
HAL Id: tel-04169893
https://theses.hal.science/tel-04169893

Submitted on 24 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A formal framework for heterogeneous systems
semantics

Mathieu Montin

To cite this version:
Mathieu Montin. A formal framework for heterogeneous systems semantics. Networking and Internet
Architecture [cs.NI]. Institut National Polytechnique de Toulouse - INPT, 2020. English. �NNT :
2020INPT0072�. �tel-04169893�

https://theses.hal.science/tel-04169893
https://hal.archives-ouvertes.fr


En vue de l'obtention du

DOCTORAT DE L'UNIVERSITÉ DE TOULOUSE
Délivré par :

Institut National Polytechnique de Toulouse (Toulouse INP)
Discipline ou spécialité :

Informatique et Télécommunication

Présentée et soutenue par :
M. MATHIEU MONTIN

le lundi 14 septembre 2020

Titre :
A formal framework for heterogeneous systems semantics

Ecole doctorale :
Mathématiques, Informatique, Télécommunications de Toulouse (MITT)

Unité de recherche :
Institut de Recherche en Informatique de Toulouse ( IRIT)

Directeur(s) de Thèse :
M. YAMINE AIT AMEUR

M. MARC PANTEL

Rapporteurs :
M. FRÉDÉRIC MALLET, INRIA SOPHIA ANTIPOLIS

Mme CATHERINE DUBOIS, ENSIIE

Membre(s) du jury :
M. JEAN-PAUL BODEVEIX, , Président

M. BENOIT COMBEMALE, UNIVERSITE RENNES 1, Membre
M. FREDERIC BOULANGER, SUPELEC, Membre

M. MARC PANTEL, TOULOUSE INP, Membre



ii



Contents

Preamble ix
P.1 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . ix
P.2 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

P.2.1 English abstract . . . . . . . . . . . . . . . . . . . . . . . xi
P.2.2 French abstract . . . . . . . . . . . . . . . . . . . . . . . xii

P.3 Content of the manuscript . . . . . . . . . . . . . . . . . . . . . . xiii
P.3.1 Detailed outline of the chapters . . . . . . . . . . . . . . xiii
P.3.2 Dependencies between chapters . . . . . . . . . . . . . . xv

P.4 Lecture grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi
P.4.1 On the layout of this document . . . . . . . . . . . . . . . xvi
P.4.2 On the AGDA code in this document . . . . . . . . . . . . xvi

1 Introduction 1
1.1 Modelling heterogeneous systems: a challenge . . . . . . . . . . . 1

1.1.1 The need of verifying critical software . . . . . . . . . . . 1
1.1.2 Separations of concerns . . . . . . . . . . . . . . . . . . 2
1.1.3 Horizontal separation: components everywhere . . . . . . 4
1.1.4 Transversal separation: aspect oriented design . . . . . . . 5
1.1.5 Vertical separation: refinement on the rescue . . . . . . . 6
1.1.6 Challenges in heterogeneous modelling . . . . . . . . . . 7

1.2 Our contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.1 Our goal: mixing separations over behavioural properties . 8
1.2.2 A formal execution of event-based systems . . . . . . . . 8
1.2.3 A formal depiction of trace refinement . . . . . . . . . . . 9
1.2.4 A denotational semantics for CCSL . . . . . . . . . . . . 10
1.2.5 An investigation on the impact of refinement over CCSL . 11
1.2.6 Subsidiary contribution: AGDA methodology . . . . . . . 11

2 From formal methods to AGDA 13
2.1 Formal methods: the banner of computer scientists . . . . . . . . 14

2.1.1 Model checking: exploring state spaces . . . . . . . . . . 14
2.1.2 Static analysis and abstract interpretation . . . . . . . . . 15
2.1.3 Correct-by-construction approaches: the use of refinement 16

iii



2.1.4 Automated theorem provers . . . . . . . . . . . . . . . . 17
2.1.5 Proof assistants . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.6 Combining verification methods together . . . . . . . . . 20

2.2 Dependent types: types or properties ? . . . . . . . . . . . . . . . 20
2.2.1 Logics and classical logics . . . . . . . . . . . . . . . . . 21
2.2.2 Intuitionistic logic . . . . . . . . . . . . . . . . . . . . . 22
2.2.3 Curry-Howard isomorphism . . . . . . . . . . . . . . . . 22
2.2.4 Dependent types . . . . . . . . . . . . . . . . . . . . . . 23

2.3 AGDA: a programming language and much more . . . . . . . . . 24
2.3.1 Presentation of AGDA . . . . . . . . . . . . . . . . . . . 24
2.3.2 The specificities of the AGDA language . . . . . . . . . . 25
2.3.3 The related tools around AGDA . . . . . . . . . . . . . . 29
2.3.4 AGDA: a short tutorial . . . . . . . . . . . . . . . . . . . 35
2.3.5 AGDA vs COQ: a matter of taste . . . . . . . . . . . . . . 43

3 Globally unique lists: an AGDA library 53
3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2 Unique membership in a list . . . . . . . . . . . . . . . . . . . . 57

3.2.1 The Any Unique predicate . . . . . . . . . . . . . . . . . 57
3.2.2 Properties of Any Unique . . . . . . . . . . . . . . . . . 60
3.2.3 Decidability of Any Unique . . . . . . . . . . . . . . . . 62
3.2.4 Parametrized membership . . . . . . . . . . . . . . . . . 63

3.3 Global unicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.3.2 Globally unique lists on different kind of relations . . . . . 71

3.4 Commands and requests over globally unique lists . . . . . . . . . 73
3.4.1 Commands . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.4.2 Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.4.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.4.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.5 Two relevant instances of globally unique lists . . . . . . . . . . . 83
4 Toward the mechanization of event-based systems in AGDA 85

4.1 Presentation of the approach . . . . . . . . . . . . . . . . . . . . 86
4.1.1 Objective of the approach . . . . . . . . . . . . . . . . . 86
4.1.2 A structural representation of the states . . . . . . . . . . 86
4.1.3 A relational representation of the transitions . . . . . . . . 87
4.1.4 A constrained evolution of the system . . . . . . . . . . . 87

4.2 Application to PETRI NET . . . . . . . . . . . . . . . . . . . . . 88
4.2.1 Presentation of the PETRI NET language . . . . . . . . . . 88
4.2.2 Our approach applied to PETRI NET . . . . . . . . . . . . 92

4.3 Application to SIMPLEPDL . . . . . . . . . . . . . . . . . . . . . 100
4.3.1 Presentation of the SIMPLEPDL language . . . . . . . . . 100
4.3.2 Our approach applied to SIMPLEPDL . . . . . . . . . . . 102

iv



5 Refining instants in asynchronous systems execution 111
5.1 Handling of time in asynchronous systems . . . . . . . . . . . . . 112

5.1.1 Introduction to traced-based semantics . . . . . . . . . . . 112
5.1.2 Instants . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.1.3 Strict partial orders . . . . . . . . . . . . . . . . . . . . . 115

5.2 A formal definition of instant refinement . . . . . . . . . . . . . . 118
5.2.1 On refining instants . . . . . . . . . . . . . . . . . . . . . 118
5.2.2 Our proposal: relating strict partial orders . . . . . . . . . 119

5.3 Mechanization of the refinement relation . . . . . . . . . . . . . . 121
5.3.1 Transformation between levels of abstraction . . . . . . . 121
5.3.2 Proof of partial ordering . . . . . . . . . . . . . . . . . . 122

5.4 An example of instant refinement . . . . . . . . . . . . . . . . . . 124
5.4.1 Presentation of the example . . . . . . . . . . . . . . . . 124
5.4.2 Verification of the example . . . . . . . . . . . . . . . . . 128

6 A mechanized denotational semantics of CCSL 129
6.1 CCSL: A language to abstract event occurrences . . . . . . . . . . 130

6.1.1 Domain Specific Modelling Languages . . . . . . . . . . 130
6.1.2 Presentation of CCSL . . . . . . . . . . . . . . . . . . . 135
6.1.3 TIMESQUARE: an operational semantics to CCSL . . . . . 138
6.1.4 A paper version of the denotational semantics of CCSL . . 140

6.2 A mechanized semantics of CCSL . . . . . . . . . . . . . . . . . 140
6.2.1 Time-related notions . . . . . . . . . . . . . . . . . . . . 141
6.2.2 Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.2.3 Relations . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.2.4 Expressions . . . . . . . . . . . . . . . . . . . . . . . . . 168

7 An extension of CCSL with refinement 175
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7.1.1 Stakes of the approach . . . . . . . . . . . . . . . . . . . 176
7.1.2 Formal context . . . . . . . . . . . . . . . . . . . . . . . 177
7.1.3 Useful naming convention and operators . . . . . . . . . . 177

7.2 1-N clock refinement . . . . . . . . . . . . . . . . . . . . . . . . 178
7.2.1 Definition of 1-N refinement . . . . . . . . . . . . . . . . 178
7.2.2 1-N refinement and coincidence . . . . . . . . . . . . . . 179
7.2.3 1-N refinement and precedence . . . . . . . . . . . . . . 181

7.3 1-1 clock refinement . . . . . . . . . . . . . . . . . . . . . . . . 183
7.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 183
7.3.2 Definition of 1-1 refinement . . . . . . . . . . . . . . . . 184
7.3.3 Consequences of the definition . . . . . . . . . . . . . . . 185
7.3.4 1-1 refinement and coincidence . . . . . . . . . . . . . . 186
7.3.5 1-1 refinement and precedence . . . . . . . . . . . . . . . 186

v



8 Conclusion 189
8.1 Assessments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
8.2 Limitations and Perspectives . . . . . . . . . . . . . . . . . . . . 192
8.3 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
8.4 Publications and Seminaries . . . . . . . . . . . . . . . . . . . . 198

Appendices 215
A.1 On conformity of lists . . . . . . . . . . . . . . . . . . . . . . . . 215

A.1.1 Decidability of the membership relation . . . . . . . . . . 215
A.1.2 Decidability of the none or one relation . . . . . . . . . . 215
A.1.3 Lemmas about membership of characters . . . . . . . . . 216
A.1.4 Lemmas about global unicity and equivalence . . . . . . . 216
A.1.5 Lemmas about assignment and membership . . . . . . . . 217
A.1.6 Comparison between globally unique lists . . . . . . . . . 218
A.1.7 Trimming a non-empty globally unique list . . . . . . . . 222

A.2 On Petri nets and SimplePDL models . . . . . . . . . . . . . . . 223
A.2.1 Lemmas to add an arc to a net . . . . . . . . . . . . . . . 223
A.2.2 Exporting nets to TINA . . . . . . . . . . . . . . . . . . . 224
A.2.3 Decidability from a list of candidates . . . . . . . . . . . 225
A.2.4 A detailed building of the firing predicates . . . . . . . . 226
A.2.5 A detailed building of the decidability predicates . . . . . 226
A.2.6 Decidability of the equality between worksequences . . . 227
A.2.7 An alternate definition of SimplePDL . . . . . . . . . . . 227
A.2.8 Adding a WorkSequence to a process model . . . . . . . . 228
A.2.9 Decidability of the predicate of compliance . . . . . . . . 229

A.3 On instant refinement . . . . . . . . . . . . . . . . . . . . . . . . 231
A.3.1 Definition of instants . . . . . . . . . . . . . . . . . . . . 231
A.3.2 Equivalence between pairs of relations . . . . . . . . . . . 234
A.3.3 Partial ordering between pairs of relations . . . . . . . . . 235
A.3.4 Verification of the example . . . . . . . . . . . . . . . . . 235

A.4 On CCSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
A.4.1 Image of a function in a setoid . . . . . . . . . . . . . . . 240
A.4.2 The binding function of the precedence is bijective . . . . 241
A.4.3 Compliance between precedence and equality . . . . . . . 241
A.4.4 A clock can strictly precede itself on integers . . . . . . . 242
A.4.5 Two clocks can precede each other and not be equal . . . . 244
A.4.6 Antisymmetry of the strict precedence towards the equality 246
A.4.7 Non empty decidable clocks on natural numbers . . . . . 247
A.4.8 Lattice from union and intersection . . . . . . . . . . . . 249

A.5 On refinement and CCSL . . . . . . . . . . . . . . . . . . . . . . 250
A.5.1 A binding operator to ease refinement proofs . . . . . . . 250
A.5.2 From unique existence to existence . . . . . . . . . . . . 250
A.5.3 Embodiment of strict precedence . . . . . . . . . . . . . 251
A.5.4 Abstraction of precedence . . . . . . . . . . . . . . . . . 252

vi



List of Figures

1 Dependencies between chapters . . . . . . . . . . . . . . . . . . xv
2.1 Examples of inference rules . . . . . . . . . . . . . . . . . . . . . 21
2.2 The type/formula correspondence . . . . . . . . . . . . . . . . . 23
2.3 Example of unicode characters . . . . . . . . . . . . . . . . . . . 25
2.4 Features around operators . . . . . . . . . . . . . . . . . . . . . . 26
2.5 A mixfix operator with three operands . . . . . . . . . . . . . . . 27
2.6 A convenient way for defining lists . . . . . . . . . . . . . . . . . 28
2.7 Currying a mixfix operator . . . . . . . . . . . . . . . . . . . . . 28
2.8 Identifiers with relevant names . . . . . . . . . . . . . . . . . . . 29
2.9 The AGDA EMACS mode . . . . . . . . . . . . . . . . . . . . . . 30
2.10 Limitations of AGSY . . . . . . . . . . . . . . . . . . . . . . . . 34
2.11 Inference rules for the Even predicate . . . . . . . . . . . . . . . 38
2.12 deduction tree proving that 6 is even . . . . . . . . . . . . . . . . 39
2.13 Inference rules for the x ≡_ predicate . . . . . . . . . . . . . . . 41
2.14 Comparison of addition commutativity proofs . . . . . . . . . . . 45
2.15 A lambda term displayed by COQ . . . . . . . . . . . . . . . . . 45
2.16 Comparison of addition commutativity proofs with automation . . 46
2.17 AGDA’s automation . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.18 Comparison of equality proofs . . . . . . . . . . . . . . . . . . . 48
2.19 An example of computationally irrelevant argument . . . . . . . . 50
2.20 AGDA does not evaluate irrelevant elements . . . . . . . . . . . . 51
2.21 AGDA evaluates all relevant elements . . . . . . . . . . . . . . . . 51
3.1 The Any data type . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.2 The Any! data type . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3 Satisfaction of Any! with the lower than 3 predicate . . . . . . . . 59
3.4 Satisfaction of Any! with a given size of strings . . . . . . . . . . 60
4.1 PETRI NET meta-model . . . . . . . . . . . . . . . . . . . . . . . 89
4.2 The seasons PETRI NET . . . . . . . . . . . . . . . . . . . . . . 90
4.3 The deadlock PETRI NET . . . . . . . . . . . . . . . . . . . . . . 91
4.4 A snapshot of TINA’s usage . . . . . . . . . . . . . . . . . . . . . 91
4.5 The generated nets . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.6 SPEM simplified meta-model . . . . . . . . . . . . . . . . . . . . 101
4.7 The development process . . . . . . . . . . . . . . . . . . . . . . 102
5.1 Both possible behaviours . . . . . . . . . . . . . . . . . . . . . . 115

vii



5.2 The underlying partial order . . . . . . . . . . . . . . . . . . . . 116
5.3 The strict partial order dependent record . . . . . . . . . . . . . . 116
5.4 The five relations binding instants together . . . . . . . . . . . . . 117
5.5 A trivial example of property . . . . . . . . . . . . . . . . . . . . 118
5.6 A more complex example of property . . . . . . . . . . . . . . . 118
5.7 A simple system . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.8 A trace on a single timeline . . . . . . . . . . . . . . . . . . . . . 124
5.9 One timeline per event . . . . . . . . . . . . . . . . . . . . . . . 124
5.10 The system pilots a light . . . . . . . . . . . . . . . . . . . . . . 125
5.11 The trace of the system with the addition of the variable x . . . . . 125
5.12 The refined system . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.13 Both levels of observation . . . . . . . . . . . . . . . . . . . . . 126
5.14 Both annotated levels of observation . . . . . . . . . . . . . . . . 127
6.1 The V cycle in a system development . . . . . . . . . . . . . . . 131
6.2 A simplified V cycle with the use of models . . . . . . . . . . . . 132
6.3 The V cycles in a product development . . . . . . . . . . . . . . . 133
6.4 The place of CCSL inside the UML world . . . . . . . . . . . . . 135
6.5 UML as an instance of MOF . . . . . . . . . . . . . . . . . . . 136
6.6 A simplified CCSL meta-model . . . . . . . . . . . . . . . . . . 137
6.7 A simple CCSL specification in TIMESQUARE . . . . . . . . . . 139
6.8 A possible trace associated to the specification . . . . . . . . . . . 139
6.9 An example of a clock c . . . . . . . . . . . . . . . . . . . . . . 145
6.10 Some instants are constrained . . . . . . . . . . . . . . . . . . . . 150
6.11 c1 is a subclock of c2 . . . . . . . . . . . . . . . . . . . . . . . . 151
6.12 c1 is equal to c2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.13 c1 is in exclusion with c2 . . . . . . . . . . . . . . . . . . . . . . 155
6.14 An incorrect strict precedence example . . . . . . . . . . . . . . . 156
6.15 A standard strict precedence example . . . . . . . . . . . . . . . 157
6.16 A specific strict precedence example . . . . . . . . . . . . . . . . 157
6.17 An example of non-strict precedence . . . . . . . . . . . . . . . . 157
6.18 Transitivity of dense . . . . . . . . . . . . . . . . . . . . . . . . 160
6.19 Proof that the equivalence classes are respected . . . . . . . . . . 160
6.20 This clock strictly precedes itself . . . . . . . . . . . . . . . . . . 162
6.21 Two non-equal clocks with both precedences . . . . . . . . . . . 164
6.22 A case of precedence without alternation . . . . . . . . . . . . . . 167
6.23 c1 alternates with c2 . . . . . . . . . . . . . . . . . . . . . . . . 167
6.24 An example of intersection . . . . . . . . . . . . . . . . . . . . . 168
6.25 An example of union . . . . . . . . . . . . . . . . . . . . . . . . 171
7.1 The binding operator . . . . . . . . . . . . . . . . . . . . . . . . 178
7.2 Clock precedence and abstraction . . . . . . . . . . . . . . . . . . 181
7.3 Clock precedence and embodiment . . . . . . . . . . . . . . . . . 182
7.4 Clock precedence is not always preserved . . . . . . . . . . . . . 183
7.5 An example of non-preservation of alternation . . . . . . . . . . . 187

viii



Preamble

P.1 Acknowledgements
This PhD has been supervised by associate professor Marc Pantel from IRIT,

who I thank for his advice and suggestions regarding this work. I am very grateful
to Pr. Pantel for providing me with a deep and interesting subject while believing
in me for the entirety of this PhD, despite the doubts and difficulties that have
arisen. Pr. Pantel has been very patient and very positive towards me which has
been of great use for the success of this PhD. In addition, Pr. Pantel had done
a very thorough and complete proof-reading of this document which helped to
substantially improve the quality of both the work it depicts and the way it depicts it.

This work has been conducted in the ACADIE team at IRIT, whose researchers
and PhD students have all been both helpful and supportive during my stay. It was
a pleasure to work with such a pleasant team.

Among these researchers and PhD students, there were some with whom I
created a special bound, for they shared my office for several months or even years.
These people, Kahina, Guillaume and Florent made my stay at IRIT especially
enjoyable and have been both of great help and comfort when it was needed. The
time we shared together shall not be forgotten, and I wish them all the best for their
future careers and personal lives.

This work could not have been successfully conducted without the constant
help from the laboratory secretaries. They handled all the required procedures
with celerity and devotion. These ladies, and especially Miss Sansus, have been
of great support in conducting this work towards its completion and it has been a
pleasure to meet and share time with them.

During this work I have had the opportunity to supervise the internship of
Marie Bouette, who actively participated in this work. During two months, she has
done a substantial work on exploring a branch which I would not have had time
to investigate without her. I am grateful for her patience and her dedication on
understanding as quickly as possible the work she had to participate in. Her work
has produced fruitful blossoms, the fruits of which are depicted in Section 4.3.2.

ix



I would like to specifically thank Pr. Catherine Dubois from ENSIIE for
believing in my abilities to conduct this work and for providing me with very
fruitful opportunities to share my work with fellow researchers and teams. She has
been both very supportive in that regard as well as honest when part of my work
in which we both believed happened not to bear the fruits we expected. I thank
her deeply for that, it helped me realize once more that we learn even more from
failures than we do from successes.

This document has received a thorough and conscientious proofreading from
an old friend of mine, Vinay Damani, which saved me a lot of precious time while
also improving the overall quality of my english, which is not my native language. I
thank him deeply for that, and especially for agreeing to do so in such a short notice.

I am very grateful to both Pr. Catherine Dubois and Pr. Frédéric Mallet for
agreeing to be the reviewers of this document. Their reports have been of great
interest and provided me with much needed outside perspectives on my work.

I thank Pr. Marc Pantel, Pr. Benoît Combemale, Pr. Jean-Paul Bodeveix, Pr.
Frédéric Boulanger, Pr. Catherine Dubois and Pr. Frédéric Mallet for agreeing to
be part of the jury for the defense of this PhD, especially considering the sanitary
conditions which surrounded the event. Their presence was very much appreciated,
as well as their questions, remarks and interesting feedbacks regarding my work.

On a more personal note, I would like to thank my close relatives, my mother,
father and sister, for their constant support during these years. Even though they do
not have any academic background, they have always believed in me and they have
allowed me to follow my path all the way to this PhD, often putting my interest
and well-being before theirs. I am happy and thankful to have such a strong and
loving family.

During this PhD, I have also received a very strong support from my family
in law. They have constantly believed in my abilities to conduct this work, and
meeting these expectations has been a healthy and powerful motivation tool. I also
thank them deeply for they occasional concrete help, and even more so for their
constant support and benevolence towards me.

Finally, I would like to thank Jessica Hornik, who has been my companion for
most of this PhD. Against all odds she has stood next to me, and her help has been
nothing but priceless. Several times I lost my way, and she led me back on track
that many times. This work would simply never have been completed if it wasn’t
for her. Thank you Jessica, with all my heart.

x



P.2 Abstract

P.2.1 English abstract
Cyber physical systems (CPS) are usually complex systemswhich are often crit-

ical, meaning their failure can have significant negative impacts on human lives. A
key point in their development is the verification and validation (V & V) activities
which are used to assess their correctness towards user requirements and the asso-
ciated specifications. This process aims at avoiding failure cases, thus preventing
any incident or accident. In order to conduct these V & V steps on such com-
plex systems, separations of concerns of various nature are used. In that purpose,
the system is modelled using heterogeneous models that have to be combined to-
gether. The nature of these separations of concerns can be as follows: horizontal,
which corresponds to a structural decomposition of the system; vertical, which cor-
responds to the different steps leading from the abstract specification to the concrete
implementation; and transversal, which consists in gathering together the parts that
are thematically identical (function, performance, security, safety, . . . ). These parts
are usually expressed using domain specific modelling languages (DSML), while
the V & V activities are historically conducted using testing and proofreading, and
more and more often, using formal methods, which is advocated in our approach.

In all these cases, the V & V activities must take into account these separa-
tions in order to provide confidence in the global system from the confidence of its
sub-parts bound to the separation in question. In other words, to ensure the cor-
rectness of the system, a behavioural semantics is needed which has to rely on the
ad-hoc semantics of the subsystems. In order to define it, these semantics must be
successfully combined in a single formalism. This thesis stems from the GEMOC
project: a workbench that allows the definition of various languages along with
their coordination properties, and target the formal modelling of the GEMOC core
through the association of trace semantics to each preoccupation and the expression
of constraints between them to encode the correct behaviour of the system.

This thesis follows several other works conducted under the TOPCASED, OPEES,
QUARTEFT, P and GEMOC projects, and provides four contributions in that global
context: the first one proposes a methodology to give an operational semantics
to executable models illustrated through two case studies: PETRI NET and SIM-
PLEPDL. The second one proposes a formal context on which refinement can be
expressed to tackle vertical separation. The third one gives a denotational seman-
tics to CCSL, which is the language that is currently used in the GEMOC projects to
express behavioural properties between events from one or several models, possibly
heterogeneous. Finally, the fourth one proposes an investigation on how to extend
CCSL with the notion of refinement we proposed. All these contribution are mech-
anized in the AGDA proof assistant, and thus have been modelled and proven in a
formal manner.
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P.2.2 French abstract
Les systèmes cyber-physiques sont des systèmes habituellement complexes et

souvent critiques, dans le sens où leur défaillance peut avoir des impacts négatifs
significatifs sur des vies humaines. Lors de leur développement, il convient donc
de mettre l’accent sur les phases de validation et vérification (V & V) afin de prou-
ver que le système satisfait sa spécification et les exigences de l’utilisateur et que
les cas d’erreur pouvant conduire à des accidents ne se produiront pas. Dans la
mesure où ils sont souvent très volumineux et complexes, leur développement re-
pose habituellement sur des procédés dits de séparation des préoccupations. Cela
consiste à modéliser le système de manière hétérogène, avec différents modèles qui
doivent ensuite être combinés pour rendre compte du système dans son ensemble.
Ces séparations des préoccupations peuvent être de différentes natures : horizon-
tale, ce qui revient à séparer le système de manière structurelle en sous-systèmes
; verticale, ce qui revient à séparer le développement d’une partie du système en
plusieurs étapes allant de la spécification abstraite à l’implémentation concrète ; et
enfin transversale, ce qui consiste à regrouper ensemble les différents aspects du
système qui participent de la même thématique (fonction, performance, sécurité,
sûreté, . . . ). Usuellement, les différentes parties du système sont modélisées avec
des langages métier dédiés tandis que les activités de V &V sont effectuées soit par
tests et relectures, soit par l’approche que nous utilisons : les méthodes formelles.

Dans tous ces cas, les activités de V & V doivent prendre en compte ces sé-
parations afin de fournir une confiance dans le système complet se basant sur la
confiance en ses constituants. En d’autres termes, afin de prouver la conformité du
système global, il faut lui définir une sémantique comportementale qui doit prendre
en compte les sémantiques ad-hoc des constituants du système. Pour définir cette
sémantique, il faut parvenir à regrouper toutes ces sémantiques intermédiaires dans
un même formalisme. Cette thèse se place dans le cadre de GEMOC, un environ-
nement permettant de développer des langages ainsi que leurs propriétés de coor-
dination, et propose de modéliser formellement le cœur de GEMOC en associant à
chaque préoccupation une sémantique de traces tout en exprimant les contraintes
liées à leur composition afin de représenter le comportement global du système.

Cette thèse se place dans la continuité de travaux conduits dans les projets TOP-
CASED, OPEES, QUARTEFT, P et GEMOC, contexte dans lequel elle propose qua-
tre contributions : la première propose une méthodologie permettant d’attribuer
une sémantique opérationnelle aux parties exécutables du système, en traitant deux
cas d’étude : PETRI NET et SIMPLEPDL. La deuxième propose un cadre formel
pour exprimer des propriétés de raffinement afin d’exprimer les liens tissés par la
séparation verticale des préoccupations. La troisième consiste à donner une sé-
mantique dénotationnelle à CCSL, qui est le langage utilisé dans le projet GEMOC
pour exprimer les propriétés comportementales liant des événements associés à une
ou plusieurs préoccupations. Enfin, la quatrième propose d’ajouter à notre modèle
formel de CCSL notre notion de raffinement afin d’en analyser l’impact. Toutes ces
contributions ont été mécanisées et vérifiées dans l’environnement formel AGDA.
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P.3 Content of the manuscript
The work depicted in this PhD document follows several paths that all con-

tribute to the global purpose, which was presented in the abstract in Section P.2.
Each of these paths answers part of the original issue in different, yet intricate ways.
The outline follows the different contributions while also adding some background
information about the tools and theory we used.

P.3.1 Detailed outline of the chapters

Introduction Chapter 1 focuses on themain global aspects justifying this work. It
introduces several fundamental elements onwhich this thesis is grounded, including
the notion of heterogeneous systems, vertical and horizontal separations of concern
in their design while also placing the purpose of this work in that context. It aims at
introducing the different notions inherent to this work that will be used throughout
this manuscript. While this global context is wider than what this work tackles, it
is fundamental in the understanding of the challenges at stake. Chapter 1 is split
into two different sections. Section 1.1 gives the global context in which our work
takes place, while section 1.2 places our different contributions in that context.

Formal methods, dependent types and AGDA Chapter 2 focuses on the core
technical aspects of our methodology, formal methods. The work we conducted is
rooted in the use of formal methods. On the one hand, formal methods have dictated
our procedures on how to handle some categories of problems. On the other hand,
our issues have led to precise and deep use of formal methods, thus allowing new
users to be introduced to the field. We explain what formal methods are according to
us (a very strict definition can never be formulated because it cannot be consensual,
apart from the use of mathematics to model and prove the correctness of systems).
We then narrow down the spectrum of these methods towards theorem provers as
well as more precisely dependently typed languages in order to present the proof
assistant used in our development: AGDA. Both the AGDA language and tools are
depicted through examples, a short tutorial along with a detailed comparison to its
cousin COQ. Since this document contains technical aspects related to AGDA, this
section is fundamental for a thorough understanding of our work.

Library on globally unique lists Chapter 3 presents a library that was developed
at the beginning of this thesis, and which is used in Chapter 4 to model the structural
aspects of the event-based languages. This library proposes a notion of unique
membership in a list which leads to the notion of globally unique lists, which are lists
that only contain at most a single value that satisfy a given predicate. These globally
unique lists allow us to create two specific instantiations: the maps and the sets
(named bags for technical reasons). This chapter uses the depiction of this library
to emphasize the methodology that is advocated in our use of formal methods: we
define constructs which are directly verified using conformity properties.
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Transition systems Chapter 4 introduces our first contribution in this thesis: the
mechanization of transition systems in a proof assistant. Among these transition
systems, we mostly focus on event-based systems although our approach is generic.
This work relies on different kinds of semantics to define and compare languages.
This section treats the modelling of transition systems in an operational manner,
providing a structural depiction of these systems and functions which allow their
temporal evolution. The goal here was to model both the structural part of exe-
cutable systems and the proof that they can evolve in the same framework. This
approach is first summarized and motivated in the context of our work and illus-
trated and validated by applying it to two executable languages: PETRI NET and
SIMPLEPDL. Both languages will be presented along with a description of their
mechanization with the focus being on the common denominators between them as
well as the methodology used to build them. This contribution has been presented
in a French event, FAC (Formal methods for Concurrent Activities), in 2015 [116].

Time and instant refinement Chapter 5 introduces the handling of time in con-
current systems. The notion of instants is detailed – with both a philosophical and
a more concrete approach – as well as the notion of strict partial orders to bind
these instants together. After introducing these elements and their mechanization,
we present the second contribution of this thesis: the modelling of refinement in the
context of the execution of different events in different systems. It gives a precise
definition of instant refinement in asynchronous systems. This contribution starts
with the global description of refinement in this context and progresses towards the
definition of a refinement relation applicable in such cases. This definition is both
presented conceptually (through the reasoning that led to its definition) and formally
in AGDA. Some properties to ensure the correctness of this definition are described,
proved and discussed. This contribution has led to two publications: a first one in
October 2017 as a student paper in the junior workshop of RTNS (JRWRTC) [115]
and a second one in the REFINE workshop under FLOC in July 2018 [119].

Mechanization of CCSL Chapter 6 focuses on the third contribution of this the-
sis: the formal modelling of the CCSL language whose goal is to describe and
model interactions between events in the asynchronous execution of one or sev-
eral systems. This language is described and its relevance towards our goal is dis-
cussed. Its existing denotational semantics is presented and discussed while our
formal denotational semantics in AGDA is presented as well. The differences be-
tween these semantics is highlighted and explained by the use of formal methods
in our work. Our mechanization of CCSL establishes some interesting properties
which are fundamental in the process of assessing its correctness regarding the com-
monly accepted semantics of CCSL. This contribution has been published in the
proceedings ofMEDI 2018 that took place in October 2018 [118]. It had previously
been prevented in a French national event, FAC, in 2017 [117].
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CCSL and refinement Chapter 7 focuses on the last contribution of this thesis:
the addition of a concept of refinement in the denotational semantics of CCSL. This
chapter describes how our work on refinement has been applied to that language and
how the CCSL operators properties have been proven with respect to our refinement
relation. This binds together the two main notions of this thesis by combining an
abstract representation of refinement (theoretically applicable to any language sim-
ilar to CCSL) to an existing language in the same formal environment. This chapter
proposes two different notions of refinement that are added to CCSL: 1-N refine-
ment and 1-1 refinement. Both these refinements are motivated, modelled and their
impact on the preservation of CCSL constructs is detailed and established.

Conclusion and appendix Chapter 8 brings a conclusion with assessments, lim-
itations and perspectives for our work. Followed by references and commented ap-
pendices containing additional AGDA code that was either irrelevant, too verbose,
too complex or too trivial to be part of the main matter of this document.

P.3.2 Dependencies between chapters

2FormalMethods
3GUListsLibrary

4PETRI NETSIMPLEPDL

5InstantRefinement
6CCSLSemantics

7CCSLRefinement

Figure 1: Dependencies between chapters
The chapters of this document are related in a way that is depicted in Figure 1.

Dashed black arrows depicted a weak dependency: it is advised to read the chapter
the arrow points at before the one the arrow comes from. Red arrows depict strong
dependencies: it is mandatory to read the chapter the arrow points at before the one
the arrow comes from. Note that reading this document in a linear order is a solution
that satisfies all the requirements of this graph. The introduction and conclusion are
absent from this graph because they are by nature bond to all the other chapters.
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P.4 Lecture grid

There are a certain number of elements that are important to the reading of this
document which should be pondered and read thoroughly to understand how this
work was conducted as well as how the results are displayed and explained. These
elements are mostly focused around the AGDA code present in this document, but
also embed information on the choices made in the layout of this document.

P.4.1 On the layout of this document

Assessments This document contains a conclusion which provides assessments,
limitations and perspectives for this work. Each chapter also contains a small con-
clusion which brings up assessments over the chapter itself, while summarizing the
most important aspects and results that were discussed. Each chapter also comes
with a small outline which gives the reader a foretaste of what to expect of the cur-
rent chapter. The assessments of the chapters are the counterparts of these outlines,
both of them wrapping up the content of the chapter.

State-of-the-art While this document contains an introduction which provides a
context for this work as well as the contributions that were made inside this context,
and a complete introduction on formal methods, the state-of-the-art aspects of this
work are purposely not limited to these introductions. Rather, they are disseminated
throughout the manuscript. This was intended as a way of placing precisely each
contribution in their context, as well as a way of not boring the reader with very long
and sometimes hard to read state-of-the-art chapters. For instance, the notion of
model-driven engineering is mentioned and roughly explained in the introduction,
but is described more thoroughly when talking about CCSL.

Chronological order This document does not follow the chronological order of
the works it depicts, and is rather structured in a thematic way. Historically, the first
work that was addressed revolved around PETRI NET and maps, which were then
generalized with globally unique lists and SIMPLEPDL, after which the work on
CCSL started. Then, the notion of instant refinement was introduced and eventually
added to our mechanization of CCSL. Finally, when writing this document, a lot
of additional aspects have been developed and added to all of these contributions,
which are yet to be published.

P.4.2 On the AGDA code in this document

AGDA’s ubiquity in this work The reader will notice that the concrete parts of the
work have been implemented using the proof assistant AGDA. While projects that
are based heavily on a specific tool might want to hide the technical aspects related
to this tool, I chose to display and discuss most of it because it was a substantial part
of my work. This manuscript contains a lot of AGDA code, references to AGDA as
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well as didactic elements about this tool and language. While AGDA’s community
is growing at a decent pace, it is a lot harder to find information about it than other
well-known similar tools such as COQ and ISABELLE/HOL. This means that this
work is based on a significant, ever-lasting effort around learning and mastering
AGDA. Thus, this manuscript can be of help to any reader who would like to make
the same journey I did. While I cannot ensure that all that has been done in AGDA
was implemented in an optimal manner especially my earlier work on transition sys-
tems, I have made a substantial amount of research in order to perfect my mastery
of the tool as well as the theory on which it is founded. I have slowly made my way
through the various updates the tool and the language have received. Through the
complex, intricate and ever-growing standard library provided by AGDA’s develop-
ers as well as through the alternate confusion and amazement which comes when
using such a tool. This journey has been complex and time consuming making it
natural that AGDA takes an important part in this manuscript. However, this is not
the only justification for the overall presence of AGDA in this thesis.

Formalization in AGDA While mathematicians like to present their results in the
mathematical language, us computer scientists find it relevant to present our results
in our version of mathematics. Most of the results presented in this work (proper-
ties, definitions, axioms, examples. . . ) are presented in the AGDA language. This is
not merely a choice, but rather the expression of a deeper truth: they are not usual
mathematical results, which would implicitly be anchored in set theory and only
displayed by AGDA. Rather, they are AGDA’s results, in the sense that they are de-
fined and given a meaning by AGDA. AGDA is the formal foundation which allowed
these results to be either defined or proved using both the internal core of AGDA
or other notions that have been defined using AGDA. AGDA not only provides a
formalism to define mathematical entities, it also provides a convenient language
to express these definitions in a way that should not disorient the reader used to
common mathematical definitions. While I intend no criticism to mathematicians
whose work is the very reason why we are able to develop and use tools like AGDA
today, defining and proving notions using AGDA has the immense upside of grant-
ing a greater correctness than the one provided by a pencil and a sheet of paper.
Granted, this correctness is relative to AGDA’s correctness itself, which leads to
the inevitable infinite loop of correctness, which makes any correctness relative to
the correctness of some other entity, whose correctness is also dependent on some-
thing else’s correctness and so on. All in all, providing AGDA definitions rather
than usual mathematical definitions is advocated and applied in this work.

AGDA’s signatures and bodies While a lot of code snippets are present in this
manuscript, to emphasize a definition or a property, their complete understanding is
not mandatory to the overall comprehension of this work. AGDA is a functional lan-
guage, as such, the AGDA snippets will mostly be functions which usually provide
a proof term which means they will contain a signature and a body. The signa-
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tures are always relevant in the context of this work as explained in Section 2.2,
because they usually represent properties that have been proven and thus should
not be skipped. Although they will usually be paraphrased in natural language, the
body, which represents the proof terms can however usually be skipped when the
reader is not interested in the process of building proofs in AGDA, which is also
emphasized in this document. Since the signatures are syntactically close to the
usual mathematical language, their understanding should be easily possible. On
the contrary, understanding AGDA’s bodies is often both very complicated – even
for the mere people that wrote it using the help of the AGDA environment of devel-
opment – and also moderately relevant in terms of understanding the overall theory
that is being developed. All that matters is that said bodies have been type-checked
accordingly to the signatures they are bound to.

Missing parts of code These bodies, as explained, are left in a didactic purpose
in the code snippets to emphasize different ways of building terms or using AGDA
overall. However, when they are too long or simply too irrelevant they have been
cut out of the main part of this document, but they can still be found in the appendix.
Every time this happens, a reference to the related section in the appendix is made
to ensure that the curious reader can find the missing piece of code. However,
there are some parts of the code that cannot be found anywhere in this document,
which are the imports of the modules. The relevant import have usually been shown
especially when they feature renamed imports but most of them have been hidden
because of their poor overall relevance. As for the bodies that have been shown, they
have usually been reworked and factorized to be as concise and elegant as possible,
using for instance function composition and anonymous functions. These terms
have usually been built differently before being refactored: it is illusory to think
that such elegant factorized terms can be provided in one go by the programmer.

Colouration The snippets of AGDA code are colourized using the following con-
ventions: orange for AGDA keywords, blue for types (either simple, dependent and
/ or polymorphic), green for data type constructors, black for parameters and in-
dices (basically values, or types used as values), purple for atomic values, such as
natural numbers coming from the standard library, and module names, brown for
comments, strings and chars, and finally pink for record fields.

Literate AGDA AGDA provides a very convenient feature which allows us to mix
AGDA code and LATEX code in a single file. The AGDA compiler can then be called
on said file to create a LATEX file where all the AGDA code has been transformed
into LATEX, while the LATEX code remained unchanged. All parts of this document
that contain AGDA code – expects when it appears as figures – have been written
using literate AGDA. The main consequence is that the code in this document is
the actual AGDA code that has been lexically and syntactically checked as well as
typed-checked. As a consequence, all proofs we provide are proof-checked.
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Chapter 1

Introduction

1.1 Modelling heterogeneous systems: a challenge

1.1.1 The need of verifying critical software

History of software Software engineering as a discipline has been developed
since the middle of the 20th century. Most computer scientists agree that the 1960s,
and especially the 1968 convention held in Marktoberdorf, Germany [34] paved the
way to where software engineering stands now: present in every single field and
company. The fact that such an explosion has occurred in only 60 years is purely
extraordinary, which is why some entomologists even consider that the birth of soft-
ware engineering marks the beginning of a new era called the information era. This
era is characterized by the ubiquity of software not just for companies but also in
our everyday lives. The impact of software’s evolution in our lives has been studied
and described in several works, such as [153]. The rate of this evolution continues
to grow as shown with trendy notions such as deep, machine learning as well as
the trendier quantum computers. While we believe that the future induced by this
evolution will be bright, it can only be so provided we have the ability to validate
and verify the software being made, in other words, to assess that it satisfies its user
requirements. Since formal methods intend to provide a mathematical account of
software, this makes them an important part of current software evolution, even
though they might be less trendy and less known to the general public.

Ubiquity of software As seen before, software is now ubiquitous and constantly
involved in various interactions with other entities: software through logical inter-
faces, human beings through user interfaces and the outside world through both
sensors, which provides the software with data, and actuators, which control var-
ious physical mechanisms. The software from the last category are called cyber
physical systems (CPS) [95]. The actuators in these systems have their output con-
stantly adjusted using the data received from their sensors. Such software covers
an extremely wide area of domains used by a large number of companies. These
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ones, and sometimes public entities, may require some strong guarantees regarding
the provided software, especially when its failure can have a strong negative im-
pact, and possibly cause the loss of human lives. These systems are attributed the
name "critical" and are especially present in fields such as aeronautics, cars, railway,
space exploration, energy transformation, healthcare and factory automation.

Formal methods and critical software While failures are sadly assumed to be a
regular occurrence in software such as the ones developed for personal computers
or entertainment systems, this is not the case for critical systems that must satisfy a
considerable amount of requirements to avoid such failures. Should these require-
ments not be satisfied, tragedies could happen, as many have happened before: the
famous crash of the Ariane 5 rocket in 1996, due to a simple integer overflow [91],
the crashes of the Boeing 737 Max in 2018 [145], the accidents with the Therac-25
radiation therapy machine from 1985 to 1987 [100] or the failure of Toyota’s ETCS
system in 2009 [88]. The use of verification techniques to avoid failure is very costly
both in terms of money, time and manpower, which explains why "bugs" [34] are so
common in our everyday life, since this process is usually not applied thoroughly in
the development of these software. However, it cannot be avoided when developing
critical software. For the past half-century, the approach that was advocated for that
purpose was systematic testing and proofreading. The critical systems were heav-
ily reviewed and tested, and were considered fault-proof when the test outcomes
were all correct and when all reviews agreed that the development was appropriate.
While this process indeed builds a certain level of confidence in the developed soft-
ware, it cannot be enough to ensure that it fully respects the requirements in each
and every case that can possibly be encountered in real life. Indeed, as Dijkstra
himself noted in 1969 with his famous quote, "Testing shows the presence not the
absence of bugs" [34], test cases are limited to what the developer can think of and
are in finite numbers. Even if this number is large, nothing proves that hypotheti-
cal future tests would pass. This is one of the main reasons why formal methods
have been developed and are slowly gaining momentum in safety critical industrial
uses [144]. These methods aim at proving that the modelled version of critical soft-
ware always satisfy their requirements. This is a very difficult and tedious process
because real-life software is complex and often much more so than what can rea-
sonably be modelled and verified in a single step, which is why various separation
approaches are usually used in their development.

1.1.2 Separations of concerns

Complexity of software Complexity is a major issue in the development and es-
pecially in the verification of any software, and even more for critical software.
Complexity is ubiquitous in computer science, even in the simplest algorithms. We
can distinguish two different kinds of complexity: the complexity during the ex-
ecution of a given program, and the complexity of the problem which has to be
modelled and implemented. The first kind of complexity is studied in a field usu-
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ally called complexity [150], the aim of which is to assess how much time and
memory space will be taken by the execution of a given algorithm depending on
the size of the data it processes. People with little knowledge of computer science
usually have the intuition that a program which takes more than a few minutes, let
alone a few days, to complete its task is abnormal. However, such duration is actu-
ally neglectful compared to algorithms which would take more than the supposed
age of the universe (13.7 billions of years) to do so. Similarly, there is a physical
limitation on how much data can be stored in a certain volume [28], which would
easily be overcome by certain combinatorial algorithms of exponential memory us-
age. The second kind of complexity from the theory of complex systems is wider
and encompasses a large number of possible cases. It was called algorithmic com-
plexity [101] by its inventors Kolmogorov and Chaitin and is related to the size of
the simplest algorithm in a given language that can implement the system. The
system in question can be huge in size, and provide a sophisticated service ; it can
be composed of numerous small size elements which are required to interact with
one another in a correct manner ; finally, it can simply be a software of arbitrary
size that displays a very complex behaviour which translates into a deep conceptual
challenge for the developers. This last kind of complexity, reflecting the complexity
of the problem to solve, is very concrete, especially in CPS where it can often be
found in its various incarnations. Indeed, CPS can be as big as a rocket, or even
bigger such as the railway system for an entire city or even country.

Separating concerns While developing and assessing such complex systems, the
notion of separation of concerns becomes mandatory, as first introduced by Di-
jsktra himself in [61]. A concern is a specific element of a system that must be
handled during its development. As for separation of concerns, while the name be-
ing somewhat self-explanatory, it hides a higher level of complexity depending on
the nature of the concerns that are separated from others. Indeed, these concerns
can be of various nature: functional, physical, logical, abstraction, human, socio-
logical, ergonomic, psychological, economical, ethical, . . . and can refer to various
macroscopic elements: provided service, provided quality of service, . . . including
the process, methods, tools for the development itself. Whatever concerns are sep-
arated, doing so is a key asset in the development of these ever more complex sys-
tems, because it allows us to handle parts of the global system separately rather than
the whole system in one go. Usually, concerns are intertwined and every effort to
isolate, separate them and express their relations in the simplest way possible has
been shown to ease the design. There are three main kinds of separation of concerns
that we will target, that are usually called horizontal, transversal and vertical. Hor-
izontal separation of concerns is the more natural and common of the three, since
it consists in applying a divide and conquer strategy that splits a problem in sub-
problems recursively until reaching problems that are small enough to be solved
efficiently (so-called top-down development strategy). This separation is usually
called Component Based System. The result of this separation at a given step of
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its development, is the system’s architecture that describes the system as an assem-
bly of components. The complexity of the components is reduced as their size is
reduced however they usually mix different issues to be solved: provided services,
provided quality of service, etc. The transversal separation isolates each of these
issues to handle them separatly with the most appropriate tools relying on so called
domain engineering. This separation is usually called Aspect Oriented Engineer-
ing. The last one, vertical separation, is less natural but nonetheless mandatory:
it consists in separating a given development into different steps from an abstract
specification to a concrete implementation. Separation of concerns has been widely
studied in the literature and applied to several domains which emphasizes the uni-
versal aspect of this methodology. It is strongly related to the so called Product Life
Cycle Engineering. Examples of works using separation of concerns explicitly are
as follows: verification of Railway signalling rules [94], software architecture [110],
epidemiology [8], multimedia systems [120] and concurrent programs [154].

Preservation of properties Since separation of concerns is such an important
aspect in the development of CPS, it is mandatory to assess how these separations
can be handled through verification and validation activities. Indeed, splitting the
systems has the important upside of allowing us to describe each concern separately
from the others, but it also implies that these parts must at some point be composed
together. This means that there is a concrete need of compositional verification,
which means to assess how this composition impacts the properties that were veri-
fied by the sub-parts of the global system. This need is different when considering
separations from different natures, which are described in the following sections.

1.1.3 Horizontal separation: components everywhere

Nature of horizontal separation The first commonly used separation of con-
cerns is called horizontal. When doing such separation, the system designers split
the problem that will be solved by the system under design into different parts, each
of which serves a different purpose. These parts can then possibly be split again
if needed, in order to have a set of small and manageable pieces. For instance, a
global product can be split into almost autonomous yet collaborative systems and
the whole architecture is called a system of systems. Each of these systems can then
be split into sub-systems that are less and less autonomous one from the other, until
reaching atomic equipments that will become physical entities at the implementa-
tion level, and so on as the equipments can again be split as components. These
various parts can usually be seen as black boxes with a well specified interface al-
lowing us to connect them with the other boxes contained in the whole system’s
design. Usually, the various parts of the horizontal separation are all expressed us-
ing the same languages at all stages of their design, except for the last ones. Indeed,
these last stages are usually handled through the use of languages specific to the
physical technology of the given component of the system. Thus, the final product
is the result of the integration of many components that rely on many different tech-
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nologies modelled using different languages. These kinds of integrations are called
heterogeneous.

Benefits of horizontal separation Horizontal separation is widely used since it
provides a very concrete benefit: It allows the system engineers to develop their
parts of the system almost independently one from the other and then to assemble
the various parts to build the full system. They can rely on their own languages,
methods and tools (i.e the most adapted to their goal), which are usually called
Domain Specific Modelling Languages (DSML) [69] and which allows them to
describe specific concrete parts of the system that correspond to a specific goal
inside its global function. These DSML can be very technical and require a certain
level of expertise to be manipulated, which leads to the main advantage of this
approach: horizontal separation helps the system designers focus on what matters
in their work since they do not need to always have the global system in mind.
As this global system can be very complicated, it is unreasonable to assume that
a single human being would have the technical knowledge to specify and define
each constituent of this system. This is why separating the concerns horizontally
is so important, and even mandatory. Since each designer focuses on their area of
expertise, their only constraint is to provide the rest of them with a precise interface
for the component that they are designing.

1.1.4 Transversal separation: aspect oriented design

Transversal separation Horizontal separation, as presented in the previous sec-
tion, is purely structural, in the sense that each part usually corresponds to a struc-
tural element in the global product (systems, equipments, components, . . . ). How-
ever, it is mandatory to take into account the behavioural aspects of these parts.
Usually, this is done as follows: the system is split into different elements as ex-
plained, and then each of these elements is split once more into its behavioural and
structural aspects. This is particularly relevant because the structural aspects are
usually stable through composition using the interfaces of its different constituents,
but the behavioural aspects usually need additional properties to be transferred into
the behaviour of the global system. This is why separating these two aspects is very
important. This additional separation is called transversal. It is called this way be-
cause it crosses the others in order to unite parts that are thematically identical,
such as the behaviour in this case. This leads to models that are heterogeneous in
three different ways. Such an heterogeneous modelling (different DSML for each
part of the systems, whether it is structural or behavioural) has been integrated in
various development environments, such as the Ptolemy toolset proposed by Lee et
al. [33], the ModHel’X toolset proposed by Boulanger et al. [78] and the GEMOC
studio proposed by Combemale et al. [43].

Benefits of transversal separation Transversal separation has become widely
used since the introduction of Software engineering and more precisely MDE
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(Model Driven Engineering) as it provides a very concrete benefit: It allows the
designers to handle each aspect of the system with the DSML that is the most ap-
propriate. As previously stated, these DSML can be very technical and require a
certain level of expertise to be manipulated, which leads to the main advantage of
this approach: transversal separation, as horizontal separation, helps the system de-
signers focus on what matters in their work since they do not need to always have
the global system in mind. More on such separation is discussed in Chapter 6. The
nature of the parts usually depends on the nature of the system as well as the design-
ers’ will. This means that the purpose of each part also depends on these factors.
What matters is that each of these parts corresponds to a well identified conceptual
notion in the designer’s mind.

1.1.5 Vertical separation: refinement on the rescue

Nature of vertical separation Vertical separation is a lot harder to define and
grasp, although it is definitely as useful as its horizontal and transversal counter-
parts, which we name planar separations. While planar separations are handled
during the design process, and precedes implementation, vertical separation takes
place during the implementation process. More precisely, it builds a bridge that
goes from one to the other. Should the system be split into several black boxes
through planar separations, and should these boxes be defined by their interfaces –
their specifications – then vertical separation consists in splitting the development
of a given box into different steps going from said specification to the concrete im-
plementation of this concern. This means that vertical separation usually enforces
a refinement relation between the different models of the same part of the system in
order to ensure their consistency regarding the requirements of the current concern.
The notion of refinement, described in [15], consists in developing a system step by
step, each of which should preserve correctness towards the expected specification.

Correct-by-construction refinement As explained, vertical separation can be
seen as a succession of refinement steps from the abstract specification to the con-
crete implementation, as first introduced by C. Morgan in [121], and as advocated
by the B [2] and Event-B methods [3] proposed by J.R Abrial. In order to prove
the preservation of the properties throughout these steps, these methods use invari-
ants that are defined at each level of refinement. The proof that the invariant at a
given level implies the invariant at the next level has to be provided to ensure the
consistency of the process. This approach is very operational, in the sense that it
considers vertical separation as a process of construction. Indeed, an operational
semantics gives a meaning to a system by building its output and stating that the
semantics of the system is the output it produces. For instance, one can give an
operational semantics to an automaton by computing the language it accepts.

Assessing a correct vertical separation Another way of seeing vertical separa-
tion consists in assessing that different systems can indeed be seen as two stages of
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a same development. This approach is more denotational – or relational – and any
operational semantics, such as the ones proposed in the B and Event-B methods
should provide models that satisfy such relations. Indeed, a denotational semantics
proposes to give a semantics of a system by specifying relations on the elements
it provides. For instance, giving a denotational semantics to an automaton con-
sists in giving the regular expression which represents the language accepted by
the automata. More generally, any trace provided by the operational semantics of
a transition system should comply with this denotational semantics. This denota-
tional view of vertical separation is usually related to a notion of simulation (either
simple simulation, bisimulation or weak bisimulation). For instance, weak bisim-
ulation, which is a bisimulation with the addition of invisible transitions called �
transitions, is very akin to represent refinement because these invisible transitions
are perfect candidates to be refined, as advocated in our approach in Chapter 5.

More on refinement Vertical separation, in other words refinement, has been
widely studied [134, 135]. Synchronous refinement has been studied in the case
of synchronous models of computation (MOC) first as oversampling for data-flow
languages [113] and then as time refinement for reactive languages [72, 108]. Poly-
chronous time models have been used to assess the vertical refinement during sys-
tem design [142]. Refinement has also been widely implemented for many differ-
ent modelling and programming concerns like data [55] and algorithms (sequen-
tial [17], concurrent [16], distributed, etc). Time can be represented with a sin-
gle global reference clock that binds all clocks in the system together [106, 32].
However, since building these global clocks is usually tricky, time is more often
abstracted as a partial order relation [133, 105]. Refinement [1] then relies on sim-
ulation [79, 80] or bisimulation relations between the semantics of the more abstract
and concrete system models.

1.1.6 Challenges in heterogeneous modelling

This context provides numerous issues in the process of modelling and verify-
ing heterogeneous systems. These issues are often related to the handling of the
composition between the parts of a given system, but not limited to them. Indeed,
this heterogeneous modelling requires the development and existence of numerous
modelling languages, the depiction of various behavioural coordination properties
between these languages, the handling of the structural heterogeneity of the models
as well as the handling of the refinement between languages and models. All of
these require the definition of tools and environment in which such definitions and
handling can be made, such as GEMOC and PTOLEMY. In this context, we propose
several contributions, which are depicted in the following sections.
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1.2 Our contributions

1.2.1 Our goal: mixing separations over behavioural properties

This thesis targets a proof based modelling and verification approach to prove
properties over languages and models in such tool-sets. We intend to tackle the
verification of the heterogeneous aspects of such complex systems. Our work takes
place in the context defined by GEMOC that mixes the three main separations of
concerns. Indeed, GEMOC allows us to define the DSML used to model the vari-
ous parts in a CPS in each phase of their development. Thus, DSML are combined
both in a horizontal, vertical and transversal manner. GEMOC first defines atomic
events as methods on the meta classes defining the abstract syntax of the language,
which updates the state of the system, and then relies on the UML MARTE CCSL
(Clock Constraint Specific Language) to model both the MOC (Model of Computa-
tion) [138] for the various DSML [44, 57, 93] and the coordination between DSML
using the Behavioural Coordination Language (BCOOL) [92].

In the context of a tool-set which combines all the different aspects required to
model complex and heterogeneous systems, we focus on the behavioural aspects of
these models, which correspond to elements that evolve with time, and for which
we intend to give a formal context. Behavioural aspects are an element of transver-
sal separation, and are themselves horizontally separated one from another. We
intend to target both this horizontal separation of concerns by giving a semantics
to CCSL, which provides such horizontal heterogeneity naturally, and vertical sep-
aration by assessing the relations between the various time concerns in the models
of the same system part. Ultimately, we intend to mix these two separations of con-
cern by providing a framework on which time constraints can be expressed both
horizontally and vertically in the behavioural transversal concern. In this context,
we would like to assess how constraints expressed at a given vertical level can be
transferred to other levels. This would contribute to answer a fundamental question
in system engineering, which was introduced in Section 1.1: how time constraints
over different horizontal and vertical parts of a complex systems can be merged
together successfully, such that the global behaviour of the system can be assessed
correctly ? In order to provide such an answer, we conducted several investigations,
some more fruitful than others, but all contributing in a way to this global purpose.
These contributions are depicted and introduced in the following sections.

1.2.2 A formal execution of event-based systems

A first question that was addressed was the following: how can one formally
model the execution of models whose semantics is a transition system ? That is, a
model composed of a state which can evolve through the execution of transitions.
This corresponds to the atomic events in GEMOC introduced previously. To our
knowledge, there are no such attempts in the literature, even though some similar
works can be found, such as an attempt at verifying such systems using both tests
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and formal methods [146] and an attempt at modelling and verifying concurrent
systems using CCS process algebra [111]. This initial contribution had a double
objective. The first one was to get familiar with the stakes of this thesis, the formal
modelling of languages as defined in the GEMOC tool, as well as the formal tool
AGDA, on which more information can be found in [125], [107] and [30], and which
is based on the intuitionistic type theory by Martin-Löf [109].

The second one was to provide a concrete methodology with which instances
of a given language can be defined and verified in a formal environment, provided
that this language can be given a semantics as an event-based system. This verifica-
tion consists of two aspects: a structural aspect, which guarantees that only models
that are correct towards their meta-model and their static semantics can be built,
through a correct-by-construction approach ; and a behavioural aspect, which con-
sists in assessing the properties that need to be satisfied in order to execute a given
transition. In other words, this consists in assessing if the guard of the transition
holds, which would allow the temporal evolution of the system.

A concrete evolution of the system can then be emulated in a step by step man-
ner, giving a finite trace for the system. In other words, this step-by-step approach
provides a correct-by-construction operational semantics for models which can be
defined as transition systems, by computing at each step the possible evolutions for
the system, and possibly executing one of them. This approach has been applied
and validated on two languages which exhibit this behaviour: the PETRI NET and
SIMPLEPDL. This is the only contribution which relies on an operational seman-
tics, because we think it is always fruitful to start by studying some operational
aspects before trying to describe denotational semantics, since they are far more
abstract, and when dealing with abstract entities, it is usually mandatory to have in
mind which concrete elements they are related to.

1.2.3 A formal depiction of trace refinement

The second contribution we propose answers the following question: is it pos-
sible to give a formal counterpart to system refinement based on their trace se-
mantics ? This question arises from two different observations: first, there exists a
specific relation between the two languages that were used as support for the pre-
vious contribution: SIMPLEPDL and PETRI NET. Indeed, these two languages are
bound by a relation of weak-bisimulation, as established in [41], which can be seen
as a relation of refinement, as mentioned in Section 1.1.5. Secondly, the language
which provides a way of expressing synchronization constraints between languages
in GEMOC, CCSL, lacks a notion of refinement.

Refinement is often seen as a partial order between systems, such as in [52]
or [82]. In most publications around the subject however, it is not quite clear exactly
what are the formal notions being refined. In other words, it is not always easy
to understand what exactly are these entities that are being partially ordered. In
addition, this partial order is often considered true by default, with no accent being
made on the axioms of partial ordering being verified by said relation. All in all,
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trace refinement lacks a proper formal definition along with a formal proof that it is
indeed a partial order. This contribution aims at closing this gap: we try to assess
what are the entities that should be bound by partial ordering when considering
a refinement between the traces of systems. We give a depiction of a relation of
refinement, which is meant to correspond to the usual notion of trace refinement
which has not yet, to our knowledge, been formally expressed. This definition of
refinement is then proved to be a partial order.

This contribution provides a formal refinement relation mechanized in the
AGDA proof assistant. This relation of refinement is based on a formal notion of
time that has been modelled using the same tool. Similar formal mechanization of
time models has already been done using other formal methods, for example [76]
uses Higher Order Logic in Isabelle/HOL; [71] and [130] use the Calculus of In-
ductive Constructions in COQ, a tool described in [24].

1.2.4 A denotational semantics for CCSL

The third contribution of this thesis focuses on CCSL, while answering the
following questions: is it possible to give a formal denotational semantics of a lan-
guage that allows us to express behavioural constraints between languages ? If such,
what fruits would such a semantics bear ? And what would the differences with the
paper version of the semantics of such language be ? Indeed, CCSL already has a
denotational semantics which was done on paper, and which can be found here [56].
As for CCSL itself, it was first presented in [7]. CCSL allows the expression of
constraints between clocks, which are abstract entities that track the occurrences of
events of the same nature in a system. This contribution also answers the following
question: Are there properties between CCSL constraints which can be deduced
from a given specification ? Are CCSL constructs part of some underlying mathe-
matical structure ? Other attempts at giving semantics to languages like CCSL have
been developed, such as a promising approach to give an operational semantics to
TESL using ISABELLE/HOL that can be found in [148], or an encoding of CCSL
in first order logic to assess properties with SMT solvers [157].

We provide a denotational semantics of CCSL, which differs from the paper
version through the mechanization process. CCSL handling of time is based on
the notion of TimeStructure [152] which was modelled accordingly with the no-
tion of time that is used in the contribution around refinement presented in 1.2.3.
This mechanization is meant to provide a bridge between the commonly accepted
semantics of CCSL and the actual current implementation of the language. This
bridge goes both ways: the properties that are established reinforce the confidence
we have in our modelling, and this modelling gives us additional information on the
semantics of CCSL as well as the properties that should hold for the requirements
to be verified. This is a concrete example of the merits of such formal approaches:
the modelling comes from an existing notion, and then enriches it, provided it is
conforming to the basic requirements of the language.
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1.2.5 An investigation on the impact of refinement over CCSL
The last contribution of this thesis focuses on the combination of our notion of

refinement with our semantics of CCSL. Both mechanizations have been modelled
using the same tool, and share the same basic model of time. In this contribution,
we answer the following question: is it possible to add a notion of instant refinement
to CCSL ? If such, which formwould this refinement take, and which fruits would it
bear ? CCSL has been designed to handle horizontal separation in the behavioural
concern in an elegant manner, because it abstracts all the events into clocks, re-
gardless of which part of the system these clocks come from. Adding a notion of
refinement to CCSL would allow the language to handle all main separations of
concerns in a single framework, which is provided by this contribution.

Similarly to some of the upsides of the approach depicted in Section 1.2.4, we
investigate which constructs provided by CCSL are preserved by refinement. For
that purpose, this contribution provides two additional CCSL relations which cor-
respond to two different multiplicities of refinement: 1-N and 1-1. These new rela-
tions only make sense in a context where several layers of refinement are present,
using our formal depiction of refinement presented in Section 1.2.3. Thus, the ad-
dition of refinement to CCSL provides both an enrichment of the current formal
context of CCSL which allows us to express refinement, and two concrete refine-
ment relations in CCSL, along with properties of preservations for these relations.

1.2.6 Subsidiary contribution: AGDA methodology
All these contributions have been mechanized in the AGDA proof assistant, and

all the results that are presented in this document have been proved in this formal
context. While we do not contribute to AGDA itself, this document presents an
underlying contribution in terms of understanding and using AGDA. It proposes
several ways of using the tools in an as optimal as possible manner, as well as a
lot of tools for AGDA beginners to learn the language and for current AGDA users
to maybe discover new ideas on how to build proof terms in AGDA. The range of
this contribution is hard to assess, because it is difficult to be sure that such or such
methodology is unknown to AGDA experts. However, we believe that throughout
this document several AGDA proofs could be of use for further AGDA users, which
is why we made a strong effort to provide as many explanations as possible along
with these proofs. We believe that this document is self-contained in terms of AGDA
notions and that a non AGDA expert can find all the elements that are needed to
the understanding of the technical aspects of this work. This contribution is less
straightforward and not linked to our global context and goal, but exists nonetheless.
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Chapter 2

From formal methods to AGDA

Outline
This chapter proposes an overview of formal methods which is slowly narrowed

down to the language that was used in this work: AGDA. It uses the following
outline:

1. Section 2.1 presents a possible classification of the currently available formal
methods. It treats model checking, static analysis, abstract interpretation,
correct-by-construction approaches with the use of refinement, automated
theorem provers, proof assistants and finally tools which aim at combining
several of these methods. Each class of methods is briefly described and
given a field of application.

2. Section 2.2 presents the notion of dependent types and explains why and
where such a type system finds its place into this categorization. It intro-
duces constructive logics and explains how they are connected to type sys-
tems through the Curry-Howard correspondence. It gives a brief history of
logic and explains the thought process behind the creation of languages using
dependent and polymorphic types.

