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Résumé

La factorisation en matrices non-négatives (NMF, de l’anglais non-negative matrix fac-
torization) est aujourd’hui l’une des techniques de réduction de la dimensionnalité les plus
répandues, dont les domaines d’application recouvrent le traitement du signal audio, l’image-
rie hyperspectrale, ou encore les systèmes de recommandation. Sous sa forme la plus simple,
la NMF a pour but de trouver une approximation d’une matrice des données non-négative
(c’est-à-dire à coefficients positifs ou nuls) par le produit de deux matrices non-négatives,
appelées les facteurs. L’une de ces matrices peut être interprétée comme un dictionnaire
de motifs caractéristiques des données, et l’autre comme les coefficients d’activation de ces
motifs. La recherche de cette approximation de rang faible s’effectue généralement en opti-
misant une mesure de similarité entre la matrice des données et son approximation. Il s’avère
que pour de nombreux choix de mesures de similarité, ce problème est équivalent à l’esti-
mation jointe des facteurs au sens du maximum de vraisemblance sous un certain modèle
probabiliste décrivant les données. Cela nous amène à considérer un paradigme alternatif
pour la NMF, dans lequel les taches d’apprentissage se portent sur des modèles probabi-
listes dont la densité d’observation est paramétrisée par le produit des facteurs non-négatifs.
Ce cadre général, que nous appelons NMF probabiliste, inclut de nombreux modèles à va-
riables latentes bien connus de la littérature, tels que certains modèles pour des données de
comptage.
Dans cette thèse, nous nous intéressons à des modèles de NMF probabilistes particuliers

pour lesquels on suppose une distribution a priori pour les coefficients d’activation, mais pas
pour le dictionnaire, qui reste un paramètre déterministe. L’objectif est alors de maximi-
ser la vraisemblance marginale de ces modèles semi-bayésiens, c’est-à-dire la vraisemblance
jointe intégrée par rapport aux coefficients d’activation. Cela revient à n’apprendre que le
dictionnaire, les coefficients d’activation pouvant être inférés dans un second temps si néces-
saire. Nous entreprenons d’approfondir l’étude de ce processus d’estimation. En particulier,
deux scénarios sont envisagées. Dans le premier, nous supposons l’indépendance des coeffi-
cients d’activation par échantillon. Des résultats expérimentaux antérieurs ont montré que
les dictionnaires appris via cette approche avaient tendance à régulariser de manière auto-
matique le nombre de composantes ; une propriété avantageuse qui n’avait pas été expliquée
alors. Dans le second, nous levons cette hypothèse habituelle, et considérons des structures
de Markov, introduisant ainsi de la corrélation au sein du modèle, en vue d’analyser des
séries temporelles.
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Abstract

Non-negative matrix factorization (NMF) has become a popular dimensionality reduction
technique, and has found applications in many different fields, such as audio signal process-
ing, hyperspectral imaging, or recommender systems. In its simplest form, NMF aims at
finding an approximation of a non-negative data matrix (i.e., with non-negative entries) as
the product of two non-negative matrices, called the factors. One of these two matrices
can be interpreted as a dictionary of characteristic patterns of the data, and the other one
as activation coefficients of these patterns. This low-rank approximation is traditionally
retrieved by optimizing a measure of fit between the data matrix and its approximation. As
it turns out, for many choices of measures of fit, the problem can be shown to be equivalent
to the joint maximum likelihood estimation of the factors under a certain statistical model
describing the data. This leads us to an alternative paradigm for NMF, where the learning
task revolves around probabilistic models whose observation density is parametrized by the
product of non-negative factors. This general framework, coined probabilistic NMF, encom-
passes many well-known latent variable models of the literature, such as models for count
data.
In this thesis, we consider specific probabilistic NMF models in which a prior distribution

is assumed on the activation coefficients, but the dictionary remains a deterministic variable.
The objective is then to maximize the marginal likelihood in these semi-Bayesian NMF
models, i.e., the integrated joint likelihood over the activation coefficients. This amounts to
learning the dictionary only; the activation coefficients may be inferred in a second step if
necessary. We proceed to study in greater depth the properties of this estimation process.
In particular, two scenarios are considered. In the first one, we assume the independence of
the activation coefficients sample-wise. Previous experimental work showed that dictionaries
learned with this approach exhibited a tendency to automatically regularize the number of
components, a favorable property which was left unexplained. In the second one, we lift this
standard assumption, and consider instead Markov structures to add statistical correlation
to the model, in order to better analyze temporal data.
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Usual Probability Distributions

We here introduce the usual probability distributions used in this thesis. Specific, lesser-
known distributions that arise in the course of a chapter are defined in the associated
appendix to that chapter.

Discrete univariate distributions

Bernoulli distribution

The probability mass function (p.m.f.) of a Bernoulli random variable X, parametrized
by a probability parameter p ∈ [0, 1], is such that:

P(X = 1; p) = p, P(X = 0; p) = 1− p. (0.1)

We write X ∼ Bernoulli(p). The p.m.f. may alternatively be written as, for k ∈ {0, 1}:

P(X = k; p) = pk(1− p)1−k. (0.2)

We have
E(X) = p, var(X) = p(1− p). (0.3)

Poisson distribution

The p.m.f. of a Poisson random variable X, parametrized with a rate parameter λ > 0,
is such that, for all c ∈ N:

P(X = c;λ) = λc

c! exp(−λ). (0.4)

We write X ∼ Poisson(λ).
We have

E(X) = λ, var(X) = λ. (0.5)
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Continuous univariate distributions

Normal distribution

The probability density function (p.d.f.) of a normal random variable X, parametrized
by a mean parameter µ ∈ R and a variance parameter σ2 > 0, is such that, for all x ∈ R:

f(x;µ, σ2) = 1√
2πσ2

exp
(
−(x− µ)2

2σ2

)
. (0.6)

We write X ∼ N (µ, σ2).
We have

E(X) = µ, var(X) = σ2. (0.7)

Gamma distribution

The p.d.f. of a Gamma random variable X, parametrized by a shape parameter α > 0
and a rate parameter β > 0, is such that, for all x > 0:

f(x;α, β) = βα

Γ(α)x
α−1 exp(−βx). (0.8)

We write X ∼ Gamma(α, β). Γ is the Gamma function, defined as, for all z > 0:

Γ(z) =
∫ +∞

0
tz−1 exp(−t)dt. (0.9)

We have
E(X) = α

β
, var(X) = α

β2 . (0.10)

When α = 1, the Gamma distribution reduces to the exponential distribution, whose
p.d.f. is therefore, for all x > 0:

f(x;β) = 1
β

exp(−βx). (0.11)

Inverse Gamma distribution

Let X be a Gamma random variable with shape parameter α and rate parameter β. Then
Y = 1

X follows an inverse Gamma distribution. For all x > 0, its p.d.f. is given by:

f(x;α, β) = βα

Γ(α)

(1
x

)α+1
exp

(
−β
x

)
. (0.12)

Note that β is a scale parameter of the distribution. We write X ∼ IG(α, β).
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We have

E(X) = β

α− 1 for α > 1, undefined otherwise, (0.13)

var(X) = β2

(α− 1)2(α− 2) for α > 2, undefined otherwise. (0.14)

Beta distribution

The p.d.f. of a Beta random variable X, parametrized by a two shape parameters α > 0
and β > 0, is such that, for all x ∈ [0, 1]:

f(x;α, β) = xα−1(1− x)β−1

B(α, β) . (0.15)

We write X ∼ Beta(α, β). B is the Beta function, defined as, for all x > 0, y > 0:

B(x, y) = Γ(x)Γ(y)
Γ(x+ y) . (0.16)

We have
E(X) = α

α+ β
, var(X) = αβ

(α+ β)2(α+ β + 1) . (0.17)

Multivariate distributions

Multinomial distribution

The p.m.f. of a multinomial random vector X = (X1, . . . , XK) is parametrized by n ∈ N?
(the number of trials), and p = [p1, . . . , pK ]T such that 0 ≤ pi ≤ 1 and ∑i pi = 1 (the event
probabilities). We have, for all (x1, . . . , xK) ∈ {0, . . . , n}K such that ∑i xi = n:

P(X1 = x1, . . . , XK = xK ;n,p) = n!
x1! · · ·xK !

K∏
i=1

pxii . (0.18)

We write X ∼ Mult(n,p).
We have

E(Xi) = npi, var(Xi) = npi(1− pi). (0.19)

Dirichlet distribution

The p.d.f. of a Dirichlet random vector X = (X1, . . . , XK), parametrized by α =
[α1, . . . , αK ]T with αi > 0, is such that, for all (x1, . . . , xK) ∈ [0, 1]K such that ∑i xi = 1:

f(x1, . . . , xK ; α) =
∏K
i=1 Γ(αi)

Γ
(∑K

i=1 αi
) K∏
i=1

xαi−1
i . (0.20)
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We write X ∼ Dir(α).
We have

E(Xi) = αi∑K
i=1 αi

= α̃i, var(Xi) = α̃i(1− α̃i)∑K
i=1 αi + 1

. (0.21)
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Chapter 1

Introduction

This chapter introduces the general concept of matrix factorization, before focusing
on the specific problem of non-negative matrix factorization and its probabilistic
variants.
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Chapter 1 Introduction

1.1 Matrix factorization

1.1.1 General introduction

In many situations, data is available in matrix form. Indeed, consider a collection of
N samples vn (n ∈ {1, . . . , N}) belonging to RF (i.e., described by F real features or
attributes). These samples can be stored column-wise, yielding an F ×N matrix, which we
denote by V. The matrix V is referred to as the observation matrix, or the data matrix.
Several examples of such matrices are given in Table 1.1.

V represents f n Typical F
A corpus of documents Words Documents 104 − 105

A collection of grayscale images Pixels Images 104 − 106

An audio signal Frequencies Time frames 103 − 104

Ratings Items Users 106 − 108

Table 1.1: Typical examples of data available as matrices.

Generally speaking, matrix factorization (MF) techniques aim at finding an approxima-
tion of V as the product of two matrices:

V 'WH, (1.1)

where W is of size F×K, and H is of size K×N . They are jointly referred to as the factors.
The factorization rank K is usually chosen such that K � min(F,N), hence producing
a low-rank approximation of the data matrix V. In this case, matrix factorization is a
linear dimensionality reduction technique, since every sample is approximated by a linear
combination of K basis elements:

vn '
K∑
k=1

hknwk. (1.2)

More specifically, the columns of W (sometimes called the atoms) represent characteristic
elements or recurring patterns of the data, and as such W is referred to as the dictionary, or
the basis matrix. As for the columns of H, they encode how much of each atom is needed to
represent each sample, and are referred to as the activation coefficients, or the score matrix.
An illustrative matrix factorization is displayed on Figure 1.1.
The choice of the factorization rank K is a challenging question. Most of the time, the

value of K is set beforehand. One has to consider the trade-off between loss of information
and computational efficiency. Moreover, in some settings, K has a physical meaning, such
as the number of sources when considering audio signal processing, which makes the choice
even more complex.
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V = W H

Figure 1.1: Illustrative matrix factorization. In this example, the observation matrix V can
be exactly factorized as WH with K = 3. The activation coefficients are binary,
with a black dot representing a one, and a white dot a zero.

The goals of matrix factorization techniques are therefore two-fold. Firstly, as previously
explained, the dimensionality of the problem is linearly reduced, i.e., the data is projected in
a low-dimensional subspace such that each sample is approximated as a linear combination
of atoms. Secondly, characteristic patterns are extracted from the data. Indeed, matrix
factorization methods automatically uncover some latent structure of the data. As such,
they are part of a much broader family of learning methods called unsupervised learning.
Two important questions arise at this point. First of all, we must define a way to quantify

the fit between V and its approximation WH, i.e., we must choose a certain loss function
D. The objective will be to minimize this function, hence casting matrix factorization as
an optimization problem. The problem can be stated as:

min
W,H

D(V|WH). (1.3)

We emphasize that the notation D(V|WH) is to be understood as a function of W and H.
Secondly, additional constraints might be added on the factors W and H for interpretability
reasons. Combinations of both elements (specific choices of a loss function and of constraints
on the factors) lead to a variety of well-known problems from the data mining, machine
learning, and signal processing communities. In particular, matrix factorization problems
have received a great deal of attention under the name “dictionary learning” (Olshausen
and Field, 1996), where it is assumed that the representation of vn over the dictionary
W, namely hn, should be sparse (see Mairal et al. (2010) and references therein). We will
present the most classical matrix factorization problem in the following subsection, before
focusing on the specific case of non-negative matrix factorization in Section 1.2.
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1.1.2 Principal component analysis

Principal component analysis (PCA) is probably the most well-known data analysis tech-
nique, whose origins can be dated to Pearson (1901) and Hotelling (1933). Basically, PCA
amounts to sequentially finding a set of K orthogonal vectors, called the principal com-
ponents, so that the variance of the projected data onto the subspace spanned by these
principal components is maximized. As it turns out, PCA can be cast as a matrix factor-
ization problem. Indeed, an equivalent formulation to this problem is

min
W,H

||V−WH||2F , s.t. WTW = IK , (1.4)

where the constraint ensures that W is an orthogonal matrix, and ||.||F denotes the Frobe-
nius matrix norm:

||V||F =
√∑

f,n

|vfn|2. (1.5)

This minimization problem can be solved exactly thanks to the singular value decompo-
sition (SVD), a factorization that exists for any real matrix. When dealing with an F ×N
matrix, as is the matrix V, the SVD writes as

V = ŨΣṼ, (1.6)

where
• Ũ ∈ RF×F is an orthogonal matrix (ŨTŨ = IF );
• Σ ∈ RF×N is a matrix whose diagonal entries are non-negative and sorted in decreasing
order (the so-called singular values σi), and zero elsewhere;
• Ṽ ∈ RN×N is an orthogonal matrix (ṼTṼ = IN ).

The Eckart-Young-Mirsky theorem states that the rank-K matrix M that minimizes
||V−M||2F is the truncated SVD of V, that is:

M =
K∑
k=1

σkũkṽT
k . (1.7)

Thus, the PCA problem of Eq. (1.4) is solved by choosing W to be the first K columns of
Ũ, and H to be the first K rows of ΣṼ.

1.2 Non-negative matrix factorization

1.2.1 Problem statement

A shortcoming of the aforementioned matrix factorization methods is that they produce
blind representations to the support of the data. However, naturally non-negative data
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arises in a wide variety of scenarios: physical measurements, counts of occurrences, pixel
intensities... As a matter of fact, all examples of data presented in Table 1.1 are non-
negative. How should the unconstrained principal components of PCA be interpreted in
this setting? This is where non-negative matrix factorization (NMF) steps in, by adding
non-negativity constraints on both factors to ensure interpretability.

We give a first formulation of the problem. Given a non-negative1 matrix V of size
F × N , NMF aims at finding the best rank-K approximation of V as the product of two
non-negative matrices W and H. Once again, the word “best” refers to the minimization
of a certain measure of fit D between V and its approximation WH:

min
W≥0, H≥0

D(V|WH), (1.8)

where the notation A ≥ 0 denotes the non-negativity of the entries of the matrix A. The
non-negativity constraints enable the following. First, the dictionary W lies in the same
space as the data, and each of its columns can therefore be directly interpreted as a charac-
teristic pattern of the data. Secondly, the non-negativity of H imposes constructive repre-
sentations only, that is, each sample vn is described as a weighted sum of the (non-negative)
columns of W. Subtractions are, by definition, unfeasible. This explains the ability of NMF
to produce part-based representations.

As with general MF techniques, K is usually chosen such that K � min(F,N)2. If K
was set to F or N , the NMF could be solved exactly with trivial solutions. When this is
not the case, one cannot expect NMF to produce an exact factorization, especially when
working with real data, and therefore the factorization remains an approximate one.
Early work on NMF was conducted by researchers in the field of chemometrics in the early

90s under the name “positive matrix factorization” (Paatero and Tapper, 1994; Paatero,
1997). However, the approach was really popularized by the seminal papers of Lee and Seung
(Lee and Seung, 1999, 2000), who coined its definitive name3, highlighted the part-based
representations (making connections with neurological processes), and proposed extremely
simple and efficient algorithms.
NMF has found a wide variety of application fields. We detail three illustrative examples.
• In audio signal processing, V is the amplitude spectrogram of an audio signal. Each
column of V corresponds to the squared module of the coefficients of the short-time
Fourier transform of the signal over F frequency bins. As such, in a an NMF de-
composition, W represents the spectra of K audio sources, and H the time frames
activations. This has notably been used for automatic music transcription (Smaragdis
and Brown, 2003), or blind source separation (Virtanen, 2007).

1We emphasize that the adjective “non-negative” is to be understood w.r.t. the entries of the matrix.
2Note that so-called overcomplete representations exist in dictionary learning (Lewicki and Sejnowski, 2000),
i.e., K > F , leading to non-unique basis decompositions.

3Perhaps the choice of the word “positive”, too ambiguous in a matrix context, prevented Paatero and its
colleagues to be recognized as the true pioneers of NMF.
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• In text information retrieval, V represents a corpus ofN documents under the so-called
bag-of-words representation. Given a vocabulary of F different words, the matrix entry
vfn is the occurrence count of word f in document n. In an NMF decomposition, W
represents the word distributions of K topics, and H the proportion of each topic in
a document (Xu et al., 2003; Shahnaz et al., 2006).
• In hyperspectral imaging, V represents an hyperspectral image. Each column of V

represents the pixel intensities of the image over a broad range of spectral bands
(i.e., not limited to the RGB bands). In an NMF decomposition, W represents the
spectral signature of materials (called the endmembers), and H represents the relative
proportions (called the abundances). This is referred to as hyperspectral unmixing
(Berry et al., 2007; Bioucas-Dias et al., 2012).

Other application fields include, to cite only a few: image processing (Li et al., 2001;
Guillamet et al., 2003), collaborative filtering (Zhang et al., 2006), computational biology
(Devarajan, 2008), or community detection (Wang et al., 2011).

1.2.2 Limitations

Despite all the benefits brought by NMF when analyzing non-negative data, several lim-
itations are to be discussed.

NMF is ill-posed

NMF is an inherently ill-posed problem, since there always is an infinite number of so-
lutions4. Indeed, consider (W?,H?) solution of the problem (1.8). If there exists invertible
square matrices Q ∈ RK×K such that:{

W?Q ≥ 0,
Q−1H? ≥ 0, (1.9)

then (W?Q, Q−1H?) is also a solution of the problem (1.8).
As it turns out, Q can always be chosen to be a monomial matrix, that is the product of a

permutation matrix and a diagonal matrix with positive entries (it is in fact an equivalence
if Q is constrained to be non-negative (Minc, 1988)). However, this is not a problem in
practice, since all the solutions are equivalent up to a scale and permutation indeterminacy
in this scenario. This can be fixed by adding additional regularization terms in the objective
function, e.g., on the scale of one of the factors.

The real problem arises when there exists non-monomial matrices Q such that the couple
(W?Q, Q−1H?) is also a solution of the problem (1.8). The two solutions then lead to

4When admitting the existence of at least one solution to the problem (1.8).
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completely different interpretations. Below is a simple illustrative example:1 0.5
2 0.5
2 1

[0 1 1
1 0 1

]
=

0.5 0.25
1.5 0
1 0.5

 1
3

[
1 4 5
4 4 8

]
. (1.10)

For more detailed considerations about uniqueness in NMF, the interested reader is re-
ferred to Donoho and Stodden (2003); Laurberg et al. (2008); Gillis (2012); Huang et al.
(2014).

NMF is non-convex

NMF as in Eq. (1.8) is not a convex problem w.r.t. both W and H. However, for certain
choices of cost functions, the problem will be convex w.r.t. one variable, when keeping the
other fixed. This gives the intuition behind most of the existing optimization algorithms to
solve the problem.

NMF is NP-hard

In the scenario where V can be exactly factorized as WH, NMF is NP-hard in general
(Vavasis, 2009). This is in contrast with algorithms retrieving the SVD of a matrix, which
have O(NF 2 +N3) complexity.

1.2.3 Choice of the divergence

In this subsection, we detail some of the different measures of fit that have been used in
the NMF literature. First of all, we assume the separability of the cost function w.r.t. F
and N , that is

D(V|WH) =
∑
f,n

d(vfn|[WH]fn), (1.11)

where d is a scalar divergence. The word divergence, commonly used in NMF, is to be un-
derstood as a mathematical object more general than a distance. In particular, a divergence
almost never enforces two of the three conditions necessary to define a distance, namely the
symmetry condition and the triangular inequality. Basically, a divergence must at least
respect the following conditions:
• d(x|y) ≥ 0,
• d(x|y) = 0⇔ x = y.

The seminal papers of Lee and Seung proposed the use of two different divergences, which
to this day remain very popular in NMF:
• The (squared) Euclidian distance

d(x|y) = (x− y)2. (1.12)
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Note that in this case D(V|WH) is equivalently the the squared Frobenius norm
||V−WH||2F .
• The (generalized) Kullback-Leibler (KL) divergence5

d(x|y) = x log
(
x

y

)
− x+ y. (1.13)

Several works have proposed alternative cost functions. Most of these works focus on
the study of a parametrized family of divergences. We mention the Kompass family of
divergences (Kompass, 2007), which interpolates between the KL divergence and the Eu-
clidian distance with a parameter between 0 and 1. The family of the α-divergences was
also considered (Cichocki et al., 2008), as well as the family of the β-divergences (Cichocki
and Amari, 2010; Févotte and Idier, 2011), where both α or β are real parameters.
Even broader families have been considered, based on generating functions. We mention

the well-known Bregman divergences (Sra and Dhillon, 2005), which can generate the β-
divergences, and the Csiszar divergences (Cichocki et al., 2006), which can generate the
α-divergences.
The links between all these families are recapped and further discussed in Appendix 1.A.

We will however focus on the special case of the β-divergences family, which has received a
particular attention in Févotte and Idier (2011).

The special case of the β-divergences family

The family of the β-divergences, parametrized by β ∈ R, can be defined as:

dβ(x|y) =


1

β(β−1)

(
xβ + (β − 1)yβ − βxyβ−1

)
if β ∈ R \ {0, 1},

x log
(
x
y

)
− x+ y if β = 1,

x
y − log

(
x
y

)
− 1 if β = 0.

(1.14)

This family takes as particular cases the Euclidian distance (β = 2), the KL divergence
(β = 1), as well as the Itakura-Saito divergence (β = 0), a divergence broadly used in audio
signal processing. Therefore, the β-divergences family continuously generalizes the most
commonly used divergences in NMF. Figure 1.2 displays the β-divergence for various values
of β.
An interesting property of the β-divergence is the following:

∀λ > 0, dβ(λx|λy) = λβdβ(x|y). (1.15)

Consequently, the largest values will have more importance in the cost function with β > 0,
whereas with β < 0, the smallest values will have more importance. The only scale-invariant

5Of course, the KL divergence does not represent a divergence between probability distributions in this
context, hence the word “generalized”.
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Figure 1.2: The family of the β-divergences. Each curve represents the β-divergence as a
function of y, with the value of x set to 1, for five different values of β.

distribution is obtained for β = 0, i.e., the Itakura-Saito (IS) divergence. This gives us some
insight regarding the choice of the divergence to use. For example, the scale invariance
property of the IS divergence is one of the main reasons for its advocacy in audio signal
processing (Févotte et al., 2009).
Finally, note that the first-order and second-order derivatives are continuous in β, which

allows for unified optimization techniques for the whole family, as shall be discussed in the
following subsection.

1.2.4 Standard algorithms

The very large majority of algorithms designed to solve the NMF problem described in
Eq. (1.8) makes use of a block coordinate descent scheme. More precisely, the algorithm
consists in alternatively updating one of the factors, while keeping the other fixed. The
general framework of such algorithms is outlined in Algorithm 1.
The algorithm therefore boils down to the update of W given H, and that of H given

W. As it turns out, these two steps are symmetric, since we have by transposition

V 'WH⇔ VT ' HTWT. (1.16)

As such, we can focus on how to solve one of these two tasks only, for instance

min
W≥0

D(V|WH(i−1)). (1.17)
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Algorithm 1: Standard block coordinate descend (BCD) algorithm for NMF
Input: Non-negative matrix V, factorization rank K

1 Generate random initial non-negative matrices W(0) and H(0)

2 for i = 1, . . . , Niter do
3 update W such that D(V|W(i)H(i−1)) ≤ D(V|W(i−1)H(i−1))
4 update H such that D(V|W(i)H(i)) ≤ D(V|W(i)H(i−1))
5 end

Output: WH, rank-K approximation of V

The best case scenario arises when the divergence D is convex w.r.t. W (while keeping
H fixed). This is for example the case for the β-divergences family when β ∈ [1, 2]. As
such, the optimal solution to the sub-problem (1.17) is usually sought after. This has been
extensively studied when D is chosen to be the squared Euclidian distance. We mention the
projected gradient descent (Lin, 2007), as well as the numerous works on the “alternating
non-negative least squares” family developed by Haesun Park and colleagues (Kim and
Park, 2008, 2011). For a more thorough survey of these methods, as well as comparative
considerations, the interested reader is referred to Gillis and Glineur (2012) and Kim et al.
(2014).
In the general case, we may resort to majorization-minimization (MM) (Hunter and Lange,

2004). MM techniques consist in majorizing the objective function (by a so-called auxiliary
function), and then optimizing the auxiliary function instead. The auxiliary function is
usually chosen such that its optimization is easier than the optimization of the original
objective function, e.g., by choosing a convex auxiliary function. More details about the MM
framework can be found in Appendix 1.B. By construction, we retrieve a W(i) that decreases
the objective function. MM-based algorithms have been studied for the β-divergences family
in Févotte and Idier (2011). It results in very simple and elegant multiplicative updates,
which corresponds to the original heuristic update rules proposed by Lee and Seung for the
KL divergence and Euclidian distance:

W←W�
(

[(WH)β−2 �V]HT

(WH)β−1HT

)γ(β)

, (1.18)

H← H�
(

WT[(WH)β−2 �V]
WT(WH)β−1

)γ(β)

, (1.19)

where � denotes the Hadamard product; division and power are taken entry-wise. The
exponent γ(β) is such that

γ(β) =


1

2−β if β < 1,
1 if 1 ≤ β ≤ 2,

1
β−1 if β > 2.

