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Résumé

La factorisation en matrices non-négatives (NMF, de l'anglais non-negative matrix factorization) est aujourd'hui l'une des techniques de réduction de la dimensionnalité les plus répandues, dont les domaines d'application recouvrent le traitement du signal audio, l'imagerie hyperspectrale, ou encore les systèmes de recommandation. Sous sa forme la plus simple, la NMF a pour but de trouver une approximation d'une matrice des données non-négative (c'est-à-dire à coefficients positifs ou nuls) par le produit de deux matrices non-négatives, appelées les facteurs. L'une de ces matrices peut être interprétée comme un dictionnaire de motifs caractéristiques des données, et l'autre comme les coefficients d'activation de ces motifs. La recherche de cette approximation de rang faible s'effectue généralement en optimisant une mesure de similarité entre la matrice des données et son approximation. Il s'avère que pour de nombreux choix de mesures de similarité, ce problème est équivalent à l'estimation jointe des facteurs au sens du maximum de vraisemblance sous un certain modèle probabiliste décrivant les données. Cela nous amène à considérer un paradigme alternatif pour la NMF, dans lequel les taches d'apprentissage se portent sur des modèles probabilistes dont la densité d'observation est paramétrisée par le produit des facteurs non-négatifs. Ce cadre général, que nous appelons NMF probabiliste, inclut de nombreux modèles à variables latentes bien connus de la littérature, tels que certains modèles pour des données de comptage.

Dans cette thèse, nous nous intéressons à des modèles de NMF probabilistes particuliers pour lesquels on suppose une distribution a priori pour les coefficients d'activation, mais pas pour le dictionnaire, qui reste un paramètre déterministe. L'objectif est alors de maximiser la vraisemblance marginale de ces modèles semi-bayésiens, c'est-à-dire la vraisemblance jointe intégrée par rapport aux coefficients d'activation. Cela revient à n'apprendre que le dictionnaire, les coefficients d'activation pouvant être inférés dans un second temps si nécessaire. Nous entreprenons d'approfondir l'étude de ce processus d'estimation. En particulier, deux scénarios sont envisagées. Dans le premier, nous supposons l'indépendance des coefficients d'activation par échantillon. Des résultats expérimentaux antérieurs ont montré que les dictionnaires appris via cette approche avaient tendance à régulariser de manière automatique le nombre de composantes ; une propriété avantageuse qui n'avait pas été expliquée alors. Dans le second, nous levons cette hypothèse habituelle, et considérons des structures de Markov, introduisant ainsi de la corrélation au sein du modèle, en vue d'analyser des séries temporelles.

Abstract

Non-negative matrix factorization (NMF) has become a popular dimensionality reduction technique, and has found applications in many different fields, such as audio signal processing, hyperspectral imaging, or recommender systems. In its simplest form, NMF aims at finding an approximation of a non-negative data matrix (i.e., with non-negative entries) as the product of two non-negative matrices, called the factors. One of these two matrices can be interpreted as a dictionary of characteristic patterns of the data, and the other one as activation coefficients of these patterns. This low-rank approximation is traditionally retrieved by optimizing a measure of fit between the data matrix and its approximation. As it turns out, for many choices of measures of fit, the problem can be shown to be equivalent to the joint maximum likelihood estimation of the factors under a certain statistical model describing the data. This leads us to an alternative paradigm for NMF, where the learning task revolves around probabilistic models whose observation density is parametrized by the product of non-negative factors. This general framework, coined probabilistic NMF, encompasses many well-known latent variable models of the literature, such as models for count data.

In this thesis, we consider specific probabilistic NMF models in which a prior distribution is assumed on the activation coefficients, but the dictionary remains a deterministic variable. The objective is then to maximize the marginal likelihood in these semi-Bayesian NMF models, i.e., the integrated joint likelihood over the activation coefficients. This amounts to learning the dictionary only; the activation coefficients may be inferred in a second step if necessary. We proceed to study in greater depth the properties of this estimation process. In particular, two scenarios are considered. In the first one, we assume the independence of the activation coefficients sample-wise. Previous experimental work showed that dictionaries learned with this approach exhibited a tendency to automatically regularize the number of components, a favorable property which was left unexplained. In the second one, we lift this standard assumption, and consider instead Markov structures to add statistical correlation to the model, in order to better analyze temporal data. (4.4). The initial value h 1 is set to 1, and chains were simulated until n = 50. Each subplot contains ten independent realizations, with the value of the parameters (α, β) given at the top of the subplot. log 10 (h n ) is displayed. . . . . . . . . . . . . . . . . . . . . 4.2 Realizations of the Markov chain defined in Eq. (4.9)- (4.10). The initial value h 1 is set to 1, and chains were simulated until n = 50. Each subplot contains ten independent realizations, with the value of the parameters (α z , β z , α h , β h ) given at the top of the subplot. log 10 (h n ) is displayed. . . . . . . . . . . . . . 4.3 Realizations of the Markov chain defined in Eq. (4.18). The initial value h 1 is set to 1, and chains were simulated until n = 50. Each subplot contains ten independent realizations, with the value of the parameters (α, β) given at the top of the subplot. log 10 (h n ) is displayed. . . . . . . . . . . . . . . . . 4.4 Three realizations of the BGAR(1) process, with parameters fixed to α = 2 and β = 1, and a different parameter ρ in each subplot. The mean of the process is displayed by a dashed red line. . . . . . . . . . . . . . . . . . . . . 4.5 The BGAR-NMF model. Observed variables are in blue, while latent variables are in white. In our setting, h n is of size K, and v n is of size F . . . . . 
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Usual Probability Distributions

We here introduce the usual probability distributions used in this thesis. Specific, lesserknown distributions that arise in the course of a chapter are defined in the associated appendix to that chapter.

Discrete univariate distributions

Bernoulli distribution

The probability mass function (p.m.f.) of a Bernoulli random variable X, parametrized by a probability parameter p ∈ [0, 1], is such that: P(X = 1; p) = p, P(X = 0; p) = 1 -p.

(0.1)

We write X ∼ Bernoulli(p). The p.m.f. may alternatively be written as, for k ∈ {0, 1}:

P(X = k; p) = p k (1 -p) 1-k . (0.2)
We have

E(X) = p, var(X) = p(1 -p). (0.3)

Poisson distribution

The p.m.f. of a Poisson random variable X, parametrized with a rate parameter λ > 0, is such that, for all c ∈ N:

P(X = c; λ) = λ c c! exp(-λ). (0.4)
We write X ∼ Poisson(λ).

We have

E(X) = λ, var(X) = λ. (0.5)

Continuous univariate distributions

Normal distribution

The probability density function (p.d.f.) of a normal random variable X, parametrized by a mean parameter µ ∈ R and a variance parameter σ 2 > 0, is such that, for all x ∈ R:

f (x; µ, σ 2 ) = 1 √ 2πσ 2 exp - (x -µ) 2 2σ 2 . (0.6)
We write X ∼ N (µ, σ 2 ).

We have

E(X) = µ, var(X) = σ 2 . (0.7)

Gamma distribution

The p.d.f. of a Gamma random variable X, parametrized by a shape parameter α > 0 and a rate parameter β > 0, is such that, for all x > 0:

f (x; α, β) = β α Γ(α) x α-1 exp(-βx). (0.8)
We write X ∼ Gamma(α, β). Γ is the Gamma function, defined as, for all z > 0:

Γ(z) = +∞ 0 t z-1 exp(-t)dt. (0.9)
We have

E(X) = α β , var(X) = α β 2 . (0.10)
When α = 1, the Gamma distribution reduces to the exponential distribution, whose p.d.f. is therefore, for all x > 0:

f (x; β) = 1 β exp(-βx). (0.11)

Inverse Gamma distribution

Let X be a Gamma random variable with shape parameter α and rate parameter β. Then Y = 1 X follows an inverse Gamma distribution. For all x > 0, its p.d.f. is given by:

f (x; α, β) = β α Γ(α) 1 x α+1 exp - β x .
(0.12)

Note that β is a scale parameter of the distribution. We write X ∼ IG(α, β).

We have

E(X) = β α -1 for α > 1, undefined otherwise, (0.13) var(X) = β 2 (α -1) 2 (α -2)
for α > 2, undefined otherwise. (0.14)

Beta distribution

The p.d.f. of a Beta random variable X, parametrized by a two shape parameters α > 0 and β > 0, is such that, for all x ∈ [0, 1]:

f (x; α, β) = x α-1 (1 -x) β-1 B(α, β) . (0.15)
We write X ∼ Beta(α, β). B is the Beta function, defined as, for all x > 0, y > 0:

B(x, y) = Γ(x)Γ(y) Γ(x + y) . (0.16)
We have

E(X) = α α + β , var(X) = αβ (α + β) 2 (α + β + 1)
. (0.17)

Multivariate distributions

Multinomial distribution

The p.m.f. of a multinomial random vector X = (X 1 , . . . , X K ) is parametrized by n ∈ N (the number of trials), and p = [p 1 , . . . , p K ] T such that 0 ≤ p i ≤ 1 and i p i = 1 (the event probabilities). We have, for all (x 1 , . . . , x K ) ∈ {0, . . . , n} K such that i x i = n:

P(X 1 = x 1 , . . . , X K = x K ; n, p) = n! x 1 ! • • • x K ! K i=1 p x i i . (0.18)
We write X ∼ Mult(n, p).

We have

E(X i ) = np i , var(X i ) = np i (1 -p i ). (0.19)

Dirichlet distribution

The p.d.f. of a Dirichlet random vector

X = (X 1 , . . . , X K ), parametrized by α = [α 1 , . . . , α K ] T with α i > 0, is such that, for all (x 1 , . . . , x K ) ∈ [0, 1] K such that i x i = 1: f (x 1 , . . . , x K ; α) = K i=1 Γ(α i ) Γ K i=1 α i K i=1 x α i -1 i .
(0.20)

We write X ∼ Dir(α).

We have

E(X i ) = α i K i=1 α i = αi , var(X i ) = αi (1 -αi ) K i=1 α i + 1 . (0.21)
Chapter 1

Introduction

This chapter introduces the general concept of matrix factorization, before focusing on the specific problem of non-negative matrix factorization and its probabilistic variants.

Matrix factorization

General introduction

In many situations, data is available in matrix form. Indeed, consider a collection of N samples v n (n ∈ {1, . . . , N }) belonging to R F (i.e., described by F real features or attributes). These samples can be stored column-wise, yielding an F × N matrix, which we denote by V. The matrix V is referred to as the observation matrix, or the data matrix.

Several examples of such matrices are given in Generally speaking, matrix factorization (MF) techniques aim at finding an approximation of V as the product of two matrices:

V WH, (1.1)
where W is of size F ×K, and H is of size K ×N . They are jointly referred to as the factors.

The factorization rank K is usually chosen such that K min(F, N ), hence producing a low-rank approximation of the data matrix V. In this case, matrix factorization is a linear dimensionality reduction technique, since every sample is approximated by a linear combination of K basis elements:

v n K k=1 h kn w k . (1.2)
More specifically, the columns of W (sometimes called the atoms) represent characteristic elements or recurring patterns of the data, and as such W is referred to as the dictionary, or the basis matrix. As for the columns of H, they encode how much of each atom is needed to represent each sample, and are referred to as the activation coefficients, or the score matrix. An illustrative matrix factorization is displayed on Figure 1.1.

The choice of the factorization rank K is a challenging question. Most of the time, the value of K is set beforehand. One has to consider the trade-off between loss of information and computational efficiency. Moreover, in some settings, K has a physical meaning, such as the number of sources when considering audio signal processing, which makes the choice even more complex.

× × × × × × × × × × × × × × × × × × × × = × × × × • • • • • • • • • • • • • • • • • • • • • • • • • • • V = W H Figure 1
.1: Illustrative matrix factorization. In this example, the observation matrix V can be exactly factorized as WH with K = 3. The activation coefficients are binary, with a black dot representing a one, and a white dot a zero.

The goals of matrix factorization techniques are therefore two-fold. Firstly, as previously explained, the dimensionality of the problem is linearly reduced, i.e., the data is projected in a low-dimensional subspace such that each sample is approximated as a linear combination of atoms. Secondly, characteristic patterns are extracted from the data. Indeed, matrix factorization methods automatically uncover some latent structure of the data. As such, they are part of a much broader family of learning methods called unsupervised learning.

Two important questions arise at this point. First of all, we must define a way to quantify the fit between V and its approximation WH, i.e., we must choose a certain loss function D. The objective will be to minimize this function, hence casting matrix factorization as an optimization problem. The problem can be stated as: min W,H

D(V|WH).

(1.3)

We emphasize that the notation D(V|WH) is to be understood as a function of W and H. Secondly, additional constraints might be added on the factors W and H for interpretability reasons. Combinations of both elements (specific choices of a loss function and of constraints on the factors) lead to a variety of well-known problems from the data mining, machine learning, and signal processing communities. In particular, matrix factorization problems have received a great deal of attention under the name "dictionary learning" [START_REF] Olshausen | Emergence of simple-cell receptive field properties by learning a sparse code for natural images[END_REF], where it is assumed that the representation of v n over the dictionary W, namely h n , should be sparse (see [START_REF] Mairal | Online Learning for Matrix Factorization and Sparse Coding[END_REF] and references therein). We will present the most classical matrix factorization problem in the following subsection, before focusing on the specific case of non-negative matrix factorization in Section 1.2.

Principal component analysis

Principal component analysis (PCA) is probably the most well-known data analysis technique, whose origins can be dated to [START_REF] Pearson | On lines and planes of closest fit to systems of points in space[END_REF] and [START_REF] Hotelling | Analysis of a complex of statistical variables into principal components[END_REF]. Basically, PCA amounts to sequentially finding a set of K orthogonal vectors, called the principal components, so that the variance of the projected data onto the subspace spanned by these principal components is maximized. As it turns out, PCA can be cast as a matrix factorization problem. Indeed, an equivalent formulation to this problem is min

W,H ||V -WH|| 2 F , s.t. W T W = I K , (1.4)
where the constraint ensures that W is an orthogonal matrix, and ||.|| F denotes the Frobenius matrix norm:

||V|| F = f,n |v f n | 2 . (1.5)
This minimization problem can be solved exactly thanks to the singular value decomposition (SVD), a factorization that exists for any real matrix. When dealing with an F × N matrix, as is the matrix V, the SVD writes as

V = ŨΣ Ṽ, (1.6) 
where

• Ũ ∈ R F ×F is an orthogonal matrix ( ŨT Ũ = I F );
• Σ ∈ R F ×N is a matrix whose diagonal entries are non-negative and sorted in decreasing order (the so-called singular values σ i ), and zero elsewhere;

• Ṽ ∈ R N ×N is an orthogonal matrix ( ṼT Ṽ = I N ).
The Eckart-Young-Mirsky theorem states that the rank-K matrix M that minimizes

||V -M|| 2 F is the truncated SVD of V, that is: M = K k=1 σ k ũk ṽT k . (1.7)
Thus, the PCA problem of Eq. (1.4) is solved by choosing W to be the first K columns of Ũ, and H to be the first K rows of Σ Ṽ.

Non-negative matrix factorization 1.2.1 Problem statement

A shortcoming of the aforementioned matrix factorization methods is that they produce blind representations to the support of the data. However, naturally non-negative data arises in a wide variety of scenarios: physical measurements, counts of occurrences, pixel intensities... As a matter of fact, all examples of data presented in Table 1.1 are nonnegative. How should the unconstrained principal components of PCA be interpreted in this setting? This is where non-negative matrix factorization (NMF) steps in, by adding non-negativity constraints on both factors to ensure interpretability.

We give a first formulation of the problem. Given a non-negative1 matrix V of size F × N , NMF aims at finding the best rank-K approximation of V as the product of two non-negative matrices W and H. Once again, the word "best" refers to the minimization of a certain measure of fit D between V and its approximation WH:

min W≥0, H≥0 D(V|WH), (1.8)
where the notation A ≥ 0 denotes the non-negativity of the entries of the matrix A. The non-negativity constraints enable the following. First, the dictionary W lies in the same space as the data, and each of its columns can therefore be directly interpreted as a characteristic pattern of the data. Secondly, the non-negativity of H imposes constructive representations only, that is, each sample v n is described as a weighted sum of the (non-negative) columns of W. Subtractions are, by definition, unfeasible. This explains the ability of NMF to produce part-based representations.

As with general MF techniques, K is usually chosen such that K min(F, N )2 . If K was set to F or N , the NMF could be solved exactly with trivial solutions. When this is not the case, one cannot expect NMF to produce an exact factorization, especially when working with real data, and therefore the factorization remains an approximate one.

Early work on NMF was conducted by researchers in the field of chemometrics in the early 90s under the name "positive matrix factorization" [START_REF] Paatero | Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values[END_REF][START_REF] Paatero | Least squares formulation of robust non-negative factor analysis[END_REF]. However, the approach was really popularized by the seminal papers of Lee and Seung (Lee andSeung, 1999, 2000), who coined its definitive name3 , highlighted the part-based representations (making connections with neurological processes), and proposed extremely simple and efficient algorithms.

NMF has found a wide variety of application fields. We detail three illustrative examples.

• In audio signal processing, V is the amplitude spectrogram of an audio signal. Each column of V corresponds to the squared module of the coefficients of the short-time Fourier transform of the signal over F frequency bins. As such, in a an NMF decomposition, W represents the spectra of K audio sources, and H the time frames activations. This has notably been used for automatic music transcription [START_REF] Smaragdis | Non-negative matrix factorization for polyphonic music transcription[END_REF], or blind source separation [START_REF] Virtanen | Monaural Sound Source Separation by Nonnegative Matrix Factorization With Temporal Continuityand Sparseness Criteria[END_REF].

• In text information retrieval, V represents a corpus of N documents under the so-called bag-of-words representation. Given a vocabulary of F different words, the matrix entry v f n is the occurrence count of word f in document n. In an NMF decomposition, W represents the word distributions of K topics, and H the proportion of each topic in a document [START_REF] Xu | Document Clustering Based On Non-negative MatrixFactorization[END_REF][START_REF] Shahnaz | Document clustering using nonnegative matrix factorization[END_REF].

• In hyperspectral imaging, V represents an hyperspectral image. Each column of V represents the pixel intensities of the image over a broad range of spectral bands (i.e., not limited to the RGB bands). In an NMF decomposition, W represents the spectral signature of materials (called the endmembers), and H represents the relative proportions (called the abundances). This is referred to as hyperspectral unmixing [START_REF] Berry | Algorithms and applications for approximate nonnegative matrix factorization[END_REF][START_REF] Bioucas-Dias | Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches[END_REF].

Other application fields include, to cite only a few: image processing [START_REF] Li | Learning Spatially Localized, Parts-Based Representation[END_REF][START_REF] Guillamet | Introducing a weighted non-negative matrix factorization for image classification[END_REF], collaborative filtering [START_REF] Zhang | Learning from Incomplete Ratings Using Non-negative Matrix Factorization[END_REF], computational biology [START_REF] Devarajan | Nonnegative Matrix Factorization: An Analytical and Interpretive Tool in Computational Biology[END_REF], or community detection [START_REF] Wang | Community discovery using nonnegative matrix factorization[END_REF].

Limitations

Despite all the benefits brought by NMF when analyzing non-negative data, several limitations are to be discussed.

NMF is ill-posed

NMF is an inherently ill-posed problem, since there always is an infinite number of solutions 4 . Indeed, consider (W ,H ) solution of the problem (1.8). If there exists invertible square matrices Q ∈ R K×K such that:

W Q ≥ 0, Q -1 H ≥ 0, (1.9) then (W Q, Q -1 H ) is also a solution of the problem (1.8).
As it turns out, Q can always be chosen to be a monomial matrix, that is the product of a permutation matrix and a diagonal matrix with positive entries (it is in fact an equivalence if Q is constrained to be non-negative [START_REF] Minc | Nonnegative Matrices[END_REF]). However, this is not a problem in practice, since all the solutions are equivalent up to a scale and permutation indeterminacy in this scenario. This can be fixed by adding additional regularization terms in the objective function, e.g., on the scale of one of the factors.

The real problem arises when there exists non-monomial matrices Q such that the couple (W Q, Q -1 H ) is also a solution of the problem (1.8). The two solutions then lead to completely different interpretations. Below is a simple illustrative example: 1 4 5 4 4 8 .

   1 0.5 2 0.5 2 1    0 1 1 1 0 1 =    0.5 0.25 1.5 0 1 0.5    1 3
(1.10)

For more detailed considerations about uniqueness in NMF, the interested reader is referred to [START_REF] Donoho | When Does Non-Negative Matrix Factorization Give a Correct Decomposition into Parts?[END_REF]; [START_REF] Laurberg | Theorems on Positive Data: On the Uniqueness of NMF[END_REF]; [START_REF] Gillis | Sparse and Unique Nonnegative Matrix Factorization Through Data Preprocessing[END_REF]; [START_REF] Huang | Non-negative matrix factorization revisited: Uniqueness and algorithm for symmetric decomposition[END_REF].

NMF is non-convex

NMF as in Eq. (1.8) is not a convex problem w.r.t. both W and H. However, for certain choices of cost functions, the problem will be convex w.r.t. one variable, when keeping the other fixed. This gives the intuition behind most of the existing optimization algorithms to solve the problem.

NMF is NP-hard

In the scenario where V can be exactly factorized as WH, NMF is NP-hard in general [START_REF] Vavasis | On the complexity of nonnegative matrix factorization[END_REF]. This is in contrast with algorithms retrieving the SVD of a matrix, which have O(N F 2 + N 3 ) complexity.

Choice of the divergence

In this subsection, we detail some of the different measures of fit that have been used in the NMF literature. First of all, we assume the separability of the cost function w.r.t. F and N , that is

D(V|WH) = f,n d(v f n |[WH] f n ), (1.11)
where d is a scalar divergence. The word divergence, commonly used in NMF, is to be understood as a mathematical object more general than a distance. In particular, a divergence almost never enforces two of the three conditions necessary to define a distance, namely the symmetry condition and the triangular inequality. Basically, a divergence must at least respect the following conditions:

• d(x|y) ≥ 0, • d(x|y) = 0 ⇔ x = y.
The seminal papers of Lee and Seung proposed the use of two different divergences, which to this day remain very popular in NMF:

• The (squared) Euclidian distance

d(x|y) = (x -y) 2 .
(1.12)

Note that in this case D(V|WH) is equivalently the the squared Frobenius norm

||V -WH|| 2 F . • The (generalized) Kullback-Leibler (KL) divergence 5 d(x|y) = x log x y -x + y.
(1.13)

Several works have proposed alternative cost functions. Most of these works focus on the study of a parametrized family of divergences. We mention the Kompass family of divergences [START_REF] Kompass | A generalized divergence measure for nonnegative matrix factorization[END_REF], which interpolates between the KL divergence and the Euclidian distance with a parameter between 0 and 1. The family of the α-divergences was also considered [START_REF] Cichocki | Non-negative matrix factorization with α-divergence[END_REF], as well as the family of the β-divergences [START_REF] Cichocki | Families of Alpha-Beta-and Gamma-Divergences: Flexible and Robust Measures of Similarities[END_REF][START_REF] Févotte | Algorithms for nonnegative matrix factorization with the β-divergence[END_REF], where both α or β are real parameters.

Even broader families have been considered, based on generating functions. We mention the well-known Bregman divergences [START_REF] Sra | Generalized Nonnegative Matrix Approximations with Bregman Divergences[END_REF], which can generate the βdivergences, and the Csiszar divergences [START_REF] Cichocki | Csiszar's divergences for non-negative matrix factorization: Family of new algorithms[END_REF], which can generate the α-divergences.

The links between all these families are recapped and further discussed in Appendix 1.A. We will however focus on the special case of the β-divergences family, which has received a particular attention in [START_REF] Févotte | Algorithms for nonnegative matrix factorization with the β-divergence[END_REF].

The special case of the β-divergences family

The family of the β-divergences, parametrized by β ∈ R, can be defined as:

d β (x|y) =          1 β(β-1) x β + (β -1)y β -βxy β-1 if β ∈ R \ {0, 1}, x log x y -x + y if β = 1, x y -log x y -1 if β = 0.
(1.14)

This family takes as particular cases the Euclidian distance (β = 2), the KL divergence (β = 1), as well as the Itakura-Saito divergence (β = 0), a divergence broadly used in audio signal processing. Therefore, the β-divergences family continuously generalizes the most commonly used divergences in NMF. Figure 1.2 displays the β-divergence for various values of β.

An interesting property of the β-divergence is the following:

∀λ > 0, d β (λx|λy) = λ β d β (x|y).
(1.15)

Consequently, the largest values will have more importance in the cost function with β > 0, whereas with β < 0, the smallest values will have more importance. The only scale-invariant distribution is obtained for β = 0, i.e., the Itakura-Saito (IS) divergence. This gives us some insight regarding the choice of the divergence to use. For example, the scale invariance property of the IS divergence is one of the main reasons for its advocacy in audio signal processing [START_REF] Févotte | Nonnegative matrix factorization with the itakura-saito divergence: With application to music analysis[END_REF].

Finally, note that the first-order and second-order derivatives are continuous in β, which allows for unified optimization techniques for the whole family, as shall be discussed in the following subsection.

Standard algorithms

The very large majority of algorithms designed to solve the NMF problem described in Eq. (1.8) makes use of a block coordinate descent scheme. More precisely, the algorithm consists in alternatively updating one of the factors, while keeping the other fixed. The general framework of such algorithms is outlined in Algorithm 1.

