the wall, a ≈ 20∆ for smallest particle(St = 1.72), a ≈ 35∆ for biggest particle(St = 9.24). The boundary conditions are conform to the experiment of [START_REF] Mongruel | The approach of a sphere to a wall at finite reynolds number[END_REF]. The bottom is wall with no slip boundary condition. Stress free conditions was imposed at the side, assuming the wall effect is negligible here. In the very near wall, very fine mesh resolution is used to ensure that our DNS-IBM can capture well the lubrication effect as much as possible. In detail, ∆ z,min = 10 -4 a and ∆ r,min = 10 -4 a for the smallest particle, and the irregular mesh increase gradually to make sure that we have 100∆ within ε < 0.01 for the smallest particle. The time step dt is dt 0.6

• 10 -3 • t ref , where t ref = 2a
V St calculated from the settling characteristic time of the smallest particle(St = 1.72).

The figure 2.12 and figure 2.13 show the evolution for different St of particle velocity and hydrodynamic force along the particle trajectory, h being the gap height between the particle surface and the wall. Note that, for different St, the particle in this test is initially located close to the wall, such that the terminal velocity is not reached, unlike in the previous test. It is observed that very close to the wall, the DNS results are dependent on the time step dt. The higher St, the smaller is the dt required to fit the experimental results of [START_REF] Mongruel | The approach of a sphere to a wall at finite reynolds number[END_REF]. The figure 2.14 shows that: current DNS method can capture well the near wall dynamics of a particle, such as observed in [START_REF] Mongruel | The approach of a sphere to a wall at finite reynolds number[END_REF] for different St. 1) is negligible. We applied a particle point model, assuming the force acting on the particle is sum of lubrication force, buoyancy force and drag force as indicated by [START_REF] Mongruel | The approach of a sphere to a wall at finite reynolds number[END_REF]. We also add an added mass force model [START_REF] Ardekani | Numerical investigation of particle-particle and particle-wall collisions in a viscous fluid[END_REF] to examine the effect of unsteady inertia. The numerical detail is that, we set up a threshold ε lubri to switch off the IBM calculation on the particle motion, but switching on the particle point model with a coarse DNS-IBM, which of course can not well capture the near wall lurbication effect. We set up this scheme to compare a well-resolved DNS-IBM, in an attempt to examine the argument of [START_REF] Mongruel | The approach of a sphere to a wall at finite reynolds number[END_REF]. Figure 2.15 and figure 2.16 show that, for the whole range Stokes numbers St, the particle point model predict well the near wall dynamics of a particle approaching a wall. These again confirm the conclusion of [START_REF] Mongruel | The approach of a sphere to a wall at finite reynolds number[END_REF]: the near wall dynamics of particles considered, the main contributions are buoyancy force, particle inertia and lubrication force, the unsteady added mass force is negligible due to the fluid inertia is quite small. By the end of this section, we can confirm that our method can capture, with reasonable accuracy, the particle-fluid hydrodynamic interaction, in the presence of a wall, during particle steady and unsteady motion stages.

Introduction

The fluid dynamics of solid-liquid mixtures and slurries plays an important role in natural settings as well as process, biomedical and environmental engineering. The study presented here is motivated by the need for fundamental understanding to support modeling of inertial flows of liquid-solid suspensions in general bounded geometries. It is well-known that inertia can have significant influence on particle motions, leading for example to heterogeneity in the spatial distribution of the particle concentration and to the modulation of transport properties [START_REF] Haddadi | Suspension flow past a cylinder: Particle interactions with recirculating wakes[END_REF]. We focus in this work on the case of inertial effects on the motion of a spherical particle in a flow with a strong wall-normal component, a case which has seen limited investigations.

We refer to fluid inertia at the particle scale, evaluated through the Reynolds number Re =

ρ f (B•a)•(2a) µ
. This is intrinsically related to the particle response time, characterized by the Stokes number St = 1 9 ρp ρ f Re: here ρ f and µ denote, respectively, the fluid density and viscosity, a and ρ p are the particle radius and density, and B represents a characteristic strain rate of the flow. An early demonstration of the influence of inertia on the mixture properties is found in [START_REF] Bagnold | Experiments on a gravity-free dispersion of large solid spheres in a newtonian fluid under shear[END_REF], where the stress in a neutrally-buoyant suspension was found to be linear in shear rate, γ, at small rates, transitioning to a γ2 dependence as shear rate increased. This work has been critiqued and bulk effects of particles at large inertia reconsidered [START_REF] Hunt | Revisiting the 1954 suspension experiments of ra bagnold[END_REF]. To understand the flows in arbitrary geometries, we must focus attention beyond shear flows, e.g., channel or Couette flows, the study of which [START_REF] Segre | Behaviour of macroscopic rigid spheres in poiseuille flow part 2. experimental results and interpretation[END_REF][START_REF] Ho | Migration of rigid spheres in a two-dimensional unidirectional shear flow of a second-order fluid[END_REF][START_REF] Vasseur | The lateral migration of a spherical particle in two-dimensional shear flows[END_REF][START_REF] Matas | Inertial migration of rigid spherical particles in poiseuille flow[END_REF][START_REF] Loisel | Inertia-driven particle migration and mixing in a wall-bounded laminar suspension flow[END_REF] has led to a well-developed characterization of inertial migration of particles, and more recently to establishment of understanding of the modulation of flow turbulence by suspended particles [START_REF] Matas | Transition to turbulence in particulate pipe flow[END_REF][START_REF] Shao | Fully resolved numerical simulation of particle-laden turbulent flow in a horizontal channel at a low reynolds number[END_REF][START_REF] Wang | Modulation of large-scale structures by neutrally buoyant and inertial finite-size particles in turbulent couette flow[END_REF][START_REF] Zade | Experimental investigation of turbulent suspensions of spherical particles in a square duct[END_REF]. In other geometries, such as the flow around an obstacle or in a pipe bend, there are regions where the flow is incident on a surface. While studies of gas-solid jets inducing surface erosion are known, for instance [START_REF] Hamed | Erosion and deposition in turbomachinery[END_REF] in turbo-machinery, liquid mixtures impinging on an obstacle have rarely been considered, yet these are encountered in a number of applications, including slurry mixing with impellers [START_REF] Cumby | Slurry mixing with impellers: Part 1, theory and previous research[END_REF] and water ice-jet machining [START_REF] Gupta | Ice jet machining: A sustainable variant of abrasive water jet machining[END_REF], as well as in river transport of sand past bridge pilings.

As a foundation for understanding suspension flows with wall-normal velocity, as found in the flow toward a solid boundary or around an obstacle, we investigate in detail the dynamics of a single sphere approaching a stagnation point on a flat and smooth wall. Here, the flow kinetic energy is converted into pressure increase which decelerates the flow. This is well-described for the pure fluid by the well-known Hiemenz boundary layer solution, and thus we focus our study on this base flow. We find that, even for a neutrally-buoyant particle (i.e., particle density is matched to the liquid), the particle is driven under inertial conditions to approach the wall more rapidly than expected from a Stokes flow analysis. A natural question then arises as to whether this leads to conditions are necessary for a particle-wall collision with rebound, a phenomenon that would have significant consequences for the boundary condition to be applied to continuum modeling of the mixture flow. Fluid mechanical analysis alone is not sufficient to ascertain whether collisions will occur or not since the the Navier-Stokes equations should be supplemented with wall surface properties (roughness and wetting characteristics). The problem studied here is similar in some respects to that found in studies of sphere rebound from a wall in otherwise quiescent fluid, which is known to be controlled by particle inertia [START_REF] Joseph | Particle-wall collisions in a viscous fluid[END_REF][START_REF] Legendre | A note on the modelling of the bouncing of spherical drops or solid spheres on a wall in viscous fluid[END_REF] and particle-wall surface conditions including the effect of surface roughness [START_REF] Mongruel | The approach of a sphere to a wall at finite reynolds number[END_REF][START_REF] Izard | Modelling the dynamics of a sphere approaching and bouncing on a wall in a viscous fluid[END_REF]. However, we emphasize that the problem we study is qualitatively different as the particle and fluid move together with no body force acting on the particle sufficiently far from the wall.

In wall-normal flow, the relevant length scale close to the wall is set by the thickness of the Hiemenz boundary-layer δ = ν B , where ν = µ/ρ f is the fluid kinematic viscosity. Accross this boundary layer, the velocity decreases to zero to satisfy the no-slip condition at the wall. We consider a particle whose center lies on the streamline that ends at the stagnation point of an axisymmetric straining flow (rather than a two-dimensional flow which would end in a stagnation line). An extremely small particle on the stagnation streamline would slow down and asymptotically reach the stagnation point. However, a particle exhibits deviation from tracer motion owing to finite size effects even in Stokes flow, and the situation is considerably altered when inertia plays a role. For conditions where inertia is negligible, [START_REF] Rallabandi | Hydrodynamic force on a sphere normal to an obstacle due to a non-uniform flow[END_REF] examined theoretically the balance of wall-normal forces experienced by a particle approaching a flat wall. As the total force, which is purely hydrodynamic, under the Stokes flow condition is zero, the force can be decomposed for analysis. The lubrication resistance due to particle-wall interaction diverges as the gap becomes very small which allows the velocity toward the wall driven by the external flow to tend to zero. At high Reynolds or Stokes numbers (large particle size or high density), [START_REF] Vigolo | An experimental and theoretical investigation of particle-wall impacts in a t-junction[END_REF] measured finite impact and bouncing velocities for particles in liquid near the stagnation point at the bifurcation in flow through a symmetric T-shape junction. These studies were concerned with particles denser than the fluid, although some cases approached neutral buoyancy. The particle trajectory equation based on a simple model for the hydrodynamic force (the sum of viscous drag, added mass and lift), allowed reasonable prediction of the conditions yielding impact events.

When the particle size satisfies a/δ ∼ O(1), a finite slip velocity is expected near the wall since the particle should obey solid body motion and stop with its center away from the wall, whereas the displaced fluid would have deformed continuously. From the work of [START_REF] Vigolo | An experimental and theoretical investigation of particle-wall impacts in a t-junction[END_REF], it was suggested that the particle approach to the wall is retarded and the rate of particle-wall collision is reduced. Their model for the hydrodynamic force agrees with the measurements near the stagnation point region, but systematically over-predicts the particle impact velocity at the stagnation point. A theoretical prediction of the hydrodynamic force is challenging here, since the inertial contribution to the stress distribution at the particle surface, outside the gap, can be important. Moreover, the viscous resistance may be insufficient to stop the particle against the fluid driving force, allowing the gap width to approach the roughness length scale of solid surfaces such that continuum fluid mechanics may break down in the gap.

The dynamics of a spherical neutrally-buoyant finite-size particle in a wallnormal flow is thus an interesting question from a fundamental point of view. A transition, from non-impacting conditions where the motion is purely controlled by hydrodynamics to impacting conditions where continuum mechanics breaks down, is expected to occur at a/δ ∼ 1, as the particle surface may then closely approach the wall while its center is outside the viscous boundary layer. To address this phenomenon, we consider the particle dynamics in the Hiemenz axi-symmetric boundary-layer flow. The particle and fluid motions are coupled using the Immersed Boundary Method as implemented by [START_REF] Izard | Modelling the dynamics of a sphere approaching and bouncing on a wall in a viscous fluid[END_REF] and [START_REF] Pierson | Inertial settling of a sphere through an interface. part 2. sphere and tail dynamics[END_REF]. The simulations are carried out with a very fine grid distribution in the gap between the particle and the wall surface, in order to fully resolve the viscous lubrication. The simulations are stopped at very small gaps typical of roughness effects.

The paper is organized as follows. In §2, we introduce the simulation method, along with validation results relevant to the current problem. In §3, we present the results for particle motion in Hiemenz flow, and §4 summarizes the findings and provides concluding remarks.

Numerical Method

The numerical method is based on the Immersed Boundary technique [START_REF] Mittal | Immersed boundary methods[END_REF]. The fluid is assumed to be incompressible (of density ρ), Newtonian (of viscosity µ), and to fill the entire domain including the particle volume. The velocity U and pressure P fields are obtained by solving the continuity and momentum conservation equations:

∇ • U = 0 (3.1) ρ ∂U ∂t + (U • ∇)U = -∇P + ∇ • µ(∇U + T ∇U) + F IBM (3.2)
where the contribution due to gravitational acceleration is not explicitly mentioned here, as we are interested in the motion of a neutrally buoyant particle. The force term F IBM is an additional force density introduced to take into 58 account the presence of the particle as a solid body, in the form

F IBM = αρ U D -U τ (3.3)
where U D is the desired velocity in the solid volume, and τ denotes a characteristic time which is set equal to the time step in computation practice. The volume fraction α equals 1 in the solid, and decreases to 0 in the fluid region following a sine distribution within a spherical shell of thickness 3∆x, where ∆x stands for the local cell size. Within the solid volume, U D is set to V + Ω × r where V and Ω are respectively the translational and rotational velocities of the solid particle. As τ goes to zero, any difference between the fluid and solid particle velocities generates an infinite force density in the regions where α = 0, thus enforcing the no-slip condition. This work focuses on the motion of a particle along the flow axis of symmetry. The particle rotational velocity is not solved since it remains zero at the axis. The translational motion of the sphere follows Newton's second law, so that the momentum balance is given by:

ρ p υ p dV dt = S Σ • ndS (3.4)
where Σ = -P I + µ(∇U + T ∇U) is the stress tensor, n is the unit vector normal to the particle surface S, υ p is the particle volume and I is the identity second order tensor. ρ p indicates the particle density which, in a general case, is different from the fluid density, unless the particle is neutrally buoyant.

