
HAL Id: tel-04169856
https://theses.hal.science/tel-04169856v1

Submitted on 24 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Preventing the release of illegitimate applications on
mobile markets

Lavoisier Wapet

To cite this version:
Lavoisier Wapet. Preventing the release of illegitimate applications on mobile markets. Other [cs.OH].
Institut National Polytechnique de Toulouse - INPT, 2021. English. �NNT : 2021INPT0026�. �tel-
04169856�

https://theses.hal.science/tel-04169856v1
https://hal.archives-ouvertes.fr

En vue de l'obtention du

DOCTORAT DE L'UNIVERSITÉ DE TOULOUSE
Délivré par :

Institut National Polytechnique de Toulouse (Toulouse INP)
Discipline ou spécialité :

Informatique et Télécommunication

Présentée et soutenue par :
M. PATRICK WAPET
le lundi 5 avril 2021

Titre :
Preventing the release of illegitimate applications on mobile markets

Ecole doctorale :
Mathématiques, Informatique, Télécommunications de Toulouse (MITT)

Unité de recherche :
 Institut de Recherche en Informatique de Toulouse (IRIT)

Directeurs de Thèse :
M. DANIEL HAGIMONT

M. ALAIN TCHANA

Rapporteurs :
Mme SONIA BEN MOKHTAR, CNRS

M. ROMAIN ROUVOY, Université de Lille

Membres du jury :
M. YEROM DAVID BROMBERG, UNIVERSITE RENNES 1, Président

M. ALAIN TCHANA, ECOLE NORMALE SUP LYON ENS DE LYON, Membre
M. DANIEL HAGIMONT, TOULOUSE INP, Membre

Acknowledgements

My thanks go first of all to my Creator. In addition to the grace He gives
me every day, He has allowed me to complete this thesis. May He continue to
enlighten me and allow me to share His joy and His serenity with my relatives,
and with His family that I hope will grow in His Son, the First Born.

Then I thank my parents, Blaise and Antoinette and my brothers, sisters
an even extended family Isabelle, Elisabeth, Albert, Ange and Maurice.You
have always supported me unfailingly, allowing me to carry out with great
serenity my early and long studies up to this Ph.D. I am very grateful to you.

I would like to thank my thesis supervisors, Daniel Hagimont and Alain
Tchana for their effective advice and supervision. I also thank them because
they gave me the opportunity to start and complete a thesis on the other side of
the world, thus exploring many faraway lands from my home country Cameroon;

I also want to express all my gratitude to Mr Romain Rouvoy and Ms
Sonia Ben Mokhtar who agreed to be the reporters of my thesis, as well as to
all the jury members.

Thanks of course to our secretaries Sylvie Armengaud, Muriel Pernier and
Annabelle Sansus, without whom our research would be much more difficult.

Many thanks to SCALE team at the I3S laboratory in Sophia Antipolis,
I’m thinking of Fabrice, Andrea, Alessio. Thank you to the members of the
laboratory of the AVALON team of the ENS of Lyon; here I think of Christian,
Eddy, and my desk mate Laurent. Thanks also to Andre Ole Ravnas who
accepted to introduce me to mobile phone hacking and dynamic instrumentation.
His advices were very useful. I would also like to thank Louison and Mohamed
who, in addition to their technical support, helped me to persevere in the
delicate context that marked last years of this thesis.

Finally, I would like to thank all my colleagues from the IRIT laboratory,
starting with Boris Teabe, who has always encouraged me in his own somewhat
severe way, when necessary. I also thank Vlad Nitu whom I admire for his
frankness, without forgetting Gregroire Todeschi and Fopa Leon Constantin
who, with Boris Teabe and Eric Munier, were part of my welcoming committee
at the laboratory. Thanks also to Brice Ekane for his simplicity and wisdom;

Of course, I can’t forget Stella Ndonga Bitchebe and Mvondo Djob the
rocket with whom we defended each other when we had to adapt during the

ii

many trips we made during the thesis. and then Kevin Jiokeng , Tu Ngoc, Bao
Bui, Mathieu Bacou the producer of inspiring templates, Peterson , Armel and
especially Kouam Josiane, and Boris Wouembe, God knows why for these last
two, mainly.

Thank you all for your respective roles in my life as a Ph.D. student and
in my thesis!

iii

Abstract

The popularity of mobile applications has been growing worldwide over
the last few decades. This popularity is attracting more and more authors
of malicious applications called malwares. To detect those malwares, mobile
markets have implemented analysis methods that suffer from several limitations.
Those we have identified and which we propose to solve in the scope of this
thesis are mainly two . The first is the inability to cope with a new method of
malware publication consisting in anticipating the mobile version of a company
that does not yet have one. The second limitation is the difficulty encountered
by dynamic analysis solutions to be able to scale. To solve the first limitation
we designed and implemented a security check system called IMAD (Illegitimate
Mobile App Detector), which is based mainly on online search engines and
machine learning techniques. To solve the second problem, we introduced a
scalable tracing approach, that we call delegated instrumentation. It leverages
Android’s instrumentation module and mainly relies on ART (Android Runtime)
reverse engineering and hacking. The evaluation results show that IMAD can
protect companies from anticipation attacks with an acceptable error rate and
at a low cost for MMPs. And we demonstrated the effectiveness of the delegated
instrumentation with a prototype named Odile that traces various app types
(including benign apps and malware) on Samsung Galaxy A7 2017. In particular,
we show how much Odile outperforms Frida, the state-of-the-art tool in the
domain.

v

Contents

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Publications that constitute this thesis: 3
1.2 Thesis organization . 3

2 Background and contributions 4
2.1 Mobile app Ecosystem . 4

2.1.1 Adoption of mobile apps in human society 4
2.1.2 Mobile app structure . 7
2.1.3 The Android Operating System 8

2.2 Major threats to mobile app users 10
2.2.1 Common hacker intentions 10
2.2.2 Key attack implementation steps 12

2.3 Mobile malware detection methods 14
2.3.1 Static analysis . 14
2.3.2 Dynamic Analysis . 16
2.3.3 Hybrid Analysis . 18

2.4 Challenges of mobile malware analysis systems 18
2.4.1 Accuracy . 18
2.4.2 Deployability . 19

2.5 Contributions . 20

3 Preventing the propagation of a new kind of illegitimate apps 22
3.1 Abstract . 22
3.2 Introduction . 23
3.3 Related work . 25
3.4 Definitions and Motivations . 27

3.4.1 Definitions . 27
3.4.2 Research scope . 28
3.4.3 Problematic . 28

3.5 IMAD: Illegitimate Mobile App Detector 30

vii

3.5.1 Overall System Design 30
3.5.2 Graphic identity (GI) construction 32
3.5.3 Trusted entity search . 32
3.5.4 Text Search (based on appName) 33
3.5.5 Web page collection . 33
3.5.6 Clustering . 34
3.5.7 Irrelevant cluster elimination 36
3.5.8 Irrelevant document elimination 37
3.5.9 Trusted entity’s name and contact extraction 39
3.5.10 Image Search (based on the logo) 39

3.6 Evaluations . 40
3.6.1 Experimental environment 41
3.6.2 Accuracy . 42
3.6.3 Complexity . 47
3.6.4 Scalability . 49
3.6.5 Cost evaluation . 50

3.7 Conclusion . 51

4 Odile: A scalable tracing system for non-rooted and on the
shelf Android devices 53
4.1 Abstract . 53
4.2 Introduction . 54
4.3 Android . 56
4.4 Frida limitations . 58
4.5 Odile . 59

4.5.1 Main idea . 59
4.5.2 Architecture . 60
4.5.3 ART’s function hacking 63
4.5.4 ART’s instrumentation module activation 64
4.5.5 Function call information retrieval 66

4.6 Evaluations . 69
4.6.1 Odile effectiveness . 69
4.6.2 Overhead . 71

4.7 Related work . 76
4.8 Conclusion . 76

5 Conclusion 77
5.1 Conclusion . 77

Bibliography 79

viii

List of Figures

2.1 Typical mobile App publication process. 6
2.2 Overview of the Android Package (APK) content 7
2.3 Overview of the Android Operating System (OS) Archi-

tecture. 9
2.4 Overview of different mobile apps hackers tasks. 13

3.1 Synthetic app submission workflow, from the security check point
for view . 28

3.2 Example of attack . 29
3.3 IMAD general functioning . 31
3.4 The main steps of our solution 33
3.5 Illustration of the Web page collection step 34
3.6 Illustration of the clustering step: we present three clusters built

from the corpus presented in Fig. 3.5 bottom 34
3.7 The important words of the clusters presented in Fig. 3.6 38
3.8 The remaining documents after eliminating those which are not

related to EasyChair . 39
3.9 First experiment type: evaluation of each IMAD’s step with safe

apps . 43
3.10 Second experiment type: evaluation with illegitimate apps from D2 44
3.11 Comparison of IMAD with Androguard and FSquaDRA, two

reference illegitimate app detection systems 45
3.12 Configuration parameters: estimation of the best value 46
3.13 Evaluation of the amount of resources consumed by each IMAD’s

step . 48
3.14 Evaluation of IMAD facing parallel app checking: (left) resource

consumption and (right) execution time 50

4.1 Odile general architecture and workflow. Odile is provided as
a classical app. To trace a given app (noted Atarget), Odile inter-
venes at two moments: (up) app installation time and (bottom)
runtime. 61

4.2 Hacking stack . 63

ix

4.3 Method name computation. 66
4.4 shadow_frame’s memory address computation on ARM 68
4.5 Odile effectiveness on DualOps app, compared with Frida. . . 70
4.6 (a) Breakdown time of Odile’s repackaging step and (b) Slow-

down to display the first app’s activity. 72
4.7 Odile scalability on DualOps app, compared with Frida. The

green color represents the number of call interception realized
by Frida without error while and the orange one represents
interceptions which lead to errors. 74

4.8 Odile CPU and memory consumption for DualOps app. 75

x

List of Tables

2.1 table of the most used app functionalities (from [53]) 5

3.1 Drawbacks and advantages of related work solutions compared
to IMAD . 26

3.2 List of the most important parameters used by IMAD 46

4.1 Odile (Od) tracing effectiveness compared with Frida (Fd).
#calls is the total number of intercepted calls. #capNotTraced
is the number of intercepted calls that Frida was not able to
trace (Frida prints an error message in this case). 71

xi

Chapter 1

Introduction

In order to speed up data processing, Information Technology has become
established first in institutions through computers, then in homes through work-
stations and finally in the pockets or close to the hands of modern man through
mobile phone on which mobile applications (or mobile apps) are installed.

Mobile apps obviously facilitate most human activities. They do so by
giving them access to social networks that are becoming increasingly virtual, by
allowing them to consume online business services or by providing them with
multimedia content. Their implementation requires an ecosystem in which the
main producer is the application developer. The latter submits its application
to the Mobile Application Markets, which in turn make it available for download
on users’ personal phones.

As mobile apps are at the heart of transactions and may often manipulate
data belonging to users who increasingly trust them, hackers have begun to
build malicious application, mainly to harm and hijack these critical trans-
actions and steal sensitive data available on mobile phones. In order to do
this, hackers must first find a way to deploy their malicious mobile apps on
their targets’ phones, and then execute their malicious loads by exploiting the
internal architecture of mobile apps and mobile operating system. Hackers must
also update their malware to ensure that it evolves and is future-proofed despite
the countermeasure techniques that are also increasingly emerging.

In the light of all these threats, countermeasures have been proposed
in the literature. They fall into two categories, although solutions combining
both categories exist. These are static methods on the one hand and dynamic
methods on the other. Static methods simply examine the application package
and its components, while dynamic methods analyse all the exploitable data
during mobile app runtime . All of these methods, in addition to being accurate,
must not only be able to evolve to counter the new sophisticated approaches
implemented by hackers, but must also be easily integrated into the mobile
application ecosystem and more specifically into the deployment process without
compromising scalability. It is precisely to provide new solutions to the last two
issues that the work contained in this thesis has been carried out.

The first contribution we present identifies and then proposes a counter-
measure against a new malicious mobile apps deployment strategy, i.e. a new
method that hackers use to get their mobile apps installed on users’ mobile
phones. This new approach consists of passing their application not as another
known application, but as the mobile version of a known Internet service that
does not yet have one. It thus bypasses existing detection systems based on
known malware signature comparisons. Our contribution, on the other hand,
explores the service and company catalogues available online as well as search
engines to find out whether the graphic charts of mobile apps newly submitted
for publication do not use the above-mentioned technique. To this exploration
are coupled the data-mining and optimization algorithms that make it effective.
At the end of this procedure the imitated services are found and alerted.

The second contribution of our thesis is a tool for tracing mobile apps. It
aims to solve a problem faced by new dynamic analysis solutions requiring the
intervention of users who are unfortunately not very qualified to collect data
on their phones. By dispensing with the "rooting" of the mobile phone, and by
maintaining an acceptable level of accuracy, this proposed tool brings a new
breath to reboost the crowd-source malware analysis. It is based on indirect
code injection, a technique that subtlely reuses components already present on
the operating system, thus facilitating the tracing of most java calls from a
mobile app.

2

1.1 Publications that constitute this thesis:

The first work of this thesis has been published at FGCS under the
reference.

• Patrick Lavoisier Wapet, Alain-Bouzaïde Tchana, Tran Giang Son, Daniel
Hagimont. Preventing the propagation of a new kind of illegitimate apps.
Future Generation Computer Systems, Elsevier, 2019, 94, pp.368-380.
(10.1016/j.future.2018.11.051). (hal-02495523)

The second contribution of this thesis is named Odile and has been
published at COMPAS, presented at the GDR 2020 and is currently being
submitted to the conference

• Patrick Lavoisier Wapet, Alain-Bouzaïde Tchana, Louison Gitzinger,
Daniel Hagimont, David Bromberg. Odile: A scalable tracing system for
non-rooted and on the shelf Android devices Systems.

1.2 Thesis organization

Chapter 2 first offers a panoramic view of the thesis context, namely the
ecosystem of mobile applications. It then presents threats to this ecosystem and
provides an overview of possible approaches to address these threats. Then it
describes issues faced by the latter approaches and conclude on issues targetet
by this thesis contributions.

Chapters 3 and 4 present the contributions of this thesis. For each of them,
they present the specific context and motivation, the design, implementation
details, evaluation, and finally a brief overview of the state of the art. Chapter
3 identifies a new way of deploying malicious applications and presents a
countermeasure to deal with it. Chapter 4 proposes a solution to the scalability
problem of crowd-based dynamic analysis solutions. This solution consist of a
new mobile app tracing tool adapted to non-expert users and implementing a
technique called the delegated instrumentation.

Finally, chapter 5 concludes these developments, and suggests a vision for
the future of security in the mobile applications ecosystem.

3

Chapter 2

Background and contributions

We first describe in this chapter the context of the thesis, namely the ecosystems
of mobile applications (or mobile app(s)). Then, we list the threats faced by
users of the latter mobile apps and detail the existing approaches that tries
to mitigate them. We conclude this chapter with a brief overview of our main
contributions.

2.1 Mobile app Ecosystem

We first highlight mobile app usefulness in everyday life. Then we describe
the typical path the latter app before ending up on end user’s mobile phone.
Then, we list his components, what they do and how they interact. We also
list interaction between the latter mobile app and and other ones on the one
hand, and between the mobile app and the operating system on the other hand.
We end by presenting Android, the operating system used by one of the three
dominant mobile app marketplaces [53].

2.1.1 Adoption of mobile apps in human society

Mobile apps have gradually become an integral part of everyday life,
as two-thirds of the world’s inhabitants use them[12]. These are software
applications that run on mobile phones and allow people to perform several
common tasks such as phone calls, messaging, web browsing, education, social
network chatting, multimedia and video games. the table 2.1 gives an overview
of the most popular features in the mobile markets for popular mobile apps
such as Android Google Play Store, Apple Store, and Windows Market.

Mobile
apps
functionalities

Examples
Percentage
on Apple
Store

Percentage on
Google Play
Store

Percentage on
Windows Phone
Market Place

Games Pokemon Go,
Angry Bird 18% 13% 14%

Health Home Workout,
Step Tracker 4% 3% 3%

Books wikiHow, Kindle 11% 9% 10%
Music Deezer, Spotify 5% 6% 2%
News CNN, Franceinfo, 6% 7% 11%

Business
Linkedin,

Remote Desktop
14% 14% 18%

Travel Oui.sncf, trivago 8% 6% 6%

Social Facebook,
Instagram 2% 5% 3%

Finance PayPal 2% 2% 2%
Education EDX, Math Tests 10% 5% 6%
Entertainment Netflix, Arte 10% 11% 19%

Lifestyle MakeMeBetter,
RelaxRain 8% 8% 5%

Photography Adobe Photoshop 2% 1% 2%

Personnalization
Animals Ringtones,

Themes
- 10% -

Table 2.1: table of the most used app functionalities (from [53])

5

Mobile apps, and the choice of Android Operating Systems: A
mobile app is strongly associated with the operating system on which it is
supposed to run. Thus there are mobile apps for Android, iOS and Symbian
OS. Among these systems, we focus on the Android system since it is the most
popular and more than 52% of phones sold are equipped with it [2]. Moreover it
is possible to contribute to its improvement: its source code (under the name of
Android Open Source Project) is built on more than 100 open source projects
including the Linux kernel. However, there are similarities between the
different mobile operating systems. They therefore encounter more or less the
same problems. So the contributions we propose mainly for the Android system
may well apply to other systems.

Mobile Apps developement An Android mobile app comes as a pack-
age called APK (Android Application Package). It contains code in DEX
format and other files that act as resources for the application. To produce such
a package, the developer writes java code from the android SDK, and or C/C++
in the AndroidStudio development environment, and then associates resources
such as logos, images, graphical interfaces as XML files. Afterwards, he compiles
and signs the resulting package with his private key using the apkSigner tool
available in Androidstudio.

Mobile Apps publication As soon as the mobile app is ready to be
installed on an Android phone, the developer must make it public. To do this,
as shown in the figure 2.1, he submits it to the mobile app market after opening
a developer account there. The mobile market takes the newly submitted mobile
app through a security analysis phase before making it downloadable by any
android phone user worldwide.

Figure 2.1: Typical mobile App publication process.

6

In the following, we see what a mobile application looks like and what it
is made of.

2.1.2 Mobile app structure

A mobile app comes in the form of an archive, commonly called APK
(Android Application Package). This archive presented in the figure 2.2 contains
a file called AndroidManifest.xml that the operating system uses to know
the name of the APK, the phone resources it will have access to and the
different operations and services it will execute during its operation. In the
following, we give a little more detail on the key information contained in the
AndroidManifest.xml.

Figure 2.2: Overview of the Android Package (APK) content .

• APK name: This is a package name that the developer assigns to his
mobile app. Ideally, this name should be unique in the world of Android
apps. Thus, by using this name, it is possible for the system to identify a
specific app.
• Permission: To be able to use certain resources and functionalities of

the phone, the developer of the mobile app must request the permissions
associated with them from the operating system. It does so by declaring
these permissions in the AndroidManifest.xml. As an example, per-
mission READ_PHONE_STATE, allows the app to read the phone state
information like device id, which otherwise is forbidden. Other permissions
allow the mobile app to receive and send communication intents, the main
communication means between mobile apps installed on the same phone
and between the same mobile apps components.
• SDK Version: Mobile app is mainly developed in java language, strongly
coupled with the Android SDK (Software Development kit). This SDK
provides a set of APIs used by the developer to access functionalities
offered by the operating system. As these functionalities are constantly

7

evolving through Android versions [47], the developer must mention in the
AndroidManifest.xml file the versions most compatible with his mobile
app. He does this by defining the minSdkV ersion, maxSdkV ersion and
targetSdkV ersion attributes. Note that it is also possible to integrate
C/C++ code into a mobile application by using the JNI (Java Native
Interface), which bridges the gap between C implementations and the
JAVA calls and vice versa.
• Components: The developer organizes the source code of his mobile app

around the main classes called components that he extends from the SDK.
These classes, which must be declared in the AndroidManifest.xml
file, govern the life cycle and the interactions between the java objects
of the mobile app. Thus, the visible objects associated with graphical
interfaces and with which the user interacts are called Activity. During
the interactions between the user and the mobile app, some tasks can be
executed in the background by Services. Some activities and services are
activated when events external to the mobile app occur such as the phone’s
waking up, in this case the developer must declare BroadcastReceiver
that listen to these events before activating the concerned activities and
services. Finally, all of the above components handle data that the
developer organizes and provides them through the definition of Content
Providers.

In addition to the AndroidManifest.xml file, the APK contains other resources
specific to the mobile app such as images (the logo for example), graphical
interfaces described in XML format also called layout, character strings used by
the mobile app and many others files like native libraries.

Finally, the APK contains mobile app code compiled in DEX(Dalvik
Executable) format. This source code will be interpreted by a DALVIK/ART
virtual machine that is part of the operating system at runtime.

2.1.3 The Android Operating System

A brief history of the Android system : Android, the system software
that is avalaible for phones, tablets, and more generally for any kinds of smart
devices, was first developed by a company called Android Inc. In the early
2000’s. This company has been acquired by Google in 2005 and the latter made
a first public release of the Android System in 2008, named Android 1.0.

Since then, Google has released over 20 Android versions, on average every
six months, to include new features and address new hardware requirements.
In practice, each release of Android is referred to by multiple names: (1) its

8

version number (e.g., Android 4.4); (2) its API level (e.g., API level 19); and
(3) a name of sweet (e.g., KitKat). The API level is even used to determine
whether a mobile app is compatible with an Android SDK version prior to
installing the mobile app on the device.

Android software stack description: When downloaded and installed
on the mobile phone, the mobile app interacts with the operating system
according to the software stack shown in figure 2.3. Let us describe it from the
bottom up:

Figure 2.3: Overview of the Android Operating System (OS) Archi-
tecture.

• Android is built on a Linux kernel 2.6, enriched with some drivers such
as Binder IPC for inter-process communication, or other drivers such as
the gyroscope driver for sensor controlling.
• Above this kernel are libraries, some of which extend the drivers defined

above. These libraries constitute the native layer of the operating system.
They include the Dalvik/ART virtual machine that executes the DEX or
Native code of each mobile app in a process having its own linux rights,
and coming from the cloning of the Zygote process, the first process from
the operating system.

9

• The source code of a mobile app, in order to access the system’s func-
tionalities, consumes, as we have said, Java APIs whose implementation
is carried out in the framework layer. This layer, also executed by the
Dalvik/ART virtual machine, contains system services developed in Java,
such as the LocationManager which supports Android apps retrieving
GPS coordinates of a device.
• In the last layer we find all mobile apps including system apps such
as Home, Contact, etc. that are usually shipped with Android devices,
and user apps such as Facebook, Twitter. that can be installed by users
on-demand form Android markets (e.g., from Google Play, the official
market maintained by Google).

After presenting the key concepts associated with the ecosystem of mobile
apps from their design to their functioning, we discuss in the following section
the different threats that affect their users.

2.2 Major threats to mobile app users

Malicious individuals or hackers are at the origin of attacks against the
Android ecosystem, that’s why to better understand these attacks, we cite the
malicious intentions that can animate the hackers and then we cite the steps
usually followed by the latter in order to put their plan into action.

2.2.1 Common hacker intentions

By providing useful functionalities to phone users, mobile apps manipulate
valuable information and are at the heart of multiple, sometimes monetary
transactions. It is mainly to harm users, steal their data and hijack the
mechanisms governing the often critical operations they carry out with their
phones that hackers have been interested in mobile apps.

User nuisance with or without payment (Randsomewares, denial of service)

Sometimes hackers want to harm the peacefulness of the users in exchange
for payment or for vain glory.
For example, there are mobile apps called Randsomewares that, once installed,
force the operating system to maintain a static and unchangeable image on the
screen that becomes insensitive to manipulation, making the phone unusable.
To unlock the infected phone, the owner must make a bank transfer, whose
procedure is usually displayed in the image that appears. In 2015–2016, two

10

big mobile ransomware families, Small and Fusob [13] represent more than 93%
of the mobile ransomware space.

Similarly, sabotage attacks such as denial of service can be orchestrated
on phones as it is already the case on websites.

Sensitive Data stealing

Data manipulated by mobile apps is the subject of envy by hackers because
it can be sold on spammers’ sites, belonging to the dark web or directly reused
for malicious purposes. Thus a hacker who has access to a secret password can
usurp the identity of the owner and use the mobile services to which he has
access without his knowledge. It can be his mailbox, his bank account, his social
networks. Similarly, hackers use data from mobile apps to profile their users.
They do this after having subverted, for example, their purchase history, their
travel history, their messaging content and the main theme of their favourite
multimedia content. The profiling carried out in this way is most often used for
targeted advertising and espionage, among other things.
Mobile apps manipulate data from multiple sources:

• The user who, through sensors such as touch screen, GPS, microphone,
camera, giroscope, provides data to the mobile apps or operating system.
In addition, by activating wifi, GSM or bluetooth connections, the user
again, gives them access to data such as phone conversations or network
packets.
• The internal storage of the phone, decomposed into three parts, the

private data to each mobile app installed on the phone, the data available
on the external cards, and external data that an app can download from
remote servers.
• Data exchange channels between mobile apps, the storage system, and

source sensors.

Hackers will implement all possible tricks in their mobile apps, interacting
with the operating system and the user in order to control the information
sources listed above and thus steal certain data. For example, once installed the
malware will display the graphical interface of a mobile app known as facebook.
And the user, after entering his credentials through the touch keyboard, will
have them stolen.

There is another example: as Bring Your Own Devices (BYODs) become
popular in enterprise environment, an attacker could also use mobile malware

11

to exploit and access a victim’s private network. Once the victim’s network
is compromised, the attacker could access corporate resources, steal corporate
data.

Internal mobile app task abuse.

Sometimes hackers, in order to obtain direct financial gains, exploit the
workflow of commercial services as long as these services can integrate mobile
apps.

Some online shops advertise on blogs. On these blogs there are advertising
spaces on which they publish the link to their site. Each time a user of the blog
clicks on this link, the owner of the blog is paid by the shop site. So the more
clicks the blog has, the more income the owner gets. Hackers who own blogs
can use a mobile app to automatically generate user clicks from a mobile phone
and make a lot of money.

Similarly, some mobile services can be purchased using airtime credits.
For example, when paying the bill for a ringtone, the subscriber has to send an
SMS to a premium-rate number and then receives another confirmation SMS to
confirm the purchase. The subscriber is billed after confirming the second SMS.
However, if a hacker succeeds in having this second validation done by a stealth
mobile app that he has managed to have installed on the subscriber’s phone,
he will make money that he will receive from the mobile phone agency on the
account and without the subscriber’s knowledge.

2.2.2 Key attack implementation steps

In order to carry out their attacks and sustain them over time, hackers
typically proceed in three steps, as shown in figure 2.4, the first step consist in
finding a way to get their mobile apps to their target’s phone. The second step
is executing the threat itself. The third step is maintaining their malware so
that they can bypass detection techniques that are improving by the day.

12

Figure 2.4: Overview of different mobile apps hackers tasks.

Malware deployment

To bypass the normal distribution channel for mobile apps, hackers typi-
cally use phishing as a subterfuge, in which the user installs the mobile apps
from a source other than the official mobile market. They may also repackage a
well known mobile app after hiding their malicious code in it. The objective
being that the targeted user installs the repackaged mobile app believing it to
be the original one. The attacker can also copy the appearance (name, icon and
sometimes even GUI) of another known mobile app in order to impersonate it
and have it installed.

Malware execution

Actions carried out during this step depend strongly on the hacker fi-
nal intention (we discussed possible intentions in section 2.2.1), and on OS
architecture. Thus in his code the hacker can perform the following actions:

• Increase the scope of possible actions that can be carried out by their mo-

13

bile app once they are installed on the phone. They do this by requesting
the maximum possible permissions. For example [45] proves that with the
permissions SYSTEM_ALERT_WINDOW and the BIND_ACCESSIBILITY_SERVICE
an app can completely control the UI feedback loop and create devastating
attacks.
• They can implement by their function call flow, some means of conveying
information from a data source (such as a file or a text input field) to
an output such as (another file or an internet server) without the user’s
knowledge. This practice is motivated by the data stealing.
• Reuse methods or malicious libraries or APIs to hijack critical and ex-

ploitable transactions such as monetary transactions, or advertising. The
motivation of this practice is to hijack transactions.
• Use some Framework APIs to block the screen or encrypt user data. These
actions are mainly carried out by randsomewares. This practice
may be motivated by the desire to harm the user.

Malware evolution

This evolution consists for the hacker to update his malware to override
the new detection methods deployed on mobile market places. Hackers who
see their malware removed from the ecosystem will be willing to implement
subterfuges and then come back and stay as long as possible. So they will
insert into their malware camouflage methods such as code obfuscation,
dynamic loading, runtime environment checking [104]

2.3 Mobile malware detection methods

The main weapon that hackers use to foment attacks within the mobile
ecosystem malware analysis techniques is the mobile app itself. That is why
malwares analysis techniques rely on the latter, that is mobile app to highlight
either malicious intent or one of an attack’s implementation steps, or
combinations of both. To highlight these malicious behaviors, as we will call
them later, the mobile app can be analyzed either statically, meaning based on
the APK, or dynamically, meaning while it is running.

2.3.1 Static analysis

Static analysis consists of analyzing the APK of the mobile app without
running it. Static analysis techniques are generally classified according to the
part of the APK (described previously in 2.1.2) that is analyzed.

14

Analysis based on the file AndroidManifest.xml

Static analysis approaches that use this file manly focus on permissions
that are declared within it. Many frameworks, such as Pscout [22] and Whyper
[69], use static analysis to evaluate the risks of the Android permission system
on individual apps. It has also been shown by others tudies [77], that malware
requests more permissions than benign apps. In the million apps Andrubis (an
example of malware analysis tool [57]) received from 2010 to 2014, malicious
apps requested, on average, 12.99 permissions, while benign apps asked for an
averageof 4.5.

Some analysis systems like Drebin [19] target the intents that the mobile
app can receive, also declared in the AndroidManifest file. In one scenario,
private data can be leaked to a malicious app that requested the data through
intents defined as receivable in its Android manifest file.

The analysis may also focus on the components the app has declared
because a malware that executes in background often has a service component
and a receiver component in order to receive the boot intent on system booting.
Throughchecking components and their received intents, analyst may have a
brief view of the potential behaviour of a mobile app. As an example in Droid-
Mat [88] , intents, permissions, component deployment, and APIs were extracted
from the Manifest and analyzed with several machine-learning algorithms, such
as k-means, k-nearest neighbors, and naive Bayes, to develop malware detection
systems.

Resource-based analysis

Malware detection approaches that rely on mobile app resources do so
primarily to detect repackaging. Indeed, since resources include the XML
description of a mobile app’s graphical interfaces and the images or files they
use, an attacker who wants to reuse these elements to repackage a mobile app is
forced to reuse some of its resources. Based on this observation, some systems
like [73], proposes an algorithm for comparing mobile app resources based on
data-mining in order to detect cases of repackaging, which are booming the
mobile market (86% of hackers used it in 2014 to deploy their malware).

dexFile-based analysis

The files .dex, difficult for humans to read, are obtained by compiling
the mobile app java source code. The static analysis solutions based on these

15

files, aim primarily at extracting and analyzing features such as classes, APIs,
methods, method call sequences, and program dependency graphs (CFGs). To
extract the features contained in the .dex files it is sometimes useful to use
tools such as Dex2Jar, undex, JEB, Dexpler, Androiguard, dedex, Pegasus [20]
in order to decompile them in a more readable format adapted to the analysis
solution used. There are many levels of formats, from low level bytecode
or assembly code to human-readable source code. In general, more drastic
decompiling methods have a higher fail rate or error rate, due to the significant
change from the old format to the new one, some of which can be amended by
post-processing.

From the decompiled format, features (e.g., classes, APIs, methods), struc-
ture sequences, and program dependency graphs can be extracted and analyzed
using machine learning algorithms [52], much more advanced techniques rely on
decompiled dexfiles to track down the flow of intents in interprocesscommunica-
tions (IPC), also known as inter-component communications (ICC) [96] , and
to aid smart stimulation [61].

APK-hybrid analysis

Finally, some analysis approaches such as DREBIN [19] exploit all parts
of the mobile app at the same time by collecting intents, permissions, app
components, APIs, and network addresses from malicious APKs, with a detection
rate that can reach 94 % of the malware and with low false-positive rate.

Limits of static analysis

Static analysis is criticized for being powerless when hackers use hiding
techniques such as code obfuscation or dynamic loading from a remote server
for example, in order to hide the malicious load that will run on the mobile
phone once the mobile app is installed. In this case this malicious code is not
visible in the APK at the time of static analysis. Hence the need to use dynamic
analysis. We will discuss about this in the next section.

2.3.2 Dynamic Analysis

Purpose and test environment. The main purpose of dynamic analy-
sis is to obtain from mobile apps additional data that are not accessible by static
analysis, thus dynamic analysis first consists in launching the mobile app to be
tested in a test environment. In the field of dynamic analysis, this environment

16

can be an emulator such as the android virtual device or simply a mobile phone;
even as of these two tools the emulator is the most used because it is much
more accessible. In any case, the test environment have to be equipped with a
tool that can collect the required data.

Starting and handling. Once the mobile app is started in the test
environment, an utilisation scenario is performed on it in order to test several
app execution paths. The author of the simulation can be a bot (e.g. Google’s
android Monkey Tool), a tool from the research [23] or more simply a human as
the current trend [48] suggests. The objective during this simulation being to
increase the chances to ativate malicious actions, the more precise and complete
the manipulation is, thas is covering the largest number of crutial execution
path, the more conclusive the analysis will be.

Data capture and analysis. Finally, data collected from sensors in-
stalled on the test environment are collected for analysis. Typically, anything
related to the threats we’ve listed above (see section 2.2.1) is investigated. More
precisely, by capturing for example the graphical interfaces produced by the
system such as [62], one could look for illicit deployment intentions such as
copying the graphical interfaces for phishing or repackaging. Also by observing
the android Framework APIs that the mobile app uses as well as its way of using
certain libraries (advertising for example), we will be able to detect the willing-
ness of malware (APIs to block the screen) or hijacking of user transactions.
Finally, by observing the obfuscation APIs, such as those for java reflection, or
dynamic loading of native code, or detection of the test environment (because
some malware does not execute if it is started on an emulator), one can then
suspect a willingness to hide and thus deepen the search on the suspected App.

Dynamic analysis classification. Dynamic analysis techniques are gen-
erally classified according to the architecture set up to examine the mobile app.
Some approaches collect data at an existing layer of the Android system, while
others rely on virtualization, adding additional layers. The latter only work
with emulators. The State of the Art section of the third chapter describes some
of them. Still, the further you go from the mobile app layer, the less human
readable the information collected is [46]. For example, when capturing system
calls it is impossible to know the name of the java API that is at the origin of a
call. Hence the need to infer from the data obtained for further information

Limits of dynamic analysis

Although dynamic methods of analysis are very useful, and give good
results, they present several limitations: firstly, the bots used in the handling

17

phase are not very accurate in covering the execution paths, secondly, when
humans are involved in the test process, many constraints (such as the need
to have rooted phones, the reduced number of experts for the test) make the
dynamic approach less scalable.
Sometime static analysis are combined with dynamic analysis. By combining
these two approaches, we achieve hybrid analysis, the main topic of the next
sub-section.

2.3.3 Hybrid Analysis

Hybrid analysis methods overcome some limitations of static and dynamic
analysis when used separately. The main advantages of hybrid analysis include
the following::

• The possibility to predict in advance by a static analysis the execution
paths to be explored during the dynamic analysis. SmartDroid [101],
EvoDroid [61].
• The possibility of checking whether there is consistency between the actions
declared in the manifest of the mobile app, which is obtained statically,
and the actions carried out by the mobile app during its operation which
are obtained dynamically.
• Multi-step detection to filter the most risky mobile apps statically before

analyzing them dynamically.
• Iterative detection, which consists of modifying the mobile app statically

to insert hooks that allow you to discover certain information dynamically.
And if possible to iterate the procedure as did Backes et al. [25] and [87]

2.4 Challenges of mobile malware analysis systems

In this section, we describe the issues facing malware detection systems. In-
deed, in order to be fully operational, they must be accurate in detecting mobile
malwares and easily deployable in the Android ecosystem presented in the 2.1.

2.4.1 Accuracy

For the ecosystem of mobile apps to work in a secure way, it is necessary
to reduce as much as possible the number of malwares that can be installed
by users; at the same time, any benign developer must be able to publish and

18

have his mobile app installed by his future users without his mobile app being
rejected. Finding a compromise between these two previous objectives requires
an accurate malware detection solution. This accuracy depends on several
elements. For static analysis solutions, these elements are

• The origin of collected data on mobile app (which parts of the APK have
been used, which metadata -such as the developer name or the comments
on the mobile app page on Google Play- have been exploited,...)
• The Intermediate transformations that these data have undergone (e.g.
for the construction of dependency graphs, the organization of selected
features)
• The algorithms applied to these representations (machine learning, com-

parisons..).

For dynamics analysis solutions, these elements are

• The quality of the data collected dynamically (e.g. can we dynamically
have the exact name of the API used by the mobile app, and its arguments?
Do we just have to be limited only to system calls)?
• The algorithms applied to this data (info-flow comparison, machine learn-

ing...).

The third factor that influences the detection solution accuracy is its ability
to fight against new deployment techniques, malicious load execution, and
concealment that malware integrates to perfect itself. All these improvements
depends on the android ecosystem evolution.

2.4.2 Deployability

In addition to being accurate as we have shown previously, malware
detection solutions must not interfere with the process of publishing mobile
apps to the mobile markets, their functioning on phones, or the operating system
life-cycle. For this reason, solutions must:

• Be compatible with several versions of operating systems, several hardware
architectures, require at least the least modification of the operating system
(mainly in the case of solutions that require the phone not to be rooted).
• Not tamper with the mobile app to the point of disrupting the user

experience or allow malware to detect if it has been tampered with. The

19

latter is worth mentioning here because malware, when modified, does
not deploy its malicious load, as hybrid scanning systems often tamper
with the mobile app being scanned in order to insert hooks.
• Be scalable by executing in a short time: this is crucial if we want to keep

up with the current rate of mobile app publishing on mobile marketplaces,
which is more than three thousands every day Google Play [3].

Some of these conditions are not always met by mobile malware detection
systems. Hence the contributions we propose in this thesis.

2.5 Contributions

The first contribution that we propose in this thesis is classified among
the static analysis solutions. It consists in detecting a new type of malware
deployment not yet explored at the current state of our knowledge. These are
malicious mobile apps masquerading as mobile versions of web services that do
not yet have known mobile apps.

We propose to detect malwares that use this deployment technique by
extracting features such as names and logos and then using them to search public
web services directories. Once the results obtained from internet, data-mining
algorithms are applied to extract the one that is closest to the mobile app to
be analyzed and that represents a company. If such a company exists it is
contacted for further verification. The mobile app is considered illegitimate if it
turns out that its developer has no connection with the company found. This
work has been published at FGCS under the reference.

• Patrick Lavoisier Wapet, Alain-Bouzaïde Tchana, Tran Giang Son, Daniel
Hagimont. Preventing the propagation of a new kind of illegitimate apps.
Future Generation Computer Systems, Elsevier, 2019, 94, pp.368-380.
(10.1016/j.future.2018.11.051). (hal-02495523)

The second contribution of this thesis ranks among the solutions of dy-
namic analysis. Indeed, it is a tool for tracing mobile apps. Its particularity is
that it is the very first to allow the tracing of a mobile app on a non-rooted
phone in a precise way and by providing as much information as possible. This
tool, named Odile, facilitates the democratization of dynamic analysis methods
and opens the voice to a new trend in mobile app detection, the crowd-based
one. This work has been published at COMPAS 2019, presented at GDR 2020.

20

• Patrick Lavoisier Wapet, Alain-Bouzaïde Tchana, Louison Gitzinger,
Daniel Hagimont, David Bromberg. Odile: A scalable tracing system for
non-rooted and on the shelf Android devices Systems.

21

Chapter 3

Preventing the propagation of a
new kind of illegitimate apps

3.1 Abstract

A significant amount of apps submitted to mobile market places (MMP)
are illegitimate, resulting in a negative publicity for these MMPs. To cope with
this situation, several app scan solutions have been proposed and integrated
into MMPs (e.g. Bouncer at Google). To our knowledge, all scanning solutions
in this domain only focus on the detection of illegitimate apps which mimic
existing ones. However, recent attack analysis reveal the appearance of a new
category of victims: enterprises which did not yet publish their app on the
MMP. Thereby, an attacker may be one step ahead and publish a malicious
app using the graphic identity of a trusted enterprise. Famous enterprises such
as Blackberry, Netflix, and Niantic (Pokemon Go) have been subject of such
attacks. We designed and implemented a security check system called IMAD
(Illegitimate Mobile App Detector) which is able to limit aforementioned attacks.
The evaluation results, realized on up to 5, 000 apps/enterprises1, show that
IMAD can protect both big and small and medium-sized companies from such
attacks with an acceptable error rate (almost nil on legitimate apps and less
than 20% on illegitimate apps). The evaluation results also show that our
system is able to check all apps deployed within a day on Google Play or Apple
App Store for a cost of around $1,755. The evaluation results show that IMAD
can protect companies from such attacks with an acceptable error rate and at a

1This number is estimated according to the size of app repository and to companies apps
names dedicated to evaluations

low cost for MMPs.

3.2 Introduction

Nowadays, the vast majority of mobile apps are made available to users
through digital distribution platforms called mobile market places (MMP) such
as Google Play for Android and App Store for Apple. These main MMPs host
a tremendous amount of apps. For example, Google Play has more than 3.3
million [18] apps and over 50 billion downloads [91].This plethora of applications
in mobile markets drives developers to implement new and honest ways to gain
visibility, such as advertising.

Some hackers, on the other hand, in order to increase the visibility of
their application and thus encourage downloading, associate them with the
graphic charter of certain well-known public apps, thus taking advantage of
their reputation. A study from a security company [82] revealed that around
77% of the most downloaded apps have at least one illegitimate version. To cope
with them, several app scan solutions have been investigated and integrated
into MMPs (e.g. Bouncer at Google). To our knowledge, scanning solutions
for illegitimate apps only focus on the detection of apps which mimic existing
ones. However, recent attack analysis reveal the arrival of a new victim category.
Attackers develop and publish mobile apps for well-known companies which
did not publish a mobile app yet. In 2013, the Blackberry messenger has
been a victim of such an attack where an illegitimate app has been published
on Google Play and downloaded about 100k times before its removal. More
recently (September 14, 2016), Pokemon Go has also been attacked in the same
way; see the following post [83]:

"A few days ago we reported to Google the existence of a new malicious
app in the Google Play Store. The Trojan presented itself as the "Guide for
Pokemon Go". According to the Google Play Store it has been downloaded
more than 500,000 times... Kaspersky Lab products detect the Trojan as
HEUR:Trojan.AndroidOS.Ztorg.ad. At least one other version of this par-
ticular app was available through Google Play in July 2016.".

The French Telecommunication company Orange has announced the de-
velopment of a mobile money service called Orange Bank [68] which will be
available throughout a mobile app this summer. We have successfully experi-
mented the publication of an illegitimate version of that app on a popular MMP
and several downloads have been observed2.

2This experiment was validated by the ethics commission from our laboratory.

23

This chapter presents IMAD (Illegitimate Mobile App Detector), a so-
lution for detecting this new category of illegitimate apps at submission time
(when the developer uploads the app in the MMP). To our knowledge, this is
the first research work which investigates this issue. The main principle is to
identify, from visible characteristics of the app (e.g., name or logo), the trusted
entity (e.g., a company) associated with these characteristics. This trusted
entity is either the submitter or the one the submitter wants to mimic. This
identified entity is then contacted by email to validate the app submission.

The implementation of IMAD raises several challenges. The most impor-
tant among them is the following: how to identify the trusted entity associated
with an app regarding the number of worldwide trusted entities? IMAD answers
this question by relying on the biggest database in the world which is Google
(its search engine). Our basic idea is to combine several standard text and
image similarity checking in order to find from the internet the legitimate and
trusted entity behind each submitted app (its visible characteristics). Although
this idea appears simple to label, its implementation is not easy. The evaluation
of IMAD with more than 5,000 apps (from AndroZoo [16] and Contagio [36],
among other datasets) demonstrates the effectiveness of our approach, with an
acceptable margin of error: almost nil on legitimate apps and less than 20% on
illegitimate apps. Overall, we made the following contributions:

(1) We highlighted a new security problem which affects all MMPs: the apps
presented under the image of a well-known public entity which does not
have a mobile app yet.

(2) We presented an algorithm which is able to successfully detect and prevent
the above problematic situation. We provide IMAD, a prototype which is
easy to exploit and to integrate with existing MMPs.

(3) We evaluated IMAD with more than 5,000 apps, covering all enterprise
categories (geographical location, activity, etc.). The evaluation results
show that IMAD can protect both big, small and medium-sized companies
from such attacks. In addition, our system is able to validate all apps
deployed within a day on Google Play or Apple App Store for a minimal
cost (about $1,755).

(4) We compared IMAD with existing solutions (namely Androguard [17]
and FsQuadra [99]) which confirmed that the studied issue cannot be
addressed using current approaches. We showed that IMAD is also able
to detect illegitimate situations handled by existing solutions.

The rest of this chapter is organized as follows. A review of the related
work is presented in Section 4.7. Section 3.4 defines the concepts used in this

24

chapter. It also presents the motivations. Section 4.5 presents our contributions
while Section 4.6 presents evaluation results. Finally, we present our conclusion
in Section 4.8.

3.3 Related work

Many studies contributed to the issue of detecting illegitimate apps. The
proposed approaches can be classified according to three main criteria:
When: the time when detection is performed. Detection can be performed
statically: an analysis of the app’s installation files. It can also be performed
dynamically when the app is launched. Usually all are realize on MMP, stati-
cally it is done on the MMP servers and dynamically it is done on emulator or
dedicated phones. But nowadays some part of the dynamic analysis are starting
to be deployed on user phones.
How: the employed detection method. We classify these methods into two
groups: those which attempt to detect internal abnormal or suspicious char-
acteristics within the app (e.g., abnormal communications), and those which
attempt to detect fake apps through similarities with legitimate apps (e.g.,
based on images or logos).

These criteria logically lead (according to the place/time/method) to the
following classes of solutions:

• static/internal. Solutions in this class rely on the analysis of app
installation files. An example is described in [29] where they analyse
the control flow in the app code in order to detect malicious behaviours.
Another example is the Android bouncer [67] when looking on electronic
signatures.
• static/similarities. Solutions in this class aim at detecting similarities

between suspicious apps (fake apps) and legitimate apps already published
in the MMP. Such similarities may be detected from document files (text,
images) packed with the app [100] or from its code [51, 98, 33].
• dynamic/internal. In this class, solutions rely on a dynamic analysis,

i.e., they execute the app before effectively publishing it in the MMP. This
execution is a means to observe the internal behaviour of the app when
launched on a device or on an emulator. For instance in [31], they observe
runtime communications in order to detect connections with malicious
sites. Another example is [89] which verifies that the name of the app
(captured from its graphical user interface at runtime) is consistent with
the communication endpoints (URLs) used by the app. Also, several

25

solutions [29, 65, 93] introduce indicators (for instance an image) chosen
by users when a (known) legitimate app is installed. If an app imitates
a legitimate app without presenting the indicator (in its GUI), the user
knows the app is illegitimate.
• dynamic/similarities. In this class, solutions are looking for similarities
with existing apps in the MMP to detect fake apps, but dynamically
before publishing. In [75], they analyse at runtime apps’ GUI (inside the
MMP) in order to classify apps and detect similarities.

All these contributions aim at detecting illegitimate apps before their
publication. The detection may be performed statically by analysing the
installation files of the app or dynamically by observing the app’s behaviour.
As presented in table 3.1 The detection either identifies a malicious behaviour
within the app or identifies a similarity with a legitimate app. Detecting
malicious behaviours within apps is limited because it is difficult to cover all
attacks (and avoid false negatives). Similarity detection appears to be more
promising.

Our solution falls into this latter category. However, it does not rely on
the detection of pre-identified characteristics (e.g., from the GUI) from already
published apps, which would limit its coverage. It detects all attacks, including
those targeting apps which do not yet have a mobile version published in an
MMP.

How Similarities Internal IMAD
Independent of store data 3 7 3

Independent of store applications 7 3 3

Independent of the location in the world 7 7 3

Independent of the attack mecanism 3 7 3

Table 3.1: Drawbacks and advantages of related work solutions compared to
IMAD

26

3.4 Definitions and Motivations

3.4.1 Definitions

Trusted entity. We define a trusted entity as an enterprise or an institu-
tion which is recognised by a government authority (generally through a unique
identification number). In this thesis, we are interested in apps which belong to
trusted entities, not to private holders. Let’s call T the set of existing trusted
entities.

Graphic identity (noted GI). The GI of a trusted entity T (respectively
an app A) is the set of visual elements which refer to T (respectively A) without
confusion. Most of the time, the GI of an app is included within the GI of the
trusted entity which possesses the app. The GI of a trusted entity may be its
name, logo or any image which refers to one of its services.

Trusted developer and the attacker. Let us consider an app A,
implemented by a developer D. The latter is said to be a trusted developer if
the trusted entity T which is behind the GI of A recognises D, otherwise D is
considered to be an attacker. Knowing that in some cases (which are extremely
rare because entities generally try to define GI so that they are unique) several
entities may have similar GI, we consider that the trusted entity behind a GI is
the most popular one.

Legitimate and illegitimate app (respectively noted L and I). An
app is said to be legitimate if it has been published by a trusted developer,
otherwise the app is illegitimate. Notice that the illegitimacy of an app is
independent from the developer intent. It means that an illegitimate app is not
necessarily dangerous from the user point of view. However, it is from the point of
view of the trusted entity because it is steering its users. For instance the Orange
Cache Cleaner app (a small tool used for clearing application cached files) could
be considered illegitimate because its GI refers to the famous enterprise Orange
(the French telecommunication company), especially its service Orange Cash.
From this definition, one can easily understand why legitimate/illegitimate app
detection systems mainly rely on GI analysis.

Malware and Safe app (respectively noted M and S). An app is
said to be a malware if it does actions without the initial approbation of the
user, otherwise the app is said to be safe. Subsequently, malware detection

27

Figure 3.1: Synthetic app submission workflow, from the security check point
for view

systems mainly study the behaviour of the app.

3.4.2 Research scope

According to the above definitions, apps can be classified into four cate-
gories3: L ∩ S, L ∩M , I ∩ S, and I ∩M . Except the former category, all the
others consist of what we call bad apps (towards the user or a trusted entity).
MMP operators try to avoid the publication of bad apps on their platforms.
Therefore, before being published, each submitted app is subject to several
security checks that can be synthesized in two steps (see Fig. 3.1): GI analysis
(for detecting illegitimate apps) and behaviour checking (for detecting malware).
Apps which fail one of these controls are kept within a dedicated storage for
further studies (e.g. for improving the detection systems). An app is published
only if it satisfies all the security checks. In this chapter, we only focus on
the detection of illegitimate apps, which are the basis of phishing attacks [31].
Thus, malware detection is out of scope for this chapter. The next section
summarizes the current state of the research in this domain in order to highlight
our specific contribution. For illustration, we consider Android apps, although
our contribution can be applied to other app types.

3.4.3 Problematic

Let us note A the set of downloadable/published apps in the MMP. Let
us note Apub an app under the submission process. Existing illegitimate app
detection solutions can be organized into three classes:

(1) source code analysis [29, 98]: they check if there is an app in A whose
3For instance, L ∩ S means the intersection of Legitimate and Safe apps.

28

Figure 3.2: Example of attack

implementation structure (especially its graphical user interface) is similar
to the one of Apub.

(2) image analysis [100, 33]: they check if there is an app in A which uses the
similar images as Apub.

(3) and app name analysis [65]: they check if there is an app in A whose
name is similar to Apub.

As we can see, all these solutions only focus on detecting if Apub is similar to
an existing app. More formally, they answer the following question: (Q1)
∃A ∈ A (within the MMP), such that Apub’s GI is close to A’s GI?

We claim that answering (Q1) does not allow to cover all illegitimate
apps at submission time. Consider the situation where the attacker implements
Apub as a service of a trusted entity which has not yet published a mobile
version of its service. The fraudulent nature of Apub will not be detected by
current solutions. Fig. 3.2.a presents the list of apps suggested by Google
play when the user is looking for an IEEE app. This suggestion list could
have been the one presented in Fig. 3.2.b, which includes two illegitimate apps:
EasyChair (faking the legitimate conference management system EasyChair [42])
and ACM EuroSys (faking the EuroSys conference management system). This

29

situation may occur in current MMPs because the legitimate organization
behind EasyChair for example has not yet published a mobile app version
of the system4. For example, the attacker could obtain the username and
the password of the conference reviewers. Therefore, their reviews could be
the subject to Man-in-the-Middle attacks. Another illegitimate situation we
experimented concerns the french telecommunication company Orange. The
latter has announced the arrival of a mobile money app called Orange Bank [68]
this year. Our team has developed and successfully published on a popular
MMP5 an app which purports to be Orange Bank. This situation could have
been very problematic for the legitimate company and its clients in the case of
a real attacker. Notice that we have unpublished the app after one month so as
to avoid exposure to legal proceedings

Considering the large success of smartphones combined with the trend
of converting computer applications to mobile apps, this problem is crucial.
Therefore, illegitimate app detection systems should not limit their checks to
the GIs within the MMP. More formally, instead of answering (Q1) as current
researchers do, we answer the following question: (Q2) ∃T ∈ T (worldwide),
such that Apub’s GI is close to T’s GI? This is a very difficult problem.
This work presents (for the first time) a solution to this issue.

3.5 IMAD: Illegitimate Mobile App Detector

3.5.1 Overall System Design

This chapter presents IMAD, a solution for detecting illegitimate apps
at publication time. Its works as follows, summarized in Fig. 3.3. Once the
app is uploaded, IMAD builds its GI, noted GI_Apub. Then it performs a set
of web searches (on the internet), analyzed with standard machine learning
techniques using each element in GI_Apub in order to find the trusted entity
behind GI_Apub. This is the core of our solution. We assume that any trusted
entity can be found on the web6. If the result of the previous step reveals the
presence of at least one trusted entity (noted T), a validation email is sent to it
and a countdown is armed. The app is considered to be illegitimate if IMAD

4Notice that it totally makes sense to have the mobile version of these apps. It would be
useful for conference organizers.

5The name of the MMP is not revealed in order to avoid negative publicity.
6One may ask why not just getting the contact of T from the submitter in order to

accelerate searches. This would not be secure because our system does not trust the developer,
who could be an attacker.

30

Figure 3.3: IMAD general functioning

does not receive a validation email before the end of the countdown. Notice
that if the developer is legitimate, thus the trusted entity will waiting for the
validation email sent by IMAD.

IMAD can be deployed in two manners: directly within a specific MMP
or deployed as an independent service (IMAD as a Service or IMADaaS). We
consider this latter case because it is the most generic one. Therefore, once an
MMP is registered as an IMADaaS customer, it can automatically forward all
received apk (Android Package Kit - we mainly experimented with Android
apps) to IMADaaS for checking. Upon receiving the checking result, the MMP
can apply its internal checking system (see Fig. 3.1).

The implementation of IMAD raises several challenges. The most im-
portant among them are: (1) Trusted entity determination: This challenge
complements the challenges associated with the fight against mobile malware
that we listed in the background section of this thesis. The reason is that in
addition to the mobile application ecosystem, we are also interested in public
entities that may be web services or companies that have built up a reputa-
tion. So how to cover all trusted entities which exist throughout the
world? How to obtain their GI, knowing that there is no database
which includes them? (2) GI comparison: This challenge is related to the
accuracy of our approach. How to identify, with as less errors as possible,
the proximity between GIs? How to minimize both the false positive

31

and false negative rates? (3) Scalability: This challenge is related to the
deployability of our approach. the time, the amount of resources as well
as the cost required for exploiting IMAD should be acceptable. The next
sections details each IMAD’s component while tackling the above challenges.
To facilitate reading, difficult concepts are introduced (when needed) and fol-
lowed by illustrations. The latter are based on the illegitimate EasyChair app
presented in the previous section.

3.5.2 Graphic identity (GI) construction

IMAD considers the following elements as part of GI_Apub: the name of
the app (noted appName) and its logo. These elements are chosen because they
are those which mainly influence the user’s decision in the process of associating
an app with a trusted entity. Concerning the name, we consider two versions:
the one given by the developer (called appName v1 in Fig. 3.3), and the other
overlaid onto the logo (called appName v2 in Fig. 3.3). This second version is
important because sometimes the attacker can provide a bizarre name, knowing
that the relevant one is well visible on the logo. The extraction of all these
elements is straightforward. We use apktool [35] to extract both appName v1
and the logo from the apk. Then we7 use tesseract-ocr [74], an optical character
reader system (OCR in Fig. 3.3), to extract appName v2. Applied to our
illustrative example, appName v1 could be "BXdFcGKfp1" while appName v2
is "EC EasyChair" (refer to the logo in Fig. 3.2.b).

3.5.3 Trusted entity search

After the construction of the submitted app’s GI (noted GI_Apub), IMAD
has to find the trusted entity (if exists) which is behind the name or the logo of
the app. Our basic idea is to rely on the web (especially the Google custom
search engine) in order to consider all trusted entities. In fact, we assume that
attackers only target trusted entities which are known by a significant number
of persons, and we are betting that such entities are indexed by Google. Each
element of GI_Apub is used as a search criteria, all searches being performed in
parallel. Therefore, we distinguish two search types:

• text search: performed on appName v1 and appName v2, see Section 3.5.4
to Section 3.5.9.
• image search: performed on the logo, see Section 3.5.10. This step exploits

almost the same algorithms as the text search.
7"we" is used to designate IMAD

32

Figure 3.4: The main steps of our solution

3.5.4 Text Search (based on appName)

The main difficulty is to filter from the search results all pages which are
not directly related to the official website of the trusted entity behind appName.
To this end, we use a five-step algorithm, summarized in Fig. 3.4:

• (1) collection of web pages which relate to appName;
• (2) organization of web pages into clusters according to the topic they

deal with;
• (3) elimination of clusters whose topic does not relate to a trusted entity,

the rest are merged;
• (4) elimination of pages which are not directly related to appName (non

official pages, youtube pages, press articles, etc.);
• (5) extraction of the contact (email) of the trusted entity.

3.5.5 Web page collection

We rely on the Google Custom Search framework [49] to perform this
task. Google’s APIs can be used for programming custom Google searches. The
result of a search is a list of items which represent web pages. Each returned
item is composed (among others) of a title, a brief description of the web page,
and a link to its HTML content. In the case of IMAD, we have experimentally
seen that the first 20 items are sufficient (see the evaluation section). From
each item, IMAD builds what we call a document (noted doc) by concatenating
the name, the description and the HTML content. Each document then goes

33

Corpus built from appName v1="BXdFcGKfp1" search results
No document !

Corpus built from appName v2="EC EasyChair" search results
doc1 http : // e a s y c h a i r . org /
doc2 https : // en . w ik iped ia . org / wik i / EasyChair
doc3 http : // voronkov . com/ e a s y c h a i r . c g i
doc4 http : //www. magisdes ign . com/ f r / e l enco_prodot t i / easy−f ami ly / easy−c h a i r /
doc5 http : //www. ikea . com/gb/en/ products / so fa s−armchairs / armchairs /nolmyra−↘

easy−cha i r−birch−veneer−grey−art −10233532/
doc6 https : //headgum . com/the−easy−c h a i r

Figure 3.5: Illustration of the Web page collection step

through few changes (such as conversion to lower-case, elimination of HTML
tags and stop words, etc.) in order to facilitate the next steps. The obtained
set of documents is called the corpus. Notice that documents which contain
very few information (such as 404 pages) are removed from the corpus. Fig. 3.5
presents the corpus built from our illustrative example.

3.5.6 Clustering

Intuitively, clustering consists in gathering documents from the corpus
which nearly have the same group of words (the application of this step to our
illustrative example is presented in Fig. 3.6). To this end, we used the k-means
clustering algorithm. K-means works on vectors while we deal with a corpus.
Several studies have investigated the issue of corpus vectorization. IMAD uses
Vector Space Model [54], a widely used solution.

Cluster1

doc1 http : // e a s y c h a i r . org /
doc2 https : // en . w ik iped ia . org / wik i / EasyChair
doc3 http : // voronkov . com/ e a s y c h a i r . c g i

Cluster2

doc4 http : //www. magisdes ign . com/ f r / e l enco_prodot t i / easy−f ami ly / easy−c h a i r /
doc5 http : //www. ikea . com/gb/en/ products / so fa s−armchairs / armchairs /nolmyra−↘

easy−cha i r−birch−veneer−grey−art −10233532/

Cluster3

doc6 https : //headgum . com/the−easy−c h a i r

Figure 3.6: Illustration of the clustering step: we present three clusters built
from the corpus presented in Fig. 3.5 bottom

34

A dictionary. This solution is based on a dictionary (noted D =
{w1, .., wn}) which includes the words from the corpus. Naively, we could
use all the words that appear at least once in the whole corpus. This would
result in a very large dictionary which could impact the execution of the k-means
algorithm. In IMAD, we only consider words that appear at least once in all
document titles and descriptions. The HTML content, which is the largest part
of a document is ignored. This solution is acceptable because the relevant words
of a web page are either in its title or its description.

Vectorization. The basic idea is to transform each document docj

(1 ≤ j ≤ m, m is the number of documents in the corpus) into a n-sized vector
(noted vec_docj), n be the size of the dictionary. The ith coefficient of vec_docj

is also called the coefficient of wi in docj. It is noted Coefi,j and it evaluates
the importance of the word for characterizing the document.

Coefi,j is computed using the TF-IDF (Term Frequency-Inverse Document
Frequency) standard, as follows:

Coefi,j = tfi,j × idfi (3.1)

where tfi,j is the occurrence frequency of wi in docj , and idfi = log(m
mi

), with mi

be the number of documents containing at least once wi. Roughly, the higher
the occurrence frequency of the word in the document, the higher its coefficient.
However, the word is penalized in regard to other words if it appears in most
of the documents, as it would not be relevant to characterize a specific document.

K setting. K-means requires the number of clusters (k) as an input
parameter. [28] proposes a way to calculate k in the context of corpus clustering.
It computes k as follows:

k = dm× n
t
e (3.2)

Where t is the number of non-zero coefficients in the TF-IDF matrix (the stack
of all vec_docj).
K-means initialization. K-means also requires the initial position of the
center of the clusters as an input parameter. A wrong initialization could lead
to a wrong result. We use k-means++ [38] to handle this issue. K-means++ is
able to choose a satisfying value (not necessarily the optimal one) for the initial
center.

35

3.5.7 Irrelevant cluster elimination

The goal of this step is to discard clusters whose topic does not refer to a
trusted entity (e.g. the third cluster in our illustrative example). To this end,
we implement the following idea. Each cluster’s topic is determined and used to
query an accessible database of trusted entities, allowing a score to be assigned
to the topic, indicating to what extend it is related to a trusted entity. Then,
only clusters whose score exceeds a threshold (determined experimentally) are
kept. The challenge here is threefold: cluster’s topic determination, finding an
accessible database of trusted entities, and determination of an accurate scoring
function (noted S).

Topic determination. Given a cluster C, we consider its topic being the
list of words which summarizes the main idea developed by all its documents.
We call these words important words (noted CIW). CIW is computed using the
Vector Space Modeling of the cluster. This time, however, the TF standard
(Term Frequency) is used instead of TF-IDF as previously. The TF standard is
suitable here because we are looking for important words.

Accessible database of trusted entities. The subtle way we adopt is
to rely on the two biggest semantic databases that exist: Wikipedia-dbPedia [40]
and the World Intellectual Property Organization (WIPO) [41]. We implement a
set of tools for accessing the latter. In this thesis we focus on Wikipedia-dbPedia
for illustration. Let us say a few words about wikipedia-dbPedia, necessary for
understanding our solution. Wikipedia is a participatory-controlled semantic
database composed of web pages, called wiki concepts. DbPedia is a structured
version of wikipedia in which each wiki concept is characterized using several
criteria. Among these criteria, the category allows to know if a wiki concept
refers to a trusted entity or not. For instance, the category values "Company",
"Organization" or "Business" refer to a trusted entity. A wiki concept is also
associated to an abstract which quickly describes it.

Cluster scoring. Given a cluster C, its important words CIW are used
to compute its score, as follows:

S(C) = max
wi∈CIW

(S1(wi)) (3.3)

where S1(wi) is the score of wi, computed in this way:

S1(wi) = max
wck∈W Ci

(S2(wck)) (3.4)

where WCi is the set of wiki concepts related to wi. WCi is obtained by

36

enforcing a Google search only on wikipedia pages ("wi site:en.wikipedia.org").
The first 10 resulting items are used for extracting WCi’s elements.

Concerning S2(wck), it depends on both wck itself and the studied cluster
C because two constraints should be respected: (i) If wck refers to a trusted
entity (whatever it is), S2(wck) has to be high; (ii) If wck is unrelated to C,
S2(wck) has to be low. This second constraint allows to minimize the false
positive rate. For instance, if the topic of a cluster deals with "Orange" (the
fruit), the wiki concept "Orange SA" (which is an enterprise) must have a low
score. In summary, we compute S2(wck) as follows:

S2(wck) = δ(wck) + σ(wck) (3.5)

with δ(wck) be the trusted entity closeness coefficient and σ(wck) the cluster
closeness coefficient. To compute δ(wck), we build a textbook (called the
Rescued Category List, RCL) consisting of dbPedia category words which
characterize a trusted entity ("Company", "Organization", "Business", etc.) so
that: δ(wck) = 1 if the category of wck appears in the textbook; δ(wck) = 0
otherwise.

Note that in our textbook, only categories referring to companies were
considered. We focussed on companies since they are the main targets of
attackers. However the textbook can be easily enriched with the lexical fields of
many other types of organization such as universities and governments agencies.

About σ(wck), we use the cosine similarity [80], which allows to estimate
the distance between two texts. In our case, these texts are: the abstract of the
wiki concept (noted abs_wck), compared with each document in the cluster.
Therefore,

σ(wck) =
∑mC

i=1 cosine(abs_wck, doci)
mC

.

The application of this step to the illustrative example is as follows. Fig. 3.7
presents the important words of the illustrative clusters. We can see that only
the first two clusters are related to trusted entities: EasyChair (the conference
management system) and Ikea (furnishing trader).

3.5.8 Irrelevant document elimination

At this stage, all remaining clusters are merged in order to form a unique
cluster. The purpose of this step is to focus only on the documents which

37

Cluster1’s important words
easycha i r , con fe rence , subsc r ibe , s ign , management

Cluster2’s important words
ikea , nolmyra , cha i r , b irch , veneer

Cluster3’s important words
cha i r , easy , media , c a r d i f f , supply

Figure 3.7: The important words of the clusters presented in Fig. 3.6

directly belong to the trusted entity behind appName. To this end, we discard
all documents whose domain name is not phonetically close to at least one
word of appName. For instance, the document doc2 in the illustrative example
does not belong to EasyChair, thus it should be discarded. We choose the
domain name because most of the time the company name is used as the basis
for building its domain name. We combine two methods to achieve this step:
a metaphone algorithm [21] (it assigns to a given string a key indicating its
pronunciation) and a string distance algorithm [97] (it compares two strings).
Our idea is to first compute the metaphone key of the domain name (noted
MKdm) and each appName’s word wi (noted MKwi

). Thereby, we compute
the string distance between MKdm and each MKwi

(noted sdi). Further, it is
normalized so that sdi = 0 means the two keys match perfectly. Therefore, if ∃ i
so that sdi is smaller than a configured threshold (we experimentally found that
0.3 is a good value, see the evaluation section), the domain name’s document is
kept. Fig. 3.8 presents the retained documents in the case of the illustrative
example.

If the previous step provides no trusted entity, the discarded documents
are given a second chance. Indeed, it is possible that an enterprise sells several
products whose names are phonetically different from the name of the enterprise
(thus its domain name). For instance, the URL of the official website of the
famous video game "Diablo 3" is "http://eu.battle.net/d3". These cases are rare
but exists. They include a category of enterprises that we call catalogue enter-
prises (they offer a catalogue of products). The purpose of the second chance
step is to recover them. To this end, we exploit again dbPedia’s wiki concept
categories (see Section 3.5.7) as follows. We build a textbook (called the Rescued
Category List, RCL) consisting of dbPedia categories ("DRM_for_Windows",
"DRM_for_OS_X", etc.) which characterize a catalogue entity. Therefore, all
domain names whose wiki concept category is part of the RCL are kept. The
evaluation results show that this strategy is fairly effective.

38

doc1 http : // e a s y c h a i r . org /

Figure 3.8: The remaining documents after eliminating those which are not
related to EasyChair

3.5.9 Trusted entity’s name and contact extraction

At this stage, the remaining documents (if exist) belong to the trusted
entity which is behind appName. The objective of this step is to determine the
contacts of this entity. To this end, we exploit a technique similar to the one
described by Google [50]. In fact, websites are usually very clear about who
created the content. There are many reasons for this: copyrighted material
protection, businesses want users to know who they are, etc. Therefore, most
websites have a contact page ("contact us", "about us" or just "about"), copyright
information, or include HTML metadata which provide contact information. In
nearly 100% of the cases, the company email address is successfully obtained
(see the evaluation section). Then, a validation email is sent to the trusted
entity and a counter-down is armed. If no response email is received, we suppose
the app is illegitimate. The response email should imperatively respect a given
format so that it can be parsed by our framework. Notice that if the app is
legitimate, the trusted entity will be waiting for the email and will provide
a response. For big companies which are subject to several faking, thus will
receive a lot of emails, one may think that they will be lost in a myriad of emails.
This issue can be easily handled with an email filter. We provide IMAD with
such a component which can be easily integrated with popular mail readers.

To circumvent such a validation scheme, an attacker would have to create a
fake web site and to exploit search engine optimization to augment the visibility
of the web site, so that it becomes more visible than to web site of the company
it attacks. Such an attack would be so visible that it would be easily observed
and detected by the attacked company (its image is being stolen) which could
take counter-measures. Generally, attackers prefer not to behave this way and
to remain hidden.

3.5.10 Image Search (based on the logo)

IMAD also leverages the logo of the app (noted appLogo) for determining
its trusted entity. To this end, we rely on two observations. (1) A logo is strongly
linked with a unique app or trusted entity. It is precisely its main purpose. For
instance, uniquely refers to Facebook, the famous social network. (2) The

39

logo of an app is strongly linked with the trusted entity which possesses it. For
instance, is the logo of both the Facebook corporation and its social network
app. We again use Google Custom Search Engine, more precisely its reverse
image search system, for achieving this task. By performing a Google search
with appLogo, we are almost sure to find the trusted entity among the first
items. An item here can be of two types: images which are similar to the logo
and websites which include the logo. We only consider the second type. Now,
the main question is: how to select from the resulting websites the real owner
of appLogo? To answer this question we implement a six-step algorithm.
Step 1: Construct the corpus, in the same way as presented in Section 3.5.5.
Step 2: Determine the topic of each document doci of the corpus, as presented
in Section 3.5.6 (Topic determination).
Step 3: Eliminate all documents whose topic is not referring to a trusted entity,
as presented in Section 3.5.7 (Cluster scoring).
Step 4: Let us note Ei the owner of doci. Search "the Ei logo" on the web.
According to the Google ranking system, it is very likely that the logo of Ei is
among the first x returned images. We empirically determined that x = 30 is
fairly sufficient.
Step 5: Compare appLogo with each obtained image, using [34]. The latter
takes into account several image modifications (rotation, scaling, etc.). The
algorithm assigns a rank ri to every matched image appLogo.
Step 6: Choose Ei, so that ri is the smallest rank. Therefore, Ei is the trusted
entity which owns appLogo. Its document doci is used for extracting its contact,
as presented in Section 3.5.9.

3.6 Evaluations

This section presents the evaluation results. We evaluated IMAD from
the following perspectives:

• the accuracy: is IMAD able to accurately detect the legitimate entity
behind an app’s GI? We call accuracy, the ratio between the number of
good results provided by IMAD and the number of applications tested
during an experiment. Generally speaking, we have a good result if ever:
Either the application to be tested imitates a trusted entity and this entity
has been discovered by IMAD, or it does not imitate any known trusted
entity and IMAD does not detect any entity.
• the scalability: how much resources IMAD consumes?
• the cost: how much money is needed to exploit IMAD?

40

3.6.1 Experimental environment

The experiments have been realized on two commodity machines, each
composed of 4 CPUs (Intel Core i5-3337U, 1.80 GHz), 4 GB memory, an
Intel Corporation 3rd Gen Core processor Graphics Controller, and a Gigabit
Ethernet card RTL8111/8168/8411 PCI Express. One machine hosts IMAD
while the other machine runs a mail server and our mail filter, emulating what
should happen in an enterprise. We built a data set playing the role of apps
which are in the publication process. This data set is composed of 5,000 apps,
organized as follows:

• D1: includes safe apps gathered from Androzoo [16] and Contagio [36],
two popular data sets. These apps are collected from several sources,
including Google Play.
• D2: includes illegitimate apps from Androzoo and Contagio. The latter

analyse all apps they collected using different AntiVirus products. Every
app in D2 has its safe version in D1

8.
• D3: includes apps we developed for the purpose of this chapter (e.g.

Orange Bank) in order to cover all company types (see bellow)9.

These apps have been selected so that all company types are represented,
according to the following criteria:

• the size: big enterprises (BE), and small and medium-sized enterprises
(SME).
• the location: developed countries (DC), and emerging countries (EC).
• the activity: catalogue enterprises which are generally gaming companies
(GC), and non catalogue enterprises (NGC).
• the name: polysemous (PN) and non polysemous (NPN).

For instance, "Bank of America" is a big enterprise (BE) located in a developed
country (DC); it is not a gaming company (NGC) and its name contains
polysemous words (NPN). It is said to be of type BE_DC_NGC_PN. Types
are equally represented in the data set.

8It hasn’t always been the case, but that shouldn’t change the results, since static analysis
systems are mainly based on checking if analysed app signatures have been reported as
malware.

9As we were unable to develop many apps, we placed only modified names and images of
tested companies as IMAD inputs.

41

3.6.2 Accuracy

The accuracy of our system depends on the accuracy of each step it is
composed of, namely: (S1) GI construction, (S2) trusted entity search, and (S3)
contact extraction. (S2), as well as (S3), has three versions in respect with the
three elements which compose the GI (appName v1, appName v2, and appLogo).
Therefore, (Sij) corresponds to the jth version of (Si). The evaluation protocol
we put in place is as follows. We manually inspected each app in order to report
the expected output of each step. Thus, the actual outputs obtained during the
execution of IMAD are compared with the expected values. The accuracy of
(Si) is only accounted if (Si−1) was accurate. We also evaluated the accuracy of
the entire system. The latter is accurate when the output of at least one path
(among S1 → S21 → S31, S1 → S22 → S32, and S1 → S23 → S33) corresponds
to what we manually found10.

The evaluation includes two experiment types, differing from each other
by the considered data set:

• The first experiment type allows to evaluate how IMAD behaves facing
safe apps (GI elements have been built without having a malicious idea
in mind). We relied on D1 and D3.
• The second experiment type allows to evaluate how IMAD behaves facing

illegitimate apps. We relied on D2.

The first experiment type. Fig. 3.9 presents the evaluation results,
interpreted as follows. (1) The 100% accuracy rate observed in S1 and S3

validates the methodologies we use for extracting GI elements from the apk11

and contacts from web pages. (2) S2 is the most critical step. (3) Both S21

(based on appName v1) and S23 (based on appLogo) succeed to identify big
companies. This is explained by the fact that such companies are well indexed by
Google, both their name and logo are popular. (4) The accuracy of S23 extends
to other company types. This is explained by the fact that the logo is generally
built in such a way as to return to a unique company. (5) S21 sometimes fails
to identify companies which belong to the SME category because they are not
so famous as big companies. However, we observed that EC-SME are well
identified in comparison with DC-SME. Indeed, it is more difficult to identify

10We send a validation email to the 3 identified trusted entities and consider the app
submission is validated if one of these 3 contacts responds. Therefore, we consider that the
approach is accurate if one of the 3 used methods is successful.

11Finally, extraction of salient objects was only done on a sample of logos and not on the
graphical interfaces, it was enough to do so.

42

DC-BE-PN DC-BE-NPN DC-SME-PN DC-SME-NPN EC-BE-PN
0

50

100 10
0

10
0

10
0

10
0

10
0

10
0

98

80 75

10
0

53 50 47 50 45

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

A
cc

ur
ac

y
ra

te
(%

)

(S1) (S21) (S22) (S23) (S31) (S32) (S32) IMAD

EC-BE-NPN EC-SME-PN EC-SME-NPN GC-PN GC-NPN
0

50

100 10
0

10
0

10
0

10
0

10
0

99

85 89 95 10
0

27 30

15

5 8

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

A
cc

ur
ac

y
ra

te
(%

)

(S1) (S21) (S22) (S23) (S31) (S32) (S32) IMAD

Figure 3.9: First experiment type: evaluation of each IMAD’s step with safe
apps

a small company in the crowded market of a developed country. This is not
the case for an EC-SME which has fewer competitors, thus a better Google
index ranking. (6) We also observed that the accuracy of S21 is low on apps
which belong to countries using a non-Latin alphabet (e.g. Arabic, Mandarin).
This situation does not concern big companies of these countries because they
most of the time provide an English version of their web site. To validate this
observation, we integrate to IMAD a Mandarin string distance algorithm [64].
Then we repeated the previous experiments. We observed the improvement
of S21 which minimal accuracy rate jumps from about 75% to 93% 12. The
integration of other alphabets to IMAD would nullify the remaining error rate.
This is subject of future work. (7) The accuracy of S22 (based on appName
v2) is low because the text extracted from the logo is sometimes completely
different from the company name. (8) Considering the fact that at least one
IMAD’s path is always accurate (the appLogo path), IMAD is accurate too.

The second experiment type. We also evaluated IMAD with illegit-
imate apps. Fig. 3.10 presents the evaluation results. We only focus on the
second step. The following observations can be made from these results. (1)
S21 leads to the lowest accuracy rate, near zero. This is explained by the fact
that attackers generally use bizarre names [44], knowing that the right name
is overlaid onto the logo. (2) This is why S22 and S23 provide better accuracy

12This is an estimation based on the result obtained after a manual test according to the
IMAD methodology on company names in foreign languages.

43

DC-B
E-P

N

DC-B
E-N

PN

DC-SM
E-P

N

DC-SM
E-N

PN

EC-B
E-P

N

EC-B
E-N

PN

EC-SM
E-P

N

EC-SM
E-N

PN

GC-P
N

GC-N
PN

0

50

100

2 5 0 3

12 10 8 15

0 0

78 80

68

79

60

80 75 79

50

58

68 75

60

80

90 87 91 88

48

40

78 80

68

80

90 87 91 88

50

58

A
cc

ur
ac

y
ra

te
(%

)

(S21) (S22) (S23) IMAD

Figure 3.10: Second experiment type: evaluation with illegitimate apps from
D2

rates (more than 80%). (3) Therefore, the average accuracy rate of the entire
system is about 80%, which is quite high. This is not so high as with safe apps
because some attackers use sophisticated mechanisms for building the GI. For
instance, it can be built at runtime by downloading a remote bitmap, making
offline solutions inefficient. To handle such cases, we improved IMAD as follows.
Optimization: screen-shots analysis. We improved the GI construction
step by extracting salient objects (those on which the human visual system
pays more attention) from the first screen of the app. To do so, IMAD runs
the app in an emulator and captures the first screen-shot, which has been
proven to be enough for identifying an app [90, 63]. Having the screen-shot,
we use the algorithm proposed by [34] to extract salient objects. Since not all
salient objects are important (e.g. object which represents a text field), we
discard all objects representing components which are commonly used in forms
(textfield, list, checkbox, etc.). The remaining objects are used for performing
web searches. The evaluation results of this optimization reveal a negligible
improvement, less than 3%13. This is due to the low accuracy of the salient
object extraction algorithm14. Notice that salient object extraction is a recent
and hot topic in the multimedia domain. The evaluation results presented in
the next sections rely on IMAD without this optimization.

Comparison with existing solutions

We compared IMAD with two reference illegitimate app detection systems
which cover all the existing approaches (Section 3.4.3): source code analysis,

13Estimation obtained after a quick implementation and application of the salient object
extraction algorithm on some apps in the dataset.

14The algorithm we used is the most recent one at the time of writing the paper retated to
this chapter.

44

A
sa

f
e

pu
b

A
il

le
g

pu
b

0

50

100
100

30

100

25

100

81

A
cc

ur
ac

y
ra

te
(%

)

Androguard FSquaDRA IMAD

Figure 3.11: Comparison of IMAD with Androguard and FSquaDRA, two
reference illegitimate app detection systems

image analysis, and app name analysis. The former is provided by Andro-
guard [17] while the two others are provided by FsQuadra [99]. Recall that the
basic idea behind existing solutions consists in comparing the submitted app
with those which already exist within the MMP. To compare IMAD with these
solutions, we adopted the following protocol. We used half of D1 as the initial
content (yet published apps, noted Asafe

pubed) of the MMP. The set of apps playing
the role of submitted apps consists of the other half of D1 (noted Asafe

pub) on
the one hand and all apps in D2 (noted Ailleg

pub) on the other hand. Androguard
and FsQuadra are accurate each time they are able to detect that Asafe

pub does
not mimic an existing app while Ailleg

pub does. Concerning IMAD, it is accurate
when it is able to detect the trusted entity behind the submitted app. Fig. 3.11
presents the evaluation results. We can see that all systems work perfectly on
Asafe

pub apps. Concerning Ailleg
pub apps, Androguard and FSquaDRA provide poor

results. This is explained by the fact that not all Ailleg
pub mimic apps which are

yet in the MMP. IMAD does not suffer from this limitation since its search
space is the web. The reader should refer to the previous section in order to
have more explanations about the reported accuracy rate (81%).

For legitimate apps, we have 100% accuracy, which means that we are
always able to identify the correct entity to contact in order to validate the
submission. If this would not be the case, the submitter could contact the MMP
for its submission to be handled manually (this would happen only for apps
that have no existence at all on the net, which is very rare)15. For illegitimate
apps, the 20% error rate means that (1) for 80% of these apps, we contacted
the (attacked) trusted entity which is therefore informed about the attack and

15IMAD inputs for this evaluation are the same as those used for its detailed evaluation in
the previous section

45

Purpose Value
L1: Selection of documents which con-
tain exploitable information

20

L2: Selection of clusters whose topic
relates to a trusted entity

1

L3: Selection of important words 10
L4: Selection of domain names which
are phonetically close to appName

0.3

Table 3.2: List of the most important parameters used by IMAD

0 20 400
50

100

L1A
cc
ur
ac
y
ra
te

(%
)

0 20 400
50

100

L2A
cc
ur
ac
y
ra
te

(%
)

0 20 400
50

100

L3A
cc
ur
ac
y
ra
te

(%
)

0 0.2 0.4 0.60
50

100

L4A
cc
ur
ac
y
ra
te

(%
)

Figure 3.12: Configuration parameters: estimation of the best value

will not validate the submission, and (2) for 20% of the apps, another (wrong)
entity is contacted and will not answer or will respond a rejection. The only
threat is if an attacker is able to make noise on the web so that it will be more
referenced than the trusted entity he attacks. This is a much difficult task
for the attacker, as companies which make business with apps always have a
communication strategy on the web.

IMAD configuration parameters

Table 3.2 summarizes the list of the most important parameters (noted
Li) that IMAD uses. The last column presents the best value we experimentally
found, as follows. For each parameter we performed several experiments while
increasing its value. The best value is the one from which the accuracy rate of
the system does not improve. These experiments were first performed on a small
data set and then validated on the entire data set. The small dataset is disjoint

46

from the entire dataset which was used for validation. Fig. 3.12 presents the
evaluation results, which justify the values reported in Table 3.2. For instance,
using more than 20 documents (L1) in the text search phase does not ameliorate
the accuracy rate of the system (see the leftmost curve in Fig. 3.12).

Evaluation of IMAD with other search engines

We also evaluated our system with other search engines namely:

• Bing [30] (from Microsoft) for appName searches.
• Tineye [81] for appLogo searches.

appName searches with Bing. The custom and programmable version of
Bing are fairly new. However, the results obtained with this system are very
poor (the accuracy rate is almost nil). Several reasons can explain these results.
(1) Bing’s ranking does not provide relevant documents at the top. (2) Its API
does not allow the specification of the search scope. For instance, it is not
possible to enforce a dbPedia search for determining trusted entities. Therefore,
although the web search returns some results, it is not possible to classify those
which are related to a trusted entity. (3) Small and medium-sized enterprises
are almost never found. For these reasons, Bing is not mature enough to be
used by IMAD.

appLogo searches with Tineye. We have also tested Tineye [81] as the
reverse image search system. We have made the following observations. (1) The
Tineye search latency is too high (up to 10sec) in comparison with Google (up
to 2sec). (2) Tineye does not implement a ranking system. Therefore, the entity
popularity is not taken into account. In order words, the search of a popular
entity’s logo (such as Facebook) will not necessarily return Facebook’s website
at the top of the list. However, this system represents an acceptable alternative
for Google.

3.6.3 Complexity

This section presents an analysis of the complexity of our approach. It is
divided into two parts: local processing and global latency.

47

W
ha

tsA
pp

Sk
yp

e

MPay
OK

0

5

10

15

20

%
C

P
U

(S1) (S2) (S3)

W
ha

tsA
pp

Sk
yp

e

MPay
OK

0

5

10

15

20

%
M

em
or

y

(S1) (S2) (S3)

W
ha

tsA
pp

Sk
yp

e

MPay
OK

0

20

40

60

E
xe

cu
ti

on
ti

m
e

(s
)

(S1) (S2) (S3)

Figure 3.13: Evaluation of the amount of resources consumed by each IMAD’s
step

Local processing

We consider here the computations on data obtained from remote sources
(google and DBpedia). We present separately the complexities of the text search
and image search algorithms.

The text search algorithm mainly depends on the number m of documents
obtained during the first google engine search. It includes the processing of the
collected web pages to build a corpus (Section 3.5.5) whose complexity is O (m),
clustering (Section 3.5.6) based on Kmeans with a complexity tending towards
O (m (k + 1)), with k being the number of obtained topics which is generally
not more than 5. This step is followed by the elimination of unnecessary clusters
(Section 3.5.7) with a complexity O (mnwTN) + 0 (mnNwAM) with n being
the number of words in the dictionary, w the average number of wiki concepts
relating to an important word, T the number of words in the RCL, N the number
of important words, A the number of words in the abstract of a wikiconcept and
M the average number of words per document obtained during the first search.
The step of eliminating useless documents (Section 3.5.8) has a complexity of
O (wT). Finally that of the extraction of the contact (Section 3.5.9) is done in
O (m). All the parameters except m being upper bound, the overall complexity

48

of text search is O (m (k + 1)). Finally, let us note that experimentally we
have determined that a value of m > 20, does not improve the accuracy of the
results.

The image search algorithm consists in the construction of the corpus with
a complexity O (m) and the clustering and the determination of the topic whose
complexity is O (m (k + 1)) + O (mnwTN) + 0 (mnNwAM). The step of
searching for the logo in the selected documents has a complexity of O (m) and
that of comparison of the logos O (xmI) with x the number of logos retained
for each document and I the complexity of the logo comparison algorithm. The
sorting of the selected logos is done in O (m log(m)). All this for a complexity
tending towards O (m (k + 1)) for the same reasons as the complexity of text
search.

The text search and image search evaluations on several applications have
shown that scalability can be taken into account as depicted in Section 3.6.4.

Global latency

The overall latency is dominated by the time taken by each search on
Google search engine and on DBpedia. All monetary costs of these searches are
evaluated in Section 3.6.5.

3.6.4 Scalability

We evaluated the scalability of our system as follows. First, we evaluated
the amount of resources consumed by each step. To this end, we considered
three representative apps, namely: WhatsApp, Skype, and MPayOK (mobile
money). Then we evaluated IMAD facing parallel checks, up to 10 apps at
the same time (Google Play receives about one app every minute [72], thus
checking 10 apps at the same time is enough). Fig. 3.13 and Fig. 3.14 present
the evaluation results of the two experiment types respectively, interpreted as
follows:

• (S1) consumes a non negligible amount of CPU (this is not the case for
other steps), see Fig. 3.13 leftmost. Its memory consumption level depends
on the size of the checked apk (10MB-75MB in our experiments).
• When performing several checks at the same time, the processor is the
most critical resource since it saturates before the main memory, see
Fig. 3.14 left.

49

• (S2) is the step which takes the most time, see the last picture in Fig. 3.13.
This is because several web searches are performed during this step.
• the average time needed to check an apk is about 38s.

1 4 8 10
0

50

100

parallel checks

%
lo

ad

CPU Memory

1 4 8 10
0

50

100

150

parallel checks

E
xe

cu
ti

on
ti

m
e

(s
)

Figure 3.14: Evaluation of IMAD facing parallel app checking: (left) resource
consumption and (right) execution time

These results show that the exploitation of IMAD does not require a
particular hardware specification, even a commodity desktop can do the job.

3.6.5 Cost evaluation

This section evaluates both the cost of deploying IMAD as an independent
service (noted IMADaaS) on a commercial cloud and using Google search engine
(which is not free).
Public cloud utilization cost. We evaluated the cost of hosting IMADaaS
on a public cloud, Microsoft Azure [66] in our experiments. Our experimental
machine (presented in Section 3.6.1) is comparable to the Azure Standard_A3
virtual machine (VM) type. According to [72, 70], Google Play as well as Apple
store receives about 2,000 apps every day (about one per minute). Therefore,
a single Standard_A3 instance would be able to check within one minute the
apks coming from up to five MMPs similar to Google Play and App store. This
results to a bill of about $1571.28 per year.
Web search engine utilisation cost. The number of searches (noted ns)
needed by IMADaaS for checking an apk is given by the following formula:

ns = n+ k ×m+ 2× d+ n× d (3.6)

where n is the number of items in the corpus, k is the number of clusters, m
is the maximum number of important words, d is the number of documents
retained for the second chance step. In the case of our experiments, we found
the following values: n=20, k=3, m=3, and d=4, resulting to ns = 117. We
evaluated the cost of using Google custom search engine. The cost of a search in
the latter is $0.0075, leading to $0.8775 the cost of checking an apk. Therefore,

50

the cost for checking all daily apk from Google Play store or Apple store is
about $1,755.

3.7 Conclusion

This chapter presented IMAD, a security system capable to identify
attackers who deploy malicious mobile applications in the name of well-known
public companies which have not deployed their mobile app yet. The IMAD
strength lies in the following. The attacker may distort the application label
(name, logo) so that it will cheat the detection system (the search engine).
However, the label will be distorted in such a way that it is not able to fool
the user anymore. We evaluated IMAD with up to 5,000 enterprises, covering
all enterprise categories (geographical location, activity, etc.). The evaluation
results showed that IMAD can protect both big, medium and small-sized
companies with an accuracy rate greater that 80%. We also compared IMAD
with two systems (Androguard and FsQuadra). The evaluation results showed
that IMAD does better as these systems for classical attacks while they were
not able to detect the new attack discussed in this chapter. The evaluation
results also showed that our system is able to check all apps deployed within a
day on Google Play or Apple App Store at a minimal cost (about $1,755).

This work opens many perspectives and it is worth mentionning some
of them. First, the success of this approach depends on the ability to extract
the correct email address of the person supposed to validate the application
submission. This ability is difficult to experimentally evaluate and if it frequently
fails, it would lead to a significant rate of app rejection. Alternatives to this
scheme can be investigated. For instance, the submitter could provide an email
address and IMAD would verify that this email address complies with the
company it has identified, e.g. complies with the DNS domain of that company.
One may see a contradiction with footnote 5 in Section 3.1 which argues that
we don’t trust the submitter. However, if he provides us with an email address
and the domain name of this address is that of the trusted entity found by
IMAD, the search for the contact can be bypassed and the system can directly
send him the validation email. For example, if the given submitter address is
submitter0@orange.com, and IMAD finds orange as the trusted entity of the
application with the orange.com domain name, we are certain that the developer
of the application is an employee of Orange and we will directly send him the
validation email. Note that this scheme is secure as long as it is impossible
to spoof a domain name. Another perspective is the integration of additional
alphabets (we only experimented with Latin and Mandarin in this chapter)

51

which would improve the accuracy of IMAD. We can also consider using the
app’s description in our web search for the trusted entity to improve its accuracy.
Finally, we are considering is the integration of a cache system which would
allow to reduce the costs (in terms of time and money) of web searches.

52

Chapter 4

Odile: A scalable tracing system
for non-rooted and on the shelf
Android devices

4.1 Abstract

As Android’s popularity continues to grow among consumers and device
manufacturers, it is also becoming a prime target for malware authors. Although
static app analysis is quite simple to detect malwares and scale very well, it
is inefficient when the app is obfuscated or the malicious code is dynamically
downloaded at runtime. Runtime analysis of app behavior is thus becoming
paramount for users and app market maintainers (e.g., Google Play) to ensure
that running apps do not include some malicious payload.

However, in Runtime analysis, dynamic instrumentation, which is a fun-
damental step to track mobile apps behavior, is very challenging, especially for
off-the-shelf Android devices.

Most of the time it requires either to root/jailbrake devices, or the use of
a modified Android system, preventing its use on any end-user phone. Further,
traditional instrumentation techniques do not scale with the number of the
intercepted calls as it increases the memory footprint of the instrumented app,
ineluctably leading to Out-Of-Memory crash.

We discuss our scalable tracing approach, that we call delegated instru-

mentation. It leverages Android’s instrumentation module and mainly relies
on ART reverse engineering and hacking. We demonstrate the effectiveness of
Odile in tracing various app types (including benign apps and malware) on
Samsung Galaxy A7 2017. In particular, we show how much Odile outperforms
Frida, the state-of-the-art tool in the domain.

4.2 Introduction

Over the last decade we have witnessed a tremendous popularity of Android
smartphones. In particular, Android occupies over 70% of the market share in
December 2020 [11]. This popularity goes hand in hand with the fact that it
becomes the device of primary importance in the user’s daily life, making the
smartphone the receptacle of a huge amount of the user’s private and sensitive
data. Accordingly, it has stirred up envy of hackers who multiply security
threats [105, 84] making the Android environment the prime target for malware
proliferation to exploit and/or steal data without user consent.

Various techniques have emerged to counter the proliferation of Android
malware leveraging either static, dynamic or hybrid analysis. Static analysis [56]
consists in analyzing the application source code without running it. However,
this technique is known for its limitations if applications are obfuscated and/or
if their malicious code is downloaded dynamically at runtime. Alternatively,
dynamic analysis technique [85, 55] comes as a solution to these limitations,
and consists in analyzing the actual behavior of the application during its
execution. However, due to their inherent high resource consumptions, most
dynamic analysis are performed in-lab [86, 8] as opposed to analysis performed
on off-the-shelf devices. Accordingly, an in-lab analysis relies on both device
emulators and input generation tools (to mimicking user behavior) [15, 86]
to automate malware detection, paving the way to anti-analysis techniques.
Malware may either recognize the use of an emulator (e.g. based on GPS info, or
IMEI number) or detect whether their code is executing in a virtual environment
to then hide their malicious payload. Beside, users’ behavior simulated by input
generator tools can not cover all real user utilization scenarios, leading thus
to ignoring several, and potentially malicious, execution paths in evaluated
running applications [86]. Finally, hybrid analysis techniques rely on static
analysis to drive and perform more efficient dynamic analysis by reducing both
time and state-space explosion problem [59, 58], but still do not overcome most
of the overmentionned shortcomings.

In front of the ever growing proliferation of increasingly sophisticated

54

malware leveraging on the latest techniques to hide their malicious payload,
coupled with vulnerabilities of zero-day threats, dynamic analysis is a funda-
mental cornerstone to the defense. In this chapter, we prone that embedding
dynamic analysis directly on off-the-shelf devices of end-users is a very promising
alternative to in-lab analysis [71, 79]. It enables to bypass most of the malware
anti-analysis techniques while stopping threats such as yet unknown malware
variants as soon as possible, i.e as soon as a behavior is detected as suspi-
cious without having identified a particular signature beforehand (i.e. in-labs).
However, such a technique is not without shortcomings by its own, and is not
applicable to end-users as is. Indeed, existing tracing tools, also named profiler,
which are at the heart of dynamic analysis, suffers from one key shortcoming:
they require either (i) a customized Android system [43, 24, 60, 55], which
are not provided with off-the-shelf Android devices, or (ii) a rooted/jailbroken
device [71], which is not easily accessible to end users, and can further lead
most often to guarantee lost. To confirm this matter of fact, we have man-
ually disassembled and reversed engineered the free version of 7 of the most
popular antivirus available from the Google PlayStore (Aegislab, BitDefender,
PandaSecurity, Zoner, Drweb, Malwarebyte, and Gdata) following our aim to
determine their underlying heuristics to detect malware threats. It appears
that they mostly rely on traditional techniques based on signatures. Their
advertised dynamic nature comes from their implementation of the Observer
pattern to observe the external events at the Android system (e.g. permission,
file, network observers...) to detect potential suspicious behavior [79]. However,
no code patterns related to trace in-memory processes have been found in
their disassembled code. It confirms that none of the aforementioned anti-virus
leverage dynamic analysis, limiting drastically their ability to detect zero-day
attacks or yet unknown variants.

These last years, one promising tools named Frida [7] has gained in
popularity due to its ability to instrument dynamically running application on
off-the-shelf Android devices without alterations. However, Frida follows a
client/sever paradigm, and thus requires the target Android device (that hosts
the server part of Frida) to be tethered to a workstation that acts as a client
to collect traces from the Android device, and inherently drastically reducing
its usability by anti-virus editors. Additionally, Frida does not scale. If it has
been designed to successfully hook few functions, it fails to trace more than a
few dozen of functions.

To overcomes the above limitations, we introduce the Odile framework
that promotes a novel code instrumentation approach, named delegated in-

55

strumentation. Odile enables to trace Android applications without altering
the underlying Android system, as opposed to common code instrumentation
techniques, which further require a deep application rewriting[37, 71]. Delegated
instrumentation requires solely a slight modification to target applications when
installed (it is all about one line of code). Odile has 3 key advantages: it is (i)
lightweight, (ii) scalable, and (iii) interoperable. Particularly, it consumes few
resources, it can trace thousands of method calls, and it can run irrespectively
on most phones (x86 and ARM) from the market (i.e. Odile does not rely on
any proprietary software substrate specific to some smartphone manufacturers
to trace seamlessly processes).

In summary, this chapter makes the following contributions:

• We introduce an open source framework Odile that seamlessly trace
Android applications on off-the-shelf Android x86 and ARM devices
without any alterations at the underlying Android system. Particularly,
Odile is smoothly intertwined with the underlying Android runtime ART
to leverage on its internal features to promote what we call a delegated
instrumentation technique that enables to trace any Android application
process flawlessly.
• We have thoroughly evaluated the Odile framework. We have highlighted
its effectiveness and scalability compared to the top-notched solutions
such as Frida. In particular, Odile does not incur any memory and cpu
overheads while it can scale to several thousands of traced method calls.

The rest of the chapter is organized as follows. Section 4.3 presents the
necessary background. Section 4.4 presents the motivations. Section 4.5 presents
the Odile and its implementation. Section 4.6 presents the evaluation results.
Section 4.7 presents the related work. Section 4.8 concludes the chapter and
presents future works.

4.3 Android

This section presents the necessary background to understand our contri-
butions.

Generalities. Android is a mobile-targeted Linux-based operating system (OS)
augmented with a set of system services (essentially written in C and C++)
which run at the user space level. These system services are continuously
evolving over time to accommodate with new functionality requirements. A

56

significant evolution has been the replacement of the historical Dalvik [4]
interpreter. Prior to version 4.4, apps were compiled to a bytecode format
called Dalvik EXecutable (dex), which were directly interpreted by a Dalvik
virtual machine. Since version 4.4, Android RunTime (ART) is used instead.
ART works on Of Ahead Time (oat) files, composed of the ELF shared object
file obtained from a dex file using dextooat compiler, and the dex file. The
latter has been kept in Android because the interpretation logic is still required
for some purposes such as method instrumentation, the service that Odile
leverages.

App startup. The launcher, which is a system service provided as an app,
orchestrates any app startup process. Once the user click on an app icon, the
launcher asks the Activity Manager Service (AMS) to start the principal app’s
activity. To this end, the AMS forks the pre-warmed process Zygote to quickly
setup an execution environment for the app. The app’s oat file is loaded into
the forked process’s address space. Besides, memory addresses of the objects
which allow ART manipulation (e.g., ArtMethod, ArtClass) from the app’s
address space are loaded. Finally, the principal app’s activity is shown to the
user.

Method call and execution. In Android, the execution of any method involves
three central components: the system service which wants to invoke the actual
method (e.g., ASM), the ClassLoader and ART (which was already loaded
within the app’s address space). The ClassLoader is the workflow orchestrator.
For illustration, let us consider the execution of onCreate() from the principal
activity, initiated by the AMS. The ClassLoader first looks for the class which
implements onCreate(). Then it instructs ART to locate onCreate() from
the app’s oat file and to invoke it. The calling path is as follows:
art :: Invoke_ *** _method (MainActivity , oncreate) ->[ART -

representation -of - onCreate]:: Invoke () ->...(some method
arguments preparation , other stuff)...->
art_quick_invoke_stub ...-> Oat_quick_method_code ()}

where Oat_quick_method_code() is the field member of ART-representation-of-onCreate
C++ object, the latter holding the memory address of the invoked method;
art_quick_invoke_stub makes the bridge between ART’s functions and app’s
aot memory address range.

The instrumentation module. ART embeds an instrumentation module
which is used at development time. It is activated and instructed by the

57

debugger (dgb). This module allows to intercept and to trace method calls dur-
ing the execution of an app. It takes as input a set of functions, called listeners,
that will be executed each time a target function is invoked. To this end, the
instrumentation module can use two approaches selected by the debugger. In the
first approach, it replaces Oat_quick_method_code() (which is the entry point
of any method call as seen above) by art_quick_instrumentation_entry().
The latter is a kind of bridge between the execution of the app and the instru-
mentation module. This way, any call to a method that needs to be traced
first invokes listener functions. Without loosing the details, notice that this
approach implements a stack logic to deal with internal calls performed by
the traced methods. The second approach relies on ART’s interpreter. The
latter is activated using two ART’s functions: enableDeoptimization() and
deoptimizeEverything(). This second approach consists in replacing the
entry point of all methods that need to be traced by the bridge function
art_quick_to_interpreter_bridge(). Thus, once inside the interpretation
loop of an app’s method, if the doCall instruction is encountered (which means
a method call), listener functions are invoked before the target method. Our
tracing system Odile leverages this second approach.

4.4 Frida limitations

To the best of our knowledge, Frida [7] is the only existing dynamic binary
instrumentation tool for non-rooted off-the-shelf Android devices. To avoid
phone rooting (to install a custom kernel), Frida leverages the fact that ART is
part of the address space of any Android running app. This leads ART hackable
from the original app code base. Hacking a function consists of dynamically
surrounding or replacing the function by a piece of code which is generally
named hook. We categorize this hacking approach as code instrumentation in
the sense that the hook is inlined at the target function location.

Frida uses a client-server model in which the server component runs on
the smartphone while the client runs on a machine. The two equipments are
linked with a usb cable. Given a target apk that needs to be instrumented,
Frida is used as follows. First, the user modifies the apk in order to make
Frida’s server being the new app entry point. Then she installs and launches
the apk on the smartphone. On startup, Frida’s server opens a socket for
listening instrumentation orders sent by the client side. Frida allows to use
java script for writing the instrumentation orders. The latter consists of two
elements: a set of function signatures that we want to hack, and for each
function the corresponding hook. During the instrumentation campaign, the

58

output generated by the hooks are forwarded to the socket.

Before we decided to build Odile, we first tried to use Frida as a tracing
tool for non-rooted off-the-shelf Android devices. This could have been possible
by asking Frida to hack all functions using the same hook which just prints
each function identity (name and actual parameter values). To this end, we
brought two main improvements to Frida. First, we embedded the client
component into the smartphone. Second, we ported Frida to ARM, thus
covering the vast majority of smartphones. In the rest of the document, the
term Frida refers to this new version that we built.

However, we faced with a conceptual limitation of Frida: code instrumen-
tation does not scale in the context of tracing because that latter activity involves
thousands of function calls. We empirically observed that Frida crashes early,
after about 200 function calls. We found that these crashes are due to the
classical OOM kill event. Section 4.6 presents more evaluation results.

In addition to the scaling issue, code instrumentation is inefficient for
tracing functions whose payloads are dynamically downloaded at runtime. In
fact, these functions are not known at app launch time, thus they cannot be
instrumented. Knowing that several malware use to dynamically download their
malicious payload, a code instrumentation based tracing tool will miss relevant
calls.

The next section presents Odile, a tracing tool for non-rooted off-the-
shelf Android devices that we build based on Frida while adopting a different
instrumentation method.

4.5 Odile

The goal of Odile is to trace/monitor directly on the phone the calls
performed by a target app. We first present the tracing approach behind Odile.
Then we present the general workflow and architecture of Odile. Finally we
detail the implementation of Odile, which targets ARM and x86 devices, thus
covering almost all existing smartphones.

4.5.1 Main idea

Odile combines code instrumentation (for a few number of actions, see
below) with a new approach that we call delegated instrumentation to trace a

59

target function. To this end, Odile leverages two specificities:

• related to the tracing discipline: a tracing system uses a unique hook for
all intercepted calls, contrary to a general purpose code instrumentation
tool such as Frida.
• related to ART architecture: ART natively includes an instrumentation
module which, when activated, can automatically invoke a registered
callback function every time an app function is called.

Odile uses code instrumentation for dynamically hacking ART in order to
enable the instrumentation module and to register on the fly a generic hook to
the latter. The actual tracing of app’s functions is therefore delegated to ART’s
instrumentation module. Although this idea is easy to label, its implementation
is tricky.

4.5.2 Architecture

Odile is intended to be used by behavioral analysis apps (such as anti-
virus), but not directly by phone owners. By default, Odile intercepts all
calls performed by the target app. However, it can be configured to monitor
only a given set of functions which signatures are provided to Odile. Fig. 4.1
presents the general architecture and workflow of Odile. Odile is composed of
four main components namely: the Hacker (for ART and its instrumentation
module hacking), the Tracer (for function call tracing), the TraceCollector (for
collecting traces) and the Orchestrator (which orchestrates the whole workflow).
We use the terms Odile and Orchestrator interchangeably. Let us note Atarget

an app that we want to trace using Odile. Odile intervenes at two moments
during Atarget lifetime: at installation time and at runtime. Odile (which runs
in background along with the behavioral analysis app which uses it) is informed
by the Android system when Atarget is installed (Fig. 4.1 left side). To this end,
Odile registers a BroadcastReceiver1. Upon receiving the installation intent,
Odile dynamically integrates (repackaging phase) into Atarget both the Tracer
and the Hacker payloads. (Note that we include the latter Odile’s resources
(files that can be used at runtime).) Odile uses Soot [20] as the repackaging
tool, although other tools like jadx [9] can also be used.

Odile integrates Tracer into Atarget as a resource while it does code
1Notice that the OS can delete a registered BroadcastReceiver when an app runs in

background, which is the case of Odile. To avoid this situation, Odile relies on an Android
JobIntentService for BroadcastReceiver registration.

60

Figure 4.1: Odile general architecture and workflow. Odile is provided as a
classical app. To trace a given app (noted Atarget), Odile intervenes at two
moments: (up) app installation time and (bottom) runtime.

61

injection for the Hacker in order to court circuit Atarget bootstrap phase. The
purpose of the Hacker is to activate and configure ART’s instrumentation
module (actions 1 and 2 in Fig. 4.1 right side) at Atarget boot time. The
configuration of the instrumentation module is to register the Tracer as the
callback function. This way, when invoked latter by the instrumentation module
(step 3 in Fig. 4.1 right side), the Tracer will compute the relevant informations
related to actual Atarget’s function call at the origin of the invocation. The
informations that we consider are: the function name, its memory address,
its argument types and their actual values.

Except the memory address of the traced function, which is directly
provided to the Tracer by ART’s instrumentation module, the computation
of the other informations are more tricky. We mainly rely on ART reverse
engineering and hacking (step 4 in Fig. 4.1 right side), that we use in a global
strategy as follows. Given an information (function name, argument types or
values) that we want to compute:

(1) (phase 1) we explore ART source code in order to obtain a set of public
functions which will help computing the desired information (e.g., func-
tion name). This phase returns two elements: a set of functions (each
represented by a triplet) noted S =

n⋃
i=1

(fi, obj(fi), arg_list(fi)) and a call
graph of these functions, noted G(f), whose execution outputs the desired
information. G(f) can be seen as the strategy that we use to compute
the desired information; n is the number of distinct functions in the call
graph; fi (1 ≤ i ≤ n) are those functions; obj(fi) is the C++ object which
declares fi, and arg_list(fi) is the list of fi’s arguments. We realize this
phase at Odile design time.

(2) (phase 2) we designed seven strategies (see Strategy 1-7 in the remain-
ing sections) to obtain the memory address of each element in S. In-
deed, these addresses are mandatory for the execution of G (see the
next step). Therefore, the output of this second phase is noted A =
n⋃

i=1
(@fi,@obj(fi),@arg_list(fi)), where @ means memory address. The

strategies that we use can be organized into three categories in respect
with their execution moment: at Odile design time, runtime, or hybrid.

(3) (phase 3) The last phase, performed at Odile runtime by the Tracer,
is the actual execution of G. This is done by hacking ART (step 4 in
Fig. 4.1), see the next section. The output of this phase is the desired
information (e.g., function name).

The next sections detail the implementation of Odile’s components, phases

62

and strategies.

4.5.3 ART’s function hacking

Given an ART’s function, described by the triplet (@f,@obj(fi),@arg_list(fi)),
this section describes how the Hacker invokes2 it at runtime. To avoid rein-
venting the wheel, the Hacker relies on Frida’s hacking stack, summarized
in Fig. 4.2. The hacking stack exposes a high level javascript (js) API called
NativeFunction3. The goal of the latter is to configure calling parameters for
the low level library libffi, which is the actual one that invokes the ART’s
function that we want to invoke/hack. NativeFunction has a dual implemen-
tation: a JS version and a C version. The former is a wrapper for upper level
components such as the Hacker (as shown in Fig. 4.2). It calls the C version
which actually implements the core (e.g., type conversions from the JS world
to the C world). The binding between the two versions is ensured by a JS
engine, which is duktape [6] in Odile. About libffi [10] library, it provides
a portable, high level programming interface to various calling conventions. Its
allows to call any function specified by a call interface description at run time.
Given (@f,@obj(fi),@arg_list(fi)), libffi is able to invoke the corresponding
function.

Figure 4.2: Hacking stack
2Note that this is a function hacking operation in which the hook is empty.
3Frida requires the user to provide the hook. To simplify the writing of the latter, Frida

allows to implement it in JS, which is popular in within the scope of mobile app programing,
compared to low level languages such as C and C++.

63

4.5.4 ART’s instrumentation module activation

ART’s instrumentation module is activated by the Hacker. As pre-
sented in Section 4.3, this can be done by invoking enableDeoptimization
and deoptimizeEverything, two methods of the object which represents the
instrumentation module (instrumentation). The challenge here is how to in-
voke these two methods from the Hacker code base knowing that they belong
to ART?.

Making ART’s functions accessible from the Hacker. To this end, the
Hacker first preloads libART by calling dlopen from libc. Notice that dlopen
just calls realDlopen, which is the core implementation. However, realDlopen
implements a security check which accepts its invocation only when the caller
of dlopen (the Hacker here) is within libART’s address range, which is not
the case of the Hacker. To bypass this limitation, we write a trampoline
function which replaces dlopen and calls realDlopen with a fake caller address
which address is within libART’s address range. We use the address of read()
syscall.

(Strategy 1) We call this strategy wrapper-based function call.

enableDeoptimization and deoptimizeEverything memory address de-
termination. Having libART accessible, the Hacker uses dlsym to obtain the
desired addresses. dlsym takes as input the mangled name of the functions.
We manually obtained these mangled names by reverse engineering ART bi-
nary code. For example, the mangled name of enableDeoptimization is
“_ZN3art15instrumentation15Instrumen...”. Listing 4.1 illustrates an utiliza-
tion of dlsym to obtain the memory address of enableDeoptimization.

Listing 4.1: enableDeoptimization address calculation.
2 const enableDeoptimization : any = new NativeFunction (
3 dlsym(artlib ," _ZN3art15instrumentation15Instrumen ..."),
4 "void",
5 [" pointer "],
6 {
7 exceptions : ExceptionsBehavior . Propagate
8 })

64

(Strategy 2) We call this strategy dlsym-based address calculation.

Instrumentation module memory address determination. We imple-
ment a two step solution: (1) determine Runtime, the object which represents
ART; (2) determine instrumentation, the field member of Runtime which
represents the instrumentation module. We implement the first step as follows.
We manually identify in ART source code a public function that uses Runtime;
we choose RequiresDeoptimization method, lines 1-6 of listing 4.2. Having
such a function, we can identify in its assembly code the portion that yields the
address of Runtime (lines 7-15 of listing 4.2 for x86 architectures). By reverse
engineering, we know that on x86 architectures for example, the address of
Runtime will be held in x8 register. Then we alter the previously identified
portion of code so that its execution will assign the address of Runtime in a
new local variable that we introduce, instead of register x8. We call parasite
the resulting code (lines 16-24 of listing 4.2). Then we integrate the parasite
into the Hacker code base. This way, at runtime, the Hacker will be able to
fetch Runtime memory address from the local variable mentioned above.

(Strategy 3) We call this strategy emulation-based address computation.

The instrumentation module (instrumentation), which is a field member
of Runtime, can be obtained by just adding an offset to Runtime’s memory
address. This offset is related to the position of instrumentation in the decla-
ration of Runtime class. We obtain this offset manually by reverse engineering
ART binary code.

(Strategy 4) We call this strategy position-based address computation.

Listing 4.2: Computation strategy of the Runtime object
1 ------------------------------------
2 C++ code of RequiresDeoptimization ()
3 -----------------------------------
4 bool Dbg :: RequiresDeoptimization () {
5 return ! Runtime :: Current () -> GetInstrumentation () ->

IsForcedInterpretOnly ();
6 }
7 -----------------------------------
8 asm code of RequiresDeoptimization ()

65

9 -----------------------------------
10 inst_0 : adrp x8 , #0 x78459ac000
11 inst_1 : ldr x8 ,[x8 , #0 x2e0]
12 inst_2 : ldr x8 ,[x8]
13 inst_3 : ldrb w8 , [x8 , #0 x2dc]
14 inst_4 : cmp w8 , #0
15 inst_5 : ...
16 -----------------------------------
17 The parasite inside the Hacker
18 -----------------------------------
19 let 0x2e0 = 736;
20 const operand = insn_0 . operands [1]. value;
21 const x8 = Memory . readPointer (operand .add (0 x2e0));
22 const x8 = Memory . readPointer (x8);
23 return x8;
24 -----------------------------------

Instrumentation module activation and configuration. The activation is
done by invoking enableDeoptimization followed by deoptimizeEverything,
two functions of instrumentation object. Then the Hacker configures the
instrumentation module with the list of monitored events and the associated
callback functions. In Odile, we monitor function entrances and we use a
unique callback which is the Tracer.

Figure 4.3: Method name computation.

4.5.5 Function call information retrieval

When ART’s instrumentation module invokes the Tracer, it passes to
the latter three parameters including the object which corresponds to the
current virtual machine thread (noted currentV M), the object which corre-
sponds to the traced method (noted tracedMethod), and the object from which

66

tracedMethod is invoked (noted caller). Using these arguments, the Tracer
computes and outputs in a human readable format the following informations:
tracedMethod’s name, the types of its arguments, and their actual values.
The challenge here is that these informations are disseminated everywhere in
the call stack, which is not always directly accessible from the Tracer. The
rest of this section presents the strategies that we use to obtain each information.

tracedMethod’s name computation. By reverse engineering ART, we
observe that the execution of the call graph presented in Fig. 4.3 can allow
obtaining the tracedMethod’s name. This call graph takes as input currentV M
and tracedMethod, and it calls the following three ART’s internal methods, in
this order: getNameAsStringObject, toCharArray, and getData. We obtain
the memory address of each of these functions (to invoke them) using Strategy
2 presented in § 4.5.4.

tracedMethod’s argument list address computation. By reverse en-
gineering ART, we observe that tracedMethod’s argument list can be found
in ART’s object shadow_frame. We use the following strategy to obtain the
latter. We know that shadow_frame is an argument of ART’s internal function
EnterInterpreterFromEntryPoint. We also know that the latter is in the call
stack of the current executed function. Subsequently, shadow_frame can be
obtained by exploring the current call stack. On x86, this is quite simple because
the call stack is located in the current virtual machine’s memory stack.

(Strategy 5) We call this strategy stack-based address computation.

Things are different on ARM. We rely on a secondary instrumentation callback
that Odile registered at the same moment as the Tracer (see above). The pur-
pose of this secondary callback (summarized Fig. 4.4) is to track the invocation of
EnterInterpreterFromEntryPoint. On invocation of EnterInterpreterFromEntryPoint,
the secondary callback captures the address of shadow_frame and saves it in a
new ART’s global variable that we have dynamically introduced. This variable
is latter read by the Tracer to obtain shadow_frame’s address.

(Strategy 6) We call this strategy callback-based address computation.

As mentioned above, the memory address of the arguments of tracedMethod

are kept in a shadow_frame’s field member in the form of a list. We obtain
this list using Strategy 3-4 presented in § 4.5.4. However, the list contains not

67

only tracedMethod’s arguments, but also other values specific to the virtual
machine ABI such as the return address. By reverse engineering ART, we know
that the position of the first tracedMethod’s argument in the list is given by
code_item object. The latter is an argument of another ART’s function named
ArtInterpreterToInterpreterBridge. We obtain code_item using Strategy
5 or 6 in respect with the hardware.

tracedMethod’s argument types and actual values computation. We
need argument types for two reasons. First, they allow Odile to output a
complete (thus unique) signature of the traced method, necessary to identify a
function when function overloading exists in the app. Second, the argument
type allows to extract the actual value of the argument having its memory
address. In fact, the argument type gives the argument value size in RAM. To
find the type of each argument, the Tracer uses ART’s function getShorty().
However, this function is private in Runtime, thus it cannot be directly in-
voked from outside that object. In addition, getShorty() is an inlined func-
tion, meaning that we cannot have any direct reference to it. To overcome
these limitations we implement the following strategy. First, we identify in
ART binary code a function which inlines getShorty(). Such a function is
Dbg::OutputMethodReturnValue for x86 and art::QuickGenericJniTrampoline
for ARM. Then we identify the portion of code corresponding to getShorty().
Using Strategy 3-4 presented in § 4.5.4, we build a parasite from that portion
of code and we integrate it into the Tracer. Therefore, the later execution of
the parasite with a tracedMethod’s argument address as the input argument
generates the actual value of that tracedMethod’s argument.

(Strategy 7) We call this strategy inliner-based code detection.

Figure 4.4: shadow_frame’s memory address computation on ARM

Trace collection. Recall that unlike the Hacker and the Tracer which are

68

embedded into Apptarget by repackaging, the TraceCollector runs inside Odile
app. The informations generated by the Tracer are sent to the TraceCollector
throughout a TCP/IP connection. The TraceCollector can save the collected
data either in the phone file system (default) or on a remote server.

4.6 Evaluations

This section presents the evaluation results of Odile. The evaluations
answer the following questions:

• Is Odile effective in intercepting app function calls? We answer this
question by using a realistic experimental environment, as follows. First,
we carry out experiments on Samsung Galaxy A7 2017, with 8 cores, 4GB
memory, 64GB storage, and which runs Android 8.0. Second we use 18
benign apps (7 popular apps from F-Droid [1], and 7 anti-virus: Aegislab,
BitDefender, PandaSecurity, Zoner, Drweb, Malwarebyte and Gdata) and
58 malware (from [5]). We chose these apps in each dataset because they
are compatible with the repackaging tool (Soot) used by Odile. Also
note that F-Droid [1] is a popular Google Play alternatives which provides
app source code. Thus, we can manually insert tracing functions into the
app in order to build a baseline for evaluating Odile effectiveness and
completeness.
• How scalable Odile is? We answer this question by varying the number

of functions that we want to trace.
• What is the overhead of Odile? We measure both CPU and memory

consumption incurred by Odile.
• What is the impact of Odile on user experience? We measure the impact
at app installation time, launch time, and utilization time. This impact
corresponds to the additional delay incurred by Odile.

We compare Odile with Frida when necessary. Each experiment is repeated
5 times and the mean value is considered.

4.6.1 Odile effectiveness

For this experiments we use both benign and malware apps.

Basic evaluation. To validate that Odile is effectively able to intercept
and trace all app calls we use the following methodology. To have a baseline,
we manually instrument Textpad [14], an open app from F-Droid. Then we run

69

0 2 4 6 8 10
Time (s)

0

10

20

30
#I

nt
er

ce
pt

ed
 c

al
ls Good tracing

Tracing performed with errors

(a) Frida

0 1 2 3 4
Time(s)

0

10

20

#I
nt

er
ce

pt
ed

 c
al

ls
(×

10
00

)

Good tracing
Tracing performed with errors

(b) Odile

Figure 4.5: Odile effectiveness on DualOps app, compared with Frida.

Textpad and we collect the logs (called logs-1) generated by our inserted print
functions. On the second hand, we run vanilla Textpad with Odile and we
collect the generated logs (noted logs-2). We observe that logs-2 covers all calls
in logs-1, validating the effectiveness of Odile.

Comparison with Frida. Frida takes as input a set of function signa-
tures that we want to monitor. Therefore, we use Odile in this same way.
For this experiment, we use all working apps in our testbed. For each app,
we randomly select 1,800 distinct functions and we use them as the input of
Frida and Odile. Table 4.1 summarizes the results for a representative set
of apps while Fig. 4.5 focuses on DualOps app4. Fig. 4.5 shows the evolution
of the number of intercepted function calls in both systems during the exper-
iment. We observe two kind of issues with Frida (Fig. 4.5a), contrary to
Odile (Fig. 4.5b) which has no issues. The first issue is the fact that Frida
returns errors for some intercepted calls. These errors represent up to 50%
of the total intercepted calls (see the red part of the bars in Fig. 4.5a) The
second issue is the abrupt crash of Frida during the experiment. This occurs
almost 1.3 second after the app startup, leading to a very few number of inter-
cepted calls (about 30) when compared with Odile (about 25,000 as shown in
Fig. 4.5b). Odile never crashes, thus we voluntary stopped the experiment af-
ter 4.7 seconds. We observe similar results with other apps as shown in table 4.1.

Anti-virus dynamic analysis. The objective is to observe if the anti-virus
monitors and analyses the behavior of apps which run on the device. Given an

4We randomly select DualOps, which is a randsomeware. At startup, it presents to the
user an activity that blocks the phone while displaying a message accusing the user of having
stored and viewed prohibited content. A payment procedure of the fine also shown.

70

Table 4.1: Odile (Od) tracing effectiveness compared with Frida (Fd). #calls
is the total number of intercepted calls. #capNotTraced is the number of
intercepted calls that Frida was not able to trace (Frida prints an error
message in this case).

apps #calls #capNotTraced Crash (yes/no)
Fd Od Fd Od Fd Od

Anigilyator 64 21k 64 0 yes no
superLinda 8 5k 7 0 yes no
Anton 48 22k 48 0 yes no
DualOps 31 25k 21 0 yes no
anigilyatorV2 36 18k 23 0 no no
LockApp 27 19k 27 0 yes no

app that needs to be installed on the phone, our anti-virus analysis methodology
is as follows. We collect anti-virus’s execution traces at different moment of the
app lifespan: installation time, launch time and utilization time. We present
here the results for Zoner anti-virus (for illustration) when it is used to scan
DualOps. At DualOps installation, the execution traces of the anti-virus show
that it performs two main calls: InstallReceiver->onReceive() followed by
DexParser->scanAPK(). By reverse engineering the anti-virus, we know that
the purpose of these calls is to append the new installed app into a file for static
analysis (see below). We observe no behavior change in the execution of the
anti-virus neither at DualOps launch time nor during its utilization. In fact,
the anti-virus periodically performs these calls: ActScanResults->onBound(),
HashInputStream->read(), DbScanner->compareTo(), ActScanResults->addResults(),
in this exact order. By reverse engineering these calls, we observe that they
realize a static analysis based on DualOps dex file. To conclude, the answer to
our above question is that the anti-viruses that we analyzed do not perform
app dynamic analysis on the phone as evoked in Section 4.2.

4.6.2 Overhead

We evaluate the impact of Odile on app installation time and user expe-
rience at runtime.

Installation time. The overhead here is mainly the repackaging step im-
posed by Odile. Fig. 4.6a presents the breakdown time of the repackaging
step. This step is organized into 8 phases. The total repackaging time varies
between 10 seconds to 65 seconds, knowing that the installation time without
Odile is around 25 seconds. We can see that the phase 4 (Soot packing) is
the longest one, followed by phase 2 (Soot Initialization) and phase 5 (Dex

71

repackaging). Other phases are relatively shorter. We note that the size
of the apk does not impact the repackaging time. Indeed, Fig. 4.6a presents
apps in the ascending order of their apk size, which varies from 56KB to 4.1MB.

Runtime. Fig. 4.6b presents the impact of Odile on the launch time. The
launch time is the time it takes to display the first app’s activity. We compute
the impact of Odile as the difference of the launch time with and without

(a)

(b)

Figure 4.6: (a) Breakdown time of Odile’s repackaging step and (b) Slowdown
to display the first app’s activity.

72

Odile. We consider two configurations, representing the best case (noted short
in Fig. 4.6b) and the worst case (noted long in Fig. 4.6b) of using Odile. The
short configuration represents the case where Odile never interferes during a
function call. This represents the shortest path in the execution of Odile. The
long configuration represents the case where Odile intercepts and traces all
calls, representing the longest execution path that Odile can lead. We can see
from Fig. 4.6b that Odile overhead is relatively stable. At worst the slowdown
is about 60%. In some cases, the impact of Odile is so negligible that the first
activity shows up faster than the baseline, meaning that we are in the margin
of error.

Scalability and resource consumption

Scalability. The evaluation methodology is as follows. We firstly build
a set of 14,000 distinct function signatures that we want to monitor during
the execution of the app. Then we randomly select n functions that we use
as input for Odile and Frida. We repeat the experiment while varying n.
We compare Odile with Frida. We perform the experiments on all apps but
Fig. 4.7 only presents the results for DualOps app for illustration. The results
obtained with other apps are similar. We can see that Frida is still unable
to intercept large number of calls (the average number of intercepted calls is
140, see Fig. 4.7a) because it crashes early. We observe no issue with Odile
(the average number of intercepted calls is 23k calls, see Fig. 4.7b), which works
regardless the number of calls.

Resource consumption. We collect memory and CPU consumption dur-
ing the previous experiments. We do not compare Odile with Frida in this
experiment because the latter crashes early. Fig. 4.8a presents the CPU con-
sumption for an execution. In fact, we observed no CPU variation related to
the number of functions to trace. Fig. 4.8a shows that Odile incurs almost
no CPU overhead. Concerning the memory, Fig. 4.8b shows the results for all
experiments: each point corresponds to the maximum memory consumption
measured during the execution of Odile with a given number of functions to
monitor. We can observe almost no overhead introduced by Odile related to
the variation of the number of functions to trace: the reader should compare
the value of y at x = 0 with the value of y for the other values of x 5.

5we removed the point (300 methods ,155.324 MB), considering it as a outlier one

73

0 2000 4000 6000 8000
#Methods to be traced

0

200

400

600

800

1000

#I
nt

er
ce

pt
ed

 c
al

ls

Tracing performed without error
Tracing performed with some errors

(a) Frida

0 2000 4000 6000 8000
#Methods to be traced

0

10

20

30

40

50

#I
nt

er
ce

pt
ed

 c
al

ls
(×

10
00

)

Tracing performed without error
Tracing performed with some errors

(b) Odile

Figure 4.7: Odile scalability on DualOps app, compared with Frida. The
green color represents the number of call interception realized by Frida without
error while and the orange one represents interceptions which lead to errors.

74

0 5 10 15 20 25
Time (s)

0

20

40

60

80

100

CP
U

(%
)

without Odile
Odile short path
Odile long path

(a) CPU

0 2000 4000 6000 8000
#Methods to be traced

30

40

50

60

70

M
em

or
y

co
ns

um
pt

io
n

(M
B)

without Odile
with Odile

(b) Memory

Figure 4.8: Odile CPU and memory consumption for DualOps app.

75

4.7 Related work

State-of-the-art tracing tools require inherently to be able to instrument
Android applications, and so far code instrumentation requires most often either
to customize the underlying Android system, or to jailbreak/root the Android
devices [39, 27, 26, 24, 92, 103, 71, 37, 95, 78, 94, 76, 32, 55]. Some of them
are dedicated to QEMU emulator such as Droidscope [95], Copperdroid [78],
Malton [94] and Mobile-sandbox [76]. Particularly, Droidscope and Copperdroid
are designed to especially trace system calls performed by the Android system,
whereas Malton and Mobile-sandbox are designed to trace call graph of running
Android applications. Anyway, none of the 4 aforementionned works have
been designed to be executed on off-the-shelf Android devices as opposed to
IARMDroid [39], Appguard [27, 26], Artist [24], and Aurasium [92], Droid-
Box [55]. However, none of the latters can run on unaltered/non-jailbroken
Android devices. The only exceptions are Crowdroid [32], DroidTrace [102],
and Updroid [79]. Crowdroid leverages strace to monitor system calls, whereas
DroidTrace uses ptrace. However, nowadays, strace, nor ptrace are available
anymore on the Android system for security reasons.

As far of our knowledge [79] is the only monitoring system which has been
built for end users and off-the-shelf devices. The authors proposed to monitor
intents rather than directly tracing app calls. Nevertheless, the evaluations
performed by the authors showed that this approach leads to a significant
number of false positive and false negative. Building a behavioral analysis tool
which is based on app generated calls is the holy grail, thus motivating Odile.

4.8 Conclusion

We introduced Odile, the first lightweight, scalable, and interoperable
tracer for off-the-shelf x86 and ARMAndroid devices. We discussed our delegated
instrumentation tracing approach, which leverages Android’s instrumentation
module. Odile is the building block for app behavior analysis on end user
phones to accurately identify malware. We demonstrated the effectiveness of
Odile in tracing various app types on Samsung Galaxy A7 2017. We showed
how much Odile outperforms Frida, the state-of-the-art tool in the domain.
The results also showed that Odile is scalable and incurs no overhead.

76

Chapter 5

Conclusion

5.1 Conclusion

We have proposed solutions to resolve some issues in the war against
publishing of illegitimate applications on mobile markets. This chapter provides
a conclusion to this work, and outlines future prospects.

We have seen in the context of our work that solutions for detecting
malicious mobile applications, static as well as dynamic, are subject to the
problems of accuracy and evolution. This is due to techniques implemented in
malwares, which are becoming increasingly sophisticated. It is also due to the
fact that solutions against malwares must be integrated into the application
deployment process, which implies a certain scalability. Our contributions are
mainly aimed at solving the last two issues, namely evolution and scalability.

We have identified a brand new technique for deploying malicious applica-
tions, consisting for an attacker to have his application mimicking a web service
or a known company whose mobile version does not yet exist. Then we have
proposed a solution called IMAD (Illegitimate Mobile App Detector) which,
easily deployable on the commodities desktop at store level, detects with an
accuracy of 80% the illegitimate applications protecting both big, medium and
small-sized companies from the usurpation of their graphic charter.

Moreover, we have noticed the difficulty with which dynamic crowd-based
analysis techniques, a current trend in the research field, are hardly advanc-
ing. Since the goal of these techniques is to maximize the number of people
who can test the applications on their phones at any given time, it must be
possible to implement them on most phones. However, this is not the case
because they only work on "rooted" phones limiting the number of phones

and users, and even if it were, they are imprecise. We have proposed Odile,
which is based on indirect code injection from inside of the application to be
analyzed and through a preexisting module of the Android system. We were
able to install it on the x86 architectures commonly used by emulators and
on the ARM64 architectures used by most phones, the evaluation example
being a Samsung Galaxy A7. Odile competes in terms of performance with
the most advanced existing solutions in the field, and also in terms of accuracy
because it can detect all the APIs commonly considered critical by the literature.

Finally, the detection of malicious applications raises challenges that are
strongly associated with the evolution of the mobile ecosystem in its environment.
On the one hand, hackers implement new techniques for deploying and executing
their loads that must be identified and addressed with the help of all the tools
available in the computing world such as open source data sources and artificial
intelligence algorithms. On the other hand, the proposed solutions are not
always easy to integrate into the ecosystem because of the technical limitations
related to operating systems that will have to be circumvented by strong methods
such as hacking, but a hacking that is very benign for user protection.

78

Bibliography

[1] 10 exclusive f-droid apps you can’t get on google play store.
https://www.makeuseof.com/tag/exclusive-f-droid-apps/. Visited on Oc-
tober 2020.

[2] Android runs 52 https://www.theguardian.com/technology/2011/
nov/15/android-runs-most-smatphones-sold. visited on January
2021.

[3] App statistics on mobile market places. https://www.businessofapps.
com/data/app-statistics/.

[4] Dalvik bytecode. https://source.android.com/devices/tech/dalvik/dalvik-
bytecode. Visited on June 2020.

[5] Database of 298 android malwares. https://github.com/ashishb/
android-malware. Visited on September 2020.

[6] Duktape. https://duktape.org/. Visited on January 2020.

[7] Frida url. https://frida.re/. Accessed: 2019-10-14.

[8] Google’s bouncer for android shows malware apps the door.
https://mashable.com/2012/02/02/google-bouncer-for-android/
?europe=true. Visited on April 2020.

[9] jadx - dex to java decompiler. https://github.com/skylot/jadx. Vis-
ited on January 2021.

[10] libffii. https://github.com/libffi/libffi. Visited on December 2020.

[11] Mobile operating system market share worldwide. https://developer.
android.com/studio/test/monkey. Visited on June 2019.

[12] Number of mobile app users. https://www.my-business-plan.fr/
chiffres-application.

https://www.theguardian.com/technology/2011/nov/15/android-runs-most-smatphones-sold
https://www.theguardian.com/technology/2011/nov/15/android-runs-most-smatphones-sold
https://www.businessofapps.com/data/app-statistics/
https://www.businessofapps.com/data/app-statistics/
https://github.com/ashishb/android-malware
https://github.com/ashishb/android-malware
https://duktape.org/
https://mashable.com/2012/02/02/google-bouncer-for-android/?europe=true
https://mashable.com/2012/02/02/google-bouncer-for-android/?europe=true
https://github.com/skylot/jadx
https://github.com/libffi/libffi
https://developer.android.com/studio/test/monkey
https://developer.android.com/studio/test/monkey
https://www.my-business-plan.fr/chiffres-application
https://www.my-business-plan.fr/chiffres-application

[13] Ransomware on mobile devices: knock-knock-block. https://www.
kaspersky.com/blog/mobile-ransomware-2016/12491/. visited on
September 2018.

[14] Simpletexteditor use to evaluate the effectiveness of odile. https://f-
droid.org/en/packages/com.maxistar.textpad/.

[15] Ui/application exerciser monkey. http://gs.statcounter.com/
os-market-share/mobile/worldwide. Visited on June 2019.

[16] Allix, K., Bissyandé, T. F., Klein, J., and Traon, Y. L. Androzoo:
Collecting millions of android apps for the research community. In 2016
IEEE/ACM 13th Working Conference on Mining Software Repositories
(MSR) (2016), pp. 468–471.

[17] androguard. androguard. https://github.com/androguard/
androguard.

[18] appstoremetrics. The lack of app store metrics.
https://www.ben-evans.com/benedictevans/2015/6/13/
the-lack-of-app-store-metrics.

[19] Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck,
K., and Siemens, C. Drebin: Effective and explainable detection of
android malware in your pocket. In Ndss (2014), vol. 14, pp. 23–26.

[20] Arzt, S., Rasthofer, S., and Bodden, E. The soot-based toolchain
for analyzing android apps. In Proceedings of the 4th International Con-
ference on Mobile Software Engineering and Systems (Piscataway, NJ,
USA, 2017), MOBILESoft ’17, IEEE Press, pp. 13–24.

[21] aspell. The metaphone distance. http://aspell.net/metaphone/.

[22] Au, K. W. Y., Zhou, Y. F., Huang, Z., and Lie, D. Pscout:
Analyzing the android permission specification. In Proceedings of the
2012 ACM Conference on Computer and Communications Security (New
York, NY, USA, 2012), CCS ’12, Association for Computing Machinery,
p. 217–228.

[23] Azim, T., and Neamtiu, I. Targeted and depth-first exploration for
systematic testing of android apps. SIGPLAN Not. 48, 10 (Oct. 2013),
641–660.

[24] Backes, M., Bugiel, S., Schranz, O., von Styp-Rekowsky, P.,
and Weisgerber, S. Artist: The android runtime instrumentation and

80

https://www.kaspersky.com/blog/mobile-ransomware-2016/12491/
https://www.kaspersky.com/blog/mobile-ransomware-2016/12491/
http://gs.statcounter.com/os-market-share/mobile/worldwide
http://gs.statcounter.com/os-market-share/mobile/worldwide
 https://github.com/androguard/androguard
 https://github.com/androguard/androguard
 https://www.ben-evans.com/benedictevans/2015/6/13/the-lack-of-app-store-metrics
 https://www.ben-evans.com/benedictevans/2015/6/13/the-lack-of-app-store-metrics
http://aspell.net/metaphone/

security toolkit. In 2017 IEEE European Symposium on Security and
Privacy (EuroS&P) (2017), IEEE, pp. 481–495.

[25] Backes, M., Gerling, S., Hammer, C., Maffei, M., and Styp-
Rekowsky, P. Appguard – fine-grained policy enforcement for untrusted
android applications. vol. 8247.

[26] Backes, M., Gerling, S., Hammer, C., Maffei, M., and von
Styp-Rekowsky, P. Appguard - enforcing user requirements on android
apps. In Tools and Algorithms for the Construction and Analysis of
Systems - 19th International Conference, TACAS 2013, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS
2013, Rome, Italy, March 16-24, 2013. Proceedings (2013), N. Piterman
and S. A. Smolka, Eds., vol. 7795 of Lecture Notes in Computer Science,
Springer, pp. 543–548.

[27] Backes, M., Gerling, S., Hammer, C., Maffei, M., and von
Styp-Rekowsky, P. Appguard - fine-grained policy enforcement for
untrusted android applications. In Data Privacy Management and Au-
tonomous Spontaneous Security - 8th International Workshop, DPM 2013,
and 6th International Workshop, SETOP 2013, Egham, UK, September
12-13, 2013, Revised Selected Papers (2013), J. García-Alfaro, G. V. Li-
oudakis, N. Cuppens-Boulahia, S. N. Foley, and W. M. Fitzgerald, Eds.,
vol. 8247 of Lecture Notes in Computer Science, Springer, pp. 213–231.

[28] Balabantaray, R. C., Sarma, C., and Jha, M. Document clustering
using k-means and k-medoids. arXiv preprint arXiv:1502.07938 (2015).

[29] Bianchi, A., Corbetta, J., Invernizzi, L., Fratantonio, Y.,
Kruegel, C., and Vigna, G. What the app is that? deception and
countermeasures in the android user interface. In 2015 IEEE Symposium
on Security and Privacy (2015), IEEE, pp. 931–948.

[30] Bing. Bing search engine. https://www.bing.com/.

[31] Bottazzi, G., Casalicchio, E., Cingolani, D., Marturana, F.,
and Piu, M. Mp-shield: A framework for phishing detection in mo-
bile devices. In 2015 IEEE International Conference on Computer and
Information Technology; Ubiquitous Computing and Communications;
Dependable, Autonomic and Secure Computing; Pervasive Intelligence
and Computing (2015), IEEE, pp. 1977–1983.

[32] Burguera, I., Zurutuza, U., and Nadjm-Tehrani, S. Crowdroid:
Behavior-based malware detection system for android. pp. 15–26.

81

https://www.bing.com/

[33] Chen, K., Wang, P., Lee, Y., Wang, X., Zhang, N., Huang, H.,
Zou, W., and Liu, P. Finding unknown malice in 10 seconds: Mass
vetting for new threats at the google-play scale. In 24th {USENIX}
Security Symposium ({USENIX} Security 15) (2015), pp. 659–674.

[34] Cheng, M.-M., Mitra, N. J., Huang, X., Torr, P. H., and Hu,
S.-M. Global contrast based salient region detection. IEEE transactions
on pattern analysis and machine intelligence 37, 3 (2014), 569–582.

[35] connortumbleson. The apktool used to extract datas from apks. http:
//connortumbleson.com/2015/10/12/apktool-v2-0-2-released/.

[36] contagioMobile. contagiomobile blog post. http://
contagiominidump.blogspot.fr/.

[37] Costamagna, V., and Zheng, C. Artdroid: A virtual-method hooking
framework on android art runtime. In IMPS@ ESSoS (2016), pp. 20–28.

[38] David, A. Vassilvitskii s.: K-means++: The advantages of careful
seeding. In 18th annual ACM-SIAM symposium on Discrete algorithms
(SODA), New Orleans, Louisiana (2007), pp. 1027–1035.

[39] Davis, B., Sanders, B., Khodaverdian, A., and Chen, H. I-arm-
droid: A rewriting framework for in-app reference monitors for android
applications. Mobile Security Technologies 2012, 2 (2012), 1–7.

[40] dBPedia. The dbpedia web site. wiki.dbpedia.org.

[41] dBPedia. World intellectual property organization. www.wipo.int.

[42] easychair. Easychair website. http://www.easychair.org/.

[43] Enck, W., Gilbert, P., Chun, B.-G., Cox, L. P., Jung, J.,
McDaniel, P., and Sheth, A. N. Taintdroid: An information-flow
tracking system for realtime privacy monitoring on smartphones. In
Proceedings of the 9th USENIX Conference on Operating Systems De-
sign and Implementation (Berkeley, CA, USA, 2010), OSDI’10, USENIX
Association, pp. 393–407.

[44] Forensics. Current android malware. https://forensics.
spreitzenbarth.de/android-malware/.

[45] Fratantonio, Y., Qian, C., Chung, S. P., and Lee, W. Cloak
and dagger: From two permissions to complete control of the ui feedback
loop. In 2017 IEEE Symposium on Security and Privacy (SP) (2017),
pp. 1041–1057.

82

http://connortumbleson.com/2015/10/12/apktool-v2-0-2-released/
http://connortumbleson.com/2015/10/12/apktool-v2-0-2-released/
http://contagiominidump.blogspot.fr/
http://contagiominidump.blogspot.fr/
wiki.dbpedia.org
www.wipo.int
http://www.easychair.org/
https://forensics.spreitzenbarth.de/android-malware/
https://forensics.spreitzenbarth.de/android-malware/

[46] Garfinkel, T., and Rosenblum, M. A virtual machine introspection
based architecture for intrusion detection. NDSS 3 (05 2003).

[47] Gianazza, A., Maggi, F., Fattori, A., Cavallaro, L., and
Zanero, S. Puppetdroid: A user-centric UI exerciser for automatic
dynamic analysis of similar android applications. CoRR abs/1402.4826
(2014).

[48] Gianazza, A., Maggi, F., Fattori, A., Cavallaro, L., and
Zanero, S. Puppetdroid: A user-centric UI exerciser for automatic
dynamic analysis of similar android applications. CoRR abs/1402.4826
(2014).

[49] Google. The google custum search engine. https://cse.google.com/
cse/all.

[50] Google. Google search quality evaluation. http://link.fobshanghai.
com/download/googlesearchqualityevaluatorguidelines.pdf.

[51] Guan, Q., Huang, H., Luo, W., and Zhu, S. Semantics-based
repackaging detection for mobile apps. In Proceedings of the 8th Interna-
tional Symposium on Engineering Secure Software and Systems - Volume
9639 (Berlin, Heidelberg, 2016), ESSoS 2016, Springer-Verlag, p. 89–105.

[52] Hanna, S., Huang, L., Wu, E., Li, S., Chen, C., and Song,
D. Juxtapp: A scalable system for detecting code reuse among android
applications. In International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment (2012), Springer, pp. 62–81.

[53] Hyrynsalmi, S., Mäkilä, T., Järvi, A., Suominen, A., Seppänen,
M., and Knuutila, T. App store, marketplace, play! an analysis
of multi-homing in mobile software ecosystems. Jansen, Slinger (2012),
59–72.

[54] Jain, A. K. Data clustering: 50 years beyond k-means. Pattern recogni-
tion letters 31, 8 (2010), 651–666.

[55] Lantz, P. Droidbox: An android application sandbox for dynamic
analysis. In Master’s Thesis at Department of Electrical and Information
Technology (2011).

[56] Li, L., Bissyandé, T. F., Papadakis, M., Rasthofer, S., Bartel,
A., Octeau, D., Klein, J., and Traon, L. Static analysis of android
apps: A systematic literature review. Information and Software Technology
88 (2017), 67 – 95.

83

 https://cse.google.com/cse/all
 https://cse.google.com/cse/all
http://link.fobshanghai.com/download/googlesearchqualityevaluatorguidelines.pdf
http://link.fobshanghai.com/download/googlesearchqualityevaluatorguidelines.pdf

[57] Lindorfer, M. Andrubis: A tool for analyzing unknown android
applications, 2012.

[58] Lindorfer, M., Neugschwandtner, M., and Platzer, C. MAR-
VIN: efficient and comprehensive mobile app classification through static
and dynamic analysis. In 39th IEEE Annual Computer Software and
Applications Conference, COMPSAC 2015, Taichung, Taiwan, July 1-
5, 2015. Volume 2 (2015), S. I. Ahamed, C. K. Chang, W. C. Chu,
I. Crnkovic, P. Hsiung, G. Huang, and J. Yang, Eds., IEEE Computer
Society, pp. 422–433.

[59] Lindorfer, M., Neugschwandtner, M., Weichselbaum, L.,
Fratantonio, Y., van der Veen, V., and Platzer, C. ANDRUBIS
- 1, 000, 000 apps later: A view on current android malware behaviors. In
BADGERS@ESORICS 2014, Wroclaw, Poland (2014), IEEE, pp. 3–17.

[60] M. K. Alzaylaee, S. Y. Yerima, S. S. Dynalog: an automated
dynamic analysis framework for characterizing android applications.
https://doi.org/10.1109/CyberSecPODS.2016.7502337, 2016.

[61] Mahmood, R., Mirzaei, N., and Malek, S. Evodroid: Segmented
evolutionary testing of android apps. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineer-
ing (New York, NY, USA, 2014), FSE 2014, Association for Computing
Machinery, p. 599–609.

[62] Malisa, L., Kostiainen, K., and Capkun, S. Detecting mobile
application spoofing attacks by leveraging user visual similarity percep-
tion. In Proceedings of the Seventh ACM on Conference on Data and
Application Security and Privacy (New York, NY, USA, 2017), CODASPY
’17, Association for Computing Machinery, p. 289–300.

[63] Malisa, L., Kostiainen, K., and Capkun, S. Detecting mobile
application spoofing attacks by leveraging user visual similarity perception.
In Proceedings of the Seventh ACM on Conference on Data and Application
Security and Privacy (2017), pp. 289–300.

[64] Mani, I., Yeh, A., and Condon, S. Learning to match names across
languages. In Multi-source, Multilingual Information Extraction and
Summarization. Springer, 2013, pp. 53–71.

[65] Marforio, C., Masti, R. J., Soriente, C., Kostiainen, K., and
Capkun, S. Personalized security indicators to detect application phish-
ing attacks in mobile platforms. arXiv preprint arXiv:1502.06824 (2015).

84

https://doi.org/10.1109/CyberSecPODS.2016.7502337

[66] Microsoft. Microsoft azure web site. http://azure.microsoft.com.

[67] Oberheide, J., and Miller, C. Dissecting the android bouncer.
SummerCon2012, New York 95 (2012), 110.

[68] Orange. Orange bank announcement. https://
www.lesechos.fr/finance-marches/banque-assurances/
0211888727149-orange-bank-lancement-prevu-mi-mai-2073226.
php.

[69] Pandita, R., Xiao, X., Yang, W., Enck, W., and Xie, T. WHY-
PER: Towards automating risk assessment of mobile applications. In 22nd
USENIX Security Symposium (USENIX Security 13) (Washington, D.C.,
Aug. 2013), USENIX Association, pp. 527–542.

[70] pocketgamer. App-store submissions metrics. http://www.
pocketgamer.biz/metrics/app-store/submissions/.

[71] Qiu, L., Zhang, Z., Shen, Z., and Sun, G. Apptrace: Dynamic
trace on android devices. In 2015 IEEE International Conference on
Communications (ICC) (June 2015), pp. 7145–7150.

[72] quora user, A. How many new apps are added
to google play everyday. https://www.quora.com/
How-many-new-apps-are-added-to-Google-Play-everyday.

[73] Shao, Y., Luo, X., Qian, C., Zhu, P., and Zhang, L. Towards
a scalable resource-driven approach for detecting repackaged android
applications. pp. 56–65.

[74] Smith, R. An overview of the tesseract ocr engine. In Ninth international
conference on document analysis and recognition (ICDAR 2007) (2007),
vol. 2, IEEE, pp. 629–633.

[75] Soh, C., Tan, H. B. K., Arnatovich, Y. L., and Wang, L. De-
tecting clones in android applications through analyzing user interfaces.
In 2015 IEEE 23rd international conference on program comprehension
(2015), IEEE, pp. 163–173.

[76] Spreitzenbarth, M., Freiling, F., Echtler, F., Schreck, T.,
and Hoffmann, J. Mobile-sandbox: having a deeper look into android
applications. In Proceedings of the 28th Annual ACM Symposium on
Applied Computing (2013), ACM, pp. 1808–1815.

85

http://azure.microsoft.com
 https://www.lesechos.fr/finance-marches/banque-assurances/0211888727149-orange-bank-lancement-prevu-mi-mai-2073226.php
 https://www.lesechos.fr/finance-marches/banque-assurances/0211888727149-orange-bank-lancement-prevu-mi-mai-2073226.php
 https://www.lesechos.fr/finance-marches/banque-assurances/0211888727149-orange-bank-lancement-prevu-mi-mai-2073226.php
 https://www.lesechos.fr/finance-marches/banque-assurances/0211888727149-orange-bank-lancement-prevu-mi-mai-2073226.php
http://www.pocketgamer.biz/metrics/app-store/submissions/
http://www.pocketgamer.biz/metrics/app-store/submissions/
https://www.quora.com/How-many-new-apps-are-added-to-Google-Play-everyday
https://www.quora.com/How-many-new-apps-are-added-to-Google-Play-everyday

[77] Tam, K., Feizollah, A., Anuar, N., Salleh, R., and Cavallaro,
L. The evolution of android malware and android analysis techniques.
ACM Computing Surveys 49 (01 2017), 1–41.

[78] Tam, K., Khan, S. J., Fattori, A., and Cavallaro, L. Copperdroid:
Automatic reconstruction of android malware behaviors. In Ndss (2015).

[79] Tang, X., Lin, Y., Wu, D., and Gao, D. Towards dynamically
monitoring android applications on non-rooted devices in the wild. In
Proceedings of the 11th ACM Conference on Security & Privacy in Wireless
and Mobile Networks (New York, NY, USA, 2018), WiSec ’18, ACM,
pp. 212–223.

[80] Tata, S., and Patel, J. M. Estimating the selectivity of tf-idf based
cosine similarity predicates. ACM Sigmod Record 36, 2 (2007), 7–12.

[81] tineye. Tineye. https://www.tineye.com/.

[82] trendmicro. Wp fake apps. http://www.trendmicro.com/
cloud-content/us/pdfs/security-intelligence/white-papers/
wp-fake-apps.pdf.

[83] Unuchek, R. Rooting pokémons in google play store. https://
securelist.com/rooting-pokemons-in-google-play-store/76081/.

[84] Wapet, P. L., Tchana, A., Tran, G. S., and Hagimont, D.
Preventing the propagation of a new kind of illegitimate apps. Future
Gener. Comput. Syst. 94 (2019), 368–380.

[85] Wong, M. Y., and Lie, D. Intellidroid: A targeted input generator
for the dynamic analysis of android malware. In NDSS (2016), vol. 16,
pp. 21–24.

[86] Wong, M. Y., and Lie, D. Intellidroid: A targeted input generator
for the dynamic analysis of android malware. In 23rd Annual Network
and Distributed System Security Symposium, NDSS 2016, San Diego,
California, USA, February 21-24, 2016 (2016).

[87] Wong, M. Y., and Lie, D. Tackling runtime-based obfuscation in
android with tiro. In Proceedings of the 27th USENIX Conference on Secu-
rity Symposium (Berkeley, CA, USA, 2018), SEC’18, USENIX Association,
pp. 1247–1262.

[88] Wu, D., Mao, C., Wei, T., Lee, H., and Wu, K. Droidmat: Android
malware detection through manifest and api calls tracing. In 2012 Seventh
Asia Joint Conference on Information Security (2012), pp. 62–69.

86

https://www.tineye.com/
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp-fake-apps.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp-fake-apps.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp-fake-apps.pdf
https://securelist.com/rooting-pokemons-in-google-play-store/76081/
https://securelist.com/rooting-pokemons-in-google-play-store/76081/

[89] Wu, L., Du, X., and Wu, J. Mobifish: A lightweight anti-phishing
scheme for mobile phones. In 2014 23rd International Conference on
Computer Communication and Networks (ICCCN) (2014), IEEE, pp. 1–8.

[90] Wu, L., Du, X., and Wu, J. Effective defense schemes for phishing
attacks on mobile computing platforms. IEEE Transactions on Vehicular
Technology 65, 8 (2015), 6678–6691.

[91] www.statista.com. Number of avalaible applications on google
play store. https://www.statista.com/statistics/266210/
number-of-available-applications-in-the-google-play-store/.

[92] Xu, R., Saïdi, H., and Anderson, R. Aurasium: Practical policy
enforcement for android applications. In 21st USENIX Security Symposium
(USENIX Security 12) (Bellevue, WA, Aug. 2012), USENIX Association,
pp. 539–552.

[93] Xu, Z., and Zhu, S. Abusing notification services on smartphones for
phishing and spamming. In WOOT (2012), pp. 1–11.

[94] Xue, L., Zhou, Y., Chen, T., Luo, X., and Gu, G. Malton: Towards
on-device non-invasive mobile malware analysis for art. In 26th USENIX
Security Symposium (USENIX Security 17) (2017), pp. 289–306.

[95] Yan, L. K., and Yin, H. Droidscope: Seamlessly reconstructing the
os and dalvik semantic views for dynamic android malware analysis. In
Presented as part of the 21st USENIX Security Symposium (USENIX
Security 12) (2012), pp. 569–584.

[96] Yang, W., Xiao, X., Andow, B., Li, S., Xie, T., and Enck, W.
Appcontext: Differentiating malicious and benign mobile app behaviors
using context. In 2015 IEEE/ACM 37th IEEE International Conference
on Software Engineering (2015), vol. 1, pp. 303–313.

[97] Yujian, L., and Bo, L. A normalized levenshtein distance metric.
IEEE transactions on pattern analysis and machine intelligence 29, 6
(2007), 1091–1095.

[98] Zhang, F., Huang, H., Zhu, S., Wu, D., and Liu, P. Viewdroid:
Towards obfuscation-resilient mobile application repackaging detection.
In Proceedings of the 2014 ACM conference on Security and privacy in
wireless & mobile networks (2014), pp. 25–36.

[99] Zhauniarovich, Y., Gadyatskaya, O., Crispo, B., La Spina, F.,
and Moser, E. Fsquadra: Fast detection of repackaged applications. In

87

https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/

Data and Applications Security and Privacy XXVIII (Berlin, Heidelberg,
2014), V. Atluri and G. Pernul, Eds., Springer Berlin Heidelberg, pp. 130–
145.

[100] Zhauniarovich, Y., Gadyatskaya, O., Crispo, B., La Spina, F.,
and Moser, E. Fsquadra: Fast detection of repackaged applications. In
Data and Applications Security and Privacy XXVIII (Berlin, Heidelberg,
2014), V. Atluri and G. Pernul, Eds., Springer Berlin Heidelberg, pp. 130–
145.

[101] Zheng, C., Zhu, S., Dai, S., Gu, G., Gong, X., Han, X., and
Zou, W. Smartdroid: An automatic system for revealing ui-based trigger
conditions in android applications. In Proceedings of the Second ACM
Workshop on Security and Privacy in Smartphones and Mobile Devices
(New York, NY, USA, 2012), SPSM ’12, Association for Computing
Machinery, p. 93–104.

[102] Zheng, M., Sun, M., and Lui, J. C. S. Droidtrace: A ptrace
based android dynamic analysis system with forward execution capability.
In 2014 International Wireless Communications and Mobile Computing
Conference (IWCMC) (2014), pp. 128–133.

[103] Zhou, W., Wang, Z., Zhou, Y., and Jiang, X. Divilar: Diversifying
intermediate language for anti-repackaging on android platform. In Pro-
ceedings of the 4th ACM conference on Data and application security and
privacy (2014), pp. 199–210.

[104] Zhou, Y., and Jiang, X. Dissecting android malware: Characterization
and evolution. In 2012 IEEE symposium on security and privacy (2012),
IEEE, pp. 95–109.

[105] Zhou, Y., and Jiang, X. Dissecting android malware: Characterization
and evolution. In 2012 IEEE Symposium on Security and Privacy (May
2012), pp. 95–109.

88

	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Publications that constitute this thesis:
	Thesis organization

	Background and contributions
	Mobile app Ecosystem
	Adoption of mobile apps in human society
	Mobile app structure
	The Android Operating System

	Major threats to mobile app users
	Common hacker intentions
	Key attack implementation steps

	Mobile malware detection methods
	Static analysis
	Dynamic Analysis
	Hybrid Analysis

	Challenges of mobile malware analysis systems
	Accuracy
	Deployability

	Contributions

	Preventing the propagation of a new kind of illegitimate apps
	Abstract
	Introduction
	Related work
	Definitions and Motivations
	Definitions
	Research scope
	Problematic

	IMAD: Illegitimate Mobile App Detector
	Overall System Design
	Graphic identity (GI) construction
	Trusted entity search
	Text Search (based on appName)
	Web page collection
	Clustering
	Irrelevant cluster elimination
	Irrelevant document elimination
	Trusted entity's name and contact extraction
	Image Search (based on the logo)

	Evaluations
	Experimental environment
	Accuracy
	Complexity
	Scalability
	Cost evaluation

	Conclusion

	Odile: A scalable tracing system for non-rooted and on the shelf Android devices
	Abstract
	Introduction
	Android
	Frida limitations
	Odile
	Main idea
	Architecture
	ART's function hacking
	ART's instrumentation module activation
	Function call information retrieval

	Evaluations
	Odile effectiveness
	Overhead

	Related work
	Conclusion

	Conclusion
	Conclusion

	Bibliography