3. Section 2.3 presents the AGDA language and the tools that revolve around it.
AGDA is a dependently typed language which is described thoroughly and
compared to its cousin COQ through several angles. A short tutorial is given
which, coupled to the rest of the section, should help the reader familiarize
with theAGDA languagewhich has been used throughout this work andwhich
holds an important part in this document.
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2.1 Formal methods: the banner of computer scientists
Attempts at giving a complete and consensual definition of formal methods al-

ways ends in vain. Some researchers consider that only the most advanced tools,
usually based on complexmathematical theories, can be considered as formal meth-
ods while others take paper proofs as such methods. There is no actual answer on
what they actually are, however, there is a consensus on what they try to achieve,
thus making their goal the only effective way to successfully describe them. They
aim at mathematically modelling and proving properties about programs and sys-
tems, thus being an alternative to verification by systematic testing and proofread-
ing that can ensure the correctness and also the exhaustiveness of the verification.
They can be categorized in many ways and a lot of writers as well as researchers
have tried to elaborate the best categorization for these methods to clearly separate
the aims of each of them, such as in [5]. This is a hard task as well because these
methods’ spectrum usually overlap with each other. This classification also depends
on whether one sees formal methods as theories on which tools are built, or as the
tools themselves, which makes a significant difference. For a sake of clarity and
simplicity, we introduce the kind of formal methods we used through a very simple
classification, that does not pretend to be neither exhaustive nor consensual for all
these reasons.

2.1.1 Model checking: exploring state spaces
Model-checking approaches, described thoroughly by Clarke et al. in [37] aims

at modelling a system as a state transition system [67] (the system is split into its
possible states and the transitions that can occur from a given state during its exe-
cution. More precisely, a transition system is described by an internal state, which
can be modified through the execution of transitions that specify when and how it
might evolve) in order to explore the state-space of all possible executions of the
abstracted system in regard to a given predicate – usually specified in a temporal
logic (LTL, CTL, �-calculus, CTL*,...) – that supposedly1 expresses the require-
ments that must be satisfied by the system. The transitions of the abstracted system
can be labelled, – have a name – and / or be guarded – requiring a specific predicate
to hold in order to be activated. Such systems will be described and modelled in
Chapter 4. Many automated systems that we encounter in our everyday life can be
modelled as transition systems, whose transitions are labelled through the action
that activates it. For instance, the automaton to retrieve money from a bank first
requires the user to enter a code (the writing of which also requires a transition sys-
tem to be run, which accepts four digits before validation) then to pick an action
among the ones that are available, each of which are represented by a specific tran-
sition from the current state. After that, depending on the action picked by the user
and the transition executed, another screen will appear with additional instructions.
After which the user is asked to retrieve their credit card to exit the system, which

1the gap between the expected behaviour and the requirement will be discussed later on in chapter 6

14



then waits for another user. Model checking requires unfolding the execution tree
of these systems to check, on each possible branch, the validity of the temporal
property. Many formal tools embed a model checker. For instance, this is the case
for TLA+, a language introduced by Leslie Lamport [90] allowing us both to define
transition systems and prove properties on their temporal execution using the TLC
model checker. This is also the case of the B [2] and Event-B [3] methods – more
on these methods can be found in Section 2.1.3 – that are respectively implemented
in the tools Atelier B [63], and Rodin [4] and that use the Pro B [99] [98] model
checker. Interestingly, Pro B can also be used as a model checker for other lan-
guages, such as TLA+, which means that the core of the model checking approach
is somewhat independent from the tools that are used to model the preoccupations,
as long as the modelled system can be translated into a transition system. Another
example is Alloy [85] which uses bounded model checking using SAT/SMT solvers
as described later on. However, the main drawback of this approach is that it does
not handle infinite state spaces which are common nonetheless as an abstraction of
repetitive systems. However, there are a lot of works on folding these state spaces
to build an equivalent that would be finite – an example of this would be symbolic
approaches to handle specific patterns of infinite [140] – but there is no generic way
of handling such infinite case. By building the state space, the model checker is a
direct generalization of systematic testing since it aims at automating the testing of
every single possible case of execution in all its possible states and execution paths.

2.1.2 Static analysis and abstract interpretation

Static analysis aims at proving properties about existing programs or executable
models written in languages that do not natively embed verification elements, which
is the case for most of the usual programming languages such as C, FORTRAN,
Java and so on. It is however possible to retrieve some information on the programs
written in such languages, depending on their semantics. Static analysis will ex-
ploit this semantics to extract such information. These information can be directly
extracted for verification purposes, through methods such as Hoare Logics [81],
where each instruction of the program is annotated with a precondition and a post-
condition depending on the nature of the instruction. The preconditions must imply
the postconditions for the function to be correct. This requires an assessment of the
right preconditions (and sometimes variants and invariants) that are needed to en-
sure the correctness of the program, using for instance backward analysis to find
the weakest precondition which would imply the postconditions. These precondi-
tions, postconditions, variants and invariants are the basic bricks of what are called
proof obligations. They are extracted from the annotations (usually automatically
by adequate tools) and represent the minimal proof effort that has to be done in or-
der to prove the correctness of the program. The tools based on the B and Event-B
method also rely on proof obligations to handle the development of the systems.

This information and the associated semantics of the language can also be inter-
preted in a different mathematical space in which case the process is called abstract
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interpretation, as first introduced by P. Cousot in 1977 [49]. The goal here is to be
able to retrieve even more information by projecting the program in a more complex
– but more resourceful – mathematical space (usually exhibiting a lattice structure)
on which mathematical operations can be executed. The common example of ab-
stract interpretation is to abstract the numerical variables into the mathematical set
of intervals, which can be manipulated through the union and intersection, form-
ing a lattice in that regard. After injecting the variables of the program in this
world (assuming there is some initial information on the intervals of the variables),
a reasoning can be conducted throughout the program to keep track of the possible
intervals that the variables are constrained to during the execution of the program.
This is very useful both for verification purposes (checking if the intervals at the
end of the function are indeed acceptable) and to check for dead branches in the
program. Such techniques, however, require an additional layer over the program
itself. For instance, if a branch has been proven non-reachable through abstract
interpretation, – the additional layer – will still appear and be tested in the execu-
tion of the original program, because there is no dialogue between the operation
world (the program) as well as the verification world (the abstract tools used over
it). However, some compilers, – the ones that embed some abstract interpretation
– will erase the unreachable branches. In the rest of the section, other approaches
will be shown to tackle this issue.

2.1.3 Correct-by-construction approaches: the use of refinement

A third approach in formal methods is to build correct-by-construction software
through the use of refinement. Correct-by-construction approaches are not limited
to refinement approaches. Proof assistants, described in Section 2.1.5 allow correct-
by-construction programs to be built but these are the most representative ones.
Correct-by-construction approaches rely on developing programs along with their
corresponding proofs of correctness at the same time, which means that complet-
ing the development of such programs implies their correctness, whereas in static
analysis the proof is built after the program is written and may require additional
testing to locate errors when said analysis could not be fully done. This means
that they need no further verification once they have been developed. This requires
some well-designed tools and underlying theories to allow such a thing to happen.
A good example of correct-by-construction tools is B [2] and later Event-B [3], two
methods developed by Jean-Raymond Abrial. Event-B provides a framework to
build machines coupled to contexts and invariants, through which a system can be
built using several refinement steps. The specification is given at the highest level
of abstraction and is then embodied more and more through the development of
the actual computable model. This approach is highly advocated in the community
because the proof effort is mitigated throughout the development rather than being
done afterwards – and it can be automated to some extent. Refinement is not only an
efficient programming paradigm that allows the development to be split in different
steps, but it also tries to embed an accurate and real description of the developed
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system. To be more accurate, each layer of refinement supposedly represents an
actual view of how the system works, hiding purposely some inner details when
the observable behaviour is sufficient to whoever needs to express or understand
something about the system, as studied in Chapter 5. This means that developing
systems in such a way is also very convenient for system engineers because they
do not need to handle technical details in every layer of refinement. And each of
the layers can later on be used to enlighten a given aspect of the system behaviour.
Every layer introduces new requirements (the invariants of the systems), a prelim-
inary implementation with the related proofs and details over the previous layers
with their respective proofs. An example of such development can be found in [14]
where the authors model in Event-B a process of on-line shopping through the use
of carts after which they substitute it with another one in case of failure while pre-
serving the global behaviour of the system.

The next set of formal methods that are discussed in this document are theorem
provers. Roughly, they aim at modelling and / or proving properties through a set of
axioms and a set of deduction rules. Among these provers, there exists a substantial
amount that are able, in certain circumstances, to build proofs without requiring any
user interaction. They are called automated theorem provers (ATP).

2.1.4 Automated theorem provers

ATPs are powerful tools that are based on a given logic. This logic can either
be decidable, in which case ATPs will always succeed at their goal but the underly-
ing expressiveness of this logic is quite limited (such as propositional logic). This
success is, however, theoretical since there can be some complexity issue in the
computation, even for the most basic logics. In propositional logics for instance,
the complexity of assessing if a given formula of n variables can be satisfied is 2n.
They can also rely on stronger logics by using heuristics to try and achieve goals
while providing no guarantee they will ever find the solution – which may simply
not exist [74]. This second approach is the one usually advocated because the logics
used in computer science are never fully decidable and usually require incomplete
heuristics to tackle even the easiest problems. These logics are somewhat sepa-
rated in two categories, first order logics and higher order logics (FOL and HOL)
that have been widely studied and that do not embed the same expressiveness, as ex-
plained in more detail in Section 2.2. This is why these automated theorem provers
are rarely used as stand alone programs but rather as parts of higher level proof
assistants. A basic example of these automated theorem provers are propositional
SATisfiability problem (SAT) solvers. SAT solvers are programs whose goal is to
find if a given propositional logic formula is satisfiable under a certain valuation for
the variables it contains. For example, considering the formula P ∶ (A→ ¬B)∧A,
P is satisfiable when A = ⊤ and B = ⊥ which should be returned by the solver.
However, considering the formula P ∶ A ∧ ¬A, the solver should return that there
exists no such valuation to satisfy P . Since propositional logics is decidable (it is
always possible to find whether or not a formula is valid simply by building its truth
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table) the solver should always succeed, but the computation time or the required
storage can be a limitation depending on the heuristic used to solve the problem
and the form of the formula. Another example of theorem provers are Satisfiability
Modulo Theories (SMT) solvers. These solvers can be seen as the natural exten-
sion of SAT solvers with additional data types and associated proof techniques to
extend the modelling and proving power of propositional logic. SMT solvers work
on formulas where the variables are replaced by statements coming from another
theory, such as natural numbers, lists, real numbers, ... These statements contain
variables coming from these theories and the solver attempts at giving a valuation
to these variables. Considering the formula P ∶ m ≤ n ∧ n ≤ 3 ∧ 2 < m the
solver should return the valuation m = 3 and n = 3. This is important to note that
such formulas can only be determined satisfiable when the underlying SAT problem
(here A ∧ B ∧ C) is itself satisfiable, but the reciprocal is clearly not true. There
exist many SMT solvers, that are based on different heuristics and handle differ-
ent mathematical theories. The most known among them are CVC4 [21], Z3 [53],
Alt-Ergo [47], veriT [29] and Vampire [136].

While SMT solvers represent the highest state-of-the-art level of automation
that has been achieved regarding proof generation, there exist even higher level
tools in formal methods, the proof assistants.

2.1.5 Proof assistants

Considering the programs that have to be verified through formal methods can
not all be reduced to SMT problems – even if it can be the case for many useful
real-life systems – and also that the state-of-the-art knowledge in automated provers
seems to limit their extent to SMT problems, any tool that aims at verifying such
programs has to partly rely on user interaction. This is the case for proof assis-
tants, that assist the developer in its proof effort through two very different – but
complementary – aspects.

The first one is the help in building the models and the associated proofs. This
step is highly important because it consists in helping the programmer building
proofs that are usually too complicated to be solely apprehended by the humanmind
in their entirety. Usually, the help comes at least from the ability to automatically
decompose (and recompose) proofs in different sub-parts (often called sub-goals)
that are accessible to the programmers understanding. This step is assisted by the
tool but cannot be completely automatized because of the inherent undecidability
in the logics these tools handle.

The second step is the automated verification of the provided proof. This step
is done automatically by the tools as it relies on a decidable procedure. It takes a
fully formed proof (either built by the programmer or taken from an external prover)
and proceeds to ensure its correctness. In theorem provers based on type theories
for instance, this step is directly equivalent to type checking the proof in regard
of a given expected type. This notion of compatibility between the type of the
term and the type corresponding to the expected property is not as straightforward
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as it sounds. Indeed, there may be some further unification – or a notion of sub-
typing – required to assess this compatibility rather than just comparing the type for
equality. In AGDA for instance, there exists a clear distinction between the entity
that assesses the correctness of the proof – the type checker – and the entity that tries
to automatically provide such terms – AGSY, a term generator – as explained and
detailed in Section 2.3.3.d. In COQ as well, when some tactics fail, this can either
be because no term was provided by the tactic – either internally or using external
solvers – or because the provided term turned out to be incorrect – incompatible –
regarding the specification when proof-checked by COQ.

In other words, proof assistants are programs that aim to guide the human user
through his proof effort while verifying that the resulting proof indeed corresponds
to the formula it aims at proving. These tools provide various ways of handling a
computer assisted proof development. They usually embed, or are interfaced with,
automated theorem provers (for example first order decision procedures, or SAT
/ SMT solvers) by allowing the user to invoke these provers when he sees it fit –
when the current sub-problem can be expressed as an automatically solvable prob-
lem. While they usually allow the proofs to be divided in several fragments, each of
these fragments has to be manually solved by the users, either by explicitly giving
the right proof term, by recursively fragmenting the new proof goal or by invoking
an external or internal prover. This means that each step of the proof effort is man-
ually done by the user while the tool checks and composes the user inputs. There
exist many different kinds of proof assistants, such as COQ, a dependently typed lan-
guage using tactics to build proof terms, AGDA, the languagewhichwas used during
this thesis, Isabelle, a meta-language to model logics [131], Isabelle/HOL, the im-
plantation of HOL in Isabelle [123], PVS [10], Lean [54], LCF [139], Matita [11],
ACL2 [35], KeYmaera X [70] or Automath [19]. More on COQ and AGDA will be
found in Section 2.3.5. Proof assistants usually allow the program and the proof
to be built in the same development environment, thus keeping the link between
these two worlds at all time. With the emergence of type theories and the Curry-
Howard correspondence, this link has further been re-enforced in a way that they
actually appear as two faces of the same coin. This will be detailed in Section 2.2.
Being able to develop both the program and the proof in the same language also
allows the development of correct-by-construction systems, as done in B [2] and
Event-B [3] using vertical separation, as detailed earlier. However, this is only a
possibility, not an obligation which means that these types of software are a lot
more flexible than such approaches, with the drawback that they are also a lot less
systematic and mechanical. Properties can be proven during the development ef-
fort, or after it, depending on what suits the proof assistant user best. This makes
these tools a very powerful and very flexible asset in the development of certified
programs, to the point that they are, in my opinion – an opinion shared, for instance,
by Xavier Leroy [97] – themost advanced tools we have in that regard – so advanced
that they were able to provide proofs for very important postulates that were yet to
be solved, both in mathematics (4-colors theorem [9], Kepler theorem [77], Feit-
Thompson [75], ...) and in computer science (Compcert [96], Sel4 [87], ...).
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2.1.6 Combining verification methods together

This section, by presenting a partial overview of the available verification meth-
ods, depicts a complex, dense and ever changing set of tools and methods which all
target a specific field or rely on a specific logic. This makes them powerful for a
given category of problems, and less so for the others. Attempts at combining the
upsides of some of these methods have been made, and mostly follow two different
directions. The first direction consists in a framework which, given a program an-
notated with preconditions, postconditions, variants and invariants, produces a set
of proof obligations which are then translated into different possible formats which
can be processed by different verification tools. This is for instance the approach
advocated by tools like Boogie [20] and Why3 [66]. Why3, for instance, generates
proof obligations which can be given directly to SMT solvers such as Alt-Ergo, Z3
or CVC4, or manually processed with Coq. Why3 then ensures that all the proof
obligations have been handled by either of these means, in which case it considers
the program correct. Why3 can also be used as pivot model between more com-
plex languages like ADA or C and low level proof tools. This approach is very
interesting but does not allow different logics to actually talk and understand one
another. Indeed, Why3 does not retrieve nor verifies the proofs which have been
provided by the provers that were used, especially because some of them do not
provide any proof term. Why3 can be seen as an additional layer built on top of
different provers, to which it delegates the proof effort after having generated the
proof obligations. This leads to the second approach, which is more conceptually
pleasing but also more challenging, which consists in embedding several logics
in a single framework, which would be able to verify proofs coming from differ-
ent tools and provers, and expressed in different formalisms. Such a framework is
DEDUKTI [13] which proposes to encode different proof theories using a single for-
malism: �Πcalculus modulo. This is quite challenging because it requires to allow
theories which are based on very different assumptions – such as constructive and
non-constructive logics – to coexist. This approach has a major upside which is the
existence of a proof term in all cases, which is then verified by DEDUKTI itself. The
provers or theories are no longer black boxes which should blindly be trusted: they
are merely providers of goods which are then verified.

2.2 Dependent types: types or properties ?
Explained in Section 4.1, the work depicted in this thesis relies on the use of de-

pendent types to express definitions and relations between them. Indeed, AGDA is a
dependently typed language and it will be described thoroughly in Section 2.3. De-
pendent types are the core concept of several proof assistants and / or programming
languages such as COQ, IDRIS [31] or AGDA. Some of them, like COQ, provide
convenient high level ways, – tactics – to build proofs while hiding numerous com-
plex underlying proof terms. Others, like AGDA, have chosen to keep these terms
visible while also providing help to the programmer building them, also AGDA is
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currently experimenting the addition of tactics using reflection [149]. In both cases,
the underlying mathematical theory is the same and needs to be mentioned in order
to understand several parts of this thesis. This is the goal of this section.

2.2.1 Logics and classical logics
Classical logic is the most well-known logic that has ever been studied both in

mathematics and computer science. While its philosophical creation goes all the
way back to the antiquity, its mathematical formalization and improvements have
been performed throughout the 19th and 20th century. While classical logic is often
referred to as a single logic, it is more a family of logics sharing the same heart. Any
logic can be defined as a set of inference rules stating how the proof of some formula
can be built from the proof of others. An inference rule is composed of premises
and one or possibly several conclusions, that the logic allows us to build when the
premises hold. From these inference rules, others can be deduced which are called
lemmas or theorems. A set of inference rules is said coherent (or consistent, or
sound) when no successive applications of of inference deductions can result in
both an affirmation and its negation. Logic differs from one another by their set
of inference rules. Axioms are usually considered as inference rules without any
premise, although since all inference rules are by definition postulated, they can all
be considered as axioms. Figure 2.1a shows an inference rule with a premise while
Figure 2.1b shows an inference rule without a premise.

A,B
A ∧ B

introduction

(a) An inference rule

A ∨ ¬A
excluded-middle

(b) An axiom
Figure 2.1: Examples of inference rules

These examples of inference rules have not been chosen randomly. The first
one, the introduction of the conjunction is a typical inference rule of most logics. It
states that if bothA andB are proven true, thenA∧B as a whole can be proven true
as well. This looks trivial but it really isn’t since this inference rule also introduces
the notion of conjunction by defining the operator ∧ and by giving it a specific
meaning, that is the consensual conjunction of facts or elements. The second one
is also very important because it captures the essence of classical logics. Basically,
any logic that is classical contains this axiom of excluded middle, or any equivalent
axiom in its foundations. This is a very profound axiom because it captures a certain
way of perceiving reality. Indeed, in classical logics, any fact is supposedly either
true or false regardless of whether anybody has proven one or the other. This seems
natural because it matches our common notion of logic: either something happened
or it did not, either something is there or it is not, and so on. This corresponds to
the well-known (and sometimes controversial) axiom of choice in mathematics.
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However, this is not so obvious when considering for instance infinite systems or
the notion of witness or computation, as advocated in intuitionistic logic.

2.2.2 Intuitionistic logic

While being very intuitive, classical logic implies a certain version of truth.
They imply that something is true or not by essence, as if a "god" or an "oracle"
would be, for any given term, able to say whether this term is true or false. Advocat-
ing this notion of truth seems, as already stated, natural, but there exist some weird
– and extraordinary – results that somewhat shattered its obvious nature. These re-
sults, mostly due to a famous logician called Kurt Gödel, refers to the foundation
and nature of logic itself. One of the results is Gödel’s theorem of incomplete-
ness [74]. This result states that any computable axiomatic system that is able to
express the arithmetic of natural numbers is either incomplete or inconsistent, hence
if it is consistent then it cannot be complete. This means that such system neces-
sarily contains true theorems that cannot be proven within its own system. This
directly questions the notion of truth. What is the truth if it cannot be proven?

Such results that directly question the nature of what we call "truth", coupled
with the paradoxes of the set theory (such a the Russel paradox [137]), have slowly
given birth to logics that embeds a different notion of truth: something is true if
there exists a proof of it. Weirdly enough, this sounds as natural as the definition
of truth within the classical logics, even though it is a completely different one.
This can even lead to philosophical questions about the notion of truth, which I
personally find fascinating. The logic that embeds this definition of truth – and thus
rejects the excludedmiddle – are called intuitionistic or constructive logics, because
they solely rely on building proofs to decide the truth of a given term instead of just
assuming it has to either be true or false. A direct consequence of this definition
is that intuitionistic logic are by nature weaker than classical logic but they aim at
mirroring as close as possible the notion of constructivism: is considered true only
what can be built, or, in the case of programs, what can be computed.

2.2.3 Curry-Howard isomorphism

What is called the Curry-Howard isomorphism – but ismostly a correspondence
– is a direct syntactic link that has been noticed and formulated in the middle of the
20th century by Curry [50] and Howard [83] between logic formula and functional
types. The original functional language on which it has been noticed is the typed
lambda calculus [18] whose function types look like A → B when transforming
an element of type A into an element of type B. As noticed by both Curry and
Howard, A → B can also be interpreted as the logical implication between A and
B stating that if A holds, then B holds. This observation is a fundamental result
in connecting the logical world to the programming world. While logical implica-
tion is the most fundamental and natural correspondence between these two worlds,
there exist many more of them depending on the kind of logics one considers. How-
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ever, all of these logics are intuitionistic and this is quite easily understandable be-
cause computer programs and functions build results through computation. This
correspondence leads to the fundamental following result: in a functional language
whose type system is equivalent – through the Curry-Howard isomorphism – to a
given intuitionistic logic, every term that can be built in that language has a type
that corresponds to a true formula in that logic, and vice-versa every program is a
constructive proof of its type. Similarly, the typing rules of this language are equiv-
alent to the inference rules of the corresponding logics. This result has given birth
to the most advanced tools we have in terms of theorem proving: COQ, AGDA, and
their siblings. Figure 2.2 summarizes the basic corresponding elements between a
typed functional language and an intuitionistic logic.

Logic Symbol Type
Implication ⇒ Function type
Conjunction ∧ Product type
Disjunction ∨ Sum type

Universal quantification ∀ Π type
Existential quantification ∃ Σ type

True ⊤ Unit type
False ⟂ Empty type

Figure 2.2: The type/formula correspondence

2.2.4 Dependent types

The Curry-Howard correspondence tells us that finding an inhabitant of a given
type – proving that this type is not empty – is equivalent to proving the property
represented by this type, – note that the nature (the value) of the inhabitant is irrele-
vant. This correspondence is as powerful as the logic that is emulated by the target
language type system. The more expressive the type system, the more powerful the
logic it represents becomes. Since logics have been widely studied for a long period
of time – and classified throughout the process – logicians and computer scientists
started developing languages with types that would be more and more expressive in
order to match these logics. Propositional logics would be for instance emulated by
simply typed �-calculus [36]. Adding polymorphism to this language would result
in a type system like the one of CAML or SYSTEM F while adding dependent types
and higher order polymorphism would result in type systems like the one of AGDA,
which is able to emulate higher order logics. Before explaining what I mean by
high level polymorphism, let me have a quick look at levels of universe. As men-
tioned before, usual set theories have some paradoxes that type theories avoid. The
inconsistencies are usually created by allowing sets to contain other sets or even
themselves, which is forbidden in type theories by the notion of levels of universe.
Each type is given a level of universe. The types that describe values are of level
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0 while the types that describe and classify types are of level 1, and so on. This
means that any element in such language is associated to a level of universe usually
called a. A type of level a can only describe elements of level (a - 1) at most,
which means it cannot describe – the type equivalent of "contains" for set theories
– itself, which solves the paradoxes. As a direct consequence, there exists no such
thing in type theories as the type of all types because there is an infinite chain of
levels of universe, and this one would be of infinite level, which is not possible. To
get back to higher level polymorphism, it means that types of such languages can
be parametrized by – polymorphic over – types of any of these levels. In AGDA,
for reasons unknown to me, a type is called a Set. This is very odd to me because
types are typically not sets. Regardless of this personal opinion, this means that a
given type A of a given level of universe a is called Set a while Set 0 is short-
ened Set. In a language like AGDA, types can literally be parametrized by anything,
hence giving almost unlimited expressiveness to the logics they represent. Oddly
enough, polymorphic types are older than dependent types, even though dependent
types emulate first order logic while polymorphic types are the beginning of higher
level logics. This is why languages like AGDA, even though they are fully polymor-
phic, are called dependently typed languages. This is also easily explained by the
difficulty of type-checking dependently typed languages.

2.3 AGDA: a programming language and much more
As explained in the previous section, dependent types are a powerful asset in

programming and proving properties about programs. They have been theorized in
the past four decades and have been present in formal methods ever since. Some
languages have been fully developed around them, such as COQ [24], AGDA [125],
IDRIS, EPIGRAM [112] or PIE [64]. While these languages share the same heart,
they have different goals and different ways of building programs and proofs. We
chose AGDA for the development in this thesis and the current chapter explains why
this is relevant. It also provides a detailed description of both the language, through
a tutorial, and its development environment.

2.3.1 Presentation of AGDA

AGDA is a dependently typed programming language developed at Chalmers
university by Ulf Norell during its PhD thesis [124]. It is a complete rewrite of
a language created by Catarina and Thierry Coquand also named AGDA while the
new version of the languagewas originally namedAGDA 2. Since AGDA is based on
intuitionistic type theory (more precisely the Unified Theory of Dependent Types
by Zhaohui Luo [103]) it is comparable to COQ, IDRIS and other dependently typed
languages because they all share the same core. AGDA is a fully functional language
and has originally been designed to write programswith the help of dependent types
rather than to be a proof assistant by nature. However, as the standard library grew
and the language evolved, it became clear that AGDA could indeed be used as a proof
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assistant in an elegant manner due to its powerful development environment which
provides a clever way of inhabiting types through an automation that is invisible in
the resulting code but exists nonetheless, as shown in Section 2.3.5.b.

2.3.2 The specificities of the AGDA language

The AGDA language provides several features that makes programming and
proving in AGDA intuitive and convenient. More importantly, these features can
make the programs and proofs look like mathematical properties which is really
convenient for their understanding, even though the proofs themselves are lambda
terms and do not need to be understood after the type checker has validated them.
This means that the properties are usually understandable for non AGDA users while
the proof usually remains complicated to understand even for AGDA users, as ex-
plained in Section P.4.2. The features described in this part have a cosmetic im-
pact on AGDA’s programs while also easing the development of such programs and
proofs. Here is a list of these features, given in an arbitrary order. Note that it
only represents the subset of features I think are the most interesting and aestheti-
cally impactful, and is not exhaustive in that regard. More features will be distilled
throughout this document when their need arises.
2.3.2.a Unicode characters

Figure 2.3: Example of unicode characters

AGDA supports unicode characters and the development environment (that will
be described later on) provides a convenient (LATEX like) way of writing them. This
feature is illustrated on Figure 2.3. In this example, we define natural numbers
with the symbol ℕ, the empty list with the symbol ∅ and the cons operator with
the symbol ↪ 2. The list we define at the end, named zeros, contains three zeros
but is rather unreadable since the operator is placed before its operands, and since
this definition requires a lot of parentheses. To overcome this limitation, AGDA
provides mixfix operators.

2These symbols are purposely unorthodox in this example
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2.3.2.b Mixfix operators, associativity and priority

(a) Example of a mixfix operator (b) Priority and associativity
Figure 2.4: Features around operators

Mixfix operators are accessible while writing AGDA programs. They consist in
n-ary operators, the names of which include underscores. These underscores spec-
ify the location where the n operands shall be placed. An example of the feature is
depicted in Figure 2.4a to ease the reading of the list defined in Figure 2.3 by the
use of an infix operator (a mixfix operator with one operand on each side. There
can be any number of underscores in an identifier, and they can be placed anywhere
inside its name, in which case it will be considered by AGDA as a mixfix opera-
tor directly. While the number of underscores supposedly matches the number of
operands declared for the mixfix operator, it is not a requirement.

When there are more operands than underscores, the remaining ones shall be
placed at the end of the identifier. This can be justified by the natural currying
that exists in functions defined in most functional languages, AGDA included, in
which case the first operands can be seen as part of the definition of a function and
the last one as the operands for this function – note that this distinction is purely
a view of the mind. When there are less operands than underscores, the operator
identifier with underscores included is to be used as if it did not contain any. To my
knowledge, there is no reason that would justify such use of underscores in operator
identifiers.

In addition, AGDA provides a way to specify priorities between operators as
well as an associativity (left or right) for these operators. The priority takes the
form of an arbitrary number, the value of which is only relevant when compared to
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other operators’ priorities. As for the associativity, it allows the writing of even less
parentheses by stating how the parser should handle expressions with a succession
of the same operator. Parsing mixfix operators is a challenge, and this challenge
has been tackled by Danielsson and Norell while developing AGDA, the details on
this can be found in [51].

In Figure 2.4b, both features are illustrated. We start by specifying a right asso-
ciativity for the _↪_ operator, which allows us to remove parentheses around the
list we define, called zeros. We give this operator the priority 20, before defining
a new operator, the concatenation of two lists, _++_, and we give it a higher relative
priority, 30. This allows us to write the last line of this AGDA program without any
parentheses since the parser knows how to interpret this line.

Figure 2.5: A mixfix operator with three operands
As a side example of mixfix operators, we provide anAGDA definition for the "if

then else" construct in order to emphasize that, while mixfix operators can be used
to model infix operators, they are not limited to them. This example is depicted on
Figure 2.5 and is composed of the definition of the booleans, with two constructors,
⊤ and ⊥ as well as the definition for the "if then else" construct. This definition has
five operands, two of them – a and A – being implicit, as depicted by the use of
braces. The first implicit argument, a, is the level of universe, the second implicit
argument, A is a type of that level and the three other arguments are the boolean
condition, of type Boolean, and the "then" and "else" expression, of type A. The
underscores are placed in the definition where the three non-implicit parameters
shall be dispatched when defining or calling the function. This is used in the two
lines following the prototype of the function where a disjunction of cases is made on
the boolean value of the condition to return either the "then" or "else" expression.
The implicit arguments will be inferred by the type checker when the function is
called, while the type of the first argument is inferred by the type checker during
the definition of the function, which is allowed by the use of the keyword ∀ in the
type signature of the function. Implicit arguments are used in various ways in AGDA
which will be discussed and / or mentioned several times throughout this document.

Another example of the use of mixfix operators coupled with priorities is de-
picted in Figure 2.6. In this example, some very basic operators have been defined
and, coupled with the right relative priorities, they allow us to define lists conve-
niently.

As a side note on mixfix operators in AGDA, they offer the possibility of instan-
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Figure 2.6: A convenient way for defining lists

tiating one of the parameters regardless of their position while leaving the others
as arguments. This is a similar behaviour as the currying behaviour with the addi-
tion that the instantiated parameters does not have to be the first. This adds to the
challenge regarding syntactic analysis of such operators.

Figure 2.7: Currying a mixfix operator
An example of such feature is depicted in Figure 2.7. This example presents

the different ways provided by AGDA to define a function. This definition can have
various forms all detailed on the figure through AGDA comments using --.
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2.3.2.c Identifiers

AGDA allows identifiers of the language to be anything as long as they don’t in-
clude spaces, since they are the separators of the language. This is very convenient
because it allows us to give relevant names to proofs by calling it according to their
semantics. A example is given in Figure 2.8 where we prove the commutativity of
the addition on natural numbers (the definition of which is the usual inductive one
reminded in Section 2.3.4.b) through the use of two lemmas, the name of which
is sufficient alone to understand what they prove. Since we haven’t yet gotten into
the semantics of the AGDA language, this is particularly convenient. As much as
possible, this approach of using relevant names to characterize properties has been
used throughout this work. It is, in my opinion, mandatory because the type signa-
tures of such proofs can be filled with a lot of implicit arguments, in which case a
relevant name helps to grasp the semantics of the property in question. This is an
approach also used in the standard library.

Figure 2.8: Identifiers with relevant names

2.3.3 The related tools around AGDA

AGDA is a very complete and complex language, both because of the features it
provides, that were just mentioned, and also because of its inherent proof assistant
nature which needs to be fuelled with lambda terms provided directly by the user.
Only the most experienced users of such languages are able to write down lambda
terms directly, without external help, and these terms have to be very simple which
is often not the case. More often than not, these terms are composite and it is by
nature very complicated to provide them directly. For these reasons, it is unreason-
able to expect anyone to program in AGDA in a simple text editor. While this is
theoretically possible, there exists a much more potent and powerful tool that al-
lows us to program in AGDA even the more complex programs and their associated
proofs. This tool takes the form of a mode [48] for the EMACS editor, the usage of
which is quite mandatory when programming in AGDA. On a personal note, using
this mode was not a problem for me because I have been used to EMACS for quite
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a while. However, I feel that the mandatory use of EMACS is somewhat a draw-
back for programming in AGDA for inexperienced EMACS users since there are no
alternative options to my knowledge, and there probably never will be considering
how advanced this tool is. As a comparison, there exists another EMACS mode,
called Proof General [12], which is a similar tool for developing with other proof
assistants such as COQ.
2.3.3.a The framework: an EMACS mode

TheAGDA EMACSmode is the entry door to any relevant interactionwith AGDA
while developing a program – or a proof3. Such development requires at least two
EMACS buffers. The first one contains the code that is being programmed and the
second one displays informations given by AGDA when requested. Figure 2.9 illus-
trates this layout by showing an overview of the EMACS mode while developing a
simple program.

Figure 2.9: The AGDA EMACS mode

Buffer number 1 contains the AGDA code that is being written, with a green area
called a hole which is an interaction point with AGDA that needs to be filled with
a value of a specific type – with a proof of a specific property. After entering the
command ctrl + c , ctrl + . in said hole, AGDA uses buffer number 2 to display
the following pieces of information: the type of the hole as well as the type of the

3from now on, I will not make the distinction between programs and proofs any more, because
the Curry-Howard correspondence tells us that this distinction is irrelevant.
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current term that it contains. This allows us to assess quickly what is at our disposal
and what is the difference between what is currently provided and what has to be
provided in order to achieve the current goal. This view is the main one advocated
when programming in AGDA. When several holes are present in the input buffer,
one can navigate easily between them and ask AGDA the same information for any
of the holes. The holes can also be refined, validated and the user can even ask
AGDA to try and solve them itself. In addition, after each type-checking, AGDA
uses buffer number 2 to display the types of all the holes in the document. More on
these features will follow.
2.3.3.b A type checker

Thanks to the Curry-Howard isomorphism, we know that providing an element
of a given type corresponds to proving the property associated to this type. This
means that a core aspect of languages that aim to use this correspondence is the
type checker. Indeed, the type-checker of such language is basically a proof checker
because it assesses the correctness of the given type towards the expected type, –
the correctness of the proof towards its theorem. AGDA comes with a type checker
that can be interacted with through the EMACS mode, similarly to the interactions
between COQ and its development environments, CoqIde or Proof General. Almost
every interaction uses the type checker in one way or another because it is such an
important piece of the proof assistant puzzle. For instance, Figure 2.9 shows in its
second buffer an output that was computed by the type checker. Type checking the
buffer and then the given input in the hole allows this interaction. Type-checking
the current buffer is asked manually by the user – using ctrl + c , ctrl + l –
and is required at most steps of any AGDA development. Type-checking has several
positive side-effects that the user can witness and/or request:

Colourization Since type-checking depends on lexical and syntactical analysis,
the buffer is colourized through the type-checking process when these steps are
successful. Otherwise, errors are displayed.

Hole creation The type-checker transforms any "?" that were present in the buffer
– as long as they are placed in a relevant location – into holes. These holes are
considered type-correct inside an AGDA file and are sub-goals to be filled by the
user. They also happen to be specific points of interaction with the type-checker.
However, one cannot import a file that has holes in it because it is incomplete and
thus cannot be reused until its completion is achieved.

Case-splitting AGDA functions are written on several lines, each line correspond-
ing to a specific structural case of a given input. This means that case-splitting on
an input is an essential aspect of every AGDA function. Thankfully, AGDA embeds
a feature that, relying on the type-checker, allows us to automatically case-split on
a given input. The type checker searches for the type of the given quantity and
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when this type is a data type with several constructors, it expands the definition of
the function with one line per possible constructor. Since these constructors can be
dependent and can depend on values whose structure can be known at the time of
the expansion, AGDA will in the process ignore the constructors that are not valid
considering the structural aspect of these values. In COQ, this process is called in-
version and corresponds to the creation of several sub-goals that correspond to the
possible constructors for the given value.

Inference of implicit arguments On Figure 2.9, it is very interesting to take a
closer look at what information is given by AGDA. The goal is completely formu-
lated by AGDA while the currently provided term has a type that is parametrized
by unknown quantities indexed by some natural numbers. These quantities are yet
to be inferred by AGDA. Both these types are strictly different, one is completely
determined while the other is parametrized. However, when asking AGDA to re-
place the hole by the given quantity – by pressing ctrl + c , ctrl + Space

– AGDA accepts the term as type correct. This is particularly interesting because
it emphasizes another kind of unification done by the type checker. AGDA, while
validating the hole, checked whether or not the type of the goal could be instanti-
ated by the type of the given quantity. To perform such an instantiation, AGDA had
to figure out which value to assign to the implicit parameters in order to match the
goal type. This process is undecidable, whichmeans that this unificationmay not be
found, in which case the user has to manually give the value of some of the implicit
parameters in order for AGDA to accept the term, if such values exist. However,
this process is extremely powerful and important while using implicit parameters.
Experienced users know how tedious such a language without implicit parameters
would be. More often than not, when such a validation is refused by AGDA, the
problem comes from the term itself and not from a lack of information given to
the type checker. On a personal note, this helped me several times to understand
that I was actually trying to prove something that did not hold, usually because of
a simple mistake in the function signature.

Hole refinement A hole can be completed with a partial expression (either an
expression with additional "?" or a function or constructor) in which case the user
can ask AGDA to try and refine4 the hole toward the given expression. In the case
of a function or constructor, this asks AGDA the following question: is there any
possible argument that would make such a function call on these arguments type-
correct regarding this hole ? If yes, AGDA will validate the function and create new
holes for the user to input the arguments. In the case of an incomplete expression,
the question is mostly the same: is there any possible quantities that, when placed
at the unfilled spots, would make the expression type-correct regarding this hole ?
If yes, AGDA will create new holes where the unfilled spots were specified and will
validate the rest of the expression. This feature is extremely convenient and used

4note that this notion of refinement is unrelated to the one described in Section 5.2
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very often while building proofs because it allows us to build them step by step, sub-
goal by sub-goal, without having to know the structure of the proof beforehand.

Use of unknown identifiers AGDA allows the user to create new quantities on-
the-fly throughout the proof effort. When reaching a certain point in a proof, if the
user feels like using a lemma or a function that was not defined beforehand, he is
allowed to use an undefined identifier somewhere in the current hole and ask AGDA
the following question: would it be possible for such an identifier to exist in such
an expression and, if so, what should its type be? If AGDA succeeds in finding such
a type, the signature of the new identifier is copied and can be pasted elsewhere in
the buffer in order to write its definition. This is also extremely convenient to build
proofs step by step as well as ease their subsequent understanding.
2.3.3.c A termination checker

The type checker is coupled with a termination checker. When explaining that
the type checker was in fact a proof checker, I deliberately omitted that it needs to
be associated with a termination checker in order to be categorized as such. A non
terminating programwould prove false and allow us to prove basically anything. To
accept a definition, AGDA has to ensure that this definition terminates, – in addition
to checking that it is indeed type-correct. The termination checker is very basic
in the sense that it only accepts structural recursion as termination proofs, – in
addition to non-recursive definitions. However, there is nothing more it can do
because termination checking is undecidable for any Turing-complete language as
proved by Turing himself in 1936 [147]. While a lot of recursive definitions can
be formulated with structural recursion, there exist several ways to transform non-
structural recursion to structural recursion, hence allowing the termination checker
to validate them. The state-of-the-art methods to prove the termination of a non-
structural recursive function f all revolve around the same idea: define a function
f’ which is structurally recursive and from which the result of f can be deduced.
There are mostly four ways of defining f’:

• Representing the data on which f works in a structural manner, and make f’
structurally decrease on this new data type.

• Making f’ work on an equivalent data which is typed with sized type that
structurally decreases as the function unfolds, a technique which was concur-
rently discovered in [73] and [84].

• Adding an additional parameter to f’ that represents the accessibility toward
a well-founded relation of the parameter of f [59].

• Using semantics labelling, which proposes to label the components of f in
f’ with some additional semantics elements as introduced in [156].
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These methods have been compared with one another, for instance in [26] where the
authors try to build a bridge between sized types and semantics labelling. On an-
other note, there also exist some works whose purpose is to automatically generate
termination proof, as for instance the CoLoR library for COQ [25].
2.3.3.d A term generator

The last feature of the AGDA framework discussed in this section is AGSY [102],
the AGDA automated term generator. AGSY is a general purpose search algorithm
for dependently typed languages that is directly embedded in AGDA. When asked –
using ctrl + c , ctrl + a – AGDA will try to fill automatically the current hole by
invoking AGSY which will try and build a term of the goal type using the elements
in the context. By default, this engine will not use other definitions in the module
but it is possible to provide it with "hints" that consist of names of the definitions it
should try and use in its search process. This happens to be surprisingly convenient
because it is often known which quantities should be used to solve a given goal,
for instance a specific lemma that was created for that purpose. When successful,
invoking AGSY will replace the current hole with the expression it provided. AGSY
is also able, when specified, to try and case split on the variables of the context in
which case it will try to provide several terms for each individual case.

(a) Invoking AGSY (b) Result of this invocation
Figure 2.10: Limitations of AGSY

While this feature is indeed convenient, I have witnessed some weird cases
where AGSY builds a correctly-typed term that somehow is rejected by further type-
checking of the buffer due to a lack of information regarding implicit arguments.
This means that, AGSY was able to unify some values together while subsequent
type-checking by AGDA cannot, which is very surprising. This would indicate that
AGSY uses a different heuristic than AGDA in terms of type constraints solving
(at least regarding the instantiation of implicit arguments) which, in itself, is not
that surprising considering that AGSY is naturally separated from AGDA– see Sec-
tion 2.1.5. However, this raises several questions: is AGSY’s heuristic more efficient
than the type checker’s one in terms of implicit arguments instantiation ? In this
case, why doesn’t the type checker use the same heuristic? Overall, are both heuris-
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tics different but equally powerful? In that case, couldn’t they be used together for
better results?

Another downside of this automation is that AGSY seems to try and use as many
of the provided hints in the terms it creates as possible, rather than as few as pos-
sible, which leads to overly complicated terms that can be reduced quite simply
through further inspection. Both these limitations are depicted on Figure 2.10. Fig-
ure 2.10a shows the invocation of AGSY with the goal of proving the commutativity
of the addition. The options are specified in the corresponding hole: "-c" allows
AGSY to use case splitting while "-m" provides AGSY with the definitions of the
module with the addition of cong and trans which are required to solve the goal
as shown in the expected result provided in the comments at the end of the file.
Figure 2.10b shows the result given by AGSY, with its two main limitations being
visible. The first term provided by AGSY, trans (cong (� z → z) n≡n+0)
refl is actually reducible to n≡n+0 but AGSY apparently wanted to use trans and
cong because they were given as hints, even thought these are just hints. Had I
called AGSY on the first goal after case splitting manually, it would have found the
term n≡n+0. The other limitation is shown by the yellow highlight in the buffer,
which is AGDA’s way of telling the user that the type checker lacks information
(instantiation of implicit parameters) to complete its task. Here the instantiation of
the first parameter of comm, a, is mandatory for AGDA’s type checker to succeed
while AGSY was somehow able to conclude without having to explicitly give this
information.

On a positive note, term generation is very powerful when used on concrete
proofs (examples) rather than abstract ones. When using AGDA frequently, it be-
comes more and more obvious when this term generation will succeed or not be-
cause it usually succeeds when the user is able to input the term by himself, in which
case this results in nothing more than a convenient time saver. Overall I would say
this feature is easily the less advanced one of the tool and should definitely get some
improvement. Seeing AGDA connected to more advanced external provers would
be a great advancement for the tool and some work has already been done in that
direction [68].

2.3.4 AGDA: a short tutorial

While we went through a set of interesting design features of AGDA, we haven’t
yet gotten into the semantics of the language. This section presents a short AGDA
tutorial for the reader to better understand the AGDA code snippets that will be
presented in this document. The goal of this tutorial is not to fully present AGDA,
but rather to give the reader an understanding of the basics of the language and to be
able to follow this document. Other more complete tutorials have been written, such
as the original tutorial byUlf Norell in [125] and another tutorial which can be found
online in [107]. This tutorial is separated into different sections, each presenting a
different aspect of the language. Many features that are present in multiple of these
aspects will be detailed as they appear in this development. AGDA is a dependently
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typed functional programming language, and as such, the definition of data types,
functions and proofs is to be expected.
2.3.4.a Data types

We assume that we start from scratch in the writing of an AGDA module, and
we would like to work on natural numbers and lists. These are the most intuitive
inductive data types and we could import them from the standard library, but we
define them ourselves for the purpose of this tutorial.

data ℕ : Set where1 1

zero : ℕ2 2

suc : ℕ → ℕ3 3

This is the classical definition of natural numbers from the Peano’s axioms.
Set is the type of types – level of universe 0, as explained in section 2.2.4 – so we
state here that ℕ is a type for which we give two constructors : zero, that directly
creates an element of ℕ and suc which transforms an element of ℕ into another
element of ℕ. Such data type definitions are the basic bricks on which an AGDA
program is built. We will see later in this tutorial that correctly defining such data
types is mandatory when dealing with types that represent a given predicate, and
thus depend on values. In the case of natural numbers, the type is not dependent
and this definition is the same as in any non-dependent functional programming
language. Now we can advance to the definition of a somewhat more advanced
data type, in the sense that it is polymorphic.

data List {a} (A : Set a) : Set a where4 4

[] : List A5 5

_∶∶_ : A → List A→ List A6 6

The data type of lists, as stated before, is different from the one of natural num-
bers because it is parametrized by the type of its elements, which is A of type Set
a. It is also parametrized by a, which is the level of universe of the type A. Note that
this additional parameter is surrounded by braces because we declare it as implicit.
As mentioned in Section 2.3.3.d, implicit parameters take a very important place in
an AGDA developement. When the developer of an AGDA programmakes a param-
eter implicit, they ask AGDA to figure out the value whenever possible. There is no
limitation as to which parameters can be made implicit, but there are also no guar-
antee that AGDA will figure out the right value for these parameters when needed.
In the case of the levels of universe, they are usually made implicit because they
are usually related to another parameter (a type) that will be given explicitly, thus
allowing AGDA to infer the value of the level of universe in most cases.

Going back to the semantics of our data type, we see that an element of type
(List A) can either be built from the [] or _∶∶_ constructors. The first one rep-
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resents the empty List and the second one stands for the aggregation of an element
and another list.

An associativity and a priority can both be provided for such an operator with
the following AGDA instruction, as depicted in Section 2.3.2.b:

infixr 20 _∶∶_7 7

Here we state that _∶∶_ is right associative and has a priority – arbitrarily – set
to 20. When used alongside other operators, their respective priorities and associa-
tivities will be used by AGDA to correctly parse the expression.

After defining a simple data type and a polymorphic data type, we can move on
to the definition of dependent data types. Dependent data types can represent either
simple data, or predicates. We start by defining a simple dependent data type to
represent the lists of a given size, called vectors. Vectors represent the most simple
dependent data type that is usually used to introduce new users to such types. They
must not be mistaken with the vectors representing the arrays used for instance in
imperative languages.

data Vec {a} (A : Set a) : ℕ → Set a where8 8

[] : Vec A zero9 9

_∶∶_ : ∀ {n} → A→ Vec A n → Vec A (suc n)10 10

This definition is particularly interesting because it features both parameters and
indices. The parameters of this data type are the level of universe a and the type
of the elements in the vector, A. This data type also has an indice of type ℕ, which
is the size of the vector. Note that this indice is on the right of the semi colon in
the signature of the data type. This is what separates parameters, that are fixed for
the data type – they can be seen as inputs that cannot be changed afterwards, and
indices, that are the set of values on which this data type can be inhabited through
the use of its constructors. In this specific case, and since this data type represents
data and not a logical predicate, all indices (all natural numbers) are possible – it is
possible to create vectors of any length, hence the set of indices is ℕ itself, but this
will not always be the case, to say the least.

Similarly to the lists, this data type features two constructors, one to build the
empty vector, in which case the indice is 0, and one that aggregates an element to
the vector, in which case the original indice is incremented by one, thus keeping
track of the size of the vector in its type, as expected.

Note that this definition also features another occurence of the ∀ keyword, as
mentioned in Section 2.3.2.b. This keyword is both a syntactic sugar, allowing
AGDA types to look more like mathematical properties, but also allows us to omit
the type of the following quantities, letting AGDA infer it. For instance here we
don’t give the type for n, and AGDA succesfully infers its type because it is later
used in the quantity Vec A n, whose indice has been declared to be of type ℕ. In
this case, both the value of n and its type are left for AGDA to infer.
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Dependent data types can also be used to model predicates, in which case the
set of indices will be limited to the ones that satisfy the property that the data type
is supposed to model. Here is a simple example of such data type.

data Even : ℕ → Set where11 11

z-even : Even zero12 12

s-even : ∀ {n} → Even n→ Even (suc (suc n))13 13

In this example, we define a predicate over the natural numbers, that is satisfied
if a number is even. Since not every natural number is even, and we want our data
type to embrace the consensual semantics of being even, we cannot allow this data
type to be inhabited by any indice. This means we have to provide constructors only
for the indices that are indeed even. This is done by providing two constructors: the
first one, z-even states that zero is even while the second one, s-even, states that if
n is even, then n+2 is also even. These constructors are represented with inference
rules on Figure 2.11.

Even(0)
z-even

(a) z-even constructor

n ∶ ℕ Even(n)
Even(n + 2)

s-even

(b) s-even constructor
Figure 2.11: Inference rules for the Even predicate

From this definition, we can prove that 6, for instance, is even.

six : ℕ14 14

six = suc (suc (suc (suc (suc (suc zero)))))15 15

–16 16

6-even : Even six17 17

6-even = s-even (s-even (s-even z-even))18 18

AGSY here automatically finds the inhabitants of these types (ℕ and Even six)
and the proof it provides corresponds to the deduction tree depicted on Figure 2.12.

This is the first example of data types that embeds a semantic restriction through
the set of indices on which they can be inhabited. A second one, the propositional
equality, will be presented later on in this tutorial. It is interesting to note that
there is no restriction, to my knowledge, as to what the type of indices can be. For
instance, one could write (and possibly give a meaning to through constructors)
such a data type that would be a predicate over predicates of level a:

data dummy {a b} : Set a → Set b where – ...19 19

38



Even(0)
z-even

Even(2)
s-even

Even(4)
s-even

Even(6)
s-even

Figure 2.12: deduction tree proving that 6 is even

2.3.4.b Functions

From the definitions of the natural numbers and the lists, we can write functions
that compute or accept as parameters the elements of these data types. The first
operation we propose to define is the addition between two natural numbers:

_+_ : ℕ → ℕ → ℕ20 20

zero + b = b21 21

(suc a) + b = suc (a + b)22 22

Every AGDA function is defined using one or more lines which are the different
possible cases for the arguments we pattern match on. Each of these lines are in
the form (patterns = result) where patterns are the current patterns for the
inputs and result is the returned value corresponding to these patterns. In this
function, we patternmatch on the first argument which results in two different cases.
In the first case, we return b since a is equal to 0. In the second case, we recursively
call the _+_ function whose result is then encapsulated with the suc constructor
to build the right natural number. As mentioned in Section 2.3.3.c, termination
checker is not decidable. Hence, recursive functions must be written in such a way
that the termination checking succeeds. This means that recursive calls must be
made on structurally smaller arguments which is the case here since a is smaller than
suc a. If AGDA fails at automatically synthesizing the termination proof, it means
that a structurally smaller argument has not been provided and AGDA will reject
the definition until the programmer fixes the issue. In the case of this definition, the
recursion is naturally structural and AGDA accepts it as it is.

Since we have the natural numbers and the lists at our disposal, it is natural to
provide a way of computing the size of a list:

size : ∀ {a} {A : Set a} → List A→ ℕ23 23

size [] = zero24 24

size (hd ∶∶ tl) = suc (size tl)25 25

Note that this function uses two implicit arguments, a and A. The resolution of
the latter by AGDA is shown in the following snippet:
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myList : List ℕ26 26

myList = zero ∶∶ []27 27

–28 28

sizeImp : ℕ29 29

sizeImp = size myList30 30

–31 31

sizeExp : ℕ32 32

sizeExp = size {A = ℕ} myList33 33

In the example above, we define a list and then we call the size function on it
twice. The first call is size myList and AGDA here is able to infer the value of A
since myList has been defined as a list of natural numbers. In the second call, size
{A = ℕ} myList, we explicitly (for the purpose of this tutorial) gave AGDA the
value of A. These two calls are equivalent. Please keep in mind that when we write
{A = ℕ} we do not state that A is equal to ℕ, but we only assign in the function
call the value of the A parameter to ℕ

The last function we would like to write is the concatenation of two lists, which
we define as an infix operator.

_++_ : ∀ {a} {A : Set a} → List A → List A → List A34 34

[] ++ l = l35 35

(hd ∶∶ tl) ++ l = hd ∶∶ (tl ++ l)36 36

2.3.4.c Properties

Concatenation of lists From the definitions above, we would like to prove a sim-
ple property: the sum of the size of two lists is equal to the size of the list resulting
from the concatenation of these two lists. To do that, we need the notion of equal-
ity which we define as an inductive family generated by the reflexive rule, a very
fundamental approach taken from Martin-Löf:

data _≡_ {a} {A : Set a} (x : A) : A → Set where37 37

refl : x ≡ x38 38

Here we state that, for all x in all A, there is only one indice that inhabits the
family of elements that are equal to x, and this is x itself. The constructor which
can build an element of this type is refl that corresponds to the reflexivity of the
propositional equality. Figure 2.13 presents the inference rule associated to this
data type.

Now, when we pattern match on a proof that x ≡ y, not only will AGDA know
there is only one possible constructor, refl, but it will also unify x and y to the
same element knowing that the indice y has to be equal to the parameter x. For
example, this is how we can prove the congruence of the propositional equality:
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x ≡ x refl

Figure 2.13: Inference rules for the x ≡_ predicate

cong : ∀ {a b} {A : Set a} {B : Set b} {x y} (f : A→ B) → x ≡ y→ f x ≡ f y39 39

cong f refl = refl40 40

When we pattern match on the proof that a equals b, AGDA unifies a to b and
the goal becomes f a ≡ f a whose proof is then simply refl because both sides
of the equality are the same element. This last property leads us to the proof we
wanted to achieve regarding the size of the concatenation of two lists:

≡size : ∀ {a} {A : Set a} {l l1 : List A} → (size l + size l1) ≡ size (l ++ l1)41 41

≡size {l = []} = refl42 42

≡size {l = hd ∶∶ tl} = cong suc (≡size {l = tl})43 43

This proof is done the same way any function is written, by case splitting on
the first list parameter, l and providing a result of the right type for the different
possible cases. In the case where l is empty, then AGDA reduces the output type to
size l1 ≡ size l1 by applying the definitional equalities of the functions used
in this signature, whose proof is trivially refl. In the second case, the function is
called recursively and the constructor suc is applied to both sides of the resulting
equality using cong to provide a correctly typed term.

Concatenation of vectors We can apply the same process on vectors, in which
case the proof elements are encoded directly in the concatenation function:

_++v_ : ∀ {n n1 a} {A : Set a} → Vec A n → Vec A n1 → Vec A (n + n1)44 44

[] ++v v2 = v245 45

(x ∶∶ v1) ++v v2 = x ∶∶ (v1 ++v v2)46 46

The distinction between lists and vector is very instructive. List is a very sim-
ple and flexible type, which requires to prove length properties explicitly, while
vector embeds the length property in its signature. Both possibilities can be used
depending on the context and will be discussed in Section 4.3.2.
2.3.4.d Decidability

The goal of this last part of our tutorial is to give AGDA rules to compute the
proof whether two natural numbers are equal or not. For that, we need a data type
that encapsulates these two possible cases. The first step in this direction is to define
the false predicate:
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data ⊥ : Set where47 47

We create a data type for which we do not give any constructor. It exists, but
there is no way anyone can provide an element of this type (a proof that ⊥ is inhab-
ited). We can then move on to the definition of the logical negation:

¬ : ∀ {a} → Set a→ Set a48 48

¬ A = A → ⊥49 49

This is simply a function that transforms a predicate into another one. We can
now define the data type we wanted:

data Dec {a} (A : Set a) : Set a where50 50

yes : (p : A) → Dec A51 51

no : (¬p : ¬ A) → Dec A52 52

We can build an element of Dec A either from an element of A (a proof that
A holds) or from an element of ¬ A (a proof that A does not hold). This data type
is fundamental because it binds the proof and the computing worlds. If, for any
elements on which A depends, we can build an element of type Dec A then we have
both proven A to be decidable and computed the proof that A does or does not hold.

We end this tutorial by using this methodology to prove that the equality be-
tween two natural numbers is decidable:

dec≡ : ∀ {x y : ℕ} → Dec (x ≡ y)53 53

dec≡ {zero} {zero} = yes refl54 54

dec≡ {zero} {suc y} = no (� ())55 55

dec≡ {suc x} {zero} = no (� ())56 56

dec≡ {suc x} {suc y} with dec≡ {x} {y}57 57

dec≡ {suc x} {suc y} | yes x≡y = yes (cong suc x≡y)58 58

dec≡ {suc x} {suc y} | no ¬x≡y = no (� {refl → (¬x≡y refl)})59 59

From the patterns in a function line, AGDA allows us to add extra arguments
to pattern match on in order to collect additional information from the base inputs.
This is done with the with keyword. For instance here, we want to recursively
call our function and split cases on its result. We add this argument to the pattern
matching on line 57 and this results in 2 new cases: yes line 58 and no line 59.
There is no limitation on how many new arguments one can add to a function.
Each time it is done, the derived cases will appear as new lines in the function, for
which outputs will have to be provided.

Before moving on to the next section, we can have a closer look at this example.
We split cases on the two implicit arguments that are the two natural numbers we
want to compare. When both of them are equal to zero, we can provide a proof
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that they are equal, which is refl by definition. In the cases that one of them is
equal to zero but the other is not, they are obviously not equal so we will return no.
However, we have to provide a proof that they are not, which should be encapsulated
in the no constructor. This proof should be a function that takes a proof of equality
and returns false. Since there is no way to build such a proof in these cases, then
this function is just the empty function � (). Note that � is the operator used to
define anonymous functions as explained in Section 2.3.2.b.

When both inputs are built from the suc constructor, we can decide by recur-
sively calling the function on the arguments of this constructor, which is done using
the with keyword, as explained above. In case this new call returns yes then we just
combine the resulting proof with our cong property. In the other case, we have to
provide a function which takes a proof that suc x ≡ suc y and builds a proof of
⊥. This is done by applying the proof that ¬ x ≡ y to the result of the application
of our lemma suc≡ on the proof that suc x ≡ suc y. We have now proven the
equality between two natural numbers decidable and hence provided AGDA with a
way of building its related proofs.

2.3.5 AGDA vs COQ: a matter of taste

While the present section gave an overview of AGDA, it did not actually com-
pare it with other similar languages like COQ. They are similar because they are
both based on intuitionistic type theory, but they differ in many ways. This section
aims to compare them objectively, rather than trying to find which one is the best. I
believe neither is above the other, but that they both exhibit pros and cons depend-
ing on what they were designed to achieve. This section will put some perspective
towards these differences and possibly help to choose between them depending on
the targeted use. We will also explain why, considering these differences, we used
AGDA for our development.
2.3.5.a Tactics

In dependently typed languages, thanks to the Curry-Howard isomorphism, de-
pendent types can represent properties over the data on which they depend. This
means that providing an element of a correct type is equivalent to proving the prop-
erties represented by this type. The element one has to provide is a lambda term that
represents the proof. Writing these terms by hand is rather difficult (if not impossi-
ble) when it comes to non-trivial proofs. This is why such languages must provide
a way of building these terms more intuitively. Both AGDA and COQ provide such
help, but they do it quite differently.

COQ chooses to completely hide the terms and to provide higher level proce-
dures to internally build them. They are called tactics and they work on hypothesis
and goals to build the terms step by step. Although the underlying term is hidden,
it exists nonetheless and can be retrieved if required as well as explicitly written
when needed – usually in some very specific cases – also it can only be done by
users with a strong expertise in the tool as well as its underlying theory. A COQ
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proof usually consists in the invocation of several tactics whose behaviour can be
compared to logical rules. New tactics can be created at will if they are written us-
ing COQ’s tactic language. The benefit of this approach is the hiding of potentially
useless technical details and difficulties. The main drawback is that these tactics
must be somehow learned by the user before he can actually develop any proof.

AGDA chooses to display everything. The user has to provide the actual lambda
term and cannot rely on tactics to build it for them. This can be confusing at first
because these terms, as previously said, are usually too complicated to comprehend,
but AGDA provides a convenient way to build them. Instead of writing them entirely
in one go, the user will create them step by step using a system of holes, which
represents unresolved goals, as explained in detailed in Section 2.3.5.b. Each hole
is a small brick in the proof construction and can potentially be refined several times
to further ease the proof effort. The benefit of this approach is the direct handling of
the preoccupation (proof part) the user wants to address. The main drawback is the
apparent complexity of the terms the user has to provide. An AGDA proof is also
often hard to comprehend after it has been validated by the type checker. However,
once it is proven type-correct, there is usually no need to try and understand the
proof beyond its building.

Figure 2.14 provides visuals to assess how different these two ways of building
proof terms are. In this example, both COQ and AGDA are used to prove the com-
mutativity of the addition between natural numbers. They both use two lemmas to
reach the final proof and they display the same overall structure. Figure 2.14a dis-
plays the proofs in COQ, where the different lemmas and theorems are proved using
a succession of tactics – note that this is by far not the simplest way to do this proof
in COQ, as shown later on in Figure 2.16a, but it is understandable. Figure 2.14b
displays the proofs in AGDA, where no tactics are provided and the lambda terms
are visible. It is important to note that these terms are mostly the same internally in
both tools, only the view the user has changes as well as the way they were built.

Figure 2.15 shows the COQ lambda term for the first lemma in Figure 2.14a.
This term looks more complex than the AGDA’s version, but this is only due to
AGDA’s implicit arguments as well as COQ’s expansion of the cong function.
2.3.5.b Automation

When it comes to theorem proving, automation is an important feature. It helps
focusing on difficult aspects of the proofs while leaving the easiest part to solvers.
They work faster and they provide safe results with arguably no possible mistakes
when exported in tools like COQ and AGDA, as the output of these solvers will
create a lambda term which will be type-checked, hence proved correct toward the
target goal.

In COQ, this automation is embedded through the use of high level tactics whose
underlying behaviour is hidden. They can call external solvers (usually ATPs in the
form of SAT or SMT solvers as described in Section 2.1.4) or use other tactics
to eventually provide a well typed term. These tactics can fail depending on the
heuristics they use, but they are solid assets in building simple proof terms. For
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(a) Addition commutativity in COQ (b) Addition commutativity in AGDA

Figure 2.14: Comparison of addition commutativity proofs

Figure 2.15: A lambda term displayed by COQ

instance, our example in Figure 2.14a could have equally been proved as shown on
Figure 2.16a, in which case only the syntactic aspects of the language are present.
The proof only consists in tactics relying on automation to work, with the adequate
imports for these tactics to succeed in this specific case. For instance, the tactic
intuition here relies on the use of Omega which must be imported.

In AGDA, the proof with automation is depicted in Figure 2.16b. This figure
is exactly the same as Figure 2.14b, which could be expected since AGDA proofs
consist in raw lambda terms. Since the provers generate these terms, the automa-
tion must be handled while editing the file, and has no impact on the final result.
AGDA uses automation in the process of edition. This is made possible by the dif-
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(a) Addition commutativity in COQ
with automation

(b) Addition commutativity in AGDA
with automation

Figure 2.16: Comparison of addition commutativity proofs with automation

(a) Initial user input (b) Creation of a goal (c) Before splitting on b

(d) After splitting on b (e) refl found (f) Input of cong

(g) Refining via cong (h) Input of suc (i) Recursive call found
Figure 2.17: AGDA’s automation

ferent interaction the AGDA editor provides, depicted in Section 2.3.3. However
the automation is limited compared to COQ. It consists in finding simple terms and
refining holes regarding a specific function. It is constantly upgraded by the AGDA
developers but still lacks power compared to COQ.