The algorithm therefore boils down to the update of W given H, and that of H given W. As it turns out, these two steps are symmetric, since we have by transposition

V WH ⇔ V T H T W T .
(1.16)

As such, we can focus on how to solve one of these two tasks only, for instance min W≥0 D(V|WH (i-1) ).

(1.17)

Algorithm 1: Standard block coordinate descend (BCD) algorithm for NMF Input: Non-negative matrix V, factorization rank K 1 Generate random initial non-negative matrices W (0) and H (0) 2 for i = 1, . . . , N iter do

3 update W such that D(V|W (i) H (i-1) ) ≤ D(V|W (i-1) H (i-1) ) 4 update H such that D(V|W (i) H (i) ) ≤ D(V|W (i) H (i-1) )
5 end Output: WH, rank-K approximation of V

The best case scenario arises when the divergence D is convex w.r.t. W (while keeping H fixed). This is for example the case for the β-divergences family when β ∈ [1, 2]. As such, the optimal solution to the sub-problem (1.17) is usually sought after. This has been extensively studied when D is chosen to be the squared Euclidian distance. We mention the projected gradient descent [START_REF] Lin | Projected gradient methods for nonnegative matrix factorization[END_REF], as well as the numerous works on the "alternating non-negative least squares" family developed by Haesun Park and colleagues (Kim andPark, 2008, 2011). For a more thorough survey of these methods, as well as comparative considerations, the interested reader is referred to [START_REF] Gillis | Accelerated multiplicative updates and hierarchical als algorithms for nonnegative matrix factorization[END_REF] and [START_REF] Kim | Algorithms for nonnegative matrix and tensor factorizations: A unified view based on block coordinate descent framework[END_REF].

In the general case, we may resort to majorization-minimization (MM) [START_REF] Hunter | A Tutorial on MM Algorithms[END_REF]. MM techniques consist in majorizing the objective function (by a so-called auxiliary function), and then optimizing the auxiliary function instead. The auxiliary function is usually chosen such that its optimization is easier than the optimization of the original objective function, e.g., by choosing a convex auxiliary function. More details about the MM framework can be found in Appendix 1.B. By construction, we retrieve a W (i) that decreases the objective function. MM-based algorithms have been studied for the β-divergences family in [START_REF] Févotte | Algorithms for nonnegative matrix factorization with the β-divergence[END_REF]. It results in very simple and elegant multiplicative updates, which corresponds to the original heuristic update rules proposed by Lee and Seung for the KL divergence and Euclidian distance:

W ← W [(WH) β-2 V]H T (WH) β-1 H T γ(β) , (1.18) H ← H W T [(WH) β-2 V] W T (WH) β-1 γ(β) , (1.19)
where denotes the Hadamard product; division and power are taken entry-wise. The exponent γ(β) is such that

γ(β) =      1 2-β if β < 1, 1 if 1 ≤ β ≤ 2, 1 β-1 if β > 2.
(1.20)

For considerations regarding the convergence of these MM-based algorithms (i.e., whether the sequence of iterates {W (i) , H (i) } i≥0 converges to a stationary point satisfying the Karush-Kuhn-Tucker (KKT) conditions), we refer the reader to [START_REF] Zhao | A Unified Convergence Analysis of the Multiplicative Update Algorithm for Regularized Nonnegative Matrix Factorization[END_REF].

An example: the original experiment

We here present for illustrations purposes the experiment described in the seminal paper of Lee and Seung [START_REF] Lee | Learning the parts of objects by non-negative matrix factorization[END_REF]. We similarly consider the CBCL6 dataset, which contains 2429 grayscale images of faces of size 19 × 19. This yields an observation matrix V of size 361 × 2429.

We then seek to find an NMF of V with K = 30. The Kullback-Leibler divergence was chosen to be the measure of fit, and we use the standard multiplicative updates (i.e., Eqs (1.18)-(1.19) with β = 1). The algorithm is run for 5000 iterations.

Each image of Figure 1.3 displays one column of the dictionary W. As we can see, they highlight different parts of faces. Figure 1.4 displays the reconstructed image for eight samples chosen at random. 

Probabilistic non-negative factorization 1.3.1 Definition

In the previous section, we have described NMF as an optimization problem, with one of the main questions being the choice of the measure of fit to assess the dissimilarity between V and its approximation WH. We will now turn to an alternative paradigm, namely probabilistic non-negative matrix factorization.

As it turns out, for many usual cost functions, the minimization problem described in Eq. (1.8) can be shown to be equivalent to the joint maximum likelihood estimation of the factors W and H under a specific statistical model, that is max W,H log p(V; W, H).

(1.21)

We give the following illustrative example. Consider the following statistical model (assuming independence of the v f n ):

v f n ∼ Poisson([WH] f n ), (1.22)
with W, H ≥ 0. We have

-log p(V; W, H) = - f,n (v f n log([WH] f n ) -[WH] f n -log(v f n !)) (1.23) c = f,n v f n log 1 [WH] f n + [WH] f n (1.24) c = D KL (V|WH). (1.25)
Therefore, maximizing the log-likelihood w.r.t. W and H in the model of Eq. (1.22) is equivalent to minimizing the KL-divergence between V and WH7 .

This leads the way to so-called probabilistic NMF, i.e., learning (in a broad sense, meaning either estimation or inference problems) in probabilistic models whose observation density (likelihood) can be written as

v n ∼ p(. ; Wh n , Ψ), W ≥ 0, h n ≥ 0, (1.26)
that is to say that the distribution of v n is parametrized by the dot product between W and h n ; any other parameters that could act on the distribution are generically denoted by Ψ. Such models are therefore latent variable models.

This general framework encompasses many well-known latent variable models from the NMF literature. A tentatively exhaustive list is presented in the following subsection.

List of models

In the following list of models, the independence of the v f n or of the v n is implied and is not recalled in the equations.

• Models based on a Gaussian likelihood. [START_REF] Schmidt | Bayesian non-negative matrix factorization[END_REF] assume the following likelihood for non-negative data

v f n ∼ N ([WH] f n , σ 2 ).
(1.27)

The joint maximum likelihood estimation of the factors in this model amounts to minimizing the squared Euclidian distance between V and WH. As such, it is the probabilistic counterpart to the classical quadratic loss choice. However, this model can be criticized, most notably because it can give rise to negative data, which contradicts the nature of the data at hand. Moreover, it non-negatively factorizes the mean of a Gaussian distribution, an unconstrained parameter, which may be unnatural in some cases. More general models with zero-mean noise have been considered in [START_REF] Alquier | An Oracle Inequality for Quasi-Bayesian Nonnegative Matrix Factorization[END_REF].

• Models based on an exponential likelihood [START_REF] Févotte | Nonnegative matrix factorization with the itakura-saito divergence: With application to music analysis[END_REF][START_REF] Hoffman | Bayesian Nonparametric Matrix Factorization for Recorded Music[END_REF]. They assume the following likelihood for non-negative data

v f n ∼ Exp 1 [WH] f n .
(1.28)

The joint maximum likelihood of the factors in this model is equivalent to minimizing the Itakura-Saito divergence between V and WH. As a matter of fact, this model can equivalently be rewritten as a composite model with complex Gaussian components, therefore principled when considering the STFT of an audio signal. These links will be further developed in Chapter 3.

• Models based on the Poisson distribution [START_REF] Canny | GaP: A Factor Model for Discrete Data[END_REF][START_REF] Cemgil | Bayesian Inference for Nonnegative Matrix Factorisation Models[END_REF][START_REF] Zhou | Beta-Negative Binomial Process and Poisson Factor Analysis[END_REF][START_REF] Gopalan | Scalable Recommendation with Hierarchical Poisson Factorization[END_REF]. These models are sometimes generically referred to as "Poisson factorization", or "Poisson factor analysis". They assume

v f n ∼ Poisson([WH] f n ). (1.29)
As detailed in the previous subsection, the joint maximum likelihood estimation of the factors is tantamount to the minimization of the KL divergence between V and WH.

• Models based on compound Poisson distributions. As it turns out, the use of the Poisson distribution does not restrict us to integer data, when considering the larger family of the compound Poisson distributions. Such models can be written as

L f n ∼ Poisson([WH] f n ), (1.30) x lf n i.i.d. ∼ p(. ; Ψ) ∀l ∈ {1, . . . , L f n }, (1.31) v f n = L f n l=1
x lf n .

(1.32)

In this case, p is called the element distribution, and depending on the choice of this distribution, gives rise to various supports for v f n (N, R + , R...). These models [START_REF] Şimşekli | Learning the beta-Divergence in Tweedie Compound Poisson Matrix Factorization Models[END_REF][START_REF] Basbug | Hierarchical Compound Poisson Factorization[END_REF][START_REF] Gouvert | Recommendation from Raw Data with Adaptive Compound Poisson Factorization[END_REF] are examples of hierarchical models in which the distribution of v f n is only known conditionally to another random variable (in this case, L). It falls into the framework of Eq. (1.26) once this variable has been marginalized, which is most of the time not analytically possible.

• Models with more restrictive constraints on the factors. We mention the ubiquitous latent Dirichlet allocation (LDA) model [START_REF] Blei | Latent Dirichlet Allocation[END_REF], which assume

v n ∼ Mult(L, Wh n ), (1.33) 
where Mult denotes the multinomial distribution. Therefore, we must have f Wh n = 1, which can be achieved by assuming that both the columns of W and H sum to 1. We also mention models for binary data, based on a Bernoulli likelihood [START_REF] Kabán | Factorisation and denoising of 0-1 data: A variational approach[END_REF][START_REF] Bingham | The aspect Bernoulli model: multiple causes of presences and absences[END_REF][START_REF] Lumbreras | Bayesian Mean-parameterized Nonnegative Binary Matrix Factorization[END_REF])

v f n ∼ Bernoulli([WH] f n ). (1.34)
Similarly, to ensure a valid Bernoulli parameter, W and H must be such that k w f k h kn ∈ [0, 1].

• Models based on distributions with heavy tails. We mention for count data the negative binomial distribution [START_REF] Gouvert | Negative Binomial Matrix Factorization for Recommender Systems[END_REF][START_REF] Zhou | Nonparametric Bayesian Negative Binomial Factor Analysis[END_REF], and for continuous non-negative data the Student-t distribution [START_REF] Yoshii | Student's t Nonnegative Matrix Factorization and Positive Semidefinite Tensor Factorization for Single-channel Audio Source Separation[END_REF] or the Lévy distribution [START_REF] Magron | Lévy NMF for robust nonnegative source separation[END_REF].

Exponential dispersion models and Tweedie distributions

The exponential dispersion models (EDM) [START_REF] Jørgensen | Exponential dispersion models[END_REF][START_REF] Jørgensen | The Theory of Dispersion Models[END_REF] are a twoparameter family of distributions, whose distribution can be written as

p(x; θ, ϕ) = h(x, ϕ) exp 1 ϕ (θx -κ(θ)) , (1.35)
where θ ∈ D ⊂ R is the natural parameter, and ϕ > 0 is the dispersion parameter. The function h is called the base function, and κ is called the cumulant function. As it turns out, we have µ = E(X) = κ (θ) and var(X) = ϕκ (θ) (see Appendix 1.C). The mapping between θ and µ being invertible, we may as well write var(X) = ϕV (µ), where V (µ) is called the variance function. An EDM is characterized by its variance function.

The Tweedie family of distributions [START_REF] Tweedie | An index which distinguishes between some important exponential families[END_REF] assume that the variance function of the EDM is a power variance function, that is

V (µ) = µ p .
(1.36)

It can be shown that such EDMs exist for p ∈ R\]0, 1[. Special cases are the normal distribution (p = 0), the Poisson distribution (p = 1), the Gamma distribution (p = 2), and the inverse Gaussian distribution (p = 3). More precisely, apart from the four aforementioned cases, a closed-form analytical expression of the distribution does not exist. The cumulant function κ can be derived in this case, but this does not imply a closed-form expression of h8 . Setting β = 2-p, and assuming that the v f n are independent and distributed as a Tweedie with mean [WH] f n , it can be shown that [START_REF] Yılmaz | Alpha/beta divergences and Tweedie models[END_REF][START_REF] Tan | Automatic relevance determination in nonnegative matrix factorization with the β-divergence[END_REF])

-log p(V; W, H) c = 1 ϕ f,n d β (v f n |[WH] f n ).
(1.37) Thus, the choice of β when considering NMF with the β-divergence (described in Section 1.2.3) underlies the choice of a noise model that can be described with Tweedie distributions, except for interval β ∈]1, 2[ where no such model exists.

Model variants and learning problems

As explained in Section 1.3.1, a probabilistic NMF model is only defined by its associated observation model (the distribution of v n , Eq. (1.26)). As such, several variants can be considered 1. Frequentist NMF models. Graphical model described in Figure 1.5-a. The factors W and H are treated as deterministic parameters. Learning tasks in these models therefore correspond to maximum likelihood estimation. As explained previously, this amounts to optimizing a certain divergence between V and WH. However, casting the problem as a maximum likelihood problem may enable us to use specific tools to solve this optimization task, namely the EM algorithm.

2. Bayesian NMF models. Graphical model described in Figure 1.5-b. In this case, the factors W and H are treated as random variables with prior distributions. As a matter of fact, the vast majority of the aforementioned works consider Bayesian NMF models.

Inference resolves here around the joint posterior distribution p(W, H|V). Neither W nor H is assumed to be a random variable. (b) Bayesian NMF models. Both W and H are assumed to be random variables with a prior distribution. (c) Semi-Bayesian NMF models. W is assumed to be a parameter, whereas a prior distribution is assumed on H.

Chapter 1 Introduction
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3. Semi-Bayesian NMF models. Graphical model described in Figure 1.5-c. A third and last class of models, which we coin semi-Bayesian NMF models, can be considered. In these models, a prior distribution is assumed on H, but W remains a deterministic variable. These models will be the specific focus of this thesis.

Inference in semi-Bayesian NMF 1.4.1 Estimators

We consider from now on semi-Bayesian NMF models, that is models defined by a prior distribution for H, and an observation density of v n given h n (as in Eq. (1.26)). They have been considered in [START_REF] Dikmen | Nonnegative dictionary learning in the exponential noise model for adaptive music signal representation[END_REF] for an exponential likelihood (Eq. (1.28)) and in [START_REF] Dikmen | Maximum marginal likelihood estimation for nonnegative dictionary learning in the Gamma-Poisson model[END_REF] for a Poisson likelihood (Eq. (1.29)).

Denote by θ H the hyperparameters of the prior distribution on H, p(H; θ H ). In these two papers, two estimation approaches were compared:

1. Maximizing the joint likelihood p(V, H; W, θ H ), that is: max W,H,θ H log p(V, H; W, θ H ) = log p(V|H; W) + log p(H; θ H ).
(1.38)

We refer to this process as maximum joint likelihood estimation (MJLE).

2. Maximizing the marginal likelihood p(V; W), that is when H has been integrated out of the joint likelihood:

max W,θ H log p(V; W, θ H ) = log H p(V|H; W)p(H; θ H )dH. (1.39)
We refer to this process as maximum marginal likelihood estimation (MMLE). Note that we may turn to the inference the posterior distribution p(H|V; Ŵ) in a second step if necessary, where Ŵ is the maximum marginal likelihood estimate. More generally, the methodology consisting first in estimating the hyperparameters (i.e., all non-random variables, meaning W and θ H in our setting) by maximizing the marginal likelihood (e.g., with an EM algorithm), and then in inferring the posterior distributions (e.g., by sampling) is referred to as empirical Bayes (EB) [START_REF] Morris | Maximum likelihood for blind separation and deconvolution of noisy signals using mixture models[END_REF].

MMLE clearly constitutes a better-posed approach than MJLE from a statistical point of view. Assume that the hyperparameter θ H is of size L. In MJLE, the estimated variables are W, H and θ H . This represents a total number of F K + KN + L estimated parameters, which grows with the number samples N . As such, little can be said about the statistical optimality the maximum likelihood estimator, which requires a fixed numbers of parameters w.r.t. the number of samples. In particular, this can lead to overfitting issues. This is in contrast with MMLE, where the number of estimated parameters is F K + L (since only W and θ H are estimated), i.e., constant w.r.t. N .

In Dikmen andFévotte (2011, 2012), the comparison of these two methods was tackled empirically. In particular, algorithms to optimize both functions were conceived. In their experiments, on both synthetic (i.e., generated from the considered models) and real datasets, they consistently found that MMLE had a tendency to automatically regularize the factorization rank K. More precisely, the dictionaries estimated by MMLE have a tendency to exhibit columns with negligible norm, in contrast with those estimated by MJLE, which always make use of all the K columns. This favorable behavior of MMLE was left unexplained. In particular, we would like to answer the following questions:

• Can we give an explanation to the observed self-regularization phenomenon in the specific settings of Dikmen andFévotte (2011, 2012)?

• Can we exhibit general conditions in which this phenomenon is bound to happen?

• Can we quantify the phenomenon?

Related works to MMLE

In this section, we make connections with other works of the literature, which maximize the marginal likelihood in different contexts.

Integrating out nuisance parameters

The methodology of MMLE bears strong links with the problem of eliminating nuisance parameters, a well-studied problem in statistics. A nuisance parameter is a parameter which takes part in the generative process, but whose value or distribution is not of immediate interest, or even of no interest at all. One might argue that in our NMF setting, the dictio-nary W is the variable of interest, whereas the activation coefficients are not of immediate interest (recall that we may tackle the inference of H in a second step if necessary). [START_REF] Berger | Integrated Likelihood Methods for Eliminating Nuisance Parameters[END_REF] discusses the advantages and limitations of the elimination of nuisance parameters through integration (i.e., dealing with the marginal likelihood) versus methods that do not involve integration, especially methods that make use of the so-called profile likelihood.

A note on LDA

In the initial formulation of LDA [START_REF] Blei | Latent Dirichlet Allocation[END_REF], a Dirichlet prior is assumed on h n , while the dictionary W remains a deterministic variable. The authors then proposed an EB methodology, based on variational inference [START_REF] Jordan | An Introduction to Variational Methodsfor Graphical Model[END_REF][START_REF] Blei | Variational Inference: A Review for Statisticians[END_REF] for both the estimation of W and θ H and the posterior inference. The inference in LDA is therefore MMLE.

Note that, as already proposed in [START_REF] Blei | Latent Dirichlet Allocation[END_REF], LDA is now most of the time presented as a fully Bayesian model, by adding an additional Dirichlet prior on the columns of W (in this context, a column of W represents a distribution of words over a certain vocabulary, therefore must sum to one). In this case, the first step of the EB methodology amounts to estimating θ W and θ H , the parameters of the two Dirichlet priors, by MMLE. See also a discussion of the importance of the hyperparameters in LDA in Wallach et al. (2009a).

A note on independent component analysis (ICA)

The concept of maximizing the marginal likelihood in semi-Bayesian NMF models is shared in spirit by the standard approach adopted in independent component analysis (ICA) [START_REF] Comon | Independent component analysis, A new concept?[END_REF][START_REF] Hyvärinen | Independent Component Analysis[END_REF].

Consider a collection of M signals of length T , stored into a matrix X of size M × T . ICA assumes that these signals are an instantaneous linear mixture of M sources. More precisely, we can write for all time t

x t = As t , (1.40)
where A ∈ R M ×M is the mixture matrix. Moreover, the M sources are assumed to be independent

p(s t ) = M m=1 p m (s mt ), (1.41)
where p m denotes the distribution of source m. No assumption is made on the mixing matrix. The goal is then to estimate both the sources and the mixture matrix.

The standard way to solve the ICA problem is to maximize the marginal likelihood p(X; A), which can be easily obtained since A is square. The sources are then recovered by inverting the linear system of Eq. (1.40) using the maximum likelihood estimate of A. However, we would like to emphasize that in standard ICA, no noise model is assumed, meaning that p(x t |s t ) is a Dirac distribution, hence the ease to obtain the marginal likelihood (the marginal distribution of x t is simply a change of variable). In the context of noisy ICA (i.e., where Eq. (1.40) becomes x t = As t + t ), maximizing the marginal likelihood has most notably been addressed in Moulines et al. (1997), under Gaussian assumptions.

Categories of priors on the activation coefficients

We conclude this section by taking a closer look at the prior distributions on H that will be considered in this thesis. We can sketch up two classes of priors. The first class corresponds to the standard independence assumption of the h n :

p(H) = N n=1 p(h n ).
(1.42)

The factors being non-negative, a standard choice for p(h n ) is for instance independent Gamma distributions, which can be sparsity-inducing if the shape parameter is lower than one. The inverse Gamma distribution has also been considered. The models tackled in Chapter 2 and 3 make use of this class of prior on H.

One might also be interested in adding statistical correlation in the model, i.e., when the columns of V cannot be treated as exchangeable. Such a scenario arises in particular when the columns of V describe the evolution of a process over time (such matrices V are sometimes referred to as dynamic matrices). This is usually achieved by lifting the independence assumption of Eq. (1.42) in order to introduce correlation between successive columns of H. In particular, we consider a Markov structure on the columns of H:

p(H) = p(h 1 ) n≥2 p(h n |h n-1 ).
(1.43)

This corresponds to the second class of priors studied in this thesis, and are the main concern of the models addressed in Chapter 4.

Structure of the manuscript and contributions

Chapter 2 tackles maximum marginal likelihood estimation in the Gamma-Poisson matrix factorization model. In particular, we derive a closed-form expression of the marginal likelihood, which gives us some insight into the self-regularization phenomenon empirically observed in [START_REF] Dikmen | Maximum marginal likelihood estimation for nonnegative dictionary learning in the Gamma-Poisson model[END_REF]. Moreover, an experimental comparison of three EM algorithms is carried out.

Chapter 3 deals with maximum marginal likelihood estimation in a semi-Bayesian NMF model based on an exponential likelihood. This model is a special case of the models studied in [START_REF] Dikmen | Nonnegative dictionary learning in the exponential noise model for adaptive music signal representation[END_REF]. Unlike the previous chapter, we are unable to derive a closed-form expression of the marginal likelihood in this setting. Nonetheless, we derive three novel EM algorithms and apply them to a real audio decomposition example.

Chapter 4 addresses maximum marginal likelihood estimation in semi-Bayesian NMF models in which the prior distribution on H is as described in Eq. (1.43). We begin by thoroughly reviewing the literature on non-negative Markov chains. We then propose a novel NMF model, as well as its associated inference.

The concluding chapter, page 139, presents conclusions and discusses some perspectives of our work.

The Appendix A provides a substantial abstract of this thesis in French.

The Appendix B describes the results of two collaborations that were conducted concurrently to the work presented in this thesis. The first one deals with Bayesian meanparametrized NMF models for binary data. The second one studies a ranking model combined with NMF, with applications to data from tennis tournaments. In this subsection, we discuss the classical parametrized families of divergences that have been used in NMF. We begin by mentioning the family of the α-divergences [START_REF] Cichocki | Non-negative matrix factorization with α-divergence[END_REF])

Appendices to

d a α (x|y) =        1 α(1-α) αx + (1 -α)y -x α y 1-α if α ∈ R \ {0, 1} y log y x + x -y if α = 0 x log x y -x + y if α = 1 (1.44)
as well as the family of the β-divergences [START_REF] Cichocki | Families of Alpha-Beta-and Gamma-Divergences: Flexible and Robust Measures of Similarities[END_REF][START_REF] Févotte | Algorithms for nonnegative matrix factorization with the β-divergence[END_REF])

d b β (x|y) =          1 β(β-1) x β + (β -1)y β -βxy β-1 if β ∈ R \ {0, 1} x y -log x y -1 if β = 0 x log x y -x + y if β = 1 (1.45)
The two families are distinct. However, they are connected with the simple relation

d b β (x|y) = y β-1 d a β (x|y).
(1.46)

A parametric family of divergences was independently studied by Kompass [START_REF] Kompass | A generalized divergence measure for nonnegative matrix factorization[END_REF])

d K λ (x|y) = x λ (x λ -y λ ) + y λ (y -x) if λ ∈]0, 1] λ log x y + x -y if λ = 0 (1.47)
As it turns out, this family corresponds to the family of the β-divergences up to a multiplicating factor:

d K λ (x|y) = λd b λ+1 (x|y). (1.48)
Note that the families of the α-divergences and β-divergences can further be generalized to the so-called α, β-family of divergences [START_REF] Cichocki | Generalized Alpha-Beta Divergences and Their Application to Robust Nonnegative Matrix Factorization[END_REF].

1.A.2 Families generated by a function

In this subsection, we discuss families of divergences used in NMF that are based on a generating function.

1.A.2.1 Bregman divergences

Let F : R + → R be a continuously-differentiable, convex function. The Bregman divergence associated to F is defined as

d(x|y) = F (x) -F (y) + F (y)(x -y).
(1.49) By taking

F β (x) = x β β(β -1) - x β -1 + 1 β , (1.50)
and the associated limit cases when β → 0 or 1, we retrieve the family of the β-divergences.

1.A.2.2 Csiszar divergences

Let ϕ : R + → R be a convex function, continuous in zero.

d(x|y) = xϕ y x .
(1.51)

An appropriate choice of ϕ can give rise to the family of the α-divergences.

1.B The majorization-minimization framework

We describe in this section the key elements of the majorization-minimization (MM) framework. Consider a real-valued function f that we aim to minimize. The direct optimization of f is assumed to be difficult.