(1.20)

For considerations regarding the convergence of these MM-based algorithms (i.e., whether

38



Chapter 1 Introduction

Figure 1.3: K = 30 atoms of the dictionary learned on the CBCL dataset.

the sequence of iterates {W(i),H(i)}i≥0 converges to a stationary point satisfying the Karush-
Kuhn-Tucker (KKT) conditions), we refer the reader to Zhao and Tan (2018).

1.2.5 An example: the original experiment

We here present for illustrations purposes the experiment described in the seminal paper
of Lee and Seung (Lee and Seung, 1999). We similarly consider the CBCL6 dataset, which
contains 2429 grayscale images of faces of size 19 × 19. This yields an observation matrix
V of size 361× 2429.
We then seek to find an NMF of V with K = 30. The Kullback-Leibler divergence

was chosen to be the measure of fit, and we use the standard multiplicative updates (i.e.,
Eqs (1.18)-(1.19) with β = 1). The algorithm is run for 5000 iterations.

Each image of Figure 1.3 displays one column of the dictionary W. As we can see, they
highlight different parts of faces. Figure 1.4 displays the reconstructed image for eight
samples chosen at random.

6Retrieved from http://www.ai.mit.edu/courses/6.899/lectures/faces.tar.gz.
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Figure 1.4: Eight faces of the CBCL dataset chosen at random. Top: original images. Bot-
tom: reconstruction with K = 30.

1.3 Probabilistic non-negative factorization

1.3.1 Definition

In the previous section, we have described NMF as an optimization problem, with one of
the main questions being the choice of the measure of fit to assess the dissimilarity between
V and its approximation WH. We will now turn to an alternative paradigm, namely
probabilistic non-negative matrix factorization.
As it turns out, for many usual cost functions, the minimization problem described in

Eq. (1.8) can be shown to be equivalent to the joint maximum likelihood estimation of the
factors W and H under a specific statistical model, that is

max
W,H

log p(V; W,H). (1.21)

We give the following illustrative example. Consider the following statistical model (as-
suming independence of the vfn):

vfn ∼ Poisson([WH]fn), (1.22)

with W,H ≥ 0. We have

− log p(V; W,H) = −
∑
f,n

(vfn log([WH]fn)− [WH]fn − log(vfn!)) (1.23)

c=
∑
f,n

(
vfn log 1

[WH]fn
+ [WH]fn

)
(1.24)

c= DKL(V|WH). (1.25)

Therefore, maximizing the log-likelihood w.r.t. W and H in the model of Eq. (1.22) is
equivalent to minimizing the KL-divergence between V and WH7.

7Algorithmic equivalences also exist between KL-NMF and probabilistic latent semantic analysis (PLSA),
a document clustering model (Gaussier and Goutte, 2005).
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This leads the way to so-called probabilistic NMF, i.e., learning (in a broad sense, meaning
either estimation or inference problems) in probabilistic models whose observation density
(likelihood) can be written as

vn ∼ p(. ; Whn,Ψ), W ≥ 0, hn ≥ 0, (1.26)

that is to say that the distribution of vn is parametrized by the dot product between W
and hn; any other parameters that could act on the distribution are generically denoted by
Ψ. Such models are therefore latent variable models.

This general framework encompasses many well-known latent variable models from the
NMF literature. A tentatively exhaustive list is presented in the following subsection.

1.3.2 List of models

In the following list of models, the independence of the vfn or of the vn is implied and is
not recalled in the equations.
• Models based on a Gaussian likelihood. Schmidt et al. (2009) assume the following
likelihood for non-negative data

vfn ∼ N ([WH]fn, σ2). (1.27)

The joint maximum likelihood estimation of the factors in this model amounts to
minimizing the squared Euclidian distance between V and WH. As such, it is the
probabilistic counterpart to the classical quadratic loss choice. However, this model
can be criticized, most notably because it can give rise to negative data, which con-
tradicts the nature of the data at hand. Moreover, it non-negatively factorizes the
mean of a Gaussian distribution, an unconstrained parameter, which may be unnat-
ural in some cases. More general models with zero-mean noise have been considered
in Alquier and Guedj (2017).
• Models based on an exponential likelihood (Févotte et al., 2009; Hoffman et al., 2010).
They assume the following likelihood for non-negative data

vfn ∼ Exp
(

1
[WH]fn

)
. (1.28)

The joint maximum likelihood of the factors in this model is equivalent to minimizing
the Itakura-Saito divergence between V and WH. As a matter of fact, this model can
equivalently be rewritten as a composite model with complex Gaussian components,
therefore principled when considering the STFT of an audio signal. These links will
be further developed in Chapter 3.
• Models based on the Poisson distribution (Canny, 2004; Cemgil, 2009; Zhou et al.,
2012; Gopalan et al., 2015). These models are sometimes generically referred to as
“Poisson factorization”, or “Poisson factor analysis”. They assume

vfn ∼ Poisson([WH]fn). (1.29)
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As detailed in the previous subsection, the joint maximum likelihood estimation of
the factors is tantamount to the minimization of the KL divergence between V and
WH.
• Models based on compound Poisson distributions. As it turns out, the use of the

Poisson distribution does not restrict us to integer data, when considering the larger
family of the compound Poisson distributions. Such models can be written as

Lfn ∼ Poisson([WH]fn), (1.30)

xlfn
i.i.d.∼ p(. ; Ψ) ∀l ∈ {1, . . . , Lfn}, (1.31)

vfn =
Lfn∑
l=1

xlfn. (1.32)

In this case, p is called the element distribution, and depending on the choice of
this distribution, gives rise to various supports for vfn (N,R+,R...). These models
(Şimşekli et al., 2013; Basbug and Engelhardt, 2016; Gouvert et al., 2019) are examples
of hierarchical models in which the distribution of vfn is only known conditionally to
another random variable (in this case, L). It falls into the framework of Eq. (1.26)
once this variable has been marginalized, which is most of the time not analytically
possible.
• Models with more restrictive constraints on the factors. We mention the ubiquitous
latent Dirichlet allocation (LDA) model (Blei et al., 2003), which assume

vn ∼ Mult(L,Whn), (1.33)

where Mult denotes the multinomial distribution. Therefore, we must have∑f Whn =
1, which can be achieved by assuming that both the columns of W and H sum to 1.
We also mention models for binary data, based on a Bernoulli likelihood (Kabán and
Bingham, 2008; Bingham et al., 2009; Lumbreras et al., 2018)

vfn ∼ Bernoulli([WH]fn). (1.34)

Similarly, to ensure a valid Bernoulli parameter, W and H must be such that∑k wfkhkn
∈ [0, 1].
• Models based on distributions with heavy tails. We mention for count data the neg-
ative binomial distribution (Gouvert et al., 2018; Zhou, 2018), and for continuous
non-negative data the Student-t distribution (Yoshii et al., 2016) or the Lévy distri-
bution (Magron et al., 2017).

Exponential dispersion models and Tweedie distributions

The exponential dispersion models (EDM) (Jørgensen, 1987; Jørgensen, 1997) are a two-
parameter family of distributions, whose distribution can be written as

p(x; θ, ϕ) = h(x, ϕ) exp
( 1
ϕ

(θx− κ(θ))
)
, (1.35)
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where θ ∈ D ⊂ R is the natural parameter, and ϕ > 0 is the dispersion parameter. The
function h is called the base function, and κ is called the cumulant function. As it turns
out, we have µ = E(X) = κ′(θ) and var(X) = ϕκ′′(θ) (see Appendix 1.C). The mapping
between θ and µ being invertible, we may as well write var(X) = ϕV (µ), where V (µ) is
called the variance function. An EDM is characterized by its variance function.
The Tweedie family of distributions (Tweedie, 1984) assume that the variance function of

the EDM is a power variance function, that is

V (µ) = µp. (1.36)

It can be shown that such EDMs exist for p ∈ R\]0, 1[. Special cases are the normal distri-
bution (p = 0), the Poisson distribution (p = 1), the Gamma distribution (p = 2), and the
inverse Gaussian distribution (p = 3). More precisely, apart from the four aforementioned
cases, a closed-form analytical expression of the distribution does not exist. The cumulant
function κ can be derived in this case, but this does not imply a closed-form expression of
h8.

Setting β = 2−p, and assuming that the vfn are independent and distributed as a Tweedie
with mean [WH]fn, it can be shown that (Yılmaz and Cemgil, 2012; Tan and Févotte, 2013)

− log p(V; W,H) c= 1
ϕ

∑
f,n

dβ(vfn|[WH]fn). (1.37)

Thus, the choice of β when considering NMF with the β-divergence (described in Sec-
tion 1.2.3) underlies the choice of a noise model that can be described with Tweedie distri-
butions, except for interval β ∈]1, 2[ where no such model exists.

1.3.3 Model variants and learning problems

As explained in Section 1.3.1, a probabilistic NMF model is only defined by its associated
observation model (the distribution of vn, Eq. (1.26)). As such, several variants can be
considered

1. Frequentist NMF models. Graphical model described in Figure 1.5-a. The factors
W and H are treated as deterministic parameters. Learning tasks in these models
therefore correspond to maximum likelihood estimation. As explained previously, this
amounts to optimizing a certain divergence between V and WH. However, casting
the problem as a maximum likelihood problem may enable us to use specific tools to
solve this optimization task, namely the EM algorithm.

2. Bayesian NMF models. Graphical model described in Figure 1.5-b. In this case, the
factors W and H are treated as random variables with prior distributions. As a matter
of fact, the vast majority of the aforementioned works consider Bayesian NMF models.
Inference resolves here around the joint posterior distribution p(W,H|V).

8Numerical schemes exist, see for example Dunn and Smyth (2005).

43



Chapter 1 Introduction

N

hn•

W•vn
N

•θ
H

hn
•θ
W

Wvn
N

•θ
H

hn

W•vn

Figure 1.5: Probabilistic NMF models. From left to right. (a) Frequentist NMF models.
Neither W nor H is assumed to be a random variable. (b) Bayesian NMF
models. Both W and H are assumed to be random variables with a prior
distribution. (c) Semi-Bayesian NMF models. W is assumed to be a parameter,
whereas a prior distribution is assumed on H.

3. Semi-Bayesian NMF models. Graphical model described in Figure 1.5-c. A third and
last class of models, which we coin semi-Bayesian NMF models, can be considered. In
these models, a prior distribution is assumed on H, but W remains a deterministic
variable. These models will be the specific focus of this thesis.

1.4 Inference in semi-Bayesian NMF

1.4.1 Estimators

We consider from now on semi-Bayesian NMF models, that is models defined by a prior
distribution for H, and an observation density of vn given hn (as in Eq. (1.26)). They have
been considered in Dikmen and Févotte (2011) for an exponential likelihood (Eq. (1.28))
and in Dikmen and Févotte (2012) for a Poisson likelihood (Eq. (1.29)).
Denote by θH the hyperparameters of the prior distribution on H, p(H; θH). In these

two papers, two estimation approaches were compared:
1. Maximizing the joint likelihood p(V,H; W, θH), that is:

max
W,H,θH

log p(V,H; W, θH) = log p(V|H; W) + log p(H; θH). (1.38)

We refer to this process as maximum joint likelihood estimation (MJLE).
2. Maximizing the marginal likelihood p(V; W), that is when H has been integrated out

of the joint likelihood:

max
W,θH

log p(V; W, θH) = log
∫

H
p(V|H; W)p(H; θH)dH. (1.39)
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We refer to this process as maximum marginal likelihood estimation (MMLE). Note
that we may turn to the inference the posterior distribution p(H|V; Ŵ) in a sec-
ond step if necessary, where Ŵ is the maximum marginal likelihood estimate. More
generally, the methodology consisting first in estimating the hyperparameters (i.e., all
non-random variables, meaning W and θH in our setting) by maximizing the marginal
likelihood (e.g., with an EM algorithm), and then in inferring the posterior distribu-
tions (e.g., by sampling) is referred to as empirical Bayes (EB) (Morris, 1983).

MMLE clearly constitutes a better-posed approach than MJLE from a statistical point of
view. Assume that the hyperparameter θH is of size L. In MJLE, the estimated variables
are W,H and θH. This represents a total number of FK +KN +L estimated parameters,
which grows with the number samples N . As such, little can be said about the statistical
optimality the maximum likelihood estimator, which requires a fixed numbers of parameters
w.r.t. the number of samples. In particular, this can lead to overfitting issues. This is in
contrast with MMLE, where the number of estimated parameters is FK +L (since only W
and θH are estimated), i.e., constant w.r.t. N .

In Dikmen and Févotte (2011, 2012), the comparison of these two methods was tack-
led empirically. In particular, algorithms to optimize both functions were conceived. In
their experiments, on both synthetic (i.e., generated from the considered models) and real
datasets, they consistently found that MMLE had a tendency to automatically regularize
the factorization rank K. More precisely, the dictionaries estimated by MMLE have a ten-
dency to exhibit columns with negligible norm, in contrast with those estimated by MJLE,
which always make use of all the K columns.
This favorable behavior of MMLE was left unexplained. In particular, we would like to

answer the following questions:
• Can we give an explanation to the observed self-regularization phenomenon in the
specific settings of Dikmen and Févotte (2011, 2012)?
• Can we exhibit general conditions in which this phenomenon is bound to happen?
• Can we quantify the phenomenon?

1.4.2 Related works to MMLE

In this section, we make connections with other works of the literature, which maximize
the marginal likelihood in different contexts.

1.4.2.1 Integrating out nuisance parameters

The methodology of MMLE bears strong links with the problem of eliminating nuisance
parameters, a well-studied problem in statistics. A nuisance parameter is a parameter which
takes part in the generative process, but whose value or distribution is not of immediate
interest, or even of no interest at all. One might argue that in our NMF setting, the dictio-
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nary W is the variable of interest, whereas the activation coefficients are not of immediate
interest (recall that we may tackle the inference of H in a second step if necessary).

Berger et al. (1999) discusses the advantages and limitations of the elimination of nuisance
parameters through integration (i.e., dealing with the marginal likelihood) versus methods
that do not involve integration, especially methods that make use of the so-called profile
likelihood.

1.4.2.2 A note on LDA

In the initial formulation of LDA (Blei et al., 2003), a Dirichlet prior is assumed on hn,
while the dictionary W remains a deterministic variable. The authors then proposed an EB
methodology, based on variational inference (Jordan et al., 1999; Blei et al., 2017) for both
the estimation of W and θH and the posterior inference. The inference in LDA is therefore
MMLE.
Note that, as already proposed in Blei et al. (2003), LDA is now most of the time presented

as a fully Bayesian model, by adding an additional Dirichlet prior on the columns of W (in
this context, a column of W represents a distribution of words over a certain vocabulary,
therefore must sum to one). In this case, the first step of the EB methodology amounts to
estimating θW and θH, the parameters of the two Dirichlet priors, by MMLE. See also a
discussion of the importance of the hyperparameters in LDA in Wallach et al. (2009a).

1.4.2.3 A note on independent component analysis (ICA)

The concept of maximizing the marginal likelihood in semi-Bayesian NMF models is
shared in spirit by the standard approach adopted in independent component analysis (ICA)
(Comon, 1994; Hyvärinen et al., 2001).
Consider a collection of M signals of length T , stored into a matrix X of size M × T .

ICA assumes that these signals are an instantaneous linear mixture of M sources. More
precisely, we can write for all time t

xt = Ast, (1.40)

where A ∈ RM×M is the mixture matrix. Moreover, the M sources are assumed to be
independent

p(st) =
M∏
m=1

pm(smt), (1.41)

where pm denotes the distribution of source m. No assumption is made on the mixing
matrix. The goal is then to estimate both the sources and the mixture matrix.
The standard way to solve the ICA problem is to maximize the marginal likelihood

p(X; A), which can be easily obtained since A is square. The sources are then recovered
by inverting the linear system of Eq. (1.40) using the maximum likelihood estimate of

46



Chapter 1 Introduction

A. However, we would like to emphasize that in standard ICA, no noise model is assumed,
meaning that p(xt|st) is a Dirac distribution, hence the ease to obtain the marginal likelihood
(the marginal distribution of xt is simply a change of variable). In the context of noisy ICA
(i.e., where Eq. (1.40) becomes xt = Ast+εt), maximizing the marginal likelihood has most
notably been addressed in Moulines et al. (1997), under Gaussian assumptions.

1.4.3 Categories of priors on the activation coefficients

We conclude this section by taking a closer look at the prior distributions on H that
will be considered in this thesis. We can sketch up two classes of priors. The first class
corresponds to the standard independence assumption of the hn:

p(H) =
N∏
n=1

p(hn). (1.42)

The factors being non-negative, a standard choice for p(hn) is for instance independent
Gamma distributions, which can be sparsity-inducing if the shape parameter is lower than
one. The inverse Gamma distribution has also been considered. The models tackled in
Chapter 2 and 3 make use of this class of prior on H.

One might also be interested in adding statistical correlation in the model, i.e., when
the columns of V cannot be treated as exchangeable. Such a scenario arises in particular
when the columns of V describe the evolution of a process over time (such matrices V
are sometimes referred to as dynamic matrices). This is usually achieved by lifting the
independence assumption of Eq. (1.42) in order to introduce correlation between successive
columns of H. In particular, we consider a Markov structure on the columns of H:

p(H) = p(h1)
∏
n≥2

p(hn|hn−1). (1.43)

This corresponds to the second class of priors studied in this thesis, and are the main concern
of the models addressed in Chapter 4.

1.5 Structure of the manuscript and contributions

Chapter 2 tackles maximum marginal likelihood estimation in the Gamma-Poisson ma-
trix factorization model. In particular, we derive a closed-form expression of the marginal
likelihood, which gives us some insight into the self-regularization phenomenon empirically
observed in Dikmen and Févotte (2012). Moreover, an experimental comparison of three
EM algorithms is carried out.
Chapter 3 deals with maximum marginal likelihood estimation in a semi-Bayesian NMF

model based on an exponential likelihood. This model is a special case of the models
studied in Dikmen and Févotte (2011). Unlike the previous chapter, we are unable to derive
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a closed-form expression of the marginal likelihood in this setting. Nonetheless, we derive
three novel EM algorithms and apply them to a real audio decomposition example.
Chapter 4 addresses maximum marginal likelihood estimation in semi-Bayesian NMF

models in which the prior distribution on H is as described in Eq. (1.43). We begin by
thoroughly reviewing the literature on non-negative Markov chains. We then propose a
novel NMF model, as well as its associated inference.
The concluding chapter, page 139, presents conclusions and discusses some perspectives

of our work.
The Appendix A provides a substantial abstract of this thesis in French.
The Appendix B describes the results of two collaborations that were conducted con-

currently to the work presented in this thesis. The first one deals with Bayesian mean-
parametrized NMF models for binary data. The second one studies a ranking model com-
bined with NMF, with applications to data from tennis tournaments.
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1.A The divergences used in NMF

1.A.1 Parametrized families

In this subsection, we discuss the classical parametrized families of divergences that have
been used in NMF. We begin by mentioning the family of the α-divergences (Cichocki et al.,
2008)

daα(x|y) =


1

α(1−α)
(
αx+ (1− α)y − xαy1−α) if α ∈ R \ {0, 1}

y log
( y
x

)
+ x− y if α = 0

x log
(
x
y

)
− x+ y if α = 1

(1.44)

as well as the family of the β-divergences (Cichocki and Amari, 2010; Févotte and Idier,
2011)

dbβ(x|y) =


1

β(β−1)

(
xβ + (β − 1)yβ − βxyβ−1

)
if β ∈ R \ {0, 1}

x
y − log

(
x
y

)
− 1 if β = 0

x log
(
x
y

)
− x+ y if β = 1

(1.45)

The two families are distinct. However, they are connected with the simple relation

dbβ(x|y) = yβ−1daβ(x|y). (1.46)

A parametric family of divergences was independently studied by Kompass (Kompass,
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2007)

dKλ (x|y) =
{

x
λ(xλ − yλ) + yλ(y − x) if λ ∈]0, 1]
λ log

(
x
y

)
+ x− y if λ = 0 (1.47)

As it turns out, this family corresponds to the family of the β-divergences up to a multipli-
cating factor:

dKλ (x|y) = λdbλ+1(x|y). (1.48)

Note that the families of the α-divergences and β-divergences can further be generalized
to the so-called α, β-family of divergences (Cichocki et al., 2011).

1.A.2 Families generated by a function

In this subsection, we discuss families of divergences used in NMF that are based on a
generating function.

1.A.2.1 Bregman divergences

Let F : R+ → R be a continuously-differentiable, convex function. The Bregman diver-
gence associated to F is defined as

d(x|y) = F (x)− F (y) + F ′(y)(x− y). (1.49)

By taking

Fβ(x) = xβ

β(β − 1) −
x

β − 1 + 1
β
, (1.50)

and the associated limit cases when β → 0 or 1, we retrieve the family of the β-divergences.

1.A.2.2 Csiszar divergences

Let ϕ : R+ → R be a convex function, continuous in zero.

d(x|y) = xϕ

(
y

x

)
. (1.51)

An appropriate choice of ϕ can give rise to the family of the α-divergences.

1.B The majorization-minimization framework

We describe in this section the key elements of the majorization-minimization (MM)
framework. Consider a real-valued function f that we aim to minimize. The direct opti-
mization of f is assumed to be difficult.
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0.0 0.5 2.0 2.5x(i) x(i + 1) x⋆

−4

−2

0

2

4

f(x)

g(x; x(i))

Figure 1.6: Illustrative example of an MM algorithm. The function f to minimize is dis-
played in blue. Its minimum is achieved at x = x?. Assuming that x(i) = 0.75,
we obtain the majorizing function in red. Its minimization yields the next iterate
x(i+1).

MM algorithms iteratively construct a majorizing function of f , which we denote by g
(the majorization step), and then proceed to the minimization of g (the minimization step).
The function g, also called the auxiliary function, is constructed such that its minimization
is easy, e.g. can be carried out in closed form.
Denote by g(.; x̃) a function whose shape depend on x̃. The function g(.; x̃) is said to be

an auxiliary function to the function f if the two following properties hold
1. ∀x, g(x; x̃) ≥ f(x),
2. g(x̃; x̃) = f(x̃).

In other words, g(.; x̃) is tangent to f at the point x = x̃, and above f elsewhere.
Consider now that the value of x at iteration i is x(i). The auxiliary function is constructed

to be tangent at the point x = x(i), i.e., is denoted by g(.;x(i)). Set x(i+1) = argmin g(x;x(i)).
Then we have

f(x(i+1)) ≤ g(x(i+1);x(i)) (1.52)
≤ g(x(i);x(i)) = f(x(i)). (1.53)

Hence f is non-decreasing under the proposed procedure.
An illustrative example is given on Figure 1.6. The function to minimize is given by

f(x) = x4 − 4x2. It is the sum of a convex function and a concave function. We majorize
the concave part by its tangent at x(i) (the current iterate). Assuming that x(i) = 0.75, we

51



Chapter 1 Introduction

obtain the auxiliary function g(x) = x4 − 6x+ 0.75, which we minimize to obtain the next
iterate x(i+1).

1.C Exponential dispersion models and Tweedie distributions

We recall the distribution of an EDM

p(x; θ, ϕ) = h(x, ϕ) exp
( 1
ϕ

(θx− κ(θ))
)
. (1.54)

Integrating w.r.t. x and deriving w.r.t. θ we obtain∫ 1
ϕ

(x− κ′(θ))p(x; θ, ϕ)dx = 0, (1.55)

1
ϕ

(
E(X)− κ′(θ)

)
= 0. (1.56)

Hence µ def= E(X) = κ′(θ). Deriving Eq. (1.55) one more time w.r.t. θ yields∫ 1
ϕ

(
−κ′′(θ)p(x; θ, ϕ) + 1

ϕ
(x− κ′(θ))2p(x; θ, ϕ)

)
dx = 0, (1.57)

1
ϕ

(
−κ′′(θ) + 1

ϕ
E((X − E(X)2)

)
= 0. (1.58)

Hence var(X) = φκ′′(θ), and since µ and θ are in one-to-one mapping (Jørgensen, 1987),
we may as well write var(X) = ϕV (µ), where V is the variance function.
In the case of a Tweedie EDM, we have var(X) = µp. Then, setting arbitrary integration

constant to zero, we obtain

θ =
{

µ1−p

1−p if p 6= 1
logµ if p = 1,

(1.59)

and
κ(θ) =

{
µ2−p

2−p if p 6= 2
logµ if p = 2.