AGDA’s automation is depicted in Figure 2.17. This picture presents the differ-
ent steps in the development of the first property found in Figure 2.16b. Since the
automation in AGDA is found during the process of development and is invisible in
the resulting code, this picture details the actions done by the user and how AGDA
responded to help them prove the required property. The steps are as follows:

a This is the initial code the user has to input. It features the prototype of the
property as well as the introduction line to start the proof, and a specific
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symbol to represent the goal, ?.
b After pressing ctrl + c , ctrl + l , AGDA created a hole for the unresolved
goal.

c The user inputs the variable on which he desires to case-split, b.
d After pressing ctrl + c , ctrl + c , AGDA created as many lines as possible
cases for the variable b.

e After pressing ctrl + c , ctrl + a , AGSY solved the first goal and placed
refl at its place.

f The user inputs the function that he wishes to expand, cong.
g After pressing ctrl + c , ctrl + r , AGDA agreed that applying cong could
indeed lead to a correctly typed term, and refined the goal into two new sub-
goals corresponding to the arguments of cong.

h suc is written in the hole by the user, which is validated by pressing ctrl +

c , ctrl + Space .
i After pressing ctrl + c , ctrl + a , AGSY solved the last goal by using a
recursive call and inferring the implicit arguments of this call.

2.3.5.c Usability

The usability of academic tools is, unfortunately, often neglected compared to
their theoretical aspects. This is easily understandable since funds allocated for re-
search purposes are limited, hence usually used to process these theoretical aspects
instead of more practical preoccupations. Even though this is understandable, it can
be critical since complicated tools usually need a well-designed usability to ease the
handling of their underlying complexity.

In COQ, this complexity is already softened by the use of tactics, and the graph-
ical tools used to edit COQ code are sufficient, but do not bring any more improve-
ments than those provided by the language itself. Except for the display of the
current context and goal, these tools currently lack, to my knowledge, additional
features that would help the COQ developer to achieve his work because they are
based on COQTOP which is the primary command line tool that allows user interac-
tions with COQ. For instance, COQ does not natively provide mixfix operators nor
unicode identifier and the tools do not allow any additional interaction between the
user and the core of COQ. However, this is questionable if this would be actually
useful. For instance, the points of interaction available in AGDA are useful because
of AGDA’s way of developing programs, which is definitely different from COQ’s,
which means that having the same features in COQ would not necessarily be a plus,
except probably for the aesthetic ones and some ergonomic concerns, which have
been or are currently possibly being integrated.
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AGDA is more recent than COQ and embeds several high-level features, both in
its language and tools. These features have already been presented in Chapter 2.3
and will not be revisited here. They provide a pleasant development experience for
the user and allow us to make AGDA proofs look like paper mathematical proofs.
This is a huge asset for the language and the feeling it provides. It also makes using
AGDA possible since all the complexity of the underlying theory and notions is
visible.
2.3.5.d Unification

(a) Some proofs about equality in COQ (b) Some proofs about equality in AGDA

Figure 2.18: Comparison of equality proofs
One of the major features which AGDA fully embraces and which is less visible

in COQ is the unification mechanism. People usually summarize this difference
by stating that one can, in AGDA, pattern match on equality proofs. It is possible
indeed, since the equality is defined as a data type with a constructor, but this is
only one of the many consequences of the unification mechanism, which provides
a much larger set of possibilities. Figure 2.18 displays two proofs about equality,
proved both in COQ and in AGDA and illustrates the possibility of pattern matching
on equality proofs. In dependent types, equality is usually defined using a family of
types generated by the reflexivity. In other words, the reflexivity allows, for any x,
to inhabit the family x =? for a single index, which is x, as shown in Section 2.3.4.
This means that every proof of equality will eventually be reduced to the constructor
of these families. Let us call it refl since this is how it is named in AGDA. In COQ,
refl is always hidden and is generated from higher level tactics which work on
equality proofs. In AGDA however, refl is always visible and usually is the result
of a pattern matching on an equality proof. If the context possesses an element of
type x = y for some x and some y of any type, pattern matching on this term will
have two consequences: the only possible constructor, refl will be displayed, and
the two operands, x and y, will be unified, which means that AGDA will understand
that both quantities have no possibilities other than being the same. The second
operand, y, is replaced by .x which means the value has been inferred to be x.

Figure 2.18 displays the proof of two basic properties about equality: the tran-
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sitivity and the congruence. In COQ, these properties are proved using a special
tactic, rewrite, which allows us to replace one operand of the equality with the
other in a given expression. In AGDA, it is done by pattern matching on the dif-
ferent elements of the context, thus unifying the operands with each other, then by
providing refl as an answer, since the goal also varies considering the unification
that has been done. In the first proof, y is first unified with x, then z is unified with
y (hence with x) and the goal is then just x = x whose proof is simply refl. As
mentioned before, this unification mechanism is easily illustrated through equality
proofs, but is not reduced to them. Further examples will be given throughout this
manuscript.
2.3.5.e Prop, Set, Type

Dependently typed languages provide, in one single language, a formalism to
write programs and to prove properties about them. Several other tools provide
either one or the other, but the expressiveness of dependent types allows both to
coexist in a single framework. This is particularly useful because both sides can
directly be connected to the other without any additional glue. However, it has a
drawback. When compiling5 such a language, all the artefacts around the program,
whose goal is to certify it regarding safety or other kind of properties, must be
ignored as much as possible because they do not participate in the computational
aspects of the program. This means that despite being developed in the same lan-
guage, the logical and computational aspects must somehow be separated in order
for the code extractor to figure out what to process and what not to.

In COQ, this separation is made explicit by some syntactic sugar. In dependently
typed languages, there is a name for types. In COQ, this name is split in three dif-
ferent possible names: Type, Set or Prop. Prop is used to define data that is only
relevant in the logical part of the work. Set is used to define data that is only rele-
vant in the computational part of the work while Type is used to define meta types
which can be instantiated either in the Set or in the Prop world. The COQ code
extractor will only translate the data labelled Set and also the one labelled Type
which have been instantiated by Set elements. The COQ code generator translates
these elements into a CAML program which contains all the necessary elements
regarding the computational aspects of the program. Note that there also exists
support for other languages such as LISP.

In AGDA, there is no such syntactic sugar to help the compiler make the differ-
ence. Everything is defined as Set (with the universe variant Set1, Set2, ...
used to forbid paradoxes in the usual ZF or ZFC theories [137]). There is, however,
a way of pointing out arguments which should be ignored both at evaluation and ex-
traction time. These are called irrelevant arguments in AGDA and are marked with
a dot as a prefix – the dot here is different from the one depicting a quantity whose
value has been inferred by AGDA, which might be confusing for newer AGDA users,
but since both situations cannot occur over the same identifier at the same position

5the compilation here can be seen as a code extraction
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Figure 2.19: An example of computationally irrelevant argument

in the code, there is no actual confusion. They offer less flexibility than COQ’s
system but are far less verbose. An example, extracted from AGDA wiki, is de-
picted in Figure 2.19. This represents sorted lists that only contain elements that
are below a certain threshold named bound. In the second constructor, scons, the
second parameter is prefixed by a dot, which means that it is only relevant for the
correctness of the program (through type-checking) but not for runtime evaluation
or code generation. This parameter is the proof that the head is below the threshold.
Since the definition is recursive, all the proofs of inferiority will be ignored in the
case of code generation or real time evaluation. Furthermore, any subsequent proof
of equality between quantities of this type will be made easier since the equality
between the irrelevant arguments can be omitted. An example of this omission is
displayed in Figure 2.20. In this example, we prove that two sorted lists, sl1 and
sl2, are equal. We deliberately build the proofs of inferiority differently for the two
lists (we postulate the proofs for the sake of this example in the block "postulate"
and we actually build them in the block "private"). The two lists are then built from
these different sets of proofs but can still be proven equal because these proofs are
irrelevant and thus ignored in this case. This is why the type checker accepts refl
as a proof of equality between the lists.

If we remove the dot in the definition, we get the message displayed in Fig-
ure 2.21. This message states that the proofs have not been proven propositionally
equal and thus the lists cannot be equal themselves (refl is no longer sufficient
because of the sudden relevance of the inferiority proof). In this specific case, it is
possible (and easy) to prove that they indeed are (there is only one way to build a
given proof of inferiority) but for more complex proof elements, it is advised to use
the irrelevant mechanism.
2.3.5.f Purpose & Renown

Until now, we compared several technical aspects of both tools, but they also
differ through their purpose, and it often justifies why they differ technically. COQ
is meant to be a proof assistant. It was designed to offer a development experience
centred around the logical aspects of the programs through the use of tactics. As
such, it focuses on its tactic language to give the developer tools to manipulate their
data and the predicates around them. AGDA was designed to be a programming
language before being a proof assistant. It was meant to ease the handling of de-
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Figure 2.20: AGDA does not evaluate irrelevant elements

Figure 2.21: AGDA evaluates all relevant elements

pendent types in order to apply them to concrete concerns. This original purpose is
what makes both tools look so different while they ultimately share the exact same
core. This is also why several choices were made differently as they aim to suit the
purpose of the tool better.

While COQ is far older than AGDA, both tools provide unique and different ways
of building theories and proving properties around them. COQ, however, is far more
used, mostly due to its wider standard library and its older creation. AGDA is being
used more and more in the academic world and not only in the laboratories where
it was created in 2007. It is also taught in different universities as well as in several
summer schools [126]. Its reputation is yet to be fully made, but it is a solid and
trustworthy alternative to COQ.
2.3.5.g Why I chose AGDA instead of COQ

This section, while purposely detailing the differences between both tools, ulti-
mately aims at explaining why this thesis used AGDA instead of COQ. While neither
is objectively better than the other (they do not have the same purpose so are hardly
comparable in terms of overall quality) there are reasons why AGDA was our choice
in this work.

The first reason is purely circumstantial. I had the chance to meet Ulf Norell at
a summer school, and he succeeded at transmitting the underlying complexity and
beauty of what he had created. This is purely subjective but it made me want to
know more about the tool, which ultimately led to its use in this PhD.
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Another reason is the overall design of the tool. While COQ’s tactics are meant
to ease the development of proofs, the design of the IDEs aroundCOQ did not appeal
to me enough to use it within this work. The elegance of unicode names, mixfix
operators along with the overall design of AGDA made me want to use it instead of
its elder.

A third reason is that I wanted to give a chance to a less used tool. COQ has
already proved itself and giving a chance to growing tools like AGDA was for me a
good starting point in my work. I also had more chances of discovering fancy ways
of using AGDA and maybe to contribute to its growing community and library.

Finally, we used AGDA because our first work was rather concrete and AGDA
is designed to help the developer build concrete programs surrounded by possible
logical aspects. Since we wanted to model PETRI NET and then drive the execution
of languages, AGDA seemed well suited to our work.

Ultimately and above all of these arguments, using AGDA instead of COQ was
mostly for me a matter of personal taste and feeling about the languages, as well as
the will to explore new territories.

Assessments
This chapter, while not presenting any concrete contribution of this work, did

describe notions which are central to its understanding. From a possible classifica-
tion of the existing kinds of formal methods to the thorough depiction of the AGDA
language and associated tools, it provided a set of relevant notions which will be
useful for the reading of this manuscript. It also provided a comparison between
AGDA and its cousin COQ which helps understand the goal of these tools and the
relevancy of AGDA in such works.

The features of the language and its tools that were described and illustrated are
the following: unicode characters, mixfix operators, associativity and priority of
such operators, AGDA’s identifiers, definition of data types, functions, predicates,
proofs, AGDA’s termination checker, type checker and AGSY, AGDA’s automated
term generator.

Using AGDA has been a thrilling challenge for me and I believe that it is core
for the reader to be able to understand the main ideas between its usage as well as
its location in the field of formal methods, which was described in this chapter. The
rest of this work assumes that the reader is familiar with AGDA’s syntax and its
basic features, while introducing new notions when needed.
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Chapter 3

Globally unique lists: an AGDA
library

Outline
This chapter provides a description of a library that was developed during this

thesis: globally unique lists. This library was developed using a specific method-
ology that is described as well. Globally unique lists are an abstraction of various
notions, such as maps and bags.

• Section 3.1 presents the methodology that was used to build this library, and
to a greater extent, throughout this whole work’s formal implementation. For
that purpose, it uses an example around the verification of basic operations
on natural numbers.

• Section 3.2 proposes a formalization of unique membership in a list. This
formalization is based on a notion of unique satisfaction of a given predicate
on a list.

• Section 3.3 provides the notion of globally unique list, as well as several
instantiations of this notion to better grasp its semantics. In short, a globally
unique list is a list that contains at most a single value for each member of a
family of predicates.

• Section 3.4 provides numerous operations on globally unique lists, such as
adding an element, retrieving an element or removing an element. This sec-
tion also provides examples of globally unique lists on which such operations
are called, as well as two notions of comparison between such lists, one of
which requires the retrieval operation.

• Section 3.5 provides two specific instances of globally unique lists: maps
and bags. These notions will be used in Chapter 4 to model the states of the
transition systems.
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3.1 Methodology
Before detailing the important notions defined in this library, I would like to

talk about the methodology used to develop it. Since we use a language with de-
pendant types – hence expressive enough to handle properties over data structures,
functions and programs – we try to exploit the logical aspects of such languages as
much as possible. Any data structure or predicate that is defined is also accompa-
nied with some proofs of conformity. These proofs have a very specific purpose,
which is to close the gap between expectations and reality. Let me explain this a bit
further. When developing a system using the assistance of a computer, there are no
guarantees that the developed system satisfies the requirements from a given user.
This has always been a tough problem in computer science and more precisely in
systems engineering. The user has a very specific idea on how the system should
behave and one has to make sure that the modelled version of the system exhibits
the expected behaviour.

In the case of more abstract entities, such as abstract functions or predicates,
the same reasoning applies. When defining a data type for instance, one must give
constructors that act as axioms on how to prove that this predicate holds – thanks
to the Curry-Howard correspondence – and it is mandatory to assess the correct-
ness of such data types by proving conformity properties that may seem obvious
– a mathematician would probably consider them too trivial, although in my opin-
ion they are not, as they ensure the correctness of the data type with regard to the
specification. Same goes for functions, the correctness of which must be verified.

To illustrate the need of verification which will be explored throughout this
whole document, we give an example in which we question how to verify a very
simple notion: the addition of natural numbers. We investigate in that example the
meaning of having confidence in a formal definition, and we also take this oppor-
tunity to present several ways of proving equality properties in AGDA. We start by
defining the addition recursively, which is very common and has already been done
several times in this manuscript for didactic purposes:

_+_ : ℕ→ ℕ→ ℕ1 1

zero + b = b2 2

suc a + b = suc (a + b)3 3

As stated before, this definition alone is not enough because one has to be sure
that said addition embeds the semantics that is usually given to this operation. It
must be proven associative...

associative+ : ∀ {a b c} → (a + b) + c ≡ a + (b + c)4 4

associative+ {zero} = refl5 5

associative+ {suc a} = cong suc (associative+ {a})6 6

... and commutative at the very least to be able to trust the definition.
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commutative+ : ∀ {a b} → a + b ≡ b + a7 7

commutative+ {zero} = +08 8

where9 9

+0 : ∀ {a} → a ≡ a + zero10 10

+0 {zero} = refl11 11

+0 {suc _} = cong suc +012 12

commutative+ {suc a} = trans (cong suc (commutative+ {a})) +suc13 13

where14 14

+suc : ∀ {a b} → suc (a + b) ≡ a + suc b15 15

+suc {zero} = refl16 16

+suc {suc _} = cong suc +suc17 17

These proofs might seem useless as the definition could be considered enough,
but in our opinion it is not. Nothing is considered true unless it has been proven in
our proof environment. In addition, if one wants to define more advanced functions
or operations relying on the addition (such as the multiplication) and if one wants
to prove conformity properties for these new functions, it will then be possible to
rely on the proofs about the addition to do so.

This is the opportunity for me to present several ways of proving equality prop-
erties in AGDA. First we start, as expected, by defining the multiplication (note that
these definitions and the proof around them can naturally be found in the standard
library, although the proofs might be built differently).

_*_ : ℕ → ℕ → ℕ18 18

zero * b = zero19 19

suc a * b = b + (a * b)20 20

The first property of correctness is the distributivity of the multiplication to-
wards the addition. As explained before, it relies on a property over the addition,
the associativity. In this case, we directly give the raw term for the proof of equality
which corresponds to the first way one can treat equality proofs in AGDA, on lines
23 and 24.

distributive* : ∀ {a b c} → (a + b) * c ≡ (a * c) + (b * c)21 21

distributive* {zero} = refl22 22

distributive* {suc a} {b} {c} = trans (cong (c +_) (distributive* {a}))23 23

(sym (associative+ {c} {a * c} {b * c}))24 24

The second property is the associativity of the multiplication. We present this
property by using the rewrite keyword which allows us to substitute one termwith
another in the goal provided they are equal (this is the mechanism usually used by
COQ for such proofs). Should we provide enough rewrite rules – by using the pipe
symbol to chain them, the term in such proofs always ends up to be refl.
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associative* : ∀ {a b c} → a * (b * c) ≡ (a * b) * c25 25

associative* {zero} = refl26 26

associative* {suc a} {b} {c} rewrite distributive* {b} {a * b} {c}27 27

| sym (associative* {a} {b} {c}) = refl28 28

The last conformity property we would like to prove is the commutativity of
the multiplication. It requires two additional intermediate lemmas. This first one is
trivial and does not require any equality combination.

*0 : ∀ {a} → a * 0 ≡ 029 29

*0 {zero} = refl30 30

*0 {suc a} = *0 {a}31 31

The second one, however, is more complex and is treated here with a conve-
nient library provided by AGDA which allows us to chain equalities by providing
each required equality proofs in bracket to transform the term a to the term b. The
operators begin and ∎ are used to wrap up the proof type-wise while the chain op-
erator a ≡⟨ p ⟩ b states that a is equal to b using the proof term p. a ≡˘⟨ p ⟩ b
is a variant of this operator which goes from a to b using the symmetric of p.

*suc : ∀ {a b} → a * suc b ≡ a + (a * b)32 32

*suc {zero} = refl33 33

*suc {suc a} {b} = cong suc (begin34 34

b + (a * suc b) ≡⟨ cong (b +_) (*suc {a} {b}) ⟩35 35

b + (a + (a * b)) ≡˘⟨ associative+ {b} {a} {a * b} ⟩36 36

(b + a) + (a * b) ≡⟨ cong (_+ (a * b)) (commutative+ {b} {a}) ⟩37 37

(a + b) + (a * b) ≡⟨ associative+ {a} {b} {a * b} ⟩38 38

a + (b + (a * b)) ∎)39 39

As one can see from the three ways of proving equality (giving the term directly,
using rewrite or using chained equalities), the latter is by far the most comprehen-
sible one and should be advocated as often as possible. It shows every steps of the
reasoning in a convenient chain of proofs. This is why we also use it to wrap up this
example by proving the commutativity of the multiplication. Note that this proof
uses a lot of properties over the addition through the *suc lemma mostly.

commutative* : ∀ {a b} → a * b ≡ b * a40 40

commutative* {zero} {b} = sym (*0 {b})41 41

commutative* {suc a} {b} = begin42 42

(b + (a * b)) ≡⟨ cong (b +_) (commutative* {a}) ⟩43 43

(b + (b * a)) ≡˘⟨ *suc {b} ⟩44 44

(b * suc a) ∎45 45
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In addition to these conformity properties, it is possible to give examples on how
these constructs behave. The purpose of these examples is not to test the elements
which were defined, since the formal approach replaces the testing method by a
proving method, but rather they can be seen as a form of validation of punctual
requirements over these elements while being accessible for an audience not always
familiar with the formal method domain. Let us start by giving an example of
addition.

2+5≡7 : 2 + 5 ≡ 746 46

2+5≡7 = refl47 47

Since AGDA computes the value of 2 + 5 it is natural for the proof term to be
refl as long as the property is correct. Should the property be incorrect, then there
would be no possible inhabitant of the type. However, just inputing refl is both
not very instructive as to how the result is computed and also not really relevant as
an example. This is why it’s possible to show the computational steps by using a
succession of equalities as presented earlier. This leads to the following example,
which is a lot more instructive.

2+5≡71 : 2 + 5 ≡ 748 48

2+5≡71 = begin 2 + 5 ≡⟨⟩ 1 + 6 ≡⟨⟩ 7 ∎49 49

Note that in this case, the resulting term is of course refl as well, but the
syntactic sugar used here allows a better presentation of the result. We continue and
end this lecture grid with an example of muliplication following the same pattern
of presentation (without unfolding the addition computation):

45*89 : 3 * 45 ≡ 13550 50

45*89 = begin 3 * 45 ≡⟨⟩ (45 + (2 * 45)) ≡⟨⟩ (45 + (45 + 45)) ≡⟨⟩ 135 ∎51 51

Note that, for any expression, it is possible to ask AGDA to reduce this expres-
sion to its simpliest form, which includes function evaluation when possible. In
the two previous cases, should we have asked AGDA for the reduced expression –
through the EMACSmode – of 2+5 and 3*45, AGDA would have naturally answered
7 and 135 respectively in a dialog buffer.

3.2 Unique membership in a list

3.2.1 The Any Unique predicate
With these examples of addition and multiplication in mind, it is possible to

use the same methodology to create our own constructs and predicates that will
eventually lead us to the definition of maps and the structural description of event-
based languages. Since we need a predicate over a list that states if a single element
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A ∶ Set P ∶ Pred A Any
Any ∶ Pred (List A)

(a) The typing rule

P x here
Any P (x ∶∶ xs)
Any P xs there

Any P (x ∶∶ xs)

(b) The construction rules
Figure 3.1: The Any data type

of this list satisfies an element P of type Pred A (a predicate over A), it is natural
to start with the Any predicate. The standard library of AGDA, and most likely the
standard library of any language using dependent types provides a data type that
represents the lists containing at least one element satisfying a given property P.
This data type is called Any in AGDA and the typing rules as well as its inference
rules coming from its constructors are depicted on Figure 3.1.

As a unicity counterpart for this data type, we define a representation of lists
with one and only one element satisfying the predicate P. This is very useful in this
part of our work because we need to represent maps, and keys in maps must appear
only once inside it. This new predicate is called Any! as ! usually represents
unicity in mathematics.

data Any! {a b} {A : Set a} (P : Pred A b) : Pred (List A) (a ⊔ b)1 1

where2 2

here! : ∀ {x xs} → P x→ ¬ Any P xs→ Any! P (x ∶∶ xs)3 3

there! : ∀ {x xs} → ¬ P x→ Any! P xs→ Any! P (x ∶∶ xs)4 4

This data type can be represented with inference rules, as shown on Figure 3.2.
These inference rules are somewhat more complicated because they need to take
into account the fact that, provided an element satisfying P has been found, there
are no other elements in the list that satisfy P.

A ∶ Set P ∶ Pred A Any!
Any! ∶ Pred (List A)

(a) The typing rule

P x ¬Any P xs here!
Any! P (x ∶∶ xs)
¬P x Any! P xs there!
Any! P (x ∶∶ xs)

(b) The construction rules
Figure 3.2: The Any! data type

As an example of satisfaction of Any!, we provide a proof that there is only
one number smaller than 3 in a given list. Before presenting the proof, here are the
data types representing the lower or equal relations and the strictly lower relations
between natural numbers (both taken from the standard library):
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data _≤_ : Rel ℕ lzero where5 5

z≤n : ∀ {n} → zero ≤ n6 6

s≤s : ∀ {m n} → m ≤ n → suc m ≤ suc n7 7

–8 8

_<_ : Rel ℕ _9 9

m < n = suc m ≤ n10 10

Lines 6 and 7 represent the two constructors that can build a proof that a natural
number is lower or equal than another. The first constructor, z≤n states that 0 is
lower or equal to any other natural number, while the second constructor, s≤s states
that the successor operator preserves this relation. As for the strict precedence, it is
defined from its non-strict counterpart on line 10. The example proof is then done
as follows (note that↪ is used to delimit elements in the list in order to differentiate
this operator from the comma in the product type):

3< : Any! (_< 3) (J 5 ↪ 2 ↪ 3 K)11 11

3< = there! (� {(s≤s (s≤s (s≤s ())))}) (here! (s≤s (s≤s (s≤s z≤n)))12 12

� {(here (s≤s (s≤s (s≤s ())))) ; (there ())})13 13

This proof can be represented as the deduction tree depicted on Figure 3.3. On
this tree, there are three new inference rules that we use and are natively present in
AGDA. The first one, which I called "()" states that AGDA can deduce ¬ P x for a
given input x and a given predicate P when no constructor of P could ever produce
an element of type P x. For instance, there exists no constructor that can build an
element of type x < 0 for any x. The second rule, which I called "←s≤s" states
that if for any x and y, ¬ x ≤ y, then ¬ suc x ≤ suc y can be proven as well.
The third one, which I called "all()" states that if all the possible constructors for a
given value cannot occur, then the predicate on this value does not hold, or rather
its negation holds.

()
¬2 < 0

←s≤s
¬3 < 1

←s≤s
¬4 < 2

←s≤s
¬5 < 3

z≤s
0 < 1 s≤s
1 < 2 s≤s
2 < 3

()
¬0 < 0

←s≤s
¬1 < 1

←s≤s
¬2 < 2

←s≤s
¬3 < 3

()
¬Any (⧵x → x < 3) JK all()

¬Any (⧵x→ x < 3) J3K here!
Any! (⧵x→ x < 3) J2↪ 3K there!

Any! (⧵x→ x < 3) J5↪ 2↪ 3K

Figure 3.3: Satisfaction of Any! with the lower than 3 predicate
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Other examples can be defined and studied, in order to acquire some more un-
derstanding on our definition. One such example is a list of strings containing only
one string with a given length – here 5:

– _◦_ : Functional composition14 14

s≡5 : Any! ((_≡ 5) ◦ length) (J "one"↪ "two"↪ "three" K)15 15

s≡5 = there! (� ()) (there! (� ()) (here! refl � ()))16 16

In this example, there is only one element (here the string "three") that contains
five characters which has been proven accordingly. The intermediate proofs are
very easy because they consist of empty functions since AGDA computes the size
of the given string in the list, thus deducing whether or not their size is equal to five.
This example is particularly interesting because it naturally leads to the notion of
global unicity which will be described shortly after in this section. Indeed, we only
selected the number five as input for this proof, and it is possible to select other
numbers as well. For instance, had we selected three, then the predicate would not
have been satisfied. The notion of global unicity, as stated before, will handle any
allowed number in that case.

Figure 3.4 presents the deduction tree for this proof in which the evaluations of
the size function have been hidden because they are done automatically by AGDA.

()
¬|"one"| ≡ 5

()
¬|"two"| ≡ 5

refl
|"three"| ≡ 5 ()

¬Any (|_| ≡ 5) JK here!
Any! (|_| ≡ 5) J"three"K there!

Any! (|_| ≡ 5) J"two" ↪ "three"K there!
Any! (|_| ≡ 5) J"one" ↪ "two" ↪ "three"K

Figure 3.4: Satisfaction of Any! with a given size of strings

3.2.2 Properties of Any Unique

It is required to prove some properties about these definitions as, for instance,
the fact that Any! trivially implies Anywith respect to the same predicate P. In order
to prove these properties, we define some variables to lighten the type signatures.
The subsequent elements will be implicitly parametrized with these variables:

a b : Level17 17

A : Set a18 18

P : Pred A b19 19

x : A20 20

l : List A21 21
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The first property which we provide states that if a value is a unique member of
a list, then it is a member of this list. This is shown through a very simple recursive
function.

A!→A : Any! P l→ Any P l22 22

A!→A (here! px _ ) = here px23 23

A!→A (there! _ apl) = there (A!→A apl)24 24

This also allows us to prove some less trivial properties around this data struc-
ture, which will be useful in later definitions and proofs as well as in increasing the
confidence in our definitions with respect to their expected semantics. The first one
states that if an element x satisfies P as well as a list l then the list x ∶∶ l does not
uniquely satisfy P because there are at least two elements in x ∶∶ l that satisfy P .
Note that, by language abuse, we state that a given list l (resp. uniquely) satisfies P
when there is at least (resp. exactly) one element in l that satisfies P ie. when Any
P l (resp. Any! P l) holds.

P→A→¬A! : P x → Any P l → ¬ Any! P (x ∶∶ l)25 25

P→A→¬A! _ apl (here! _ ¬apl) = ¬apl apl26 26

P→A→¬A! px _ (there! ¬px _) = ¬px px27 27

The second property states that if x does not satisfy P and if l does not uniquely
satisfy P then x ∶∶ l does not uniquely satisfy P – note that this is also true when
l does not satisfy P because, by contraposition of the previous property, we deduce
that ¬ Any P l → ¬ Any! P l.

¬P→¬A!→¬A! : ¬ P x→ ¬ Any! P l→ ¬ Any! P (x ∶∶ l)28 28

¬P→¬A!→¬A! ¬px _ (here! px _) = ¬px px29 29

¬P→¬A!→¬A! _ ¬a!pl (there! _ a!pl) = ¬a!pl a!pl30 30

The third property states that if x ∶∶ l uniquely satisfies P and x satisfies P
then l does not satisfy P.

¬A!→P→¬A : Any! P (x ∶∶ l) → P x → ¬ Any P l31 31

¬A!→P→¬A (here! _ ¬apl) _ = ¬apl32 32

¬A!→P→¬A (there! ¬px _) px _ = ¬px px33 33

The fourth property states that if neither x nor l satisfies P then x ∶∶ l does
not satisfy P either.

¬P→¬A→¬A : ¬ P x → ¬ Any P l → ¬ Any P (x ∶∶ l)34 34

¬P→¬A→¬A ¬px _ (here px) = ¬px px35 35

¬P→¬A→¬A _ ¬apl (there apxl) = ¬apl apxl36 36
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If we take a closer look at the type of this property, we can see that it exhibits
a certain regularity. Indeed, the values on which the components of this signature
depend on are x, l and x∶∶l which makes it similar to the cons constructor that
builds a new list from an element and a list. This regularity can be used to our
advantage by some syntactic tricks that will allow us to use this property in an in-
ductive manner when building proofs, which will be done in an upcoming example.
In order to exploit this regularity, two steps are required: both these steps are purely
syntactic. The first one consists of giving a name to the proof that no property is
ever satisfied for elements in an empty list:

¬A[] : ¬ Any P []37 37

¬A[] ()38 38

The second step consists of creating an infix operator which allows us to chain
the calls on this property (similar to the cons constructor of the lists). This infix
operator is defined using the syntax keyword which allows us to create convenient
syntactic aliases for already defined quantities. These aliases will be conveniently
used later on in Section 3.2.4.

infixr 1 ¬P→¬A→¬A39 39

syntax ¬P→¬A→¬A ¬px ¬apl = ¬px ↦ ¬apl40 40

In AGDA, it is possible to define aliases for any operator that was not defined
using underscores (as a mixfix operator) but it is not always useful. For instance,
the following example will only be useful to shorten the identifier, but not as an
infix operator because the result of the property does not have the same structure as
one of its parameters:

syntax P→A→¬A! yRx w2 = yRx ¬! w241 41

3.2.3 Decidability of Any Unique

An interesting aspect of the predicates we define in this work is their decidabil-
ity. Since we would like to use them in concrete applications (to model languages
such as PETRI NET) we would like these predicates to be decidable provided the
predicate on which they are based is decidable as well. More precisely, if we can
either build, for any input x, the proof P x or the proof ¬ P x then we should be
able to build, for any list l the proof Any! P l or ¬ Any! P l. This work is al-
ready done in the standard library for the Any predicate, through a property called
any. Here, Decidablep is the AGDA notion of decidability for predicates (unary
relations) which, as all notions of decidability, is based on the Dec data type de-
picted in Section 2.3.4. Here is the proof that P being decidable ensures that Any!
P is decidable.
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decAny! : Decidablep P → Decidablep (Any! P)42 42

decAny! _ [] = no (� ())43 43

decAny! decP (x ∶∶ _) with decP x44 44

decAny! decP (_ ∶∶ l) | yes _ with (any decP) l45 45

decAny! _ _ | yes px | yes apl = no (P→A→¬A! px apl)46 46

decAny! _ _ | yes px | no ¬apl = yes (here! px ¬apl)47 47

decAny! decP (_ ∶∶ l) | no ¬px with decAny! decP l48 48

decAny! _ _ | no ¬px | yes a!pl = yes (there! ¬px a!pl)49 49

decAny! _ _ | no ¬px | no ¬a!pl = no (¬P→¬A!→¬A! ¬px ¬a!pl)50 50

This proof is done by case splitting on the different proofs of decidabilty to build
the final term in each case. Here are the cases:

• Line 43 : the list is empty. Since there are no constructors that build an
element of Any! P [] we can conclude no.

• Line 46 : the list is of the form (x ∶∶ l) and we have P x and Any P l. In
this case we can conclude no by contradiction using the P→A→¬A! property.

• Line 47 : the list is of the form (x ∶∶ l) and we have P x and ¬ Any P l.
In this case we can conclude yes using the constructor here!.

• Line 49 : the list is of the form (x ∶∶ l) and we have ¬ P x and Any! P
l; In this case we can conclude yes using the constructor there!.

• Line 50 : the list is of the form (x ∶∶ l) and we have ¬ P x and ¬ Any! P
l. In this case we can conclude no by contradiction using the ¬P→¬A!→¬A!
property.

3.2.4 Parametrized membership
Using these two definitions – Any and Any! – one being found in the standard

library and the other being defined for the purpose of this work, we can define a
parametrized notion of membership and unique membership. Given an heteroge-
neous relation _R_ over two types A and B, an element x of type A and a list l of
elements of type B, we state that x is a member (resp. a unique member) of l when
there exists at least (resp. exactly) one element in l that is related to x by _R_, in
other words such that the property x R_ holds.

_∈_ : REL A (List B) _51 51

x ∈ xs = Any (x R_) xs52 52

53 53

_∈!_ : REL A (List B) _54 54

x ∈! xs = Any! (x R_) xs55 55

_∉_ : REL A (List B) _56 56

x ∉ xs = ¬ (x ∈ xs)57 57

58 58

_∉!_ : REL A (List B) _59 59

x ∉! xs = ¬ (x ∈! xs)60 60
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These new relations are all decidable, provided that the underlying relation R is
decidable as well. This is proved in the appendices in Section A.1.1

These parametrized memberships will be particularly useful when dealing with
maps and some specific kind of sets that will be described later. In order to better
comprehend this parametrization, here are two examples of usage with different
instantiations of _R_. The first example uses lists of natural numbers and the strict
precedence for _R_. If an element x is a member of a list l relatively to this relation,
this means that there exists at least one element in l that is strictly greater than
x. This example is conducted as follows: We start by importing the membership
module with the desired parameter while also renaming some of the operators it
exports in order to avoid conflicts in the future, in case of several imports of the
same module with different parameters. (Note that it is also possible to rename the
entire module, which will be done for instance in Section 7.1.2).

open Membership _<_ hiding (_∉_ ; _∈!_)61 61

renaming (_∈_ to _∈<_ ; _∉!_ to _∉!<_)62 62

Then, we define an example of a list which will be used to illustrate our notions
of parametrized memberships.

list1 : List ℕ63 63

list1 = J 3 ↪ 5 ↪ 2 K64 64

We can prove several membership properties about this list, but only two will
be presented here. In both cases, the comparison proofs between natural numbers
are hidden (they are trivial and automatically computed by AGDA). The first one is
that 4 is a member of this list, since there exists a number, 5, that is in the list and
that is greater than 4.

4∈list1 : 4 ∈< list165 65

4∈list1 = there (here 4<5)66 66

The second one states that 2 is not a unique member of the list since both 3 and
5, that are in the list, are greater than 2. The proof is done by case splitting on the
proof that 2 is a unique member of the list in order to produce an element of ⊥.
In the case of 2 being related to the head of the list (2 is smaller than 3), on line
68, there is a contradiction, since it is also a member of the tail (2 is also smaller
than 5). In the case of 2 only being part of the tail of the list, on line 69, there is a
contradiction because 2 is smaller than 3.

2∉!list1 : 2 ∉!< list1 – 2 ∈!< list1 → ⊥67 67

2∉!list1 (here! _ ¬2∈<[5,2]) = ¬2∈<[5,2] (here 2<5) – gives ⊥68 68

2∉!list1 (there! ¬2<3 _) = ¬2<3 2<3 – gives ⊥69 69
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The second example regarding membership is built over lists of strings and the
relation _R_ is this time heterogeneous: the membership of a character inside a
string. In this example, a character is said to be a member of the list if there exists a
string in the list that contains this character. We start by instantiating the example
module with the right relation.

open Membership _∈l_ hiding (_∈_ ; _∉!_)70 70

renaming (_∉_ to _∉s_ ; _∈!_ to _∈!s_)71 71

Then we define a list of strings on which we will work.

list2 : List String72 72

list2 = J "Alice"↪ "Bob"↪ "Judith" K73 73

This time, the two properties that will be displayed here correspond to the two
relations that have not been emphasized in the previous example. The proofs of a
character being in a string are left aside, but can be found in the appendices Sec-
tion A.1.3. The first proof is that ’z’ is not a member of the list, because it is not in
any of the strings the list contains which leads to contradictions.

z∉list2 : ’z’ ∉s list2 – ’z’ ∉s list2 → ⊥74 74

z∉list2 (here z∈Alice) = z∉Alice z∈Alice – gives ⊥75 75

z∉list2 (there (here z∈Bob)) = z∉Bob z∈Bob – gives ⊥76 76

z∉list2 (there (there (here z∈Judith))) = z∉Judith z∈Judith – gives ⊥77 77

z∉list2 (there (there (there ()))) – no such possible case78 78

This proof is quite heavy in terms of code length, as well as somewhat redun-
dant with some of the properties that have been proved beforehand. Since the goal
here was to prove a non-membership, it is possible to substantially reduce the size of
the proof by using the "inductive" syntax that was presented and discussed in Sec-
tion 3.2.2. Here is the resulting proof displayed as a sequence of non-membership
proofs thanks to the syntactic alias (combined with its priority and associativity)
that was defined for the ¬P→¬A→¬A property:

z∉list2’ : ’z’ ∉s list279 79

z∉list2’ = z∉Alice ↦ z∉Bob ↦ z∉Judith ↦ ¬A[]80 80

This way of writing this proof is much more understandable, because it can
simply be interpreted as the following: "Since ’z’ does not appear in "Alice", nor
in "Bob", nor in "Judith", and since no letter ever appears in the empty list, then ’z’
does not appear in J "Alice" ↪ "Bob" ↪ "Judith" K".

The second property is that ’J’ is a unique member of the list because it is only
contained in the string "Judith". Since this proof is a proof of membership, it can
directly be built by the constructors of the Any! data type without having to use the
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previous simplification method.

J∈!list2 : ’J’ ∈!s list281 81

J∈!list2 = there! J∉Alice (there! J∉Bob (here! J∈Judith � ()))82 82

This proof can easily be read as follows: "Since ’J’ does not appear in "Alice" as
well as in "Bob" but does appear in "Judith" and since no letter ever appears in the
empty list, then ’J’ is a unique member of J "Alice" ↪ "Bob" ↪ "Judith"
K". The reader may notice the symmetry of these proofs, thanks to the aliases we
defined.

3.3 Global unicity

3.3.1 Definition
In a map, any key has to be represented a single time, which means that any key

that is a member of a map has to be a unique member of this map. This reasoning
leads to the definition of a new predicate on a list, which we call the global unicity.
This predicate first relies on a predicate over a value and a list, which states that if
this value appears once in the list, then it appears only once.

_∈∈!_ : REL _ _ _ – Agda figures out the missing part83 83

x ∈∈! l = x ∈ l→ x ∈! l84 84

Note that this predicate does not imply that the value indeed is a member of
the list. It only states that if it is, then it uniquely is. Assuming _R_ is decidable,
this predicate can be proven decidable as well using the decidability of the mem-
bership relations. This proof does not provide any new technical aspect and is only
presented in the appendices in Section A.1.2

Dec∈∈! : Decidabler _R_ → Decidabler _∈∈!_85 85

The globally unique predicate is then defined as follows:

GlobalUnicity : Pred _ _86 86

GlobalUnicity l = ∀ {x} → x ∈∈! l87 87

While it would be natural to consider that the GlobalUnicity predicate is nec-
essarily decidable, it is actually a mistake in the general case. Indeed, this predicate
encapsulates a universal quantifier which invalidates the proof of decidability in
constructive proofs. To prove that GlobalUnicity l is decidable for any l we
would have to exhibit all the values that are related to the elements of l in order to
prove that no other value in l is related to the same elements. Exhibiting such val-
ues is impossible in our case, which means that this predicate is not decidable in the

66



general case. Fortunately, when instantiating the relation _R_ with the appropriate
relations (for instance to model maps), it will be.

From this predicate, a globally unique list is then simply a record containing a
list and a proof of global unicity. (This could have equally be modelled using ∃ but
such a modelling will only be detailed from Section 6.2.1.b on).

record GUList : Set (a ⊔ b ⊔ c) where88 88

constructor gulist89 89

field90 90

content : List B91 91

unique : GlobalUnicity content92 92

This record provides a constructor, gulist, the goal of which is to ease the
creation of elements of type GUList. Indeed, instead of writing the usual record in-
stantiation record { content = c ; unique = u } to create a globally unique
list, one can simply write gulist c u.

Since we defined a new notion, it is now customary to prove conformity prop-
erties about it. The first property is the fact that a list with only one element is
necessarily globally unique.

gu[a] : ∀ {a} → GlobalUnicity [ a ]93 93

gu[a] (here px) = here! px � ()94 94

From now on we consider the additional following variables, which will be
given as implicit parameters to subsequent definitions.

x : B95 95

l : List B96 96

The second property that is shown here is the conservation of the global unicity
when handling the tail of a list. Indeed, it is natural that, considering a globally
unique list l, its tail should be globally unique too regarding the same underlying
relation:

guTl : GlobalUnicity (x ∶∶ l) → GlobalUnicity l97 97

guTl guxl y∈l with guxl (there y∈l)98 98

guTl _ y∈l | here! _ y∉l = contradiction y∈l y∉l99 99

guTl _ y∈l | there! _ y∈!l = y∈!l100 100

While the fact that removing an element from a list does not change its global
unicity seems pretty straightforward, adding an element to a list is more compli-
cated. There has to be a given predicate that this new element should fulfill in
order for global unicity to keep holding on the new list. To assess the nature of this
prerequisite, the following question arises: what does a list being globally unique
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actually stand for ? To answer this question, we can think of our underlying relation
to being associated to an element as a witness for this element – note that this notion
of witness is not that same as the witness in the ∃ type described in Section 6.2.1.b.
In order to emphasize this new way of seeing the underlying relation, let us define
new names for our quantities using the function flip which flips the parameters of
a function, as follows: flip = � f x y → f y x:

_witnesses_ : _101 101

_witnesses_ = flip _R_102 102

– a witnesses b ⇔ b R a103 103

_[witnesses]_ : _104 104

_[witnesses]_ = flip _∈_105 105

– l [witnesses] b ⇔ b ∈ l106 106

With these names in mind, it is easier to understand what a globally unique list
stands for. It is basically a list that never contains two different witnesses for the
same element. In other words, it should be a list which, for any element y that has
two witnesses in it, these witnesses are always at the same position – index – in
the list, thus being identical. Note that the function index returns an element of
type Fin (size n) where Fin is the usual dependent type representing a set of n
elements (from 0 to n-1), with two constructors fzero and fsuc. Let us express
this property:

≡index : _ → Set _107 107

≡index l = ∀ {y} (w1 w2 : l [witnesses] y) → index w1 ≡ index w2108 108

Then we can proceed by proving that a list that satisfies the GlobalUnicity
predicate also satisfies the ≡index predicate.

⇒ : GlobalUnicity l→ ≡index l109 109

⇒ _ (here _) (here _) = refl110 110

⇒ gul (here yRx) (there w2) = ⊥-elim ((yRx ¬! w2) (gul (here yRx)))111 111

⇒ gul (there w1) (here yRx) = ⊥-elim ((yRx ¬! w1) (gul (here yRx)))112 112

⇒ gul (there w1) (there w2) = cong fsuc (⇒ (guTl gul) w1 w2)113 113

Let us take a closer look at that proof. We need to prove that if we have two
proofs w1 and w2 that a given element y has a witness in a globally unique list l
then these proofs can only point to the same element in that list. In order to proceed
in the demonstration, we need to case-split on these proofs, which is the same as
looking where they point to. There will be four possible cases bound to this case-
split, two of them, on line 111 and 112 state that the two proofs actually point to
different elements in the list (one points to the head and the other to the tail). These
cases must somehow be impossible, and a contradiction has to be pointed out. The
third case, on line 110 is when both proofs point at the head of the list and the last
case, on line 113 is when both proofs point somewhere in the tail of the list. The
four cases are handled as follows:
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• case 1, line 110 directly leads to the result because both indexes pointed by
the proofs are 1. This is the case that will eventually be reached every time
by recursively calling the property.

• case 2 and 3, line 111 and 112 are similar because they are fully symmetrical.
In these cases, as stated before, a contradiction needs to be pointed out. We
know that the list is globally unique so we can apply this fact to the first proof
that points out to the head. It gives us the fact that y has a unique witness in
l. However, we also know that y has both a witness in the head of l and in
the tail of l. Applying the property ¬P→¬A→¬A! (with its alias ¬!) gives
us the fact that y has two witnesses in l which gives us the contradiction we
were looking for.

• case 4, line 113 is solved by recursively calling our property on the tail of the
list. Since we know that the tail of the list is still globally unique, thanks to the
guTl property, we can call the property recursively with the right parameters.
This gives us that both proofs point to the same location in the tail of the list,
which, when adding one to both these indexes, proves that they also point to
the same location in the whole list.

This result on globally unique lists also happens to be a characterization, which
means that this ≡index is an equivalent of GlobalUnicity. Proving this equiva-
lence requires a helper that states that x and l cannot be both a witness of an element
y when x ∶∶ l satisfies ≡index.

helper : ∀ {y} → ≡index (x ∶∶ l) → x witnesses y → ¬ l [witnesses] y114 114

helper ≡ind px x∈xs = case ≡ind (here px) (there x∈xs) of � ()115 115

This proof uses the construct case of which provides in-term case-splitting.
In other words, it allows us to case-split on an intermediate value, the result of
which is the empty pattern in this case, hence providing a proof of ⊥. This leads
to the other side of the equivalence using a new syntactic sugar x ⟨ f ⟩ y = f x
y which allows us to treat functions with two parameters as infix operators, and a
proof of injectivity fsuc-injective for the constructor fsuc or the type Fin n:

⇐ : ≡index l→ GlobalUnicity l116 116

⇐ ≡ind (here px) = here! px (helper ≡ind px)117 117

⇐ ≡ind (there x∈l) = there! (_⟨ helper ≡ind ⟩ x∈l)118 118

(⇐ (� w1 w2 → fsuc-injective (≡ind (there w1) (there w2))) x∈l)119 119

Now that we have shown precisely what a globally unique list actually stands
for, we can easily formulate the predicate that a given value xmust satisfy so it can
be successfully added at the head of this list. For any value y that is witnessed by x,
there must not exist any other witness of y in the list. This is expressed and proved
as follows:
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_∶∶u_ : (∀ {y} → x witnesses y → ¬ l [witnesses] y)120 120

→ GlobalUnicity l→ GlobalUnicity (x ∶∶ l)121 121

_∶∶u_ p _ (here yRx) = here! yRx (p yRx)122 122

_∶∶u_ p gul (there y∈l) = there! (_⟨ p ⟩ y∈l) (gul y∈l)123 123

If we add to this property the fact that an empty list is necessarily globally
unique, it gives us an inductive way to build proofs of global unicity over lists,
similarly to the way we exploited the ¬P→¬A→¬A property:

gu[] : GlobalUnicity []124 124

gu[] ()125 125

As a consequence we can for instance very easily prove a second time that a list
with a single element is globally unique.

gu[a]0 : ∀ {a} → GlobalUnicity [ a ]126 126

gu[a]0 = (� {_ ()}) ∶∶u gu[]127 127

In order to emphasize the usefulness of the _∶∶u_ operator even more, let us
develop an example of a globally unique list. In this example, the relation will be the
propositional equality, which means a globally unique list is a list with no duplicates
in it. This example features intermediate proofs of non membership followed by the
proof of being globally unique using inductive reasoning in each of its steps:

open GlobalUnicity {A = ℕ} _≡_128 128

–129 129

l : List _130 130

l = J 3 ↪ 5 ↪ 2 K131 131

–132 132

¬J5,2Kw3 : ∀ {y} → 3 witnesses y → ¬ J 5 ↪ 2 K [witnesses] y133 133

¬J5,2Kw3 refl = (� ()) ↦ (� ()) ↦ ¬A[]134 134

–135 135

¬J2Kw5 : ∀ {y} → 5 witnesses y → ¬ J 2 K [witnesses] y136 136

¬J2Kw5 refl = (� ()) ↦ ¬A[]137 137

–138 138

¬JKw2 : ∀ {y} → 2 witnesses y → ¬ [] [witnesses] y139 139

¬JKw2 _ ()140 140

–141 141

gul : GlobalUnicity l142 142

gul = ¬J5,2Kw3 ∶∶u ¬J2Kw5 ∶∶u ¬JKw2 ∶∶u gu[]143 143
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3.3.2 Globally unique lists on different kind of relations

3.3.2.a Globally unique lists on equivalence relations

It is interesting to try and figure out what kind of relation could give a relevant
meaning for globally unique lists. An example of such relations are equivalence
relations. A globally unique list towards an equivalence relation contains at most
one witness per equivalence classes bound to this relation. This sounds intuitive
when using the concept of witnesses to talk about globally unique lists. Let us start
by instantiating the GlobalUnicity module on an equivalence relation.

module GloballyUniqueEquivalence {a b} {A : Set a} {_≈_ : Rel A b}144 144

(isEq : IsEquivalence _≈_) where145 145

open GlobalUnicity _≈_146 146

open Membership _≈_ renaming (_∈_ to _∈≈_)147 147

Then we can prove the fact that if two equivalent elements are part of a globally
unique list over this equivalence relation, then they are necessarily the same.

gueq : ∀ {x y l} → x ∈ l→ y ∈ l→ GlobalUnicity l → x ≈ y → x ≡ y148 148

gueq x∈l y∈l gul x≈y = ≡i→≡ (begin149 149

index x∈l ≡⟨ i≡ic x∈l ⟩150 150

index (∈→∈≈ x∈l)151 151

≡⟨⇒ gul (∈→∈≈ x∈l) (trans∈≈ (≈sym isEq x≈y) (∈→∈≈ y∈l)) ⟩152 152

index (trans∈≈ (≈sym isEq x≈y) (∈→∈≈ y∈l))153 153

≡⟨ it≡i (≈sym isEq x≈y) (∈→∈≈ y∈l) ⟩154 154

index (∈→∈≈ y∈l) ≡˘⟨ i≡ic y∈l ⟩155 155

index y∈l ∎)156 156

This proof depends on several lemmas – ∈→∈≈, trans∈≈, it≡i, i≡ic and
≡i→≡ – that are presented in the appendices, in Section A.1.4. This proof is based
on the equality of indexes.
3.3.2.b Globally unique lists on total orders

The same work can be done for instance when the relation is instantiated with
a non-strict total order, in which case the globally unique lists are the lists with at
most one element, which can be proved. Let us start by instantiating the globally
unique lists on a total order.

module GloballyUniqueTotalOrder {a b c} {A : Set a} {_≈_ : Rel A b}157 157

{_≼_ : Rel A c} (isTot : IsTotalOrder _≈_ _≼_) where158 158

open GlobalUnicity _≼_159 159

Then we can prove that these globally lists cannot indeed have more than 1
element. The proof is done by absurd. If the list has at least two elements then
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one of them is smaller than the other, but is also smaller than itself, which results
in a contradiction since it has two witnesses in the list which makes it not globally
unique.

prop : ∀ {l} → GlobalUnicity l → ¬ Data.List.length l > 1160 160

prop {[]} _ ()161 161

prop {_ ∶∶ []} _ (s≤s ())162 162

prop {x ∶∶ y ∶∶ _} _ with total isTot x y163 163

prop {_ ∶∶ _ ∶∶ _} gul | inj1 x≼y =164 164

contradiction (gul (here ≼refl)) (P→A→¬A! ≼refl (here x≼y))165 165

prop {_ ∶∶ _ ∶∶ _} gul | inj2 y≼x =166 166

contradiction (gul (there (here ≼refl))) (P→A→¬A! y≼x (here ≼refl))167 167

And we can also prove that any list of at most 1 element is globally unique
using previous properties. Note that this property is always true regardless of the
underlying relation, but it is an equivalence for the total orders.

prop2 : ∀ {l} → ¬ Data.List.length l > 1 → GlobalUnicity l168 168

prop2 {[]} _ = gu[]169 169

prop2 {_ ∶∶ []} _ = gu[a]170 170

prop2 {_ ∶∶ _ ∶∶ _} p = case (p (s≤s (s≤s z≤n))) of � ()171 171

3.3.2.c Globally unique lists on other relations

Other logical relations Since we have investigated how such lists would behave
when coupled with total orders or equivalence relations, it is possible to deduce
what would be their behaviour with other kinds of logical relations. Globally unique
lists are collections of elements that all have a distinct aspect. We can foresee that
this property of separation will be preserved when considering strict total orders or
partial orders. For partial orders, two elements in the list could not have a common
ancestor in their timeline. As a consequence, they cannot be in the same timeline
either. For strict total orders, if there is a smaller element, this lower bound can
appear any number of times in the lists. Otherwise, the list will have the same
properties as for non-strict total orders.

Functions Globally unique lists can be used to model collections of elements
that do not have the same result when a given function is applied to them. This
is done by considering, for a given function f, the relation R defined as follows:
yRx ⇔ y ≡ fx. This aspect is particularly interesting and will be the one ulti-
mately used to define maps and bags. In this case, the elements of the lists all have
different images through the function f. As a consequence, if f is injective, the cor-
responding globally unique list can have any number of different elements. From
this point on in this section, we will consider such relations.
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3.3.2.d Globally unique lists over image equality

We define a short module which provides, given a function f, the _≡f_ relation
as well as the proof that it preserves decidability.

module FunctionRelation172 172

{a b} {A : Set a} {B : Set b} (f : B → A) where173 173

–174 174

_≡f_ : REL A B a175 175

_≡f_ x = (x ≡_) ◦ f176 176

–177 177

dec≡f : Decidabler {A = A} _≡_ → Decidabler _≡f_178 178

dec≡f dec x = (dec x) ◦ f179 179

From this point on, every module will be parametrized by such a function f,
which means any globally unique list will embed this specific related semantics of
these globally unique lists.

3.4 Commands and requests over globally unique lists

These globally unique lists parametrized with a function will be used to model
maps and they should provide the usual commands their semantics induces. The
first is getwhich, given a specific key, retrieves a specific value in a map. While the
function that allows the comparison of keys is f itself, our current modelling lacks
a second function, let us call it g which, in the case of maps, would return the value
associated to an element inside the list. This is why the module which contains the
different commands over globally unique lists, is also parametrized by g. As a side
note, it is also parametrized by the decidability of the equality between the elements
of A (the type of the keys) which means that the keys have to be comparable.

3.4.1 Commands

3.4.1.a Creation

We define a command which creates a new empty Globally Unique list. It uses
the property of global uniqueness of the empty list. It shows how creating a globally
unique list is stricly more than creating a list: it embeds the proof of correctness
which is made possible through the use of dependent types. Note that, while this
command is defined in this specific case, it can be defined the same way regardless
of the underlying relation. However, it provides no real use so it is left aside.

newGUL : GUList180 180

newGUL = gulist [] gu[]181 181
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This creation command is useful because it will allow us to populate the list
with commands that preserve the globally unique property. However, sometimes it
can be useful to create such a list from a list that is not necessarily globally unique,
but might be. In this case, it is mandatory to be able to decide whether or not it
is. As stated when describing the GloballyUnique predicate, it cannot be proved
decidable in the general case but in the current case it is possible, and we will
explain why after the proof is depicted:

decGU : Decidablep GlobalUnicity182 182

decGU [] = yes gu[]183 183

decGU (x ∶∶ l) with dec∈ (dec≡f dec) (f x) l184 184

decGU _ | yes fx∈l =185 185

no (� guxl → P→A→¬A! refl fx∈l (guxl (here refl)))186 186

decGU (x ∶∶ l) | no _ with decGU l187 187

decGU _ | no ¬fx∈l | yes gul =188 188

yes ((� {refl fx∈l→ ¬fx∈l fx∈l}) ∶∶u gul)189 189

decGU _ | no _ | no ¬p = no (contraposition guTl ¬p)190 190

What makes the decidability provable in this case as opposed to the general
one ? The difference lies on line 184 where, by invoking f x we are able, from
the element x, to retrieve the unique element that x witnesses. In other words, it
is possible because we have access to a computation of all the elements that are
witnessed by x (in this case there is only one). In the general case, from a given
x, it is not possible to retrieve such information hence trying and deciding if other
members in the tail of the list are witnessed by one of values that x witnesses.
Should we have a function that, for any input, would give the list of all elements
that are witnessed by x, this could be proved decidable. However, such a function
cannot exist in the general case because there is potentially an infinite number of
such elements.

Since in our case, this is decidable, we can try and build a globally unique list
from an existing list, using the Maybe monad to handle error cases.

newFrom : List B → Maybe GUList191 191

newFrom l with decGU l192 192

newFrom l | yes p = just (gulist l p)193 193

newFrom _ | no _ = nothing194 194

3.4.1.b Insertion

The next command consists in adding an element in a list, provided it is not
already a member of said list. As a first step, it is not relevant to check for the
membership of said element, because it will come later. Putting an element inside
a list consists in appending it at its head, hence this command is just an alias for the
_∶∶_ operator.
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put : ∀ b l → List B195 195

put = _∶∶_196 196

We provide a trivial property of conservation of membership:

put∈ : ∀ {x b l} → x ∈ l→ x ∈ put b l197 197

put∈ = there198 198

Since the put function returns a list, we have to ensure that, should the input
list be globally unique, and should this input not witness the same value as the one
witnessed by the new element, the output list remains globally unique. This is the
first proof of preservation of global unicity regarding commands on said globally
unique lists. This proof is made quite short using the operator _∶∶u_. While taking
a closer look at this proof, it looks like the proof of global unicity of l is not used,
which makes no sense. However, the last line of the proof could equally be written
putGUL p gul = (� refl q → p q) ∶∶u gulwhich highlights that this proof
term was indeed used but was hidden by returning a function instead of a value,
which is equivalent. More precisely, the clause f x y = (F x) y can equally
be written f x = F x where f is the defined function and F a term that uses x to
produce a function which can then be applied to y to provide a correctly typed term.
This will be used several times in this manuscript.

putGUL : ∀ {b l} → f b ∉ l→ GlobalUnicity l → GlobalUnicity (put b l)199 199

putGUL p _ (here refl) = here! refl p200 200

putGUL p = (� {refl q → p q}) ∶∶u_201 201

Having a function to append an element in a list and the proof of preservation
of global unicity, we can extend the put definition to globally unique lists. Since we
want the proof elements to remain hidden from the user, we will return an element
of type Maybe as well in this case to encapsulate the error case when the value is
already witnessed in the list. This requires an additional intermediate step which
puts a value into a globally unique list when the value is a member of its content.
This extra step could have been avoided here but will be useful when instantiating
and using this module from outside.

put_into_when_ : ∀ b→ (l : GUList) → f b ∉ (content l) → GUList202 202

put b into (gulist l gul) when p = gulist (put b l) (putGUL p gul)203 203

–204 204

put_inside_ : B → GUList → Maybe GUList205 205

put b inside l with dec∉ (dec≡f dec) (f b) (content l)206 206

put b inside l | yes p = just (put b into l when p)207 207

put _ inside _ | no _ = nothing208 208
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There is a legitimate question that can be asked at that point: why bother proving
the preservation of global unicity when this predicate here is decidable ? Indeed, a
variation of the previous function could be written as follows:

put_inside’_ : B→ GUList → Maybe GUList209 209

put_inside’_ b = newFrom ◦ put b ◦ content210 210

Indeed, this definition seems shorter and overall simpler, however there are two
main reasons why this is not the advocated approach:

• When computing the proof that a list is globally unique or not, we check for
each element wether it conflicts or not with another element in the list. Thus,
the complexity of such computation is n2. When using the previous proof, we
only have to check such conflicts for the new element, thus the complexity is
only n. Since the field unique could not be declared irrelevant for technical
reasons, it will be computed and such difference matters. It is also a lot more
elegant to only compute once what can be computed only once, rather than
computing over and over the same proof elements as if nothing had already
been computed.

• The approach advocated here is somewhat general when dealing with func-
tions that take dependant records as parameters. When fields of these records
are proof elements over data embedded in the records, the functions have to
preserve such properties to output an element of the right type. In the general
case, there is no guarantee that the predicates used in such records are decid-
able, which makes the preservation proofs mandatory in such cases, which
has to be provided by the function in question.

Having considered this option, this will not be further discussed, and conserva-
tion properties will be provided whenever required.
3.4.1.c Assignment

Assigning a value in a list consists in replacing the previous value by a new
one. This assumes this element was already witnessed inside the list. The first
step towards the assign function for globally unique lists does not assume that the
value is only witnessed once. This will be taken into account when extending this
definition.

assign_inside_when_ : ∀ b l (fb∈l : f b ∈ l) → List B211 211

assign b inside (_ ∶∶ l) when here _ = b ∶∶ l212 212

assign b inside (x ∶∶ l) when there fb∈l =213 213

x ∶∶ (assign b inside l when fb∈l)214 214

The next step is similar to what has been done for the put command: it consists
in proving that assigning a value in a globally unique list keeps it globally unique.
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To do so, several lemmas are required which all provide partial proofs that assigning
a value in a globally unique list preserves membership properties. These lemmas
are presented in the appendices in Section A.1.5.

The resulting property of preservation is as follows:

assignGUL : ∀ {b l p} → GlobalUnicity l215 215

→ GlobalUnicity (assign b inside l when p)216 216

assignGUL gul = assign∈! ◦ gul ◦ ∈assign217 217

This leads to the final definition of assignment, which returns nothing when
the value that is to be assigned did not already have a witness inside the list, and
thus there is noting to assign.

assign_inside_if_ : ∀ b l (fb∈l : f b ∈ content l) → GUList218 218

assign b inside gulist l gul if p = gulist219 219

(assign b inside l when p)220 220

(assignGUL gul)221 221

–222 222

assign_inside_ : ∀ b (gul : GUList) → Maybe GUList223 223

assign b inside l with dec∈ (dec≡f dec) (f b) (content l)224 224

assign b inside l | yes p = just (assign b inside l if p)225 225

assign _ inside _ | no _ = nothing226 226

3.4.1.d Deletion

The last command consists in removing an element inside a list. This command
assumes that this element indeed is witnessed in the list. As usual, we start by
writing a function which takes such a proof as input, and we use this proof to remove
the right element in the list:

remove_from_when_ : ∀ a l (p : a ∈ l) → List B227 227

remove a from (b ∶∶ l) when here px = l228 228

remove a from (b ∶∶ l) when there a∈l = b ∶∶ remove a from l when a∈l229 229

Then, we provide a lemma which states that removing an element from a list
preserves the non membership.

