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General introduction

The design and realization of optimized technological systems are increasing through the development and integration of different functions and combining elements of varied nature. As the need and demand for extreme conditions resistant materials increases, especially to high and ultra-high temperature, research study and development of materials are necessary. For several applications, brittle materials (ceramics, concrete, composites, rocks, etc.) are faced with such kind of requirements.

Ceramics which fall between metallic and non-metallic compounds are a typical example of these materials due to their refractory properties. They are known to have relatively high stiffness and strength, some of them even higher than metals. They are also well known for low electrical and thermal conductivities, sometimes showing higher temperature resistance than metals. Heat management at higher temperatures is a key for energy savings in power electronics and energetics. In most cases, the higher the energy efficiencies are, the higher the operating temperatures will be. So, high-temperature heat exchangers based on ceramic materials have a wide range of applications. A special kind of ceramics called ultra-high temperature ceramics (UHTC) has applications in the field of aerospace. Most used UHTC's are zirconium diboride (ZrB 2 ) and hafnium diboride (HfB 2 ) for making the leading edge of hypersonic vehicles (Fig. 1a) and tantalum carbide (TaC) for making rocket nozzles. Not only in the field of space but also power electronics or energetics, there are many ceramic parts linked by various processes (like brazing, sintering, shrinking) to metallic/non-metallic elements of different physical, mechanical and thermal properties. When these assemblies are subjected to high levels of thermo-mechanical loadings, microcracks induced by the manufacturing process can grow, increasing the damage and by the same way the thermomechanical phenomena leading to the failure of the system.

Brittle composite materials like Ceramic Matrix Composites (CMCs) are well known for their high-temperature capability, reduced cooling requirements, low weight, and high specific strength. This makes them an ideal candidate for making turbine blades (Fig. 1b), combustion chambers for jet engines and brake discs in automobiles. In the nuclear industry, due to their ability to withstand high temperatures and high mechanical damage tolerance and good chemical compatibility with coolants, CMCs are considered for the construction of internal reactor structures.

Concretes are also one of the most studied brittle material due to their immense ap- Performance concrete (HPC) in construction has seemingly compromised its fire resistance. To be fire-resistant, walls should have the necessary load-bearing capacity, insulation and integrity (no significant cracks). So the walls must carry the load for the duration of the fire. Since all concretes are prone to microcracking to some extent, it is important to know their influence in case of fire (Fig. 1c).

Rocks which are considered as porous materials (including pores, voids and cracks)

have applications in petroleum engineering and deep geological repository for radioactive waste. Sedimentary rock with very low permeability, high mechanical strength acts as a natural barrier for underground storage of nuclear wastes. These rocks can be subjected to natural mechanical, thermal and/or chemical loadings. This phenomenon is referred to as thermo-chemo-mechanical. So, investigating the effective properties, thermal or elastic or thermoelastic, is equally important.

As these various examples have shown, the use of temperature resistant brittle materials is of great interest in the advanced industries but also in geotechnical and civil domineering fields. Yet, all these materials initially exhibit some heterogeneities (for instance inclusions, fibres, cracks or porosity) at their microscale, induced by their formation or manufacturing process. Under high levels of thermomechanical loadings, these defects induce significant over-stresses that can lead to microcracks growth and irreversible damage in materials and structures. Though the influence of mechanical loading on cracks is a widely explored topic, the impact of thermal and thermomechanical loading needs further investigation. This thesis intends to focus on the effect of cracks on the brittle materials and their interaction with thermal and thermomechanical behaviour. In the
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coming sections are presented some number of elements that will help to position the work presented below.

Damage by microcracking

Mechanical properties of various solids are firmly based on their interior defects and inhomogeneities. For different kind of materials, the defects might originate due to various reasons and can come in different geometric shapes and sizes. Damage in ductile materials such as aluminium, copper, titanium, etc., primarily involves nucleation and evolution of micro-voids whereas in brittle materials like concrete, ceramics, rocks, CMC, etc., damage is predominantly due to microcracking (Fig. 2). and Lange 1966, [START_REF] Case | Microcracking in Large-grain Al 2 O 3[END_REF]. Also during service conditions, some solids show many kinds of defects based on their exposure to various factors such as mechanical loads (Fig. 3a), temperature (Fig. 3b) or any environmental conditions.

The main consequence of microcracking in brittle materials are as follows:

• Stress-strain nonlinearity,

• Deterioration of properties,

• Induced anisotropy,

• Unilateral effect.

It is imperative to discuss the above-mentioned consequences in detail. The following paragraphs analyze these different points, to better understand the different aspects of damage by microcracking on the mechanical properties. This non-linearity is mainly attributed to degradation of properties, unilateral effect in some cases (both discussed later) and also for some materials irreversible strain (Fig. 4b). For instance, sometimes, the fragment of a damaged microcrack or an inclusion can get stuck between crack lips and not allow the crack to close perfectly during unloading, leading to an additional strain.

Stress-Strain nonlinearity

Even when we have a fixed damage (i.e. fixed damage density), nonlinearity is observed. The material in such a case exhibits nonlinearity in terms of hysteresis loop during loading -unloading cycles (Fig. 4a). This phenomenon is mainly due to the closure of cracks and frictional sliding of the microcracks. So, based on the applied load, type of load and microstructural phenomenon affecting them, this nonlinearity can therefore be important.

GENERAL INTRODUCTION

Deterioration of mechanical properties

Progressive and irreversible deterioration of material properties can be due to the formation of defects (voids, cracks, etc.) which characterizes the damage.

Due to the influence of microcracking, there can be a 10% to 30% loss in Young's modulus when compared with virgin (non-microcracked) material. Such degradation of elastic properties can be seen through unloading phases of mechanical tests (Fig. 4a). [START_REF] Wong | Microcracking and grain size effect in Yuen Long marbles[END_REF] show that peak strength of marbles drops with increasing initial crack density (Fig. 5a). Fig. 5b gives the modulus reduction as a function of crack density in Calcium alumino silicate glass ceramic (CAS/SiC) composite. 

Induced anisotropy

The orientation of the microcracks depends on the loading path, their normals being directed in the direction of maximum elongation. Let us consider an initially isotropic material under mechanical loading. After some load level, microcracks start to appear and they exhibit preferential orientation related to the load direction and nature (i.e. tension or compression). Due to this directional dependency, the initially isotropic material becomes anisotropic, its resulting anisotropy being related with cracks orientation. Fig. 6 gives data obtained from analyses of crack orientation in ceramics under uniaxial tension.

We clearly observe in this figure that cracks do not always follow the preferential path and they indeed have oriented nature.

Fig. 7 shows the distribution of the Young's modulus of a ceramic composite that is mainly degraded in some directions. Note that the resulting anisotropy is clearly a function of the load direction but can be affected by initial anisotropy of the material (see comparison between Figs. 7a and 7b done for two load directions). Results show that microcracking affects not only axial properties but also transverse and shear properties. 
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This is known as unilateral effect. Specially, closure of cracks results in some recovery in the materials properties compared to the open state (Fig. 8). Another consequence of this behavior can be the dissymmetry between tension and compression loads. There can be a huge contrast between the tension fracture stress (Fig. 9a) and compression fracture stress (Fig. 9b). The lower stiffness in tension is mainly due to the fact that microcracks are opened whereas the higher stiffness in compression can be attributed to microcracks closure. This shows that microcracks evolve differently based on their status (open/closed) and has a varied influence on a macroscopic level.

Typically after unloading, several microcracks "disappear" (i.e. become closed). Fig. 10 clearly shows this cracks closure in rocks. 

Extension to thermal issues

As mentioned in the previous section, not only mechanical properties but also thermal properties can be affected by microcracking. In retrospect, two specific aspects can be identified as:

• influence of the thermal loads on microcracking,

• influence of microcracking on thermal properties.

This is important since the brittle materials which are the subject of the study, are generally refractory which exacerbates the thermomechanical effects. In what follows, we will discuss the importance of these aspects.

Influence of thermal loads on microcracking

Civil engineering provides the most studies on thermal response of brittle materials. Especially it is critical to study the behaviour of concrete during fire or thermal hazard conditions. The performance of cement-based material under elevated temperatures are very complicated and difficult to characterize.

Thermal loading results in both physical and chemical changes in the microstructure affecting the mechanical behaviour. Researchers agree that there is a decrease in mechanical characteristics of brittle materials due to thermal induced microcracking. Their influence on elastic properties (Fig. 11a), strength (Fig. 11b), stiffness [START_REF] Nechnech | An elasto-plastic damage model for plain concrete subjected to high temperatures[END_REF][START_REF] Griffiths | Quantification of microcrack characteristics and implications for stiffness and strength of granite[END_REF]) and compressive strength [START_REF] Gardner | Effect of conditioning temperature on the strength and permeability of normal-and high-strength concrete[END_REF][START_REF] Vejmelková | Effect of cracks on hygric and thermal characteristics of concrete[END_REF]) are well known. Fig. 12 shows the effect of exposure to temperature on a sandstone subjected to hydrostatic compression. According to temperature level, we can see at the early stages of the mechanical load the decrease in compressibility modulus K. This can be attributed to increasing damage, induced by exposure to increasing temperature. We could also note in the figure that with increasing compression load the compressibility modulus is recovered to its initial value K 0 . Such unilateral effect, related to closure of defects, confirms that thermal-induced cracks are responsible for the deterioration process involved here. [START_REF] Lin | Permanent strain of thermal expansion and thermally induced microcracking in Inada granite[END_REF] verified that higher the peak temperature load, higher is the microcrack density. The author also noted that the density of intragranular cracks accounts for a major percentage of the overall crack density and grain boundary cracks contribute very less. [START_REF] Damhof | Numerical-experimental analysis of thermal shock damage in refractory materials[END_REF] observed that thermal-induced damage linearly depends on temperature (Fig. 13a). The author goes on to add that the damage originates purely from the thermal expansion mismatch in the refractory material. This can be seen in Fig. 13a, where damage occurs only after the start of thermal loading. [START_REF] Griffiths | Quantification of microcrack characteristics and implications for stiffness and strength of granite[END_REF] note a stable crack length but an increase in the number of cracks under thermal loading. This increase in the number of cracks leads to an increase in the crack density (Fig. 13b). After producing varied explanations for a near-constant density after 600 °C, they conclude that it is probable that microcracks stop growing after this point, and rather open (increase in aspect ratio). This could explain why strength decreases with temperature but crack density remains constant after 600 °C (Figs. 11b and13b). [START_REF] Kim | Relation between crack density and acoustic nonlinearity in thermally damaged sandstone[END_REF] study sandstone specimens which have pre-existing cracks due to environment. They observe that at low temperatures microcracks evolve slowly when compared to higher temperatures (Fig. 3b). The literature has a lot more investigation exploring how damage evolution takes 

GENERAL INTRODUCTION

place during thermal loading. From these information, we can say that temperature plays a major role in microcracking growth, both in thermal-induced cracks and pre-existing cracks.

Influence of microcracking on thermal properties

Microcracks not only influence the mechanical properties (Fig. 5a) but also have effects on the optical, electrical, magnetic and thermal properties as well. Experimental data on the effect cracks have on thermal properties is very scarce. One such paper is from [START_REF] Vejmelková | Effect of cracks on hygric and thermal characteristics of concrete[END_REF], who shows up to a 40% drop in the thermal conductivity of various concretes (Tab. 1). [START_REF] Kim | Dimensional stability of composite in a space thermal environment[END_REF] presents that transverse cracks in carbonepoxy composite affect and change the thermal expansion of the laminate (Fig. 14a).

From this, we can establish that thermal loading affects both mechanical response and heat flow process. Fig. 14b gives us the influence of temperature on thermal conductivity in sandstone under pressure loading. Based on the increase in the temperature, we see decrease in the conductivity. This is due to the evolution of damage during thermal loading. Interestingly, the increase in conductivity for a given temperature can be explained by cracks closure.

Even then, at high pressure when all cracks are closed, further increase in pressure does not have a big impact on the conductivity. From this, it is safe to say that thermal-induced cracks are responsible for the loss in thermal conductivity.

It is imperative to understand that both the influence of thermal loads on cracks development and the influence of cracks existence on thermal properties are closely linked.

Having said that, this thesis will focus on the latter, which will be the precursor in creating a fully coupled thermomechanical damage model. Predicting or calculating the effective properties of a heterogeneous media (with inclusion or cracks) for real configurations is challenging due to their complex geometry, boundary conditions or loads and/or consti-
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tutive behaviours. In addition, the lack of experimental data makes it very relevant to investigate the effects of microcracking through other means, such as homogenization and numerical simulations.

Homogenization

Length scale separation

In continuum micromechanics, homogenization methods are used to find the effective response of finite statistically homogeneous materials. Homogenization is typically build on the principle of separation of scales [START_REF] Zaoui | Continuum Micromechanics: Survey[END_REF]). The lowest scale described is microscale, largest is macroscale and intermediate ones are called mesoscale. In a classic formulation, the characteristic length of the studying inhomogeneity d, much be smaller than the size of the Representative Volume Element (RVE). This RVE should be representative of the material to be studied irrespective of its location in the structure. Then, must be smaller than the characteristic dimension L of the whole body and fluctuation length η of the prescribed loading. To put all this together,

d 0 d L, η (1) 
where d 0 is the lowest possible length of the inhomogeneity below which continuum mechanics cannot be used.

Methodology

Homogenization can be interpreted as describing the behaviour of a heterogeneous material at lower length scale in terms of a fictitious Equivalent Homogeneous Material (EHM) at higher length scale (Fig. 15). This process is done by means of homogenization applied on the RVE. Accordingly, such volume should remain sufficiently small to contain all the necessary information describing the behaviour of the heterogeneous material, and at the same time, large enough to make itself a meaningful sample of the material.

Figure 15: Homogenization of a heterogeneous medium/material.
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One of the most commonly used homogenization technique is Mean-Field Homogenization (MFH) and known for its computational efficiency. MFH is based on approximate volume average quantities (stress, strain, flux, gradient, etc.) over each phase to derive the overall behaviour of the heterogeneous material. The quantities are based on the homogenization schemes used, which are in turn based on the assumptions made about the interaction between the matrix and the inclusions. Some of such well known schemes are dilute, self-consistent, differential, Mori-Tanaka (MT), Ponte Castañeda-Willis (PCW), etc.

Existing works

Homogenization techniques were first developed to study the effective properties of composites. Over the years many, researchers have studied the effective elastic [START_REF] Hill | Elastic properties of reinforced solids: Some theoretical principles[END_REF][START_REF] Hashin | Analysis of composite materials -A survey[END_REF][START_REF] François | Mechanical Behaviour of Materials: Volume 1: Micro-and Macroscopic Constitutive Behaviour, Solid mechanics and its applications[END_REF][START_REF] Dvorak | Micromechanics of composite materials, Solid mechanics and its applications[END_REF], thermoelastic [START_REF] Levin | Thermal expansion coefficient of heterogeneous materials[END_REF][START_REF] Laws | On the thermostatics of composite materials[END_REF], thermal (Torquato 2002, Pietrak and[START_REF] Pietrak | A review of models for effective thermal conductivity of composite materials[END_REF] and other properties of the composites.

Most of the existing research on MFH is based on the pioneering works of [START_REF] Eshelby | The determination of the elastic field of an ellipsoidal inclusion, and related problems[END_REF]. Eshelby introduces a fourth order tensor depending on the matrix property and the shape of the inclusion to find the effective elastic properties. Though Eshelby's equivalent inclusion method, also called eigenstrain method, was developed for an ellipsoidal inclusion, other shapes like spheroidal, penny-shape, cylindrical can be considered as a special case of an ellipsoid.

Later, the methods were extended to material inhomogeneities (fibres, inclusions, voids, cracks, etc) emphasizing their shapes. Focusing on cracks, direct homogenization methodology uses displacement jump between crack lips to derive the elastic properties (Kachanov 1993, Nemat-Nasser and[START_REF] Nemat-Nasser | Micromechanics: Overall properties of heterogeneous materials[END_REF]. If the cracks are considered as pennyshaped inclusion (which is a limit case for an ellipsoid), then, we can use the above mentioned Eshelby's method [START_REF] Eshelby | The determination of the elastic field of an ellipsoidal inclusion, and related problems[END_REF] to solve for the effective elastic and thermoelastic properties [START_REF] Budiansky | Elastic moduli of a cracked solid[END_REF][START_REF] Mura | Micromechanics of defects in solids, Mechanics of elastic and inelastic solids[END_REF][START_REF] Dormieux | Micromechanics of fracture and damage[END_REF].

Due to the mathematically analogy between the elasticity and steady-state heat conduction [START_REF] Bristow | Microcracks, and the static and dynamic elastic constants of annealed and heavily cold-worked metals[END_REF], authors have extended modelling approaches to solve thermal problem of a microcracked media. One such example is [START_REF] Sevostianov | Thermal conductivity of a material containing cracks of arbitrary shape[END_REF], who uses direct methodology to predict the effective conductivity by studying temperature jump across the crack lips. Though many authors tried to extend equivalent inclusion method to steady-state, [START_REF] Hatta | Equivalent inclusion method for steady state heat conduction in composites[END_REF] were the first one to propose a general method to solve the problem. They introduce a new tensor (later named as depolarization tensor)

which is similar to the Eshelby tensor in elasticity but only depends on the shape of the inclusion. They give thermal conductivity of two and three phase composites as a function of the depolarization tensor where the fibres are assumed be a cylindrical (another limit case of ellipsoid). They also provide the components of depolarization tensor for various
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inclusion shapes. Fig. 16 shows the normalized thermal conductivity of an aligned short SiC fibre/epoxy composite [START_REF] Hatta | Equivalent inclusion method for steady state heat conduction in composites[END_REF].

Figure 16: Thermal conductivity of two phase composite along the x 3 axis (K 33 ) normalized by K m as a function of fibre volume fraction f for various aspect ratios [START_REF] Hatta | Equivalent inclusion method for steady state heat conduction in composites[END_REF].

From this information, it is clear that the theoretical framework for finding the effective elastic, thermoelastic and thermal properties of composite materials already exists. In the present work, attention is paid to the special case of microcracks. The modelling of elastic properties of microcracked media has been extensively investigated in the literature, and methodologies are often considered to be easily extendable to thermal behaviours.

Yet, closed-form expression of thermal and thermoelastic properties are not provided in existing works. Accordingly, this work intends to implement homogenization theories to derive the thermomechanical response of microcracked media. Without existing exhaustive experimental characterization of these issues, the homogenization approach can be helpful for the study and optimization of brittle materials in view of previously-mentioned industrial applications. Moreover, due to the specific feature of cracks defects, it seems important to account for the interaction between their unilateral behaviour and the overall thermal behaviour of materials.