The numerical resolution of the above equations was obtained using the JADIM code that is based on a finite volume space discretization on a staggered grid, combined with a third-order Runge-Kutta Crank-Nicolson timeadvancement algorithm. Incompressibility is enforced at the end of the complete time step through a projection technique [START_REF] Calmet | Large-eddy simulation of high-schmidt number mass transfer in a turbulent channel flow[END_REF]. Centered schemes are used to evaluate the spatial derivatives. The solutions of the Navier-Stokes equations are second-order accurate in space and time. The coupling between the flow solver and the Immersed Boundary scheme was first detailed in [START_REF] Bigot | A simple immersedboundary method for solid-fluid interaction in constant-and stratified-density flows[END_REF], following the approach of [START_REF] Uhlmann | An immersed boundary method with direct forcing for the simulation of particulate flows[END_REF]. This was later improved by [START_REF] Pierson | Inertial settling of a sphere through an interface. part 2. sphere and tail dynamics[END_REF] for situations where the particle-to-fluid density ratio is close to 1. Following the work of [START_REF] Kempe | Collision modelling for the interface-resolved simulation of spherical particles in viscous fluids[END_REF], the surface integral in eq. 3.2 is replaced by a volume integral which is much simpler to compute

ρ p υ p dV dt = d dt υp ρUdυ p - υp F IBM dυ p (3.5)
The time derivative of the fluid momentum integral is evaluated within each substep of the Runge-Kutta algorithm using a forward Euler scheme. More details on the numerical scheme can be found in the appendix of [START_REF] Pierson | Inertial settling of a sphere through an interface. part 2. sphere and tail dynamics[END_REF]. 

The Hiemenz boundary-layer flow

The single phase flow simulations utilize boundary conditions corresponding to axisymmetric Hiemenz flow. (see figure 3.1 for schematic and DNS setup). We imposed the theoretical Hiemenz solution on inlet boundaries of the computational domain, the upper part in the figure, while at outlet, we used either an outflow condition (named outlet-Hiemenz) or imposed the Hiemenz flow velocity (named Dirichlet-Hiemenz). The domain size for outlet-Hiemenz case was OR = 32δ and OZ = 64δ, with δ = ν/B the characteristic boundary layer thickness. We are mainly interested in this work only the near wall dynamics. The particle is moving along the symmetry axis of the flow, with its initial position z 0 > 5a from the wall. We investigate the response of the particle while approaching the wall across the viscous boundary layer. We will comment on the particle dynamics. Special emphasis will be devoted to the force exerted on the particle, the particle velocity, and the slip Reynolds number among other quantities, as well as more detailed quantities including the pressure and vorticity profiles on the particle surface. The characteristic flow time scale is the inverse of the strain rate B, the length scale is the viscous boundary-layer thickness δ, leading to a characteristic flow velocity V ref = Bδ. As for the force, the viscous force scale is considered )10 4 = 0.32:

F ref = Bµa 2 .
, theoretical results of U r ( Z δ ) or U z ( Z δ ) at R δ = 1.54; , theoretical results of U r ( Z δ ) at R δ = 3.12; , theoretical results of U r ( Z δ ) at R δ = 7.86;
, DNS results corresponding to single phase Hiemenz flow. DNS has achieved mesh independence for ∆ z = δ 12.5 for both regular and irregular mesh, and the effect of outlet condition (Dirichlet or outlet) is negligible.

As Figure 3.2 shows, the radial and wall-normal components of the velocity, U r ( Z δ ) and U z ( Z δ ), respectively, for the Hiemenz flow obtained from DNS are in good agreement with the analytical solution. The effect of mesh resolution on the single phase, and the DNS has achieved mesh independence for ∆ z = δ 12.5 for both regular and irregular mesh, and the effect of outlet condition (Dirichlet or outlet) is negligible.

There is no flow through the wall which generates the stagnation point. Additionally, the fluid flow incident to the wall must decelerate to satisfy the no-slip condition. The flow spatial deceleration leads to an ambient force of opposite sign to the flow motion. Before examining the dynamics of a particle as a rigid body, let us first consider the force F ∞ that would be experienced by a fluid element if it had a finite volume equal to that of a solid particle ϑ p = πd 3 p /6:

F ∞ = ϑp ρ f DU ∞ f Dt dϑ (3.6)
where D/Dt denotes the material time derivative along a fluid element trajectory. Here, U ∞ f refers to the velocity of the unperturbed fluid. Eq. 3.6 indicates that a finite-size solid body transported by the flow is subject to a force in situations with temporal or spatial acceleration. This is the case of a finite size particle in the Hiemenz flow, where the acceleration in the base flow is purely Red, green, blue and black lines are calculated for a/δ = 0.8, 1.6, 2.4 and 3.2 respectively. convective, while the particle introduces temporal acceleration. Away from the viscous boundary layer standing near the wall, the reduction in fluid inertia is balanced by the pressure increase toward the stagnation point. Thus, the integral of the force responsible for fluid deceleration in the sphere volume tends to its unperturbed value at the sphere center x c , i.e. [START_REF] Auton | The force exerted on a body in inviscid unsteady non-uniform rotational flow[END_REF]).

F ∞ → ρ f ϑ p DU ∞ f Dt | x=Xp (see
Figure 3.3 shows the profiles of F ∞ for four fictitious fluid spheres of size a/δ = 0.8, 1.6, 2.4 and 3.2, shown as a function of the gap width = h/a = (Z p -a)/a where Z c is the center of the fluid sphere on the flow axis. This force increases with the sphere size. Figure 3.3 shows the force acting on a body in the flow toward a wall, this is a major contribution due to the underlying flow which decelerates the particle. For clarity, we emphasize that this fictitious fluid sphere is continuously deforming, and thus the finite velocity at "contact" ( = 0) indicates the additional acceleration required for a solid sphere of the same size, for which this point implies true contact.

A neutrally buoyant particle in Hiemenz flow

We consider the dynamics of a solid sphere in this section, for the case where the fluid and particle densities are equal. This neutrally-buoyant system allows exploration of the role of inertia associated strictly with the size of the suspended particle. The parameters of the computational scheme used to study the particle case a δ ( ∆z,min δ

)10 4 ( ∆r,min δ

)10 4 (∆t dynamics are presented in table 3.1. Once the steady state of the flow is reached, a particle is placed with center of mass on the axis of symmetry at Z p0 = 16δ, with zero initial velocity where the local fluid velocity is BZ p0 . The particle sizes are a δ = 0.8, 1.6, 2.4, and 3.2. The Reynolds number Re = 2Ba 2 /ν = 2(a/δ) 2 thus has the approximate range 1 < Re < 20. The mesh grid is irregular, being very fine near the stagnation point to capture lubrication effects. The minimum grid sizes in both radial and axial directions are also given in table 3.1.

Velocity and force

The absolute value of particle velocity along its wall-normal position z/δ is shown in figure 3.4, for the four particle sizes listed in table 3.1. The particle velocity is compared to the fluid velocity along the z axis. Far from the wall, the neutrally buoyant particle is carried by the flow with negligible slip with respect to the unperturbed fluid flow. However, the slip between the particle and the fluid increases as the distance between the particle surface and the wall decreases. Figure 3.4b shows the slip profiles as a function of the dimensionless separation between the particle surface and the wall, = h/a = (Z p -a)/a. The slip is defined as the difference between the particle velocity and the unperturbed fluid velocity scaled by the unperturbed fluid velocity at distance z = a from the wall, which is approximately equal to Ba when a = O(δ). This scaling limits the slip velocities between zero when the particle is not perturbed by the wall presence and one when the particle is sitting at the stagnation point. The dimensionless slip converges to 1 as → 0. Figure 3.4b shows that the distance at which the slip starts to deviate from zero increases as the particle size decreases. For large particles, the slip velocity remains negligible down to small gaps where it increases abruptly, only after the gap reaches a fraction of the particle radius.

The litterature is lacking a theoretical framework that allows predicting the particle motion approaching a wall while the flow inertia is finite at the particle scale. However, a similar problem was solved in the Stokes limit (Re → 0) by [START_REF] Rallabandi | Hydrodynamic force on a sphere normal to an obstacle due to a non-uniform flow[END_REF], who solved the force balance, from which the slip velocity can be obtained. This corresponds to small particle radius compared to the viscous boundary layer thickness, i.e. a/δ → 0. Rallabandi et al. ( 2017) gave an explicit analytical expression for the slip in the limit → 0 and 1, which are displayed with pink dashed lines in figure 3.4b. The slip velocity at a/δ = 0.1 is also displayed in that figure, representing an intermediate result between the Stokes limit and a = O(δ). There is a non monotonous change in shape of the slip velocity when the particle size is increased. In the Stokes limit, the slip velocity increases regularly, as a power function of while the particle approaches the wall. As the particle size becomes finite compared to δ, the slip curve exhibits a shape change. a/δ = 0.8 and 1.6 have inflexion points at the positions where a sign change takes place for both the differential acceleration between the particle and the unperturbed fluid flow and the net hydrodynamic force, as it will shown further in this section. This behavior is neither observed in the absence of inertia (Stokes limit), where the hydrodynamic force cancels along the particle trajectory, nor for the large particles a/δ = 2.4 and 3.2 that start to slip only in the late stage of the particle motion toward the wall. Figure 3.5a shows the slip Reynolds number Re slip = 2a(V p -U f )/ν, which is thus negligible far from the wall, but grows near the wall where the particle motion deviates from the fluid at its center. For the largest particle, Re slip increases significantly as → 0. Similarly, the acceleration difference grows ; the increasing magnitude of this quantity with size is associated with the need for the particle surface to be slowed down to zero at a position where its center is outside the boundary layer and the fluid at this position is not undergoing viscous slowing due to the effects of the boundary layer in the vicinity of the stagnation and lubrication. Note that the acceleration difference can change its sign near the wall, a behavior that results from the hydrodynamic force, as explained later in this section.

Figure 3.6a displays the total force F DN S computed from the surface integral of the stress on the freely moving particle. Figure 3.6b shows F h = F DN S -F ∞ , the difference between the total and ambient force experienced by the solid particle along its trajectory, for ≤ 1. The force difference F h = F DN S -F ∞ is termed the 'hydrodynamic' force, as it arises from the interaction between the actual particle and the fluid flow. By the way it is defined, F h is nearly proportional to the difference between the particle and fluid acceleration. Figure 3.6b illustrates that F h → 0 for ≥ 1, and its growth on approach to the wall increases with particle size.

Particle at = 1

When the gap between the particle surface and the wall is very large, the hydrodynamic force is negligible since the particle is carried by the fluid with no slip and the velocity gradient of the background flow is uniform. At ≈ 1, the particle motion starts to be perturbed by the wall presence. Approximating the background velocity field by a Taylor expansion in the vicinity of the particle center, it follows that the hydrodynamic force scales like the viscous force µBa 2 . The evolution of F h with the particle Reynolds number Re = 2Ba 2 /ν is displayed in figure 3.7 at the location corresponding to the gap = 1. F h indeed scales like the viscous force and appears to be insensitive to the particle initial position Z p0 /δ varied between 12 and 20, thus indicating that the result is representative of a particle approaching from arbitrarily far from the wall.

Particle in the vicinity of the wall

We now consider the fast dynamics which occurs as the particle approaches the stagnation point at separations considerably smaller than its radius ( 1). In this situation, the evolution of the particle velocity and hydrodynamic force depends strongly on the particle size, as can be seen in figures 3.4 to 3.6. The particle speed decreases below that of a fluid tracer, as shown in figure 3.4, owing to the additional force -resisting the particle motion -experienced by the portion of the particle closest to the wall. The smaller size particles (a/δ = 0.8 and 1.6) decelerate drastically and the total surface force tends monotonically to zero. For these particles there is a net negative force (as shown in the inset of figure 3.6b), i.e. a force toward the wall, as the drag force due to lagging the flow becomes dominant; the relationship of this force to the detailed viscous stress and pressure on the particle surface is detailed below (see the discussion of figure 3.11).

For the larger particles (a/δ = 2.4 and 3.2) the rate of approach to the wall remains considerably larger as the gap becomes small, i.e. z → a or → 0, as seen in Figure 3.4. As a consequence, the magnitude of the total force does not decrease monotonically. Instead, the force decreases on approach until ≈ 0.2, and then the resistive force due to lubrication grows and becomes dominant.

For a/δ = 2.4, the force is able to reduce the approach speed and the force then tends toward zero. For a/δ = 3.2, the force is rapidly rising at = 0.01, which is the minimum value allowed in the computation. Figure 3.8 shows the force for a/δ = 3.2 and < 0.1, and indicates that the numerical resolution must be very fine in order to capture correctly the force divergence at small gaps ( < 0.1). As → 0, the force curves in figure 3.8 for the cases d 1 and d 2 of table 1 each exhibit a 'kink' due to numerical under-resolution of the flow. This is distinct from the phyiscally realistic local maximum of the force observed for a/δ = 2.4 in figure 3.6: this occurs when the hydrodynamic resistance decelerates the particle sufficiently to allow the lubrication force to tend toward zero. With the numerical parameters used here, we do not resolve the flow sufficiently well to capture the return to zero of the force for a/δ = 3.2, but fluid mechanical theory predicts the lubrication force will decelerate the particle and the force will reach a local maximum as in the case of a/δ = 2.4. Considering this last stage for a/δ = 2.4, the force decreases strongly and becomes negative while the particle velocity tends to zero as → 0.

To summarize this section, figures 3.4 to 3.7 have shown that the behavior of the force acting on a decelerating neutrally buoyant particle approaching the stagnation point at a wall exhibits a transition. At a/δ ≤ 1.6, the total force from the fluid is monotonically decreasing, while for a/δ = 2.4 and 3.2, the force increases sharply near the wall, before returning to zero. A change of sign of the force, to a value pushing the particle toward the wall, is seen in the final stages of the approach to the wall. The non-monotonic force is associated with the existence of a significant velocity of the particle when its surface is approaching closely to the wall. This has significant practical importance: if the gap size between the particle surface and the wall becomes comparable to characteristic surface roughness while the particle velocity is finite, the continuum description will break down and solid contact is expected to occur.