∉remove : ∀ {x a l p} → x ∉ l→ x ∉ (remove a from l when p)230 230

∉remove {p = here _} = contraposition there231 231

∉remove {p = there _} x∉l (here px) = x∉l (here px)232 232

∉remove {p = there p} x∉l (there x∈rm) =233 233

∉remove {p = p} (contraposition there x∉l) x∈rm234 234

This leads to the proof that removal preserves global unicity.
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removeGUL : ∀ {a l p} → GlobalUnicity l235 235

→ GlobalUnicity (remove a from l when p)236 236

removeGUL {p = here _} = guTl237 237

removeGUL {p = there _} gul =238 238

(� x≡fb→ ∉remove � x∈xs→239 239

P→A→¬A! x≡fb x∈xs (gul (here x≡fb)))240 240

∶∶u removeGUL (guTl gul)241 241

This leads to the final definition of removing an element in a globally unique
list while hiding the proof computation from the user:

remove_from_ : ∀ a (gul : GUList) → Maybe GUList242 242

remove a from gulist l _ with dec∈ (dec≡f dec) a l243 243

remove a from gulist l gul | yes p =244 244

just (gulist (remove a from l when p) (removeGUL gul))245 245

remove _ from _ | no _ = nothing246 246

3.4.1.e Assignement or insertion

As an additional command, it is possible to use the precedent definition to either
assign the value when present or put the value when absent. This is easily done
using the following definition, which directly returns a GUList instead of a Maybe
GUList because it can never fail.

assignOrPut_inside_ : ∀ b (gul : GUList) → GUList247 247

assignOrPut b inside gulist l _ with dec∈ (dec≡f dec) (f b) l248 248

assignOrPut b inside gulist l gul | yes p =249 249

gulist (assign b inside l when p) (assignGUL gul)250 250

assignOrPut b inside gulist l gul | no ¬p =251 251

gulist (put b l) (putGUL ¬p gul)252 252

3.4.1.f Multiple commands

While it is possible to chain several calls of the previous commands using the
Maybe monad for instance, we provide higher level commands to directly iterate
over a list of inputs. This consists of chaining the calls of a given command over
this list of inputs. In that purpose, we provide a high-level function, collapse,
which takes a function of type X → GUList → Maybe GUList for any X and
provides a function of type List X → GUList → Maybe GUList. This func-
tion uses foldl but could definitely use foldr in which case the elements in the
list would be treated in a different order, thus possibly changing the result. It also
uses the monadic bind and return operators of Maybe inside the fold.
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collapse : ∀ {u} {X : Set u} → (X → GUList → Maybe GUList)253 253

→ List X → GUList → Maybe GUList254 254

collapse g l gul = foldl (� mgu → (mgu »=_) ◦ g) (return gul) l255 255

From this function, we can deduce a variant for the following operators:

putAll : List B→ GUList → Maybe GUList256 256

putAll = collapse put_inside_257 257

–258 258

removeAll : List A → GUList → Maybe GUList259 259

removeAll = collapse remove_from_260 260

–261 261

assignAll : List B → GUList → Maybe GUList262 262

assignAll = collapse assign_inside_263 263

–264 264

assignOrPutAll : List B → GUList → Maybe GUList265 265

assignOrPutAll = collapse � x → just ◦ (assignOrPut x inside_)266 266

3.4.2 Queries

In addition to commands, we provide queries on globally unique lists.
3.4.2.a Retrieving

The first query consists of retrieving a value for a specific key. The first step in
the creation of the get command consists of defining a function which, given a list
and a proof of membership inside this list, returns the valuation of g for this specific
element. Note that, to retrieve this element, we use the structure of the proof which
induces a specific structure of the list (it cannot be empty because it contains an
element), which is deduced and used by AGDA, and made visible by the lack of a
case for the constructor [].

get_from_when_ : ∀ a l → a ∈ l → C267 267

get _ from (b ∶∶ _) when here _ = g b268 268

get a from (_ ∶∶ l) when there p = get a from l when p269 269

We also provide a variant on globally unique lists:

get_from_if_ : ∀ a l → a ∈ (content l) → C270 270

get a from l if p = get a from (content l) when p271 271

Then, we rely once more on the decidability of the membership relation to build
the proof and hide its usage to the user through the use of the Maybe type. Note
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that, instead of this type, we could use a more verbose approach, as for instance the
Either monad which would provide more information in the form of a String of
an enumerated type instead of just nothing that would contain information about
why the call failed. However, in our case, this information is straightforward (the
element was not in the list). Inmore complex case, this should be done, as advocated
in the perspectives in Section 8.2.

get_from_ : ∀ a l → Maybe C272 272

get a from l with dec∈ (dec≡f dec) a l273 273

get a from l | yes p = just (get a from l when p)274 274

get _ from _ | no ¬p = nothing275 275

Finally, we can extend this definition to GULists in order to retrieve values
from their content. Note that, in this case, the proof of conformity is not used in
the computation, and, since this command does not produce an element of type
GUList, no such proof has to be verified for this output.

get : ∀ a gul→ Maybe C276 276

get a = get a from_ ◦ content277 277

3.4.2.b Containment

It is important to be able to ask a globally unique list whether or not an element
is contained in it. In that purpose, we provide a nothing of membership extended
to globally unique lists, as follows:

_∈l_ : REL A GUList _278 278

_∈l_ x = x ∈_ ◦ content279 279

We then prove it decidable, which is proved as a simple functional composition
since _∈_ is itself decidable.

dec∈l : Decidabler _∈l_280 280

dec∈l x (gulist _ _) = dec∈ (dec≡f dec) x _281 281

Then we provide a notion of containment which uses the does operator to erase
the proof of membership and produce a boolean1.

contains : GUList → A → Bool282 282

contains gul x = does (dec∈l x gul)283 283

1In the most recent version of the standard library, this is not really an erasure since the boolean
is naturally contained inside the definition of the decidability
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3.4.2.c Elements

It is useful to be able to retrieve the content of a globally unique list, modulo a
function applied to its values.

private284 284

elements : ∀ {x} {X : Set x} → (B → X) → GUList → List X285 285

elements f = (mapl f) ◦ content286 286

This is particularly relevant when considering the functions f, g and id.

elementsF : GUList → List A287 287

elementsF = elements f288 288

–289 289

elementsG : GUList → List C290 290

elementsG = elements g291 291

–292 292

elementsId : GUList → List B293 293

elementsId = elements id294 294

3.4.3 Examples

Here are two examples of globally unique lists over different parameters. The
lists are built and populated using the operators defined in the precedent section. In
every case, we display AGDA’s evaluation using comments.

Example 1 GUList on equality over strings

module Example1 where295 295

open Commands id Data.String._≟_ id296 296

open FunctionRelation {A = String} id297 297

open GlobalUnicity _≡f_298 298

open RawMonad {f = lzero} monad299 299

–300 300

ex1 : Maybe GUList301 301

ex1 = return newGUL302 302

»= putAll (J "Judith"↪ "Bob"↪ "Alice" K)303 303

– content ex1 = J "Judith" ↪ "Bob" ↪ "Alice" K304 304

–305 305

ex2 : Maybe GUList306 306

ex2 = ex1 »= putAll (J "Judith"↪ "Hector" K)307 307

– ex2 = nothing308 308
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Example 2 GUList on equality over the first element of pairs of naturals

module Example2 where309 309

open Commands {B = ℕ × ℕ} (proj1) (Data.Nat._≟_) (proj2)310 310

open FunctionRelation {B = ℕ × ℕ} proj1311 311

open GlobalUnicity _≡f_312 312

open RawMonad {f = lzero} monad313 313

–314 314

ex1 : Maybe GUList315 315

ex1 = return newGUL316 316

»= putAll (J (3 , 4) ↪ (4 , 5) ↪ (5 , 5) K)317 317

»= assignOrPutAll (J (4 , 7) ↪ (3 , 12) ↪ (3 , 10) ↪ (5 , 1) K)318 318

– content ex1 = J (5 , 1) ↪ (4 , 7) ↪ (3 , 10) K319 319

–320 320

ex2 : Maybe GUList321 321

ex2 = ex1 »= assignAll (J (3 , 12) ↪ (4 , 10) ↪ (5 , 1) K)322 322

– content ex2 = J (5 , 1) ↪ (4 , 10) ↪ (3 , 12) K323 323

–324 324

ex3 : Maybe GUList325 325

ex3 = ex2 »= putAll (J (12 , 4) ↪ (20 , 5) ↪ (3 , 12) K)326 326

– ex3 = nothing327 327

–328 328

ex4 : Maybe GUList329 329

ex4 = ex2 »= assignAll (J (3 , 6) ↪ (7 , 8) ↪ (5 , 1) K)330 330

– ex4 = nothing331 331

–332 332

val1 : Maybe ℕ333 333

val1 = ex4 »= get 3334 334

– val1 = nothing335 335

–336 336

val2 : Maybe ℕ337 337

val2 = ex2 »= get 3338 338

– val2 = just 12339 339

–340 340

val3 : Maybe ℕ341 341

val3 = ex2 »= get 6342 342

– val3 = nothing343 343

–344 344

el1 : Maybe (List ℕ)345 345

el1 = ex2 »= just ◦ elementsG346 346

– el1 = just (J 1 ↪ 10 ↪ 12 K)347 347
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3.4.4 Comparison
It is possible to compare globally unique lists together. We provide two ways

of doing so : we compare them directly towards their content, or if they always
return the same value when calling the get query. These comparisons are proved
equivalent when the function x ↦ (f x , g x) is injective. This developement
is described in the appendices in Section A.1.6.

3.5 Two relevant instances of globally unique lists
The two examples presented in Section 3.4.3 have not been chosen randomly.

They correspond to two specific kinds of globally unique lists.

Bags correspond to the mathematical sets, which could not be called this way
because Set is already an AGDA keyword. Bags are defined as follows:

module ListUnique {a} (A : Set a) (decA : Decidable {A = A} _≡_) where348 348

open FunctionRelation {B = A} id349 349

open GlobalUnicity _≡f_ renaming (GUList to Bag) public350 350

open Commands {B = A} id decA id351 351

hiding (elementsF ; elementsG)352 352

renaming (elementsId to elements ; newGUL to newBag) public353 353

We use the keyword public to directly export what has been imported but we
change some names and elements of such imports: we rename the globally unique
lists to Bag and we hide primitives which are irrelevant when considering bags.

Maps are the usual associative lists. The maps are defined as follows:

module ListAssoc {a} (A : Set a)354 354

(decA : Decidabler {A = A} _≡_) {b} {B : Set b} where355 355

open FunctionRelation {B = A × B} proj1356 356

open GlobalUnicity _≡f_ renaming (GUList to Map) public357 357

open Commands {B = A × B} proj1 decA proj2 renaming358 358

(elementsF to keys ; elementsG to values ; newGUL to newMap) public359 359

Once again, we use the keyword public to export the right elements. This time
we rename three primitives to better match the common names used around maps:
keys which gives the set of keys in the maps, and values which gives back the list
of values contained in the map and newMap which builds a new empty map.

Another interesting thing to note is the use of braces (implicit argument) for
the second type B. This type cannot be inferred using the other parameters of the
module, which means it will have to be manually instantiated when using the mod-
ule. So, why make it implicit ? This is because further use of functions exported
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from this module will be able to infer this argument with the knowledge of the first
instantiation, which will make all the work on petrinets, for instance, a lot clearer
and less verbose, which is particularly convenient.

Assessments
This chapter presented a library that was developed using AGDA, which pro-

vides the notion of globally unique lists. Globally unique lists are abstract lists
parametrized with a binary relation, that can be instantiated into associative lists
(maps) or sets (bags). This library has been built using a specific methodology that
is used throughout this work. This consists in providing conformity properties to
each definition that is made, in order to assess the correctness of said definitions
toward their informal specification.

This library introduces several queries and commands that can be used on glob-
ally unique lists. These functions have preconditions which have to be satisfied by
their input. These preconditions are proven decidable, which means that, given a
specific input, it is possible to compute the proof that said input meets the precon-
ditions, or doesn’t. This is the occasion to introduce the use of the Maybe monad
to handle error cases and to hide the proofs that are built from said decidability
from the user. Should the input satisfy the requirements, then the function returns a
value in the form of just value. Otherwise, the function returns nothing. This
approach will be reused in Chapter 4.

A discussion has been made to better understand what benefits these globally
unique lists can provide, by instantiating the relation on which they depend by dif-
ferent kinds of relations. Giving a total order (strict or not) as a parameter does not
give any interesting result, and globally unique lists in this case are either lists with
at most 1 element or lists which contains an arbitrary number of the same element,
which is not fruitful. Instantiating the relation with a partial order is more inter-
esting, because globally unique lists in this case contain elements that comes from
separated chains of the partial order. The most interesting relations, however, are
equivalence relation, where the lists contain at most a single element per equiva-
lence classes bound to this relation. Both maps and bags come from this category
of globally unique lists.
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Chapter 4

Toward the mechanization of
event-based systems in AGDA

Outline
Since our work relies on trace semantics to express both models and languages

behaviour in an heterogeneous context, we first decided to work on event-based
transition systems, which are systems with an internal state that can evolve through
the execution of different events. These systems naturally induce traces which are
possible successions of states that can exist due to this process. Our goal is to exhibit
a generic methodology for the modelling of such systems. This chapter presents this
approach using the following outline:

1. Section 4.1 presents the objectives of this approach and places them in the
context of model engineering, after which the different steps that this ap-
proach contains are described: the structural representation of the states, the
relational representation of the transitions and the constrained evolution of
the system.

2. Section 4.2 describes a commonly used transition system: the PETRI NET.
The semantics of the nets is described along with the application of our
methodology to mechanize this language and allow its temporal evolution
through the execution of transitions which have been proven executable.

3. Section 4.3 describes another application of our methodology, on a language
more domain specific than PETRI NET: SIMPLEPDL. We explain how inter-
nal states were modelled and how this state can evolve through a safe exe-
cution of events. This section is followed by assessments on the lessons that
were learnt through the modelling of these two languages.
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4.1 Presentation of the approach

This section presents the advocated approach to model event-based systems in
proof assistants. As stated in the introduction of this chapter, there are three steps
in this methodology, that are, respectively: representing the states in a structural
manner, representing the possible transitions in a relational manner and finally al-
lowing a constrained evolution of the systems that is conforming to the precedent
representations. Each of these steps captures an important aspect in the represen-
tation of event-based transition systems. Before detailing these steps, we give an
overview of the goal of this approach.

4.1.1 Objective of the approach

Our work is placed in the context proposed by the GEMOC project, in which lan-
guages can be defined and split into their behavioural and structural aspects. In this
context, it is important to give a semantics to the languages that are defined inside
the framework. In GEMOC, the elementary actions are expressed at a language level
by a transformation of the current state of the model. While the global semantics of
the behavioural part of the system is expressed using CCSL, which will be tackled
in Chapters 6 and 7, the step by step evolution of the system is tackled in the current
chapter using event-based systems. We explore a methodology to encode models
in AGDA, and provide a semantics to the elementary actions that can be executed to
change this internal state. The ultimate goal would be to provide an abstract context
in which any such language that is defined using the MOF standard (more on this
standard is explained in Chapter 6) coupled with OCL constraints [127] could be
modelled. OCL allows us to provide additional constraints on a model which can-
not be modelled directly with MOF. While this ultimate goal is not yet reached, we
provide both the methodology and two concrete implementations that are important
steps towards its completion.

4.1.2 A structural representation of the states

A transition system consists of an internal state which can evolve through the
execution of transitions. In order to model this evolution, it is mandatory to model
the state of such systems. Transition systems are often represented as graphs (vari-
ous types of graphs) and these are somewhat challenging to represent in a functional
manner, because one cannot create two vertices of the graph then bind them through
edges as if in an imperative manner using pointers. To overcome this limitation, we
give names to the elements of the graphs and we use these names to emulate the
binding between them. The graph is hence represented as a set of maps binding its
elements together rather than a real graph as it would be displayed. For that pur-
pose, we use the library on globally unique lists which was presented in Chapter 3.
Note that, recently, maps were introduced in AGDA standard library, with an im-
plementation using AVLs (binary search trees) [141]. Should this implementation
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have been present in this standard library when we did this work, we would have
used it. However, it was not the case and we did our own maps as a preliminary
work, as depicted in Chapter 3. Regardless of the nature of the maps, it is conve-
nient to be able to use them to represent a given model, which is done over our two
target languages.

4.1.3 A relational representation of the transitions

The second step consists in defining the possible events that can occur on a
given system, after which the approach consists in assessing the requirements that
need to be fulfilled by a certain state in order for the system to evolve through one of
these events. These requirements must be modelled in the form of predicates over
the states of the system. In transition systems, the transitions are often guarded
which has to be taken into account when formulating such predicates. If there are
structural restrictions on the graph, these also have to be taken into account in the
process, because one should not be able to create an ill-formed model, as well as
making it evolve through paths it cannot take. In other words, this step consists in
expressing the preconditions that must be satisfied over the various transitions that
can be executed to modify the state of the system. The transitions here are said to
be represented relationally, as opposed to operationally, because at this step they
are not considered as functions but rather as relations that must be satisfied by the
various constituents of the systems. Using these relations, it is possible to define a
notion of liveness to such systems: the system is live (as opposed to dead-locked)
when at least one event can be executed. The next step proposes a concrete way of
executing events, provided the system is not dead.

4.1.4 A constrained evolution of the system

Once the predicates that formulate whether or not a given transition can be
executed have been modelled, one needs to be able to exploit them in order to ac-
tually make the system evolve in that direction when required by the user. At a
certain point of time, several transitions can maybe be executed in which case one
of them has to be chosen. In this section, we don’t take into account the overall
required behaviour of the system (whether or not a certain succession of transitions
is acceptable) but this issue will be tackled in Section 6.1. However, we allow an
evolution of the state of a system when the requested transition has indeed been
proven valid in regards to the current state of the system. This statement somehow
implies that the properties that have to be valid for a certain state of the system have
to be decidable. When asking the system to evolve in a certain way, the user should
not have to provide the proof it can indeed be done, but rather the system should
automatically build this proof when possible and, when it is not, provide the related
proof as well. The decidability of the predicates we use in this part is very impor-
tant in that regard. Thus, this step proceeds in the following manner: the user asks
a certain transition to be executed, then the system computes the proof that either
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it can actually be fired or not. If not, an error is raised, and if it is indeed possible,
the proof that has been computed is used to actually create a new state that results
in the execution of the transition. This step uses monads to handle errors in this
process and to allow the user to chain its requests of transitions to execute. This
completes the modelling of a step by step execution of transition systems. This ap-
proach has been developed and validated over two languages. The first one is the
common PETRI NET formalism [132] and the second one is SIMPLEPDL [45], an
executable language used to assess many of our works, for instance [39]. These
languages correspond to a simple and well-known case study of language transfor-
mation that is often taught to students in their engineer curriculum [40], since these
two languages are in fact in a relation of weak-bisimulation [41].

4.2 Application to PETRI NET

4.2.1 Presentation of the PETRI NET language

4.2.1.a A quick definition

Structural aspects A PETRI NET is a bipartite oriented graph used to represent
concurrent executable models that was first introduced in 1962 by Carl Adam Petri
in his PhD thesis [132]. The nodes of these graphs can be of two different natures,
places or transitions – hence the name bipartite – while the edges only embed a
single nature, the arcs, that are given a weight. The edges always connect a place to
a transition, which means they cannot connect two nodes of the same nature. The
graph is usually coupled with a marking, which allows us to track the resources
contained in the net, by associating each place with a number of tokens. The nature
of the tokens is ambivalent: they can be considered as part of the net itself or as a
means of depicting its temporal evolution. This distinction is hard to make and will
be discussed as well as detailed in Section 4.2.2. The different constitutive elements
of the nets are usually named in order to be able to make reference to them. The
following list summarizes the different structural elements that are used to represent
a net:

• The places are represented as a circle. They model the different types of
resources available in the net. These resources can be of various natures,
corresponding to physical or logical resources, depending on the purpose of
the user.

• The tokens are represented as black dots. They are located in the places of
the net. Each token models one occurrence of the resource represented by the
place that contains it. The number of tokens in a place can also be pictured as
a natural number instead of the same amount of back dots. Thus, the current
marking of the net is represented as a mapping between each place and the
positive number of tokens it contains.
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• The transitions are represented as rectangles. They model the different ac-
tions that can potentially occur during the evolution of the net. Transitions
are bound to places by the use of arcs.

• The arcs are represented by arrows going from a place to a transition, or vice-
versa. They are annotated with a natural number as weight, which has a value
of one by default. They model the resources that are produced or consumed
during the execution of the transition they are bound to.

All these elements are summarized in a simple PETRI NET meta-model on Fig-
ure 4.1.

Figure 4.1: PETRI NET meta-model

Behavioural aspects The aspects that are depicted in the previous paragraph and
summarized in the meta-model on Figure 4.1 are structural, in the sense that they
give no information on the possible evolution of the state of the net, in other words,
its behaviour. Rather, they allow the unambiguous definition of such state, that is
all. These structural aspects can embed structural constraints, such as the fact that an
arc can only bind two nodes of different natures, but do not embed any behavioural
constraints. However, they embed the structural elements over which behavioural
constraints can be expressed. In order to provide such constraints, one must start
by expressing which are the possible events that can occur on a given model.

The semantics of PETRI NET tells us that, in a PETRI NET model, we can asso-
ciate a possible event to each of the transitions that the net contains. Each such event
is thus labelled the same way as its corresponding transition. Once such events are
expressed, constraints on their execution can be defined. In the case of a PETRINET,
the event associated to the transition t can be executed when all its input places, –
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the places connected to its consumer arcs – contain at least the number of tokens
required by the weight of the arc that binds the two. As a direct consequence of this
constraint, a transition that has no consumer arc can be fired in all circumstances.

Once these constraints are expressed, we describe how the system evolves
through the execution of an event that can be executed. In the case of PETRI NET,
the net evolves as follows: firing a transition – executing its associated event – re-
sults in the following changes: each place that is connected to this transition through
a consumer arc is emptied of as many tokens as this arc’s weight, while each place
that is connected to it through a producer arc is filled with that many tokens.
4.2.1.b Examples

Figure 4.2 is an example of a simple PETRI NET representing the changes be-
tween seasons, which corresponds to a simple automata. There is initially only one
token which depicts the current season, Spring as shown in Figure 4.2a. The tran-
sitions can be fired to change one season to another. Since they all consume one
token to produce one token, the number of tokens in this net shall not vary – which
is fortunate because it is meant to represent seasons, which cannot appear simulta-
neously or disappear. After the firing of the transition "s2s" (the only one that was
fireable in the initial state of the net), the resulting net is depicted in Figure 4.2b.

Spring

Summer

Autumn

Winter

s2s s2a

a2ww2s

(a) Initial state

Spring

Summer

Autumn

Winter

s2s s2a

a2ww2s

(b) Next state
Figure 4.2: The seasons PETRI NET

The season net, while being somewhat simple, is not uninteresting. As stated
before, it has the property to preserve the number of tokens throughout its execution.
It is also deterministic: there are no possible concurrent aspects in the net because
at all times there is only one transition that can be fired. More interesting nets are
concurrent, and the order of firing of the transitions can have drastic consequences
on its future (through the existence of deadlocks for instance). An example featuring
a deadlock is depicted in Figure 4.3.

This example features two processes that are initially idle, represented by two
tokens in the idle place. Both processes simultaneously need two resources, A and
B, to execute their task. Initially, both resources have one instance available, repre-
sented by one token in each of these places. One process starts by requesting access
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Idle
A B

WaitA

WaitB
UseA UseAB

UseBA UseB

(a) Initial state

Idle
A B

WaitA

WaitB
UseA UseAB

UseBA UseB

(b) Deadlock state
Figure 4.3: The deadlock PETRI NET

to A then B, while the other asks for B then A. The deadlock happens when both
processes start their work concurrently by requesting access to their first resource
then waiting for the other to be available to pursue their task. Since both wait for
the other to free the resource they need, none of them can pursue their work. This
net does not necessarily end in a dead lock, when both processes start and finish
their action independently. This example emphasizes PETRI NET’s ability to model
concurrent aspects of system executions and illustrates that PETRI NET can have
several executions, some leading to dead locks, others to endless liveness.
4.2.1.c The TINA toolbox

Many tools are available to simulate the temporal behaviour of PETRI NET, one
of which is the TINA toolbox [23] that we rely on in our work, both for research
and teaching purposes. This tool allows us to edit nets, to import nets, to manually
simulate net, to make a structural or a reachability analysis of the net, and so on.
An example of TINA’s usage – in the stepper simulator – is depicted on Figure 4.4,
where the transitions marked in red are the one that can currently be fired.

Figure 4.4: A snapshot of TINA’s usage
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4.2.2 Our approach applied to PETRI NET

4.2.2.a Structural description of the net

Formal definition of PETRINET We start by creating amodule describing PETRI
NET. This module will use maps with keys that are instantiated with Strings, which
is why the module ListAssoc is imported with the first two fixed parameters. One
could chose to label the elements of the nets with different types of elements, pro-
vided the propositional equality between them is decidable.

open import ListAssoc String _≟_1 1

As for the PETRINET themselves, we chose tomodel them as twomaps, one rep-
resenting the places and the associated marking of the net (the number of tokens in
each places) and the other representing the transitions and the arcs going from these
transitions to the places. The first map, named marking contains all the names of
the places of the nets, associated to 0 when there are no tokens in them. This means
no additional list of places is required. The second map, named transitions,
contains all the names of the transitions in the net and, for each of these transitions,
the number of tokens entering and leaving a given place through the arcs. The nets
also have an additional parameter of conformity which ensures that the transitions
do not refer to non-existing places. This predicate of conformity corresponds to a
structural constraint that is not directly embedded in the other fields of the record.
Overall, this record corresponds to the meta-model on Figure 4.1 with the addition
of the constraint that an arc necessarily binds a place and a transition.

record Petrinet : Set where2 2

constructor [m_-_t][_] ; field3 3

marking : Map {B = ℕ}4 4

transitions : Map {B = Map {B = ℕ × ℕ}}5 5

.conformity : ∀ {t t∈trans p} →6 6

p ∈l (get t from transitions if t∈trans) → p ∈l marking7 7

Creation of an empty net As explained when describing maps, it is required to
instantiate the second parameter of the Map module, because it cannot be inferred.
In our case, these instantiations are ℕ, ℕ × ℕ and Map {B = ℕ × ℕ}. All fur-
ther functions written in this module will take an implicit parameter which will be
automatically resolved by AGDA using this initial instantiation. This is the case for
the creation of an empty PETRI NET done as follows:

newPet : Petrinet8 8

newPet = [m newMap - newMap t][ (� { {_} {()}}) ]9 9
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In this case, the two calls to the function newMap are different, since they accept
different implicit parameters, but thankfully AGDA is able to sort this out for us.

Addition of a place We provide a way of adding a place in a correct net:

+Place : String → ℕ → Petrinet → Maybe Petrinet10 10

+Place s _ [m m - _ t][ _ ] with dec∈l s m11 11

+Place _ _ _ | yes _ = nothing12 12

+Place s n [m m - t t][ c ] | no ¬p =13 13

just [m put s , n into m when ¬p - t t][ put∈ ◦ c ]14 14

• Line 11 invokes the decidability of the membership of the place in the mark-
ing using the with construct.

• Line 12 handles the case where the place is already present, as depicted by
yes _, returning nothing.

• Lines 13 and 14 handle the case where the place is not already present by
returning a new net with the addition of this place. Since we add a place, the
conformity property is preserved easily with the term put∈ ◦ cwhich is a
composition of the property of conformity of the input net and the preserva-
tion of membership through the addition of an element inside a list depicted
in Section 3.4.1.b.

Addition of transition We provide a way of adding an arcless transition to a net.

+Trans : String → Petrinet → Maybe Petrinet15 15

+Trans s [m _ - t t][ _ ] with dec∈l s t16 16

+Trans _ _ | yes _ = nothing17 17

+Trans s [m m - t t][ c ] | no ¬p =18 18

just [m m - put s , newMap into t when ¬p t][19 19

(� { {_} {there _} → c}) ]20 20

• Line 16 invokes the decidability of the membership of the transition inside
the transitions of the net using the with construct.

• Line 17 handles the case where the transition is already present by returning
nothing, as for the place.

• Lines 18 to 20 handles the case where the transition is not already present by
returning a new net with the addition of this transition. In this case, the preser-
vation of the conformity property is a simple anonymous function. Indeed,
since the transition is empty, it does not point to any place which ensures that
the conformity is preserved.
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Addition of an arc We finally provide a primitive to add an arc to a transition.

+Arc : String → String → ℕ→ ℕ → Petrinet → Maybe Petrinet21 21

+Arc st _ _ _ [m _ - t t][ _ ] with dec∈l st t22 22

+Arc _ _ _ _ _ | no _ = nothing23 23

+Arc _ sp _ _ [m m - _ t][ _ ] | yes _ with dec∈l sp m24 24

+Arc _ _ _ _ _ | yes _ | no _ = nothing25 25

+Arc st sp _ _ [m _ - t t][ _ ] | yes p | yes _26 26

with dec∈l sp (get st from t if p)27 27

+Arc _ _ _ _ _ | yes _ | yes _ | yes _ = nothing28 28

+Arc st sp -n +n [m m - t t][ c ] | yes p | yes q | no ¬p =29 29

just [m m - assign st ,30 30

(put sp , -n , +n into get st from t if p when ¬p) inside t if p t][31 31

prop2 {t} {m} (putpres {get st from t if p} {m} {¬k∈m1 = ¬p} q c) c ]32 32

• Line 22 invokes the decidability of the membership of the transition in the
transitions.

• Line 23 handles the absence of the transition returning nothing.
• Line 24 invokes the decidability of the membership of the place in the mark-

ing.
• Line 25 handles the absence of the place returning nothing.
• Line 26 and 27 invokes the decidability of the membership of the place in the

places that are already linked to the transition.
• Line 28 handles the case where this place is already bound to this transition

by returning nothing.
• Line 29 handles the only favourable case: the place and the transition are in

the net, and not yet bound. In this case, the arc is added by retrieving the arcs
bound to the transition, adding the arc inside it and reassigning the resulting
arcs in the transition. In this process, the property of conformity must be
preserved. This preservation is proved in the appendices along with lemmas
in Section A.1.7 and A.2.1.

Correctness preservation All these primitives preserve the properties of correct-
ness, which allows us to create step by step nets which are correct at all points during
their construction. If we were using pointers, such permanent correctness could not
be satisfied, but by using names it is possible. In the case of PETRI NET, the user
should start by creating an empty net, adding all the places, then all the transitions
and finally the arcs to ensure the correctness of its construction, as shown in the
following examples.
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4.2.2.b Interface with TINA

Weprovide functions to translate our
nets into files which can then be read by
TINA. These functions are only depicted
in the appendices in Section A.2.2.

To illustrate them, we provide two
examples of nets which have been ex-
ported to TINA. They are created using
the Maybe monad to chain the addition
of the elements of the net, starting by the
places, the transitions and then the arcs
in order for the net to be correct at all
times during its construction.

The first example is the net depicting
the changes of seasons, which was rep-
resented in Figure 4.2.

seasons : Maybe Petrinet33 33

seasons = return newPet34 34

»= +Place "spring" 135 35

»= +Place "summer" 036 36

»= +Place "winter" 037 37

»= +Place "autumn" 038 38

»= +Trans "s2a"39 39

»= +Trans "a2w"40 40

»= +Trans "w2s"41 41

»= +Trans "s2s"42 42

»= +Arc "s2a" "summer" 0 143 43

»= +Arc "s2a" "autumn" 1 044 44

»= +Arc "a2w" "autumn" 0 145 45

»= +Arc "a2w" "winter" 1 046 46

»= +Arc "w2s" "winter" 0 147 47

»= +Arc "w2s" "spring" 1 048 48

»= +Arc "s2s" "spring" 0 149 49

»= +Arc "s2s" "summer" 1 050 50

The second example is the net which
exhibits a potential deadlock, and which
was depicted in Figure 4.3.

deadlock : Maybe Petrinet51 51

deadlock = return newPet52 52

»= +Place "waitA" 053 53

»= +Place "waitB" 054 54

»= +Place "A" 155 55

»= +Place "B" 156 56

»= +Place "idle" 257 57

»= +Trans "UseA"58 58

»= +Trans "UseB"59 59

»= +Trans "UseAB"60 60

»= +Trans "UseBA"61 61

»= +Arc "UseBA" "A" 1 162 62

»= +Arc "UseBA" "idle" 0 163 63

»= +Arc "UseBA" "B" 0 164 64

»= +Arc "UseBA" "waitA" 1 065 65

»= +Arc "UseB" "waitA" 0 166 66

»= +Arc "UseB" "idle" 1 067 67

»= +Arc "UseB" "B" 1 068 68

»= +Arc "UseAB" "B" 1 169 69

»= +Arc "UseAB" "idle" 0 170 70

»= +Arc "UseAB" "A" 0 171 71

»= +Arc "UseAB" "waitB" 1 072 72

»= +Arc "UseA" "waitB" 0 173 73

»= +Arc "UseA" "idle" 1 074 74

»= +Arc "UseA" "A" 1 075 75

Using our function, we generate a
.net files for both our examples. These
files are correct regarding TINA’s syn-
tax, as shown in Figure 4.5, and their
graphical representations give the Fig-
ures 4.2 and 4.3.

4.2.2.c Behavioural aspects

A net can evolve through the execution of a transition. When such a transition
is executed, it is said that it has been fired in the language vocabulary. A transition
can be fired if there are enough tokens in all the places from which it consumes
tokens. When firing a transition, the tokens that are consumed by the transition are
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(a) The seasons net (b) The deadlock net
Figure 4.5: The generated nets

retrieved from the right places while the tokens produced are added to these places.
It is possible that a transition adds and retrieves tokens from the same place. If these
numbers are equal, this emulates a read arc, which is a special arc which checks if
there are enough tokens in a given place without consuming them. This section
uses the steps from the methodology described in Section 4.1, as follows:

• Expressing the properties required to fire a transition in a relational manner.
• Proving that these properties are decidable.
• Providing functions which actually fire transitions when it has been decided

possible, or fail (using Maybe) when it has been decided otherwise.

Predicates of firing We express the fact that a list of arcs is compliant with a
given mapping relying on the All P predicate which states that all the elements of
a list satisfy P, and the Any P predicate which states that an element of type Maybe
has the just structure and encapsulates a value which satisfies P. It is possible when
all the places that are linked by the arcs are present in the map and contains enough
tokens, which is expressed as follows.

CanFireArcs : REL Map (List (String × ℕ × ℕ)) _76 76

CanFireArcs m =77 77

All (_⟨ (� {(a , -n , _) → Any (-n ≤_) ◦ (get a)}) ⟩ m)78 78

In that context, a transition can be fired in a net when the list of places retrieved
from the transition map can be fired inside the places of the net. This definition also
takes into account the fact that the transition has to be part of the net, once again
using Any on the result of get.
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CanFireTrans : REL String Petrinet _79 79

CanFireTrans s [m marking - transitions t][ _ ] =80 80

Any (CanFireArcs marking ◦ Map.content) (get s transitions)81 81

The two previous definitions are presented in their most epurate form. A more
detailed version is presented in the appendices in Section A.2.4 for the curious
reader. Note that these two definitions could have exploited the conformity prop-
erty of a net, by taking as parameter a proof of membership, but this would lead to
more complex definitions with very little upsides, which we chose not to do.

While it is relevant to know if a given transition can be fired inside a net, it
can be even more interesting to know if there exists a transition which can be fired
without the previous knowledge of this transition’s name. This is the concept of
liveness: a net is live if it contains a transition which can be fired, as follows:

live : Pred Petrinet _82 82

live pet = ∃ (_⟨ CanFireTrans ⟩ pet)83 83

Decidability We give decidability proofs for these predicates to compute the
proofs and use them to actually fire a transition in the net if the preconditions to
this firing are met. We directly provide the proof of decidability that a transition
can be fired in a given net. This proof is built from the decidability of the non-
strict precedence over natural numbers and the fact that both Any and All preserve
decidability, which is respectively expressed by dec and all. Similarly to the ex-
pression of the CanFireTrans predicate, we provide a more detailed version of this
decidability in the appendices in Section A.2.5.

decFire : Decidable CanFireTrans84 84

decFire _ [m _ - _ t][ _ ] =85 85

dec ((all � {_ → dec (_≤?_ _) _}) ◦ Map.content) _86 86

Proving the decidability of the live predicate is much more complicated be-
cause of the existential quantification. Although the lemmas that are used for that
purpose are put in the appendices in Section A.2.3, one of them is particularly in-
teresting because it gives a way of proving such decidability with a list of possible
candidates. The global proof is as follows:

decLive : Decidablep live87 87

decLive pet = let t = transitions pet in88 88

fromSample (keys t) (flip decFire pet)89 89

(_◦ (prop← {m = t}) ◦ getp {m = t})90 90
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Firing a transition when decided possible Now that we can compute the proof
that a transition can be fired inside a net, we can actually commit this computation
in the net, thus creating a new net. The first step consists of creating a new map by
applying all the changes of a list of arcs in a map of places.

fireArcs : ∀ (m : Map {B = ℕ}) {l} → CanFireArcs m l91 91

→ ∃ � (m’ : Map {B = ℕ}) → ∀ {x} → x ∈l m→ x ∈l m’92 92

fireArcs m [] = m , id93 93

fireArcs m {l = (a , _ , _) ∶∶ _} (_ ∶∶ _) with dec∈l a m94 94

fireArcs m (just _ ∶∶ p) | yes _ with fireArcs m p95 95

fireArcs m {(a , _ , +n) ∶∶ _} (just -n≤x ∶∶ p) | yes q | m’ , p’ =96 96

(assign a , (sub -n≤x) + +n inside m’ if p’ q) , assign∈ ◦ p’97 97

Note that fireArcs also returns the proof that the keys of this new map are
unchanged through this transformation, since we only modify its values. Returning
this proof will be useful to prove the conformity property when creating a new net
after firing a transition. This leads to the firing of a transition into a net knowing
that it can actually be fired, which is materialized with the proof as parameter. This
consists in modifying the places according to the tokens that are consumed and
added by the transition, conforming to fireArcs.

fire_inside_when_ : ∀ s pet→ CanFireTrans s pet→ Petrinet98 98

fire s inside pet when _ with dec∈l s (transitions pet)99 99

(fire s inside [m m - _ t][ _ ] when just p) | yes _ with fireArcs m p100 100

(fire s inside [m m - t t][ conf ] when just p) | yes _ | m’ , q =101 101

[m m’ - t t][ q ◦ conf ]102 102

Now it is possible to fire a transition in a net.

fire : String → Petrinet → Maybe Petrinet103 103

fire s pet with decFire s pet104 104

fire s pet | yes p = just (fire s inside pet when p)105 105

fire _ _ | no _ = nothing106 106

We can then change the state of a live net by firing its first fireable transition.

fireLive : Petrinet → Maybe Petrinet107 107

fireLive pet with decLive pet108 108

fireLive pet | yes (s , p) = just (fire s inside pet when p)109 109

fireLive _ | no _ = nothing110 110

Note that this behaviour could be improved by firing a random transition among
the fireable ones. This would require to compute the list of all fireable transitions,
which is easy to do considering what has already been done, but random behaviour
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are not easy to model in proof assistants, and to my knowledge it still has not be
done properly in AGDA. However, it could be improperly done by postulating a
random function and giving the AGDA compiler rules to compile it in HASKELL.

Example As an example, we can use the deadlock net from Figure 4.3 to reach
a deadlock state and compute the proof that it is indeed in a deadlock. We use a
function which displays "nothing" when the net is malformed, "deadlock" when no
transition can be fired, or the name of a transition that can be.

liveness-state : Maybe Petrinet → String111 111

liveness-state nothing = "nothing"112 112

liveness-state (just x) with decLive x113 113

liveness-state (just _) | yes (s , _) = "I can at least fire " ++ s114 114

liveness-state (just _) | no _ = "deadlock"115 115

In this example, we fire different transitions of the deadlock net, until we reach
a state of deadlock, after which firing a transition returns nothing.

l-s-d : String116 116

l-s-d = liveness-state deadlock117 117

– "I can at least fire UseB"118 118

–119 119

deadlock1 : Maybe Petrinet120 120

deadlock1 = deadlock »= (fire "UseB")121 121

–122 122

l-s-d1 : String123 123

l-s-d1 = liveness-state deadlock1124 124

– "I can at least fire UseBA"125 125

–126 126

deadlock2 : Maybe Petrinet127 127

deadlock2 = deadlock1 »= (fire "UseA")128 128

–129 129

l-s-d2 : String130 130

l-s-d2 = liveness-state deadlock2131 131

– "deadlock"132 132

–133 133

deadlock3 : Maybe Petrinet134 134

deadlock3 = deadlock2 »= (fire "UseAB")135 135

–136 136

l-s-d3 : String137 137

l-s-d3 = liveness-state deadlock3138 138

– "nothing"139 139
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4.3 Application to SIMPLEPDL
In Section 4.2, we proposed a first application of our approach described in

Section 4.1. This approach aims at modelling event-based systems into AGDA by
describing their structural and behavioural aspects. In order to confront this ap-
proach with other case studies, we propose a second application on a language
which displays some differences with PETRI NET: SIMPLEPDL. These languages
are different in various way, the most notable one being that one is more abstract,
SIMPLEPDL, while the other is more concrete, PETRINET, which can be confirmed
by an existing transformation going from SIMPLEPDL to PETRI NET. Another dif-
ference lies in the kind of events that they propose: PETRI NET proposes a single
type of event, which is the firing of a transition, while SIMPLEPDL exhibits two
different kinds of events, as shown in the next section. We propose to apply our
methodology to SIMPLEPDL to assess how these differences impact our modelling.
Since this is the second application of our approach, we give less explanation about
their similar aspects to focus on the differences between the two.

4.3.1 Presentation of the SIMPLEPDL language

4.3.1.a A quick definition

Structural aspects SIMPLEPDL is a language to describe processes composed
of activities that can be executed in a given order. This language was first intro-
duced in [42] and [45] while its executable version has been presented in [22]. The
main notion in SIMPLEPDL is a process. A process is composed of at least one
activity (WorkDefinition) and an arbitrary number of constraints that depict how
these activities must be ordered with one another (WorkSequence). Each WorkSe-
quence specifies a relation of causality between two activities through a relation of
dependence. It states that a given activity can only start – or finish – when another
activity has already been started – or finished. It is a convenient way of describ-
ing causality between activities inside a global process. A process also contains
a set of resources, each of which in a specific quantity. Each WorkDefinition can
require the availability of a subset of these resources to be started. The following
list summarizes the different elements that are used to represent a process model:

• The WorkDefinitions are represented by ellipses labelled by the name of the
activity it represents.

• TheWorkSequences are represented by arrows going from the activity which
induces this dependence to the activity which is the target of the dependence.
These arrows are labelled with the nature of the dependence: start to start
(s2s), start to finish (s2f), finish to start (f2s) and finish to finish (f2f).

• The resources are represented as squares labelled with their names. These
squares contain a number that represents the number of available resources
of this kind in the process similarly to PETRI NET places.
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• The need for resources from an activity is depicted as an arrow going from
the resource to the activity in question, labelled with the number of required
resource from this kind.

The meta-model for this language is depicted in Figure 4.6.

Figure 4.6: SPEM simplified meta-model
From this point on, we ignore resources. These are an important part of a pro-

cess model but they offer no additional interesting modelling aspect that would not
already be tackled in our case studies.

Behavioural aspects We start by identifying the different events that can occur
during the execution of a process model. As opposed to PETRI NET, where these
events were only of a single nature, the firing of transitions, the events here are
of two kinds: starting and finishing an activity. In order to assess the possibility
of executing such events for the activities contained in a process, we need to keep
track of the state of each activity. Depending on this state, the events can possibly
be executed. We consider three different states for the activities of a model: they
are either not started, in progress, or finished. For each activity, depending on the
dependences for which this activity is the target, and depending on the state of the
activity it depends on, the start or finish event can or cannot be executed. The
following list summarizes the different requirements bound to the different kind of
dependencies to execute an activity a that depends on an activity b:

• s2s: a must not be started and b must be in progress or finished.
• s2f: a must be in progress and b must be in progress or finished.
• f2s: a must not be started and b must be finished.
• f2f: a must be in progress and b must be finished.
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4.3.1.b Example

Documentation Programming Testing

Design
f2f

s2s f2s s2s

f2f

Figure 4.7: The development process

We consider a standard example of a development process depicted in Fig-
ure 4.7. This example is composed of 4 activities which are roughly the usual dif-
ferent steps in a program’s development, namely the design, the programming, the
documentation and the testing. These activities have the following dependencies:

• Documentation can only finish after Design is finished.

• Documentation can only start after Design is started.

• Programming can only start after Design is finished.

• Testing can only start after Design is started.

• Testing can only finish after Programming is finished.

While this example does not contain any resources, it is interesting because from
a simple description of a development process and the relations between its con-
stituents, it shows the importance of Design since every other step depends on it
one way or another, while it does not depend on anything.

4.3.2 Our approach applied to SIMPLEPDL

As mentioned before, the formal modelling of SIMPLEPDL given in this sec-
tion does not contain the resources, because we intend to show the differences and
similarities in the modelling of the core aspects of PETRI NET and SIMPLEPDL.
Adding the resources would not require an extended amount of work, and, most
importantly, would not yield any particularly interesting modelling idea which are
not already presented in this document.
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4.3.2.a Structural aspects of a process model

Workdefinitions AWorkDefinition is composed of a name and a state, which can
either be not started, in progress or finished. The WorkDefinitions will be encoded
as map from String to WDState, where WDState is one of these possible states:

data WDState : Set where1 1

notStarted : WDState2 2

inProgress : WDState3 3

finished : WDState4 4

Worksequences The definition of WorkSequences depicted in Figure 4.6 makes
them look symmetrical. They have a predecessor, a successor and a relation of de-
pendence between the two. However, in a more operational manner, this symmetry
needs to be broken down because the successor is the WorkDefinition on which an
action needs to be performed while the predecessor remains unchanged when the
WorkSequence is executed, hence a fundamental difference between the two. We
start by defining the notion of Action:

data Action : Set where5 5

start : Action6 6

finish : Action7 7

Then we define the notion of dependence between WorkDefinitions, depicting
the asymmetry between the predecessor of a WorkSequence and its successor:

data Dependence : Set where8 8

toStart : ∀ (a : Action) → Dependence9 9

toFinish : ∀ (a : Action) → Dependence10 10

The Dependence has the following meaning:
• (toStart a) means that, in order for the successor to be able to start, the

action a must have been done on the predecessor.
• (toFinish a) means that, in order for the successor to be able to finish, the

action a must have been done on the predecessor.
Having defined these notions, a WorkSequence is simply represented by the

product of a string, a dependence and another string:

WorkSequence : Set11 11

WorkSequence = String × Dependence × String12 12
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In a process model, the WorkSequences will be represented as a Bag of Work-
Sequences which means the equality between them must be decidable, which is
established in the appendices in Section A.2.6.

All in all, the bags and the maps can be instantiated with the right parameters to
be used inside a process model, while also renaming some of the exported functions
because both bags and maps are instances of globally unique list and thus export
the same elements which must be differentiated.

open import ListAssoc String _≟_ {B = WDState}13 13

open import ListUnique WorkSequence dec≡ws using (Bag ; newBag)14 14

renaming15 15

(_∈l_ to _∈g_ ; dec∈l to dec∈g ; put_into_when_ to putg_into_when_)16 16

Process models The process models can now be defined. They contain a Map
of WorkDefinitions, a Bag of WorkSequences and three properties of conformity,
encoding the following properties: the WorkSequences do not have the same pre-
decessor and successor and both of them correspond to WorkDefinitions that are
present in the model.

record SimplePDL : Set where17 17

constructor pdl ; field18 18

wds : Map19 19

wss : Bag20 20

.conf1 : ∀ {x} → x ∈g wss → proj1 x ∈l wds21 21

.conf2 : ∀ {x} → x ∈g wss → proj2 (proj2 x) ∈l wds22 22

.conf3 : ∀ {x} → x ∈g wss → ¬ proj1 x ≡ (proj2 (proj2 x))23 23

At this point, a question arises, which is similar to the one introduced and dis-
cussed in Section 2.3.4.c when comparing vectors and lists: why not embed the
three conformity properties inside the Bag of WorkSequences directly ? This is in-
deed possible, but this makes the type of the Bag depend on the field wds which
is by no means a problem, but which leads to more complicated types and a more
complicated definition. This is a common issue when programming with dependent
types: where to put the conformity properties ? Shall we put them really deep in-
side the data structure or rather at the root of the tree ? From my experience, and to
my knowledge and understanding, there is no good answer to that question. Either
choice makes some proofs easier and others harder with an overall equivalent proof
effort in both cases, even though there might be some specific examples where one
method should be advocated rather than the other. In this work, we expressed the
overall properties of conformity at the root of our data structure. If the reader is
interested, Section A.2.7 in the appendices shows an alternative definition of the
process model data type when the properties are encoded in the leaves of the tree.
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Creation of an empty process model We provide a function to build a process
model which is initially empty.

newPDL : SimplePDL24 24

newPDL = pdl newMap newBag (� ()) (� ()) (� ())25 25

Addition of aWorkDefinition Weprovide a function to add aWorkDefinition in-
side a process model given its name. The newly added WorkDefinition is attributed
the state not started.

+wd : String → SimplePDL → Maybe SimplePDL26 26

+wd s (pdl wds _ _ _ _) with dec∈l s wds27 27

+wd _ _ | yes _ = nothing28 28

+wd s (pdl wds wss c1 c2 c3) | no ¬p = just (pdl (put s ,29 29

notStarted into wds when ¬p) wss (put∈ ◦ c1) (put∈ ◦ c2) c3)30 30

Addition of a WorkSequence Finally, we provide a function to add a workse-
quence inside a process model, the definition of which is left for the appendices in
Section A.2.8, as well as the proof of preservation. This function takes three strings
as parameters, the second one corresponds to the kind of dependence, while the two
others correspond to the two related WorkDefinitions.
4.3.2.b Behavioural aspects of a process model

Predicates of execution The next step in our methodology consists in expressing
the predicates which allow a WorkDefinition to be executed. The first step in that
purpose is the left compliance, which means the compliance towards the prede-
cessor of a WorkSequence for a given action. In other words, Complies← a wds
means that a has already been executed by the WorkDefinition whose state is wds.

Complies← : Action → WDState → Set31 31

Complies← start wds = wds ≡ inProgress ⊎ wds ≡ finished32 32

Complies← finish = _≡ finished33 33

The right compliance concerns the successor and checks whether its internal
states allows it to execute the given action. In other words Complies→ a wds
means that a is the action which is compatible with wds.

Complies→ : Action → WDState → Set34 34

Complies→ start = _≡ notStarted35 35

Complies→ finish = _≡ inProgress36 36
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The next predicate expresses the compatibility between the state of the prede-
cessor, the action to perform and the dependence between the predecessor and the
successor. There are four possible cases of compatibility, which can be summed up
as follows: either the dependence is not relevant towards the action, or it contains
an action which is compliant.

data Comp (wds : WDState) : Action → Dependence → Set where37 37

cStart : ∀ {a} → Complies← a wds→ Comp wds start (toStart a)38 38

cFinish : ∀ {a} → Complies← a wds→ Comp wds finish (toFinish a)39 39

cStartFinish : ∀ {a} → Comp wds start (toFinish a)40 40

cFinishStart : ∀ {a} → Comp wds finish (toStart a)41 41

To assess whether a list of WorkSequences is compliant to the execution of an
action for a given WorkDefinition, each of its members must either be irrelevant
for this WorkDefinition (which means its successor is different from it) or must be
compatible according to the previous predicate.

CompliesWithList : Action → String → Map → List WorkSequence → Set42 42

CompliesWithList a s wds =43 43

All � {(prec , dep , succ) → (¬ succ ≡ s) ⊎44 44

Any (� x → Comp x a dep) (get prec wds)}45 45

Ultimately, we can express the fact that a process model is compliant to the
execution of a specific action on a specific WorkDefinition. This is possible
when this WorkDefinition appears in the process model and when the content
of the Bag of WorkSequences is compliant with this execution according to the
CompliesWithList predicate.

CompliesWith : Action → String → SimplePDL → Set46 46

CompliesWith a s (pdl wds wss _ _ _) =47 47

Any (Complies→ a) (get s wds) ×48 48

CompliesWithList a s wds (Bag.content wss)49 49

Similarly to the PETRI NET we can define a notion of liveness of a model of
process: it is live whenever it contains aWorkDefinition which can either be started
or finished.

AliveAction : Action → SimplePDL → Set50 50

AliveAction a spdl = ∃ (� s → CompliesWith a s spdl)51 51

–52 52

Alive : SimplePDL → Set53 53

Alive = AliveAction start ∪ AliveAction finish54 54

As a side note, if we consider a process model which is not live, but which only
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contains WorkDefinitions that are finished, it is in a "correct" state of deadlock,
although it still is in a deadlock state. This shows that the notion of deadlock itself
is not sufficient to encapsulate the semantics of a correct execution of an event-
based system, which brings us one more time to the problematics tackled in the
following chapters.

Decidability According to our methodology we then intend to prove the decid-
ability of our predicates. The decidability of Complies←, Complies→ and Comp
are trivial and are provided in the appendices in Section A.2.9. As for the decidabil-
ity of CompliesWith, we only give the epurate form, because it follows the same
steps and logic as what was explained in detail for the nets in Section A.2.5.

deccwl : ∀ {a s} → Decidable (CompliesWithList a s)55 55

deccwl wds = all � _ → ¬? (_ ≟ _) ⊎-dec dec (� _ → deccomp _ _) _56 56

–57 57

deccw : ∀ {a} → Decidable (CompliesWith a)58 58

deccw {a} _ spdl = dec (decatpt a) _ ×-dec deccwl (wds spdl) _59 59

The predicates of liveness are also decidable, thanks to the same properties that
were used to prove the decidability of the liveness of PETRI NET depicted in Sec-
tion A.2.3 which allows us to prove the decidability of an existential quantification
using a list of possible candidates.

decAliveAction : ∀ a→ Decidablep (AliveAction a)60 60

decAliveAction a spdl = let w = wds spdl in61 61

fromSample (keys w) (flip deccw spdl)62 62

(_◦ (prop← {m = w}) ◦ (getp {m = w}) ◦ proj1)63 63

–64 64

decAlive : Decidablep Alive65 65

decAlive x = decAliveAction start x ⊎-dec decAliveAction finish x66 66

Executing an action We give functions which allow us to perform a given action
on a given WorkDefinition of a process model. As advocated, these functions com-
pute the proof that the action can be performed or not and act accordingly. First,
we perform a change of state in a state compliant with a given action.

perform_from_when_ : ∀ (a : Action) (wds : WDState) →67 67

Complies→ a wds → WDState68 68

perform start from .notStarted when refl = inProgress69 69

perform finish from .inProgress when refl = finished70 70

Then we perform the actual execution of a WorkDefinition when we know it
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can be done. This consists in extracting the current state of the WorkDefinition
and replacing it with its new state which reflects the fact that the action has been
performed using the previous definition perform_from_when_.

perform_on_inside_when_ : ∀ a s pdl →71 71

CompliesWith a s pdl → SimplePDL72 72

perform a on s inside spdl when (fst , snd) with dec∈l s (wds spdl)73 73

perform a on s inside pdl wds wss c1 c2 c3 when (just q , snd) | yes p =74 74

pdl (assign s ,75 75

(perform a from (get s from wds if p) when q) inside wds if p)76 76

wss (assign∈ ◦ c1) (assign∈ ◦ c2) c377 77

We use the proof of decidability to perform a given action when possible.

perform : ∀ a s pdl → Maybe SimplePDL78 78

perform a s spdl with deccw {a} s spdl79 79

perform _ _ _ | no _ = nothing80 80

perform a s spdl | yes p = just (perform a on s inside spdl when p)81 81

–82 82

start_inside_ : ∀ s pdl → Maybe SimplePDL83 83

start_inside_ = perform start84 84

–85 85

finish_inside_ : ∀ s pdl → Maybe SimplePDL86 86

finish_inside_ = perform finish87 87

Example As an example, we instantiate in our framework the process model de-
picted in Figure 4.7. By creating an empty model, then populating it withWorkDef-
initions and finally with WorkSequences we guarantee a correct-by-construction
creation of our model.

dev : Maybe SimplePDL88 88

dev = return newPDL89 89

»= +wd "Documentation"90 90

»= +wd "Design"91 91

»= +wd "Programming"92 92

»= +wd "Testing"93 93

»= +ws "Design" "f2f" "Documentation"94 94

»= +ws "Design" "s2s" "Documentation"95 95

»= +ws "Design" "f2s" "Programming"96 96

»= +ws "Design" "s2s" "Testing"97 97

»= +ws "Programming" "f2f" "Testing"98 98
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We define functions which output a list of all the possible WorkDefinitions that
can either be started or finished in a given process model.

listCanPerform : ∀ a spdl→ (candidates : List String) → List String99 99

listCanPerform _ _ [] = []100 100

listCanPerform a spdl (s ∶∶ _) with deccw {a} s spdl101 101

listCanPerform a spdl (_ ∶∶ l) | no _ = listCanPerform a spdl l102 102

listCanPerform a spdl (s ∶∶ l) | yes p = s ∶∶ (listCanPerform a spdl l)103 103

–104 104

listCanStart : ∀ spdl→ List String105 105

listCanStart spdl = listCanPerform start spdl (keys (wds spdl))106 106

–107 107

listCanFinish : ∀ spdl → List String108 108

listCanFinish spdl = listCanPerform finish spdl (keys (wds spdl))109 109

This allows us to execute some steps in our model, which are described using
comments.

– Only the Design can be started110 110

csdev : mapm listCanStart dev ≡ just ("Design" ∶∶ [])111 111

csdev = refl112 112

– We start the Design113 113

dev1 : _114 114

dev1 = dev »= start "Design" inside_115 115

– Now, the Testing and the Documentation can be started116 116

csdev1 : mapm listCanStart dev1 ≡117 117

just ("Testing" ∶∶ "Documentation" ∶∶ [])118 118

csdev1 = refl119 119

– And the Design can be finished120 120

cfdev1 : mapm listCanFinish dev1 ≡ just ("Design" ∶∶ [])121 121

cfdev1 = refl122 122

– We finish the Design123 123

dev2 : _124 124

dev2 = dev1 »= finish "Design" inside_125 125

– The Programming is now available126 126

csdev2 : mapm listCanStart dev2 ≡127 127

just ("Testing" ∶∶ "Programming" ∶∶ "Documentation" ∶∶ [])128 128

csdev2 = refl129 129

– No further activities can be finished at the moment130 130

cfdev2 : mapm listCanFinish dev2 ≡ just []131 131

cfdev2 = refl132 132
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Assessments
This chapter presented an approach to model event-based systems in AGDA.

This modelling consists of several steps, which have been validated over two tar-
get languages: PETRI NET and SIMPLEPDL. Through the modelling of these lan-
guages, we can learn some lessons on how to approach suchmodelling in the general
case for languages defined in MOF with the potential addition of OCL constraints.

The description of the internal state of the system can be defined using records
containing two kinds of fields: the actual structure of the state, using maps and
bags which allow us to emulate the graph structure of the states, and properties of
conformity over this structure. These conformity properties can be declared irrel-
evant in AGDA as described in Section 2.3.5.e. Another possibility would be to
encode these properties directly in the leafs of the structure but this would lead to
more complicated types which we chose not to do. In both our target languages,
the conformity properties were similar: it consists in stating that the edges in the
graph do not point to non-existing vertices. They also embed some additional se-
mantics, such as the fact that two elements should not be the same, as it was the case
for SIMPLEPDL. Overall, any structural property can be expressed as a conformity
property embedded inside the record depicting the state of the system.

The description of the possible events – atomic actions in the sense of GEMOC–
which allow the system to evolve is then done relationally: it consists in defining
predicates which, when satisfied, ensure that the internal state of the system can
evolve according to the semantics of the language. In both our target language,
defining these predicates is done in two steps: expressing locally what are the con-
ditions of evolution (enough tokens in a place for instance in PETRI NET) and then
incorporating these conditions in the whole data structure, using for instance prim-
itives over maps, bags and lists.

Once the evolution predicates have been defined, the evolution of the system
can be made possible with the previous knowledge that said predicate holds. Us-
ing the proof of possible evolution, we retrieve the concrete elements which allow
the system to evolve and we use them to commit the changes it implies into the
state of the system. Both in SIMPLEPDL and PETRI NET, it consists in looking for
membership proofs to find the appropriate elements on which a change has to be
committed. Since such evolution creates a new state, the properties of conformity
have to be preserved through this process. Finally, the predicates of evolution are
proved decidable, which allows us to try to execute a given action in all cases with-
out the knowledge that it can be executed. This concludes our methodology on how
to handle the modelling of event-based systems in AGDA.

Overall, this methodology embeds both the structural aspects of the languages
as well as their step-by-step behavioural aspects, meaning the atomic actions that
can possibly be executed for a given state. The third aspects advocated by GEMOC,
which consists in reducing the possible traces of the systems (to avoid deadlocks, for
instance, or to force synchronicity between actions) though constraints over these
traces is tackled in the following chapters.
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Chapter 5

Refining instants in asynchronous
systems execution

Outline
This chapter treats the issue of instant refinement through the following outline:
1. Section 5.1 introduces basic notions which are used to model logical time in

asynchronous systems such as instants, partial orders and time structures. It
also introduces the notion of trace-based semantics, which allows us to give
meaning to languages through their possible sequences of events during their
executions, the so called traces.

2. Section 5.2 introduces the issue of instant refinement in asynchronous sys-
tems, with the notion of level of refinement and level of observation. It pro-
vides the core contribution of this chapter: the modelling of refinement as an
order between partial orders.

3. Section 5.3 gives keys to understand how our notion of refinement was mech-
anized, and which properties have been deduced from this mechanization. It
also emphasises the intuition that comes from these properties.

4. Section 5.4 presents a detailed example of instant refinement on a simple tran-
sition system on which a transition is refined using our approach. It consists
in all the steps which should be done to treat such case of refinement, and
concludes with a formal verification of this example.
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5.1 Handling of time in asynchronous systems
Chapter 4 presented an approach on how to formally encode event-based sys-

tems, without handling their global behaviour. For instance, Figure 4.3 showed a
PETRI NET which can possibly enter a state of deadlock, depending on the transi-
tions we chose to fire. Should we give higher level properties on this execution of
this model, we could avoid such cases and force an endless correct behaviour where
both processes never take access to their first resource simultaneously. In order to
express such properties, we advocate to work with trace-based semantics, which are
described in the following section.

5.1.1 Introduction to traced-based semantics
Asynchronous systems There exist many definitions of the synchronous and
asynchronous words in computer science, the ones coming from the hardware archi-
tecture including clocks that can be global or local, the one coming from concurrent
systems, the one coming from the communication models, and even the ones com-
ing from certain kinds of language or usage of languages. In our work, since CPS
are related to the real world and the notion of time, we use a definition close to the
one from hardware and related to clocks. In other words, asynchronous systems in
our work are systems whose behaviours and actions are not subject to an hypothet-
ical predefined global clock providing the set of all possible instants where events
can occur. Rather, each action performed by these systems is done in an asyn-
chronous manner, in other words, at an arbitrary point in time. As a consequence,
there is no total order on the events that occur in these systems, but only possible
partial orders, which will be detailed in Section 5.1.3.

Traces of execution The traces of execution of a given system are all the possible
outcomes, represented as sequences of events, that the execution of the system can
induce. A specific execution of this system will provide a trace which is a compila-
tion of all that happened during this execution represented as a sequence of events.
These traces do not take into account the internal mechanisms of the system, but
only the events that have been observed throughout its execution.

Events The events are the constituents of the traces. If there are no observable
events, then the traces will be empty and will yield no other information than that no
observable event occurred. Usually, several events can be observed which makes
the traces of execution relevant in describing the behaviour of the system, by in-
terpreting the precedences between the occurrences of the events tracked by the
traces.

Time structure A time structure is a notion derived from event structures intro-
duced by Winskel in [152] and Lamport in [89] who propose to couple a notion of
time with a partial order to bind certain events together with a notion of precedence,
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while others are related through a notion of coincidence. Such structures are used
in our work and depicted more precisely in Section 5.1.3. These structures induce
the notion of causality, which is characterized by two instants being in this same
thread of the time structure.

Observations The level of observation is fundamental when dealing with such
systems because a trace only takes into account observable events . This introduces
the notion of refinement, which categorizes certain sets of events as being part of
the same level of observation, which is the topic of Section 5.2.

Time It is impossible to talk about traces of execution without mentioning time,
which is the implicit notion on which they are based in order to build sequences of
events (sequences are strictly ordered structures). Each event occurs on a certain
instant, and these instants are ordered in a certain way which is fundamental when
specifying the behaviour of a system. The following sections are meant to explain
and describe these notions as thoroughly as possible.

5.1.2 Instants

Instants are the main concept on which asynchronous languages are defined. To
better understand what these instants stand for, let us take an informal look at them.
An instant can be seen as an imaginary point in a timeline where events can occur.
It matches, to a certain extent, the common vision one has about time. However,
this definition is somewhat misleading and incomplete because there is no good
way of defining a timeline without talking about instants. Indeed, a timeline is a
sequence of strictly ordered instants, which makes these definitions mutually recur-
sive. Mutual recursivity, however sound it may be in computer science, can hardly
be accepted in this case, especially since a sound, well-founded recursivity requires
a base case. The reason behind this incapacity at explaining what time is, is that
it stands as one of the most complex notion that human beings have encountered
and it can hardly be explained or defined without any pre-existing opinion on the
matter, which is usually made or given as a child. Time is a basic notion that cannot
be defined without invoking one or several notions whose existence is subsequent
to time. For instance, one can try to explain it as "what happens when nothing hap-
pens" but this definition already embeds the notion of time as "happens" contains
it. This view about time and instants tells us that capturing "what time is", is very
(if not too) ambitious for the human mind.

However, we can build models of time using notions that are easier to grasp,
which is what is usually done in languages that copewith time in oneway or another.
However little is our comprehension of time, we live with the feeling that it is end-
less, which is why, when representing time, we tend to use numbers that can grow
indefinitely. Natural numbers, rational numbers or real numbers come to mind in
that regard, as they all grow indefinitely although they grow in different ways. Nat-
ural numbers are used to represent discrete time, with a finite number of instants
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between two distinct instants, as rational and real numbers are used to represent
dense time, where there always exists another instant between two instants and thus
an infinite number of them, either countable (rational) or uncountable (real). This
representation of time is very convenient (regardless of the nature of the numbers
that are used) because it fits the usual and intuitive macroscopic vision one has of
time that instants succeed each other in a single well defined timeline. However,
at the beginning of the twentieth century, Albert Einstein showed that such a vi-
sion is only true given a specific observer while another observer would have his
own vision of synchronicity and relationship between the events that occurred [62].
While the representation of time in asynchronous systems is hardly the same as in
Einstein’s restrained relativity, said relativity theory teaches us that what looks sim-
ple might hide some underlying complexity. It also shows that a single well defined
timeline is not always an accurate description of how time should be seen, and this
is true in CCSL as well as in our work, even though the distinction we make is
different to the one Einstein made a hundred years ago.

Indeed, time in asynchronous systems cannot be seen as a single timeline con-
sisting of instants. This is due to the lack of knowledge one can have regarding the
execution of such asynchronous systems, when it is usually impossible to know, for
all events and their respective instants, whether one has happened before the other.
Another difference with our common perception of time is that several instants can
be coincident, which means they "happen" simultaneously. This is the case for in-
stance when two successive events happen so close to each other that they cannot
be distinguished by a given observer. In some asynchronous languages, such as
CCSL, this vision is completely embraced, since no instant can "host" more than
one event. This means that two events that seem to occur simultaneously will still
be carried out by different instants, but these instants will be coincident. This vi-
sion is closely linked to the notion of refinement proposed in the chapter, because
it assumes that there always exists a thinner level of refinement until no coincident
instants can be distinguished one from the other any more. This ultimate level of
refinement corresponds to the complete knowledge of the system’s behaviour.