Numerical simulations

In addition to the theoretical approach, we also propose to address these aspects through numerical simulations. Several numerical methods can be used for the simulation of the materials effective behaviour. One can cite for instance, Fast Fourier Transform (FFT), Boundary Element Method (BEM), Finite Difference Method (FDM), Finite Element Method (FEM), etc. There are few numerical studies done on the effective thermal properties of microcracked media, many of them are based on FEM.

For example, [START_REF] Lu | Effect of matrix cracking on the overall thermal conductivity of fibre-reinforced composites[END_REF] suggests a FEM (in ABAQUS) to find the overall conductivity of a matrix-cracked composite. The discretization is done for a quar-
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ter of the model with quadratic axisymmetric elements. They simulate the behaviour of temperature gradient and heat flux field near the crack tip. Authors also show good agreement between the analytical and simulated solutions (Fig. 17). Finally, they state that the numerical results are insensitive to the meshing when crack density is low but very much sensitive when it is high. (or microcracked) media described by an MRP is similar to the Eshelby approach. This involves embedding the MRP inside an infinite medium and applying uniform boundary condition at infinity to find the local properties and inturn the average macroscopic quantities. Though the MRP contains only one crack, the boundary condition can be changed to account for the interaction. Nguyen et al. studies the effective conductivity of microcraked media for various crack density, spatial distribution and conductive/non conductive cracks. Fig. 21a shows the effect of crack conductivity on the temperature jump across the crack radius whereas Fig. 21b gives the numerical effective conductivity for various crack distribution. In the same manner as theory, numerical simulation comes thus in handy and may help to estimate the effective behaviour of materials. In this thesis, the numerical part will include FEM simulations performed within a framework consistent with the theoretical approach. In this way, numerical results can be compared to analytical ones.

Thesis plan

Considering all this previous information into account, the present thesis concentrates on investigating the effective thermomechanical properties of a brittle material both theoretically and numerically. The work starts with the analytical study of the thermal conductivity and resistivity of a brittle microcracked media in steady-state followed by numerical simulation. Once these results are presented, the work moved forward onto the modelling of the thermoelastic properties of the said media. And finally, results are compared and conclusions are drawn. The thesis is organized with each chapter corresponding to a published or submitted research paper.

• Chapter 1 [C. R. Mecanique;347: 944-952 (2019)] provides the effective thermal properties of a 3D microcracked media under the steady-state condition. The medium considered is initially isotropic and has families of randomly oriented cracks.

The main focus will be on the unilateral effect. Influenced by [START_REF] Deudé | Propriétés élastiques non linéaires d'un milieu mésofissuré[END_REF] the closed cracks are considered to be a fictitious isotropic material. Using classical Eshelby-like approach, closed-form expressions for various schemes (interacting and non-interacting cracks) are given.

• Chapter 2 [Mechanics & Industry;21: 519 (2020)] gives the effective thermal conductivity for a 2D microcracked media. The medium is assumed to be initially isotopic and weakened by a single-family of parallel cracks. The theoretical method uses various estimates to provide closed-form expressions. The numerical method involves FE simulations performed in ABAQUS to compare with the micromechanical results.
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• Chapter 3 [Euro. J. Mech. A/Solids; (2020); submitted] presents the effective thermoelastic properties of a 3D microcracked media. Using classical strain and stress based boundary conditions, the overall thermal stress and strain tensors and specific heat capacities at constant strain and stress are found. Special attention is paid to crack induced anisotropy and unilateral effect.

• Chapter 4 holds the collection of the simulations performed. This includes 3D FE simulations of conductivity, resistivity and thermoelasticity. The simulations investigate the influence of crack orientation, size, and crack status (open/closed).

Thus obtained results are compared to the theory. A self-consistent notation is adopted.

Introduction

Homogenization is a useful tool for the modelling and analysis of the behaviour of heterogeneous materials. One of its main objectives is to estimate their overall properties from their microstructural features (phase properties, inclusions distribution and geometry, ...). This topic is even more interesting when there is a lack of experimental data. Several studies have been dedicated to the micromechanical analysis of microcracked media, especially to address their elastic behaviour (for instance [START_REF] Kachanov | Elastic solids with many cracks and related problems[END_REF][START_REF] Nemat-Nasser | Micromechanics: Overall properties of heterogeneous materials[END_REF][START_REF] Ponte Castañeda | The effect of spatial distribution on the effective behavior of composite materials and cracked media[END_REF] for initially isotropic materials). Still, many practical applications require proper modelling of other properties such as thermal, transport and piezoelectric properties which are not investigated much [START_REF] Dormieux | Microporomechanics[END_REF][START_REF] Sevostianov | On the effective properties of polycrystals with intergranular cracks[END_REF][START_REF] Su | An effective medium model for elastic waves in microcrack damaged media[END_REF][START_REF] Wang | The effective electroelastic property of piezoelectric media with parallel dielectric cracks[END_REF][START_REF] Giraud | Effective thermal conductivity of transversely isotropic media with arbitrary oriented ellipsoïdal inhomogeneities[END_REF].

Taking into account the unilateral effect (opening and closure of cracks) makes the estimation of said effective properties challenging, and this even more as microcracks are oriented defects. Some authors have investigated the elastic problem taking into account both the induced anisotropy and recovery phenomenon due to cracks closure, through averaging up-scaling methods [START_REF] Kachanov | Elastic solids with many cracks and related problems[END_REF][START_REF] Andrieux | un modèle de matériau microfissuré pour les béton et les roches[END_REF][START_REF] Deudé | Propriétés élastiques non linéaires d'un milieu mésofissuré[END_REF][START_REF] Dormieux | Stress-based estimates and bounds of effective elastic properties: The case of cracked media with unilateral effects[END_REF]. Such modelling strategy has never been applied before for a steady state heat conduction problem. So, in this work, we intend to address this issue through Eshelby-like approach and derive effective thermal properties of microcracked media focusing mainly on the unilateral effect.

Theoretical Framework of the thermal conduction problem

Since a lot of studies have presented the homogenization of elastic behaviour, the thesis would like to recall the conduction behaviour. Assuming length scale separation, this study deals with continuum micromechanics. Homogenization process providing microstructure-properties relationships is conducted through the mean-field theory. Present developments for effective thermal properties are inspired by the mathematical analogy between elasticity and steady-state heat conduction problems [START_REF] Hashin | Analysis of composite materials -A survey[END_REF][START_REF] Torquato | Random heterogeneous materials: Microstructure and macroscopic properties[END_REF] Let consider Ω the volume of the RVE of a heterogeneous material, ∂Ω the external surface and u the outward unit normal to ∂Ω. The macroscopic thermal gradient G can be defined as mean temperature on the external surface ∂Ω:

G = 1 |Ω| ∂Ω T (x) u(x) dΩ and Q = 1 |Ω| ∂Ω q(x) • u(x) x dΩ (1.1)
with T (x) and q(x) the local temperature and local heat density at any point x of Ω respectively. Using divergence theorem, under stationary thermal conditions, the macroscopic quantities correspond to the average of its respective microscopic quantities [START_REF] Valès | Heat source estimation in anisotropic materials[END_REF]:

G = 1 |Ω| Ω g(x) dΩ = g and Q = 1 |Ω| Ω q(x) dΩ = q (1.2)
with g(x) the local temperature gradient at any point x at Ω.

Let say the RVE has two phases (r = {m, i}), matrix (m) and inclusion (i) and their volume fractions are given as f m and f i respectively. Such a media exhibits a matrixinclusion typology in which each phase are supposed to exhibit a homogeneous behaviour and follows the Fourier's law:

q(x) = -λ(x) • g(x) and g(x) = -ρ(x) • q(x) ∀ x ∈ Ω (1.3) with λ(x) =    λ m , ∀ x ∈ Ω m λ i , ∀ x ∈ Ω i ρ(x) =    ρ m , ∀ x ∈ Ω m ρ i , ∀ x ∈ Ω i , Ω m ∪Ω i = Ω, Ω m ∩Ω i = ∅ (1.4)
where λ m and ρ m = λ -1 m denote the matrix thermal conductivity and resistivity with volume Ω m , λ i and ρ i = λ -1 i denote the inclusion thermal conductivity and resistivity with volume Ω i . Two different boundary conditions can be imposed at the outer boundary δΩ of the RVE, i.e. either uniform macroscopic temperature gradient (G imposed at δΩ) or uniform macroscopic heat flux (Q imposed at δΩ). Assuming an initial natural state, the microscopic and macroscopic quantities can be linked linearly as [START_REF] Hill | Elastic properties of reinforced solids: Some theoretical principles[END_REF]:

g(x) = A(x) • G and q(x) = B(x) • Q ∀ x ∈ Ω (1.5)
where A (resp. B) is the second order gradient localization (resp. flux concentration)

tensor such that A = B = I (I being the second order identity tensor). Average temperature gradient G and heat flux Q of the heterogeneous media as obtained by Eq.

(1.2) can thus be related by effective thermal tensors:

Q = q = -λ • g = -λ • A • G = -λ • A • G = -λ hom • G (1.6) Sharan Raj RANGASAMY MAHENDREN CHAPTER 1. HOMOGENIZED THERMAL CONDUCTION PROPERTIES IN 3D G = g = -ρ • q = -ρ • B • Q = -ρ • B • Q = -ρ hom • Q (1.7)
where λ hom and ρ hom are the effective thermal conductivity and resistivity tensors respectively. Since each phase is considered homogeneous, the effective tensors can be simplified as:

λ hom = λ • A = r f r λ r • A r with A = r f r A r = I (1.8) ρ hom = ρ • B = r f r ρ r • B r with B = r f r B r = I (1.9)
where operator • r = 1 |Ωr| Ωr • dΩ is the average value over the volume of the phase r. Further development of the above equations give:

λ hom = λ m + f i (λ i -λ m ) • A i and ρ hom = ρ m + f i (ρ i -ρ m ) • B i (1.10)
The mean localization tensors help us establish the link between the mean temperature gradient per phase and the macroscopic quantity:

g r = A r • G and q r = B r • Q (1.11)
From these expressions, knowing the localization tensor A r and concentration tensor B r is enough to solve for the effective conductivity and resistivity respectively. But for this, we need to find the local heat flux q, temperature gradient g and temperature T fields to solve the following problem on the RVE, either [START_REF] Torquato | Random heterogeneous materials: Microstructure and macroscopic properties[END_REF]:

               q(x) = -λ(x) • g(x), ∀ x ∈ Ω div q = 0 g(x) = grad T (x) T (x) = G • x, ∀ x ∈ ∂Ω or                g(x) = -ρ(x) • q(x), ∀ x ∈ Ω div q = 0 g(x) = grad T (x) q(x) = Q, ∀ x ∈ ∂Ω (1.12)
Left part of Eq. (1.12) corresponds to uniform temperature gradient (G) boundary conditions whereas right part is related to uniform flux (Q) conditions. The solution for (q, g) is neither unique nor easy due to the lack of thermal and geometric description of the heterogeneous materials. To address this difficulty, two approaches are possible: (1) to explore and find a range of possible solutions (bound methods like Voigt and Reuss), (2) to make additional assumptions on the microstructure of the RVE to deduce expressions for q and g (estimation methods). Works on the single-inhomogeneity problem, initiated by [START_REF] Eshelby | The determination of the elastic field of an ellipsoidal inclusion, and related problems[END_REF] in elasticity and extended to thermoelasticity [START_REF] Berryman | Generalization of Eshelby's formula for a single ellipsoidal elastic inclusion to poroelasticity and thermoelasticity[END_REF][START_REF] Torquato | Random heterogeneous materials: Microstructure and macroscopic properties[END_REF] and to steady-state [START_REF] Hatta | Equivalent inclusion method for steady state heat conduction in composites[END_REF] Now in line with the thesis, consider a 3D RVE with N number of crack families. Let denote λ c,j and ρ c,j = λ -1 c,j the conductivity and resistivity of the j th (j = 1...N ) family of parallel cracks and f c,j their volume fraction. Eq. (1.10) for this microcracked media becomes:

λ hom = λ m + N j =1 f c,j (λ c,j -λ m ) • A c,j
(1.13) For the j th family of parallel microcracks, n j denotes their unit vector, ω j = c j /a j their mean aspect ratio and d j = N j a 3 j their scalar crack density parameter (N j is the number of cracks in the j th family per unit volume, [START_REF] Budiansky | Elastic moduli of a cracked solid[END_REF]. Crack volume fraction comes thus to f c,j = 4 3 πd j ω j (Appendix A.2). Under these assumptions, estimated solutions for localization and concentration tensors A est c,j and B est c,j depend on the following depolarization tensor S E j (similar to the Eshelby tensor of elastic problems)

ρ hom = ρ m + N j =1 f c,j (ρ c,j -ρ m ) • B c,j ( 
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S E j = 1 - π 2 ω j n j ⊗ n j + π 4 ω j (I -n j ⊗ n j ) (1.15)
Last important points for the considered problem deal with the geometry and properties of the cracks. Regarding the former, the configuration of penny-shaped cracks corresponds to the limit case ω j → 0 that must be introduced at the very end of mathematical developments. Moreover, the fact that microcracks can be either open or closed according to compressive loads is introduced through the latter point. In both cases, cracks are assumed to be isotropic (λ c,j = λ c,j I and ρ c,j = ρ c,j I) but they behave differently depending upon the state of the microcrack:

• for the open case, λ c,j = 0 and ρ c,j → ∞, which corresponds to adiabatic conditions on the cracks lips,

• following the works of [START_REF] Deudé | Propriétés élastiques non linéaires d'un milieu mésofissuré[END_REF], closed cracks are represented by a fictitious isotropic material with scalar conductivity λ c,j = λ * and resistivity ρ c,j = ρ * , which accounts for some heat transfer continuity at the closure of cracks (friction-less contact). Taking λ * = λ m and ρ * = ρ m may seem natural, but we will nevertheless continue the development for a general case where λ * and ρ * are scalars with a condition λ * = 0 and ρ * → ∞.

Gradient-based formulation

By gradient-based formulation, we mean to impose a uniform macroscopic temperature gradient G at the outer boundary δΩ of the RVE. Such a situation corresponds to the classical strain-based condition of the Eshelby's problem. Let us consider three different approaches to derive the effective properties.

Dilute scheme

In a first approach, we are going to estimate the homogenized properties assuming a dilute density of cracks, which is to consider no interaction between defects. Remote conditions on the Eshelby problem come in that case to the macroscopic gradient (G ∞ = G, Fig.

1.2a). Hence, the gradient localization tensor is given by:

A dil c,j = I + P E j • λ c,j -λ m -1
(1.16)

where P E j = S E j • ρ m is the symmetric second order interaction tensor (equivalent to the first Hill tensor in elasticity). Eq. (1.16) can be simplified as: Eq. (1.13) thus comes to:

A dil c,j = I -1 -ξ j S E j -1 with ξ j = λ c,j λ m (1.17) 1.3. GRADIENT-BASED FORMULATION (a) (b)
λ dil hom = λ m I - 4 3 π N j =1 d j ω j 1 -ξ j A dil c,j (1.18) 
We can see that the λ dil hom depends on the aspect ratio ω j in our case. However, we show that the quantity ω j 1 -ξ j A dil c,i tends to a limit T j when ω j → 0, so:

λ dil hom = λ m • I - 4 3 π N j =1 d j T j with T j = lim ω j → 0 ω j 1 -ξ j I -S E,j 1 -ξ j -1 (1.19)
Such expansion includes both crack configurations, i.e. for open cracks λ c,j = 0, so ξ j = 0 while for closed cracks λ c,j = λ * = 0, so ξ j = 0. Taking this into account, tensor T j for the j th family of cracks is given by:

T j =      2 π n j ⊗ n j , if cracks are open 0 , if cracks are closed (1.20)
Accordingly, Eq. (1.19) can be simplified in:

λ dil hom = λ m • I - 8 3 j/open d j n j ⊗ n j (1.21)
in which only open cracks contribute in an additive manner. As an example, the effective thermal conductivity of a media weakened by a single family of parallel microcracks with
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unit normal n and density d takes the form:

λ dil hom =    λ m - 8 3 d λ m n ⊗ n , if cracks are open λ m , if cracks are closed (1.22)
Detailed development for a single family of crack in dilute case can be found in Appendix A.5.1.

Mori-Tanaka scheme

In line with Eshelby-like approach, the Mori-Tanaka (MT) scheme [START_REF] Mori | Average stress in matrix and average elastic energy of materials with misfitting inclusions[END_REF] considers cracks embedded in an infinite media (with matrix properties) that is subjected to the average temperature gradient over the matrix phase (G ∞ = g m , Fig.

1.2a). Introducing inhomogeneities inside a thermally-stressed matrix in this way amounts to account for some interactions between cracks. Averaging rule Eq. (1.2) leads to the following localization tensor:

A M T c,j = A dil c,j • f m I + N k =1 f c,k A dil c,k -1
(1.23) Now Eq. (1.13) can be written as:

λ M T hom = λ m • I + 4 3 π N j =1 d j T j -1 = λ m • I + 8 3 j/open d j n j ⊗ n j -1
(1.24) since lim

ω j → 0 ω j I -S E,j 1 -ξ j -1
= T j also. Accordingly, the specific conduction behaviour for the simple case of a single family of parallel microcracks according to their status described is as follows (see Appendix A.5.2): order spatial distribution tensor P d c , the effective conductivity can be given by:

λ M T hom =      λ m - 8 3 d λ m 1 1 + 8d 3 n ⊗ n , if
λ P CW hom = λ m + I - N i =1 f c,j λ c,j -λ m -1 + P E j -1 • P d c -1 • N j =1 f c,j λ c,j -λ m -1 + P E j -1 (1.26)
It is also convenient to observe that:

λ P CW hom = λ m • I + N j =1 f c,j M c,j • λ m • P d c • λ m -1 • I - N j =1 f c,i M c,j • Q d c (1.27)
where

M c,j = ρ c,j -ρ m -1 + Q E j -1 , Q E j = λ m • I -P E j • λ m (equivalent to the second Hill tensor in elasticity) and Q d c = λ m • I -P d c • λ m .
For simplicity, a spherical spatial distribution is adopted in this study, for which P d c reads:

P d c = 1 3 ρ m (1.28)
Even though, the PCW formulation is derived from the energy approach, Eq. (1.26) can be interpreted in the form of Eq. (1.13) through the following localization tensor:

A P CW c,j = A dil c,j • f m I + N k=1 f c,k I + P E k -P d c • λ c,k -λ m • A dil c,k -1 (1.29)
As already emphasized by Ponte Castañeda and Willis, it can be observed that when P d c = P E j , the PCW scheme corresponds to the Mori-Tanaka estimate (Eq. (1.29) comes to Eq. (1.23)) while the case P d c = 0 leads to the dilute approximation (Eq. (1.29) reduces to Eq. (1.16)).