0.0 0.5 2.0 2.5 x (i) x (i + 1) x ⋆ -4 -2 0 2 4 f(x) g(x; x (i) )
Figure 1.6: Illustrative example of an MM algorithm. The function f to minimize is displayed in blue. Its minimum is achieved at x = x . Assuming that x (i) = 0.75, we obtain the majorizing function in red. Its minimization yields the next iterate

x (i+1) .

MM algorithms iteratively construct a majorizing function of f , which we denote by g (the majorization step), and then proceed to the minimization of g (the minimization step). The function g, also called the auxiliary function, is constructed such that its minimization is easy, e.g. can be carried out in closed form.

Denote by g(.; x) a function whose shape depend on x. The function g(.; x) is said to be an auxiliary function to the function f if the two following properties hold

1. ∀x, g(x; x) ≥ f (x), 2. g(x; x) = f (x).
In other words, g(.; x) is tangent to f at the point x = x, and above f elsewhere.

Consider now that the value of x at iteration i is x (i) . The auxiliary function is constructed to be tangent at the point x = x (i) , i.e., is denoted by g(.; x (i) ). Set x (i+1) = argmin g(x; x (i) ). Then we have

f (x (i+1) ) ≤ g(x (i+1) ; x (i) ) (1.52) ≤ g(x (i) ; x (i) ) = f (x (i) ). (1.53)
Hence f is non-decreasing under the proposed procedure.

An illustrative example is given on Figure 1.6. The function to minimize is given by

f (x) = x 4 -4x 2 .
It is the sum of a convex function and a concave function. We majorize the concave part by its tangent at x (i) (the current iterate). Assuming that x (i) = 0.75, we obtain the auxiliary function g(x) = x 4 -6x + 0.75, which we minimize to obtain the next iterate x (i+1) .

1.C Exponential dispersion models and Tweedie distributions

We recall the distribution of an EDM

p(x; θ, ϕ) = h(x, ϕ) exp 1 ϕ (θx -κ(θ)) .
(1.54)

Integrating w.r.t. x and deriving w.r.t. θ we obtain

1 ϕ (x -κ (θ))p(x; θ, ϕ)dx = 0, (1.55) 1 ϕ E(X) -κ (θ) = 0. (1.56) Hence µ def = E(X) = κ (θ). Deriving Eq. (1.55) one more time w.r.t. θ yields 1 ϕ -κ (θ)p(x; θ, ϕ) + 1 ϕ (x -κ (θ)) 2 p(x; θ, ϕ) dx = 0, (1.57) 1 ϕ -κ (θ) + 1 ϕ E((X -E(X) 2 ) = 0. (1.58)
Hence var(X) = φκ (θ), and since µ and θ are in one-to-one mapping [START_REF] Jørgensen | Exponential dispersion models[END_REF], we may as well write var(X) = ϕV (µ), where V is the variance function.

In the case of a Tweedie EDM, we have var(X) = µ p . Then, setting arbitrary integration constant to zero, we obtain

θ = µ 1-p 1-p if p = 1 log µ if p = 1, (1.59) and κ(θ) = µ 2-p 2-p if p = 2 log µ if p = 2.
(1.60) Note that 0 < p < 1 do not correspond to an EDM [START_REF] Jørgensen | Exponential dispersion models[END_REF]. Finally, substituting

β = 2 -p, for all β = 1, 2 we obtain p(x; µ, ϕ) = h(x, ϕ) exp 1 ϕ (x µ β-1 β -1 - µ β β . (1.61)
This is the expression given in [START_REF] Tan | Automatic relevance determination in nonnegative matrix factorization with the β-divergence[END_REF] and suffices to show the equivalence with the β-divergence (by taking the log of the likelihood ratio at x = µ and x).

Introduction

A wide variety of probabilistic models are based on the following observation model

v f n ∼ Poisson([WH] f n ), (2.1)
with W ≥ 0, H ≥ 0. Such models are called Poisson factorization models, or sometimes Poisson factor analysis. As discussed in Section 1.3, we may classify these models in two categories:

• Semi-Bayesian models. When independent Gamma priors are assumed on H, and W is treated as a deterministic variable, we retrieve the so-called Gamma-Poisson model of [START_REF] Canny | GaP: A Factor Model for Discrete Data[END_REF] and [START_REF] Buntine | Discrete component analysis[END_REF];

• Bayesian models, which assume prior distributions on both W and H. Typical prior distributions include independent Gamma distributions, or column-wise Dirichlet distributions. These Bayesian models have found applications in image processing [START_REF] Cemgil | Bayesian Inference for Nonnegative Matrix Factorisation Models[END_REF], as well as in recommender systems [START_REF] Ma | Probabilistic Factor Models for Web Site Recommendation[END_REF][START_REF] Gopalan | Scalable Recommendation with Hierarchical Poisson Factorization[END_REF], where they have received a particular attention. Several works have also been devoted to non-parametric approaches to alleviate the problem of setting the factorization rank K [START_REF] Zhou | Beta-Negative Binomial Process and Poisson Factor Analysis[END_REF][START_REF] Gopalan | Bayesian Nonparametric Poisson Factorization for Recommendation Systems[END_REF][START_REF] Zhou | Negative Binomial Process Count and Mixture Modeling[END_REF].

In this chapter, we focus on maximum marginal likelihood estimation in the Gamma-Poisson model. This problem has been first been addressed in [START_REF] Dikmen | Maximum marginal likelihood estimation for nonnegative dictionary learning in the Gamma-Poisson model[END_REF].

In their experiments, they found this estimation process to be robust to over-specified values of K; an intriguing behavior that was left unexplained. We provide the following contributions:

• We provide a closed-form expression of the marginal likelihood. This expression is tedious to compute for large F and K, as it involves combinatorial operations, but is workable for problems in small dimension.

• We show that the proposed closed-form expression reveals a penalization term on the columns of W that explains the "self-regularization" effect observed in [START_REF] Dikmen | Maximum marginal likelihood estimation for nonnegative dictionary learning in the Gamma-Poisson model[END_REF].

• We compare three variants of the EM algorithm, and experimentally show that the one based on the marginalization of H has favorable properties.

The rest of the chapter is organized as follows. Section 2.2 introduces the Gamma-Poisson model. In Section 2.3, we propose two novel formulations of the model in which H has been marginalized out. This leads to a closed-form expression of the marginal likelihood, discussed in Section 2.4. Three optimization algorithms are presented in Section 2.5, and experimental work is conducted in Section 2.6. We conclude by a general discussion in Section 2.7. 
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The Gamma-Poisson model

First formulation

The Gamma-Poisson (GaP) model is a probabilistic matrix factorization model which was introduced in the field of text information retrieval [START_REF] Canny | GaP: A Factor Model for Discrete Data[END_REF][START_REF] Buntine | Discrete component analysis[END_REF]. In this field, a corpus of text documents is typically represented by an integer-valued matrix V of size F × N , where each column v n represents a document as a so-called "bag of words". Given a vocabulary of F words (or in practice semantic stems), the matrix entry v f n is the number of occurrences of word f in the document n. GaP is a generative model described by a dictionary of "topics" or "patterns" W (a non-negative matrix of size F × K) and a non-negative "activation" or "score" matrix H (of size K × N ), as follows:

h kn ∼ Gamma(α k , β k ), (2.2) v f n |h n ∼ Poisson ([WH] f n ) , (2.3)
where we use the shape and rate parametrization of the Gamma distribution, see its p.d.f. in Equation (0.8). The dictionary W is treated as a free deterministic variable.

We consider maximum marginal likelihood estimation (MMLE), in which H is treated as a latent variable over which the joint likelihood is integrated. In other words, MMLE relies on the minimization of

L(W, α, β) def = -log p(V; W, α, β) (2.4) = -log H p(V|H; W)p(H; α, β)dH, (2.5)
where α = {α 1 , . . . , α K } and β = {β 1 , . . . , β K }. We emphasize that the dictionary W is treated as a free deterministic variable.

Composite structure of the model

GaP can be augmented with auxiliary variables C, yielding a composite model, thanks to the superposition property of the Poisson distribution [START_REF] Févotte | Nonnegative matrix factorization with the itakura-saito divergence: With application to music analysis[END_REF]:

h kn ∼ Gamma(α k , β k ),
(2.6)

c f kn |h kn ∼ Poisson(w f k h kn ), (2.7) v f n = k c f kn . (2.8)
In the remainder, the vectors c kn = [c 1kn , . . . , c F kn ] T of size F and which sum up to v n will be referred to as components. C will denote the F × K × N tensor with coefficients c f kn . Figure 2.1 displays graphical representations of the Gamma-Poisson model, both in its initial form (on the left) and augmented form (on the right).

New formulations of GaP

We now show how GaP can be rewritten free of the latent variables H in two different ways.

GaP as a composite negative multinomial model

As it turns out, h kn can be integrated out from Eqs. (2.6)-(2.7), thanks to the conjugacy between the Poisson and the Gamma distributions. That is to say that the marginal distribution of c kn can be determined in closed form. Indeed, we have

p(c kn ; w k , α k , β k ) = R + p(c 1kn , . . . , c F kn |h kn ; w k )p(h kn ; α k , β k )dh kn (2.9) = R +   f p(c f kn |h kn ; w f k )   p(h kn ; α k , β k )dh kn (2.10) = R +   f (w f k h kn ) c f kn c f kn ! exp(-w f k h kn )   β α k k Γ(α k ) h α k -1 kn exp(-β k h kn )dh kn (2.11) =   f w c f kn f k c f kn !   β α k k Γ(α k ) Γ(α k + f c f kn ) f w f k + β k α k + f c f kn (2.12) = Γ(α k + f c f kn ) Γ(α k ) f c f kn ! β k f w f k + β k α k f w f k f w f k + β k c f kn . (2.13)
More precisely, the distribution of c kn can be identified to be a so-called negative multinomial (NM) distribution of dimension F , with shape parameter α k and event probabilities [p 1k , . . . , p F k ] T , where

p f k = w f k f w f k + β k . (2.14)
The NM distribution is the multivariate extension of the perhaps more well-known negative binomial (NB) distribution, which arises in a scalar Gamma-Poisson mixture. The reader is referred to Appendix 2.A. for the definitions related to these probability distributions.

We therefore immediately obtain the following result:

Theorem 2.1. GaP can be rewritten as follows:

c kn ∼ NM   α k , w 1k f w f k + β k , . . . , w F k f w f k + β k T   , (2.15) v n = K k=1 c kn .
(2.16)

GaP may thus be interpreted as a composite model in which the k th component has a NM distribution with parameters governed by w k (the k th column of W), α k and β k .

GaP as a composite multinomial model

The NM distribution possesses an alternative characterization, namely a multinomial distribution whose number of trials is random. This immediately leads to the following result:

Theorem 2.2. GaP can be rewritten as follows:

L kn ∼ NB α k , f w f k f w f k + β k ,
(2.17)

c kn |L kn ∼ Mult   L kn , w 1k f w f k , . . . , w F k f w f k T   , (2.18) v n = K k=1 c kn , (2.19)
where "NB" denotes the negative binomial distribution, and "Mult" refers to the multinomial distribution.

Proof. See Appendix 2.A.

Theorem 2.2 states that another interpretation of GaP consists in modeling the data as a sum of K independent multinomial distributions, governed individually by w k and whose number of trials is random, following a NB distribution governed by w k , α k and β k .

A special case of the reformulation of GaP offered by Theorem 2.2 is given by Buntine and Jakulin (2006) using a different reasoning, when it is assumed that f w f k = 1 (a common assumption in the field of text information retrieval, where the columns of W are interpreted as discrete probability distributions). Theorem 2.2 provides a more general result as it applies to any non-negative matrix W.

Closed-form marginal likelihood

Analytical expression

Until now, it was assumed that the marginal likelihood in the GaP model was not available analytically. However, the new parametrization offered by Theorem 2.1 allows to obtain a computable analytical expression of the marginal likelihood L. Denote by C the set of all "admissible" components, i.e.,

C = {C ∈ N F ×K×N | ∀(f, n), k c f kn = v f n }.
(2.20)

By marginalization of C, we may write

p(V; W, α, β) = C∈C p(C; W, α, β) (2.21) = C∈C k,n p(c kn ; w k , α k , β k ). (2.22)
As stated previously, p(c kn ; w k , α k , β k ) is now known in closed form, see Eq. (2.13). Replacing it with its expression, we obtain

p(V; W, α, β) = C∈C k,n   Γ( f c f kn + α k ) Γ(α k ) f c f kn ! β k f w f k + β k α k f w f k f w f k + β k c f kn   . (2.23) Introducing the notation Ω α (C) = k,n Γ( f c f kn + α k ) Γ(α k ) f c f kn ! , (2.24)
and reusing the event probabilities p f k defined in Eq. (2.14), we may rewrite Eq. (2.23) as

p(V; W, α, β) =   k (1 - f p f k ) N α k   × C∈C   Ω α (C) f,k p n c f kn f k   .
(2.25) Equation (2.25) is a computable closed-form expression of the marginal likelihood. It is free of H and in particular of the integral that appears in Equation (2.5). However the expression (2.25) is still semi-explicit because it involves a sum over the set of all admissible components C. C is a finite set with cardinality The sum over all the matrices in the set C expresses the convolution of the (discrete) probability distributions of the K components. Unfortunately, the distribution of the sum of independent negative multinomial variables of different event probabilities is not available in closed form.

card(C) = f,n v f n + K -1 K -1 , ( 2 
As already stated in [START_REF] Dikmen | Maximum marginal likelihood estimation for nonnegative dictionary learning in the Gamma-Poisson model[END_REF], the value of the marginal likelihood is unchanged when the scales of the columns of W and the rates β are changed accordingly. Let Λ be a non-negative diagonal matrix of size K. It can easily be derived from Equation (2.25) that p(V; WΛ, α, βΛ) = p(V; W, α, β).

(2.27)

We therefore have a scaling invariance between W and β, and as such, we may fix β to arbitrary values and leave W free. Thus, we will treat β as a constant in the following and drop it from the arguments of L.

Self-regularization

Dikmen and Févotte (2012) empirically studied the properties of MMLE. In particular, they observed the self-ability of the estimator to regularize the number of columns of W. For example, one experiment (reproduced in Section 2.6.2.1) consisted in generating synthetic data according to the GaP model, with a ground-truth number of components K . MMLE was run with K > K and they noticed that the estimated W contained K -K empty columns. As such, the estimator was able to recover the ground-truth dimensionality. In contrast, MJLE used all K dimensions and overfit the data. They were unable to give a theoretical justification of the observed phenomenon, but provided a first insight thanks to a Laplace approximation of p(V; W, α). The closed-form expression (2.25) offers a deeper understanding of this phenomenon, as explained next.

Using Equations (2.25) and (2.14) and treating β as a constant, the negative log-likelihood can be expressed as

- 1 N L(W, α) = - 1 N log   C∈C Ω α (C) f,k p n c f kn f k   (2.28) + k α k log(||w k || 1 + β k ) + cst, (2.29) 
where cst =k α k log β k .

The negative log-likelihood reveals two terms. The first term, Equation (2.28), captures the interaction between data V (through C) and the parameter W (through the event probabilities p f k = w f k /( w k 1 + β k )). The second term, Equation (2.29), only depends on the parameter W and can be interpreted as a group-regularization term. The non-convex and sharply peaked function f (x) = k log(|x k | + β) is known to be sparsity-inducing [START_REF] Candès | Enhancing sparsity by reweighted 1 minimization[END_REF]. As such, the term (2.29) will promote sparsity of the norms of the columns of W. When a norm ||w k || 1 is set to zero for some k, the whole column w k is set to zero because of the non-negativity constraint. This gives a formal explanation of the ability of MMLE to automatically prune columns of W, without any explicit sparsity-inducing prior at the modeling stage (recall that W is a deterministic parameter without a prior).

The discussed penalty term, sometimes referred to as the "log-sum" penalty is displayed1 on Figure 2.2, along with other common non-convex penalties (the q pseudo-norm with 0 < q < 1, and the smoothly clipped absolute deviation (SCAD) penalty [START_REF] Fan | Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties[END_REF]). The q pseudo-norm, defined as g(x) = |x| q , is displayed in green for two values of q.
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The SCAD penalty is displayed in red with a = 3.

Optimization algorithms

Expectation-Maximization

We now turn to the problem of optimizing Equation (2.5) by leveraging on the results of Section 2.4. Despite obtaining a closed-form expression, the direct optimization of the marginal likelihood remains difficult. However, the structure of GaP makes Expectation-Maximization (EM) algorithms a natural option [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF]. Indeed, the GaP model involves observed variables V and latent variables C and H. As such, we can derive several EM algorithms based on various choices of the complete set. More precisely, we consider three possible choices that each define a different algorithm. In the following, we use the notation θ = {W, α}.

EM-CH.

The complete set is {C, H} and EM consists in the iterative minimization w.r.t. θ of the functional defined by

Q CH (θ; θ) = - C,H log p(C, H; θ)p(C, H|V; θ)dCdH, (2.30)
where θ = { W, α} is the current estimate. Note that V does not need to be included in the complete set because we have V = k C k . This corresponds to the general formulation of EM in which the relation between the complete set and the data is a many-to-one mapping and slightly differs from the more usual one where the complete set is formed by the union of data and a hidden set [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF].

EM-H. The complete set is {V, H} and EM consists in the iterative minimization of (2.32)

Q H (θ; θ) = - H log p(V
EM-CH and EM-H have been considered in [START_REF] Dikmen | Maximum marginal likelihood estimation for nonnegative dictionary learning in the Gamma-Poisson model[END_REF]. EM-C is a new proposal that exploits the results of Section 2.4. In all three cases, the posteriors of the latent variables involvedp(C, H|V; θ), p(H|V; θ) and p(C|V; θ) -are intractable and neither are the integrals involved in Equations (2.30), (2.31) and (2.32). To overcome this problem, we resort to Monte Carlo EM (MCEM) [START_REF] Wei | A Monte Carlo Implementation of the EM Algorithm and the Poor Man's Data Augmentation Algorithms[END_REF] as described in the next section.

Monte Carlo E-step

MCEM consists in using a Monte Carlo (MC) approximation of the integrals in Equations (2.30), (2.31) and (2.32) based on samples drawn from the posterior distributions p(C, H|V; θ), p(H|V; θ) and p(C|V; θ). These can be obtained by Gibbs sampling of the joint posterior p(C, H|V; θ), which also returns samples from the marginals p(H|V; θ) and p(C|V; θ) at convergence. This Gibbs sampler can easily be derived because the conditional distributions p(C|H, V; θ) and p(H|C, V; θ) = p(H|C; θ) are available in closed form. In particular, denoting c f n the vector [c f 1n , . . . , c f Kn ] T of size K, we have for the first conditional

2 p(C|H, V; θ) = f,n p(c f n |h n , v f n ; wf ), (2.33)
where 

p(c f n |h n , v f n ; wf ) = Mult v f n , [ρ f 1n , . . . ,

M-step

The M-step consists in minimizing the MC approximation of the different functionals. We first discuss the optimization of W, then the optimization of α. Details regarding derivation of the update rules can be found in Appendix 2.D.

Optimizing W. Given a set of J samples {C (j) , H (j) } j returned by the Gibbs sampler (after burn-in), minimization of the MC approximation of Q CH in Eq. (2.30) w.r.t. W yields the closed-form update

w MCEM-CH f k = j,n c (j) f kn j,n h (j) kn , (2.38)
as shown by [START_REF] Dikmen | Maximum marginal likelihood estimation for nonnegative dictionary learning in the Gamma-Poisson model[END_REF]. They also showed that the following multiplicative update decreases the MC approximation of Q H in Eq. ( 2.31) at every iteration

w MCEM-H f k = wfk j,n h (j) kn v f n [ WH (j) ] -1 f n j,n h (j) kn .
(2.39)

We now derive the novel update for EM-C. The MC approximation of Q C in Eq. (2.32) is given by:

QC (W) def = - 1 J J j=1
log p(C (j) ; W).

(2.40)

Replacing p(C (j) ; W) by its expression given by Equation (2.13), we obtain:

QC (W) c = 1 J j,k,n   α k log   f w f k + β k   + f c (j) f kn log f w f k + β k w f k   .
(2.41)

The minimization of QC w.r.t. W leads to K linear systems of equations that we need to solve for each column w k :

A k w k = b k .
(2.42)

The matrix A k ∈ R F ×F is defined by:

a f g =   JN α k + j,f,n c (j) f kn   δ f g - j,n c (j) f kn , (2.43)
where δ f g is the Kronecker symbol, i.e., δ f g = 1 if and only if f = g, and zero otherwise.

The vector b k ∈ R F ×1 is defined by:

b f k = β k j,n c (j) f kn .
(2.44)

The matrix A k appears to be the sum of a diagonal matrix with a rank-1 matrix and can be inverted analytically thanks to the Sherman-Morrison formula [START_REF] Sherman | Adjustment of an Inverse Matrix Corresponding to a Change in One Element of a Given Matrix[END_REF]. This results in the closed-form update

w MCEM-C f k = 1 JN β k α k j,n c (j) f kn .
(2.45)

Optimizing α. Deriving the MC approximations QCH and QH w.r.t. α and setting this expression to zero yields the same equation that we need to solve for α k :

N J (log(β k ) -Ψ(α k )) + j,n log h (j) kn = 0, (2.46)
where Ψ denotes the so-called digamma function, defined as the logarithmic derivative of the Gamma function. Such an equation cannot be solved analytically. However, it can easily be tackled numerically thanks to Newton's method, as in [START_REF] Cemgil | Bayesian Inference for Nonnegative Matrix Factorisation Models[END_REF]. This results in the following update

α k = αk - N J (log(β k ) -Ψ(α k )) + j,n log h (j) kn -N JΨ ( αk ) .
(2.47)

As for the optimization of the MC approximation QC , we follow the same reasoning, and obtain the following equation that we need to solve for α k :

j,n   Ψ   α k + f c (j) f kn   -Ψ(α k ) + log β k f w f k + β k   = 0.
(2.48)

Once again, we resort to Newton's method (with the updated value of W).

Note that, for all three algorithms, this scheme can yield negative values of α k . When this occurs, we simply set α k = 1 2 α k .

Experimental work

Though we have discussed a way of optimizing α in the last subsection, all the experimental work presented in this thesis will consider α to be fixed hyperparameters. Python implementations of the three MCEM algorithms are available on GitHub.

Comparison of the algorithms

We begin this section by comparing the three MCEM algorithms proposed for MMLE in the GaP model, using both synthetic toy datasets and real-world data.

Experiments with synthetic data

We generate a dataset of N = 100 samples according to the GaP model, with the following parameters:

W 1 =     
0.638 0.075 0.009 0.568 0.045 0.126 0.308 0.231

     , α = β = 1 K .
(2.49)

The columns of W 1 have been generated from a Dirichlet distribution (with parameters 1 F ). The generated dataset (of size 4 × 100) is denoted by V 1 .

We proceed to estimate the dictionary W using hyperparemeters K = K + 1 = 3,

α k = β k = 1 with MCEM-C
, MCEM-H and MCEM-CH. The algorithms are run for 500 iterations. 300 Gibbs samples are generated at each iteration, with the first 100 samples being discarded for burn-in (this proves to be enough in practice), leading to J = 200.

The Gibbs sampler at EM iteration i + 1 is initialized with the last sample obtained at EM iteration i (warm restart). Finally, the algorithms are initialized from the same deterministic starting point given by

w f k = 1 K β k α k v f , (2.50)
where v f denotes the mean of the f -th row of V. CPU time in seconds. The three algorithms have almost identical computation times, since most of the computational burden resides in the Gibbs sampling procedure that is common to the three algorithms. Moreover, the three algorithms converge to the same point, with MCEM-C converging marginally faster than the other two in this case.

We then proceed to generate a second dataset V 2 according to the GaP model, with now W 2 = 100 × W 1 . Over-dispersion ratios, defined as the ratio between the variance and the mean, as well as the proportion of zeros, are given in the first two rows of Table 2.1. As we can see, the values of V 2 are way more dispersed than those of V 1 . Moreover, almost all values of V 2 are non-zero, unlike the values of V 1 , which are roughly 65% zero.

We apply the exact same experimental protocol to V 2 as we did for V 1 , except that the algorithms are now run for a larger number of 1000 iterations. The large values of V 2 have a huge impact on card(C), and as such it is now impossible to compute the likelihood in reasonable time. The norms of the columns of the iterates are displayed on Figure 2.5-(a). As we can see, MCEM-C clearly outperforms the other two algorithms in this scenario. This behavior has been consistently found when estimating dictionaries from datasets with sufficiently large values.

In order to check whether this phenomenon is imputed to the scale of the dictionary to be estimated, or to the conditioning of the data matrix itself, we repeat the previously described experimental protocol on V 1 and V 2 , except for the value of β k which is changed to alter the scale of the learned dictionaries. In particular, for V 1 we now set β k = 100 (so that the values of the learned dictionary will be 100 times larger), and for V 2 we set β k = 0.01 (so that the values of the learned dictionary will be 100 times smaller).

The norms of the columns of the iterates are displayed on Figure 2.4-(b) for V 1 (and Figure 2.3-(b) displays the associated negative log-likelihood L(W)), and on Figure 2.5-(b) for V 2 , for the three algorithms. As can be observed, changing the value of β k does not impact at all the behavior of the algorithms. We thus conclude that the drastic difference in convergence observed on the dataset V 2 has to do with the conditioning of the data matrix. We further investigate this phenomenon on a real dataset in the next sub-subsection. Taste Profile is a real dataset. The over-dispersion ratio corresponds to the variance to mean ratio.