As explained, while real, natural and rational numbers are all totally ordered,
the reality in asynchronous systems is quite different, because these underlying total
orders cannot be observed. Theymight exist – given a specific observer – but cannot
necessarily be observed or described. Only partial information can be given as to
which event occurred before or after another specific event. To be more specific,
the underlying total order between events exists physically, but is hidden to the
observers. This sounds like a limitation, but it can also be seen as a flexibility,
since it allows us to only express the relations that we are interested in or that must
be enforced, which is not possible in total orders. As for the underlying set of
instants, as we saw, we should not directly rely on specific numbers, this is why it
will remain unspecified in our framework until required. In concrete examples, it
will eventually be instantiated but we would rather work with an abstract set that
is only characterized by having a partial order. Fortunately, this partial order can
easily be expressed using dependent types which we will see in Section 5.1.3.
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5.1.3 Strict partial orders

5.1.3.a Definition

In order to model the temporal relations between instants in the execution of
asynchronous systems, one cannot use total orders for the reasons depicted in Sec-
tion 5.1.2. The advocated approach is to use strict partial orders which allows in-
stants to be coincident and some instants to be unrelated, as opposed to total orders.
A strict partial order is a mathematical structure composed of four entities, which
are the following:

• A set of elements, which is called Support in our case
• A first relation over the elements of Support written _≈_
• A second relation over the elements of Support written _<_
• A proof that these relations satisfy the properties of strict partial ordering.

The last element of this structure is fundamental because it ties all the others to-
gether. By giving the right properties to the relations, it also gives them the in-
tended meaning, that is: _<_ is a strict precedence between elements of Support
and _≈_ is a relation of equivalence between its elements. These properties are as
follows:

1. _≈_ is an equivalence relation
∙ _≈_ is reflexive ∀i ∈ I ∶ i ≈ i
∙ _≈_ is transitive ∀(i, j, k) ∈ I3 ∶ i ≈ j ∧ j ≈ k⇒ j ≈ k
∙ _≈_ is symmetrical ∀(i, j) ∈ I2 ∶ i ≈ j ⇒ j ≈ i

2. _<_ is irreflexive towards _≈_ ∀(i, j) ∈ I2 ∶ i < j ⇒ ¬ i ≈ j

3. _<_ is transitive ∀(i, j, k) ∈ I3 ∶ i < j ∧ j < k⇒ j < k

4. _<_ respects _≈_
∙ on the left ∀(i, j, k) ∈ I3 ∶ i ≈ j ∧ i < k⇒ j < k
∙ on the right ∀(i, j, k) ∈ I3 ∶ i ≈ j ∧ k < i⇒ k < j

5.1.3.b An example of Strict partial order

u e b∕s o

(a) A first possible behaviour

u b∕s e o

(b) A second possible behaviour
Figure 5.1: Both possible behaviours
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Let us consider a person named Alice and her usual morning routine: Alice gets
up, after which she either takes a bath first followed by eating or vice versa. She
always sings while in the bath. After that, she takes off for work. The two possible
traces depicting her behaviour over a single day are shown in Figure 5.1a and 5.1b.
They consider the following set of possible events: getting up, bathing, singing,
eating and taking off, with their respective aliases "u", "b", "s", "e" and "o".

u

b

o

e

s

Figure 5.2: The underlying partial order

These possible behaviours are described by a time structure, as described in
Section 5.1.1, with an underlying partial order, that is depicted on Figure 5.2. The
events "b" and "e" are concurrent and are not linked by any of the two relations com-
posing the strict partial order. The blue vertical dashed line represents coincidence
(when events occur simultaneously) while the red arrows represent precedence.
5.1.3.c Strict partial orders in AGDA

The instants in our work aremodelled as a strict partial order using the definition
that is provided in the AGDA standard library, in the form of a dependent record,
as depicted in Figure 5.31. This structure that we called Instant as opposed to
Support which is its underlying set, is passed as a parameter to all our modules
that deal with time for future users to instantiate it with the strict partial order of
their choice.

Figure 5.3: The strict partial order dependent record
1Note that the AGDA definition contains a type signature with somewhat complex levels of uni-

verse that can be ignored by the reader.
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The field IsStrictPartialOrder is also a dependant record which contains
the various properties detailed earlier which enforce the structure of strict partial
order.
5.1.3.d Additional relations

In our representation of time, we add three derived relations to this strict par-
tial order, which brings the number of available relations over instants to 5, which
means that two instants can be in a relation of:

• Precedence according to the precedence relation of the strict partial order,
• Coincidence according to the equivalence relation of the strict partial order,
• Causality when they are either precedent or coincident,
• Dependence when they are causally linked but not coincident,
• Independent when they are neither coincident nor dependent.
These relations are defined in AGDA as depicted in Figure 5.4.

Figure 5.4: The five relations binding instants together

5.1.3.e Properties

All these relations exhibit certain properties that will be useful for further prov-
ing and developing. The properties of the relations of precedence and coincidence
(transitivity, equivalence, and so on) are already present in the standard library, but
those about the newly defined relations derived from them are yet to be expressed
and proved. Figure 5.5 presents a simple example, trans≼, stating that the causal-
ity relation is transitive. The proof exploits the transitivity of the two underlying
relations coupled with the symmetry of the coincidence and an additional property
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Figure 5.5: A trivial example of property

stating that the two underlying relations behave correctly towards one another. An-
other example is depicted in Figure 5.6 where more complex properties are proven,
∥→≈→∥1 and ∥→≈→∥2. We state that if two instants are independent, they re-
main independent through coincidence on both sides thanks to the symmetry of the
independence, sym∥, and an auxiliary lemma that corresponds to the De Morgan
development of the logical negation over the logical conjunction, ¬⊎→×¬.

Figure 5.6: A more complex example of property

These two examples of properties bound to the five relations binding the instants
together are a small portion of everything that has been defined and established
around instants. However, these are mostly small definitions and properties which
are depicted in the appendix in Section A.3.1

5.2 A formal definition of instant refinement

5.2.1 On refining instants
While languages that describe and handle the temporal execution of complex

systems – such as CCSL– are actively growing, their growth is mostly oriented
horizontally, which means they can express more constraints between more event
occurrences. But these languages and mostly CCSL which is the main target of
this work lacks a formally defined notion of refinement, which CCSL designers call
instant refinement. While calling their need for a refinement mechanism "instant
refinement", they possibly imply that it should be possible to somehow split an
instant which holds a single event so that it holds a set of events which all refine
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the original event. Reciprocally, it also implies that it should be possible to merge a
given amount of instants that hold events which all contribute to a common purpose
to have an instant that bears an event representing said purpose. This way, engineers
that build CCSL specifications would be able to give different constraints to each
level of refinement. These constraints would depend on how close one looks at the
system, which would be translated in howmany times the instants have been broken
into smaller pieces. This aspect corresponds to the vertical separation of concerns
that was introduced in Section 1.1.5.

While this approach seems appealing as to what it could provide in terms of ex-
pressiveness, the fact that instants could be split into several sub instants is problem-
atic. However we look at an instant, it is by definition punctual, solid, unbreakable,
which comes in direct contradiction with the core implication of this name "instant
refinement". In addition, the instants themselves do not bear any information on
the system’s behaviour, so refining the instants would only capture the relation be-
tween the parts of the refined instant, which is not sufficient to express behavioural
properties.

While the will to express constraints at different levels of refinement is not only
appealing but also often required by users, splitting an instant into sub-parts seems
to be impossible in a literal or in a mechanized manner. As we saw when describing
instants, they are unspecified as much as possible but they are a set – or a type –
and elements of a set cannot be broken down unless they have a specific structure,
which instants do not have because they can be instantiated in various ways. While
the name "instant refinement" has been kept in this document because it embeds an
intuitive notion of refinement that can be understood easily by system engineers,
looking for a solution to refining instants directly is bound to fail. The answer
definitely exists – since we often use the notion of refinement, there must be a way
to properly model it – but it lies somewhere else.

5.2.2 Our proposal: relating strict partial orders

As our approach is part of a denotational context, we need to formulate a relation
between given entities that are relevant to express the notion of refinement. As
explained in the previous section, these entities cannot be the instants themselves
because they are by nature unbreakable and they don’t bear any information on the
system’s behaviour, which is instead encoded in the strict partial order that binds
the instants together. This is this glue, this binding, that should be refined, meaning
these are the strict partial orders that should be related to express the notion of
refinement. Our idea is that two different levels of refinement should be described
and studied with different partial orders, but these partial orders should satisfy a
relation which encapsulates the common definition of refinement.

While the notion of refinement has a deep bond with partial orders, the relation
of refinement that we propose is a relation between couples of relations. Indeed, as
mentioned in Section 5.1.3.a, a partial order is composed of a set, two relations, and
the proof that these elements form a strict partial order. Out of these four elements,
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the ones that are relevant to be refined are the two relations and the way they interact
with one another, because the set of instants is the same at all levels of refinement
and the proof is only relevant to ensure that the strict partial order is sound. All in
all, the core of our contribution on refinement is the following relation between two
couples of relations over instants:
Let Ω be the set of all sets: ∀I ∈ Ω,∀(<c , <a,≈c ,≈a) ∈ (I × I)4 ∶
(<c ,≈c) <r (<a,≈a)

d
⟺

∀(i, j) ∈ I ∶

⎛

⎜

⎜

⎜

⎝

i <c j ⇒ i <a j ∨ i ≈a j (1)
i <a j ⇒ i <c j (2)
i ≈c j ⇒ i ≈a j (3)
i ≈a j ⇒ i ≈c j ∨ i <c j ∨ j <c i (4)

⎞

⎟

⎟

⎟

⎠

In this definition, the level annotated by the index c is the lowest (the more
concrete) level of observation and a is the highest (the more abstract). We state
what it means for a pair of relations to refine another pair of relations. We can only
compare pairs of relations that are bounded to the same underlying set of instants.
This relation is composed of four predicates, each of which indicates how one of
the four relations is translated into the other level of observation.

∙ Precedence abstraction: If a strictly precedes b in the lower level, then it can
either be coincident to it in the higher level or still precede it. This means
that a distinction which is visible at a lower level can either disappear at a
higher one or remain visible, depending on the behaviour of the refinement
for these instants – Equation (1)

∙ Precedence embodiment: If a strictly precedes b in the higher level, then it
can only precede it in the lower level. This means that the distinction between
these instants already existed in the higher level, thus cannot be lost when
refining. Looking closer at a system preserves precedence between instants
– Equation (2)

∙ Coincidence abstraction: If a is coincident to b in the lower level, they stay
coincident in the higher level. Looking at the system from a higher point of
view cannot reveal temporal distinction between events – Equation (3)

∙ Coincidence embodiment: If a is coincident to b in the higher level then these
instants cannot be independent in the lower level ; they will still be related
but nothing can be said on the nature of this relation – Equation (4)

There are languages where an instant can only bear a single event. This defini-
tion allows and even justifies such approach. Indeed, two instants appearing coin-
cident in a given level of refinement can always potentially be refined up to a point
where a distinction appears, which justifies the fact that they can always be attached
to a different physical instant. In CCSL, this approach is somewhat advocated even
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though it is possible to take the propositional equality as introduced in ref 2.3.4 as
the underlying equality between instants in which case two coincident instants will
be the same. But the important aspect is that this definition allows such a possibility.

5.3 Mechanization of the refinement relation

5.3.1 Transformation between levels of abstraction
Our relation of refinement is a comparison between pairs of relations. This

comparison is by nature partial and ultimately we would like to prove that it is a
partial order, as refinement should be. To achieve this goal, the need for comparing
pairs of relations for equivalence arises, since a partial order is based on an under-
lying relation of equivalence. This relation of equivalence between orders should
be that all four relations are simply transformed into the corresponding relation in
the other level of abstraction. This leads to the following definition:
Let Ω be the set of all sets: ∀I ∈ Ω,∀(<c , <a,≈c ,≈a) ∈ (I × I)4 ∶

(<c ,≈c) ≈r (<a,≈a)
d

⟺ ∀(i, j) ∈ I ∶

⎛

⎜

⎜

⎜

⎝

i <c j ⇒ i <a j (1)
i <a j ⇒ i <c j (2)
i ≈c j ⇒ i ≈a j (3)
i ≈a j ⇒ i ≈c j (4)

⎞

⎟

⎟

⎟

⎠

This definition is similar to the refinement relation, which directs us towards
expressing a common factor between the two. This factor has an intuitive counter-
part: the notion of transformation. In both cases, the definitions state how each of
the four relations involved is transformed into the other level of abstraction. In the
case of the equivalence, these transformations are a lot more straightforward than in
the case of the refinement, but they are structurally similar. This leads to the defini-
tion of a Transform record which is parametrized by the four relations but also the
four transformations bound to these relations. This will allow the refinement and
the equivalence to be different instantiations of the same structure. As a side note,
this factorization is also very convenient for technical reasons on how to manipulate
both the equivalence and the refinement relation in the same formal context.

record Transform {l} (≈1 ≈2 ≺1 ≺2 : Rel I l)1 1

(T≈12 T≈21 T≺12 T≺21 : _ → _ → Rel I l) : Set (lsuc a ⊔ l) where2 2

field3 3

≈1→2 : ≈1 ⇒ T≈12 ≈2 ≺24 4

≈2→1 : ≈2 ⇒ T≈21 ≈1 ≺15 5

≺1→2 : ≺1 ⇒ T≺12 ≈2 ≺26 6

≺2→1 : ≺2 ⇒ T≺21 ≈1 ≺17 7

The four fields of this record express how each of the four relations is translated
in terms of the other level of abstraction. This translation is abstractly done by the
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transformation functions which takes two orders and builds a third one. From this
definition, expressing the equivalence between orders is straightforward, it consists
of instantiating the transformation function with the identity over their first or sec-
ond parameter, as follows:

_≈≈_ : ∀ {l} → Rel (Rel I l × Rel I l) _8 8

(≈1 , ≺1) ≈≈ (≈2 , ≺2) = Transform ≈1 ≈2 ≺1 ≺29 9

(� ≈2 _ → ≈2)10 10

(� ≈1 _ → ≈1)11 11

(� _ ≺2 → ≺2)12 12

(� _ ≺1 → ≺1)13 13

The refinement relation is also a transformation between orders, where the
transformation functions correspond to the four predicates of the refinement de-
fined in Section 5.2.2. They are defined using the union of relations and the flip
function which flips the parameter of a function as described in Section 3.3.1.

_≺≈_ : ∀ {l} → Rel (Rel I l × Rel I l) _14 14

(≈1 , ≺1) ≺≈ (≈2 , ≺2) = Transform ≈1 ≈2 ≺1 ≺215 15

(� ≈2 _ → ≈2)16 16

(� ≈1 ≺1 → ≈1 ∪ (≺1 ∪ flip ≺1))17 17

(� ≈2 ≺2 → ≺2 ∪ ≈2)18 18

(� _ ≺1 → ≺1)19 19

5.3.2 Proof of partial ordering

The reason behind the definition of an equivalence between pairs or relations is
that we expect the refinement relation to exhibit a certain structure when combined
with this equivalence. This section presents the proof that this structure is a partial
order and binds its constituent to the common properties of the usual notion of
refinement as given in Section 1.1.5.

Equivalence of _≈≈_ While we have called this relation an "equivalence" rela-
tion since it was defined, the matter of fact is this remains unproven, even though it
seemed natural. As a reminder, an equivalence relation is transitive, reflexive and
symmetrical. All of these proofs are trivial but are provided in the appendices in
Section A.3.2, they lead to the proof of equivalence as follows:

equiv≈≈ : ∀ {l} → IsEquivalence (_≈≈_ {l})20 20

equiv≈≈ = record { refl = refl≈≈ ; sym = sym≈≈ ; trans = trans≈≈ }21 21
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Preordering between _≺≈_ and _≈≈_ Apreorder is a structure where the prece-
dence relation is transitive and reflexive towards an equivalence relation. We start
by establishing the transitivity of our refinement relation:

trans≺≈ : ∀ {l} → Transitive (_≺≈_ {l})22 22

trans≺≈ i≺≈j j≺≈k .≈1→2 = (≈1→2 j≺≈k) ◦ ≈1→2 i≺≈j23 23

trans≺≈ i≺≈j j≺≈k .≈2→1 x with ≈2→1 j≺≈k x24 24

trans≺≈ i≺≈j _ .≈2→1 _ | inj1 y = ≈2→1 i≺≈j y25 25

trans≺≈ i≺≈j _ .≈2→1 _ | inj2 (inj1 y) = inj2 (inj1 (≺2→1 i≺≈j y))26 26

trans≺≈ i≺≈j _ .≈2→1 _ | inj2 (inj2 y) = inj2 (inj2 (≺2→1 i≺≈j y))27 27

trans≺≈ i≺≈j _ .≺1→2 x with ≺1→2 i≺≈j x28 28

trans≺≈ _ j≺≈k .≺1→2 _ | inj1 y = ≺1→2 j≺≈k y29 29

trans≺≈ _ j≺≈k .≺1→2 _ | inj2 y = inj2 (≈1→2 j≺≈k y)30 30

trans≺≈ i≺≈j j≺≈k .≺2→1 = (≺2→1 i≺≈j) ◦ ≺2→1 j≺≈k31 31

This transitivity was expected because the common notion of refinement is tran-
sitive. We should be able to chain the refinements while still being a refinement of
the original specification. Another expected property is the reflexivity. Indeed, a
specification should naturally be a refinement of itself when nothing has been clar-
ified. This reflexivity is relative to the equivalence relation that was defined earlier.

refl≺≈ : ∀ {l} → (_≈≈_ {l}) ⇒ (_≺≈_ {l})32 32

refl≺≈ i≈≈j .≈1→2 = ≈1→2 i≈≈j33 33

refl≺≈ i≈≈j .≈2→1 = inj1 ◦ ≈2→1 i≈≈j34 34

refl≺≈ i≈≈j .≺1→2 = inj1 ◦ ≺1→2 i≈≈j35 35

refl≺≈ i≈≈j .≺2→1 = ≺2→1 i≈≈j36 36

Compiling the different elements that were proven, we can instantiate the pre-
order structure with our relations.

preorder≺≈≈ : ∀ {l} → IsPreorder _≈≈_ (_≺≈_ {l})37 37

preorder≺≈≈ = record {38 38

isEquivalence = equiv≈≈ ;39 39

reflexive = refl≺≈ ;40 40

trans = trans≺≈ }41 41

Partial ordering between _≺≈_ and _≈≈_ A partial order is a preorder with the
additional property of antisymmetry between its two relations. In the case of refine-
ment, if two specifications refine each other, they should definitely be equivalent and
represent the exact same level of abstraction which tells us that the antisymmetry
should hold, hence implying that our two relations form a partial order, as required
when assessing refinement. The proof is given in the appendices in Section A.3.3.
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5.4 An example of instant refinement

5.4.1 Presentation of the example

Offstart On
Switch on

Switch off
Execute

Figure 5.7: A simple system
The mathematical relation defined above aims at providing a formal construct

to model and assess refinement between traces of execution. To illustrate its rele-
vance, we propose to apply it to an example chosen for its simplicity and accuracy
with respect to the idea of refinement. This is a simple system whose behaviour
is represented as a transition system depicted on Figure 5.7. This system can be
switched on and off. While it is on, an action can be executed any number of times.
A possible trace of this system – amongst an infinite number of them – is depicted
in Figure 5.8. ton, toff and tex respectively represents the occurrence of "switch on",
"switch off" and "execute" transitions.

ton toff ton tex tex toff ton tex toff

Figure 5.8: A trace on a single timeline

This trace starts with the birth of the system – an abstract moment on which
events start to occur – and possibly goes on indefinitely, which makes this repre-
sentation partial. In addition, this design places each event on the same timeline,
thus ignoring horizontal separation. In order to make it visible, from now on we
will represent every different event on a specific timeline, as shown on Figure 5.9.
This approach is used in CCSL, where each timeline is represented by a clock which
tracks the occurrences of a specific event. The instants on each timeline are totally
ordered and those in the same vertical dashed blue lines are coincident.

ton
toff
tex

Figure 5.9: One timeline per event

The action executed by the system while running can be specified in various
ways. Here, we imagine that our system is connected to a light through the use of
memory containing a variable x. This variable is assigned the value 1 or 0 by our
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system and the light is turned on and off accordingly. When the system is switched
on, the light remains down until a button is pressed which turns it on. Pressing the
same button will alternatively turn it off and on. Shutting down the system turns it
off. This behavior is depicted in Figure 5.10.

Offstart On
ton {x← 0}

toff {x← 0}

tex {x← 1 − x}

Figure 5.10: The system pilots a light
By specifying our system behaviour, we defined events that can be added to its

traces. tx0 and tx1 respectively correspond to the variable x being assigned 0 and
1. These additions belong to horizontal separation since we added a new part to
our system (the module linked to the light). One of the possible traces is depicted
in Figure 5.11. Some events are occurring simultaneously, for instance ton always
occurs on an instant coincident to an occurrence of tx0 . Such relation between eventscan be defined in CCSL (a simple case of sub-clocking).

ton
toff
tex
tx0
tx1

Figure 5.11: The trace of the system with the addition of the variable x
It is important to notice that when specifying the action executed by this system,

we implicitly took a certain point of view. We deliberately ignored some lower
level concerns such as the way a computer system handles memory. This is where
vertical separation takes place. Looking closer at the machine will lead to other
events which can refine the access to the variable x. For instance, the "switch on"
event can be viewed as a succession of actions, such as powering up the system,
retrieving the address of x, computing (here there is no actual computation since
1 is a constant value, but there could be some in the case of a more complicated
expression) the value of 1 and storing this value at the right address. These events,
except for the first one, are used to handle the computation and the storage of a value
in memory. Taking into consideration these events requires us to view the system
at a lower level than before, in which case its representation as a transition system
is depicted in Figure 5.12.

The "switch on" transition has thus been refined in several transitions. ton repre-
sents the powering of the system, tstack the stacking of the address of x, tcompute the
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1 2 3

Offstart On

ton

toff {x← 0}

tstack tcompute

tstore

tex {x← 1 − x}

Figure 5.12: The refined system

computation of the value of the expression 1 and tstore the storage of the computed
value at the stacked address. Note that we only refined one transition here for the
sake of clarity and simplicity. Refining the other transitions would rely on exactly
the same reasoning which is of no use for the relevance of this example.

This analysis induces two different points of view on our system. The higher
level of observation is represented on Figure 5.13a. From now on, for the sake of
clarity, the events that are not refined are omitted. They don’t influence the reason-
ing we are conducting, thus their omission is acceptable.
con1
con2
cstack
ccomp
cstore

(a) Abstract level

con1
con2
cstack
ccomp
cstore

(b) Concrete level
Figure 5.13: Both levels of observation

From the higher point of view, all the instants on which the sub-events occur are
both equivalent to each other and to the containing event. Their underlying order is
hidden and has no impact on the trace of the system at this level. The lower point
of view, however, is different, as depicted on Figure 5.13b.

For the lower level of observation, the different instants are ordered in a way
such that they respect the specification in Figure 5.12. The blue dashed lines repre-
sents the equivalence classes induced by the respective partial orders while the red
arrows represent the precedent relations of these orders (we did not represent the
links that can be deduced by transitivity or other properties of partial orders).

Until now, the instants on which the events occur formed an unspecified set.
Since our goal is to mechanize this example, we need to instantiate it to an actual set.
We chose the natural numbers because they allow us to annotate the traces while
expressing quite easily the relations at both levels of refinement. The annotated
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0 5 10con1
1 6 11con2
2 7 12cstack
3 8 13ccomp
4 9 14cstore

(a) Abstract level annotated

con1
con2
cstack
ccomp
cstore

0 5 10

1
2
3
4

6
7
8
9

11
12
13
14

(b) Concrete level annotated
Figure 5.14: Both annotated levels of observation

higher levels of observation are given in Figure 5.14.
This representation allows us to define the coincidence and the precedence re-

lations that bind its different instants, as subsets ofℕ×ℕ. Since both these relations
must be transitive, the coincidence must be symmetrical and they must form a strict
partial order. We omit the related elements which can be deduced from these prop-
erties.

Coincidence Relation Precedence Relation
(0 , 1) (0 , 2) (0 , 3) (0 , 5)(0 , 4) (5 , 6) (5 , 7)
(5 , 8) (5 , 9) (10 , 11) (5 , 10)(10 , 12) (10 , 13) (10 , 14)
Since the traces are infinite, there are an infinite number of couples in each rela-

tion. We only expressed them for the visible subset. We now define these relations
for any natural number, by relying on the euclidean division of their operands by 5:
∀(a, a′) ∈ ℕ2,∃! (q, r, q′, r′) ∈ ℕ4 ∶ a = 5q+r∧r < 5∧a′ = 5q′+r′∧r′ < 5

These relations, using the same notation, are defined as follows:

∀(a, a′) ∈ ℕ2, a ≈2 a′
d

⟺ q = q′

∀(a, a′) ∈ ℕ2, a <2 a′
d

⟺ q < q′

The same work can be achieved for the lower level of observation, which is
displayed on Figure 5.14b. The relations extracted fromFigure 5.14b are depicted in
the table below. As previously explained, only the relevant couples are mentioned.

Coincidence Relation Precedence Relation
(0 , 1) (1 , 2) (2 , 3) (3 , 4)
(5 , 6) (4 , 5) (6 , 7) (7 , 8)

(10 , 11) (8 , 9) (9 , 10) (11 , 12)
. . . (12 , 13) (13 , 14) . . .
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By taking the same decomposition as before, we can mathematically define the
relations at the lower level of observation.

∀(a, a′) ∈ ℕ2, a ≈1 a′
d

⟺ (q = q′) ∧ ((r = r′) ∨ (r + r′ = 1))

∀(a, a′) ∈ ℕ2, a <1 a′
d

⟺ (q < q′) ∨ ((q = q′) ∧ (r < r′) ∧ (r′ ≠ 1))

Since both couples of relations have been defined mathematically, we can prove
that they correspond to a situation of refinement. This has been done in AGDA and
is the purpose of the next section.

5.4.2 Verification of the example
The verification activities for the example consist in the following steps:
• Definition of the 2 couples of relations, one for the abstract level and the other

for the concrete level of refinement.
• Proof that both these couples form a partial order.
• Proof that these partial orders are in a relation of refinement.

The complete verification has been developed and is presented in the appendices in
Section A.3.4.

Assessments
This chapter proposed a new perspective of the usual notion of refinement be-

tween systems, by adapting it to trace semantics to answer the following question:
how refinement should be expressed inside a context containing instants and partial
orders ? Rather than refining the systems directly as often seen in the literature as
depicted in Section 1.1.5, we proposed a formal context where this refinement can
be expressed: a context where several partial orders coexist, each of which corre-
sponds to a given level of observation, hence a given level of refinement. These
partial orders must obey certain conditions to take part into this hierarchical struc-
ture: these conditions have been expressed and specified through four predicates
which, when combined together, form a relation between partial orders, which cor-
responds to our view on refinement. This relation of refinement must be established
for each couple of partial orders when the first depicts a level of observation thinner
than the latter. Thanks to some properties which have been established in a formal
context around our relation of refinement, and especially its transitivity, it is suffi-
cient to prove that each partial order refines the next one to establish the soundness
of the whole structure. This combination of partial orders refining one another gives
a formal context richer than the usual single partial order on which languages which
deals with trace semantics usually rely. One of these languages is CCSL, whose
existing semantics has been mechanized and enriched accordingly, as depicted in
the upcoming Chapters 6 and 7.
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Chapter 6

A mechanized denotational
semantics of CCSL

Outline
Since our main goal is to prove properties on languages whose semantics can be

expressed as traces, it is natural to work on a language which allows us to express
such semantics. This chapter describes our work on one of them, the Clock Con-
straint Specification Language (CCSL), on which we made several contributions,
using the following outline:

1. Section 6.1 presents the CCSL language in a model-oriented engineering
perspective. It explains both the conceptual and technical contexts in which
it was defined. It presents the notions of modelling language, V-cycle, UML,
ECORE and places CCSL among these notions. It is a section mostly com-
posed of context and state-of-the-art references.

2. Section 6.2 presents our contributions around the mechanization of CCSL
which contains the CCSL constructs that are not index-dependent, ie that do
not require a discrete representation of time. This mechanization consists
in transferring the CCSL elements which only had a paper version of their
semantics in a formal context. This mechanization contains an adaptation /
correction of these CCSL notions according to our formal context and some
corrections and discussions around minor imprecisions which were discov-
ered. Each construct has been verified through conformity properties which
embed the usual semantics that CCSL users are used to. In this context, some
constraints over clocks have been added which, in certain cases, are useful
for such properties to be sound, ie for the validation of the informal CCSL
specification. Concretely, this means that the formal definition of the clock
has been completed when it was not rich enough to establish some required
properties.
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6.1 CCSL: A language to abstract event occurrences
Our notion of refinement is generic and thus can be applied and reused in any

language that either results in temporal executions or that describes such temporal
executions. This section presents one of them, the Clock Constraint Specification
Language CCSL. We first introduce this language in a generic manner, then we de-
scribe the tools that already exist around it (namely, TIMESQUARE) and talk about
the paper version of the denotational semantics made by the designers of this lan-
guage to build up to the next section where we present our mechanization of this
semantics that ultimately allowed us to apply our notion of refinement to CCSL.
But first, we need to introduce Domain Specific Modelling Languages (DSMLs) as
CCSL is one of them.

6.1.1 Domain Specific Modelling Languages

CCSL is a Domain Specific Modelling Language (DSML) which we chose as
our target language for our mechanization objectives, for several reasons that will be
detailed in this section. But before getting to the technical aspects of CCSL as well
as the work we did around this language, let’s first present the context of DSMLs
and, more generally, model engineering that led to the development of CCSL.

This section is a short overview of the appearance of DSMLs in computer sci-
ence in order to contextualize CCSL in the field of model engineering. It is not
exhaustive in the sense that this domain is complex and can hardly be described
in a short manner. However, the required information will be given to understand
what problems CCSL aims at solving and why, for instance, it has first been defined
as a UML profile instead of a stand-alone modelling language. The distinction be-
tween these two options will also be contextualized and somewhat explained, even
though, after researching the matter, this appears mostly to be two different sides of
the same coin. This introduction on modelling languages will be separated in three
parts, each of which brings us closer to CCSL and further from the global context
of modelling languages.
6.1.1.a The rise for the need of modelling languages

For centuries, and I might even say for millennias, humans have developed com-
plex systems. These systems, however simple as they might appear to us now, did
take some engineering to be developed, long before computer science started to
infiltrate every field and become a mandatory part of most system development.
These ancient systems – The Nil irrigation system, the Pyramids, the great wall of
China, ... – have always required a succession of steps in order to complete their
design and building. These steps, that we have now formalized, are often modelled
and explained as a V cycle, depicted in Figure 6.1. This cycle, well known by any
engineer and engineering student, summarizes the succession of steps required to
develop and assess the correctness of a system. The left part contains the differ-
ent phases in the development while the right part focuses on the different steps
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Components
Implementation

Architecture
Design

User needs
Analysis

Unitary
Verification

Integration
Verification

Functional
Verification

ValidationUser
Requirements

Requirements

Requirements

Conformity

Conformity

Conformity

Figure 6.1: The V cycle in a system development

in the development assessment, that are all linked to a specific development step
associated to a set of requirements. These steps are as follows:

• The development steps:
1. The analysis of the user’s needs should ensure that he has been correctly

understood by the system developers.
2. The architecture of the system is then designed according to the result

of this analysis.
3. The components are designed and implemented regarding the chosen

architecture for the system.
• The validation and verification (V and V) steps:

1. Unitary verification is made towards the components that have to satisfy
the architectural requirements.

2. Integration verification is held towards the architecture to satisfy the
analysis of needs requirements.

3. Functional verification is done to assess the conformitywith the original
client’s requirements.

4. User validation requires the user to validate the finite product.
In this theoretical life-cycle model, the development and verification steps are

done one after the other, which means that the verification can only be done after
the development has been accomplished because it is applied on the built system.
Iterative and agile processes allow us to split the whole development in various it-
erations that allow us to conduct V and V activities on parts of the system, yet these
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parts need to be fully built before being assessed. This is a huge drawback of the V
and V model because, should the verification fail, the developer has to redo every-
thing from scratch for each failure. In system development, this might be costly in
a lot of different aspects (time and money being the most obvious ones) and should
be avoided as much as possible. In that regard, engineers experienced new ways
to work around this V pattern to accelerate the verification process and move to-
wards the development process. The idea is to represent the artefacts resulting from
each step with models on which V and V activities can be made without having to
complete the whole process and build the product before running said activities.
These models are of various sorts and are motivated by various concerns, but they
all serve the purpose of a V and V that precede the next phase in the development
of the system. In our examples from the antiquity, the systems are straightforward
yet already complex, and mathematics was developed as the language for building
models and the scientific method was designed in order to build and assess these
models. However, nowadays, in systems such as air-planes or communication sys-
tems, their underlying heterogeneity and complexity induces the need for a lot of
different models that have to be synchronized. All these models are either expressed
in concern dedicated languages (Domain Specific Modelling Languages (DSML)),
or in generic purpose languages that allow us to express most concerns, such as
UML. These generic purpose languages are languages with which they can be de-
veloped and verified. Another justification for this need is the V and V process,
that was commonly done in an informal manner, through the reading of even more
informal documents. Models can help increase the efficiency of such verification
through a more formal account of the system development artefacts.

User

M1

M2

Mn

Figure 6.2: A simplified V cycle with the use of models
As depicted in Figure 6.1, the user is on top of the cycle because he provides the

system’s developer with the functional requirements that induce its different steps.
However, the contact with the user is then broken until the functional verification
has been conducted, which means that there are no guarantees that the product will
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indeed satisfy the user’s needs. The models will also be used as a bridge between
the user and the developer while the product is being developed. At each step, the
models will allow the user to conduct validation activities, which means having an
overview of the current state of the project and supervising that it’s being developed
correctly according to its requirements, that might have beenmisunderstood. If such
a misunderstanding would happen without the use of models, it might have been
propagated all the way until the functional verification, at which point any important
change in the system would be overwhelming. This cycle, with the use of models,
can be depicted in Figure 6.2 where the relation between the system and the user is
maintained throughout the development process.
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Figure 6.3: The V cycles in a product development

As complex as these systems may appear, and as relevant as the need for models
is, there still are some more steps that induce an even greater need for models. This
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V cycle alone can handle the development system of a reasonable size, but several
of these cycles have to be used to scale towards greater projects. In these cases, the
global product is split into several conceptual entities, each of which derives from
another and has to be handled through a V cycle. These steps are as follows:

• The system of systems, which is themost global entity. Its level of complexity
is very high, but it is understood by the user. The product can be a car, an air-
plane, a satellite, a communication system, and so on. A system of systems
is composed of several systems.

• The systems, which are abstract entities derived from the systems of systems,
each of which aims at solving a specific issue. In the example of an air-plane,
a system is for instance the propulsion system, the navigation system or the
safety system. Each system can be seen as a set of equipments.

• The equipments, which are the concrete elements to support the system. They
can be wings, engines, sensors or any concrete device whose goal is to pro-
vide one or more functions inside one or more systems.

Having these elements in mind, the global picture of the product development is in
fact a succession of V cycles for each of these entities, as depicted in Figure 6.3.
6.1.1.b The development of modelling languages

The number of steps in a system development as well as the need for the users
to be able to witness its evolution and assess its intermediate correctness led to the
need of defining models to describe all those steps. These models had to be de-
fined following a syntax and semantics from a specific language, and in that regard
many languages have been defined throughout the past decades. Such languages
are Modelica [143], Simulink [155], Stateflow [38], Scade [27], Petri Nets [132],
Automatas, StateCharts [104], flow charts [122], AADL [65], EAST-ADL [151]
and many more. These languages were very promising and some of them are still
used today to model specific systems. However, they were separate entities specific
to certain concerns and did not give the option to handle big models constituted of
different sub-parts. Another flaw of this approach is that the engineers using these
languages had to learn several different ones when defining different models. This
led to the creation of the Unified Modelling Language (UML) in the beginning of
the 1990s [128] whose goal was to provide a unique language with sufficient ex-
pressiveness to allow the modelling of any preoccupation in the development of
information systems using software.

This goal was very ambitious and the three creators of UML realized that to
accomplish it, they had to embed the ability to extend the language itself inside the
language. Thus create new language constructs and express their relation with the
constructs already available in the base language. This mechanism is called a profile
and these profiles allow us to define anything in UML, while still staying in the
UML world. The consequence of this approach is that any profile benefits from all
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of the UML tools and properties, which might or might not be needed. One of these
profiles is MARTE (Modeling and Analysis of Real-Time and Embedded systems),
which contains CCSL to model timing aspects mandatory in the modelling of real
time systems. This hierarchy is depicted in Figure 6.4

UML
Profile

MARTE

CCSL

Figure 6.4: The place of CCSL inside the UML world

The definition of UML was originally informal, which means its specification
remained written on paper using the English language as well as informal graph-
ical schemes (whose semantics relied on human interpretation) and did not have
any formal counterpart. However, since UML was designed to model anything, it
is possible to model a language in UML and thus to model UML in UML. This
assessment led the UML developer to seek the smallest part of UML with which
UML itself could be formally defined. This smallest part, after being discovered,
was called MOF and is both a part of UML and the language with which UML is
now formally defined, as depicted in Figure 6.5.

6.1.2 Presentation of CCSL

CCSL [6] is a DSML that was designed by Charles André and Frédéric Mallet
as a UML profile as part of the MARTE standard [129]. More precisely, MARTE
is the current OMG standard for modelling real-time and embedded applications,
and CCSL is part of it. CCSL is defined as a meta-model (a language) that is pre-
sented in a simplified version in Figure 6.6. All the details of this meta-model are
not useful for the understanding of this document, and the notions that are relevant
will be detailed thoroughly when describing the mechanization we did of the lan-
guage. However, here is a short introduction for these concepts. CCSL is used
to model concurrency between the execution of either different systems or differ-
ent parts inside a system. This means that CCSL has its own definition of events
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Figure 6.5: UML as an instance of MOF

executed asynchronously as well as systems, even though this one is hidden for a
very convenient reason and is only defined in other parts of MARTE. But before
explaining how CCSL defines events, let us have a look at what the dictionary 1
says about them. It reads "a thing that happens or takes places, especially one of
importance". This definition is particularly instructive, for two specific reasons.

The first reason is the most pragmatic one. It says an event is something that
happens, and this is indeed what is represented by events in CCSL, even though
there is a slight difference. CCSL distinguishes the phenomenon itself from its oc-
currences. Basically, there exists a CCSL construct to model the events as "things
that might happen" (namely the clocks), and there are other constructs to model the
events as "their occurrences" (the instants). Although the instants can be seen as
pre-existing entities on which events can occur, there are different reasons to con-
sider that they have no real existence until they have to bear an event occurrence.
This question is, however, mostly philosophical and has little impact on our mech-
anization.

The second part of the event definition leads to the second reason why I find
this definition very instructive. It says "especially one of importance". As stated
in the previous section, depending on the level of observation we take regarding
the definition of our system, some events might or might not be considered. When
they are not, to a certain extent, this means that from our point of view, they do
not exist or relating to the definition, that they are not of importance. I find it very
comforting that the event definition found in an ordinary dictionary explains our
comprehension of events in computer science so well. To summarize, the events
in CCSL, are represented by clocks and each different event is represented by a

1dictionary.com
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Figure 6.6: A simplified CCSL meta-model

different clock. By associating a relevant name to a given clock, it allows us to keep
track of which clock represents which event in a given system. These clocks are said
to "tick" whenever the event they represent occurs, in which case an instant emerges
for this clock (similar to the emergence of new particles in quantum physics when
the void is given a substantial amount of energy, although this analogy is purely
anecdotic) and bears this event occurrence. Considering this definition, it becomes
obvious that an instant cannot bear several event occurrences.

On top of these clocks we can define the notion of system, although it is not na-
tive in CCSL for a very specific reason. A system can be defined as a set of clocks
that have a collective purpose, although it is more often seen as an existing entity
from which clocks are extracted regarding its behaviour. The reason why the notion
of system is not natively defined in CCSL is why this language is so beautiful in
my opinion. It is simply because systems are not relevant when defining a CCSL
model. Knowing that a given subset of clocks form what we consider as a system
might be useful when extracting information from the model, but not when defining
it. This simple fact has two direct implications: first, this means that several sys-
tems can bemodelled using CCSL as though they were only a single one. Secondly,
this means that properties between systems will be expressed in the same manner
as properties inside systems, which will ultimately be very convenient for composi-
tion. The CCSL operational semantics (namely the TIMESQUARE tool, that will be
briefly presented in the following part) can then try to solve the constraints associ-
ated to the model without taking into account which system the clocks come from.
This is particularly interesting because it questions what we usually call a system.

Since each clock in a system represents a distinct event that occurs during the
system temporal execution, these clocks are, by default, not connected to each other.
Thus, defining the different clocks a system provides is mandatory but is only the
first step towards the description of the temporal semantics of such systems. In order
to complete this description, one must provide ways of relating these clocks to each
other, thus allowing the system’s designer to express constraints to the execution
of the system. In that regard, CCSL provides constructs that allow us to do such
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bindings. These constructs are called constraints which are of two kinds: the rela-
tions and the expressions. The relations express temporal constraints between two
clocks, for instance, one can express a notion of precedence between two clocks,
which means that the occurrence of the slower clock is always preceded by a dis-
tinct occurrence of the faster clock. As for expressions, they allow the creation of
a new clock from an existing clock, for instance by uniting their occurrences. All
these notions will be heavily detailed and clarified when mechanized in Section 6.2.

6.1.3 TIMESQUARE: an operational semantics to CCSL

In order to give a meaning to a language, one must provide a semantics for it.
There are several ways to do so (several kinds of semantics), but the usual one is
the operational semantics. These semantics are simply processes which, from an
instance of the language they represent, construct the resulting semantic elements
for this instance. The term "element" is purposely vague, because different lan-
guages can induce various kinds of outputs. In the case of CCSL, whose goal is to
represent the possible temporal executions of a system from a set of constraints, its
operational semantics must provide at least one trace of execution for a given system
(traces of execution were defined in Section 5.1.1). An operational semantics pro-
vides a deterministic procedure to build the result of what the language describes.
It is a semantics in the sense that it gives a meaning to the language by giving the
semantics of the models / programs this language describes by explicitly building
the result of their execution. For instance, an operational semantics would say that
1 + 2 is equal to 3, without explaining what the quantities 1, 2 and 3 are, nor what
+ means. In the case of CCSL, as stated before, such an operational semantics
must give at least one possible trace of execution for a given set of clocks and con-
straints. Such a semantic exists and is named TIMESQUARE. It takes the form of
an Eclipse product designed using the Eclipse framework EMF (Eclipse Modelling
Framework) and its associated tools. TIMESQUARE takes as input a CCSL specifi-
cation, an example of which has been presented in Julien Deantoni’s work [58] and
is depicted in Figure 6.7.

This specification defines four clocks as well as an expression built from these
clocks and three relations over them. This specification forms the CCSL model –
conforming to the CCSL meta-model – and the operational semantics of CCSL
can be applied to such models to assess whether or not there exists a trace that sat-
isfies the specification and to give a possible trace of execution in the positive case.
TIMESQUARE provides such a trace, as depicted in Figure 6.8. This figure shows the
ticks of each of the four clocks as they can occur regarding the specification. This
timeline also features red and blue arrows which act as witnesses of the underlying
partial order induced by the constraints and visible on the diagram.

Since CCSL provides constructs to describe the execution of distributed sys-
tems, it does not rely on a total order between the occurrences of the events they
exhibit. Rather, it works on partial orders to bind the instants together whenever
possible regarding the set of constraints attached to the system. This means that two
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Figure 6.7: A simple CCSL specification in TIMESQUARE

Figure 6.8: A possible trace associated to the specification

instants are either coincident, precedent, or unrelated in such orders, as described in
details in Section 5.1.3. In the trace depicted in Figure 6.8, the red arrows stand for
coincidence while the blue ones stand for precedence. When TIMESQUARE finds
a solution for the system, it projects the partial order on an arbitrary total order
(through a process called the linearisation of the partial order) and this clock dia-
gram is indeed the representation of such total order, while the arrows are depicting
what we actually know about the system – the partial order – rather than what we
can arbitrary define through linearisation – the total order.

TIMESQUARE is fully operational, which means it consists of a function which
takes a CCSL model as input and outputs, whenever possible, a possible trace of
execution for that model, hence giving a meaning to it. According to TIMESQUARE,
a CCSL model is an entity which allows the construction of a set of traces – which
might be empty – nothingmore and nothing less. As we stated before, this semantic,
however useful for practical cases, is not sufficient to fully embrace the meaning of
CCSL, which is why a denotational semantic has been defined. A denotational se-
mantic (or relational semantic) gives meaning to a language by expressing relations
over the elements it provides. It does not build anything but rather gives relations
to verify if a given model is correct. These two kinds of semantics (operational and
denotational) are usually complementary. Indeed, a denotational semantic defines
a contract which the operational semantic should comply with in which case they
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both convey the same underlying semantics of the language they describe. More
on this link is expressed in the following Section 6.1.4.

6.1.4 A paper version of the denotational semantics of CCSL
While TIMESQUARE provides an operational and powerful way of solving

CCSL constraints through the generation of a conforming trace when possible, its
reach is limited to that extent. It does not say how the CCSL construct behaves out-
side of their operational function. In this operational semantic, every construct can
be seen as an operator which reduces the possible set of traces for the specification,
nothing more. This is very useful in practical works, and the team that develops
CCSL uses TIMESQUARE on a daily basis to assess specifications provided by sys-
tem developers. However, the operational semantics is limited because it does not
express the meaning of the CCSL construct outside of a concrete specification on
which they can be applied. Thus, nothing can be proved on them in a formal man-
ner. This is why CCSL needed another kind of semantics, a relational one, both to
grow confidence in the way the constructs had been defined as well as being able to
prove high level properties on these constructs. This is why the CCSL developers
made a technical document on which they defined relationally their constructs re-
gardless of the models these constructs were used in. This relational semantic does
not build any output regarding a specification, but rather describes the relations in-
duced by the CCSL constructs. For instance, given a specific CCSL relationR and
two clocks c1 and c2, this semantic explains what it means to write c1 R c2. More
precisely, it explains how the underlying partial order between the instants is im-
pacted by this relation. This paper-version of the relational semantics of CCSL can
be found in [56] and is the foundation of our mechanization of CCSL, where we
picked the different constructs of CCSL as they were described in this document
and mechanized them in our AGDA development. This work will be described in
Section 6.2, as well as the semantics of the CCSL operators we mechanized and
the changes we had to make. These changes are either related to AGDA itself, the
way the semantics was defined in the paper, or some imprecisions we had to tackle
and clarify. While the paper-version of this semantic was mostly exhaustive and
precise, adapting it in a proof assistant always requires some changes because these
tools allow no shortcuts nor imprecisions both in the definition of the concept and
in the proofs around them. As doing such work on paper is more permissive, it can
possibly lead to incomplete or even inconsistent semantics. Detecting and removing
these issues is the first benefit of mechanizing these semantics.

6.2 A mechanized semantics of CCSL
Our contribution around CCSL can be summarized as follows: The core con-

cepts depicted in the paper version of the denotational semantics have been mecha-
nized in AGDA. Throughout this process, the notions that needed clarification have
received so, and those that were not completely relational have been expressed in
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this manner. Occasionally, minor mistakes that were present in the original seman-
tics have been rectified. While the paper version of the denotational semantics of
CCSL only consisted in the definition of the notion used in CCSL, without fur-
ther properties or proofs, our mechanization follows the methodology advocated
throughout this document. This means that during the process of modelling the
constituents of CCSL in AGDA, we expressed properties over these constituents.
These properties are the reflection of the understanding we have over how CCSL
should behave, which has been acquired through the reading of publications but
also by personally meeting and working with the team that created CCSL. These
properties have been proven in AGDA and constitute a solid argumentation towards
the confidence one can have regarding our mechanization. This section presents our
mechanization in a linear manner in terms of the CCSL constructs, as opposed to a
more thematic approach where the notions and the properties around themwould be
separated. We believe that, in a development such as this one, properties and proofs
should be conducted throughout the whole process, and this is what motivates this
choice. Since some definitions as well as notions about the modelling of time have
been described and handled in Section 5.1, we only present here additional time el-
ements that were not used then, the intervals and subsets of instants. All this work
has been verified through the addition of properties that are presented as well.

6.2.1 Time-related notions

Basic notions regarding time have been introduced and modelled in Chapter 5.
CCSL requires additional elements on top of instants and strict partial orders, which
are the intervals and the subsets of instants.
6.2.1.a Intervals

CCSL requires the use of intervals to express constraints on given portions of
time. This notion is defined in our framework as follows:

data Interval : Set where1 1

J_-_K : (� � : Support) → Interval2 2

J_-∞J : (� : Support) → Interval3 3

We define a data type called Interval which provides two constructors. They
represent two different kinds of intervals, one that is bounded on both sides and one
that is only bounded on the left side. This asymmetry is inherent to the underlying
asymmetry in a system life: it was started at a specific time but might be running
forever. It is important to note that CCSL aims at handling the global lifetime of
a system through the use of a birth instant and a possible death instant, hence ex-
pressing the asymmetry for the total duration of the system life. These notions
have been tackled in this work and will be presented in our modelling of CCSL in
Section 6.2.2.e.

We then define the membership in an interval:
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_∈i_ : Support → Interval → Set4 4

v ∈i J � -∞J = � ≼ v5 5

v ∈i J � - � K = � ≼ v × ¬ (� ≺ v)6 6

The membership is a predicate over two parameters, defined as a mix-fix oper-
ator (the underscores indicate where the operands will be provided). It gives two
expressions on how an instant can be considered belonging to an interval which is
either unbounded on the right or bounded on both ends.

We define an operator that retrieves the lower bound of an interval, which al-
ways exists:

inf : Interval → Support7 7

inf J � - _ K = �8 8

inf J � -∞J = �9 9

From the membership definition, we can also define interval inclusion, which
states that I is included in J when every instant in I is also an instant of J. It
is defined from the notion of predicate inclusion _⊆_ that exists in the standard
library.

_⊂i_ : Rel Interval _10 10

I ⊂i J = (_∈i I) ⊆ (_∈i J)11 11

These definitions, as always in our approach, are to be verified or at least given
properties on how they must behave. The following property states that two coin-
cident instants are members of the same intervals. The proof revolves around the
underlying properties of the instants being partially ordered.

≈∈ : ∀ {i1 i2 I} → i1 ≈ i2 → i1 ∈i I→ i2 ∈i I12 12

≈∈ {I = J � - � K} i1≈i2 (�≼i1 , ¬�≺i1)13 13

= ≼-resp-≈1 i1≈i2 �≼i1 ,14 14

(� �≺i2 → ¬�≺i1 (≺-resp-≈1 (sym≈ i1≈i2) �≺i2))15 15

≈∈ {I = J � -∞J} i1≈i2 (inj1 �≈i1) = inj1 (trans≈ �≈i1 i1≈i2)16 16

≈∈ {I = J � -∞J} i1≈i2 (inj2 �≺i1) = inj2 (≺-resp-≈1 i1≈i2 �≺i1)17 17

The following property states that the inclusion is trivially transitive.

trans⊂ : Transitive _⊂i_18 18

trans⊂ u v = v ◦ u19 19

This last property states that an instant that is a member of an interval whose
boundaries are coincident is coincident with these boundaries. This property will
be especially useful when talking about the death of a clock in Section 6.2.2.e.
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sameB : ∀ {i j k} → j ≈ k → i ∈i J j - k K → i ≈ j20 20

sameB j≈k = sym≈ ◦ (uncurry ≼→¬≺→≈) ◦ map2 (_◦ (≺-resp-≈2 j≈k))21 21

This uses uncurry transform a function of two input into a function of a pair
of inputs, and map2 which applies a function to the second member of a couple.
6.2.1.b Subsets of instants

In order to define the clocks, which are the main bricks to express relations
over event occurrences in CCSL systems, we must be able to express the subset
of instants on which the clocks will tick. In type theories without subtypes, the
notion of subset is not native but can be emulated and worked with. A subset is a
set of values that are from a given type and that respect a given predicate. Since
the predicate has a type, it is sufficient to represent the subset. By language abuse,
a predicate over a type will be called a subset of this type. In the AGDA standard
library, such a predicate is called a unary relation because it takes only one input,
hence the unary relations are used to model subsets, similarly to binary relations
which can be seen as subsets of a product type. To get familiar with subsets, we
consider the example of the subset of even natural numbers.

We start by defining a predicate on natural numbers, inhabited by even numbers,
as we did in Section 2.3.4.a:

data Even : ℕ → Set where1 1

zpair : Even zero2 2

spair : ∀ {a} → Even a → Even (suc (suc a))3 3

Then, we define a record named ∃ that is parametrized by a predicate and rep-
resents the subset induced by this predicate. As the notation implies, the logical
correspondance of this record is the existential quantification – note that this defi-
nition can naturally be found in the standard library:

record ∃ {a b} {A : Set a} (P : A → Set b) : Set (a ⊔ b) where4 4

constructor _,_ ; field5 5

witness : A6 6

proof : P witness7 7

From this definition, we can explicitly provide a definition for the subsets of
naturals that are even:

Evenℕ : Set8 8

Evenℕ = ∃ Even9 9

Then, we give an example of a function that only takes even numbers as inputs
then divides them by two, resulting in a number, which can be even or not. Note
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that, as this is often the case when using dependent types, such functions have their
error cases embedded in their type and are total in that regard. In this particular case,
the input has to be even. To use this fact, we case split over the proof element of the
input – the proof that the number is even – rather than over the number itself. There
are two possible cases for the form of the proof, and AGDA deduces the form of the
related number accordingly – we can see here that the number has been deduced to
be either zero or a succession of at least two suc constructors.

[_/2] : Evenℕ → ℕ10 10

[ .zero , zpair /2] = zero11 11

[ .(suc (suc _)) , spair proof /2] = suc [ _ , proof /2]12 12

Then, we define an equality between two elements of the previously defined
record. Two elements are here declared equal when they embed the same witness,
regardless of the proof they are coupled with. In our example, what interests us is
that a given number is even, not that there exists several proofs of it. However, we
will prove that any number can only have a single proof that it is even, which is
usually convenient for such proof elements. This is the purpose of the remainder of
the example.

_≈_ : ∀ {a b} {A : Set a} {P : A → Set b} → Rel (∃ P) _13 13

_≈_ = _≡_ on ∃.witness14 14

We proceed by proving that, in this specific case, there cannot exist two different
proofs that a given number is even. This is often the case when defining such data
structure as it is usually considered malformed when several successions of con-
structors can result in an element of the same type. But sometimes such ill-formed
cases cannot be avoided, in which case such a proof could not be done.

uniqueEven : ∀ {n} (p1 p2 : Even n) → p1 ≡ p215 15

uniqueEven zpair zpair = refl16 16

uniqueEven (spair p1) (spair p2) = cong spair (uniqueEven p1 p2)17 17

Finally, we prove that our equality between pairs implies the structural equality
between these pairs when the predicate is our even predicate. The proof would be
exactly the same whenever the underlying predicate satisfies the previous property.
This concludes our proof that the witnesses alone are sufficient to prove equality as
well as our example over even numbers. On the following development on CCSL,
we will consider many subsets, and many such relations which concern witnesses
and ignore the associated proof elements.

equality : ∀ {e1 e2 : ∃ Even} → e1 ≈ e2 → e1 ≡ e218 18

equality {_ , p} {._ , p1} refl rewrite uniqueEven p p1 = refl19 19
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6.2.2 Clocks

6.2.2.a Informal definition

In CCSL, a clock is an entity that tracks the occurrences of a specific event in a
given system. A clock ticks whenever (i.e. at every instant) the event it represents
occurs. A system is represented by a set of clocks corresponding to any possi-
ble event that can occur during its execution. Each clock usually ticks an infinite
number of times – can be both ℵ0 (countable clocks representing discrete or dense
time) orℵ1 (uncountable clocks representing only dense time) – and is partially rep-
resented in a timeline such as Figure 6.9. Discrete time means that, between two
ordered instants, there always exists only a finite number of other instants. Dense
time means that, between two ordered instants, there can exist an infinite number
of other instants. For instance, ℕ is countable and could be used to model discrete
time, whileℝ is uncountable and could model dense time. Note thatℚ is countable
but would however be used to model dense time as well. In this example, the clock
called c ticks three times during the portion of time depicted in the diagram. The
ticks are separated by a given amount of time, unspecified – there is no scale on the
diagram – because such a system is usually asynchronous. Thus, the only relevant
information depicted in this diagram is that the event tracked by c occurred at least
three times throughout the lifetime of the system. This is however very poor infor-
mation which must be completed with the addition of other clocks and constraints
between them to provide more data regarding the system behaviour.

c

Figure 6.9: An example of a clock c

6.2.2.b Formal definition

Formally, a clock is a type specification, which means an element of type Set1
in AGDA. A clock is a set of instants which are totally ordered. This means that if
we call I the set of instants and C the set of clocks then we have C ⊆ P(I) where
P(I) is the powerset of I. What determines if a subset of instants is a clock is
whether or not the instants it contains are totally ordered regarding the partial order
existing on I. Using these observations, the notion of subsets in AGDA which was
detailed in Section 6.2.1.b, the relations _≡’_ and _≺’_ which are presented in the
Appendices in SectionA.3.1 andwhich correspond respectively to the propositional
equality and the precedence on the first member of a couple of values, and finally
the notion of Trichotomous which corresponds to a total ordering of the instants,
the specification of the clocks is as follows:

Clock0 : Set11 1

Clock0 = ∃ \Ticks → Trichotomous {A = ∃ Ticks} _≡’_ _≺’_2 2
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While this definition represents the clocks in their purest form, we do not use it
directly in our work, for the simple reason that we want to have access to a specific
constructor and specific field names for the constitutive elements of a clock, instead
of the regular ones of the product type, namely proj1, proj2 and _,_which Clock0
provides. In that purpose, we define a new specification of clocks which is strictly
equivalent to Clock0 while taking the form of a record. This definition is also
more readable. The Clock record contains a constructor and two fields: a subset of
instants (the ones on which the clock ticks), Ticks, and the proof that these instants
are always comparable, TTot:

record Clock : Set1 where3 3

constructor _⧖_ ; field4 4

Ticks : Pred Support _5 5

TTot : Trichotomous {A = ∃ Ticks} _≡’_ _≺’_6 6

The syntactical correspondence between these specifications can be shown:

1⇒2 : Clock0 → Clock7 7

1⇒2 (Ticks , TTot) = Ticks ⧖ TTot8 8

2⇒1 : Clock → Clock09 9

2⇒1 (Ticks ⧖ TTot) = Ticks , TTot10 10

As a first property about clocks, the definition imposes that two coincident ticks
of the same clock are necessarily propositionally equal. Proving this statement is
achieved by using the total order over the ticks of any clock. If one tick strictly
precedes the others, there is a contradiction with the hypothesis, which is easily
expressed using function composition _◦_ and the constant function const.

≈→≡ : ∀ {c} {i j : ∃ (Ticks c)} → i ≈’ j → i ≡’ j11 11

≈→≡ {c} {i} {j} with TTot c i j12 12

≈→≡ | tri< a _ _ = ⊥-elim ◦ (≺→¬≈ (inj1 a))13 13

≈→≡ | tri≈ _ b _ = const b14 14

≈→≡ | tri> _ _ c = ⊥-elim ◦ (≺→¬≈ (inj2 c))15 15

6.2.2.c Active and passive clocks

From the formal definition of the clock, we can derive predicates as to whether
a clock ticks at least once or not, which we call passive and active. As Empty is
defined in the standard library as a predicate which never holds, a passive clock is
a clock whose subset of ticks is empty, while an active clock is the opposite.

passive : Pred Clock _16 16

passive = Empty ◦ Ticks17 17

active : Pred Clock _18 18

active = ¬_ ◦ passive19 19

These definitions are bricks on which more advanced ones can be expressed,
starting with the notion of filtering.
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6.2.2.d Filtering

We propose a way of filtering a clock through a given predicate, which creates a
new clock that ticks on instants when both the original clock ticks and the predicate
holds, thus ticking on their intersection if seen as subsets. This will be used for
instance when considering properties over clocks on a specific interval inside the
lifetime of the clock. The filtering is defined as follows:

_filterBy_ : Clock → (Pred _ _) → Clock20 20

((Ticks ⧖ _) filterBy P) .Ticks = Ticks ∩ P21 21

((_ ⧖ TTot) filterBy _) .TTot (x , y , _) (x1 , y1 , _)22 22

= TTot (x , y) (x1 , y1)23 23

Since this creates a new clock, it is required to compute the proof that the ticks
remain comparable after the filtering, which is done on line 23. To define this filter-
ing, we chose to rely on the notion of copatterns provided by AGDA. The dotted pat-
terns – .Ticks and .TTot – are actually copatterns, which means they correspond
to a subpart of the clock (yet another dot, different from inference and irrelevance
from Section 2.3.5.e). The union of the copatterns must define the whole clock.
This function is equivalent to the following one, without the use of copatterns:

_filterBy’_ : Clock → (Pred _ _) → Clock24 24

(Ticks ⧖ TTot) filterBy’ P25 25

= (Ticks ∩ P) ⧖ � {(x , y , _) (x1 , y1 , _) → TTot (x , y) (x1 , y1)}26 26

Copatterns are useful as a visual way of separating the constituents of the out-
put of a function, as well as the bricks that are useful in building these constituents.
For instant, the quantity .Ticks only needs Ticks and P to be built, which allows
us to hide TTot using an underscore. This enforces a clearer view as to how each
of the constituents of a clock are deduced from the context. However, using copat-
tern usually induces a less concise definition. This is mostly a matter of taste and
aesthetic views but it has other upsides which will be discussed in later uses.

Now that the filtering has been defined, we can formulate and prove properties
regarding activity or passivity of filtered clocks:

• Filtering a passive clock can only produce a passive clock.
• If the filtering of a clock is active, the original clock was necessarily active.

passiveFilter : ∀ {c P} → passive c → passive (c filterBy P)27 27

passiveFilter p x = p x ◦ proj128 28

–29 29

activeFilter : ∀ {c P} → active (c filterBy P) → active c30 30

activeFilter {c} = _◦ (passiveFilter {c})31 31

147



As mentionned, filtering clocks is mostly used to restrict their lifetime to a spe-
cific interval, therefore we provide a special filtering which takes an interval as
input. This filtering, called _∣i_ is defined as follows:

_∣i_ : Clock → Interval → Clock32 32

c ∣i I = c filterBy (_∈i I)33 33

Pursuing the goal of specifying behaviour on specific interval, we define activity
and passivity relatively to an interval. A clock c is said to be active (resp. passiv)
on a given interval I when c ∣i I is active (resp. passive) as follows:

_ticksIn_ : Clock → Interval → Set34 34

c ticksIn I = active (c ∣i I)35 35

–36 36

_idlesIn_ : Clock → Interval → Set37 37

c idlesIn I = passive (c ∣i I)38 38

A clock that is active in a specific interval I should be active in any interval
containing I. Reciprocally, a clock that is passive in an interval I should be passive
in any interval contained in I. This is expressed and proved as follows:

presIdles : ∀ {c I0 I1} → c idlesIn I1 → I0 ⊂i I1 → c idlesIn I039 39

presIdles passcI1 I0⊂iI1 i (ti , i∈I0) = passcI1 i (ti , I0⊂iI1 i∈I0)40 40

–41 41

presTicks : ∀ {c I0 I1} → c ticksIn I0 → I0 ⊂i I1 → c ticksIn I142 42

presTicks {c} p I0⊂iI1 passcI1 = p (presIdles {c} passcI1 I0⊂iI1)43 43

6.2.2.e Lifetime of a clock

In the paper version of the denotational semantics of CCSL, the authors rely
for each clock on two particular instants, the birth and the death. These instants are
meant to represent the lifetime of a clock and are not represented as a constituent
of the clocks in our semantic. Rather, they are represented as a predicate since we
try to be as relational as possible. This means that, as it is customary in our work,
a notion that was once represented as a specific element will now be expressed
relationally. The most important predicate is diesIn which states if a clock dies
in a given interval. For a clock to be considered as dying in a interval, this clock
should both tick in this interval, and have all its subsequent ticks remain in this
interval.

_diesIn_ : REL Clock Interval _44 44

c diesIn I = ∃ � i→ i ∈i I × Ticks c i × (∀ j → Ticks c j → i ≼ j → j ∈i I)45 45
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From this definition, we can deduce a death instant. It is important to note that,
according to this definition, a specific death instant might not exist, especially in
the case of dense clocks. An instant is considered as the death instant of a clock if
this clock dies in the interval reduced to this instant, as shown as follows:

_diesOn_ : REL Clock Support _46 46

c diesOn i = c diesIn J i - i K47 47

According to the notion of death, all instants on which a specific clock dies
should be coincident. This can be specified and proved as follows:

dies≈ : ∀ {i j c} → c diesOn i→ c diesOn j → i ≈ j48 48

dies≈ {c = c} (_ , o∈ii , tco , _) (_ , u∈jj , tcu , _)49 49

with sameB refl≈ o∈ii | sameB refl≈ u∈jj | TTot c (_ , tco) (_ , tcu)50 50

dies≈ _ _ | o≈i | u≈j | tri≈ _ refl _ =51 51

trans≈ (sym≈ o≈i) (trans≈ refl≈ u≈j)52 52

dies≈ (_ , _ , _ , po) (u , _ , tcu , _) | o≈i | _ | tri< o≺u _ _ =53 53

contradiction54 54

(sym≈ (trans≈ (sameB refl≈ (po u tcu (inj2 o≺u))) (sym≈ o≈i)))55 55

(≺→¬≈ (inj1 o≺u))56 56

dies≈ (o , _ , tco , _) (_ , _ , _ , pu) | _ | u≈j | tri> _ _ u≺o =57 57

contradiction58 58

(trans≈ (sameB refl≈ (pu o tco (inj2 u≺o))) (sym≈ u≈j))59 59

(≺→¬≈ (inj2 u≺o))60 60

In order to conduct this proof, we start by retrieving additional information from
the context on – line 50:

• The instant o on which c ticks in its death interval coincides with the unique
boundary i of this interval. This means that o ≈ i.