Taking into account Eqs. (1.26) and (1.27), or equivalently Eqs. (1.29) and (1.13), the corresponding effective conductivity reads:

λ P CW hom = λ m • I - 4 3 π N j=1 d i T j • I + 4 9 π N j=1 d i T j -1
(1.30)

Keeping in mind Eq. (1.20), one gets (refer to Appendix A.5.3):

λ P CW hom = λ m • I - 8 3 j/open d j n j ⊗ n j • I + 8 9 j/open d j n j ⊗ n j -1
(1.31)
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which reduces to:

λ P CW hom =      λ m - 8 3 d λ m 1 1 + 8d 9 n ⊗ n , if cracks are open λ m , if cracks are closed (1.32)
for a single family of parallel microcracks. Note that MT (Eq. (1.25)) and PCW (Eq.

(1.32)) tend to dilute prediction (Eq. (1.22)) when d → 0.

Flux-based formulation

This section considers uniform macroscopic heat flux Q at δΩ. Estimates and bound are based on the local fields of cracks embedded inside a matrix subjected to uniform heat flux at infinity (Q ∞ ). Accordingly, the temperature gradient g(x) tends to ρ m • Q ∞ when |x| → ∞ . This, therefore, amounts to the gradient boundary conditions of the Eshelbylike problem that provide the average temperature gradient g c over the cracks volume.

From the average heat flux in this phase q c = λ c • g c , estimates of tensor B can be derived.

Dilute Scheme

For the dilute scheme, conditions at infinity correspond to the macroscopic heat flux

(Q ∞ = Q, Fig. 1.2b
). So that:

B dil c,j = λ c,j • A dil c,j • ρ m = I + Q E j • ρ c,j -ρ m -1
(1.33) Appendix A.6.1 has information regarding this development. Substituting Eq. (1.33) into Eq. (1.14), we get:

ρ dil hom = ρ m • I + 4 3 π N j =1 d j T j (1.34)
As previously mentioned, Eq. (1.34) accounts for the cracks state. For open cracks, ρ c,j → ∞, so again ξ j = 0, while for closed cracks ρ c,j = ρ * → ∞, so ξ j = 0 with related expression of the T j tensors provided in Eq. (1.20). Now,

ρ dil hom = ρ m • I + 8 3 j/open d j n j ⊗ n j (1.35)
Taking this into account, the expression of the effective resistivity tensor for a single family of cracks comes to: (Dormieux andKondo 2009, Zhu 2006).

ρ dil hom =    ρ m + 8 3 d ρ m n ⊗ n , if

Mori-Tanaka scheme

In this case, the remote conditions correspond to the average heat flux over the matrix phase (Q ∞ = q m , Fig. 1.2b) and again, using the average rule, the flux concentration tensor is given by:

B M T c,j = B dil c,j • f m I + N k =1 f c,k B dil c,k -1
(1.37)

Introducing Eq. (1.37) in Eq. (1.14) finally gives:

ρ M T hom = ρ dil hom (1.38)
From Eqs. (1.24), (1.35) and (1.38), it is clear that the Mori-Tanaka approach leads to the same predictions under gradient or flux conditions (see also Appendix A.6.2), both for open and closed microcracks, i.e. λ M T hom = (ρ M T hom ) -1 . The same conclusion has been drawn for elastic properties too (Dormieux andKondo 2009, Zhu 2006).

Ponte Castañeda-Willis lower bound

As inspired by Ponte Castañeda and [START_REF] Ponte Castañeda | The effect of spatial distribution on the effective behavior of composite materials and cracked media[END_REF], [START_REF] Dormieux | Stress-based estimates and bounds of effective elastic properties: The case of cracked media with unilateral effects[END_REF] derived a variational stress-based lower bound for the effective compliance using an energy approach.

Similar to this work, the thermal resistivity can thus be given as:

ρ P CW hom = I - N j =1 f c,j M c,j • Q d c -1 • I + N j =1 f c,j M c,j • λ m • P d c • λ m • ρ m (1.39)
From Eqs. (1.27) and (1.39), we can observe the equivalence between the upper and lower PCW bounds, since λ P CW hom = (ρ P CW hom ) -1 . As for the gradient-based bound, the above estimate can be interpreted through the following concentration tensor:

B P CW c,j = B dil c,j • f m I + N k=1 f c,k I + Q E k -Q d c • ρ c,k -ρ m • B dil c,k -1
(1.40)
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Taking into account the spatial distribution adopted in Eq. (1.28), the flux-based PCW bound leads to the following effective thermal resistivity (Appendix A.6.3):

ρ P CW hom = I + 4 3 π N j=1 d j T j • I - 8 9 π N j=1 d j T j -1 • ρ m (1.41)
After introducing Eq. (1.20), we get:

ρ P CW hom = I + 8 3 j/open d j n j ⊗ n j • I - 16 9 j/open d j n j ⊗ n j -1 • ρ m (1.42)
For a single family example considered throughout the study, the above equation comes to:

ρ P CW hom =      ρ m + 8 3 d ρ m 1 1 -16d 9 n ⊗ n , if cracks are open ρ m , if cracks are closed (1.43)
which again tends to dilute case (Eq. (1.36)) for d → 0. Potential equivalences and between the schemes and their results can be seen in Appendix A.7.

Discussion

We propose to highlight the consequences of microcracks on thermal properties through the case of a matrix with a single family of parallel cracks, for which closed-form expressions of dilute and Mori-Tanaka estimates and variational bounds have been provided in the text.

For the open cracks, we note that the material exhibits a damage-induced anisotropy, irrespective of the scheme or boundary conditions. To be precise, the effective thermal properties are transversely isotropic around axis n of cracks (see Eqs. 

λ(v) = v • Q v • G and ρ(v) = v • G v • Q (1.44)
when the material is subjected to uniform temperature gradient G = G v v and to uniform flux Q = Q v v respectively. Introducing overall conductivity and resistivity tensors thus gives:

λ(v) = v • λ hom • v and ρ(v) = v • ρ hom • v (1.45)
On the contrary, we note that closed cracks do not contribute to the degradation or en-32 Sharan Raj RANGASAMY MAHENDREN hancement of thermal conduction properties. This result is true regardless of the scheme, boundary conditions, fictitious properties (λ * , ρ * ) or considered direction v. Indeed, in all cases, effective conductivity and resistivity in any direction recover their initial value (of the virgin material) at the closure of microcracks, i.e.:

λ(v) = λ m and ρ(v) = ρ m , ∀ v, if cracks are closed (1.46)
This means that the continuity of heat transfer is fully ensured when microcracks are closed, with a conduction response equal to that inside the homogeneous isotropic (virgin) matrix. Such a conclusion clearly differs from the results micromechanically established for elastic properties. Indeed, under frictionless conditions, closure of cracks leads to a partial recovery of mechanical properties. Considering for instance the Young modulus 

E(v) = [v ⊗ v : S : v ⊗ v] -1 (resp. the elongation modulus L(v) = [v ⊗ v : C : v ⊗ v]) with 

Conclusion

In this chapter, the effective conduction properties were analyzed by three different homogenization techniques. Open cracks do have varied influence based on the technique but the properties are always anisotropic (transversely isotropic for a single family of cracks). We also see that the spatial distribution of cracks plays an important role in predicting the behaviour of the microcracked media. Regarding the unilateral behaviour, 34
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results show that the closure of cracks leads to a total deactivation of their effects on the thermal conductivity and resistivity of the material, irrespective of homogenization methods (taking into account or not interactions between microcracks) or boundary conditions. Without experimental data, the choice has been made to compare theoretical results to numerical simulations. This comparison is discussed in the following chapter.
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Chapter 2

Thermal conductivity in 2D: theoretical and numerical approaches

Abstract

The objective of this chapter is to compare the effective conductivity of a microcracked media either derived from theoretical or numerical results.

For simplicity, the 2D case is considered here. The theoretical approach uses the same Eshelby's equivalent inclusion method used in Chapter 1. A self-consistent notation is adopted.

Introduction

Defects have an influence on the macroscopic behaviour of a material, each on a different scale. The overall behaviour of the material can be characterized by its microstructure.

This transition from micro-to-macro can be modelled using averaging techniques (homogenization) in order to derive the effective properties of a material.

Homogenization studies often concentrate on the elastic behaviour of a micro-cracked material. In so-called direct methodology, cracks are represented as material discontinuities with parallel faces. The displacement jumps induced by the cracks allow deriving their contribution to the overall response. For instance, [START_REF] Kachanov | Elastic solids with many cracks and related problems[END_REF] and Taya (1986), [START_REF] Benveniste | An exact solution for the effective thermal conductivity of cracked bodies with oriented elliptical cracks[END_REF] and more recently [START_REF] Shafiro | Anisotropic effective conductivity of materials with nonrandomly oriented inclusions of diverse ellipsoidal shapes[END_REF], the equivalent inclusion method appears again as a key issue. While several studies account for the arbitrary value of matrix/inclusion conductivity and arbitrary crack's orientation or shape, most of the existing papers generally provide thermal conductivity of microcracked media in the non-interacting case. [START_REF] Nguyen | Modeling of heat flow and effective thermal conductivity of fractured media: Analytical and numerical methods[END_REF] give closed-form expression for different schemes but consider only one orientation of the crack. Nevertheless, that is not the only challenge. Opening or closing of microcrack (also known as unilateral effect) can have a different influence on the material, in turn on the overall properties. Consequences of both induced anisotropy and unilateral effect on the elastic problem have been studied by few authors [START_REF] Kachanov | Elastic solids with many cracks and related problems[END_REF][START_REF] Deudé | Propriétés élastiques non linéaires d'un milieu mésofissuré[END_REF], but the same cannot be said for the heat conduction problem.

The modelling of the steady-state behaviour within microcracked media can also be achieved through numerical simulation. [START_REF] Carson | An analysis of the influence of material structure on the effective thermal conductivity of theoretical porous materials using finite element simulations[END_REF] apply Finite Element Method (FEM) to find the conductivity of non-insulated porous of various shapes and sizes, while 

Theoretical Framework

We use the same framework used in Chapter 1 but for a 2D RVE (Fig. 2). In our case, the said tensor for a flat oblate ellipse can be given as: 

S E (ω) = 1 1 + ω n ⊗ n + ω 1 + ω (I -n ⊗ n), ∀ ω 1 (2.1) ( 

Calculation of the effective thermal conductivity

We impose a uniform macroscopic thermal gradient G at the outer boundary δΩ of the RVE. This is similar to the classical strain-based formulation in elasticity. As a first, we will estimate the effective conductivity through different schemes and bounds. For a single family of cracks, Eq. (1.13) can be rewritten as

λ hom = λ m + f c (λ c -λ m ) • A c (2.2)
When there is a dilute concentration of cracks (small d), it is considered that there is no interaction between them. The remote condition in this case can be given by G ∞ = G.

Hence, the localization tensor can be given by:

A dil c = I -1 -ξ S E -1 with ξ = λ c λ m (2.3) Substituting (2.3) in (2.
2), we get the general expression:

λ dil hom = λ m • I -π d R (2.4)
where tensor R is defined as:

R (ω, ξ) = ω 1 -ξ I -S E 1 -ξ -1 , ∀ ω 1, ∀ ξ (2.5)
The above equation is valid for all the mean aspect ratio ω 1 and all the ratio ξ of scalar conductivity between defects and matrix. The present study focuses on the case of flat ellipse-shaped microcracks (c a) for which aspect ratio tends to zero. Besides, we intend to account for different crack status:

• open cracks: one has λ c = 0, so ξ = 0 and R (ω → 0, ξ = 0) = n ⊗ n,

• closed crack : one has λ c = λ * = 0, so ξ = 0 and R (ω → 0, ξ = 0) = 0.

Accordingly (2.4) can be simplified into:

λ dil hom =    λ m • I -π d n ⊗ n , if cracks are open λ m , if cracks are closed (2.6)
When we are to consider some interactions between cracks, the Mori-Tanaka scheme may provide an interesting solution [START_REF] Mori | Average stress in matrix and average elastic energy of materials with misfitting inclusions[END_REF]. The boundary condition here is given by G ∞ = g m and the localization tensor reads:

A M T c = A dil c • (1 -f c ) I + f c A dil c -1
(2.7) 40
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CALCULATION OF THE EFFECTIVE THERMAL CONDUCTIVITY

This leads to:

λ M T hom = λ m • I + π d R -1
(2.8)

As before, the specific behaviour of flat cracks according to their status gives the following:

λ M T hom =      λ m • I -π d 1 1 + π d n ⊗ n , if cracks are open λ m , if cracks are closed
(2.9)

Ponte Castañeda-Willis developed an energy-based upper bound to find effective stiffness [START_REF] Ponte Castañeda | The effect of spatial distribution on the effective behavior of composite materials and cracked media[END_REF]. This bound takes into account the shape of the inclusion (through S E ) and also the spatial distribution of cracks through an additional tensor S d . The simplified localization tensor can be given by:

A P CW c = A dil c • I + f c 1 -ξ S d • A dil c -1
(2.10)

For simplicity, a circular spatial distribution is adopted, for which S d = 1 2 I. Now Eq.

(2.2) can be written as:

λ P CW hom = λ m • I -π d R • I + π d 2 R -1
(2.11)

Based on the state of the flat defects, one gets:

λ P CW hom =      λ m • I -π d 1 1 + π d 2 n ⊗ n , if cracks are open λ m , if cracks are closed
(2.12)

Note that PCW bound will provide the same result as dilute and MT schemes when no spatial distribution is considered for the former and elliptical distribution for the latter.

Similar developments for effective thermal resistivity can be found in Appendix B.3.

Some main comments can be made regarding these theoretical developments. First, the three modelling approaches show crack induced anisotropy for open cracks. Yet, Eqs.

(2.6), (2.9) and (2.12) provide different expressions of the effective conductivity tensor through the tensorial term n ⊗ n. We also observe that as d → 0, all estimations lead to the same result which corresponds to the matrix conductivity λ dil hom , λ M T hom , λ P CW hom → λ m . On the other hand, we observe a complete deactivation of microcracking when the defects The generalized scalar conductivity of a material λ(v) related to the direction of unit vector v is given in the left part of Eq. (1.44) when the material is subjected to uniform 

(a) (n, v) = 0 • (b) (n, v) = 45 •
G = G v v = ∆T v L v, creates an overall heat flux Q (= Q t t + Q v v)
inside the simulated area. On a global point of view, the two edges with zero flux act as adiabatic walls, allowing the heat flux Q to be mainly oriented along the v direction. From definition (1.44), the numerical effective conductivity in direction v is then provided by:

λ num (v) = Q v G v (2.13)
where Q v is the average heat flux along the v direction. It can be calculated as

Q v = 1 L L 0
HFL2 dt with HFL2 being the heat flux density in v direction along the path on the top/bottom edge. Alternatively, Q v can be found using Reaction Flux RFL i calculated on each node i on the top/bottom edge when considering unit dimension in the transverse direction, i.e.

Q v = 1 L n i=1 RFL i .
The finite element type used for both the matrix and crack is quadratic triangular DC2D6 (see Fig. 

Results and discussion

This section intends to compare theoretical developments and FE numerical simulations.

From (1.44) and (1.6), the theoretical scalar conductivity λ(v) comes to:

λ th (v) = v • λ hom • v (2.14)
This can be estimated for different schemes (th = {dil, M T, P CW }) and compared to

λ num (v).
Recalling previous results from Section 2.3, open cracks contribute to the degradation of the thermal conductivity, mainly along the direction n normal to the crack surface.

This case is true for the simulations as well (Fig. 2.7). Both the theoretical and simulated results show us damage-induced anisotropy irrespective of the scheme or crack density. As pointed out earlier, for the theoretical models, we see that as d → 0, λ dil hom ≈ λ M T hom ≈ λ P CW hom (d = 0.1 in Fig. 2.7a, d = 0.05 in Fig. 2.7b). This can be attributed to the fact that as d decreases, the size of the crack decreases (respectively from a = 0.1 m to a = 0.07 m), making the interaction between the cracks less influential and, at one point, there is no interaction between the cracks essentially leading to a dilute configuration. We also see that as the crack becomes smaller, so does its influence on the conductivity (λ(n) ≈ 0.73 λ m for a = 0.1 m whereas λ(n) ≈ 0.86 λ m for a = 0.07 m). Fig. 2.7 also illustrates the consistency between the theoretical and simulated results. It is interesting to observe that for lesser angles (n, v) < 45 • , simulated results tend towards PCW and for higher angles, they approach the dilute case. Indeed, interactions are greater when the cracks are mostly orthogonal to the heat flux. But, if cracks tend to be aligned with the direction of the temperature gradient then the influence of cracks decreases and heat flux is less disturbed, tending to the dilute case (Fig. 2.8). On the other hand, dilute, Mori-Tanaka and PCW approaches show that closed cracks do not contribute to the degradation of conductivity (see Eqs. (2.6), (2.9) and (2.12)),

i.e. the effective conductivity in any direction is recovered to its initial value at the cracks closure. So the generalized scalar conductivity in unit direction v for closed cracks can be given as:

λ(v) = λ m , ∀ v.
Just like the open crack, simulated and theoretical results are consistent for the closed crack (Fig. 2.9). We also see that the former has only a negligible amount of degradation of thermal conductivity (less than 0.035% for d = 0.1 and less than 0.02% for d = 0.05 when considering λ * = 50% λ m ).

Sharan Raj RANGASAMY MAHENDREN From Eqs. (2.6), (2.9) and (2.12), we know that the theoretical results are not a function of the aspect ratio ω since they all correspond to the limit case ω → 0 λ dil hom , λ M T hom and λ P CW hom only depend on λ m , d and n . But as discussed earlier, it is not possible to simulate an ellipse with zero aspect ratio. So it seems natural to study the influence of the aspect ratio on the simulated results. Since the maximum degradation is along the direction n normal to the crack, we intend to focus only on λ(n). Also, the theoretical results for the closed case do not depend on the fictitious scalar conductivity λ * . This may not be true for the simulations. So, a series of simulations were performed with varying λ * and for different aspect ratios (d and a are still constants).

The values for λ * are given as a proportion of λ m such that λ * = α λ m with α = {1, 5, 10, 25, 50, 80, 100}[%]. Fig. 2.11 shows that there is a clear influence of the scalar conductivity λ * on the numerical thermal conductivity. For α ≤ 10%, we see a drastic decrease in the conductivity, this is due to the fact that we are slowly approaching the open case (α = 0). We also observe that as ω → 0 the influence of λ * diminishes and representation of closed cracks by means of an ellipse with fictitious scalar conductivity λ * becomes independent of the λ * value, just like the theoretical results.