Experiments with real data

Finally, we consider the Taste Profile dataset [START_REF] Bertin-Mahieux | The million song dataset[END_REF]. This dataset contains the listening history of users in the form of song play counts. We use a subset of the original dataset, as in [START_REF] Gouvert | Negative Binomial Matrix Factorization for Recommender Systems[END_REF], leading to a dataset of F = 1509 users and N = 805 songs. The matrix V is quite sparse as 94.7% of its coefficients are zeros. This saves a large amount of computational effort, because we only need to sample c f n for pairs (f, n) such that v f n is non-zero. Moreover, the count values range from 0 to 421, with an over-dispersion ratio of roughly 13 (see the last row of Table 2.1).

We apply the three algorithms with K = 10 and α k = β k = 1. The algorithms are run for 1000 iterations. 150 Gibbs samples are generated in each iteration with the first 50 being discarded for burn-in (i.e., J = 100). The Gibbs sampler at iteration i+1 is again initialized with warm restart. The algorithms are initialized in the same fashion as before.

Figure 2.6 shows the column norms of the iterates w.r.t. CPU time in minutes for the first 800 iterations. The difference in convergence speed between MCEM-C and the other two algorithms is again striking. MCEM-C, the algorithm proposed in this chapter, efficiently explores the parameter space in the first iterations and converges dramatically faster than MCEM-CH or MCEM-H. The algorithms here converge to different solutions, which confirms the non-convexity of L(W). Other runs confirmed that MCEM-C is consistently faster.

As such, we conjecture that the favorable properties of MCEM-C are linked to the overdispersion of the data, but not to the sparsity (as it has been observed on both V2 and the Taste Profile dataset). We are unable to provide a more detailed explanation at this stage. CPU time in minutes for the three MCEM algorithms on the Taste Profile dataset.

Norm

Examples of the self-regularization phenomenon

We conclude this section by showing examples of the self-regularization phenomenon on both a synthetic dataset and a real dataset.

On synthetic data

We generate a toy dataset of size 8 × 100 according to the GaP model with α k = 0.05, β k = 1, and a dictionary W of size 8 × 3 graphically displayed on Figure 2.8-(a). Each column of W has been generated from a Dirichlet distribution, rescaled to sum up to 8.

We then proceed to estimate a dictionary Ŵ of size 8 × K, for all values of K between 1 and F , with the algorithm MCEM-C. In each of these experiments, the hyperparameters are set to α = 1 K and β = 1 K , and the algorithm is run for 500 iterations. 300 Gibbs samples are generated at each iteration with a burn-in of the first 100 samples, leading to J = 200. We then retrieve the iterate with the smallest negative log-likelihood L(W), which we are able to compute exactly in this small-dimensioned problem.

All the subplots (b) to (i) of Figure 2.8 display the estimated Ŵ for all values of K between 1 and 8. Note that the color bar of Figure 2.8-(a) is shared by all these subplots, so that direct visual comparison may be carried out. As we can see, when K > 4, the additional columns have very small norm, or are full of zeros, hence illustrating the behavior first observed in [START_REF] Dikmen | Maximum marginal likelihood estimation for nonnegative dictionary learning in the Gamma-Poisson model[END_REF] and explained in this chapter. This is further confirmed on Figure 2.7, which displays the associated negative log-likelihoods L( Ŵ) for all K. The likelihood reaches a plateau for K ≥ 4. 

On a real dataset

We run MCEM-C on the Taste Profile dataset, setting K = 100, and the hyperparameters to α = 1 K and β = 1 K . The algorithm is run for 1000 iterations. 150 Gibbs samples are generated at each iteration with a burn-in of the first 50, leading to J = 100. On Figure 2.9 is displayed the norm of each of the K = 100 columns of the estimated Ŵ. Exactly 40 columns are comprised only of zeros.

Discussion

We conclude this chapter by recalling the obtained results, and by discussing some limitations and open questions.

One of the main results showcased in this chapter is the semi-explicit closed-form expression of the marginal likelihood in the Gamma-Poisson matrix factorization model. As a matter of fact, it was the conjugacy between the Gamma distribution and the Poisson distribution which enabled us to derive such an expression (giving rise here to the negative multinomial distribution). If another prior distribution had been assumed on H (i.e., not Gamma), we would not have been able to derive a similar analysis, since the marginalization of H would be intractable. The extension of our analysis to more general models with any kind of prior on H is not straightforward, and the occurrence of analogous phenomena in different settings remains an open question at this point.

The analytical expression of the marginal likelihood led in turn to a formal explanation of the "self-regularization" phenomenon described in [START_REF] Dikmen | Maximum marginal likelihood estimation for nonnegative dictionary learning in the Gamma-Poisson model[END_REF]. The key argument was the rewriting of the marginal likelihood as a regularization term, known to be sparsity-inducing, and a data-fitting term. We would however like to point out two elements that were not taken into account in this analysis. The first one is the nature of the data-fitting term. As it turns out, we were unable to give a meaningful description of the interaction between this term and the regularization term. The second one is the influence of the hyperparameters, namely α (since β is merely a scale parameter), which could not be quantified either.

As for the optimization of the marginal likelihood, we proposed a novel EM algorithm (EM-C), and compared the three variants of the EM algorithm on both synthetic and real datasets. Our experimental work demonstrated the favorable properties of EM-C. EM-based algorithms, by nature, assume the marginal likelihood to be intractable. An exciting perspective would therefore be to break out of EM-based schemes; in particular to design algorithms taking advantage of the expression of the marginal likelihood for direct optimization.

As such, we still have no alternative to the MCEM algorithms presented in Section 2.5 at this point. MCEM algorithms are extremely computationally intensive, since they require sampling from a target distribution which changes at each EM iteration, and these samples cannot be recycled3 . One might consider resorting to variational inference, but fundamentally provides an approximate solution to the problem. Variants of the EM algorithm, such as SAEM [START_REF] Delyon | Convergence of a stochastic approximation version of the EM algorithm[END_REF][START_REF] Kuhn | Coupling a stochastic approximation version of EM with an MCMC procedure[END_REF] or on-line EM [START_REF] Cappé | On-line expectation-maximization algorithm for latent data models[END_REF] have been considered, but did not lead to any major improvement in our case.

We conclude this discussion by mentioning a very recent work, which leveraged on our closed-form expression of the marginal likelihood for the numerical evaluation of L(W, α, β) [START_REF] Capdevila | A Leftto-Right Algorithm for Likelihood Estimation in Gamma-Poisson Factor Analysis[END_REF]. This is a task of interest in text information retrieval, to assess the likelihood a previously unseen document for instance. More precisely, the authors developed a so-called left-to-right algorithm (Wallach et al., 2009b) for this task. 

Appendices to

2.A Probability distributions

2.A.1 Negative binomial distribution

A discrete random variable X is said to have a negative binomial (NB) distribution with parameters α > 0 (the dispersion or shape parameter) and p ∈ [0, 1] if, for all c ∈ N, the p.m.f. of X is given by:

P(X = c; α, p) = Γ(α + c) Γ(α) c! (1 -p) α p c .
(2.51)

We have

E(X) = αp 1 -p , var(X) = αp (1 -p) 2 .
(2.52)

The variance of X is larger than its mean. The NB distribution is therefore suitable to model over-dispersed count data. Indeed, it offers more flexibility than the Poisson distribution where the variance and the mean are equal. The NB distribution may be obtained via a Gamma-Poisson mixture. Consider the following hierarchical model:

λ ∼ Gamma(α, β),
(2.53)

X|λ ∼ Poisson(λ).
(2.54)

Then, for all c ∈ N:

P(X = c ; α, p) = R + P(X = c|λ)p(λ)dλ (2.55) = R + λ c c! exp(-λ) β α Γ(α) λ α-1 exp(-βλ) (2.56) = Γ(α + c) Γ(α)c! β α (β + 1) c+α = NB α, 1 β + 1 .
(2.57)

2.A.2 Negative multinomial distribution

The negative multinomial (NM) distribution [START_REF] Sibuya | Negative multinomial distribution[END_REF] is the multivariate generalization of the NB distribution. It is parametrized by a dispersion parameter α > 0 and a vector of event probabilities p = [p 1 , . . . , p F ] T , where 0 ≤ p f ≤ 1 and f p f ≤ 1. Denoting p 0 = 1f p f , and for all (c 1 , . . . , c F ) ∈ N F , the p.m.f. of the NM distribution is given by:

P(X 1 = c 1 , . . . , X F = c F ) = Γ(α + f c f ) Γ(α) f c f ! p α 0 f p c f f .
(2.58)

We have

E(X f ) = α p f p 0 , var(X f ) = α p f (p f + p 0 ) p 2 0 .
(2.59)

Proposition 2.1. An equivalent characterization of the NM distribution is given by the marginal distribution of X in the following generative process.

L ∼ NB   α, f p f   , (2.60) X|L ∼ Mult   L, p 1 f p f , . . . , p F f p f T   .
(2.61)

Proof. P(X = [c 1 , . . . , c F ] T ) = P(X = [c 1 , . . . , c F ] T |L) × P(L) (2.62) = L! f c f ! f p f f p f c f Γ(α + L) Γ(α)L!   1 - f p f   α   f p f   L . (2.63)
Noting that L = f c f completes the proof.

2.B Stars and bars theorem

The so-called "stars and bars" theorems refer to two elementary results in combinatorics. They take their name from a visual representation with stars and bars, which helps proving the theorems. We only state here the theorem of interest.

Proposition 2.2. For any pair of positive integers n and k, the number of k-tuples of nonnegative integers whose sum is n is given by

n + k -1 k -1 = n + k -1 n .
(2.64)

2.C Gibbs sampling of the posterior distribution

Given the current values of the parameters, namely W and α, we would like to be able to sample from the posterior of the latent variables p(C, H|V; W, α). Let us denote θ = { W, α}. In a Gibbs sampler, we are interested in the conditionals p(C|H, V; θ) and p(H|C, V; θ).

2.C.1 First conditional

We recall the following result.

Proposition 2.3. Let X 1 , ...X K be independent Poisson random variables with rates λ k . Let V = k X k . Then the conditional distribution P(X 1 , . . . , X K |V ) is multinomial with number of trials V and event probabilities

λ 1 k λ k , . . . , λ K k λ k T .
(2.65)

Proof. Consider (X 1 , . . . , X K ) such that k X k = V . Then we have 

P(X 1 , . . . , X K |V ) = P(V |X 1 , ..., X K )P(X 1 , ..., X K ) P(V ) (2.66) = k λ x k k x k ! exp(-λ k ) ( k λ k ) v v! exp(-k λ k ) (2.67) = v! k x k ! k λ k k λ k x k . ( 2 
∝ f,k,n h c f kn kn exp(-w f k h kn ) k,n h α k -1 kn exp(-β k h kn ) (2.74) ∝ k,n h f c f kn +α k -1 kn exp   -   f w f k + β k   h kn   (2.75) = Gamma   α k + f c f kn , β k + f w f k   .
(2.76)

2.D EM algorithms

2.D.1 MCEM-CH

The MC approximation of Q CH writes QCH (θ) = 1

J j log p(C (j) , H (j) ; θ) (2.77) = 1 J j log p(C (j) |H (j) ; W) + log p(H (j) ; α) (2.78) = 1 J j   f,k,n log p(c (j) f kn |h (j) kn ; w f k ) + k,n log p(h (j) kn ; α k )   (2.79) = 1 J   j,f,k,n log   (w f k h (j) kn ) c (j) f kn c (j) f kn ! exp(-w f k h kn )   + j,k,n log β α k k Γ(α k ) (h (j) kn ) α k -1 exp(-β k h kn )   . (2.80) Deriving w.r.t. a specific w f k yields 1 J j,n   c (j) f kn w f k -h (j) kn   = 0, (2.81)
which can be easily solved as

w f k = j,n c (j) f kn j,n h (j) kn .
(2.82) Deriving w.r.t. a specific α k yields 1

J j,n log(β k ) -Ψ(α k ) + log(h (j) kn ) = 0, (2.83)
which we numerically solve with Newton's method.

2.D.2 MCEM-H

The MC approximation of Q H writes QH (θ) = 1

J j log p(V, H (j) ; θ) (2.84) = 1
J j log p(V|H (j) ; W) + log p(H (j) ; α) (2.85)

Regarding W, we can write QH (W) = 1

J j D KL (V|WH (j) ) + cst.
(2.86)

Noting the parallel with the standard KL-NMF problem, this can be tackled with an MM algorithm, see [START_REF] Dikmen | Maximum marginal likelihood estimation for nonnegative dictionary learning in the Gamma-Poisson model[END_REF]. Regarding α, we note that QH (α) = QCH (α), therefore yielding Eq. (2.83) again.

2.D.3 MCEM-C

Optimizing W. The MC approximation of Q C writes QC (θ) = 1

J j log p(C (j) ; θ) (2.87) = 1 J j,k,n log p(c (j) kn ; θ) (2.88) = 1 J j,k,n   log   Γ(α k + f c (j) f kn ) Γ(α k )   + α k log β k f w f k + β k + f c (j) f kn log w f k f w f k + β k   .
(2.89) Deriving Eq. (2.89) w.r.t. to a specific w f k , and setting it to zero, we have:

1

J j,n   c (j) f kn w f k - α k + f c (j) f kn f w f k + β k   = 0 (2.90)   j,n c (j) f kn w f k - N Jα k + j,n,f c (j) f kn f w f k + β k   = 0, (2.91) that is   N Jα k + j,n,f c (j) f kn   w f k =   j,n c (j) f kn     f w f k + β k   (2.92)   N Jα k + j,n,f c (j) f kn   w f k -   j,n c (j) f kn   f w f k = β k j,n c (j) f kn .
(2.93)

We see that the variables at hand are w 1k , ..., w F k , which is the k-th column of W. We therefore obtain a linear system of F equations with F variables, which we rewrite in a matricial form as:

A k w k = b k . (2.94)
Introducing the notations

λ f k = j,n c (j) f kn
(2.95)

η k = N Jα k , ( 2 

.96)

A k ∈ R F ×F and b k ∈ R F ×1 are defined as:

A k =   η k + f λ f k   I F -λ k 1 T F (2.97) b k = β k λ k , (2.98)
where I F denotes the identity matrix of size F , 1 F denotes the vector of ones of size F , and λ k = [λ 1k , . . . , λ F k ] T . Therefore, to update W, we need to solve K independent linear systems, one for each column of W:

w k = A -1 k b k .
(2.99)

Let us consider Eq. (2.99) for a certain k. The index k will be dropped from now on for enhanced readability. We want to check if w as the solution of Eq. (2.99) is non-negative. Since b is non-negative, a sufficient condition is to prove that A -1 is non-negative. The matrix A has a particular structure. Indeed, it is the sum of a diagonal matrix and a rankone matrix. As such, its inverse can be described thanks to the Sherman-Morrison formula [START_REF] Sherman | Adjustment of an Inverse Matrix Corresponding to a Change in One Element of a Given Matrix[END_REF].

Theorem 2.3. Suppose X ∈ R n×n is an invertible square matrix. Then, for all u and v ∈ R n×1 , X + uv T is invertible if and only if 1 + v T X -1 u = 0. If X + uv T is invertible, its inverse is given by :

(X + uv T ) -1 = X -1 - X -1 uv T X -1 1 + v T X -1 u .
(2.100)

In our problem, we identify

X =   η + f λ f   I F , u = λ k , v = -1 F . (2.101)
X is a diagonal matrix and therefore invertible. We have

1 + v T X -1 u = 1 - f λ f η + f λ f = η η + f λ f > 0, (2.102)
because η > 0. Therefore A is always invertible, and its inverse is given by

A -1 = 1 η + f λ f I F - η + f λ f η - 1 (η + f λ f ) 2 λ k 1 T F (2.103) = 1 η + f λ f I F + 1 η(η + f λ f ) λ k 1 T F .
(2.104)

Therefore A -1 is always non-negative, hence the non-negativity of w. Moreover a closedform expression of w is available:

w f = β λ f η + f λ f + λ f f λ f η(η + f λ f ) (2.105) = β λ f (η + f λ f ) η(η + f λ f ) = β λ f η .
(2.106) Back to the initial problem, we obtain the following update rule

w f k = β k N Jα k j,n c (j) f kn .
(2.107)

Optimizing α. Deriving Eq. (2.89) w.r.t. to a specific α k , and setting it to zero yields 1

J j,n   Ψ   α k + f c (j) f kn   -Ψ(α k ) + log β k f w f k + β k   = 0, (2.108)
which, once again, cannot be solved analytically in closed form. We resort to the Newton's method, as previously described, yielding the update

α k = α k - j,n Ψ α k + f c (j) f kn -Ψ(α k ) + log β k f w f k +β k N J Ψ α k + f c (j) f kn -Ψ (α k )
.

(2.109)

Chapter 3 Maximum Marginal Likelihood Estimation in the Multiplicative Exponential Model

The contents of this chapter have not been submitted for publication. This is joint work with Cédric Févotte. 
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Introduction

In the previous chapter, we studied a probabilistic NMF model for integer data, based on the Poisson distribution. We will now turn to a model for continuous non-negative data. We will assume the following observation model

v f n ∼ Exp 1 [WH] f n , (3.1)
where "Exp" denotes the exponential distribution parametrized by its rate. As already stated in Section 1.3.2, this model is equivalent to minimizing the Itakura-Saito divergence between V and WH, and we will discuss in Section 3.2 why this generative model is particularly well-suited for the analysis of power spectrograms. The use of such a likelihood was first proposed in [START_REF] Févotte | Nonnegative matrix factorization with the itakura-saito divergence: With application to music analysis[END_REF], and has since become a classical model in audio signal processing. The authors considered the plain maximum likelihood estimation of W and H, as well as a MAP estimation in a Bayesian variant. This model has also been tackled in [START_REF] Hoffman | Bayesian Nonparametric Matrix Factorization for Recorded Music[END_REF] in a Bayesian non-parametric setting to alleviate the choice of the factorization rank K.

Dikmen and Févotte ( 2011) considered a semi-Bayesian setting with generalized Gamma priors on H and tackled maximum marginal likelihood estimation. They observed a similar self-regularization phenomenon to the one described in the Gamma-Poisson model. However, it should be noted that they only proposed variational inference schemes. As such, we may wonder whether the observed self-regularization phenomenon is a by-product of the inference method in this model.

In this chapter, for reasons that will be apparent later, we tackle MMLE in the specific semi-Bayesian model with independent inverse Gamma priors on H, i.e., a special case of the prior considered in [START_REF] Dikmen | Nonnegative dictionary learning in the exponential noise model for adaptive music signal representation[END_REF]. We aim at carrying out the same analysis as the one done for the GaP model. We provide the following contributions:

• We show how the generative model that will be referred to as IGCN can be rewritten free of H;

• We obtain an expression for the marginal likelihood with an intractable integral, but which still reveals a penalty term on W;

• We provide three novel MCEM algorithms for the optimization of the marginal likelihood;

• We conduct experimental work on a real audio decomposition task. However, the learned dictionaries do not exhibit sparsity. Furthermore, we observe that MMLE behaves similarly to IS-NMF, i.e., plain joint maximum likelihood estimation in the frequentist model, making its benefits less striking in this case.

The rest of the chapter is organized as follows. Section 3.2 discusses model considerations, and introduces the so-called IGCN model. Section 3.3 proposes a new formulation of IGCN in which H has been marginalized out. This leads to an expression of the marginal likelihood discussed in Section 3.4. Novel MCEM algorithms are derived in Section 3.5, and considerations regarding the estimation of audio sources are described in Section 3.6. Experimental work is conducted in Section 3.7, and we conclude by a discussion in Section 3.8.

Model

Observation model

As it turns out, the generative model of Eq. (3.1) is equivalent to

x f n ∼ CN (0, [WH] f n ), (3.2) v f n = |x f n | 2 , (3.3)
where CN denotes the circularly-symmetric. This amounts to saying that the real and imaginary parts of x f n are independent and distributed as

Re(x f n ) ∼ N (0, 1 2 [WH] f n ), Im(x f n ) ∼ N (0, 1 2 [WH] f n ). (3.4)
For more detailed considerations about complex normal distributions, we refer the reader to Appendix 3.A. The equivalence between the two generative models is obtained by remembering that the sum of two independent, squared, standard normal distributions is a chi-squared distribution with two degrees of freedom, i.e., an exponential distribution.

Note that this model also has a composite structure, thanks to the superposition property of the normal distribution. We may further augment the model as

c f kn ∼ CN (0, w f k h kn ),
(3.5)

x f n = k c f kn , (3.6) v f n = |x f n | 2 . (3.7)
In audio signal processing, we are interested in the short-time Fourier transform (STFT) of the signal, that is when the signal has been divided in short, overlapping segments of equal lengths over which the Fourier transform is computed. This results in a complex matrix, X. An exponential likelihood for the power spectrogram (V = |X| 2 ) therefore underlies a Gaussian composite model for the complex spectrogram. More precisely, it is modeled as a pure (i.e., without noise) sum of K zero-mean components, whose variances are rankone. These are reasonable assumptions from a physical point of view. Finally, note that this vindicates the choice of using the power spectrogram as the non-negative observation matrix rather than the magnitude spectrogram (V = |X|).

Working with complex data

Assuming that we have chosen a prior distribution on H (see the following subsection which discusses this choice), our goal is to maximize the marginal likelihood p(V; W) = H p(V|H; W)p(H)dH.

(3.8)

However, as can be easily derived, we have the following proportional relation

p(V; W) ∝ p(X; W), (3.9)
and as such, we will rather focus on the study of p(X; W), since the composite structure brought by the complex normal likelihood, identical to the one with a Poisson likelihood, facilitates derivations.

Indeed, we have for the p.d.f. of x f n in Eq. (3.2)

f (x f n ) = 1 π[WH] f n exp - |x f n | 2 [WH] f n , (3.10)
and as such, we can write

p(X; W, H) = f,n 1 π[WH] f n exp - |x f n | 2 [WH] f n (3.11) = π -F N f,n 1 [WH] f n exp - v f n [WH] f n (3.12) = π -F N p(V; W, H).
(3.13) Since Eq. (3.13) holds, by multiplication and integration, we straightforwardly obtain Eq. (3.9).

Prior distribution

We consider independent inverse Gamma priors on H. As such, the studied model becomes

h kn ∼ IG(α k , β k ), (3.14) c f kn |h kn ∼ CN (0, w f k h kn ), (3.15) x f n = k c f kn , (3.16)
where IG denotes the inverse Gamma distribution parametrized with its shape and scale. This choice is mainly motivated by the fact that the inverse Gamma distribution is conjugate with the normal distribution with known mean and unknown variance. The p.d.f. and moments of the inverse Gamma distribution are recalled in Appendix 3.A. We shall refer to the generative model defined by Eqs. (3.14)-(3.15)-(3.16) as the "IGCN" (standing for inverse Gamma complex normal) model. In the following, α denotes the set {α 1 , . . . , α K } and β denotes the set {β 1 , . . . , β K }.

Objective function

Treating α as fixed hyperparameters, and noting a similar scale-invariance for β to the one described at the end of Section 2. 

Marginalization of H

We now show how the IGCN model can be rewritten free of the variables H. Similarly to the previous chapter, h kn can be marginalized out from Eqs. (3.14)-(3.15), thanks to the conjugacy between distributions, leading to a closed-form distribution for the components c kn . More precisely, we have

p(c kn ; w k , α k , β k ) = R + p(c 1kn , . . . , c F kn |h kn )p(h kn )dh kn (3.19) = R +   f p(c f kn |h kn )   p(h kn )dh kn (3.20) = R +   f 1 πw f k h kn exp - |c f kn | 2 w f k h kn   β α k k Γ(α k ) 1 h kn α k +1 exp - β k h kn dh kn (3.21) = 1 π F f w f k β α k k Γ(α k ) Γ(α k + F ) β k + f |c f kn | 2 w f k α k +F . (3.22)
This distribution can be identified as a complex multivariate Student's t-distribution 2 of dimension F [START_REF] Yoshii | Student's t Nonnegative Matrix Factorization and Positive Semidefinite Tensor Factorization for Single-channel Audio Source Separation[END_REF], with parameters

ν = 2α k , µ = 0 F , Σ = Diag(λ k ), (3.23)
where

λ k ∈ R F + = β k α k w k ,
and 0 F denotes a vector of zeros of size F . More details about the distribution can be found in Appendix 3.A.

Therefore, we immediately obtain the following result: Theorem 3.1. IGCN can be rewritten as follows (3.25) where CT ν (µ, Σ) denotes the multivariate complex Student's t-distribution with degrees of freedom ν, location parameter µ and scale matrix Σ.

c kn ∼ CT 2α k (0 F , Diag(λ k )) , (3.24) v n = k c kn ,
IGCN may therefore be interpreted as a composite complex Student's t model, in which each source is parametrized by w k , α k and β k .