Stress distribution on the particle surface

The pressure P , viscous stress σ v = µ(∇U + ∇U T ), and vorticity distributions were evaluated locally at the particle surface. The particle surface was discretized with a regular angular distribution between θ = 0 and θ = 180 • , corresponding respectively to the point on the particle that is closest to the wall and the diametrically opposed point. The distance from the particle center, at which the stress terms were calculated was set to 1.0025a for θ < 20 • and smoothly increased up to 1.04a at θ = 180 • . Quantities on the particle surface were determined by linear interpolation from the values on the irregular Cartesian grid used in the flow simulations. This method yields smooth angular stress profiles.

Next we examine the origin of the drastic increase in force when the larger particles approach the wall. From lubrication theory, it is well-known that when a particle approaches a wall with a finite velocity V p , the resistance grows as 1/ to yield a divergent force F H ∼ µaV p / . This is a consequence of the large pressure required to drain the fluid out of the gap by the squeezing flow. Figure 3.9 shows the pressure profiles along the particle surface for = 0.01. The profiles corresponding to different particle sizes are scaled by the stagnation point pressure P 0 obtained from the single phase Hiemenz flow solution. The pressure profiles are compared to the quasi-steady theoretical solution obtained in the frame of the thin gap lubrication approximation, for a particle approaching a planar wall with a velocity V p | Zp=a(1+ ) , that will be called termed V p . Neglecting inertial effects, the quasi-steady axisymmetric solution of the radial pressure distribution is obtained from:

P (r) -P (R) = 6µV p r R s h 3 (s) ds (3.7)
where h(r) is the gap thickness as a function of the radial coordinate r and R is the outermost point of the thin film region, where the pressure is almost equal to the stagnation point pressure P 0 . Consistent with the assumptions of lubrication analysis, at a given radial position r, the variation of the pressure in the gap is found to be negligible with respect to z.

As noted above, the lubrication force divergences due to viscous effects in the film squeezed between the particle and the wall can, in principle, bring the particle to stop whatever its size; the force evolution and local maximum near the wall should also be observed for a = 3.2δ in figure 3.6b if the simulation was further continued to < 0.01, using a numerical resolution finer than the one used here. In reality, the particle-wall interaction at very small gaps is not likely to be exclusively hydrodynamic. On the one hand, the viscous force reaches ex-tremely high values, which may lead to particle and wall deformation depending on their respective mechanical properties [START_REF] Davis | The elastohydrodynamic collision of two spheres[END_REF]. On the other hand, the roughness of the surfaces may come into play. Since elastohydrodynamic interactions are not accounted for by a standard immersed boundary method and both smooth spherical particle and planar wall are considered, we stopped the numerical simulations at = 0.01, assuming that continuum fluid mechanics do not apply beyond and that solid deformation is negligible for larger separations.

Discussion on the hydrodynamic force

The agreement between the numerical and theoretical profiles in figure 3.9 shows that the pressure increase in the gap is of viscous origin. This prompts a comparison of F h to the lubrication force that a particle would experience in a still fluid while approaching a wall with a velocity V p . The lubrication force F lub in that situation is given by eq. 3.8 [START_REF] Cox | The slow motion of a sphere through a viscous fluid towards a plane surface. II. Small gap widths, including inertial effects[END_REF] 

F lub = -6πµa V p ε 1 + ε 5 (1 + 1 2 Re g )ln(ε). (3.8)
where Re g is the Reynolds number corresponding to the radial flow through the gap. If the particle approaches the wall with Re g 1 (as is the case in the problem considered here), the inertial contribution to eq. 3.8 is negligible. Figures 3.10a and b compare the hydrodynamic force F h to F lub in the nearwall region, both being scaled by µBa 2 , for the smallest and largest particles, respectively. It is clear that the comparison fails for the smallest particle. The lubrication in the gap would lead to a net positive force, whereas F h is comparatively negligible. The small particle moves through this region with small wall-normal velocity, i.e. the slip velocity is approximately equal to the flow velocity at the position of the particle, and negligible differential acceleration with that of the fluid. Against the viscous lubrication in the gap, the particle experiences a relatively large drag in the flow direction, associated with the increase of particle resistance to the slip near the wall, as it has been shown previously (see for instance [START_REF] Magnaudet | Drag, deformation and lateral migration of a buoyant drop moving near a wall[END_REF]).

As for the largest particle (a/δ = 3.2), figure 3.10b shows that the lubrication force F lub overestimates F h , although the shape of the profiles is similar. The largest particle decelerates faster than the fluid in the near-wall region. As it is suggested from figure 3.4b, the dimensionless slip velocity is small compared to that of the small particle (at identical epsilon). This suggests that the drag in the flow direction may have some impact on the force balance experienced by the particle, without being the dominant contribution. However the finite differential acceleration leads to unsteady effects on the particle motion. Unsteady forces arise from the time variations in the wake of the decelerating particle, unsteady vorticity diffusion close to the particle surface and added mass, all of these contributions being impacted by the presence of the wall. Among these contributions, the added mass force can be simply estimated from the differential acceleration as

F AM = C M ρ f ϑ p (DU/Dt -dV p /dt)
, where C M is the added mass coefficient. C M is equal to 1/2 for an isolated sphere in a flow, and increases up to around 0.8 for a particle close to a wall, [START_REF] Ardekani | Numerical investigation of particle-particle and particle-wall collisions in a viscous fluid[END_REF]. Despite that adding the contribution of the added mass reduces the shift between F h and F lub , the remaining unsteady contributions are seemingly important. Figure 3.10 shows clearly that a theoretical development of the force balance specific to this flow configuration is missing for a better understanding of the particle dynamics.

To close this section, we examine the pressure and viscous contributions to the surface force distribution experienced by the moving particle while it decelerates near the wall. This information is not calculated explicitly by the immersed boundary method, which instead gives the total volumetric force F DN S . The local viscous f v and pressure f P contributions to the hydrodynamic force are computed as follows:

f v (θ) = 2πa 2 [σ v -σ ∞ v ] • n sinθ, (3.9) f P (θ) = -2πa 2 [P -P ∞ ]n sinθ. (3.10)
Therefore, the total pressure force is F P = f P dθ and the total viscous force is contributions ensures that the hydrodynamic interaction is solely accounted for in the sum F P + F v , which should be equal to F h (defined as F DN S -F ∞ ).

F v = f v dθ.
The angular distributions of the wall-normal component of f h = f P + f v are shown in figure 3.11, for a/δ = 0.8, 2.4 and 3.2, for different . By examining the pressure and viscous stress profiles, the pressure contribution is by far the dominant contribution to the total force. Some observations can be noted on to the stress distribution on the particle surface while it approaches the stagnation point. For the smallest particle, the relative viscous stress contribution is finite for 45 • ≤ θ ≤ 135 • and is negligible elsewhere. When the particle is very close to the wall, the pressure increases in the gap, whereas the force profiles remain almost unchanged on the upper part of the particle. For the largest particle, when → 0, the pressure increases in the gap and at the top point of the particle, which behaves like an extension to the stagnation point. The closer the particle is to the wall, the more negative is the pressure contribution at the particle side near θ = 45 • , where local flow recirculation develops. Finally, for a/δ = 2.4, the pressure relaxation in the gap region is indicated by the green curve (compared to the black curve), after the particle has drastically slowed down. Now that the stress distribution has been considered, we can conclude on the hydrodynamic force that was observed to be negative during the last stage of motion, for all the particles that have decelerated sufficiently to stop at the wall (a/δ = 0.8, 1.6 and 2.4). As → 0, the particle has slowed enough so that the over-pressure induced by the squeezed flow in the gap becomes weak (the over-pressure in the gap is proportional to the particle velocity following eq. 3.7). Consequently the (negative) stress applied by the flow on the upper part of the particle becomes the dominant contribution. Nevertheless, figure 3.7b shows that at = 0.01, F h corresponding to the freely moving neutrally buoyant particle is smaller than that of the hydrodynamic force that would be experienced by a particle at rest at the stagnation point (which is negative as well). Thus the flow resistance in the gap between the moving particle has still a residual contribution to the particle motion.

Conclusion

The motion of a neutrally-buoyant spherical particle transported along the axis of Hiemenz flow was studied with the aid of numerical simulations. The deceleration of the unperturbed fluid flow toward the wall leads to large pressure in the region near the stagnation point standing at the wall. The fluid and particle equations of motion were coupled in the frame of the Immersed Boundary Method. A fine spatial and temporal resolution allowed capturing the viscous lubrication in the gap between the particle surface and the wall, until the gap reached one percent of the particle radius. The particle radius was changed in the range [0.8 -3.2]δ, where δ denotes the thickness of Hiemenz flow viscous boundary layer. The simulations were stopped at = 0.01, where corresponds to the dimensionless gap scaled by the particle radius. Below this limit the numerical model should be adapted in order to take into account different physical phenomena, beyond hydrodynamic interactions. Our results showed that the particle size has a strong influence on the particle wall-normal motion.

Far from the wall, the neutrally-buoyant particle follows the local fluid motion while tranported toward the stagnation point. In the absolute frame of reference, the particle experiences a volume force resulting from the deceleration of the ambient unperturbed fluid. Near the wall, hydrodynamic interactions modify the force balance, and the particle lags the local fluid flow. The present paper focused on the particle dynamics near the wall ( ≤ 1), where the rigid particle decelerates faster than the local unpeturbed fluid flow. We measured the slip velocity and the difference F h between the global force experienced by the particle and the ambient force associated with the fluid deceleration (which is approximately proportional to the differential acceleration between the particle and the fluid flow). The smaller the particle size, the larger is the distance from the wall (scaled by the particle radius), at which the slip between the particle and the local fluid motion deviates from zero. The slip continuously increases while the particle approaches the stagnation point. However its evolution in the range 0 ≤ ≤ 1 depends drastically on the particle size. Two different behaviors were observed and commented along this paper.

On the one hand, the slip curves of particles a/δ = 0.8 and 1.6 exhibit inflexion at the time the differential acceleration between the particle and the unperturbed fluid flow changes its sign. This is an indication of a particle motion sufficiently slowed down by the wall that the particle would end up resting at the wall if the simulation was further continued, due to a balance between a negative drag force and in return a positive solid contact between the particle and the wall. This late stage of particle motion requires describing the solid contact between the particle and the wall which has not been included in the numerical model used for this part of the work.

On the other hand, for larger particles, the slip becomes finite only late along the trajectory, at small , so that the force F h continuously increases until 1. The force increase is mainly associated with the viscous lubrication in the gap, that requires a fine numerical resolution so that the pressure divergence in the squeezed film can be solved properly. The motion of particle a/δ = 2.4 was successfully damped at = O(0.01). Here the damping refers to the fact that the particle has decelerated enough so that the force F h decreased back to zero and then reached negative values, being dominated by the downward viscous drag by the flow. The damping of particle a/δ = 3.2 would require to solve the viscous lubrication properly in much smaller gaps, which would be quite expensive if the particle equation of motion is not supplemented by subgrid models for the unresolved part. Nevertheless, as → 0, the fluid force in the gap can reach large values so that wall or particle deformation, i.e. elastohydrodynamic effects [START_REF] Davis | The elastohydrodynamic collision of two spheres[END_REF], would need to to be considered in modeling of real materials.

Introduction

Understanding particle-wall interactions is of practical importance for a wide range of industrial and environmental problems. When it comes to non-colloidal particles, solid contact between moving particles immersed in a fluid and a wall is of interest in applications, such as impact-induced erosion. Solid contact driven by particle motion is often called collision in the literature. Particle-wall collision has been carefully addressed in the case where the particle motion toward the wall is driven by a body force like the particle apparent weight [START_REF] Mongruel | The approach of a sphere to a wall at finite reynolds number[END_REF][START_REF] Yang | Interaction law for a collision between two solid particles in a viscous liquid[END_REF][START_REF] Cate | Particle imaging velocimetry experiments and lattice-boltzmann simulations on a single sphere settling under gravity[END_REF][START_REF] Joseph | Particle-wall collisions in a viscous fluid[END_REF]): this will be called the "settling problem" in the following. There is however a wide variety of applications where the particle motion toward the wall is driven by a flow with a strong wall-normal component like an impinging jet, or a spinning-disk reactor. While studies of gas-solid jets inducing surface erosion are known, for instance [START_REF] Hamed | Erosion and deposition in turbomachinery[END_REF] in turbo-machinery, liquid mixtures impinging on an obstacle have rarely been considered, yet these are encountered in a number of applications, including slurry mixing with impellers [START_REF] Cumby | Slurry mixing with impellers: Part 1, theory and previous research[END_REF], water ice-jet machining [START_REF] Gupta | Ice jet machining: A sustainable variant of abrasive water jet machining[END_REF], as well as in river transport of sand past bridge pilings.

Our work aims at understanding the interaction of a freely moving particle in a wall-normal flow of viscous liquid, in a way to support modeling of inertial flows of liquid-solid mixtures in general bounded geometries. The boundary conditions that need to be applied in the frame of a continuum description of the mixture flow is dependent on the understanding of particle-wall interaction. We consider the situation where the particle is large enough so that Brownian motion and colloidal interactions are negligible. Therefore if the particle and the wall are perfectly smooth, the viscous resistance would diverge as the gap between the particle and the wall vanishes, preventing the surfaces from physical contact. However surfaces are rarely perfectly smooth and they can deform at high interstitial pressure due to lubrication. If the particle approaches an obstacle with finite inertia, the gap can decrease down to small values of the order of the surface roughness. In that case, continuum fluid mechanics can break down, leading to solid contact at the scale of surface roughness. Under these conditions, momentum exchange takes place within very short time scale compared to the characteristic time scale of particle motion (like particle relaxation time), and the particle eventually bounces back if the energy prior to contact overcomes energy dissipation during contact: this is the so-called collision process.