Conclusion and perspectives

The consistency of theoretical and numerical results have been demonstrated through the following points. For open cracks, we observe that the microcracked medium exhibits an induced anisotropy with the major degradation of the conductivity in the direction normal to the cracks. Also, the increase in cracks density accentuates the differences between the estimates (Fig. B.1a). We note that the simulations results are close to PCW results. On the other hand, cracks closure leads to the deactivation of their related effects on thermal properties. Finally, the sensitivity of numerical results based on the aspect ratio of defects and scalar conductivity of closed defects has been shown.
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Chapter 3

Thermoelastic properties in 3D

Abstract Chapters 1 and 2 were focused on the pure thermal problem. In order to completely account for the thermomechanical issues, it is imperative to study thermoelasticity as well. Homogenization of microcracked media is largely dedicated to the determination of the effective elastic properties.

Accounting for thermomechanical cases, extension of such approach to thermoelastic behaviour is not investigated much. Within the classical homogenization framework, this chapter aims at implementing several micromechanical techniques to establish the closed-form expressions of effective thermoelastic properties of a microcracked medium (thermal tensors and specific heat capacities). These expressions have not been explicitly provided before in the literature and may provide some relevant elements for the experimental or numerical study of the thermomechanical behaviour of brittle materials. This work considers randomly distributed microcracks and specially accounts for the influence of the unilateral effect (opening and closure of cracks) on the said properties.

The theoretical representations are obtained using the dilute and Mori-Tanaka schemes and Ponte Castañeda-Willis bounds, either using strain or stress boundary conditions. A self-consistent notation is adopted.

Introduction

Most of brittle materials initially exhibit several microcracks at the microstructural level due to their manufacturing process. For instance, shrinkage in cement-based materials or cooling phase for high-temperature sintered or brazed ceramics are typical causes for such degradation. Exposure to thermomechanical loads or any environmental service conditions may also either create or increase the amount of these defects. In all cases, the presence of microcracks have a significant influence on the materials overall properties and more generally on the structures behaviour. Investigation of the effective properties of microcracked media thus appears as really important for several industrial applications.

Estimations of random microcracked media elastic properties by means of homogenization models abound in the literature [START_REF] Mura | Micromechanics of defects in solids, Mechanics of elastic and inelastic solids[END_REF], Nemat-Nasser and Hori (1993), [START_REF] Dormieux | Micromechanics of fracture and damage[END_REF]. Mean field theories provide the average strains (resp.

stresses) in each phase, and in turn the relationship between micro and macroscopic quantities and effective stiffness (resp. compliance) [START_REF] Hill | Elastic properties of reinforced solids: Some theoretical principles[END_REF][START_REF] Hill | A self-consistent mechanics of composite materials[END_REF]. Precisely, the eigenstrain method (also called Eshelby's equivalent inclusion method) offers a relevant framework to account for the structural morphology of heterogeneous media. Solutions rely on the inclusion and inhomogeneity problems as reported by [START_REF] Eshelby | The determination of the elastic field of an ellipsoidal inclusion, and related problems[END_REF]. Cracks are treated as flat ellipsoidal cavities embedded in an infinite matrix subjected to uniform macroscopic boundary conditions. The most widely used model is undoubtely the dilute scheme, developed for low levels of microcracking density (Nemat-Nasser andHori 1993, Kachanov 1993). When considering interactions between cracks, one can briefly mention several approximate schemes : self-consistent [START_REF] Budiansky | Elastic moduli of a cracked solid[END_REF]O'Connell 1976, Horii and[START_REF] Horii | Overall moduli of solids with microcracks: Loadinduced anisotropy[END_REF], differential [START_REF] Hashin | The differential scheme and its application to cracked materials[END_REF][START_REF] Zimmerman | The effect of microcracks on the elastic moduli of brittle materials[END_REF], Mori-Tanaka (MT) [START_REF] Mori | Average stress in matrix and average elastic energy of materials with misfitting inclusions[END_REF]Tanaka 1973, Benveniste 1987) and effective fields methods [START_REF] Kanaun | The poisson set of cracks in an elastic continuous medium[END_REF] or models based on Maxwell's theory [START_REF] Sevostianov | Generalization of Maxwell homogenization scheme for elastic material containing inhomogeneities of diverse shape[END_REF]. Upper and lower bounds of overall elastic properties have also been derived using variational energy approaches (Ponte Castañeda and Willis 1995, Dormieux and[START_REF] Dormieux | Stress-based estimates and bounds of effective elastic properties: The case of cracked media with unilateral effects[END_REF]. It is worth noting that the effective properties not only depend on the matrix properties and the damage density but also on the shape and spatial distribution of the cracks. Above-mentioned methods take into account spatial distribution differently. For example, the MT scheme assumes a distribution identical to the shape of the inclusion whereas the Ponte Castañeda-Willis (PCW) bound allows one to choose the spatial distribution (ellipsoidal, spherical, etc.)

Another challenge in finding the effective properties is the microcracks unilateral effect. Depending on whether they are open or closed (due to tension or compression local loads), the microcracks contribution to the materials behaviour differ, leading in particular to a recovery (partial or total) of the effective properties at the closure of microcracks (Reinhardt 1984, Morvan andBaste 1998). The simultaneous account of such specific feature with arbitrarily orientation of defects and related induced anisotropy is even a more complex task (Chaboche 1992, Cormery andWelemane 2002). As many practical issues require the proper modelling of these phenomena, homogenization appears again 52
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as an essential tool for predicting the resulting anisotropic multilinear elasticity of microcraked media. In direct approaches, microcracks are considered as discontinuous plane surfaces. Then special recourse is made to solutions from classical fracture mechanics (so-called Griffith crack problem) to determine displacement jumps between their lips [START_REF] Kachanov | Elastic solids with many cracks and related problems[END_REF][START_REF] Andrieux | un modèle de matériau microfissuré pour les béton et les roches[END_REF][START_REF] Pensée | Une analyse micromécanique 3-D de l'endommagement par mésofissuration[END_REF][START_REF] Goidescu | Microcracks closure effects in initially orthotropic materials[END_REF].

Although opening and closing of cracks are naturally treated through the modification of displacement discontinuities, such modelling option is most often limited to the case of non-interacting defects. This motivates the application of the eigen strain method and the representation of cracks as the limit case of thin ellipsoidal inclusions with aspect ratio tending to zero. In that case, while the open status of cracks can naturally be accounted as an inclusion with zero elasticity, some questions arise for the closed state. [START_REF] Deudé | Propriétés élastiques non linéaires d'un milieu mésofissuré[END_REF] suggest to design the latter case as a fictitious isotropic material with same bulk modulus as the matrix and zero shear modulus. This reflects the ability of frictionless cracks to transfer only normal stresses at their closure. As said before, the main interest of such Eshelby approach stands in the possible extension to the case of interacting cracks by means of aforementioned estimation schemes and variational bounds [START_REF] Dormieux | Stress-based estimates and bounds of effective elastic properties: The case of cracked media with unilateral effects[END_REF].

From this, it can be said that linear elasticity has been studied extensively both for composite materials and microcracked media. Yet, cracks are known to affect also thermo-elastic, electric, magnetic, diffusive and conductive properties as well. Existing homogenization framework can be applied to derive the said properties [START_REF] Wang | The effective electroelastic property of piezoelectric media with parallel dielectric cracks[END_REF][START_REF] Dormieux | Microporomechanics[END_REF][START_REF] Su | An effective medium model for elastic waves in microcrack damaged media[END_REF][START_REF] Sevostianov | On the effective properties of polycrystals with intergranular cracks[END_REF], Chapter 1)

The case of thermoelasticity, and specially thermostatics (systems at uniform temperature), is closely linked to elasticity. Hence, thermoelastic effective properties of composite materials have long been established in the spirit of Hill's theory [START_REF] Hill | Elastic properties of reinforced solids: Some theoretical principles[END_REF][START_REF] Hill | A self-consistent mechanics of composite materials[END_REF]. Since pioneering works of [START_REF] Levin | Thermal expansion coefficient of heterogeneous materials[END_REF], [START_REF] Rosen | Effective thermal expansion coefficients and specific heats of composite materials[END_REF], [START_REF] Laws | On the thermostatics of composite materials[END_REF], extensive research has been done on this topic (see references books of [START_REF] Torquato | Random heterogeneous materials: Microstructure and macroscopic properties[END_REF][START_REF] Buryachenko | Micromehcanics of heterogenous materials[END_REF][START_REF] François | Mechanical Behaviour of Materials: Volume 1: Micro-and Macroscopic Constitutive Behaviour, Solid mechanics and its applications[END_REF]) and both approximations of effective properties and energetic bounds have been derived and compared [START_REF] Karch | Micromechanical analysis of thermal expansion coefficients[END_REF][START_REF] Böhm | A short introduction to basic aspects of continuum microcmechanics[END_REF]. For the special case of two-phase composites, the so-called Levin's theorem [START_REF] Levin | Thermal expansion coefficient of heterogeneous materials[END_REF]) (see also [START_REF] Rosen | Effective thermal expansion coefficients and specific heats of composite materials[END_REF]Hashin 1970, Laws 1973) even allows the calculation of thermoelastic effective properties directly in terms of effective elastic ones.

Considering microcracks as a special case of thin inclusions, it is known that expressions of the overall thermal properties for brittle materials can be computed by the same methodologies as for the composites. Moreover, the important research on elasticity for these materials has often been considered sufficient to cover the thermoelastic behaviour simultaneously. This explains why studies are very scarce when it comes to effective thermoelastic properties of materials with crack-like inclusions. However, homogenized expressions, that have not been explicitly given before in the literature, may be useful for the study of the thermomechanical behaviour of brittle materials by allowing comparisons 

Theoretical Framework

Homogenenization of heterogeneous media

The present work deals with infinitesimal thermoelastic transformations. Considering the strain tensor ε and absolute temperature T as observable variables and assuming an initial (ε 0 = 0, T 0 ) natural state, the specific free energy (per unit volume) of the medium can be expressed as [START_REF] Germain | Continuum Thermodynamics[END_REF][START_REF] Maitournam | Matériaux et structures anélastiques[END_REF]:

W (ε, T ) = 1 2 ε : C : ε -κ : ε ∆T - 1 2 c ε T 0 ∆T 2 (3.1)
with C the fourth order stiffness tensor, ∆T = T -T 0 the temperature difference, κ the second order thermal stress tensor and c ε the scalar specific heat capacity (per unit volume) at constant strain. Similarly, it is possible to introduce the complementary formalism based on the specific free enthalpy (per unit volume):

U (σ, T ) = 1 2 σ : S : σ + α : σ ∆T + 1 2 c σ T 0 ∆T 2 (3.2)
where σ denotes the stress tensor, S the fourth order compliance tensor, α the second order thermal strain tensor (also called dilatation tensor 

σ = C : ε -κ ∆T and s = 1 ρ κ : ε + c ε T 0 ∆T (3.3) and ε = S : σ + α ∆T and s = 1 ρ α : σ + c σ T 0 ∆T (3.4)
Let us consider a 3D Representative Volume Element (RVE, of volume Ω) of a microcracked medium composed of an isotropic matrix material weakened by several families of microcracks. Boundary conditions applied to the outer boundary δΩ of the RVE are either uniform macroscopic strain (E imposed at δΩ) or uniform macroscopic stress (Σ imposed at δΩ), and uniform temperature T = T 0 . Under equilibrium conditions, the macroscopic stress Σ (respectively macroscopic strain E) corresponds to the average value of its microscopic quantity σ (resp. ε) [START_REF] François | Mechanical Behaviour of Materials: Volume 1: Micro-and Macroscopic Constitutive Behaviour, Solid mechanics and its applications[END_REF][START_REF] Böhm | A short introduction to basic aspects of continuum microcmechanics[END_REF][START_REF] Zaoui | Continuum Micromechanics: Survey[END_REF]:

Σ = 1 Ω Ω σ dΩ = σ and E = ε (3.5)
and the temperature change ∆T is uniform throughout the RVE. In the present linear framework, microscopic fields are simply related to boundary data [START_REF] Hill | Elastic properties of reinforced solids: Some theoretical principles[END_REF]: 

ε(x) = A(x) : E + a∆T or σ(x) = B(x) : Σ + b∆T ∀ x ∈ Ω (3.
Σ = C hom : E -κ hom ∆T and s = 1 ρ κ hom : E + c ε,hom T 0 ∆T (3.8)
and

E = S hom : Σ + α hom ∆T and s = 1 ρ α hom : Σ + c σ,hom T 0 ∆T (3.9)
where C hom (resp. S hom ) the effective stiffness (resp. compliance) tensor, κ hom (resp.

α hom ) the effective thermal stress (resp. thermal strain) tensor and c ε,hom (resp. c σ,hom ) the effective specific heat capacity at constant strain (resp. stress). Lets denote C m , S m , κ m , α m , c ε,m and c σ,m as the stiffness, compliance, thermal stress and thermal strain tensors and specific heat capacities at constant strain and stress of the matrix respectively,
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and C c,i , S c,i , κ c,i , α c,i , c ε,c,i and c σ,c,i as the stiffness, compliance, thermal stress and thermal strain tensors and specific heat capacities at constant strain and stress of the i th (i =1...N ) family of parallel cracks respectively. Assuming phase-wise uniform properties, the effective behaviour of the microcracked RVE can be approximated by means of phase averages [START_REF] Zaoui | Continuum Micromechanics: Survey[END_REF][START_REF] Ponte Castañeda | Heterogeneous materials[END_REF][START_REF] Willis | Mechanics of composites[END_REF][START_REF] Böhm | A short introduction to basic aspects of continuum microcmechanics[END_REF]):

• for elasticity tensors:

C hom = C : A = C m + N i=1 f c,i C c,i -C m : A c,i (3.10)
and

S hom = S : B = S m + N i=1 f c,i S c,i -S m : B c,i (3.11)
• for thermal dilatometric tensors:

κ hom = κ -C : a = κ : A = κ m + N i=1 f c,i κ c,i -κ m : A c,i (3.12)
and

α hom = α + S : b = α : B = α m + N i=1 f c,i α c,i -α m : B c,i (3.13) 
• for specific heat capacities: reduces then to the determination of a purely mechanical problem [START_REF] Levin | Thermal expansion coefficient of heterogeneous materials[END_REF][START_REF] Rosen | Effective thermal expansion coefficients and specific heats of composite materials[END_REF][START_REF] Laws | On the thermostatics of composite materials[END_REF][START_REF] Benveniste | On a Correspondence Between Mechanical and Thermal Effects in Two-Phase Composites[END_REF][START_REF] Böhm | A short introduction to basic aspects of continuum microcmechanics[END_REF]. When considering several families of cracks, one has to use thermal strain localization a c,i and stress concentration b c,i tensors to evaluate the specific heat capacities at constant strain or stress respectively [START_REF] Laws | On the thermostatics of composite materials[END_REF].

c ε,hom = c ε + T 0 κ : a = c ε,m + N i=1 f c,i c ε,c,i -c ε,m + T 0 (κ c,i -κ m ) : a c,i (3.14) and c σ,hom = c σ +T 0 α : b = c σ,m + N i=1 f c,i c σ,c,i -c σ,m +T 0 (α c,i -α m ) : b c,i ( 

Application to the case of microcracks

In the present study, the RVE is made of an initially isotropic homogeneous matrix with For the i th family of parallel microcracks, n i denotes their unit vector normal to the crack's plane, ω i = c i /a i as their mean aspect ratio, d i = N i a 3 i as the scalar crack density (N i is the number of cracks in the i th family per unit volume, [START_REF] Budiansky | Elastic moduli of a cracked solid[END_REF]. Moreover, penny-shaped crack configuration corresponds to the limit case of thin inclusions, so that the overall behaviour of the microcracked RVE will be established when considering ω i → 0.

As detailed previously, closed-form expressions of thermoelastic properties can be obtained once localization and concentration tensors (i.e. A c,i and B c,i resp.) are estimated. Works of [START_REF] Eshelby | The determination of the elastic field of an ellipsoidal inclusion, and related problems[END_REF] on the single inhomogeneity problem developed for an ellipsoidal inclusion give solution to this problem. Unlike the strain and stress fields, the temperature is assumed to be uniform on the entire RVE. Also, the displacement and temperature are assumed to be continuous at the interface (i.e. crack boundary). Indeed, the strain and stress local fields in the crack can be approximated by their respective uniform local fields obtained by embedding an ellipsoidal inclusion in an infinite matrix subjected to uniform macroscopic boundary conditions denoted as E ∞ and Σ ∞ . Taking all this into account, the estimated solution for finding the localization and concentration tensors A est c,i and B est c,i depends on the Eshelby tensor S E i . Using Walpole base for transversely isotropic fourth order tensors (described in Appendix C.1, Walpole 1981), the Eshelby tensor for a penny-shaped microcrack with unit normal n i and aspect ratio ω i embedded in an isotropic matrix (ν m its Poisson's ratio) comes to [START_REF] Mura | Micromechanics of defects in solids, Mechanics of elastic and inelastic solids[END_REF][START_REF] Hill | Elastic properties of reinforced solids: Some theoretical principles[END_REF]:
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The final step is to account for the cracks' unilateral behaviour, i.e. their ability to be either open or closed depending on the load. For both status, the cracks are considered to be isotropic (C c,i = 3k c,i J + 2µ c,i K, S c,i = 1 3k c,i J + 1 2µ c,i K, α c,i = α c,i I and κ c,i = κ c,i I) but they behave differently based on the state of the crack:

• for the open case, we naturally consider that there is no elasticity i.e. C c,i = O (k c,i = 0, µ c,i = 0) and no thermal strain i.e. α c,i = 0 (α c,i = 0), so κ c,i = 0 (κ c,i = 0) neither specific heat capacities at constant strain c ε,c,i = 0 and constant stress c σ,c,i = 0;

• following the works of [START_REF] Deudé | Propriétés élastiques non linéaires d'un milieu mésofissuré[END_REF], closed cracks are modelled as a fictitious isotropic material with bulk modulus k c,i = k m , shear modulus µ c,i = 0 (i.e. C c,i = 3k m J); such assumption is extended here to the thermal behaviour, that is In what follows, the focus will be on the thermal issues, namely dilatometric tensors (Eqs.

α c,i = α * , so κ c,i = 3k m α * = κ * ,
(3.12) and (3.13)) and specific heat capacities (Eqs. (3.14) and(3 

Strain-based formulation with uniform ∆T -Dilute scheme

By strain-based formulation, we mean to impose a uniform macroscopic strain E at the outer boundary δΩ and in addition the temperature difference ∆T is uniform inside the entire RVE.

We begin the calculation assuming a dilute crack density, which is to consider no interaction between cracks. Remote conditions on the Eshelby problem come in that case 58 Sharan Raj RANGASAMY MAHENDREN

STRAIN-BASED FORMULATION WITH UNIFORM ∆T -DILUTE SCHEME

to the macroscopic strain (E ∞ = E). Hence, strain localization tensor is given by:

A dil c,i = I + P E i : C c,i -C m -1
(3.17)

where P E i = S E i : S m is the first Hill tensor.