Marginal likelihood

Analytical expression

We now focus on obtaining an expression for the marginal likelihood. Defining a set C of admissible components,

C = {C ∈ C F ×K×N | ∀(f, n), k c f kn = x f n }, (3.26)
we wish to marginalize the variables C. However, a major difference with what was done in the Gamma-Poisson model must now be discussed. In the previous chapter, as we were dealing with integer variables, C was a finite set, yielding a semi-explicit closed form expression of the marginal likelihood with a finite sum. In the IGCN model, we are dealing with continuous variables, and as such the finite sum translates here to an intractable integral. More precisely, writing (3.27) and replacing p(c kn ; w k ) by its expression (see Eq. (3.22)), we obtain

p(X; W) = C∈C p(C; W)dC = C∈C k,n p(c kn ; w k )dC,
p(X; W) = C∈C k,n    1 π F f w f k β α k k Γ(α k ) Γ(α k + F ) β k + f |c f kn | 2 w f k α k +F    dC (3.28) =   k,n β α k k π F Γ(α k + F ) Γ(α k ) 1 f w f k   C∈C k,n 1 β k + f |c f kn | 2 w f k α k +F dC.
(3.29)

Self-regularization

The negative log-likelihood may be expressed as

- 1 N L(W) = f,k log (w f k ) - 1 N log C∈C k,n 1 β k + f |c f kn | 2 w f k α k +F dC + cst, (3.30) with cst = - k log β α k k Γ(α k + F ) π F Γ(α k ) . (3.31)
The first term depends only on W, and acts like a regularization parameter on W. The second term is an interaction term between W and V (through C), and acts as a data-fitting term. The final term is a constant. It is therefore expected that this revealed regularization term will promote local sparsity in the estimated dictionaries, as opposed to group-sparsity which we could observe in the GaP model.

Optimization algorithms

Expectation-Minimization

We now focus on the task of optimizing Eq. (3.18). The structure of the problem being identical to the problem studied in the Gamma-Poisson model, we consider similar EM algorithms. In particular, we consider the same three variants, based on three different choices for the set of latent variables. We summarize below the three functionals that are iteratively minimized, given the current estimate of the dictionary denoted W.

EM-CH.

Q CH (W; W) = - All these algorithms are novel, and in particular have not been considered in [START_REF] Dikmen | Nonnegative dictionary learning in the exponential noise model for adaptive music signal representation[END_REF]. They instead considered a variational approach, which consisted in an iterative variational bound construction and optimization. However, this does not qualify as an MM approach, because the constructed bound is never tight to the objective function, therefore failing to ensure the decrease of the objective function3 . This is in contrast with the considered EM algorithms. Our approach conceptually asymptotically yield a critical point of the objective function, something the approach of [START_REF] Dikmen | Nonnegative dictionary learning in the exponential noise model for adaptive music signal representation[END_REF] cannot guarantee.

In all three cases, the posterior of the latent variables involved is intractable and neither are the integrals involved in Equations (3.32)-(3.33)-(3.34). To overcome this problem, we resort to Monte Carlo EM (MCEM) [START_REF] Wei | A Monte Carlo Implementation of the EM Algorithm and the Poor Man's Data Augmentation Algorithms[END_REF].

Monte Carlo E-step

A Gibbs sampler procedure can be devised to yield samples p(C, H|X; W), which also returns samples from the marginal posterior distributions p(C|X; W) and p(H|X; W) at convergence.

In the IGCN model, both conditional distributions p(H|C; W) and p(C|H, X; W) are known, however sampling from the latter requires a slightly more involved procedure. For p(H|C; W), we have p(H|C; W) = 

; wk ) = IG   α k + F, β k + f |c f kn | 2 wfk   . (3.36)
As for the other conditional p(C|H, X; W), we have

p(C|H, X; W) = f,n p(c f n |h n , v f n ; wf ), (3.37)
where

p(c f n |h n , v f n ; wf ) = CN (µ f n , Σ f n ) (3.38)
where the parameters of the complex normal distribution are defined as

µ f n = x f n k ρ f kn ρ f n , Σ f n = diag(ρ f n ) - ρ f n ρ T f n k ρ f kn , (3.39)
with the notations

ρ f kn = w f k h kn , ρ f n = [ρ f 1n , . . . , ρ f Kn ] T . (3.40)
All derivations are given in Appendix 3.B. However, note that the covariance matrix Σ f n is not full-rank (it is more precisely of rank K -1). When this is the case, the (complex)

Algorithm 3: Sampling from p(c|x, ρ)

Input: x ∈ C, ρ ∈ C K 1 r = x 2 t = K k=1 ρ k 3 for k = 1, ..., K -1 do 4 # Sample as Eq.(3.41) 5 u ∼ CN (0, 1) 6 c k = ρ k (1 -ρ k t ) u + r t ρ k 7 # Update sampling parameters 8 r = x -c k 9 t = t -ρ k 10 end 11 c K = r Output: c ∈ C K drawn from p(c|x, ρ)
normal distribution is referred to as a singular (complex) normal distribution. Sampling from a singular normal distribution is not straightforward since we cannot use the Cholesky decomposition routine.

In this case, we resort to a sequential sampling of the first K -1 marginal distributions. Dropping the indices f and n for enhanced readability, this amounts to sequentially sampling the first K -1 components c k as

c k ∼ CN x -k-1 l=1 c l K l=k ρ l ρ k , ρ k 1 - ρ k K l=k ρ l , (3.41)
and set c K = 1 -K-1 k=1 c k . This procedure is summed up in Algorithm 3. In the Gibbs sampler of the Gamma-Poisson model, sampling C boiled down to sampling as many multinomial distribution as non-zero values of V (recall the data were integervalued). There is unfortunately no similar skipping trick in the IGCN model, and we are doomed to sample F × N multivariate complex normal distributions. The whole Gibbs sampling procedure is summarized in Algorithm 4.

Monte Carlo M-step

We consider a set of J samples {C (j) , H (j) } returned by the Gibbs sampler (after burn-in). All derivation details regarding the optimization step can be found in Appendix 3.C. EM-H. Using the standard majorization of the IS divergence, the following multiplicative update decreases the MC approximation of Q H in Eq. (3.33) at every iteration.

w MCEM-H f k = wfk j,n h (j) kn v f n [ WH (j) ] -2 f n j,n h (j) kn [ WH (j) ] -1 f n . (3.43) EM-C. The MC approximation of Q C in Eq. (3.34) writes QC (W) c = 1 J j,k,n   f log(w f k ) + (α k + F ) log   β k + f |c (j) f kn | 2 w f k     . (3.44)
To optimize this function w.r.t. W, we resort to an MM scheme. In particular, we majorize the logarithm in the second term, which is always below its tangents. The minimization of this auxiliary function can be done in closed form, leading to the following update

w f k = α k + F N J j,n |c (j) f kn | 2 β k + f |c (j) f kn | 2 wfk .
(3.45)

Estimating audio sources

In the context of audio decomposition, the factors W and H are not the final purpose of the learning process. Once having point estimates of the factors, we would like to be able to reconstruct the corresponding sources in the temporal domain.

Point estimate of H

Consider an estimate Ŵ obtained via MMLE. If we are seeking a point estimate of H, a possible choice is the maximum a posteriori (MAP) estimate, which corresponds to the minimization of

C MAP (H) def = -log p(H|V; Ŵ) (3.46) c = -log p(V|H; Ŵ) -log p(H) (3.47) c = D IS (V| ŴH) + k,n (α k + 1) log h kn + β k h kn . (3.48)
Using the standard majorization of the IS divergence [START_REF] Févotte | Algorithms for nonnegative matrix factorization with the β-divergence[END_REF][START_REF] Dikmen | Nonnegative dictionary learning in the exponential noise model for adaptive music signal representation[END_REF], we obtain the following bound tight at H = H

C MAP (H) ≤ k,n p kn h kn + q kn h kn + k,n (α k + 1) log h kn + β k h kn , ( 3.49) 
where

p kn = h2 kn f ŵfk v f n [ Ŵ H] 2 f n , q kn = f ŵfk [ Ŵ H] f n . (3.50)
The minimization of the auxiliary function w.r.t. h kn yields a degree 2 polynomial with exactly one non-negative root given by

h kn = -(α k + 1) + (α k + 1) 2 + 4q kn (β k + p kn ) 2q kn . (3.51)

Point estimate of C

We now turn to the problem of estimating the components. In the frequency domain, the k th source corresponds to the F × N spectrogram C k = {c f kn } f,n . As it turns out, the posterior mean of C, given Ŵ, Ĥ and X, is obtained with the so-called Wiener filtering equation [START_REF] Févotte | Nonnegative matrix factorization with the itakura-saito divergence: With application to music analysis[END_REF] ĉfkn = ŵfk ĥkn

[ Ŵ Ĥ] f n x f n . (3.52)
Once this estimate has been computed, we simply obtain the audio sources by inversing the STFT of each of the K spectrograms.

Experimental work

In this section, we conduct experimental work on a real audio decomposition task. Python implementations of the three MCEM algorithms are available on GitHub.

Experimental setup

We consider the piano dataset first used in [START_REF] Févotte | Nonnegative matrix factorization with the itakura-saito divergence: With application to music analysis[END_REF]. This dataset is a real recording of a short piano sequence comprising four different notes. The notes are all played together in the first measure, and each possible pair of notes is then played in the next six measures. The time-domain recording is displayed on Figure 3.1. Using an analysis window of 1024 samples (46ms) with 50% overlap, we end up with a spectrogram of F = 513 frequency bins and N = 676 time frames. This log-spectrogram is displayed on Figure 3.1 as well.

We then proceed to estimate W with MCEM-CH, setting the hyperparameters α k = 0.1, β k = 1 and K = 10. MCEM-C and MCEM-H result in similar performances and are not reported here. The Gibbs sampling procedure being extremely computationally intensive, we resort here to a "cheap" MCEM algorithm where only 10 samples are generated at each EM iteration with no burn-in 4 (i.e., J = 10). The algorithm is run for 10000 EM iterations, and is initialized by taking random columns of V. Setting the estimate of W to be the last iterate of the algorithm, H and the audio sources are estimated with the procedures described in Section 3.6.

We compare the performance of our method with the performance of the IS-NMF method (i.e., NMF with the IS divergence). The corresponding multiplicative update rules can be found in Eq. (1.14) by taking β = 0. IS-NMF is a standard baseline when it comes to audio decomposition [START_REF] Févotte | Nonnegative matrix factorization with the itakura-saito divergence: With application to music analysis[END_REF]. We have ran it 5 times from different random initializations and selected the solution with lowest objective value. The audio sources are also estimated with the procedure described in Section 3.6. 4 Generating 150 samples and discarding the first 50 for burn-in, as was was done in Chapter 2 with the Taste Profile dataset leads to a CPUtime of 90 seconds per iteration. The presented cheaper version roughly divides this number by 15. 

Results

Figure 3.2 displays the norm in log 10 scale of the K = 10 columns of the iterates w.r.t. CPU time, in hours. As we can see, even after 10000 iterations5 , the algorithm does not seem to fully have converged yet. Moreover, it seems prone to label switching.

We now investigate the returned dictionaries and reconstructed audio components. For both methods, the K = 10 components are ordered by decreasing value of their variance, computed from the reconstructed time-domain components.

Figure 3.3 displays the columns of W returned by IS-NMF (in blue, left column) and those returned by MMLE (in red, right column). The columns are represented against frequency bin f , in log 10 scale. As we can see, the dictionary returned by MMLE does not exhibit sparsity, and is very similar to the one returned by IS-NMF. This is further confirmed on Figure 3.4, which displays the reconstructed sources in the time domain returned by IS-NMF (in blue, left column), and those returned by MMLE (in red, right column). The audio accuracy performance of both methods is the same. Indeed, the first four components correspond to the four different notes of the piano sequence, the fifth component corresponds to note attacks, and the remaining components are inaudible. We would have expected the inaudible audio components returned by MMLE to have smaller variances (i.e., spectral power) than those returned by IS-NMF, thanks to the implicit regularization term revealed in Eq. (3.30). Unfortunately, we do not observe such a phenomenon here. This, in addition to the prohibitive computational cost, makes the benefits of the proposed method somewhat limited for audio signal processing.

Discussion

In this chapter, we have tackled maximum marginal likelihood estimation in the IGCN matrix factorization model. We were able to propose a new formulation of the IGCN model in which H has been marginalized out. Unfortunately, this new formulation did not lead to a closed-form expression of the marginal likelihood. It nonetheless revealed a penalty term indicating that MMLE in this model should induce "local" sparsity (as opposed to group-sparsity in the Gamma-Poisson model) in the estimated dictionaries6 . Moreover, we have developed three EM algorithms for the task of optimizing the marginal likelihood in this model. This constitutes a breakthrough w.r.t. the state of the art, since the variational algorithm of [START_REF] Dikmen | Nonnegative dictionary learning in the exponential noise model for adaptive music signal representation[END_REF] came with no convergence guarantees. The experimental work on a real audio decomposition example proved challenging. Firstly, it seems that a large number of EM iterations is needed for the algorithm to converge. Secondly, the estimated audio components do not represent a significant improvement w.r.t. to the baseline IS-NMF estimation, and the self-regularization phenomenon is not striking. Thirdly, the computational cost of the proposed MCEM algorithms is prohibitive. As such, an exciting perspective would be, as in the previous chapter, to develop lighter algorithms for the optimization of the marginal likelihood.
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Finally, we wonder whether the somewhat disappointing experimental results may be imputed to the choice of the prior distribution, namely the inverse Gamma distribution. Indeed, this choice was only driven by the conjugacy with the (complex) normal distribution. It would be an interesting perspective to use different prior distributions. In particular, the Gamma distribution may have been a more suitable choice of prior for H (it would be a particular case of the prior considered in [START_REF] Dikmen | Nonnegative dictionary learning in the exponential noise model for adaptive music signal representation[END_REF] as well). When the conjugacy of the model is lost, MCEM-CH and MCEM-H remain feasible, at the cost of a more involved sampling procedure. Indeed, one of the conditionals in the Gibbs sampler would be unknown, and we would have to resort to an additional Metropolis-Hastings step. 

Appendices to

3.A Probability distributions

3.A.1 Complex normal distribution

Most of the developments of this subsection can be found in [START_REF] Picinbono | Second-order complex random vectors and normal distributions[END_REF]. See also [START_REF] Goodman | Statistical analysis based on a certain multivariate complex Gaussian distribution (an introduction)[END_REF] and [START_REF] Gallager | Circularly-symmetric Gaussian random vectors[END_REF].

We begin by recalling that a complex random vector Z ∈ C n is simply Z = X + iY where X and Y are random vectors in R n . A complex random vector Z is said to be normal if its real and imaginary part X and Y are jointly normal.

We may therefore describe a complex random distribution by the following parameters

µ = E(Z), Γ = E((Z -µ)(Z -µ) H ), C = E((Z -µ)(Z -µ) T ), (3.53)
where H is the Hermitian transpose7 . µ ∈ C n is the mean, Γ ∈ C n×n is the covariance matrix, and C ∈ C n×n is the so-called relation matrix.

We now focus on a very important case of this distribution, namely the circularlysymmetric complex normal distribution. Symmetric circularity means that for all φ ∈ [-π, π] the random vectors Z and Ze jϕ have the same distribution. For the complex normal case, this amounts to having µ = 0 n and C = 0 n×n . The random vector Z is then usually denoted

Z ∼ CN (0, Γ), (3.54) 
and its p.d.f. writes, for all z ∈ C n p(z) = 1

π n det(Γ) exp(-z H Γ -1 z). (3.55)
Moreover, X and Y are distributed as

X Y ∼ N 0 2n , 1 2 Re(Γ) -Im(Γ) Im(Γ) Re(Γ) . (3.56)
Note that the circularly-symmetric complex normal distribution is almost always used in signal processing works, sometimes without a clear reference to the symmetric circularity property.

3.A.2 Multivariate Student's t-distribution

We introduce the complex multivariate Student's t-distribution. Let x be a p-dimensional complex random vector. The parameters of the distribution are :

• Degrees of freedom, ν > 0 • Mean, µ ∈ C p • Scale matrix Σ ∈ C p×p ,
positive semi-definite And we have for its p.d.f. :

f (x; ν, µ, Σ) = 2 p Γ( ν 2 + p) Γ( ν 2 )(νπ) p det(Σ) 1 + 2 ν (x -µ) H Σ -1 (x -µ) -( ν 2 +p)
.

(3.57)

3.B Gibbs sampling of the posterior distribution

Given the current value of the parameter W, we would like to be able to sample from the posterior of the latent variables p(C, H|V; W). In a Gibbs sampler, we are interested in the conditionals p(H|C; W) and p(C|H, V; W).

3.B.1 First conditional

We have

p(H|C; W) ∝ p(C|H; W)p(H) (3.58) ∝ f,k,n p(c f kn |h kn ; wfk ) k,n p(h kn ) (3.59) ∝ kn   f 1 πw f k h kn exp - |c f kn | 2 w f k h kn β α k k Γ(α k ) 1 h kn α k +1 exp(- β k h kn )   (3.60) ∝ kn 1 h kn α k +F +1 exp   - 1 h kn   β k + f |c f kn | 2 w f k     (3.61) = kn IG   α k + F, β k + f |c f kn | 2 w f k   .
(3.62)

3.B.2 Second conditional

We recall the following result about the normal distribution.

Theorem 3.2. Consider the model x = As, where x ∈ R d , A ∈ R d×n , and s ∈ R n , and further assume that s ∼ N (µ s , Σ s ). Then we have

p(s|x; A, µ s , Σ s ) = N (µ, Σ), (3.63) 
where

µ = µ s + Σ s A T G(x -Aµ s ), (3.64) Σ = Σ s -Σ s A T GAΣ s , (3.65) G = (AΣ s A T ) -1 . (3.66)
In particular, consider c 1 , . . . , c K K independent random variables, which are N (0,

σ 2 k ) distributed. Moreover, consider v = k c k . Then we have v = 1 T K c and as such, applying Theorem 3.2 gives us that p(c|v) = N ( μ, Σ) where μ = v k σ 2 k σ, (3.67) Σ = diag(σ) - σσ T k σ 2 k , ( 3.68) 
where σ = [σ 2 1 , . . . , σ 2 K ]. The result straightforwardly extends when c k ∼ CN (0, σ 2 k ).

3.C EM algorithms

3.C.1 MCEM-CH

The MC approximation of Q CH writes QC (W) = 1

J j log p(C (j) , H (j) ; W) (3.69) = 1 J j log p(C (j) |H (j) ; W) + log p(H (j) ) (3.70) c = 1 J j,f,k,n log p(c (j) f kn |h (j) kn ; w f k ) (3.71) c = 1 J j,f,k,n log   1 πw f k h (j) kn exp   - |c (j) f kn | 2 w f k h (j) kn     .
(3.72) Deriving w.r.t. w f k , and setting the equation to 0 yields

j,n   1 w f k - |c (j) f kn | 2 w 2 f k h (j) kn   = 0, (3.73) 
which can be easily solved as

w f k = 1 N J n,j |c (j) f kn | 2 h (j) kn .
(3.74)

3.C.2 MCEM-H

The MC approximation of Q H writes

QH (W) = 1 J j log p(X, H (j) ; W) (3.75) = 1 J j log p(X|H (j) ; W) + log p(H (j) ) (3.76) c = 1 J j,f,n log p(x f n |h n ; w f ). (3.77)
As it turns out, we have

QH (W) c = 1 J j D IS (|X| 2 |WH (j) ). (3.78)
Noting the parallel with the standard IS-NMF problem, this can be tackled with an MM algorithm.

3.C.3 MCEM-C

The MC approximation of

Q C writes QC (W) = - 1 J j log p(C (j) ; W) (3.79) = - 1 J j,k,n log p(c kn ; w k ) (3.80) c = 1 J j,k,n   f log(w f k ) + (α k + F ) log   β k + f |c (j) f kn | 2 w f k     . (3.81)
We resort to majorization-minimization for optimization. The difficult term is the second logarithm term, which can be easily majorized. Indeed, the logarithm is concave, therefore always below its tangents:

log(a + x) ≤ x a + x - x a + x + log(a + x) cst . (3.82)
We can therefore majorize Eq. (3.81):

QC (W) ≤ 1 J j,k,n     f log(w f k ) + (α k + F ) f |c (j) f kn | 2 w f k β k + f |c (j) f kn | 2 wfk     + cst.
(3.83) Deriving w.r.t. w f k , and setting the equation to 0 yields

j,n     1 w f k - α k + F β k + f |c (j) f kn | 2 wfk |c (j) f kn | 2 w 2 f k     = 0, (3.84) 
which can be solved as

w f k = α k + F N J j,n |c (j) f kn | 2 β k + f |c (j) f kn | 2 wfk . (3.85)

Introduction

In Chapters 2 and 3, we focused on two probabilistic NMF models whose activation coefficients h n were assumed independent. This implies the independence of the samples v n as well. Such an assumption is obviously limiting in settings where the samples are known to be correlated; in particular when they describe the evolution of a certain process over time. As such, we wonder how to add statistical correlation to probabilistic NMF models.

A relatively easy way to do so is to lift the independence assumption on the columns of H, for example by considering a Markov structure on these columns

p(H) = p(h 1 ) n≥2 p(h n |h n-1 ). (4.1)
We will refer to such models as dynamical NMF models. Note that very recent works go beyond the Markovian assumption, i.e., assume dependency with multiple past time steps, and are labeled as "deep" [START_REF] Gong | Deep Dynamic Poisson Factorization Model[END_REF][START_REF] Guo | Deep Poisson Gamma Dynamical Systems[END_REF].

The transition distribution p(h n |h n-1 ) may make use of a transition matrix Π of size K × K to capture relationships between the different components; this has notably been considered in in [START_REF] Févotte | Non-negative Dynamical System with Application to Speech and Audio[END_REF] and [START_REF] Schein | Poisson-Gamma Dynamical Systems[END_REF]. In this case, the distribution of h kn depends on a linear combination of all the components at the previous time step

p(h n |h n-1 ) = k p(h kn | l π kl h l(n-1) ). (4.2) 
In this chapter, we will restrict ourselves to Π = I K . Equivalently, this amounts to modeling the K rows of H as independent (and therefore to smoothing the rows independently). Eq. ( 4.2) thus reduces to

p(h n |h n-1 ) = k p(h kn |h k(n-1)
). ( 4.3)

We will refer to such a model as a temporal NMF model.

A first way of dealing with the temporal evolution of a non-negative variable is to map a real variable to R + . It is then commonly assumed that this variable evolves in Gaussian noise. This is for example exploited in the seminal work of [START_REF] Blei | Dynamic Topic Models[END_REF] on the extension of latent Dirichlet allocation to allow for topic evolution1 . A similar assumption is made in [START_REF] Charlin | Dynamic Poisson Factorization[END_REF], which introduces dynamics in the context of a Poisson likelihood (factorizing the user-item-time tensor). Gaussian assumptions allow to use well-known computational techniques, such as Kalman filtering, but result in loss of interpretability.

We will here focus on naturally non-negative Markov chains. Various non-negative Markov chains have been proposed in the NMF literature [START_REF] Cemgil | Conjugate Gamma Markov random fields for modelling nonstationary sources[END_REF][START_REF] Févotte | Nonnegative matrix factorization with the itakura-saito divergence: With application to music analysis[END_REF][START_REF] Acharya | Nonparametric Bayesian Factor Analysis for Dynamic Count Matrices[END_REF]. They are all built in relation with the Gamma (or inverse Gamma) distribution. As a matter of fact, these models exhibit the same drawback: the chains all have a degenerate stationary distribution. This can lead to undesirable behaviors, such as the instability or the degeneracy of realizations of the chains. We emphasize that this is problematic from the probabilistic perspective only, since these prior distributions may still represent an appropriate regularization in a MAP setting.

The contributions of this chapter are 4-fold:

• We review the existing non-negative Markov chains of the NMF literature and discuss some of their limitations. In particular we show that these chains all have a degenerate stationary distribution;

• We present an overlooked non-negative Markov chain from the time series literature, the first-order autoregressive Beta-Gamma process, denoted as BGAR(1) [START_REF] Lewis | Gamma processes[END_REF], whose stationary distribution is Gamma. To the best of our knowledge, this particular chain has never been considered to model temporal dependencies in matrix factorization problems;

• We propose a novel model based on this BGAR(1) process, which we coin BGAR-NMF. We derive a a Monte Carlo Expectation-Maximization (MCEM) algorithm for MMLE, as well as an MM-based algorithm for MAP estimation;

• We show that the proposed MMLE approach fails to produce satisfactory results on real datasets, unlike the MAP approach, further assessed on a prediction task.

The remainder of the chapter is organized as follows. Section 4.2 introduces and compares non-negative Markov chains from the literature. Section 4.3 presents the novel temporal NMF model. Section 4.4 describes MMLE and its associated experimental work while Section 4.5 focuses on MAP estimation. We conclude in Section 4.6.

Comparative study of Gamma Markov chains

This section reviews existing models of Gamma Markov chains, i.e., Markov chains which evolve in R + in relation with the Gamma distribution. We have identified three different models in the NMF literature:

1. Chaining on the rate parameter of a Gamma distribution (Section 4.2.1); 2. Chaining with an auxiliary variable to ensure conjugacy (Section 4.2.2); 3. Chaining on the shape parameter of a Gamma distribution (Section 4.2.3).

As shall be discussed in these subsections, these three models are all built around the assumption E(h n |h n-1 ) ∝ h n-1 (which roughly means that the chain should not drift too far away from its previous value), but lack a well-defined stationary distribution, which leads to the degeneracy of the realizations of the chains. A fourth model from the time series literature, called BGAR(1), is presented in Section 4.2.4. It is built to have a welldefined stationary distribution (it is marginally Gamma distributed), and does not share the assumption E(h n |h n-1 ) ∝ h n-1 . The realizations of the chain are not degenerate and exhibit some interesting properties. To the best of our knowledge, this kind of process has never been used in a probabilistic NMF problem to model temporal evolution.