Collision in the settling problem

We first consider the particle-wall interaction in the more familiar problem, i.e. a particle settling toward a wall in a still fluid. Assume that the particle velocity has reached a terminal settling velocity V T away from the wall, when the equilibrium between the particle apparent weight and the drag force is achieved.

The terminal Reynolds number associated to this terminal velocity is Re term = 2aV T ν , where a is the particle radius and ν the kinematic velocity. Close to wall, the particle immersed in a viscous fluid decelerates due to larger viscous resistance. The particle deceleration is a function of the particle inertia that is the ratio between the particle relaxation time (τ p = mp 6πµa considered from the Stokes drag force) and the flow characteristic time scale (τ f = 2a V T ). This leads to the dimensionless number

St = τ p τ f = 1 9 ρ p ρ f Re term (4.1)
where ρ p and ρ f are the particle and fluid densities. Although in a general case, the terminal Reynolds number is relatively large, such that the drag force deviates from Stokes law and there is an added mass effect, it is quite usual to keep this definition of the Stokes number for its simplicity.

For particle-wall collision, a restitution coefficient is commonly defined as the ratio between the particle velocity after rebound V R (if the rebound takes place) and the incident particle velocity

V i , e = - V R V i (4.2)
The minus sign appears because the two velocities are of opposite directions. On the basis of experimental and numerical measurements, it has been shown that the restitution coefficient e depends essentially on the Stokes number [START_REF] Joseph | Particle-wall collisions in a viscous fluid[END_REF][START_REF] Legendre | A note on the modelling of the bouncing of spherical drops or solid spheres on a wall in viscous fluid[END_REF][START_REF] Izard | Modelling the dynamics of a sphere approaching and bouncing on a wall in a viscous fluid[END_REF][START_REF] Li | A contact model for normal immersed collisions between a particle and a wall[END_REF], weakly on elastic material properties [START_REF] Joseph | Particle-wall collisions in a viscous fluid[END_REF], but more importantly on material plasticity Ruiz-Angulo et al. ( 2019). In the case of negligible energy dissipation in the fluid (in a gas phase for example), energy dissipation characterized by a restitution coefficient e dry is mainly associated with solid deformation of the particle and wall during the contact. The restitution coefficient e tends to e dry when St 2000. For a collision occurring between a particle settling in a viscous fluid and the wall, the loss of particle energy is predominantly due to viscous dissipation during the deceleration stage. The value of the restitution coefficient depends on the velocity set as the incident velocity V i , and in most works the terminal velocity is chosen, so that the restitution coefficient e accounts for both viscous and solid dissipations. When St 10, e tends to 0, i.e. the particle approaches the wall asymptotically reaching zero at the wall.

Partcile approaching a stagnation point at a wall

In this paper, we consider one or two freely moving neutrally buoyant particles approaching a stagnation point at a wall. We consider particularly particles in axisymmetric Hiemenz boundary layer flow, as represented in figure 4.1. The fluid velocity of the flow toward the wall decreases with a characteristic strain rate B. In a previous paper, we have studied the fluid-particle hydrodynamic interaction occurring along the particle trajectory while approaching the stagnation point. We observed a change in the dynamics when the particle size was varied in the range 0.8 ≤ a δ ≤ 3.2 (where a is the particle radius and δ is the thickness of the viscous boundary layer). If the particle size is less than a critical value, the particle velocity vanishes asymptotically at the stagnation point. Otherwise, the particle velocity remains finite at very small gaps, suggesting that rebound may occur, depending on the material properties. In the case of a neutrally buoyant particle, and in the absence of external forcing, the particle inertia follows from the flow inertia at the particle scale that is evaluated through the Reynolds number Re = (B•a)•(2a) ν = 2( a δ ) 2 . This is intrinsically related to the particle response time, characterized by the Stokes number St = 1 9 ρp ρ f Re. With a unity density ratio, the only parameter than governs the particle dynamics is its size. The motion of a neutrally buoyant particle can be inertial when the Reynolds number associated with the strained ambient flow around its surface is finite: such is the case for a δ = O(1).

The question of interest is whether solid contact between the neutrally buoyant particle and the wall is likely to take place or not in viscous liquid, and in case it takes place how much kinetic energy is recovered after the rebound? [START_REF] Vigolo | An experimental and theoretical investigation of particle-wall impacts in a t-junction[END_REF] have partially answered to this question based on experiments with solid particles transported in liquid flowing in a symmetric T-junction flow. They have established a phase diagram that shows a transition from non-impacting to impacting conditions as the particle-to-fluid density ratio, the particle size or flow inertia increases. However in their measurements, the case of a neutrally buoyant particle was not included. We solve numerically the particle dynamics in the wall-normal fluid flow while the particle is heading toward the stagnation point. The particle-fluid interaction was obtained by solving the flow equations of motion coupled to the Immersed Boundary Method. The grid resolution is fine enough in the gap region in order to avoid complementing the hydrodynamic force by subgrid modelling. The Immersed Boundary Method used for this work does not take into account the surface deformation subsequent to pressure divergence inside the gap, nor does it consider the non-smooth surface profiles. Thus, below a cut-off gap of order of few percent of the particle radius, which is assumed to represent the surface characteristic roughness of micrometric particles, a collision model is implemented following the Discrete Element Method based on multi-contact soft-sphere approach. The parameters of this model are determined based on a given collision time scale between the particle and the wall.

In the following sections, the numerical simulation method is briefly summarized, while the particle-wall collision model is detailed. Then a section is dedicated for the validation of the numerical tool in the case of the settling problem. This is followed by two sections dedicated to the approach of a single (then two) particle(s) to a stagnation point in Hiemenz flow. The particle-wall interaction is considered as a function of the particle size, that is the unique parameter of the study.

Numerical method

Fluid-particle interaction

The numerical method that solves the particle-fluid interaction is based on the Immersed Boundary technique, as described in the previous chapter. A force F c (detailed below) is added to the particle equation of motion in case a collision takes place. The particle equation of motion becomes then:

ρ p υ p dV dt = d dt υp ρUdυ p - υp F IBM dυ p + F c (4.3)
The way the fluid and particle motion are coupled together does not lead to discontinuity thanks to the smooth interface representation. Usually, the time step of the fluid solver is several times less than the flow or particle relaxation time scales. In comparison, the particle-wall collision is a singular event that leads to momentum exchange at very short time scale. For instance in Hiemenz flow, the contact time is of O(10 -4 ) times smaller than the flow characteristic time scale B -1 , as it will be shown later in section 4.4. More broadly, in suspension flows with low to moderate solid volumetric fraction, the collision time scale is several orders of magnitude less than the time needed for the particle to relax after any perturbation. This constrains the choice of the time step. In standard simulations based on the Immersed Boundary method, the fluid-particle interactions are solved with several grid points per particle diameter (typically 10 to 20). When a pair of particles or a particle and a wall are close to contact, an additional contribution is added to compensate the under-resolution of the viscous resistance in the thin gap between the surfaces [START_REF] Kempe | Collision modelling for the interface-resolved simulation of spherical particles in viscous fluids[END_REF][START_REF] Brandle De Motta | Numerical modelling of finite-size particle collisions in a viscous fluid[END_REF][START_REF] Izard | Modelling the dynamics of a sphere approaching and bouncing on a wall in a viscous fluid[END_REF][START_REF] Lambert | Local lubrication model for spherical particles within incompressible navier-stokes flows[END_REF]. If the particle inertia is large enough, particle-particle or particle-wall collisions are taken into account by adding a contact force, inspired by the Hertzian contact theory where the force is a non linear function of the deformation, or a linear model like the soft-sphere approach [START_REF] Cundall | A discrete numerical model for granular assemblies[END_REF].

The simulations realized for the present work focus on the interaction between the particle and the wall in a specific region where the flow and the particle decelerate before reaching the stagnation point region. We aim to avoid as far as possible the subgrid models for the hydrodynamic force, while the particle approaches the wall. The fluid motion in the gap is very well resolved, using small time steps and fine grid distribution, such that there is no need for additional lubrication forces, until the gap becomes small enough so that surface roughness can come into play and leads to collision. Actually, this is quite expensive to be applied for the simulation of a suspension flow, but the cost is reasonable for the study at the level of one or two particles considered here.

Collision model

In this work, the case of small particle and wall elastic deformation upon contact is considered. The theory of elasticity allows to predict the stress distribution in the deformed region, as well as its radius and depth, and the particle-wall contact time, for a given particle size, density and impact velocity. In the numerical simulations, in order to account for contact-induced particle-wall deformation, using non-deformable objects, we use the soft-sphere approach of [START_REF] Cundall | A discrete numerical model for granular assemblies[END_REF]. It is based on solid deformation during contact, by allowing the overlap of non-deformable objects. The description of this approach will be focused on particle-wall collision only in the wall-normal direction (since the particle motion is wall-normal through all the paper). If the gap ζ = Z P -a (Z P being the axial position of particle center) is smaller than a given threshold η, then a wall-normal contact force F c is added to the particle equation of motion 4.3 following:

F c = -(k n ζ + γ n dζ dt ) (4.4)
In the absence of viscous liquid (dry particle-wall collision), the parameters of the linear visco-elastic spring-dashpot system are determined by solving the particle deformation equation:

m d 2 ζ dt 2 + γ n dζ dt + k n ζ = 0 (4.5)
The mass m is the equivalent mass of the binary system, which is equal to the particle mass in the case of particle-wall collision. Eq. 4.5 is solved assuming that at the initial instant at which the collision occurs (t = 0), ζ = 0 and dζ/dt = V imp , the impact velocity. At the end of the collision that lasts for a time t = T c (that refers to the contact time), the particle leaves the wall with a velocity dζ/dt = -e dry V imp where e dry is the normal restitution coefficient. The system solution leads therefore to a relation between the spring-dashpot parameters and the colliding system properties:

γ n = - 2m T c
ln(e dry ) (4.6)

k n = mπ 2 T 2 c + γ 2 n 4m (4.7)
The spring stiffness is a key parameter that should reflect the material strength. Its relation to the contact time is different from the one found in the frame of the elastic theory, since the soft-sphere model assumes the force varies linearly with ζ (instead of ζ 3/2 in the elastic theory). The larger the value of k n the more the objects behave like solid material, but the smaller the time step should be in order to correctly solve the deformation equation. Nevertheless, it has been shown that the spring stiffness can be underestimated without significant impact on the dynamics of a granular system, for instance on the collapse of a granular column [START_REF] Lacaze | Planar collapse of a granular column: Experiments and discrete element simulations[END_REF].

In the case of solvent mediated particle-wall interaction, viscous dissipation influences the particle motion. The most significant theoretical contribution on elastohydrodynamic particle-wall interaction is the one of [START_REF] Davis | The elastohydrodynamic collision of two spheres[END_REF]. It accounts for the viscous dissipation in the small gap between the particle and the wall, in addition to small elastic deformations in both the sphere and the wall. Their analysis assumes that the surfaces are perfectly smooth in such a way that the particle does not get into physical contact with the wall because of the subsistance of a liquid film between them. In the present study, we take into account the viscous dissipation by solving instantaneously the flow equation of motion in the whole domain (including the gap region) while the particle interacts with the wall. A contact force similar to eq. 4.4 is added to the particle equation of motion (eq. 4.3). The definition of the overlap ζ is slightly modified, ζ = Z P -a(1 + η), in order to avoid the overlap of the immersed particle boundary with the wall, that would lead to numerical inconsistency in the hydrodynamic force computation. Since we are interested in situations where the energy dissipation in the solid material is negligible compared to the viscous energy dissipation in the fluid, we consider e dry=1 , and consequently the damping parameter γ n is set to zero. We are left with two numerical parameters: T c and η.

Particle-wall contact time T c

For particle-wall collision in gas phase, measurements have shown that the Hertzian model detailed in [START_REF] Goldsmith | The Theory and Physical Behaviour of Colliding Solids[END_REF] gives a good prediction of the collision time scale. According to the Hertzian model, two contacting grains mechanically deform, and the percussion force is proportional to ζ 3/2 where ζ represents the grain deformation. The collision duration is expressed in terms of the particle materials:

t Hertz = 5.08 ρ 2 p E * 2 V imp 0.2 a (4.8)
where a and V imp are the particle radius and impact velocity. The equivalent elasticity of the particle-wall system depends on the modulus elasticity and Poisson ratio of the particle (index p) and wall (index w) as following:

1 E * = 1-ν 2 p Ep + 1-ν 2 w
Ew . If all other parameters are kept constant, eq. 4.8 tells that t Hertz increases with the particle size and decreases with the particle impact velocity.

For collisions in viscous liquid occuring in the settling problem, measurements realized by [START_REF] Zenit | Mechanics of immersed particle collisions[END_REF] revealed that the collision time between a particle and a wall is larger but of the same order of magnitude as the time obtained by Hertz' theory when the particle inertia is large enough (St 10). In this case, the contact time decreases with the Stokes number. When the Stokes number is below a critical value of ≈ 10, there is no rebound [START_REF] Legendre | A note on the modelling of the bouncing of spherical drops or solid spheres on a wall in viscous fluid[END_REF], and therefore the collision time tends to infinity. More recently, [START_REF] Birwa | Solidon-solid contact in a sphere-wall collision in a viscous fluid[END_REF] have measured the sharp decrease of the collision time near the critical Stokes number, the collision time becoming of O(100t Hertz ) for St = 7 -8. The average and variance of this time depends importantly on the particle surface condition around the critical Stokes number. For collisions induced by a wall-normal flow of liquid, we have a priori no information on the contact time between objects.