(1.60)

Note that 0 < p < 1 do not correspond to an EDM (Jørgensen, 1987). Finally, substituting
β = 2− p, for all β 6= 1, 2 we obtain

p(x;µ, ϕ) = h(x, ϕ) exp
(

1
ϕ

(
(x µ

β−1

β − 1 −
µβ

β

))
. (1.61)

This is the expression given in Tan and Févotte (2013) and suffices to show the equivalence
with the β-divergence (by taking the log of the likelihood ratio at x = µ and x).
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Chapter 2

Maximum Marginal Likelihood Estimation in
the Gamma-Poisson Model
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Chapter 2 Maximum Marginal Likelihood Estimation in the Gamma-Poisson Model

2.1 Introduction

A wide variety of probabilistic models are based on the following observation model

vfn ∼ Poisson([WH]fn), (2.1)

with W ≥ 0, H ≥ 0. Such models are called Poisson factorization models, or sometimes
Poisson factor analysis. As discussed in Section 1.3, we may classify these models in two
categories:
• Semi-Bayesian models. When independent Gamma priors are assumed on H, and W
is treated as a deterministic variable, we retrieve the so-called Gamma-Poisson model
of Canny (2004) and Buntine and Jakulin (2006);
• Bayesian models, which assume prior distributions on both W and H. Typical
prior distributions include independent Gamma distributions, or column-wise Dirich-
let distributions. These Bayesian models have found applications in image processing
(Cemgil, 2009), as well as in recommender systems (Ma et al., 2011; Gopalan et al.,
2015), where they have received a particular attention. Several works have also been
devoted to non-parametric approaches to alleviate the problem of setting the factor-
ization rank K (Zhou et al., 2012; Gopalan et al., 2014; Zhou and Carin, 2015).

In this chapter, we focus on maximum marginal likelihood estimation in the Gamma-
Poisson model. This problem has been first been addressed in Dikmen and Févotte (2012).
In their experiments, they found this estimation process to be robust to over-specified
values of K; an intriguing behavior that was left unexplained. We provide the following
contributions:
• We provide a closed-form expression of the marginal likelihood. This expression is
tedious to compute for large F and K, as it involves combinatorial operations, but is
workable for problems in small dimension.
• We show that the proposed closed-form expression reveals a penalization term on the
columns of W that explains the “self-regularization” effect observed in Dikmen and
Févotte (2012).
• We compare three variants of the EM algorithm, and experimentally show that the
one based on the marginalization of H has favorable properties.

The rest of the chapter is organized as follows. Section 2.2 introduces the Gamma-Poisson
model. In Section 2.3, we propose two novel formulations of the model in which H has
been marginalized out. This leads to a closed-form expression of the marginal likelihood,
discussed in Section 2.4. Three optimization algorithms are presented in Section 2.5, and
experimental work is conducted in Section 2.6. We conclude by a general discussion in
Section 2.7.
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N

• •
α β

hn

W•vn
N

K

• •
αk βk

hkn

wk•ckn

vn

Figure 2.1: Graphical representations of the Gamma-Poisson model. Observed variables
are in blue, while latent variables are in white. Deterministic parameters are
represented as black dots. The observation vn is a vector of size F . From left
to right:(a) The standard model. The latent variable hn is of size K; (b) The
augmented model with variables C. The latent variable ckn is of size F , and
hkn is scalar.

2.2 The Gamma-Poisson model

2.2.1 First formulation

The Gamma-Poisson (GaP) model is a probabilistic matrix factorization model which
was introduced in the field of text information retrieval (Canny, 2004; Buntine and Jakulin,
2006). In this field, a corpus of text documents is typically represented by an integer-valued
matrix V of size F ×N , where each column vn represents a document as a so-called “bag
of words”. Given a vocabulary of F words (or in practice semantic stems), the matrix entry
vfn is the number of occurrences of word f in the document n. GaP is a generative model
described by a dictionary of “topics” or “patterns” W (a non-negative matrix of size F ×K)
and a non-negative “activation” or “score” matrix H (of size K ×N), as follows:

hkn ∼ Gamma(αk, βk), (2.2)
vfn|hn ∼ Poisson ([WH]fn) , (2.3)

where we use the shape and rate parametrization of the Gamma distribution, see its p.d.f.
in Equation (0.8). The dictionary W is treated as a free deterministic variable.
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We consider maximum marginal likelihood estimation (MMLE), in which H is treated as
a latent variable over which the joint likelihood is integrated. In other words, MMLE relies
on the minimization of

L(W,α,β) def= − log p(V; W,α,β) (2.4)

= − log
∫

H
p(V|H; W)p(H; α,β)dH, (2.5)

where α = {α1, . . . , αK} and β = {β1, . . . , βK}. We emphasize that the dictionary W is
treated as a free deterministic variable.

2.2.2 Composite structure of the model

GaP can be augmented with auxiliary variables C, yielding a composite model, thanks
to the superposition property of the Poisson distribution (Févotte et al., 2009):

hkn ∼ Gamma(αk, βk), (2.6)
cfkn|hkn ∼ Poisson(wfkhkn), (2.7)

vfn =
∑
k

cfkn. (2.8)

In the remainder, the vectors ckn = [c1kn, . . . , cFkn]T of size F and which sum up to vn
will be referred to as components. C will denote the F × K × N tensor with coefficients
cfkn. Figure 2.1 displays graphical representations of the Gamma-Poisson model, both in
its initial form (on the left) and augmented form (on the right).

2.3 New formulations of GaP

We now show how GaP can be rewritten free of the latent variables H in two different
ways.

2.3.1 GaP as a composite negative multinomial model

As it turns out, hkn can be integrated out from Eqs. (2.6)-(2.7), thanks to the conju-
gacy between the Poisson and the Gamma distributions. That is to say that the marginal
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distribution of ckn can be determined in closed form. Indeed, we have

p(ckn; wk, αk, βk) =
∫
R+
p(c1kn, . . . , cFkn|hkn; wk)p(hkn;αk, βk)dhkn (2.9)

=
∫
R+

∏
f

p(cfkn|hkn;wfk)

 p(hkn;αk, βk)dhkn (2.10)

=
∫
R+

∏
f

(wfkhkn)cfkn
cfkn! exp(−wfkhkn)

 βαkk
Γ(αk)

hαk−1
kn exp(−βkhkn)dhkn

(2.11)

=

∏
f

w
cfkn
fk

cfkn!

 βαkk
Γ(αk)

Γ(αk +∑
f cfkn)(∑

f wfk + βk
)αk+

∑
f
cfkn

(2.12)

=
Γ(αk +∑

f cfkn)
Γ(αk)

∏
f cfkn!

(
βk∑

f wfk + βk

)αk∏
f

(
wfk∑

f wfk + βk

)cfkn
. (2.13)

More precisely, the distribution of ckn can be identified to be a so-called negative multi-
nomial (NM) distribution of dimension F , with shape parameter αk and event probabilities
[p1k, . . . , pFk]T, where

pfk = wfk∑
f ′ wf ′k + βk

. (2.14)

The NM distribution is the multivariate extension of the perhaps more well-known negative
binomial (NB) distribution, which arises in a scalar Gamma-Poisson mixture. The reader
is referred to Appendix 2.A. for the definitions related to these probability distributions.
We therefore immediately obtain the following result:

Theorem 2.1. GaP can be rewritten as follows:

ckn ∼ NM

αk,
[

w1k∑
f wfk + βk

, . . . ,
wFk∑

f wfk + βk

]T
 , (2.15)

vn =
K∑
k=1

ckn. (2.16)

GaP may thus be interpreted as a composite model in which the kth component has a
NM distribution with parameters governed by wk (the kth column of W), αk and βk.

2.3.2 GaP as a composite multinomial model

The NM distribution possesses an alternative characterization, namely a multinomial
distribution whose number of trials is random. This immediately leads to the following

59



Chapter 2 Maximum Marginal Likelihood Estimation in the Gamma-Poisson Model

result:

Theorem 2.2. GaP can be rewritten as follows:

Lkn ∼ NB
(
αk,

∑
f wfk∑

f wfk + βk

)
, (2.17)

ckn|Lkn ∼ Mult

Lkn,
[

w1k∑
f wfk

, . . . ,
wFk∑
f wfk

]T
 , (2.18)

vn =
K∑
k=1

ckn, (2.19)

where “NB” denotes the negative binomial distribution, and “Mult” refers to the multino-
mial distribution.

Proof. See Appendix 2.A.

Theorem 2.2 states that another interpretation of GaP consists in modeling the data as
a sum of K independent multinomial distributions, governed individually by wk and whose
number of trials is random, following a NB distribution governed by wk, αk and βk.
A special case of the reformulation of GaP offered by Theorem 2.2 is given by Buntine

and Jakulin (2006) using a different reasoning, when it is assumed that ∑f wfk = 1 (a
common assumption in the field of text information retrieval, where the columns of W
are interpreted as discrete probability distributions). Theorem 2.2 provides a more general
result as it applies to any non-negative matrix W.

2.4 Closed-form marginal likelihood

2.4.1 Analytical expression

Until now, it was assumed that the marginal likelihood in the GaP model was not available
analytically. However, the new parametrization offered by Theorem 2.1 allows to obtain a
computable analytical expression of the marginal likelihood L. Denote by C the set of all
“admissible” components, i.e.,

C = {C ∈ NF×K×N | ∀(f, n),
∑
k

cfkn = vfn}. (2.20)

By marginalization of C, we may write

p(V; W,α,β) =
∑
C∈C

p(C; W,α,β) (2.21)

=
∑
C∈C

∏
k,n

p(ckn; wk, αk, βk). (2.22)
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As stated previously, p(ckn; wk, αk, βk) is now known in closed form, see Eq. (2.13). Re-
placing it with its expression, we obtain

p(V; W,α,β) =
∑
C∈C

∏
k,n

Γ(∑f cfkn + αk)
Γ(αk)

∏
f cfkn!

(
βk∑

f wfk + βk

)αk∏
f

(
wfk∑

f wfk + βk

)cfkn .
(2.23)

Introducing the notation

Ωα(C) =
∏
k,n

Γ(∑f cfkn + αk)
Γ(αk)

∏
f cfkn! , (2.24)

and reusing the event probabilities pfk defined in Eq. (2.14), we may rewrite Eq. (2.23) as

p(V; W,α,β) =

∏
k

(1−
∑
f

pfk)Nαk
×∑

C∈C

Ωα(C)
∏
f,k

p

∑
n
cfkn

fk

 . (2.25)

Equation (2.25) is a computable closed-form expression of the marginal likelihood. It is
free of H and in particular of the integral that appears in Equation (2.5). However the
expression (2.25) is still semi-explicit because it involves a sum over the set of all admissible
components C. C is a finite set with cardinality

card(C) =
∏
f,n

(
vfn +K − 1

K − 1

)
, (2.26)

see the result given in Appendix 2.B. It is straightforward to construct but challenging to
compute in large dimension, as well as for large values of vfn.
The sum over all the matrices in the set C expresses the convolution of the (discrete)

probability distributions of the K components. Unfortunately, the distribution of the sum
of independent negative multinomial variables of different event probabilities is not available
in closed form.
As already stated in Dikmen and Févotte (2012), the value of the marginal likelihood is

unchanged when the scales of the columns of W and the rates β are changed accordingly. Let
Λ be a non-negative diagonal matrix of sizeK. It can easily be derived from Equation (2.25)
that

p(V; WΛ,α,βΛ) = p(V; W,α,β). (2.27)

We therefore have a scaling invariance between W and β, and as such, we may fix β to
arbitrary values and leave W free. Thus, we will treat β as a constant in the following and
drop it from the arguments of L.

61



Chapter 2 Maximum Marginal Likelihood Estimation in the Gamma-Poisson Model

2.4.2 Self-regularization

Dikmen and Févotte (2012) empirically studied the properties of MMLE. In particular,
they observed the self-ability of the estimator to regularize the number of columns of W. For
example, one experiment (reproduced in Section 2.6.2.1) consisted in generating synthetic
data according to the GaP model, with a ground-truth number of components K?. MMLE
was run with K > K? and they noticed that the estimated W contained K − K? empty
columns. As such, the estimator was able to recover the ground-truth dimensionality. In
contrast, MJLE used all K dimensions and overfit the data. They were unable to give a
theoretical justification of the observed phenomenon, but provided a first insight thanks to
a Laplace approximation of p(V; W,α). The closed-form expression (2.25) offers a deeper
understanding of this phenomenon, as explained next.
Using Equations (2.25) and (2.14) and treating β as a constant, the negative log-likelihood

can be expressed as

− 1
N
L(W,α) =− 1

N
log

∑
C∈C

Ωα(C)
∏
f,k

p

∑
n
cfkn

fk

 (2.28)

+
∑
k

αk log(||wk||1 + βk) + cst, (2.29)

where cst = −∑k αk log βk.
The negative log-likelihood reveals two terms. The first term, Equation (2.28), captures

the interaction between data V (through C) and the parameter W (through the event
probabilities pfk = wfk/(‖wk‖1 +βk)). The second term, Equation (2.29), only depends on
the parameter W and can be interpreted as a group-regularization term. The non-convex
and sharply peaked function f(x) = ∑

k log(|xk| + β) is known to be sparsity-inducing
(Candès et al., 2008). As such, the term (2.29) will promote sparsity of the norms of the
columns of W. When a norm ||wk||1 is set to zero for some k, the whole column wk is set to
zero because of the non-negativity constraint. This gives a formal explanation of the ability
of MMLE to automatically prune columns of W, without any explicit sparsity-inducing
prior at the modeling stage (recall that W is a deterministic parameter without a prior).
The discussed penalty term, sometimes referred to as the “log-sum” penalty is displayed1

on Figure 2.2, along with other common non-convex penalties (the `q pseudo-norm with
0 < q < 1, and the smoothly clipped absolute deviation (SCAD) penalty (Fan and Li,
2001)).

1 On Figure 2.2, a constant term − log(β) is added to the penalty to ensure f(0) = 0, as is the case with
the other displayed penalties.
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Figure 2.2: Common non-convex penalties represented in the scalar case. The log-sum
penalty f(x) = log(|x|+β)− log(β) is displayed in blue for two values of β. The
`q pseudo-norm, defined as g(x) = |x|q, is displayed in green for two values of q.
The SCAD penalty is displayed in red with a = 3.

2.5 Optimization algorithms

2.5.1 Expectation-Maximization

We now turn to the problem of optimizing Equation (2.5) by leveraging on the results
of Section 2.4. Despite obtaining a closed-form expression, the direct optimization of the
marginal likelihood remains difficult. However, the structure of GaP makes Expectation-
Maximization (EM) algorithms a natural option (Dempster et al., 1977). Indeed, the GaP
model involves observed variables V and latent variables C and H. As such, we can derive
several EM algorithms based on various choices of the complete set. More precisely, we
consider three possible choices that each define a different algorithm. In the following, we
use the notation θ = {W,α}.

EM-CH. The complete set is {C,H} and EM consists in the iterative minimization w.r.t.
θ of the functional defined by

QCH(θ; θ̃) = −
∫

C,H
log p(C,H; θ)p(C,H|V; θ̃)dCdH, (2.30)

where θ̃ = {W̃, α̃} is the current estimate. Note that V does not need to be included in the
complete set because we have V = ∑

k Ck. This corresponds to the general formulation of
EM in which the relation between the complete set and the data is a many-to-one mapping
and slightly differs from the more usual one where the complete set is formed by the union
of data and a hidden set (Dempster et al., 1977).
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EM-H. The complete set is {V,H} and EM consists in the iterative minimization of

QH(θ; θ̃) = −
∫

H
log p(V,H; θ)p(H|V; θ̃)dH. (2.31)

EM-C. The complete set is merely {C} and EM consists in the iterative minimization of

QC(θ; θ̃) = −
∫

C
log p(C; θ)p(C|V; θ̃)dC. (2.32)

EM-CH and EM-H have been considered in Dikmen and Févotte (2012). EM-C is a new
proposal that exploits the results of Section 2.4. In all three cases, the posteriors of the
latent variables involved – p(C,H|V; θ̃), p(H|V; θ̃) and p(C|V; θ̃) – are intractable and
neither are the integrals involved in Equations (2.30), (2.31) and (2.32). To overcome this
problem, we resort to Monte Carlo EM (MCEM) (Wei and Tanner, 1990) as described in
the next section.

2.5.2 Monte Carlo E-step

MCEM consists in using a Monte Carlo (MC) approximation of the integrals in Equa-
tions (2.30), (2.31) and (2.32) based on samples drawn from the posterior distributions
p(C,H|V; θ̃), p(H|V; θ̃) and p(C|V; θ̃). These can be obtained by Gibbs sampling of the
joint posterior p(C,H|V; θ̃), which also returns samples from the marginals p(H|V; θ̃) and
p(C|V; θ̃) at convergence. This Gibbs sampler can easily be derived because the conditional
distributions p(C|H,V; θ̃) and p(H|C,V; θ̃) = p(H|C; θ̃) are available in closed form.
In particular, denoting cfn the vector [cf1n, . . . , cfKn]T of size K, we have for the first

conditional2
p(C|H,V; θ̃) =

∏
f,n

p(cfn|hn, vfn; w̃f ), (2.33)

where
p(cfn|hn, vfn; w̃f ) = Mult

(
vfn, [ρ̃f1n, . . . , ρ̃fKn]T

)
, (2.34)

with the notation
ρ̃fkn = w̃fkhkn

[W̃H]fn
. (2.35)

For the second conditional, we have

p(H|C; θ̃) =
∏
k,n

p(hkn|ckn; α̃k, w̃k), (2.36)

2We recall that the notation hn refers to the n-th column of H, whereas the notation wf refers to the f -th
row of W.
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where

p(hkn|ckn; α̃k, w̃k) = Gamma

α̃k +
∑
f

cfkn, βk +
∑
f

w̃fk

 . (2.37)

See Appendix 2.C for derivation details. The Gibbs sampler is thus summarized in Algo-
rithm 2 below.

Algorithm 2: Gibbs sampler in the Gamma-Poisson model
Input: Integer matrix V, current values of the parameters W̃ and α̃

1 Generate initial state H(0)

2 for j = 1, ..., J do
3 # Sample C given H
4 for f = 1, ..., F do
5 for n = 1, ..., N do
6 c(j)

fn ∼ Mult
(
vfn,

[
ρ̃

(j−1)
f1n , . . . , ρ̃

(j−1)
fKn

]T)
7 end
8 end
9 # Sample H given C

10 for k = 1, ...,K do
11 for n = 1, ..., N do
12 h

(j)
kn ∼ Gamma

(
α̃k +∑

f c
(j)
fkn, βk +∑

f w̃fk
)

13 end
14 end
15 end

Output: J samples asymptotically drawn from the joint posterior p(C,H|V; θ̃)

Note that c(j+1)
fn only needs to be sampled when vfn 6= 0, since c(j+1)

fn = [0, . . . , 0]T when
vfn = 0.

2.5.3 M-step

The M-step consists in minimizing the MC approximation of the different functionals. We
first discuss the optimization of W, then the optimization of α. Details regarding derivation
of the update rules can be found in Appendix 2.D.

Optimizing W. Given a set of J samples {C(j),H(j)}j returned by the Gibbs sampler
(after burn-in), minimization of the MC approximation of QCH in Eq. (2.30) w.r.t. W
yields the closed-form update

wMCEM-CH
fk =

∑
j,n c

(j)
fkn∑

j,n h
(j)
kn

, (2.38)
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as shown by Dikmen and Févotte (2012). They also showed that the following multiplicative
update decreases the MC approximation of QH in Eq. (2.31) at every iteration

wMCEM-H
fk = w̃fk

∑
j,n h

(j)
knvfn[W̃H(j)]−1

fn∑
j,n h

(j)
kn

. (2.39)

We now derive the novel update for EM-C. The MC approximation of QC in Eq. (2.32)
is given by:

Q̂C(W) def= − 1
J

J∑
j=1

log p(C(j); W). (2.40)

Replacing p(C(j); W) by its expression given by Equation (2.13), we obtain:

Q̂C(W) c= 1
J

∑
j,k,n

αk log

∑
f

wfk + βk

+
∑
f

c
(j)
fkn log

(∑
f wfk + βk

wfk

) . (2.41)

The minimization of Q̂C w.r.t. W leads to K linear systems of equations that we need
to solve for each column wk:

Akwk = bk. (2.42)

The matrix Ak ∈ RF×F is defined by:

afg =

JNαk +
∑
j,f,n

c
(j)
fkn

 δfg −∑
j,n

c
(j)
fkn, (2.43)

where δfg is the Kronecker symbol, i.e., δfg = 1 if and only if f = g, and zero otherwise.
The vector bk ∈ RF×1 is defined by:

bfk = βk
∑
j,n

c
(j)
fkn. (2.44)

The matrix Ak appears to be the sum of a diagonal matrix with a rank-1 matrix and can
be inverted analytically thanks to the Sherman-Morrison formula (Sherman and Morrison,
1950). This results in the closed-form update

wMCEM-C
fk = 1

JN

βk
αk

∑
j,n

c
(j)
fkn. (2.45)

Optimizing α. Deriving the MC approximations Q̂CH and Q̂H w.r.t. α and setting this
expression to zero yields the same equation that we need to solve for αk:

NJ (log(βk)−Ψ(αk)) +
∑
j,n

log h(j)
kn = 0, (2.46)
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where Ψ denotes the so-called digamma function, defined as the logarithmic derivative of
the Gamma function. Such an equation cannot be solved analytically. However, it can
easily be tackled numerically thanks to Newton’s method, as in Cemgil (2009). This results
in the following update

αk = α̃k −
NJ (log(βk)−Ψ(α̃k)) +∑

j,n log h(j)
kn

−NJΨ′(α̃k)
. (2.47)

As for the optimization of the MC approximation Q̂C, we follow the same reasoning, and
obtain the following equation that we need to solve for αk:

∑
j,n

Ψ

αk +
∑
f

c
(j)
fkn

−Ψ(αk) + log
(

βk∑
f wfk + βk

) = 0. (2.48)

Once again, we resort to Newton’s method (with the updated value of W).
Note that, for all three algorithms, this scheme can yield negative values of αk. When

this occurs, we simply set αk = 1
2αk.

2.6 Experimental work

Though we have discussed a way of optimizing α in the last subsection, all the experi-
mental work presented in this thesis will consider α to be fixed hyperparameters. Python
implementations of the three MCEM algorithms are available on GitHub.

2.6.1 Comparison of the algorithms

We begin this section by comparing the three MCEM algorithms proposed for MMLE in
the GaP model, using both synthetic toy datasets and real-world data.

2.6.1.1 Experiments with synthetic data

We generate a dataset of N = 100 samples according to the GaP model, with the following
parameters:

W?
1 =


0.638 0.075
0.009 0.568
0.045 0.126
0.308 0.231

 , α? = β? = 1K . (2.49)

The columns of W?
1 have been generated from a Dirichlet distribution (with parameters

1F ). The generated dataset (of size 4× 100) is denoted by V1.
We proceed to estimate the dictionary W using hyperparemeters K = K? + 1 = 3,

αk = βk = 1 with MCEM-C, MCEM-H and MCEM-CH. The algorithms are run for 500
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iterations. 300 Gibbs samples are generated at each iteration, with the first 100 samples
being discarded for burn-in (this proves to be enough in practice), leading to J = 200.
The Gibbs sampler at EM iteration i+ 1 is initialized with the last sample obtained at EM
iteration i (warm restart). Finally, the algorithms are initialized from the same deterministic
starting point given by

wfk = 1
K

βk
αk
vf , (2.50)

where vf denotes the mean of the f -th row of V.
Figure 2.3-(a) displays the negative log-likelihood L(W) w.r.t. CPU time in seconds,

exactly computed thanks to the derivations of Section 2.4, and Figure 2.4-(a) displays the
norm of the three columns of the iterates, also w.r.t. CPU time in seconds. The three
algorithms have almost identical computation times, since most of the computational burden
resides in the Gibbs sampling procedure that is common to the three algorithms. Moreover,
the three algorithms converge to the same point, with MCEM-C converging marginally
faster than the other two in this case.
We then proceed to generate a second dataset V2 according to the GaP model, with now

W?
2 = 100×W?

1. Over-dispersion ratios, defined as the ratio between the variance and the
mean, as well as the proportion of zeros, are given in the first two rows of Table 2.1. As we
can see, the values of V2 are way more dispersed than those of V1. Moreover, almost all
values of V2 are non-zero, unlike the values of V1, which are roughly 65% zero.
We apply the exact same experimental protocol to V2 as we did for V1, except that the

algorithms are now run for a larger number of 1000 iterations. The large values of V2 have
a huge impact on card(C), and as such it is now impossible to compute the likelihood in
reasonable time. The norms of the columns of the iterates are displayed on Figure 2.5-(a).
As we can see, MCEM-C clearly outperforms the other two algorithms in this scenario.
This behavior has been consistently found when estimating dictionaries from datasets with
sufficiently large values.

In order to check whether this phenomenon is imputed to the scale of the dictionary to
be estimated, or to the conditioning of the data matrix itself, we repeat the previously
described experimental protocol on V1 and V2, except for the value of βk which is changed
to alter the scale of the learned dictionaries. In particular, for V1 we now set βk = 100
(so that the values of the learned dictionary will be 100 times larger), and for V2 we set
βk = 0.01 (so that the values of the learned dictionary will be 100 times smaller).
The norms of the columns of the iterates are displayed on Figure 2.4-(b) for V1 (and

Figure 2.3-(b) displays the associated negative log-likelihood L(W)), and on Figure 2.5-(b)
for V2, for the three algorithms. As can be observed, changing the value of βk does not
impact at all the behavior of the algorithms. We thus conclude that the drastic difference in
convergence observed on the dataset V2 has to do with the conditioning of the data matrix.
We further investigate this phenomenon on a real dataset in the next sub-subsection.
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(a) Dataset V1 – β = 1
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(b) Dataset V1 – β = 100
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Figure 2.3: L(W) w.r.t. CPU time in seconds for the three MCEM algorithms on toy
dataset V1. From top to bottom:(a) β = 1; (b) β = 100.
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(a) Dataset V1 – β = 1
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(b) Dataset V1 – β = 100
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Figure 2.4: Evolution of the norm of each of the K = 3 columns wk of the dictionary w.r.t.
CPU time in seconds for the three MCEM algorithms on toy dataset V1. From
top to bottom:(a) β = 1; (b) β = 100.
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(a) Dataset V2 – β = 1
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(b) Dataset V2 – β = 0.01
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Figure 2.5: Evolution of the norm of each of the K = 3 columns wk of the dictionary w.r.t.
CPU time in seconds for the three MCEM algorithms on toy dataset V2. From
top to bottom:(a) β = 1; (b) β = 0.01.