When the cracks are open, Eq. (3.17) becomes:

A dil/open c,i = I -S E i -1 (3.18)
when it comes to as follows for the closed case:

A dil/closed c,i = I -S E i : K -1 (3.19) Denoting ψ i = κ c,i κ m = α c,i α m
and separating open (κ c,i = 0, so ψ c,i = 0) and closed (κ c,i = κ * for which ψ c,i = 0) families of cracks, Eq. (3.12) thus comes to:

κ dil hom = κ m   I - 4 3 π i/open d i I : ω i A dil/open c,i - 4 3 π i/closed (1 -ψ i ) d i I : ω i A dil/open c,i   (3.20)
since crack volume fraction appearing in Eqs. (3.10)-(3.15) is equal to f c,i = 4 3 π d i ω i . We can see that κ dil hom depends on the aspect ratio ω i . In our case, cracks corresponds to the limit case of very thin inclusions. Denoting,

T i = lim ω i →0 ω i A dil/open c,i (3.21)
and

T i = lim ω i →0 ω i A dil/closed c,i (3.22)
one has :

κ dil hom = κ m   I - 4 3 π i/open d i I : T i - 4 3 π i/closed (1 -ψ i ) d i I : T i   (3.23)
Tensors T i and T i are transversely isotropic tensors around the unit normal n i of the i th family of cracks. Given the related Walpole base (refer to Appendix C.1), relevant calculations provide:

T i = 4(1 -ν m ) π 0, 1 -ν m 1 -2ν m , 0, 1 2 -ν m , ν m 1 -2ν m , 0 (3.24) 
and

T i = 4(1 -ν m ) π 0, 0, 0, 1 2 -ν m , 0, 0 (3.25) Sharan Raj RANGASAMY MAHENDREN Since I : T i = 4 π 1 -ν m 1 -2ν m [(1 -ν m ) n i ⊗ n i + ν m (I -n i ⊗ n i )]
(3.26)

I : T i = 0 (3.27)
above expression can be simplified as:

κ dil hom = κ m I - a 1 a dil 2 i/open d i [(1 -ν m ) n i ⊗ n i + ν m (I -n i ⊗ n i )] (3.28)
where

a 1 = 16 3 1 -ν m 1 -2ν m and a dil 2 = 1.
The simple case of a single system of parallel microcracks is thus straightforward:

κ dil hom =      κ m -κ m a 1 a dil 2 d 1 -ν m n ⊗ n + ν m I -n ⊗ n , if cracks are open κ m , if cracks are closed (3.29)
Regarding the effective specific heat, expression of thermal strain localization a c,i tensor for multiphase medium has been established by [START_REF] Benveniste | On diagonal and elastic symmetry of the approximate effective stiffness tensor of heterogeneous media[END_REF] from a decomposition procedure of thermal and mechanical loads (see also [START_REF] Benveniste | On a Correspondence Between Mechanical and Thermal Effects in Two-Phase Composites[END_REF]). For the dilute case, one has:

a dil c,i = I -A dil c,i : (C c,i -C m ) -1 : (κ c,i -κ m ) (3.30) Since C c,i -C m = -C m (respectively C c,i -C m = -C m : K = -2µ m K) for open (resp.
closed) state of microcracks, Eq. (3.14) can thus be written on the form for thin inclusions:

c dil ε,hom = c ε,m - 4 3 π T 0 κ 2 m   i/open d i X i + i/closed d i (1 -ψ i ) 2 X i   (3.31)
where

X i = lim ω i →0 ω i I : I -A dil/open c,i : C -1 m : I = -I : T i : C -1 m : I = - 4 π α m κ m 1 -ν 2 m 1 -2ν m (3.32)
and

X i = lim ω i →0 ω i I : I -A dil/closed c,i : (-2µ m K) -1 : I = -I : T i : (2µ m K) -1 : I (3.33)
Though the calculation of X i remains simple, a problem arises for the case of X i since (2µ m K) -1 is not defined. As suggested by [START_REF] Dormieux | Stress-based estimates and bounds of effective elastic properties: The case of cracked media with unilateral effects[END_REF], the idea to get around this is to introduce a function

F(b) = (bJ + 2µ m K) -1 , not defined in b = 0, but 60 Sharan Raj RANGASAMY MAHENDREN 3.4. STRAIN-BASED FORMULATION WITH UNIFORM ∆T -MORI-TANAKA SCHEME such that F(b) → (2µ m K) -1 when b → 0. Since, T i : F(b) = 2(1 -ν m ) µ m π 0, 0, 0, 1 2 -ν m , 0, 0 (3.34) 
does not depend on b = 0, we can thus show that:

T i : F(b) : I = 0 (3.35)
and X i = 0. Overall specific heat at constant strain is finally provided by:

c dil ε,hom = c ε,m + a 1 (1 + ν m ) T 0 α m κ m i/open d i (3.36)
In the special case of one family (see Appendix C.3.1), one gets easily:

c dil ε,hom =      c ε,m + T 0 α m κ m a 1 a dil 2 d (1 + ν m ) , if cracks are open c ε,m , if cracks are closed (3.37)
3.4 Strain-based formulation with uniform ∆T -Mori-

Tanaka scheme

As interpreted by [START_REF] Benveniste | A new approach to the application of Mori-Tanaka's theory in composite materials[END_REF], the Mori-Tanaka (MT) scheme [START_REF] Mori | Average stress in matrix and average elastic energy of materials with misfitting inclusions[END_REF] accounts for some interactions between cracks by considering the defects embedded in an infinite media (with matrix properties) that is subjected to the average strain over the matrix phase (E ∞ = ε m ). Averaging rule (3.5) leads to the following localization tensor:

A M T c,i = A dil c,i : f m I + N j=1 f c,j A dil c,j -1 = A dil c,i : G (3.38)
From Eq. (3.12), it comes:

κ M T hom = κ m I :   G -1 - 4 3 π i/open d i T i - 4 3 π i/closed d i (1 -ψ i )T i   : G = κ m I : X : G (3.39)
where

X = I + 4 3 π i/closed d i ψ i T i (3.40)
Due to condition (3.27), I : X = I. Moreover, G comes to:

G =   I + 4 3 π i/open d i T i + 4 3 π i/closed d i T i   -1 (3.41) Sharan Raj RANGASAMY MAHENDREN
At last, the effective thermal strain tensor for the Mori-Tanaka scheme writes:

κ M T hom = κ m :   I + 4 3 π i/open d i T i + 4 3 π i/closed d i T i   -1 (3.42)
One could note that for a single family of cracks, Eq. (3.42) becomes:

κ M T hom =      κ m -κ m a 1 a M T 2 d 1 -ν m n ⊗ n + ν m I -n ⊗ n , if cracks are open κ m , if cracks are closed (3.43)
where

a M T 2 = 1 + (1 -ν m ) a 1 d.
Again, the heat capacity estimation requires the expression of the thermal strain localization tensor. For the Mori-Tanaka model, expression of a c,i is also provided by [START_REF] Benveniste | On diagonal and elastic symmetry of the approximate effective stiffness tensor of heterogeneous media[END_REF] for several inclusions :

a M T c,i = a dil c,i -A M T c,i : N j=1 f c,j a dil c,j = a dil c,i -A M T c,i : M (3.44)
Combining such tensor with expression (3.14) of the overall specific heat capacity and considering the limit case ω i → 0 associated with condition (3.27), we can show that :

c M T ε,hom = c dil ε,hom + 4 3 π T 0 κ m i/open d i I : T i : G : M (3.45)
with tensor G given in Eq. (3.41). In line with dilute solution, a similar methodology based on function F(b) for closed case and condition (3.35) lead to following simplied form of second order tensor M :

M = -a 1 (1 + ν m ) α m j/open d j n j ⊗ n j (3.46)
It comes finally:

c M T ε,hom = c dil ε,hom -a 2 1 T 0 (1 + ν m ) α m κ m × i/open d i (1 -ν m )n i ⊗ n i + ν m (I -n i ⊗ n i ) : G : j/open d j n j ⊗ n j (3.47)
When considering a single cracks family (see Appendix C.3.2), Eq. (3.47) writes: It should be noted that results given in Eqs. (3.29) and (3.37) for dilute scheme and

c M T ε,hom =      c ε,m + T 0 α m κ m a 1 a M T 2 d (1 + ν m ) , if cracks are open c ε,m , if
(3.43) and (3.48) for Mori-Tanaka scheme in the particular case of a single system of cracks (corresponding to binary composite) can also be obtained through the application of Levin's approach. 1995). Their formulation also accounts for the inclusion shape and spatial distribution independently by means of fourth order interaction P E j and spatial crack distribution S d c = P d c : C m tensors respectively. In this estimate, the strain localization tensor can be written as:

Strain

A P CW c,i = A dil c,i : f m I + N j=1 f c,j I + P E j -P d c : C c,j -C m : A dil c,j -1 = A dil c,i : H (3.49)
We assume the spatial distribution to be spherical and for such case the fourth order isotropic tensor P d c can be expressed as:

P d c = β 1 3k m J + β 2 2µ m K with β 1 = 1 3 1 + ν m 1 -ν m and β 2 = 2 15 4 -5ν m 1 -ν m (3.50)
From expression of A dil c,i , tensor H is as follows:

H -1 = I - N j=1 f c,j P d c : (C c,j -C m ) : A dil c,j (3.51) Since P d c = S d c : C -1 m and S d c : K = β 2 K, Eq.
(3.51) can be simplified in:

H -1 = I + 4 3 π j/open d j S d c : T j + 4 3 π j/closed β 2 d j T j (3.52)
where it should be noted that:

T i = lim ω i →0 ω i A dil/closed c,i = lim ω i →0 ω i K : A dil/closed c,i (3.53) Sharan Raj RANGASAMY MAHENDREN
In that case and always under condition (3.27), the effective thermal strain tensor of Eq.

(3.12) is given by:

κ P CW hom = κ m :   I - 4 3 π   i/open d i T i   :   I + 4 3 π j/open d j S d c : T j + 4 3 π j/closed β 2 d j T j   -1   (3.54)
Eq. (3.54) for a single family of cracks can be simplified as:

κ P CW hom =      κ m -κ m a 1 a P CW 2 d 1 -ν m n ⊗ n + ν m I -n ⊗ n , if cracks are open κ m , if cracks are closed (3.55)
where

a P CW 2 = 1 + a 1 d 15 (1 -ν m ) [7 (1 -2ν m ) + 15ν 2 m ].
The determination of the thermal strain localization tensor a P CW c,i in the case of multiphase media is a complex issue. It requires the extension to the case of thermoelasticity of the variational structure of Hashin-Shtrikman in the form of [START_REF] Willis | Bounds and self-consistent estimates for the overall properties of anisotropic composites[END_REF] which is based on energy minimization. Recent works of Fernández and Böhlke ( 2018 From this, one gets (see Appendix C.3.3):

c P CW ε,hom =      c ε,m + T 0 α m κ m a 1 a P CW 2 d (1 + ν m ) , if cracks are open c ε,m
, if cracks are closed Some comments arise from the results obtained by means of strain-based formulation.

Even though there are differences between the models, the dependency of thermoelastic properties upon the cracks orientation and unilateral behaviour were observed through all modeling approches. First, it is to note that the microcracked medium exhibits some induced anisotropy in its effective thermoelastic response. Such behaviour is highlighted through the second order thermal strain tensor and can be attributed to open cracks orientation for dilute case (Eq. (3.29)) and to both open and closed cracks orientations for MT (Eq. (3.43)) and PCW bound (Eq. (3.55)). The case of a single family of cracks leads for instance to a transverse isotropy around the normal n of defects. For all estimates, only open cracks influence the specific heat at constant strain, obviously in a scalar form. Moreover, the account of the unilateral effect allows to show that cracks closure tends to some recovery of the initial properties, both on thermal strain and specific heat. Unlike the pure elastic properties [START_REF] Welemane | Some remarks on the damage unilateral effect modelling for microcracked materials[END_REF], closed cracks do not affect the effective thermoelastic properties. This leads for instance to a total recovery of these properties in the particular case of a single system of parallel microcracks, with a thermoelastic response equal to that of the virgin matrix. Although it is strongly related to elasticity, the problem of thermoelastic properties has a strong analogy with that of steady-state heat conduction (Chapter 1). Like the latter, the degree of complexity (κ and α of second order, c ε and c σ scalar) is less than that of the elastic problem (C and S of fourth order). Unlike the Eshelby-like tensor (depolarization tensor) which depends only on the crack shape (Eqs. (1.15) and (2.1)), the Eshelby tensor used for thermoelastic problem (also for elastic problem) depends on both crack shape and matrix properties (Eq.

(3.16)). Yet, we lose information due to the contraction between second and fourth order tensors. This explains in particular the cancellation of the effects of closed microcracks.

Sharan Raj RANGASAMY MAHENDREN CHAPTER 3. THERMOELASTIC PROPERTIES IN 3D

Stress-based formulation with uniform ∆T

This section is dedicated to the derivation of thermoelastic effective quantities when considerind stress-based boundary conditions at δΩ. Estimates and bound will now be based on the local fields induced by cracks embedded inside the matrix with uniform stress at infinity (Σ ∞ ) and uniform ∆T inside the RVE. Accordingly, the strain ε(x) tends to S m : Σ ∞ when |x| → ∞ . This makes the connection with strain boundary conditions considered in the Eshelby approach. From the average stress in this phase σ c = C c : ε c , estimates of concentration tensor B defined in Eq. (3.6) can be derived.

For the dilute scheme, conditions at infinity correspond to the macroscopic heat flux (Σ ∞ = Σ). So that:

B dil c,i = C c,i : A dil c,i : S m (3.59)
In the model of Mori-Tanaka, the remote conditions correspond to the average stress over the matrix phase (Σ ∞ = σ m ) and again, using the average rule, the stress concentration tensor is given by:

B M T c,i = B dil c,i : f m I + N j=1 f c,j B dil c,j -1 = B dil c,i : G (3.60)
As inspired by Ponte Castañeda and [START_REF] Ponte Castañeda | The effect of spatial distribution on the effective behavior of composite materials and cracked media[END_REF], [START_REF] Dormieux | Stress-based estimates and bounds of effective elastic properties: The case of cracked media with unilateral effects[END_REF] derived a variational stress-based lower bound for the effective compliance using an energy approach.

The stress concentration tensor for this case can be given by:

B P CW c,i = B dil c,i : f m I + N j=1 f c,j I + Q E j -Q d c : S c,j -S m : B dil c,j -1 = B dil c,i : H (3.61)
where

Q E i = C m -C m : P E i : C m is the second Hill tensor and Q d c = C m -C m : P d c : C m .
In the particular case of thin inclusions (ω i → 0), it can be demonstrated that G = H = I and:

B dil/open c,i = O and B dil/closed c,i = J (3.62)
Accordingly, this leads to strong simplifications for the thermal stress tensor, namely:

α dil hom = α M T hom = α P CW hom = α m (3.63)
In a complete analogous way, thermal stress concentration tensors required for the derivation of specific heat at constant stress may be defined [START_REF] Laws | On the thermostatics of composite materials[END_REF][START_REF] Benveniste | On a Correspondence Between Mechanical and Thermal Effects in Two-Phase Composites[END_REF][START_REF] Benveniste | On diagonal and elastic symmetry of the approximate effective stiffness tensor of heterogeneous media[END_REF]): 

b dil c,i = -I -B dil c,i : (S c,i -S m ) -1 : (α c,i -α m ) (3.64) 66 Sharan Raj RANGASAMY MAHENDREN 3.7. CONCLUSION b M T c,i = b dil c,i -B M T c,i : N j=1 f c,j b dil c,j ( 

Conclusion

Given the classical mean-field framework, homogenization techniques have been used to calculate closed-form expressions of thermoelastic properties of microcracked media. Specially, strain and stress-based thermal tensors and heat capacities have been implemented

for dilute and Mori-Tanaka schemes and for Ponte Castañeda-Willis bound.

For strain-based formulation, the specific features of microcracks influence the material thermoelastic response, both regarding their orientation (induced anisotropy) and their unilateral effect (recovery phenomena at the closure of microcracks). These tendencies were obtained for the three modelling approaches. On the other hand, stress-based boundary conditions lead to estimates of effective properties equal to those of the virgin material, showing no influence of microcracking.

The explicit derivation of these quantities in the specific case of cracks-like inclusion, either open or closed, thus provides a theoretical basis that can be compared either to experimental or numerical characterizations. A self-consistent notation is adopted.

Sharan

Introduction

This chapter intends to propose a comparison of previous theoretical results with numerical modelling. As discussed in the General introduction, much of the work on numerical homogenization of microcracking issues is based on FEM. It is productive for the cases of thermal and elastic problems which is the interest of this work. On the other hand, the software used (ABAQUS) allows efficient management of the construction of complex geometries, their meshing, their interaction between different volumes/parts of the model and their userfriendly interface. Visualizations produced by the software also make it easier to interpret the results.

Numerical framework

The simulated volume V is a cube with size 1 m 3 (V = 1 m ×1 m ×1 m). Let (t, v, k) and to have the same mesh distribution for different values of the aspect ratio. The finite element type used for the cracks is quadratic hexahedral while quadratic tetrahedral is used for the matrix (Fig. 4.3). Indeed, the number and arrangement of the cracks inside the matrix make it a complex volume that it is not possible to mesh otherwise than using a free meshing method associated to tetrahedral elements. The models have meshes upto 800000 elements and 1200000 nodes including 1681 (referred as N ) nodes in each outer face. It should be noted that hexahedral (used for cracks) and tetrahedral (used for matrix) element shapes are incompatible, i.e. some nodes of neighbouring elements do not match. So, to ensure the continuity of the material (mesh), additional coupling equations must be created increasing the problem size. Simulations tests were performed to ensure that this method does not influence the results. Note that graphs in this chapter are given for 3 theoretical models (Dilute, MT, PCW) and simulations performed. Furthermore, since 3D simulations respect ellipsoidal crack distribution, the numerical results thus obtained can only be compared to dilute and MT.

Thermal conductivity

In the thermal problem, the finite element type used for the matrix and cracks are diffusive heat transfer second order elements namely DC3D10 and DC3D20 respectively. where Q v is the average heat flux on the face (+v or -v) along v direction. This quantity can be found using the Reaction flux RFL i calculated on each node i on the top (Fig. 

4.4b) or bottom face (with area

A), Q v = 1 A N i=1 RFL i .

Results

Understanding the 3D results is not too complex as it follows same tendency as 2D (see Section 2.5). For information, PCW bound is shown on the following graphs, but it is not meant to be compared with simulations results. The main observations can be listed as:

• crack-induced anisotropy, namely transverse isotropy with maximum degradation in the direction n normal to the crack (Fig. 4.6),

• numerical results are closer to MT in 3D (due to ellipsoidal distribution, Fig. 4.6) where in 2D results to PCW (due to spherical distribution, Fig. 2.7),

• closed crack does not contribute to the degradation of conductivity (Fig. 4.7),

• simulated results are sensitive to aspect ratio ω (Fig. 4.8),

• scalar conductivity λ * of closed cracks affects the effective conductivity (Fig. 4.9). 