Surface "roughness" η

The critical gap η below which the collision model is activated, can be thought of as a characteristic average roughness of the surfaces that leads to solid contact. The choice of this parameter sets the impact velocity: V imp increases as η increases. It is known from Hertzian elastic impact that when the surfaces are rough, the presence of bumps reduces the effective surface of contact, and slightly increases the contact time. This is because, roughness sets the relevant curvature at the point of impact. However, this effect is not accounted for in between the particle and wall surfaces, for different particle inerita. The red, pink and blue lines correspond to St = 3.5, 9.9 and 16.8 respectively. The simulation were carried with N c = 1 and η = 0.01. the present simulations as the wall is perfectly smooth and the particle surface is defined using smooth function distrbution on the mesh. η is set to a value of O(0.01).

In the present paper, the contact time in the collision model is set to be a factor of t Hertz , i.e. T c = N c t Hertz , and N c was varied in a range above one, since the collision time in a viscous fluid is expected to be longer than t Hertz . However N c should not be increased above a certain limit that would lead to low stiffness and therefore quite large deformation, which is not appropriate for describing solids. The equivalent elasticity is set to a constant value, large compared to the viscous energy dissipation, which is proportional to the fluid viscosity times the characteristic time scale of particle approach toward the wall. In all the results presented in this study, we checked a posteriori that the surface overlap (corresponding to ζ < 0) does not exceed 1% of the particle radius. Indeed numerical overlapping of the surfaces can lead to spurious forcing iduced by the Immersed Boundary algorithm that calculates the forcing required to ensure no-slip at the particle surface.

Validation of the model in the frame of the settling problem

A single particle which center is located at the axis of symmetry at a distance Z P 0 = 58a from the wall, falls freely under its apparent weight (its initial velocity is set to zero). The domain size is L z = 60a and L r = 24a in the axial and radial directions respectively. No slip boundary conditions are imposed at the domain boundaries, except the axis. The mesh is irregular in the radial and axial directions varying between a/20 far from the wall to 10 -4 a at the wall. The ratio between the solid modulus of elasticity and the viscous stress is E * /µ g/a = 4.6.10 10 , in order to ensure solid-like behavior during contact. The particle inertia is characterized using the Stokes number defined in eq. 4.1, based on the particle terminal velocity V T .

A typical velocity signal is siplayed in figure 4.2. The magnitude of the particle velocity increases from zero to V T (the plateau in figure 4.2a) within a time that can be approximated by the relaxation time scale, then decelerates when its distance to the wall is O(a). Note that at large particle inertia, the domain length 60a is not sufficient to reach the terminal velocity. In that case, the value of V T is chosen to be the maximum velocity that merely levels off before the particle starts to decelerate near the wall. Then the Stokes number is calculated accordingly. The particle inertia is changed by varying the particleto-fluid density ratio, keeping constant the particle size and the solid effective modulus of elasticity. The collision corresponds to the singularity in the velocity signal, during which the velocity changes sign, from negative (particle moving toward the wall) to positive (particle moving away from the wall). The collision starts when the gap = Zp-a a becomes smaller than the threshold η while the particle velocity is negative. During the collision the particle velocity decreases in magnitude, reaches zero at minimum and then becomes positive. The positive peak (where the velocity is called V R here) occurs when the particle leaves the wall, the instant at which is again larger than η. The evlolution of the gap in time is shown for different particle inertia in figure 4.2b, obtained from simualtions carried with N c = 1 and η = 0.01. During rebounds at low Stokes numbers, the viscous dissipation is significant, and therefore the evolution of , that is associated to solid deformation, is steeper during the compression compared to the expansion stage (which correspond respectively to particle motion toward and away from the wall). Note that a constant time step has been used during the numerical simulations. In most of the simulations, the time step is set between 2.10 -2 and 4.10 -2 times smaller than the characteristic settling time scale (t s = 2a/V T ) when the Stokes varies in the range . Some tests were carried with a time step ten times smaller (2.10 -3 t s ) in order to check its effect on the collision dynamics. Figure 4.2a shows that this does not change the collision dynamics when rebound occurs. However, when the particle comes to rest, spurious fluctuations due to alternating overlapping and non-overlapping states from the spring-dashpot model disappear in the limit of very small time steps.

The collision time occurring in the viscous fluid, called here t wet , corresponds to the time intevalle during which < η. At low Stokes numbers, the particle velocity becomes negligible before reaching the wall. Whether real solid contact takes place (infinite wet collision time) or not (zero collision time) is a topic that requires more careful examination, at the microscopic level, of the fluid and solid mechanics during the collision process. Moreover, we do not capture the progressive transition from a diverging to finite contact time: the experiments of [START_REF] Birwa | Solidon-solid contact in a sphere-wall collision in a viscous fluid[END_REF] show that the measurements fluctuate considerably near this transition. Thus, the collision time is set to zero when V R is of the order of the fluctuations of the spring dashpot model with a particle at rest. Above a critical Stokes number, the gap separating the particle and wall surfaces becomes smaller than η while the particle velocity is finite. Then a finite collision time is measured while the gap is smaller than η. The collision time scaled by t Hertz (eq. 4.8), is displayed as a function of particle inertia in figure 4.3. This figure shows the collision time from numerical simulations carried with N c = 1 or 2, and with η = 0.01 or 0.02. The value of the collision time increases with N c (softer collision) and does not depend significantly on the roughness η. The wet collision time decreases with the particle inertia, reaching almost a plateau at high inertia. This is coherent with the works of [START_REF] Zenit | Mechanics of immersed particle collisions[END_REF] and [START_REF] Birwa | Solidon-solid contact in a sphere-wall collision in a viscous fluid[END_REF] that reported that the contact time decreases slightly with the velocity above the critical Stokes number. In addition, [START_REF] Birwa | Solidon-solid contact in a sphere-wall collision in a viscous fluid[END_REF] have shown that the contact time increases with the surface physical roughness. Since the particle surface in the numerical simulations is relatively smooth (roughness may come from the numerical grid distribution which is fixed for all simulations), this effect cannot be captured here. Changing η leads to slightly changing the impact velocity, and then the Hertzian contact time scale, as shown in the inset of figure 4.3.

Note: for a given N c , the impact velocity for η = 0.01 is expected to be smaller than that for η = 0.02, and therefore the wet collision time to be slightly larger. The opposite trend that can be observed in figure 4.3, especially for N c = 2, is due to a slight numerical overlapping between the Immersed Boundary surface and the wall ( < 0), due to soft collision and that leads to a numerical repulsion on the top of the collision model. This incremental repulsion is inherent to the numerical method.

The energy lost by the particle due to viscous friction, during the deceleration stage and the elastic rebound, can be characterized by the restitution coefficient. It is defined here as the ratio e = V R /V T . The evolution of the restitution coefficient as a function of the Stokes number is displayed in figure 4.4, where the experimental results of [START_REF] Joseph | Particle-wall collisions in a viscous fluid[END_REF] and [START_REF] Gondret | Bouncing motion of spherical particles in fluids[END_REF] are also displayed. The numerical curves of e shift systematically to the left with respect to the experimental curves. This shift occurs because the collision threshold η = O(0.01) is much larger than the real roughness of particle surface which is between 10 -4 and 10 -3 in most of the experiments carried on particle-wall collision in the presence of viscous fluid. An overestimation of η leads the numerical sphere to rebound before loosing part of its kinetic energy that occurs in the gap range = [10 -2 -10 -4 ], where viscous lubrication contributes to further decelerate the particle. Therefre the critical Stokes number at which the transition from no rebound to rebound occurs is smaller than the experimental threshold, that has long shown to be ≈ 10. Recently, [START_REF] Birwa | Solidon-solid contact in a sphere-wall collision in a viscous fluid[END_REF] have found smaller critical Stokes number ≈ 6.2, which is added to figure 4.4 as well. Within a wide range of Stokes numbers, the numerical value of e is more influenced by η than by N c . At larger collision threshold η, the velocity at impact is stronger, and therefore the resitution coefficient is larger.

To end this section, figure 4.5 shows the vorticity of the flow at η = 0.03, prior to and following the particle-wall contact. This figure is plotted at St = 58 similar to what has been shown in [START_REF] Izard | Modelling the dynamics of a sphere approaching and bouncing on a wall in a viscous fluid[END_REF], with however a finer temporal and spatial resolution of the flow field, since the flow in the gap between the particle surface and the wall is fully resolved. Figure 4.5a shows finite vorticity region. The vorticity is positive in the wake generated by the particle, and negative in the jet induced by the squeezed film in the gap. Following the collision, figure 4.5b shows a sign reversal of the vorticity in the gap and consequently in the jet region, and along the particle surface. Slightly farther away from the surface, the vorticity in the wake region is still positive.

Neutrally buoyant particle -wall collision at the stagnation point

Here we consider the interaction of a neutrally buoyant particle with a wall, the particle being transported along the axis of symmetry of Hiemenz boundary layer flow, as shown in figure 4.1. In this wall-normal flow, the fluid flow decelerates, with a characteristic strain rate B, in order to satisfy the no-slip condition at the wall, while the pressure increases when the distance to the wall decreases. For a fluid kinematic viscosity ν, the resulting viscous boundary-layer thickness is δ = ν/B. In the previous chapter, we have shown that far from the wall, the neutrally buoyant particle is carried by the flow with negligible slip (like a tracer). Deviation (slip and differential acceleration) of particle motion from local fluid motion was observed when the gap between the particle surface and the wall becomes of the order of the particle radius a. The deviation between the particle and fluid motion occurs because the particle is a rigid body of finite size, with no deformation inside the particle volume, as opposed to the fluid that can deform. It has been also shown that the near-wall particle dynamics depends signifcantly on the particle size compared to the boundary layer thickness a/δ. There is a critical particle size, a/δ = O(1), above which the gap becomes of the order of magnitude of the surface roughness, while the particle velocity is finite, suggesting that solid contact might occur. Below this threshold, the particle looses its kinetic energy due to viscous damping before the gap becomes very small. With that, the problem of the particle collision with the wall is similar to the settling problem, except that the motion is driven by the flow, and that particle inertia here is exclusively associated with its size.

The numerical setup used to simulate the flow is described in the previous chapter. The flow is axisymmetric. No slip boundary condition is imposed at the wall. Away from the wall, the velocity was prescribed using the theoretical solution of Hiemenz flow on the side parallel to the wall. An outlet condition was imposed on the side parallel to the axis. The domain size is L z = 64δ and L r = 32δ in the axial and radial directions respectively. A unique mesh distribution has been used for all the simulations. The mesh is irregular. In the axial direction it varies between δ/30 far from the wall and 1.6.10 -5 δ at the wall. In the radial direction the mesh size varies between δ/30 far from the axis and 3.2.10 -5 δ. The ratio between solid elastic energy and viscous energy dissipation is E * /µB = 4.10 13 . Two values of N c have been used, 50 and 20, in a way to ensure solid behavior upon contact and reasonable time steps. The corresponding time step is equal to 8.10 -5 and 8.10 -6 B -1 respectively, where the inverse of the strain rate represents the characteristic time scale of Hiemenz flow.

Figure 4.6 shows the typical evolution in time of the particle velocity, while approaching the wall in Hiemenz flow. Far from the wall, the magnitude of particle velocity decreases linearly like the fluid flow, the slip velocity being negligible. As the particle approaches the wall, the slip which is defined as the difference between the particle and the local unperturbed fluid velocity is relatively small down to = 1. While the particle gets closer to the wall, it starts to decelerate faster than the fluid. If the particle size is less than a crit , the particle velocity cancels while the gap approaches zero. It is the case for the particle a/δ = 1.6 in figure 4.6. Otherwise, the magnitude of the particle velocity is finite for < η, and the particle experiences rebound with the wall. This corresponds to the curve of a/δ = 3.2 in the same figure. Like in the settling problem, we consider that the velocity upon rebound V R is equal to the maximum particle velocity of opposite sign to the incident velocity, measured at the end of the solid contact.

Rebound velocity

As for the definition of the energy restitution upon rebound in Hiemenz flow, we have choosen to scale the rebound velocity by the unperturbed flow velocity at = 1, noted here U f ( = 1), which is approximately equal to the particle velocity at the onset of its interaction with the wall. Therefore, this defintion of the restitution coefficient in Hiemenz flow accounts, for the energy loss induced by the hydrodynamic perturbation in addition to the deceleration of the unperturbed flow between = 1 and = 0. This definition leads to restitution The numerical measurements were realized with different N c and η. The former parameter (that sets the softness) does not impact significantly the measured rebound velocity. However the latter sets the onset of the collision, and it has a wide impact on the rebound velocity since most of the energy dissipation occurs at vanishing gaps while the neutrally buoyant particle is squeezed by the flow. The deviations that can be observed for the large particles when the stiffness is decreased are related to the overlapping of the IBM boundary with the wall.

Collision time

Like in the settling problem, it is interesting to understand how the collision duration depends on the particle inertia. Figure 4.8 shows the collision time estimated from the Hertzian theory (eq. 4.8), at different collision onset distances η from the wall, where the collision model was switched on. The Hertzian time is proportional to the particle size, and inversely proportional to the impact particle velocity (measured at η) to the power 0.2, which is an increasing function of the particle size, as shown in the inset of figure 4.8. It can be observed in this figure that the Hertzian time increases with the particle radius if this latter is above a critical value (1 ≤ (a/δ) crit ≤ 3) that corresponds to the transition from no-rebound to rebound. This critical size depends on η as discussed above. Below this critical size, the Hertzian time decreases as the particle size increases. The impact velocity tends to zero when both the particle size and the characteristic roughness η are small, leading to the divergence of t Hertz . As a last remark on figure 4.8, the Hertzian time scale, is ≈ 5.10 -4 smaller than the characteristic time scale of the flow B -1 . This follows from the large elastic-to-viscous energy ratio set in the numerical simulations. Consequently, the time step should be revised in order to account properly for the collision event. In order to compensate that, the value the parameter N c is set to large values (compared to 1), leading to softer collisions and allowing larger time steps: dt = 8.10 -6 B -1 and 8.10 -5 B -1 in the simulations carried with N c = 20 and N c = 50 respctively.