• In a similar matter, we deduce that u, the instant on which c ticks in its other
death interval coincides with its boundary, meaning u ≈ j.

• We know that there is a strict total order on the ticks of c. Since c ticks
both on o and u we can compare these instants together which leads to three
different cases: o ≡ u, o ≺ u and u ≺ o

The three branches of the proof derived from the comparison between o and u are
conducted as follows:

• When o ≡ u – line 50 – we know that o ≈ u because _≈_ is reflexive. We
also know that o ≈ i and u ≈ j which leads to i ≈ j using the symmetry
and transitivity of _≈_

• When o ≺ u – line 53 – we can exhibit a contradiction. On one side, this
means that we have ¬ o ≈ u. On the other side, using the property po we
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know that any tick of c occuring after o is necessarily in the death interval,
which is reduced to the value i. This means that u coincides with i and
ultimately leads to o ≈ u using the other properties of _≈_.

• The case u ≺ o – line 57 – is conducted similarly to the previous one.
Assuming that a clock dies on an instant d, it should never tick in any interval

starting after d, which can be proved as follows:

staysDead : ∀ {i d c} → c diesOn d → d ≺ i → c idlesIn J i -∞J61 61

staysDead (_ , d∈xx , _ , p) d≺i j (tcj , i≼j) = proj262 62

(p j tcj (trans≼ (≼-resp-≈263 63

(sym≈ (sameB refl≈ d∈xx)) (inj2 d≺i)) i≼j)) (trans≺≼ d≺i i≼j)64 64

While the death gives us valuable information about a single clock, we would
like to introduce new notions allowing us to bind clocks with one another. This is
done in CCSL by a concept called relations.

6.2.3 Relations

6.2.3.a Definition

c1

c2

Figure 6.10: Some instants are constrained
In a complex and possibly heterogeneous system, many events – hence many

clocks – can be identified. An important aspect of CCSL is that it handles complex
and heterogeneous systems in a single manner (in a way, in CCSL, each system
is heterogeneous compared to the atomistic description of each event it provides).
Each clock taken separately does not offer much interesting information about the
whole system, but bound together, they provide useful specifications about its global
behaviour. This binding can be given as binary relations that constrain the execution
of the system and, in our framework, is modeled as such (a binary relation is a
predicate over two variables). They enforce an order between some instants by
requiring some of them to be bound by precedence – red arrows – or by coincidence
– dashed blue lines – as depicted in Figure 6.10. A relation holds, by default, for
the lifetime of the system. The global AGDA type for CCSL relations is:

CCSLRelation : Set165 65

CCSLRelation = Rel Clock _66 66
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CCSLRelation is a specification of a type – hence an element of type Set1
– which contains all the predicates over two clocks. This means that any binary
relation over clocks (any set of couples of clocks) is a clock relation.

While relations can hold for the entire lifetime of two clocks, it is often very
useful to specify a relation which only holds inside a specific interval. Considering
a given interval, two clocks are related if they satisfy the relation whenever they
tick inside that interval. In our framework, this is expressed this way: two clocks
are considered related on a given interval when their filtered versions are related
globally through the same relation. Thus, by restricting the "Ticks" predicate on
our clock, we obtain a more natural version of interval constrained relations.

Let us consider the specification of a relation over a specific interval:

CCSLRelationi : Set167 67

CCSLRelationi = Interval → CCSLRelation68 68

This allows, from a specific relation, to deduce the associated relation reduced
to an interval:

toReli : CCSLRelation → CCSLRelationi69 69

toReli _CR_ I = _CR_ on (_filterBy (_∈i I))70 70

While this definition of a relation inside a given interval is convenient, it might
sometimes be useful to add an additional predicate while restricting a relation to a
given interval. Indeed, while considering the filtering of a clock through the inter-
val, we lose information about what happens outside this interval, and sometimes
these pieces of information can be useful to express a more advanced property. We
provide another way of building intervalled relations that accepts a predicate as in-
put to handle these cases. Since this predicate happens to be over two clocks and
an interval, it is itself of type CCSLRelationi.

toReliWithP : CCSLRelation → CCSLRelationi → CCSLRelationi71 71

toReliWithP _CR_ CRi I c1 c2 = toReli _CR_ I c1 c2 × CRi I c1 c272 72

6.2.3.b Subclocking

c1

c2

Figure 6.11: c1 is a subclock of c2
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Definition The subclocking is the first and most natural relation provided by
CCSL. A clock c1 is said to be a subclock of a clock c2 when every tick of c1 is
coincident with a tick of c2. This is the classical sampling of synchronous systems.
Figure 6.11 shows an example of subclocking.

The AGDA definition of this relation is as follows:

_⊑_ : CCSLRelation73 73

(Tc1 ⧖ _) ⊑ (Tc2 ⧖ _) = ∀ (x1 : ∃ Tc1) → ∃ \(x2 : ∃ Tc2) → x1 ≈’ x274 74

It states that whenever c1 ticks on an instant x1 – ∀ (x1 : ∃ Tc1) – there
exists an instant x2 on which c2 ticks – ∃ \(x2 : ∃ Tc2) – which coincides with
x1 – ≈’ is the extension of ≈ as described in Section A.3.1.

_⊑_ and _≡_ form a preorder As a conformity property, one would expect such
a subclocking to be transitive, which means that sampling a clock several times in
a row would still result in a sample of the original clock. This is done as follows:

trans⊑ : Transitive _⊑_75 75

trans⊑ c1⊑c2 _ x with c1⊑c2 x76 76

trans⊑ _ c2⊑c3 _ | y , _ with c2⊑c3 y77 77

trans⊑ _ _ _ | _ , x≈y | z , y≈z = z , trans≈ x≈y y≈z78 78

In addition, the subclocking should also be reflexive:

refl⊑ : Reflexive _⊑_79 79

refl⊑ = _, refl≈80 80

Both these properties provide a convenient structure of partial ordering to the
subclocking – relatively to the propositional equality. This structure can be made
explicit in AGDA by providing the right elements as follows:

isPreorder≡⊑ : IsPreorder _≡_ _⊑_81 81

isPreorder≡⊑ = record {82 82

isEquivalence = isEquivalence≡ ;83 83

reflexive = � { {c} refl → refl⊑ {c}} ;84 84

trans = � {c1} {c2} {c3} → trans⊑ {c1} {c2} {c3}}85 85

It would be tempting to assume that these relations also exhibit a partial order
structure, meaning that ∀ c1 c2 → c1 ⊑ c2 → c2 ⊑ c1 → c1 ≡ c2. How-
ever, this does not hold because the propositional equality is too strong and the
clocks c1 and c2 can have instants that are coincident but not equal. Another notion
of equality betweens clocks will soon be described and will fulfill that role.
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Relation with filtering By defining the notion of subclock, it is noticeable that
we define a notion very close to filtering. In fact, the filtering of a clock is the
operational equivalent of the subclocking. While the subclocking is a relation that
can appear between two clocks, the filtering is an operationwhich creates a subclock
of a given clock. While this correspondence seems natural, it is mandatory to prove
that these notions are indeed two faces of the same coin.

The first step in that direction is to prove that the filtering of a clock is indeed a
subclock of the original clock regarding the subclocking relation. This is very easy
and natural to complete – opToRel stands for "operational to relational":

opToRel : ∀ {c P} → (c filterBy P) ⊑ c86 86

opToRel (i , tci , _) = (i , tci) , refl≈87 87

The second and last step is to prove that, considering two clocks in a relation of
subclocking, the subclock could have been built from the original clock by filtering
it through a given predicate. However, this step needs further work, for it requires
us to specify a comparison between clocks. To understand where the issue comes
from, let us try and formulate the property we wish to prove in natural language:
"Given two clocks c0 and c1 such that c0 is a subclock of c1, there exists a predicate
P such that c1 filtered by P is in fact c0". While reading this assertion, one can
notice that the notion of "is in fact" is not quite well defined. Indeed, to prove
such a property, one must be able to compare clocks one with the other. The first
idea would be to use propositional equality. However, clocks are built from the
Ticks predicate and these predicates can only be proved propositionally equal by
postulating the extensional equality which we do not intend to do. Thus, there needs
to be another equality between clocks, which would hold when the subsets of ticks
contain the same elements. This leads to the definition of a new relation, called
equality, which will ultimately lead to the proof of the reciprocal property that will
be called relToOp (standing for relational to operational).
6.2.3.c Equality

Definition Two clocks c1 and c2 are equal when they only tick on coincident
instants. It means that if c1 ticks on i then there exists an instant j which coincides
with i and where c2 ticks, and reciprocally. An example of equal clocks is given in
Figure 6.12.

c1

c2

Figure 6.12: c1 is equal to c2
One can notice that this definition is exactly equivalent to a double subclocking,

which is a more natural way of defining it:
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_∽_ : CCSLRelation88 88

c1 ∽ c2 = c1 ⊑ c2 × c2 ⊑ c189 89

_∽_ is an equivalence relation Since this relation should be a reliable way to
compare one clock to another, it should be an equivalence relation. Similarly to the
preorder exhibited earlier, this is done by instantiating the right arguments inside a
record which contains the fields required to be an equivalence relation.

isEq∽ : IsEquivalence _∽_90 90

isEq∽ .IsEquivalence.refl = (_, refl≈) , _, refl≈91 91

isEq∽ .IsEquivalence.sym = swap92 92

isEq∽ .IsEquivalence.trans {i} {j} {k} (i⊑j , j⊑i) (j⊑k , k⊑j) =93 93

trans⊑ {i} {j} {k} i⊑j j⊑k , trans⊑ {k} {j} {i} k⊑j j⊑i94 94

_⊑_ and _∽_ form a partial order Since we exhibited a second equivalence
relation between clocks – in addition to the propositional equality _≡_ – we can
prove that the subclocking remains a preorder with that new equivalence relation.
But, since this notion of equality is more permissive than the propositional equality,
we can also exhibit a partial order. Filling these records is interesting because it
allows us to grab all the predefined consequences present in the standard library
implemented from the state of the art in mathematical structures. This allows us to
show that copatterns can be chained.

isPartialOrder∽⊑ : IsPartialOrder _∽_ _⊑_95 95

isPartialOrder∽⊑ .isPreorder .IsPreorder.isEquivalence = isEq∽96 96

isPartialOrder∽⊑ .isPreorder .IsPreorder.reflexive = proj197 97

isPartialOrder∽⊑ .isPreorder .IsPreorder.trans {c1} {c2} {c3} =98 98

trans⊑ {c1} {c2} {c3}99 99

isPartialOrder∽⊑ .antisym = _,_100 100

A trivial implication is that if two clocks are equal, and one of them is a subclock
of a clock c then the other is also a subclock of c. This problem can be solved in a
domain manner with obvious considerations, but it can also be treated as a purely
structural problem, solving it using the reflexivity and the transivity of the previous
preorder.

Filtering, subclock and equality Now that we have defined a notion of equality
between clocks, we can complete our relation between the operational filtering and
the relation subclocking. The property which cannot be formally expressed, and
which was the following informal sentence: "Given two clocks c0 and c1 such as
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c0 is a subclock of c1, there exists a predicate P such as c1 filtered by P is in fact
c0" can now be successfully expressed:

relToOp : ∀ {c0 c1} → c0 ⊑ c1 → ∃ (_∽ c0 ◦ c1 filterBy_)101 101

In order to prove this property, we need to assess P. P should be a predicate such
as the filtering of c1 through P is equal to c0. Since c0 is a subclock of c1, we need
to filter the instants on which c1 ticks that have a coincident instant on which c0
ticks, which gives us P. Having expressed such property, the proof follows:

relToOp {c0} {c1} c0⊑c1 =102 102

(� i→ ∃ \j→ Ticks c0 j × i ≈ j) ,103 103

(� {(_ , _ , j , tc0j , i≈j) → (j , tc0j) , i≈j}) ,104 104

� {(i , tc0i) → case c0⊑c1 (i , tc0i) of105 105

� {((j , tc1j) , i≈j) → (j , tc1j , i , tc0i , sym≈ i≈j) , i≈j}}106 106

This completes the relation between filtering and subclocking as the two faces
of the same coin.
6.2.3.d Exclusion

Definition Two clocks are in exclusion with one another when they have no co-
incident ticks. An example of exclusion is given on Figure 6.13.

c1

c2

Figure 6.13: c1 is in exclusion with c2
The AGDA definition is the following:

_♯_ : CCSLRelation107 107

(Tc1 ⧖ _) ♯ (Tc2 ⧖ _) = ∀ (x : ∃ Tc1) (y : ∃ Tc2) → ¬ x ≈’ y108 108

This definition consists of a predicate that for any x and y, if c1 ticks on x and
c2 ticks on y, then x and y are not coincident.

Symmetry of _♯_ As a direct consequence to this definition and the symmetry of
the coincidence, the exclusion is symmetrical.

sym♯ : Symmetric _♯_109 109

sym♯ p x y = (p y x) ◦ sym≈110 110
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Relation to subclocking If two clocks are in exclusion, then sampling any or both
of these clocks should retain this property.

♯⊑ : ∀ {c1 c2 c3 c4} → c2 ♯ c4 → c1 ⊑ c2 → c3 ⊑ c4 → c1 ♯ c3111 111

♯⊑ c2♯c4 c1⊑c2 c3⊑c4 i j i≈’j with c1⊑c2 i | c3⊑c4 j112 112

♯⊑ c2♯c4 _ _ _ _ i≈j | k , i≈k | l , j≈l =113 113

c2♯c4 k l (trans≈ (sym≈ i≈k) (trans≈ i≈j j≈l))114 114

Note that since the subclocking is reflexive, this property encompasses the case
where only one of the clocks are sampled.

We also provide a proof that if two clocks are both in a relation of subclocking
and in a relation of exclusion, then the subclock is passive.

♯×⊑→⊥ : ∀ {c1 c2} → c1 ♯ c2 → c1 ⊑ c2 → passive c1115 115

♯×⊑→⊥ c1♯c2 c1⊑c2 i tc1i with c1⊑c2 (i , tc1i)116 116

♯×⊑→⊥ c1♯c2 c1⊑c2 i tc1i | j , i≈j = c1♯c2 (i , tc1i) j i≈j117 117

6.2.3.e Precedence

Informal definition A clock c1 precedes another clock c2 when each consecutive
tick of c2 is preceded by a distinct and consecutive tick of c1. Note that the word
"consecutive" can only refer to discrete clocks. In dense clocks, the equivalent is
that every tick of c1 placed between twomapped ticks must bemapped as well. This
mapping refers to a function that binds the instants of the two clocks together so that
the precedence holds. The precedence can either be strict or not, depending if two
mapped instants are allowed to be coincident. Before getting to the formal defini-
tion of this relation, let us consider some examples which will clarify the notion of
"consecutive" as well as the difference between strict and non-strict precedence.

Examples Figure 6.14 represents a mapping between two clocks c1 and c2 where
each tick of c2 is mapped to a tick of c1 that precedes it. However, there are "un-
used" ticks of c1 which should be mapped to some ticks of c2. This example was
mistakenly authorized by the paper version of CCSL denotational semantics and
was corrected in our mechanization.

c1

c2

Figure 6.14: An incorrect strict precedence example

Figure 6.15 corrects the issue by mapping the remaining instants in a correct
manner. One can notice that it should be possible to go from one such unsound
mapping to this sound one in an operational manner by "moving" the arrows to the
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left. However, this process, while possible when considering discrete clocks, is not
when dealing with dense clocks where there is an infinite amount of "moving" steps
to achieve, which is why we embed this constraint directly in our definition.

c1

c2

Figure 6.15: A standard strict precedence example

Figure 6.16 represents another example of precedence, where the mapping is
actually bijective, which means that the faster clock (c1) ticks as many times as
the slower one (c2) . While interesting, this is not required in the definition of
precedence. However, the mapping function is always bijective when considering
the subset of instants it reaches, which will be proved later on.

c1

c2

Figure 6.16: A specific strict precedence example

As a last example, Figure 6.17 shows an example of non-strict precedence,
where two mapped instants are coincident. If all mapped instants are coincident,
and if these mapped instants are consecutive, this is both a case of non-strict prece-
dence, and subclocking.

c1

c2

Figure 6.17: An example of non-strict precedence

Formal definition The precedence relation requires the existence of a function
h which maps the instants of c2 with the corresponding instants of c1. While we
chose to define it as a record to better separate its constituents, it could have equally
been defined as a simple predicate. However, this allows us to add the property
preserves← to our record which will ultimately be used as if it was a field except
it is actually deduced from the fields2. This record is parametrized by a relation,
which will later be instantiated either by the strict or non-strict precedence between
instants. It is interesting to note that this relation ismostly irrelevant for the structure
of this record, because it only constrains the position of the image compared to the

2This is possible thanks to AGDA expanding records as modules.
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antecedent. This is why it appears only once in the record, in the definition of
precedes. The other fields, which ensure that the instants are not entwined and
are all mapped, do not depend on it.

record Precedence (_<_ : Rel Support _) (c1 c2 : Clock) : Set where118 118

field119 119

h : ∃ (Ticks c2) → ∃ (Ticks c1)120 120

congruent : ∀ {i j} → i ≈’ j → h i ≈’ h j121 121

precedes : ∀ i→ proj1 (h i) < proj1 i122 122

preserves : ∀ {i j} → i ≺’ j → h i ≺’ h j123 123

dense : ∀ {i j} {p : ∃ (Ticks c1)} →124 124

h i ≺’ p → p ≺’ h j → ∃ (_≈’ p ◦ h)125 125

–126 126

preserves← : ∀ {i j} → h i ≺’ h j → i ≺’ j127 127

preserves← {i} {j} with TTot c2 i j128 128

preserves← | tri< a _ _ = const a129 129

preserves← | tri≈ _ b _ = ⊥-elim ◦ (irrefl≈≺ ◦ congruent) (≡→≈ b)130 130

preserves← | tri> _ _ c = ⊥-elim ◦ (≼→¬≺ ◦ inj2 ◦ preserves) c131 131

This definition is composed of five fields and one additional property:
• Line 120 – h maps the instants of the two clocks together. h goes from the

ticks of the slower clock to the ticks of the faster clock to handle cases when
the faster clock has additional ticks which should not be mapped.

• Line 121 – congruent ensures that two coincident ticks are mapped to co-
incident ticks as well. Since we know that coincidence on ticks of a given
clock is equivalent to propositional equality, this means that h is congruent.

• Line 122 – precedes ensures the precedence between the two clocks. This
is the main aspect of the precedence relation regarding common sense.

• Line 123 – preserves ensures that the mapping does not entwine instants
together. Note that this property could also have been expressed using _≼_
because the ticks are strictly ordered on a given clock.

• Line 124 – dense ensures that no instants are left behind between two
mapped instants – regardless if the clocks are dense themselves or not. Once
again, this definition relies on _≈_ but could also have relied on _≡_ with-
out changing the semantics because these two are equivalent over ticks of the
same clock.

• Line 127 – preserves← provides a proof of the reciprocal nature of
preserves deduced from the axioms in this record.

From this definition we can extract the definition of strict and non-strict prece-
dence, as follows:

158



_≺≺_ : CCSLRelation132 132

_≺≺_ = Precedence _≺_133 133

_≼≼_ : CCSLRelation134 134

_≼≼_ = Precedence _≼_135 135

Bijectivity of h The binding function h , which is the main part of the prece-
dence relation, exhibits special properties. Indeed, thanks to the elements compare,
congruent and preserves, h can be proven injective at first then bijective when
considering its image subset of elements, that is the elements that h reaches. To
prove such a property, it is required to work with setoids which are types coupled
with an equivalence relation. These proofs are left for the appendices as explained
as follows. The first step consists in proving that any injective function can be
converted into a bijective function when considering its image setoid, which is dis-
played in Section A.4.1. The second step consists in proving that, thanks to the
hypotheses present in the precedence structure, the binding function is injective
after which the results of the first step can be applied on it, which is displayed in
Section A.4.2.

Transitivity The precedence should be transitive, which is proven using copat-
terns to physically isolate the required fields of the output. This proof requires the
underlying relation to be transitive.

tprec : ∀ {R} → Transitive R → (Transitive ◦ Precedence) R136 136

tprec _ p12 p23 .h = (h p12) ◦ (h p23)137 137

tprec _ p12 p23 .congruent = (congruent p12) ◦ (congruent p23)138 138

tprec tr p12 p23 .precedes = (tr (precedes p12 _)) ◦ (precedes p23)139 139

tprec _ p12 p23 .preserves = (preserves p12) ◦ (preserves p23)140 140

tprec _ p12 p23 .dense {p = k} ≺k k≺ with dense p12 {p = k} ≺k k≺141 141

tprec _ p12 p23 .dense ≺k k≺ | l , hl≈p with dense p23 {p = l}142 142

(preserves← p12 (≺-resp-≈1 (sym≈ hl≈p) ≺k))143 143

(preserves← p12 (≺-resp-≈2 (sym≈ hl≈p) k≺))144 144

tprec _ p12 p23 .dense _ _ | m , hm≈p | n , hn≈p =145 145

n , trans≈ (congruent p12 hn≈p) hm≈p146 146

In this proof, copatterns yield an additional upside on top of aesthetic consider-
ations. The computation of the dense field requires the addition of new quantities
on which to pattern match using with when the computation of the other fields
do not. The use of copatterns allows us to do this addition specifically for this field
without impacting the others as shown on lines 141 to 146. This proof would still be
doable without copatterns – using the case_of_ AGDA construct to allow in-term
case-splitting – but the result would be far less readable.

While the fields h, congruent, preserves and precedes are deduced straight-
forwardly from the context, the proof that dense is preserved requires additional
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c1

c2

c3

h

h1
i m j

h1 i l h1 j

h ◦ h1 i k h ◦ h1 j

h1 m

h l≡

≡

Figure 6.18: Transitivity of dense

work. We need to apply the dense properties from both inputs consecutively which
provides the right instant needed for the proof to be completed. This proof is roughly
represented in Figure 6.18: the green arrows depict the application of the binding
functions, while the double brown arrows depict propositional equality.

Since both the precedence and the strict precedence over instants are transi-
tive, their corresponding precedence and strict precedence over clocks embed this
property.

trans≺≺ : Transitive _≺≺_147 147

trans≺≺ = tprec trans≺148 148

trans≼≼ : Transitive _≼≼_149 149

trans≼≼ = tprec trans≼150 150

Properties between _≺≺_ and _∽_ The strict precedence between clocks can
instinctively be seen as a way of strictly ordering clocks with one another. However,
it remains unclear under which conditions this order should hold.

c1

c2

c3

h

c3⊑c2
h’

Figure 6.19: Proof that the equivalence classes are respected

This potential order is necessarily strict, because a clock should not strictly pre-
cede itself, and it is also necessarily partial, because two clocks are not necessarily
in a relation of strict precedence with one another. This means that if _≺≺_ and
_∽_ form an order, it is a strict partial order. Since we already know that _∽_
is an equivalence relation, and that _≺≺_ is transitive, there are two remaining
properties to be proven to reach a strict partial order. These are the irreflexivity
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of _≼≼_ towards _∽_ and the fact that _≼≼_ respects the equivalence classes in-
duced by _∽_. According to the definitions, the preservation of the equivalence
classes should hold instinctively by combining the mapping function with the one-
one mapping of the instants of the two clocks deduced from the equality between
these clocks. As shown in Figure 6.19, it means that h’ ≡ h ◦ (c3 ⊑ c2).

The respect of the equivalence classes has been proven in both cases, but the
proofs are too dense and are put in the appendices, they can be found in Sec-
tion A.4.3. Here are their signatures:

≺≺-respr-∽ : _≺≺_ Respectsr _∽_151 151

≺≺-respl-∽ : _≺≺_ Respectsl _∽_152 152

However, it is noticeable that the irreflexivity cannot be proven, because it un-
fortunately does not hold in several cases. It is interesting to investigate these cases
and try to exhibit a common factor which would explain the issue, as our instinct
dictates that this should hold in "regular" cases, hence the need to rigorously define
what is meant by this. A first example of non-irreflexivity is in the case of a pas-
sive clock. If the clock never ticks, then anything is definitionaly slower, including
itself.

c≺≺∅ : ∀ {c e} → passive e → c ≺≺ e153 153

c≺≺∅ p = record154 154

{ h = � {(i , ti) → ⊥-elim (p i ti)}155 155

; congruent = � { {i , ti} _ → ⊥-elim (p i ti)}156 156

; precedes = � {(i , ti) → ⊥-elim (p i ti)}157 157

; preserves = � { {i , ti} _ → ⊥-elim (p i ti)}158 158

; dense = � { {i , ti} _ → ⊥-elim (p i ti)}}159 159

–160 160

∅≺≺∅ : ∀ {e} → passive e → e ≺≺ e161 161

∅≺≺∅ = c≺≺∅162 162

This means that the faster clock has to be active for the precedence to be ir-
reflexive towards equality. This makes sense because the binding function should
not be empty to have a real meaning as a binder between ticks. However, this is
not sufficient. Another case of non-irreflexivity can be provided when instantiating
CCSL over integers. When doing so, the simplest clock of all, the one that always
ticks, happens to precede itself by the simple function x ↦ x - 1, as shown in
Figure 6.20. This examples has been developed in our framework and is presented
in the appendices Section A.4.4.

The issue with this example is that the slower clock ticks infinitely often towards
the past, which means there is no starting point to the precedence, which makes it
unsound. Should we provide a starting point, a contradiction should arise. Indeed,
given an instant i on which c2 ticks for the first time of its lifetime, there exists
an instant j which precedes i on which c1 ticks, thanks to the precedence binding
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these two clocks. However, c1 and c2 are equal, which includes c1 being a subclock
of c2. This leads to the existence of an instant k on which c2 ticks that is coincident
with j. Since j strictly precedes i and k is coincident to j, k also strictly precedes
i which is in contradiction with the fact that i is the first tick of c2. We now have
our condition : if the slower clock has a first tick, such ill-formed cases should not
arise. This is a convenient condition because it also takes care of the empty clock
unsound case since having a first tick implies having at least one tick.

c1

c1
1 2 3 4 5 6

1 2 3 4 5 6

Figure 6.20: This clock strictly precedes itself
There remains the need to prove such assumption. To achieve that, we start by

creating a new kind of clocks, these which have an initial instant. The initial instant
is a pair of two elements : the tick instant – that is, an element of type ∃ Ticks –
and the proof that any other tick is preceded by it.

record InitialClock : Set1 where163 163

field164 164

clock : Clock165 165

first : ∃ � (x : ∃ (Ticks clock)) → ∀ (y : ∃ (Ticks clock)) → x ≼’ y166 166

Then, we extend our relations to initial clocks by applying the existing ones to
the clock component of the initial clocks.

_∽i_ : Rel InitialClock _167 167

_∽i_ = _∽_ on clock168 168

_≺≺i_ : Rel InitialClock _169 169

_≺≺i_ = _≺≺_ on clock170 170

And finally, using the existence of this first instant, we can implement our in-
formal proof of irreflexivity in our formal context:

≺≺-irrefl : Irreflexive _∽i_ _≺≺i_171 171

≺≺-irrefl {y = c2} _ _ with first c2172 172

≺≺-irrefl c1∽c2 c1≺≺c2 | f , f≼x with proj1 c1∽c2 (h c1≺≺c2 f)173 173

≺≺-irrefl _ c1≺≺c2 | f , f≼x | g , hf≈g =174 174

irrefl≈≺ hf≈g (trans≺≼ (precedes c1≺≺c2 f) (f≼x g))175 175

Note that this proof only requires the slower clock to have this first instant, but
we provide it in a context where both clocks do have this instant, because it is much
more convenient to work with homogeneous relations instead of heterogeneous re-
lations.
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Finally, combining all the elements that are required for a strict partial order
to hold, we can build the proof that _≺≺_ and _∽_ form this kind of order on
initial clocks. Note that, in these kinds of instantiations, and for a reason currently
unknown to me, this field of transitivity always requires us to provide explicitly all
of its implicit parameters, which is why it is so verbose.

≺≺-ispo : IsStrictPartialOrder _∽i_ _≺≺i_176 176

≺≺-ispo .isEquivalence =177 177

record { refl = (_, refl≈) , _, refl≈ ; sym = swap ;178 178

trans = � { {record {clock = i}}179 179

{record {clock = j}} {record {clock = k}}180 180

(i⊑j , j⊑i) (j⊑k , k⊑j) → trans⊑ {i} {j} {k} i⊑j j⊑k181 181

, trans⊑ {k} {j} {i} k⊑j j⊑i} }182 182

≺≺-ispo .irrefl {i} {j} = ≺≺-irrefl {i} {j}183 183

≺≺-ispo .trans = trans≺≺184 184

≺≺-ispo .<-resp-≈ = ≺≺-respr-∽ , ≺≺-respl-∽185 185

To summarize this part, the equality and the strict precedence between clocks
have the right properties when the clocks have an initial instant, which can be in-
terpreted as the birth instant of the clock. This is a reasonable prerequisite because
it seems that in real life systems such an instant will indeed always exist, assuming
the clock is not passive the entirety of its lifetime.

Properties between _≼≼_ and _∽_ Similarly to strict precedence, non-strict
precedence can be seen as a way of ordering clocks one with the other. Since the
precedence is by definition non-strict, the order it forms with the equality is not
strict as well. In addition, since there is no reason that two random clocks would
necessarily be bound through a non-strict precedence relation, this order should be
partial. Thus, we aim at proving that _≼≼_ and _∽_ form a partial order.

The first step in that direction is to establish that _≼≼_ and _∽_ form a pre-
order. Since the transivity of _≼≼_ and the equivalence of _∽_ have already been
confirmed, it remains to prove that _≼≼_ is reflexive towards _∽_, which means
that any two clocks that are equal are in a relation of non-strict precedence. This
requires us to use the correspondance between the coincident instants of the two
clocks as binding functions.

An interesting aspect in following proof of reflexivity is the field dense. It is
interesting to notice that all the other fields, except this one, need the proof element
associated with the variable c2⊑c1 to be completed but not the one associated with
c1⊑c2. This means that, if the dense property was missing from the definition of
precedence – which was originally the case in the paper version of the semantics
– any subclock of a clock c – and not only any clock equal to c – would also non-
strictly precede cwhich is not an expected behavior. The addition of dense ensures
that no such case is possible which provides the expected semantics.
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refl≼≼ : _∽_ ⇒ _≼≼_186 186

refl≼≼ {c1} (c1⊑c2 , c2⊑c1) = record {187 187

h = proj1 ◦ c2⊑c1 ;188 188

congruent =189 189

flip trans≈ (proj2 (c2⊑c1 _)) ◦190 190

(trans≈ ((sym≈ ◦ proj2 ◦ c2⊑c1) _)) ;191 191

precedes = inj1 ◦ sym≈ ◦ proj2 ◦ c2⊑c1 ;192 192

preserves = ≺-resp-≈2 ((proj2 ◦ c2⊑c1) _) ◦193 193

(≺-resp-≈1 ((proj2 ◦ c2⊑c1) _)) ;194 194

dense = � {_} {_} {p} _ _ → proj1 (c1⊑c2 p) ,195 195

(trans≈ (sym≈196 196

((proj2 ◦ c2⊑c1 ◦ proj1 ◦ c1⊑c2) p))197 197

((sym≈ ◦ proj2 ◦ c1⊑c2) p))}198 198

Combining the elements proved earlier, the non-strict precedence forms a pre-
order when coupled with clock equality.

isPreorder≡≼≼ : IsPreorder _∽_ _≼≼_199 199

isPreorder≡≼≼ = record {200 200

isEquivalence = isEq∽ ; reflexive = refl≼≼ ; trans = trans≼≼ }201 201

The next step is to assess whether this preorder can be completed to a partial
order. The remaining property, to achieve the completion, is that _∽_ and _≼≼_
should be antisymmetric. This means that if a clock c1 precedes a clock c2 and
vice-versa, these two clocks should be equal. Instinctively, this should hold and
it fits the commonly accepted notion of precedence amongst CCSL experts and
users. However, there are cases where this simply does not hold. As opposed to
the unsound cases regarding strict precedence, there are no problems with passive
clocks because the only clock that can be both faster and slower than the empty clock
is another empty clock, in which case they are indeed equal. However, there are
unsound cases similar to the x → x -1 example on strict precedence, that can be
expressed once again on ℤ. Consider the clock c1 that ticks on every even number,
and the clock c2 that ticks on every odd number. These clocks have no coincident
instant, and are thus definitely not equal, however they both precede the other clock
through the same binding function, x → x - 1, as shown on Figure 6.21.

c1

c2
1 3 5

2 4 6

Figure 6.21: Two non-equal clocks with both precedences
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This example has been implemented in our framework and is displayed in the
appendices Section A.4.5. In order to prevent such a case, it is required to find a
property that should be satisfied by the clocks in order to ensure the antisymmetry
of _∽_ and _≼≼_. A good way to assess such a property is to picture what the
proof would look like and what would be the missing elements to complete it. As
opposed to the irreflexivity of _∽_ and _≺≺_where a contradiction had to be found,
which means only considering a single instant was sufficient – the first instant – the
antisymmetry requires us to build the entire proof of equality. Since two clocks are
equal when all of their respective instants are coincident, the proof that has to be
provided needs to reason about a potential infinity of instants. This already points
us in the direction of a recursive proof over the set of instants of a clock. In order
to succesfully define a recursion over an element of a type which is unspecified –
where no structural recursion is possible – there needs to be a well-founded order.
This leads to the conclusion that in order to establish the antisymmetry of _∽_ and
_≼≼_, _≺_ needs to be a well-founded order on the subset of ticks of the clocks.
From this point on, it will be possible to recurse over the ticks of the clocks to ensure
that all of their ticks are indeed coincident with a tick of the other clock.

The complete proof is available in the appendices in Section A.4.6, however,
here are the different steps that it contains:

1. We defined a new kind of clock which provides a proof that the precedence
relation is well-founded over its ticks.

2. We extend the relations of strict precedence and equality to this new kind of
clock, considering only the clock it contains.

3. We formulate a predicate which implies that the antisymmetry holds. This
predicate states that any instant i of c1 – c1 being one of the two clocks
involved in the double precedence – is coincident with (h1 ◦ h) i – we
call this predicate P of i – where h and h1 are the binding function of the
precedences. We picked an instant of c1 to express this property but we could
have equally chosen c2 since the two clocks can be interchanged indifferently.

4. We prove that this predicate implies the antisymmetry of _∽_ and _≼≼_.
5. In order to prove P for all ticks, we formulate a recurrence predicate which

proves P for a given i provided that P holds for any tick that precedes i.
6. We use the well-founded order between the ticks to give step to a recursor

which proves P for the entire subset of ticks.
7. We prove the different lemmas used to prove the step property.
8. This completes the proofs.
All of these steps allow us to prove the expected partial ordering by combining

the antisymmetry with the properties that were previously expressed:
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≼≼-ipo : IsPartialOrder _∽o_ _≼≼o_202 202

≼≼-ipo = record {203 203

isPreorder = record {204 204

isEquivalence = record {205 205

refl = (_, refl≈) , _, refl≈ ;206 206

sym = swap ;207 207

trans = � { {record {clock = i}} {record {clock = j}}208 208

{record {clock = k}} (i⊑j , j⊑i) (j⊑k , k⊑j) →209 209

trans⊑ {i} {j} {k} i⊑j j⊑k , trans⊑ {k} {j} {i} k⊑j j⊑i} } ;210 210

reflexive = refl≼≼ ;211 211

trans = trans≼≼ } ;212 212

antisym = � {i} {j} → ≼≼-antisym-∽ {i} {j} }213 213

Application to natural numbers The natural numbers have convenient proper-
ties which allows us to have very weak conditions which are enough to ensure the
existence of an initial tick and the well-foundedness of the strict precedence over
its ticks. These conditions are the following :

• The clocks tick at least once.
• Their Ticks predicate is decidable.

Any clock that has these properties can be transformed into an element of type
InitialClock or WfClock. This is proved in the appendices Section A.4.7 using
the following steps:

1. Definition of a function precedent which, given a specific tick i of a clock
c provides :

• Either a proof that no instant preceding i is a tick of c, thus i is the
initial instant.

• Or an instant j on which c ticks which stricty precedes i with the proof
that no other instant between i and j is a tick of c.

This function recursively trims its input until either a new tick is found using
the decidablity of the predicate, or zero is reached.

2. Proof of the well-foundedness of the strict precedence over the ticks of c. To
prove that any tick is accessible – which is the definition of well-foundedness
– we use the function precedent to step back and recursively build the re-
sult while proving the termination using the well-foundedness of the strict
precedence on natural numbers.

3. Proof of the existence of an initial instant, applying recursively precedent
from an existing instant which has to be provided.
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4. Definition of a new kind of clocks containing a clock, a tick for this clock and
the proof of decidability of its Ticks predicate.

5. Transformation of any clock of this type to an element of type InitialClock
or WfClock.

6.2.3.f Alternation

Informal definition and examples There are some cases where precedence is not
enough to express the semantics of the relation between two clocks. For instance,
in Figure 6.22, the clock c1 ticks a third time before the clock c2 ticks a second
time, which we might want to avoid.

c1

c2

Figure 6.22: A case of precedence without alternation
There are some cases where this kind of behaviour might be unwanted and must

be forbidden accordingly, forcing the clocks to be further constrained. Alternation
is a stronger case of precedence, which ensures that the ticks of the two clocks
alternate with one another. In other words, two clocks are said to be alternated
when one precedes the other in such a way that two ticks of a clock cannot occur
in between two ticks of the other one. Note that the underlying precedence has to
be strict for the relation to be consistent. A non-strict precedence would lead to ill
formed cases of alternation. Figure 6.23 presents a case of alternation.

c1

c2

Figure 6.23: c1 alternates with c2

Formal definition Alternation is a case of strict precedence with the addition of
a predicate that forces this alternation between instants. Formally, it is defined as a
record which encapsulates the precedence while adding this predicate.

record _≪≫_ (c1 c2 : Clock) : Set where214 214

field215 215

precedence : c1 ≺≺ c2216 216

alternate : ∀ {i j : ∃ (Ticks c2)} → i ≺’ j → i ≺’ h precedence j217 217

The predicate called alternate ensures the alternation by forcing, for any tick
i of c2, that the image of i by h precedes any subsequent tick of c2.
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6.2.4 Expressions

6.2.4.a Definition

CCSL allows the definition of new clocks from existing clocks, which is ac-
ceptable from an operational point of view. Creating new clocks usually sets an
arbitrary order between the instants on which the underlying clocks are ticking,
which means that instants apparently independent are getting related because a new
clock is created out of them. An example of the arbitrary ordering is the union. The
union of two clocks ticks whenever one of the two clocks ticks. Since a clock has
a total order on its ticks, the ticks of the union must be totally ordered, which leads
to a total order on the ticks of the two other clocks. In our denotational framework,
all clocks are pre-existing thus we cannot create such new clocks. We assume they
already exist and propose to relate them using predicates to state that a clock could
be the result of such operation. To illustrate this notion, let us take the example of
the addition between natural numbers. One can say that 3 is the result of the opera-
tion 1 + 2 while another point of view could be that the triplet (2,1,3) is a member
of the addition. We take the second point of view to better match the denotational
aspect of our work. The type of expression is thus defined as a relation between
three clocks:

CCSLExpression : ∀ {a} → Set _218 218

CCSLExpression {a} = Clock → Clock → Clock → Set a219 219

6.2.4.b Intersection

Informal Definition A common expression on clocks is the intersection. Infor-
mally, the clock c can be seen as the intersection of two clocks c1 and c2 when it
only ticks on each instant where they simultaneously tick while each of its ticks has a
counterpart in both of the intersected clock. This notion of intersection corresponds
to the common definition of intersection over the subsets of instants.

c

c1

c2

Figure 6.24: An example of intersection

Example Figure 6.24 shows an example of intersection, where the two clocks c1
and c2 have three coincident ticks, which are also ticks for their intersection c.
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Formal definition Formally, the intersection is represented as the following
CCSL expression:

_≋_
⋂

_ : CCSLExpression220 220

(Tc ⧖ _) ≋ Tc1 ⧖ _
⋂

(Tc2 ⧖ _) =221 221

(∀ (x : ∃ Tc) → ∃ � (y : ∃ Tc1) → ∃ � (z : ∃ Tc2) → x ≈’ y × x ≈’ z) ×222 222

(∀ (y : ∃ Tc1) (z : ∃ Tc2) → y ≈’ z → ∃ � (x : ∃ Tc) → x ≈’ y)223 223

• Line 222 ensures that all ticks of c coincides with a tick of both c1 and c2.
• Line 223 ensures that whenever a tick of c1 and c2 coincide, c ticks.

Intersection and independance Intersection can be used as another way of ex-
pressing the independance between two clocks. Indeed, two clocks that are inde-
pendant should have an empty intersection, established as follows:

passc≋c1♯c2 : ∀ {c c1 c2} → c ≋ c1
⋂

c2 → c1 ♯ c2 → passive c224 224

passc≋c1♯c2 (c→c1c2 , _) c1♯c2 i tci =225 225

let (y , z , x≈y , x≈z) = c→c1c2 (i , tci) in226 226

c1♯c2 y z (trans≈ (sym≈ x≈y) x≈z)227 227

Symmetry of intersection The intersection is symmetrical over its two last
operands, which is natural considering its definition.

symInter : ∀ {c} → Symmetric (c ≋_
⋂

_)228 228

symInter (c→c1c2 , c1c2→c) =229 229

(� x → case c→c1c2 x of � {(y , z , x≈y , y≈z) → z , y , y≈z , x≈y}) ,230 230

(� y z x → case (c1c2→c z y) (sym≈ x) of231 231

� {(t , t≈z) → t , trans≈ t≈z (sym≈ x)})232 232

Intersection and subclocking If a clock c is the intersection of two clocks, then
c is a subclock of both of these clocks.

subInterl : ∀ {c c1 c2} → c ≋ c1
⋂

c2 → c ⊑ c1233 233

subInterl (c→c1c2 , _) x with c→c1c2 x234 234

subInterl (_ , _) _ | y , _ , x≈y , _ = y , x≈y235 235

–236 236

subInterr : ∀ {c c1 c2} → c ≋ c1
⋂

c2 → c ⊑ c2237 237

subInterr {c} {c1} {c2} =238 238

subInterl {c} {c2} {c1} ◦ symInter {c} {c1} {c2}239 239
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Unicity of intersection If two clocks are the intersection of the same clocks, then
one of them is necessarily a subclock of the other one.

≋
⋂

→⊑ : ∀ {c0 c c1 c2} → c0 ≋ c1
⋂

c2 → c ≋ c1
⋂

c2 → c ⊑ c0240 240

≋
⋂

→⊑ (_ , c1c2→c0) (c→c1c2 , _) x =241 241

let y , z , x≈y , x≈z = c→c1c2 x in242 242

let t , t≈y = c1c2→c0 y z (trans≈ (sym≈ x≈y) x≈z) in243 243

t , trans≈ x≈y (sym≈ t≈y)244 244

Since the intersection is symmetrical, the other is also a subclock of the one,
which means they are in fact equal. In other words, the intersection is unique to-
wards clock equality.

unicityInter : ∀ {c0 c c1 c2} → c0 ≋ c1
⋂

c2 → c ≋ c1
⋂

c2 → c ∽ c0245 245

unicityInter {c0} {c} {c1} {c2} p q =246 246

≋
⋂

→⊑ {c0} {c} {c1} {c2} p q , ≋
⋂

→⊑ {c} {c0} {c1} {c2} q p247 247

Stability with subclocking As shown above, the intersection is particularly reg-
ular towards subclocking. Here are two other consequences of this regularity.

Firstly, if two clocks c and c1 are in a relation of subclocking, then their inter-
section is c itself. Another way of seeing this property is that intersecting a clock
with a clock for which it is a subclock leaves it unchanged.

⊑→≋
⋂

: ∀ {c1 c2} → c1 ⊑ c2 → c1 ≋ c1
⋂

c2248 248

⊑→≋
⋂

c1⊑c2 =249 249

(� x → x , let (y , x≈y) = c1⊑c2 x in y , refl≈ , x≈y) , � x _ _ → x , refl≈250 250

Secondly, if a clock is a subclock of two clocks, then it is also a subclock of
their intersection.

⊑⊑→⊑
⋂

: ∀ {c0 c c1 c2} → c0 ⊑ c1 → c0 ⊑ c2 → c ≋ c1
⋂

c2 → c0 ⊑ c251 251

⊑⊑→⊑
⋂

c0⊑c1 c0⊑c2 (_ , c1c2→c) x0 =252 252

let (x1 , x0≈x1) = c0⊑c1 x0 in253 253

let (x2 , x0≈x2) = c0⊑c2 x0 in254 254

let (x , p) = c1c2→c x1 x2 (trans≈ (sym≈ x0≈x1) x0≈x2) in255 255

x , trans≈ x0≈x1 (sym≈ p)256 256

6.2.4.c Union

Informal definition Another common and natural expression on clocks is the
union. Informally, the clock c can be seen as the union of two clocks c1 and c2
when it ticks whenever either of these clocks tick, while each of its ticks has to
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coincide with a tick of c1 or a tick of c2. This notion of union corresponds to the
common notion of union over the subset of instants.

Example Figure 6.25 shows an example of union, where the two clocks c ticks
five times, corresponding to the five separate ticks from either c1 or c2.

c

c1

c2

Figure 6.25: An example of union

Formal definition Union is represented by the following CCSL expression:

_≋_
⋃

_ : CCSLExpression257 257

(Tc ⧖ _) ≋ (Tc1 ⧖ _)
⋃

(Tc2 ⧖ _) =258 258

(∀ (y : ∃ Tc) → ∃ � (x : ∃ (Tc1 ∪ Tc2)) → x ≈’ y) ×259 259

(∀ (x : ∃ (Tc1 ∪ Tc2)) → ∃ � (y : ∃ Tc) → x ≈’ y)260 260

• Line 261 ensures that all ticks of c coincides with at least a tick of c1 or c2.
• Line 262 ensures that all ticks from c1 or c2 have a coincident tick in c.

Symmetry of union The union is symmetrical over its two last operands, which
is also natural considering the way it is defined. The proof relies on swap⊎ which
swaps a sum of types (A ⊎ B → B ⊎ A).

symUnion : ∀ {c} → Symmetric (c ≋_
⋃

_)261 261

symUnion (c→c1c2 , c1c2→c) =262 262

(� x → let ((y , ty) , p) = c→c1c2 x263 263

in (y , swap⊎ ty) , p) ,264 264

� {(x , tx) → c1c2→c (x , swap⊎ tx)}265 265

Union and subclocking If a clock c is the intersection of two clocks, then both
of these clocks are subclocks of c.

subUnionl : ∀ {c c1 c2} → c ≋ c1
⋃

c2 → c1 ⊑ c266 266

subUnionl (_ , c1c2→c) (x , Tc1x) = c1c2→c (x , inj1 Tc1x)267 267
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subUnionr : ∀ {c c1 c2} → c ≋ c1
⋃

c2 → c2 ⊑ c268 268

subUnionr {c} {c1} {c2} =269 269

subUnionl {c} {c2} {c1} ◦ symUnion {c} {c1} {c2}270 270

Unicity of the union If two clocks are unions of the same clock, then one of them
is necessarily a subclock of the other.

≋
⋃

→⊑ : ∀ {c0 c c1 c2} → c0 ≋ c1
⋃

c2 → c ≋ c1
⋃

c2 → c ⊑ c0271 271

≋
⋃

→⊑ (_ , c1c2→c0) (c→c1c2 , _) x = let (y , x≈y) = c→c1c2 x in272 272

let z , y≈z = c1c2→c0 y in z , trans≈ (sym≈ x≈y) y≈z273 273

Since the union is symmetrical, the other is also a subclock of the first one,
which means they are in fact equal. In other words, the union is unique towards
clock equality.

unicityUnion : ∀ {c0 c c1 c2} → c0 ≋ c1
⋃

c2 → c ≋ c1
⋃

c2 → c ∽ c0274 274

unicityUnion {c0} {c} {c1} {c2} p q =275 275

≋
⋃

→⊑ {c0} {c} {c1} {c2} p q , ≋
⋃

→⊑ {c} {c0} {c1} {c2} q p276 276

Stability with subclocking As shown above, the union is particularly regular to-
wards the subclocking. Here are two other consequences of this regularity.

Firstly, if two clocks c1 and c2 are in a relation of subclocking, then their union
is c2 itself. Another way of seeing this property is that uniting a clock with one of
its subclocks leaves it unchanged.

⊑→≋
⋃

: ∀ {c1 c2} → c1 ⊑ c2 → c2 ≋ c1
⋃

c2277 277

⊑→≋
⋃

c1⊑c2 =278 278

(� {(x , tc1x) → (x , inj2 tc1x) , refl≈}) ,279 279

� {(x , inj1 tcx) → c1⊑c2 (x , tcx) ; (x , inj2 tc1x) → (x , tc1x) , refl≈}280 280

Secondly, if two clocks are subclocks of the same clock, then their union is a
subclock of this clock.

⊑⊑→⊑
⋃

: ∀ {c0 c c1 c2} → c1 ⊑ c0 → c2 ⊑ c0 → c ≋ c1
⋃

c2 → c ⊑ c0281 281

⊑⊑→⊑
⋃

c1⊑c0 c2⊑c0 (c→c1c2 , _) x with c→c1c2 x282 282

⊑⊑→⊑
⋃

c1⊑c0 c2⊑c0 (c→c1c2 , _) x | (x1 , inj1 tx1) , x1≈x =283 283

let (x0 , x1≈x0) = c1⊑c0 (x1 , tx1) in x0 , trans≈ (sym≈ x1≈x) x1≈x0284 284

⊑⊑→⊑
⋃

c1⊑c0 c2⊑c0 (c→c1c2 , _) x | (x2 , inj2 tx2) , x2≈x =285 285

let (x0 , x2≈x0) = c2⊑c0 (x2 , tx2) in x0 , trans≈ (sym≈ x2≈x) x2≈x0286 286
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Intersection and union As depicted when describing union and intersection,
both are fairly similar, as one can expect. They are the two faces of the same coin,
which can be formalized as a lattice. However, a mathematical lattice is composed
of operators, while we deal here with a relational specification. What we can show
however is that any two operators that would satisfy our specification of the union
and the intersection necessarily form a lattice. Here is the specification in question:

record SpecLattice
⋃⋂

(_∧_ _∨_ : Clock → Clock → Clock) : Set1 where287 287

field288 288

inter∧ : ∀ {c1 c2} → (c1 ∧ c2) ≋ c1
⋂

c2289 289

union∨ : ∀ {c1 c2} → (c1 ∨ c2) ≋ c2
⋃

c1290 290

Finding the partial order on which these operators should be a lattice is easy:
both the union and the intersection have a huge regularity regarding equality and
subclocking, and we have proven that these relations form a partial order. This is the
logical candidate. The proof that our specification implies that the two operators
form a lattice with this partial order is given in the appendices in Section A.4.8.
It consists in instantiating the lattice fields with the appropriate properties, which
have already been proven in this section. The proof signature is as follows :

specToLattice
⋃⋂

: ∀ {_∧_ _∨_}291 291

→ SpecLattice
⋃⋂

_∧_ _∨_ → IsLattice _∽_ _⊑_ _∨_ _∧_292 292

6.2.4.d Sup and Inf

.

Informal definition The Sup c of two clocks c1 and c2 represents a clock that is
the fastest yet slower than c1 and c2. This means that c is slower than both c1 and
c2 while being faster than any clock that has this property. Similarly, the Inf c of
two clocks c1 and c2 represents a clock that is the slowest clock yet faster than c1
and c2. These correspond to the common notions of greatest lower bound (meet)
and least upper bound (join).

Formal definition Their formal definition is the following:

_≋_
⋁

_ : CCSLExpression293 293

c ≋ c1
⋁

c2 = c1 ≼≼ c × c2 ≼≼ c ×294 294

∀ {c0} → c1 ≼≼ c0 → c2 ≼≼ c0 → c ≼≼ c0295 295

–296 296

_≋_
⋀

_ : CCSLExpression297 297

c ≋ c1
⋀

c2 = c ≼≼ c1 × c ≼≼ c2 ×298 298

∀ {c0} → c0 ≼≼ c1 → c0 ≼≼ c2 → c0 ≼≼ c299 299
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A lattice towards _≼≼_ and _∽_ As a direct consequence of these definitions,
these two expressions form a lattice with the partial order that we established be-
tween _≼≼_ and _∽_. This lattice however is far less interesting than the previous
one because the formal definitions of the sup and inf expression directly encapsu-
late this notion. However, it is interesting to notice that both partial orders that
were established in this work have their counterpart in terms of lattices using these
couples of expressions.

record SpecLattice
⋁⋀

(_∧_ _∨_ : Fun2 WFClock) : Set1 where300 300

field301 301

inter∧ : ∀ {c1 c2} → clock (c1 ∧ c2) ≋ clock c1
⋀

clock c2302 302

union∨ : ∀ {c1 c2} → clock (c1 ∨ c2) ≋ clock c2
⋁

clock c1303 303

–304 304

specToLattice
⋁⋀

: ∀ {_∧_ _∨_}305 305

→ SpecLattice
⋁⋀

_∧_ _∨_ → IsLattice _∽o_ _≼≼o_ _∨_ _∧_306 306

specToLattice
⋁⋀

{_∧_} {_∨_}307 307

record { inter∧ = inter∧ ; union∨ = union∨ } =308 308

record { isPartialOrder = ≼≼-ipo ;309 309

supremum = � _ _ → (proj1 ◦ proj2) union∨ , proj1 union∨ ,310 310

� _→ flip ((proj2 ◦ proj2) union∨) ;311 311

infimum = � _ _→ proj1 inter∧ , (proj1 ◦ proj2) inter∧ ,312 312

� _ → (proj2 ◦ proj2) inter∧}313 313

Assessments
This chapter presented a mechanized version of the denotational semantics of

all the non-index dependent elements of CCSL. Which means it handles each con-
struct which does not specifically require a discrete notion of time which would al-
low us to access events through an indexation. However, it presents a formal way of
defining discrete time through an instantiation of time with natural numbers which
would ultimately allow the formal definition of index dependant constructs as well.
The notion of clock is presented, followed by the notion of relations and expres-
sions. Each CCSL element that is presented has received the following treatment:
it has first been adapted to our formal framework, has been reviewed for inconsis-
tencies and has been verified through conformity properties which possibly binds
it to other constructs. When the formal context was not rich enough to establish
properties which should hold when using CCSL, it has been enriched accordingly,
which led to the definition of enriched clocks in specific context. We advocate all
clocks to respect this enriched context, in order for the precedences between clocks
to be consistent. Fortunately, the required properties are reasonable and easily es-
tablished when working with natural numbers. They are as follows: a clock should
have a first tick and it should be possible to decide whether it ticks on a given instant.
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Chapter 7

An extension of CCSL with
refinement

Outline
This chapter presents the results that we obtained when combining CCSL with

our notion of refinement. These results are of two sorts. The first one consists in
the mechanization of the approach. The second one consists in an investigation on
the preservation of CCSL constraints between the abstract model and the concrete
one that refines it, either through abstraction (from the concrete model to the ab-
stract one), or embodiment (from the abstract model to the concrete one). They are
displayed and discussed using the following outline:

1. Section 7.1 presents the stakes of this approach as well as some useful in-
formation on how its development has been conducted. It explains how and
why we can couple CCSL and our notion of refinement together.

2. Section 7.2 presents a first embedding of refinement in CCSL, which consists
in a 1-N (one to N) refinement between clocks. We discuss the relevance of
such embedding as well as the CCSL constraints it preserves. We show that
this notion of refinement is very akin to preserving constraints around clock
coincidence while not so much around clock precedence, which is why we
propose a second notion of clock refinement.

3. Section 7.3 presents this second embedding of refinement in CCSL, which
consists in a 1-1 (one to 1) refinement between clocks. This 1-1 refinement
is more constrained but also preserves more constraints around clock prece-
dence, which is discussed and established. Using this notion of refinement,
we show that three of the four possible notions of clock precedence can be
transferred into the other respective level of refinement.
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7.1 Introduction

7.1.1 Stakes of the approach

On the combination of CCSL and refinement In Section 5.2 we introduced our
approach on the modelling of refinement which proposes to handle the different lay-
ers of refinement by assigning each of them a separate partial order and ordering
these orders. CCSL is itself based on partial orders which means both our notion
of refinement and our mechanization of CCSL share the same formalism, which al-
lows us to mix them together to experiment on how CCSL behaves when combined
with a notion of refinement.

On preservation over instants Before starting the investigation on this conjunc-
tion, it is important to note once again that our notion of refinement is fundamentally
between partial orders. In that regard, it preserves by nature any required property
over these, because it has been defined in that purpose. For instance, the strict
precedence between instants is preserved through embodiment using the property
≺2→1, while the coincidence between instants is preserved through abstraction as
depicted by the property ≈1→2. In other words, there is no need to prove that our
refinement relation preserves the right properties, because it does so by definition.
Its goal is to express what properties should be preserved by refinement.

On preservation over clocks However, these preservations are natural in terms
of relations between instants, yet it is not the case for relations between clocks.
This means that it would be a mistake to assume that, by nature, relations between
clocks should be preserved by the use of our relation of refinement. This makes
the following question relevant: are there some properties between clocks which,
when specified at a given level of refinement, could be transfered into another level
of refinement ? This chapter aims at answering this question.

An example of what to expect Let us take an example of what to expect here:
at a given level of refinement, we know that subclocking is transitive. This means
that, given three clocks c1, c2 and c3, if we know that c1 ⊑ c2 and c2 ⊑ c3 then
we can deduce c1 ⊑ c3. In other words, the property c1 ⊑ c3 does not need to
be given as an additional constraint, because it is deducible from the rest of the
context. In this chapter, we try and assess such assumptions, but in various levels
of refinement.

Refinement between clocks In order to establish such properties, we need to ex-
press what it means for clocks to refine one another, which is done after a short
presentation of the formal context in which our work is introduced as well as some
operators and naming conventions that we use throughout this chapter.
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7.1.2 Formal context
In order to express refinement between clocks, we build a formal context in

which two partial orders over the same set coexist and exhibit a relation of refine-
ment. In this context, two CCSL models exist, one for each level of refinement,
which we name 1 and 2 respectively for the concrete and abstract instances.

module CCSLRefinement (Support : Set)1 1

{_≈1_ _≈2_ _≺1_ _≺2_ : Rel Support _}2 2

(ispo1 : IsStrictPartialOrder _≈1_ _≺1_)3 3

(ispo2 : IsStrictPartialOrder _≈2_ _≺2_)4 4

(refines : (_≈1_ , _≺1_) ≺≈ (_≈2_ , _≺2_)) where5 5

–6 6

open import CCSL (record {isStrictPartialOrder = ispo1}) as 17 7

open import CCSL (record {isStrictPartialOrder = ispo2}) as 28 8

In the following snippets of code, the prefixes 1. or 2. will be used to represent
which level of refinement is being considered. For instance, 1._≼_ represents the
concrete non-strict precedence. Using these prefixes, we can prove for instance that
the non-strict precedence is preserved through abstraction, whichwill be useful later
on, and which is a direct consequence of the axioms of refinement:

≼1→2 : 1._≼_ ⇒ 2._≼_9 9

≼1→2 (inj1 i≈1j) = inj1 (≈1→2 refines i≈1j)10 10

≼1→2 (inj2 i≺1j) = swap⊎ (≺1→2 refines i≺1j)11 11

7.1.3 Useful naming convention and operators
Naming conventions In the following section, all the snippets of code will follow
these conventions:

• Each index preceding an operator with a dot gives its level of abstraction, as
explained in Section 7.1.2. Note that this is not really a naming convention,
but can be seen as one by the reader. For instance, 2.Precedence refers to
the abstract notion of parametrized precedence presented in Section 6.2.3.e.

• The first index following a clock gives its level of abstraction. For instance,
c2 refers to an abstract clock.

• The second index following clocks from the same level of refinement differ-
entiate one from the others. For instance, c11 and c12 are two different clocks
from the concrete level of abstraction.

Composition of a binary function with two unary functions In this chapter, the
operator _-J_K-_ is often used. It is an operator derived from one in the standard
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library which composes a function of two parameters with two functions of a single
parameters, as depicted in the appendices in Section A.5.1.

A "monadic" operator of transformation Some of the results given in the fol-
lowing sections are built from proofs that are mostly similar in their form, which
means they contain an element that can be factorized. While this factorization
was originally done in the middle of the proof effort when it became apparent, we
present it here in order to conveniently present the proofs using said factorization.

We define an operator called _>[_]>_ that is similar to a monadic binding but
that takes an additional parameter in the middle. This operator is convenient be-
cause its output is of the same form as its first input which means several calls can
be chained, which is exactly what is done in several of the following results. Fig-
ure 7.1 presents the behaviour of this operator, while its AGDA definition is depicted
in the appendices in Section A.5.1.

v >[ p ]> ℎ

Q[i]

i P [i]
v

R[j, i]

j P1[j]h

p

Q[j]

Q[j]

j P1[j]

Figure 7.1: The binding operator
This operator takes a value v of the form (i , P[i] , Q[i]), a function h

which takes an element of the form (i , P[i]) and produces an element of the
form (j , P1[j] , R[i,j]) and a proof of preservation p which takes a proof
Q[i], a proof R[j,i] and produces a proof Q[j]. This operator uses these elements
to provide a result which is of the form (j , P1[j] , Q[j]), which is similar to
the form of its input v.

7.2 1-N clock refinement

7.2.1 Definition of 1-N refinement
While our notion of refinement is fundamentally between partial orders, it needs

a conterpart in CCSL which would allow us to express refinement between events.
Since the events in CCSL are tracked by clocks that are the basic bricks on which
constraints can be expressed, this counterpart has to be on clocks. A clock tracks
the occurrences of an event which can possibly be refined by one or several events,
whichmeans a clock should be possibly refined by one or several clocks. Informally,
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a clock refines another one when it represents a concrete event which was abstracted
by the first clock. For instance, if we look back at our example in Section 5.4, the
"switch on" clock is refined by several clocks, including the "compute" one.

This leads to the definition of a first notion of clock refinement: the 1-N refine-
ment which provides no constraints on how many ticks can refine a given tick.

_≲1−n_ : REL 1.Clock 2.Clock _12 12

(Ticks1 ⧖ _) ≲1−n (Ticks2 ⧖ _) =13 13

(∀ (y : ∃ Ticks2) → ∃ � (x : ∃ Ticks1) → x 2.≈’ y) ×14 14

(∀ (x : ∃ Ticks1) → ∃ � (y : ∃ Ticks2) → y 2.≈’ x)15 15

This definition is composed of two predicates as follows:
• Any tick of the abstract clock is refined by a tick of the concrete clock. These

two ticks are coincident from the abstract point of view.
• Any tick of the concrete clock is a refinement of a tick of the abstract clock.

These two ticks are coincident in terms of the abstract partial order.
Before starting our investigation on CCSL constructs, let us consider two clocks

c1 and c2 such that c1 refines c2. Let us then take a tick i of c2. We can deduce
the existence of a tick i’ of c1 that refines i. Then, we can deduce the existence
of a tick i” of c2 which is the abstraction of i’. Naturally, we would expect in
that scenario that i and i” are identical. In other words, this is required for our
clock refinement to make sense, and can be considered as a proof obligation. While
this fact does not hold definitionally, it holds propositionally using the fact that two
coincident ticks of the same clock are equal:

e◦a≡id : ∀ {c1 c2} (p : c1 ≲1−n c2) → (∀ {i : ∃ (Ticks c2)} →16 16

i 2.≡’ (proj1 ◦ proj2 p ◦ proj1 ◦ (proj1 p)) i)17 17

e◦a≡id (u , _) {i} with u i18 18

e◦a≡id (_ , v) | j , j≈2i with v j19 19

e◦a≡id {c2 = c2} _ {i} | _ , j≈2i | k , k≈2j =20 20

2.≈→≡ {c2} {i} {k} (2.sym≈ (2.trans≈ k≈2j j≈2i))21 21

7.2.2 1-N refinement and coincidence
Our first area of experimentation about clock refinement is how it behaves when

combinedwith CCSL notions related to coincidence. In other words, we investigate
the preservation of CCSL notions based on coincidence when going from one level
of refinement to another.
7.2.2.a Clock refinement and subclocking

Weprovide a proof of preservation of subclocking through abstraction. We state
that subclocking is preserved when going from the lower level to the higher level
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of refinement thanks to the preservation of instant coincidence through abstraction.

⊑≲1−n : ∀ {c11 c12 c21 c22} →22 22

c11 1.⊑ c12 → c11 ≲1−n c21 → c12 ≲1−n c22 → c21 2.⊑ c2223 23

⊑≲1−n o (p , _) (_ , s) i21 = (i21 , 2.refl≈)24 24

>[ id -J 2.trans≈ K- 2.sym≈ ]> p25 25

>[ id -J 2.trans≈ K- ≈1→2 refines ]> o26 26

>[ id -J 2.trans≈ K- 2.sym≈ ]> s27 27

7.2.2.b Clock refinement and exclusion

Another interesting property is that refining excluded clocks cannot create co-
incident instants, which means the refined clocks are excluded as well. This makes
sense because the abstract excluded clocks have ticks that are all in different equiv-
alence classes regarding abstract coincidence and the refined instants are still in
these classes and thus cannot be coincident even from the lower point of view.

♯≲1−n : ∀ {c11 c12 c21 c22} →28 28

c21 2.♯ c22 → c11 ≲1−n c21 → c12 ≲1−n c22 → c11 1.♯ c1229 29

♯≲1−n p (q , r) (s , t) x y x≈1y with r x | t y30 30

♯≲1−n p (q , r) (s , t) x y x≈1y | rx , rx≈2x | ty , ty≈2y =31 31

p rx ty (2.trans≈ (2.trans≈ rx≈2x (≈1→2 refines x≈1y)) (2.sym≈ ty≈2y))32 32

7.2.2.c Multiple clock refinement

We now investigate what happens when an abstract clock is refined by several
concrete clocks, or when a concrete clock is a refinement of several abstract clocks.

Multiple concrete clocks When two clocks refine the same one, it means that
these two clocks track events that are part of the events tracked by the clock be-
ing refined. Thus, it is natural to assume that the union of these clocks is still a
refinement of the abstract clock.

⋃

≲1−n : ∀ {c11 c10 c12 c2} →33 33

c11 ≲1−n c2 → c12 ≲1−n c2 → c10 1.≋ c11
⋃

c12 → c10 ≲1−n c234 34
⋃

≲1−n (p , _) _ (_ , u) .proj1 x = (x , 2.refl≈)35 35

>[ flip 2.trans≈ ]> p36 36

>[ id -J flip 2.trans≈ K- (2.sym≈ ◦ ≈1→2 refines) ]> u ◦ map2 inj137 37
⋃

≲1−n _ _ (t , _) .proj2 x with t x38 38
⋃

≲1−n (_ , q) _ _ .proj2 _ | ((i , inj1 tc11i) , i≈1x) =39 39

((i , tc11i) , ≈1→2 refines i≈1x) >[ flip 2.trans≈ ]> q40 40
⋃

≲1−n _ (_ , s) _ .proj2 _ | ((i , inj2 tc12i) , i≈1x) =41 41

((i , tc12i) , ≈1→2 refines i≈1x) >[ flip 2.trans≈ ]> s42 42
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Multiple abstract clocks On the other hand, when a clock is a refinement of two
clocks, this means that the event it tracks is deduced from two entities, leading
us to assume that these entities are in fact the same. And indeed, our formalism
implies such clock equality, showing that our clock refinement is not symmetrical,
as expected.

∽≲1−n : ∀ {c1 c21 c22} → c1 ≲1−n c21 → c1 ≲1−n c22 → c21 2.∽ c2243 43

∽≲1−n (p , _) (_ , s) .proj1 x = (x , 2.refl≈)44 44

>[ id -J 2.trans≈ K- 2.sym≈ ]> p45 45

>[ id -J 2.trans≈ K- 2.sym≈ ]> s46 46

∽≲1−n (_ , q) (r , _) .proj2 x = (x , 2.refl≈)47 47

>[ id -J 2.trans≈ K- 2.sym≈ ]> r48 48

>[ id -J 2.trans≈ K- 2.sym≈ ]> q49 49

7.2.3 1-N refinement and precedence

While 1-N refinement preserves well CCSL notions related to coincidence, as
depicted in Section 7.2.2, investigating its impact on notions based on precedence
is not as fruitful in terms of preservation, the reason of which is depicted in this
section.
7.2.3.a Abstraction of precedence

c21

c22

Abs
trac

t

c11

c12

Con
cret

e

i j

i’ j’

h’ i’ h’ j’

h’ h’

h i ≡ h j
h h

Figure 7.2: Clock precedence and abstraction
A reasonable idea would be that if two clocks precede each other in the con-

crete world, their respective abstracted version would also precede each other in
the abstract world. Given four clocks c11 c12 c21 c22, this would be expressed as
the following predicate: c11 1.≼≼ c12 → c11 ≲1−n c21 → c12 ≲1−n c22 →
c21 2.≼≼ c22. However, this does not hold because the preserves field of the
precedence is fundamentally not preserved. Note that since preserves does not
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depend on the parameter of the Precedence record, this proof holds for both prece-
dences, strict or not. Indeed, let us take two instants i and j on which c22 ticks such
that i ≺2 j. Since c12 refines c22 we can deduce the existence of two instants i’
and j’ on which c12 ticks and which are respectively coincident with i and j in the
abstract level of refinement: i ≈2 i’ and j ≈2 j’. Combining these elements,
it it possible to deduce that i’ ≺2 j’. Applying ≺2→1 to this term allows us to
deduce that these instants are also in a relation of strict precedence in the concrete
level: i’ ≺1 j’. Using the fact that c11 precedes c12 we get that h i’ ≺1 h j’.
However, what we need to achieve is h i’ ≺2 h j’ which is not deductible from
the hypotheses since the precedence abstraction only tells us that h i’ ≼ h j’.
Indeed, it is possible that this abstraction hides the precedence of h i’ towards h
j’ in which case the property does not hold. This is why the non-strict precedence
is not preserved through abstraction. This possible case is depicted in Figure 7.2,
where the dotted arrows represent the embodiment in purple and the abstraction in
brown while the precedence functions are represented with green arrows.

7.2.3.b Embodiment of precedence

c21

c22

Abs
trac

t

c11

c12
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e

i ≡ j

i’ j’

h’ i’ ≡ h’ j’

h’ h’

h i ≡ h j
h

Figure 7.3: Clock precedence and embodiment

Clock precedence is fundamentally neither preserved through embodiment.
This is easier to see because precedence between instants can directly be hidden
through abstraction which means that if we take two instants i’ and j’ such that
i’ ≺1 j’ then this precedence might disappear through abstraction. Such a sce-
nario is shown in Figure 7.3, using the same colors and symbols as in Figure 7.2.

7.2.3.c 1-N refinement and alternation

Alternation is a specific form of precedence, with an additional constraint of
alternation. Since clock precedence is not preserved through 1-N refinement, alter-
nation cannot be preserved either.
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7.3 1-1 clock refinement

7.3.1 Motivation

Questioning the non-preservation of clock precedence The fact that our notion
of refinement does not directly preserve precedence between clocks is to be ques-
tioned: does it fail to provide properties that should hold ? Or does it reflect the
fact that precedence between clocks indeed should not be preserved by refinement ?
To answer that question, we need to understand deeply what are the cases in which
this preservation is not satisfied, by combining the elements depicted in Figures 7.3
and 7.2. These figures tell us that the precedence is not preserved in cases where
more than one tick of the concrete clock refines the same tick of the abstract clock.

An example of non-preservation Acknowledging this fact, we provide a quick
example which emphasizes them more concretely. We consider the situation where
a worker has to drive nails in a plank of wood using a hammer. In the abstract
level, we consider the following clocks: the worker places a nail at a given spot in
the plank (placing1) and the worker drives the nail in the plank with the hammer
(driving1).

In the concrete level, we can refine the driving of a nail as a succession of
hammering steps. For instance, we can consider that, since the worker is quite
strong, he needs three hammer hits to fully drive the nail inside the plank. The
placing step, however, is considered unary, hence is not further refined. This leads
to the following clocks at the concrete level: the worker places the nail (placing2)
and the worker makes a hammer hit on the nail (hitting2).

In the abstract level, we can specify that placing1 precedes driving1 because
a nail has to be placed before it can be driven. Knowing that fact, we can picture
how this precedence translates in the concrete level, and notice that placing2 does
not precede hitting2. This picturing is done in Figure 7.4.

placing1

driving1

Abs
trac

t

placing2

hitting2

Con
cret

e

Figure 7.4: Clock precedence is not always preserved

183



Lessons learnt from this example As we can see in this example, the precedence
does not hold because an instant of the slower clock can be bound to several instants
of the faster clock in the concrete level, which invalidates the precedes field of the
precedence which ensures the binding function to be bijective over its range. This
happens when the ticks of the slower clock at the abstract level are refined by several
ticks of the same concrete clock.

The question that arises is the following: if we prevent such cases for the slower
abstract clock, would the precedence be preserved ? The answer is no, because if
we allow the faster clock to have the same behaviour, that is to have ticks that are
refined by several ticks of the concrete faster clock, the property dense would be
invalidated. Indeed, each tick of the concrete slower clock would be bound to one
of the corresponding ticks of the faster clock, thus leaving the others unbound.

All in all, this means that if we prevent that behaviour by not allowing any
tick to be refined by several ticks of the same clock for both the slower and the
faster clock, the precedence should be preserved. In other words, we define another
notion of clock refinement which is a specific case of refinement which does not
allow multiple refined instants of the same clock. This is the 1-1 refinement.

7.3.2 Definition of 1-1 refinement

We give another notion of clock refinement which does not allow ticks to be
multiply refined. While this does not mean that a tick at the abstract level must
correspond to a single tick at the concrete level, it means that these refine ticks
must come from different clocks. This notion of refinement is very similar to the
one presented in Section 7.2.1 except one of the predicates it contains is defined
using ∃! instead of ∃ which corresponds to unique existential quantification, and
which is parametrized by an underlying equality, here instantiated to the concrete
coincidence. We insist on the fact that this new refinement is not meant to replace
the previous one, rather a new way of expressing refinement for the users of CCSL,
which ismore constrained but has the upside to preserve clock precedence naturally:

_≲1−1_ : REL 1.Clock 2.Clock _50 50

(Ticks1 ⧖ _) ≲1−1 (Ticks2 ⧖ _) =51 51

(∀ (y : ∃ Ticks2) → ∃! (1._≈’_) � (x : ∃ Ticks1) → x 2.≈’ y) ×52 52

(∀ (x : ∃ Ticks1) → ∃ � (y : ∃ Ticks2) → y 2.≈’ x)53 53

We show that a 1-1 refinement is also a 1-N refinement, which is trivial but has
to be done in order to get all the preservation results that were given in the previous
sections. It uses the fact that unique existence implies existence, depicted in the
appendices in Section A.5.2.

≲→≲1−1 : ∀ {c1 c2} → c1 ≲1−1 c2 → c1 ≲1−n c254 54

≲→≲1−1 (p , q) = ∃!→∃ ◦ p , q55 55
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7.3.3 Consequences of the definition

There are several direct consequences from this definition, which will be of
great use to prove preservation properties around 1-1 refinement and CCSL rela-
tions based on precedence. 1-1 refinement forces the concrete clock to have a single
tick for each tick of the abstract clocks, which means that the concrete coincidence
and the abstract coincidence should be equivalent over ticks of a concrete clock
which refines an abstract clock. Since by definition, we have the preservation of
the coincidence through abstraction, it remains to be proved through embodiment
in this specific case, which is using horizontal dots which are accepted by AGDA as
a way to avoid rewriting the whole previous line:

≲1−1→≈2→1 : ∀ {c11 c21} → c11 ≲1−1 c21 → {k l : ∃ (Ticks c11)}56 56

→ k 2.≈’ l→ k 1.≈’ l57 57

≲1−1→≈2→1 {c11} {c21} (p , q) {k} {l} k≈2l with q k | q l58 58

... | u , u≈2k | v , v≈2l with 2.≈→≡ {c21} {u} {v}59 59

(2.trans≈ (2.trans≈ u≈2k k≈2l) (2.sym≈ v≈2l))60 60

... | refl with p u61 61

... | j , j≈2u , ∃! =62 62

1.trans≈ (1.sym≈ (∃! {k} (2.sym≈ u≈2k))) (∃! {l} (2.sym≈ v≈2l))63 63

As a consequence of the preservation of the coincidence, the strict precedence
is also preserved through abstraction on the ticks of the concrete clock. In other
words, the concrete and abstract partial orders are the same for the concrete clock:

≲1−1→≺1→2 : ∀ {c11 c21} → c11 ≲1−1 c21 → {k l : ∃ (Ticks c11)}64 64

→ k 1.≺’ l→ k 2.≺’ l65 65

≲1−1→≺1→2 {c11} {c21} p {k} {l} k≺1l with ≺1→2 refines k≺1l66 66

... | inj1 k≺2l = k≺2l67 67

... | inj2 k≈2l =68 68

⊥-elim (1.irrefl≈≺ (≲1−1→≈2→1 {c11} {c21} p {k} {l} k≈2l) k≺1l)69 69

As a last consequence of 1-1 refinement definition, we provide a proof that
abstraction composed with embodiment results in the identity function. The other
way around was already true for the 1-N refinement as shown in Section 7.2.1.

a◦e≡id : ∀ {c1 c2} (p : c1 ≲1−1 c2) → (∀ {i : ∃ (Ticks c1)} →70 70

i 2.≡’ (proj1 ◦ proj1 p ◦ proj1 ◦ (proj2 p)) i)71 71

a◦e≡id (_ , v) {i} with v i72 72

a◦e≡id (u , _) | j , j≈2i with u j73 73

a◦e≡id {c1} {c2} p {i} | j , j≈2i | k , k≈2j , _ =74 74

1.≈→≡ {c1} {i} {k} (≲1−1→≈2→1 {c1} {c2} p {i} {k}75 75

(2.sym≈ (2.trans≈ k≈2j j≈2i)))76 76
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7.3.4 1-1 refinement and coincidence

Since the 1-1 refinement is a special case of 1-N refinement, it inherits all the
coincidence properties that were established in Section 7.2.2.

7.3.5 1-1 refinement and precedence

The main goal of the 1-1 refinement is to provide CCSL with a notion of clock
refinement which naturally preserves clock precedence. In this section we investi-
gate to what extent this preservation is guaranteed.
7.3.5.a Embodiment of precedence

We take a look at how the two precedences behave through embodiment.

Embodiment of non-strict precedence Non-strict precedence is fundamentally
not preserved through embodiment, even with 1-1 refinement, and for a very con-
crete reason, which is that abstract coincidence can basically be transformed into
any relation in the concrete level. Let us take four clocks c11, c12, c21 and c22 such
that c11 ≲1−1 c21 and c12 ≲1−1 c22. If we have c21 2.≼≼ c22 this means that
for a tick i of c22 we have a tick j of c21 such that h i ≡ j and possibly i ≈2 j
which, in the concrete level, can be transformed into j ≺1 i which invalidates any
attempt at preserving embodiment of non-strict precedence. Note that this is not a
limitation in our ability to prove such property, but rather it simply does not hold.

Embodiment of strict precedence Strict-precedence, however, is preserved di-
rectly through embodiment. The proof is complex and is only provided in the ap-
pendices in Section A.5.3 while its signature is given here:

≺≺2→≺≺1 : ∀ {c11 c12 c21 c22} → c11 ≲1−1 c21 → c12 ≲1−1 c2277 77

→ c21 2.≺≺ c22 → c11 1.≺≺ c1278 78

7.3.5.b Abstraction of precedence

We give an interesting result on the preservation of precedence through abstrac-
tion. Both precedences are transformed into non-strict predecence in that process.
More generally, we give a proof that, given a relation _R_ on instants such that
_R_ ⇒ 1._≼_ then a proof of 1.Precedence _R_ is transformed into a proof of
_2.≼≼_ through abstraction. This proof is also complex and is provided in the
appendices in Section A.5.4 while its signature is as follows:

prec1→≼≼2 : ∀ {c11 c12 c21 c22} {_R_ : Rel 1.Support _}79 79

→ _R_ ⇒ 1._≼_ → c11 ≲1−1 c21 → c12 ≲1−1 c2280 80

→ 1.Precedence _R_ c11 c12 → c21 2.≼≼ c2281 81
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Instantiating _R_ with _≺1_ we get that strict precedence becomes non-strict
precedence through abstraction:

≺≺1→≼≼2 : ∀ {c11 c12 c21 c22} → c11 ≲1−1 c21 → c12 ≲1−1 c2282 82

→ c11 1.≺≺ c12 → c21 2.≼≼ c2283 83

≺≺1→≼≼2 = prec1→≼≼2 inj284 84

Instantiating _R_ with _≼1_ we get that non-strict precedence is preserved
through abstraction:

≼≼1→≼≼2 : ∀ {c11 c12 c21 c22} → c11 ≲1−1 c21 → c12 ≲1−1 c2285 85

→ c11 1.≼≼ c12 → c21 2.≼≼ c2286 86

≼≼1→≼≼2 = prec1→≼≼2 id87 87

7.3.5.c 1-1 refinement and alternation

Since strict precedence is transformed into non-strict precedence through ab-
straction, we cannot expect alternation to be preserved in the process, because it is
based on strict precedence. However, we need to investigate if the additional predi-
cate of alternation is preserved through embodiment, in which case alternation itself
is preserved. Unfortunately, this is not the case, for a very specific reason. Alterna-
tion embeds in its definition the quantity i ≺ h j, which needs to be preserved for
the alternation to be preserved. However, there is no guarantee that this will indeed
be preserved because i and h j are ticks of different clocks, and 1-1 refinement
further constrains relation for ticks of the same clock, as seen in Section 7.3.3, but
not for ticks of different clocks. Which means that refinement alone cannot ensure
that alternation is preserved from one level to the other, as shown on Figure 7.5
where we can see that h’ j’ precedes i’.

c21

c22

Abs
trac

t

c11

c12

Con
cret

e

i j

i’ j’

h’ i’h’ j’

h i h j

Figure 7.5: An example of non-preservation of alternation
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Assessments
The semantics of CCSL has been enriched with the notion of refinement which

was described in Chapter 5. Concretely, this means that we provide two new CCSL
relations of refinement between two clocks: 1-1 refinement and 1-N refinement.
These relations are fundamentally different from the others because they build a
bridge between clocks coming from two different CCSL specifications rather than
a bridge between two clocks coming from the same specification. Each of these
different specifications must correspond to a given level of refinement in the sense
that their partial order should comply with the relation of refinement which was de-
fined in Chapter 5. This gives CCSL additional expressiveness: to make a CCSL
specification which handles refinement, we advocate one specification be built per
desired level of refinement, and subsequently binding them through clock refine-
ment. This way, the global behaviour of the system could be verified using our
notion of refinement.

In the process of adding refinement to CCSL, we investigated on how CCSL
operators behave when coupled with the new relations of clock refinement. In other
words, we tried to assess which properties were preserved from one level of refine-
ment to the others. This investigation was fruitful when dealing with CCSL notions
which are bound to coincidences using 1-N refinement, in the sense that refinement
is fairly regular towards coincidence. It was even more fruitful when considering 1-
1 refinement, which was designed to preserve properties of precedence, and which
succeeded at doing so. Overall, our relation of refinement between partial orders
as well as the two relations of refinement between clocks provide a formal context
in which models or languages could be compared, and the relations between them
assessed.
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Chapter 8

Conclusion

8.1 Assessments

This work on heterogeneous systems was grounded in the GEMOC context [46],
where languages can be defined using three axes: their structural aspects as an
ECORE/ OCL meta-model, their atomic actions as methods associated to meta
classes, and their global behaviour using CCSL to express constraints between oc-
currences of events of different nature. GEMOC is designed to handle heterogeneity
and thus the different separations of concern it implies. In this context, we proposed
several contributions which are summarized in this section. All these contributions
were formally modelled and verified using AGDA.

On formal modelling of transition systems The first contribution was directed
toward the depiction of systems which exhibit both structural aspects and atomic
actions. In other words, this contribution was a study on the formal modelling of
event-based systems: systems that are described by a state which can evolve through
guarded actions. This contribution handles both these aspects through two target
languages: PETRINET and SIMPLEPDL. These languages have originally been cho-
sen because they share a close bond: each model of process (each instance of the
SIMPLEPDL language) can be transformed into a model of PETRI NET, in which
case these two models are in a relation of weak bisimulation. While we did not
formally prove the correctness of such transformation and relation – more on this
fact is explained in Section 8.2, we provide a methodology to model such systems.
This methodology involves a depiction of the states containing both the actual data
and structural conformity properties about them. It also involves the depiction of
the possible events through their guards, and a step-by-step evolution of the system
when said guards are decided (in the sense of decidability) correct. In the process
of depicting the internal state of such systems, we developed a library on notions
called globally unique lists. These special lists can be instantiated into different
notions, among which maps and sets (named bags in this document, because set is
an AGDA keyword) are found. The depiction of this library allowed us to formulate
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and illustrate a methodology on building libraries in proof assistants, which consists
in coupling each definition with properties, the goal of which is to enforce a strong
confidence towards the defined notions. This methodology has been used in all of
our development, and will be further discussed when summarizing our work on
CCSL. Mentioning CCSL leads to our next contribution. While this contribution
provides a convenient methodology for the modelling of both the structural aspects
of transition systems as well as their atomic actions, it does not take into account
additional constraints over their traces of execution to coordinate their execution.
More precisely, these constraints could be expressed relying on additional compo-
nents in the state and additional constraints on the guards that enable transitions ;
but this adds complexity to the atomic events by merging two concerns, local state
evolution during an event and global state management during a complete execution
trace. Thus, GEMOC advocates the separation of these two kinds of concerns. This
choice leads to our following contribution: the modelling of logical time with the
addition of a notion of trace refinement, usually referred to as instant refinement.

On formal depiction of trace refinement The second contribution of this thesis
is two-fold: we provided a formal modelling of notions around time, with the addi-
tion of a relational depiction of trace refinement. We started by depicting notions
which are usually used when modelling time in asynchronous executions. First, the
notion of time itself, then the notion of execution traces, events and most impor-
tantly, partial orders. In asynchronous system executions, the events are usually
bound by a partial order, which indicates the coincidence and precedence bindings
which can be observed or assessed. In these cases, the usual context is a set of
instants coupled with a partial order between these instants. While depicting this
context as well as providing its formal modelling, we also took a step back on this
context in order to define a relation of refinement between traces. This notion of re-
finement is not conceptually new, in the sense that it aims at depicting the commonly
accepted notion of system refinement which corresponds to the vertical separation
in a system’s development. However, the depiction we made of refinement is, to
our knowledge, new: instead of integrating the notion of refinement inside the usual
context (set of instants and a partial order), we propose to extend this context and
associate each level of refinement with a specific partial order, each of them over
the same set of instants. Thus, the new context we propose is composed of a set of
instants and as many partial orders as levels of refinement. Since this new context
is now composed of several partial orders, we propose a relation to bind these or-
ders, the purpose of which is to embed the usual semantics of refinement. Indeed,
we cannot allow our structure to be composed of any partial orders. These partial
orders must obey certain rules such that each of these is thinner than the one that
follows it in the hierarchy, and wider than the one that precedes it. In that regard,
this only makes sense for our relation of refinement to be expressed between par-
tial orders. This relation states what it means for a partial order to be thinner than
another. This refinement relation encompasses the usual preservation properties
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about refinement: precedence is preserved through embodiment while coincidence
is preserved through abstraction. This relation of refinement is a mathematical re-
lation, which means properties can be established about it. We established the fact
that this relation of refinement is a partial order between partial order, by provid-
ing an adequate notion of equivalence between partial orders. This partial ordering
between levels of refinement is a requirement for refinement and it was mandatory
for our relation to exhibit such a property. Overall, this contribution sets a con-
text in which time constraints can be expressed, including constraints expressed in
different levels of refinement. However, to express such constraints, a language is
needed. In GEMOC, this language is CCSL which is why our next contribution is a
mechanization of the denotational semantics of CCSL.

On a mechanized denotational semantics for CCSL The third contribution is
the mechanization of the denotational semantics of CCSL. CCSL is the language
used in GEMOC to model and express constraints between the occurrences of events
coming from an heterogeneous context. Now that a formal context was provided
which allows the expression of such constraints, we needed a formal mechanization
of the denotational semantics of this language. Such a semantics already existed on
paper, and we provided in this contribution its mechanized adaptation. This mech-
anization provides a formal definition of all the core elements of CCSL, more pre-
cisely, all the elements of CCSL that are not index dependent. Index dependent
constructs are specific to a set of instants that is isomorphic to the natural numbers,
and our approach is more generic, which is why these elements are not originally
embedded in our work. However, this will be the object of a future work as depicted
in Section 8.2. While embedding CCSL notions in our formal AGDA framework,
we used the samemethodology as advocated in Chapter 3, which means we coupled
our definitions with properties of conformity. These properties of conformity have
a double objective: first, they allow us to build a strong confidence in the definitions
by providing proofs of their informal requirements. Second, they allow us to im-
prove the definitions when such proofs cannot be directly built, thus improving the
overall semantics of the language. In our formal development, we encountered such
a case twice: first, when defining the notion of precedence, we found that an axiom
had been assumed and forgotten from the paper version of the semantics: the ax-
iom of density which forces the binding function to be bijective over its range. We
added this axiom in our definition of the precedence accordingly. Second, when
establishing algebraic properties about our notions of precedence, we found that
some requirements were not met. This led to an investigation on which constraints
should hold for such requirements to be met. Ultimately, it led to improved versions
of clocks on which the precedences act according to the requirements. These se-
mantics also allowed us to define the notion of clocks more precisely and formally.
If we consider the power-set of instants, then the set of all possible clocks is the sub-
set of this power-set such that the instants it contains are totally ordered. This gives
us a formal modelling of CCSL in a context where refinement can be expressed,
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which leads to our last contribution: the coupling of CCSL and refinement. In
other words, the addition of a notion of refinement to CCSL.

On the addition of refinement to CCSL Our last contribution consists in the
addition of refinement to CCSL. Our second contribution provides a formal con-
text on which refinement can be described, while our third contribution provides a
modelling of CCSL using the same context. However, CCSL does not currently
have relations over clocks from different levels of refinement, which is the core of
this contribution. We extend CCSL with two notions of refinement, which is made
possible by combining the two previous contributions. The first notion of refine-
ment is the 1-N refinement which binds clocks together, while allowing the refined
clock to have multiple ticks that correspond to the same tick of the abstract clock.
This refinement is the more natural conceptually. Having added a new relation to
CCSL, it is natural to combine it with already existing relations through preserva-
tion properties. In other words, we made an investigation on the preservation of
CCSL relations with this first notion of clock refinement. This answers the fol-
lowing question: in a context where several layers of refinement exist, and where
several clocks exist in each layer, is it possible to translate relations expressed at
a level of refinement to relations expressed at another level ? Using 1-N refine-
ment, we were able to prove that CCSL notions which are based on coincidence
between instants yield several such properties, while notions based on precedence
did not. While investigating the reasons behind it, we realized that preventing ticks
to be multiply refined by ticks of the same clock, we can have additional proper-
ties, which led to the definition of a second relation of refinement between clocks:
1-1 refinement. Using this second notion of refinement, we were able to establish
preservation properties about CCSL notions based on precedence. All in all, we
added two notions of refinement to CCSL: 1-N refinement is very permissive and
preserves only a few CCSL constructs, while 1-1 refinement is more constrained
and thus preserves more CCSL constructs. This contribution concludes our work
on trace semantics by successfully combining CCSL and refinement in a formal
context, and thus providing a formal extension of this language. As a consequence,
the expressiveness of CCSL has been substantially increased: it is now possible to
treat events and constraints from different levels of refinement in the same formal
context, thus combining planar and vertical separations of concerns.

8.2 Limitations and Perspectives

This work provides several perspectives, which are described using a time-
related categorization as follows:

Short term There are some technical aspects in our work that could be quite
easily improved but could not be conducted in this PhD duration:

192



• AGDA’s standard library has recently been enriched with a notion of maps
encoded with AVLs tree. This library should be studied in order to assess if
our work on event-based systems should keep relying on our maps or on these
maps. There also exists some work [114] on describing graphs in HASKELL
and in AGDA which could possibly be used in order to improve our represen-
tation of the states of such systems.

• Our work on event-based systems rely on the Maybe monad to handle error
cases. Indeed, in an effort to hide the usage of proofs from the user, we use
decidability to build these proofs. When the requirements do not hold, we
return an error. We could improve this mechanism to use a monad which
could embed some information as to what went wrong. For instance, should
the user misspell a name in the building of a model, he should be informed
that this misspelling is the origin of the issue, which is not currently the case.
Handling these error cases was not a priority in our work, but this would
definitely improve the usability of our approach.

• When combining CCSL and refinement, we introduced an operator of trans-
formation in Section 7.1.3 to factorize some of the proofs as well as making
them somewhat more readable. There are several other proofs that could be
factorized in a similar manner. This would require to take a step back from
the proof effort depicted in this document and provide operators which al-
low us to articulate proof terms in a more convenient manner. Two examples
come to mind: the proofs that deal with terms of instant precedence or coin-
cidence, and functions that deal with decidability to produce an element of
type Maybe. These changes could improve the overall quality of our work.

Medium term There are some improvements / extensions of our current work
that can be considered:

• We considered providing decidability proofs for predicates of conformity in
the structural depiction of the event-based systems. This would allow us to
create a model without bothering about its continuous correctness and as-
sessing its correctness afterwards. Although we believe that a continuously
correct way of building models is to be advocated, such an option could also
be useful. These two alternatives are common in the dependent type com-
munity and no definite answer has been provided regarding this issue.

• Read arcs of PETRI NET are currently handled by arcs that consume and pro-
duce the same amount of token in a given place from a given transition, in
which case this emulates a read arc with a weight of this number of tokens.
However, should we refine the execution of our PETRI NET models such that
the production and the consumption of tokens would not occur simultane-
ously, this could lead to inconsistent behaviours which should be handled if
such a refinement arises. More precisely, this change would be mandatory
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if we target time PETRI NET, where read arcs and normal arcs that give and
take the same amount of tokens do not have the same semantics.

• While we did not explicitly model index dependent CCSL constructs, we
gave examples of clocks with an underlying set of instants instantiated to
natural numbers. In this context, we believe that the original version of the
precedence (without the dense property) is correct because we could pro-
vide another binding function which respects this property by "moving" the
bindings to the left as mentioned in Section 6.2.3.e. This is provable in our
AGDA framework but it seems to be quite time consuming, as some quick at-
tempts have shown, and we allocated such time to other aspects of this work,
for instance on the improvement of our notions of clock refinement.

• An interesting improvement of our work would be to provide decidability
properties over CCSL relations depending on the underlying set of instants,
and on the decidability of the predicate of ticks of the clocks. Should we pro-
vide such decidability proofs, this would considerably ease the verification
of traces such as the one that was done in Section 5.4 because we would not
have to provide proofs for relations by hand.

• Finally, the index dependent constructs of CCSL should be modelled explic-
itly. This requires us to define a context on which the concept of index has a
meaning. Should this context necessarily be naturals numbers ? What prop-
erties should the underlying set of instant have to allow this concept to make
sense ? This remains to be investigated.

Long term There are some more open and general issues which could be tackled
from our work:

• Both PETRI NET and SIMPLEPDL can be extended with time constraints on
their respective events. It could be interesting to model this aspect in our
framework because time constraints are common in event-based systems.
This would require us to assess where these constraints should be expressed,
and, most importantly, it requires the existence of a global clock which needs
to be handled as well.

• As mentioned several times in this document, our two target languages of
Chapter 4, PETRI NET and SIMPLEPDL are in a relation of weak bisimula-
tion [41], or refinement, depending on the point of view. It would be inter-
esting to ultimately be able to prove such a property in our framework. This
would require us to build additional relationships between the different as-
pects of our work. This would also possibly require the formal definition of
a transformation between a model of process and a PETRI NET. Or, instead
of this transformation, this could require the definition of a relation stating if
a given PETRI NET is the embodiment of a given model of process.
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• A very important extension to our work on event-based systems would be to
define a systematic transformation between a meta-model expressed in MOF
(or an implementation of MOF like ECORE) coupled with OCL constraints
and an AGDA definition of the language represented by this meta-model. We
could even imagine having an automated process to do the transformation.
This automation could be done in a modelling tool such as ECLIPSE and gen-
erate AGDA code which would then be given to the type checker for veri-
fication. This would allow the system engineer to build their models using
DSMLs and rely on AGDA to verify them, similarly to existing approaches
using COQ in [86] or WHY3 in [60].

• Concerning our work on CCSL, we have a very interesting perspective.
Throughout our work, we have proven many conformity properties. As men-
tioned, these properties are mandatory to assess the correctness of our mod-
elling, but they could also be exploited as means of reducing a set of CCSL
constraints or proving the inconsistency of such set. For instance, if we have
proven in our framework, given two constraints A and B that A implies B and
if both these constraints are present in a CCSL specification, then we could
safely remove B from said specification. An idea to achieve this goal would
be to create a logic whichmanipulates CCSL constraints. The inference rules
of this logics would be the properties that have been proven in the framework,
including the properties about refinement. We would embed this logic inside
AGDA using some embedding techniques (either shallow or deep) and would
be able to express equivalence between CCSL specification and possibly the
smallest member of each of these equivalence classes.

• We would be very much interesting in adding our two CCSL relations in the
official version of CCSL, as well as in TIMESQUARE. This would require us
to embed our new temporal context with several partial orders, as well as the
two notions of refinement of CCSL in that context. Since instant refinement
was considered by CCSL experts as a wished facility, this perspective could
definitely be implemented.

• As a final perspective, we could rely on our framework to verify part of the
TIMESQUARE tool-set. TIMESQUARE generates a possible finite sub-trace
of the CCSL specification it handles, and our framework allows us to ver-
ify such traces regarding a specification. This verification would require
us to select the best strategy to verify such a complex tool: should we en-
code TIMESQUARE in AGDA and prove that it only builds correct traces ?
Should we, on the other hand, only make a systematic verification of the
traces TIMESQUARE builds ? Such discussion is very interesting and could
lead to an actual verification of TIMESQUARE, with the eventual addition of
refinement.
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8.3 Metrics

Line count metric
This work’s line count, without comments and blank lines is as follows:

Didactic code This work contains
some didactic pieces of code, in the form
of tutorials and examples. These ele-
ments have the following line count:

Unicode.agda 9
Mixfix.agda 9
Addition.lagda 57
ListSize.agda 16
IfThenElse.agda 6
ListSugar.agda 17
Unif.agda 8
Associativity.agda 14
Irrelevance.agda 26
Commut.agda 12
Currying.agda 14
Tutorial.lagda 55
Total didactic 243

Helpers This work relies on a file con-
taining helper elements, which are used
in several different part of this work, and
regrouped in a single file, the length of
which is:

Helper.lagda 85
Total helpers 85

Globally unique lists Our library on
globally unique lists metric, with its two
main instantiations, has the following
number of lines:

ListConform.lagda 554
ListAssoc.lagda 11
ListUnique.lagda 10
Total GULists 575

Event-based systems Our two case
studies on event-based systems, PETRI
NET and SIMPLEPDL have the follow-
ing line count:

SimplePDL.lagda 238
Petrinet.lagda 234
Total Event-based 472

Time Our files depicting notions and
proofs about time and intervals have the
following length:

Instant.lagda 127
Interval.lagda 30
Unary.lagda 22
Total time 179

CCSL Our work around CCSL, in-
cluding the two instantiations over nat-
ural numbers and integers, has the fol-
lowing size:

CCSL.lagda 439
CCSLIntegers.lagda 117
CCSLNaturals.lagda 79
Total CCSL 635

Refinement Our work on refinement,
including its application to CCSL, has
the following line count:

Refinement.lagda 72
RefinementExample.lagda 125
CCSLRefinement.lagda 175
Total refinement 372

Total In total, the mechanization part
of this thesis contains 2571 non-empty
non-comments lines of AGDA.
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A step back from the line count metric
Although line count metric is provided and usually required in such a document,

it is, in my opinion, quite irrelevant in assessing the complexity and the complete-
ness of this work, especially because it was written using AGDA. AGDA is a very
compact language, andmost of these 2571 lines are either signatures or proof terms.
In addition, the line count of a specific notion or definition is hardly equivalent to its
complexity. A first example is our definition of refinement depicted in Section 5.3.1:

This definition only takes six lines of code but is both the result of a long thought
process which gave me the idea of relating partial orders, and the origin of another
long thought process to assess its exact implications. In other words, these six lines
are more impactful than significant larger pieces of code elsewhere in our work.
Another example is our definition of clocks depicted in Section 6.2.2.b:

This definition is the culmination of a long and deep thought process and did
not take that form until the redaction of this document. It results from a slow and
lengthy process of gaining knowledge and understanding in AGDA which I have
learned as an autodidact. In other words, although this definition is only 2 lines, it
is the result of several years of learning and questioning (both about the nature of
the objects defined but also on the environment in which they are defined) and can
hardly be summarized as a one digit number.

As an addition, the code depicted in this document is the result of a long process
of synthesis, learning and rewriting. As an example, here is a piece of code as it
was originally written, on the left (without colouration, because it no longer type-
checks), and as it was presented in this document on the right. As one can see, the
original code is both far less elegant and double the size of its current version.
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8.4 Publications and Seminaries
Junior workshop The initial idea about refining partial orders to model instant
refinement, described in Chapter 5 was presented in the junior workshop of RTNS,
JRWRTC on October the 5th, 2017 under the name "Ordering strict partial orders
to model instant refinement" [115]. This consisted in a 10 minute talk coupled with
a poster presentation.

National events Parts of this work have been presented twice in a french local
event which unites the four laboratories working in computer science in Toulouse
(ONERA, LAAS, IRT and IRIT).

• A first talk was held on April the 23rd, 2015 under the name "A formal en-
coding for Petri nets in AGDA " [116]. This talk described a first version of
our encoding of Petri nets in AGDA which was described in Chapter 4.

• A second talk was held on April the 29th, 2017 under the name "A formal
encoding of the Clock Constraint Specification Language in AGDA: Denota-
tional semantics and Instant refinement" [117]. This talk presented the initial
ideas behind the modelling of CCSL as well as ideas on how to couple it
with refinement, as described in Chapters 6 and 7.

Seminaries I have been invited twice to hold seminaries around AGDA and the
initial modelling of instant refinement, which led to a talk named "An AGDA in-
troduction: Basics & Application on labelled traces". This talk was given at the
following locations and dates:

• At ONERA, Toulouse, on February the 5th, 2018, invited by Claire Pagetti
(ONERA) and Julien Brunel (ONERA).

• At ENS Cachan, on March the 1st, 2018, invited by Catherine Dubois (EN-
SIIE).

International events Finally, this work led to publications in two international
conferences, at the following occasions:

• A talk was given on July the 18th, 2018 in the REFINE workshop of the
FLOC conference which was held in Oxford. The talk was called "Ordering
strict partial orders to model behavioural refinement" [119] and depicted the
contribution about instant refinement described in Chapter 5.

• A talk was given on October the 25th, 2018 in the MEDI conference which
was held in Marrakesh. The talk was named "Mechanizing the relational se-
mantics of the Clock Constraint Specification Language" [118] and depicted
the main ideas in mechanizing CCSL as described in Chapter 6.
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Appendices

A.1 On conformity of lists

A.1.1 Decidability of the membership relation

We provide proofs of decidability for our predicates of membership, unique
membership and their negations. These proofs use the function ¬? which proves
the decidability of a predicate ¬ P from a proof of decidability of P.

Membership relations are decidable when _R_ is decidable:

dec∈ : Decidabler _R_ → Decidabler _∈_1 1

dec∈ = any ◦_2 2

–3 3

dec∉ : Decidabler _R_ → Decidabler _∉_4 4

dec∉ dec x = ¬? ◦ (dec∈ dec x)5 5

Unique membership is decidable when _R_ is decidable:

dec∈! : Decidabler _R_ → Decidabler _∈!_6 6

dec∈! = decAny! ◦_7 7

–8 8

dec∉! : Decidabler _R_ → Decidabler _∉!_9 9

dec∉! dec x = ¬? ◦ (dec∈! dec x)10 10

A.1.2 Decidability of the none or one relation

Dec∈∈! decR x l with dec∈! decR x l1 1

Dec∈∈! _ _ _ | yes p = yes (� _ → p)2 2

Dec∈∈! decR x l | no _ with dec∈ decR x l3 3

Dec∈∈! _ _ _ | no ¬x∈!l | yes x∈l = no (¬x∈!l ◦ (_$ x∈l))4 4

Dec∈∈! _ _ _ | no _ | no ¬x∈l = yes (⊥-elim ◦ ¬x∈l)5 5
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A.1.3 Lemmas about membership of characters

open import Data.List.Membership.Setoid Data.Char.Properties.≡-setoid1 1

–2 2

_∈l_ : _ → _ → _3 3

c ∈l s = c ∈ toList s4 4

–5 5

_∉l_ : _ → _ → _6 6

c ∉l s = c ∉ toList s7 7

–8 8

z∉Alice : ’z’ ∉l "Alice"9 9

z∉Alice = (� ()) ↦ (� ()) ↦ (� ()) ↦ (� ()) ↦ (� ()) ↦ ¬A[]10 10

–11 11

z∉Bob : ’z’ ∉l "Bob"12 12

z∉Bob = (� ()) ↦ (� ()) ↦ (� ()) ↦ ¬A[]13 13

–14 14

z∉Judith : ’z’ ∉l "Judith"15 15

z∉Judith = (� ()) ↦ (� ()) ↦ (� ()) ↦ (� ()) ↦ (� ()) ↦ (� ()) ↦ ¬A[]16 16

–17 17

J∉Alice : ’J’ ∉l "Alice"18 18

J∉Alice = (� ()) ↦ (� ()) ↦ (� ()) ↦ (� ()) ↦ (� ()) ↦ ¬A[]19 19

–20 20

J∉Bob : ’J’ ∉l "Bob"21 21

J∉Bob = (� ()) ↦ (� ()) ↦ (� ()) ↦ ¬A[]22 22

–23 23

J∈Judith : ’J’ ∈l "Judith"24 24

J∈Judith = here refl25 25

A.1.4 Lemmas about global unicity and equivalence

Membership with _≡_ implies membership with reflexive relations:

∈→∈≈ : ∀ {x l} → x ∈ l → x ∈≈ l1 1

∈→∈≈ (here refl) = here (≈refl isEq)2 2

∈→∈≈ (there x∈l) = there (∈→∈≈ x∈l)3 3

A proof of indexes preservation:

i≡ic : ∀ {x l} (p : x ∈ l) → index p ≡ index (∈→∈≈ p)4 4

i≡ic (here refl) = refl5 5

i≡ic (there p) = cong fsuc (i≡ic p)6 6
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Two equivalent instants appear in the same lists:

trans∈≈ : ∀ {x y l} → x ≈ y → x ∈≈ l → y ∈≈ l7 7

trans∈≈ x≈y (here px) = here (≈trans isEq (≈sym isEq x≈y) px)8 8

trans∈≈ x≈y (there x∈≈l) = there (trans∈≈ x≈y x∈≈l)9 9

Another proof of indexes preservation:

it≡i : ∀ {x y l} (p : x ≈ y) (q : x ∈≈ l)10 10

→ index (trans∈≈ p q) ≡ index q11 11

it≡i p (here px) = refl12 12

it≡i p (there q) = cong fsuc (it≡i p q)13 13

If the indexes are the same, then the elements are the same:

≡i→≡ : ∀ {x y l} {x∈l : x ∈ l} {y∈l : y ∈ l}14 14

→ index x∈l ≡ index y∈l→ x ≡ y15 15

≡i→≡ {x∈l = here refl} {here refl} refl = refl16 16

≡i→≡ {x∈l = here px} {there y∈l} ()17 17

≡i→≡ {x∈l = there x∈l} {here px} ()18 18

≡i→≡ {x∈l = there x∈l} {there y∈l} u = ≡i→≡ (fsuc-injective u)19 19

A.1.5 Lemmas about assignment and membership

These lemmas show that assignments leave the contents of the list unchanged.
They are prove by case-splitting on the proofs of memberships.

Assigning a value does not create new elements:

∈assign : ∀ {a b l p} → a ∈ (assign b inside l when p) → a ∈ l1 1

∈assign {p = here p} (here q) = here (trans q p)2 2

∈assign {p = here _} (there q) = there q3 3

∈assign {p = there _} (here q) = here q4 4

∈assign {p = there _} (there q) = there (∈assign q)5 5

Assigning a value does not remove any element:

assign∈ : ∀ {a b l p} → a ∈ l→ a ∈ (assign b inside l when p)6 6

assign∈ {p = here p} (here q) = here (trans q (sym p))7 7

assign∈ {p = here _} (there q) = there q8 8

assign∈ {p = there _} (here q) = here q9 9

assign∈ {p = there _} (there q) = there (assign∈ q)10 10

Here are the counterparts for unique membership:
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assign∈! : ∀ {a b l p} → a ∈! l → a ∈! (assign b inside l when p)11 11

assign∈! {p = here p} (here! x y) = here! (trans x (sym p)) y12 12

assign∈! {p = here p} (there! x y) = there! (x ◦ (flip trans) p) y13 13

assign∈! {p = there _} (here! x y) = here! x (contraposition ∈assign y)14 14

assign∈! {p = there _} (there! x y) = there! x (assign∈! y)15 15

–16 16

∈!assign : ∀ {a b l p} → a ∈! (assign b inside l when p) → a ∈! l17 17

∈!assign {p = here p} (here! x y) = here! (trans x p) y18 18

∈!assign {p = here p} (there! x y) = there! (x ◦ (flip trans) (sym p)) y19 19

∈!assign {p = there _} (here! x y) = here! x (contraposition assign∈ y)20 20

∈!assign {p = there _} (there! x y) = there! x (∈!assign y)21 21

A.1.6 Comparison between globally unique lists

Comparison of lists Module header and definition of inclusion and equivalence:

module ListInclusion {a l} {A : Set a} {_≈_ : Rel A l}1 1

(dec≈ : Decidabler _≈_) (eq≈ : IsEquivalence _≈_) where2 2

open Membership _≈_3 3

–4 4

_⊑_ : Rel (List A) _5 5

_⊑_ = _⊆_ on flip _∈_6 6

–7 7

_≋_ : Rel (List A) _8 8

_≋_ = _⊑_ -[ _×_ ]- flip _⊑_9 9

A proof of preservation of membership:

conserv∈≈ : ∀ {x y l} → x ∈ l → y ≈ x → y ∈ l10 10

conserv∈≈ (here px) = here ◦ flip (trans≈ eq≈) px11 11

conserv∈≈ (there p) = there ◦ conserv∈≈ p12 12

Proof of decidability of inclusion:

dec⊑ : Decidabler _⊑_13 13

dec⊑ [] l2 = yes �()14 14

dec⊑ (x ∶∶ l1) l2 with dec∈ dec≈ x l2 | dec⊑ l1 l215 15

dec⊑ _ _ | yes p | (yes p1) =16 16

yes (� {(here px) → conserv∈≈ p px ; (there x2) → p1 x2})17 17

dec⊑ _ _ | yes _ | (no ¬p ) = no (� x1 → ¬p (� x3 → x1 (there x3)))18 18

dec⊑ _ _ | no ¬p | _ = no (� x1 → ¬p (x1 (here (refl≈ eq≈))))19 19
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Proof of decidability of equivalence:

dec≋ : Decidabler _≋_20 20

dec≋ l1 l2 with dec⊑ l1 l2 | dec⊑ l2 l121 21

dec≋ _ _ | yes p | (yes p1) = yes (p , p1)22 22

dec≋ _ _ | yes p | (no ¬p ) = no (¬p ◦ proj2)23 23

dec≋ _ _ | no ¬p | _ = no (¬p ◦ proj1)24 24

Proof of equivalence:

isEq≋ : IsEquivalence _≋_25 25

isEq≋ = record {26 26

refl = id , id ;27 27

sym = swap ;28 28

trans = zip (\f g → g ◦ f) \f g → f ◦ g }29 29

Comparison of GUList header of the module:

module GUCompare {a b c} {A : Set a} {B : Set b} {C : Set c}30 30

(f : B → A) (_≟a_ : Decidabler {A = A} _≡_) (g : B → C)31 31

(injfg : ∀ {x y} → (f x , g x) ≡ (f y , g y) → x ≡ y)32 32

(_≟b_ : Decidabler {A = B} _≡_) where33 33

–34 34

open Commands f _≟a_ g35 35

open ListInclusion _≟b_ isEquivalence36 36

open FunctionRelation f37 37

open Membership _≡f_ renaming (_∈_ to _∈f_ ; dec∈ to dec∈f)38 38

open Membership {A = B} _≡_39 39

renaming (_∈_ to _∈≡_ ; dec∈ to dec∈≡)40 40

open GlobalUnicity _≡f_41 41

open GUList42 42

A small macro of decidability:

dec∈fa : Decidabler _43 43

dec∈fa = (dec∈f ◦ dec≡f) _≟a_44 44

First way of comparing the GULists using the list equality over their contents:

_≋1_ : Rel GUList _45 45

_≋1_ = _≋_ on content46 46
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Proof of equivalence of this relation:

eq≋1 : IsEquivalence _≋1_47 47

eq≋1 with isEq≋48 48

eq≋1 | record { refl = refl≋ ; sym = sym≋ ; trans = trans≋ }49 49

= record { refl = refl≋ ; sym = sym≋ ; trans = trans≋ }50 50

Proof of decidability of this relation:

dec≋1 : Decidabler _≋1_51 51

dec≋1 (gulist l1 _) (gulist l2 _) = dec≋ l1 l252 52

Second way of comparing GULists through the equality of the return values of
the get function:

_≋2_ : Rel GUList _53 53

gu1 ≋2 gu2 = ∀ {x} → get x gu1 ≡ get x gu254 54

Proof that this relation is an equivalence:

eq≋2 : IsEquivalence _≋2_55 55

eq≋2 = record56 56

{ refl = refl ;57 57

sym = � x → sym x ;58 58

trans = � x x1 → trans x x1 }59 59

A proof of preservation of global unicity:

gu≡ : ∀ {b0 b1 l} → GlobalUnicity (b0 ∶∶ l) → f b1 ≡ f b060 60

→ GlobalUnicity (b1 ∶∶ l)61 61

gu≡ gulb0 eq (here refl) =62 62

here! refl (contradiction (gulb0 (here eq)) ◦ (P→A→¬A! eq))63 63

gu≡ gulb0 eq (there q) =64 64

there! (� p→ ¬A!→P→¬A65 65

(gulb0 (there q)) (trans p eq) q) (guTl gulb0 q)66 66

Lemmas about membership:

∈≡→∈f : ∀ {b b1 l} → f b ≡ f b1 → b ∈≡ l → (f b1) ∈f l67 67

∈≡→∈f px = mapAny � {refl → sym px}68 68

–69 69

∈≡→∈f’ : ∀ {b l} → b ∈≡ l → (f b) ∈f l70 70

∈≡→∈f’ = ∈≡→∈f refl71 71
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A proof about the result of get:

get≡g : ∀ {b l p} → GlobalUnicity l → b ∈≡ l72 72

→ get f b from l when p ≡ g b73 73

get≡g {p = here refl} _ (here refl) = refl74 74

get≡g {p = here px} gul (there b∈≡l) =75 75

contradiction (gul (here refl))76 76

(P→A→¬A! refl (∈≡→∈f px b∈≡l))77 77

get≡g {p = there p} gul (here refl) =78 78

contradiction (gul (here refl))79 79

(P→A→¬A! refl p)80 80

get≡g {p = there p} gul (there b∈≡l) = get≡g (guTl gul) b∈≡l81 81

The inverse proof about the result of get:

g≡get : ∀ {b l p} → get f b from l when p ≡ g b→ b ∈≡ l82 82

g≡get {p = here px} = here ◦ injfg ◦ (cong2 _,_ px) ◦ sym83 83

g≡get {p = there p} = there ◦ g≡get84 84

Proof of preservation of membership through get:

get≡get : ∀ {b l l1} → GlobalUnicity l85 85

→ get f b from l ≡ get f b from l1 → b ∈≡ l → b ∈≡ l186 86

get≡get {b} {l} _ _ with dec∈fa (f b) l87 87

get≡get {b} {l1 = l1} _ _ | yes _ with dec∈fa (f b) l188 88

get≡get gul eq | yes _ | yes _ =89 89

g≡get ◦ ((trans ◦ sym ◦ just-injective) eq) ◦ get≡g gul90 90

get≡get _ _ | no ¬p = ⊥-elim ◦ ¬p ◦ ∈≡→∈f’91 91

The second comparison implies the first one:

≋2→≋1 : ∀ {gu1 gu2} → gu1 ≋2 gu2 → gu1 ≋1 gu292 92

≋2→≋1 {gu1} {gu2} gu1≋2gu2 =93 93

let gu2≋2gu1 = (IsEquivalence.sym eq≋2) {gu1} {gu2} gu1≋2gu2 in94 94

(get≡get (unique gu1) gu1≋2gu2) ,95 95

get≡get (unique gu2) gu2≋2gu196 96

An element with the right properties can be retrieved:

retrieve : ∀ {x l} → GlobalUnicity l → (p : x ∈f l)97 97

→ ∃ � y → y ∈≡ l × x ≡ f y × get x from l when p ≡ g y98 98

retrieve _ (here refl) = _ , here refl , refl , refl99 99

retrieve gul (there x∈fl) = map2 (map1 there) (retrieve (guTl gul) x∈fl)100 100
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The first comparison implies the second one, thus they are equivalent:

≋1→≋2 : ∀ {gu1 gu2} → gu1 ≋1 gu2 → gu1 ≋2 gu2101 101

≋1→≋2 {gulist l1 _} {gulist l2 _} _ {x} with dec∈fa x l1 | dec∈fa x l2102 102

≋1→≋2 {gulist _ gul1} {gulist _ gul2} (l1⊑l2 , _) | yes p | yes _ =103 103

case retrieve gul1 p of104 104

� {(_ , q , refl , ≡get) →105 105

((cong just) ◦ (trans ≡get) ◦ sym ◦ (get≡g gul2) ◦ l1⊑l2) q}106 106

≋1→≋2 {gulist _ gul1} (l1⊑l2 , _) | yes p | no ¬p =107 107

⊥-elim (case retrieve gul1 p of108 108

� {(_ , q , refl , _) → (¬p ◦ ∈≡→∈f’ ◦ l1⊑l2) q})109 109

≋1→≋2 {_} {gulist _ gul2} (_ , l2⊑l1) | no ¬p | yes p =110 110

⊥-elim (case retrieve gul2 p of111 111

� {(_ , q , refl , _) → (¬p ◦ ∈≡→∈f’ ◦ l2⊑l1) q})112 112

≋1→≋2 _ | no _ | no _ = refl113 113

A proof of decidability of the second comparison using this equivalence:

dec≋2 : Decidabler _≋2_114 114

dec≋2 gu1 gu2 with dec≋1 gu1 gu2115 115

dec≋2 gu1 gu2 | yes p = yes (≋1→≋2 {gu1} {gu2} p)116 116

dec≋2 gu1 gu2 | no ¬p = no (¬p ◦ ≋2→≋1 {gu1} {gu2})117 117

A.1.7 Trimming a non-empty globally unique list

trim : (gul : GUList) → ¬ (GUList.content gul) ≡ [] → GUList1 1

trim (gulist [] unique) p = ⊥-elim (p refl)2 2

trim (gulist (_ ∶∶ content) unique) _ = gulist content (guTl unique)3 3
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A.2 On Petri nets and SimplePDL models

A.2.1 Lemmas to add an arc to a net

If all the elements of themap satisfy the same property, and if we add an element
in this map which satisfies the same property, then all the elements of the resulting
map satisfy this property:

putpres : ∀ {m1 : Map {B = ℕ × ℕ}} {m2 : Map {B = ℕ}} {k v}1 1

{¬k∈m1 : ¬ k ∈l m1} (k∈m2 : k ∈l m2) →2 2

(∀ {x} → x ∈l m1 → x ∈l m2) →3 3

(∀ {x} → x ∈l (put k , v into m1 when ¬k∈m1) → x ∈l m2)4 4

putpres k∈m2 _ (here refl) = k∈m25 5

putpres _ m1⊑m2 (there x∈put) = m1⊑m2 x∈put6 6

Retrieving an element from a list in which we assigned a value to an element e
either returns e or an element that was previously in the map. This is established in
two steps, the first one being an equality proof and the second one an adapted form
used in the addition of an arc to a net:

prop0 : ∀ {m1 : Map {B = Map {B = ℕ × ℕ}}}7 7

{m2 : Map {B = ℕ × ℕ}} {k x} {k∈m1 x∈assm1} →8 8

get x from (assign k , m2 inside m1 if k∈m1) if x∈assm1 ≡9 9

get x from m1 if ∈assign x∈assm1 ⊎10 10

get x from (assign k , m2 inside m1 if k∈m1) if x∈assm1 ≡ m211 11

prop0 {k∈m1 = here _} {here _} = inj2 refl12 12

prop0 {k∈m1 = here _} {there _} = inj1 refl13 13

prop0 {k∈m1 = there _} {here _} = inj1 refl14 14

prop0 {m1} {k∈m1 = there k∈m1} {there x∈assm1} =15 15

prop0 {m1 = trim m1 � ()} {k∈m1 = k∈m1} {x∈assm1}16 16

–17 17

prop2 : ∀ {m1 : Map {B = Map {B = ℕ × ℕ}}}18 18

{m2 : Map {B = ℕ}} {m3 : Map {B = ℕ × ℕ}} {k} {k∈m1} →19 19

(∀ {x} → x ∈l m3 → x ∈l m2) →20 20

(∀ {x x∈m1 p} → p ∈l (get x from m1 if x∈m1) → p ∈l m2) →21 21

∀ {x x∈assm1 p} →22 22

p ∈l (get x from assign k , m3 inside m1 if k∈m1 if x∈assm1) →23 23

p ∈l m224 24

prop2 {m1} {m2} {m3} {k} {k∈m1} p q {x} {x∈assm1} {r}25 25

with prop0 {m1} {m3} {k} {x} {k∈m1} {x∈assm1}26 26

prop2 _ q | inj1 x1 rewrite x1 = q27 27

prop2 p _ | inj2 y rewrite y = p28 28
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A.2.2 Exporting nets to TINA

showl : ∀ {a} {A B : Set a} f g → Fun2 String → List (A × B) → String1 1

showl f g h = foldr ((uncurry h ◦ (map
∑

f g)) -J _++_ K- ("\n" ++_)) ""2 2

–3 3

showp : List (String × ℕ) → String4 4

showp = showl id showℕ (� s0 s1 → "pl " ++ s0 ++ " (" ++ s1 ++ ")")5 5

–6 6

Mshowp : Map → String7 7

Mshowp = showp ◦ Map.content8 8

–9 9

aggregate : List (String × ℕ) → String10 10

aggregate = foldr ((� {(_ , zero) → "" ; (s , suc zero) → s ++ " " ;11 11

(s , suc (suc n)) → s ++ "*"12 12

++ showℕ (suc (suc n)) ++ " "}) -J _++_ K- id) ""13 13

–14 14

splito : List (String × (ℕ × ℕ)) → String15 15

splito l = aggregate (mapl (� {(a , b , _) → a , b}) l) ++ " -> " ++16 16

aggregate (mapl (� {(a , _ , c) → a , c}) l)17 17

–18 18

splitom : Map → String19 19

splitom = splito ◦ Map.content20 20

–21 21

showt : List (String ×Map) → String22 22

showt = showl id splitom (� s0 s1 → "tr " ++ s0 ++ " " ++ s1)23 23

–24 24

Mshowt : Map → String25 25

Mshowt = showt ◦ Map.content26 26

–27 27

MPshow : Petrinet → String28 28

MPshow p = Mshowp (marking p) ++ "\n" ++ Mshowt (transitions p)29 29

–30 30

MPshowm : Maybe Petrinet → String31 31

MPshowm (just x) = MPshow x32 32

MPshowm nothing = "Unsound net!"33 33

–34 34

printp : Maybe Petrinet → IO ⊤35 35

printp = putStrLn ◦ toCostring ◦ MPshowm36 36

–37 37

outp : String → Maybe Petrinet → IO ⊤38 38

outp name = (writeFile name) ◦ toCostring ◦ MPshowm39 39
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A.2.3 Decidability from a list of candidates

If the Any predicate holds for the result of a get operation over a map, then this
value necessarily is a member of this map, since it means that the get operation
returned just something. Note that in this property, pattern matching on dec∈l x
m only yields the possibility yes q because AGDA understood that the case no q
was no possible since it would lead to p being empty:

getp : ∀ {x} {l b} {B : Set b} {P : Pred B l} {m : Map {B = B}}1 1

→ Any P (get x m) → x ∈l m2 2

getp {x} {m = m} _ with dec∈l x m3 3

getp {x} {m = m} p | yes q = q4 4

Definition of a subtraction from a proof of inferiority. Knowing that a is lower
than b, we can compute the difference between b and a:

sub : ∀ {a b} → a ≤ b→ ℕ5 5

sub (z≤n {n}) = n6 6

sub (s≤s p) = sub p7 7

Being a member of a map necessarily means being a member of the keys of this
map:

prop← : ∀ {l} {B : Set l} {m : Map {B = B}} {x}8 8

→ x ∈l m→ x ∈ (keys m)9 9

prop← (here px) = here px10 10

prop← {m = m} (there p) = there (prop← {m = trim m � {()}} p)11 11

A convenient way of proving the decidability of an existential quantifier when
we have a list of possible witnesses and the proof that all the other elements cannot
be witnesses. This requires the underlying predicate to be decidable and consists in
testing all the elements in the list for decidability:

fromSample : ∀ {a l} {A : Set a} {P : Pred A l} (l : List A) →12 12

Decidablep P → (∀ {x} → ¬ Anyl (x ≡_) l → ¬ P x) → Dec (∃ P)13 13

fromSample [] _ q = no � {(_ , px) → q (� {()}) px}14 14

fromSample (x ∶∶ _) decp _ with decp x15 15

fromSample (x ∶∶ _) _ _ | yes p = yes (x , p)16 16

fromSample (x ∶∶ l) decp q | no ¬p = fromSample l decp � ¬avl pv→17 17

q (� {(here refl) → ⊥-elim (¬p pv) ; (there avl) → ¬avl avl}) pv18 18
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A.2.4 A detailed building of the firing predicates

Extension of _≤_ to ensure the right operand is of the form just y:

_≤0_ : REL ℕ (Maybe ℕ) _1 1

_≤0_ x = Any (x ≤_)2 2

Ability of an arc to be fired inside a map of places:

CanFireArc0 : REL (String × ℕ × ℕ) Map _3 3

CanFireArc0 (a , -n , _) = (-n ≤0_) ◦ (get a)4 4

Ability of a list of arcs to be fired inside a map of places:

CanFireArcs0 : REL Map (List (String × ℕ × ℕ)) _5 5

CanFireArcs0 m = All ( _⟨ CanFireArc0 ⟩ m)6 6

Resulting alternate (but equivalent) version of CanFireTrans:

CanFireTrans0 : REL String Petrinet _7 7

CanFireTrans0 s [m marking - transitions t][ _ ] =8 8

Any (CanFireArcs0 marking ◦ Map.content) (get s transitions)9 9

A.2.5 A detailed building of the decidability predicates

Decidability of _≤0_, using dec which transfers the decidability of a predicate
P into the decidability of the predicate Any P:

dec≤0 : Decidable _≤0_1 1

dec≤0 x = dec (x ≤?_)2 2

Decidability of the firing of an arc using the number of tokens consumed by the
arc and the return value of retrieving the target place in the map:

deccfa0 : Decidable CanFireArc03 3

deccfa0 (a , -n , _) = (dec≤0 -n) ◦ (get a)4 4

Decidability of the firing of a list of arcs using all which transfers the decid-
ability of a predicate P into the decidability of the predicate All P:

deccfas0 : Decidable CanFireArcs05 5

deccfas0 m = all � x → deccfa0 x m6 6
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Decidability of the CanFireTrans0 predicate, using dec once more:

deccft0 : Decidable CanFireTrans07 7

deccft0 s [m marking - transitions t][ _ ] =8 8

dec ((deccfas0 marking) ◦ Map.content) (get s transitions)9 9

A.2.6 Decidability of the equality between worksequences

Decidability of the equality between dependences then WorkSequences:

_≟d_ : Decidable {A = Dependence} _≡_1 1

toStart start ≟d toStart start = yes refl2 2

toStart start ≟d toStart finish = no � ()3 3

toStart start ≟d toFinish _ = no � ()4 4

toStart finish ≟d toStart start = no � ()5 5

toStart finish ≟d toStart finish = yes refl6 6

toStart finish ≟d toFinish _ = no � ()7 7

toFinish start ≟d toStart _ = no � ()8 8

toFinish start ≟d toFinish start = yes refl9 9

toFinish start ≟d toFinish finish = no � ()10 10

toFinish finish ≟d toStart _ = no � ()11 11

toFinish finish ≟d toFinish start = no � ()12 12

toFinish finish ≟d toFinish finish = yes refl13 13

–14 14

dec≡ws : Decidable {A = WorkSequence} _≡_15 15

dec≡ws = ≡-dec _≟_ (≡-dec _≟d_ _≟_)16 16

A.2.7 An alternate definition of SimplePDL

An alternate definition of WorkSequences containing the proofs of conformity
for its fields. These proofs of conformity refer to a Map of WorkSequences which is
passed in parameter of the record:

record WorkSequence’ (m : Map) : Set where1 1

field2 2

predecessor : String3 3

successor : String4 4

dependence : Dependence5 5

.p∈m : predecessor ∈l m6 6

.s∈m : successor ∈l m7 7

.¬≡ : ¬ predecessor ≡ successor8 8
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Proof that the equality between WorkSequences is decidable, using the decid-
ability of the equality between string sand dependences. Note that, since the prop-
erties are declared irrelevant, it is not required to prove their equality which is very
convenient in such cases:

dec≡ws’ : ∀ {m} → Decidable {A = WorkSequence’ m} _≡_9 9

dec≡ws’ w1 w2 with predecessor w1 ≟ predecessor w210 10

dec≡ws’ w1 w2 | yes p with successor w1 ≟ successor w211 11

dec≡ws’ w1 w2 | yes p | yes q with dependence w1 ≟d dependence w212 12

dec≡ws’ record { predecessor = .p ; successor = .s ; dependence = .d}13 13

record { predecessor = p ; successor = s ; dependence = d}14 14

| yes refl | yes refl | yes refl = yes refl15 15

dec≡ws’ _ _ | yes _ | yes _ | no ¬p = no � {refl → ¬p refl}16 16

dec≡ws’ _ _ | yes _ | no ¬p = no � {refl → ¬p refl}17 17

dec≡ws’ _ _ | no ¬p = no � {refl → ¬p refl}18 18

And finally, a new version of the process model data type, as a couple of a map
of WorkDefinitions and a bag of WorkSequences depending on this map. (The LU.
is required because another instance of ListUnique had to be imported for this
example:

SimplePDL’ : Set19 19

SimplePDL’ = ∃ � x → LU.Bag (WorkSequence’ x) dec≡ws’20 20

A.2.8 Adding a WorkSequence to a process model

A function which transforms a String into a dependence when possible, and
accepts four possible String: "s2s", "s2f", "f2f" and "f2f":

toWsk : String → Maybe Dependence1 1

toWsk s with s ≟ "s2s"2 2

toWsk s | no _ with s ≟ "s2f"3 3

toWsk s | no _ | no _ with s ≟ "f2s"4 4

toWsk s | no _ | no _ | no _ with s ≟ "f2f"5 5

toWsk s | no _ | no _ | no _ | no _ = nothing6 6

toWsk s | no _ | no _ | no _ | yes _ = just (toFinish finish)7 7

toWsk s | no _ | no _ | yes _ = just (toStart finish)8 8

toWsk _ | no _ | yes _ = just (toFinish start)9 9

toWsk _ | yes _ = just (toStart start)10 10

A function which adds a WorkSequence into a process model. This requires
all the properties to safistied and builds the model accordingly, while returning
nothing otherwise:
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+ws : String → String → String → SimplePDL → Maybe SimplePDL11 11

+ws _ kind _ _ with toWsk kind12 12

+ws _ _ _ _ | nothing = nothing13 13

+ws pred _ succ _ | just _ with pred ≟ succ14 14

+ws _ _ _ _ | just _ | yes _ = nothing15 15

+ws pred _ _ xpdl | just _ | no _ with dec∈l pred (wds xpdl)16 16

+ws _ _ succ xpdl | just _ | no _ | yes _ with dec∈l succ (wds xpdl)17 17

+ws pred _ succ xpdl | just x | no _ | yes _ | yes _18 18

with dec∈g (pred , x , succ) (wss xpdl)19 19

+ws pred _ succ (pdl wds wss c1 c2 c3) |20 20

just x | no ¬p | yes q | yes r | no ¬p1 =21 21

just (pdl wds (putg pred , x , succ into wss when ¬p1)22 22

(� {(here refl) → q ; (there x1) → c1 x1})23 23

(� {(here refl) → r ; (there x1) → c2 x1})24 24

� {(here refl) → ¬p ; (there x1) → c3 x1})25 25

+ws _ _ _ _ | just _ | no _ | yes _ | yes _ | yes _ = nothing26 26

+ws _ _ _ _ | just _ | no _ | yes _ | no _ = nothing27 27

+ws _ _ _ _ | just _ | no _ | no _ = nothing28 28

A.2.9 Decidability of the predicate of compliance

Decidability of the left compliance:

decatpf : Decidable Complies←1 1

decatpf start notStarted = no (� {(inj1 ()) ; (inj2 ())})2 2

decatpf start inProgress = yes (inj1 refl)3 3

decatpf start finished = yes (inj2 refl)4 4

decatpf finish notStarted = no � ()5 5

decatpf finish inProgress = no � ()6 6

decatpf finish finished = yes refl7 7

Decidability of the right compliance:

decatpt : Decidable Complies→8 8

decatpt start notStarted = yes refl9 9

decatpt start inProgress = no � ()10 10

decatpt start finished = no � ()11 11

decatpt finish notStarted = no � ()12 12

decatpt finish inProgress = yes refl13 13

decatpt finish finished = no � ()14 14

Decidability of the overall compliance:
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deccomp : ∀ {wds} → Decidable (Comp wds)15 15

deccomp {wds} _ (toStart a’) with decatpf a’ wds16 16

deccomp start (toStart _) | yes p = yes (cStart p)17 17

deccomp finish (toStart _) | yes _ = yes cFinishStart18 18

deccomp start (toStart _) | no ¬p = no (� {(cStart x) → ¬p x})19 19

deccomp finish (toStart _) | no _ = yes cFinishStart20 20

deccomp {wds} _ (toFinish a’) with decatpf a’ wds21 21

deccomp start (toFinish _) | no _ = yes cStartFinish22 22

deccomp finish (toFinish _) | no ¬p = no (� {(cFinish x) → ¬p x})23 23

deccomp start (toFinish _) | yes _ = yes cStartFinish24 24

deccomp finish (toFinish _) | yes p = yes (cFinish p)25 25
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A.3 On instant refinement

A.3.1 Definition of instants

Definition of the set of instants and their main relations. The two first are di-
rectly taken from the strict partial order and the others are derived from them:

– Underlying set1 1

Support : Set2 2

Support = Carrier Instant3 3

–4 4

– Precedence5 5

_≺_ : Rel Support lzero6 6

_≺_ = _<_ Instant7 7

–8 8

– Coincidence9 9

_≈_ : Rel Support lzero10 10

_≈_ = _≋_ Instant11 11

– Causality12 12

_≼_ : Rel Support lzero13 13

x ≼ y = x ≈ y ⊎ x ≺ y14 14

–15 15

– Dependance16 16

_≠_ : Rel Support lzero17 17

x ≠ y = x ≺ y ⊎ y ≺ x18 18

–19 19

– Independance20 20

_∥_ : Rel Support lzero21 21

x ∥ y = ¬ x ≠ y × ¬ x ≈ y22 22

Extension of these relations to ∃ types by ignoring the proof and applying the
relation to the witness. This is done usique a helper, _-J_K-_. This helper takes two
functions of one parameter (its outer parameters) and a function of two parameters
(its inner parameter) and returns a function of two parameters which are respec-
tivitely applied the two out functions. It is defined elsewhere in the appendices in
Section A.5.1 because it is used at several places in this work:

_≺’_ : ∀ {u} {P Q : Pred Support u} → REL (∃ P) (∃ Q) _23 23

_≺’_ = proj1 -J _≺_ K- proj124 24

–25 25

_≼’_ : ∀ {u} {P Q : Pred Support u} → REL (∃ P) (∃ Q) _26 26

_≼’_ = proj1 -J _≼_ K- proj127 27

–28 28

_≈’_ : ∀ {u} {P Q : Pred Support u} → REL (∃ P) (∃ Q) _29 29

_≈’_ = proj1 -J _≈_ K- proj130 30

–31 31

_≠’_ : ∀ {u} {P Q : Pred Support u} → REL (∃ P) (∃ Q) _32 32

_≠’_ = proj1 -J _≠_ K- proj133 33

–34 34

_∥’_ : ∀ {u} {P Q : Pred Support u} → REL (∃ P) (∃ Q) _35 35

_∥’_ = proj1 -J _∥_ K- proj136 36

–37 37

_≡’_ : ∀ {u} {P Q : Pred Support u} → REL (∃ P) (∃ Q) _38 38

_≡’_ = proj1 -J _≡_ K- proj139 39
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Shortcuts for properties of the strict partial order between _≈_ and _≺_:

private40 40

ispo : IsStrictPartialOrder _≈_ _≺_41 41

ispo = isStrictPartialOrder Instant42 42

–43 43

irrefl≈≺ : Irreflexive _≈_ _≺_44 44

irrefl≈≺ = irrefl ispo45 45

–46 46

trans≺ : Transitive _≺_47 47

trans≺ = trans ispo48 48

–49 49

private50 50

≺-resp-≈ : _≺_ Respects2 _≈_51 51

≺-resp-≈ = <-resp-≈ ispo52 52

–53 53

≺-resp-≈1 : ∀ {x} → (x ≺_) Respects _≈_54 54

≺-resp-≈1 = proj1 ≺-resp-≈55 55

–56 56

≺-resp-≈2 : ∀ {x} → (_≺ x) Respects _≈_57 57

≺-resp-≈2 = proj2 ≺-resp-≈58 58

–59 59

private60 60

ie : IsEquivalence _≈_61 61

ie = isEquivalence ispo62 62

–63 63

refl≈ : Reflexive _≈_64 64

refl≈ = refl ie65 65

–66 66

sym≈ : Symmetric _≈_67 67

sym≈ = sym ie68 68

–69 69

trans≈ : Transitive _≈_70 70

trans≈ = trans ie71 71

Symmetry of _≠_ and _∥_:

sym≠ : Symmetric _≠_72 72

sym≠ (inj1 x) = inj2 x73 73

sym≠ (inj2 y) = inj1 y74 74

–75 75

sym∥ : Symmetric _∥_76 76

sym∥ (u , v) = u ◦ sym≠ , v ◦ sym≈77 77
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Definition of a setoid over a subset of instants, using the coincidence and ∃ P
as a carrier for a given P:

toSetoid : ∀ {u} (P : Pred Support u) → Setoid _ _78 78

toSetoid P = record {79 79

Carrier = ∃ P ; _≈_ = _≈’_ ;80 80

isEquivalence = record { refl = refl≈ ; sym = sym≈ ; trans = trans≈}}81 81

Algebraic properties around causality:

≺→¬≈ : ∀ {x y} → x ≠ y → ¬ x ≈ y82 82

≺→¬≈ (inj1 x≺y) x≈y = irrefl≈≺ x≈y x≺y83 83

≺→¬≈ (inj2 y≺x) x≈y = irrefl≈≺ (sym≈ x≈y) y≺x84 84

–85 85

antisym≼ : Antisymmetric _≈_ _≼_86 86

antisym≼ (inj1 x) _ = x87 87

antisym≼ _ (inj1 x) = sym≈ x88 88

antisym≼ {�} (inj2 �≺�) (inj2 �≺�) = contradiction89 89

(trans≺ �≺� �≺�) (irrefl≈≺ (refl≈ {�}))90 90

–91 91

trans≼ : Transitive _≼_92 92

trans≼ (inj1 i≈j) (inj1 j≈k) = inj1 (trans≈ i≈j j≈k)93 93

trans≼ (inj1 i≈j) (inj2 j≺k) = inj2 (≺-resp-≈2 (sym≈ i≈j) j≺k)94 94

trans≼ (inj2 i≺j) (inj1 j≈k) = inj2 (≺-resp-≈1 j≈k i≺j)95 95

trans≼ (inj2 i≺j) (inj2 j≺k) = inj2 (trans≺ i≺j j≺k)96 96

–97 97

refl≼ : Reflexive _≼_ ; refl≼ = inj1 refl≈98 98

–99 99

trans≺≼ : ∀ {� � } → � ≺ � → � ≼  → � ≺ 100 100

trans≺≼ �≺� (inj1 �≈) = ≺-resp-≈1 �≈ �≺�101 101

trans≺≼ �≺� (inj2 �≺) = trans≺ �≺� �≺102 102

–103 103

trans≼≺ : ∀ {� � } → � ≼ � → � ≺  → � ≺ 104 104

trans≼≺ (inj1 �≈�) �≺ = ≺-resp-≈2 (sym≈ �≈�) �≺105 105

trans≼≺ (inj2 �≺�) �≺ = trans≺ �≺� �≺106 106

–107 107

≼→¬≺ : ∀ {� �} → � ≼ � → ¬ � ≺ �108 108

≼→¬≺ (inj1 �≈�) �≺� = irrefl≈≺ (sym≈ �≈�) �≺�109 109

≼→¬≺ (inj2 �≺�) �≺� = ≺→¬≈ (inj2 (trans≺ �≺� �≺�)) refl≈110 110

–111 111

≼→¬≺→≈ : ∀ {� �} → � ≼ � → ¬ � ≺ � → � ≈ �112 112

≼→¬≺→≈ (inj1 �≈�) _ = �≈�113 113

≼→¬≺→≈ (inj2 �≺�) ¬�≺� = ⊥-elim (¬�≺� �≺�)114 114

233



Additional algebraic properties:

¬⊎→×¬ : ∀ {a} {A B : Set a} → ¬ (A ⊎ B) → ¬ A × ¬ B115 115

¬⊎→×¬ ¬a⊎b = ¬a⊎b ◦ inj1 , ¬a⊎b ◦ inj2116 116

–117 117

∥→≈→∥1 : ∀ {� � } → � ∥ � → � ≈  → � ∥ 118 118

∥→≈→∥1 {�} {�} (¬�≠� , ¬�≈�) �≈ with ¬⊎→×¬ ¬�≠�119 119

∥→≈→∥1 (_ , ¬�≈�) �≈ | ¬�≺� , ¬�≺�120 120

= (� { (inj1 �≺) → ¬�≺� (≺-resp-≈1 (sym≈ �≈) �≺) ;121 121

(inj2 ≺�) → ¬�≺� (≺-resp-≈2 (sym≈ �≈) ≺�)})122 122

, (� �≈ → ¬�≈� (trans≈ �≈ (sym≈ �≈)))123 123

–124 124

∥→≈→∥2 : ∀ {� � } → � ∥ � → � ≈  →  ∥ �125 125

∥→≈→∥2 �∥� �≈ = sym∥ (∥→≈→∥1 (sym∥ �∥�) �≈)126 126

–127 127

≺≈≈→≺ : ∀ {� �  �} → � ≺ � → � ≈  → � ≈ � →  ≺ �128 128

≺≈≈→≺ �≺� �≈ �≈� = ≺-resp-≈2 �≈ (≺-resp-≈1 �≈� �≺�)129 129

–130 130

≼≈≈→≼ : ∀ {� �  �} → � ≼ � → � ≈  → � ≈ � →  ≼ �131 131

≼≈≈→≼ (inj1 �≈�) �≈ �≈� =132 132

inj1 (trans≈ (sym≈ �≈) (trans≈ �≈� �≈�))133 133

≼≈≈→≼ (inj2 �≺�) �≈ �≈� =134 134

inj2 (≺≈≈→≺ �≺� �≈ �≈�)135 135

–136 136

≼-resp-≈1 : ∀ {x} → (x ≼_) Respects _≈_137 137

≼-resp-≈1 x1≈y (inj1 x≈x1) = inj1 (trans≈ x≈x1 x1≈y)138 138

≼-resp-≈1 x1≈y (inj2 x≺x1) = inj2 (≺-resp-≈1 x1≈y x≺x1)139 139

–140 140

≼-resp-≈2 : ∀ {x} → (_≼ x) Respects _≈_141 141

≼-resp-≈2 x1≈y (inj1 x1≈x) = inj1 (trans≈ (sym≈ x1≈y) x1≈x)142 142

≼-resp-≈2 x1≈y (inj2 x1≼x) = inj2 (≺-resp-≈2 x1≈y x1≼x)143 143

–144 144

≡→≈ : ∀ {i j} → i ≡ j → i ≈ j145 145

≡→≈ _≡_.refl = refl≈146 146

A.3.2 Equivalence between pairs of relations

Reflexivity of _≈≈_

refl≈≈ : ∀ {l} → Reflexive (_≈≈_ {l})1 1

refl≈≈ = record2 2

{ ≺1→2 = id ; ≺2→1 = id ; ≈1→2 = id ; ≈2→1 = id }3 3
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Symmetry of _≈≈_

sym≈≈ : ∀ {l} → Symmetric (_≈≈_ {l})4 4

sym≈≈ x≈≈y .≈1→2 = ≈2→1 x≈≈y5 5

sym≈≈ x≈≈y .≈2→1 = ≈1→2 x≈≈y6 6

sym≈≈ x≈≈y .≺1→2 = ≺2→1 x≈≈y7 7

sym≈≈ x≈≈y .≺2→1 = ≺1→2 x≈≈y8 8

Transitivity of _≈≈_

trans≈≈ : ∀ {l} → Transitive (_≈≈_ {l})9 9

trans≈≈ i≈≈j j≈≈k .≈1→2 = (≈1→2 j≈≈k) ◦ ≈1→2 i≈≈j10 10

trans≈≈ i≈≈j j≈≈k .≈2→1 = (≈2→1 i≈≈j) ◦ ≈2→1 j≈≈k11 11

trans≈≈ i≈≈j j≈≈k .≺1→2 = (≺1→2 j≈≈k) ◦ ≺1→2 i≈≈j12 12

trans≈≈ i≈≈j j≈≈k .≺2→1 = (≺2→1 i≈≈j) ◦ ≺2→1 j≈≈k13 13

A.3.3 Partial ordering between pairs of relations

Antisymmety of _≺≈_ towards _≈≈_

antisym≺≈ : ∀ {l} → Antisymmetric _≈≈_ (_≺≈_ {l})1 1

antisym≺≈ i≺≈j _ .≈1→2 = ≈1→2 i≺≈j2 2

antisym≺≈ _ j≺≈i .≈2→1 = ≈1→2 j≺≈i3 3

antisym≺≈ _ j≺≈i .≺1→2 = ≺2→1 j≺≈i4 4

antisym≺≈ i≺≈j _ .≺2→1 = ≺2→1 i≺≈j5 5

Instantiation of the partial order structure.

partialOrder≺≈≈ : ∀ {l} → IsPartialOrder _≈≈_ (_≺≈_ {l})6 6

partialOrder≺≈≈ = record {7 7

isPreorder = preorder≺≈≈ ;8 8

antisym = antisym≺≈ }9 9

A.3.4 Verification of the example

Definition of the module with the required imports and renames:

module RefinementExample where1 1

–2 2

open import Refinement3 3

open import Data.Sum renaming (inj1 to l ; inj2 to r)4 4
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Definition of the abstract level coincidence:

_≈2_ : _5 5

_≈2_ = _≡_ on _div 56 6

Proof that it is an equivalence:

eq≈2 : IsEquivalence _≈2_7 7

eq≈2 = record { refl = refl ; sym = sym ; trans = trans }8 8

Definition of the abstract level precedence:

_≺2_ : _9 9

_≺2_ = _<_ on _div 510 10

Proof that it forms a strict partial order with the abstract coincidence:

irr≺2≈2 : Irreflexive _≈2_ _≺2_11 11

irr≺2≈2 {x} {y} with x div 5 | y div 512 12

irr≺2≈2 | suc _ | suc _ = <-irrefl13 13

–14 14

resp≺2≈2 : _≺2_ Respects2 _≈2_15 15

resp≺2≈2 = (� { {x} {y} {z} → aux1 {x} {y} {z}}) ,16 16

� { {x} {y} {z} → aux2 {x} {y} {z}}17 17

where18 18

aux1 : ∀ {x y z} → y ≈2 z → x ≺2 y → x ≺2 z19 19

aux1 {x} {y} {z} with x div 5 | y div 5 | z div 520 20

aux1 | _ | _ | _ = proj1 (resp2 _<_)21 21

aux2 : ∀ {x y z} → y ≈2 z → y ≺2 x → z ≺2 x22 22

aux2 {x} {y} {z} with x div 5 | y div 5 | z div 523 23

aux2 | _ | _ | _ = proj2 (resp2 _<_)24 24

–25 25

ispo≈2≺2 : IsStrictPartialOrder _≈2_ _≺2_26 26

ispo≈2≺2 = record {27 27

isEquivalence = eq≈2 ;28 28

irrefl = � { {x} {y} → irr≺2≈2 {x} {y}} ;29 29

trans = <-trans ;30 30

<-resp-≈ = resp≺2≈2 }31 31

Definition of the concrete level coincidence:

_≈1_ : Rel ℕ _32 32

a ≈1 b = (a / 5) ≡ (b / 5) × (a % 5 ≡ b % 5 ⊎ a % 5 + b % 5 ≡ 1)33 33
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Proof that it is an equivalence:

sym≈1 : Symmetric _≈1_34 34

sym≈1 {a} {b} (fst , snd) with a / 5 | b / 5 | a % 5 | b % 535 35

sym≈1 {a} {b} (fst , l x) | _ | _ | _ | _ = (sym fst) , l (sym x)36 36

sym≈1 {a} {b} (fst , r y) | _ | _ | w | w1 =37 37

(sym fst) , r (trans (+-comm w1 w) y)38 38

–39 39

trans≈1 : Transitive _≈1_40 40

trans≈1 {a} {b} {c} _ _ with a / 5 | b / 5 | c / 5 | a % 5 | b % 5 | c % 541 41

trans≈1 (refl , l refl) (refl , l refl) | _ | _ | _ | _ | _ | _ = refl , l refl42 42

trans≈1 (refl , l refl) (refl , r y) | _ | _ | _ | _ | _ | _ = refl , r y43 43

trans≈1 (refl , r y) (refl , l refl) | _ | _ | _ | _ | _ | _ = refl , r y44 44

trans≈1 (refl , r refl) (refl , r refl) | _ | _ | _ | zero | .1 | .0 = refl , l refl45 45

trans≈1 (refl , r refl) (refl , r refl) | _ | _ | _ | suc zero | .0 | .1 = refl , l refl46 46

–47 47

eq≈1 : IsEquivalence _≈1_48 48

eq≈1 = record {49 49

refl = refl , l refl ;50 50

sym = � { {a} {b} → sym≈1 {a} {b}};51 51

trans = � { {a} {b} {c} → trans≈1 {a} {b} {c} }}52 52

Definition of the concrete level precedence:

_≺1_ : Rel ℕ _53 53

a ≺1 b = a / 5 < b / 5 ⊎ (a / 5 ≡ b / 5 × a % 5 < b % 5 × ¬ b % 5 ≡ 1)54 54

Proofs of transitivity and irreflexivity at the concrete level:

trans≺1 : Transitive _≺1_55 55

trans≺1 {a} {b} {c} _ _ with a / 5 | b / 5 | c / 5 | a % 5 | b % 5 | c % 556 56

trans≺1 (l x) (l x1) | _ | _ | _ | _ | _ | _ = l (<-trans x x1)57 57

trans≺1 (l x) (r (refl , _)) | _ | _ | _ | _ | _ | _ = l x58 58

trans≺1 (r (refl , _)) (l x) | _ | _ | _ | _ | _ | _ = l x59 59

trans≺1 (r (refl , u , _)) (r (refl , w , x)) | _ | _ | _ | _ | _ | _ =60 60

r (refl , (<-trans u w , x))61 61

–62 62

irr≈1≺1 : Irreflexive _≈1_ _≺1_63 63

irr≈1≺1 {a} {b} _ _ with a / 5 | b / 5 | a % 5 | b % 564 64

irr≈1≺1 (refl , snd) (l (s≤s x)) | _ | _ | _ | _ = <-irrefl refl x65 65

irr≈1≺1 (refl , l refl) (r (refl , fst , _)) | _ | _ | _ | _ = <-irrefl refl fst66 66

irr≈1≺1 (refl , r y1) (r (refl , _ , snd)) | _ | _ | zero | _ = snd y167 67

irr≈1≺1 (refl , r refl) (r (refl , () , snd)) | _ | _ | suc zero | _68 68
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Proof of strict partial ordering, starting with right compliance:

resp≺≈1r : _≺1_ Respectsr _≈1_69 69

resp≺≈1r {a} {b} {c} _ _ with a / 5 | b / 5 | c / 5 | a % 5 | b % 5 | c % 570 70

resp≺≈1r (refl , _) (l x) | _ | _ | _ | _ | _ | _ = l x71 71

resp≺≈1r (refl , l refl) (r y) | _ | _ | _ | _ | _ | _ = r y72 72

resp≺≈1r (refl , r refl) (r (refl , _ , snd)) | _ | _ | _ | _ | suc zero | .0 =73 73

⊥-elim (snd refl)74 74

Left compliance:

resp≺≈1l : _≺1_ Respectsl _≈1_75 75

resp≺≈1l {a} {b} {c} _ _ with a / 5 | b / 5 | c / 5 | a % 5 | b % 5 | c % 576 76

resp≺≈1l (refl , _) (l x) | _ | _ | _ | _ | _ | _ = l x77 77

resp≺≈1l (refl , l refl) (r y) | _ | _ | _ | _ | _ | _ = r y78 78

resp≺≈1l (refl , r refl) (r (refl , fst , snd)) | _ | _ | _ | suc _ | zero | .1 =79 79

r (refl , ≤∧≢⇒< fst (snd ◦ sym) , snd)80 80

resp≺≈1l (refl , r refl) (r (refl , _ , snd)) | _ | _ | _ | suc _ | suc zero | _ =81 81

r (refl , s≤s z≤n , snd)82 82

Both compliances, left and right:

resp≺1≈1 : _≺1_ Respects2 _≈1_83 83

resp≺1≈1 =84 84

(� { {x} {y} {z} → resp≺≈1r {x} {y} {z}}) ,85 85

� { {x} {y} {z} → resp≺≈1l {x} {y} {z}}86 86

Instantiation of the strict partial order data type:

ispo≈1≺1 : IsStrictPartialOrder _≈1_ _≺1_87 87

ispo≈1≺1 = record {88 88

isEquivalence = eq≈1 ;89 89

irrefl = � { {x} {y} → irr≈1≺1 {x} {y}} ;90 90

trans = � { {x} {y} {z} → trans≺1 {x} {y} {z}} ;91 91

<-resp-≈ = resp≺1≈1 }92 92

Proof that the concrete partial order refines the abstract partial order, starting
with the proof the the third field:

aux1 : ∀ {a b} → a ≺1 b → a ≺2 b ⊎ a ≈2 b93 93

aux1 {a} {b} _ with a / 5 | b / 5 | a % 5 | b % 594 94

aux1 (l x) | _ | _ | _ | _ = l x95 95

aux1 (r (refl , _)) | _ | _ | _ | _ = r refl96 96
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Proof of the second field:

aux2 : ∀ {a b} → a ≈2 b → a ≈1 b ⊎ a ≺1 b ⊎ b ≺1 a97 97

aux2 {a} {b} _ with a / 5 | b / 5 | a % 5 | b % 598 98

aux2 refl | _ | _ | zero | zero = l (refl , l refl)99 99

aux2 refl | _ | _ | zero | suc zero = l (refl , r refl)100 100

aux2 refl | _ | _ | zero | suc (suc _) = r (l (r (refl , s≤s z≤n , (� ()))))101 101

aux2 refl | _ | _ | suc zero | zero = l (refl , r refl)102 102

aux2 refl | _ | _ | suc (suc _) | zero = r (r (r (refl , s≤s z≤n , (� ()))))103 103

aux2 refl | _ | _ | suc zero | suc zero = l (refl , l refl)104 104

aux2 refl | _ | _ | suc zero | suc (suc _) =105 105

r (l (r (refl , s≤s (s≤s z≤n) , (� ()))))106 106

aux2 refl | _ | _ | suc (suc w) | suc zero =107 107

r (r (r (refl , s≤s (s≤s z≤n) , (� ()))))108 108

aux2 refl | _ | _ | suc (suc w) | suc (suc w1) with <-cmp w w1109 109

aux2 refl | _ | _ | suc (suc _) | suc (suc _) | tri< a _ _ =110 110

r (l (r (refl , s≤s (s≤s a) , (� ()))))111 111

aux2 refl | _ | _ | suc (suc _) | suc (suc ._) | tri≈ _ refl _ =112 112

l (refl , l refl)113 113

aux2 refl | _ | _ | suc (suc _) | suc (suc _) | tri> _ _ c =114 114

r (r (r (refl , s≤s (s≤s c) , (� ()))))115 115

Instantiation of the refinement record:

refines : (_≈1_ , _≺1_) ≺≈ (_≈2_ , _≺2_)116 116

refines = record {117 117

≈1→2 = proj1 ;118 118

≈2→1 = � { {a} {b} → aux2 {a} {b}} ;119 119

≺1→2 = � { {a} {b} → aux1 {a} {b}} ;120 120

≺2→1 = l }121 121

239



A.4 On CCSL

A.4.1 Image of a function in a setoid

Creation of a setoid containing all the elements that have an antecedent by f
coupled with the equivalence of the initial setoid:

imageSetoid : ∀ {a1 a2 b1 b2} {A : Setoid a1 a2} {B : Setoid b1 b2}1 1

(f : A⟶ B) → Setoid (a1 ⊔ b1 ⊔ b2) b22 2

imageSetoid {B = record {3 3

Carrier = _ ; _≈_ = _≈_ ;4 4

isEquivalence = record { refl = r ; sym = s ; trans = t }}}5 5

record { _⟨$⟩_ = _⟨$⟩_ ; cong = cong } = record {6 6

Carrier = ∃ � y → ∃ (y ≈_ ◦ _⟨$⟩_) ;7 7

_≈_ = _≈_ on proj1 ;8 8

isEquivalence = record { refl = r ; sym = s ; trans = t } }9 9

Creation of a new version of the function f that goes to this newly created setoid
of the elements within its range:

imageFunction : ∀ {a1 a2 b1 b2} {A : Setoid a1 a2} {B : Setoid b1 b2}10 10

(f : A⟶ B) → (A ⟶ imageSetoid f)11 11

imageFunction {B = B} record { _⟨$⟩_ = f ; cong = cong } =12 12

let refl≈ = IsEquivalence.refl (Setoid.isEquivalence B) in13 13

record {14 14

_⟨$⟩_ = � x → f x , x , refl≈ ;15 15

cong = cong }16 16

This new version of f is surjective by construction. This means that it is bijec-
tive when f is injective:

injtobij : ∀ {a1 a2 b1 b2} {A : Setoid a1 a2} {B : Setoid b1 b2} {f} →17 17

Injective {A = A} {B} f → Bijective (imageFunction f)18 18

injtobij {B = record { Carrier = Carrier ; _≈_ = _ ;19 19

isEquivalence = record { refl = _ ; sym = s ; trans = t }}} inj = record {20 20

injective = inj ; surjective = record {21 21

from = record {22 22

_⟨$⟩_ = proj1 ◦ proj2 ;23 23

cong = � { {_ , _ , y} {_ , _ , z} → inj ◦ t (s y) ◦ flip t z}} ;24 24

right-inverse-of = s ◦ proj2 ◦ proj2 }}25 25
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A.4.2 The binding function of the precedence is bijective

The binding function extended to setoids:

h′ : (_⟶_ on (toSetoid ◦ Ticks)) c2 c11 1

h′ = record { _⟨$⟩_ = h ; cong = congruent}2 2

Proof of injectivity over these setoids:

injective : Injective h′3 3

injective {i} {j} with TTot c2 i j4 4

injective | tri< a _ _ = (contradiction a) ◦5 5

(contraposition preserves) ◦ ≼→¬≺ ◦ inj1 ◦ sym≈6 6

injective | tri≈ _ b _ = const (≡→≈ b)7 7

injective | tri> _ _ c = (contradiction c) ◦8 8

(contraposition preserves) ◦ ≼→¬≺ ◦ inj19 9

Proof of bijectivity of the restricted function:

bijective : Bijective (imageFunction h′)10 10

bijective = injtobij injective11 11

A.4.3 Compliance between precedence and equality

Respect of the right side of _≺≺_:

≺≺-respr-∽ (_ , c3⊑c2) c1≺≺c2 .h = (h c1≺≺c2) ◦ proj1 ◦ c3⊑c21 1

≺≺-respr-∽ {_} {c2} (_ , c3⊑c2) c1≺≺c2 .congruent =2 2

(congruent c1≺≺c2) ◦3 3

(trans≈ ((sym≈ ◦ proj2 ◦ c3⊑c2) _)) ◦4 4

(flip trans≈ ((proj2 ◦ c3⊑c2) _))5 5

≺≺-respr-∽ (_ , c3⊑c2) c1≺≺c2 .precedes =6 6

(flip ≺-resp-≈1 (precedes c1≺≺c2 _)) ◦ sym≈ ◦ proj2 ◦ c3⊑c27 7

≺≺-respr-∽ (_ , c3⊑c2) c1≺≺c2 .preserves =8 8

(preserves c1≺≺c2) ◦9 9

(≺-resp-≈2 ((proj2 ◦ c3⊑c2) _)) ◦10 10

(≺-resp-≈1 ((proj2 ◦ c3⊑c2) _))11 11

≺≺-respr-∽ {_} {c2} (c2⊑c3 , c3⊑c2) c1≺≺c2 .dense {p = p} u v =12 12

((proj1 ◦ c2⊑c3 ◦ proj1 ◦ (dense c1≺≺c2 {p = p} u)) v) ,13 13

trans≈ (congruent c1≺≺c2 ((sym≈ (trans≈ ((proj2 ◦ c2⊑c3) _)14 14

((proj2 ◦ c3⊑c2 ◦ proj1 ◦ c2⊑c3) _)))))15 15

(proj2 (dense c1≺≺c2 u v))16 16
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Respect of the left side of _≺≺_:

≺≺-respl-∽ (c2⊑c3 , _) c2≺≺c1 .h =17 17

proj1 ◦ c2⊑c3 ◦ h c2≺≺c118 18

≺≺-respl-∽ {_} {_} {c3} (c2⊑c3 , _) c2≺≺c1 .congruent =19 19

(flip trans≈ ((proj2 ◦ c2⊑c3) _)) ◦20 20

(trans≈ ((sym≈ ◦ proj2 ◦ c2⊑c3) _)) ◦21 21

(congruent c2≺≺c1)22 22

≺≺-respl-∽ (c2⊑c3 , _) c2≺≺c1 .precedes =23 23

(≺-resp-≈2 ((proj2 ◦ c2⊑c3) _)) ◦24 24

(precedes c2≺≺c1)25 25

≺≺-respl-∽ (c2⊑c3 , _) c2≺≺c1 .preserves =26 26

≺-resp-≈1 ((proj2 ◦ c2⊑c3) _) ◦27 27

≺-resp-≈2 ((proj2 ◦ c2⊑c3) _) ◦28 28

preserves c2≺≺c129 29

≺≺-respl-∽ {c1} {c2} {c3} (c2⊑c3 , c3⊑c2) c2≺≺c1 .dense {p = p} u v30 30

with c3⊑c2 p31 31

≺≺-respl-∽ {c1} {c2} {c3} (c2⊑c3 , c3⊑c2) c2≺≺c1 .dense {p = p} u v |32 32

q , p≈q with dense c2≺≺c1 {p = q} (≺-resp-≈1 p≈q (≺-resp-≈233 33

((sym≈ ◦ proj2 ◦ c2⊑c3 ◦ h c2≺≺c1) _) u))34 34

(≺-resp-≈1 ((sym≈ ◦ proj2 ◦ c2⊑c3 ◦ h c2≺≺c1) _)35 35

(≺-resp-≈2 p≈q v))36 36

≺≺-respl-∽ {c1} {c2} {c3} (c2⊑c3 , c3⊑c2) c2≺≺c1 .dense {p = p} _ _37 37

| q , p≈q | r , hr≈q = r ,38 38

(trans≈ ((sym≈ ◦ proj2 ◦ c2⊑c3 ◦ h c2≺≺c1) r)39 39

(trans≈ hr≈q (sym≈ p≈q)))40 40

A.4.4 A clock can strictly precede itself on integers

Creation of a clock that ticks on every instants of ℤ:

always : Clock1 1

always = (� _ → ⊤) ⧖ � {(i , _) (j , _) → <-cmp i j}2 2

Auxiliary proofs for the precedence structures, startingwith the precedes field:

x-1<x : ∀ z → - 1ℤ + z < z3 3

x-1<x (+_ zero) = -<+4 4

x-1<x +[1+ zero ] = +<+ (s≤s z≤n)5 5

x-1<x +[1+ ℕ.suc n ] = +<+ (n<1+n (ℕ.suc n))6 6

x-1<x (-[1+ zero ] ) = -<- (s≤s z≤n)7 7

x-1<x (-[1+ ℕ.suc n ]) = -<- (n<1+n (ℕ.suc n))8 8
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Proof of the preserves field:

preserves0 : ∀ {i j} → i < j→ - 1ℤ + i < - 1ℤ + j9 9

preserves0 {+_ zero} {.(+[1+ _ ])} (+<+ (s≤s m<n)) = -<+10 10

preserves0 {+[1+ zero ]} {.(+[1+ _ ])} (+<+ (s≤s m<n)) = +<+ m<n11 11

preserves0 {+[1+ ℕ.suc n ]} {.(+[1+ _ ])} (+<+ (s≤s m<n)) = +<+ m<n12 12

preserves0 { -[1+_] n} {.(-[1+ _ ])} (-<- n<m) = -<- (s≤s n<m)13 13

preserves0 { -[1+_] zero} {+_ zero} -<+ = -<- (s≤s z≤n)14 14

preserves0 { -[1+_] zero} {+[1+ n ]} -<+ = -<+15 15

preserves0 { -[1+_] (ℕ.suc n)} {+_ zero} -<+ = -<- (s≤s z≤n)16 16

preserves0 { -[1+_] (ℕ.suc n)} {+[1+ m ]} -<+ = -<+17 17

Proof for the dense field. This proof actually does not need its premises because
in ℤ, for any p, there always exists a k such as 1 + k ≡ p:

dense0 : ∀ {p i j} → - 1ℤ + i < p→ p < - 1ℤ + j → ∃ \k → - 1ℤ + k ≡ p18 18

dense0 {+_ zero} {+_ n1} {+_ n2} u v = +[1+ zero ] , refl19 19

dense0 {+[1+ n ]} {+_ n1} {+_ n2} u v = +[1+ ℕ.suc n ] , refl20 20

dense0 { -[1+_] zero} {+_ n1} {+_ n2} u v = + zero , refl21 21

dense0 { -[1+_] (ℕ.suc n)} {+_ n1} {+_ n2} u v = -[1+ n ] , refl22 22

dense0 { -[1+_] zero} {+_ n1} { -[1+_] n2} u v = + zero , refl23 23

dense0 { -[1+_] (ℕ.suc n)} {+_ n1} { -[1+_] n2} u v = -[1+ n ] , refl24 24

dense0 {+_ n} { -[1+_] n1} {+_ n2} u v = +[1+ n ] , refl25 25

dense0 { -[1+_] zero} { -[1+_] n1} {+_ n2} u v = + zero , refl26 26

dense0 { -[1+_] (ℕ.suc n)} { -[1+_] n1} {+_ n2} u v = -[1+ n ] , refl27 27

dense0 { -[1+_] zero} { -[1+_] n1} { -[1+_] n2} u v = + zero , refl28 28

dense0 { -[1+_] (ℕ.suc n)} { -[1+_] n1} { -[1+_] n2} u v = -[1+ n ] , refl29 29

Proof that the defined clock strictly precedes itself using the previous defini-
tions:

all≺≺all : always ≺≺ always30 30

all≺≺all = record31 31

{ h = � {(x , tt) → (- 1ℤ + x , tt)}32 32

; congruent = � {refl → refl}33 33

; precedes = x-1<x ◦ proj134 34

; preserves = preserves035 35

; dense = � { {i , tt} {j , tt} {p , tt} x y →36 36

case dense0 {p} {i} {j} x y of37 37

� {(z , p) → (z , tt) , p}}}38 38
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A.4.5 Two clocks can precede each other and not be equal

We start by defining the notion of odd and even for integers.

data Evenℕ : ℕ→ Set where1 1

even0 : Evenℕ 02 2

evenss : ∀ {n} → Evenℕ n → Evenℕ (ℕ.suc (ℕ.suc n))3 3

–4 4

Oddℕ : ℕ → Set5 5

Oddℕ = ¬_ ◦ Evenℕ6 6

–7 7

data Even : ℤ→ Set where8 8

even+ : ∀ {n} → Evenℕ n→ Even (+ n)9 9

even-1+ : ∀ {n} → Evenℕ n → Even -[1+ ℕ.suc n ]10 10

–11 11

Odd : ℤ→ Set12 12

Odd = ¬_ ◦ Even13 13

Some properties about how even and odd behave when subtracting one:

prop : ∀ {n} → Evenℕ n → Oddℕ (ℕ.suc n)14 14

prop {.0} even0 = � ()15 15

prop {.(ℕ.suc (ℕ.suc _))} (evenss p) (evenss q) = prop p q16 16

–17 17

-1change : ∀ {z} → Even z → Odd (- 1ℤ + z)18 18

-1change {+[1+ .(ℕ.suc _) ]} (even+ (evenss x)) (even+ x1) = prop x x119 19

-1change { -[1+_] .(ℕ.suc _)} (even-1+ x) (even-1+ x1) = prop x x120 20

–21 21

1-change : ∀ {z} → Odd z → Even (- 1ℤ + z)22 22

1-change {+_ zero} p = ⊥-elim (p (even+ even0))23 23

1-change {+[1+ zero ]} p = even+ even024 24

1-change {+[1+ ℕ.suc zero ]} p = ⊥-elim (p (even+ (evenss even0)))25 25

1-change {+[1+ ℕ.suc (ℕ.suc n) ]} p26 26

with 1-change {+[1+ n ]} � {(even+ x) → p (even+ (evenss x))}27 27

1-change {+[1+ ℕ.suc (ℕ.suc n) ]} p | even+ x = even+ (evenss x)28 28

1-change { -[1+_] zero} p = even-1+ even029 29

1-change { -[1+_] (ℕ.suc zero)} p = ⊥-elim (p (even-1+ even0))30 30

1-change { -[1+_] (ℕ.suc (ℕ.suc n))} p31 31

with 1-change { -[1+ n ]} � {(even-1+ x) → p (even-1+ (evenss x))}32 32

1-change { -[1+_] (ℕ.suc (ℕ.suc n))} p | even-1+ x = even-1+ (evenss x)33 33

–34 34

change-1 : ∀ {z} → Odd (- 1ℤ + z) → Even z35 35

change-1 {+_ zero} _ = even+ even036 36

change-1 {+[1+ zero ]} x = ⊥-elim (x (even+ even0))37 37
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change-1 {+[1+ ℕ.suc zero ]} x = even+ (evenss even0)38 38

change-1 {+[1+ ℕ.suc (ℕ.suc n) ]} x39 39

with change-1 {+[1+ n ]} � {(even+ y) → x (even+ (evenss y))}40 40

change-1 {+[1+ ℕ.suc (ℕ.suc n) ]} x | even+ x1 = even+ (evenss x1)41 41

change-1 { -[1+_] zero} x = ⊥-elim (x (even-1+ even0))42 42

change-1 { -[1+_] (ℕ.suc zero)} x = even-1+ even043 43

change-1 { -[1+_] (ℕ.suc (ℕ.suc n))} x44 44

with change-1 { -[1+ n ]} � {(even-1+ y) → x (even-1+ (evenss y))}45 45

change-1 { -[1+_] (ℕ.suc (ℕ.suc .(ℕ.suc _)))} x46 46

| even-1+ x1 = even-1+ (evenss x1)47 47

Definition of the even and odd clocks:

evenClock : Clock48 48

evenClock = Even ⧖ � {(x , _) (y , _) → <-cmp x y}49 49

–50 50

oddClock : Clock51 51

oddClock = Odd ⧖ � {(x , _) (y , _) → <-cmp x y}52 52

Proof that both clocks precede the other when subtracting one to their instants:

e≺≺o : evenClock ≺≺ oddClock53 53

e≺≺o = record { h = � {(z , o) → (- 1ℤ + z , 1-change o)}54 54

; congruent = � {refl → refl}55 55

; precedes = x-1<x ◦ proj156 56

; preserves = preserves057 57

; dense = � { {i , oi} {j , oj} {p , op} x y → case dense0 {p} {i} {j} x y58 58

of � {(z , refl) → (z , (flip -1change) op) , refl}}}59 59

–60 60

o≺≺e : oddClock ≺≺ evenClock61 61

o≺≺e = record { h = � {(z , o) → (- 1ℤ + z , -1change o)}62 62

; congruent = � {refl → refl}63 63

; precedes = x-1<x ◦ proj164 64

; preserves = preserves065 65

; dense = � { {i , oi} {j , oj} {p , op} x y → case dense0 {p} {i} {j} x y66 66

of � {(z , refl) → (z , change-1 op) , refl}}}67 67

Proof that these clocks are not equal, even though they both precede the other:

¬e∼o : ¬ evenClock ∽ oddClock68 68

¬e∼o (e⊑o , o⊑e) with e⊑o (0ℤ , even+ even0)69 69

¬e∼o (e⊑o , o⊑e) | (.+0 , odd0) , refl = odd0 (even+ even0)70 70
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A.4.6 Antisymmetry of the strict precedence towards the equality

Step 1: Definition of the new clock type:

record WFClock : Set1 where1 1

field clock : Clock ; wf-≺ : WellFounded (_≺’_ {P = Ticks clock})2 2

Step 2: Definition of the extended relations.

_∽o_ : Rel WFClock _3 3

_∽o_ = _∽_ on clock4 4

_≼≼o_ : Rel WFClock _5 5

_≼≼o_ = _≼≼_ on clock6 6

Step 7: Proofs of lemmas needed for the step property:

i≈hi : ∀ {c1 c2} (1≼2 : c1 ≼≼o c2) (2≼1 : c2 ≼≼o c1) i →7 7

i ≈’ ((h 1≼2) ◦ (h 2≼1)) i → i ≈’ h 2≼1 i8 8

i≈hi 1≼2 2≼1 i p with precedes 2≼1 i9 9

i≈hi 1≼2 2≼1 i p | inj1 x = sym≈ x10 10

i≈hi {c1} {c2} 1≼2 2≼1 i p | inj2 y =11 11

⊥-elim ((≺→¬≈ (inj2 (trans≼≺ (precedes 1≼2 (h 2≼1 i)) y))) p)12 12

–13 13

auxi≈h1hi : ∀ {c1 c2} (1≼2 : c1 ≼≼o c2) (2≼1 : c2 ≼≼o c1) i →14 14

({x : ∃ (Ticks (clock c1))} → x ≺’ i → x ≈’ (h 1≼2 (h 2≼1 x))) →15 15

(h 1≼2 (h 2≼1 i)) ≺’ i → i ≈’ (h 1≼2 (h 2≼1 i))16 16

auxi≈h1hi {c1} {c2} 1≼2 2≼1 i p h1hi≺i = let h , h1 = h 2≼1 , h 1≼2 in17 17

let h1hi≈h1hh1hi = p {(h1 ◦ h) i} h1hi≺i in18 18

let h1hi≈hh1hi = i≈hi {c1} {c2} 1≼2 2≼1 ((h1 ◦ h) i) h1hi≈h1hh1hi in19 19

let hh1hi≺hi = preserves 2≼1 {(h1 ◦ h) i} {i} h1hi≺i in20 20

let h1hh1hi≺h1hi = preserves 1≼2 {(h ◦ h1 ◦ h) i} {h i} hh1hi≺hi in21 21

⊥-elim (≼→¬≺ (inj1 h1hi≈h1hh1hi) h1hh1hi≺h1hi)22 22

Step 5: The step property, which ensures the heredity of the recursion:

step : ∀ {c1 c2} (1≼2 : c1 ≼≼o c2) (2≼1 : c2 ≼≼o c1) i → (∀ {x} →23 23

x ≺’ i→ x ≈’ ((h 1≼2) ◦ (h 2≼1)) x) → i ≈’ ((h 1≼2) ◦ (h 2≼1)) i24 24

step 1≼2 2≼1 i p with precedes 2≼1 i | precedes 1≼2 (h 2≼1 i)25 25

step 1≼2 2≼1 i p | inj1 x | inj1 y = sym≈ (trans≈ y x)26 26

step {c1} {c2} 1≼2 2≼1 i p | inj1 hi≈i | inj2 h1hi≺hi =27 27

auxi≈h1hi {c1} {c2} 1≼2 2≼1 i p (trans≺≼ h1hi≺hi (inj1 hi≈i))28 28

step {c1} {c2} 1≼2 2≼1 i p | inj2 hi≺i | inj1 h1hi≈hi =29 29

auxi≈h1hi {c1} {c2} 1≼2 2≼1 i p (trans≼≺ (inj1 h1hi≈hi) hi≺i)30 30

step {c1} {c2} 1≼2 2≼1 i p | inj2 hi≺i | inj2 h1hi≺hi =31 31

auxi≈h1hi {c1} {c2} 1≼2 2≼1 i p (trans≺ h1hi≺hi hi≺i)32 32
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Steps 3 and 6: The predicate which implies the antisymmetry and which is
proven by recurring over the ticks of the clock:

i≈h1◦hi : ∀ {c1 c2} (1≼2 : c1 ≼≼o c2) (2≼1 : c2 ≼≼o c1) i →33 33

i ≈’ ((h 1≼2) ◦ (h 2≼1)) i34 34

i≈h1◦hi {c1} {c2} 1≼2 2≼1 i = let open All (wf-≺ c1) in35 35

wfRec _ (� j→ j ≈’ ((h 1≼2) ◦ (h 2≼1)) j)36 36

(� i ri → step {c1} {c2} 1≼2 2≼1 i (ri _)) i37 37

Steps 4 and 8: Proof that the previous predicate implies the antisymmetry:

≼≼-antisym-∽ : Antisymmetric _∽o_ _≼≼o_38 38

≼≼-antisym-∽ {c1} {c2} 1≼2 2≼1 =39 39

(� i→ h 2≼1 i , i≈hi {c1} {c2} 1≼2 2≼1 i (i≈h1◦hi {c1} {c2} 1≼2 2≼1 i)) ,40 40

� i→ h 1≼2 i , i≈hi {c2} {c1} 2≼1 1≼2 i (i≈h1◦hi {c2} {c1} 2≼1 1≼2 i)41 41

A.4.7 Non empty decidable clocks on natural numbers

The precedent function, which gives back an instant preceding a given instant,
or a proof this is the initial instant:

precedent : ∀ {l} {P : Pred ℕ l} → Decidable P → (j : ∃ P) →1 1

(∀ {x} → x < proj1 j→ ¬ P x) ⊎ ∃ \(i : ∃ P)2 2

→ proj1 i < proj1 j × (∀ {x} → proj1 i < x → x < proj1 j → ¬ P x)3 3

precedent _ (zero , _) = inj1 \()4 4

precedent dp (suc j , tj) = aux dp j (suc j) tj (n<1+n _)5 5

� j<x→ ⊥-elim ◦ (<-irrefl {suc j} refl) ◦ (<-transr j<x) where6 6

aux : ∀ {l} {P : Pred ℕ l} (dp : Decidable P)7 7

(i j : ℕ) (pc : P j) (i<j : i < j) →8 8

(∀ {x} → i < x → x < j→ ¬ P x)9 9

→ (∀ {x} → x < j→ ¬ P x) ⊎10 10

∃ \(k : ∃ P) → proj1 k < j ×11 11

(∀ {x} → proj1 k < x → x < j → ¬ P x)12 12

aux dp i j pc i≺j p with dp i13 13

aux dp zero j pc i≺j p | no ¬p = inj1 � {14 14

{zero} x<j tx → ⊥-elim (¬p tx) ;15 15

{suc _} x<j tx→ p (s≤s z≤n) x<j tx}16 16

aux dp (suc i) j pc i≺j p | no ¬p =17 17

aux dp i j pc (<-trans (n<1+n i) i≺j)18 18

� i<x x<j tx→ case m≤n⇒m<n∨m≡n i<x of19 19

� {(inj1 si<x) → p si<x x<j tx ; (inj2 refl) → ¬p tx}20 20

aux dp i j pc i≺j p | yes p1 = inj2 ((i , p1) , i≺j , p)21 21
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Proof that the precedence over the ticks is wellfounded. This proof uses the
fact that the strict precedence over natural numbers is itself well-founded and also
forms a total order with the propositional equality:

wf-<P : ∀ {l} {P : Pred ℕ l} → Decidable P22 22

→ WellFounded {A = ∃ P} (_<_ on proj1)23 23

wf-<P {P = P} dec x = aux x (<-wellFounded (proj1 x))24 24

where25 25

aux : ∀ (i : ∃ P) → Acc _<_ (proj1 i) → Acc (_<_ on proj1) i26 26

aux i ai with precedent dec i27 27

aux i ai | inj1 p = acc (� j j≺i → ⊥-elim (p j≺i (proj2 j)))28 28

aux i (acc q) | inj2 (j , j≺i , p) with aux j (q _ j≺i)29 29

aux i ai | inj2 (j , j≺i , p) | acc rs =30 30

acc � y y≺i→ case <-cmp (proj1 j) (proj1 y) of � {31 31

(tri< a _ _) → ⊥-elim ((p a y≺i) (proj2 y)) ;32 32

(tri≈ _ refl _) → acc rs ;33 33

(tri> _ _ c) → rs y c}34 34

Proof that there exists an initial tick if the clock ticks at least once. This is
done by iterating over the precedent instants, starting from the existing tick of the
clock, until a tick that precedes all the others is found. This tick exists because the
precedence over the ticks is well-founded so there are no infinite descending chains:

initial : ∀ {l} {P : Pred ℕ l} → Decidable P35 35

→ ∃ P → ∃ � (x : ∃ P) → ∀ (y : ∃ P) → proj1 x ≤ proj1 y36 36

initial {P = P} dec p = aux p (<-wellFounded _)37 37

where38 38

aux : (i : ∃ P) → Acc _<_ (proj1 i) →39 39

∃ � (x : ∃ P) → ∀ (y : ∃ P) → proj1 x ≤ proj1 y40 40

aux i (acc p) with precedent dec i41 41

aux i (acc p) | inj1 x = i , � y →42 42

case <-cmp (proj1 i) (proj1 y) of � {43 43

(tri< a _ _) → <⇒≤ a ;44 44

(tri≈ _ refl _) → ≤-refl ;45 45

(tri> _ _ c) → ⊥-elim (x c (proj2 y))}46 46

aux i (acc p) | inj2 (y , z , _) = aux y (p _ z)47 47

Instantiation of CCSL on natural numbers using the strict precedence:

open import CCSL48 48

(record {49 49

isStrictPartialOrder = <-isStrictPartialOrder })50 50

open Clock51 51
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Definition of non-empty decidable clocks, after which they can be transformed
to either InitialClock or WfClock:

record Clock-¬∅-Dec : Set1 where52 52

field53 53

clock : Clock54 54

non-empty : ∃ (Ticks clock)55 55

decidable : Decidable (Ticks clock)56 56

–57 57

wf-≺ : _58 58

wf-≺ = wf-<P decidable59 59

–60 60

birth : _61 61

birth = let (i , p) = initial decidable non-empty in62 62

i , swap⊎ ◦ m≤n⇒m<n∨m≡n ◦ p63 63

–64 64

toWf : WFClock65 65

toWf = record { clock = clock ; wf-≺ = wf-≺ }66 66

–67 67

toIn : InitialClock68 68

toIn = record { clock = clock ; first = birth }69 69

A.4.8 Lattice from union and intersection
Proof that our lattice specification indeed implies the existence of a lattice:

specToLattice
⋃⋂

{_∧_} {_∨_}1 1

record { inter∧ = inter∧ ; union∨ = union∨ } =2 2

record {3 3

isPartialOrder = isPartialOrder∽⊑ ;4 4

supremum = � c1 c2 →5 5

subUnionr {c1 ∨ c2} {c2} {c1} union∨ ,6 6

subUnionl {c1 ∨ c2} {c2} {c1} union∨ ,7 7

� c0 c1⊑c0 c2⊑c0 →8 8

⊑⊑→⊑
⋃

{c0} {c1 ∨ c2} {c2} {c1} c2⊑c0 c1⊑c0 union∨ ;9 9

infimum = � c1 c2 →10 10

subInterl {c1 ∧ c2} {c1} {c2} inter∧ ,11 11

subInterr {c1 ∧ c2} {c1} {c2} inter∧ ,12 12

� c0 c0⊑c1 c0⊑c2 →13 13

⊑⊑→⊑
⋂

{c0} {c1 ∧ c2} {c1} {c2} c0⊑c1 c0⊑c2 inter∧ }14 14
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A.5 On refinement and CCSL

A.5.1 A binding operator to ease refinement proofs

An operator to apply a function to each side of a relation, used in the definition
of the instants as well as the refinement applied to CCSL:

_-J_K-_ : ∀ {a b c d e}1 1

{A : Set a} {B : Set b} {C : Set c} {D : Set d} {E : Set e}2 2

→ (A → B) → (B → D → E) → (C → D) → (A → C→ E)3 3

f -J _*_ K- g = (� x _ → f x) -[ _*_ ]- � _ z → g z4 4

–5 5

infix 20 _-J_K-_6 6

A binding operator used the same way a monadic binding would be with the
addition of a proof of preservation as the inner parameter:

_>[_]>_ : ∀ {l} {I : Set} {P P’ Q : Pred I l}7 7

{R : Rel I l}8 8

(v : ∃ � (j : ∃ P) → (Q ◦ proj1) j)9 9

(p : ∀ {j k} → Q j→ R k j → Q k)10 10

(h : ∀ (x : ∃ P) → ∃ � (y : ∃ P’) → R (proj1 y) (proj1 x)) →11 11

∃ � (j : ∃ P’) → (Q ◦ proj1) j12 12

_>[_]>_ (v , Qv) p h with h v13 13

_>[_]>_ (v , Qv) p h | w , Rwv = w , p Qv Rwv14 14

–15 15

infixl 5 _>[_]>_16 16

A.5.2 From unique existence to existence

If a value satisfies P and Q then it satisfies P:

∃P×Q→∃P : ∀ {a b c} {A : Set a} {P : Pred A b} {Q : A → Set c}1 1

→ ∃ (P ∩ Q) → ∃ P2 2

∃P×Q→∃P (v , Pv , _) = v , Pv3 3

Unique existence can thus be transformed into simple existence:

∃!→∃ : ∀ {a b l} {A : Set a} {P : A → Set b} {_≈_}4 4

→ ∃! {l = l} _≈_ P→ ∃ P5 5

∃!→∃ = ∃P×Q→∃P6 6
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A.5.3 Embodiment of strict precedence

≺≺2→≺≺1 (p , _) (_ , q1) prec .h = proj1 ◦ p ◦ h prec ◦ proj1 ◦ q11 1

≺≺2→≺≺1 {c11} {_} {c21} (p , q) (_ , q1) prec .congruent {i} {j} i≈1j2 2

with q1 i | q1 j ; ... | i1 , i1≈2i | j1 , j1≈2j with p (h prec i1) | p (h prec j1)3 3

... | i3 , i3≈2i2 , _ | j3 , j3≈2j2 , _ with ≈1→2 refines i≈1j4 4

... | i≈2j with 2.trans≈ (2.trans≈ i1≈2i i≈2j) (2.sym≈ j1≈2j)5 5

... | i1≈2j1 with congruent prec {i1} {j1} i1≈2j16 6

... | i2≈2j2 with 2.trans≈ i3≈2i2 (2.trans≈ i2≈2j2 (2.sym≈ j3≈2j2))7 7

... | i3≈2j3 = ≲1−1→≈2→1 {c11} {c21} (p , q) {i3} {j3} i3≈2j38 8

≺≺2→≺≺1 (p , _) (_ , q1) prec .precedes i with q1 i9 9

... | j , j≈2i with p (h prec j)10 10

... | _ , k≈2hj , _ with precedes prec j11 11

... | hj≺2j with 2.≺≈≈→≺ hj≺2j (2.sym≈ k≈2hj) j≈2i12 12

... | k≺2i = ≺2→1 refines k≺2i13 13

≺≺2→≺≺1 {_} {c12} {_} {c22} _ q _ .preserves {i} {j} i≺1j14 14

with ≲1−1→≺1→2 {c12} {c22} q {i} {j} i≺1j15 15

≺≺2→≺≺1 (p , _) (_ , q1) prec .preserves {i} {j} _ | i≺2j with q1 i | q1 j16 16

... | i1 , i1≈i | j1 , j1≈j with p (h prec i1) | p (h prec j1)17 17

... | _ , i3≈2i2 , _ | _ , j3≈2j2 , _18 18

with 2.≺≈≈→≺ i≺2j (2.sym≈ i1≈i) (2.sym≈ j1≈j)19 19

... | i1≺2j1 with preserves prec {i1} {j1} i1≺2j120 20

... | i2≺2j2 with 2.≺≈≈→≺ i2≺2j2 (2.sym≈ i3≈2i2) (2.sym≈ j3≈2j2)21 21

... | i3≺2j3 = ≺2→1 refines i3≺2j322 22

≺≺2→≺≺1 {c11} {c12} {c21} {c22} (p , q) (p1 , q1) prec .dense23 23

{i0} {j0} {k3} i3≺1k3 k3≺1j3 with q1 i0 | q1 j0 | q k324 24

... | i1 , i1≈2i | j1 , j1≈2j | k2 , k2≈2k325 25

with p (h prec i1) | p (h prec j1)26 26

... | i3 , i3≈2i2 , _ | j3 , j3≈2j2 , _27 27

with ≲1−1→≺1→2 {c11} {c21} (p , q) {i3} {k3} i3≺1k328 28

... | i3≺2k3 with ≲1−1→≺1→2 {c11} {c21} (p , q) {k3} {j3} k3≺1j329 29

... | k3≺2j3 with 2.≺≈≈→≺ i3≺2k3 i3≈2i2 (2.sym≈ k2≈2k3)30 30

... | i2≺2k2 with 2.≺≈≈→≺ k3≺2j3 (2.sym≈ k2≈2k3) j3≈2j231 31

... | k2≺2j2 with dense prec {i1} {j1} {k2} i2≺2k2 k2≺2j232 32

... | k1 , hk1≈2k2 with p1 k133 33

... | k0 , k0≈2k1 , _ with 2.trans≈ (proj2 (q1 k0)) k0≈2k134 34

... | qk0≈2k1 with congruent prec {proj1 (q1 k0)} {k1} qk0≈2k135 35

... | hqk0≈2hk1 with 2.trans≈ (2.trans≈ hqk0≈2hk1 hk1≈2k2) k2≈2k336 36

... | hqk0≈2k3 with 2.trans≈37 37

(proj1 (proj2 (p (h prec (proj1 (q1 k0)))))) hqk0≈2k338 38

... | phqk0≈2k3 = k0 , ≲1−1→≈2→1 {c11} {c21} (p , q)39 39

{proj1 (p (h prec (proj1 (q1 k0))))} {k3} phqk0≈2k340 40
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A.5.4 Abstraction of precedence

prec1→≼≼2 _ (p , q) (p1 , q1) prec .h = proj1 ◦ q ◦ h prec ◦ proj1 ◦ p11 1

prec1→≼≼2 {_} {c12} {_} {c22} _ (p , q) (p1 , q1) prec .congruent2 2

{i0} {j0} i0≈2j0 with p1 i0 | p1 j03 3

... | i1 , i1≈2i0 , _ | j1 , j1≈2j0 , _ with q (h prec i1) | q (h prec j1)4 4

... | i3 , i3≈2hi1 | j3 , j2≈2hj15 5

with 2.trans≈ i1≈2i0 (2.trans≈ i0≈2j0 (2.sym≈ j1≈2j0))6 6

... | i1≈2j1 with ≲1−1→≈2→1 {c12} {c22} (p1 , q1) {i1} {j1} i1≈2j17 7

... | i1≈1j1 with ≈1→2 refines (congruent prec {i1} {j1} i1≈1j1)8 8

... | hi1≈2hj1 = 2.trans≈ i3≈2hi1 (2.trans≈ hi1≈2hj1 (2.sym≈ j2≈2hj1))9 9

prec1→≼≼2 R⇒≼1 (p , q) (p1 , q1) prec .precedes i0 with p1 i010 10

... | i1 , i1≈2i0 , _ with precedes prec i111 11

... | hi1Ri1 with ≼1→2 (R⇒≼1 hi1Ri1)12 12

... | hi1≼2i1 with q (h prec i1)13 13

... | i3 , i3≈2hi1 = 2.trans≼ (inj1 i3≈2hi1) (2.trans≼ hi1≼2i1 (inj1 i1≈2i0))14 14

prec1→≼≼2 {c11} {_} {c21} _ (p , q) (p1 , q1) prec .preserves15 15

{i0} {j0} i0≺2j0 with p1 i0 | p1 j016 16

... | i1 , i1≈2i0 , _ | j1 , j1≈2j0 , _ with q (h prec i1) | q (h prec j1)17 17

... | i3 , i3≈2hi1 | j3 , j2≈2hj118 18

with 2.≺≈≈→≺ i0≺2j0 (2.sym≈ i1≈2i0) (2.sym≈ j1≈2j0)19 19

... | i1≺2j1 with ≺2→1 refines i1≺2j120 20

... | i1≺1j1 with preserves prec {i1} {j1} i1≺1j121 21

... | hi1≺1hj1 with22 22

≲1−1→≺1→2 {c11} {c21} (p , q) {h prec i1} {h prec j1} hi1≺1hj123 23

... | hi1≺2hj1 = 2.≺≈≈→≺ hi1≺2hj1 (2.sym≈ i3≈2hi1) (2.sym≈ j2≈2hj1)24 24

prec1→≼≼2 {_} {c12} {_} {c22} _ (p , q) (p1 , q1) prec .dense25 25

{i0} {j0} {k3} i3≺2k3 k3≺2j3 with p1 i0 | p1 j0 | p k326 26

... | i1 , i1≈2i0 , _ | j1 , j1≈2j0 , _ | k2 , k2≈2k3 , _27 27

with q (h prec i1) | q (h prec j1)28 28

... | i3 , i3≈2i2 | j3 , j3≈2j229 29

with ≺2→1 refines (2.≺≈≈→≺ i3≺2k3 i3≈2i2 (2.sym≈ k2≈2k3))30 30

... | i2≺1k2 with ≺2→1 refines (2.≺≈≈→≺ k3≺2j3 (2.sym≈ k2≈2k3) j3≈2j2)31 31

... | k2≺1j2 with dense prec {i1} {j1} {k2} i2≺1k2 k2≺1j232 32

... | k1 , hk1≈1k2 with q1 k133 33

... | k0 , k0≈2k1 with 2.trans≈ (proj1 (proj2 (p1 k0))) k0≈2k134 34

... | pk0≈2k135 35

with ≲1−1→≈2→1 {c12} {c22} (p1 , q1) {proj1 (p1 k0)} {k1} pk0≈2k136 36

... | pk0≈1k1 with congruent prec {proj1 (p1 k0)} {k1} pk0≈1k137 37

... | hpk0≈1hk1 with 2.trans≈ (2.trans≈ (≈1→2 refines hpk0≈1hk1)38 38

(≈1→2 refines hk1≈1k2)) k2≈2k339 39

... | hpk0≈2k3 = k0 , 2.trans≈ (proj2 (q (h prec (proj1 (p1 k0))))) hpk0≈2k340 40
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