Thermal resistivity

In this part, lets keep the properties used in the previous section, changing only the boundary condition. To be consistent with theory, uniform heat flux

Q (= Q v v) is im-
posed. This condition can be achieved by applying a heat flux density (also known as surface heat flux) Q v = 14400 W/m 2 on the top face and a temperature T 1 = 293 K on the bottom face. The four lateral faces of the RVE are adiabatic (Fig. 4.10). Similar to Eq. 2.13, the numerical effective resistivity in the direction v:

ρ num (v) = G v Q v (4.2)
where G v is the average temperature gradient along v direction. This temperature gradient can be given by 

G v = T 2 -T 1 L in which T 2 = 1 A N i=1 NT11 i ,

Thermoelasticity

To account for the material thermoelastic behaviour, the finite element type used for the matrix and cracks are C3D10 and C3D20R respectively. Roller boundary condition is introduced on all the RVE faces (Fig. 4.15), along with an uniform initial temperature defined all over the RVE (T initial ). During the calculated step, another uniform temperature load (T final ) is applied allowing to have ∆T = T final -T initial = 80 K over the entire RVE. The numerical thermal stress in any direction m is: where Σ is the macroscopic stress tensor along direction m. And the stresses in each principal axis are given by Σ This allows one to define the Young's modulus E * , Poisson's ratio ν * and shear modulus µ * separately, as if they are an orthotropic material with

κ num (m) = - m • Σ • m ∆T (4.3) Z Y X Y Z X (a) Z Y X Y Z X (b)
tt = 1 A N i=1 RF1 i ; Σ vv = 1 A N i=1 RF2 i ; Σ kk = 1 A N i=1 RF3 i
E X = E Y = E Z = E * , ν X = ν Y = ν Z = ν * and µ X = µ Y = µ Z = µ * .

Results

The first challenge of the study stands in the definition of adequate fictitious properties for closed microcracks, namely the Young's modulus E * and Poisson's ratio ν * , µ * = 0 being considered to cancel shear stresses. At the same time, the scalar thermal stress should be as κ * = 3 k * α * with k * = k m [START_REF] Deudé | Propriétés élastiques non linéaires d'un milieu mésofissuré[END_REF]. So, to find the influence of the closed cracks on the overall thermal stress κ(v), one can keep ν * = ν m = cte and vary both E * and α * . Considering the large number of combinations to be evaluated and the resulting calculation time, the choice was made to use a method that would allow one to evaluate behavioural trends while minimizing the experiments (numerical calculations) to be done. To do this, we use the 2-level factorial design method. This method, although practical and efficient, is based on a multilinear model of the studied system. Simulations were performed for the combinations of extreme value of E * and α * given in Tab. 4.1.

Results of these simulations for various aspect ratios are presented in Tab. 4.2. Thus, from the 2-level factorial design method, the closed case model can be written as: r 2 , which means that the Young's modulus has much stronger influence than CTE. Since r 12 is very small, one can say their interaction effect is negligible. Therefore, Eq. (4.4) becomes: 

κ(n) κ m = r 0 + r 1 E t + r 2 α t + r 12 E t α t (4.4)
κ(n) κ m = r 0 + r 1 E t +

Complexities and limitations

FEM may be the one of the commonly used numerical methods but as any other numerical method, it is not without limitations. For the 2D simulation of the thermal conductivity, a mesh study was done to understand its influence on the results (Tab. 2.1). 3D meshing was built using the same strategy as the 2D case. It is always the balance between . 2.10, 4.8, 4.13 and 4.19b). While analyzing this point, it was discovered the issue lies with the meshing. So, a more indepth analysis of the mesh was done to understand such result. Attempts to increase the number of elements only increase the radial and circumferential elements but not along the thickness or at the edge (crack front), which are the most critical areas (Figs. 4.21 and 4.22). In the same way, it is not possible to increase mesh density around the inclusion circumference. The heavily distorted elements at the cracks tip for small aspect ratios are not easily solved. Due to these reasons, there is no influence of the aspect ratio on the effective thermal stress in the direction v corresponding to the normal of the cracks even with finer meshing. Nevertheless, there is a substantial influence on the radial directions t and k (Fig. 4.23). 

Conclusion

This numerical part takes into account the geometry and property of the cracks same as in the theory. The consistency of theoretical and numerical results have been demonstrated

through the following points. For open cracks, we observe that the microcracked RVE exhibits an induced anisotrophy with main influence of conductivity, resistivity and thermal stress on the direction normal to the crack. On the other hand, closure of cracks leads to a complete deactivation of their influence on the microcracks. We also studied the effect of aspect ratio and scalar closed crack properties on the effective properties. Finally, the limitations pertaining to using FEM is presented. In the future, further simulations can be performed by grouping the cracks closer to one another and study their interactions.

This would allow to compare the different estimates, specially MT scheme and PCW bound, to the numerical modelling. Though this work studies thermal and thermoelastic concepts separately, combined thermomechanical loading and their effect of the effective properties might be interesting.

General conclusion and perspectives

The present work was indented to study the thermomechanical behaviour of the microcracked brittle materials. To this purpose, the theoretical approach is used and compared to the numerical approach.

As a first, using the existing theoretical framework for composites, the thesis gives closed-form expressions for effective thermal and thermoelastic properties for the case of microcracks. Special attention is paid to the orientation of the cracks, distribution of the cracks, unilateral effect and crack-induced anisotropy. The initially isotropic media of the RVE is considered to be weakened by randomly distributed thin oblate-ellipsoidal cracks.

Open cracks are considered non-conductive and closed cracks are fictitious isotropic material to amount for some heat transfer continuity in the spirit of [START_REF] Deudé | Propriétés élastiques non linéaires d'un milieu mésofissuré[END_REF]. Using

Eshelby's equivalent inclusion method extended by [START_REF] Hatta | Equivalent inclusion method for steady state heat conduction in composites[END_REF] As mentioned many times, due to the lack of experimental data, numerical simulation was performed to get some comparison with the theoretical results. Framework similar to micromechanics was adopted for the numerical analysis in the FEA software ABAQUS.

Open and closed cracks are designed as inclusion and their status is determined only based on their material property. The numerical work started with a simple 2D analysis of effective thermal conductivity, then extended to 3D to numerically find the effective thermal conductivity, resistivity and stress of the microcracked RVE. More than 150 simulations were performed to study the said properties numerically. 2D analysis considers a spherical distribution of cracks (equivalent to PCW bound) while 3D considers an elliptical distribution (equivalent to MT scheme). So, 2D results are closer to the PCW bound and 3D results are closer to MT scheme. Micromechanical results are not dependent on the aspect ratio of the cracks nor on the fictitious property of the closed cracks. The same is not true for numerical results. So, their influence was studied and presented in detail. Simulation of the steady-state conduction problem is simple but the thermoelastic problem remains much more complex (meshing issues, definition of fictitious properties of closed cracks, for instance). Using the numerical approach, this work was able to obtain tendencies consistent with the theoretical results.

Works in the thesis can be improved and present some interesting research perspectives, both on the theoretical and numerical points of view.

First, the theoretical works can be applied to other estimations techniques like selfconsistent, differential, interaction direct derivative (IDD), etc. Though only linear behaviour is presented here, extension to a non-linear (viscosity, plasticity, etc.) matrix could be interesting to study damage in other types of materials. The effective thermal and thermoelastic properties provide also useful estimates for thermomechanical calculations of brittle materials. While the thesis explores fixed damage state, thermal loads applied can generate more cracks and which in turn can affect the very thermal properties studied and consequently heat transfer and thermoelastic behaviours. To that point, this work gives relevant information for further works that can be dedicated in modelling a fully coupled thermomechanical damage model with evolving damage. The framework GENERAL CONCLUSION AND PERSPECTIVES used can be extended to finding the effective electrical conductivity and resistivity of a microcracked media.

In the numerical works, the need for studying the interaction between cracks should be addressed. This question will face the very challenging issue of cracks location in the 3D cell. At the same time, it would be relevant to compare the inclusion-based representation used in the thesis with the representation of cracks as seams, where definition of contact can be set to evaluate closed cracks. Though the work deals with random microstructure, using X-ray tomography, real structures can be mapped and their volume reconstructed 

A.5 Detailed calculation of conductivity

For simplicity, the mathematical demonstration is detailed here for a single family of crack. It can be extended to several families as provided in Chapter 1.

Lets recall the expression to find the effective conductivity from Eq. (1.10): The gradient localization tensor for dilute case given by Eq. (A.11):

λ hom = λ m + f c (λ c -λ m ) • A c (A.
A dil c = I + S E • λ -1 m • (λ c -λ m ) -1
(A.30)

A dil c = I + λ c λ m -1 S E -1 = I -(1 -ξ) S E -1
(A.31) Substituting Eq. (A.27) in Eq. (A.31) one gets:

A dil c = I -n ⊗ n + n ⊗ n - π 4 ω (I -n ⊗ n) + 1 - π 2 ω n ⊗ n (1 -ξ) -1
(A.32)

A dil c = 1 - π 4 ω (1 -ξ) (I -n ⊗ n) + 1 -1 - π 2 ω (1 -ξ) n ⊗ n -1 (A.33)
Using the tensorial inverse in Section A.4, Eq. (A.33) comes to: .36) For open case λ c = 0 therefore ξ = 0, so:

A dil c = 1 1 - π 4 ω (1 -ξ) (I -n ⊗ n) + 1 1 -1 - π 2 ω (1 -ξ) n ⊗ n (A.
(I -n ⊗ n) + ω(1 -ξ) 1 -1 - π 2 ω (1 -ξ) n ⊗ n (A
T = lim ω→0 4ω 4 -πω (I -n ⊗ n) + 2 π n ⊗ n = 2 π n ⊗ n (A.37)
For closed case λ c = 0 therefore for all ξ = 0:

T = lim ω→0 ω(1 -ξ) 1 - π 4 ω (1 -ξ) (I -n ⊗ n) + ω(1 -ξ) ξ + π 2 ω(1 -ξ)
n ⊗ n = 0 (A.38)

A.5.2 Mori-Tanaka scheme

The gradient localization tensor for Mori-Tanaka is presented in Eq. (A.16):

A M T c = A dil c • f m I + f c A dil c -1 (A.39)
Therefore, Eq. (A.29) takes the form:

λ M T hom = λ m I -f c (1 -ξ) A dil c • f m I + f c A dil c -1 (A.40) Lets call f m I + f c A dil c -1
= G, so: The gradient localization tensor for PCW is given in Eq. (1.29)

λ M T hom = λ m G -1 -f c (1 -ξ) A dil c • G = λ m f m I + ξf c A dil c • G = λ m X • G (A.
A P CW c = A dil c • f m I + f c I + P E -P d • λ c -λ m • A dil c -1 = A dil c • f m I + f c I + S E -S d 1 -ξ • A dil c -1 = A dil c • f m I + f c 1 -ξ S d • A dil c -1
At the limit ω → 0 and for a spherical spatial distribution S d = 1 3 I, one has:

A P CW c = A dil c • I + 4 9 πd T -1
(A.43)

A.6 Detailed calculation of resistivity

The effective resistivity is given in Eq. (A.17).

A.6.1 Dilute scheme

The flux concentration tensor is given in Eq. (A.19):

B dil c = λ c • A dil c • ρ m = λ c • I + S E • λ -1 m • (λ c -λ m ) -1
• ρ m (A.44)

B dil c = λ m • ρ c + λ m • S E • λ -1 m • (λ c -λ m ) • ρ c -1 (A.45)
Lets call S E • λ -1 m = P E , which is similar to the Hill first tensor in elasticity, so:

B dil c = λ m • ρ c + λ m • P E • λ c • ρ c -λ m • P E • λ m • ρ c -1 = λ m • ρ c + λ m • P E • I -λ m • P E • λ m • ρ c -1 = I + λ m • ρ c -I + λ m • P E • I -λ m • P E • λ m • ρ c -1 = I + λ m • ρ c -λ m • ρ m + λ m • P E • λ m • ρ m -λ m • P E • λ m • ρ c -1 = I + λ m • (ρ c -ρ m ) -λ m • P E • λ m • (ρ c -ρ m ) -1 = I + (λ m -λ m • P E • λ m ) • (ρ c -ρ m ) -1
Therefore:

B dil c = I + Q E • (ρ c -ρ m ) -1 (A.46) Sharan Raj RANGASAMY MAHENDREN
where Q E = λ m -λ m • P E • λ m is similar to the Hill second tensor of elasticity. Now, substituting Eq. (A.46) into Eq. (A.17):

ρ dil hom = ρ m + f c (ρ c -ρ m ) -1 + Q E -1 = ρ m + f c ξ 1 -ξ ρ -1 m + Q E -1 = ρ m + f c ξ 1 -ξ I + I -S E -1 • ρ m = ρ m + f c (1 -ξ) I -(1 -ξ)S E -1 • ρ m = ρ m I + 4 3 πdω (1 -ξ) A dil c
This leads to:

ρ dil hom = ρ m I + 4 3 πd T (A.47)
A.6.2 Mori-Tanaka scheme

For the MT model, the flux concentration tensor reads:

B M T c = B dil c • f m I + f c B dil c -1 (A.48)
Accordindgly,

B M T c = (1 -f c ) B dil c -1 + f c I -1 = (1 -f c ) I + Q E • (ρ c -ρ m ) + f c I -1 = I + (1 -f c ) Q E • (ρ c -ρ m ) -1
From Eq. (A.17), and using similar simplifications as for the dilute case, the effective resistivity writes:

ρ M T hom = ρ m + f c (1 -ξ) ξI + (1 -ξ)(1 -f c )I -(1 -f c ) 2 (1 -ξ)S E -1
• ρ m (A.49)

At the limit case (ω → 0), it comes thus :

ρ M T hom = ρ dil hom (A.50)

A.6.3 Ponte Castañeda-Willis bound

The flux concentration tensor for PCW is presented in Eq. (3.61): The concentration tensor finally reads:

B P CW c = B dil c • f m I + f c I + Q E -Q d • ρ c -ρ m • B dil c -1 = B dil c • f m I + f c I + Q E • ρ c -ρ m -Q d • ρ c -ρ m • B dil c -1 = B dil c • I -f c Q d • ρ c -ρ m • B dil c -1 = B dil c • I -f c (1 -ξ) Q d • ρ m • I -S E (1 -ξ)
B P CW c = B dil c • I - 8 9 πd T -1
(A.51)

A.7 Scheme equivalence

According to these results, some equivalence between estimates of the overall thermal properties can be highlighted (Fig where E m and ν m is the Young's modulus and Poisson's ratio respectively. Finally, the spherical spatial distribution tensor S d c (= P d c : C m = β 1 J + β 2 K) can be written as :

S d c = 1 3 [ 2β 1 + β 2 , β 1 + 2β 2 , 3β 2 , 3β 2 , β 1 -β 2 , β 1 -β 2 ] (C.17)
where β 1 and β 2 are given in Eq. (3.50).

C.2 Elasticity tensors for microcracked media

Following the same general framework of the study, several authors have derived elasticity tensors for microcracked media, including unilateral effects [START_REF] Deudé | Propriétés élastiques non linéaires d'un milieu mésofissuré[END_REF][START_REF] Zhu | Applications des approches d'homogénéisation à la modélisation tridimensionnelle de l'endommagement des matériaux quasi fragiles : formulations, validations et implémentations numériques[END_REF][START_REF] Dormieux | Stress-based estimates and bounds of effective elastic properties: The case of cracked media with unilateral effects[END_REF].

• Dilute scheme : 

C dil hom = C m :   I -

C.3 Detailed calculation of specific heat

The specific heat capacity at constant strain for single family: 

C.3.1 Dilute scheme

The thermal strain localization tensor in dilute scheme is: 
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Figure 3 :

 3 Figure 3: Influence of (a) mechanical load and film thickness (Jen et al. 2011), and (b) temperature on cracks (Kim et al. 2020).
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 11 Figure 11: Influence of microcracking on (a) Young's modulus in ceramics during thermal loading (Fertig and Nickerson 2015) and (b) UCS in granite as a function of thermal stressing temperature (Griffiths et al. 2017).
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  et al. (2008) found up to 80% decrease in the compressive strength in various concretes (Tab. 1). Such degradation of properties due to thermal loading is not only seen in concrete but also into other brittle materials (in rocks Sibai et al. 2003, Ghassemi Kakroudi 2007, Chen et al. 2012a, in granite Lin 2002, Chen et al. 2012b, in quasi-brittle materials Tang and Tang 2015).
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 12 Figure 12: Hydrostatic compression of a thermally pre-cracked sandstone at different temperature levels (Homand-Etienne et al. 1987).
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 13 Figure 13: Damage evolution in (a) refractory material (Damhof 2010) and (b) granite (Griffiths et al. 2017), as a function of temperature.
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 14 Figure 14: (a) Deterioration of the Coefficient of Thermal Expansion (CTE) in a carbon-epoxy composite (Kim et al. 2000) (b) Thermal conductivity of sandstone as a function of pressure at various temperatures (Abdulagatova et al. 2009).
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 17 Figure 17: Normalized longitudinal conductivity k z /k 0 z as a function of normalized crack density R f /d for various fibre volume fraction ρ (Lu and Hutchinson 1995).
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 18 Figure 18: Normalized thermal conductivity of a porous material as a function of inclusion volume fraction: (a) effect of inclusion shape, (b) interaction between inclusions (Carson et al. 2003).

Figure 19 :Figure 20 :

 1920 Figure 19: Deviation between the effective conductivity and mortar conductivity vs homogeneity index, and corresponding heat flux vectors (Tang et al. 2012).

Figure 21 :Figure 22 :

 2122 Figure 21: (a) Temperature jump across the crack (b) Numerical effective conductivity from PBM, (Nguyen et al. 2017).

Finally

  , conclusions are drawn summarizing the main observations from the theoretical and numerical approaches. Future perspectives of this work and its relevancy in creating a new damage model are discussed. The appendices have exhaustive details on the theoretical developments performed during the duration of the thesis. to provide effective thermal properties related to the conduction problem in 3D taking into account the unilateral effect (opening/closure of cracks). This analysis considers steady-state heat transfer within an initially isotropic media weakened by randomly oriented crack families. Eshelby's equivalent inclusion method in steady-state discussed earlier is implemented. According to boundary conditions, estimates and bounds based on Eshelby-like formalism are developed to derive closed-form expressions for effective thermal conductivity and resistivity at fixed microcracking state. The open cracks are considered non-conductive whereas, the closed cracks are fictitious isotropic conductive material. The effective properties are determined for dilute and Mori-Tanaka schemes, and Ponte Castañeda-Willis bound. Influence of crack orientation and variation of crack density are also explored. Present chapter is based to the published research paper (Rangasamy Mahendren et al. 2019) [C. R. Mecanique; 347: 944-952 (2019)]. Some elements have been added to provide a more complete overview to the theoretical background.