71



Chapter 2 Maximum Marginal Likelihood Estimation in the Gamma-Poisson Model

Dataset F N Mean Var Ratio % of zeros
V1 4 100 0.55 0.99 1.80 65.3 %
V2 4 100 49.54 3017.01 60.90 0.5 %

Taste Profile 1509 805 0.15 2.00 13.00 94.7 %

Table 2.1: Characteristics of the three datasets considered for the experimetanl comparison
of the three EM algorithms. V1 and V2 are synthetic datasets, whereas the
Taste Profile is a real dataset. The over-dispersion ratio corresponds to the
variance to mean ratio.

2.6.1.2 Experiments with real data

Finally, we consider the Taste Profile dataset (Bertin-Mahieux et al., 2011). This
dataset contains the listening history of users in the form of song play counts. We use a
subset of the original dataset, as in Gouvert et al. (2018), leading to a dataset of F = 1509
users and N = 805 songs. The matrix V is quite sparse as 94.7% of its coefficients are zeros.
This saves a large amount of computational effort, because we only need to sample cfn for
pairs (f, n) such that vfn is non-zero. Moreover, the count values range from 0 to 421, with
an over-dispersion ratio of roughly 13 (see the last row of Table 2.1).

We apply the three algorithms with K = 10 and αk = βk = 1. The algorithms are run for
1000 iterations. 150 Gibbs samples are generated in each iteration with the first 50 being
discarded for burn-in (i.e., J = 100). The Gibbs sampler at iteration i+1 is again initialized
with warm restart. The algorithms are initialized in the same fashion as before.
Figure 2.6 shows the column norms of the iterates w.r.t. CPU time in minutes for the

first 800 iterations. The difference in convergence speed between MCEM-C and the other
two algorithms is again striking. MCEM-C, the algorithm proposed in this chapter, effi-
ciently explores the parameter space in the first iterations and converges dramatically faster
than MCEM-CH or MCEM-H. The algorithms here converge to different solutions, which
confirms the non-convexity of L(W). Other runs confirmed that MCEM-C is consistently
faster.
As such, we conjecture that the favorable properties of MCEM-C are linked to the over-

dispersion of the data, but not to the sparsity (as it has been observed on both V2 and
the Taste Profile dataset). We are unable to provide a more detailed explanation at this
stage.
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Figure 2.6: Evolution of the norm of each of the K = 10 columns of the dictionaries w.r.t.
CPU time in minutes for the three MCEM algorithms on the Taste Profile
dataset.
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2.6.2 Examples of the self-regularization phenomenon

We conclude this section by showing examples of the self-regularization phenomenon on
both a synthetic dataset and a real dataset.

2.6.2.1 On synthetic data

We generate a toy dataset of size 8 × 100 according to the GaP model with α?k = 0.05,
β?k = 1, and a dictionary W? of size 8 × 3 graphically displayed on Figure 2.8-(a). Each
column of W? has been generated from a Dirichlet distribution, rescaled to sum up to 8.
We then proceed to estimate a dictionary Ŵ of size 8×K, for all values of K between 1

and F , with the algorithm MCEM-C. In each of these experiments, the hyperparameters are
set to α = 1K and β = 1K , and the algorithm is run for 500 iterations. 300 Gibbs samples
are generated at each iteration with a burn-in of the first 100 samples, leading to J = 200.
We then retrieve the iterate with the smallest negative log-likelihood L(W), which we are
able to compute exactly in this small-dimensioned problem.
All the subplots (b) to (i) of Figure 2.8 display the estimated Ŵ for all values of K

between 1 and 8. Note that the color bar of Figure 2.8-(a) is shared by all these subplots,
so that direct visual comparison may be carried out. As we can see, when K > 4, the
additional columns have very small norm, or are full of zeros, hence illustrating the behavior
first observed in Dikmen and Févotte (2012) and explained in this chapter. This is further
confirmed on Figure 2.7, which displays the associated negative log-likelihoods L(Ŵ) for
all K. The likelihood reaches a plateau for K ≥ 4.
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Figure 2.7: L(Ŵ) w.r.t. K.
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(a) W? (b) Ŵ(K = 1) (c) Ŵ(K = 2) (d) Ŵ(K = 3)
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Figure 2.8: (a) Ground truth dictionary W?; (b)-(g) Estimated dictionaries Ŵ by MMLE
for K from 1 (b) to 8 (i). The color bar displayed in (a) is common to all
subplots.
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Figure 2.9: Norm of the K = 100 columns of the dictionary learned on the Taste Profile
dataset.

2.6.2.2 On a real dataset

We run MCEM-C on the Taste Profile dataset, setting K = 100, and the hyperpa-
rameters to α = 1K and β = 1K . The algorithm is run for 1000 iterations. 150 Gibbs
samples are generated at each iteration with a burn-in of the first 50, leading to J = 100.
On Figure 2.9 is displayed the norm of each of the K = 100 columns of the estimated Ŵ.
Exactly 40 columns are comprised only of zeros.

2.7 Discussion

We conclude this chapter by recalling the obtained results, and by discussing some limi-
tations and open questions.
One of the main results showcased in this chapter is the semi-explicit closed-form ex-

pression of the marginal likelihood in the Gamma-Poisson matrix factorization model. As
a matter of fact, it was the conjugacy between the Gamma distribution and the Poisson
distribution which enabled us to derive such an expression (giving rise here to the negative
multinomial distribution). If another prior distribution had been assumed on H (i.e., not
Gamma), we would not have been able to derive a similar analysis, since the marginalization
of H would be intractable. The extension of our analysis to more general models with any
kind of prior on H is not straightforward, and the occurrence of analogous phenomena in
different settings remains an open question at this point.
The analytical expression of the marginal likelihood led in turn to a formal explanation

of the “self-regularization” phenomenon described in Dikmen and Févotte (2012). The key
argument was the rewriting of the marginal likelihood as a regularization term, known to
be sparsity-inducing, and a data-fitting term. We would however like to point out two
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elements that were not taken into account in this analysis. The first one is the nature of the
data-fitting term. As it turns out, we were unable to give a meaningful description of the
interaction between this term and the regularization term. The second one is the influence
of the hyperparameters, namely α (since β is merely a scale parameter), which could not
be quantified either.
As for the optimization of the marginal likelihood, we proposed a novel EM algorithm

(EM-C), and compared the three variants of the EM algorithm on both synthetic and
real datasets. Our experimental work demonstrated the favorable properties of EM-C.
EM-based algorithms, by nature, assume the marginal likelihood to be intractable. An
exciting perspective would therefore be to break out of EM-based schemes; in particular to
design algorithms taking advantage of the expression of the marginal likelihood for direct
optimization.
As such, we still have no alternative to the MCEM algorithms presented in Section 2.5

at this point. MCEM algorithms are extremely computationally intensive, since they re-
quire sampling from a target distribution which changes at each EM iteration, and these
samples cannot be recycled3. One might consider resorting to variational inference, but
fundamentally provides an approximate solution to the problem. Variants of the EM algo-
rithm, such as SAEM (Delyon et al., 1999; Kuhn and Lavielle, 2004) or on-line EM (Cappé
and Moulines, 2009) have been considered, but did not lead to any major improvement in
our case.
We conclude this discussion by mentioning a very recent work, which leveraged on our

closed-form expression of the marginal likelihood for the numerical evaluation of L(W,α,β)
(Capdevila et al., 2018). This is a task of interest in text information retrieval, to assess the
likelihood a previously unseen document for instance. More precisely, the authors developed
a so-called left-to-right algorithm (Wallach et al., 2009b) for this task.

3Note that these EM algorithms exploit the Poisson-Gamma conjugacy, since it provides a Gibbs sampler
for the posterior of the latent variables where all the conditionals are known. In a non-conjugate model,
we would have to resort to additional Metropolis-Hastings steps, for example.
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2.A Probability distributions

2.A.1 Negative binomial distribution

A discrete random variable X is said to have a negative binomial (NB) distribution with
parameters α > 0 (the dispersion or shape parameter) and p ∈ [0, 1] if, for all c ∈ N, the
p.m.f. of X is given by:

P(X = c;α, p) = Γ(α+ c)
Γ(α) c! (1− p)αpc. (2.51)

We have
E(X) = αp

1− p, var(X) = αp

(1− p)2 . (2.52)

The variance of X is larger than its mean. The NB distribution is therefore suitable
to model over-dispersed count data. Indeed, it offers more flexibility than the Poisson
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distribution where the variance and the mean are equal. The NB distribution may be
obtained via a Gamma-Poisson mixture. Consider the following hierarchical model:

λ ∼ Gamma(α, β), (2.53)
X|λ ∼ Poisson(λ). (2.54)

Then, for all c ∈ N:

P(X = c ;α, p) =
∫
R+

P(X = c|λ)p(λ)dλ (2.55)

=
∫
R+

λc

c! exp(−λ) βα

Γ(α)λ
α−1 exp(−βλ) (2.56)

= Γ(α+ c)
Γ(α)c!

βα

(β + 1)c+α = NB
(
α,

1
β + 1

)
. (2.57)

2.A.2 Negative multinomial distribution

The negative multinomial (NM) distribution (Sibuya et al., 1964) is the multivariate
generalization of the NB distribution. It is parametrized by a dispersion parameter α > 0
and a vector of event probabilities p = [p1, . . . , pF ]T, where 0 ≤ pf ≤ 1 and ∑f pf ≤ 1.
Denoting p0 = 1 −∑f pf , and for all (c1, . . . , cF ) ∈ NF , the p.m.f. of the NM distribution
is given by:

P(X1 = c1, . . . , XF = cF ) =
Γ(α+∑

f cf )
Γ(α)∏f cf ! p

α
0
∏
f

p
cf
f . (2.58)

We have
E(Xf ) = α

pf
p0
, var(Xf ) = α

pf (pf + p0)
p2

0
. (2.59)

Proposition 2.1. An equivalent characterization of the NM distribution is given by the
marginal distribution of X in the following generative process.

L ∼ NB

α,∑
f

pf

 , (2.60)

X|L ∼ Mult

L, [ p1∑
f pf

, . . . ,
pF∑
f pf

]T
 . (2.61)

Proof.

P(X = [c1, . . . , cF ]T) = P(X = [c1, . . . , cF ]T|L)× P(L) (2.62)

= L!∏
f cf !

∏
f

(
pf∑
f pf

)cf Γ(α+ L)
Γ(α)L!

1−
∑
f

pf

α∑
f

pf

L . (2.63)

Noting that L = ∑
f cf completes the proof.
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2.B Stars and bars theorem

The so-called “stars and bars” theorems refer to two elementary results in combinatorics.
They take their name from a visual representation with stars and bars, which helps proving
the theorems. We only state here the theorem of interest.

Proposition 2.2. For any pair of positive integers n and k, the number of k-tuples of non-
negative integers whose sum is n is given by(

n+ k − 1
k − 1

)
=
(
n+ k − 1

n

)
. (2.64)

2.C Gibbs sampling of the posterior distribution

Given the current values of the parameters, namely W̃ and α̃, we would like to be
able to sample from the posterior of the latent variables p(C,H|V; W̃, α̃). Let us denote
θ̃ = {W̃, α̃}. In a Gibbs sampler, we are interested in the conditionals p(C|H,V; θ̃) and
p(H|C,V; θ̃).

2.C.1 First conditional

We recall the following result.

Proposition 2.3. Let X1, ...XK be independent Poisson random variables with rates λk.
Let V = ∑

kXk. Then the conditional distribution P(X1, . . . , XK |V ) is multinomial with
number of trials V and event probabilities[

λ1∑
k λk

, . . . ,
λK∑
k λk

]T
. (2.65)

Proof. Consider (X1, . . . , XK) such that ∑kXk = V . Then we have

P(X1, . . . , XK |V ) = P(V |X1, ..., XK)P(X1, ..., XK)
P(V ) (2.66)

=
∏
k
λ
xk
k
xk! exp(−λk)

(
∑

k
λk)v
v! exp(−∑k λk)

(2.67)

= v!∏
k xk!

∏
k

(
λk∑
k λk

)xk
. (2.68)
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Therefore in our case, we can easily derive that

p(C|H,V; θ̃) =
∏
f,n

p(cfn|hn, vfn; w̃f ), (2.69)

with

p(cfn|hn, vfn; w̃f ) = Mult

vfn,
[

w̃f1h1n∑
k w̃fkhkn

, . . . ,
w̃fKhKn∑
k w̃fkhkn

]T
 . (2.70)

2.C.2 Second conditional

We have

p(H|C,V; θ̃) = p(H|C; θ̃) (2.71)
∝ p(C|H; W̃)p(H; α̃) (2.72)
∝
∏
f,k,n

p(cfkn|hkn; w̃fk)
∏
k,n

p(hkn; α̃k) (2.73)

∝
∏
f,k,n

h
cfkn
kn exp(−wfkhkn)

∏
k,n

hαk−1
kn exp(−βkhkn) (2.74)

∝
∏
k,n

h

∑
f
cfkn+αk−1

kn exp

−
∑

f

wfk + βk

hkn
 (2.75)

= Gamma

αk +
∑
f

cfkn, βk +
∑
f

wfk

 . (2.76)

2.D EM algorithms

2.D.1 MCEM-CH

The MC approximation of QCH writes

Q̂CH(θ) = 1
J

∑
j

log p(C(j),H(j); θ) (2.77)

= 1
J

∑
j

(
log p(C(j)|H(j); W) + log p(H(j); α)

)
(2.78)

= 1
J

∑
j

∑
f,k,n

log p(c(j)
fkn|h

(j)
kn ;wfk) +

∑
k,n

log p(h(j)
kn ;αk)

 (2.79)

= 1
J

 ∑
j,f,k,n

log

(wfkh(j)
kn)c

(j)
fkn

c
(j)
fkn!

exp(−wfkhkn)

+
∑
j,k,n

log
(
βαkk

Γ(αk)
(h(j)
kn)αk−1 exp(−βkhkn)

) .
(2.80)
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Deriving w.r.t. a specific wfk yields

1
J

∑
j,n

c(j)
fkn

wfk
− h(j)

kn

 = 0, (2.81)

which can be easily solved as

wfk =
∑
j,n c

(j)
fkn∑

j,n h
(j)
kn

. (2.82)

Deriving w.r.t. a specific αk yields

1
J

∑
j,n

(
log(βk)−Ψ(αk) + log(h(j)

kn)
)

= 0, (2.83)

which we numerically solve with Newton’s method.

2.D.2 MCEM-H

The MC approximation of QH writes

Q̂H(θ) = 1
J

∑
j

log p(V,H(j); θ) (2.84)

= 1
J

∑
j

(
log p(V|H(j); W) + log p(H(j); α)

)
(2.85)

Regarding W, we can write

Q̂H(W) = 1
J

∑
j

DKL(V|WH(j)) + cst. (2.86)

Noting the parallel with the standard KL-NMF problem, this can be tackled with an MM
algorithm, see Dikmen and Févotte (2012). Regarding α, we note that Q̂H(α) = Q̂CH(α),
therefore yielding Eq. (2.83) again.
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2.D.3 MCEM-C

Optimizing W. The MC approximation of QC writes

Q̂C(θ) = 1
J

∑
j

log p(C(j); θ) (2.87)

= 1
J

∑
j,k,n

log p(c(j)
kn ; θ) (2.88)

= 1
J

∑
j,k,n

log

Γ(αk +∑
f c

(j)
fkn)

Γ(αk)

+ αk log
(

βk∑
f wfk + βk

)

+
∑
f

c
(j)
fkn log

(
wfk∑

f wfk + βk

) . (2.89)

Deriving Eq. (2.89) w.r.t. to a specific wfk, and setting it to zero, we have:

1
J

∑
j,n

c(j)
fkn

wfk
−
αk +∑

f c
(j)
fkn∑

f ′ wf ′k + βk

 = 0 (2.90)

∑j,n c
(j)
fkn

wfk
−
NJαk +∑

j,n,f c
(j)
fkn∑

f ′ wf ′k + βk

 = 0, (2.91)

that is NJαk +
∑
j,n,f

c
(j)
fkn

wfk =

∑
j,n

c
(j)
fkn

∑
f

wfk + βk

 (2.92)

NJαk +
∑
j,n,f

c
(j)
fkn

wfk −
∑
j,n

c
(j)
fkn

∑
f

wfk = βk
∑
j,n

c
(j)
fkn. (2.93)

We see that the variables at hand are w1k, ..., wFk, which is the k-th column of W. We
therefore obtain a linear system of F equations with F variables, which we rewrite in a
matricial form as:

Akwk = bk. (2.94)

Introducing the notations

λfk =
∑
j,n

c
(j)
fkn (2.95)

ηk = NJαk, (2.96)
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Ak ∈ RF×F and bk ∈ RF×1 are defined as:

Ak =

ηk +
∑
f

λfk

 IF − λk1T
F (2.97)

bk = βkλk, (2.98)

where IF denotes the identity matrix of size F , 1F denotes the vector of ones of size F ,
and λk = [λ1k, . . . , λFk]T. Therefore, to update W, we need to solve K independent linear
systems, one for each column of W:

wk = A−1
k bk. (2.99)

Let us consider Eq. (2.99) for a certain k. The index k will be dropped from now on for
enhanced readability. We want to check if w as the solution of Eq. (2.99) is non-negative.
Since b is non-negative, a sufficient condition is to prove that A−1 is non-negative. The
matrix A has a particular structure. Indeed, it is the sum of a diagonal matrix and a rank-
one matrix. As such, its inverse can be described thanks to the Sherman-Morrison formula
(Sherman and Morrison, 1950).

Theorem 2.3. Suppose X ∈ Rn×n is an invertible square matrix. Then, for all u and
v ∈ Rn×1, X + uvT is invertible if and only if 1 + vTX−1u 6= 0. If X + uvT is invertible,
its inverse is given by :

(X + uvT)−1 = X−1 − X−1uvTX−1

1 + vTX−1u . (2.100)

In our problem, we identify

X =

η +
∑
f

λf

 IF , u = λk, v = −1F . (2.101)

X is a diagonal matrix and therefore invertible. We have

1 + vTX−1u = 1−
∑
f λf

η +∑
f λf

= η

η +∑
f λf

> 0, (2.102)

because η > 0. Therefore A is always invertible, and its inverse is given by

A−1 = 1(
η +∑

f λf
)IF −

η +∑
f λf

η

(
− 1

(η +∑
f λf )2

)
λk1T

F (2.103)

= 1(
η +∑

f λf
)IF + 1

η(η +∑
f λf )λk1T

F . (2.104)

84



Chapter 2 Maximum Marginal Likelihood Estimation in the Gamma-Poisson Model

Therefore A−1 is always non-negative, hence the non-negativity of w. Moreover a closed-
form expression of w is available:

wf = β

(
λf

η +∑
f ′ λf ′

+
λf
∑
f ′ λf ′

η(η +∑
f ′ λf ′)

)
(2.105)

= β
λf (η +∑

f ′ λf ′)
η(η +∑

f ′ λf ′)
= β

λf
η
. (2.106)

Back to the initial problem, we obtain the following update rule

wfk = βk
NJαk

∑
j,n

c
(j)
fkn. (2.107)

Optimizing α. Deriving Eq. (2.89) w.r.t. to a specific αk, and setting it to zero yields

1
J

∑
j,n

Ψ

αk +
∑
f

c
(j)
fkn

−Ψ(αk) + log
(

βk∑
f wfk + βk

) = 0, (2.108)

which, once again, cannot be solved analytically in closed form. We resort to the Newton’s
method, as previously described, yielding the update

αk = αk −

∑
j,n

(
Ψ
(
αk +∑

f c
(j)
fkn

)
−Ψ(αk) + log

(
βk∑

f
wfk+βk

))
NJ

(
Ψ′
(
αk +∑

f c
(j)
fkn

)
−Ψ′(αk)

) . (2.109)
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3.1 Introduction

In the previous chapter, we studied a probabilistic NMF model for integer data, based on
the Poisson distribution. We will now turn to a model for continuous non-negative data.
We will assume the following observation model

vfn ∼ Exp
(

1
[WH]fn

)
, (3.1)

where “Exp” denotes the exponential distribution parametrized by its rate. As already
stated in Section 1.3.2, this model is equivalent to minimizing the Itakura-Saito divergence
between V and WH, and we will discuss in Section 3.2 why this generative model is par-
ticularly well-suited for the analysis of power spectrograms. The use of such a likelihood
was first proposed in Févotte et al. (2009), and has since become a classical model in audio
signal processing. The authors considered the plain maximum likelihood estimation of W
and H, as well as a MAP estimation in a Bayesian variant. This model has also been tackled
in Hoffman et al. (2010) in a Bayesian non-parametric setting to alleviate the choice of the
factorization rank K.
Dikmen and Févotte (2011) considered a semi-Bayesian setting with generalized Gamma

priors on H and tackled maximum marginal likelihood estimation. They observed a similar
self-regularization phenomenon to the one described in the Gamma-Poisson model. How-
ever, it should be noted that they only proposed variational inference schemes. As such,
we may wonder whether the observed self-regularization phenomenon is a by-product of the
inference method in this model.
In this chapter, for reasons that will be apparent later, we tackle MMLE in the specific

semi-Bayesian model with independent inverse Gamma priors on H, i.e., a special case of the
prior considered in Dikmen and Févotte (2011). We aim at carrying out the same analysis
as the one done for the GaP model. We provide the following contributions:
• We show how the generative model that will be referred to as IGCN can be rewritten
free of H;
• We obtain an expression for the marginal likelihood with an intractable integral, but
which still reveals a penalty term on W;
• We provide three novel MCEM algorithms for the optimization of the marginal like-
lihood;
• We conduct experimental work on a real audio decomposition task. However, the
learned dictionaries do not exhibit sparsity. Furthermore, we observe that MMLE
behaves similarly to IS-NMF, i.e., plain joint maximum likelihood estimation in the
frequentist model, making its benefits less striking in this case.

The rest of the chapter is organized as follows. Section 3.2 discusses model considerations,
and introduces the so-called IGCN model. Section 3.3 proposes a new formulation of IGCN
in which H has been marginalized out. This leads to an expression of the marginal likelihood
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discussed in Section 3.4. Novel MCEM algorithms are derived in Section 3.5, and consider-
ations regarding the estimation of audio sources are described in Section 3.6. Experimental
work is conducted in Section 3.7, and we conclude by a discussion in Section 3.8.

3.2 Model

3.2.1 Observation model

As it turns out, the generative model of Eq. (3.1) is equivalent to

xfn ∼ CN (0, [WH]fn), (3.2)
vfn = |xfn|2, (3.3)

where CN denotes the circularly-symmetric. This amounts to saying that the real and
imaginary parts of xfn are independent and distributed as

Re(xfn) ∼ N (0, 1
2[WH]fn), Im(xfn) ∼ N (0, 1

2[WH]fn). (3.4)

For more detailed considerations about complex normal distributions, we refer the reader
to Appendix 3.A. The equivalence between the two generative models is obtained by re-
membering that the sum of two independent, squared, standard normal distributions is a
chi-squared distribution with two degrees of freedom, i.e., an exponential distribution.
Note that this model also has a composite structure, thanks to the superposition property

of the normal distribution. We may further augment the model as

cfkn ∼ CN (0, wfkhkn), (3.5)
xfn =

∑
k

cfkn, (3.6)

vfn = |xfn|2. (3.7)

In audio signal processing, we are interested in the short-time Fourier transform (STFT)
of the signal, that is when the signal has been divided in short, overlapping segments of equal
lengths over which the Fourier transform is computed. This results in a complex matrix,
X. An exponential likelihood for the power spectrogram (V = |X|2) therefore underlies
a Gaussian composite model for the complex spectrogram. More precisely, it is modeled
as a pure (i.e., without noise) sum of K zero-mean components, whose variances are rank-
one. These are reasonable assumptions from a physical point of view. Finally, note that
this vindicates the choice of using the power spectrogram as the non-negative observation
matrix rather than the magnitude spectrogram (V = |X|).
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3.2.2 Working with complex data

Assuming that we have chosen a prior distribution on H (see the following subsection
which discusses this choice), our goal is to maximize the marginal likelihood

p(V; W) =
∫

H
p(V|H; W)p(H)dH. (3.8)

However, as can be easily derived, we have the following proportional relation

p(V; W) ∝ p(X; W), (3.9)

and as such, we will rather focus on the study of p(X; W), since the composite structure
brought by the complex normal likelihood, identical to the one with a Poisson likelihood,
facilitates derivations.
Indeed, we have for the p.d.f. of xfn in Eq. (3.2)

f(xfn) = 1
π[WH]fn

exp
(
− |xfn|

2

[WH]fn

)
, (3.10)

and as such, we can write

p(X; W,H) =
∏
f,n

1
π[WH]fn

exp
(
− |xfn|

2

[WH]fn

)
(3.11)

= π−FN
∏
f,n

1
[WH]fn

exp
(
− vfn

[WH]fn

)
(3.12)

= π−FNp(V; W,H). (3.13)

Since Eq. (3.13) holds, by multiplication and integration, we straightforwardly obtain Eq. (3.9).

3.2.3 Prior distribution

We consider independent inverse Gamma priors on H. As such, the studied model be-
comes

hkn ∼ IG(αk, βk), (3.14)
cfkn|hkn ∼ CN (0, wfkhkn), (3.15)

xfn =
∑
k

cfkn, (3.16)

where IG denotes the inverse Gamma distribution parametrized with its shape and scale.
This choice is mainly motivated by the fact that the inverse Gamma distribution is conjugate
with the normal distribution with known mean and unknown variance. The p.d.f. and
moments of the inverse Gamma distribution are recalled in Appendix 3.A. We shall refer
to the generative model defined by Eqs. (3.14)-(3.15)-(3.16) as the “IGCN” (standing for
inverse Gamma complex normal) model. In the following, α denotes the set {α1, . . . , αK}
and β denotes the set {β1, . . . , βK}.
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3.2.4 Objective function

Treating α as fixed hyperparameters, and noting a similar scale-invariance for β to the
one described at the end of Section 2.4.11, MMLE in the IGCN model amounts to the
minimization of

L(W) def= − log p(X; W) (3.17)

= − log
∫

H
p(X|H; W)p(H)dH. (3.18)

3.3 Marginalization of H

We now show how the IGCN model can be rewritten free of the variables H. Similarly
to the previous chapter, hkn can be marginalized out from Eqs. (3.14)-(3.15), thanks to the
conjugacy between distributions, leading to a closed-form distribution for the components
ckn. More precisely, we have

p(ckn; wk, αk, βk)

=
∫
R+
p(c1kn, . . . , cFkn|hkn)p(hkn)dhkn (3.19)

=
∫
R+

∏
f

p(cfkn|hkn)

 p(hkn)dhkn (3.20)

=
∫
R+

∏
f

1
πwfkhkn

exp
(
− |cfkn|

2

wfkhkn

) βαkk
Γ(αk)

( 1
hkn

)αk+1
exp

(
− βk
hkn

)
dhkn (3.21)

= 1
πF
∏
f wfk

βαkk
Γ(αk)

Γ(αk + F )(
βk +∑

f
|cfkn|2
wfk

)αk+F . (3.22)

This distribution can be identified as a complex multivariate Student’s t-distribution2 of
dimension F (Yoshii et al., 2016), with parameters

ν = 2αk, µ = 0F , Σ = Diag(λk), (3.23)

where λk ∈ RF+ = βk
αk

wk, and 0F denotes a vector of zeros of size F . More details about the
distribution can be found in Appendix 3.A.
Therefore, we immediately obtain the following result:

1As it turns out, in this Chapter β is a scale parameter (it was a rate parameter in Chapter 2), so we would
write instead p(V; WΛ−1,α,βΛ) = p(V; W,α,β).

2To have a better intuition about where this comes from, we recall that the scalar real-valued Student’s t-
distribution arises when the variance of a normal distribution is assumed to be inverse Gamma distributed.
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Theorem 3.1. IGCN can be rewritten as follows

ckn ∼ CT 2αk (0F ,Diag(λk)) , (3.24)
vn =

∑
k

ckn, (3.25)

where CT ν (µ,Σ) denotes the multivariate complex Student’s t-distribution with degrees of
freedom ν, location parameter µ and scale matrix Σ.

IGCN may therefore be interpreted as a composite complex Student’s t model, in which
each source is parametrized by wk, αk and βk.

3.4 Marginal likelihood

3.4.1 Analytical expression

We now focus on obtaining an expression for the marginal likelihood. Defining a set C of
admissible components,

C = {C ∈ CF×K×N | ∀(f, n),
∑
k

cfkn = xfn}, (3.26)

we wish to marginalize the variables C. However, a major difference with what was done
in the Gamma-Poisson model must now be discussed. In the previous chapter, as we were
dealing with integer variables, C was a finite set, yielding a semi-explicit closed form expres-
sion of the marginal likelihood with a finite sum. In the IGCN model, we are dealing with
continuous variables, and as such the finite sum translates here to an intractable integral.
More precisely, writing

p(X; W) =
∫

C∈C
p(C; W)dC =

∫
C∈C

∏
k,n

p(ckn; wk)dC, (3.27)

and replacing p(ckn; wk) by its expression (see Eq. (3.22)), we obtain

p(X; W) =
∫

C∈C

∏
k,n

 1
πF
∏
f wfk

βαkk
Γ(αk)

Γ(αk + F )(
βk +∑

f
|cfkn|2
wfk

)αk+F

 dC (3.28)

=

∏
k,n

βαkk
πF

Γ(αk + F )
Γ(αk)

1∏
f wfk

∫
C∈C

∏
k,n

1(
βk +∑

f
|cfkn|2
wfk

)αk+F dC. (3.29)
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3.4.2 Self-regularization

The negative log-likelihood may be expressed as

− 1
N
L(W) =

∑
f,k

log (wfk)−
1
N

log
∫

C∈C

∏
k,n

1(
βk +∑

f
|cfkn|2
wfk

)αk+F dC + cst, (3.30)

with
cst = −

∑
k

log
(
βαkk Γ(αk + F )
πFΓ(αk)

)
. (3.31)

The first term depends only on W, and acts like a regularization parameter on W. The
second term is an interaction term between W and V (through C), and acts as a data-fitting
term. The final term is a constant. It is therefore expected that this revealed regularization
term will promote local sparsity in the estimated dictionaries, as opposed to group-sparsity
which we could observe in the GaP model.

3.5 Optimization algorithms

3.5.1 Expectation-Minimization

We now focus on the task of optimizing Eq. (3.18). The structure of the problem being
identical to the problem studied in the Gamma-Poisson model, we consider similar EM
algorithms. In particular, we consider the same three variants, based on three different
choices for the set of latent variables. We summarize below the three functionals that are
iteratively minimized, given the current estimate of the dictionary denoted W̃.

EM-CH.
QCH(W; W̃) = −

∫
C,H

log p(C,H; W)p(C,H|X; W̃)dCdH. (3.32)

EM-H.
QH(W; W̃) = −

∫
H

log p(X,H; W)p(H|X; W̃)dH. (3.33)

EM-C.
QC(W; W̃) = −

∫
C

log p(C; W)p(C|X; W̃)dC. (3.34)

All these algorithms are novel, and in particular have not been considered in Dikmen
and Févotte (2011). They instead considered a variational approach, which consisted in an
iterative variational bound construction and optimization. However, this does not qualify
as an MM approach, because the constructed bound is never tight to the objective function,
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therefore failing to ensure the decrease of the objective function3. This is in contrast with
the considered EM algorithms. Our approach conceptually asymptotically yield a critical
point of the objective function, something the approach of Dikmen and Févotte (2011)
cannot guarantee.
In all three cases, the posterior of the latent variables involved is intractable and neither

are the integrals involved in Equations (3.32)-(3.33)-(3.34). To overcome this problem, we
resort to Monte Carlo EM (MCEM) (Wei and Tanner, 1990).

3.5.2 Monte Carlo E-step

A Gibbs sampler procedure can be devised to yield samples p(C,H|X; W̃), which also
returns samples from the marginal posterior distributions p(C|X; W̃) and p(H|X; W̃) at
convergence.
In the IGCN model, both conditional distributions p(H|C; W̃) and p(C|H,X; W̃) are

known, however sampling from the latter requires a slightly more involved procedure. For
p(H|C; W̃), we have

p(H|C; W̃) =
∏
k,n

p(hkn|ckn; w̃k), (3.35)

where

p(hkn|ckn; w̃k) = IG

αk + F, βk +
∑
f

|cfkn|2

w̃fk

 . (3.36)

As for the other conditional p(C|H,X; W̃), we have

p(C|H,X; W̃) =
∏
f,n

p(cfn|hn, vfn; w̃f ), (3.37)

where
p(cfn|hn, vfn; w̃f ) = CN (µfn,Σfn) (3.38)

where the parameters of the complex normal distribution are defined as

µfn = xfn∑
k ρfkn

ρfn, Σfn = diag(ρfn)−
ρfnρT

fn∑
k ρfkn

, (3.39)

with the notations

ρfkn = wfkhkn, ρfn = [ρf1n, . . . , ρfKn]T. (3.40)

All derivations are given in Appendix 3.B. However, note that the covariance matrix Σfn

is not full-rank (it is more precisely of rank K − 1). When this is the case, the (complex)

3Note that very recent works show that variational Bayesian methods can lead to a consistant estimation
of the parameters under certain assumptions, see for instance Alquier and Ridgway (2017).
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Algorithm 3: Sampling from p(c|x,ρ)
Input: x ∈ C, ρ ∈ CK

1 r = x

2 t = ∑K
k=1 ρk

3 for k = 1, ...,K − 1 do
4 # Sample as Eq.(3.41)
5 u ∼ CN (0, 1)
6 ck =

√
ρk(1− ρk

t ) u+ r
t ρk

7 # Update sampling parameters
8 r = x− ck
9 t = t− ρk

10 end
11 cK = r

Output: c ∈ CK drawn from p(c|x,ρ)

normal distribution is referred to as a singular (complex) normal distribution. Sampling
from a singular normal distribution is not straightforward since we cannot use the Cholesky
decomposition routine.
In this case, we resort to a sequential sampling of the first K − 1 marginal distributions.

Dropping the indices f and n for enhanced readability, this amounts to sequentially sampling
the first K − 1 components ck as

ck ∼ CN
(
x−

∑k−1
l=1 cl∑K

l=k ρl
ρk, ρk

(
1− ρk∑K

l=k ρl

))
, (3.41)

and set cK = 1−∑K−1
k=1 ck. This procedure is summed up in Algorithm 3.

In the Gibbs sampler of the Gamma-Poisson model, sampling C boiled down to sampling
as many multinomial distribution as non-zero values of V (recall the data were integer-
valued). There is unfortunately no similar skipping trick in the IGCN model, and we are
doomed to sample F × N multivariate complex normal distributions. The whole Gibbs
sampling procedure is summarized in Algorithm 4.

3.5.3 Monte Carlo M-step

We consider a set of J samples {C(j),H(j)} returned by the Gibbs sampler (after burn-in).
All derivation details regarding the optimization step can be found in Appendix 3.C.
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Algorithm 4: Gibbs sampler in the IGCN model
Input: Complex matrix X, current value of the dictionary W̃

1 Generate initial state H(0)

2 for j = 1, ..., J do
3 # Sample C given H
4 for f = 1, ..., F do
5 for n = 1, ..., N do
6 c(j)

fn ∼ CN (µ(j−1)
fn ,Σ(j−1)

fn ) # See Algorithm 3
7 end
8 end
9 # Sample H given C

10 for k = 1, ...,K do
11 for n = 1, ..., N do

12 h
(j)
kn ∼ IG(αk + F, βk +∑

f

|c(j)
fkn
|2

w̃fk
)

13 end
14 end
15 end

Output: J samples asymptotically from the joint posterior p(C,H|X; θ̃)

EM-CH. Minimization of the MC approximation of QCH in Eq. (3.32) w.r.t. W leads to
the closed-form update

wMCEM-CH
fk = 1

NJ

∑
n,j

|c(j)
fkn|2

h
(j)
kn

. (3.42)

EM-H. Using the standard majorization of the IS divergence, the following multiplicative
update decreases the MC approximation of QH in Eq. (3.33) at every iteration.

wMCEM-H
fk = w̃fk

√√√√√∑j,n h
(j)
knvfn[W̃H(j)]−2

fn∑
j,n h

(j)
kn [W̃H(j)]−1

fn

. (3.43)

EM-C. The MC approximation of QC in Eq. (3.34) writes

Q̂C(W) c= 1
J

∑
j,k,n

∑
f

log(wfk) + (αk + F ) log

βk +
∑
f

|c(j)
fkn|2

wfk

 . (3.44)

To optimize this function w.r.t. W, we resort to an MM scheme. In particular, we majorize
the logarithm in the second term, which is always below its tangents. The minimization of
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this auxiliary function can be done in closed form, leading to the following update

wfk = αk + F

NJ

∑
j,n

|c(j)
fkn|2

βk +∑
f

|c(j)
fkn
|2

w̃fk

. (3.45)

3.6 Estimating audio sources

In the context of audio decomposition, the factors W and H are not the final purpose of
the learning process. Once having point estimates of the factors, we would like to be able
to reconstruct the corresponding sources in the temporal domain.

Point estimate of H

Consider an estimate Ŵ obtained via MMLE. If we are seeking a point estimate of H,
a possible choice is the maximum a posteriori (MAP) estimate, which corresponds to the
minimization of

CMAP(H) def= − log p(H|V; Ŵ) (3.46)
c= − log p(V|H; Ŵ)− log p(H) (3.47)
c= DIS(V|ŴH) +

∑
k,n

(
(αk + 1) log hkn + βk

hkn

)
. (3.48)

Using the standard majorization of the IS divergence (Févotte and Idier, 2011; Dikmen
and Févotte, 2011), we obtain the following bound tight at H = H̃

CMAP(H) ≤
∑
k,n

(
pkn
hkn

+ qknhkn

)
+
∑
k,n

(
(αk + 1) log hkn + βk

hkn

)
, (3.49)

where
pkn = h̃2

kn

∑
f

ŵfkvfn

[ŴH̃]2fn
, qkn =

∑
f

ŵfk

[ŴH̃]fn
. (3.50)

The minimization of the auxiliary function w.r.t. hkn yields a degree 2 polynomial with
exactly one non-negative root given by

hkn = −(αk + 1) +
√

(αk + 1)2 + 4qkn(βk + pkn)
2qkn

. (3.51)

Point estimate of C

We now turn to the problem of estimating the components. In the frequency domain,
the kth source corresponds to the F ×N spectrogram Ck = {cfkn}f,n. As it turns out, the
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posterior mean of C, given Ŵ, Ĥ and X, is obtained with the so-called Wiener filtering
equation (Févotte et al., 2009)

ĉfkn = ŵfkĥkn

[ŴĤ]fn
xfn. (3.52)

Once this estimate has been computed, we simply obtain the audio sources by inversing the
STFT of each of the K spectrograms.

3.7 Experimental work

In this section, we conduct experimental work on a real audio decomposition task. Python
implementations of the three MCEM algorithms are available on GitHub.

3.7.1 Experimental setup

We consider the piano dataset first used in Févotte et al. (2009). This dataset is a real
recording of a short piano sequence comprising four different notes. The notes are all played
together in the first measure, and each possible pair of notes is then played in the next six
measures. The time-domain recording is displayed on Figure 3.1. Using an analysis window
of 1024 samples (46ms) with 50% overlap, we end up with a spectrogram of F = 513
frequency bins and N = 676 time frames. This log-spectrogram is displayed on Figure 3.1
as well.
We then proceed to estimate W with MCEM-CH, setting the hyperparameters αk = 0.1,

βk = 1 and K = 10. MCEM-C and MCEM-H result in similar performances and are not
reported here. The Gibbs sampling procedure being extremely computationally intensive,
we resort here to a “cheap” MCEM algorithm where only 10 samples are generated at each
EM iteration with no burn-in4 (i.e., J = 10). The algorithm is run for 10000 EM iterations,
and is initialized by taking random columns of V. Setting the estimate of W to be the
last iterate of the algorithm, H and the audio sources are estimated with the procedures
described in Section 3.6.
We compare the performance of our method with the performance of the IS-NMF method

(i.e., NMF with the IS divergence). The corresponding multiplicative update rules can be
found in Eq. (1.14) by taking β = 0. IS-NMF is a standard baseline when it comes to
audio decomposition (Févotte et al., 2009). We have ran it 5 times from different random
initializations and selected the solution with lowest objective value. The audio sources are
also estimated with the procedure described in Section 3.6.

4Generating 150 samples and discarding the first 50 for burn-in, as was was done in Chapter 2 with the
Taste Profile dataset leads to a CPUtime of 90 seconds per iteration. The presented cheaper version
roughly divides this number by 15.
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Figure 3.1: The piano dataset. From top to bottom:(a) Time-domain recorded signal. (b)
Log-power spectrogram V = |X|2

3.7.2 Results

Figure 3.2 displays the norm in log10 scale of the K = 10 columns of the iterates w.r.t.
CPU time, in hours. As we can see, even after 10000 iterations5, the algorithm does not
seem to fully have converged yet. Moreover, it seems prone to label switching.
We now investigate the returned dictionaries and reconstructed audio components. For

both methods, the K = 10 components are ordered by decreasing value of their variance,
computed from the reconstructed time-domain components.
Figure 3.3 displays the columns of W returned by IS-NMF (in blue, left column) and

those returned by MMLE (in red, right column). The columns are represented against
frequency bin f , in log10 scale. As we can see, the dictionary returned by MMLE does not
exhibit sparsity, and is very similar to the one returned by IS-NMF.

5As we can see, 10 000 iterations corresponds roughly to 24 hours. The CPUtime of the IS-NMF method
is roughly 90 seconds.
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Figure 3.2: Evolution of the norm of each of the K = 10 columns wk of the dictionary
in log10 scale w.r.t. the number of EM iterations for MCEM-CH on the piano
dataset.

This is further confirmed on Figure 3.4, which displays the reconstructed sources in the
time domain returned by IS-NMF (in blue, left column), and those returned by MMLE (in
red, right column). The audio accuracy performance of both methods is the same. Indeed,
the first four components correspond to the four different notes of the piano sequence, the
fifth component corresponds to note attacks, and the remaining components are inaudi-
ble. We would have expected the inaudible audio components returned by MMLE to have
smaller variances (i.e., spectral power) than those returned by IS-NMF, thanks to the im-
plicit regularization term revealed in Eq. (3.30). Unfortunately, we do not observe such
a phenomenon here. This, in addition to the prohibitive computational cost, makes the
benefits of the proposed method somewhat limited for audio signal processing.

3.8 Discussion

In this chapter, we have tackled maximum marginal likelihood estimation in the IGCN
matrix factorization model. We were able to propose a new formulation of the IGCN model
in which H has been marginalized out. Unfortunately, this new formulation did not lead
to a closed-form expression of the marginal likelihood. It nonetheless revealed a penalty
term indicating that MMLE in this model should induce “local” sparsity (as opposed to
group-sparsity in the Gamma-Poisson model) in the estimated dictionaries6.

Moreover, we have developed three EM algorithms for the task of optimizing the marginal
likelihood in this model. This constitutes a breakthrough w.r.t. the state of the art, since the
variational algorithm of Dikmen and Févotte (2011) came with no convergence guarantees.

6The considerations regarding the interaction between the data-fitting term and the regularization term
discussed at the end of the previous chapter apply here as well.
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Figure 3.3: Columns of W in log10 scale w.r.t. frequency bin f . From left to right :(a) With
IS-NMF (in blue). (b) With MMLE (in red). For each method, the K = 10
components are sorted by the decreasing variance of the associated time-domain
signal.
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Figure 3.4: Reconstructed time-domain components. From left to right :(a) With IS-NMF
(in blue). (b) With MMLE (in red). For each method, the K = 10 components
are sorted by decreasing variance.
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The experimental work on a real audio decomposition example proved challenging. Firstly,
it seems that a large number of EM iterations is needed for the algorithm to converge.
Secondly, the estimated audio components do not represent a significant improvement w.r.t.
to the baseline IS-NMF estimation, and the self-regularization phenomenon is not striking.
Thirdly, the computational cost of the proposed MCEM algorithms is prohibitive. As such,
an exciting perspective would be, as in the previous chapter, to develop lighter algorithms
for the optimization of the marginal likelihood.
Finally, we wonder whether the somewhat disappointing experimental results may be

imputed to the choice of the prior distribution, namely the inverse Gamma distribution.
Indeed, this choice was only driven by the conjugacy with the (complex) normal distribution.
It would be an interesting perspective to use different prior distributions. In particular, the
Gamma distribution may have been a more suitable choice of prior for H (it would be a
particular case of the prior considered in Dikmen and Févotte (2011) as well). When the
conjugacy of the model is lost, MCEM-CH and MCEM-H remain feasible, at the cost of a
more involved sampling procedure. Indeed, one of the conditionals in the Gibbs sampler
would be unknown, and we would have to resort to an additional Metropolis-Hastings step.
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3.A Probability distributions

3.A.1 Complex normal distribution

Most of the developments of this subsection can be found in Picinbono (1996). See also
Goodman (1963) and Gallager (2012).
We begin by recalling that a complex random vector Z ∈ Cn is simply Z = X+ iY where

X and Y are random vectors in Rn. A complex random vector Z is said to be normal if its
real and imaginary part X and Y are jointly normal.

We may therefore describe a complex random distribution by the following parameters

µ = E(Z), Γ = E((Z − µ)(Z − µ)H), C = E((Z − µ)(Z − µ)T), (3.53)

where H is the Hermitian transpose7. µ ∈ Cn is the mean, Γ ∈ Cn×n is the covariance
matrix, and C ∈ Cn×n is the so-called relation matrix.

7(AH)ij = A?
ji, where ? denotes the conjugate.
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We now focus on a very important case of this distribution, namely the circularly-
symmetric complex normal distribution. Symmetric circularity means that for all φ ∈
[−π, π] the random vectors Z and Zejϕ have the same distribution. For the complex nor-
mal case, this amounts to having µ = 0n and C = 0n×n. The random vector Z is then
usually denoted

Z ∼ CN (0,Γ), (3.54)

and its p.d.f. writes, for all z ∈ Cn

p(z) = 1
πndet(Γ) exp(−zHΓ−1z). (3.55)

Moreover, X and Y are distributed as(
X
Y

)
∼ N

(
02n,

1
2

(
Re(Γ) −Im(Γ)
Im(Γ) Re(Γ)

))
. (3.56)

Note that the circularly-symmetric complex normal distribution is almost always used in
signal processing works, sometimes without a clear reference to the symmetric circularity
property.

3.A.2 Multivariate Student’s t-distribution

We introduce the complex multivariate Student’s t-distribution. Let x be a p-dimensional
complex random vector. The parameters of the distribution are :
• Degrees of freedom, ν > 0
• Mean, µ ∈ Cp

• Scale matrix Σ ∈ Cp×p, positive semi-definite
And we have for its p.d.f. :

f(x; ν,µ,Σ) =
2pΓ(ν2 + p)

Γ(ν2 )(νπ)pdet(Σ)

(
1 + 2

ν
(x− µ)HΣ−1(x− µ)

)−( ν2 +p)
. (3.57)

3.B Gibbs sampling of the posterior distribution

Given the current value of the parameter W̃, we would like to be able to sample from
the posterior of the latent variables p(C,H|V; W̃). In a Gibbs sampler, we are interested
in the conditionals p(H|C; W̃) and p(C|H,V; W̃).
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3.B.1 First conditional

We have

p(H|C; W̃) ∝ p(C|H; W̃)p(H) (3.58)
∝
∏
f,k,n

p(cfkn|hkn; w̃fk)
∏
k,n

p(hkn) (3.59)

∝
∏
kn

∏
f

[
1

πwfkhkn
exp

(
− |cfkn|

2

wfkhkn

)]
βαkk

Γ(αk)

( 1
hkn

)αk+1
exp(− βk

hkn
)

 (3.60)

∝
∏
kn

( 1
hkn

)αk+F+1
exp

− 1
hkn

βk +
∑
f

|cfkn|2

wfk

 (3.61)

=
∏
kn

IG

αk + F, βk +
∑
f

|cfkn|2

wfk

 . (3.62)

3.B.2 Second conditional

We recall the following result about the normal distribution.

Theorem 3.2. Consider the model x = As, where x ∈ Rd, A ∈ Rd×n, and s ∈ Rn, and
further assume that s ∼ N (µs,Σs). Then we have

p(s|x; A,µs,Σs) = N (µ,Σ), (3.63)

where

µ = µs + ΣsATG(x−Aµs), (3.64)
Σ = Σs −ΣsATGAΣs, (3.65)
G = (AΣsAT)−1. (3.66)

In particular, consider c1, . . . , cK K independent random variables, which are N (0, σ2
k)

distributed. Moreover, consider v = ∑
k ck. Then we have v = 1T

Kc and as such, applying
Theorem 3.2 gives us that p(c|v) = N (µ̃, Σ̃) where

µ̃ = v∑
k σ

2
k

σ, (3.67)

Σ̃ = diag(σ)− σσT∑
k σ

2
k

, (3.68)

where σ = [σ2
1, . . . , σ

2
K ]. The result straightforwardly extends when ck ∼ CN (0, σ2

k).
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3.C EM algorithms

3.C.1 MCEM-CH

The MC approximation of QCH writes

Q̂C(W) = 1
J

∑
j

log p(C(j),H(j); W) (3.69)

= 1
J

∑
j

(
log p(C(j)|H(j); W) + log p(H(j))

)
(3.70)

c= 1
J

∑
j,f,k,n

log p(c(j)
fkn|h

(j)
kn ;wfk) (3.71)

c= 1
J

∑
j,f,k,n

log

 1
πwfkh

(j)
kn

exp

− |c(j)
fkn|2

wfkh
(j)
kn

 . (3.72)

Deriving w.r.t. wfk, and setting the equation to 0 yields

∑
j,n

 1
wfk
−
|c(j)
fkn|2

w2
fkh

(j)
kn

 = 0, (3.73)

which can be easily solved as

wfk = 1
NJ

∑
n,j

|c(j)
fkn|2

h
(j)
kn

. (3.74)

3.C.2 MCEM-H

The MC approximation of QH writes

Q̂H(W) = 1
J

∑
j

log p(X,H(j); W) (3.75)

= 1
J

∑
j

(
log p(X|H(j); W) + log p(H(j))

)
(3.76)

c= 1
J

∑
j,f,n

log p(xfn|hn; wf ). (3.77)

As it turns out, we have

Q̂H(W) c= 1
J

∑
j

DIS(|X|2|WH(j)). (3.78)

Noting the parallel with the standard IS-NMF problem, this can be tackled with an MM
algorithm.
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3.C.3 MCEM-C

The MC approximation of QC writes

Q̂C(W) = − 1
J

∑
j

log p(C(j); W) (3.79)

= − 1
J

∑
j,k,n

log p(ckn; wk) (3.80)

c= 1
J

∑
j,k,n

∑
f

log(wfk) + (αk + F ) log

βk +
∑
f

|c(j)
fkn|2

wfk

 . (3.81)

We resort to majorization-minimization for optimization. The difficult term is the second
logarithm term, which can be easily majorized. Indeed, the logarithm is concave, therefore
always below its tangents:

log(a+ x) ≤ x

a+ x̃
− x̃

a+ x̃
+ log(a+ x̃)︸ ︷︷ ︸

cst

. (3.82)

We can therefore majorize Eq. (3.81):

Q̂C(W) ≤ 1
J

∑
j,k,n

∑
f

log(wfk) + (αk + F )
∑
f

|c(j)
fkn
|2

wfk

βk +∑
f

|c(j)
fkn
|2

w̃fk

+ cst. (3.83)

Deriving w.r.t. wfk, and setting the equation to 0 yields

∑
j,n

 1
wfk
− αk + F

βk +∑
f

|c(j)
fkn
|2

w̃fk

|c(j)
fkn|2

w2
fk

 = 0, (3.84)

which can be solved as

wfk = αk + F

NJ

∑
j,n

|c(j)
fkn|2

βk +∑
f

|c(j)
fkn
|2

w̃fk

. (3.85)
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Temporal Non-Negative Matrix Factorization

This is joint work with Olivier Gouvert, Cédric Févotte and Olivier Cappé. A
journal article is in preparation.
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Chapter 4 Temporal Non-Negative Matrix Factorization

4.1 Introduction

In Chapters 2 and 3, we focused on two probabilistic NMF models whose activation
coefficients hn were assumed independent. This implies the independence of the samples vn
as well. Such an assumption is obviously limiting in settings where the samples are known
to be correlated; in particular when they describe the evolution of a certain process over
time. As such, we wonder how to add statistical correlation to probabilistic NMF models.
A relatively easy way to do so is to lift the independence assumption on the columns of

H, for example by considering a Markov structure on these columns

p(H) = p(h1)
∏
n≥2

p(hn|hn−1). (4.1)

We will refer to such models as dynamical NMF models. Note that very recent works go
beyond the Markovian assumption, i.e., assume dependency with multiple past time steps,
and are labeled as “deep” (Gong and Huang, 2017; Guo et al., 2018).
The transition distribution p(hn|hn−1) may make use of a transition matrix Π of size

K × K to capture relationships between the different components; this has notably been
considered in in Févotte et al. (2013) and Schein et al. (2016). In this case, the distribution
of hkn depends on a linear combination of all the components at the previous time step

p(hn|hn−1) =
∏
k

p(hkn|
∑
l

πklhl(n−1)). (4.2)

In this chapter, we will restrict ourselves to Π = IK . Equivalently, this amounts to modeling
the K rows of H as independent (and therefore to smoothing the rows independently).
Eq. (4.2) thus reduces to

p(hn|hn−1) =
∏
k

p(hkn|hk(n−1)). (4.3)

We will refer to such a model as a temporal NMF model.
A first way of dealing with the temporal evolution of a non-negative variable is to map

a real variable to R+. It is then commonly assumed that this variable evolves in Gaussian
noise. This is for example exploited in the seminal work of Blei and Lafferty (2006) on the
extension of latent Dirichlet allocation to allow for topic evolution1. A similar assumption is
made in Charlin et al. (2015), which introduces dynamics in the context of a Poisson likeli-
hood (factorizing the user-item-time tensor). Gaussian assumptions allow to use well-known
computational techniques, such as Kalman filtering, but result in loss of interpretability.
We will here focus on naturally non-negative Markov chains. Various non-negative Markov

chains have been proposed in the NMF literature (Cemgil and Dikmen, 2007; Févotte et al.,
2009; Acharya et al., 2015). They are all built in relation with the Gamma (or inverse

1Note that this particular mapping is actually slightly more complex, as the K-dimensional real vector
must be mapped to the (K − 1) simplex due to further constraints in the model.
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Gamma) distribution. As a matter of fact, these models exhibit the same drawback: the
chains all have a degenerate stationary distribution. This can lead to undesirable behaviors,
such as the instability or the degeneracy of realizations of the chains. We emphasize that
this is problematic from the probabilistic perspective only, since these prior distributions
may still represent an appropriate regularization in a MAP setting.

The contributions of this chapter are 4-fold:
• We review the existing non-negative Markov chains of the NMF literature and discuss
some of their limitations. In particular we show that these chains all have a degenerate
stationary distribution;
• We present an overlooked non-negative Markov chain from the time series literature,
the first-order autoregressive Beta-Gamma process, denoted as BGAR(1) (Lewis et al.,
1989), whose stationary distribution is Gamma. To the best of our knowledge, this
particular chain has never been considered to model temporal dependencies in matrix
factorization problems;
• We propose a novel model based on this BGAR(1) process, which we coin BGAR-
NMF. We derive a a Monte Carlo Expectation-Maximization (MCEM) algorithm for
MMLE, as well as an MM-based algorithm for MAP estimation;
• We show that the proposed MMLE approach fails to produce satisfactory results on
real datasets, unlike the MAP approach, further assessed on a prediction task.

The remainder of the chapter is organized as follows. Section 4.2 introduces and compares
non-negative Markov chains from the literature. Section 4.3 presents the novel temporal
NMF model. Section 4.4 describes MMLE and its associated experimental work while
Section 4.5 focuses on MAP estimation. We conclude in Section 4.6.

4.2 Comparative study of Gamma Markov chains

This section reviews existing models of Gamma Markov chains, i.e., Markov chains which
evolve in R+ in relation with the Gamma distribution. We have identified three different
models in the NMF literature:

1. Chaining on the rate parameter of a Gamma distribution (Section 4.2.1);
2. Chaining with an auxiliary variable to ensure conjugacy (Section 4.2.2);
3. Chaining on the shape parameter of a Gamma distribution (Section 4.2.3).

As shall be discussed in these subsections, these three models are all built around the
assumption E(hn|hn−1) ∝ hn−1 (which roughly means that the chain should not drift too
far away from its previous value), but lack a well-defined stationary distribution, which
leads to the degeneracy of the realizations of the chains. A fourth model from the time
series literature, called BGAR(1), is presented in Section 4.2.4. It is built to have a well-
defined stationary distribution (it is marginally Gamma distributed), and does not share
the assumption E(hn|hn−1) ∝ hn−1. The realizations of the chain are not degenerate and
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exhibit some interesting properties. To the best of our knowledge, this kind of process has
never been used in a probabilistic NMF problem to model temporal evolution.

Throughout the section, (hn)n≥1 denotes the (scalar) Markov chain of interest, where the
index k as in Eq. (4.3) has been dropped for enhanced readability. It is further assumed that
h1 is set to a fixed, deterministic value. All the formulas needed to derive the computations
of mean and variance throughout the next subsections are given in Appendix 4.A.

4.2.1 Direct chaining on the rate parameter

4.2.1.1 Model

Let us consider a general Gamma Markov chain model with a chaining on the rate pa-
rameter:

hn|hn−1 ∼ Gamma
(
α,

β

hn−1

)
. (4.4)

As it turns out, Eq. (4.4) can be rewritten as a multiplicative noise model:

hn = hn−1 × φn, (4.5)

where φn are i.i.d. Gamma(α, β) random variables.
We have

E(hn|hn−1) = α

β
hn−1, var(hn|hn−1) = α

β2h
2
n−1. (4.6)

This model was introduced in Févotte et al. (2009) to add smoothness to the activation
coefficients in the context of audio signal processing. The parameters were set to α > 1 and
β = α − 1, such that the mode would be located at hn = hn−1. A similar inverse Gamma
Markov chain was also considered in Févotte et al. (2009) and in Févotte (2011).

4.2.1.2 Analysis

From Eq. (4.5) we can write:

hn = h1

n∏
i=2

φi. (4.7)

The independence of the φi yields:

E(hn) = h1

(
α

β

)n−1
, var(hn) = h2

1

(α2

β2 + α

β2

)n−1

−
(
α2

β2

)n−1
 . (4.8)

We enumerate all the possible regimes, which all give rise to degenerate stationary dis-
tributions for different reasons:
• β >

√
α(α+ 1): both mean and variance go to zero;
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Figure 4.1: Realizations of the Markov chain defined in Eq. (4.4). The initial value h1 is
set to 1, and chains were simulated until n = 50. Each subplot contains ten
independent realizations, with the value of the parameters (α, β) given at the
top of the subplot. log10(hn) is displayed.

• β =
√
α(α+ 1): variance converges to 1, however the mean goes to zero;

• β ∈
]
α;
√
α(α+ 1)

[
:variance goes to infinity, mean goes to zero;

• β = α: mean is equal to 1, but the variance goes to infinity;
• β < α: both mean and variance go to infinity.

Each subplot of Figure 4.1 displays in log10-scale ten independent realizations of the chain,
for a different set of parameters (α, β). As we can see, the realizations of the chain either
collapse to 0, or diverge.

4.2.2 Hierarchical chaining with an auxiliary variable

4.2.2.1 Model

Let us consider the following Gamma Markov chain model introduced in Cemgil and
Dikmen (2007):

zn|hn−1 ∼ Gamma(αz, βzhn−1), (4.9)
hn|zn ∼ Gamma(αh, βhzn). (4.10)

As it turns out, this model can also be rewritten as a multiplicative noise model:

hn = hn−1 × φ̃n, (4.11)

where φ̃n are i.i.d. random variables defined as the ratio of two independent Gamma random
variables of parameters (αh, βh) and (αz, βz). The distribution of φ̃n is actually known in
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closed form, namely
φ̃n ∼ BetaPrime

(
αh, αz, 1, β̃

)
, (4.12)

with β̃ = βz
βh

(see Appendix 4.B for a definition).
We have

E(hn|hn−1) = β̃
αh

αz − 1 αz > 1, (4.13)

var(hn|hn−1) = β̃2 αh(αh + αz − 1)
(αz − 1)2(αz − 2) αz > 2. (4.14)

This model is less straightforward in its construction than the previous one, as it makes
use of an auxiliary variable zn (note that a similar inverse Gamma construction was proposed
as well in Cemgil and Dikmen (2007)). There are two motivations behind the introduction
of this auxiliary variable:

1. Firstly, it ensures what is referred to as “positive correlation” in Cemgil and Dikmen
(2007), i.e., E(hn|hn−1) ∝ hn−1 (something the model described by Eq. (4.4) does as
well).

2. Secondly, it ensures the so-called conjugacy of the model, i.e., the conditional dis-
tributions p(zn|hn−1, hn) and p(hn|zn, zn+1) remain Gamma distributions. Indeed,
these are the distributions of interest when considering Gibbs sampling or variational
inference. This property is not achieved by the model described by Eq.(4.4) (i.e.,
p(hn|hn−1, hn+1) is neither Gamma, nor a known distribution).

This particular chain has been used in the context of audio signal processing in Virtanen
et al. (2008) (under the assumption of a Poisson likelihood, which does not fit the nature
of the data), and also to model the evolution of user and item preferences in the context of
recommender systems (Jerfel et al., 2017; Do and Cao, 2018).

4.2.2.2 Analysis

From Eq. (4.11), we can write:

hn = h1

n∏
i=2

φ̃i. (4.15)

We have by independence of the φ̃i:

E(hn) = h1

(
β̃

αh
αz − 1

)n−1
αz > 1,

(4.16)

var(hn) = h2
1β̃

2(n−1)

( α2
h

(αz − 1)2 + αh(αh + αz − 1)
(αz − 1)2(αz − 2)

)n−1

−
(

α2
h

(αz − 1)2

)n−1
 αz > 2.

(4.17)
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Figure 4.2: Realizations of the Markov chain defined in Eq. (4.9)-(4.10). The initial value
h1 is set to 1, and chains were simulated until n = 50. Each subplot contains
ten independent realizations, with the value of the parameters (αz, βz, αh, βh)
given at the top of the subplot. log10(hn) is displayed.

The conclusions are the same as with the previous model. Each subplot of Figure 4.2
displays in log10-scale ten independent realizations of the chain, for a different set of pa-
rameters (αz, βz, αh, βh). As we can see, the realizations of the chain either collapse to 0,
or diverge.

4.2.3 Chaining on the shape parameter

4.2.3.1 Model

Let us consider a general Gamma Markov chain model with a chaining on the shape
parameter:

hn|hn−1 ∼ Gamma(αhn−1, β). (4.18)

We have
E(hn|hn−1) = α

β
hn−1, var(hn|hn−1) = α

β2hn−1. (4.19)

In contrast with the two models presented in Section 2.1, this model cannot be rewritten
as a multiplicative noise model, or any noise model. Therefore this model is more intricate to
interpret. It was introduced in Acharya et al. (2015) in the context of Poisson factorization.
It is mainly motivated by a computational trick that can be used when working with a
Poisson likelihood, hence making a Gibbs sampling feasible in the model. The authors set
the value of α to 1 (though the same trick can be applied for any value of α).
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Figure 4.3: Realizations of the Markov chain defined in Eq. (4.18). The initial value h1 is
set to 1, and chains were simulated until n = 50. Each subplot contains ten
independent realizations, with the value of the parameters (α, β) given at the
top of the subplot. log10(hn) is displayed.

4.2.3.2 Analysis

Using the law of total expectation and total variance, it can be shown that

E(hn) =
(
α

β

)n−1
h1, var(hn) = 1

β

(
α

β

)n−1
h1

n−2∑
i=0

(
α

β

)i
. (4.20)

The discussion is hence driven by the value of r = α
β .

• If r < 1, mean and variance go to zero (Dirac distribution located at 0)
• If r = 1, mean is fixed but variance goes to infinity (linearly)
• If r > 1, mean and variance go to infinity

This chain only exhibits degenerate stationary distributions. Each subplot of Figure 4.3
displays in log10-scale ten independent realizations of the chain, for a different set of pa-
rameters (α, β). As we can see, the realizations of the chain either collapse to 0, or diverge.

4.2.4 BGAR(1)

We now discuss the first order autoregressive Beta-Gamma process of Lewis et al. (1989),
a stochastic process which is marginally Gamma distributed. The authors referred to the
process as “BGAR(1)”. However, to the best of our knowledge, no extension to higher-order
autoregressive processes exists in the time series literature. As such, from now on, we will
simply refer to it as “BGAR”.
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4.2.4.1 Model

Consider α > 0, β > 0, ρ ∈ [0, 1[. The BGAR process is defined as:

h1 ∼ Gamma(α, β), (4.21)
hn = bnhn−1 + εn n ≥ 2, (4.22)

where bn ∈ [0, 1] and εn > 0 are i.i.d. random variables distributed as:

bn ∼ Beta(αρ, α(1− ρ)), (4.23)
εn ∼ Gamma(α(1− ρ), β). (4.24)

(hn)n≥1 is called the BGAR process. It is parametrized by α, β and ρ. We have

E(hn|hn−1) = ρhn−1 + α(1− ρ)
β

, (4.25)

var(hn|hn−1) = ρ(1− ρ)
α+ 1 h2

n−1 + α(1− ρ)
β2 . (4.26)

As we can see, BGAR(1) already differs from the three previously presented models
because the conditional expectation E(hn|hn−1) is not proportional to hn−1 (it is an affine
transformation).
We emphasize that the distribution p(hn|hn−1) is not known in closed form. Only

p(hn|bn, hn−1) is known; it is a shifted Gamma distribution. The generative model may
therefore be rewritten as

h1 ∼ Gamma(α, β), (4.27)
bn ∼ Beta(αρ, α(1− ρ)) n ≥ 2, (4.28)

hn|bn, hn−1 ∼ Gamma(α(1− ρ), β, loc = bnhn−1) n ≥ 2. (4.29)

where the distribution in Eq. (4.29) is a shifted Gamma distribution with a location param-
eter “loc”.

4.2.4.2 Analysis

To study the marginal distribution of the process, we recall the following lemma.

Lemma 4.1. If X ∼ Beta(a, b) and Y ∼ Gamma(a+b, c) are independent random variables,
then Z = XY is Gamma(a, c) distributed.

Proposition 4.1. hn is marginally Gamma(α, β) distributed.

Proof. Follows by induction. Consider n such that hn is Gamma(α, β) distributed. Then,
εn+1hn is Gamma(αρ, β) distributed (Lemma 4.1). Finally, hn+1 = εn+1hn + bn+1 is
Gamma(α, β) distributed (sum of independent Gamma random variables), which concludes
the proof.
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Figure 4.4: Three realizations of the BGAR(1) process, with parameters fixed to α = 2 and
β = 1, and a different parameter ρ in each subplot. The mean of the process is
displayed by a dashed red line.

Therefore the parameters α and β control the marginal distribution. The parameter ρ
controls the correlation between successive values, as is discussed in the following proposi-
tion.

Proposition 4.2. corr(hn, hn+r) = ρr

Proof. Given in Appendix 4.C for the case between two successive values.

Two limit cases can be exhibited:
• When ρ = 0, the hn are i.i.d. random variables;
• When ρ → 1, the process is not random anymore, and hn = h1 for all n (note that
ρ = 1 is not an admissible value).

Note that BGAR is not the only Markovian process with a marginal Gamma distribution
considered in the literature. We mention the GAR(1) process (first-order autoregressive
Gamma process) of Gaver and Lewis (1980), which is also marginally Gamma distributed.
However, this particular process is piecewise deterministic, and its parameters are “coupled”:
the parameters of the marginal distribution also have an influence on other properties of
the model. As such, it is not well-suited to our problem, and will not be considered here.

Realizations of the process. Figure 4.4 displays three realizations of the BGAR process,
with parameters fixed to α = 2 and β = 1, and a different parameter ρ in each subplot.
When ρ = 0.5, the correlation is weak, and no particular structure is observed. However, as ρ
goes to 1, the correlation becomes stronger, and we typically observe a “floor” phenomenon.
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Moreover, we have (
E(hn|hn−1) > hn−1

)
⇔
(
hn−1 <

α

β

)
(4.30)

If hn−1 is below the mean of the marginal distribution (αβ ), then hn will be in expectation
above hn−1, and vice-versa. However, note that, as ρ → 1, this phenomenon gets weaker,
as the variance of hn goes to zero.

4.3 The BGAR-NMF model

In this section, we introduce a novel temporal NMF model which makes use of the BGAR
process presented in Section 4.2.4. We will use the slightly abusive notation h ∼ BGAR(ρ, α, β)
to denote that the entries of the row vector h are a realization of the BGAR process with
parameters α, β, and ρ.

We consider the following temporal NMF model

hk ∼ BGAR(ρk, αk, βk) (4.31)
vfn|hn ∼ Poisson([WH]fn). (4.32)

That is to say that each row of H is independent and follows a BGAR(1) process of different
parameters. W is left to be a deterministic variable. We choose to work without loss of gen-
erality with a Poisson observation model. Indeed, as discussed in Section 1.3.2, this model
can be generalized to non-integer data by considering the compound Poisson distribution.
A graphical representation of the model is given in Figure 4.5.
As explained preivously, we may rewrite the model with the auxiliary variables bkn

(Eqs. (4.28)-(4.29)), leading to

hk1 ∼ Gamma(αk, βk) (4.33)
bkn ∼ Beta(αkρk, αk(1− ρk)) n ≥ 2 (4.34)

hkn|bkn, hk(n−1) ∼ Gamma(αk(1− ρk), βk, loc = bknhk(n−1)) n ≥ 2 (4.35)
vfn|hn ∼ Poisson([WH]fn). (4.36)

A graphical representation of the augmented model is given in Figure 4.6.
In our setting, α = [α1, . . . , αK ]T, β = [β1, . . . , βK ]T and ρ = [ρ1, . . . , ρK ]T are treated

as fixed hyperparameters. W is also treated as a deterministic variable to be estimated.
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hn−1 hn hn+1

vn−1 vn vn+1

•
W

•
α,β,ρ

Figure 4.5: The BGAR-NMF model. Observed variables are in blue, while latent variables
are in white. In our setting, hn is of size K, and vn is of size F .

hn−1 hn hn+1

vn−1 vn vn+1

bn−1 bn bn+1

•
W

Figure 4.6: The augmented BGAR-NMF model. Observed variables are in blue, while latent
variables are in white. In our setting, bn is of size K, hn is of size K, and vn
is of size F . The hyperparameters α,β,ρ have been omitted for enhanced
readability.
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4.4 Maximum marginal likelihood estimation

4.4.1 Objective

In this section, we aim at estimating W by maximizing the marginal likelihood:

max
W

p(V; W) =
∫

H,B
p(V,H,B; W)dHdB, (4.37)

where the joint likelihood of the model is given by

p(V,H,B; W) =
∏
n

p(vn|hn; W)
∏
k

p(hk1)
∏
n≥2

(
p(hkn|bkn, hk(n−1))p(bkn)

) . (4.38)

We once again turn to an EM algorithm to solve this optimization task. Given the current
value of the parameter W̃, we iteratively optimize w.r.t. W the following functional

Q(W; W̃) =
∫

H,B
log p(V,H,B; W)p(H,B|V; W̃)dHdB. (4.39)

In our setting, the posterior of the latent variables p(H,B|V; W̃) is intractable. As such,
we resort to MCEM, in which the functional of Eq. (4.39) is replaced by its Monte Carlo
approximation. We therefore need a way to draw samples from p(H,B|V; W̃).

The observations V and the set {H,B} define a so-called hidden Markov model (HMM),
sometimes referred to as general state-space models. In particular, {H,B} are called the
state variables2, and W is a static parameter of the HMM. Inference in HMM is a well-
studied topic (Cappé et al., 2005), and the estimation of these so-called static parameters
is a specific problem, see for example the survey of Kantas et al. (2015). In particular,
sequential Monte Carlo (SMC) methods are central to such inference problems, and we
describe in the following subsection the key elements of the methodology.

4.4.2 Sequential Monte Carlo methods

We denote by xn = {hn,bn} the state variable at time step n. We recall that the
associated observation is the variable vn. In this subsection, we will use the standard SMC
notations x1:n = {x1, . . . ,xn} and v1:n = {v1, . . . ,vn} to denote collections of state or
observation variables from time 1 through n. With these notations, our goal is to sample
from p(x1:N |v1:N ), which is referred to as the smoothing distribution. The methodology
boils down to two steps.

2Of course, taking H to be the state variables is the most straightforward choice, however, since the
transition distribution p(hn|hn−1) is not known, we use the augmented version of our model with the
variables B.
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4.4.2.1 Particle filtering

Particle filtering, a specific instance of sequential Monte Carlo methods, sequentially
yields a so-called particle approximation of the filtering distributions, {p(xn|v1:n)}n. That
is to say that these distributions are approximated with a finite number (denoted Np) of
weighted particles:

p(xn|v1:n) '
Np∑
i=1

ξ(i)
n δx(i)

n
(xn). (4.40)

ξ
(i)
n is the weight associated to the particle x(i)

n , and are such that ξ(i)
n > 0 and ∑i ξ

(i)
n = 1.

δ is the Dirac function. These approximations are computed sequentially using efficient
importance sampling and resampling techniques. The interested reader is referred to the
following tutorials for details: Cappé et al. (2007); Doucet and Johansen (2011).
We use the standard bootstrap particle filtering (i.e., when the importance distribution is

chosen to be the transition distribution of the HMM) for this task. The associated algorithm
is described in Appendix 4.D.

4.4.2.2 Particle smoothing

Once particle filtering has been carried out, we may obtain realizations from the smoothing
distribution via the following backward recursion:

p(x1:N |v1:N ) = p(xN |v1:N )
N∏
n=1

p(xn|xn+1,v1:n). (4.41)

Indeed, a particle approximation of the filtering distribution yields a particle approxima-
tion of p(xn|xn+1,v1:n), since

p(xn|xn+1,v1:n) ∝ p(xn+1|xn)p(xn|v1:n), (4.42)

where p(xn+1|xn) is simply the transition distribution of our HMM. As such, we obtain

p(xn|xn+1,v1:n) '
Np∑
i=1

ξ
(i)
n|n+1δx(i)

n
(xn), (4.43)

where the weights are such that

ξ
(i)
n|n+1 = p(xn+1|x(i)

n )ξ(i)
n∑

j p(xn+1|x(j)
n )ξ(j)

n

. (4.44)

This methodology is called forward filtering–backward simulation (FFBSi), and was in-
troduced in Godsill et al. (2004). The states are generated sequentially in reverse time. See
Algorithm 5 for details.
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Algorithm 5: Sample a single realization from the smoothing distribution
1 # Initialization (n = N)
2 Choose x̃N = x(i)

N with probability ξ(i)
N

3 for n = N − 1, ..., 1 do
4 # Recompute weights
5 Compute ξ(i)

n|n+1 as in Eq. (4.44)
6 # Back-Propagation
7 Choose x̃n = x(i)

n with probability ξ(i)
n|n+1

8 end

We emphasize that Algorithm 5 describes how to sample one realization from the smooth-
ing distribution. Another additional for loop has to be placed on top of this algorithm to
sample multiple realizations. However, this task can be trivially parallelized.

4.4.3 M-step

Once having sampled NT trajectories from the smoothing distribution, the MC approxi-
mation of the functional in Eq. (4.39) reduces to

Q̂(W) =
NT∑
j=1

log p(V,H(j),B(j); W) (4.45)

c=
NT∑
j=1

log p(V|H(j); W). (4.46)

The observation distribution is Poisson, as such the optimization of this function has
already been addressed in Section 2.5. We recall the update rule

wfk = w̃fk

∑
j,n h

(j)
knvfn[WH(j)]−1

fn∑
j,n h

(j)
kn

. (4.47)

4.4.4 Experimental work

We illustrate the behavior the proposed MCEM algorithm on two datasets: a small-
dimensioned synthetic dataset, and a real dataset.

On synthetic data. We generate a dataset of size 10× 100 according to the BGAR-NMF
model, with a random dictionary of mean 1, ρ?k = 0.95, α?k = 1, β?k = 1. This dataset is
denoted by Vs. We then apply our MCEM algorithm with K = 5, α = α?, β = β?, ρ = ρ?,
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Figure 4.7: Evolution of the norm of the K = 5 columns wk of the dictionary w.r.t. the
number of EM iterations on synthetic dataset Vs.

Np = 10000, NT = 1000 for a total of 500 EM iterations. Figure 4.7 displays the norm of
the columns of the iterates w.r.t. the number of iterations.

On a real dataset. We consider the NIPS dataset3, which contains word counts (with stop
words removed) of all the articles published at the NIPS4 conference between 1987 and 2015.
We regrouped the articles per year, yielding an observation matrix of size 11463 × 29. We
apply our MCEM algorithm with K = 10, Np = 10000, NT = 1000 for a total of 3000 EM
iterations. Figure 4.8 displays the norm of the columns of the iterates w.r.t. the number of
iterations.

Discussion of the results. Figures 4.7 and 4.8 are typical examples of the output of the
proposed MCEM algorithm. If the algorithm seemingly converges on small-dimensioned
problems, it fails to produce satisfactory results on larger-dimensioned real world datasets.
On the displayed NIPS dataset example, there is too much variance in the iterates, making
it impossible to obtain an exploitable point estimate. Increasing the values of Np or NT did
not lead to significant improvements in our case. The most likely explanation is that the
obtained samples do not correctly describe the posterior of the latent variables. Moreover,
the method seems prone to label switching. Designing a finer SMC-based algorithm remains
an open problem at this stage. The following section presents an alternative inference
paradigm for the BGAR-NMF model.

3https://archive.ics.uci.edu/ml/datasets/NIPS+Conference+Papers+1987-2015.
4Now called NeurIPS.
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Figure 4.8: Evolution of the norm of the K = 10 columns wk of the dictionary w.r.t. the
number of EM iterations on the NIPS dataset.

4.5 MAP estimation

In this section, we develop an alternative procedure to MMLE, namely a MAP estimation
in the BGAR-NMF model. From a statistical point of view, a MAP estimation is less well-
posed than MMLE. Nevertheless, this computation-friendlier procedure will enable us to
work on real datasets.

4.5.1 Problem setting

Objective function

MAP estimation amounts to the minimization of the following function

C(W,H,B) = − log p(H,B|V; W) (4.48)
c= − log p(V|H; W)− log p(H,B) (4.49)
c= −

∑
f,n

log p(vfn|[WH]fn)

−
∑
k

log p(hk1) +
∑
n≥2

(
log p(hkn|bkn, hk(n−1)) + log p(bkn)

) . (4.50)

This expression consists in a data-fitting term, and a regularization term aiming at smooth-
ing the rows of H. Let us now detail each term. With the notations γk = αk(1 − ρk) and
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ηk = αkρk, we can write

− log p(vfn|[WH]fn) c= −vfn log([WH]fn) + [WH]fn, (4.51)
− log p(hk1) c= (1− αk) log(hk1) + βkhk1, (4.52)

− log p(hkn|bkn, hk(n−1))
c= (1− γk) log(hkn − bknhk(n−1)) + βk(hkn − bknhk(n−1)), (4.53)

− log p(bkn) c= (1− ηk) log(bkn) + (1− γk) log(1− bkn). (4.54)

Constraints

By construction, the variables hkn and bkn must lie in a specific interval given the values
of all the other variables. Indeed, as hkn = bknhk(n−1) + εkn (Eq. (4.22)), where εkn is a
non-negative random variable, we have hkn ≥ bknhk(n−1), and bkn ≤ hkn

hk(n−1)
.

Similarly, as hk(n+1) = bk(n+1)hkn + εk(n+1), we have hkn ≤
hk(n+1)
bk(n+1)

. As such, we obtain
the following constraints:

0 ≤ hk1 ≤
hk2
bk2

, (4.55)

bknhk(n−1) ≤ hkn ≤
hk(n+1)
bk(n+1)

2 ≤ n < N, (4.56)

bkNhk(N−1) ≤ hkN , (4.57)

and
0 ≤ bkn ≤ min

(
1, hkn
hk(n−1)

)
. (4.58)

We therefore introduce the notations

ckn = bknhk(n−1), dkn =
hk(n+1)
bk(n+1)

, zkn = hkn
hk(n−1)

, (4.59)

as these quantities arise naturally in our derivations.

4.5.2 Optimization

To optimize the function C, we resort to an MM-based scheme. The only term we are
going to majorize is − log p(V|H; W). This is already well-known from the literature (Lee
and Seung, 2000; Févotte and Idier, 2011). The function

G1(H; H̃) = −
∑
k,n

pkn log(hkn) +
∑
k,n

qkhkn, (4.60)

with the notations
pkn = h̃kn

∑
f

wfk
vfn

[WH̃]fn
, qk =

∑
f

wfk, (4.61)
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is a tight auxiliary function of − log p(V|H; W) at H = H̃. Similarly the function

G2(W; W̃) = −
∑
f,k

p′fk log(wfk) +
∑
f,k

q′kwfk, (4.62)

with the notations
p′kn = w̃fk

∑
n

hkn
vfn

[W̃H]fn
, q′k =

∑
n

hkn, (4.63)

is a tight auxiliary function of − log p(V|H; W) at W = W̃.
As such, regardless of the variable to be optimized, we end up with an auxiliary function

with logarithmic terms or linear terms. Therefore, the optimization of this variable will boil
down to solving a polynomial equation.

Minmization w.r.t. W

Minimizing C w.r.t. to W amounts to minimizing G2. The minimization w.r.t. wfk can
be done in closed-form thanks to the following update rule:

wfk = w̃fk

∑
n hknvfn[W̃H]−1

fn∑
n hkn

. (4.64)

Minimization w.r.t. H

Minimizing C w.r.t. H amounts to minimizing G1(H; H̃) − log p(H,B). Consider its
minimization w.r.t. a certain hkn. The logarithmic terms may give rise to degenerate or
intractable problems. As such, we have to control the limit values of the auxiliary function.
By choosing (1 − γk) > 0, we ensure that this limit is +∞ (this choice will be discussed
at the end of the subsection). The function to be minimized being continuous, this ensures
the existence of a minimizer.
We must break down three different cases. In all sub-cases, it amounts to solving a

polynomial equation. We know that at least one polynomial root must lie in the definition
interval. If this is the case for several roots, we simply choose the root which gives the
lowest objective value.

• For hk1, the minimization of the auxiliary function amounts to solving the following
order 2 polynomial equation over the interval [0, dk1]

a2,k1h
2
k1 + a1,k1hk1 + a0,k1 = 0, (4.65)

where

a2,k1 = −(qk + βk(1− bk2)), (4.66)
a1,k1 = −(1− αk − pk1) + (qk + βk(1− bk2))dk1 − (1− γk), (4.67)
a0,k1 = (1− αk − pk1)dk1. (4.68)

The roots can be found in closed form.
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• For hkn with 2 ≤ n < N , the minimization of the auxiliary function amounts to
solving the following order 3 polynomial over the interval [ckn, dkn]

a3,knh
3
kn + a2,knh

2
kn + a1,knhkn + a0,kn = 0, (4.69)

where

a3,kn = −(qk + βk(1− bk(n+1))), (4.70)
a2,kn = pkn − 2(1− γk) + (qk + βk(1− bk(n+1)) (ckn + dkn) , (4.71)
a1,kn = −pkn (ckn + dkn) + (1− γk) (ckn + dkn)− (qk + βk(1− bk(n+1)))ckndkn,

(4.72)
a0,kn = pknckndkn. (4.73)

The roots can be found numerically.
• For hkN , the minimization of the auxiliary function amounts to solving the following

order 2 polynomial over the interval [ckn,+∞[

a2,kNh
2
kN + a1,kNhkN + a0,kN = 0, (4.74)

where

a2,kN = −(qk + βk), (4.75)
a1,kN = −pkN − ckN (qk + βk) + (1− γk), (4.76)
a0,kN = ckNpkN . (4.77)

The roots can be found in closed form.

Minimization w.r.t. B

Minimizing C w.r.t. H amounts to minimizing − log p(H,B) only. Consider its mini-
mization w.r.t. a specific bkn. Similarly, the logarithmic terms may give rise to degenerate
solutions. The choices of parameters (1− γk) > 0 and (1− ηk) > 0 ensures that the limits
of the auxiliary function are +∞. Then, the same considerations apply.
The minimization of the auxiliary function w.r.t. bkn amounts to solving the following

order 3 polynomial over the interval [0,min(1, zkn)]

a3,knb
3
kn + a2,knb

2
kn + a1,knbkn + a0,kndkn, (4.78)

where

a3,kn = −bkhk(n−1) (4.79)
a2,kn = 2(1− γk) + (1− ηk) + βkhk(n−1)(zkn + 1) (4.80)
a1,kn = −(1− γk)(zkn + 1)− (1− ηk)(zkn + 1)− βkhk(n−1)zkn (4.81)
a0,kn = (1− ηk)zkn. (4.82)

Again, the roots can be found numerically.
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Figure 4.9: Hyperparameter values (in white) of the parameters αk and ρk ensuring a well-
posed MAP estimation in the BGAR-NMF model.

Admissible values of hyperparameters

To recap the discussion on admissible values of hyperparameters, to ensure the existence
of minimizers to the auxiliary function, we have restricted ourselves to{

αk(1− ρk) > 1,
αkρk > 1. (4.83)

This set is graphically displayed on Figure 4.9. As we can see, choosing the value of ρk close
to be close to one (to ensure correlation) leads to high values of αk.

4.5.3 Experimental work

4.5.3.1 On synthetic data

For illustrative purposes, we apply the previously described MM algorithm to the syn-
thetic dataset used in Section 4.4.4. We set K = 1 to observe the variations in the learned
H w.r.t. ρ. The value of α is set to (1 − ρ)−1 + 1 to enforce 1 − γ > 0. The value of β is
set to 1. The algorithms is run for a total of 1000 iterations.
Figure 4.10 displays the evolution of the cost function C w.r.t. the number of iterations

with α = 0.9 and ρ = 11. As ensured by the MM framework, we have a convergent
algorithm. Figure 4.11 displays the learned H for different values of ρ. As the values of
α vary with the values of ρ, so does the scale of H. They are therefore renormalized. As
expected, as ρ→ 1, H gets smoothed.
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Figure 4.10: Example of the evolution of the cost function C w.r.t. the number of iterations
on a synthetic dataset. The hyperparameters are here set to ρ = 0.9, α = 11
and β = 1.
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Figure 4.11: Evolution of the learned H w.r.t. the value of ρ on a synthetic dataset. For all
subplots, the value of α is set to (1− ρ)−1 + 1, and β to 1.
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Model MAE MSE KL error
GaP (Chap. 2) 17.3± 0.38 3.94× 103 ± 3.42× 102 2.72× 105 ± 8.69× 103

Rate (4.2.1) 13.1± 0.58 4.45× 103 ± 1.19× 103 2.02× 105 ± 1.18× 104

Hierarchical (4.2.2) 9.34± 0.28 8.96× 102 ± 1.93× 102 1.36× 105 ± 6.05× 103

Shape (4.2.3) 12.5± 0.28 1.88× 103 ± 2.25× 102 1.93× 105 ± 5.40× 103

BGAR (4.2.4) 9.26± 0.15 8.18× 102 ± 6.85× 101 1.36× 105 ± 4.95× 103

Table 4.1: Prediction results on the NIPS dataset. Lower values are better. The mean and
standard deviation of each error is reported over 100 runs (10 different splits with
10 different initializations).

4.5.3.2 On a real dataset

We are now going to compare the performance of the proposed BGAR-NMF model on
prediction tasks w.r.t. the performance of all the other temporal models presented in Sec-
tion 4.2 on two real datasets. The performance of the Gamma-Poisson model of Chapter 2,
i.e., a model with a non-temporal prior on H, will be considered as well.

For a fair comparison, all these models are going to be assessed within a MAP frame-
work. The algorithms describing MAP estimation in the three other temporal models are
reported in Appendix 4.E. MAP estimation in the Gamma-Poisson model is described in
Appendix 4.F.
The experimental protocol is as follows. The data matrix is randomly split in 3 subsets:

80% for the training set, 10% for the validation set, and the remaining 10% for the test
set. That is to say that the algorithms are applied to the training set, and the predictive
performance is assessed on the validation set at each iteration using the mean absolute
error (MAE) between the original value vfn and its associated estimate v̂fn = [WH]fn. We
then resort to early stopping, i.e., the algorithms are stopped as soon as the MAE on the
validation set increases.
We consider the NIPS dataset (11463× 29) presented in Section 4.4.4. We apply the pre-

viously described experimental protocol to 10 random splits, with 10 different initialization
for each split. Setting K = 10, the averaged MAE, MSE, and KL error on the test sets are
then reported on Table 4.1 Note that each model has been assessed with different values of
hyperparameters, and Table 4.1 reports the best obtained performance.
As we can see, for all three evaluation metrics, BGAR-NMF outperforms the other models

in the MAP framework. It must be noted that its performance is very close to the perfor-
mance of the temporal model based on the hierarchical chaining of Cemgil and Dikmen
(2007). As expected, GaP, the only non-temporal model, produces the worst performance
of the five models.
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4.6 Discussion

In this chapter, we addressed the problem of designing Markovian temporal NMF models.
In these models, the activation coefficients hn are no longer independent, but modeled as
a Markov chain, which allows to add statistical correlation to the model. We focused on
naturally non-negative Markov chains. To this end, we have conducted a review of the
NMF literature, which revealed a limitation shared by all models considered until then: a
degenerate stationary distribution of the chain. We then presented the BGAR(1) process
from the time series literature, which overcomes this limitation, and which, to the best of
our knowledge, has never been exploited in learning problems.
We proposed the use of BGAR(1) as a prior distribution for H, combined to a Poisson

observation distribution, leading to a novel probabilistic model which we coined BGAR-
NMF. We then addressed MMLE in this model with a MCEM algorithm, whose sampling
mechanism was based on SMC methods. If our estimation algorithm seemingly works on
small-dimensioned synthetic datasets, it fails to produce satisfactory results on real datasets.
This is likely linked to samples of poor quality, indicating that it may be difficult to correctly
sample from the posterior of the latent variables in this case. An interesting perspective
would be to resort to more sophisticated combinations of EM and SMC tools, such as the
methodology described in Olsson et al. (2008).
We then turned to an alternative inference paradigm in the BGAR-NMF model, namely

MAP estimation. We were able to derive a convergent algorithm for a certain range of values
of the hyperparameters of the BGAR(1) chains. It has given satisfactory results both on
synthetic and real datasets. In particular, we have shown that BGAR-NMF achieves state-
of-the-art performance on a prediction task. In our algorithm, fixing a value of ρ (i.e., the
linear correlation between two successive values of the chain) close to 1 restricts us to high
values of α. Small values of α are interesting because they induce sparsity, and correspond
to the regime where Gaussian approximations do not work. As such, an exciting perspective
would be to be able to carry out inference in this regime.
We would also like to emphasize that our MAP algorithm can readily extend to an expo-

nential observation model, as in Chapter 3. Using a similar MM-based scheme would yield
higher-order polynomial equations for the updates of the variables.
As a final perspective, we mention the application of our BGAR-NMF model to music

recommendation. In this field, data may be stored as a user-song matrix, whose entries
represent the songs listening counts of users, such as the Taste Profile dataset used in
Section 2.6. There also exists similar datasets including temporal information. The listening
history of users may then be split in time periods in equal length, yielding a user-item-time
tensor. The time-dependent user preferences or item attributes may then be modeled with
BGAR.
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4.A Moments

4.A.1 Product of independent random variables

Let X1, . . . , Xn be n independent random variables. Then we have

E
(∏

i

Xi

)
=
∏
i

E(Xi). (4.84)

Moreover,

var
(∏

i

Xi

)
= E

(∏
i

Xi

)2
− E

(∏
i

Xi

)2

(4.85)

=
∏
i

E(X2
i )−

∏
i

E(Xi)2 (4.86)

=
∏
i

(
E(Xi)2 + var(Xi)

)
−
∏
i

E(Xi)2. (4.87)
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4.A.2 Laws of total expectation and variance

We recall the law ot total expectation and the law of total variance. We have

E(X) = E(E(X|Y )), (4.88)

and
var(X) = E(var(X|Y )) + var(E(X|Y )). (4.89)

4.B Beta prime distribution

Distribution for a continuous random variable in [0,+∞[, with parameters α > 0, β > 0,
p > 0 and q > 0. Its p.d.f. writes, for x ≥ 0:

f(x;α, β, p, q) =
p
(
x
q

)αp−1 (
1 +

(
x
q

)p)−α−β
qB(α, β) . (4.90)

4.C BGAR(1) linear correlation

We have between two successive values hn and hn+1:

corr(hn, hn+1) = E(hnhn+1)− E(hn)E(hn+1)
σ(hn)σ(hn+1) (4.91)

= E(hn(bn+1hn + εn+1))− E(hn)E(hn+1)
σ(hn)σ(hn+1) (4.92)

= E(bn+1)E(h2
n) + E(hn)E(εn+1)− E(hn)E(hn+1)

σ(hn)σ(hn+1) (4.93)

=
αρ

αρ+α(1−ρ)
α(α+1)
β2 + α

β
α(1−ρ)
β − α

β
α
β

α
β2

(4.94)

= ρ. (4.95)

4.D Bootstrap particle filter

Particle filtering, in its simplest form, amounts to sequential importance sampling (SIS).
This means that a particle approximation of p(x1:n|v1:n) will be obtained with n sequential
importance sampling steps (we begin by sampling x1, then x2, and so on and so forth),
which, if chosen smartly, allow for a recursive computation of the weights of the particles.
In the so-called bootstrap particle filter, the importance distribution q(xn|xn−1,vn) is

chosen to be the transition distribution of the HMM, p(xn|xn−1). This is convenient from a
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Algorithm 6: Bootstrap sequential importance sampling with resampling (SIS/R)
1 # Initialization (n = 1)
2 for i = 1, ..., Np do
3 x(i)

1 ∼ p(x1)
4 ξ̃

(i)
1 = p(v1|x(i)

1 )
5 end
6 for n = 2, ..., N do
7 # Resampling
8 (j1, ..., jNp) ∼ Mult(Np, (ξ(1)

n−1, ..., ξ
(Np)
n−1 ))

9 for i = 1, ..., Np do
10 x(i)

n−1 = x(ji)
n−1

11 end
12 # Propagation
13 for i = 1, ..., Np do
14 x(i)

n ∼ p(xn|x(i)
n−1)

15 ξ̃
(i)
n = p(vn|x(i)

n )
16 end
17 end

computational point of view, because in this case the unnormalized weights ξ̃(i)
n associated

to particle i at time step n is simply the likelihood p(vn|x(i)
n ).

The additional resampling step helps to prevent the degeneracy of the importance weights,
i.e., when the target distribution is approximated by only one or a few relevant particles.
This is a well-known problem from particle filtering methods. We once again refer the
interested reader to Cappé et al. (2007) or Doucet and Johansen (2011) for more details.

4.E MAP estimation in temporal NMF models

Throughout this section, a Poisson likelihood is assumed, i.e., we have

− log p(vfn|[WH]fn) c= −vfn log([WH]fn) + [WH]fn). (4.96)

The majorizations of this term are described in Eq. (4.60) (w.r.t. H) and in Eq. (4.62)
(w.r.t. W).
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4.E.1 Direct chaining on the rate parameter

We aim at optimizing the following function

C(W,H) = −
∑
f,n

log p(vfn|[WH]fn)−
∑
k

log p(hk1) +
∑
n≥2

log p(hkn|hk(n−1))

 , (4.97)

where p(hkn|hk(n−1)) is given by Eq. (4.4).
We resort to an MM scheme, which amounts to minimizing the following functions

f(hk1) c= (αk − pk1) log(hk1) + qkhk1 + βk
hk2
hk1

, (4.98)

f(hkn) c= (1− pkn) log(hkn) +
(
qk + βk

hk(n−1)

)
hkn + βk

hk(n+1)
hkn

, (4.99)

f(hkN ) c= (1− αk − pkN ) log(hkN ) +
(
qk + βk

hk(N−1)

)
hkN . (4.100)

The optimization of these functions boils down to solving an order-2 polynomial equation

a2,knh
2
kn + a1,knhkn + a0,kn = 0, (4.101)

whose coefficients are recapped in the following table.

Variable a2,kn a1,kn a0,kn

hk1 qk ak − pk1 −βhk2
hkn qk + βk

hk(n−1)
1− pkn −βkhk(n+1)

hkN 0 qk + βk
hk(N−1)

1− αk − pkN

Table 4.2: Coefficients of the order-2 polynomial equation (Eq. (4.101)) w.r.t. k and n.

4.E.2 Hierarchical chaining with an auxiliary variable

We aim at optimizing the following function

C(W,H,Z) =−
∑
f,n

log p(vfn|[WH]fn)

−
∑
k

log p(hk1) +
∑
n≥2

(
log p(zkn|hk(n−1)) + log p(hkn|zkn)

) , (4.102)

where p(zkn|hk(n−1)) and p(hkn|zkn) are given by Eqs (4.9)-(4.10).
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We resort to an MM scheme, which amounts to the minimization of the following func-
tions. For zkn, we have

f(zkn) c= (1− αz − αh) log(zkn) + (βzhk(n−1) + βhhkn)zkn. (4.103)

It can be easily solved as
zn = αz + αh − 1

βzhk(n−1) + βhhkn
. (4.104)

For hkn, we detail the three sub-cases

f(hk1) c= −(pk1 + αz) log(hk1) + (qk + βzzk2)hk1, (4.105)
f(hkn) c= (1− αh − αz − pkn) log(hkn) + (qk + βhzkn + βzzk(n+1))hkn, (4.106)
f(hkN ) c= (1− αh − pkN ) log(hkn) + (qk + βhzkN )hkN . (4.107)

These can be easily solved as

hk1 = pk1 + αz
qk + βzzk2

, hkn = pkn + αh + αz − 1
qk + βhzkn + βzzk(n+1)

, hkN = pkN + αh − 1
qk + βhzkN

. (4.108)

Imposing that αh > 1 is a sufficient condition to guarantee non-negativity under the four
proposed update rules.

4.E.3 Chaining on the shape parameter

We aim at optimizing the following function

C(W,H) = −
∑
f,n

log p(vfn|[WH]fn)−
∑
k

log p(hk1) +
∑
n≥2

log p(hkn|hk(n−1))

 , (4.109)

where p(hkn|hk(n−1)) is given by Eq. (4.18).
We resort to an MM scheme, which amounts to minimizing the following functions

f(hk1) c= −pk1 log(hk1) + (qk − αk log(βkhk2)) + log Γ(αkhk2), (4.110)
f(hkn) c= (1− αkhk(n−1) − pkn) log(hkn) + (qk + βk − αk log(βkhk(n+1)))hkn + log Γ(αkhkn),

(4.111)
f(hkN ) c= (1− αkhk(N−1) − pkn) log(hkN ) + (qk + βk)hkN . (4.112)

The optimization of the first two functions is carried out with Newton’s method. The
optimizing of the third and last function can easily be done and yields

hkN = pkN + αkhN−1 − 1
qk + βk

(4.113)
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4.F MAP estimation in the GaP model

This has first been described in Dikmen and Févotte (2012). We aim at optimizing the
following function

C(W,H) = −
∑
f,n

log p(vfn|[WH]fn)−
∑
k,n

log p(hkn), (4.114)

where p(vfn|[WH]fn) is a Poisson likelihood (cf. Eq (4.96)), and hkn are Gamma(αk, βk)
distributed.
We resort to an MM scheme, which then amounts to the minization of the following

function
f(hkn) = (1− αk − pkn) log(hkn) + (qk + βk)hkn. (4.115)

This function can be optimized in closed form, yielding the update

hkn = pkn + αk − 1
qk + βk

. (4.116)

This update ensures the non-negativity of hkn when αk > 1.
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Conclusions

In this thesis, we tackled the general problem of maximum marginal likelihood estimation
in semi-Bayesian NMF models. In this framework, the dictionary W, a deterministic vari-
able, is estimated by maximizing the marginal likelihood of the model, that is the likelihood
where the activation coefficients H have been integrated out. This problem was first tackled
in Dikmen and Févotte (2011, 2012), where an intriguing “self-regularization” phenomenon
on the columns of the dictionary was empirically observed, but could not be explained.
In Chapter 2 and Chapter 3, we have studied two particular instances in such models:

the Gamma-Poisson (GaP) model and the inverse Gamma complex normal (IGCN) model,
respectively. In both cases, we have conducted a similar analysis:
• We were able to rewrite the generative models free of H, which led in turn to a
novel expression of the marginal likelihood. This expression revealed a column-wise
regularization term on W in the GaP model, and an element-wise one in the IGCN
model.
• We have also proposed EM algorithms for the task of optimizing the marginal like-
lihood. In the GaP model, the proposed novel variant (EM-C) has been shown to
have favorable properties. In the IGCN model, all the proposed variants are novel. If
the self-regularization phenomenon clearly occurs in the GaP model, it is much less
clear in the IGCN model, where our experimental work showed the somewhat limited
practical interest of our method.

In Chapter 4, we addressed the problem of designing temporal Markovian NMF models.
To this end, we have conducted a thorough review of the literature. It revealed that all
the models considered until now shared the same limitation, namely, a degenerate station-
ary distribution of the chain. We have proposed the use of an overlooked autoregressive
Markov chain from the time series literature, called BGAR(1), which is marginally Gamma
distributed. To the best of our knowledge, this particular process has never been used for
learning purposes. Combined with a Poisson observation model, it led to a novel NMF
model, which we coined BGAR-NMF.
We then tackled maximum marginal likelihood estimation with tools from the sequential

Monte Carlo framework. If the method seemingly works on small-dimensioned problems, it
does not scale to larger-dimensioned datasets. We then pursued a MAP estimation in this
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model, tackled with a MM-based algorithm for a certain range of hyperparameters. This
method allowed us to demonstrate the interest of the proposed BGAR-NMF model.

Perspective and future works

We discuss in this section several perspectives of the work conducted in this thesis, gath-
ered in two themes.

Model aspects

In Chapter 2 and Chapter 3, our analysis of the marginal likelihood in the considered
models rested upon two elements:
• First of all, we worked with so-called composite models, that is we were able to use
auxiliary variables C such that∑k cfkn = vfn (or xfn). This is because we considered
observation distributions (Poisson, normal) closed under summation. Developing an
analysis framework for distributions which do not share this property remains an open
challenge at this stage.
• Secondly, the prior distribution of H was always chosen to be conjugate to the obser-

vation distribution (Gamma is conjugate to Poisson, and inverse Gamma is conjugate
to normal with known mean). This conjugacy is convenient for computation, but may
not always be relevant from the model perspective (see the discussion at the end of
Chapter 3). As such, it would be an interesting perspective to see how the estimator
behaves with other priors.

Finally, a broader, harder challenge would be to tackle the analysis of the marginal
likelihood not in more general settings, by considering families of distributions, such as
the exponential family, for instance.
In Chapter 4, we aimed at proposing a well-posed prior distribution to model the temporal

evolution of H. We used the BGAR(1) process from the time series literature, which is
marginally Gamma distributed. Other processes tailored to specific applications may be
conceived. For example, in audio signal processing, the activation coefficients are known to
present exponential decay. An exciting perspective would be to develop alternative Markov
chains imitating this structure.

Optimization aspects

In all the models discussed in this thesis, when dealing with the optimization of the
marginal likelihood, we always relied on the EM algorithm. This constitutes a natural
choice, as we are dealing with latent variable models. However, since the posterior of the
latent variables was never tractable, we resorted to MCEM variants, leading to algorithms
with prohibitive computational costs. Other variants of the EM algorithms have been
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considered (see the discussion at the end of Chapter 2), but did not lead to significant
improvements.

As such, it would be beneficial to have alternative methods for optimization, i.e., methods
breaking out of EM-based schemes. In particular, an attractive perspective would be to
optimize the marginal likelihood directly, for example by using stochastic optimization-
based schemes. This line of research might also trigger novel ways of evaluating the marginal
likelihood.
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Appendix A

Résumé Substantiel en Français

Contexte et état de l’art

Les problèmes de factorisation de matrice

Dans de nombreuses situations, les données sont disponibles sous forme matricielle. Consi-
dérons une collection de N échantillons vn (n ∈ {1, . . . , n}) appartenant à RF (c’est-à-dire
décrits par F attributs). Ces échantillons peuvent être concaténés colonne par colonne, afin
de former une matrice de taille F ×N , que l’on note V. Cette matrice V est appelée matrice
d’observation, ou matrice des données.
Certaines techniques d’analyse de ces données peuvent se formuler comme un problème

dit de factorisation de matrice. De manière générale, il s’agit de trouver une approximation
de V sous la forme d’un produit de deux matrices :

V 'WH, (A.1)

où W est de taille F ×K, et H est de taille K ×N . Ces deux matrices sont conjointement
appelées facteurs. Le rang de la factorisation, K, est traditionnellement choisi tel que K ≤
min(F,N), produisant ainsi une approximation de rang faible de la matrice des données. La
factorisation de matrice est alors une technique de réduction linéaire de la dimensionnalité,
puisque chaque échantillon est approximé par une combinaison linéaire de K éléments de
base :

vn '
K∑
k=1

hknwk. (A.2)

Plus précisément, les colonnes de W (parfois appelées « atomes ») représentent des élé-
ments caractéristiques ou récurrents des données. La matrice W est ainsi habituellement
appelée « dictionnaire ». Quant aux colonnes de H, elles encodent la proportion de chaque
atome nécessaire pour représenter les échantillons. On appelle H les coefficients d’activation.
Ainsi, la factorisation de matrice a pour but de découvrir automatiquement une certaine
structure latente des données. Ces méthodes font donc partie des méthodes dites d’appren-
tissage non-supervisé.
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Le problème de factorisation de matrice est traditionnellement formulé comme un pro-
blème d’optimisation. Il s’agit de choisir une certaine fonction D quantifiant la dissimilarité
entre V et son approximation WH, que l’on va chercher à minimiser :

min
W,H

D(V|WH). (A.3)

D’autre part, des contraintes additionnelles sur W ou H peuvent s’ajouter à la formulation
du problème pour des questions d’interprétabilité. C’est le cas de la factorisation en matrices
non-négatives (NMF, de l’anglais non-negative matrix factorization), que nous détaillons
dans la section suivante.

La factorisation en matrices non-négatives

Lorsque la matrice d’observation V est non-négative (c’est-à-dire à coefficients positifs ou
nuls), et que l’on contraint les facteurs W et H à être eux aussi non-négatifs, le problème
est appelé factorisation en matrices non-négatives :

min
W≥0, H≥0

D(V|WH). (A.4)

L’ajout de ces contraintes permet deux choses. Premièrement, le dictionnaire W se situe dans
le même espace que les données, et ses colonnes peuvent donc être directement interprétées
comme des éléments caractéristiques des données. Deuxièmement, la non-négativité des
éléments de H impose des représentations constructives. En effet, l’échantillon vn ne pourra
être représenté que par des sommes pondérées des colonnes (non-négatives) de W. Ainsi, la
NMF produit des représentations dites « par parties ».
La NMF a trouvé de nombreux champs d’application tels que le traitement du signal

audio (pour de la séparation de sources aveugle ou de la transcription automatique), en
fouille de données textuelles (pour de la modélisation thématique), ou encore en imagerie
hyperspectrale (pour du démélange).
De nombreux choix de mesures de dissimilarité D ont été considérés dans la littérature.

On notera en particulier l’étude de la famille paramétrique de la β-divergence, qui permet
de généraliser les choix les plus populaires, tels que la divergence euclidienne, la divergence
généralisée de Kullback-Leibler (KL), ou la divergence d’Itakura-Saito (IS).

Factorisations probabilistes

Il s’avère que pour de nombreux choix de mesures de dissimilarité D, le problème de
minimisation décrit par l’équation (A.4) est équivalent à l’estimation jointe des facteurs W
et H au sens du maximum de vraisemblance pour un certain modèle statistique décrivant
les données. Par exemple, l’utilisation de la divergence KL sous-tend un modèle de Poisson :

vfn ∼ Poisson([WH]fn), (A.5)
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tandis que l’utilisation de la divergence IS sous-tend un modèle exponentiel

vfn ∼ Exp
(

1
[WH]fn

)
. (A.6)

Cela ouvre la voie à un paradigme alternatif pour la NMF, à savoir la NMF probabiliste,
que l’on définit comme des tâches d’apprentissage dans des modèles statistiques dont la loi
de vn est paramétrisée par le produit Whn. Ces modèles de NMF probabilistes regroupent
de nombreux modèles de la littérature, tels que des modèles pour les données de compte.
Plusieurs variantes de modèles peuvent alors être considérées.
1. Modèles fréquentistes. Les facteurs W et H sont supposés être des paramètres déter-

ministes. La tâche d’apprentissage dans de tels modèles correspond alors à l’estimation
jointe au sens du maximum de vraisemblance de W et H ;

2. Modèles bayésiens. Dans ce deuxième cas, les facteurs W et H sont traités comme
des variables aléatoires possédant une distribution a priori. Il s’agit de la majorité des
travaux de la littérature sur la NMF probabiliste ;

3. Modèles semi-bayésiens. Dans ce troisième et dernier cas, seul H est traité comme une
variable aléatoire, et W est supposé être un paramètre déterministe.

Nous nous consacrons dans cette thèse aux modèles de NMF semi-bayésiens.

Estimation dans les modèles de NMF semi-bayésiens

L’estimation dans les modèles de NMF semi-bayésiens a été traitée dans Dikmen and
Févotte (2011) et Dikmen and Févotte (2012). Dans ces deux articles, deux approches ont
été systématiquement comparées :

1. Maximiser la vraisemblance jointe p(V,H; W), c’est-à-dire :

max
W,H

log p(V,H; W) = log p(V|H; W) + log p(H). (A.7)

Nous appelons cette approche MJLE (de l’anglais maximum joint likelihood estima-
tion).

2. Maximiser la vraisemblance marginale p(V; W), c’est-à-dire lorsque H a été margina-
lisé de la vraisemblance jointe :

max
W

log p(V; W) = log
∫

H
p(V|H; W)p(H)dH. (A.8)

Nous appelons cette approche MMLE (de l’anglais maximum marginal likelihood es-
timation). Notons que l’inférence de la distribution a posteriori p(H|V; Ŵ) peut-être
entreprise dans un second temps si nécessaire, où Ŵ est l’estimé au sens du maximum
de vraisemblance marginale.
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Il est clair que l’approche MMLE est statistiquement mieux posée que l’approche MJLE.
En effet, dans l’approche MJLE, le nombre de paramètres à estimer, FK + KN , croît
avec le nombre d’échantillons. Les propriétés d’optimalité statistique de l’estimateur de
maximum de vraisemblance ne peuvent pas s’appliquer puisqu’elles requièrent un nombre
fixe de paramètre par rapport au nombre d’échantillons. L’approche MMLE ne présente pas
ce problème, puisque le nombre de paramètres à estimer est FK.
Il a été empiriquement constaté, sur des jeux de données synthétiques et réels, que l’ap-

proche MMLE avait une tendance à régulariser de manière automatique le rang de la factori-
sation. En particulier, les dictionnaires estimés par l’approche MMLE avaient une tendance
à présenter des colonnes de norme négligeable, au contraire de ceux estimés par l’approche
MJLE, qui utilisaient toujours les K colonnes.
Ces propriétés avantageuses n’avaient alors pas pu être expliquées dans un cadre théorique.

L’étude de l’approche MMLE dans les modèles de NMF semi-Bayésiens est l’objet de cette
thèse. Plus précisément, nous traiterons deux types de distribution a priori pour H :

1. Dans un premier temps, nous traiterons l’hypothèse standard d’indépendance des hn

p(H) =
N∏
n=1

p(hn). (A.9)

Les modèles traités aux Chapitres 2 et 3 font partie de cette catégorie.
2. Dans un deuxième temps, nous levons cette hypothèse afin d’ajouter de la corrélation

statistique au modèle. En effet, dans certains cas les colonnes de V ne peuvent pas
être traitées comme interchangeables (lorsqu’elles décrivent par exemple un processus
temporel). Nous nous intéresserons à une structure de Markov sur les colonnes de H

p(H) = p(h1)
∏
n≥2

p(hn|hn−1). (A.10)

Cette deuxième catégorie de distribution a priori est l’objet du Chapitre 4.

Résumé du Chapitre 2

Dans ce chapitre, nous entreprenons de maximiser la vraisemblance marginale dans le
modèle semi-bayésien suivant

hkn ∼ Gamma(αk, βk), (A.11)
vfn|hn ∼ Poisson([WH]fn). (A.12)

Ce modèle est connu de la littérature de fouille de données textuelles sous le nom de modèle
Gamma-Poisson (abrégé GaP). Dans ce domaine, la matrice V correspond à la représenta-
tion « sac de mots » d’un corpus de documents. Cela signifie que l’élément vfn de la matrice
correspond au nombre d’occurrences du mot f dans le document n. La matrice V est ainsi
à valeurs entières.
Nos contributions peuvent être résumées en deux points principaux.
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Expression analytique de la vraisemblance marginale

Tout d’abord, nous proposons deux réécritures du modèle GaP dans lesquelles la variable
H a été marginalisée. Cela nous permet d’obtenir une expression semi-analytique de la
vraisemblance marginale, ce qui était jusqu’alors jugé hors de portée. L’analyse approfondie
de cette expression a permis de révéler un terme de régularisation sur les colonnes de W,
expliquant ainsi le phénomène de régularisation automatique précédemment observé.

Algorithmes d’optimisation et résultats expérimentaux

Nous comparons trois variantes de l’algorithme EM pour l’optimisation de la vraisem-
blance marginale. Deux de ces variantes étaient déjà connues de la littérature. Nous propo-
sons une troisième variante fondée sur la marginalisation de la variable H. Nos expériences
conduites à la fois sur données synthétiques et données réelles montrent la supériorité de
cette troisième variante, en particulier lorsque les données sont sur-dispersées.

Résumé du Chapitre 3

Dans ce chapitre, nous entreprenons de maximiser la vraisemblance marginale dans le
modèle semi-bayésien suivant

hkn ∼ IG(αk, βk), (A.13)
xfn|hn ∼ CN (0, [WH]fn). (A.14)

Nous avons baptisé ce modèle génératif IGCN. La matrice X est ici à valeurs complexes. En
posant vfn = |xfn|2, nous retrouvons le modèle d’observation exponentiel tel que décrit par
l’équation (A.6). Il s’avère qu’étudier la vraisemblance marginale de V revient à étudier la
vraisemblance marginale de X.
Nos contributions peuvent être résumés en deux points principaux.

Étude de la vraisemblance marginale

Nous proposons une réécriture du modèle IGCN dans laquelle la variable H a été margi-
nalisée. Contrairement à l’étude entreprise dans le chapitre précédent, nous ne sommes par
en mesure de proposer une expression analytique de la vraisemblance marginale. En effet,
il subsiste une intégrale insoluble dans l’expression obtenue. Néanmoins, l’analyse de cette
expression révèle un terme de régularisation locale sur les éléments de W, au contraire du
terme de régularisation par groupe obtenu au chapitre précédent.
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Algorithmes d’optimisation et résultats expérimentaux

Nous proposons trois variantes de l’algorithme EM pour l’optimisation de la vraisemblance
marginale. Cela constitue une avancée par rapport à l’état de l’art, puisque jusqu’à présent
seul un algorithme sans garantie de convergence existait. Nous conduisons une expérience
de décomposition audio sur un exemple réel (un enregistrement audio contenant des notes
de piano).
Nous utilisons comme point de comparaison la méthode IS-NMF (c’est-à-dire le problème

de NMF avec la divergence Itakura-Saito). Nous constatons que le dictionaire retourné par
notre méthode ne présente pas particulièrement de structure parcimonieuse. De plus, la
performance en décomposition audio est similaire à celle de la méthode de référence, mais
pour un coût bien plus élevé. Cela nous amène à conclure que l’intérêt pratique de notre
méthode semble limité.

Résumé du Chapitre 4

Dans ce chapitre, nous nous intéressons à la structure suivante pour la loi a priori de H

p(H) =
∏
k

p(hk1)
∏
n≥2

p(hkn|hk(n−1)). (A.15)

Cela signifie que les lignes de H sont modélisées par des chaînes de Markov indépendantes.
En particulier, nous nous consacrons à l’étude de chaînes de Markov naturellement non-
négatives construites autour de la distribution Gamma.
Nos contributions peuvent être résumées en 2 points principaux.

Étude comparative des chaînes de Markov de la littérature

Plusieurs modèles utilisant de telles chaînes de Markov ont été proposées dans la littéra-
ture NMF. Nous entreprenons une comparaison exhaustive de ces modèles. Ils peuvent être
regroupés en trois catégories :

1. Chaînage sur le paramètre de forme de la distribution Gamma ;
2. Chaînage sur le paramètre d’intensité de la distribution Gamma ;
3. Chaînage sur le paramètre d’intensité de la distribution Gamma avec variable auxi-

liaire.
Il s’avère que tous ces modèles partagent le même défaut : l’absence d’une distribution
stationnaire bien définie. En effet, pour ces trois catégories, la distribution stationnaire
est dégénérée. Nous étudions un quatrième type de chaîne issu de la littérature des séries
temporelles, appelé « BGAR(1) » (chaîne Bêta-Gamma auto-régressive d’ordre 1). La dis-
tribution stationnaire de cette chaîne est bien définie et est une distribution Gamma. Plus
particulièrement, la distribution marginale de cette chaîne à tout instant est Gamma.
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Travail expérimental

Nous considérons un nouveau modèle génératif, dans lequel toutes les lignes de H sont
supposées être tirées de processus BGAR(1) indépendants. Le modèle d’observation est
supposé être Poisson, comme décrit par l’équation (A.5). Nous baptisons ce modèle BGAR-
NMF. Ce modèle est une instance des modèles de Markov cachés.
Afin de maximiser la vraisemblance marginale du modèle BGAR-NMF, nous développons

un algorithme MCEM. Nous utilisons des méthodes de Monte Carlo séquentielles afin de
générer des échantillons de la loi a posteriori des variables latentes. Malheureusement, si
cette méthode fonctionne sur des exemples synthétiques de petite dimension, elle ne passe
pas à l’échelle sur des jeux de données réels.
Nous entreprenons alors de maximiser la loi a posteriori dans le modèle BGAR-NMF. Pour

certaines plages de valeur des hyperparamètres du processus BGAR(1), nous sommes en
mesure de développer un algorithme MM pour cette tâche. L’algorithme donne des résultats
satisfaisants à la fois sur des jeux de données synthétiques et réels.

Conclusion et perspectives

Dans cette thèse, nous avons attaqué le problème général de la maximisation de la vrai-
semblance marginale dans les modèles de NMF semi-bayésiens. Dans les Chapitres 2 et 3,
nous avons étudié deux instances spécifiques de ces modèles. Dans le Chapitre 4 nous avons
proposé un nouveau modèle temporel markovien de NMF fondé sur un processus de la
littérature des séries temporelles qui n’avait jusque là jamais été exploité.
Nous envisageons deux perspectives à notre travail.
À propos des hypothèses de modélisation. Premièrement, l’analyse que nous avons

conduite au sein des Chapitres 2 et 3 repose sur deux éléments clés : une distribution d’ob-
servation composite, et une distribution a priori de H conjuguée à la distribution d’obser-
vation. Un objectif intéressant serait de prolonger cette analyse à des modèles ne respectant
pas ces critères, et dans un cadre plus large, à des modèles fondés sur des familles de dis-
tributions. Deuxièmement, il serait intéressant de construire d’autres chaînes de Markov,
similaires à celle du Chapitre 4, pour des modèles adaptés au traitement du signal audio.
À propos des méthodes d’optimisation. Tous les algorithmes d’optimisation développés

dans cette thèse sont fondés sur l’algorithme MCEM, dont le coût computationnel est très
élevé. Un perspective majeure consisterait à explorer d’autres paradigmes d’optimisation,
afin d’optimiser directement la vraisemblance marginale. En particulier, nous pourrions
utiliser des algorithmes d’optimisation stochastique.
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Other works

Concurrently to the work presented in this thesis, I have been involved in two col-
laborations. These two works are briefly discussed in this appendix, in chronological
order. The interested reader is referred to the papers themselves for more details.

B.1 Bayesian Mean-Parameterized Non-Negative Binary Matrix
Factorization

This work has been carried out in collaboration with Alberto Lumbreras and Cédric
Févotte, and has been submitted for publication in December 2018.

Lumbreras et al. (2018)
Lumbreras, A., Filstroff, L., and Févotte, C. (2018). Bayesian mean-parameterized
nonnegative binary matrix factorization. Submitted to Data Mining and Knowledge
Discovery.
Preprint available on arXiv: https://arxiv.org/pdf/1812.06866.pdf

Abstract

This work tackles the analysis of binary data matrices. Binary matrices may represent
social networks, voting data, gene expression data, or binary images. Many works of the
literature assume a generative model of the following form

vfn ∼ Bernoulli(φ([WH]fn)), (B.1)

where W and H are unconstrained factors, and φ is a link function that maps the factoriza-
tion to the [0, 1] range, thus ensuring a valid Bernoulli parameter. Although link functions
are convenient, they sacrifice the mean-parametrization of the Bernoulli likelihood (i.e.,
E(V) = φ(WH) 6= WH), resulting in less interpretable results. We focus in this paper on
mean-parametrized models, that is which do not rely on a link function (or, equivalently,
consider φ = Id)

vfn ∼ Bernoulli([WH]fn). (B.2)
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To guarantee a valid Bernoulli parameter in Eq. (B.2), i.e. ∑k wfkhkn ∈ [0, 1], we study
in this paper three different sets of constraints on W and H, denoted (c1), (c2) and (c3):

hkn ∈ [0, 1],
∑
f

wfk = 1, (c1)

∑
k

hkn = 1, wfk ∈ [0, 1], (c2)∑
k

hkn = 1,
∑
f

wfk = 1. (c3)

In a Bayesian framework, we assume Beta or Dirichlet distributions to enforce these
constraints, leading to the following models:
• The Beta-Dir model, based on the set of constraints Eq. (c1)

hkn ∼ Beta(αk, βk), (B.3)
wf ∼ Dir(γ), (B.4)

vfn|wf ,hn ∼ Bernoulli([WH]fn). (B.5)

• The Dir-Beta model, based on the set of constraints Eq. (c2)

hn ∼ Dir(η), (B.6)
wfk ∼ Beta(αk, βk), (B.7)

vfn|wf ,hn ∼ Bernoulli([WH]fn). (B.8)

• The Dir-Dir model, based on the set of constraints Eq. (c3)

hn ∼ Dir(η), (B.9)
wf ∼ Dir(γ), (B.10)

vfn|wf ,hn ∼ Bernoulli([WH]fn). (B.11)

The first two models are actually symmetric, since the roles of W and H are symmetric
by transposition of the data matrix V. We end up with two Bayesian mean-parametrized
NMF models for binary data, namely the Beta-Dir and the Dir-Dir models.
The inference revolves around the posterior distributions p(W,H|V) in the two aforemen-

tioned models. In both cases, we develop a collapsed Gibbs sampler in augmented versions
of the models. Collapsed variational inference is also considered. Experimental work is con-
ducted on dictionary learning and prediction tasks. The proposed methods achieve similar
or superior performance w.r.t. the state of the art.
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B.2 A Ranking Model Motivated by Nonnegative Matrix
Factorization with Applications to Tennis Tournaments

This work has been carried out in collaboration with Rui Xia and Vincent Y.F. Tan
from National University of Singapore, as well as Cédric Févotte. It has been accepted for
publication at the European Conference on Machine Learning (ECML-PKDD) 2019.

Xia et al. (2019)
Xia, R., Tan, V.Y.F., Filstroff, L., and Févotte, C. (2019). A Ranking Model Mo-
tivated by Nonnegative Matrix Factorization with Applications to Tennis Tourna-
ments. In Proceedings of the European Conference on Machine Learning and Prin-
ciples and Practice of Knowledge Discovery in Databases (ECML-PKDD).
Available on arXiv: https://arxiv.org/pdf/1903.06500.pdf

Abstract

In this work, we propose a novel ranking model that combines the classical Bradley-Terry-
Luce (BTL) ranking model with NMF.
Consider a sport where a pool of N players may compete against one another, and the

only possible outcomes are a win or a loss. In such a framework, the BTL model posits the
existence of a “skill level” λi ≥ 0 for each player i. Moreover, it assumes that the probability
of the event “player i defeats player j” is

P(i defeats j) = λi
λi + λj

. (B.12)

The BTL model is thus parametrized by the vector λ = [λ1, . . . , λN ]T.
We now address a more complex setting by assuming that there exists M different tour-

naments in which the players can compete. As such, the BTL model naturally extends by
considering a skill matrix Λ of size M ×N . The matrix entry λmi thus represents the skill
of player i in tournament m, and we have

P(i defeats j in tournament m) = λmi
λmi + λmj

. (B.13)

If no further assumption was made on Λ, it then would amount to solvingM independent
BTL models. In this work, we assume that Λ is low-rank, that is Λ = WH, with W of size
M ×K and H of size K ×N . Indeed, we expect Λ to be low-rank as the number of latent
variables governing the skills of players is small. For example in tennis, the surface type of
the court (i.e., hard, grass or clay) influences the skills of the players.
Denote by D the dataset representing the outcomes of the games played between N

players over M different tournaments. We have

D def= {b(m)
ij ∈ N ; (i, j) ∈ Pm}, (B.14)
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where Pm denotes the set of games between pairs of players that have played at least once
in tournament m, and b

(m)
ij is the number of times that player i has defeated player j in

tournament m.
The likelihood is therefore

p(D; W,H) =
M∏
m=1

∏
(i,j)∈Pm

(
[WH]mi

[WH]mi + [WH]mj

)b(m)
ij

, (B.15)

and we will seek W and H such that this likelihood is maximized. To this end, we develop
a provably convergent, numerically stable MM algorithm.
We conduct our experimental work on two tennis datasets. The official rankings for

both professional male and female tennis players are based on a rolling 52-week, cumulative
system, where ranking points are earned only from the stage of tournament reached by the
players. In particular, one will not be awarded with bonus points by defeating a higher-
ranked player (unlike the Elo rating system for chess). Moreover, the current tennis ranking
system does not allow to compare dominant players over a long period (e.g., 10 years).
These limitations are overcome by our proposed ranking model.
We collected the outcomes of games between N = 20 top male and female players in

the most important tournaments of respective tours, over a period of 10 years (2008-2017).
Our model automatically infers that the surface of the court is a key determinant of the
performances of male players, but less so for females.
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