Throughout the section, (h n ) n≥1 denotes the (scalar) Markov chain of interest, where the index k as in Eq. ( 4.3) has been dropped for enhanced readability. It is further assumed that h 1 is set to a fixed, deterministic value. All the formulas needed to derive the computations of mean and variance throughout the next subsections are given in Appendix 4.A.

Direct chaining on the rate parameter

Model

Let us consider a general Gamma Markov chain model with a chaining on the rate parameter:

h n |h n-1 ∼ Gamma α, β h n-1 . (4.4)
As it turns out, Eq. ( 4.4) can be rewritten as a multiplicative noise model: (4.5) where φ n are i.i.d. Gamma(α, β) random variables.

h n = h n-1 × φ n ,
We have

E(h n |h n-1 ) = α β h n-1 , var(h n |h n-1 ) = α β 2 h 2 n-1 . (4.6)
This model was introduced in [START_REF] Févotte | Nonnegative matrix factorization with the itakura-saito divergence: With application to music analysis[END_REF] to add smoothness to the activation coefficients in the context of audio signal processing. The parameters were set to α > 1 and β = α -1, such that the mode would be located at h n = h n-1 . A similar inverse Gamma Markov chain was also considered in [START_REF] Févotte | Nonnegative matrix factorization with the itakura-saito divergence: With application to music analysis[END_REF] and in [START_REF] Févotte | Majorization-Minimization Algorithm for Smooth Itakura-Saito Nonnegative Matrix Factorization[END_REF].

Analysis

From Eq. ( 4.5) we can write:

h n = h 1 n i=2 φ i . (4.7)
The independence of the φ i yields:

E(h n ) = h 1 α β n-1 , var(h n ) = h 2 1   α 2 β 2 + α β 2 n-1 - α 2 β 2 n-1   . (4.8)
We enumerate all the possible regimes, which all give rise to degenerate stationary distributions for different reasons:

• β > α(α + 1): both mean and variance go to zero; (4.4). The initial value h 1 is set to 1, and chains were simulated until n = 50. Each subplot contains ten independent realizations, with the value of the parameters (α, β) given at the top of the subplot. log 10 (h n ) is displayed.

• β = α(α + 1): variance converges to 1, however the mean goes to zero;

• β ∈ α; α(α + 1) :variance goes to infinity, mean goes to zero;

• β = α: mean is equal to 1, but the variance goes to infinity;

• β < α: both mean and variance go to infinity. Each subplot of Figure 4.1 displays in log 10 -scale ten independent realizations of the chain, for a different set of parameters (α, β). As we can see, the realizations of the chain either collapse to 0, or diverge.

Hierarchical chaining with an auxiliary variable

Model

Let us consider the following Gamma Markov chain model introduced in [START_REF] Cemgil | Conjugate Gamma Markov random fields for modelling nonstationary sources[END_REF]:

z n |h n-1 ∼ Gamma(α z , β z h n-1 ), (4.9) h n |z n ∼ Gamma(α h , β h z n ). ( 4 

.10)

As it turns out, this model can also be rewritten as a multiplicative noise model: (4.11) where φn are i.i.d. random variables defined as the ratio of two independent Gamma random variables of parameters (α h , β h ) and (α z , β z ). The distribution of φn is actually known in closed form, namely φn ∼ BetaPrime α h , α z , 1, β , (4.12) with β = βz β h (see Appendix 4.B for a definition). We have

h n = h n-1 × φn ,
E(h n |h n-1 ) = β α h α z -1 α z > 1, (4.13) var(h n |h n-1 ) = β2 α h (α h + α z -1) (α z -1) 2 (α z -2) α z > 2. (4.14)
This model is less straightforward in its construction than the previous one, as it makes use of an auxiliary variable z n (note that a similar inverse Gamma construction was proposed as well in [START_REF] Cemgil | Conjugate Gamma Markov random fields for modelling nonstationary sources[END_REF]). There are two motivations behind the introduction of this auxiliary variable:

1. Firstly, it ensures what is referred to as "positive correlation" in [START_REF] Cemgil | Conjugate Gamma Markov random fields for modelling nonstationary sources[END_REF], i.e., E(h n |h n-1 ) ∝ h n-1 (something the model described by Eq. ( 4.4) does as well).

2. Secondly, it ensures the so-called conjugacy of the model, i.e., the conditional distributions p(z n |h n-1 , h n ) and p(h n |z n , z n+1 ) remain Gamma distributions. Indeed, these are the distributions of interest when considering Gibbs sampling or variational inference. This property is not achieved by the model described by Eq.( 4.4) (i.e., p(h n |h n-1 , h n+1 ) is neither Gamma, nor a known distribution). This particular chain has been used in the context of audio signal processing in [START_REF] Virtanen | Bayesian Extensions to Non-negative Matrix factorisation for Audio Signal Modelling[END_REF] (under the assumption of a Poisson likelihood, which does not fit the nature of the data), and also to model the evolution of user and item preferences in the context of recommender systems [START_REF] Jerfel | Dynamic Collaborative Filtering With Compound Poisson Factorization[END_REF][START_REF] Do | Gamma-Poisson Dynamic Matrix Factorization Embedded with Metadata Influence[END_REF].

Analysis

From Eq. ( 4.11), we can write:

h n = h 1 n i=2 φi . (4.15)
We have by independence of the φi : The conclusions are the same as with the previous model. Each subplot of Figure 4.2 displays in log 10 -scale ten independent realizations of the chain, for a different set of parameters (α z , β z , α h , β h ). As we can see, the realizations of the chain either collapse to 0, or diverge.

E(h n ) = h 1 β α h α z -1 n-1 α z > 1, (4.16) var(h n ) = h 2 1 β2(n-1)   α 2 h (α z -1) 2 + α h (α h + α z -1) (α z -1) 2 (α z -2) n-1 - α 2 h (α z -1) 2 n-1   α z > 2. ( 4 

Chaining on the shape parameter

Model

Let us consider a general Gamma Markov chain model with a chaining on the shape parameter:

h n |h n-1 ∼ Gamma(αh n-1 , β).
(4.18)

We have

E(h n |h n-1 ) = α β h n-1 , var(h n |h n-1 ) = α β 2 h n-1 . (4.19)
In contrast with the two models presented in Section 2.1, this model cannot be rewritten as a multiplicative noise model, or any noise model. Therefore this model is more intricate to interpret. It was introduced in [START_REF] Acharya | Nonparametric Bayesian Factor Analysis for Dynamic Count Matrices[END_REF] in the context of Poisson factorization. It is mainly motivated by a computational trick that can be used when working with a Poisson likelihood, hence making a Gibbs sampling feasible in the model. The authors set the value of α to 1 (though the same trick can be applied for any value of α). 4.18). The initial value h 1 is set to 1, and chains were simulated until n = 50. Each subplot contains ten independent realizations, with the value of the parameters (α, β) given at the top of the subplot. log 10 (h n ) is displayed.

Analysis

Using the law of total expectation and total variance, it can be shown that

E(h n ) = α β n-1 h 1 , var(h n ) = 1 β α β n-1 h 1 n-2 i=0 α β i . (4.20)
The discussion is hence driven by the value of r = α β . • If r < 1, mean and variance go to zero (Dirac distribution located at 0)

• If r = 1, mean is fixed but variance goes to infinity (linearly)

• If r > 1, mean and variance go to infinity This chain only exhibits degenerate stationary distributions. Each subplot of Figure 4.3 displays in log 10 -scale ten independent realizations of the chain, for a different set of parameters (α, β). As we can see, the realizations of the chain either collapse to 0, or diverge.

BGAR(1)

We now discuss the first order autoregressive Beta-Gamma process of [START_REF] Lewis | Gamma processes[END_REF], a stochastic process which is marginally Gamma distributed. The authors referred to the process as "BGAR(1)". However, to the best of our knowledge, no extension to higher-order autoregressive processes exists in the time series literature. As such, from now on, we will simply refer to it as "BGAR".

Model

Consider α > 0, β > 0, ρ ∈ [0, 1[. The BGAR process is defined as: (4.22) where b n ∈ [0, 1] and n > 0 are i.i.d. random variables distributed as:

h 1 ∼ Gamma(α, β), (4.21) h n = b n h n-1 + n n ≥ 2,
b n ∼ Beta(αρ, α(1 -ρ)), (4.23) n ∼ Gamma(α(1 -ρ), β). (4.24) (h n ) n≥1 is called the BGAR process.
It is parametrized by α, β and ρ. We have

E(h n |h n-1 ) = ρh n-1 + α(1 -ρ) β , (4.25) var(h n |h n-1 ) = ρ(1 -ρ) α + 1 h 2 n-1 + α(1 -ρ) β 2 . (4.26)
As we can see, BGAR(1) already differs from the three previously presented models because the conditional expectation E(h n |h n-1 ) is not proportional to h n-1 (it is an affine transformation).

We emphasize that the distribution p(h n |h n-1 ) is not known in closed form. Only p(h n |b n , h n-1 ) is known; it is a shifted Gamma distribution. The generative model may therefore be rewritten as h 1 ∼ Gamma(α, β), (4.27) b n ∼ Beta(αρ, α(1 -ρ)) n ≥ 2, (4.28)

h n |b n , h n-1 ∼ Gamma(α(1 -ρ), β, loc = b n h n-1 ) n ≥ 2. (4.29)
where the distribution in Eq. ( 4.29) is a shifted Gamma distribution with a location parameter "loc".

Analysis

To study the marginal distribution of the process, we recall the following lemma. Proof. Follows by induction. Consider n such that h n is Gamma(α, β) distributed. Then, n+1 h n is Gamma(αρ, β) distributed (Lemma 4.1). Finally, h n+1 = n+1 h n + b n+1 is Gamma(α, β) distributed (sum of independent Gamma random variables), which concludes the proof. Two limit cases can be exhibited:

• When ρ = 0, the h n are i.i.d. random variables;

• When ρ → 1, the process is not random anymore, and h n = h 1 for all n (note that ρ = 1 is not an admissible value). Note that BGAR is not the only Markovian process with a marginal Gamma distribution considered in the literature. We mention the GAR(1) process (first-order autoregressive Gamma process) of [START_REF] Gaver | First-order autoregressive gamma sequences and point processes[END_REF], which is also marginally Gamma distributed. However, this particular process is piecewise deterministic, and its parameters are "coupled": the parameters of the marginal distribution also have an influence on other properties of the model. As such, it is not well-suited to our problem, and will not be considered here.

Realizations of the process. Figure 4.4 displays three realizations of the BGAR process, with parameters fixed to α = 2 and β = 1, and a different parameter ρ in each subplot. When ρ = 0.5, the correlation is weak, and no particular structure is observed. However, as ρ goes to 1, the correlation becomes stronger, and we typically observe a "floor" phenomenon.

Moreover, we have

E(h n |h n-1 ) > h n-1 ⇔ h n-1 < α β (4.30)
If h n-1 is below the mean of the marginal distribution ( α β ), then h n will be in expectation above h n-1 , and vice-versa. However, note that, as ρ → 1, this phenomenon gets weaker, as the variance of h n goes to zero.

The BGAR-NMF model

In this section, we introduce a novel temporal NMF model which makes use of the BGAR process presented in Section 4.2.4. We will use the slightly abusive notation h ∼ BGAR(ρ, α, β) to denote that the entries of the row vector h are a realization of the BGAR process with parameters α, β, and ρ.

We consider the following temporal NMF model

h k ∼ BGAR(ρ k , α k , β k ) (4.31) v f n |h n ∼ Poisson([WH] f n ). (4.32)
That is to say that each row of H is independent and follows a BGAR(1) process of different parameters. W is left to be a deterministic variable. We choose to work without loss of generality with a Poisson observation model. Indeed, as discussed in Section 1.3.2, this model can be generalized to non-integer data by considering the compound Poisson distribution.

A graphical representation of the model is given in Figure 4.5.

As explained preivously, we may rewrite the model with the auxiliary variables b kn (Eqs. (4.28)-(4.29)), leading to

h k1 ∼ Gamma(α k , β k ) (4.33) b kn ∼ Beta(α k ρ k , α k (1 -ρ k )) n ≥ 2 (4.34) h kn |b kn , h k(n-1) ∼ Gamma(α k (1 -ρ k ), β k , loc = b kn h k(n-1) ) n ≥ 2 (4.35) v f n |h n ∼ Poisson([WH] f n ). ( 4 

.36)

A graphical representation of the augmented model is given in Figure 4.6.

In our setting, α

= [α 1 , . . . , α K ] T , β = [β 1 , . . . , β K ] T and ρ = [ρ 1 , . . . , ρ K ]
T are treated as fixed hyperparameters. W is also treated as a deterministic variable to be estimated.

h n-1 h n h n+1 v n-1 v n v n+1 • W • α, β, ρ Figure 4
.5: The BGAR-NMF model. Observed variables are in blue, while latent variables are in white. In our setting, h n is of size K, and v n is of size F .

h n-1 h n h n+1 v n-1 v n v n+1 b n-1 b n b n+1
• W 

Maximum marginal likelihood estimation

Objective

In this section, we aim at estimating W by maximizing the marginal likelihood:

max W p(V; W) = H,B
p(V, H, B; W)dHdB, (4.37) where the joint likelihood of the model is given by

p(V, H, B; W) = n p(v n |h n ; W) k   p(h k1 ) n≥2 p(h kn |b kn , h k(n-1) )p(b kn )   . (4.38)
We once again turn to an EM algorithm to solve this optimization task. Given the current value of the parameter W, we iteratively optimize w.r.t. W the following functional

Q(W; W) = H,B
log p(V, H, B; W)p(H, B|V; W)dHdB.

(4.39)

In our setting, the posterior of the latent variables p(H, B|V; W) is intractable. As such, we resort to MCEM, in which the functional of Eq. ( 4.39) is replaced by its Monte Carlo approximation. We therefore need a way to draw samples from p(H, B|V; W).

The observations V and the set {H, B} define a so-called hidden Markov model (HMM), sometimes referred to as general state-space models. In particular, {H, B} are called the state variables2 , and W is a static parameter of the HMM. Inference in HMM is a wellstudied topic [START_REF] Cappé | Inference in Hidden Markov Models[END_REF], and the estimation of these so-called static parameters is a specific problem, see for example the survey of [START_REF] Kantas | On Particle Methods for Parameter Estimation in State-space Models[END_REF]. In particular, sequential Monte Carlo (SMC) methods are central to such inference problems, and we describe in the following subsection the key elements of the methodology.

Sequential Monte Carlo methods

We denote by x n = {h n , b n } the state variable at time step n. We recall that the associated observation is the variable v n . In this subsection, we will use the standard SMC notations x 1:n = {x 1 , . . . , x n } and v 1:n = {v 1 , . . . , v n } to denote collections of state or observation variables from time 1 through n. With these notations, our goal is to sample from p(x 1:N |v 1:N ), which is referred to as the smoothing distribution. The methodology boils down to two steps.

Particle filtering

Particle filtering, a specific instance of sequential Monte Carlo methods, sequentially yields a so-called particle approximation of the filtering distributions, {p(x n |v 1:n )} n . That is to say that these distributions are approximated with a finite number (denoted N p ) of weighted particles:

p(x n |v 1:n ) Np i=1 ξ (i) n δ x (i) n (x n ). (4.40) ξ (i)
n is the weight associated to the particle x (i) n , and are such that ξ (i)

n > 0 and i ξ (i) n = 1. δ is the Dirac function. These approximations are computed sequentially using efficient importance sampling and resampling techniques. The interested reader is referred to the following tutorials for details: [START_REF] Cappé | An overview of existing methods and recent advances in sequential Monte Carlo[END_REF]; [START_REF] Doucet | A tutorial on particle filtering and smoothing: Fifteen years later[END_REF].

We use the standard bootstrap particle filtering (i.e., when the importance distribution is chosen to be the transition distribution of the HMM) for this task. The associated algorithm is described in Appendix 4.D.

Particle smoothing

Once particle filtering has been carried out, we may obtain realizations from the smoothing distribution via the following backward recursion:

p(x 1:N |v 1:N ) = p(x N |v 1:N ) N n=1 p(x n |x n+1 , v 1:n ).
(4.41) Indeed, a particle approximation of the filtering distribution yields a particle approximation of p(x n |x n+1 , v 1:n ), since

p(x n |x n+1 , v 1:n ) ∝ p(x n+1 |x n )p(x n |v 1:n ), (4.42) 
where p(x n+1 |x n ) is simply the transition distribution of our HMM. As such, we obtain

p(x n |x n+1 , v 1:n ) Np i=1 ξ (i) n|n+1 δ x (i) n (x n ), (4.43) 
where the weights are such that

ξ (i) n|n+1 = p(x n+1 |x (i) n )ξ (i) n j p(x n+1 |x (j) n )ξ (j) n . ( 4 

.44)

This methodology is called forward filtering-backward simulation (FFBSi), and was introduced in [START_REF] Godsill | Monte Carlo Smoothing for Nonlinear Time Series[END_REF]. The states are generated sequentially in reverse time. See Algorithm 5 for details. N p = 10000, N T = 1000 for a total of 500 EM iterations. Figure 4.7 displays the norm of the columns of the iterates w.r.t. the number of iterations.

On a real dataset. We consider the NIPS dataset3 , which contains word counts (with stop words removed) of all the articles published at the NIPS4 conference between 1987 and 2015. We regrouped the articles per year, yielding an observation matrix of size 11463 × 29. We apply our MCEM algorithm with K = 10, N p = 10000, N T = 1000 for a total of 3000 EM iterations. Figure 4.8 displays the norm of the columns of the iterates w.r.t. the number of iterations.

Discussion of the results. Figures 4.7 and 4.8 are typical examples of the output of the proposed MCEM algorithm. If the algorithm seemingly converges on small-dimensioned problems, it fails to produce satisfactory results on larger-dimensioned real world datasets. On the displayed NIPS dataset example, there is too much variance in the iterates, making it impossible to obtain an exploitable point estimate. Increasing the values of N p or N T did not lead to significant improvements in our case. The most likely explanation is that the obtained samples do not correctly describe the posterior of the latent variables. Moreover, the method seems prone to label switching. Designing a finer SMC-based algorithm remains an open problem at this stage. The following section presents an alternative inference paradigm for the BGAR-NMF model. 

MAP estimation

In this section, we develop an alternative procedure to MMLE, namely a MAP estimation in the BGAR-NMF model. From a statistical point of view, a MAP estimation is less wellposed than MMLE. Nevertheless, this computation-friendlier procedure will enable us to work on real datasets.

Problem setting

Objective function

MAP estimation amounts to the minimization of the following function

C(W, H, B) = -log p(H, B|V; W) (4.48) c = -log p(V|H; W) -log p(H, B) (4.49) c = - f,n log p(v f n |[WH] f n ) - k   log p(h k1 ) + n≥2 log p(h kn |b kn , h k(n-1) ) + log p(b kn )   . (4.50)
This expression consists in a data-fitting term, and a regularization term aiming at smoothing the rows of H. Let us now detail each term. With the notations γ k = α k (1 -ρ k ) and

η k = α k ρ k , we can write -log p(v f n |[WH] f n ) c = -v f n log([WH] f n ) + [WH] f n , (4.51) -log p(h k1 ) c = (1 -α k ) log(h k1 ) + β k h k1 , (4.52) -log p(h kn |b kn , h k(n-1) ) c = (1 -γ k ) log(h kn -b kn h k(n-1) ) + β k (h kn -b kn h k(n-1) ), (4.53) -log p(b kn ) c = (1 -η k ) log(b kn ) + (1 -γ k ) log(1 -b kn ). ( 4 

.54)

Constraints

By construction, the variables h kn and b kn must lie in a specific interval given the values of all the other variables. Indeed, as h kn = b kn h k(n-1) + kn (Eq. ( 4.22)), where kn is a non-negative random variable, we have h kn ≥ b kn h k(n-1) , and

b kn ≤ h kn h k(n-1) . Similarly, as h k(n+1) = b k(n+1) h kn + k(n+1) , we have h kn ≤ h k(n+1) b k(n+1)
. As such, we obtain the following constraints: We therefore introduce the notations

0 ≤ h k1 ≤ h k2 b k2 , (4.55) b kn h k(n-1) ≤ h kn ≤ h k(n+1) b k(n+1) 2 ≤ n < N, (4.56) b kN h k(N -1) ≤ h kN , ( 4 
c kn = b kn h k(n-1) , d kn = h k(n+1) b k(n+1) , z kn = h kn h k(n-1) , ( 4.59) 
as these quantities arise naturally in our derivations.

Optimization

To optimize the function C, we resort to an MM-based scheme. The only term we are going to majorize islog p(V|H; W). This is already well-known from the literature [START_REF] Lee | Algorithms for Non-negative Matrix Factorization[END_REF][START_REF] Févotte | Algorithms for nonnegative matrix factorization with the β-divergence[END_REF]. The function

G 1 (H; H) = - k,n p kn log(h kn ) + k,n q k h kn , (4.60)
with the notations 

p kn = hkn f w f k v f n [W H] f n , q k = f w f k , ( 4 
G 2 (W; W) = - f,k p f k log(w f k ) + f,k q k w f k , (4.62)
with the notations As such, regardless of the variable to be optimized, we end up with an auxiliary function with logarithmic terms or linear terms. Therefore, the optimization of this variable will boil down to solving a polynomial equation.

p kn = wfk n h kn v f n [ WH] f n , q k = n h kn , ( 4 

Minmization w.r.t. W

Minimizing C w.r.t. to W amounts to minimizing G 2 . The minimization w.r.t. w f k can be done in closed-form thanks to the following update rule: As such, we have to control the limit values of the auxiliary function. By choosing (1 -γ k ) > 0, we ensure that this limit is +∞ (this choice will be discussed at the end of the subsection). The function to be minimized being continuous, this ensures the existence of a minimizer.

w f k = wfk n h kn v f n [ WH] -1 f n n h kn . ( 4 
We must break down three different cases. In all sub-cases, it amounts to solving a polynomial equation. We know that at least one polynomial root must lie in the definition interval. If this is the case for several roots, we simply choose the root which gives the lowest objective value.

• For h k1 , the minimization of the auxiliary function amounts to solving the following order 2 polynomial equation over the interval [0,

d k1 ] a 2,k1 h 2 k1 + a 1,k1 h k1 + a 0,k1 = 0, (4.65) 
where

a 2,k1 = -(q k + β k (1 -b k2 )), (4.66) a 1,k1 = -(1 -α k -p k1 ) + (q k + β k (1 -b k2 ))d k1 -(1 -γ k ), (4.67) a 0,k1 = (1 -α k -p k1 )d k1 . ( 4 

.68)

The roots can be found in closed form.

• For h kn with 2 ≤ n < N , the minimization of the auxiliary function amounts to solving the following order 3 polynomial over the interval [c kn , d kn ] a 3,kn h 3 kn + a 2,kn h 2 kn + a 1,kn h kn + a 0,kn = 0, (4.69)

where The roots can be found numerically.

a 3,kn = -(q k + β k (1 -b k(n+1) )), (4.70) a 2,kn = p kn -2(1 -γ k ) + (q k + β k (1 -b k(n+1) ) (c kn + d kn ) , (4.71) a 1,kn = -p kn (c kn + d kn ) + (1 -γ k ) (c kn + d kn ) -(q k + β k (1 -b k(n+1) ))c kn d kn , ( 4 
• For h kN , the minimization of the auxiliary function amounts to solving the following order 2 polynomial over the interval [c kn , +∞[

a 2,kN h 2 kN + a 1,kN h kN + a 0,kN = 0, (4.74) 
where

a 2,kN = -(q k + β k ), (4.75 
) where

a 1,kN = -p kN -c kN (q k + β k ) + (1 -γ k ), ( 4 
a 3,kn = -b k h k(n-1) (4.79) a 2,kn = 2(1 -γ k ) + (1 -η k ) + β k h k(n-1) (z kn + 1) (4.80) a 1,kn = -(1 -γ k )(z kn + 1) -(1 -η k )(z kn + 1) -β k h k(n-1) z kn (4.81) a 0,kn = (1 -η k )z kn . (4.82)
Again, the roots can be found numerically. 

Admissible values of hyperparameters

To recap the discussion on admissible values of hyperparameters, to ensure the existence of minimizers to the auxiliary function, we have restricted ourselves to

α k (1 -ρ k ) > 1, α k ρ k > 1. (4.83)
This set is graphically displayed on Figure 4.9. As we can see, choosing the value of ρ k close to be close to one (to ensure correlation) leads to high values of α k .

Experimental work

On synthetic data

For illustrative purposes, we apply the previously described MM algorithm to the synthetic dataset used in Section 4.4.4. We set K = 1 to observe the variations in the learned H w.r.t. ρ. The value of α is set to (1 -ρ) -1 + 1 to enforce 1 -γ > 0. The value of β is set to 1. The algorithms is run for a total of 1000 iterations. 

Discussion

In this chapter, we addressed the problem of designing Markovian temporal NMF models. In these models, the activation coefficients h n are no longer independent, but modeled as a Markov chain, which allows to add statistical correlation to the model. We focused on naturally non-negative Markov chains. To this end, we have conducted a review of the NMF literature, which revealed a limitation shared by all models considered until then: a degenerate stationary distribution of the chain. We then presented the BGAR(1) process from the time series literature, which overcomes this limitation, and which, to the best of our knowledge, has never been exploited in learning problems.