Figure 1

 1 Figure 1.1: (a) RVE with arbitrarily oriented microcracks, (b) penny-shaped crack geometry.

Figure 1 . 2 :

 12 Figure 1.2: Phase properties and boundary conditions at infinity: (a) imposed temperature gradient G ∞ , (b) imposed heat flux Q ∞ .

  (1.22), (1.25) and (1.32) and Eqs.(1.36), (1.38) and (1.43)). Especially, conductivity (respectively resistivity) is mostly degraded (resp. enhanced) along the direction orthogonal to the cracks surface, which is consistent with adiabatic conditions on the cracks lips. As an illustration, Fig.1.3 presents the rose diagrams of the generalized scalar conductivity λ(v) and resistivity ρ(v) in the direction of unit vector v respectively defined by:

  Figure 1.3: Generalized thermal conductivity λ(v) and resistivity ρ(v) normalized by their initial values for a material weakened by a single family of parallel microcracks of unit normal n (cracks density d = 0.1).

Figure 1 . 4 :

 14 Figure 1.4: Predictions of homogenization estimates and bounds for the generalized thermal conductivity λ(n) and resistivity ρ(n) for a material weakened by a single family of open parallel microcracks of unit normal n.

  Applying a uniform temperature gradient allows for finding the overall conductivity of an isotropic media containing a single family of parallel microcracks. The numerical work uses FEM in ABAQUS to evaluate the same configuration as the theoretical one and allow us to compare with the micromechanical results. Both approaches consider non-conductive open cracks and conductive closed cracks. Present chapter corresponds to the published research paper (Rangasamy Mahendren et al. 2020a) [Mechanics & Industry; 21: 519 (2020)].

  [START_REF] Nemat-Nasser | Micromechanics: Overall properties of heterogeneous materials[END_REF] have provided effective stiffness expressions for arbitrarily oriented microcracks. Eshelby's equivalent inclusion method[START_REF] Eshelby | The determination of the elastic field of an ellipsoidal inclusion, and related problems[END_REF]) also offers relevant solutions when considering cracks as flat ellipses (in 2D) or ellipsoids (in 3D). For instance, Mura (1987) has studied various ellipsoidal limit cases and[START_REF] Mori | Average stress in matrix and average elastic energy of materials with misfitting inclusions[END_REF] have enhanced the representation to the case of multiple interacting inhomogeneities. Note that energy-based bounds developed by Ponte Castañeda and Willis (1995) allow accounting for different spatial cracks distribution.Based on the physical analogy with elasticity (as in pioneering works of[START_REF] Bristow | Microcracks, and the static and dynamic elastic constants of annealed and heavily cold-worked metals[END_REF], see also[START_REF] Torquato | Random heterogeneous materials: Microstructure and macroscopic properties[END_REF], some authors have extended these modelling approaches to thermal, electrical and permeability properties of cracked media[START_REF] Wang | The effective electroelastic property of piezoelectric media with parallel dielectric cracks[END_REF][START_REF] Saevik | A 3D computational study of effective medium methods applied to fractured media[END_REF][START_REF] Sevostianov | On the effective properties of polycrystals with intergranular cracks[END_REF]. For steady-state heat conduction,[START_REF] Sevostianov | Thermal conductivity of a material containing cracks of arbitrary shape[END_REF] and others[START_REF] Vu | Heat conduction and thermal conductivity of 3D cracked media[END_REF][START_REF] Tran | Analytical and numerical solutions for heat transfer and effective thermal conductivity of cracked media[END_REF] apply the direct methodology based on temperature jump across insulating crack lips. For[START_REF] Hoenig | Thermal conductivities of a cracked solid[END_REF], Hatta

  2.1a). The cracks are modelled as a flat oblate ellipse (mean semi-axes a and c with c a; Fig. 2.1b) with unit normal n and 2D volume fraction f c = π d ω (see Appendix B.1). Here d = N a 2 is the scalar crack density (N is the number of cracks per unit area) as defined by Budiansky and O'Connell (1976) and ω = c /a 1 is their mean aspect ratio. The depolarization tensor S E and its factors are given in Torquato 2002 (also see Appendix B.

  Figure 2.1: (a) RVE with single family of parallel microcracks, (b) crack geometry.

  are closed λ dil hom = λ M T hom = λ P CW hom = λ m . Fig. B.1a in Appendix B.3 shows the prediction of the effective thermal properties for increasing crack density. Sharan Raj RANGASAMY MAHENDREN In the following, numerical simulations are performed using finite element software ABAQUS. (t, v) denotes an orthonormal coordinate system. The simulated area A is a square (size L = 1 m) that follows steady-state heat conduction. The matrix is designed as an unit 2D shell with its own scalar conductivity λ m . Assuming there are N = 10 cracks in the area, the radius of the crack can be given by a = 2 d N . In what follows, the range of considered density is less than 0.1, therefore, the maximum value of crack radius is 0.1 m. Cracks are usually represented as seams for the open state (duplicated nodes). Yet, this cannot account for the heat transfer during crack closure. So, the crack is modelled here as an elliptical inclusion (created as a partition on the 2D shell) with normal n and scalar conductivity λ c . Since creating a crack with zero aspect ratio is not possible (Ω c = 0), the cracks are designed with an aspect ratio 0 = ω 1 (so f c 1). For a given f c , the value of the scalar conductivity λ c determines if the cracks are open (λ c = 0) or closed (λ c = λ * = 0). Such a description of the crack geometry and the unilateral effect is in line with the theoretical framework used in Section 2.2. The cracks are positioned inside the simulated area using circular spatial distribution (in agreement with spatial distribution assumed for PCW bound). Since we want to study the influence of the crack's orientation on conductivity, further simulations are done by rotating the whole group of cracks which maintains a constant distance between them for all orientations. To be precise, the so-called Reference Configuration (RC) corresponds to the distribution of cracks rather grouped near the centre of A to reduce edge effects (Fig. 2.2). While keeping the circular spatial distribution, other configurations are also studied in the following to show the influence of cracks location.

Figure 2 . 2 :

 22 Figure 2.2: Simulated area showing spatial distribution of cracks for the Reference Configuration (RC).

  Figure 2.3: Simulated area mesh (RC; (n, v) = 45 • ).

  (v) obtained for different cracks distributions have been compared for the most critical case, i.e. (n, v) = 0 • (Fig 2.4). From Tables 2.2 and 2.3, it is observed that cracks distribution and number of cracks (refer to Fig. 2.5 for configurations with different number of cracks) have no major influence on the resulting conductivity. Accordingly, the RC with 10 cracks will be considered for all further simulations done in the study.

Figure 2 . 4 :

 24 Figure 2.4: Influence of cracks position for (n, v) = 0 • .

Figure 2 . 5 :

 25 Figure 2.5: Configurations with different number of cracks ((n, v) = 0 • ) As first illustration, Fig. 2.6 shows the heat flux vector at integration points for density d = 0.1 (RC; (n, v) = 45 • ). For the open case (λ c = 0, Fig. 2.6a), the cracks act as a thermal barrier according to the adiabatic behavior on their lips, whereas, for the closed case (λ c = 50% λ m , Fig. 2.6b), heat transfer exhibits continuity.

  Figure 2.7: Generalized thermal conductivity λ(v) in 2D normalized by its initial value for a material weakened by a single array of parallel open microcracks of unit normal n.

  Figure 2.8: Heat flux vectors at integration points for various orientations of open cracks (RC; d = 0.1; a = 0.1 m; ω = 0.001).

Figure 2 . 9 :Figure 2 . 10 :

 29210 Figure 2.9: Generalized thermal conductivity λ(v) in 2D normalized by its initial value for a material weakened by a single array of parallel closed microcracks of unit normal n (RC; λ * = 50% λ m ).

Figure 2

 2 Figure 2.11: Influence of scalar conductivity λ * on the normal thermal conductivity λ(n) in 2D normalized by its initial value (RC; d = 0.1; a = 0.1 m); log 10 scale is used for abscissa.

  Present chapter corresponds to the submitted research paper (Rangasamy Mahendren et al. 2020b) [Euro. J. Mech. A/Solids; submitted].

Sharan

  Raj RANGASAMY MAHENDREN with experimental or numerical studies. This work thus intends to implement homogenization techniques for 3D microcracked media and derive closed-form expressions of their effective thermoelastic properties for several classical models. Considering both strain and stress-based formulations, this study accounts for the case of an isotropic matrix weakened by arbitrarily oriented microcracks.Attention is also paid to the open or closed status of cracks and their different influence on the overall properties. Such representation of the specific unilateral behaviour of crack defects is an important contribution of the work. After a short recall of the theoretical framework (Section 3.2), this paper provides analytical expressions of effective thermoelastic strain-based (Sections 3.3, 3.4 and 3.5) and stress-based (Section 3.6) properties for several estimation approaches based on eigenstrain homogenization method. The different models implemented take into account (Mori-Tanaka scheme and Ponte Castañeda-Willis bound) or not (dilute scheme) some interactions between microcracks.

  ) and c σ the scalar specific heat capacity (per unit volume) at constant stress. Elastic tensors are inverse of each other, C : S = I = I ⊗ I (with I and I being the fourth and second order symmetric identity tensors respectively), while thermal tensors are linked by κ = C : α and c σ = c ε +T 0 α : κ. From (3.1) and (3.2), constitutive relations for the thermoelastic medium come to (s the 54 Sharan Raj RANGASAMY MAHENDREN 3.2. THEORETICAL FRAMEWORK entropy and ρ the material density) :

  6) where A and B (respectively a and b) are the symmetric fourth (resp. second) order strain localization and stress concentration (resp. thermal strain localization and stress concentration) tensors, such that A = B = I and a = b = 0 (3.7) Combination of constitutive laws Eqs. (3.3) and (3.4) with average relations (3.5) leads to the overall behaviour of the RVE:

  3.15) In Eqs. (3.10)-(3.15), f c,i is the cracks volume fraction of the i th family, • r = 1 Ωr Ωr • dΩ denotes the mean value over the volume of the phase r = {m, c} (m for matrix and c for cracks) and conditions C r : S r = I, κ r = C r : α r and c σ,r = c ε,r + T 0 α r : κ r hold for each phase r. At that point, effective tensors C hom , κ hom and c ε,hom (derived from strainbased boundary condition with uniform ∆T ) and S hom , α hom and c σ,hom (derived from stress-based boundary condition with uniform ∆T ) strictly describe the same equivalent homogeneous media, so that these tensors follow the relations C hom : S hom = I, κ hom = C hom : α hom and c σ,hom = c ε,hom + T 0 α hom : κ hom . As demonstrated through Eqs. (3.10)-(3.13), elastic and thermoelastic problems are closely connected. Within the mean-field framework, the knowledge of elastic cracks local-56 Sharan Raj RANGASAMY MAHENDREN 3.2. THEORETICAL FRAMEWORK ization A c,i and concentration B c,i tensors required for the determination of elasticity tensors C hom and S hom are sufficient for describing the dilatometric tensors κ hom and α hom . Some simplifications arise for two-phase materials. Using Levin's formulae, one can express thermal strain localization and stress concentration tensors as functions of elasticity tensors. The derivation of all thermal quantities (κ hom , α hom , c ε,hom and c σ,hom )

  stiffness and compliance given by C m = 3k m J + 2µ m K and S m = 1 3km J + 1 2µm K where k m and µ m are the bulk and shear modulus of the matrix respectively. Its thermal strain and thermal stress are given by α m = α m I and κ m = κ m I (α m is the Coefficient of Thermal Expansion (CTE), κ m = 3k m α m ) respectively. Such matrix is weakened by randomly distributed families of microcracks with random orientation (Fig. 1.1a). Such defect can be represented as a flat oblate ellipsoid (mean semi-axes a and c, Fig. 1.1b).

  and c ε,c,i = c * ε and c σ,c,i = c * σ . Developments are made for the general case where κ * , α * , c * ε and c * σ are scalars with the conditions κ * = 0, α * = 0, c * ε = 0 and c * σ = 0. This is to ensure some level of continuity during crack closure (frictionless contact).

  .15)) for microcracked media with unilateral effects. Three different homogenization approaches are derived, either for strain or stress-based framework. Related estimations of compliance and stiffness tensors (Eqs. (3.10) and (3.11)), already given in the literature, are simply recalled in Appendix C.2.

  -based formulation with uniform ∆T -Ponte Castañeda-Willis upper bound Ponte Castañeda and Willis (PCW) have applied Hashin-Shtrikman variational principles for composite materials with ellipsoidal inclusions. From this, they provided an explicit strain-based upper bound for the effective stiffness (Ponte Castañeda and Willis

  ), Valdiviezo-Mijangos et al. (2020) may help in this sense to explicitly develop Eq. (3.14) for the PCW estimate. In the present paper, the calculation will be limited to the case of a single family of cracks. For such a case of two-phase composite, combining first part of Eq. (3.12) with consistency conditions (3.7) allows to express the localisation tensor (Ponte Castañeda 2002, Willis 2002): a P CW c = -(C c -C m ) -1 : A P CW c -I T : (κ c -κ m ) (3.56) where T denotes the transpose. When such a tensor is implemented inside Eq. (3.14), the open case can simply derived. However, contribution due to closed cracks depends linearly on I : (2µ m K) -1 : (T : H) T : I which is not defined. Using the function F(b) again solves the problem. It can be shown that F(b) : (T : H) T does not depend on b = 0 and moreover that F(b) : (T : H) T : I = 0 (3.57)

Figure 3 . 1 :

 31 Figure 3.1: Influence of the crack density d on the ratio a 1 a 2 d for various models for a single family of cracks.

  3.65)Moreover, for the case of a single family, we find from (3.7) and (3.13) the PCW formuare open or closed, and then for the effective specific heat:c dil σ,hom = c M T σ,hom = c P CW σ,hom = c σ,m (3.68)It is thus shown that microcracks does not affect thermoelastic properties established by means of stress-based formulation, i.e. both dilatation and specific heat at constant stress, for the three considered estimates.

  have collection of simulations based on Finite ElementModelling in 3D, on the thermal and thermoelastic properties. Current chapter is the numerical counterpart of the homogenization estimates of the Chapters 1 and 3. Following boundary conditions used in said chapters, the homogenized properties are predicted. To be consistent with theoretical approach similar assumptions are made here. The results are given for a RVE with a single family of parallel microcracks. The influence of the density of cracks, size, orientation and unilateral effect are all discussed. Finally, the results are compared with the theoretical expressions.

  be their coordinate system, which corresponds to (X, Y, Z) of ABAQUS. The matrix is a 3D solid with its own properties. If there are N cracks in the RVE, then the crack radius a can be found by a = 3 d/N , d being the scalar density of cracks. They are modelled as a thin oblate penny-shaped inclusions with normal n (Fig. 4.1a). Their aspect ratio ω = c/a is small, such that ω 1. The properties of the inclusions define if the cracks are open or closed. The open cracks are defined as non-conductive and with zero stiffness, while the closed cracks are considered having fictitious scalar properties for both the thermal and elastic properties. This assumption of the crack geometry and the unilateral effect is in line with the theoretical framework.

Figure 4 . 1 :Figure 4 . 2 :

 4142 Figure 4.1: Crack (a) geometry, (b) structured meshing in ABAQUS, with ω = 0.1.

  (a) Global mesh (b) Magnification around a crack tip

Figure 4 . 3 :

 43 Figure 4.3: Mid cut section view of the simulated RVE showing the mesh, with ω = 0.1 and (n, v) = 0 • .

Figure 4 . 4 :

 44 Figure 4.4: Simulated RVE showing (a) the gradient boundary condition, (b) outer face nodes used for extracting results.

Fig. 4 .

 4 Fig. 4.5 shows the heat flux through the cut section of the RVE. Just like in 2D case (Fig. 2.6a), here also the non-conductive cracks act as a thermal barrier significantly disrupting the flux (Fig. 4.5a). On the other hand in Fig. 4.5b, for the conductive closed cracks, heat flux vectors are not deviated by the cracks (Fig. 2.6b for 2D).

Figure 4 . 6 :Figure 4 . 7 :Figure 4 . 9 :

 464749 Figure 4.6: Generalized thermal conductivity λ(v) in 3D, normalized by its initial value for a material weakened by a single array of parallel open microcracks of unit normal n.

  where NT11 i is the Nodal Temperature on each node i on the top face.

Figure 4 Figure 4 Figure 4

 444 Figure 4.10: Simulated RVE showing the boundary condition and the prescribed load.

  Figure 4.13: Normal thermal resistivity ρ(n) in 3D, normalized by its initial value for various aspect ratios (d = 0.1); log 10 scale is used for abscissa.

Figure 4 . 14 :

 414 Figure 4.14: Influence of scalar conductivity λ * = α λ m on the normal thermal resistivity ρ(n) in 3D, normalized by its initial value (d = 0.1); log 10 scale is used for abscissa.

Figure 4 .

 4 Figure 4.15: Roller boundary condition used for the thermoelastic problem (a) ABAQUS symbols, (b) normalized scheme.

  and RF i is the Reaction Force on each node i on the respective face.The scalar properties of the matrix are representative of the SiC bulk cermaic, with Young's modulus E m = 420 GPa, Poisson's ratio ν m = 0.16 and CTE α m = 2.2 ppm/K.Open cracks have zero elastic and thermal expansion properties, i.e. For closed cracks, inclusion properties are those of a fictitious material. Similar to the theoretical work, it is assumed that the closed cracks transmit only normal stress and not shear stress. In fact, using C closed c = 3k m J for the closed cracks suggested by[START_REF] Deudé | Propriétés élastiques non linéaires d'un milieu mésofissuré[END_REF] cannot be implemented directly since J is not invertible. While encountering such difficulty, the consistency with theoretical representation can be maintained by defining engineering constants (typically used for composites) for the cracks.

Figure 4

 4 Figure 4.16: Influence of the ratio η = E * /Em = α * /αm on the normal thermal stress κ(n) normalized by its initial value (d = 0.1); log 10 scale is used for abscissa.

  Figure 4.17: Generalized thermal stress κ(v) normalized by its initial value for a material weakened by a single array of parallel open microcracks of unit normal n.

Figure 4 . 18 :

 418 Figure 4.18: Generalized thermal stress κ(v) normalized by its initial value for a material weakened by a single array of parallel closed microcracks of unit normal n (E * = 50% E m ; α * = 50% α m ).

Fig. 4 .