The wet collision time in Hiemenz flow, measured from the numerical simulations, is shown in figure 4.9 as a function of the square of the particle size. Below a critical particle size, or equivalently particle inertia, the particle velocity decreases considerably before it reaches the wall. In the Stokes limit (a/δ → 0), the particle loses its kinetic energy before reaching the wall, and the collision time cannot be properly defined. At finite but small values of a/δ, the particle velocity is very small close to the wall, without being exactly equal to zero (see for instance the red line in figure 4.6). In that case, solid contact can occur, while the particle energy in not sufficient to lead to rebound: an overall balance occurs between the force applied by the flow and the solid resistance at the contact area. Therefore the contact time tends to infinity, in a way that strongly depends on the detailed representation of the surface. Since our numerical method does not allow to capture these details, the value of the collision time is set to zero below the critical particle size (where the value of the particle velocity upon rebound is of the same order of magnitude as the velocity fluctuations at rest).

Above this limit, and unlike the settling problem, the collision time increases with the particle size. At the first glance, it is surprising to note that the wet collision time depends heavily on numerical parameters unlike the rebound velocity, and that it is well below N c t Hertz (that sets the collision time in the deformation equation eq. 4.5). For a given stiffness, the collision time decreases when η increases. Scaling the results by N c t Hertz did not allow rationalization the wet contact time on single curves for different values η. This suggests that the values considered for N c are large, leading to weak stiffness during the particle-wall contact, and that lower values should be used. Unfortunately, for the time being, this information is not available, but simulations with lower N c will be useful to complete our understanding of the collision process. The fact that the contact time is short compared to N c t Hertz might be associated with a "lift-up" effect that is exerted by the ambient unperturbed flow field which is shown in figure 4.1. A larger pressure on the wall side leads to a poisitive net force F ∞ at any body of finite volume suspended in the fluid near the stagnation point region (see a discussion dedicated to that in the previous chapter). This lift-up effect is possible while the particle velocity decreases and then changes its sign during the collision process. There are two limits that are interesting to discuss. For a small particle, its response to the ambient pressure is relatively fast (low Stokes number), and therefore the contact time is much smaller than t Hertz , regardless the value of the parameter N c used here. When η increases, as the rebound or velocity reversal occurs at larger distance from the wall, the impact velocity is slightly larger (as shown in the inset of figure 4.8), and also the value of the ambient force is larger (the flow deceleration is larger when the particle is farther away from the wall), leading the wet collision time to decrease. On the other limit, as the particle size becomes very large compared to the viscous boundary layer, we expect that the viscous dissipation becomes negligible, and that the particle inertia becomes infinite, leading the particle to collide with the wall at a velocity of O(Ba), to respond weakly to the ambient pressure field upon motion reversal, and thus the collision time to reach the limit N c t Hertz . 

Flow vorticity during the collision event

To end this section, and like for the settling problem, the vorticity contours are examined at the instants prior to and following the particle-wall contact in Hiemenz flow. Far from the wall, Hiemenz flow is similar to a pure extensional flow, of strain rate B, that is rotation-free. Prior to contact, figure 4.10a shows negative vorticity near the wall and the particle surface, except in a small region in the jet generated by the squeezed film. Note in this figure the presence of shear-induced vorticity instead of a wake behind the particle (with respect to the direction of motion of the particle). Following the contact, figure 4.10 shows the particle surrounded by a region of high vorticity confined quite close to the particle surface, the sign however remaining negative as before contact. In the gap, the fluid suction induces positive vorticity in a very thin region near the wall, and perturbes globally the boundary layer of the base flow near the stagnation point.

Flow vorticity around a particle resting at the stagnation point

When the particle looses its kinetic energy, subsequent to one or several rebounds, it rests at the stagnation point at the wall, where equilibrium is established between hydrodynamic and contact forces. Actually, the contact force represented by a spring model leads to permanent residual oscillations which amplitude is O(10 -3 a), that do not influence the flow field described hereafter.

Typical streamlines of the flow field around a particle of radius a = 3.2δ being at rest at the stagnation point, are illustrated in figure 4.11a. The fluid velocity in the gap between the motionless particle and the wall should match the finite fluid velocity in the wide open region. The region between the convexe particle surface and the wall is corner-like. It is known that a general fluid motion at a large distance from a corner can induce a flow near the corner, and that when the angle of the corner is small, the flow takes the form of a sequence of steady eddies [START_REF] Moffatt | Viscous and resistive eddies near a sharp corner[END_REF]. The eddies that can be observed in figure 4.11a between the particle and wall surfaces are of similar nature.

Figure 4.11b shows the vorticity profiles along the particle surface, for particle sizes a/δ ranging between 0.8 and 3.2. The angle θ is equal to zero at the stagnation point and to 180 • on the top of the particle. The shape of the angular vorticity profiles is preserved as the particle size is increased, though the vorticity magnitude increases significantly with the size. The highest vorticity region occurs at the top side of the particle, where the shear stress applied by the main flow at the particle surface leads to significant negative vorticity. In the gap, the magnitude of the vorticity associated with the Moffat eddies is negligible. Though, the largest eddy between the corner region and the main flow generates positive vorticity. It is interesting to note that the angle at which the vorticity switches from positive to negative values, depends on particle size, and thus on the flow inertia at the particle scale. It is suggested from figure 4.11b that the region of the generated eddies expands with flow inertia. The fact that the eddies generated in the corner-like region are influenced by flow inertia, is an opening with respect to the theoretical velocity streamlines obtained by [START_REF] Moffatt | Viscous and resistive eddies near a sharp corner[END_REF] in planar corners, which are predicted to be purely geometrical in the Stokes flow limit.

A pair of particles approaching the stagnation point

The approach of two equal spheres toward the stagnation point is illustrated in figure 4.12. The pair is initially placed at the flow axis of symmetry, with d 0 being the initial distance between the particle centers. The particle that is initially located closer to the wall will be called P 1 or "the lower particle" in the following. The upper particle with respect to the wall will be called P 2 . Hiemenz flow is comparable to (compressive) extensional flow, in such a way that the relative particle velocity along the line of centers is compressive. The lower particle, being closer to the wall, decelerates faster than the upper one.

When the gap between the surfaces of P 1 and P 2 becomes smaller than a characteristic roughness η, a solid contact force is applied, following the collision model described in section 4.2.2, except that the mass m is equal to half of the particle mass. In the simulations, the characteristic roughness where the collision model , a/δ = 3.2 is activated is the same, both in the particle-wall and particle-particle collisions.

As the motion of a particle pair depends on the particle initial positions and on its size, the parameter space is large. The aim here is to describe the typical dynamics that the pair exhibits while approaching the stagnation point, without being exhaustive. Figure 4.13 shows the typical trajectory of particles P 1 and P 2 , using particles of radius a = 3.2δ. For a better illustration of the pair dynamics, this figure shows the gaps 1 = Z P 1 a -1 between P 1 and the wall, and 2 = Z P 2 a -2(1 + η) between the two particles. With this choice of representation, 1 = 0 corresponds to P 1 in contact with the wall, 2 = 0 corresponds to the situation where P 1 is in contact with both the wall and P 2 , and 2 = 1 corresponds to solid contact between both particles away from the wall (unless 1 = 2 = 0). The sequence in particle motion can be described as follows. After the first collision between P 1 and P 2 , part of the momentum of P 2 is transferred to P 1 , which then collides with the wall. This is followed by a second collision between P 1 and P 2 . An unexpected event occurs afterwards. P 1 exhibits a kind of contactless rebound (called kick-off in the figure) while the upward velocity of P 2 reaches zero (corresponding to the maximum that occurs at t ≈ 6.2B -1 ). An upward force drives both particles to "fly" quite far from the wall when compared to the collision of a single particle of radius a = 3.2δ with the wall at the stagnation point: the center of gravity of P 2 reaches a distance equal approximately to 4a. During this upward motion, the two particles are kept close together, with a lubricating film in between, and the pair tends to behave as a doublet. The height reached by the doublet, after the kick-off event, is comparable to that reached by a single particle of radius twice larger (the solid blue line). Thereafter, the pair loses progressively its mechanical en- The fact that the doublet 2 × a has been pushed away from the stagnation point (without touching the wall) up to similar height as the single double particle 2a, suggests that the responsible mechanism is of hydrodynamic nature, being mainly dependent on the effective volume of the object approaching the stagnation point. Indeed, a neutrally buoyant particle in Hiemenz flow experiences an upward (positive) acceleration associated with the decelerating ambient fluid flow. It has been shown in the previous chapter that this force is not sufficient to lead a particle to stop at the wall, when a particle of size a = O(δ) or larger is driven by the flow toward the wall. However, when it happens that the neutrally buoyant particle has negligible velocity while the gap with the wall 1, the particle experiences an instantaneous strong upward force due to the pressure of the ambient fluid flow that is the largest at the wall (see figure 4.1b). This naturally gives a positive thrust to the particle that will move away from the wall, up to a certain limit where the main flow field is strong enough to drive the particle back toward the wall. This is similar to the kick-off event.

Next, we consider the effect of the particle size on the rebound velocity of P 1 as measured from the first particle-wall contact, at the stagnation point. The results are reported in figure 4.14. Most of them (for the particle pair) are obtained from trajectories starting with Z P 1 = 5a and a distance between the particle centers d 0 = 3a. This choice of spaced particles is representative of a dilute suspension undergoing wall-normal flow. The rebound velocity is scaled by the unperturbed fluid velocity at = 1, and compared to the rebound velocity a -1 which is the gap between P 1 and the wall. The black line represents 2 = Z P 2 a -2(1 + η) that is the gap between P 1 and P 2 . The particle radius is a = 3.2/δ. The particles are initially located at 1 = 4 and 2 = 5.5. By comparison, the blue dashed and solid lines represent the evolution in time of the gap between a single particle (of size a and 2a respectively) and the wall, the particle being initially located at = 4 and 1.5 respectively. The starting time of the particle pair and single particles was adjusted so that collisions with the wall occur at the same instant. The main change is that the filled circles correspond to the rebound velocity of P 1 scaled by |U f @ =2 |, as a function of an effective radius, calculated from a sphere which volume is equal to the volume of a cylinder of radius a and height 4a. Schemes representing the way the pair of particles approach the stagnation point when the particle size increases.

of a single particle. The departure from zero of the rebound velocity of P 1 takes place at smaller particle size compared to the single particle. Up to a certain size limit, P 1 and P 2 meet before reaching the wall due to their relative wallnormal velocity, and approach the wall as a single body, which is more inertial than a single particle of the same size if it was approaching. Near a ≈ 0.5δ, the rebound velocity of P 1 bifurcates to another curve, where the rebound velocity of P 1 suddenly drops. This bifurcation corresponds to the situation where the inertia of the neutrally buoyant particles P 1 and P 2 is sufficiently large so that the particles experience a rebound-like dynamics upon their first contact away from the wall, and then P 1 approaches the wall separately from P 2 . Above this bifurcation, the rebound velocity increases strongly with the particle size, and its value is much stronger than the rebound velocity of a single particle. The numerical parameters of the collision model modify the bifurcation very slightly, and the overall diagram of rebound of P 1 at the wall is not significantly dependent on N c and η.

As the pair seems to behave as a particle of larger volume, scaling the rebound velocity with an unperturbed fluid velocity at the position of the center of mass of the pair while touching the wall, might be more representive of the avalaible solid energy prior to the interaction with the wall. Figure 4.14 shows the rebound velocity of P 1 scaled by the fluid velocity at = 2. Although using a larger reference velocity, the rebound velocity of the pair is still larger than the rebound velocity of a single particle of the same size, for all particles studied here. Then, the rebound velocity scaled by the fluid velocity at = 2 is plotted in figure 4.15 as a function of the square of the radius of a sphere that would have a volume equivalent to a cylinder of radius a and height 4a (the cylinder is assumed to represent the particle pair near the wall). This curve (black circles) qualitatively reconcile the transition from no-rebound to rebound in both the single and pair trajectories. Thus, the earlier transition of the small particle pair is correlated with the larger effective volume of the solid approaching the stagnation point. Above the bifurcation, the particles approach the stagnation point as two separate bodies, leading to a steeper increase of the rebound velocity with the particle size.

The effect of intial particle position is examined for some cases. When two freely moving particles approach a wall, their relative motion increases their apparent inertia. One limit for that relative motion would be to place P 1 initially at the wall ( 1 = 0), and vary the initial distance between P 1 and P 2 . The pink and green circles in figure 4.14 correspond to d 0 = 3 and 4a respectively. The value of V R corresponds to the rebound velocity of P 1 (that is initially laying at the wall) following its collision with particle P 2 that is driven by Hiemenz flow toward the wall. Here again, we find that the rebound velocity of the particle pair matches relatively well the curve of a single sphere with a larger volume (equivalent to that of the cylinder).

Conclusion

This chapter aimed at understanding the full dynamics of neutrally buoyant particles approaching the stagnation point in a wall-normal flow, this being a first step toward identifying the boundary conditions that need to be applied for mixture flows in a general geometry, in the frame of a continuum description. The Navier-Stokes equations were fully solved in the entire domain, including the particle volume. The fluid-particle coupling was achieved numerically with the aid of the Immersed Boundary Method. A fine grid resolution was used near the stagnation point region in order to solve the viscous lubrication in the gap between the particle surface and the wall. When the gap becomes smaller than a threshold η equal to few percent of the particle radius, a collision force proportional to overlapping of the non deformable particle-wall system was added to the particle equation of motion, in order to model the collision event. The stiffness of this force is calculated from a collision time scale based on the Hertzian theory: this time scale is related to material elasticity, particle density, size and impact velocity. The model was validated by calculating the restitution coefficient and wet collision time in the case of a particle settling toward a wall in a viscous fluid, which has already been widely studied. The wet collision time scale was found slightly larger than the Hertzian time scale above the transition from no-rebound to rebound. When the Stokes number based on the terminal settling velocity was increased, the wet collision time converged to the Hertzian time scale in agreement with experiments of [START_REF] Zenit | Mechanics of immersed particle collisions[END_REF].

In Hiemenz flow, the rebound velocity of a single particle was found to be finite above a critical particle radius, of O(δ), the threshold depending on the distance η that sets the onset of particle-wall collision. The rebound velocity was scaled by the unperturbed fluid velocity at = 1, where the slip Reynolds number (based on the slip velocity between the particle and local unperturbed fluid flow) starts to deviate from zero. The increase of the scaled rebound velocity with the particle size, and thus inertia, is qualitatively similar to the increase of the restitution coefficient with the Stokes number in the settling problem. The parameter η had significant influence on the rebound velocity. As for the wet collision time, the numerical simulations suggested that it is smaller than the Hertzian contact time and that it increases with the particle size (and equivalently inertia), unlike in the settling problem. It is likely that smaller particles have shorter relaxation time to momentum change, so that they respond faster to the ambient pressure gradient (oriented from the wall toward the fluid) during the rebound at the stagnation point.

The near-wall dynamics of two equal spheres approaching the stagnation point was investigated as well. The same characteristic roughness η was used in the collision model for particle-particle and particle-wall collisions. A diagram was established describing the rebound velocity of P 1 (the closest particle to the wall) at the wall as a function of the particle size, for a given initial position of the pair. Two different categories of motion were identified. On the one hand small particles meet due to flow compressional motion before reaching the wall. They are then driven together by the main flow toward the stagnation point, as if they were a single body, of volume equivalent to that of a cylinder. Above a first crtical particle size, the pair bounces back at the wall and the evolution of the rebound velocity of P 1 with the size matches that of an equivalent sphere which volume is equal to the volume of the cylinder formed by the pair. On the other hand, and above a further critical particle size, the particles approach the wall separately. In that case, a sequence of several rebounds takes place. Interestingly, we observed a contactless rebound (named here kick-off) between P 1 and the wall followed by an overshoot of both particles induced by the upward pressure gradient force while particles had negligible velocity. The effect of the initial partice separation was slightly addressed, and needs a more careful investigation in the future, in connection with the effect of concentration in a more general suspension flow problem.

Chapter 5

Conclusions and Perspectives

The research in this PhD was motivated by a general need to support modeling of inertial flows of liquid-solid mixtures in general bounded geometries. While flows of mixture parallel to a wall, like in a tube or Couette device, were thoroughly investigated in the past, mixture flows normal to an obstacle have seen limited study previously. In this context, we investigated the dynamics of few particles driven toward a wall by a wall-normal flow. More particularly, we considered the case of freely moving neutrally buoyant particles which density is equal to the fluid density (no settling effects), standing on the axis of Hiemenz boundary layer flow. The unique control parameter was the particle size compared to the viscous boundary layer thickness: the particle size sets the flow inertia at the particle scale, and the particle response time to deceleration due to the presence of the wall. The study was carried with the aid of numerical simulations. The particles and fluid equations of motion were coupled based on the Immersed Boundary Method. The viscous lubrication was fully resolved in the gap between the particle and the wall or the pair of particles, as long as the gap height remained above one percent of the particle radius. At smaller gaps, a collision model was added to the particle equation of motion, allowing to model the rebound solid contact. The model assumed a collision force proportional to the overalapping of undeformable objects (wall and particles). The energy dissipation in the solid was neglected.

The slip velocity and the acceleration experienced by a single particle were calculated along the particle trajectory toward the wall. The wall forced the particle to slip with respect to the local fluid flow. It has been evidenced that the smaller the particle, the longer is the range of perturbation of the particle motion, induced by the wall. On the opposite, large particles experienced slip with respect to the unperturbed local fluid flow only very close to the wall. This lagged slip leaded the large particle surface to get very close to the wall while the particle velocity was finite. A transition between the two different behaviors was observed for particle radius of the same order of magnitude as the viscous boundary layer thickness.

Rebound dynamics was accounted for when the gap between the particle surface and the wall reached a few percent of the particle radius. Above the norebound/rebound transition, the rebound velocity increased significantly with particle inertia represented by the square of the ratio between the particle size and the boundary-layer thickness. The collision time between the particle and the wall was observed to be significantly smaller than what can be expected from the corresponding Hertzian contact time. This collision time reduction seems to be induced by the flow driving force oriented in the same direction as the particle velocity subsequent to collision. The particle-wall collision was signifcantly modified when a second particle was heading toward the stagnation point as well. Multiple types of particle dynamics were observed, depending on particle size and on the initial distance between the pair and their position with respect to the wall. In some situations, a contactless rebound occurred between the lowest particle and the wall, leading to a "rebound" velocity significantly stronger than that of a single particle (of the same size) with the wall.

The rich dynamics experienced by the particle pair in a wall-normal flow suggests that it is challenging to predict the effect of concentration on the particle motion and on the way energy is dissipated in liquid-solid mixtures flowing near a stagnation point at the wall. We can certainly learn further about that if future simulations will be carried on suspensions flowing toward a wall. Typical applications concerned by this situation are suspension flows in a symmetric T-junction, around an obstacle like a motionless cylinder or a moving blade, in spinning disc flows, impinging at a wall, etc.

In order to accurately capture the hydrodynamic force and particle veloicty in the near-wall region, this work has shown that a very fine grid resolution is required. Yet, using such a fine resolution in small gaps regions between solid surfaces implies expensive simulations in case three-dimensional mixture flows should be considered. The development of a theoretical model for the hydrodynamic force would ideally allow to complement the particle equation of motion while relaxing the grid resolution constraint. Subgrid models are currently applied for instance to account for the viscous lubrication in coarse grid simulations, when lubrication is the dominant effect on the particle relative motion. As for the force experienced by a particle near a stagnation point at the wall, viscous and inertial contributions are both important near the wall. The development of subgrid force models would require theoretical knowledge of the different contributions to the force balance. Efforts in that direction are under progress.

Several extensions to this study can be envisoned, to address questions related to mixture flows in the above-mentioned applications. While the study in 104 this PhD was restricted to particles located at the flow axis, there is a need to investigate the influence, on the dynamics, of the particle offset from the flow axis. The effect of a slight offset from the axis is the most interesting to study, since the particle would still be driven toward the region of the stagnation point while having a non-zero radial velocity component. The simulation of a particle which center does not stand on the flow axis of symmetry would require the use of a three dimensional computation domain, that is significantly more expensive than the simulations carried for this work.

The particle density is also an important issue. Beyond the slip due to the apparent particle weight associated with a gravitational acceleration, a particleto-fluid density ratio different from unity impacts the particle inertia. The motion of a particle slightly heavier than the fluid is expected to be similar to that of the neutrally buoyant particle, with however earlier transition threshold from no-rebound to rebound (in terms of particle size), because particle inertia increases with the density. The motion of a slightly lighter particle (like a drop) is more complex to predict, because of the competition between reduced particle inertia on the one hand and increased added mass on the other hand. Last, polydispersity and non-sphericity can lead to some interesting effects on the particle dynamics that deserve to be addressed in the longer term.
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  N c = 1 and η = 0.01. . . . . . . . . . . . . . . . . . . . . . 83 4.3 Collision time measured from the numerical simulation as a function of the Stokes number. The time is scaled by N c t Hertz . The circles and triangles refer respectively to simulations with η = 0.01 and 0.02, whereas the filled and open symbols refer to N c = 1 and 2 respectively. The smaller collision time at smaller η is due to numerical overlapping as explained in a note included in the text. The inset shows t hertz scaled by the settling time as a function of St. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4 Restitution coefficient as a function of the Stokes number in the Settling problem. , Experiments of Gondret et al. (2002); , Experiments of Joseph et al. (2001). The black dashed line indicate the critical Stokes number above which Birwa et al. (2018) have detected solid collisions. The symbols are the same as in figure 4.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5 Vorticity contours in the settling problem. The vorticity is scaled by V T /2a. The contour levels are set from -183.80 to 236.26 with a step equal to 1. The particle Stokes number is St = 58. The top figure is before impact and the bottom figure is after impact, both being taken at η = 0.03. . . . . . . . . . . . . . . . . . . . . 4.6 Evolution of the particle velocity in time, in Hiemenz boundary layer flow. The red and black lines refer to particle size a/δ = 1.6 and 3.2 respectively. The time step is 8.10 -5 B -1 . The collision parameters are N c = 50 and η = 0.01 . . . . . . . . . . . . . . . . 4.7 Restitution coefficient as a function of the square of particle size, in Hiemenz boundary layer flow. The restitution coefficient is defined as the ratio between the rebound velocity and the incident particle velocity at = 1. The circles, triangles and squares refer respectively to simulations with η = 0.01, 0.02 and 0.04, whereas the filled and open symbols refer to N c = 20 and 50 respectively. 4.8 Evolution of the Hertzian contact time t Hertz with the square of the particle size, in Hiemenz flow. The time is scaled by the inverse of the flow strain rate. It is estimated at different positions η equal to 0.01 (circles), 0.02 (triangles) and 0.04 (squares). The inset shows the evolution of the impact velocity scaled by Ba as a function of the square of the particle size. . . . . . . . . . . . . 4.9 Wet collision time as a function of the square of particle size, in Hiemenz boundary layer flow, as measured from the numerical simulations. The wet collision time t wet is scaled by N c t Hertz . The circles, triangles and squares refer respectively to simulations with η = 0.01, 0.02 and 0.04, whereas the filled and open symbols refer to N c = 20 and 50 respectively. For more clarity, the curved obtained with N c = 20 are shown in the inset. . . . . . . . . . . . 4.10 Vorticity contours in Hiemenz flow. The vorticity is scaled by B. The contour levels are set from -938.27 to 954.24 with a step equal to 4. The particle size is a/δ = 0.32. The top figure is before impact and the bottom figure is after impact, both being taken at η = 0.01. The blue dashed line indicates the viscous boundary layer thickness. . . . . . . . . . . . . . . . . . . . . . . 94 4.11 a) Streamline pattern of a particle a/δ = 3.2 fixed at stgnation point of Hiemenz flow and b) vorticities profile on the particle surface of a particle fixed at stgnation point of Hiemenz flow:

Figure 1

 1 Figure 1.1: Industrial and natural applications: a) sandstorm, b) red blood cell, c) suspension in fluidized bed, d) sedimentation in river

Figure 1

 1 Figure 1.2: Suspension of particles in a Tunction flow by experiment of Vigolo et al. (2013)

Figure 1 . 3 :

 13 Figure 1.3: Schetch of Hiemenz flow, describing pressure and velocity distribution

Figure 2

 2 Figure 2.1: DNS setup corresponding to a particle placed at the center of a pure extensional flow.

Figure 2 Figure 2 . 3 :

 223 Figure 2.2: Profiles of the radial and axial unperturbed velocities u ∞,r and u ∞,z along OR and OZ respectively.

  )

Figure 2

 2 Figure2.4: Profiles of the radial and axial perturbed velocities u R and u Z along OR and OZ respectively. Black lines are from the theory[START_REF] Chwang | Hydromechanics of low-reynolds-number flow. part 2. singularity method for stokes flows[END_REF]. Red lines are from the DNS-IBM results.

Figure 2

 2 Figure2.5: Profiles of the radial and axial perturbed velocities u R and u Z along the bisector. Black lines are from the theory[START_REF] Chwang | Hydromechanics of low-reynolds-number flow. part 2. singularity method for stokes flows[END_REF]. Blue lines are from the DNS-IBM results.

  Figure 2.6: DNS setup: a) boundary conditions at the domain boundaries; b) absolute reference frame, and polar coordinates.

Figure 2

 2 Figure 2.7: Radial and axial profiles of the axial velocity in the case where the particle is motionless in a uniform flow fieldU 0 = U ∞ : a) u z = u R|θ=90 • at OR ; b) u z = u R|θ=0 • at OZ.

  Figure 2.8: Comparison between the DNS results and Stokes solution of the pressure and vorticity profiles, whereP 0 = 1 2 ρ f U 2 ∞ and ω 0 = U∞ a .

Figure 2 . 9 :Figure 2

 292 Figure 2.9: Angular profile of f p,z and f v,z , the force is scaled by the viscous drag F ref = 6πaµU ∞ .
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 2 Figure 2.11: Validation of DNS-IBM method with experiments of Ten Cate et al. (2002).

Figure 2 Figure 2

 22 Figure 2.12: Effect of time step dt on the DNS validation in terms of particle velocity, dt 10 -4 • t ref , where t ref = 2aV T for smallest particle(St = 1.72).

Figure 2

 2 Figure 2.14: Particle dynamics very close to the wall: comparison of the DNS results on the settling problem with the experiments of Mongruel et al. (2010): , DNS St = 9.24; , DNS St = 6.90; , DNS St = 3.90; , DNS St = 1.72; , Experiment; V St = 2 9 • (ρp-ρ f )ga 2 µ , St = 1 9

Figure 2

 2 Figure2.15: Test of the numerical accuracy using the particle settling for St = 1.72. The particle velocity is shown on the left, and the hydrodynamic force on the right. The numerical simulations are labelled well-resolved DNS-IBM (∆ z,min = 10 -4 a and ∆ r,min = 10 -4 a for the smallest particle(St = 1.72), time step is dt/4, dt 0.6 • 10 -3 • t ref ) and coarse DNS-IBM (uniform mesh size:∆ z = ∆ r = a/20, time step is dt). The measured forces are compared to a point model based on the drag, lubrication and added mass contributions. Threshold for switch on particle point model is ε lubri = 0.10.

  Figure 2.16: Test of the numerical accuracy using the particle settling for St = 9.24. The particle velocity is shown on the left, and the hydrodynamic force on the right. The numerical simulations are labelled well-resolved DNS-IBM (∆ z,min = 10 -4 a and ∆ r,min = 10 -4 a for the smallest particle(St = 9.24), time step is dt/160, dt 0.6 • 10 -3 • t ref ) and coarse DNS-IBM (uniform mesh size:∆ z = ∆ r = a/35, time step is dt). Threshold for switch on particle point model is ε lubri = 0.20.

Figure 3

 3 Figure 3.1: 2D axisymmetric Hiemenz boundary-layer flow, transporting a spherical neutrally-buoyant particle of size finite compared to the boundarylayer thickness δ. a) vorticity contours (scaled by the flow strain rate), essentially generated near the wall and near the particle surface. b) pressure contours scaled by the pressure at the stagnation point in Hiemenz flow (the pressure is merely perturbed by the particle presence). The flow deceleration to match the no-slip boundary condition at the wall leads to pressure increase near the stagnation point.

Figure 3

 3 Figure 3.2: Comparison between DNS Hiemenz flow and the theoretical solution of boundary layer equations, where a) U r ( Z δ ) b) U z ( Z δ ). The irregular mesh resolution of DNS is ( ∆z,min δ )10 4 = 0.16 and ( ∆r,min δ

Figure 3

 3 Figure3.3: Ambient inertial contribution F ∞ (eq. 3.6) as a function of the axial position of the center Z p of a fluid sphere of radius a, with = h/a the dimensionless gap between the fictitious sphere surface and the wall (h = Z p -a). Red, green, blue and black lines are calculated for a/δ = 0.8, 1.6, 2.4 and 3.2 respectively.

Figure 3

 3 Figure 3.4: a) Particle velocity and b) slip velocity scaled by the fluid velocity at z = a, or equivalently at = 0. The solid thick black, dashed blue, dotted dashed green and solid thin red lines are obtained from simulations carried respectively with a δ = 3.2, 2.4, 1.6 and 0.8. The blue solid line in a) corresponds to a tracer-like particle along the axis of Hiemenz flow. In b) the black dashed line corresponds to a simulation carried with a δ = 0.1. Also in this figure an inset is added to show the asymptotic decrease of the slip velocity for 1. The pink dashed lines correspond to the theoretical slip obtained by Rallabandi et al. (2017) in the limit of Stokes flow, for → 0 and 1.

Figure 3

 3 Figure 3.5: a) The slip Reynolds number Re slip and b) acceleration difference DU f Dt -dVp dt scaled by a ref = δB 2 , for different particle sizes. The lines are defined in caption of figure 3.4.

Figure 3

 3 Figure3.6: a) The total force F DN S on the particle due to the surface stress, and b) the corresponding hydrodynamic force F h = F DN S -F ∞ , both presented as a function of wall-normal position using the dimensionless gap = h/a for different particle sizes. The line colors are the same as in figure3.4. The circles indicate the value of F h when a particle of a given size is kept fix at the stagnation point, with the color associated to the corresponding size.
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 373 Figure3.7: The evolution of the hydrodynamic force when the particle reaches = 1, presented as a function of Re = 2Ba 2 /ν. The error bars correspond to the maximum deviation when the particle initial position Z p0 /δ is varied from 12 to 20.

Figure 3

 3 Figure3.9: Pressure profile along the particle surface in the gap region at ε = 0.01. Solid lines are obtained from numerical simulations, and dahsed lines from the thin-gap approximation theory eq. 3.7. The color indicates the particle size: a δ = 3.2;

Figure 3

 3 Figure 3.10: Comparison of the hydrodynamic force F h (blue line) to F lub coming from the thin gap lubrication theory (red dashed line), and to F lub in addition to the added mass force F AM (green line). The plots are for a δ = 0.8 (left) and a δ = 3.2 (right). Note that the force scaling considered for this figure is the viscous drag 6πµaV p . The horizontal dashed line indicates the gap where the simulation is stopped.

Figure 3

 3 Figure 3.11: Angular profile of f P + f v for a) a δ = 3.2, b) 2.4 and c) 0.8. Only the wall-normal component is shown. The colors correspond to different particle axial positions, with = 0.01 in black, = 0.05 in blue, = 0.10 in red, and = 0.20 in pink. The circles in the inset of b) indicate the respective total force given by the numerical simulation at the corresponding gaps. The squares indicate the total force obtained from F P,z = f P,z dθ and F v,z = f v,z dθ.

Figure 4

 4 Figure 4.1: 2D axisymmetric Hiemenz boundary-layer flow, transporting a neutrally-buoyant particle of size finite compared to the boundary-layer thickness δ. Left: vorticity contours, essentially generated near the wall and near the particle surface. Right: pressure contours in Hiemenz flow (slightly perturbed by the particle. Note that the flow deceleration to match no-slip condition at the wall leads to pressure rise near the stagnation point.

Figure 4

 4 Figure 4.2: a) Evolution of particle velocity in time, in the settling problem, at St = 9.9. The pink and black lines correspond to simulations with two different maximum time steps (dt = 2.10 -2 and 2.10 -3 t ref respectively, where t ref corresponds to the characteristic settling time scale t s = d/V T ). b) Evolution in time of the gap = Zp-a a

Figure 4 . 3 :

 43 Figure 4.3: Collision time measured from the numerical simulation as a function of the Stokes number. The time is scaled by N c t Hertz . The circles and triangles refer respectively to simulations with η = 0.01 and 0.02, whereas the filled and open symbols refer to N c = 1 and 2 respectively. The smaller collision time at smaller η is due to numerical overlapping as explained in a note included in the text. The inset shows t hertz scaled by the settling time as a function of St.

Figure 4

 4 Figure 4.4: Restitution coefficient as a function of the Stokes number in the Settling problem. , Experiments of Gondret et al. (2002); , Experiments of Joseph et al. (2001). The black dashed line indicate the critical Stokes number above which Birwa et al. (2018) have detected solid collisions. The symbols are the same as in figure 4.3.

Figure 4

 4 Figure 4.5: Vorticity contours in the settling problem. The vorticity is scaled by V T /2a. The contour levels are set from -183.80 to 236.26 with a step equal to 1. The particle Stokes number is St = 58. The top figure is before impact and the bottom figure is after impact, both being taken at η = 0.03.

Figure 4

 4 Figure 4.6: Evolution of the particle velocity in time, in Hiemenz boundary layer flow. The red and black lines refer to particle size a/δ = 1.6 and 3.2 respectively. The time step is 8.10 -5 B -1 . The collision parameters are N c = 50 and η = 0.01

Figure 4 . 7 :

 47 Figure 4.7: Restitution coefficient as a function of the square of particle size, in Hiemenz boundary layer flow. The restitution coefficient is defined as the ratio between the rebound velocity and the incident particle velocity at = 1. The circles, triangles and squares refer respectively to simulations with η = 0.01, 0.02 and 0.04, whereas the filled and open symbols refer to N c = 20 and 50 respectively.
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 48 Figure 4.8: Evolution of the Hertzian contact time t Hertz with the square of the particle size, in Hiemenz flow. The time is scaled by the inverse of the flow strain rate. It is estimated at different positions η equal to 0.01 (circles), 0.02 (triangles) and 0.04 (squares). The inset shows the evolution of the impact velocity scaled by Ba as a function of the square of the particle size.

  Figure 4.7 shows the evolution of the ratio V R /|U f ( = 1)| as a function of the ratio (a/δ) 2 , that represents particle inertia. The diagrams of the rebound velocity are qualitatively similar in Hiemenz flow and settling problem.

Figure 4 . 9 :

 49 Figure 4.9: Wet collision time as a function of the square of particle size, in Hiemenz boundary layer flow, as measured from the numerical simulations. The wet collision time t wet is scaled by N c t Hertz . The circles, triangles and squares refer respectively to simulations with η = 0.01, 0.02 and 0.04, whereas the filled and open symbols refer to N c = 20 and 50 respectively. For more clarity, the curved obtained with N c = 20 are shown in the inset.
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 4 Figure 4.10: Vorticity contours in Hiemenz flow. The vorticity is scaled by B. The contour levels are set from -938.27 to 954.24 with a step equal to 4. The particle size is a/δ = 0.32. The top figure is before impact and the bottom figure is after impact, both being taken at η = 0.01. The blue dashed line indicates the viscous boundary layer thickness.

Figure 4

 4 Figure 4.11: a) Streamline pattern of a particle a/δ = 3.2 fixed at stgnation point of Hiemenz flow and b) vorticities profile on the particle surface of a particle fixed at stgnation point of Hiemenz flow:, a/δ = 0.8; , a/δ = 1.6; , a/δ = 2.4;, a/δ = 3.2

Figure 4 .

 4 Figure 4.12: A pair of particles approaching the stagnation point at the wall, along the axis of symmetry in Hiemenz flow.

Figure 4

 4 Figure 4.13: Time evolution of the trajectories of P 1 and P 2 along the flow axis of symmetry. The red line represents 1 = Z P 1a -1 which is the gap between P 1 and the wall. The black line represents 2 = Z P 2 a -2(1 + η) that is the gap between P 1 and P 2 . The particle radius is a = 3.2/δ. The particles are initially located at 1 = 4 and 2 = 5.5. By comparison, the blue dashed and solid lines represent the evolution in time of the gap between a single particle (of size a and 2a respectively) and the wall, the particle being initially located at = 4 and 1.5 respectively. The starting time of the particle pair and single particles was adjusted so that collisions with the wall occur at the same instant.

Figure 4

 4 Figure4.14: Evolution with the particle size of the rebound velocity of P 1 scaled by the unperturbed fluid velocity at = 1 (filled triangles) and at = 2 (filled circles). The results in these curves correspond to simulations where the initial position of the lower particle Z P 1 = 5a and the distance between particle centers d 0 = 3a. The collision parameters are N c = 40 and η = 0.01. The pink and green filled circles correspond to particles initially seeded at Z P 1 = a (lower particle laying at the wall) and d 0 = 3a and 4a respectively. The stars represent the rebound velocity of a single particle scaled by the unperturbed fluid velocity at = 1.

Figure 4 .

 4 Figure 4.15: The symbols are identical to figure 4.14.The main change is that the filled circles correspond to the rebound velocity of P 1 scaled by |U f @ =2 |, as a function of an effective radius, calculated from a sphere which volume is equal to the volume of a cylinder of radius a and height 4a. Schemes representing the way the pair of particles approach the stagnation point when the particle size increases.
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		p	pressure of fluid flow field		[N.m -2 ]
		p ∞	reference pressure of fluid flow field		[N.m -2 ]
		Re	particle Reynolds number		[1]
		Re slip particle slip Reynolds number in Hiemenz flow	[1]
		St	particle Stokes number		[1]
		t hertz theoretical dry collision time in function of particle inertia	[s]
		t wet	numerical wet collision time measured via DNS-IBM	[s]
		V p	volume of the particle		[m 3 ]
	δ	viscous boundary thickness of Hiemenz flow V i impact velocity of particle		[m]	[m.s -1 ]
	η	relative roughness which is the threshold for solid contact		[1]
	ρ f	fluid density		[kg.m -3 ]
	ρ p	particle density	[kg.m -3 ]
	F ∞	ambient pressure force exerted on particle in Hiemenz flow	[N ]
	F c	collision force which models the solid contact process		[N ]
	f h	local hydrodynamic force		[N ]
	F IBM force density of Immersed Boundary Method	[kg.m -2 .s -2 ]
	f IBM force density of Immersed Boundary Method	[m.s -2 ]
	f p	local hydrodynamic force due to pressure contribution		[N ]
	f v	local hydrodynamic force due to viscous contribution		[N ]
	u	fluid velocity vector	[m.s -1 ]
	u	perturbed fluid velocity vector	[m.s -1 ]
	u p	particle velocity vector	[m.s -1 ]
	U ∞	ambient fluid velocity vector	[m.s -1 ]
	ζ	solid deformation between particle and wall(particle) in collision dynam-
		ics			[m]
	a	particle radius		[m]
	a ef f	effective particle radius of which has equivalent volume		[m]
	B	strain rate of extensional flow or Hiemenz flow		[s -1 ]
	e	rebound restitution of particle		[1]
			25	

  focus on the parti-

		0.2			pressure contribution					0.5			viscous contribution		
		0.16 0.18					r=1.040a r=1.025a r=1.010a r=1.005a r=1.00a theory					0.45 0.4								r=1.040 r=1.025 r=1.010 r=1.005 r=1.00a theory
		0.14										0.35							
		0.12										0.3							
	ref										ref								
	p,z /F	0.1									v,z /F	0.25							
	f										f								
		0.08										0.2							
		0.06										0.15							
		0.04										0.1							
		0.02										0.05							
		0										0							
		0	20	40	60	80	100	120	140	160	180	0	20	40	60	80	100	120	140	160

  Table 3.1: Parameters used in the simulations. Particle radius scaled by the viscous boundary layer thickness, a/δ; the minimum grid sizes in the axial and radial directions are ∆ z,min and ∆ r,min , respectively; and ∆t is the time step.

					• B) • 10 4
	a	0.8	0.16	0.32	0.25
	b	1.6	0.16	0.32	0.25
	c	2.4	0.16	0.32	0.25
	d	3.2	0.16	0.32	0.25
	d 1	3.2	0.16	3.2	1.0
	d 2	3.2	1.6	3.2	1.0
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