We proposed the use of BGAR(1) as a prior distribution for H, combined to a Poisson observation distribution, leading to a novel probabilistic model which we coined BGAR-NMF. We then addressed MMLE in this model with a MCEM algorithm, whose sampling mechanism was based on SMC methods. If our estimation algorithm seemingly works on small-dimensioned synthetic datasets, it fails to produce satisfactory results on real datasets. This is likely linked to samples of poor quality, indicating that it may be difficult to correctly sample from the posterior of the latent variables in this case. An interesting perspective would be to resort to more sophisticated combinations of EM and SMC tools, such as the methodology described in [START_REF] Olsson | Sequential Monte Carlo Smoothing With Application to Parameter Estimation In Nonlinear State Space Models[END_REF].

We then turned to an alternative inference paradigm in the BGAR-NMF model, namely MAP estimation. We were able to derive a convergent algorithm for a certain range of values of the hyperparameters of the BGAR(1) chains. It has given satisfactory results both on synthetic and real datasets. In particular, we have shown that BGAR-NMF achieves stateof-the-art performance on a prediction task. In our algorithm, fixing a value of ρ (i.e., the linear correlation between two successive values of the chain) close to 1 restricts us to high values of α. Small values of α are interesting because they induce sparsity, and correspond to the regime where Gaussian approximations do not work. As such, an exciting perspective would be to be able to carry out inference in this regime.

We would also like to emphasize that our MAP algorithm can readily extend to an exponential observation model, as in Chapter 3. Using a similar MM-based scheme would yield higher-order polynomial equations for the updates of the variables.

As a final perspective, we mention the application of our BGAR-NMF model to music recommendation. In this field, data may be stored as a user-song matrix, whose entries represent the songs listening counts of users, such as the Taste Profile dataset used in Section 2.6. There also exists similar datasets including temporal information. The listening history of users may then be split in time periods in equal length, yielding a user-item-time tensor. The time-dependent user preferences or item attributes may then be modeled with BGAR.

4.A.2 Laws of total expectation and variance

We recall the law ot total expectation and the law of total variance. We have E(X) = E(E(X|Y )), (4.88) and var(X) = E(var(X|Y )) + var(E(X|Y )). ( 4.89)

4.B Beta prime distribution

Distribution for a continuous random variable in [0, +∞[, with parameters α > 0, β > 0, p > 0 and q > 0. Its p.d.f. writes, for x ≥ 0: f (x; α, β, p, q) = p x q αp-1 1 + 

4.D Bootstrap particle filter

Particle filtering, in its simplest form, amounts to sequential importance sampling (SIS). This means that a particle approximation of p(x 1:n |v 1:n ) will be obtained with n sequential importance sampling steps (we begin by sampling x 1 , then x 2 , and so on and so forth), which, if chosen smartly, allow for a recursive computation of the weights of the particles.

In the so-called bootstrap particle filter, the importance distribution q(x n |x n-1 , v n ) is chosen to be the transition distribution of the HMM, p(x n |x n-1 ). This is convenient from a

4.E.1 Direct chaining on the rate parameter

We aim at optimizing the following function (4.97) where p(h kn |h k(n-1) ) is given by Eq. (4.4).

C(W, H) = - f,n log p(v f n |[WH] f n ) - k   log p(h k1 ) + n≥2 log p(h kn |h k(n-1) )   ,
We resort to an MM scheme, which amounts to minimizing the following functions 

f (h k1 ) c = (α k -p k1 ) log(h k1 ) + q k h k1 + β k h k2 h k1 , ( 4 
h kN 0 q k + β k h k(N -1) 1 -α k -p kN

4.E.2 Hierarchical chaining with an auxiliary variable

We aim at optimizing the following function where p(z kn |h k(n-1) ) and p(h kn |z kn ) are given by Eqs (4.9)-(4.10).

C(W, H, Z) = - f,n log p(v f n |[WH] f n ) - k   log p(h k1 ) +
We resort to an MM scheme, which amounts to the minimization of the following functions. For z kn , we have f (z kn ) c = (1 -α z -α h ) log(z kn ) + (β z h k(n-1) + β h h kn )z kn .

(4.103)

It can be easily solved as These can be easily solved as

z n = α z + α h -1 β z h k(n-1) + β h h kn . ( 4 
h k1 = p k1 + α z q k + β z z k2 , h kn = p kn + α h + α z -1 q k + β h z kn + β z z k(n+1) , h kN = p kN + α h -1 q k + β h z kN . ( 4 

.108)

Imposing that α h > 1 is a sufficient condition to guarantee non-negativity under the four proposed update rules. where p(h kn |h k(n-1) ) is given by Eq. (4.18).

4.E.3 Chaining on the shape parameter

We resort to an MM scheme, which amounts to minimizing the following functions f (h k1 ) c = -p k1 log(h k1 ) + (q k -α k log(β k h k2 )) + log Γ(α k h k2 ), (4.110)

f (h kn ) c = (1 -α k h k(n-1) -p kn ) log(h kn ) + (q k + β k -α k log(β k h k(n+1)
))h kn + log Γ(α k h kn ), (4.111)

f (h kN ) c = (1 -α k h k(N -1) -p kn ) log(h kN ) + (q k + β k )h kN . (4.112)
The optimization of the first two functions is carried out with Newton's method. The optimizing of the third and last function can easily be done and yields

h kN = p kN + α k h N -1 -1 q k + β k (4.113)

4.F MAP estimation in the GaP model

This has first been described in [START_REF] Dikmen | Maximum marginal likelihood estimation for nonnegative dictionary learning in the Gamma-Poisson model[END_REF]. We aim at optimizing the following function

C(W, H) = - f,n log p(v f n |[WH] f n ) - k,n
log p(h kn ), (4.114) where p(v f n |[WH] f n ) is a Poisson likelihood (cf. Eq (4.96)), and h kn are Gamma(α k , β k ) distributed.

We resort to an MM scheme, which then amounts to the minization of the following function f (h kn ) = (1 -α k -p kn ) log(h kn ) + (q k + β k )h kn . (4.115) This function can be optimized in closed form, yielding the update .116) This update ensures the non-negativity of h kn when α k > 1.

h kn = p kn + α k -1 q k + β k . ( 4 

Conclusion Conclusions

In this thesis, we tackled the general problem of maximum marginal likelihood estimation in semi-Bayesian NMF models. In this framework, the dictionary W, a deterministic variable, is estimated by maximizing the marginal likelihood of the model, that is the likelihood where the activation coefficients H have been integrated out. This problem was first tackled in Dikmen andFévotte (2011, 2012), where an intriguing "self-regularization" phenomenon on the columns of the dictionary was empirically observed, but could not be explained.

In Chapter 2 and Chapter 3, we have studied two particular instances in such models: the Gamma-Poisson (GaP) model and the inverse Gamma complex normal (IGCN) model, respectively. In both cases, we have conducted a similar analysis:

• We were able to rewrite the generative models free of H, which led in turn to a novel expression of the marginal likelihood. This expression revealed a column-wise regularization term on W in the GaP model, and an element-wise one in the IGCN model.

• We have also proposed EM algorithms for the task of optimizing the marginal likelihood. In the GaP model, the proposed novel variant (EM-C) has been shown to have favorable properties. In the IGCN model, all the proposed variants are novel. If the self-regularization phenomenon clearly occurs in the GaP model, it is much less clear in the IGCN model, where our experimental work showed the somewhat limited practical interest of our method.

In Chapter 4, we addressed the problem of designing temporal Markovian NMF models. To this end, we have conducted a thorough review of the literature. It revealed that all the models considered until now shared the same limitation, namely, a degenerate stationary distribution of the chain. We have proposed the use of an overlooked autoregressive Markov chain from the time series literature, called BGAR(1), which is marginally Gamma distributed. To the best of our knowledge, this particular process has never been used for learning purposes. Combined with a Poisson observation model, it led to a novel NMF model, which we coined BGAR-NMF.

We then tackled maximum marginal likelihood estimation with tools from the sequential Monte Carlo framework. If the method seemingly works on small-dimensioned problems, it does not scale to larger-dimensioned datasets. We then pursued a MAP estimation in this model, tackled with a MM-based algorithm for a certain range of hyperparameters. This method allowed us to demonstrate the interest of the proposed BGAR-NMF model.

Perspective and future works

We discuss in this section several perspectives of the work conducted in this thesis, gathered in two themes.

Model aspects

In Chapter 2 and Chapter 3, our analysis of the marginal likelihood in the considered models rested upon two elements:

• First of all, we worked with so-called composite models, that is we were able to use auxiliary variables C such that k c f kn = v f n (or x f n ). This is because we considered observation distributions (Poisson, normal) closed under summation. Developing an analysis framework for distributions which do not share this property remains an open challenge at this stage.

• Secondly, the prior distribution of H was always chosen to be conjugate to the observation distribution (Gamma is conjugate to Poisson, and inverse Gamma is conjugate to normal with known mean). This conjugacy is convenient for computation, but may not always be relevant from the model perspective (see the discussion at the end of Chapter 3). As such, it would be an interesting perspective to see how the estimator behaves with other priors.

Finally, a broader, harder challenge would be to tackle the analysis of the marginal likelihood not in more general settings, by considering families of distributions, such as the exponential family, for instance.

In Chapter 4, we aimed at proposing a well-posed prior distribution to model the temporal evolution of H. We used the BGAR(1) process from the time series literature, which is marginally Gamma distributed. Other processes tailored to specific applications may be conceived. For example, in audio signal processing, the activation coefficients are known to present exponential decay. An exciting perspective would be to develop alternative Markov chains imitating this structure.

Optimization aspects

In all the models discussed in this thesis, when dealing with the optimization of the marginal likelihood, we always relied on the EM algorithm. This constitutes a natural choice, as we are dealing with latent variable models. However, since the posterior of the latent variables was never tractable, we resorted to MCEM variants, leading to algorithms with prohibitive computational costs. Other variants of the EM algorithms have been considered (see the discussion at the end of Chapter 2), but did not lead to significant improvements.

As such, it would be beneficial to have alternative methods for optimization, i.e., methods breaking out of EM-based schemes. In particular, an attractive perspective would be to optimize the marginal likelihood directly, for example by using stochastic optimizationbased schemes. This line of research might also trigger novel ways of evaluating the marginal likelihood.

To guarantee a valid Bernoulli parameter in Eq. (B.2), i.e. k w f k h kn ∈ [0, 1], we study in this paper three different sets of constraints on W and H, denoted (c1), (c2) and (c3):

h kn ∈ [0, 1], f w f k = 1, ( c1 
) k h kn = 1, w f k ∈ [0, 1], ( c2 
) k h kn = 1, f w f k = 1. ( c3 
)
In a Bayesian framework, we assume Beta or Dirichlet distributions to enforce these constraints, leading to the following models:

• The Beta-Dir model, based on the set of constraints Eq. ( c1) The first two models are actually symmetric, since the roles of W and H are symmetric by transposition of the data matrix V. We end up with two Bayesian mean-parametrized NMF models for binary data, namely the Beta-Dir and the Dir-Dir models.

h
The inference revolves around the posterior distributions p(W, H|V) in the two aforementioned models. In both cases, we develop a collapsed Gibbs sampler in augmented versions of the models. Collapsed variational inference is also considered. Experimental work is conducted on dictionary learning and prediction tasks. The proposed methods achieve similar or superior performance w.r.t. the state of the art.

  Mean-Parameterized Non-Negative Binary Matrix Factorization . . B.2 A Ranking Model Motivated by Nonnegative Matrix Factorization with Applications to Tennis Tournaments . . . . . . . . . . . . . . . . . . . . . . . . . matrix factorization. In this example, the observation matrix V can be exactly factorized as WH with K = 3. The activation coefficients are binary, with a black dot representing a one, and a white dot a zero. . . . . . . 31 1.2 The family of the β-divergences. Each curve represents the β-divergence as a function of y, with the value of x set to 1, for five different values of β. . . . 37 1.3 K = 30 atoms of the dictionary learned on the CBCL dataset. . . . . . . . . . 39 1.4 Eight faces of the CBCL dataset chosen at random. Top: original images. Bottom: reconstruction with K = 30. . . . . . . . . . . . . . . . . . . . . . . . 40 1.5 Probabilistic NMF models. From left to right. (a) Frequentist NMF models. Neither W nor H is assumed to be a random variable. (b) Bayesian NMF models. Both W and H are assumed to be random variables with a prior distribution. (c) Semi-Bayesian NMF models. W is assumed to be a parameter, whereas a prior distribution is assumed on H. . . . . . . . . . . . 44 1.6 Illustrative example of an MM algorithm. The function f to minimize is displayed in blue. Its minimum is achieved at x = x . Assuming that x (i) = 0.75, we obtain the majorizing function in red. Its minimization yields the next iterate x (i+1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.1 Graphical representations of the Gamma-Poisson model. Observed variables are in blue, while latent variables are in white. Deterministic parameters are represented as black dots. The observation v n is a vector of size F . From left to right:(a) The standard model. The latent variable h n is of size K; (b) The augmented model with variables C. The latent variable c kn is of size F , and h kn is scalar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 2.2 Common non-convex penalties represented in the scalar case. The log-sum penalty f (x) = log(|x| + β) -log(β) is displayed in blue for two values of β. The q pseudo-norm, defined as g(x) = |x| q , is displayed in green for two values of q. The SCAD penalty is displayed in red with a = 3. . . . . . . . . . 63 2.3 L(W) w.r.t. CPU time in seconds for the three MCEM algorithms on toy dataset V 1 . From top to bottom:(a) β = 1; (b) β = 100. . . . . . . . . . . . . 69 2.4 Evolution of the norm of each of the K = 3 columns w k of the dictionary w.r.t. CPU time in seconds for the three MCEM algorithms on toy dataset V 1 . From top to bottom:(a) β = 1; (b) β = 100. . . . . . . . . . . . . . . . . 70 2.5 Evolution of the norm of each of the K = 3 columns w k of the dictionary w.r.t. CPU time in seconds for the three MCEM algorithms on toy dataset V 2 . From top to bottom:(a) β = 1; (b) β = 0.01. . . . . . . . . . . . . . . . . 2.6 Evolution of the norm of each of the K = 10 columns of the dictionaries w.r.t. CPU time in minutes for the three MCEM algorithms on the Taste Profile dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7 L( Ŵ) w.r.t. K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.8 (a) Ground truth dictionary W ; (b)-(g) Estimated dictionaries Ŵ by MMLE for K from 1 (b) to 8 (i). The color bar displayed in (a) is common to all subplots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.9 Norm of the K = 100 columns of the dictionary learned on the Taste Profile dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1 The piano dataset. From top to bottom:(a) Time-domain recorded signal. (b) Log-power spectrogram V = |X| 2 . . . . . . . . . . . . . . . . . . . . . . . 3.2 Evolution of the norm of each of the K = 10 columns w k of the dictionary in log 10 scale w.r.t. the number of EM iterations for MCEM-CH on the piano dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Columns of W in log 10 scale w.r.t. frequency bin f . From left to right :(a) With IS-NMF (in blue). (b) With MMLE (in red). For each method, the K = 10 components are sorted by the decreasing variance of the associated time-domain signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 Reconstructed time-domain components. From left to right :(a) With IS-NMF (in blue). (b) With MMLE (in red). For each method, the K = 10 components are sorted by decreasing variance. . . . . . . . . . . . . . . . . . . 4.1 Realizations of the Markov chain defined in Eq.

4. 6

 6 The augmented BGAR-NMF model. Observed variables are in blue, while latent variables are in white. In our setting, b n is of size K, h n is of size K, and v n is of size F . The hyperparameters α, β, ρ have been omitted for enhanced readability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.7 Evolution of the norm of the K = 5 columns w k of the dictionary w.r.t. the number of EM iterations on synthetic dataset V s . . . . . . . . . . . . . . . . 4.8 Evolution of the norm of the K = 10 columns w k of the dictionary w.r.t. the number of EM iterations on the NIPS dataset. . . . . . . . . . . . . . . . . . . 4.9 Hyperparameter values (in white) of the parameters α k and ρ k ensuring a well-posed MAP estimation in the BGAR-NMF model. . . . . . . . . . . . . . 4.10 Example of the evolution of the cost function C w.r.t. the number of iterations on a synthetic dataset. The hyperparameters are here set to ρ = 0.9, α = 11 and β = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.11 Evolution of the learned H w.r.t. the value of ρ on a synthetic dataset. For all subplots, the value of α is set to (1 -ρ) -1 + 1, and β to 1. . . . . . . . . .

Figure 1
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 1 Figure 1.3: K = 30 atoms of the dictionary learned on the CBCL dataset.
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 14 Figure 1.4: Eight faces of the CBCL dataset chosen at random. Top: original images. Bottom: reconstruction with K = 30.
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 1 Figure 1.5: Probabilistic NMF models. From left to right. (a) Frequentist NMF models.Neither W nor H is assumed to be a random variable. (b) Bayesian NMF models. Both W and H are assumed to be random variables with a prior distribution. (c) Semi-Bayesian NMF models. W is assumed to be a parameter, whereas a prior distribution is assumed on H.
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 2 Figure 2.1: Graphical representations of the Gamma-Poisson model. Observed variables are in blue, while latent variables are in white. Deterministic parameters are represented as black dots. The observation v n is a vector of size F . From left to right:(a) The standard model. The latent variable h n is of size K; (b) The augmented model with variables C. The latent variable c kn is of size F , and h kn is scalar.
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 2 Figure 2.2: Common non-convex penalties represented in the scalar case. The log-sum penalty f (x) = log(|x| + β) -log(β) is displayed in blue for two values of β. The

  , H; θ)p(H|V; θ)dH. (2.31) EM-C. The complete set is merely {C} and EM consists in the iterative minimization of Q C (θ; θ) = -C log p(C; θ)p(C|V; θ)dC.

Algorithm 2 :1#

 2 Gibbs sampler in the Gamma-Poisson model Input: Integer matrix V, current values of the parameters W and α Generate initial state H (0) 2 for j = 1, ..., J do 3 samples asymptotically drawn from the joint posterior p(C, H|V; . . . , 0] T when v f n = 0.
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 2 Figure 2.3-(a) displays the negative log-likelihood L(W) w.r.t. CPU time in seconds, exactly computed thanks to the derivations of Section 2.4, and Figure 2.4-(a) displays the norm of the three columns of the iterates, also w.r.t.CPU time in seconds. The three algorithms have almost identical computation times, since most of the computational burden resides in the Gibbs sampling procedure that is common to the three algorithms. Moreover, the three algorithms converge to the same point, with MCEM-C converging marginally faster than the other two in this case.
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 22425 Figure 2.3: L(W) w.r.t. CPU time in seconds for the three MCEM algorithms on toy dataset V 1 . From top to bottom:(a) β = 1; (b) β = 100.
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 2 Figure 2.6: Evolution of the norm of each of the K = 10 columns of the dictionaries w.r.t.CPU time in minutes for the three MCEM algorithms on the Taste Profile dataset.
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 22 Figure 2.8: (a) Ground truth dictionary W ; (b)-(g) Estimated dictionaries Ŵ by MMLE for K from 1 (b) to 8 (i). The color bar displayed in (a) is common to all subplots.

  4.1 1 , MMLE in the IGCN model amounts to the minimization of

Algorithm 4 :1##

 4 Gibbs sampler in the IGCN model Input: Complex matrix X, current value of the dictionary W Generate initial state H (0) 2 for j = 1, ..., J do 3 Sample H given C for k = 1, ..., K do for n = 1, ..., N do h (j) kn ∼ IG(α k + F, β k + f |c samples asymptotically from the joint posterior p(C, H|X; θ) EM-CH. Minimization of the MC approximation of Q CH in Eq. (3.32) w.r.t. W leads to the closed-form update w

  Figure 3.1: The piano dataset. From top to bottom:(a) Time-domain recorded signal. (b) Log-power spectrogram V = |X| 2

  Figure 3.2: Evolution of the norm of each of the K = 10 columns w k of the dictionary in log 10 scale w.r.t. the number of EM iterations for MCEM-CH on the piano dataset.
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 3334 Figure 3.3: Columns of W in log 10 scale w.r.t. frequency bin f . From left to right :(a) With IS-NMF (in blue). (b) With MMLE (in red). For each method, the K = 10 components are sorted by the decreasing variance of the associated time-domain signal.
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 41 Figure 4.1: Realizations of the Markov chain defined in Eq.(4.4). The initial value h 1 is set to 1, and chains were simulated until n = 50. Each subplot contains ten independent realizations, with the value of the parameters (α, β) given at the top of the subplot. log 10 (h n ) is displayed.
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 42 Figure 4.2: Realizations of the Markov chain defined in Eq. (4.9)-(4.10). The initial value h 1 is set to 1, and chains were simulated until n = 50. Each subplot contains ten independent realizations, with the value of the parameters (α z , β z , α h , β h ) given at the top of the subplot. log 10 (h n ) is displayed.
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 43 Figure 4.3: Realizations of the Markov chain defined in Eq.(4.18). The initial value h 1 is set to 1, and chains were simulated until n = 50. Each subplot contains ten independent realizations, with the value of the parameters (α, β) given at the top of the subplot. log 10 (h n ) is displayed.
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 41 If X ∼ Beta(a, b) and Y ∼ Gamma(a+b, c) are independent random variables, then Z = XY is Gamma(a, c) distributed. Proposition 4.1. h n is marginally Gamma(α, β) distributed.
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 44 Figure 4.4: Three realizations of the BGAR(1) process, with parameters fixed to α = 2 and β = 1, and a different parameter ρ in each subplot. The mean of the process is displayed by a dashed red line.
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 46 Figure 4.6: The augmented BGAR-NMF model. Observed variables are in blue, while latent variables are in white. In our setting, b n is of size K, h n is of size K, and v n is of size F . The hyperparameters α, β, ρ have been omitted for enhanced readability.
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 4 Figure 4.7: Evolution of the norm of the K = 5 columns w k of the dictionary w.r.t. the number of EM iterations on synthetic dataset V s .

Figure 4

 4 Figure 4.8: Evolution of the norm of the K = 10 columns w k of the dictionary w.r.t. the number of EM iterations on the NIPS dataset.

  .61) is a tight auxiliary function oflog p(V|H; W) at H = H. Similarly the function

  .63) is a tight auxiliary function oflog p(V|H; W) at W = W.

  .72) a 0,kn = p kn c kn d kn .(4.73)

  .76) a 0,kN = c kN p kN .(4.77)The roots can be found in closed form. Minimization w.r.t. B Minimizing C w.r.t. H amounts to minimizinglog p(H, B) only. Consider its minimization w.r.t. a specific b kn . Similarly, the logarithmic terms may give rise to degenerate solutions. The choices of parameters (1 -γ k ) > 0 and (1 -η k ) > 0 ensures that the limits of the auxiliary function are +∞. Then, the same considerations apply. The minimization of the auxiliary function w.r.t. b kn amounts to solving the following order 3 polynomial over the interval [0, min(1, z kn )] a 3,kn b 3 kn + a 2,kn b 2 kn + a 1,kn b kn + a 0,kn d kn , (4.78)
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 4 Figure 4.9: Hyperparameter values (in white) of the parameters α k and ρ k ensuring a wellposed MAP estimation in the BGAR-NMF model.
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 4 Figure 4.10 displays the evolution of the cost function C w.r.t. the number of iterations with α = 0.9 and ρ = 11. As ensured by the MM framework, we have a convergent algorithm.Figure 4.11 displays the learned H for different values of ρ. As the values of
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 4 Figure 4.10 displays the evolution of the cost function C w.r.t. the number of iterations with α = 0.9 and ρ = 11. As ensured by the MM framework, we have a convergent algorithm. Figure 4.11 displays the learned H for different values of ρ. As the values of α vary with the values of ρ, so does the scale of H. They are therefore renormalized. As expected, as ρ → 1, H gets smoothed.

n≥2

  log p(z kn |h k(n-1) ) + log p(h kn |z kn )

  We aim at optimizing the following functionC(W, H) =f,n log p(v f n |[WH] f n )k   log p(h k1 ) + n≥2 log p(h kn |h k(n-1) )   ,(4.109) 

  kn ∼ Beta(α k , β k ), (B.3)w f ∼ Dir(γ), (B.4) v f n |w f , h n ∼ Bernoulli([WH] f n ). (B.5)• The Dir-Beta model, based on the set of constraints Eq. (c2)h n ∼ Dir(η), (B.6) w f k ∼ Beta(α k , β k ), (B.7) v f n |w f , h n ∼ Bernoulli([WH] f n ). (B.8)• The Dir-Dir model, based on the set of constraints Eq. (c3)h n ∼ Dir(η), (B.9)w f ∼ Dir(γ), (B.10) v f n |w f , h n ∼ Bernoulli([WH] f n ). (B.11) 
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  Table 1.1.

	V represents	f	n	Typical F
	A corpus of documents A collection of grayscale images An audio signal Ratings	Words Pixels Frequencies Time frames 10 3 -10 4 Documents 10 4 -10 5 Images 10 4 -10 6 Items Users 10 6 -10 8

Table 1.1: Typical examples of data available as matrices.
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 2 1: Characteristics of the three datasets considered for the experimetanl comparison of the three EM algorithms. V 1 and V 2 are synthetic datasets, whereas the

	Dataset	F	N Mean	Var	Ratio % of zeros
	V 1 V 2 Taste Profile 1509 805 0.15 4 100 0.55 4 100 49.54 3017.01 60.90 0.99 1.80 2.00 13.00	65.3 % 0.5 % 94.7 %
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  Consider its minimization w.r.t. a certain h kn . The logarithmic terms may give rise to degenerate or intractable problems.

.64) Minimization w.r.t. H Minimizing C w.r.t. H amounts to minimizing G 1 (H; H) -log p(H, B).

  -α k -p kN ) log(h kN ) + q k + β k h k(N -1) h kN . (4.100)The optimization of these functions boils down to solving an order-2 polynomial equation a 2,kn h 2 kn + a 1,kn h kn + a 0,kn = 0, (4.101)whose coefficients are recapped in the following table.

							.98)
	f (h kn )		β k h k(n-1)	h kn + β k	h k(n+1) h kn	,	(4.99)
	f (h kN )					
	Variable	a 2,kn	a 1,kn	a 0,kn		
	h k1 h kn	q k q k + β k h k(n-1)	a k -p k1 1 -p kn	-βh k2 -β k h k(n+1)	

c = (1 -p kn ) log(h kn ) + q k + c = (1

Table 4 .

 4 2: Coefficients of the order-2 polynomial equation (Eq. (4.101)) w.r.t. k and n.

  .104)For h kn , we detail the three sub-casesf (h k1 ) -(p k1 + α z ) log(h k1 ) + (q k + β z z k2 )h k1 , (4.105) f (h kn ) -α h -α z -p kn ) log(h kn ) + (q k + β h z kn + β z z k(n+1) )h kn , (4.106) -α h -p kN ) log(h kn ) + (q k + β h z kN )h kN .(4.107) 

c = c = (1 f (h kN ) c = (1

We emphasize that the adjective "non-negative" is to be understood w.r.t. the entries of the matrix.

Note that so-called overcomplete representations exist in dictionary learning[START_REF] Lewicki | Learning overcomplete representations[END_REF], i.e., K > F , leading to non-unique basis decompositions.

Perhaps the choice of the word "positive", too ambiguous in a matrix context, prevented Paatero and its colleagues to be recognized as the true pioneers of NMF.

When admitting the existence of at least one solution to the problem (1.8).

Of course, the KL divergence does not represent a divergence between probability distributions in this context, hence the word "generalized".

Retrieved from http://www.ai.mit.edu/courses/6.899/lectures/faces.tar.gz.

Algorithmic equivalences also exist between KL-NMF and probabilistic latent semantic analysis (PLSA), a document clustering model[START_REF] Gaussier | Relation between PLSA and NMF and implications[END_REF].

Numerical schemes exist, see for example[START_REF] Dunn | Series evaluation of tweedie exponential dispersion model densities[END_REF].

On Figure

2.2, a constant termlog(β) is added to the penalty to ensure f (0) = 0, as is the case with the other displayed penalties.

We recall that the notation hn refers to the n-th column of H, whereas the notation w f refers to the f -th row of W.

Note that these EM algorithms exploit the Poisson-Gamma conjugacy, since it provides a Gibbs sampler for the posterior of the latent variables where all the conditionals are known. In a non-conjugate model, we would have to resort to additional Metropolis-Hastings steps, for example.

As it turns out, in this Chapter β is a scale parameter (it was a rate parameter in Chapter

2), so we would write instead p(V; WΛ -1 , α, βΛ) = p(V; W, α, β).2 To have a better intuition about where this comes from, we recall that the scalar real-valued Student's tdistribution arises when the variance of a normal distribution is assumed to be inverse Gamma distributed.

Note that very recent works show that variational Bayesian methods can lead to a consistant estimation of the parameters under certain assumptions, see for instance[START_REF] Alquier | Concentration of tempered posteriors and of their variational approximations[END_REF].

As we can see, 10 000 iterations corresponds roughly to 24 hours. The CPUtime of the IS-NMF method is roughly 90 seconds.

The considerations regarding the interaction between the data-fitting term and the regularization term discussed at the end of the previous chapter apply here as well.

(A H )ij = A ji , where denotes the conjugate.

Note that this particular mapping is actually slightly more complex, as the K-dimensional real vector must be mapped to the (K -1) simplex due to further constraints in the model.

Of course, taking H to be the state variables is the most straightforward choice, however, since the transition distribution p(hn|hn-1) is not known, we use the augmented version of our model with the variables B.

https://archive.ics.uci.edu/ml/datasets/NIPS+Conference+Papers+1987-2015.

Now called NeurIPS.

Remerciements

List of Publications

International conference papers [START_REF] Filstroff | Closed-form Marginal Likelihood in Gamma-Poisson Matrix Factorization[END_REF] Filstroff, L., [START_REF] Lumbreras | Bayesian Mean-parameterized Nonnegative Binary Matrix Factorization[END_REF]. Closed-form Marginal Likelihood in Gamma-Poisson Matrix Factorization. In Proceedings of the International Conference of Machine Learning (ICML). Available on arXiv: https://arxiv.org/pdf/1801.01799.pdf [START_REF] Xia | A Ranking Model Motivated by Nonnegative Matrix Factorization with Applications to Tennis Tournaments[END_REF] Xia, R., Tan, V.Y.F., [START_REF] Xia | A Ranking Model Motivated by Nonnegative Matrix Factorization with Applications to Tennis Tournaments[END_REF]. A Ranking Model Motivated by Nonnegative Matrix Factorization with Applications to Tennis Tournaments. In Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD). Available on arXiv: https://arxiv.org/pdf/1903.06500.pdf [START_REF] Lumbreras | Bayesian Mean-parameterized Nonnegative Binary Matrix Factorization[END_REF]Févotte, C. (2018). Bayesian mean-parameterized nonnegative binary matrix factorization. Submitted to Data Mining and Knowledge Discovery. Preprint available on arXiv: https://arxiv.org/pdf/1812.06866.pdf

Submitted journal papers

Chapter 2 Maximum Marginal Likelihood Estimation in the Gamma-Poisson Model

This chapter has been adapted from [START_REF] Filstroff | Closed-form Marginal Likelihood in Gamma-Poisson Matrix Factorization[END_REF] Chapter 4

Temporal Non-Negative Matrix Factorization

This is joint work with Olivier Gouvert, Cédric Févotte and Olivier Cappé. A journal article is in preparation. We emphasize that Algorithm 5 describes how to sample one realization from the smoothing distribution. Another additional for loop has to be placed on top of this algorithm to sample multiple realizations. However, this task can be trivially parallelized.

M-step

Once having sampled N T trajectories from the smoothing distribution, the MC approximation of the functional in Eq. ( 4.39) reduces to

log p(V, H (j) , B (j) ; W) (4.45)

log p(V|H (j) ; W). (4.46) The observation distribution is Poisson, as such the optimization of this function has already been addressed in Section 2.5. We recall the update rule

.47)

Experimental work

We illustrate the behavior the proposed MCEM algorithm on two datasets: a smalldimensioned synthetic dataset, and a real dataset.

On synthetic data. We generate a dataset of size 10 × 100 according to the BGAR-NMF model, with a random dictionary of mean 1, ρ k = 0.95, α k = 1, β k = 1. This dataset is denoted by V s . We then apply our MCEM algorithm with 

On a real dataset

We are now going to compare the performance of the proposed BGAR-NMF model on prediction tasks w.r.t. the performance of all the other temporal models presented in Section 4.2 on two real datasets. The performance of the Gamma-Poisson model of Chapter 2, i.e., a model with a non-temporal prior on H, will be considered as well.

For a fair comparison, all these models are going to be assessed within a MAP framework. The algorithms describing MAP estimation in the three other temporal models are reported in Appendix 4.E. MAP estimation in the Gamma-Poisson model is described in Appendix 4.F.

The experimental protocol is as follows. The data matrix is randomly split in 3 subsets: 80% for the training set, 10% for the validation set, and the remaining 10% for the test set. That is to say that the algorithms are applied to the training set, and the predictive performance is assessed on the validation set at each iteration using the mean absolute error (MAE) between the original value v f n and its associated estimate vfn = [WH] f n . We then resort to early stopping, i.e., the algorithms are stopped as soon as the MAE on the validation set increases.

We consider the NIPS dataset (11463 × 29) presented in Section 4.4.4. We apply the previously described experimental protocol to 10 random splits, with 10 different initialization for each split. Setting K = 10, the averaged MAE, MSE, and KL error on the test sets are then reported on Table 4.1 Note that each model has been assessed with different values of hyperparameters, and Table 4.1 reports the best obtained performance.

As we can see, for all three evaluation metrics, BGAR-NMF outperforms the other models in the MAP framework. It must be noted that its performance is very close to the performance of the temporal model based on the hierarchical chaining of [START_REF] Cemgil | Conjugate Gamma Markov random fields for modelling nonstationary sources[END_REF]. As expected, GaP, the only non-temporal model, produces the worst performance of the five models. 

Appendices to

4.A Moments

4.A.1 Product of independent random variables

Let X 1 , . . . , X n be n independent random variables. Then we have

Algorithm 6: Bootstrap sequential importance sampling with resampling (SIS/R)

end end computational point of view, because in this case the unnormalized weights ξ(i) n associated to particle i at time step n is simply the likelihood p(v n |x

The additional resampling step helps to prevent the degeneracy of the importance weights, i.e., when the target distribution is approximated by only one or a few relevant particles. This is a well-known problem from particle filtering methods. We once again refer the interested reader to [START_REF] Cappé | An overview of existing methods and recent advances in sequential Monte Carlo[END_REF] or [START_REF] Doucet | A tutorial on particle filtering and smoothing: Fifteen years later[END_REF] for more details.

4.E MAP estimation in temporal NMF models

Throughout this section, a Poisson likelihood is assumed, i.e., we have

The majorizations of this term are described in Eq. ( 4.60) (w.r.t. H) and in Eq. ( 4.62) (w.r.t. W).

Appendix A Résumé Substantiel en Français

Contexte et état de l'art

Les problèmes de factorisation de matrice Dans de nombreuses situations, les données sont disponibles sous forme matricielle. Considérons une collection de N échantillons v n (n ∈ {1, . . . , n}) appartenant à R F (c'est-à-dire décrits par F attributs). Ces échantillons peuvent être concaténés colonne par colonne, afin de former une matrice de taille F × N , que l'on note V. Cette matrice V est appelée matrice d'observation, ou matrice des données.

Certaines techniques d'analyse de ces données peuvent se formuler comme un problème dit de factorisation de matrice. De manière générale, il s'agit de trouver une approximation de V sous la forme d'un produit de deux matrices :

où W est de taille F × K, et H est de taille K × N . Ces deux matrices sont conjointement appelées facteurs. Le rang de la factorisation, K, est traditionnellement choisi tel que K ≤ min(F, N ), produisant ainsi une approximation de rang faible de la matrice des données. La factorisation de matrice est alors une technique de réduction linéaire de la dimensionnalité, puisque chaque échantillon est approximé par une combinaison linéaire de K éléments de base :

Plus précisément, les colonnes de W (parfois appelées « atomes ») représentent des éléments caractéristiques ou récurrents des données. La matrice W est ainsi habituellement appelée « dictionnaire ». Quant aux colonnes de H, elles encodent la proportion de chaque atome nécessaire pour représenter les échantillons. On appelle H les coefficients d'activation. Ainsi, la factorisation de matrice a pour but de découvrir automatiquement une certaine structure latente des données. Ces méthodes font donc partie des méthodes dites d'apprentissage non-supervisé.

Le problème de factorisation de matrice est traditionnellement formulé comme un problème d'optimisation. Il s'agit de choisir une certaine fonction D quantifiant la dissimilarité entre V et son approximation WH, que l'on va chercher à minimiser : min W,H

D(V|WH).

(A.3) D'autre part, des contraintes additionnelles sur W ou H peuvent s'ajouter à la formulation du problème pour des questions d'interprétabilité. C'est le cas de la factorisation en matrices non-négatives (NMF, de l'anglais non-negative matrix factorization), que nous détaillons dans la section suivante. La NMF a trouvé de nombreux champs d'application tels que le traitement du signal audio (pour de la séparation de sources aveugle ou de la transcription automatique), en fouille de données textuelles (pour de la modélisation thématique), ou encore en imagerie hyperspectrale (pour du démélange).

La factorisation en matrices non-négatives

De nombreux choix de mesures de dissimilarité D ont été considérés dans la littérature. On notera en particulier l'étude de la famille paramétrique de la β-divergence, qui permet de généraliser les choix les plus populaires, tels que la divergence euclidienne, la divergence généralisée de Kullback-Leibler (KL), ou la divergence d'Itakura-Saito (IS).

Factorisations probabilistes

Il s'avère que pour de nombreux choix de mesures de dissimilarité D, le problème de minimisation décrit par l'équation (A.4) est équivalent à l'estimation jointe des facteurs W et H au sens du maximum de vraisemblance pour un certain modèle statistique décrivant les données. Par exemple, l'utilisation de la divergence KL sous-tend un modèle de Poisson :

tandis que l'utilisation de la divergence IS sous-tend un modèle exponentiel

Cela ouvre la voie à un paradigme alternatif pour la NMF, à savoir la NMF probabiliste, que l'on définit comme des tâches d'apprentissage dans des modèles statistiques dont la loi de v n est paramétrisée par le produit Wh n . Ces modèles de NMF probabilistes regroupent de nombreux modèles de la littérature, tels que des modèles pour les données de compte.

Plusieurs variantes de modèles peuvent alors être considérées. Nous nous consacrons dans cette thèse aux modèles de NMF semi-bayésiens.

Estimation dans les modèles de NMF semi-bayésiens

L'estimation dans les modèles de NMF semi-bayésiens a été traitée dans Dikmen and Févotte (2011) et [START_REF] Dikmen | Maximum marginal likelihood estimation for nonnegative dictionary learning in the Gamma-Poisson model[END_REF]. Dans ces deux articles, deux approches ont été systématiquement comparées :

1. Maximiser la vraisemblance jointe p(V, H; W), c'est-à-dire : max W,H log p(V, H; W) = log p(V|H; W) + log p(H).

(A.7)

Nous appelons cette approche MJLE (de l'anglais maximum joint likelihood estimation).

2. Maximiser la vraisemblance marginale p(V; W), c'est-à-dire lorsque H a été marginalisé de la vraisemblance jointe :

Nous appelons cette approche MMLE (de l'anglais maximum marginal likelihood estimation). Notons que l'inférence de la distribution a posteriori p(H|V; Ŵ) peut-être entreprise dans un second temps si nécessaire, où Ŵ est l'estimé au sens du maximum de vraisemblance marginale.

Il est clair que l'approche MMLE est statistiquement mieux posée que l'approche MJLE. En effet, dans l'approche MJLE, le nombre de paramètres à estimer, F K + KN , croît avec le nombre d'échantillons. Les propriétés d'optimalité statistique de l'estimateur de maximum de vraisemblance ne peuvent pas s'appliquer puisqu'elles requièrent un nombre fixe de paramètre par rapport au nombre d'échantillons. L'approche MMLE ne présente pas ce problème, puisque le nombre de paramètres à estimer est F K.

Il a été empiriquement constaté, sur des jeux de données synthétiques et réels, que l'approche MMLE avait une tendance à régulariser de manière automatique le rang de la factorisation. En particulier, les dictionnaires estimés par l'approche MMLE avaient une tendance à présenter des colonnes de norme négligeable, au contraire de ceux estimés par l'approche MJLE, qui utilisaient toujours les K colonnes.

Ces propriétés avantageuses n'avaient alors pas pu être expliquées dans un cadre théorique. L'étude de l'approche MMLE dans les modèles de NMF semi-Bayésiens est l'objet de cette thèse. Plus précisément, nous traiterons deux types de distribution a priori pour H : 1. Dans un premier temps, nous traiterons l'hypothèse standard d'indépendance des

(A.9)

Les modèles traités aux Chapitres 2 et 3 font partie de cette catégorie. 

Dans

Résumé du Chapitre 2

Dans ce chapitre, nous entreprenons de maximiser la vraisemblance marginale dans le modèle semi-bayésien suivant

Ce modèle est connu de la littérature de fouille de données textuelles sous le nom de modèle Gamma-Poisson (abrégé GaP). Dans ce domaine, la matrice V correspond à la représentation « sac de mots » d'un corpus de documents. Cela signifie que l'élément v f n de la matrice correspond au nombre d'occurrences du mot f dans le document n. La matrice V est ainsi à valeurs entières.

Nos contributions peuvent être résumées en deux points principaux.

Expression analytique de la vraisemblance marginale

Tout d'abord, nous proposons deux réécritures du modèle GaP dans lesquelles la variable H a été marginalisée. Cela nous permet d'obtenir une expression semi-analytique de la vraisemblance marginale, ce qui était jusqu'alors jugé hors de portée. L'analyse approfondie de cette expression a permis de révéler un terme de régularisation sur les colonnes de W, expliquant ainsi le phénomène de régularisation automatique précédemment observé.

Algorithmes d'optimisation et résultats expérimentaux

Nous comparons trois variantes de l'algorithme EM pour l'optimisation de la vraisemblance marginale. Deux de ces variantes étaient déjà connues de la littérature. Nous proposons une troisième variante fondée sur la marginalisation de la variable H. Nos expériences conduites à la fois sur données synthétiques et données réelles montrent la supériorité de cette troisième variante, en particulier lorsque les données sont sur-dispersées.

Résumé du Chapitre 3

Dans ce chapitre, nous entreprenons de maximiser la vraisemblance marginale dans le modèle semi-bayésien suivant

Nous avons baptisé ce modèle génératif IGCN. La matrice X est ici à valeurs complexes. En posant v f n = |x f n | 2 , nous retrouvons le modèle d'observation exponentiel tel que décrit par l'équation (A.6). Il s'avère qu'étudier la vraisemblance marginale de V revient à étudier la vraisemblance marginale de X.

Nos contributions peuvent être résumés en deux points principaux.

Étude de la vraisemblance marginale

Nous proposons une réécriture du modèle IGCN dans laquelle la variable H a été marginalisée. Contrairement à l'étude entreprise dans le chapitre précédent, nous ne sommes par en mesure de proposer une expression analytique de la vraisemblance marginale. En effet, il subsiste une intégrale insoluble dans l'expression obtenue. Néanmoins, l'analyse de cette expression révèle un terme de régularisation locale sur les éléments de W, au contraire du terme de régularisation par groupe obtenu au chapitre précédent.

Algorithmes d'optimisation et résultats expérimentaux

Nous proposons trois variantes de l'algorithme EM pour l'optimisation de la vraisemblance marginale. Cela constitue une avancée par rapport à l'état de l'art, puisque jusqu'à présent seul un algorithme sans garantie de convergence existait. Nous conduisons une expérience de décomposition audio sur un exemple réel (un enregistrement audio contenant des notes de piano).

Nous utilisons comme point de comparaison la méthode IS-NMF (c'est-à-dire le problème de NMF avec la divergence Itakura-Saito). Nous constatons que le dictionaire retourné par notre méthode ne présente pas particulièrement de structure parcimonieuse. De plus, la performance en décomposition audio est similaire à celle de la méthode de référence, mais pour un coût bien plus élevé. Cela nous amène à conclure que l'intérêt pratique de notre méthode semble limité.

Résumé du Chapitre 4

Dans ce chapitre, nous nous intéressons à la structure suivante pour la loi a priori de H

Cela signifie que les lignes de H sont modélisées par des chaînes de Markov indépendantes.

En particulier, nous nous consacrons à l'étude de chaînes de Markov naturellement nonnégatives construites autour de la distribution Gamma.

Nos contributions peuvent être résumées en 2 points principaux.

Étude comparative des chaînes de Markov de la littérature

Plusieurs modèles utilisant de telles chaînes de Markov ont été proposées dans la littérature NMF. Nous entreprenons une comparaison exhaustive de ces modèles. Ils peuvent être regroupés en trois catégories :

1. Chaînage sur le paramètre de forme de la distribution Gamma ; 2. Chaînage sur le paramètre d'intensité de la distribution Gamma ; 3. Chaînage sur le paramètre d'intensité de la distribution Gamma avec variable auxiliaire.

Il s'avère que tous ces modèles partagent le même défaut : l'absence d'une distribution stationnaire bien définie. En effet, pour ces trois catégories, la distribution stationnaire est dégénérée. Nous étudions un quatrième type de chaîne issu de la littérature des séries temporelles, appelé « BGAR(1) » (chaîne Bêta-Gamma auto-régressive d'ordre 1). La distribution stationnaire de cette chaîne est bien définie et est une distribution Gamma. Plus particulièrement, la distribution marginale de cette chaîne à tout instant est Gamma.

Travail expérimental

Nous considérons un nouveau modèle génératif, dans lequel toutes les lignes de H sont supposées être tirées de processus BGAR(1) indépendants. Le modèle d'observation est supposé être Poisson, comme décrit par l'équation (A.5). Nous baptisons ce modèle BGAR-NMF. Ce modèle est une instance des modèles de Markov cachés.

Afin de maximiser la vraisemblance marginale du modèle BGAR-NMF, nous développons un algorithme MCEM. Nous utilisons des méthodes de Monte Carlo séquentielles afin de générer des échantillons de la loi a posteriori des variables latentes. Malheureusement, si cette méthode fonctionne sur des exemples synthétiques de petite dimension, elle ne passe pas à l'échelle sur des jeux de données réels.

Nous entreprenons alors de maximiser la loi a posteriori dans le modèle BGAR-NMF. Pour certaines plages de valeur des hyperparamètres du processus BGAR(1), nous sommes en mesure de développer un algorithme MM pour cette tâche. L'algorithme donne des résultats satisfaisants à la fois sur des jeux de données synthétiques et réels.

Conclusion et perspectives

Dans cette thèse, nous avons attaqué le problème général de la maximisation de la vraisemblance marginale dans les modèles de NMF semi-bayésiens. Dans les Chapitres 2 et 3, nous avons étudié deux instances spécifiques de ces modèles. Dans le Chapitre 4 nous avons proposé un nouveau modèle temporel markovien de NMF fondé sur un processus de la littérature des séries temporelles qui n'avait jusque là jamais été exploité.

Nous envisageons deux perspectives à notre travail. 

Appendix B Other works

Concurrently to the work presented in this thesis, I have been involved in two collaborations. These two works are briefly discussed in this appendix, in chronological order. The interested reader is referred to the papers themselves for more details.

B.1 Bayesian Mean-Parameterized Non-Negative Binary Matrix Factorization

This work has been carried out in collaboration with Alberto Lumbreras and Cédric Févotte, and has been submitted for publication in December 2018. [START_REF] Lumbreras | Bayesian Mean-parameterized Nonnegative Binary Matrix Factorization[END_REF]Févotte, C. (2018). Bayesian mean-parameterized nonnegative binary matrix factorization. Submitted to Data Mining and Knowledge Discovery. Preprint available on arXiv: https://arxiv.org/pdf/1812.06866.pdf

Abstract

This work tackles the analysis of binary data matrices. Binary matrices may represent social networks, voting data, gene expression data, or binary images. Many works of the literature assume a generative model of the following form

where W and H are unconstrained factors, and φ is a link function that maps the factorization to the [0, 1] range, thus ensuring a valid Bernoulli parameter. Although link functions are convenient, they sacrifice the mean-parametrization of the Bernoulli likelihood (i.e., E(V) = φ(WH) = WH), resulting in less interpretable results. We focus in this paper on mean-parametrized models, that is which do not rely on a link function (or, equivalently, consider φ = Id) 

Abstract

In this work, we propose a novel ranking model that combines the classical Bradley-Terry-Luce (BTL) ranking model with NMF.

Consider a sport where a pool of N players may compete against one another, and the only possible outcomes are a win or a loss. In such a framework, the BTL model posits the existence of a "skill level" λ i ≥ 0 for each player i. Moreover, it assumes that the probability of the event "player i defeats player j" is P(i defeats j) = λ i λ i + λ j .

(B.12)

The BTL model is thus parametrized by the vector λ = [λ 1 , . . . , λ N ] T .

We now address a more complex setting by assuming that there exists M different tournaments in which the players can compete. As such, the BTL model naturally extends by considering a skill matrix Λ of size M × N . The matrix entry λ mi thus represents the skill of player i in tournament m, and we have

If no further assumption was made on Λ, it then would amount to solving M independent BTL models. In this work, we assume that Λ is low-rank, that is Λ = WH, with W of size M × K and H of size K × N . Indeed, we expect Λ to be low-rank as the number of latent variables governing the skills of players is small. For example in tennis, the surface type of the court (i.e., hard, grass or clay) influences the skills of the players.

Denote by D the dataset representing the outcomes of the games played between N players over M different tournaments. We have and we will seek W and H such that this likelihood is maximized. To this end, we develop a provably convergent, numerically stable MM algorithm.

We conduct our experimental work on two tennis datasets. The official rankings for both professional male and female tennis players are based on a rolling 52-week, cumulative system, where ranking points are earned only from the stage of tournament reached by the players. In particular, one will not be awarded with bonus points by defeating a higherranked player (unlike the Elo rating system for chess). Moreover, the current tennis ranking system does not allow to compare dominant players over a long period (e.g., 10 years). These limitations are overcome by our proposed ranking model.

We collected the outcomes of games between N = 20 top male and female players in the most important tournaments of respective tours, over a period of 10 years (2008)(2009)(2010)(2011)(2012)(2013)(2014)(2015)(2016)(2017). Our model automatically infers that the surface of the court is a key determinant of the performances of male players, but less so for females.