 4 Fig. 4.18 shows that closed cracks amount for negligible degradation of thermal stress (less than 0.04% for d = 0.05 and less than 0.07% for d = 0.1). Fig.4.19a shows that thermal stress is not sensitive to aspect ratio of open cracks. This point will be discussed later. However, closed cracks are sensitive to aspect ratio(Fig. 4.19b). As ω → 0, the numerical result for closed case tends to theoretical result.

  Figure 4.20: Crack position for two orientations.

Figure 4 . 21 :

 421 Figure 4.21: Meshing of the crack showing critical area (quarter section removed) for aspect ratio ω = 0.005.

Figure 4 .Figure 4 . 23 :

 4423 Figure 4.22: Meshing of the crack showing critical area (quarter section removed) for aspect ratio ω = 0.2.

  scheme and Ponte Castañeda-Willis bound. The results show that each open family of cracks acts as a thermal barrier and that the overall properties are transversely isotropic around its normal axis. So, when there are more than one family of cracks, one has a complex anisotropy which would be the summation of transverse isotropies around different crack normals. For a given family of open cracks, the maximum degradation (in conductivity) or enhancement (in resistivity) is in the direction normal to cracks. It should also be noted that different distributions of cracks (MT and PCW) lead to different expressions of thermal properties. Additionally, a family of closed cracks do not contribute to the degradation or enhancement of the conductivity or resistivity respectively, whatever the considered estimation method. All these observations were true for the analyzed 2D and 3D microcracked RVE. Based on the same 3D microstructure, the next step is to determine the effective thermoelastic properties. The thermoelastic properties considered for homogenization are thermal strain and stress and specific heat capacities at constant strain and stress. The derivation of effective thermal stress and strain directly comes from the elastic problem, since only the knowledge of elastic strain localization and stress concentration tensors is needed. The specific heat capacity determination requires the less common thermal strain localization and stress concentration tensors. The open cracks are assumed to

  and simulations can be performed in FEA softwares. The simulations linked to this work consider thermal and thermoelastic simulations separately, but combined thermomechanical loading can aid in creating the damage model mentioned above.[START_REF] Lejeunes | Une Toolbox Abaqus pour le calcul de propriétés effectives de milieux hétérogènes[END_REF] developed a homogenization toolbox for ABAQUS to determine the homogenized elastic characteristics of heterogeneous materials. Similarly, a new graphical interface toolbox can be developed to derive the homogenized thermal characteristics as well. Since extracting results can be time consuming, toolbox powered by python script will be very attractive. + s)(a 2 + s) (c 2 + s) (A.24) Solving Eqs. (A.23) and (A.24), and considering the special case of penny-shape, i.e. a c, one has:S 11 = S 22 = π 4 ω S 33 = 1 -π 2 ω (A.25)For an orthogonal base (k, t, n), the tensorial form of Eq. (A.25) can be written asS E = S 11 k ⊗ k + S 22 t ⊗ t + S 33 n ⊗ n = S 11 (k ⊗ k + t ⊗ t) + S 33 n ⊗ n (Knowing that, I = k ⊗ k + t ⊗ t + n ⊗ n,it can be simplified as:S E = S 11 (I -n ⊗ n) + S 33 n ⊗ n = π 4 ω (I -n ⊗ n)Let the second order tensor A = w (I -n ⊗ n) + z n ⊗ n, where w and z are scalars such that w = 0 and z = 0. Now its inverse can given be asA -1 = 1 w (I -n ⊗ n) + 1 z n ⊗ n.

  28)since we already know λ m = λ m I and λ c = λ c I, the equation above can rewritten asλ hom = λ m + λ m f c λ c λ m -1 A c = λ m I -f c (1 -ξ) A c with ξ =

  41)Considering thin inclusion (ω → 0), f m = 1 -f c → 1. Moreover, since ξ = 0 in the open case and ω A dil c = 0 in the closed case, we thus have X = I and λ hom = λ m G, so:

  We already establishedQ d = λ m -λ m • P d • λ m = λ m • (I -S d )

Figure A. 1 :

 1 Figure A.1: Equivalence relationships between micromechanical schemes according to the microcracks status and boundary conditions.

•

  Ponte Castañeda-Willis bounds (upper bound for stiffness C P CW hom and lower bound for compliance S P CW hom , with spherical distribution) : C P CW hom = C m : Iwith T i and T i given in Eqs. (3.24) and (3.25) respectively.

c

  ε,hom = c ε,m + f c c ε,c -c ε,m + T 0 (κ c -κ m ) : a c (C.24)

(-=+

  a dil c = (I -A dil c ) : (C c -C m ) -1 : (κ c -κ m ) with C m = 3k m J + 2µ m K (C.25)Open caseRecalling C c = O , κ c = 0, c ε,c = 0, S m : κ m = α m , Eq. (C.24) and Eq. (C.25) simplify to:c dil ε,hom = f m c ε,m -f c T 0 κ m : a dil/open c = f m c ε,m -f c T 0 κ m I : a dil/open c = f m c ε,m -f c T 0 κ m I : a M T /open c (C.38) = f m c ε,m -f c T 0 κ m I : a dil/open c + f c T 0 κ m I : A M T κ m I : T : G open : M open (ν m ) α m d n ⊗ n (C.44) Then I : T : G open : M open = -= c ε,m + T 0 α m κ m a 1 d (1 + ν m ) -T 0 α m κ m c ε,m + T 0 α m κ m a 1 d (1 + ν m ) 1 -a 1 a M T 2 d (1 -ν m ) (C.48) = c ε,m + (1 + ν m ) T 0 α m κ m = c ε,m + f c c ε,c -c ε,m -f c T 0 κ m (1 -ψ) I : a M T f c T 0 κ m (1 -ψ) I : A M T κ m (1 -ψ) I : T : G closed : M closed (C.53) with G closed = I + 4

  

Table 1 :

 1 Effects of thermally induced cracks in high performance concrete[START_REF] Vejmelková | Effect of cracks on hygric and thermal characteristics of concrete[END_REF] 

	GENERAL INTRODUCTION			
	High	Compressive Strength	Thermal conductivity
	Performance	MPa		λ [W• m -1 •K -1 ]
	Concretes	without cracks with cracks without cracks with cracks
		at 25 °C	at 600 °C	at 25 °C	at 600	°C
	BBI	63.57	21.49	4.16	2.90
	BII	83.47	32.33	2.36	1.43
	PI	119.06	29.86	0.637	0.510
	So far the influence of thermal load on mechanical properties due to microcracking
	was presented, now, it is imperative to investigate how thermal loading affects damage
	evolution.				

  It should be noted that, according to the boundary condition, dilute approximation leads to different representation of the thermal behaviour in the open state of cracks, λ dil hom = (ρ dil hom ) -1 . A similar result is obtained in elasticity as well. Yet, effective conductivity and resistivity are obviously inverse of each other for the closed state of cracks, λ dil hom = (ρ dil hom ) -1 , while in this case strain-based or stress-based formulations of elasticity still remain different

			1.4. FLUX-BASED FORMULATION
			cracks are open	(1.36)
		ρ m	, if cracks are closed
	30	Sharan Raj RANGASAMY MAHENDREN

  .2. THEORETICAL FRAMEWORK an adaptive scheme Boundary Element Method (BEM) to find conductivity of a domain containing several cracks. Once again, we note that the crack orientation and unilateral effect are not given enough attention.The present work intends to propose an Eshelby-like modelling approach for the steady-state heat transfer in a 2D microcracked medium. The effective thermal conductivity is derived based on the geometry of cracks considered as thin aspect ratio inclusions, and on the relevant choice of cracks properties according to their status (open or closed). The theoretical basis of the 2D linear thermal problem is stated in Section 2.2.As a demonstration, for different estimations (dilute and Mori-Tanaka schemes and Ponte Castañeda-Willis bound), closed-form expressions for a single-family of parallel cracks are presented in Section 2.3. In addition to the analytical solution, we also propose a numerical analysis of the thermal problem by means of finite element simulations. Modelling and description of the simulated area are given in Section 2.4. The results obtained from micromechanics and numerical simulation are finally compared and discussed in Section 2.5.

[START_REF] Tang | Numerical study of the influence of material structure on effective thermal conductivity of concrete[END_REF] 

propose a similar modelling for concrete with conductive heterogeneities. Shen et al. (2015) use a plastic damage model to create cracks under tensile load and then consider steady-state conduction to find the conductivity of the microcracked concrete with high aggregate volume. One can cite also works of Tran et al. (2018) based on 38 Sharan Raj RANGASAMY MAHENDREN
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Table 2 . 1 :

 21 Influence of matrix element size on the average heat fluxQ v (RC; (n, v) = 0 • )

	Size of the matrix elements	0.1	0.05	0.025	0.01
	Total no of elements	13804	42950	52976	73466
	Heat flux Q v , W.m -2	10484.4 10468.1 10468.0 10468.4
	remains acceptable (less than a minute). Moreover, estimations of λ num

Table 2 .

 2 

	Configuration		λ num /λ m	Deviation w.r. RC
	Reference configuration (RC)	0.727	-
	Configuration 1		0.730	0.47 %
	Configuration 2		0.732	0.66 %
	Table 2.3: Influence of number of cracks ((n, v) = 0 • )
	No. of cracks	Q v , W.m -2	Deviation w.r. 10 cracks
	1	10423.9		2.63 %
	2	10885.9		1.73 %
	5	10553.6		1.36 %
	10	10697.6		-
	15	10790.4		0.86 %
	20	10677.1		0.29 %

2: Influence of cracks distributions ((n, v) = 0 • )

Table 4

 4 

.1: Simulation problem domain low level: -1 high level: +1 Young modulus E * 1% E m 100% E m CTE: α * 1% α m 100% α m Sharan Raj RANGASAMY MAHENDREN

Table 4 .

 4 2: Simulation and response matrix for factors and interactions (v = n)

	Simulations Avg E t α t E t α t		κ(n) /κm	
	No.			ω = 0.001 ω = 0.005 ω = 0.1
	1	+1 -1 -1	+1	0.9634	0.8764	0.8232
	2	+1 +1 -1	-1	0.9995	0.9978	0.9958
	3	+1 -1 +1	-1	0.9637	0.8776	0.8249
	4	+1 +1 +1 +1	1	1	1
	Table 4.3: Coefficients of the factorial design method (v = n)
	ω	r 0	r 1	r 2	r 12	
	0.001 0.98165	0.0181	0.0002	5•10 -5	
	0.005 0.93795 0.06095 0.00085 0.00025	
	0.01 0.910975 0.086925 0.001475 0.000625	
	In Tab. 4.3, we see that r 1				
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Appendices

Appendix A Supplement to Chapter I

A.1 Equivalent inclusion method in steady-state

This part intends to present the equivalent inclusion method developed to solve the problem described at Eq. (1.12).

Consider a problem of a homogeneous medium of thermal conductivity λ 0 in the same volume Ω, subjected to same conditions at the boundary ∂Ω, and surrounded by a eigen temperature gradient g e (or an equivalent pre-flux q 0 = λ 0 • g e ). The resulting heat flux q * , temperature T * and temperature gradient g * of this fictitious problem must satisfy the following equations:

The works of [START_REF] Eshelby | The determination of the elastic field of an ellipsoidal inclusion, and related problems[END_REF], in extension [START_REF] Hatta | Equivalent inclusion method for steady state heat conduction in composites[END_REF], falls within the framework defined by equation set (A.1) with certain specifies: the domain Ω is considered infinite, the temperature tends to zero at infinity, the free temperature gradient g e (or pre-flux q 0 ) is zero outside the inclusion domain I of Ω and uniform within the domain I (or q 0 uniform equal to q I = λ 0 • g e ). The problem can be written as:

It is shown that this is equivalent to determining the temperature field equal to zero at infinity in an infinite elastic homogeneous medium subjected on an inner surface ∂Ω I corresponding to the boundary of the inclusion to surface flux density -q 0 • u (u the unit normal to ∂Ω I directed outside I). Green's function in an infinite medium provides solution to this problem. Accordingly, when the inclusion I is ellipsoidal, the resulting temperature gradient g I is uniform, so:

and the resultant uniform heat flux is:

where the depolarization (Eshelby-like) tensor S E depends on the shape and orientation of the inclusion. Now consider the so-called problem of heterogeneity, were the infinite medium of volume Ω and conductivity λ 0 is subjected to a homogeneous temperature gradient G ∞ at infinity. Additionally, a different medium of volume Ω H and conductivity λ H occupies a domain H within V with a condition of perfect interface. This problem can be defined with following set of equations:

Under the condition that H is an ellipsoid and by subjecting the volume Ω including I to the same temperature gradient G ∞ at infinity as Ω including H, it can be demonstrated that there is equivalence between the inclusion problem and the heterogeneity problem if q I is such that:

From Eqs. (A.3) and (A.6), we get:

In estimation methods, the solution for the heterogeneity problem is used to approximate the mean temperature gradient over the phases of the heterogeneous medium. Returning to our microcracked media problem, a cracks family is modelled as an ellipsoidal heterogeneity. Average temperature gradient g c and heat flux q c over the cracks phase are assimilated to the uniform fields developing in an ellipsoidal heterogeneity with same conductivity as the crack (λ H = λ c ), with adequate shape and orientation (described through tensor S E ) and embedded in an infinite homogeneous reference medium (of conductivity λ 0 ) subjected to uniform gradient G ∞ . Eq. (A.7) becomes:

For homogenization schemes considered in the study, the matrix is considered as the reference medium (λ 0 = λ m ). Moreover, for a dilute concentration of cracks with no interaction between cracks, the remote condition is G ∞ = G, therefore: 

For the Mori -Tanka scheme, we consider some interaction between the cracks. We retain the metholodly using in dilute case but we account the interaction between cracks by modifying the temperature gradient or flux acting on each crack. For this case, the macroscopic temperature gradient at infinity G ∞ is replaced by the phase average temperature gradient of the matrix g m , i.e. G ∞ = g m , and we know that:

Based on the above mentioned assumption, one can say:

From the above two equations, G ∞ can be given in terms of G as:

Substituting Eq. (A.14) in Eq. (A.13),

one can compare Eqs. (A.15) and (1.11) to show that:

As we see from Eqs. (A.11) and (A.16), the estimation are function of

• volume fractions,

• matrix and crack properties,

• shape of the crack (through Eshelby-like tensor).

Since the above points are already known, it is fairly easy to estimate the effective properties by combining Eq. (A.11) or (A.16) into Eq. (1.10).

Apart from these two methods, Ponte Castañeda and Willis introduced an energy based bound which help us find the effective properties directly. They employ an additional tensor which takes into account the spatial distribution of the inclusions (or cracks). From this method, both dilute and Mori-Tanaka results can be achieved by considering different spatial distribution tensor. This makes them a special case of PCW.

Using the same methodology used for the conductivity problem, we can also find the effective resistivity. Here instead of considering a uniform temperature gradient G boundary condition, we will consider a uniform heat flux Q. Accordingly,

where B is the second-order flux concentration tensor. And it links the microscopic and macroscopic heat flux of each phase linearly:

For the crack phase, from Eqs. (1.3), (1.5), (1.6) and (A.18), and for dilute case (f c 1), λ • A -1 ≈ λ -1 m = ρ m , the flux concentration tensor becomes:

Similar to Eq. (A.16) with the remote condition Q ∞ = q m , the flux concentration tensor in Mori -Tanaka can be given by:

Many such schemes can be used to find the flux concentration and gradient localization tensors, each with their own assumptions, advantages and shortcomings.

A.2 Volume fraction of cracks

When a cracks family is modeled as a penny-shaped ellipsoid (Fig. 1.1b), volume fraction of N number of cracks per unit volume is defined by:

where (a, c) are the mean semi-axes of the cracks, ω = c /a the mean aspect ratio and d = N a 3 the crack density.

A.3 Depolarization tensor

The components of the depolarization tensor in 3D can be given by [START_REF] Hatta | Equivalent inclusion method for steady state heat conduction in composites[END_REF]:

and S ij = 0 for i = j. Eq. (A.22) is an elliptical integral but can be expressed for a simple geometries of ellipsoids. Typically, for an ellipsoid such that a 1 = a 2 = a and a 3 = c, Therefore Eq. (A.22) becomes:
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B.1 2D Volume fraction of cracks

When a cracks family is modeled as a flat ellipse ellipsoid (Fig. 2.1b), volume fraction of N number of cracks per unit area, is defined by:

(a, c) are the mean semi-axes of the cracks, ω = c /a the mean aspect ratio and d = N a 2 the crack density.

B.2 2D Depolarization tensor

The depolarization tensor in 2D is given by:

and S ij = 0 for i = j. For an ellipse with a 1 = a and a 2 = c, Eq. (B.2) becomes:

3) and (B.4), and considering the special case of flat-ellipse, i.e. a c, one has:

For an orthogonal base (k, n), the tensorial form of Eq. (B.5) can be written as

Knowing that, I = k ⊗ k + n ⊗ n, it comes:

B.3 Calculation of the effective thermal resistivity

Using the same boundary condition used in Section 1.4, the following properties are derived. Starting with Dilute scheme, the respective flux concentration tensor is given in Eq. (1.33), therefore the effective tensor is given as:

Knowing and expanding R tensor (Section 2.3), we get:

The above result for open case coincides with the one given by [START_REF] Sevostianov | Thermal conductivity of a material containing cracks of arbitrary shape[END_REF], who calculated this solution using heat flux intensity factor around the crack tip.

While considering elliptical spatial distribution to account for interaction, Mori-Tanaka scheme is used. Its concentration tensor is given in Eq. (1.37). This leads to:

Ponte Castañeda-Willis bound allows to take any spatial distribution of cracks. Inline with previous works, we will consider a circular distribution. The simplified concentration tensor is (see Apprendix A.6.3):

From the equation above, the thermal resistivity is:

(B.12)

Substituting the limit tensor R and further simplification leads to: The tensors J and K given by Walpole (1981)

satisfy following conditions :

so that any fourth order isotropic tensor D = γ J + δ K has an inverse D -1 = 1 γ J + 1 δ K. Given a unit vector n, Walpole also introduce the following base :

Using Eq. (C.3), any fourth order transversely isotropic D can be decomposed as :

which is simply expressed as D = [e 1 , e 2 , e 3 , e 4 , e 5 , e 6 ] (C.5)

In Walpole base, tensors I, J and K can be expressed as:

Note that, if e 5 = e 6 then tensor D is symmetric. Also, and finally the inverse of D can be given by: 

Considering limit case for the equation above, ) : I = -I :

and:

Closed case

For closed case,

From these equations,

Tending to the limit case, 

C.3.2 Mori-Tanaka scheme

The thermal localization tensor for single family of cracks is given by:

C.3.3 Ponte Castañeda-Willis bound

The thermal localization tensor for single family of cracks is

Open case

In the open state, above thermal localization tensor reads: . For the limit case, one has: . Considering again the limit case ω → 0, it comes: