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Abstract

The behaviour of low-dimensional interacting Fermi gases greatly differs from their three-
dimensional counterparts. In absence of order in 3D, the majority of fermionic states of
matter can be explained by the Landau-Fermi liquid theory. Within this framework the
system is described as a gas of non- or weakly-interacting fermionic quasiparticles. By
contrast, in one dimension, the low-energy excitation spectrum of the system is entirely
made up of collective excitations obeying bosonic statistics.
This thesis reports on the experimental study of low-dimensional Fermi gases using
ultracold 40K atoms. The main results are threefold. First, we describe the conception of
novel experimental techniques to load and individually image an array of tube-shaped
micro traps in a large-spacing optical lattice. Second, using these atomic ensembles
in a noninteracting setting, we perform a quantitative analysis of their in-situ density
profiles to extract the degree of quantum degeneracy and effective dimensionality. In
this context, we show evidence of the preparation of Fermi gases in the one-dimensional
regime. Third, we present a technique to separate the spin components of the gas and
apply it to study spin transport in low dimensions in the presence of strong interactions.
We quantitatively model the spin dipole relaxation process in the diffusive regime as
a function of the interaction strength tuned with an s−wave Feshbach resonance. We
determine the spin drag and the diffusivity, the latter having a minimal measured value
of Ds = 8.9± 0.6 h̄/m. This is compatible with the quantum bound ≥ h̄/m despite the
absence of scale-invariance in the system, and supplements existing experimental studies
in two- and three-dimensional Fermi gases.





Résumé

Le comportement des gaz de Fermi en basse dimension se distingue sensiblement de leurs
équivalents tridimensionnels. En trois dimensions et en l’absence d’ordre, la majorité des
états fermioniques de la matière sont décrits par la théorie du liquide de Landau-Fermi.
Dans son cadre, le système est décrit comme un gaz de quasiparticules fermioniques en
interaction faible, voire nulle. En revanche, dans le cas unidimensionnel, le spectre du
système à basses énergies est entièrement déterminé par des excitations collectives de
nature bosonique.
Cette thèse décrit l’étude expérimentale des gaz de Fermi en basse dimension en utilisant
des atomes de 40K . Nous présentons ici trois principaux résultats. Tout d’abord, nous
mettons en évidence l’implémentation de techniques nouvelles pour charger et imager
individuellement des échantillons d’atomes dans un réseau optique bidimensionnel à
espacement large. Ensuite, en utilisant des gaz idéaux, nous conduisons une étude
quantitative de profiles de densité in-situ obtenus dans un potentiel externe préalablement
calibré pour quantifier le degré de dégénérescence et la dimensionnalité des échantillons
préparés. Nous rapportons l’observation de gaz de Fermi dans le régime unidimensionnel.
Finalement, nous développons une technique pour séparer et isoler les deux populations
de spin d’un gaz de Fermi et l’appliquons pour étudier le transport de spin en présence
d’interactions fortes. Nous analysons quantitativement la relaxation du mode dipolaire
dans le régime diffusif en fonction de l’intensité des interactions en se plaçant au voisinage
d’une résonance de Feshbach en onde s. Nous déterminons la force de traînée ainsi
que le coefficient de diffusivité. La valeur minimale mesurée de ce dernier est Ds =

8.9± 0.6 h̄/m, ce qui respecte la limite quantique ≥ h̄/m malgré l’absence d’invariance
d’échelle dans le système. Ce dernier résultat s’ajoute au corpus de connaissance existante
issue de précédentes études expérimentales réalisées avec des gaz de Fermi en deux et
trois dimensions.
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Chapter 1

Introduction

Imagine living in a universe featuring three spatial dimensions1 (3D), and you are won-
dering whether it is possible to create a system that behaves as if the laws of physics
would stem from a one-dimensional universe (1D). Intuitively, it makes sense to think
that this can be realized by simply restricting access to the undesired dimensions2, which
we will refer to as transverse degrees of freedom. This may be achieved by means of
an external potential, which would strongly compress them. In this context, a question
naturally arises: how much is enough compression? The answer heavily depends on what
we mean by "laws of physics". Indeed, if we considered classical physics, this question
would essentially be meaningless. As the amount of compression along the undesired
directions is increased, the typical extent of trajectories in these directions merely de-
crease monotonously. Evidently, there is no obvious threshold signalling a change of
dimensionality. However, if we looked at this problem from the perspective of quantum
physics, moving objects would now be described by a combination of wavefunctions with
well-defined discrete energy levels in each direction. Therefore, the quantum of energy
that separates the lowest energy motional state to the first excited one in the transverse
directions defines a natural threshold. If the kinetic energy of a moving object happened to
be well below this threshold, its dynamics in the transverse directions would be completely
frozen out. Nonetheless, the wavefunction still has a finite extent along the transverse
direction, which is associated with a length scale that can influence the behaviour of the
overall physical system. For that reason, we refer to such systems as quasi-1D3.

There are numerous reasons why the 1D universe is worth investigating4, especially in
the context of many-body problems. The extreme level of kinematic constraints imply
strong modifications of the underlying physics in comparison to the higher-dimensional
case. As shown in figure, 1.1 any individual excitation eventually turns into a collective
one. This simplified classical illustration is meant to illustrate a property that profoundly
shapes the low-energy spectrum of interacting quantum systems [3, 4]. In 1D the complete
collectivization of elementary excitations in gapless systems is captured by the paradig-

1Hopefully, most of the readers can relate.
2Just a normal Tuesday afternoon for a string theoretician [1].
3This terminology is sometimes used to refer to several 1D systems coupled together [2].
4Apart from the phobia of vectors.
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a)

t1 t2

b)

t1

t2

Figure 1.1: Dimensionality in a system of hard spheres. The system is assumed to be static until
an excitation is applied at t = t1. a) In two dimensions and above, there exist excitations that only
involve a single particle. b) In one dimension, a single particle cannot move without pushing other
ones. As a result, collective excitations are possible.

matic Tomonaga-Luttinger liquid (TLL) model [5–7]. Experimental evidence for TLL-type
systems have been obtained in several classes of solid-state systems, including organic con-
ductors [8, 9], carbon nanotubes [10, 11], semi-conductor wires [12–14], antiferromagnetic
spin chains [15], metallic chains [16] and edge modes of integer and fractional quantum
hall states [17]. The materials used to realize those systems are usually complex and
do not permit to fine-tune the inter-dimensional couplings, which makes quantitative
comparison with theories very challenging.

Quantum statistics

The most elementary constituents of our universe are, currently, best described by the
standard model [18]. Among many properties, each fundamental building block possesses
a "spin", which quantifies the internal angular momentum [19]. Remarkably, all particles
that move in three dimensions have a spin that is either an integer or a half-integer
multiple of the reduced Planck constant h̄ [20, 21]. According to the spin-statistics theorem,
the wave-function of a system of identical integer-spin (half-integer-spin) particles is
symmetric (antisymmetric) when the positions of any pair of particles are exchanged,
and the particles are called bosons (fermions) [22, 23]. Elementary bosons mediate the
fundamental forces of nature, whereas matter is made up of fermions [24]. However,
composite systems such as neutral atoms can be either bosons or fermions, which follows
from the addition rules of the angular momentum. In a noninteracting many-body system
made up of identical particles, the ground state properties depend critically on the spin-
statistical nature of its constituents. In the bosonic case, all of the particles accumulate in
the lowest energy state, resulting in a Bose-Einstein condensate (BEC) [25, 26], as shown in
figure 1.2 a). However, for fermions the result is drastically different as the Pauli exclusion
principle5, prevents particles of equal spin from occupying identical single particle states
[27]. In that case, the ground state of the system is the Fermi Sea, obtained by gradually

5Which is a trivial consequence of the antisymmetry of the wavefunction.
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E E

EF,↓

EF,↑

a) b)

Figure 1.2: Bose-Einstein condensate versus degenerate Fermi Gas. Representation of bosonic
and fermionic quantum gases in their ground states. a) Spinless bosons accumulate in the lowest-
energy single particle state. b) Spin-1/2 fermions fill the energy levels from the bottom up to due
to Pauli’s exclusion principle. For each spin component, the highest occupied state defines the
Fermi energies EF,↑ and EF,↓. For a spin-balanced system, these energies are equal and denoted by
EF.

filling up all of the available states, starting from the lowest energy ones. This situation is
illustrated in figure 1.2 b). The exclusion principle is directly responsible for the stability
of large scale systems, for instance solids, that would otherwise collapse upon electrostatic
forces [28, 29].

At a finite temperature T, these effects arising from quantum statistics may or may
not be relevant, depending on how dense the system is. We denote the density by6

n3D. At high temperature, the particles’ thermal wavelength7 λT =
√

2πh̄2/mkBT [30]

is much smaller than their average inter-particle spacing n−1/3
3D . In this case, they are

correctly described by point-like particles that follow a Boltzmann distribution [31]. More
precisely, this limit can be characterized by referring to the phase-space density, for
which PSD = λTn3

3D � 1, holds. In the opposite limit where PSD � 1, the effects of
quantum statistics dominate. In bosonic systems, a second order phase transition to a BEC
occurs when the temperature drops below Tc ≈ 3.3125 h̄2n2/3

3D /mkB, or equivalently, when
PSD > 2.612. In fermionic systems, there is no sharp transition between the classical and
the degenerate regime, however, the temperature must ultimately be compared to the
Fermi temperature TF = EF/kB. The quantum limit then corresponds to T/TF � 1.

6Assuming a homogeneous system.
7kB is the Boltzmann constant and m is the mass of the constituents.
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Interacting quantum gases

In addition to quantum statistics, interactions play a crucial role in defining the properties
of many-body systems. In metals, where the delocalized electrons form an ensemble
of fermions, their interactions can give rise to pairing and superconductivity provided
the temperature is low enough. It was first understood by Cooper that this form of
pairing is not occurring in a two-body system but rather in a many-body context due
to constraints in phase space created by Pauli-exclusion [32]. This insight lead to the
famous Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity, which attributes
pairing in metals at low temperature to phonon-mediated attractive interactions between
electrons [33]. However, above the critical temperature associated with Cooper pair
creation, the system is said to be in a normal state. In dimensions ≥ 2, it is correctly
described by the Fermi liquid theory, which possesses certain similarities with respect to
the free fermion gas and is effective beyond the perturbative regime [34–36]. In this model,
the elementary constituents are not single particles anymore, but rather quasi-particles
that can be seen as bare fermions dressed by density fluctuations, as illustrated in figure
1.3. Remarkably, despite their finite lifetime, which happens to be very large in the vicinity
of the Fermi surface where the theory is applicable, they can be described using the
same properties as bare particles: a well-defined momentum h̄~k and a renormalized mass
m∗ 6= m incorporating the effect of interactions. Interactions between quasiparticles exist
as well and are captured by the Landau parameters, which quantify the response of the
system to an external probe [37]. Our previous discussion about 1D systems makes it clear
why a description that treats excitations as individual quasiparticles is not appropriate
in one dimension. It is superseded by the TLL theory, which pursues the same goal of
describing the normal state beyond the perturbative regime, but features free bosonic
collective excitations instead. In this context, the usual quadratic dispersion relation is

replaced by a linear one around k = kF, where kF =
√

2mEF/h̄2 is the Fermi wavevector.
Therefore, the TTL model describes low-energy excitations. In an interacting spinless
system, the net effect of interactions is fully captured by two Luttinger parameters u and
K, which describe the velocity of collective modes and the algebraic decay of correlation
functions, respectively8. When applied to a spin-1/2 Fermi gas, it predicts the complete
separation of spin and charge sectors, a unique feature that has no equivalent in the Fermi
liquid framework.

8In the non-interacting limit, u→ vF and K → 1, where vF =
√

2EF/m is the Fermi velocity.
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a) b)

c)

Figure 1.3: Interacting Fermi gases in 1D and 3D. a) Interacting Fermi gas in a 3D homogeneous
box. b) Representation of a quasi-particle excitation. A spin down particle is dressed by the
surrounding spin up atoms due to interactions. c) Illustration of an interacting two-components
Fermi gas in 1D. Individual fermionic quasi-particle excitations are replaced by collective bosonic
ones, where spin and density (charge) excitations propagate independently.

Ultracold atomic gases

By making use of the interactions of neutral atoms with electromagnetic fields, ultracold
atoms have been used to create quantum simulators [38–40], in addition to ionic [41] or
photonic systems [42]. The success of cold-atom based platforms for quantum simulation
is the direct result of major breakthroughs regarding laser cooling and trapping techniques
of neutral atoms suspended in vacuum [43]. After the first theoretical proposals for laser
cooling in the 1970s [44, 45], cooling [46] and trapping [47–49] were achieved experimen-
tally in the 1980s. Ultimately, this lead to the creation of the first BECs in 1995 [50, 51],
followed by the first degenerate Fermi gas in 1999 [52]. The ensuing demonstration of
superfluidity [53] and phase coherence of BECs [54, 55] quickly demonstrated the immense
capacity of cold atoms as a mean to explore many-body physics. Since then, this field of
research has undergone a tremendous expansion [56–59].

Controlling interactions

Physicists who try to understand the properties of materials from a microscopic perspec-
tive necessarily have to include interactions in their model, and control their relative
relevance with a coupling strength. From the perspective of a theoretician this coupling
strength is a variable, and the evolution of any observable derived from the model might
depend on it. From this point of view, most materials in nature can be seen as a very
specific realization of a model, which might actually have much more predictive power
beyond the particular material that motived its development in the first place. This is fairly
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frustrating since these models can sometimes predict new phases of matter or unique
features in a parameter regime that is not accessible experimentally. On the one hand,
it can be argued that predictions made by a model whose inputs do not correspond to
any material known to exist in nature are by definition unscientific, in the strict sense
that they cannot be compared to observations. On the other hand, the uncompromising
curiosity and creativity of researchers across the world continuously expands the reach of
experimental physics through the development of artificial systems, ultimately realizing
situations initially deemed scientifically irrelevant. Especially in this respect, cold atoms
truly stand out thanks to their flexibility in terms of tunable interaction strengths facilitated
by magnetically tunable Fano-Feshbach resonances [60, 61].

In general, alkali atoms interact through a short-ranged9 Van der Waals potential. Con-
sequently, the effect of interactions at the many-body level is dominated by few-body
collisions. Remarkably, at low energy, the spatial extent of the single-particle wavefunc-
tions exceed the range of the potential by a large amount. By that reason, the outcome
of the scattering events in the s−wave channel10 is described by a single parameter, the
scattering length a3D, which incorporates all of the microscopic details of the interaction
potential. The Feshbach resonances can then be used to tune a3D by superimposing an
external magnetic field at the resonant field strength [62]. Such scattering resonances are
in general not universal and depend on the specific pair of atoms under consideration. A
large number of them have already been catalogued [63].

The possibility to arbitrarily tune the scattering length has lead to a very important
milestone in the research of interacting two-component Fermi gases: the realization of
the BEC-BCS crossover [64], which has been thoroughly studied both theoretically and
experimentally [65–67]. From the BCS to the BEC side, there is an increasing amount of
attraction between individual atoms. The limit 1/kFa3D � −1 corresponds to the former,
where the many-body ground state consists of loosely bound Cooper pairs, analogously
to electrons in superconducting metals. The opposite limit 1/kFa3D � 1 corresponds
to the BEC side, where atoms form deeply bound dimers which then condense as a
consequence or their composite bosonic statistics. These dimers have a bound state energy
of Eb = −h̄2/ma2

3D originating directly from the two-body scattering problem in a contact
potential. This two-body bound state only exists only when a3D > 0. A highly non-trivial
regime is obtained when 1/kF|a3D| < 1 and is characterized by strong correlations at the
many-body level. A remarkable point of the crossover is 1/kFa3D = 0, also known as
unitary regime, and is easily reached by tuning the scattering length to diverging values.
This way, the characteristic scale associated interactions is fixed a non-trivial regime for

9In comparison to the Coulomb interaction that would occur between charged particles.
10Scattering resonances also exist for higher partial wave collisions.
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any values of kF. The resulting physics is highly universal and scale-invariant, depending
only on the density and temperature in a similar fashion as the noninteracting gas [68, 69].

Role of dimensionality

Ultracold atomic gases offer a very modular approach to realizing many-body systems in
low dimensions [70–72]. In particular, their motional degrees of freedom can be tailored
precisely via optical or magnetic potentials, and confinement induced resonances provide
a means to tune the sign and strength of interactions in both 1D [73–75] and 2D [76].
Among the many ways available to shape the external potential landscape, optical lattices
have played a particularly important role [77]. They allowed to observe exotic physics
in a large variety of geometries, such as the superfluid to Mott insulator transition in
3D [78], the Berezinskii-Kosterlitz-Thouless crossover in 2D [79], or the Tonks-Girardeau
gas in 1D. In particular, the spin-charge separation in two-component Luttinger liquids,
as described earlier, have been observed as well [80–83]. However, only a handful of
experiments have studied bulk Fermi gases in 1D [75, 84–87]. All of those experiments
relied on two-dimensional lattices and suffered from having to average over stacked 1D
systems of different densities and degrees of degeneracy. This constitutes a fundamental
limitation for the observation of elusive states or spontaneous pattern formation, on top
of severely complicating quantitative analysis. The principal goal of the present work is
to develop a platform to prepare 1D bulk Fermi gases that can be probed individually,
thereby opening the door to an entirely new class of experiments to study the effects of
strong interactions in low dimensions.

Outline of this thesis

This manuscript presents the latest accomplishments and milestones realized on the
Fermix experiment. There are three main achievements. First we realized the preparation
and site-resolved imaging of tube-shaped quantum gases contained in a large-spacing
optical lattice. Second, the associated realization of quasi-one-dimensional gases featuring
a transverse ground state occupancy of nearly 100%. Finally, the study of longitudinal
spin transport experiment in low dimensions, from which we extracted a minimal spin
diffusivity coefficient of Ds = 8.9± 0.6 h̄/m, consistent with the fundamental constraint
in 3D predicted by quantum mechanics.

The main text follows the outline hereinbelow:

• Chapter 2 contains a brief description of the experimental apparatus and the key
steps to prepare a degenerate Fermi gas in 3D.
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• Chapter 3 details the working principle of the large spacing optical lattice as well as
the method employed to achieve single-site imaging.

• Chapter 4 is focused on the calibration of the micro-trap potential and absorption
imaging therein. Then, in Chapter 5, we present the equation of state of a noninter-
acting Fermi gas in one dimension, and generalize it to include transverse modes.
We apply this model to perform in-situ thermometry in our system and characterize
the dimensionality of our atomic samples. Finally, we report on the preparation of
samples that are well within the one-dimensional regime.

• Making use of the thermometry techniques developed so far, chapters 6 and 7 are
dedicated to the preparation of magnetization gradients and study of spin transport
in low dimensions.

• Chapter 8 provides a brief summary of this work and presents perspectives for the
future research making use of this novel platform.
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This chapter briefly reviews the steps that are performed in our experimental setup in
order to prepare a degenerate Fermi gas in a crossed optical dipole trap. This ultracold
ensemble will be the starting point of all the experiments described in this manuscript,
containing N ∼ 2× 104 atoms per spin states and a reduced temperature of T/TF ∼ 0.15.
An in-depth description of this preparation procedure can be found in [88, 89] since the
steps and the setup remained nearly identical1.

The FerMix experiment was launched in 2008 under the supervision of Frédéric Chevy and
Christophe Salomon [88–96] , with the objective of studying the properties of the fermionic
isotopes of the Potassium and Lithium alkalis 40K and 6Li , respectively. In particular,
it was designed to explore the physics at the interplay of interactions, degeneracy, and
superfluidity. The work presented in this manuscript relies exclusively on 40K , and as a
consequence we will omit the description of 6Li gas preparation.

The natural abundance of 40K amounts to only 0.012% [97] which is not sufficient to load
a magneto-optical trap (MOT, or 3D-MOT) and thus a commercial ampule of enriched
40K (& 1%) was bought2. A vacuum isolated environment is mandatory to increase the
lifetime of trapped ultracold gases. The main limiting factor is given by collisions with
residual particles present in the vacuum chamber, which are in thermal contact with the
surrounding enclosure at room temperature. In order to allow lifetimes of several minutes
in optically trapped gases, the pressure has thus to be kept below 10−10 mbar. By contrast,
10−7 mbar to 10−8 mbar are required to produce atomic jets to load the 3D-MOT, making
it necessary to connect the various sections with differential pumping tubes.

1The most relevant change is the addition of new dipole trap arm to have a more symmetric trap at the end
of the preparation.

2Alternatively, a technique to enrich 40K specifically for MOT application was developed [98].
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Figure 2.1: Overview of the vacuum system. Atomic beams of 40K and 6Li can be generated in
the 2D-MOT and oven, respectively, and act as sources for the dual-species 3D MOT located at
their intersection. Then, atoms can be loaded into a quadrupole magnetic trap and transported
through an L-shaped tube to the science cell by using arrays of coils which move the magnetic
center. Finally, sequences are performed in optical traps until quantum degeneracy is reached. The
upper transport plate and the coils of the Potassium 2D MOT are not shown for clarity. Figure
taken from [88].

The figure 2.1 shows an overview of vacuum system. The pre-cooled particle fluxes of
6Li and 40K are created by means of a Zeeman slower and a 2D-MOT, respectively. At
the intersection of the two-atomic beams the 3D-MOT is loaded inside of an octagonal
chamber. After being trapped and cooled in the 3D-MOT, atoms are loaded into a magnetic
quadrupole trap. Subsequently, the clouds are transported magnetically through an L-
shaped section to the science cell, where they are well protected from resonant stray light
originating from the MOT chamber. The atomic sample ends up in the science cell where
a better optical access is available. The glass cell3 has outer dimensions of 23 mm × 23
mm× 10 mm and wall thickness of 4 mm.

2.1 Overview of the experimental cycle of 40K

A typical experimental cycle of 40K lasts 60 seconds and starts in the 2D MOT region.
The flux of 1 × 108 atoms·s−1 is intercepted by the 3D-MOT, a standard technology
implemented in all cold atoms experiment [99–101] that allows one to cool atoms close

3It is made of uncoated Vycor, a fused silica dioxide.
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Figure 2.2: Overview of laser beams and magnetic coils in the experimental setup. The arrows
represent the direction of propagation of the various beams. The opaque coils correspond to the
main quadrupole/bias coils in the MOT chamber on the left, and in the science cell on the right.
The transparent coils represent the transport coils. Figure taken from [88].

to the Doppler temperature [102]. After 30 seconds, the trapped sample contains up
to 2 × 109 atoms and the 2D-MOT is switched off. After briefly compressing the 3D-
MOT, all the magnetic fields are switched off4, and a short phase of gray molasses is
applied to increase greatly the phase-space density of the sample, achieving sub-Doppler
temperatures [103]. This cooling technique relies on the D1 lines of potassium [104,
105], driven with laser light at a wavelength of 770 nm. Initially, this method was first
conceptualized [106, 107] and experimentally realized [108, 109] on the more common D2
line at 767 nm [110]. The usage of the D1 transition was pioneered at FerMix and has, since
then, been implemented in many other experiments due to the increased performance
[111–116]. The now unpolarized sample is then optically pumped (OP) towards low-field
seeking states over the course of few microseconds and immediately transferred into a
purely magnetic trap [49]. Two arrays of commensurate coils, shown in figure 2.2, are
used to smoothly move the magnetic potential through the L-shaped vacuum section5.
The D1 cooling is essential to ensure high transport efficiency for this step.

Once atoms arrive in the science cell, a hybrid trap configuration is employed in which the
magnetic trap slowly opens while an optical dipole trap placed just below progressively
collects the spilling atoms [121]. During this gradual release and recapture, microwave

4Including the earth’s magnetic field, which gets compensated by dedicated coils.
5Alternatively, magnetic transport can be achieved by moving the coil or magnet with a motorized translation

stage [117, 118]. Optical transport can be realized using movable [119] or deformable [120] lenses.
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evaporation is performed to increase the phase-space density of the cloud. As atom gets
colder and the magnetic gradient weaker, it is necessary to introduce a bias field to ensure
a well-defined quantization axis6 and to limit the rate of Majorana losses [122, 123] and
thus the associated heating [124–126]. Finally, several phases of evaporation are performed
in the optical traps until degeneracy is reached.

In the ensuing section, we will present this final stage of the experimental cycle in greater
detail.

2.2 Optical dipole traps

The use of optical dipole traps is widespread in the cold atom community and their
working principle is very well understood [100, 127, 128]. It will be useful for the potential
model detailed in section 4.2 to introduce the expression of the dipole potential Udip(~r)
for alkalis. An atom in the S1/2 ground state, which is subjected to a linearly polarized
light field of intensity I(~r), experiences the following potential in the limit of large laser
detuning7

Udip(~r) = αpol I(~r), αpol =
πc2Γnat,D1

2ω3
D1

(
1

∆D1
+

2
∆D2

)
, (2.1)

where αpol is the scalar polarizability originating from the virtual coupling to the D1
and D2 lines8. Here, Γnat,D1 = 2π × 5.956 MHz is the natural linewidth of the D1-line,
ωD1 = 2πc/λD1 is its angular transition frequency, with c denoting the speed of light in
vacuum and λD1 ≈ 770.11 nm [129, 130]. For the D2-line, one has λD2 ≈ 766.7 nm. The
symbols ∆Di = ω−ωDi represent the detunings from the angular frequency of the laser
fieldω = 2πc/λ, with i = 1, 2.

The sign of the detuning dictates whether the potential is attractive or repulsive. The
optical dipole traps of the experiment are created by lasers operating at λ = 1064 nm,
which is red-detuned with respect to the the addressed transition and therefore correspond
to attractive potentials. However, we will also make use of green laser beams at λ = 532
nm, which is blue-detuned, in order to produce repulsive potentials which play a crucial
role in shaping the atomic cloud to our needs. For these wavelengths, operating at high
intensities allows one to create substantial forces while maintaining a small scattering rate
Γsc ≈ Γnat,D1Udip/(h̄∆D1). When compared to the typical duration of experiments, it can
be assumed that no photons are absorbed and, therefore, that the potential is conservative.

6At this stage, it is created by a pair of outer coils, not shown in figure 2.2, the axis of which is oriented in
the vertical direction. Once the quadrupole trap is completely ramped down, the inner coils take over to
create the bias magnetic field.

7Which means that the laser is far off resonance with respect to all of the energy levels contained in the P1/2
manifold.

8Circular polarization introduces a dependence on the magnetic quantum number mF, which is associated
of the associated moment of the occupied Zeeman level.
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There are three dipole trap beams in the experiment that all feature a gaussian TEM00

intensity distribution,

I(~r) =
2Ptot

πw(z)2 exp
(
− 2r2

w(z)2

)
. (2.2)

Here, w(z) = w0
√

1 + (z/zR)2 represents the radial beam size at distance z from the waist
w0. We also introduced the Rayleigh length of the beam zR = πw2

0/λ. At constant optical
power Ptot, the maximum trap depth U0 = 2|αpol|Ptot/πw2

0 depends on the waist.

While a large waist is in principle convenient because it offers a large trap volume and
therefore allows for the design more homogeneous traps, it also requires considerably more
optical power for a given trap depth. We settled on a compromise in the experiment by
implementing three dipole traps (ODTs): the first one (mODT) has a waist of w0 ≈ 50µm
in order to create large trap depths and thus optimally capture the atoms during the
microwave evaporation phase (also described in [88, 89]), and the two other traps (cODT1
and cODT2) both have waists of w0 ≈ 140µm to create a crossed dipole trap with a larger
trap volume to contain the final ultracold cloud. The waists of the newly added beams
have been measured prior to their installation, as shown in figure 2.3. The transfer into
this optical dipole trap is necessary because its potential landscape is more suitable to
load the optical lattice later on. The figure 2.4 depicts how the three ODTs come into play
during the experimental cycle.

The next section will describe in detail how evaporative cooling and atomic state prepara-
tion is performed in these traps.

2.3 Evaporative cooling and state preparation

Evaporative cooling is an extremely effective tool to reduce the temperature beyond the
capabilities of ordinary laser cooling for high density samples, and is oftentimes a crucial
step to reach quantum degeneracy [131, 132].

After the microwave evaporation, the cloud contains up to 2.0× 107 atoms in a mixture9

of |10〉 ≈ |F = 9/2, mF = +9/2〉, |9〉 ≈ |F = 9/2, mF = +7/2〉 and a small amount of
|8〉 ≈ |F = 9/2, mF = +5/2〉 [88, 89]. This state composition originates from the optical
pumping performed in the MOT chamber prior to magnetic transport, which requires
positive mF to ensure that the magnetic potential is trapping. Using these states, a first
stage of evaporation is performed by ramping the power of mODT linearly from its
loading value of 9 W to 1.5 W over the course of 1 second. Then, the bias field, initially set
to ∼ 1G, is linearly increased to 29.87 G in 15 ms. A 20 ms radio-frequency (RF) sweep is

9The |F, mF〉 are eigenstates only when the magnetic field B vanishes [130, 133] which is a
good approximation after the microwave evaporation. Throughout this manuscript, we will
denote the hyperfine eigenstates by |1〉,|2〉,...,|9〉,|10〉 in such a way that they coincide with
|9/2,−9/2〉,|9/2,−7/2〉,...,|9/2,+7/2〉,|9/2,+9/2〉 when B→ 0.
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applied to the atoms using an antenna adjacent to the science cell. The frequency is linearly
decreased from 24.7 MHz to 12.7 MHz, inducing the transfers |10〉 → |1〉 and |9〉 → |2〉
through a succession of adiabatic transfers, also known as Landau-Zener transfers10 (LZ-
sweep). Once it is completed is completed, the bias field is raised to 237.83 G. At this point,
a non-adiabatic linear RF sweep (50/50-sweep) from 50.4 MHz to 49.2 MHz is performed
in 1 ms to equalize the populations of |9〉 and |10〉, which would otherwise contain around
30% and 70% of the atoms, respectively. Then, the larger crossed dipole traps cODT1 and
cODT2 are ramped up to 6W each in 50 ms. Despite their power being larger than that
of mODT, the latter is still deeper due to its smaller waist. The transfer is completed by
decreasing mODT’s power linearly until full extinction over 1.5 s, letting evaporation
occur along the way.

As a consequence of the removal of mODT, the density of the gas is now smaller, and
therefore entails a smaller collision rate reducing the efficiency of evaporation. This effect
can be counterbalanced by increasing the scattering cross section, which depends on the
scattering length a3D. The scattering length can be tuned by applying external magnetic
fields, which are resonant with s-wave Feshbach resonances11 [63].

For 40K , such a resonance exists between the states |1〉 and |2〉 for bias fields around
202.1G [137, 138], and is modelled by

a3D(B) = abg

(
1− ∆

B− B0

)
, (2.3)

where abg = 169.7a0 is the background scattering length [139] with a0 denoting the
Bohr radius. The parameters ∆ and B0 describe the width and position of the resonance,
which have been determined experimentally in prior studies [140–142]. In our case, when
working around the resonance12, we will use the values B0 = 202.14(1) G and ∆=6.70(3)
from [142]. The scattering cross-section reaches its maximum value in the unitary limit,
where 1/a3D → 0 [67]. However, tuning the scattering length is also responsible for losses
which in turn create heating, and are strongly enhanced on the BEC side (positive a3D side
of the resonance) [62, 144].

10For a two-level system the Landau-Zener formula [122, 134–136] gives the probability to effectuate a transfer
between two states as

p = 1− exp
(
−πΩ

2

2∆′

)
,

where Ω is the Rabi frequency and ∆′ the rate of change of the detuning with respect to the two-level
transition. Full transfer is achieved when the RF power is large and the sweep rate small. The transfer
described in the main text can be thought of as a succession of adiabatic two-level transfers. For the
starting state |8〉, the avoided-crossings are too insignificant to allow transfer.

11The usage of an s−wave resonance over higher partial waves is required because collision in the latter
channels are suppressed at low temperature.

12Another region of interest is the so-called zero-crossing, where a3D(Bzc) = 0. Whenever we work close
to the zero-crossing, we take advantage of the accurate parametrization of the scattering length around
Bzc = 209.094(8) G from [143].
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In order to increase the efficiency of the evaporation without suffering from excessive
losses, we ramp the magnetic field linearly to13 202.79 G in 20 ms, which allows us to
reach a large scattering length of −1580a0. This value is significantly larger compared to
the background scattering length while staying on the BCS side. From there, evaporation
is performed by ramping down the powers of cODT1 and cODT2 over the course of a 4
seconds long exponential ramp. The final power is varied depending on the atom number
that one needs for the ensuing experiments in the lattice. Finally, the trap is recompressed
to a value of 1.07 W in 300 ms. The figure 2.5 summarizes the evaporation steps described
in this section so far.

The final temperature of this gas needs to be determined using models appropriate for
highly degenerate ensembles. This will be the subject of the following section.

2.4 Thermometry of the degenerate Fermi gas

When it comes to performing thermometry, noninteracting gases are ideal as simple
analytical fitting functions are available [57, 145] for both in-trap and ballistically expanded
clouds. The column density of a noninteracting Fermi gas in thermal equilibrium released
from a harmonic trap V(x, y, z) = 1

2 m(ω2
xx2 +ω2

y y2 +ω2
z z2) can be parametrized as14

n2D(y, z) = n2D,0

Li2

(
− exp

[
q−

(
y2

R2
y
+ z2

R2
z

)]
f (eq)

)

Li2(−eq)
, f (x) =

1 + x
x

ln(1 + x). (2.4)

Here, the parameter q, which represents the logarithm of the fugacity, entirely determines
the functional shape of the cloud as well as the normalized temperature through

T
TF

= [−6Li3(−eq)]−1/3 . (2.5)

This fraction quantifies the degree of degeneracy of the ensemble. It is worth noting that
the knowledge of the angular trapping frequenciesωi are not required to extract T/TF.
The parameters Ri are intentionally defined so that they reflect the cloud sizes along y and
z in both the classical and degenerate limit

R2
i =

2kBT
mω2

i
f (eβµ)→

{
σi, T/TF � 1,
RFi, T/TF � 1,

(2.6)

whereσi =
√

2kBT/mω2
i is the Gaussian radius of the classical limit and RFi =

√
2EF/mω2

i

is the Fermi radius toward which the cloud saturates to at T = 0.

13The field accuracy is ∼ 0.01G, which was measured by radio-frequency spectroscopy.
14The function Lis represents the polylogarithm of order s, and is defined in more details in sec. 5.1.5.
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Figure 2.5: Evaporation ramps and state transfer. Illustration of the evaporation and transfer
sequence described in the main text. The red lines represent the mODT (dash-dotted line) as well
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blue dashed line indicates the position of the s-wave Feshbach resonance between states |1〉 and
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are performed.
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Figure 2.6: Thermometery in the crossed optical dipole trap. a) The blue data points represent
the azimuthally-averaged optical density (OD) and the blue solid line is a fit using Eq. (2.4). After
enough time of flight, the atomic distribution becomes radially symmetric and consequently we
can set Ry = Rz and only use the radial distance to the center of the cloud. The solid red line is a
free Gaussian fit, which fails to capture the functional shape of the profile. The inset represents the
corresponding absorption image. b) Typical evolution of the reduced temperature as a function of
the atom number per spin state obtained by tuning the evaporation depth.

In order to determine T/TF in our atomic samples after evaporation, we ramp the magnetic
field close to the zero-crossing but leave a finite-scattering length a3D ∼ −30a0 to ensure
that the cloud stays well thermalized. Then, we abruptly switch off the optical traps and
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image the cloud after a brief phase of ballistic expansion. The obtained atomic distributions
are radially symmetric, and so we identify their respective centers of mass and calculate
the azimuthally averaged profiles. Finally, we fit15 the results using Eq. (2.4), obtaining the
reduced temperature via the fitted q parameter. A typical example as well as the evolution
of atom number and T/TF are shown in figure 2.6. The smallest temperature corresponds
to T/TF ∼ 0.15 with N ∼ 2.0× 104 atoms per spin state. In 3D, this value signifies that
the cloud is located well within the quantum regime. For example, a strongly interacting
gas at a similar temperature would already be in the superfluid phase at unitarity [146].
As pointed out in [57], care has to be taken when determining the degeneracy parameter
from the shape of the cloud alone. There are several mechanisms through which absorption
imaging can lead to an overestimation (finite resolution, out of focus imaging, saturation,
heating during imaging, ...) or an underestimation (detuning from resonance, opacity due
to large density, ...) of the extracted T/TF. Despite having gone to great lengths to avoid
the aforementioned caveats in our temperature measurements, potential systematic errors
caused by the non ideal nature of absorption imaging cannot be estimated. Consequently,
the reported values of T/TF should thus be taken as an estimate. By contrast, chapter
5 will present a quantitative thermometry technique to estimate the temperature of the
quantum wires. This novel approach does not rely exclusively on the shape of distribution,
but also on the precise knowledge of the potential landscape.
Having prepared an ultracold Fermi gas in 3D, the next chapter will present in detail how
this ensemble is transformed into ultrathin quantum wires.

15This assumes that the trap from which the cloud was released is indeed harmonic. This assumption is
justified by the observation of undampened sinusoidal oscillations in the trap (see e.g. fig. 4.6).
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In chapter 2 we detailed the first steps of the experimental cycle that leads to the production
of a 3D degenerate Fermi gas in a crossed dipole trap, which is a crucial prerequisite for
the preparation of quantum wires. The current chapter will focus on describing the
second part of the experimental cycle, which consists of loading the gas in a large-spacing
two-dimensional optical lattice.

After a brief introduction of the underlying the working principle, we will present a novel
method used to load only a single layer of this lattice.

3.1 Large-spacing optical lattice

The significance of optical lattices in the field of ultracold gases cannot be overstated.
The motion of neutral atoms in these types of traps is closely related to that of electrons
in crystalline structures. Consequently, they are a wonderful tool to perform quantum
simulation [58, 147, 148] of condensed matter systems and to explore exotic phases of
matter and quantum phase transitions, such as the Mott insulators to superfluid transition
[78, 149]. As explained in section 2.2, spatially inhomogeneous light sources generate a
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dipole force that can be used to confine atoms. Optical lattices are typically generated
using interfering laser beams, creating a spatially periodic potential. Many geometries
and be achieved by tuning the direction and polarization of the beams, such as cubic
[78], triangular [150, 151], honeycomb [152, 153], Kagomé [154] optical lattices, or even
sub-lattices by superimposing several optical lattices [155]. When coupled to a cavity,
optical lattices can mediate long-range interactions leading to self-organized systems [156,
157]. They can also be used to build quantum microscopes [158–160], which allow for
quantitative measurements of spatial correlation functions. Control of the relative phase
of interfering beams can be utilized to create periodically driven lattices [161], which have
been shown to be well suited for the generation of well controlled artificial gauge fields
[162]. The latter enabled, among other things, the study of topological systems [163].

Many of the avenues of research described above rely on tuning the tunnelling coefficient
J between adjacent sites of the lattice. However, optical lattices can also be used to alter
the dimensionality of bulk systems by suppressing any tunnelling, ultimately leading to
two-dimensional [164] or one-dimensional gases [75, 83–87]. In the latter situation, past
experiments typically suffered from addressing arrays of wires stacked along two spatial
directions with varying atom number, thus yielding ensemble-averaged measurements.
An illustration of this situation is shown in figure 3.2. While this drawback did not neces-
sarily bias all previous studies, it certainly prevented progress towards the quantitative
understanding of many-body problems in 1D. Indeed, as the thermodynamic state directly
depends on the density, these ensemble-averages cover extended regions of the phase dia-
gram, which severely complicates their interpretation and potentially obscures signatures
of elusive states. On an even more fundamental level, ensemble-averages pose a problem
for the observation of critical behaviour or states that are characterized by spontaneous
pattern formation, e.g., magnetic domains.

As we will see in the rest of the chapter, this problem can be bypassed by only loading a
single layer of lattice sites. As a result, the optical density collected from absorption images
does contain mixed contributions from multiple sites anymore. Part of the requirements to
implement this technique is the use of a large-spacing optical lattice [165]. Not only does it
ease the technical constraints in the context of single-layer loading, but is also better suited
for site-resolved imaging. This way, one can greatly enhance the quality of the absorption
images and, thus, of the extracted data.

3.1.1 Working principle

We consider the total intensity of two coherent plane waves of equal intensity I0 and
of wavevectors~k1 and~k3 that describe the light field. We will work with the basis of
orthogonal unit vectors (~ex,~ey,~ez). We denoteαlatt the full-angle between~k1 and~k3 and
assume that its corresponding bisector is aligned with the vertical direction~ez, and that
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Figure 3.1: Two-dimensional large-spacing versus retro-reflected lattice. The interference pat-
tern of a two-dimensional optical lattice results in highly elongated traps that we represent using
grey tubes. a) Large-spacing configuration, where the four lattice beams are superimposed under a
full angle ofαlatt = 24.0◦. b) Retro-reflected latticeαlatt = 180◦, where~k1 = −~k3 and~k2 = −~k4.
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Figure 3.2: Plain loading of atoms in a two dimensional lattice. a) Illustration of atoms loaded
in a two-dimensional optical lattice from a typical 3D geometry. The different lattice sites are
independent. Due to differences in density during the loading, the degree of degeneracy is not
constant accross the different tubes. b) Top: The integrated density along y and z as a function of x
is represented in blue. The red line represents the same integrated density seen from an imaging
system whose resolution is too large to resolve the lattice structure. Bottom: Integrated density
along x and z as function of the position y, which corresponds to the imaging direction. This
highlights that ensemble-averages are performed due to the presence of several layers of varying
spatial density distribution.



32 Chapter 3 Preparation and detection of highly anisotropic Fermi gases

both wavevectors belong to the (x, z) plane. The polarization of each plane wave has
to be perpendicular to its respective wavevector, and as a consequence the condition
for maximum interference requires that it must be collinear with~ey. Therefore, the total
intensity is readily calculated to be given by

Iαlatt,13(x, y, z) = I0

∣∣∣
(

ei~k1 ·~r + ei~k3 ·~r
)
~ey

∣∣∣
2
= 2I0 [1 + cos (kαlatt x)] , (3.1)

where kαlatt = |~k1 −~k3| = 2k sin(αlatt/2) and k = 2π/λ = |~k1| = |~k3|. A standard
technique to produce optical lattices is to use one or several pairs of coherent counter-
propagating beams, each of which are realized, for example, in retro-reflected configura-
tion [77]. In such a configuration,αlatt = 180◦, so that the minima of the periodic potential
will be separated by d = λ/2. For 0 < αlatt < 180, the spacing increases monotonously as

dαlatt =
d

sin(αlatt/2)
. (3.2)

Similar to the optical dipole traps, we will use the red-detuned wavelength λ = 1.064µm
for the lattice beams, which would correspond to a retro-reflected spacing of d = 0.532µm.
This is smaller than the wavelength of the probe beam used during absorption imaging1,
which prevents one from optically resolving the sites2. To circumvent this problem, one
can use a smaller angle of intersection. This eases the technical requirements for site
resolved imaging, but, reduces the trapping frequency, as we shall see later.
A balanced two-dimensional lattice is obtained by adding a similar pair of coherent plane
waves with wavevectors~k2,~k4 in the (y, z) plane. In order to maximize interferences,
the polarization of this pair is along~ex and we can simply add incoherently the two pair
contributions to obtain the total intensity. The potential created by such a configuration is
thus given by

Ulatt,2D(x, y, z) = αpol(Iαlatt,13 + Iαlatt,24) = U0(4 + 2 cos(αlattx) + 2 cos(αlatt y)). (3.3)

A sketch of this geometry is shown in figure 3.1. In a real lattice, the plane wave description
needs to be modified to take into account the Gaussian envelope of the beams3.
Eq. (3.3) reveals that the lattice depth is independent of the angleαlatt and is determined
by the peak intensity I0. However, in the deep lattice limit, the parameter of interest that

1Alternatively, a larger wavelength could be used for the optical lattice. Using a CO2 laser operating on
the λ = 10.6µm line would give a spacing of 5.3µm in a retro-reflected configuration, which can be
resolved easily as shown in [164]. However, this comes at a price as the additional technical constraints
associated with working at this wavelength include less stable laser operation and very expensive optical
components.

2Whereas other techniques that use a probe beam with smaller wavelength could work, for instance electron
microscopy [166].

3A detailed model of the potential created by the four lattice beams, including the crossed dipole trap and
gravity is presented in section 4.2.
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governs the physics is rather the curvature around the minima. Clearly, this curvature
depends on the spacing dαlatt . By Taylor expanding the lattice potential around a local
minimum, one can define the angular transverse trapping frequencyω⊥ as

Ulatt,2D(x, y, z) ≈ Ulatt,2D(0) +
1
2

mω2
⊥(x2 + y2), ω⊥ = 2π

√
2|U0|

m
1

dαlatt

, (3.4)

where U0 = |αpol|I0 is the trap depth of a single beam ODT with intensity I0. I0 depends
on both the available optical beam as well as the beam size. The former is limited by the
laser source and the latter must not be too small otherwise the lattice sites will be highly
inhomogeneous. This means that a compromise must be found in order to pick the angle
αlatt. The spacing needs to be sufficiently large to be optically resolved, but it should not
be larger than necessary as this would reduceω⊥.

A related design parameter is the tunnelling rate. In order to study bulk physics in
isolated micro-traps, the hopping rate must be extremely low. Using a large-spacing
lattice is a major asset in that regard. The tunnelling matrix elements are related to
the overlap of wavefunctions describing atoms on adjacent lattice sites, also known as
Wannier wavefunctions. This overlap depends on both their individual size and their
spatial separation, imposed by the lattice spacing. Both of these factors are modified
whenαlatt is decreased. On the one hand, the decrease ofω⊥ implies smaller sizes of the
single-particle eigenstates, which contributes to increase the tunnelling coefficients. On the
other hand, the increase of dαlatt leads to their exponential suppression. Indeed, in the deep
trap limit it can be shown [165] using the Mathieu equation, that the nearest-neighbour
tunnelling element J0,αlatt for an atom occupying the ground state band scales like

J0,αlatt ∼
exp(−Adαlatt)√

dαlatt

. (3.5)

Here, A is a constant that depends on the lattice depth only. A detailed numerical
calculation which takes into account the band structure as derived from Bloch’s theorem
[167] is, for example, presented in [88, 89]. It consists in solving the following Hamiltonian4

Ĥblochun(x, q) = Eαlatt ,n(q)un(x, q), Ĥbloch =
h̄2

2m

(
−i

d
dx

+ q
)2

+ Uαlatt,13(x), (3.6)

from which eigenstatesϕn(x, q) = eiqxun(x, q) are derived. Here, the band index n is a
positive integer and the quasi-momentum q is a continuous variable ranging from−kαlatt/2
to kαlatt/2. Provided the next-to-nearest neighbour hopping events can be neglected, which

4Since the free Hamiltonian does not couple the two directions, it is only necessary to solve it for one pair of
lattice beams. Here, Eq. (3.5) was written for the direction that contains the pair with~k1 and~k3.
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is certainly the case in deep large-spacing lattice, the band-dependent nearest-neighbour
tunnelling coefficient Jn,αlatt can be expressed as5

Jn,αlatt =
1
4
(max [Eαlatt ,n(q)]−min [Eαlatt ,n(q)]) . (3.7)

In the infinitely deep lattice limit bands become rigorously flat, meaning that the energy
of a given band is a not a function of q anymore and the corresponding tunnelling element
approaches 0. The band structure becomes irrelevant and it is more natural to describe
the system with a set of transverse modes that depend exclusively on n, and whose
wavefunctions converge to those of the harmonic oscillator. This is precisely the approach
that we will adopt in section 5.2.1. As shown later in section 3.2.6, the spacing of the lattice
that we implemented is dαlatt ∼ 2.55µm, which corresponds toαlatt ∼ 24.1◦. As shown in
figure 3.3, forω⊥ ≥ 2π × 10 kHz, the tunnelling coefficient for n ≤ 10 is at least 6 orders
of magnitude below the physically relevant energy scale h̄ω⊥. The higher lying bands
will not be populated and thus do not partake in tunnelling processes. As a consequence,
the tube traps can be safely considered to be isolated from each other. This creates an ideal
environment to study the 1D-3D dimensional crossover in bulk Fermi gases. Studies so
far have employed retro-reflected optical lattices containing either spin-imbalanced Fermi
gases [168, 169] or weakly-interacting bosons [170]. However, in those cases, the change in
dimensionality is automatically accompanied by the onset of nearest-neighbour hopping
as the lattice power is decreased. This parasitic effect progressively couples the initially
isolated 1D gases and admixes their - potentially unequal - thermodynamic states. In
the large-spacing lattice presented here, it is possible to transition from one dimensional
regime to another without compromising the isolated nature of the various micro traps.
Therefore, one exclusively probes bulk physics of one single ensemble at a time.

3.1.2 Generation of the lattice beams

This section is dedicated to the description of the optical setup used in our experiment
to generate a two-dimensional optical lattice as described previously. A more detailed
description can be found in previous manuscripts [88, 89].

Four beams must be generated in order to create the two-dimensional lattice. They are all
generated from one laser source to ensure high coherence, a 45 W ultra low noise fiber
laser6 operating at λ = 1064 nm with a bandwidth of less than 50 kHz. Shortly after the
laser head output, the beam is split into two equal power components. Each of them
is diffracted through an acousto-optic modulator (AOM), but with opposite diffraction
order, such that a relative detuning of 220 MHz between the two beams averages out the

5Following the standard definition from [148].
6From the company ALS (AzurLight Systems).
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Figure 3.3: Tunnelling exponential suppression in large-spacing lattice. a) Evolution of the
ground band tunnelling coefficient (dashed lines) and transverse angular frequency (solid lines)
as a function of the trap depth producing a single plane wave. Three lattice spacing ratios
dαlatt/d=1,3,4.8 are represented, corresponding to full angles αlatt = 180◦, 38.9◦, 24.1◦, in blue,
green and orange respectively. Energies are normalized by the recoil energy Erec = h̄2k2/2m. b)
Evolution of the band-dependent tunnelling coefficient as a function of the trapping frequency for
αlatt = 24◦.

inter-pairs coherence to avoid undesired interferences. Finally, each diffracted beam is
guided towards a large mode area polarization maintaining optical fiber. At the output
of each fiber, a small fraction of the available power is sent towards a photodiode, which
is connected to a feedback loop system. Its role is to actively adjust the radio-frequency
power sent to the AOM to control and stabilize the final optical power that ultimately
reaches the atoms7.

After the optical fibers, the two beams are subdivided another time to create the X and Y
lattice pairs. Then, each of the four Gaussian beams pass through a f = 400 mm lenses in
order to produce a target waist of ∼ 220 µm at the position of the atoms. This choice stems
from a compromise between the need to produce large perpendicular angular trapping
frequenciesω⊥ and have a homogeneous transverse potential at each central lattice sites.
The breadboard onto which the setup is mounted has a cross-shaped opening centered
above the science cell. The last two mirrors8 of each beam path are inclined in order to
have the beams propagating downwards through the opening to later intersect inside of
the science cell under a relative full-angle of ∼ 25◦ for each pair. The X beams lie in the
(x, z) plane and originate from opposite sides on the science cell, while the Y occupy the
(y, z) plane. Polarizing beamsplitter cubes are placed in between these last two mirrors
of each path to ensure that X and Y pairs are polarized along y and x, respectively. This
ensures maximum interference contrast of nearly 100% within each pair. For each beam

7This power control setup is identical to the one that is used for the three optical dipole trap beams described
in section 2.2. A similar scheme also regulates the power of the compression beam and the barrier beam
described later in sections 3.2.5 and 6.5 respectively.

8Using two mirrors instead of one is not only convenient to use as little optical access as necessary, but also
keeps the reflection angles below 45◦.
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path, one mirror is placed on a piezoelectric actuated mount, which allows to tune the
pointing of the beams in order to perform routine alignment.

3.2 Loading and imaging a single layer of the lattice

We previously laid out in section 3.1 the fundamental benefits that arise from imaging
a single layer of the two-dimensional optical lattice, and resolving each loaded site.
Performing such an operation is challenging on a technical level, mostly because the
separation between the sites remains small despite the use of a large-spacing optical lattice.
The realization required developing several novel techniques in order to achieve robust
single-layer loading and imaging. The corresponding steps and methods are the main
subjects of this section.

3.2.1 Overview

In principle, there is no unique way to load and image atoms in a two-dimensional lattice
without suffering from ensemble-average as described in figure 3.2 b). The first approach
we considered consisted in using a configuration where atoms fill many layers in the
imaging direction, as shown in 3.2 a), and shine in a masking beam to repump all the atoms
into a transparent state9, except those contained in the layer of interest [88, 89]. While this
method fulfills the requirements on a fundamental level, we found that it is extremely
challenging to execute due to limitations in terms of resolving power. The intensity profile
of the mask would need to be extremely sharp so that no parasitic repumping occurs in the
layer of interest. In practice, we could not find a satisfying compromise, having to either
loose a large fraction of the signal of the central layer or deal with parasitic line-of-sight
integration of atoms in other layers.
As a consequence, we opted for a different approach which consists in optically compress-
ing the atoms in the cODTs prior to loading the optical lattice. If the cloud size along the
imaging direction is made smaller than that of the lattice spacing, atoms can be loaded
in a single layer. The level of compression is given by the curvature imposed upon the
atoms, which, in turn, depends on optical power and beam size. This approach has the
major advantage of being able to increase compression by means of optical power alone,
while not requiring high degrees of optical resolution.
The figure 3.4 shows the loading procedure. The quantum degenerate gas initially loaded
in the optical dipole trap (see sec. 2.4) is compressed along the y direction by exponentially
ramping up a TEM01-like repulsive green beam (see sec. 3.2.5). Once the spatial extent
along the y direction is sufficiently small, both beam pairs of the 2D-lattice are ramped up
exponentially until tunnelling is fully suppressed. Prior to increasing the lattice strength

9’Transparent’ means that they will not be resonant with the probe beam.
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Figure 3.4: Preparation of a single layer of atomic wires. a) Ramp sequences for single beam
power of the X and Y lattice pairs (red), power of the green compression beam (green) and 3D
scattering length (blue). b) Representation of the system at different phases of the loading sequence.
First, the compression beam, represented in green, flattens the atomic cloud into a pancake shape
(I), then the two-dimensional optical lattice is ramped up, creating tube traps represented in gray
(II). Finally, the compression beam is turned off. The atoms are loaded in a single layer of the lattice
(III).

to full power, the compression beam is ramped down quickly. The lattice beams are
exponentially ramped up to their final powers. During this whole process, the scattering
length a3D is progressively reduced to lower values by changing the magnetic field,
reaching a final value of −40a0. The increase in density makes it possible to maintain a
decent collision rate, required to perform adiabatic loading, while avoiding three-body
losses [144]. Finally, high resolution images are taken along the y direction, resolving the
individual sites of the loaded lattice layer, as explained in section 3.2.6.

For the above procedure to be successful, the center of the compression beam must be
appropriately placed with respect to the nodes of the lattice along y. The positions of the
potential energy minima depend on the relative phase between the partaking beams, and
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must be actively controlled. Section 3.2.4 will describe how it is done in our setup. For the
sake of diagnostic purposes, it is possible to verify single-layer loading by simply imaging
the cloud along the vertical z direction, see sec. 3.2.8.
Once loaded in the tube traps, the vertical spatial extent of the atomic clouds is dramatically
increased due to the reduced levels of confinement. This poses a problem for high-
resolution imaging along z and can be addressed by artificially reducing the vertical size
of the sample with a masked repumping technique, as shown in sec. 3.2.7. For reference,
the beam configuration around the science cell in the (x, y) plane is depicted in figure 3.5.

3.2.2 High-resolution objective

In order to realize highly resolved absorption imaging along the y direction, a custom ob-
ject lens had to be designed and produced10 in order to fulfil several unusual experimental
requirements.
The lens assembly is made from fused silica and optimized for diffraction limited imaging.
It has a numerical aperture of NA= 0.35 and a depth of field of ±3.1µm, which is larger
than the lattice spacing. Moreover, the objective has anti-reflective coatings to subdue
internal reflections, which could cause interference effects and fringes on the absorption
images11. The damage threshold of 1 MW/cm2 is large enough to send the dipole trap
and lattice beams through without any risk. The effective focal lengths are 20.00 mm,
20.55 mm, and 19.85 mm for λ = 767 nm, 1064 nm and 532 nm, respectively. Along the y
direction, this corresponds to a working distance of 6 mm with respect to the science cell
boundary. The design is optimized for a beam that travels through 6.5 mm of vacuum, 4
mm of planar fused silica, and 6 mm of air from the focal plane to the objective.
The cylindrical enclosure of the objective is 30 mm long (threads not included) and has
a small diameter of 26 mm. Three custom extension tubes of lengths 30 mm, 90 mm
and 140 mm were produced for a convenient usage of the objective along x, y and z
respectively12. The RMS threaded objective is meant to be screwed in one dedicated side
of an the extension tube while the other side has a male SM1 thread for compatibility with
most standard 1 inch optics tubes. All extension tubes also have an external diameter of
26 mm everywhere expect at the end of the SM1 thread side. This allows the objective and
the extension tubes to reach far inside the coil mounts that surround the science cell, so
that the objective can be placed very close to it at the appropriate working distance.
Both the enclosure of the objective and the extension tubes are made of ultem plastic,
which offers high levels of chemical resistance and rigidity. More importantly, it is a
good insulator, and therefore does not couple inductively to the fast magnetic field ramps

10By the American company SpecialOptics.
11The coating guarantees < 0.2% of reflection per surfaces for incident angles of up to 20◦ at λ =767 nm, and

0.5% for 1064 nm and 532 nm.
12Even though we did not use it along x in this work.
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Figure 3.5: Beam configuration around the science cell. The central rectangle represents the
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y-axis, is described in sec. 3.2.2. The vertical imaging beam, collinear to the z direction, and the
four lattice beams are not depicted.
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Figure 3.7: High resolution objective. a) Top: image of the resolution target. Numbers indicate
the lines per mm. For the ’400’ group, this corresponds to a spacing of 2.5 µm. Bottom: Vertical
integration of the ’400’ group over the region of interest indicated by the blue rectangle. The
lines are fully resolved. b) Azimuthal average of the intensity distribution obtained after a 0.5µm
pinhole shown in the inset (solid blue line). The dashed line corresponds to a fit to the Airy function
I(x) = I0[2J1(x/σ)/(x/σ)]2, where J1(x) is the Bessel function of the first kind of order 1 [171].
The resolution r according to the Rayleigh criterion corresponds to the first zero of J1 located at
r = 3.831×σ = 0.92µm [172].

occurring nearby during each experimental cycle. The suppression of these eddy currents
prevents the formation of long-lived vibrations13 resulting from the long lever of the
object lens. The objective is used along both the y and z directions. For the former,
it is combined with a plano-convex lens14 of focal length f = 757.9 mm, leading to a
theoretical magnification of 37.895 at λ = 767 nm, in good agreement with the measured
magnification15 of 37.87± 0.08. Prior to installing the objective, the optical performance
was verified by imaging a resolution target as well as a 0.5 µm pinhole. The results, shown
in 3.7, indicate that the system can easily resolves structures as small as 2.5 µm with a
contrast of almost 100%. The image of the backlit pinhole light source allows a direct
measurement of the Rayleigh resolution which gave 0.92µm. As we will see later on
with absorption images of the loaded lattice, this last number is underestimates the actual
resolution slightly.

In the z direction, the objective is used together with an achromatic doublet16 of effective
focal length f = 350 mm, leading to a theoretical magnification of 17.5 at λ = 767 nm.

13Vibrations are undesired because they induce a mismatch between the background signal of the absorption
and the reference shot of an absorption image. This stems from the position change of the objective
inbetween these two images and ultimately leads to unphysical fringes on the measured density.

14Thorlabs, LA1727-B.
15The magnification is measured by fitting a free-falling cloud in the gravity field g, with all magnetic fields

switched off to avoid the occurrence of any magnetic force. It is also how the magnifications along x and
u, stated in the caption of fig. 3.5, were determined.

16Edmund Optics, #49-395.
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Figure 3.8: Lattice beam imaging. a)
The four lattice beams are being col-
lected by the high-resolution objective.
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This also agrees with the measurement17 of 17.54± 0.2. As was mentioned earlier, the
atomic clouds are elongated along the z direction, and therefore the short depth of field
makes it impossible to resolve the lattice structure. In order to mitigate this issue, we
placed an 11 mm aperture ring inside the tube mount as close as possible to the objective
in order to artificially reduce the numerical aperture. This increases the depth of field
to ±5µm while degrading the resolution. In combination with the repumping mask
described in sec. 3.2.7, the z direction can be used to perform nearly site-resolved imaging
at a diagnostic level.

3.2.3 Imaging the lattice beams

The working distance along z is small enough so that all of the four lattice beams can be
collected by the objective, despite its small diameter. This allows both to safely manage
the outgoing optical power and to image the interference pattern present at the position of
the atoms. The corresponding optical setup is shown in figure 3.8 and 3.9.
The interference pattern plays a crucial role in the alignment procedure. In order to have
a properly aligned two-dimensional lattice, the four beams need to satisfy the following
constraints:

• Intersection in the science cell: there, the camera helped to track the position of each
beam during each iteration of alignment.

• Horizontal counter-propagation within each pair: this was checked by looking at
the reflections of the two beams for each pair on the two top surfaces of the science

17It is determined by moving the compression beam along y and measuring the corresponding position of
loaded atoms along both x and z axis. Since the magnification along x is known, we can infer the one
along z by comparison, assuming orthogonality between the axis.
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cell, creating an array of spots that need be aligned in the horizontal plane.

• Orthogonality of the pairs: this can be monitored by looking at the interference
pattern on the CCD camera. On top of that, they need to be collinear with the x and
y direction, defined by the sides of the science cell.

The optimized interference pattern shown in 3.8 b) is the result obtained after iteratively
optimizing these three points until convergence was reached.
For each experimental cycle the camera was used to record the interference pattern during
the MOT loading phase, which allows to ensure that the contrast remains stable over
time18. It was also used to ensure that the relative phase of the two lattice pairs was locked
correctly, as will be described in the next section.

3.2.4 Phase control

In order to load a single layer of the two-dimensional lattice as shown in figure 3.4 b), it is
crucial that the position of the compression beam (see sec. 3.2.5) is aligned with the exact
position of lattice sites in the y direction (see sec. 3.2.8). This could only be guaranteed
over many experimental cycles if the relative phase between the two beams composing
the Y pair was sufficiently stable. Since the two beams use a different optical path after
the 50:50 nonpolarizing beam splitter, they accumulate a different amount of phase delay
along the way. This difference will determine the exact position of the (anti-)nodes in the
interference pattern. This reasoning also applies to the X pair, whose relative phase also
needs be controlled in order fix the position of the lattice sites in the x direction. In absence
of such stabilization, absorption images taken along the y direction could not be safely
averaged as the horizontal position of the loaded tube traps may not be static.
In the absence of any active feedback, the relative phase is not an ideal reference as it is
very sensitive to the environment: air turbulence and temperature gradients that occur in
the optical paths can easily give rise to longterm drift. This effect matters the most during
propagation phase prior to reaching the science cell. Afterwards, the beams stay very
close to each other and, consequently, experience marginal relative dephasing.
A feedback loop was implemented to suppress this drift, which requires to control and
measure the relative phase of both beam pairs. An illustration of the setup is shown in 3.9
a).

Control The placement of a piezo-driven mirror in the optical path is shown in figure
3.9 a). Inspired by the tripod design from [173], we use three 2× 2× 2 mm piezo plates19,

18This means of monitoring is a straightforward way to catch subtle technical problems, that would otherwise
go unnoticed. One example in this context are mode instabilities of the laser, which could be identified
and fixed very conveniently.

19Thorlabs, PA4CEW. They feature ∼ 2.0 µm free stroke and ∼ 22 nF capacitance.
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Figure 3.9: Phase control and custom piezo mirror assembly. a) Optical setup showing how a
lattice beam pair is created and imaged onto a CCD camera after passing through the science cell
(see sec. 3.2.4). A similar setup is used for the other lattice beam pair (not shown). Prior to the
science cell, one of the two beam paths contains a piezo-driven mirror which allows the active
control of the relative phase shift of each pair. b) Photo of the mount, showing the cylindrical-
conical end on the opposite side of the mirror. c) Piezo mount with attached mirror. This design is
based on the proposal in [173].

glued using epoxy resin in a equilateral triangle pattern to the tip of a custom heavy steel
support mass, see figure 3.9 b) and c). The latter prevents undesired mechanical resonances
from occurring at low frequencies. Each piezo plate can be controlled independently using
an electronic circuit adapted from [173]. The input signal Vin is split into three output
voltages Vout = kiVin, with ki, i = 1, 2, 3, which later on seed high voltage amplifiers20,
whose outputs are connected to the three piezo plates. The applied voltages range from 0
V to ∼ 100 V. The values of ki ≈ 1 can be varied by a few percent using trimmers. This
tuning allows to compensate for inhomogeneities of the piezo expansion and from the
glueing process. The ki’s were adjusted in such a way that the beam pointing stays stable
upon modulating the piezo voltage, which was optimized by looking at the beam position
on a camera in real time. When the ki’s are properly adjusted, the relative phase between
the beam can be varied by scanning Vin without changing the beam pointing significantly.

20Falco Systems, WMA-280.
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Relative phase measurement The phase measurement starts by separating the X and Y
beam pairs using a polarization beam splitter after their passage through the objective.
Then, each pair is sent to a dedicated measurement setup. First, a λ/2 waveplate followed
by another polarizing beam divider is used to duplicate the beam pair. Then, each copy
is sent through a 5µm slit21, whose width is small enough to let the light pass only if the
copy interferes constructively at its position. The slits are aligned with the interference
pattern of the pair, which happens to be horizontal (vertical) for the X pair (Y pair)22,
using a precision rotation mount23. The intensity passing through is recorded using a
balanced amplified photodector24. It has an output that records the difference between
the intensity signals s1 and s2 measured behind the two slits. They can be expressed in the
following way,

si(δϕ) =
Ai

2
[1 + cos(ϕi + δϕ)], i = 1, 2, (3.8)

where the amplitude Ai is proportional to the optical power before the slit, δϕ is a term
that accounts for the dephasing accumulated prior to duplicating the beam pair, and
ϕi originates from the fact that each copy follows a different path after the duplication.
Both Ai andϕi can be tuned by rotating the λ/2 waveplate and changing the path length
after the duplication step, respectively. The phases ϕ1 and ϕ2 are not subject to drifts.
Indeed, after collection and recollimation by the object lens, the lattice beams are largely
overlapped and thus undergo comparable phase shifts as they propagate further. In the
case of power matching A1 = A2 and phase matchingϕ2 = ϕ1 + π mod 2π , the signal
subtraction yields

∆s(δϕ) = s1(δϕ)− s2(δϕ) = A1 cos(ϕ1 + δϕ). (3.9)

The quantity δϕ can be varied by tuning the piezo voltages as explained in the previous
paragraph. As shown in figure 3.10 a), the change in phase can surpass 2π .

Feedback loop and integration into the experimental cycle The control and measure-
ment setups described in the two previous paragraphs are linked together to form a
feedback loop by using a PID controller26. Consequently, the relative phase δϕ defined
above can be stabilized to a given value by having the piezo-driven mirrors compensate
the slow phase drifts of each pair. We tune the PID controller to regulate the error signal
from Eq. (3.9) to 0 V, because that is where it has the largest slope as a function of δϕ and

21Thorlabs, S5HK.
22This is due to the direction of the 45◦ mirror that we use to shoot the lattice beams back in the horizontal

plane after their passage through the objective.
23Thorlabs, PRM1.
24Thorlabs, PDB210A.
26Standford Research System, SIM960.
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Figure 3.10: Phase lock error signal. a) Top: error signal obtained by scanning the voltages across
the piezo plates for both X (green) and Y (blue). Bottom: corresponding sawtooth signal used as
voltage input. The fact that the error signal is sine-like shows that the relation between relative
phase and input voltage is roughly linear25. One can therefore approximately map the relative
phase to the input voltage. b) Estimates of the phase inferred by the reported input voltage of
the servo loop for successive experimental cycles of ∼ 60s. Each data point corresponds to an
experimental cycle.

its position does not depend on A1. Obviously, this servo loop can only operate while
the lattice beams are shooting through the science cell with enough power to measure
the relative phase reliably. Given that the beams are not switched on all the time during
an experimental cycle, it is necessary that the control computer communicates with the
PID controller to enable and disable the regulation at the appropriate moments. The
communication is realized via serial communication between the control computer and
the mainframe hosting the PID module27. At the beginning of each experimental cycle, the
four lattice beams are activated while atoms are still located in the MOT chamber, and the
PID control is enabled during this time. The regulation and the lattice beams are switched
off before the atoms reach the science cell, and the PID module retains in memory the last
regulated value. This value is recorded and written to a logs file which allows us to not
only follow the phase drift as shown in 3.10 b), but also to identify regulation failures. The
regulation succeeds in more than 99% of the experimental runs, and the observed typical
phase drift rate indicates that the lattice site is correctly stabilized with an accuracy of 2%
of dαlatt with respect to an arbitrary reference in the worst case28. It is sufficient to perform
single-layer loading and average long series of absorption images. Since the absolute
spatial location of the lattice nodes is fixed by the phase control procedure, the position of
the single layer of sites that we would like to load is well-defined. In particular, we can
align the compression potential in such a way that it coincides with this layer.

27Standford Research System, SIM900.
28We see that the drift is significantly faster for the Y pair. This originates from its longer beam path prior to

shooting the atoms, from the 50:50 beam splitter to the science cell.
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3.2.5 Green compression beam

In order to provide strong confinement along the y direction and realize the pancake
configuration depicted in the first step of figure 3.4, we generate a repulsive optical
potential with a green TEM01-like mode [174, 175]. The corresponding optical setup is
partially shown in figure 3.5 b). To begin with, we split off light from a 10W solid state
laser source running 532 nm 29. After some initial beamshaping, the output is split in two
parts, one of which is being used for the barrier beam described later in section 6.5. Both
beams are diffracted through AOMs and injected into high power single mode fibers. The
intensity of both beams at the fibers’ ouputs is regulated in a similar way as the lattice
beams in sec. 3.1.2. The beam dedicated to the compression potential is sent through a
cylindrical telescope creating a vertically stretched elliptical beam with a 1:10 aspect ratio.
After the telescope, the collimated beam is sent through a π-phaseplate and focused down
by an achromatic lens 30 of focal length f = 120 mm.

Assuming an infinitely sharp step of the phase plate and ideal alignment, the transmission
through the phase plate transforms the incoming wave ~Ein into ~Eout(x, y) = e−iφπ (y,z)~Ein

with a spatially non-uniform wave front of the form

φπ (y, z) =

{
0, y < 0
π , y > 0.

, (3.10)

where y and z denote the distances with respect to the center of the elliptical Gaussian
beam. In this ideal case, it can be shown [88, 174] that the intensity at the position of the
atoms is described by

Iπ−plate(y, z) =
2P

πwywz
erfi2

(
y

wy

)
exp

(
−2y2

w2
y
− 2z2

w2
z

)
, (3.11)

where wy and wz denote the waists along the y and z directions, respectively, P is the opti-
cal power, and erfi(· · · ) represents the imaginary error function. The intensity vanishes
around y = 0, creating a local minimum of potential energy. In order to make sure that
the potential is shaped correctly, we image the compression beam on the x camera. After
the science cell, the beam goes through a telescope31 and is imaged with a magnification
of 8.34± 0.02. The figure 3.11 shows the measured intensity distribution, which is in very
good agreement with the expected profile. It also provides an estimate of the correspond-
ing waists wy = 13.22± 0.04 µm and wz = 135.9± 0.4 µm. The waist along the vertical
z direction is large enough to be able to assume that the horizontal compression will be

29Coherent, Verdi V12.
30Edmund Optics, #49-381.
31Made of another identical f = 120 mm achromatic lens and a plano-convex lens f (λ = 532nm) = 992.1

mm (Thorlabs, LA1779-B).
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Figure 3.11: Compression beam intensity profile. a) Top: image of the compression beam. Bottom:
fit of the profile using Eq. (3.11). b) Integrated counts along y and z for top and bottom, respectively.
The solid line represents camera data and the dashed one denotes the fitted profile. The fit yields
wy = 13.22± 0.04 µm and wz = 135.9± 0.4 µm, with error bars being dominated by uncertainty
in the magnification. The visible fringes are imaging artefacts generated by a dichroic mirror
placed after the science cell to dump the excess 532 nm optical power.

approximately homogeneous. Using theses values and Eq. (2.1), we can calculate the
expected curvature created by this potential as a function of the optical power. Using
erfi(y) = (2/

√
π)y +O(y3), we can expand Eq. (3.11) around y = 0 at z = 0 and define

the angular trapping frequency associated with the corresponding approximate harmonic
oscillator as per

1
2

mω2
y y2 =

8αpolP
π2w3

ywz
y2. (3.12)

The maximum available power amounts to P ∼ 4W, which corresponds toωy ≈ 2π ×
(2.54± 0.11) kHz. As we will see empirically later, this is more than enough to achieve
single-layer loading in the useful atom number and temperature regime of the experiment.
Moreover,ωy can be directly measured, as will be shown in 4.3.

3.2.6 Site-resolved imaging

In section 3.2.2 we already described the optical properties of the high resolution objec-
tive. In this section we will describe how it is used as part of the site resolved imaging
system along the y direction. Moreover, the image analysis to extract the integrated
one-dimensional density will be detailed.

Image acquisition We will see in chapter 5 that it is sometimes necessary to load less
than 100 atoms per lattice site and per spin state in order to reach the one-dimensional
regime. It is challenging to detect such a small number of atoms using absorption imaging,
especially given that the signal is widely stretched out along the z direction due to the
strong trap anisotropy. As a consequence, it is necessary to improve the signal to noise
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ratio (SNR) of the acquired images as much as possible. We acquire the images using an
Andor iKon-M 934 camera with a high quantum efficiency of 95% at 767 nm as well as
very low levels of read-out noise. The image quality can also be degraded by the presence
of non-stationary fringes or unstable light intensity. Both of these issues can be mitigated
by reducing the time delay between the absorption and reference shot. We can reduce
it by making use of the frame-transfer functionality of the camera32. A custom mask is
placed right in front of CCD chip to cover half of its pixels. This way, by shifting over the
charges accumulated in the illuminated area after the absorption light pulse, the reference
light pulse can be recorded on the freed up pixels before the entire sensor is slowly read
out to reduce noise. This way, we can decrease the time delay to 1 ms.

Rotation of the imaging beam The camera is mounted horizontally on the optical table.
Ideally, the elongated direction of the tube traps should coincide perfectly with the orien-
tation of the CCD pixel arrays, but in reality, a small deviation is unavoidable. In order to
simplify the analysis of individual micro traps appearing on the image, it is important to
control this relative orientation. Due to its large weight and size, it is not ideal to place
the Andor camera on a rotation mount. The figure 3.12 a) shows a straightforward way
to control the rotation of the imaging beam instead. The site resolved images could in
principle be straightened by eye directly, but we used a more accurate method which
consists in calculating the two-dimensional Fourier transform of the signal in the atomic
region. By ensuring that the peaks appearing in the reciprocal space due to the lattice
modulation intersect the horizontal axis one can precisely align the imaging beam as
shown in figure 3.12 b) and c).

Selecting the tube traps Using these aligned images, it is straightforward to separate
the tube traps and analyse them independently. We start by fitting the optical density
(OD) averaged along the z direction with the following ansatz,

〈OD〉z(x) =
Ntubes∑

n=1

An exp

(
− [x− (x0 + ndαlatt,x)]

2

2σ2
n

)
, (3.13)

which is just a sum of Gaussians equally spaced by dαlatt,x , with individual amplitudes
An and sizes σn. The integer Ntubes represents the number of peaks visible on the signal,
and x0 is an offset. Figure 3.12 c) shows a typical fit, which yields a lattice spacing
of dαlatt,x = 2.59 ± 0.01 µm in the x direction, which is associated with a full-angle of
αlatt,x = 23.7± 0.1◦ between the X pairs. The various fitted σn are all very close to each
other and thus indicate that the transverse size of the clouds inside the micro traps is
smaller than the resolution limit. Therefore, it can be estimated and is be found to be
32Referred to as ’Fast Kinetics’ by the manufacturer.
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Figure 3.12: Site-resolved images along the y direction. a) Illustration of the beam rotation stage.
The beam is temporarily moved out of the (x, y) plane, and its rotation is fine-tuned by changing
the angles θ1 and θ2. b) Single absorption images corresponding to correct and incorrect beam
alignment (top and bottom, respectively). The noisy region on left of the images is due to the
chip mask intentionally covering the mid-section of the chip. This was done to prevent light
from accidentally leaking from the reference to the absorption image. c) Close-up view of the
optical density obtained from averaging 32 absorption images (top), and its vertically averaged
line profile (bottom). The solid line represents the fit using Eq. 3.13, which yields a lattice spacing
of dαlatt,x = 2.59± 0.01 µm.

equal to 1.3 µm, according to Rayleigh criterion. This is higher than the value of 0.9 µm
measured with the test target on the side, but consistent with the specification provided
by the manufacturer of 1.24 µm (see sec. 3.2.2). It is small enough to provide very high
contrast, close to 100%, despite averaging multiple images. This is a direct consequence of
rigorously stabilizing the lattice phase in the x direction (see sec. 3.2.4). From the fitted
values of x0 and dαlatt,x , we can calculate the positions of the (anti-)nodes in terms of the
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pixel size `px. Since the ratio dαlatt,x/`px ∼ 7.53 is not an integer, there will always be
pixels located in-between two neighbouring lattice sites that share contributions from
independent tube traps. To accommodate for this, we artificially split the corresponding
pixels during data analysis. The separations are made at the exact inter-site positions by
sharing the local optical density extracted from the full pixel between the two-sites in
proportion to the area of the two sub-pixels. This way, we unambiguously separate the
signal contributions of each loaded tube trap.

3.2.7 Repumping-induced vertical masking

The previous section described the acquisition of site-resolved images along the y direction.
Given the depth-of-field of ∼ 3.1 µm, which is larger than the lattice spacing in that
direction, the observation of a very large contrast of ∼ 100% is an indication that the
atoms do not occupy many lattice sites along the line-of-sight. However, this is not
sufficient to conclusively infer that only a single layer was loaded. This necessitates to
image along the z direction, where an ideal site-resolved imaging setup would allow to
observe the distribution of occupied lattice sites along x and y directions. However, as
previously mentioned in sec. 3.2.2, the large size of the atomic clouds along z direction
makes it challenging to implement.

We mitigate this issue by partially "clipping" the atomic cloud by repumping parts into
states transparent to the imaging light [54, 176]. As previously mentioned in sec. 3.2.1,
we initially intended to use this technique to realize single-layer imaging, and therefore
detailed descriptions of the repumping scheme were already presented in [88, 89]. In
a nutshell, atoms are sent into the upper hyperfine ground state manifold (mJ = 1/2),
rendering them off-resonant to the probe beam.

The pumping beam illuminates an opaque slit on an optical window, which is then imaged
onto the row of atomic wires from the side. The slit of 15µm is made of chromium as well
as gold and is part of larger collection realized in a clean room, which contains several
options of variable width [89]. The resulting beam, sent along the x direction, can later
be imaged and detected in order to facilitate alignment and focusing, resulting in images
shown in figure 3.13 a). An illustration of the corresponding optical setup is shown in b).

After passing through the slit, the masking beam is imaged onto the atoms and demag-
nified by two lenses of focal lengths f = 300 mm and 120 mm. The second lens is an
achromatic lens which is shared with with green compression beam as shown in figures
3.5 and 3.6. The theoretical demagnified slit size amounts to 6µm at the position of the
atoms. It is slightly larger than the 5µm resolution of the imaging system. During an
experimental cycle, the pumping beam is pulsed on for the duration of 1 µs, just before the
absorption image is taken along the z direction. The effect on a compressed cloud loaded
in the optical lattice is shown in 3.13 c) and d). The full width at half-maximum of the
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addressed slices after pumping is ∼ 4µm, which is smaller than depth of field of ∼ 5µm
along this direction. Therefore, the clipped atomic ensemble constitutes a much better
target to perform site-resolved imaging along the z direction. However, this technique
precludes the extraction of densities along the z direction.

3.2.8 Evidence of single-layer loading

So far, we have described how to create the best conditions to check whether one is only
loading a single layer of the two-dimensional lattice along y, as illustrated in figure 3.4 b).
In the following, we will detail how the auxiliary imaging axis z can be employed in this
context.

We verified this by taking pairs of images of the compressed cloud, both with and without
the two-dimensional optical lattice along z. In between pairs, we varied the horizon-
tal position ycompression of the green compression beam by tilting a mirror placed on a
piezoelectric actuated mount. For each pair of images, we extracted the center of mass
(CoM) of the cloud along y without lattice, denoted by yCoM−no latt, and the same quantity
with lattice yCoM−latt. We observed that, while yCoM−no latt increased smoothly by moving
the green beam, yCoM−latt would suddenly jump between evenly spaced positions. This
discreteness is exactly what one would expect in an optical lattice where only one row
is loaded. In order to empirically capture this effect, we fit the data using the following
model,

yCoM−latt =

Nsteps∑

n=1

dαlatt,y

[
1
π

arctan
( yCoM−no latt − ys − ndαlatt,y

`w

)
+

1
2

]
+ y0, (3.14)

where Nsteps corresponds to the number of observed steps, dαlatt,y is the lattice spacing
along the y direction, `w is a parameter that controls the step sharpness, ys is a shift
parameter to fix the absolute position of sites, and y0 is an offset. The data shown in figure
3.14 agrees well with this model and provides a lattice spacing of dαlatt,y = 2.48± 0.03
µm, which corresponds to a full-angle ofαlatt,y = 24.8± 0.3◦ between the Y lattice beams.
Here again the error bars are dominated by the magnification error. The fitted sharpness
parameter `w ≈ 0.22µm is well below the lattice spacing, but has a finite value. This is
due to the fact that inbetween two steps, when the compression beam is located in the
middle of two lattices sites, the compressed cloud is loaded into both them. In the limit
of infinitely small cloud size along y prior to loading, the step should become infinitely
sharp. Despite the imperfect optical resolution which prevents us from directly observing
the lattice modulation along the x direction, this effect can never be seen quite clearly as
shown in figure 3.14 b). We also included an image that was taken when the compression
beam’s direction of propagation did not coincide with the lattice pattern along the y
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Figure 3.13: Atomic clipping along z facilitated by optical masking. a) Image of the masking
beam focused on a camera, featuring a shadow region reflecting the opaque mask b) Optical setup
to project the shadow image onto the atoms. c) Absorption image of the compressed cloud after
being loaded in the two-dimensional lattice without masking. d) Similar image in the presence of
masking, illustrating the drastic size reduction along z.
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Figure 3.14: Direct evidence of single-layer loading. a) Position of the CoM of the compressed
atoms after being loaded into the optical lattice as a function of the compression beam position.
The latter is measured by the CoM of the compressed atoms without optical lattice. Whenever a
plateau is reached, the position of the CoM does not depend on the compression beam’s position
until a new lattice site is approaching. The points highlighted in red correspond to images (i) and
(ii) shown on the right. b) For each image, the left frame represents the OD acquired along z for
compressed atoms loaded in the two-dimensional optical lattice, whereas the right frame shows
an illustration featuring both the y interference pattern (in white for high intensities) and the
compression potential (green). The optical resolution is insufficient to resolve the lattice spacing
along x, however, we can distinguish single layer loading (i) from double layer loading (ii). The
image (iii) represents the distribution when the compression beam is not correctly aligned with the
lattice pattern along y.
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direction, which would systematically lead to multi-layer loading. This underlines the
extreme importance of precise alignment.
By combining the present measurement of dαlatt,y and the one of dαlatt,x made in sec. 3.2.6,
we can extract the spacing ratio dαlatt,y/dαlatt,x = 0.96± 0.01. This result depends on the
calibration of the magnifications along y and z, which correspond to the axis where
the spacings are extracted. Remarkably, this ratio can be obtained in an alternative
and magnification-independent way using the interference pattern of the lattice beams
collected on the z camera. Using the image shown in 3.8 b), it yields a ratio of 0.962. The
fact that these two methods agree so well further highlights the overall reliability of the
optical techniques developed here.
We have shown that we can load a single-layer of the two-dimensional optical lattice.
This crucial milestone will allow us to perform quantitative analysis of the in-situ density
profiles inside individual micro traps, in chapter 5. But before that, it is necessary to
calibrate the external potential inside which atoms evolve. The next chapter is dedicated
to that task, as well as the calibration of the density from absorption images.



54 Chapter 3 Preparation and detection of highly anisotropic Fermi gases



Chapter 4

Reconstruction of the micro-trap potential

4.1 Absorption imaging and light intensity calibration . . . . . . . . . . . . . . 55

4.2 Modelling the trapping potential . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Calibration of the perpendicular curvature of the potential . . . . . . . . . 63

4.4 Calibration of the longitudinal curvature . . . . . . . . . . . . . . . . . . . 67

In chapter 3 we have presented a novel preparation procedure allowing us to load a
single layer of a two-dimensional optical lattice. By employing site-resolved imaging,
we are in a position to capture and individually analyse the quantum gases contained in
different micro-traps. This technical achievement represents the crucial milestone required
in order to quantitatively evaluate density profiles in the absence of ensemble averages.
The remaining challenge in this context arises from the fact that the density profiles are
not homogeneous in any direction of space.

This chapter will present how to calibrate the trapping potential of a given-micro trap
and the density. First, we will empirically derive the proper model to convert optical
density in atomic densities in the tube traps. Then, a model of the potential in the tube
traps will be introduced to gauge the degree of similarity between the potentials of the
loaded tubes. Finally, we will present a calibration method for both the perpendicular and
the longitudinal curvature of the tube traps.

4.1 Absorption imaging and light intensity calibration

We perform standard absorption imaging to probe the density distribution of the atomic
cloud. A resonant laser beam passes through the gas and is locally attenuated according
to the density of the sample along the line-of-sight. This altered beam is magnified and
imaged onto a CCD camera. Ultimately, the sample is destroyed due to the excessive
energy transfer from the photons. Alternatively, non-destructive imaging techniques exist,
such as phase-contrast imaging, which uses a slightly detuned probe beam to exploit the
dispersive properties of the atomic sample to reconstruct the integrated density profile
[177]. These dispersive effects are absent if the probe beam is perfectly resonant.
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When the atomic sample is dense, using a low intensity to perform absorption imaging is
problematic as very few photons make it through the entire sample, leading to a reduction
of the signal-to-noise ratio. This issue can be mitigated by using higher light intensities
which necessitates an additional calibration step, as will be described below.

In the low intensity limit, the transmitted beam profile is given by the Beer-Lambert law
[178],

Iout = Iine−OD(x,z), OD(x, y) = σeff

∫
n(x, y, z)dz, (4.1)

where Iin and Iout are the incident and transmitted intensities, respectively, and OD
denotes the optical density. The effective cross section is defined as σeff = γσ0, with
σ0 = 3λ2

2π representing the resonant cross-section [179] and γ ≤ 1 is a parameter that
accounts for potential effects related to polarization-related effects. Finally, n(x, y, z) is the
three-dimensional atomic density distribution. As soon as the saturation of the optical
transition becomes relevant, the Beer-Lambert law needs to be modified [180, 181]. The
optical density then becomes

OD(x, y) = − ln
(

Iout(x, y)
Iin(x, y)

)
+

Iin(x, y)− Iout(x, y)
Ieff
sat

, (4.2)

where Ieff
sat = Isat/γ, with the saturation intensity Isat = πhcΓnat,D2/3λ3 at λ = 767 nm,

with a natural linewidth Γnat,D2 ≈ 2π × 6.035 MHz. The first term originates from the
Beer-Lambert law whereas the second one corresponds to saturation correction. For the
remainder of this text and unless specified otherwise, we always image the atoms in the
stretched state1 |1〉 because it has a quasi-cycling transition, as described in [88, 89]. Along
the y direction the light is linearly polarized, perpendicularly to the quantization axis.
As a result, only half of the photons are actually resonant with the cycling transition and
consequently we must take γ ≈ 0.5.

Moreover, given that we use an imaging pulse of duration 12 µs, we used the method
presented in [181] to ensure that no noticeable Doppler shift occurs in our imaging
sequence.

Because they appear as ratios in Eq. (4.2), the intensities Iin, Iout and Isat can be replaced
with the their corresponding camera count rates, which we denote by Cin, Cout and Csat,
respectively [181]. Thus the equation becomes

OD(x, y) = − ln
(

Cout(i, j)
Cin(i, j)

)
+

Cin(i, j)− Cout(i, j)
Csat

, (4.3)

where i and j are integers describing pixel rows and columns. In this description, all of
the information required to incorporate the saturation effects is contained in Csat, which

1Defined in section 2.3.
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Figure 4.1: High-intensity absorption calibration. a) Calibration of the saturation count rate (top)
and inverse SNR (bottom), showing a minimum around 〈I/Isat〉 = 1.2. b) Reconstructed density
profiles obtained in the tube traps for different light intensities. Top: no saturation correction.
Bottom: with correction for high probe intensity.

needs to be calibrated. This can be done by requiring that the reconstructed total atom
number, obtained by integrating over the reconstructed column density, is independent
of the probe beam intensity. To do so, we image the compressed cloud loaded in the
two-dimensional lattice. We switch off the lattice beams just before the imaging pulse
starts in order to avoid AC-Stark shits [182]. We calibrated the resonance frequency using
the method from [181]. We take groups made of three shots at different light intensities.
We repeat this operation until obtaining a large amount of groups. For each group i,
we calculate the standard deviation σi of the atom number data, which depends on Csat

through Eq. (4.3). We find the value of Csat that minimizes
∑
σi, where the sum contains

all the groups. Grouping the images by three minimizes the influence of external factors,
which could potentially cause the atom number to drift. The top frame of figure 4.1 a)
shows the convergence of Csat as the number of groups increases, which ultimately leads
to a statistical error of ±4 %.

Once the value of Csat is known, we can extract the mean saturation parameter 〈I/Isat〉 by
comparing the averaged count rate of the reference shots with the saturation count rate.
We calculated the signal-to-noise ratio SNR = 〈nmax〉/〈σpix〉, where 〈σpix〉 is calculated by
averaging the typical standard deviation of the reconstructed densities at each individual
pixel from a series of multiple shots taken at identical light intensity, and 〈nmax〉 is the
maximum density reached at the center of the potential. As shown in the bottom half of
4.1 a), one can identify a clear optimum at 〈I/Isat〉 ∼ 1.2. Consequently, we used this light
intensity setting to acquire images for all quantitative measurements.

However, care has to be taken when deriving Csat via atom number measurements. The
presence of cooperative effects could strongly bias the signal as there are typically density
dependent effects in dense samples [183–185]. For example, consider two atoms in close
proximity to one another, initially in the ground singlet state, and therefore interacting via
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a van der Waals potential V(r) = −C6/r6. If one atom absorbs a photon, it is pumped into
a triplet state and suddenly interacts with the other ground state atom through the dipole-
dipole potential V(r) = −C3/r3 instead. The range of this potential is much longer than
in the case 1/r6 case. Any shift of the levels will then reduce the effective scattering cross
section of the atom that remained in the ground state. This effect was employed in other
works to induce light-assisted collisions, and requires large densities to be dominant [186].
We empirically rule out the significance of density-dependent effects in our experimental
setup by looking carefully at the reconstructed density profiles, as shown in figure 4.1 b),
and noting that they overlap very well for all values of the density.

Finally, a recent study presented a method to extract the density of ultracold gases that are
smaller than the resolution limit [187]. In particular, they observed significant non-linear
corrections to the local density compared to a standard analysis. In order to verify the
relevance of this effect for us, we imaged the cloud after ∼ 100 µs of free expansion. This
duration was long enough to remove any visible modulation from the lattice, which is a
guarantee no sub-resolution structures remained. We compared the corresponding total
atom number from these images with their in-situ equivalents and observed no significant
deviations, which empirically justified neglecting the effects observed in [187].

4.2 Modelling the trapping potential

In order to formulate a model of the external potential making up the micro traps, one
needs to take into account all the factors contributing to the total optical intensity at the
position of the atoms. There are two dipole traps (see sec. 2.2) and four lattice beams (see
sec. 3.1.2) that we will label with an index j. All of the laser beams contributing to the
potential are approximately Gaussian TEM00 modes. The electric field E j of beam j is fully
characterized by a direction of propagation~e j, a polarization direction2 ~u j, a waist w0, j

and a power Pj. The Table 4.1 summarizes the possible values of j and the corresponding
directions of propagation and polarization. Figure 4.2 contains a visual representation
of the beam configuration. Then, ~E j(~r) = eiω jtE j(~r)~u j, whereω j is the angular frequency
and

E j(~r) =

√
2Pj

πw j(z j)2 exp

(
−

ρ2
j

w j(z j)2

)
exp

[
−i

(
k jz j + k j

ρ2
j

2R j(z j)
−ψ j(z j)

)]
, (4.4)

is the expression of a TEM00 Gaussian mode [178, 188]. Here, z j =~r ·~e j is the axial distance
from the beam’s waist and ρ j = ||~r×~e j|| is the radial distance from the axis of propagation.

2All the laser beams used here are linearly polarized.
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Also, the standard quantities were employed as well

w j(z j) = w0, j

√
1 +

(
z j

zR, j

)2

, zR, j =
πw2

0, j

λ j
, R j(z j) =

z2
j + z2

R, j

z j
, ψ j(z j) = arctan

(
z j

zR, j

)
.

The Rayleigh range zR, j quantifies how quickly the radial beam size w j(z j) diverges
around its waist, R j(z j) is the local radius of curvature of the wavefront and ψ j(z j) is
usually referred to as the Gouy phase. The quantities λ j and k j = 2π/λ j represent the
wavelength and the wavevector of the beam, which are related to the angular frequency
via the dispersion relationω j = ck j, where c is the speed of light in the vacuum. Note that
we directly defined the electric fields such that they are homogeneous to (W ·m−2)1/2.
Consequently, the corresponding intensities can be obtained by simply squaring them.
The true electric fields can obtained by dividing Eq. (4.4) with cε0/2, where ε0 is the
vacuum permittivity.

For all of the beams, we can take λ j = λL = 1064 nm. The two dipole traps are polarized
in orthogonal directions, and are slightly detuned with respect to each other so that no
interference effect can occur. Their corresponding intensity distribution is given by the
incoherent sum

IcODT = |EcODT1|2 + |EcODT2|2. (4.5)

The lattice beams have pairwise matching polarization and frequency to maximize inter-
ference inside pairs, and avoid them between pairs (see sec. 3.1.2). Their corresponding
intensities are given by

Ilatt,X = |Elatt,X1 + Elatt,X2|2, Ilatt,Y = |Elatt,Y1 + Elatt,Y2|2. (4.6)

The overall potential is obtained by using Eq. (2.1) and yields

Utot(x, y, z) = αpol Itot(x, y, z) + mgz, (4.7)

where Itot = IcODT + Ilatt,X + Ilatt,Y is the total intensity. We also included the gravitational
potential energy. Using this convention, all the beams intersect at (0, 0, 0), which also
coincides with the position of their waists.

It is straightforward to calculate Utot numerically for any inputs of Pj and w j. The waists
of the two dipole traps are wcODT1 = 141µm and wcODT2 = 138µm (see fig. 2.3), and, in
what follows, we will be using a power of 1.07 W in both arms, which corresponds to the
recompressed final setting in the experiment (see fig. 2.5). We will take the lattice waists
to be equal to3 wlatt = 220µm and set their power per beam to4 2.93 W.

3This corresponds to their design value and is close to their measured values using a beam profiler.
4To mimic the typical settings used in chapter 5.
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Beam index j Polarization direction ~u j Propagation direction~e j

cODT1 (0, 0, 1) (cosθ 1
2
, sinθ 1

2
, 0)

cODT2 (sinθ 1
2
, cosθ 1

2
, 0) (cosθ 1

2
,− sinθ 1

2
, 0)

latt, X1 (0, 1, 0) (sinα 1
2
, 0,− cosα 1

2
)

latt, X2 (0, 1, 0) (− sinα 1
2
, 0,− cosα 1

2
)

latt, Y1 (1, 0, 0) (0, sinα 1
2
,− cosα 1

2
)

latt, Y2 (1, 0, 0) (0,− sinα 1
2
,− cosα 1

2
)

Table 4.1: Beam parameters used to model the external potential. The half angle between the
crossed dipole trap arms is θ 1

2
= θcODT/2 = 41.8◦/2, and the half angle between the lattice beams

isα 1
2
= αlatt/2 = 23.6◦/2.

a) b)

Figure 4.2: Geometrical configuration of the various optical traps. a) Representation of the six
laser beams. The crossed dipole trap is made up of the two beams propagating in the horizontal
plane, represented in blue. For the optical lattice, there are four beams propagating from top to
bottom under an angle. The beams can interfere pairwise to generate two mutually independent
optical lattices. The X and Y pairs are represented in red and green, respectively. We define the
position where beams overlap as x = y = z = 0. b) Schematic representation of the atoms, in
red, loaded in a single plane of tube traps represented by grey cylinders. The thin blue lines are
centered on the loaded tubes located at y = 0. The vertical cuts described in the main text are
taken along those lines. The x coordinate varies from one micro trap to another, but is always equal
to multiples of dαlatt ≈ 2.59µm where Utot(x, y, z) has a local minimum.
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Figure 4.3: Simulation of the total potential. a) Cross section along the x direction with y = z = 0.
The potential has local minima at positions xi = idlatt, where i is an integer. The two insets show the
variation of the local curvature, quantified by the position dependent angular trapping frequency
ωi(z)/2π at several lattice minima xi (left), and as a function of z (right). b) Cut of the potential at
x = y = 0, with and without lattice beams. The cross section with lattice beams correspond to a
transverse trapping frequency of 17.03 kHz and 95.88 Hz longitudinally. Without lattice beams the
longitudinal trapping frequency drops down to 90.20 Hz. The dashed lines represent the harmonic
approximations of the potentials around their local minimum. c) Cut at different lattice minima xi

for y = 0. The inset represents the variation of the longitudinal trapping frequency as a function of
the minimum position xi. d) Absolute difference of the slice at x = xi and y = 0 with respect to the
central one x = y = 0.

We first consider horizontal through the 3D potential for various z and at y = 0 by defining

Ũ⊥,z(x) = Utot(x, 0, z)−Utot(0, 0, z). (4.8)

This potential is depicted in figure 4.3 a) for various settings and parameters. The minima
are located at positions xi = idαlatt , where i is an integer and dαlatt is the spacing defined in
Eq. (3.2). By expanding the potential around x = xi at constant y = 0 and z, we define the
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local angular trapping frequency asω⊥,i(z) as

Ũ⊥,z(x) =
1
2

mω⊥,i(z)2(x− xi)
2 +O((x− xi)

3). (4.9)

In the limit where the lattice waists are infinite, this coefficient would neither depend
on z nor on the minimum position i anymore. However, due to the finite size of the
beam it decreases with growing distance from center located at i = 0 and z = 0. The
model allows us to gauge how significant this decrease is. It predicts a central value
of ω⊥,i=0(z = 0) = 2π × 17.03 kHz. If we move 9 tube traps away from the center in
the horizontal direction, one hasω⊥,i=9(z = 0) = 2π × 16.84 kHz, which corresponds
a relative difference of only 1.1 % compared to the central value. Also, for a given
tube trap, the local angular trapping frequency in the perpendicular direction is very
homogeneous across the range populated by atoms. For instance, the model predicts that
ω⊥,i=0(z = 100µm) = 2π × 16.88 kHz, which corresponds to a relative difference of only
0.9% compared to the central value.

It also interesting to look at vertical cuts centered on tube traps. For that purpose, we
define

Ũ‖,i(z) = Utot(xi, 0, z− zmin,i)−Utot(xi, 0, zmin,i), (4.10)

where zmin,i is the gravity sag, corresponding to the local minimum along the vertical cut
of Utot(xi, 0, z). Its value at the center when the lattice beam powers are set to 2.93 W is
zmin,i ≈ −24µm and varies by only 2% upon moving 9 tube traps away from the center.
In analogy to the treatment of horizontal cross sections, we define the coefficientω‖,i(z)
by Taylor expanding Ũ‖,i(z) around its minimum,

Ũ‖,i(z) = 1/2mω2
‖,iz

2 +O(z3). (4.11)

Unlike in the previous situation, atoms can explore regions where the higher order terms
O(z3) contribute significantly. The longitudinal potential is influenced by the presence
lattice beams as shown in 4.3 b). For a given power of the lattice beams, we can quantify
how much Ũ‖,i(z) depends on the positioning of the lattice site, as detailed in figure 4.3 c).
We observe that the coefficientω‖,i slightly decreases from 2π × 95.36 Hz to 2π × 94.74
Hz as i increases from 0 to 9, which corresponds to a relative difference of 0.7 %. We can
also compare the cuts beyond the harmonic approximation, as represented in 4.3 d). The
relative differences with respect to the central cut are largest on the negative z side, which
also correspond to side which also happens to be the area containing the majority of atoms
due to the asymetry. However, for z = 100µm, which is very close to the spilling limit, the
relative difference is below 3% between cuts at i = 0 and i = 9.

To summarize, we have derived the following conclusions:
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• We can assume that for each tube trap at position i the potential is described by
V(x, y, z) = V⊥(x, y) + V‖(z), where V⊥(x, y) and V‖(z) are independent of i. This
simplification is reasonable as long as we analyse tube traps that are not too far away
from the center. By restricting ourselves to |i| ≤ 9, the model indicates that errors
arising from this assumption are on the order of ∼ 2%.

• At large lattice power, we can use the harmonic approximation V⊥(x, y) = 1
2 mω2

⊥(x2 +

y2) for the transverse direction. Indeed, the trap is limited by the longitudinal di-
rection, which causes atom to spill before they have the opportunity to reach the
transverse anharmonic region at equilibrium.

• Because of the typical trap frequency ratios that we will study, we expect the cloud
to extend into regions where the non-harmonicity of V‖(z) contributes significantly.
As a consequence, we need to find a way to reconstruct V‖(z) with a precision
exceeding the harmonic approximation.

The exact validity of this model relies on several factors and assumptions. First, it depends
on the assumption that beams are overlapped at a single point, and second, that each beam
has its waist position located at this point as well. It also assumes that the propagation
and polarization vectors are ideal, so that the lattice pairs interfere with a 100% contrast.
Misalignment is easy to include mathematically, but very hard to control and quantify
in the experimental context. For that reason we restricted ourselves to the analysis of
this ideal configuration. However, this model was just meant to explore the expected
geometry of trap and estimate the local variations of local curvatures in each given tube
and inbetween tubes. It cannot be used an input to analyse future experiments. In the
next sections, we calibrate those curvatures empirically.

4.3 Calibration of the perpendicular curvature of the potential

We argued previously that it is reasonable to consider the transverse potential to be purely
harmonic. In other words, it can be fully described by a set of transverse angular trapping
frequenciesωx andωy that are approximately equal is each tube traps. We can vary them
by changing the amount optical power contained in the lattice arms. In this section, we
will briefly discuss how these frequencies can be measured by modulating the position
and the curvature in a harmonic trap, and apply it to the transverse potential of the tube
traps [189–191].

Curvature modulation We first consider the single-particle Hamiltonian

Ĥcurv =
p̂2

2m
+

1
2

mω2(1 +ε(t))x̂2, (4.12)
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where ε(t) is a small time dependant perturbation. We denote by |n〉 the eigenstates of the
one-dimensional harmonic oscillator5, where n is a positive integer, and which correspond
to the eigenstates of the unperturbed Hamiltonian when ε(t) = 0. We assume a sinusoidal
modulation ε(t) = ε0 sin(ωmodt) with angular frequencyωmod for arbitrary durations
τ . We can use time-dependent perturbation theory to calculate the transition probability
from an initial state n to a final state q via

pq,n =
m2ε2

0

4h̄2 |〈q|x̂2|n〉|2 f|q−n|(ωmod, τ), fu(ωmod, τ) =

∣∣∣∣∣∣

τ∫

0

dt sin(ωmodt)eiuωt

∣∣∣∣∣∣

2

, u > 0.

(4.13)
We defined the function fu(ωmod, τ), which has a peak at ωmod = u×ω and a width
(resp. amplitude) that decreases (resp. increases) as the modulation time τ increases. The
matrix elements of x̂2 are non-zero only if q = n± 2 or q = n, but the latter case is not
relevant as it does not correspond to a state transition. In the former case, it evaluates to

|〈n± 2|x̂2|n〉|2 =
h̄2

4m2ω2 (n + 1± 1)(n± 1). (4.14)

It is worth noting that x̂2 cannot couple eigenstates with different parity due symmetry,
which means that transitions n→ n± j, where j is an odd positive integer, are forbidden
even beyond the perturbation regime whereas higher order even transitions are possible.
The averaged energy increment ∆En,curv due to these two transitions is given by

∆En,curv = 2h̄ω(pn+2,n − pn−2,n) ∝ ε2
0(n +

1
2
) f2(ωmod) > 0. (4.15)

Because this quantity is positive, it means that there is a macroscopic heating which can be
calculated by weighting the energy increments ∆En,curv by the corresponding populations
in states n [189, 191]. This straightforward calculation demonstrates that scanning the
modulation frequencyωmod gives rise to a resonance signal located at twice the underlying
trapping frequency 2ω, and thus allows one to extractω using spectroscopy.

Position modulation We redefine the single-particle hamiltonian to describe a perturba-
tion of the position of the oscillator, instead of the curvature, as

Ĥpos =
p̂2

2m
+

1
2

mω2(x̂−ε(t))2. (4.16)

5see Eq. (5.53).
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By expanding the last term, we see that the perturbation couples to the position operator
x̂ rather than its square. As a consequence, the contributing matrix elements are

|〈n± 1|x̂|n〉|2 =
h̄

2mω

(
n +

1
2
± 1

2

)
, (4.17)

which leads to the energy increment

∆En,pos ∝ ε2
0 f1(ωmod) > 0. (4.18)

In the previous case, we obtained Eq. (4.15) which was dependent on n, indicating that
the more energy is present in the system, the higher the associated heating rate. This
positive feedback loop leads to an exponential increase of the heating rate over time. In
this case, we still have ∆En,pos > 0 but it is independent of n, producing a constant heating
heating rate on the macroscopic level. Due to the symmetry of x̂ it is proportional to
f1(ωmod), implying a resonant response atωmod =ω. Beyond the perturbative regime,
only transitions between states with opposite parities can be excited.

Modulation spectroscopy of the optical lattice Both perturbations Eqs. (4.12) and (4.16)
can be realized in the tube traps by modulating the intensity and the relative phase of
the lattice beam pairs, respectively. This can be realized by ramping the set point of the
corresponding regulation system, which works well as long the modulation frequency
does not exceed the bandwidth of the feedback loop. For the intensity modulation we
have a bandwidth of 100 kHz, whereas for the phase modulation we use the regulation
setup described in section 3.2.4, which is limited to bandwidths of ∼ 20 kHz. A typical
measurement using both techniques is shown in figure 4.4. An atomic cloud loaded in a
single-layer of the two-dimensional lattice was subjected to intensity or phase modulation
with varying frequencies. The in-trap cloud size σz along the vertical direction was
measured using a Gaussian fit after applying the modulation, and compared to its value
in absence of modulation σz,0. Since the energy is pumped into the transverse direction,
σz,0 is a good metric only if the energy is redistributed in the longitudinal direction. In the
case of intensity modulation, it is straightforward as energy is explicitly pumped in the
degrees of freedom that describe the relative motions between particles, which explicitly
couples to two-body interactions. For the phase modulation, only the center of mass
degree of freedom is pumped, and it does not couple to anything, even in the presence of
interactions due to Kohn’s theorem [192] in a perfectly harmonic trap [193]. However, due
to the finite trap depth in the transverse direction, anharmonicities will allow coupling to
the longitudinal direction when the amplitude of the transverse motion gets large enough.

Using the y imaging direction (see sec. 3.2.6), the various tube traps can be analysed
individually. We observed no significant differences between them for neitherωx norωy,
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Figure 4.4: Driving heating in the optical lattice. a) Intensity modulation of the X lattice, using a
mean power of 2.3 W per beam. The signal is empirically fitted by a Gaussian whose position and
givesωx = 2π × 14.8± 0.1 kHz. b) Phase modulation along y, using a mean power of 3.3 W per
beam. The measurement yieldsωy = 2π × 18.1± 0.1.
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Figure 4.5: Curvature measurement of the com-
pression beam. The angular trapping frequency
is determined through parametric heating in-
duced by intensity modulation. In this example
the optical power is 0.83W, and the fit to the data
yieldsωy = 2π × 1.0± 0.02 kHz.

which is consistent with the model presented in section 4.2.

By measuring the X and Y trapping frequencies for different powers6 of the four beams,
it is possible to equalize them during experimental cycles by virtue of the resulting
calibration curve7. For instance, setting ωx = ωy = 2π × 17.0 kHz corresponds to the
lattice beam powers Platt,X1 = 3.28± 0.02 W, Platt,X2 = 3.09± 0.02 W, Platt,Y1 = 3.24± 0.01
W and Platt,Y2 = 2.98± 0.01. These values need to be corrected to account for Fresnel
reflection which creates ∼4% losses per surface of the uncoated glass cell. This results in
an average power of 2.93W per beam, which was the value used for the model in figure
4.3 and underlines the consistency of the predictions it makes forω⊥.

Modulation of the green compression beam Even though the compression beam does
not contribute to the final potential, we make a brief digression here to mention that its
curvature can also be estimated with parametric heating. While a modulation of the beam

6The powers are measured using a power sensor above the science cell.
7We use the modelωi = Ki

√
Pi, with i = x, y, where Pi is the mean power in the optical beams pair i, and

Ki is a fitted coefficient.
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pointing cannot be realized due to technical limitations, the perturbation from Eq. (4.12)
can be generated via intensity modulation. The lattice beams are not used during this
measurement so that the green compression beam dominates the potential along y.

Using the waists measured in figure 3.11 and Eq. (2.1), we can calculate the expected
curvature created by this potential as a function of the optical power. Using erfi(y) =

(2/
√
π)y +O(y3), we can expand Eq. (3.11) around y = 0 at z = 0 and define the angular

trapping frequency associated with the corresponding approximate harmonic oscillator as

1
2

mω2
y y2 =

8αpolP
π2w3

ywz
y2. (4.19)

For P = 0.83W, this equation predictsωy ≈ 2π × (1.16± 0.01) kHz. The measured value,
shown in figure 4.5, is slightly lower8.

4.4 Calibration of the longitudinal curvature

Besides trap modulation techniques shown in the previous section, another popular
technique to calibrate the curvature of a harmonic potential consists in inducing center of
mass oscillations and measuring their frequency, which usually yields a better accuracy
provided the atomic motion can be resolved. It is a robust technique since, according to
Kohn’s theorem [192] applied to harmonic potentials [193], the dipole mode has the unique
property that its frequency is equal to the trap frequency, irrespective of the interaction
between the atoms. If the trapping potential is not perfectly harmonic, this can still work
provided the size of the cloud and the amplitude of oscillations around the minimum are
such that atoms do not explore the anharmonic parts. In experiments where the external
confinement is provided by magnetic curvature, the harmonicity of the trap extends over
a large range because the spacing between the coils is much larger than the scale of the
atomic cloud. If the external confinement is generated by a laser beam, one has to compare
the beam size with the spatial extent of the cloud. In our setup, we are able to induce
harmonic oscillations along z when the atoms are loaded in the crossed dipole trap in a
3D geometry, as shown in figure 4.6. However, when the cloud is contained in the optical
lattice, it is very elongated along the z direction and extends far into anharmonic region
close to the spilling point of the trap. In order to avoid relying in the harmonicity of
the potential, we developed a method to extract the longitudinal curvature from in-situ
absorption images of atoms loaded in the tube traps. This is achieved by measuring the
displacement of the minimum position of the potential in the presence of a well calibrated
additional linear term. This approach also works when the atoms explores anharmonic

8A partial explanation to this discrepancy could be the underestimation of the magnification at λ = 532 nm
of the imaging system used to image the green beam (see fig. 3.11), since it was determined by imaging
free-falling atoms with λ = 767 nm light.
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Figure 4.6: Oscillations in a harmonic po-
tential. The cloud, initially shifted from its
equilibrium position using a magnetic gra-
dient, is suddenly released at t = 0. We
observe clear harmonic oscillations in the
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quency is readily extracted using a sinu-
soidal fit.
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Figure 4.7: Calibration method of the axial curvature. a) Change of center of mass position after
expansion as a function of the gradient current I. The slope of the linear fit allows us to infer
aI = 0.605± 0.002 µm·ms−2·amp−1 . b) Shift of the minimum position of V‖,grad as a function of
the gradient current offset δI. For this set, we measureω‖ = 113.1± 2.4 Hz using Eq (4.26).

regions of the potential.

In order to generate such a linear term in the potential energy, we add a magnetic field
gradient ~Bgrad = bz~uz on top of the usual homogeneous bias field. The total potential is
modified accordingly as

V‖,grad(z) = V‖(z)−mFgFµ0bz. (4.20)

The new linear term corresponds to the local Zeeman shift, where we assumed a particle in
the hyperfine state |F, mF〉. The constant gF represents the Landé factor and µB is the Bohr
Magneton. The magnetic gradient is produced by running a current I through a nearby
pair of coils in anti-Helmholtz configuration. Because the magnetic field is proportional to
the current, it is much more convenient to write the energy as

V‖,grad(z) = V‖(z)−maI∆Iz, (4.21)
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where ∆I = I− Icomp is the current shift. Icomp is the value of current that compensates the
unintentional gradient produced by the other coils that create the bias field9 (see fig. 2.2).
The coefficient of aI is an acceleration per unit of current and can be calibrated empirically.
Indeed, if we assume that all the laser beams are switched off at t = 0, the equation of
motion for the center of mass of the atomic cloud takes on the simple form

∆zCoM(t) = zCoM(t)− zCoM(t = 0) =
1
2
(g− aI∆I)t2, t ≥ 0. (4.22)

By measuring ∆zCoM after a constant time of flight tToF as a function of the current I,
one can deduce aI by fitting the slope −aIt2

ToF/2, as shown in figure 4.7 a). Once aI is
calibrated, one can return to the situation where the laser beams are turned on.

The minimum position z = z0 of the potential V‖,grad(z) is found when its derivative with
respect to z vanishes, which yields

dV‖(z)
dz

∣∣∣∣∣
z=z0

−maI∆I = 0. (4.23)

Formally, this means that z0 is a function of the current I. Eq (4.23) can be written in the
form F(I, z0) = 0. We can use implicit differentiation to get

dz0

dI
= −∂F

∂I

(
∂F
∂z0

)−1

= maI


 d2V‖(z)

dz2

∣∣∣∣∣
z=z0



−1

. (4.24)

If we measure the infinitesimal shift δz0 of the minimum position of V‖,grad(z) due to an
infinitesimal current change δI around the position z = z0, then we can deduce curvature
of V‖(z) at z = z0. To make this clearer, we Taylor expand V‖(z) around z = z0,

V‖(z) = V‖(z0)+ (z− z0)
dV‖(z)

dz

∣∣∣∣∣
z=z0

+
(z− z0)

2

2
d2V‖(z)

dz2

∣∣∣∣∣
z=z0

+
(z− z0)

3

6
d3V‖(z)

dz3

∣∣∣∣∣
z=z0

+ ...

Taking z0 = z0,comp, where z0,comp is the minimum of the gradient-free potential V‖(z),
the first two terms are zero, and we have

V‖(z) =
1
2

mω2
‖(z− z0)

2 + V‖,anharmonic(z). (4.25)

9The inner coils operate in Helmholtz configuration to create a bias field, which also inevitably creates a
small curvature at the magnetic center. Further away from the center, this curvature turns into a local
gradient. This unintentional gradient we have to compensate thus originates from a mismatch between
the position of the atomic cloud and the position of the magnetic center.
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Figure 4.8: Tube resolved measure-
ment of axial trapping frequencies.
For each of the 18 selected tubes, we
show the induced center-of-mass shift
in orange, and the corresponding mea-
sured trapping frequency term in blue.
This measurement results from averag-
ing 71 pairs of images following the
procedure described in the main text.
We observe identical curvatures for the
different tube traps up to the statisti-
cal noise of the measurement, which is
larger than the variations predicted by
the model in figure 4.2 for i ≤ 9. For
this configuration, the mean axial fre-
quency is 96.10 Hz and the standard
deviation across the tube traps is 1.4
Hz.

We can thus computeω‖, provided δz0 is small enough, as

ω‖ ≈
√

δI
aIδz0

. (4.26)

The approximation symbol stems from the fact that δz0/δI is not rigorously equal to the
derivative dz0/dI. However, in the hypothetical case where V‖(z) is purely harmonic,
the right-hand-side of Eq. (4.24) becomes independent of z0 and the approximate relation
(4.26) would be exact for any finite shift. As a consequence, this restricts the measurement
to small shifts δz0 such that V‖,anharmonic(z0,comp + δz0) is small. The main advantage of
this method is that the produced shifts can be made much smaller than the cloud size to
exclusively probe the harmonic region even if the former extends into the anharmonic one.
Empirically we expect to see a linear relation in the harmonic region between δz0 and δI,
which coincides with our observation shown in figure 4.7 b).
We can therefore define the following protocol to measure the axial curvature around the
minimum10 of the gradient-free potential V‖ of the tube traps:

• We take several absorption images of atoms loaded in the optical trap, alternating
between shots with gradient current I+ = Icomp + ∆I and I− = Icomp − ∆I.

• For each pair of images, we measure the position difference ∆z = (z0(I+) −
10It is in principle also possible to measure the curvature away from the minimum by making small current

shifts centered around a value Icomp.
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z0(I−))/2, where ∆z denotes the typical displacement from the minimum z0,comp

of the gradient-free calibrated potential V‖(z). For each absorption image, the min-
imum position corresponds to the maximum of atomic density, extracted from a
Gaussian fit11.

• We calculate ω‖ =
√

∆I/(aI∆z) for each tube trap with aI being the calibrated
acceleration per unit of current and ∆z is obtained by averaging over all of the dis-
placements obtained from each pair of images. This way, the average displacement
is robust against long term drift of the minimum of the trap due to beam pointing.
The error onω‖ is estimated using the standard deviation from of the ∆z sets.

A realization of this measurement is shown in figure 4.8. Up to statistical noise, we observe
no differences inω‖ across the various tube traps. As a consequence, we will be using the
mean value ofω‖ across 18 tube traps to describe the axial curvature of each tube trap.
This measurement experimentally confirms the similarities between the micro-traps. In
the following chapters we will always consider the external potential to be identical in
the central micro-traps considered above, and exclusively analyse those in the following
site-resolved experiments.

11Despite the obvious asymmetry in the measured density profiles which leads to a systematic error in the
estimation of the absolute position of the maximum z0(I±) from fitting density profiles with a Gaussian
ansatz, this method was found to give a reliable result for measuring the shift z0(I+)− z0(I−) by relying
on systematic error compensation.
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In chapter 3, we detailed the experimental techniques required to load the atomic ensemble
in a single layer of a two-dimensional large-spacing lattice, and resolve its sites individually.
Then, in chapter 4, we showed that it is a good approximation to assume identical external
potentials along the central lattice sites. Building on that, we measured the curvature of
this common potential in both the transverse and longitudinal directions, even though
it is an incomplete description in the latter case. Moreover, by employing appropriate
calibration methods we made sure that the density can be accurately determined from
absorption imaging performed beyond the low saturation regime. The next step required
to fully characterize the state of our system is to measure its temperature.
In this chapter, we will consider the thermodynamics of an ideal gas of fermions in one
dimension (1D), and generalize the results to include higher transverse modes. The
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obtained equation of state will allow us to perform in-situ thermometry and to reconstruct
the longitudinal potential beyond the harmonic expression, which will be useful for the
measurements described in chapter 7. Finally, relying on these methods and techniques,
we will report on the observation of quantum degenerate one-dimensional Fermi gases.

5.1 Thermodynamics of the homogeneous ideal Fermi gas in one dimension

We perform a step by step derivation of the equation of state of a noninteracting Fermi gas
in one dimension. But before that, we briefly introduce general thermodynamics relations
in the grand canonical ensemble.

5.1.1 Grand canonical ensemble

The combination of the first and second laws of thermodynamics allow us to relate the
change of internal energy of the gas to the changes of entropy S, atom number N and
chain length L,

dE = TdS +µdN − PdL, (5.1)

where T is the temperature, µ the chemical potential, and P the generalized pressure1.
They can all be expressed as a partial derivative of the energy,

T =
∂E
∂S

∣∣∣∣
N,L

, µ =
∂E
∂N

∣∣∣∣
S,L

, P = − ∂E
∂L

∣∣∣∣
S,N

. (5.2)

In this formulation, the variables on the right-hand side are entropy, atom number and
chain length. Experimentally, it is more convenient to think of the temperature and
chemical potential as the most relevant variables, and therefore we often introduce the
grand canonical potential

Ω(T,µ, L) = E− TS−µN. (5.3)

Using Eq. (5.1), we can express its total differential,

dΩ = −SdT− Ndµ − PdL. (5.4)

1In 3D, the conjugate variable of the volume is indeed homogeneous to a pressure, however it is homoge-
neous to a surface tension in 2D, and a force in 1D. Despite that, we will call it pressure as it is often done
in the literature [194, 195].
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This indicates that can we can express the entropy, atom number and pressure as partial
derivatives of the grand potential

S = − ∂Ω
∂T

∣∣∣∣
µ,L

, N = − ∂Ω
∂µ

∣∣∣∣
T,L

, P = − ∂Ω
∂L

∣∣∣∣
T,µ

. (5.5)

The chain length L plays a special role since it is the only extensive variable Ω depends on.
Since Ω is also extensive, the scaling relation Ω(T,µ, cL) = cΩ(T,µ, L) must hold for any
scaling factor c. Therefore

Ω(T,µ, L + δL)−Ω(T,µ, L)
(L + δL)− L

=
δL
L

Ω(T,µ, L)
δL

=
Ω(T,µ, L)

L
, (5.6)

for any δL. If we consider the limit δL→ 0, we identify the starting expression of (5.6) as
a partial derivative of Ω with respect to L at constant T and µ. In combination with (5.5),
we obtain

P = − ∂Ω
∂L

∣∣∣∣
T,µ

= −Ω

L
. (5.7)

Inserting this new identity into the definition of the grand potential (5.3) yields

E = TS +µN − PL. (5.8)

The total differential of this expression, together with the thermodynamic identity (5.1)
gives the famous Gibbs-Duhem equation,

SdT + Ndµ − LdP = 0, (5.9)

which provides even more relations between the state variables. For instance,

∂µ
∂P

∣∣∣∣
T,P

= − L
N

= − 1
n1D

. (5.10)

5.1.2 Single particle states

To begin with, we consider a single particle on a line of length L with periodic boundary
conditions. The Hamiltonian is simply given by the kinetic energy,

Ĥsp,1D =
p̂2

z
2m

, p̂z = −ih̄
∂
∂z

. (5.11)

The Schrödinger equation leads to the following differential equation

− h̄2

2m
∂2ψ

∂z2 = Eψ. (5.12)
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Using E = h̄2k2/2m, we find the following normalized plane wave solutions ψ(z) =

eikz/
√

L. The wavefunctionψ(z) satisfies the boundary conditionsψ(z = −L/2) = ψ(z =

L/2) which restricts k to a discrete set of values

eikL = 1⇔ kp = p
2π
L

, p ∈ Z. (5.13)

We notice that the spacing between two k-states is constant and given by ∆k = kp+1− kp =
2π
L , ∀p. We write |kp〉 the eigenstate associated with the quantum number p such that
〈z |kp〉 = eikpz/

√
L.

5.1.3 Many-body Hamiltonian

We now extend the Hilbert space to include states that contain several particles. A state of
system can be expressed in the Fock basis {|nz,0, nz,1, nz,−1, ..., nz,p, nz,−p, ...〉} where nz,p

represents the number of particle in the single-particle state |kp〉. Because we consider
fermions, the Pauli exclusion principle applies and nz,p can only be equal to 0 or 1. We use
the short notation {nz,p} to denote the set of possible values that the various nz,p can take.
The Hamiltonian is given by

Ĥmb,1D =
+∞∑

p=−∞

h̄2k2
p

2m
n̂z,p, (5.14)

where n̂z,p is an operator that counts the number of particle occupying the single-particle
state |kp〉, such that n̂z,p |..., nz,p, ...〉 = nz,p |..., nz,p, ...〉. We also define the total atom
number operator

N̂1D =
+∞∑

p=−∞
n̂z,p. (5.15)

In the following, we will consider the thermodynamic limit, which has relevance when
studying macroscopic systems made of a large number N of particles. It consists in letting
N, L→ +∞ at constant density n1D = N/L. We will implement it by replacing sums over
p by an integral according to the following rule

∑

p

...→ L
2π

∫
dk ... (5.16)

5.1.4 The Fermi sea

Let us characterize the ground state of (5.14). If we consider a state that describes N
particles, its energy is minimized by placing these particles into the single-particles states
of lowest energy. Because of the Pauli exclusion principle, this is achieved by constructing
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Figure 5.1: Fermi sea in a pure 1D system.
Full and empty circles represent occupied and
non-occupied states, respectively. By defini-
tion, the energy levels below the Fermi energy
EF are filled.

the following Fock state, also referred to as Fermi sea,

|ΨGS〉 = |1, 1, 1, ..., 1, 1︸ ︷︷ ︸
N

, 0, 0, 0, ...〉 . (5.17)

The Fermi energy EF corresponds to the highest occupied single-particle state energy, as
shown in figure 5.1. It is associated to the Fermi wavevector kF such that EF = h̄2k2

F/2m
and the quantum number p = pF ≥ 0. It relates to the total atom number N by

N =
+∞∑

p=−∞
nz,p =

pF∑

p=−pF

1 =
L

2π

kF∫

−kF

dk =
LkF

π
. (5.18)

Introducing the density inside the homogeneous box as n1D = N/L, we obtain the
relations

kF = πn1D EF =
h̄2k2

F
2m

=
h̄2π2

2m
n2

1D =
h2n2

1D
8m

. (5.19)

The ground state energy is obtained by summing over the energies of each occupied
single-particle state

EGS = 〈ΨGS| Ĥsp,1D |ΨGS〉 =
pF∑

p=−pF

h̄2k2
p

2m
=

L
2π

kF∫

−kF

dk
h̄2k2

2m
=

LkF

3π
EF =

1
3

NEF, (5.20)

or equivalently, using (5.18),

EGS =
π2h̄2

6m
N3

L2 . (5.21)

5.1.5 Thermal states

The ground state described above is relevant to describe situations where the temperature
T vanishes, and the system occupies the lowest energy state. However, as soon as the
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temperature is increased, the relevant state to describe the system is a mixture of the
ground state and excited states. Also, in the grand canonical ensemble, the number of
atoms is a function of the chemical potential µ. The properties of thermal states are
encapsulated in the grand canonical partition function Θ,

Θ(T,µ, L)1D = Tr
[
exp(−β(Ĥmb,1D −µN̂1D))

]
, (5.22)

where we introduced β = 1/kBT. Tr[...] denotes the trace operation. Since both Ĥmb,1D

and N̂1D are diagonal in the Fock state basis we can evaluate the trace as

Θ1D(T,µ, L) =
∑

{nz,p}

〈
{nz,p}

∣∣∣∣∣∣

+∞∏

p′=−∞
exp

(
−βn̂z,p′

(
h̄2k2

p′

2m
−µ

))∣∣∣∣∣∣
{nz,p}

〉
(5.23)

=
∑

{nz,p}

+∞∏

p′=−∞
exp

(
−βnz,p′

(
h̄2k2

p′

2m
−µ

))
. (5.24)

The sum on all sets of nz,p can be decomposed into several sums

∑

{nz,p}
=

∑

nz,0=0,1

∑

nz,1=0,1

∑

nz,−1=0,1

∑

nz,2=0,1

∑

nz,−2=0,1

... , (5.25)

and for each of the sums in the right-hand side, there is only one term of the product that
depends on the sum index. This means that we can refactorize all the other terms after
performing each sum, and we obtain

Θ1D(T,µ, L) =
+∞∏

p=−∞

[
1 + Z exp

(
−β

h̄2k2
p

2m

)]
, (5.26)

where we introduced the fugacity Z = exp(βµ). The grand potential Ω introduced in
(5.3) can be calculated from the grand partition function using

Ω(T,µ, L) = − 1
β

ln(Θ1D(T,µ, L)) (5.27)

= − 1
β

+∞∑

p=−∞
ln

[
1 + Z exp

(
−β

h̄2k2
p

2m

)]
(5.28)

= − 1
β

L
π

+∞∫

0

dk ln

[
1 + Z exp

(
−β h̄2k2

2m

)]
(5.29)

=
L
βλth

Li3/2(−Z), (5.30)
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where, in order to obtain the last equality, we performed the change of variable x =
√
β/2mh̄k, we introduced the thermal wavelength λth =

√
2πβh̄2/m, and we calculated

the resulting integral2. The function Lin(Z) =
∑+∞

p=1
Zp

pn is the polylogarithm of order
n [196]. Since this series has a radius of convergence of 1, it is defined via analytical
continuation when Z ≥ 1. In fermionic systems, it is more natural to define the function
fn(Z) = −Lin(−Z) as it is more directly related to integrals of the Fermi-Dirac which
appears in the expression of many observables. Indeed, it can be shown that

fn(Z) =
1

Γ(n)

+∞∫

0

dt
tn−1

et/Z + 1
, (5.31)

where Γ(n) is the gamma function. The following properties of the function fn(Z) will be
useful in several derivations,

d fn(eu)

du
= fn−1(eu) lim

|Z|→0

fn(Z)
Z

= 1 lim
u→+∞

fn(eu) =
un

Γ(n + 1)
u, Z, n ∈ R,

(5.32)
the last property holds only if n 6= −1,−2,−3, ... . Using these definitions, the grand
potential has the simple expression,

Ω(T,µ, L) = − L
βλth

f3/2(Z), (5.33)

from which we can derive thermodynamics observables. By differentiating with respect
to chemical potential, we obtain the mean atom number as

N = −∂Ω
∂µ

∣∣∣∣
T,L

=
L
βλth

∂ f3/2(eβµ)
∂µ

∣∣∣∣∣
T,L

=
L
λth

f1/2(e
βµ) =

L
λth

f1/2(Z), (5.34)

2Some elements on the derivation of the integral, ignoring details on convergence properties:

I =
2√
π

+∞∫
0

dx ln
(

1 + Z exp(−x2)
)

= − 2√
π

+∞∑
n=1

+∞∫
0

dx
(−Z)n exp(−sx2)

n

(
ln(1 + Z) = −

+∞∑
n=1

(−Z)n

n
, Z ∈ R, and exchanging sum and integral

)

= −
+∞∑
n=1

(−Z)n

n3/2

 +∞∫
0

dx exp(−sx2) =

√
π

2
√

s
, s > 0


= −Li3/2(−Z)
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and the corresponding density,

n1D =
N
L

=
1
λth

f1/2(Z). (5.35)

To quantify the degeneracy we often define the phase-space density PSD = n1Dλth =

f1/2(Z). The degenerate regime corresponds to PSD� 1. Alternatively, one can use the
Fermi temperature TF = EF/kB, with EF defined by Eq (5.19). From Eq (5.35), we get an
expression for normalized temperature,

T
TF

=
1
βEF

=
8m

βh2n2
1D

=
8mλ2

th
βh2 f1/2(Z)2 =

4
π
( f1/2(Z))−2, (5.36)

from which we deduce immediately the normalized chemical potential,

µ

EF
= βµ

T
TF

=
4
π

ln(Z)( f1/2(Z))−2. (5.37)

Using Eq (5.32), one sees that limZ→+∞ µ/EF = 4
π Γ(3/2)2 = 1, showing that the chemical

potential is equal to the Fermi energy µ = EF when T = 0. This is expected since the
Fermi energy is by definition the highest filled level in the ground state and therefore
coincides with the energy cost of adding another particle in the ground state. Next, we can
calculate the entropy S by differentiating the grand potential with respect to temperature
at constant chain length L and chemical potential,

S = − ∂Ω
∂T

∣∣∣∣
L,µ

=
3
2

LkB

λth
f3/2(Z) +

L
βλth

∂
∂Z

( f3/2(Z))
∂Z
∂T

∣∣∣∣
L,µ

=
LkB

λth

(
3
2

f3/2(Z)− ln(Z) f1/2(Z)
)

,

where we used βµ = ln(Z) in the last equality. From (5.34) we obtain the normalized
entropy per particle as

S
NkB

=
3
2

f3/2(Z)
f1/2(Z)

− ln(Z). (5.38)

It is straightforward to obtain the pressure from the grand potential using Eq (5.7),

P =
1

βλth
f3/2(Z). (5.39)

The energy-pressure relation can be established from the pressure identity in (5.2). In
order to calculate the right hand side, we notice that dimensionless ratio E/EGS has to be
a constant at fixed N and S, which can be inferred by dimensional analysis. Therefore, we
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get

P = −
∂
(

E
EGS

EGS

)

∂L

∣∣∣∣∣∣
N,S

= − E
EGS

∂EGS

∂L

∣∣∣∣
N,S

= 2
E
L

, (5.40)

where we used (5.21) to evaluate
∂EGS

∂L

∣∣∣∣
N,S

= −2EGS/L. We can use this relation to

compute the pressure of the ground state

P0 = P(T = 0,µ) = 2
E(T = 0,µ)

L
= 2

EGS

L
=

h2

12m
n3

1D, (5.41)

and combine equations (5.35), (5.39) and (5.41) to obtain the normalized pressure

P
P0

=
12mλ2

th
βh2

f3/2(Z)
( f1/2(Z))3 =

6
π

f3/2(Z)
( f1/2(Z))3 . (5.42)

Finally, we calculate the isothermal compressibility κ from the standard definition

κ = − 1
L

∂L
∂P

∣∣∣∣
T,N

=
1

n1D

∂n1D

∂P

∣∣∣∣
T,N

=
1

n1D

(
∂n1D

∂µ
∂µ
∂P

)

T,N
=

1
n2

1D

∂n1D

∂µ

∣∣∣∣
T,N

, (5.43)

where we used L = N/n1D for the second equality, (5.10) for the fourth equality. Using
(5.35) and (5.32), we get

κ =
1

n2
1D

β

λth
f−1/2(Z) = βλth

f−1/2(Z)
( f1/2(Z))2 . (5.44)

We can normalize this quantity by the zero-temperature compressibility κ0 at similar
density, like we did for the pressure. We must compute

κ0 = κ(T = 0) =
1

n2
1D

∂n1D

∂µ

∣∣∣∣
T=0,N

=
1

n2
1D

∂n1D

∂EF
=

1
n3

1D

4m
h2 , (5.45)

where we used (5.19) to calculate the derivative. Combining (5.35) and (5.44), we get the
normalized compressibility,

κ

κ0
=
βh2

4m
1
λ2

th
f−1/2(Z) f1/2(Z) =

π

2
f−1/2(Z) f1/2(Z) (5.46)

We could keep on calculating others thermodynamics quantities, but the ones presented
here are sufficient for the scope of this work.
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5.1.6 Comparison with 2D and 3D

In the previous sections, we focused on one-dimensional ideal gases. However, these
quantities are easily calculated in 2D and 3D3. We dress a comparison between the ob-
servables considered in the previous section in 1D, 2D4 and 3D in Table 5.1, and plot the
normalized chemical potential, entropy per particle, pressure and compressibility in figure
5.2. Remarkably, the effect of dimensionality already matters on the noninteracting level.
The one-dimensional gas is noticeably different compared to its higher-dimensional coun-
terparts, for instance a local maximum exists in the universal curves µ/EF and κ/κ0 as a
function of T/TF only in 1D. Nonetheless, the role of dimensionality at the noninteracting
level might be better illustrated in Bose gases, where a thermal phase transition toward a
BEC occurs at finite temperature only if the dimension is strictly larger than two [198].

5.2 Extension of the model to quasi-1D systems

So far we focused on describing noninteracting fermions in a pure 1D situation. However,
in the world we live in, the closest we can get to a 1D situation is by applying a potential
to create a strong compression along two transverse directions. The quasi-1D regime is
reached when the quantized degree of freedom along these directions can no longer be
excited. In practice, there are several ways one can introduce the corresponding transverse
modes. For instance, one can treat the transverse direction as infinite squares wells with a
very small spatial extension. Another simple way is to use a tight transverse harmonic
potential. As discussed in section 3.1.1, this later option is the relevant one given our
experimental context.

5.2.1 Many-body ground state

We now consider 3D particles. We keep on considering that the z-direction is homogeneous
and possesses a finite length L, and we keep on using periodic boundary conditions on
this direction. From now on, we assume the existence of an isotropic potential in the (x, y)
plane5. such that

V⊥(x, y) =
1
2

mω2
⊥(x2 + y2) (5.47)

3For noninteracting gases, they can be calculated in arbitrary dimension, and for arbitrary statistics [197].
4In 2D, the polylogarithms that appear in the expressions happen to have integer order. For integer orders

smaller or equal to 1, the polylogarithms can be expressed in terms of elementary functions. In particular,
the two functions below appear in the table and have simple expressions

f1(Z) = −Li1(−Z) = log(1 + Z), f0(Z) = −Li0(−Z) =
Z

1 + Z
.

5It is also convenient sometimes to use polar coordinates (ρ,θ) and exploit that the fact V⊥(ρ,θ, z) =
1
2 mω2

⊥ρ
2, since the problem is invariant under rotation of angle θ around the z-axis [199], see for instance

sec. 7.1.1.
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Observable 1D 2D 3D

EF h̄2π2n2
1D

2m
2πh̄2n2D

m
h̄2(6π2n3D)

2
3

2m

PSD f1/2(Z) f1(Z) f3/2(Z)

T
TF

4
π

1
( f1/2(Z))2

1
f1(Z)

4π

(6π2 f3/2(Z))
2
3

µ

EF

4
π

ln(Z)
( f1/2(Z))2

ln(Z)
f1(Z)

4π ln(Z)

(6π2 f3/2(Z))
2
3

S
NkB

3
2

f3/2(Z)
f1/2(Z)

− ln(Z) 2
f2(Z)
f1(Z)

− ln(Z) 5
2

f5/2(Z)
f3/2(Z)

− ln(Z)

P
P0

6
π

f3/2(Z)
( f1/2(Z))3

2 f2(Z)
( f1(Z))2

60π3

(6π2)5/3

f5/2(Z)

( f3/2(Z))
5
3

κ

κ0

π

2
f−1/2(Z) f1/2(Z) f0(Z) (6π2)2/3

6π
f1/2(Z)

( f3/2(Z))
1
3

Table 5.1: Noninteracting thermodynamics in 1D, 2D and 3D. Expression of various thermody-
namics quantities of homogeneous ideal gases in 1D, 2D and 3D. The PSD is defined as n1Dλth,
n2Dλ

2
th and n3Dλ

3
th in 1D, 2D and 3D respectively, and densities correspond to a single state

densities.
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Figure 5.2: Homogeneous ideal gases in 1D, 2D and 3D. a) Evolution of the chemical potential
normalized by the Fermi energy. As expected, we see that µ(T = 0) = EF. b) Normalized entropy
per particle, vanishing in the degenerate limit. c) Normalized pressure, reaching a finite value at
T = 0, in contrast to the classical result which would vanish. d) Blue, red and green lines represent
1D, 2D and 3D homogeneous ideal gases respectively.
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Figure 5.3: Wavefunctions of the
harmonic oscillator. Representa-
tion of the wavefunctions of the
harmonic oscillator from equation
(5.53), together with their associ-
ated energy h̄ω⊥(1/2 +α). The
black line represents the harmonic
potential.
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The single particle Hamiltonian from the previous section (5.11) is updated to take the
transverse potential into account as well as the kinetic energies in the x and y directions

Ĥsp =
p̂2

z
2m

+
p̂2

x
2m

+
p̂2

y

2m
+ V⊥(x, y) p̂x = −ih̄

∂
∂x

, p̂y = −ih̄
∂

∂y
. (5.48)

Since there are no terms that couple the different dimensions, we shall seek separable
solutions of the form

Ψ(x, y, z) =ϕ(x)φ(y)ψ(z) solving ĤspΨ = EΨ, (5.49)

such that the wavefunctionsϕ(x),φ(y) andψ(z) each satisfy the Schrödinger equation of
their own subspace

Exϕ(x) = − h̄2

2m
∂2ϕ(x)

∂x2 +
1
2

mω2
⊥x2, (5.50)

Eyφ(y) = − h̄2

2m
∂2φ(y)

∂y2 +
1
2

mω2
⊥y2, (5.51)

Ezψ(z) = − h̄2

2m
∂2ψ(z)

∂z2 . (5.52)

The energy E of the whole Hilbert space is obtained by summing the energies of all
the subspaces E = Ex + Ey + Ez. The problem (5.52) was encountered and solved in
subsection 5.1.2. The equations (5.50) and (5.51) correspond to a single particle in a one-
dimensional quantum harmonic oscillator. The solutions are all well known [200], we
have

ϕα(x) =
1√

2αα!

(mω⊥
πh̄

)1/4
e−

mω⊥x2

2h̄ Hα

(√
mω⊥

h̄
x
)

, α = 0, 1, 2, ... (5.53)

and a similar wavefunctionφγ(y) obtained by replacing x→ y andα → γ. The functions
Hn are the Hermite polynomials [196]

Hn(u) = (−1)neu2 dn

dun

(
e−u2

)
. (5.54)

These eigenfunctionsϕα(x) andφγ(y) are associated with energies Ex = h̄ω⊥(α + 1/2)
and Ey = h̄ω⊥(γ + 1/2) respectively. They are represented in figure 5.3. We will denote
|ϕα〉 and |φγ〉 the state vectors associated with these wavefunctions.

Now that we described the single particle solutions in the presence of transverse harmonic
confinement, we shall update the Hamiltonian from (5.14) to include transverse modes as
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such

Ĥmb =
+∞∑

p=−∞

+∞∑

α,γ=0

n̂p,α,γ

(
h̄2k2

p

2m
+ h̄ω⊥(α +γ + 1)

)
. (5.55)

This new formula captures the correct energy spectrum since we added the transverse
harmonic quanta. The operator n̂p,α,γ counts number of particle occupying the state
associated with quantum numbers p, α and γ, which we construct using the tensor
product |ϕα ,φγ , kp〉 = |ϕα〉⊗ |φγ〉⊗ |kp〉. The operator also has a tensor structure n̂α,γ,p =

n̂x,α ⊗ n̂y,γ ⊗ n̂z,p. The operator n̂z,p was introduced in subsection 5.1.3, together with Fock
space onto which it acts. The operators n̂x,α and n̂y,γ are also defined in their respective
Fock spaces by their action on basis vectors,

n̂x,α |nx,0, nx,1, ..., nx,α , ...〉 = nx,α |nx,0, nx,1, ..., nx,α , ...〉 , (5.56)

n̂y,γ |ny,0, ny,1, ..., ny,γ , ...〉 = ny,γ |ny,0, ny,1, ..., ny,γ , ...〉 , (5.57)

where |nx,0, nx,1, ..., nx,α , ...〉 is a Fock state such that nx,α are equal to 0 or 1 and represent
the occupation of state |ϕα〉. The Fock states |nx,0, nx,1, ..., nx,α , ...〉 are defined similarly,
with the ny,γ describing the occupations of |φγ〉 states. We denote {nx,α} and {ny,γ} the
set of all possible values that the nx,α and ny,γ can take for α,γ = 0, 1, 2..., respectively.
The set {|{nx,α}〉 ⊗ |{ny,γ}〉 ⊗ |{nz,p}〉} constitutes a basis which diagonalizes Ĥmb. We
can again define a total atom number operator as

N̂ =
+∞∑

p=−∞

+∞∑

α,γ=0

n̂p,α,γ . (5.58)

In order to compute the ground state of Ĥmb, it is important to notice that the transverse
modes are degenerate due to the isotropy of the potential in the transverse plane. We
introduce the positive integer s = α + γ, that fully characterizes the total transverse
energy since Ex + Ey = (s + 1)h̄ω⊥. For a given value of s, there are (s + 1) possible
combinations of positive integers (α,γ)6. Therefore, we build the ground state by filling
single particle states in increasing value of energy until we reach EF, as shown in figure
5.4. By convention, we define the Fermi energy EF such that its minimal achievable value
is 0. We thus subtract the total ground state energy h̄ω⊥ in the transverse directions from
the Hamiltonian (5.55).

6If s = α +γ andα and γ are positive integers, then we can label the corresponding degenerate modes by
the possibles value of the integer ` = α − γ. If γ = 0, then ` = α = s. Ifα = 0, then ` = −γ = −s. This
means that γ ∈ [−s, s]. Starting from the γ = −s configuration, one can increase γ by steps by adding 1 to
α while removing 1 to γ to conserve the value ofα +γ = s. This shows that γ can only change by steps
of 2, and we conclude that there are (s + 1) possible values of `. By linearity of the equations, there is a
one-to-one mapping between (s, `) and (α,γ), which means that the total transverse energies (s + 1)h̄ω
are degenerate s + 1 times.
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For each transverse energy index s, we denote pF,s ≥ 0 the quantum number associated
with the highest energy occupied state in the longitudinal direction, and we also define
kF,s = 2π pF,s/L its corresponding Fermi wavevector. In the thermodynamic limit, we
can no longer label the longitudinal states with p because there is a continuum of states
instead of a discrete set. However, it is still possible to define kF,s for each s, as shown in
figure 5.5, via the equation

h̄2k2
F,s

2m
+ sh̄ω⊥ = EF =

h̄2k2
F

2m
⇒ kF,s =





kF

√
1− s h̄ω⊥

EF
if s ≤ EF

h̄ω⊥
,

0 else.
(5.59)

Using this result, we can express the density n1D integrated in the transverse plane xy in
the thermodynamic limit

n1D =
N
L

=
1
L

+∞∑

s=0

(s + 1)
pF,s∑

p=−pF,s

1 =
1

2π

+∞∑

s=0

(s + 1)

kF,s∫

k=−kFs

dk. (5.60)

Inserting Eq. (5.59) and defining the floor function b...c we obtain

n1D =
kF

π

⌊
EF

h̄ω⊥

⌋
∑

s=0

(s + 1)

√
1− s

h̄ω⊥
EF

, (5.61)

and therefore we can relate the density to the Fermi energy as shown in figure 5.5. The
density is monotonously increasing when EF is increasing, but whenever EF/h̄ω⊥ crosses
an integer value, the slope encounters a discontinuity because a new energy class of
transverse modes suddenly starts filling. The first discontinuity happens when EF becomes
larger than h̄ω⊥, which is associated with filling the s = 1 modes. This motivates the
definition of a limit density n1D,lim above which excited transverse states are populated in
the many-body ground state

EF

h̄ω⊥
= 1 when n1D = n1D,lim ⇒ n1D,lim =

√
2mω⊥

h̄π2 . (5.62)

Using Eq. (5.61) and (5.62), we see that the q-th discontinuity such that EF/h̄ω⊥ = q, with
q ∈ N, happens when

n1D

n1D,lim
=
√

q
q∑

s=0

(s + 1)
√

1− s
q

. (5.63)
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Figure 5.5: Thermodynamic limit of the Fermi sea with transverse modes. a) Thermodynamic
limit of the Fermi sea with transverse modes. The vertical axis represents energy. For each band,
the discrete energy levels turned into a continuum of levels that are occupied below the Fermi
energy, as represented by the filled areas. The mode dependent Fermi wavevectors kF,s are still
well defined. b) Fermi energy normalized by the transverse quantum of energy as a function of the
density integrated in the transverse plane, normalized by n1D,lim defined in the main text. The
numbers appearing in the x axis were calculated using Eq. (5.63). The point correspond to the
value of EF used in the left graph.
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5.2.2 Ensembles at non-zero temperature

In order to characterize the thermodynamics in the presence of transverse modes, we
modify Eq. (5.1). Since the energy is now a function ofω⊥, we can write

dE = TdS +µdN − PdL + h̄Υdω⊥. (5.64)

We defined the quantity Υ as the conjugate quantity of h̄ω⊥ and we will identify its
meaning later. The grand potential is still defined as

Ω(T,µ, L,ω⊥) = E− TS−µN, (5.65)

which means that is also depends onω⊥. The important point of this modification is that
all the partial derivative identities from Eqs (5.2), (5.5) and (5.10) are still valid provided
ω⊥ is kept constant. Also, sinceω⊥ is an intensive variable, the grand potential-pressure
relation Eq. (5.7) holds too. Using equations (5.55) and (5.58), we can define a grand
canonical partition function that includes the transverse modes as

Θ(T,µ, L,ω⊥) = Tr
[
exp

(
−β(Ĥmb −µN̂ )

)]
(5.66)

and we evaluate the trace in basis {|{nx,α}〉 ⊗ |{ny,γ}〉 ⊗ |{nz,p}〉} where Ĥmb and N̂ are
diagonal. We obtain

Θ(T,µ, L,ω⊥) =
+∞∏

p=−∞

+∞∏

α,γ=0

[
1 + exp

(
−β

(
h̄2k2 p

2m
+ h̄ω⊥(α +γ + 1)−µ

))]
.

We fix the origin of the new chemical potential by using µ̃ = µ − h̄ω⊥. We make use of
the (s + 1) degeneracy of the transverse energies (s + 1)h̄ω⊥ to obtain

Θ(T,µ, L,ω⊥) =
+∞∏

p=−∞

+∞∏

s=0

[
−β

(
h̄2k2

p

2m
− µ̃ + sh̄ω⊥

)]s+1

. (5.67)

From here, we proceed similarly to what we did previously from Eq. (5.27) to Eq. (5.30).
We can express the grand potential as

Ω(T,µ, L,ω⊥) = −
L
βλth

∞∑

s=0

(s + 1) f3/2(Zs), (5.68)

where we introduced the fugacity of the transverse mode s as Zs = eβµs , associated with
the chemical potential of the band µs = µ̃ − sh̄ω⊥. From the grand potential, we can
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calculate the density, the normalized temperature, the normalized entropy per particle,
the pressure, the isothermal compressibility exactly the way we did it in subsection 5.1.5
without transverse modes. By doing so we obtain the following results for the density,

n1D =
1
λth

+∞∑

s=0

(s + 1) f1/2(Zs), (5.69)

the normalized temperature,

T
TF

=
4
π




∑
⌊

EF
h̄ω⊥

⌋
s=0 (s + 1)

√
1− s h̄ω⊥

EF∑+∞
s=0 (s + 1) f1/2(Zs)




2

, (5.70)

the normalized entropy,

S
NkB

=

∑+∞
s=0 (s + 1)

(
3
2 f3/2(Zs)− ln(Zs) f1/2(Zs)

)

∑+∞
s=0 (s + 1) f1/2(Zs)

, (5.71)

the pressure,

P =
1

βλth

+∞∑

s=0

(s + 1) f3/2(Zs), (5.72)

and the compressibility,

κ = βλth

∑+∞
s=0 (s + 1) f−1/2(Zs)

(∑+∞
s=0 (s + 1) f1/2(Zs)

)2 . (5.73)

All these expressions agree with with Eqs. (5.35), (5.36), (5.38), (5.39) and (5.44) respectively
whenω⊥ → +∞, which is equivalent to keeping only the first terms in all the sums over
s. In order to understand the meaning of Υ, we express it as a partial derive derivative of
the grand potential,

Υ =
∂Ω

∂ω⊥

∣∣∣∣
T,µ,L

=
L
λth

+∞∑

s=0

(s + 1)2 f1/2(Zs) =
∞∑

s=0

(s + 1)Ns, Ns =
L
λth

(s + 1) f1/2(Zs).

(5.74)
We defined Ns as the number of atoms in the transverse states of energy (s + 1)h̄ω⊥.
Therefore, Υ is equal to the number of transverse energy quanta Etot,⊥/h̄ω⊥ where Etot,⊥
denotes the total transverse energy7. Finally, we can define the ground state fraction

7Using the Hellmann-Feynman theorem [199, 201–203], it can be shown that this interpretation is still valid
in an interacting system, provided the derivative is performed at constant interaction parameter. The
knowledge of this quantity is necessary to describe the full thermodynamics of the system [204].
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η0(µ, T,ω⊥) as

η0(µ, T,ω⊥) =
N0

N
=

N0∑+∞
s=0 Ns

=
f1/2(Z)

∑+∞
s=0 (s + 1) f1/2(Zs)

, (5.75)

with Z = Z0 = eβµ̃. In the 1D limit we have η0 = 1, i.e. when EF < h̄ω⊥ and T = 0.
On the other hand, it is clear that η0 → 0 when kBT

h̄ω⊥
→ +∞, because atoms start filling

infinitely many transverse modes in such a way that the relative ground state population
becomes vanishingly small. The ground state fraction η0 is a useful indicator to quantify
the dimensionality of a system at any temperature and Fermi energy close to the 1D
regime.

5.3 In-situ thermometry

The temperature is a key quantity required to describe the properties of many-body
systems. When combined with information on the density, it allows us to distinguish
between classical regimes, which are correctly captured by Boltzmann distributions, and
quantum regimes where quantum statistics play a crucial role. We have already presented
a method to reliably extract the density of our atomic clouds in section 4.1.

There is a remarkable variety of techniques to measure the temperature of atomic samples
in ultracold-atoms platforms, which all take advantage of the properties of the system
under study, and the various experimental tools available to probe the system. A widely
used technique consists performing quantitative analysis of density profiles. One can
either measure the density profile in-situ, by imaging the atomic cloud in the presence
of its external trapping potential, or after switching it off and letting time for the system
to evolve. In the second case, several scenarios can happen depending on the nature of
the system and interactions therein ranging from ballistic expansion, where the observed
distribution reflects the momentum distribution of the gas prior to release, to hydrody-
namical expansion or even more exotic dynamics like stabilization to a self bound-state
[205] in quantum droplets for instance.

In this experiment, making a time of flight expansion after switching off all the trapping
potentials is not desirable as this would lead to mixing the signals of neighbouring atomic
wires, and would therefore remove the benefit of having fully-resolved isolated micro
traps. One could bypass this issue by leaving the lattice potential on to ensure a purely
longitudinal expansion but this is also problematic since the lattice beams produce a
potential along the vertical direction too, and thus one would need to compensate it. While
this is not technically impossible, it is beyond the scope of this work. As a consequence
we will focus on analysing in-situ density profiles.

We will briefly introduce the local density approximation and gain insight about the one-
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dimensional regime by calculating density profiles in a harmonic trap. Then, we will use
it to analyse the density profiles obtained in the experiment and extract the temperature,
the degree of quantum degeneracy and dimensionality while reconstructing the missing
non harmonic part of the longitudinal potential landscape in the micro traps. Finally, we
will present an insightful discussion about the normalized temperature T/TF in the 1D-3D
crossover [206].

5.3.1 Local density approximation

Although some experiments have implemented homogeneous traps in 2D [207, 208]
and 3D [209, 210], it is often the case in cold atoms platforms that the atomic sample
evolves in an inhomogeneous potential. In that case, the local density approximation,
when applicable, allows one to use homogeneous result to analyse profiles provided the
external potential is known. It can also be seen from a different angle: if one knows how
to model the thermodynamics properties of the system exactly, the trapping potential
can be inferred from the information about thermodynamics quantities. The latter point
of view allowed to experimentally measure the equation of state of strongly interacting
Fermi gases [195, 211–213].

The presence of a non-homogeneous potential in the axial direction is responsible for the
non-homogeneous density profiles that we observe in the experiment. On a fundamental
level, the presence of an axial external confinement would need to be included explicitly
in the Schrödinger equation, like we did for the transverse directions. The correctly anti-
symmetrized many-body wavefunction can be calculated, and the density profile can be
obtained from it [214]. However, when applicable, the Local Density Approximation (LDA)
[56, 145] provides a remarkably simple quantitative description of the density profiles base
on the equation of state. In this approximation, the system is thought of as a continuous
set of homogeneous systems that are locally in thermal equilibrium thanks to exchanges
of particles and energy with their close neighbours. While the whole sub-systems are
described by a unique temperature T, the chemical potential of the locally homogeneous
systems follows the variations of the external potential. For this approximation to hold
at all temperatures8, the relevant energy scales of the system under study must be much
larger than the energy levels of the external potential along the direction(s) of interest. For
instance, if the system is confined in a harmonic potential described by frequenciesωi,
i = x, y, z, the spacings between the levels in various directions is given by h̄ωi. For an
ideal Fermi gas, the relevant energy scale is either kBT or EF depending on the degeneracy
regime. At sufficiently large atom number, the Fermi energy might dominate the trap
energy levels, making the LDA applicable at very low temperature9.

8See [215] for a discussion on the validity of LDA.
9Whereas for a Bose-Einstein, the absence of Pauli principle cannot prevent the atomic ensemble to reach
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For the reasons mentioned above, the use of LDA is not systematic and should be adapted
to the system under study. In the case of our tube traps, the external potential is very
anisotropic. The energy levels in the transverse direction are associated with the scale
h̄ω⊥, whereas the axial ones are approximately10 described by h̄ω‖. The trap frequency
ratio can reach large valuesω⊥/ω‖ ∼ 200, which indicates that these directions might
need to receive a different treatment. As a consequence, we will use LDA in the axial
direction, but not in the transverse ones. As further analysis will show, we will encounter
situations where the filling of excited transverse modes is small or very small, which
strongly violates the LDA.

Under LDA, the global chemical potential µ0 is split in two parts,

µ0 = µ(z) + V‖(z). (5.76)

Here, µ(z) represents the local chemical potential that describes the gas locally as if it was
homogeneous. By combining Eqs (5.69) and (5.76), we see that a quantitative description
of a density profiles requires the following inputs: µ0, T, V‖(z) andω⊥. It is given by the
equation

n1D(z) =
1
λth

+∞∑

s=0

(s + 1) f1/2(ξs(z)), (5.77)

where we defined the local fugacity ξs(z) = Zse−βV‖(z) of the transverse mode s. At
this stage, V‖(z) is not known beyond 2nd order for our tube traps. However, it is very
insightful to have a look the expected density profiles for a purely harmonic axial potential
V‖,harm(z) = 1

2 mω2
‖z

2.

First of all, let us focus on the T = 0 case. The zero temperature limit can be obtained from
Eq (5.77) using the second and third identities from Eqs (5.32). Indeed, we see that

lim
β→+∞

f1/2(ξs(z)) =

{
2√
π
[β(µ̃0 −V‖(z)− sh̄ω⊥)]1/2 if µ̃ −V‖(z)− sh̄ω⊥ > 0

0 else
,

(5.78)
where µ̃0 = µ0 − h̄ω is central chemical potential from which the zero energy of the two
transverse oscillators is subtracted. The density becomes

n1D(z) =
√

2m
πh̄2

+∞∑

s=0

(s + 1)(max(µ̃0 −V‖(z)− sh̄ω⊥, 0))1/2. (5.79)

When V‖(z) = V‖,harm(z), we can define a Thomas-Fermi radius Rs(µ̃0) > 0 for each band

even lower chemical potentials, unless significant repulsive interactions are present.
10The energy h̄ω‖ is an upper bound of the energy gap between two axial levels since this gap gets smaller

and smaller upon approaching the spilling point.
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s such that the mode-dependent local chemical potential vanishes provided µ̃0 > sh̄ω⊥

µ̃0 −
1
2

mω2
‖R

2
s − sh̄ω⊥ = 0⇒ Rs =

√
2√

mω‖

√
µ̃0 − sh̄ω⊥. (5.80)

In the opposit case, we set it to zero. We also define Rω⊥ = Rs=0(µ0 = h̄ω⊥) which
quantifies the highest achievable radius of the ground state transverse mode before excited
transverse modes start to be filled.

We can also calculate the total atom number in the trap by integrating the density,

N =

+∞∫

z=−∞
n1D(z) dz =

√
2m
πh̄

+∞∑

s=0

(s + 1)

Rs∫

−Rs

(µ̃0 −
1
2

mω2
‖z

2 − sh̄ω⊥)1/2 dz. (5.81)

The integral can be evaluated and we obtain

N =
mω‖

2h̄

+∞∑

s=0

(s + 1)R2
s =

1
h̄ω‖

⌊
µ̃0

h̄ω⊥

⌋
∑

s=0

(s + 1)(µ̃0 − sh̄ω⊥). (5.82)

Let us determine the maximum amount of atoms Nmax,q that can be put in the trap before
filling the q-th transverse mode. Using the above expression, we see that

Nmax,q = N(µ̃0 = qh̄ω⊥) =
ω⊥
ω‖

q∑

s=0

(s + 1)(q− s). (5.83)

We recover the very expected result Nmax,q=0 = ω⊥/ω‖. In other words, As soon at the
atom number exceeds the trap frequency ratio, the excess of atoms have to occupy excited
transverse modes. The 1D regime is thus associated with the constraint N <ω⊥/ω‖. More
generally, the filling of a new transverse mode is associated with total atom number beign
equal to specific multiples of the trap frequency ratio, for instance Nmax,q/(ω⊥/ω‖) =

4, 10, 20, 35, 56 for q = 2, 3, 4, 5, 6. Each time these multiples are reached with increasing
N, a new peak appear on the density profile appears at the center of the trap. Indeed,
when a new transverse mode starts filling, atoms promptly occupy axial states with a
spatial extent in order to minimize the energy. The figure 5.6 a) shows the the evolution of
the density profile as µ0 (or equivalently N) is increased at zero temperature.

At finite temperature, the temperature smooths out the sharp edges occurring in density
profiles. When kBT � h̄ω⊥, T/TF � 1, the Boltzmann distribution applies and resulting
density profiles are correctly fitted by a Gaussian distribution, as shown in figure 5.6 b).
An interesting phenomenon happens when a small temperature is introduced: atoms that
would otherwise occupy single-particle state corresponding to a highly elongated axial
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Figure 5.6: Density profile of an elongated ideal gas with transverse modes and LDA. a) Evolu-
tion of density profiles at zero temperature for various chemical potentials. The values in the legend
represent µ̃0/h̄ω⊥. A new peak whenever µ̃0/h̄ω⊥ reaches integer values. The ratio N/(ω⊥/ω‖)
take the values 1, 3.7, 5.8 and 10.1 for the blue, orange, green and red lines respectively. b) Evo-
lution of the density profile at fixed atom number N = 10.1×ω⊥/ω‖. The legend represents
the values of kBT/h̄ω⊥. The dashed lines for the two largest temperatures represent a fit with a
Gaussian distribution.

modes and transverse mode s might be able to jump to the transverse mode s + 1, thanks
to the finite temperature, but reduce significantly their energy in the axial direction, hence
shortening their spatial extent. This leads to a counter-intuitive increase of the central
density compared to the ground state configuration, as highlighted by the orange curve in
the figure b). For larger temperatures, however, central density decreases according to the
classical expectation n1D(0) ∼ 1/

√
T.

5.3.2 Potential reconstruction and fitted density profiles

The previous calculations of density profiles focused on the case of an axial harmonic
potential. However, we know the longitudinal potential of the microtraps is anharmonic,
as detailed in subsection 4.2. This asymmetry is most created by the gravity field and
is noticeable on in-situ density profiles, all the more so as the atom number is high and
the temperature is large. In this section, we will present a technique to reconstruct the
potential beyond 2nd order using a shared fit of many density profiles. A similar technique
was used in an interacting one-dimensional Bose gas to reconstruct the potential from a
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theoretically calculated equation of state [216]. In this work, the external potential was
fully calibrated independently of the density profile measurement, and the agreement
between the reconstructed and the calibrated potential was an experimental validation
of the equation of state. In our case, the philosophy is different as our goal is not to
experimentally validate an interacting equation of state, but rather to use a well established
equation of state that we can rely on: the one of an ideal gas. The outcome of the fit is
twofold: we obtain a much better characterization of our axial potential that we can use
for other experiments (see sec. 7.2.4) where it can be used as an input for the analysis, and
we can quantify the degeneracy and the dimensionality of our system.

The shared fit consists in mixing individual parameters describing the thermodynamic
properties of the atoms inside each micro trap with shared parameters parametrizing the
axial potential of each tube trap beyond 2nd order. In order to model the high-order terms
of the longitudinal potential, we simply use a Taylor expansion,

V‖(z) =
1
2

mω2
‖z

2 +

pmax∑

p=3

apzp, (5.84)

where the ap coefficients are assumed to be identical, which as argued in 4.2 results in a
small error as long as we consider few micro traps around the global minimum. We restrict
the expansion to pmax = 7, which is a good empirical compromise between flexibility of
the reconstructed potential and stability of the fitting procedure11. The coefficientω‖ is an
input of the model inferred from the measurement presented in 4.8. It acts as an anchor
that prevents the thermodynamic parameter from compensating the lack of knowledge of
the potential.

The parametrized axial potential is used to calculate density profiles using LDA. For each
density profile, it is also necessary to know the temperature T and the central chemical
potential µ0. Each absorption image contains several tube traps, and we restrict ourselves
to analysing the 18 central ones. Because the tube traps are independent and the number of
loaded atoms decreases away from the center, the measured density profiles are associated
to different sets of (µ, T). On top of that, we varied the amount of evaporation prior to
ramping the optical lattice to generate a collection of profiles with significant variations of
µ and T, which helps unambiguously reconstructing the potential. In the end, we gathered
a total of 270 absorption images obtained from loading procedure described in figure 3.4.
After sorting the images in increasing total atom number, we obtained 27 groups of 10
similar images that we averaged together to improve the signal to noise ratio. From these
averaged images, we extract 18 density profiles which makes a total of 486 density profiles.

11In the sense that it allows the fitting procedure to converge to the optimum parameters in a more robust
way that depends less on the initial parameters value. We have checked the successful fit with pmax > 7
do not change the reconstructed potential significantly in the region of interest.
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These density profiles were fitted using a least-square optimization procedure with the
shared coefficients ap, where p = 3, 4, .., 7 and individual coefficients ((βµ)i,βi), where
i = 1, 2, ..., 486, using Eq. (5.77).

Due to the large amount of fit parameters, the fitting procedure the must be handled with
care in order to ensure a reasonable execution time and enough stability for convergence.
This is particularly true because the polylog function is costly to numerically evaluate
and must be calculated at every pixel of each density profile and for each iteration of the
least-square algorithm. The algorithm was made more efficient by using the following
standard tricks:

• Evaluating the Jacobian from its analytical expression. By default, most least-squares
libraries will evaluate the Jacobian’s component of each fit parameter using a finite
difference formula. This makes the fitting very slow when the number of parameters
is large, and it is often not necessary when the Jacobian can be computed analytically.
On top of that, because only the ap coefficients are shared parameters, the Jacobian
matrix is extremely sparse, meaning that we can restrict ourselves to compute only
its non-vanishing coefficients. In the end, it is enough to evaluate the polylog Li1/2

for each density profiles points only twice per pixels and per iteration.

• Parallelizing the evaluation of density profiles at each iteration on multiple cores.

• Bin the density profiles along the axial direction to reduce the amount of points per
profiles. We used bins of 3 data points, which correspond to a spacing of 1µm per
bins. This value is smaller than the resolution of our imaging system, which implies
that we are not losing spatial information of the density profile structure by doing
so.

With these improvement, it was possible to perform the fit in around an hour in a typical
laptop or desktop computer. As a consequence, it was not necessary to use more powerful
hardware since we were limited by the experimental acquisition of data rather than the
analysis.

A selection of fitted profiles is shown in figure 5.7 a), together with their corresponding
atom number and temperature. These sets are associated with a transverse frequency
ω⊥ = 2π × 17 kHz. The axial curvature is characterised by the frequencyω‖ = 2π × 96
Hz. Our data contain atoms numbers well below than the trap ratioω⊥/ω‖ = 177, so
that the density 1D condition is satisfied.

In order to a posteriori check the applicability of the noninteracting equation of state, we re-
constructed the potential after letting the gas thermalize at two different scattering lengths
a = ±40a0, corresponding to attractive and repulsive interactions. If the density would
be significantly affected by interaction for these values, the would result is noticeable
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Figure 5.7: Reconstruction of the po-
tential beyond 2nd order. a) Averaged
1D density profiles for individual tubes
with a total atom number N per spin
state. The solid lines represent fits of
the non-interacting equation of state Eq.
(5.77). The right box represents the fit-
ted temperature, aligned with their cor-
responding colour on the left box which
shows atom number. The grey line cor-
responds to nlim ≈ 3.7µm−1 defined
in (5.62). b) Reconstructed axial po-
tential for a = −40a0 (orange dashed-
dotted line) and a = +40a0 (blue solid
line). The harmonic part (grey dashed
line) of the potential has been indepen-
dently measured. c) Relative difference
δV±40a0(z) between the reconstructed
potentials for attractive and repulsive
interactions.

differences in the reconstructed density profiles. The reconstructed potentials and their
relative difference are shown in figure 5.7 b) and c). The latter are defined as

δV±40a0 =
V‖,−40a0

(z)−V‖,+40a0
(z)

V‖,−40a0
(z)

. (5.85)

In order to make sure thermal equilibrium was reached, we also performed this measure-
ment at slightly larger scattering length a = −100a0 to increase the collision rate, at longer
thermalization time up to 100 ms instead of 40 ms after lattice ramp up. We observed no
significant differences in the reconstructed potential.
The information contained in the fitted parameters allow us to fully describe the ther-
modynamic state of the atomic clouds, and therefore to quantify their degeneracy and
dimensionality. It will be the subject of the following section.
It is worth pointing out that both the reconstruction method employed in this section and
the longitudinal curvature measurement of section 4.4 ignore the hypothetical details of
the potential that could occur below the optical resolution. If such features would exist,
they would stay under the radar since they would not imprint visible modulations on the
extracted density profiles. One could imagine sub-resolution structures of two natures:
disorder, or periodic modulation. Practically speaking, disorder could result from a lattice
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beam scattering on an undesired target, such as one or several dust particle(s), resulting
in uncontrolled fringes. In order to be unnoticed for us, this hypothetical effect would
need to produce disorder with a low-frequency cut-off below the sub-resolution scale.
For the latter effect, a sub-resolution periodic modulation could be created if a lattice
beam would be partially reflected back through the science cell from below, leading to a
lattice spacing ∼ λ/(2 cos(αlatt/2)) ≈ λ/2 = 532nm. The hypothetical occurrence of these
effects is discussed later, in section 7.5.1.

5.3.3 Dimensionality and degeneracy of the quantum wires.

In order to characterize the dimensionality and degeneracy of our system, we use the fitted
parameters together with Eqs (5.70) and (5.71) to extract kBT/h̄ω⊥, T/TF and S/NkB for
each tube trap. The figure 5.8 a),b) and c) shows the evolution of these quantities for three
selected tube traps, represented in e), when the initial evaporation in the crossed dipole
traps prior to loading the optical lattice is varied (see fig. 2.5). This way, we control the
transverse mode population until we reach the 1D regime. We can reduce the temperature
down to kBT ≤ 0.2h̄ω⊥ with a typical Fermi energy of EF ≤ 0.2h̄ω⊥. The temperature
spread across different atomic wires is yet another sign that tunnelling between the tube
traps is strongly suppressed (see fig. 3.3), which leads to an early thermal decoupling
during the lattice loading procedure.
We observe that S/NkB stays nearly constant in the entire crossover region, whereas T/TF

displays a sudden increase in the low atom number and temperature limit, as shown in
figure 5.8 b), c). This is expected to occur in the 1D regime12, where the equation of state is
strongly altered with respect to the 3D case. Note that, compared to the 3D ideal Fermi gas,
the role of quantum statistics in 1D remains important at comparatively higher values of
T/TF. For instance, at T/TF = 1.6, Maxwell-Boltzmann statistics overestimate the density
of the non-interacting gas by 55% in 1D, versus 12% in 3D.
Interestingly, we observe that the entropy per particle varies between inbetween different
micro traps, with an increase towards the center where the density is highest, as shown
in 5.8 d). This could be cause by density dependent interaction effect during the loading
phase. For example, a realistic scenario in this context could be the occurrence of three
body-losses during the early loading phase of the lattice, where the scattering length is still
significant (see fig. 2.5). This inhomogeneous redistribution of entropy further highlights
the relevance and necessity of our thermometry technique based on resolving individual
atomic wires.
To clarify unambiguously the one-dimensional character of our system, we also extracted
the ground state fraction defined in Eq. (5.75). In figure 5.9, we observe large local
ground state fractions η0(µ = µ(z = 0), T) at the center of the of >98% in the 1D limit for

12See subsection 5.3.4.



100 Chapter 5 In-situ thermometry of noninteracting Fermi gases in quantum wires

0.0

0.2

0.4

0.6

0.8
k B

T
/

h̄ω
⊥

0.0

0.5

1.0

1.5

T
/

T F

0.0 0.5 1.0 1.5 2.0

EF/h̄ω⊥

0

1

2

S/
N

k B
a)

b)

c)

−5 0 5

Tube trap index

1.0

1.5

2.0

⟨S
/

N
k B
⟩

−20−1001020

x (µm)

−10

0

10

y
(µ

m
)

d)

e)
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EF ≤ 0.2h̄ω⊥, indicating that a dominating majority of atoms were populating the same
unique lowest energy transverse mode s = 0.

The density profiles associated with a very large ground state fraction are not very asym-
metric due to their small spatial extent along z. A representative profile is shown in
the inset of figure 5.9. As a consequence, these profiles can be used to check both the
one-dimensional character and the degenerate character of the cloud without even relying
on the reconstructed potential. We re-analysed these profiles under that assumption that
the longitudinal potential is purely harmonic and associated with the independently
measured axial angular frequencyω‖. We performed several fits, assuming four differ-
ent equations of states. All of them allow to infer the temperature of the gas, and are
represented in the inset of Figure 5.9:

• The red solid line representation a Boltzmann distribution13

nBoltzmann(z) = N

√
βmω2

‖
2π

exp
(
−β

2
mω2

‖z
2
)

, (5.86)

and measures Tfit = 206± 20 nK.

• The green dashed line represents 3D Fermi-Dirac distribution integrated radially,
where LDA was assumed to hold radially [57]

n3D,integrated(z) =
√

m
2π

1
β5/2h̄3ω2

⊥
f5/2

[
Z0 exp

(
−β

2
mω2

‖z
2
)]

, (5.87)

and yields Tfit = 15± 374 nK. This result is clearly problematic: the model cannot
extract the temperature reliably. Despite the lack of accuracy, this model is not
self-consistent since it predicts EF, kBT ≤ h̄ω⊥, which contradicts the conditions of
applicability of LDA. This observation confirms the relevance of not applying the
LDA in the transverse direction a posteriori.

• The light blue dashed line represents a 1D Fermi-Dirac distribution with higher
tranverse modes from Eq. (5.77), and calculates Tfit = 143± 20 nK.

• The dark blue solid line represents 1D Fermi-Dirac without transverse modes,
obtained by keeping only the s = 0 term from Eq. (5.35), and corresponds to
Tfit = 138± 18 nK.

13The 1D density derived from a Boltzmann distribution in a 1D world is exactly the same as the radially
integrated 3D density derived from a Boltzmann distribution in a 3D world, so it is irrelevant to specify
the dimension here. More generally, this Boltzmann expression holds no matter how many dimensions
are integrated.
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All these models are able to fit the density profile with a decent agreement up to the error
bars. However, they do not predict the same temperature. The Boltzmann model overesti-
mates the temperature, indicating that degeneracy is playing an important role. The 3D
model with radial local density approximation fails too, indicating that dimensionality
plays a role as well. The two 1D approaches, with or without additional transverse modes
are consistent with each other, indicating that only the ground state transverse mode is
populated, as pointed out already by the large value of η0.

The obtained results highlight that we do not necessarily need to observe the sharp features
of the density profiles occurring a very small temperature shown in figure 5.6 in order
to probe low-dimensional gases. Not only these low temperatures are very challenging
to prepare experimentally, but also the finite optical resolution and signal-to-noise ratio
would wash-out these features.

5.3.4 Isentropic 1D-3D transformation

From the measurement of T/TF figure 5.8 b), it might seem unsatisfactory to observe a
rise of T/TF as one gets closer to the 1D regime. On the one hand, a part of this increase is
technical and is due to the lower limit of achievable temperatures, which make this ratio
increase when the density, and hence TF, get close to zero. On the other hand, this increase
is also a consequence of the dimensional-dependent definition TF. We will illustrate the
latter effect with a toy model.

Let us imagine an ideal gas of N fermions in thermal equilibrium with temperature T in a
3D homogeneous box with lengths Lx, Ly and Lz such that many levels are occupied in all
three directions. In the thermodynamic limit, we can treat the levels in the three directions
as continua and calculate various thermodynamic quantities, for instance the ones listed
in table 5.1 in the 3D columns.

If we now imagine that the box is smoothly and slowly reshaped in such a way that Ly

and Lx become smaller and smaller, while Lz gets larger and larger, the relevant state of
the gas at equilibrium will be such that the population of excited states along x and y
will become smaller and smaller. At some point, the thermodynamic quantities of the
system will be correctly captured by the formulas from Table 5.1 in the 1D columns. Such
a transformation is illustrated in figure 5.10, following the straight from left to right.

Provided this reshaping happens infinitesimally slowly and in a presence of a mechanism
to guarantee thermalization, the transformation between these two limiting cases has to
be reversible. In that case, the entropy S is conserved and the transformation is said to be
isentropic. If the box potential is strong enough to prevent atoms from leaving, the system
is closed and N is also conserved. Thus, the normalized entropy per particle is conserved,
therefore we can write (S/NkB)3D = (S/NkB)1D. Since there is a different one-to-one
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Figure 5.10: Isentropic 3D to 1D transformation. Illustration of the two isentropic transformations
described in the main text. In both cases, the starting homogeneous gas is correctly described by 3D
thermodynamics. Since both entropy and atom number are extensive quantities, the normalized
entropy per particle is conserved even if the initial system is split into several subcomponent,
provided the transformation is isentropic. It is necessary that the density of each sub-box remain
the same during the transformation before they get completely independent in order to prevent
density and entropy flow.
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Figure 5.11: Reduced temperature at constant
entropy per particle from 1D to 3D. Isentropic
relation between the reduced temperatures of a
homogeneous non-interacting 3D and 1D Fermi
gas. This toy model shows that the normalized
temperature is not a conserved quantity dur-
ing the dimensional crossover and gives a lower
bound for its expected increase in the quantum
wires when going from 3D to the 1D in the most
ideal case.

relation between normalized temperature and normalized entropy per particle14, we can
map the normalized temperatures (T/TF)3D to (T/TF)1D in the two limits of the isentropic
transformation, as shown in figure 5.11.

This thought experiment clearly reveals that T/TF is not a conserved quantity during

14This can be seen from table 5.1. S/NkB depends on the fugacity, and T/TF too but the link between these
two is clearly dimensional dependent.
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an isentropic transformation that strongly alters the dimensionality of a system, despite
the fact that in a given fixed dimension, it depends only on the normalized entropy per
particle. Moreover, it indicates us that in a transformation from 3D to 1D, T/TF is expected
to increase, which certainly contributes to the observation in figure 5.8 b). In the real
world, it is extremely challenging to engineer such an isentropic transformation due to
either technical or physical reasons. The finite lifetime of the system prevents us from
achieving arbitrarily slow transformations. The losses limit the assumption of a closed
system. Heating can be induced by the trap instability [189–191]. Thermalizing two-body
collisions are expected to be suppressed in the 1D regime [217–219]. If the reversibility of
the transformation cannot be guaranteed, the entropy per particle is expected to increase
due to the second law of thermodynamics. As a consequence, the normalized temperature
T/TF should increase more than what this toy model predicts. This thought experiment
provides lower bound for the increase of normalized temperature that would occur in any
real transformation from 3D to 1D in a closed environment.

It is important to note the our experimental realization differs from the transformation
described above in at least two aspects. First of all, we are not transforming a single 3D gas
into a single 1D gas, but rather into several 1D gases that are independent. As long as we
keep on considering homogeneous systems, the conclusion of this experiment are easily
generalized if the final state of the transformation is made up of several independent
elongated 1D boxes, as illustrated in figure 5.10, following the right angle arrow. Since
both S and N are extensive, the normalized entropy per particle S/NkB is conserved and
equal in each independent 1D boxes, as long as no inhomogeneities are introduced during
the splitting process. This brings us to the second reason why this toy model is an incorrect
description of our system: we perform the 3D-1D transformation in an inhomogeneous
system.

Surprisingly15, figure 5.8 d) reveals that in our system, the entropy per particle varies
between the tubes, with an increase towards the center where the density is highest.
Understanding this effect is clearly beyond the reach of this toy model, and could constitute
an interesting follow-up for future works.

5.3.5 Outlook: measuring the interacting equation of state

There are many situations where the use of a trapping potential to confine cold gases
complicates their theoretical analysis, or wash out signatures of particular phenomena
that would be striking in a homogeneous system. However, it was eventually realized
that trapped gases which satisfy the local density approximation (see sec. 5.3.1) provide a
considerable opportunity to extract thermodynamic quantities [220]. Within this approxi-

15If we consider a gas in harmonic trap and apply LDA, S/NkB is minimum at the center of trap, where
density is the highest.
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mation, the spatial variation of the in-situ density of the sample can be used to calculate
its derivative or integral with respect to the chemical potential, which ultimately reveals a
lot of information regarding its equation of state.
This technique16 was used to measure the equation of state of the 3D Fermi gas at uni-
tarity [222, 223] and for various interaction strengths [224], providing at the same time a
remarkable characterization of the superfluid transition.
In 3D, a bound state appears right at the unitary limit when 1/a3D → 0 and it exists only
on the BEC side 1/a3D > 0, whereas in 1D and 2D, the bound state is formed as soon
as interactions are turned on17. This means that the role played by the unitary limit in
3D coincides with the noninteracting limit in 1D and 2D. This profoundly modifies the
qualitative features of the equation of state. For instance, in the limit of arbitrarily large
βµ the density ratio n(βµ, λ)/n0(βµ) converges to 1 in 1D and 2D [225, 226], where n0 is
the noninteracting density and λ is a dimensionless interaction parameter assumed to be
constant. This corresponds to a weak coupling limit. Conversely, in 3D at unitarity, this
ratio reaches a non trivial value when βµ becomes large [227, 228].
Measurement of the equation of states of low-dimensional gases have been performed
with Bose gases in 1D [229] and 2D [230], and Fermi gases in 2D [231, 232]. However, no
measurements have been reported so far in 1D Fermi gases. Theoretically, the ground
state and low-temperature regime (T � TF) of the interacting 1D Fermi gas can be solved
with Bethe Ansatz [233]. For finite temperature, there are no straightforward ansatz that
can be used and theoretical studies are sparse [226, 234].
In experiments, the 1D and 2D limits are reached by applying tight confinement along
the directions of interest, which are associated with a length scale that can break the
universality of the equation of state.
It would be very interesting to investigate the equation of state of balanced strongly
interacting Fermi gases in a quasi-1D geometry with our experimental setup, and to study
how the presence of transverse mode populations affects it beyond the one-dimensional
regime. The influence of imbalanced could also be studied. Since the bias field and
the transverse potential are reasonably homogeneous in the tube trap, ω⊥ and a3D are
constants across the measured density profile and using the local density approximation
dµ = −dV‖ the compressibility and the generalized pressure can be expressed as

κ = − 1
n2

1D

dn1D

dV‖

∣∣∣∣∣
T,ω⊥ ,a3D

, P(V‖) =

+∞∫

V‖

dU′n1D(U′). (5.88)

They can be extracted experimentally, using the reconstructed axial potential V‖(z) in the

16The equations of state of the 3D unitary Fermi gas at finite temperature has also been measured using a
different method [221].

17For the 1D case, see sec. 7.1.3
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Figure 5.12: Equation of state in the tube traps. a) Top: Absorption images of a single spin state
from a balanced Fermi gas averaged over 112 shots. Bottom: Selection of central density profiles to
highlight to typical signal-to-noise obtained from this measurement. The density is normalized by
the 1D threshold density n1D,lim defined in Eq. (5.62). b) Extracted κ and P normalized by their
value at identical density, T = 0 and in the absence of interactions. The continuous lines represent
the universal curves in 1D, 2D and 3D for the noninteracting gas, obtained by matching κ/κ0 and
P/P0 at identical fugacity Z from table 5.1. In the wings where P/P0 is large and n1D/n1D,lim is
small, the measured data points align with the universal 1D noninteracting curve. In the center of
profiles where P/P0 is the lowest, the 1D conditions are not met for the selected set, and this results
in a noticeable increase of κ/κ0. In this region, the curve is not universal anymore and depends on
transverse energy scale, for example through kBT/h̄ω⊥, but also on the interaction strength. In the
represented set, fitting the wings yields kBT/h̄ω⊥ = 0.45± 0.13.

micro traps. Because of the transverse direction, the knowledge of these two quantities is
not enough to fully characterize the equation of state and it is necessary to acquire another
thermodynamic quantity, for instance the temperature T. It can be extracted from the
wings of the density profile, where the role of interactions is mitigated by the local increase
of T/TF. In figure 5.12, we show a measurement of κ and P for a small scattering length
a3D = −40a0. It was beyond the scope of this work to investigate the strongly interacting
equation of state. This would constitute a very promising project for future experiments.
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The transport properties of strongly interacting fermions constitute an extensive field
of research that covers a broad range of systems and technologies, ranging from spin-
tronics [235] to the quark-gluon plasma [236, 237]. Cold atom experiments provide an
excellent platform to study these properties in a variety of situations [238–240]. Transport
coefficients can directly be extracted from dynamical properties, providing access to the
viscosity [241, 242], speed of sound [177, 243–245], spin diffusivity [246–251], and many
others.

The spin diffusivity controls the relaxation rate of magnetization gradients [252]. In
principle, both longitudinal [246, 247] and transverse diffusion [249–251] can be measured
experimentally. Among other diffusion coefficients, the 3D spin diffusivity is predicted to
be bounded from below due to fundamental quantum mechanics limits in the degenerate
regime [253]. An interesting open question in this regard is whether these quantum
bounds hold in lower dimensional systems without a scale-invariant quantum critical
point as well [252]. Remarkably, the existing measurements in 2D systems are conflicting
[250, 251], and no measurement has yet been performed in 1D. On the theoretical side,
only a handful of studies have investigated the transport properties of Fermi gases in
one-dimensional bulk systems [254–256]. More recently, the sound diffusivity has been
measured through the damping of sound waves in homogeneous quantum gases in both
3D [257] and 2D [258], yielding results that also satisfy the quantum bound ∼ h̄/m.

In the present work, we will study spin diffusivity in our low dimensional system. While
the next chapter will be dedicated to the quantitative analysis of the demagnetization
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dynamics, the current one will detail how to create a longitudinal magnetization gradient
on a technical level.

6.1 Transverse and longitudinal magnetization gradient

The spin diffusivity Ds sets the speed at which magnetization gradients are smoothed out
over time. When Ds is small, the diffusion process is slow. In a strongly interacting Fermi
gas in 3D, Ds decreases as the quantum degenerate regime is reached in the normal state
and reaches a minimum around T ∼ TF. The effects of superfluidity induce an increase of
the spin diffusivity at even lower temperatures. It is expected to always satisfy the lower
bound Ds & h̄/m [253].

The system responds differently to longitudinal and transverse magnetization gradients.
The former induces a longitudinal spin current given by

~J‖i,s = −Ds∂i ~M, (6.1)

whereas the latter creates a transverse spin current which yields

~J⊥i,s = −Ds,eff

[
∂i ~M +µ ~M× ∂i ~M

]
. (6.2)

We defined the effective diffusion coefficient Ds,eff = D0,s/(1 + µ2 M2), where µ is the
Legget-Rice parameter. This parameter quantifies the precession of the spin current about
the local magnetization and is responsible for slowing down the demagnetization since
Ds,eff < Ds [259–262]. Longitudinal gradients can be achieved by spatially separating
two distinct hyperfine eigenstates, [246, 247]. Transverse magnetization gradient can be
prepared by letting an initially spin-polarized atomic sample with a finite spin component
perpendicular to the quantization axis evolve in the presence of a magnetic field gradient.
The locally various spin precession results in a spin spiral due to the differential magnetic
moment [249–251] . These two diffusion modes are illustrated in figure 6.1. The table
6.1 presents a summary of the existing experimental studies for both longitudinal and
transverse magnetization dynamics, using degenerate Fermi gases in the vicinity of an
s-wave resonance.

In the present work, we implemented longitudinal magnetization gradients using a spin
separation technique that we will detail now.

6.2 Optimization of the magnetic moment

The spin separation technique consists in applying a magnetic field gradient in order
to push the spin states unequally, in proportion to their magnetic moment. In order
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Longitudinal gradienta) Transverse gradientb)

Figure 6.1: Longitudinal and transverse magnetization gradients. Illustration of longitudinal
and transverse magnetization gradients. The gradient along a direction associated with a coor-
dinate i is ∂i ~M = (∂i M)~e + M(∂i~e), where ~e is the unit vector locally collinear to ~M. The two
terms represent the longitudinal and transverse magnetization gradient respectively. a) Purely
longitudinal gradient ~M = M(z)~ex. b) Purely transverse gradient ~M = M0(cos(κz)~ex + sin(κz)~ey),
where M0 and κ are constants. The arrows represent the magnetization vector.

Dimensionality Diffusion mode Spin diffusivity Reference

3D longitudinal Ds,‖,3D = 6.3(3) h̄/m [247]

3D longitudinal not estimated [246]

3D transverse Ds,⊥,3D = 1.08± 0.09±0.17
−0.13 h̄/m [249]

2D transverse Ds,⊥,2D = 6.3(3)× 10−3 h̄/m [250]

2D transverse Ds,⊥,2D = 1.7(6) h̄/m [251]

Table 6.1: Spin diffusivity in strongly-interacting Fermi gases. Apart from the noticeable excep-
tion of [250], all the experiments observed Ds & h̄/m.

to understand the preparation procedure described later in section 6.3, we must first
understand evolution of the level structure of 40K in a magnetic field.

We consider the Hamiltonian of a single atom inside a magnetic field with a static compo-
nent Bz along the z direction. We denote ~̂L, ~̂S, ~̂I the angular momentum, electronic spin
and nuclear spin operator respectively, and introduce ~̂J = ~̂L + ~̂S. We denote L, S, I and J
the corresponding quantum numbers associated to their norm. The Hamiltonian reads

Ĥ =
ahf

h̄2
~̂I · ~̂J

︸ ︷︷ ︸
Ĥhf

+
µBBz

h̄
(
gJ Ĵz + gI Îz

)
︸ ︷︷ ︸

Ĥz

, (6.3)

where Ĥhf describes the hyperfine structure1 [130, 133], while Ĥz describes the Zeeman

1In principle, it contains the additional term

bhf

h̄2
3(~̂I · ~̂J)2 + 3

2 (
~̂I · ~̂J)− ~̂I 2~̂J 2

2I(2I − 1)J(2J − 1)
, (6.4)
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coupling with the magnetic field Bz. The magnetic dipole constant ahf, as well as the Landé
g-factors gJ and gI can be found in [263]. In the absence of magnetic field, the system is
described by the eigenstates |F, mF〉 of Ĥhf, where F and mF are the quantum numbers
describing the norm and the projection along z of the total angular momentum operator
~̂F = ~̂J + ~̂I. In the presence of a magnetic field however, they no longer constitute a good
basis. We focus on the ground state manifold L = 0, for which J = S = 1/2 and I = 4.
In that case, it the energy spectrum can be calculated analytically [264] by the so-called
Breit-Rabi formula

E(Bz) = −
ahf

4
+ gIµBmFBz ±

ahf(I + 1/2)
2

(
1 +

4mFρ

2I + 1
+ ρ2

)1/2

, (6.5)

where ρ = (gJ − gI)µBBz/(ahf(I + 1/2)) is a dimensionless number proportional to the
magnetic field, and the sign corresponds to the two manifolds F = I ± S (F = 9/2 and
F = 7/2, respectively). We will be focusing on the F = 9/2 manifold, which has the lowest
energies due to the inverted hyperfine structure of 40K . As introduced in section 2.3, we
label the states by integers such that they are sorted by increasing energies and correspond
to mF = −9/2,−7/2,−5/2, · · · , 9/2 in Eq. (6.5), see figure 6.2 a). The magnetic moment
of each state follows from the definition [265]

µ(Bz) = −
∂E(Bz)

∂Bz
. (6.6)

This way, by adding a small linear gradient such that ~B = [Bz + b(z− zCoM)]~uz, where
zCoM the vertical position of the cloud’s center of mass, a vertical force ~F = Fz~uz is created
on center of mass such that

Fz ≈ µ(Bz)b. (6.7)

Previous experiments on balanced spin- 1
2 Fermi gases achieved spatial separation through

magnetic field gradient using the two lowest energy hyperfine states of 6Li [246, 247].
In that case the nuclear spin is I = 1, consequently these states are associated with
mF = ±1/2, implying that their magnetic moment are opposite and equal in the limit of
vanishing field due to Eq. (6.5), which makes them very suitable for separation [246].

In this work, however, we are using 40K also in the two lowest hyperfine states |1〉 and
|2〉. Due to the large nuclear spin I = 4, these states are associated with mF = −9/2 and
mF = −7/2 in Eq. (6.5). In that case, the gradient separation is hard to achieve because
not only their associated magnetic moment µ1 and µ2 point towards the same direction,

but it does not contribute in the ground state manifold considered here.
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Figure 6.2: Breit-Rabi eigenenergies. a) Energies of the ground state manifold F = 9/2, I = 4, J =
1/2 taking into account the hyperfine structure and the Zeeman shift in a static field Bz, calculated
from the Breit-Rabi formula Eq. (6.5). b) The magnetic moments is obtained by differentiation
thanks to Eq (6.6). The states |1〉, |3〉 and |10〉 are colored in red, green and blue respectively.

but also their relative difference δ12µ = (µ1 −µ2)/µ2 is always rather small. Indeed,

δ12µ(Bz) ≤ δ12µ(Bz = 0) ≈ 9/2− 7/2
9/2

≈ 22.22%. (6.8)

This critical limitation makes it necessary to transfer the system in a different pair of states
so that an efficient separation can be achieved. The optimal combination is achieved
by using states |1〉 and |10〉. Eq. (6.5) is linear in mFBz when mF = ±9/2, leading to
constant and opposite magnetic moments µ1(Bz) = −µ10(Bz) = µconst, ∀Bz. Note that
µconst = µB(IgI + JgJ) ≈ µB > 0, which means that a positive gradient b > 0 generates a
force that pushes |1〉 towards higher z values. The different magnetic moments are shown
in figure 6.2 b).

6.3 Separating spins in the tube traps

In short, the experimental procedure to separate and isolate the spin states consists in
temporarily populating states |1〉 and |10〉 to benefit from the fact that they have opposite
magnetic moments in order to separate them using a magnetic field gradient. Then,
an optical barrier is applied to keep the two populations separated after removing the
gradient. Due to technical reasons, this requires using a large amount of steps that are
listed below. They are all depicted in figure 6.3 as well.

1. Initially, the mixture of states |1〉 and |2〉 is loaded the crossed optical dipole traps
made of the cODT1 and cODT2 beams, as described in section 2.3. However, the
recompression value is set to 1.3W instead of 1.07W in order to work with a deeper
trap which facilitates the separation process.
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Figure 6.3: Spin separation protocol. a) Representation of the ramps that were implemented in
the experimental cycle in order to separate and isolate the spin states. The vertical dashed lines
mark of the position of the RF transfers |2〉 → |3〉, |3〉 → |10〉, |10〉 → |3〉, |3〉 → |2〉, and |1〉 ↔ |2〉
from left to right respectively. b) Illustration of the key intermediate steps in chronological order.
The barrier beam is represented in green for steps (iv) to (vii).

2. The bias magnetic field is ramped to 209.7 G, close to the zero crossing of the s-wave
Feshbach resonance, see Eq. (2.3).

3. A 5 ms radio-frequency adiabatic linear sweep is performed from 48.45 MHz to
49.15 MHz to achieve to transfer |2〉 → |3〉.

4. The magnetic field is ramped down to 47.7 G in 50 ms.

5. A 20 ms adiabatic linear sweep is performed from 13.24 MHz to 16.07 MHz to
achieve the transfer |3〉 → |10〉.

6. A magnetic field gradient is ramped up linearly in 100 ms in order to push the spin
state |1〉 and |10〉 in opposite directions along z.

7. The compression beam is ramped to 170 mW.

8. A barrier beam (see sec. 6.5) is ramped to 25 mW in 1 ms to force the different spin
states to stay on their respective sides.
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9. The magnetic field gradient is removed with a 100 ms linear ramp.

10. The transfer |10〉 → |3〉 is performed in 20 ms by inverting the limits of the previous
|3〉 → |10〉 sweep.

11. A magnetic field gradient is ramped up again in 100 ms but to a stronger value until
some atoms located in the higher z side start spilling. The gradient is held during
100 ms, and is then ramped down again in 100 ms. This allows to equilibrate the
populations on each side of the barrier.

12. The magnetic field is ramped back to 209.7 G is 50 ms. The transfer2 |3〉 → |2〉 by
performing the same sweep that lead to |2〉 → |3〉.

13. Optional: Depending on whether we want to image the atoms located above or below
the barrier beam, the population inversion |1〉 ↔ |2〉 is performed using a linear
radio-frequency sweep from 45.32 MHz to 46.72 MHz in 5 ms.

14. The magnetic field is ramped to 203.79 G in 20 ms, which corresponds to the scatter-
ing length a3D = 520± 10a0.

15. The power of the compression beam is increased to 1 W in 50 ms.

16. A single-layer the optical lattice is loaded by ramping the lattice beams exponentially
in two steps, in the middle of which the compression beam is ramped off, similarly
to figure 3.4 a).

17. The dipole trap is ramped to 1.07 W in 100 ms.

At the end of the process, we obtain two spin-separated clouds in states |1〉 and |2〉 loaded
in a single layer of the optical lattice. From these initial conditions, spin transport can be
studied by removing the barrier beam and letting the system equilibrate. This will be the
topic of chapter 7. But before that, we will further detail role of the various steps.

6.4 Spin transfer sequence

In order to transfer spin states, we perform radio-frequency adiabatic sweeps. In that
case, we update the Hamiltonian to account for the additional Zeeman coupling with the
time-varying magnetic field Bx(t) = Bx,0 cos(ωRFt) along the x direction originating from
the radio-frequency field, such that

Ĥtot = Ĥhf + Ĥz +
µBBx,0

h̄
cos(ωRFt)

(
gJ Ĵx + gI Îx

)
︸ ︷︷ ︸

ĤRF

, (6.9)

2Alternatively, it is possible to omit this transfer and work directly with states |1〉 and |3〉, see figure 7.11 for
more details.
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where the additional term ĤRF describes the coupling to the field Bx(t). The Hamilto-
nian is now time-dependent and hard to solve in its current state. The problem can be
simplified by performing a time-dependent unitary transformation using the evolution
operator U = exp(iĤ0t), with Ĥ0 = h̄ωRF F̂z, where F̂z is the vertical component of ~̂F.
This transformation leaves Ĥhf + Ĥz unchanged as both terms commute with F̂z. The
transformed Hamiltonian3 H̃tot = UĤtotU† + ih̄U̇U† still contains time-dependent terms.
Under the rotating wave approximation [266], they are neglected and we are left with

H̃tot = Ĥhf + Ĥz − h̄ωRF
(

Ĵz + Îz
)
+

h̄Ω
4
(
gJ Ĵx + gI Îx

)
. (6.10)

We introduced the Rabi angular frequency Ω = 2µBBx,0/h̄. Contrary to the Ω = 0
case, there are no analytic solutions to this problem. However, this Hamiltonian can be
diagonalized numerically as the dimension of the Hilbert space is not large. Calculating
the energy spectrum for a given bias field Bz as a function νRF = ωRF/2π reveals the
unavoided and avoided crossings and provides insight regarding to evolution of an initial
spin mixture through the sweep.
In the previous section, we argued that working with state combination |1〉 and |10〉 is
ideal to perform spin separation with a magnetic field gradient. Given an initial is a
spin mixture |1〉 and |2〉 at B = 209.7 G, an ideal operation would consist in directly
transferring |2〉 → |10〉 which can be done by adiabatically sweeping over the 8 avoided
crossings that separate the initial and the final state while making sure to start sweeping
at a frequency larger than the transition between |1〉 and |2〉 to ensure that the population
in |1〉 remains unchanged.
While this operation is not fundamentally forbidden, it is technically inconvenient to
implement in the experiment. Given that RF sweep limits are usually set empirically and
optimized, it is better to be able to resolve the spin state composition when scanning the
central frequency of the sweep ramp. At large magnetic field, the absorption imaging
technique is spin-selective due to the Zeeman shift. This issue could be bypassed by
ramping the magnetic field down before imaging but it introduces another complication.
Ramping the bias field through the s-wave resonance between |1〉 and |2〉 located 202.1 G
leads to the creation of molecules and produces heavy losses [137, 144] if these states are
populated. Therefore, this can severely bias the optimization of the ramp.
Consequently, we implemented a technique that uses more steps but allow for a better
monitoring. As indicated in section 6.3, we start by transferring |2〉 → |3〉. This way, we
end up with a spin composition made of a mixture of |1〉 and |3〉. For this pair of states,
an s-wave resonance was identified at ∼ 224.21 G and a p-wave resonance at ∼ 215 G
[267–270]4. However, no additional resonances were referenced for smaller magnetic

3The symbols † ,˙ denote hermitian conjugation and total derivative with respect to time, respectively.
4For convenience, all these references were gathered in [88].
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Figure 6.4: Selective adiabatic transfer. Evolution of the energies obtained by numerically diago-
nalizing Eq. (6.10) as a function of νRF = ωRF/2π , for a static field Bz = 44.7 G and Rabi frequency
Ω = 2π × 30 kHz. The frequencies νstart = 13.24 and νstart = 16.07 represent the sweep range
limits, as presented in section 6.3. We set the RGB color values for each νRF to be |〈1|φ〉|2, |〈3|φ〉|2
and |〈10|φ〉|2 for red, green and blue respectively, where |φ(νRF)〉 are the normalized eigenstates.
For clarity, the relevant states are represented with opaque data points within the sweep range.
This way, the initial state |3〉 at νRF = νstart and the lowest energy can be adiabatically transferred
to |10〉 after a succession of 7 avoid crossing (the path it follow turns from green to blue), whereas
|1〉 encounters no avoided crossings in the sweep range (the corresponding path stays red). The
two zoomed insets highlight some of the relevant avoided crossings. The energy was defined with
an offset such that the average energy over all the states in the absence of RF field is zero.

fields. Thus, we can safely reduce the value of the magnetic field without risking losses
and heating.

We chose the value of 44.7 G to perform the sweep5 |3〉 → |10〉. The figure 6.4 depicts the
evolution of the spin population through the adiabatic sweep, assuming Ω = 2π × 30
kHz6. This way we can ramp the field to a small value ∼ 1 G so that we can image all the
spin states7, as shown in figure 6.5.

With the optimized sweep, a magnetic field gradient allows us to achieve full separation
of the spin states as shown in figure 6.5 c), while d) shows how the separation can be kept
by an optical barrier after removing the magnetic gradient. The next section is devoted to
give more details about this optical barrier.

5During the writing of this manuscript, we realized the existence of a p-wave resonance located at 44.7(2) G
which enhances inter-species collisions in |9〉. Given our observations around another p-wave resonance
in figure 7.11, we do not expect this resonance to significantly alter the atomic sample as the atomic density
and temperature during this sweep are lower than those of the mentioned measurement.

6A Rabi oscillation measurement revealed that our RF antenna can create Rabi frequencies up to Ω = 2π × 80
kHz [89].

7However, the various spin states do not couple equally strongly to the probe beam and will have different
detectivities.
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Figure 6.5: Multi-spin imaging at low field. By ramping the magnetic field to ∼1 G, it is possible
to image all the spin states simultaneously. a) Image of the gas in the absence of magnetic gradient,
giving a reference for the center of the crossed dipole trap along z. b) Magnetic gradient applied to
a mixture of states |1〉 and |3〉 in the crossed dipole trap. c) Weaker magnetic gradient applied to a
mixture of states |1〉 and |10〉 in the crossed dipole trap and a weak compression beam potential.
d) Same states |1〉 and |10〉 without the magnetic gradient. The barrier beam was added to keep
spins separated.

6.5 Optical barrier potential

In order to keep the atoms separated after removing the magnetic field gradient, we use a
blue-detuned elliptical beam to create a barrier which forces the two spin populations to
stay on their respective sides. This standard technique was used in other experiments, for
instance [240, 246].

We create the elliptical beam profile with same λ = 532 nm laser source used for the
compression beam 3.2.5. The setup after the mode-cleaning optical fiber is shown in 3.6 b).
A cylindrical telescope is used to shape the elliptical Gaussian beam profile, and the beam
is later on overlapped with the compression beam and shot along the x direction. The
intensity is regulated with a setup similar to the compression beam. The theoretical beam
profile is obtained from a slight modification of Eq. 2.2 which, at the focus [271], reads

I(~r) =
2Ptot

πwywz
exp

(
−2y2

w2
y
− 2z2

w2
z

)
, (6.11)
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Figure 6.6: Optical barrier profile. a) Elliptical Gaussian profile of the barrier beam. b) Fits of the
integrated line profiles with Eq (6.11), yielding wz = 4.15± 0.05 µm and wy = 13.95± 0.04 µm.
Along the short direction, side fringes are imprinted due to the finite resolution of the focusing
optical system prior to the atoms.
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Figure 6.7: Atomic sample with a low optical barrier and no prior spin-separation. a) The optical
barrier is ramped up to low power on the initially equilibrated spin-1/2 Fermi gas. As a result, a
dent appears on the integrated density profile. Only one spin component is imaged. b) Similar
conditions, but the optical barrier is higher. Above a certain optical power, the barrier completely
prevents exchanges between the top and bottom sides.
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where P is the optical power, wy and wz are the waists along the y and z directions
respectively, and propagation along x is assumed. The beam was imaged along the
x camera and is shown in figure 6.6. The fitted waists are wz = 4.15 ± 0.05 µm and
wy = 13.95± 0.04. The position of the optical barrier can be optimized by applying it to a
cloud loaded in the optical lattice with no prior spin-separation, leading to images shown
in figure 6.7. Even though it is the largest of the two, the waist along y is rather small
and it is necessary to shoot the compression beam to prevent atoms from bypassing the
barrier before they are loading in the optical lattice, hence the need for step 7 of section
6.3. The barrier height can be estimated using Eq. (2.1). A power of 25 mW was found to
be sufficient to prevent mixing from occurring. Assuming ideal alignment, it corresponds
to a barrier height per temperature unit of

U(~r = 0)/kB =
2αpolP
πkBwywz

= 16.3± 0.01 µK. (6.12)

which happens to sufficient to keep spin states isolated, including during the spilling
phase (step 11 in section 6.3). It is larger than the typical temperatures obtained in figures
7.8 and 7.9. However, a few amount of atoms can still cross the barrier during and after
the optical lattice loading phase.

6.6 Alternate imaging

Once the barrier beam is ramped up, the spin transfers described in section 6.4 are reversed
to go back to a mixture of |1〉 and |2〉 at high fields Bz & 200 G, and as mentioned before,
the absorption imaging is spin selective. However, as described in section 4.1, it is better
to image state |1〉 and take advantage of its quasi-cycling transition which facilitates
quantitative reconstruction of the density profiles.

In order to study transport phenomena, we need to trace the dynamics of each spin
population. By default, after the spin separation procedure, the atoms populating state |1〉
end up above the barrier (higher z) whereas those of state |2〉 end up below it (lower z).
In order to be able to image reliably the population below the barrier, we exchange the
spin populations by performing an adiabatic radio-frequency sweep across the splitting
between |1〉 and |2〉. This process has no influence on the further evolution of the atomic
sample has long as no magnetic field gradient exist on the atomic region. This way, the
difference in magnetic moments µ1 and µ2 do not matter and the external potential in
which the two populations evolve is exclusively set by the optical potential through the
dipole force, which is spin-independent.

It is important to disentangle the hyperfine states and the population above and below the
barrier. From now on, we will refer to the majority population prepared above the barrier
as spin up, or ↑, and the other one spin down, or ↓. It is clear from the explanations above



6.7 Population balance 119

that the population of ↑ can be either in the hyperfine state |1〉 or |2〉, as shown in figure
6.8.

6.7 Population balance

If the spilling step is omitted (step 11 in sec. 6.3), we end up with asymmetric populations
between ↑ and ↓ after loading the lattice. This arises from the fact that the population of ↓
is reduced upon ramping the optical lattice. This effect originates from the longitudinal
expansion of the cloud following the change of trap geometry. It results in spilling
happening exclusively on the lower side of the barrier which has a smaller depth.
We mitigate this issue by creating controlled spilling on the other side of the barrier as well,
using a magnetic field gradient b > 0. During that phase, the system is in a mixture of |1〉
and |3〉, where the former is located above the barrier and the latter below. Because µ1 and
µ3 are both positive (see fig. 6.5 b)), |3〉 is pushed against the barrier, which happens to be
strong enough to prevent tunnelling from happening, whereas |1〉 is displaced vertically
toward higher z as b is increased. The gradient is tuned in such a way that ↑ population
partially spills out of the trap.
Ultimately, we are able to load the separated spin states in a single layer of tube traps
while keeping a low amount of imbalance. With the spilling compensation technique, we
are able to keep the population imbalance below 20% over long time series. A typical
series of absorption images is shown in figure 6.9, featuring the optical density difference
between ↑ and ↓ which is proportional to the local magnetization.
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Figure 6.8: Alternated spin-selective absorption imaging. a) By default after the spin separation
6.3, the cycling imaging transition of state |1〉 reveals the atoms prepared above the green barrier,
which we identify as spin up ↑ population. b) When the exchange |1〉 ↔ |2〉 is made (see step 13
in sec. 6.3), it reveals the atoms prepared below the green barrier, which we identify as spin down
↓ population. c) Camera image taken along x when both the compression beam (see fig. 3.11) and
the barrier beam (see fig. 6.6) are simultaneously present and aligned.
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Figure 6.9: Separated spins in the tube traps. a) 3D sketch of the two spin components being
separated and loaded in a single layer of the two-dimensional lattice. The compression beam is
represented in green, the spin up and down components in blue and red respectively, and the grey
tubes materialize a single layer of tube traps. b) Optical density difference ∆OD = OD↑ −OD↓,
where OD↑ and OD↓ denote the optical densities of the spin up and spin down components,
respectively. The resulting image was obtained from averaging 12 shots of ↑ population and
12 shots of ↓ population. The typical atom number ratio in each tube trap for this image is
N↑/N↓ = 1.2.



Chapter 7

Spin transport in a tight atomic waveguide

7.1 Interactions in a tight atomic waveguide . . . . . . . . . . . . . . . . . . . . 122

7.1.1 Two-body scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.1.2 One-dimensional limit . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.1.3 Bound state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.1.4 Confinement-induced resonance . . . . . . . . . . . . . . . . . . . . 126

7.2 Magnetization dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.2.1 Releasing the barrier . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.2.2 Asymmetry of the potential . . . . . . . . . . . . . . . . . . . . . . . 129

7.2.3 Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.2.4 Temperature evolution . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.2.5 Origin of collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.2.6 Population in the transverse modes . . . . . . . . . . . . . . . . . . 137

7.3 Spin drag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.3.1 Phenomenological considerations . . . . . . . . . . . . . . . . . . . 138

7.3.2 Center of mass dynamics . . . . . . . . . . . . . . . . . . . . . . . . 139

7.3.3 Measurement of the spin drag . . . . . . . . . . . . . . . . . . . . . 139

7.3.4 Semi-classical approach . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.4 Measurement of the spin diffusivity . . . . . . . . . . . . . . . . . . . . . . 144

7.4.1 Integrated spin current . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.4.2 Evolution of the spin diffusivity . . . . . . . . . . . . . . . . . . . . 145

7.4.3 A relation with the relaxation rate . . . . . . . . . . . . . . . . . . . 146

7.5 Open questions and future experiment . . . . . . . . . . . . . . . . . . . . . 149

7.5.1 Dynamics in the noninteracting limit . . . . . . . . . . . . . . . . . 149

7.5.2 Outlook: spin diffusivity in two dimensions . . . . . . . . . . . . . 150

In chapter 6 we have presented an experimental scheme that successfully prepares spin-
separated 40K atoms by means of an optical barrier applied to the loaded layer of the
two-dimensional lattice. In the present chapter we will analyse the dynamics arising from
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the sudden release of the barrier, focusing on the regime of strong interactions leading to
spin diffusion.

7.1 Interactions in a tight atomic waveguide

In chapter 5 we studied the thermal equilibrium properties of quantum wires in the non
interacting regime. In order to define transport coefficients from a microscopic perspective,
the role of interactions on the few-body level must be clarified. In this chapter, we briefly
present the formalism that describes two-body scattering in a tight atomic waveguide, and
the appearance of a confinement induced resonance (CIR) in the one-dimensional limit.

7.1.1 Two-body scattering

We consider a two-body Hamiltonian describing the kinetic energy of two particles of
identical mass m located by~r1 and~r2, which are subject to an external transverse harmonic
potential of angular frequency ω⊥ and an interaction potential V(~r1 −~r2). The CoM
motion decouples from the relative motion of the particles. We will exclusively focus on
the latter as the former does not couple to interactions. The Hamiltonian of the relative
motion reads

Ĥrel = −
h̄2

2µ
∇̂2
~r +

1
2
µω2
⊥ρ

2 + V(~r), (7.1)

where~r =~r1 −~r2 = (ρ,φ, z) in cylindrical coordinates, and µ = m/2 is the reduced mass.
In the absence of interactions, we can write Ĥrel = Ĥz + Ĥ⊥ where the first term contains
only the kinetic term along the z direction and is solved by plane waves ∼ eikz, and the
second term corresponds to the transverse harmonic oscillator. In contrast to chapter 5,
we will use the basis |n, m⊥〉 for the transverse states, which simultaneously diagonalizes
the transverse Hamiltonian Ĥ⊥ and the angular momentum along the z-axis, denoted L̂z.
It satisfies the following properties,

Ĥ⊥|n, m⊥〉 = h̄ω⊥(2n + |m⊥|+ 1)|n, m⊥〉, n = 0, 1, 2, ..., ∞, (7.2)

L̂z|n, m⊥〉 = h̄m⊥|n, m⊥〉, m⊥ = 0,±1,±2, ...,±∞. (7.3)

In order to understand the role of interactions, we focus on scattering solutions of the
form

|ψ(E)〉 = |ψ0,n,m⊥(E)〉+ |ψs(E)〉 , (7.4)

where |ψ0,n,m⊥(E)〉 is an incident longitudinal plane wave of wavevector k and transverse
state |n, m⊥〉. Its normalized energy was defined

E =
E

2h̄ω⊥
− 1

2
=

(a⊥k)2

2
+ n +

|m⊥|
2

, (7.5)
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where a⊥ =
√

h̄/mω⊥ is the transverse harmonic oscillator length1. The incident wave-
function can be conveniently calculated at the radial origin

〈ρ = 0, z|ψ0,n,m⊥(E)〉 =
δm⊥ ,0√
2πa⊥

eikz, ∀n (7.6)

and reveals that only incident waves with zero angular momentum m⊥ = 0 can scatter
in the s−wave approximation. We will exclusively consider this regime in the ensuing
sections, and thus the role played by interactions is fully encoded in the scattering length2

a3D. From now on, we assume m⊥ = 0. The scattered wavefunction |ψs(E)〉was calculated
in [272] and yields

〈n′, m′⊥, z |ψs(E)〉 = −
i√
2

δm′⊥ ,0[
a⊥
a3D

+ 1√
2
ζ(1/2,−E)

] ei
√

2
a⊥
√
E−n′|z|

√
E − n′

(7.7)

Consequently, the full wavefunction reads

〈~r|ψ(E)〉 =
+∞∑

n′=0

〈ρ,φ|n′, m⊥ = 0〉
[
δn,n′eikz + f (kn′ ← kn)n′←neikn′ |z|

]
, (7.8)

where the f (kn′ ← k)n′←n coefficients represent the transversely elastic even-wave scatter-
ing amplitudes when n = n′, and transversely inelastic otherwise, whose expressions are
given by

f (kn′ ← k)n′←n = − i
a⊥kn′

1[
a⊥
a3D

+ 1√
2
ζ
(

1/2,− (a⊥k)2

2 − n
)] , (7.9)

where ζ(· · · , · · · ) is the Hurwitz zeta function [273, 274] and kn′ is the outgoing mode-
dependent wavevector

kn′ =

√
2

a⊥

√
(a⊥k)2

2
+ n− n′. (7.10)

Obviously, kn = k is the incident wavevector. The associated transmission and reflection
coefficients are given by [272]

T(kn′ ← k)n′←n =Θ[E − n′]

√
E − n′

E − n
|δn,n′ + f (kn′ ← k)n′←n|2, (7.11)

R(kn′ ← k)n′←n =Θ[E − n′]

√
E − n′

E − n
| f (kn′ ← k)n′←n|2. (7.12)

Here, Θ[...] is the Heavyside step-function. The reflection and transmission coefficients
are equal when n 6= n′. We can define the total reflection coefficient, starting from the

1In the original studies [73, 74, 272], a⊥ is defined with the reduced mass µ through a⊥ =
√

h̄/µω⊥.
2We neglect finite-range corrections.
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Figure 7.1: Total reflection coefficient in a tight atomic waveguide. We defined the constant
C = −ζ(1/2)/

√
2 = 1.03263... to quantify the shift of the CIR, which occurs when a⊥/a3D = C. a)

Reflection coefficient of the transverse ground state mode. At low energies, the reflection coefficient
saturates to 1. The reflection coefficient is independent of k to first order in k around 0 at the CIR.
b) Reflection coefficient at the CIR for several incident modes n. When n becomes large, there
are no longer differences between the modes. Only the n = 0 reflection coefficient features an
horizontal asymptote when k2 → 0. Despite the resonant structure that makes the coefficients
vanish when (ka⊥)2/2 is a strictly positive integer, we observe that the reflection coefficients
globally decays quadratically as ka⊥ increase, which is reminiscent of the 3D free-space cross
section result σ(k) = 1/(1/a2

3D + k2).

incident mode n with wavevector k, by summing all the outgoing modes

Rn(k) =
+∞∑

n′=0

R(kn′ ← k)n′←n (7.13)

These coefficients are easily calculated numerically. But before plotting them, it is insightful
to consider scattering in 1D limit.

7.1.2 One-dimensional limit

When E < 1, the incident wave has to be in the transverse ground state n = 0 and cannot
scatter inelastically towards higher transverse modes due to energy conversation. The
only relevant scattering amplitude element is

f1D(k) = −
1

1 + ia1Dk− i a⊥k√
2
L
(

a2
⊥k2

2

) , (7.14)

which corresponds to f (k ← k)0←0 from Eq. (7.9) and was initially calculated in the
absence of transverse modes [73]. We introduced the one-dimensional scattering length
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a1D and the L function such that

a1D = −a⊥

[
a⊥
a3D

+
ζ(1/2)√

2

]
, (7.15)

L(E) =
+∞∑

j=1

(2 j− 1)!!ζ( j + 1/2)
2 j j!

E j, (7.16)

where ζ(· · · ) is the zeta function. A confinement-induced resonance (CIR) occurs when
a⊥/a3D = −ζ(1/2)/

√
2 ≈ 1.03263, which is detuned to be BEC side compared to the

Feshbach resonance. At the CIR, a1D = 0 and therefore the scattering amplitude saturates
to 1 to second order in k around 0. This peculiar property can be seen on the reflection
coefficients shown in figure 7.1. Conceptually, it seems appropriate to describe the system
with an effective one-dimensional contact potential in such a way that the scattering
amplitude of Eq. (7.14) is recovered. However, due to absence of a transverse length scale
in a 1D world, it is impossible to reproduce the higher order terms O(a3

⊥k3). Remarkably,
the leading order can be reproduced using

V1D(z) = g1Dδ(z) g1D = − 2h̄2

ma1D
, (7.17)

and provides a correct description of the two-body scattering properties at low energies3,
even though it does not capture the bound state accurately for every value of g1D. The
evolution of a1D and g1D are shown in 7.2 a).

7.1.3 Bound state

There exists a single bound state of energy Eb which can be calculated through the implicit
equation

ζ
(

1/2,− Eb
2h̄ω⊥

)

√
2

= − a⊥
a3D

. (7.18)

In the limit a3D/a⊥ → 0−, it converges to Eb,δ−1D = −mg2
1D/4h̄2 which happens to

coincide with the bound state that is calculated in two-body problem in 1D with the
potential given by Eq. (7.17), and exists only when a1D < 0. In the limit a3D/a⊥ → 0+,
it converges to the free-space bound state of the contact potential in three dimensions
Eb,δ−3D = −h̄2/ma2

3D, which exists only when a3D > 0. At the CIR, it can be calculated
explicitly as Eb = −2h̄ω⊥. These properties are represented in figure 7.2 b). Note that
this formula and all the other results of this section are derived in the context on an

3However, on the many-body level, this effective description cannot capture entirely the scattering events
involving q ≥ 3 particles. For instance, the process where a first particle virtually scatters to a higher
transverse mode from a second particle, and then virtually scatters off this mode through a third particle
is not captured. This leads to higher order corrections at large densities for q-body correlators.
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Figure 7.2: Quasi-1D scattering and bound state. a) Evolution of the normalized 1D scattering
length (blue) and the normalized 1D coupling strength (red) as a function of the ratio a⊥/a3D. Note
that in 1D the coupling strength is maximum when the 1D scattering length vanishes, contrary to
3D. This occurs at the CIR, around which one can tune g1D to ±∞. b) Evolution of the bound state
energy as a function of a⊥/a3D in blue. The bound states of the delta potential in 1D and 3D and
represented in light blue and light red respectively to highlight the asymptotic behaviour of EB. In
contrast to the 3D situation, the bound state exists on the two sides of the resonance.

infinitely deep waveguide. In a waveguide of finite depth, the spacing between the
discrete transverse level is no longer constant which leads to new collision channels, and
the presence of a continuum of states can significantly change the influence of virtual
transverse excitations [272]. In figure 4.3 a), we notice that the ratio between that depth of
the waveguide in each direction and the corresponding trap frequency quantum is ∼ 23.5
atω⊥ ≈ 2π × 17.0 kHz.

7.1.4 Confinement-induced resonance

Initially derived with a single mode model and a zero-range potential [73], this resonance
was shown to be robust for finite potentials at the two-body [74] and many-body levels
[275] using numerical simulations. It is characterized by a diverging one-dimensional
coupling strength g1D, which correctly describes scattering events a low energy. Ex-
perimentally CIRs were observed in many-body system in 1D and 2D by observing the
induced enhanced losses and heating [76]. Confinement induced-molecules were observed
using radio-frequency spectroscopy to probe the bound-state energy [75].

Using the CIR, a one-dimensional BCS-BEC crossover can be realized. The inverse cou-
pling constant g1D can be varied from −∞ to +∞ and the system evolves from a BCS-like
state through a Tonks-Girardeau gas and finally to a weakly interacting Bose gas of dimers
[276].

In this section, we focused on s−wave scattering in the three-dimensional potential which
leads to even-wave in the tight atomic waveguide in Eq. (7.8). In a more general situation,
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odd-wave scattering would be described by additional terms proportional to sign(z)eikn′ |z|,
but in our case their associated scattering amplitudes were suppressed due to the isotropy
of the s-wave potential. CIR have been predicted to also occur around a p-wave resonance
[277]. In that case, it was experimentally observed that scattering in |m| = 1 states is also
allowed and lead to a resonance that is shifted with respect to m = 0 scattering [278].

7.2 Magnetization dynamics

It is time to come back to the spin-separated clouds prepared in chapter 6. Since we realize
a spin-1/2 system, the total magnetization is defined4 as M = n1D,↑ − n1D,↓. From this
starting condition, we can initiate magnetization dynamics by simply ramping down
the green barrier, as shown in figure 7.3. The goal of the current section is to provide an
overview of the key quantities of the dynamics, the parameter regime, and how easily
accessible observables evolve over time to understand better the behaviour of the system
at the vicinity of an s−wave resonance. After the spin separation described in figure 6.3,
we ramp the magnetic field to the final target value in 20 ms to set the scattering length to
our needs, and hold 20 ms before releasing the barrier.

4Defined this way, M should be though of as the integrated magnetization in 3D geometry, or summed over
all the transverse modes in a tight waveguide picture.
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7.2.1 Releasing the barrier

The evolution of the system strongly depends on the way the green barrier is removed,
and the strength of interactions. If the barrier is switched off abruptly, the two spin
components acquire a larger relative momentum before attempting to interpenetrate each
other. In 3D it was observed that the two spin components can bounce off each other
provided interactions are strong and the relative momentum of the two spin clouds is large
enough [247]. Conversely, when the relative momentum is small the spin components
slowly merge [246, 247]. In addition to the relative center of mass motion, the velocity
distribution is also affected. The optical barrier used here is very sharp compared to the
tube trap potential. After a sudden switch off, the distributions of each spin component
with respect to their center of mass need some time to readjust. We observed that in the
presence of strong interactions, the spatial distribution of both spin components rapidly
adapts to a Gaussian.

Let us start by looking at the density distribution along z integrated along all the tube
traps to have a global picture. We fit the total density of each spin component with

ntot,1D,s(z, t) = As exp

[
− (z− dtot,s(t))2

2σ2
tot,s(t)

]
, s =↑, ↓ . (7.19)

In figure 7.4, we present how dtot,s(t) and σtot,s(t) evolve over time from two different
initial conditions, and for a3D = ∞. In a), we perform the abrupt ∼10 ns switch at
t = tswitch, whereas in b) we linearly ramp down the barrier in 50 ms, and denote tramp end

the instant where the ramp finishes.

In the first case, we observe a rapid expansion of the cloud sizes σtot,s(t) after t = tswitch

due to the initial compression imposed by presence of the barrier. Also, we propose to
interpret the evolution of dtot,s(t) the following way. The ↑ population, initially located
on the steep side of the potential, acquires more momentum than the ↓ population before
their first contact. As a result from this asymmetric situation, we observe that the ↓
population is temporarily pushed back at t ∼ 5 ms, while the ↑ population is simply
slowed down after the impact. Remarkably, the position of the turning point of the ↓ spin
state after this event coincides with Tho/2 = 5.2 ms which corresponds to the half-period
a harmonic trap associated with an angular frequencyω‖ = 2π × 96 Hz, corresponding
to the central curvature of the trap. The rest of the dynamics is a slow merging of the two
spin components.

In the second case, where the optical barrier a removed slowly, the evolution after
t = tramp end is similar to the late stage of first the case. However, it allows for a more
symmetric decay of the center of masses of each component, and also reduce the overall
variability of σtot,s(t). The decay of each center of mass agrees very well with an expo-
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Figure 7.4: Influence of the green barrier ramp. a) Evolution of the fitted Gaussian position dtot,s

and widthσtot,s after a sudden release of the green barrier occurring at t = tswitch. The dashed line
represents Tho/2 = 5.2 ms, defined in the main text. b) Similar plot, but instead the optical power
of the green barrier is ramped down linearly in 50 ms and vanishes at t = tramp end. The lines
correspond to an exponential fit, which feature τtot,↑ = 38.8± 0.9 ms and τtot,↓ = 42.8± 1.5 ms.

nential law dtot,s(t) = dtot,0,se−t/τtot,s . This ramp strategy is better suited to studying the
diffusive properties of the cloud, and it is the one we will adopt in the rest of this chapter.
We will always start measuring at t = 4 ms, where profiles are seen to fit very well with a
Gaussian ansatz. We notice that despite the improvements, slight asymmetries between
↑ and ↓ populations are still noticeable at short time. We discuss their origin in the next
section.

7.2.2 Asymmetry of the potential

The asymmetry of potential has a noticeable effect on several level. For later quantitative
analysis, it is insightful to estimate the role it plays.

We introduce the local angular frequency of our reconstructed potential as

ωloc(z) =

√
∂2

zV‖(z)
m

, (7.20)

where V‖ is the reconstructed potential obtained from the protocol described in 5.3.2.
By definition,ωloc(z = z0) = ω‖ if z0 corresponds to the minimum of the trap, andω‖
the curvature around it, expressed in angular trapping frequency unit (see sec. 4.4). We
reconstructed the potential landscape at two lattice powers that correspond to transverse
angular frequencies ofω⊥ = 16.5 kHz andω⊥ = 10.0 kHz. The former is shown in figure
7.5 b).
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Figure 7.6: Cloud size dynamics. a) Top: Evolution of the two cloud sizes. Initially, the cloud
size of ↓ population is smaller, and later on equilibrates with the one of ↑ population. Bottom:
Evolution of normalized difference of ∆σtot = σtot,↑ −σtot,↓. b) Variations of the cloud size for each
spin state without and with curvature correction (top and bottom, respectively).
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Velocity We extract the longitudinal velocity of the centers of mass from the exponential
fit as

vtot,s = ḋtot,s = −
dtot,s

τtot,s
(7.21)

The velocities of the two components are oriented in opposite directions, and vanish when
the system reaches an equilibrium state. As shown in figure 7.5 a) and b), we systematically
have |vtot,↑| > |vtot,↓|. This is because the potential is steeper in the z > 0 side, where ↑ is
located. However, the typical relative difference across all the sets we will analyse in the
rest of this chapter almost always lies below 10% at all times.

Cloud size The systematic trend related to that quantity, shown in figure 7.5 c), is that
σtot,↑ < σtot,↓ at short times. This stems from the fact that the local curvature is higher
on the z > 0 side, which implies that the ↑ population is overcompressed while the ↓
population is undercompressed with respect to the final static state. At long times, the
two sizes become equal.

Local thermal equilibrium Previous studies in 3D have focused in the situation where
the two spin distributions are always locally in thermal equilibrium in a harmonic trap,
resulting in rigid translating Fermi-Dirac distributions [279, 280]. In the present situation,
it would correspond to assuming that the σtot,↑,s =↑, ↓ are time-independent. If the trap
is perfectly harmonic in the longitudinal direction and in the high temperature limit5,
we have σtot,s ∼ 1/ω‖. Obviously, if the trap is not harmonic, the local curvature is not
constant across the trap. But if the latter varies slowly in the spatial extent of the atomic
distribution, the local thermal equilibrium assumption implies that the exact valueσtot,s(t)
will be inversely proportional to the curvature at z = dtot,s(t) at any time t.
In other words for our trap, these assumptions imply that the product

σ̃tot,s(t) = σtot,s(t)×ωloc(z = dtot,s(t)) (7.22)

should be constant. In figure 7.5 d), we show the cloud size of both spin state as function
of time with and without the local curvature correction. The curvature correction reduces
the typical variations of the cloud size to less than 10%, which reduces the variability by
a factor larger than two compared to the uncorrected version. This rescaling is a rather
crude approximation since the problem is in reality non local: the local variations of the
potential curvature are significant in the scale of σtot,s. However, the fact the cloud size

5In the zero-temperature limit, we do not expect the distribution to be a Gaussian, and the way its character-
istic size scales withω‖ will essentially depend on the dimensionality. The exact relation also depends on
the interaction parameter, but we approximately expect the characteristic size to also scale likeω−1

‖ 1D,

andω−2/3
‖ in 3D.
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is nearly constant for the rescaled data reveals that the distributions have a rather well
defined temperature T throughout the evolution, despite the non-equilibrium nature of
the process.

7.2.3 Losses

The Feshbach resonance that we use between states |1〉 and |2〉 is narrow and consequently
leads to enhanced losses which have been observed in 3D gases [144] in comparison to
broad resonances. These losses are more pronounced on the BEC side a3D > 0, and occur
due to three-body recombination events. In one dimension, losses induced by the same
mechanism are expected to occur [281], and losses in a Fermi gas near a p−wave resonance
have been studied experimentally with 6Li [87, 282]. In correlated 1D degenerate Bose
gases, reduced three-body recombination compared to 3D have been observed [283].

It is beyond the scope of the current work to identify the loss-mechanism and extract the
corresponding recombination rates, which would require having data sets which span
much longer durations to identify the density dependence of losses unambiguously. The
later would be anyway challenging to model due the dynamical nature of the studied
process.

As shown in figure 7.7 a), the observed atom number decay is linear versus time in the
measured range. We extract the quantity 1/τloss = −Ṅavg,s/N0, where Navg,s is the atom
number in spin state s averaged across all the tube traps and N0 = Navg,s(t = 4ms), which
gives a time scale that we can compare with the one of the transport experiment. Figure 7.7
b) makes it clear that τloss continuously increases upon going from the BCS to the BEC side
in the measured range. In the BCS side, τloss > 200 ms is much larger than the time-scale
of the spin relaxation. On the BEC side, the smallest measured value is τloss ≈ 85 ms. The
typical measured losses range from 5% to 40% of the initial atom number from the BCS to
the BEC side when the system is back to a static configuration.

7.2.4 Temperature evolution

We previously argued that it makes sense to define a temperature during the spin relax-
ation. In order to further justify this of point of view, we compared the temperature of the
atomic samples before the barrier is released and after the spin relaxation is over.

Initial temperature For every spin relaxation data set, we also measured the density
distributions of ↑ and ↓ prior to removing the barrier. Therefore, we can estimate the
initial temperature using our thermometry in the reconstructed potential, assuming the
usual noninteracting equation of states in Eq. (5.77). We exclude the region around the
green barrier, where the potential is unknown.
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Figure 7.7: Losses during the transport. The ↑ and ↓ populations are represented by circles and
squares respectively. a) Evolution of the atom number as a function of time for all the sets that will
be analysed in this chapter. b) Extracted loss rate and initial atom number.

The bias field is set to its final value while we take these images. Consequently, the
scattering length a3D is large. The usage of a noninteracting equation of state is justified
by the large spin imbalance on each side on the barrier. We essentially assume that the
minority components6 allow the system to be in a well-defined thermal equilibrium thanks
to collisions with the majority component, but do not contribute to alter the equilibrium
distribution of the majority component significantly compared to the ideal noninteracting
case.

We empirically observe that the temperature in each side of the barrier is similar. Therefore
we include the temperature as a shared parameter when fitting the two distributions of
the majority components so that the amount of free parameters is reduced, resulting in
smaller statistical errors.

Final temperature Each data set also contains averaged images at large times after the
barrier release, where the system is back to being static. In order not to rely on the
unknown interacting equation of state, we employ the noninteracting one to exclusively
fit the wings of the final distributions, where the local fugacity is lower. Since the cloud
are overlapped, we fit both ↑ and ↓ distributions with a shared temperature.

We observe no statistically relevant difference between the initial and the final temperature
of the system in each individual tubes. In other words, losses do not contribute to directly
increase temperature, however they do influence the degree of degeneracy of the system
since they generate a density drop. Representative fits are shown in figure 7.8.

In principle, one could postulate that the ramp of the green barrier could affect the
temperature in such a way that it is compensated by an effect of interactions, for example

6The fraction of minority atoms is larger on the z > 0 side of the green barrier due to the asymmetry of the
trap and the loading process.
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Figure 7.8: Thermometry of the weakly interacting gas before and after separation. Distribu-
tions obtained for a⊥/a3D = −31.0± 0.2 andω⊥ = 2π × 16.5 kHz. a) 16 averaged density profiles
prior to the ramp down of the optical barrier. The fitted temperature is T = 1257± 34 nK. The
central region within the dashed lines is excluded from the non-interacting Fermi gas fits (solid
lines). b) 14 averaged profiles after the ramp down of the optical barrier and 100 ms hold time.
The fitted temperature is T = 1212± 49 nK.

−80 −40 0 40 80

z (µm)

0

2

4

6

8

n 1
D

(µ
m

−
1
)

↑
↓

a)

−80 −40 0 40 80

z (µm)

0

1

2

3

n 1
D

(µ
m

−
1
)

↑
↓

b)

Figure 7.9: Thermometry of the strongly interacting gas before and after separation. Distribu-
tions obtained for a⊥/a3D = 0.13± 0.04 andω⊥ = 2π × 10 kHz. a) 12 averaged density profiles
prior to the ramp down of the optical barrier. The fitted temperature is T = 582± 20 nK. The
central region within the dashed lines is excluded from the non-interacting Fermi gas fits (solid
lines). b) 12 averaged profiles after the ramp down of the optical barrier and 60 ms hold time. The
fitted temperature is T = 540± 50 nK. The central region within the dashed lines with a fugacity
f & 0.2 is excluded from the non-interacting Fermi gas fits (solid lines).
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Figure 7.10: Temperature across the tube traps before release. a) Temperature of two selected
sets prepared with angular trapping frequenciesω⊥ = 2π × 10 kHz (squares) andω⊥ = 2π × 16.5
kHz (circles). As expected, the initial temperature varies very little across for the different data sets
taken with different parameters a3D andω⊥. b) Optical density difference ∆OD = OD↑ −OD↓.
We highlighted a single-tube region by coloring the rest of the image in shades of gray. The
temperature of each tube is measured individually.

through losses. We ruled out this option by performing the same check with a small
scattering length a3D = −75 a0 for which we observed no losses. The comparison between
initial and final temperature shows no statistically relevant differences, as shown in 7.9.
For the final temperature fit in that case, it is not necessary to exclude the central region
since the interaction parameter is small.

Ultimately, this process allows us to determine the starting temperature in each tube
trap, as shown in figure 7.10. Surprisingly, the measured temperatures normalized by the
transverse frequency quantum kBT/h̄ω⊥ = T/T⊥ happen to be lower when we prepare
the system with ω⊥ = 2π × 10 kHz compared to ω⊥ = 2π × 16.5 kHz. Overall, the
normalized temperatures that we reach are larger than those presented in figure 5.8. This
difference likely originates from the spin separation procedure which, on top of requiring
many ramps and transfers over relatively large durations, imposes to ramp the optical
lattice in a situation where the cloud spin components are nearly fully-separated. This
makes adiabaticity conditions difficult to fulfil. Besides, the limitation of interactions
due to strong polarization might also explain why we observe a fairly homogeneous
temperature across the tubes, in contrast to previous results in figure 5.8. Be that as it may,
the preparation of colder spin-separated clouds in the lattice constitutes a challenging
experimental puzzle whose solution would undoubtedly lead to interesting observations.
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Figure 7.11: Scan around the s− and p−wave resonances with |1〉 and |3〉. a) Measurement of
the center of mass position of ↑ population around the s−wave resonance located at B ∼ 224.21(5)
G [267] 10 ms after abruptly releasing the optical barrier. b) Similar measurement around the
p−wave resonance, located at B ∼ 215.0 G [267]. Also shown is the measured total atom number
across all tubes in state |1〉, in the inset.

7.2.5 Origin of collisions

As discussed in 6.4, we perform the experiment using states |1〉 and |2〉, exploiting the
s−wave interaction located around B ∼ 202.1 G. However, there is a p−wave resonance
nearby which influences collisions between two atoms in state |2〉, around B ∼ 198.8 G.
[284]. It is a priori relevant to wonder whether the presence of this additional resonance
influences the spin transport, especially on the BEC side7 where B < 202.1 G.

Since these resonances are close and losses stronger on the BEC side, it is challenging to
unambiguously distinguish their effect. However, we performed an indirect check of the
effect of p−wave collisions by using the states |1〉 and |3〉 instead. This state composition
is obtained by omitting the second |3〉 → |2〉 transfer in the procedure explained in figure
6.3. In figure 7.11, we show the position of the ↑ population after releasing abruptly
the optical barrier and waiting 10 ms as a function of the magnetic field, both around
the s−wave and the p−wave resonance. We also show the absence of losses around the
p−wave resonance. From the obtained signal, it is clear that the p−wave collisions do
not play a significant role. Despite the difference with the previous situation involving
|1〉 and |2〉, we conclude that it is very likely that the presence of the p-wave resonance at
∼ 198.8G does not influence the measurement. This is an important observation because
if the p-wave resonance was introducing losses, |1〉 and |2〉 would not be interchangeable
anymore. Consequently, the alternated imaging method (see sec. 6.6) could introduce a
bias.

7The smallest field value used in the following sections is B ∼ 201.5 G.
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7.2.6 Population in the transverse modes

In order to have a rough feeling for the population share in the transverse modes, we
used the typical densities (extracted at the center of the trap), temperatures and transverse
trapping frequencies realized in the experiment to estimate it. Of course, this quantity is
not straightforward to evaluate exactly, especially in an out-of-equilibrium situation with
strong interactions. However, we can assume use the noninteracting equation of state
with LDA in the longitudinal direction as a toy model to do some estimates.

From Eq. (5.69), we can define the fraction of atoms in the mode s = 0 as

ηs =
(s + 1) f1/2

[
Z exp

(
−s T

T⊥

)]

PSD
, PSD =

+∞∑

s=0

(s + 1) f1/2

[
Z exp

(
−s

T
T⊥

)]
. (7.23)

This equation takes both degeneracy and dimensionality into account. We define a similar
fraction in the limit where transverse quantization does not exist, so that the role of
dimensionality can be quantified. It is obtained by letting h̄ω⊥ → 0, at constant T⊥/T and
Z = eβµ . These three conditions could be implemented by appropriately varying T, n and
ω⊥ for instance. In that case, we make the replacement

+∞∑

s=0

→ 1
h̄ω⊥

+∞∫

0

dE. (7.24)

The index s becomes the continuous variable Ẽ = E/h̄ω⊥. Then, we express the PSD as a
continuous integral in the transverse directions, as well as the transverse distribution η(Ẽ)
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as

η(Ẽ) =
(Ẽ + 1) f1/2

[
Z exp

(
−Ẽ T

T⊥

)]

PSD
, PSD =

+∞∫

0

dẼ(Ẽ + 1) f1/2

[
Z exp

(
−Ẽ

T⊥
T

)]
.

(7.25)
In order to gauge the importance of degeneracy, we can substitute Eq. (7.26) by its classical
Boltzmann equivalent defined as

ηs =
(s + 1)Z exp

(
−s T

T⊥

)

PSD
, PSD =

+∞∑

s=0

(s + 1)Z exp
(
−s

T
T⊥

)
(7.26)

The comparison of Eqs. (7.26), (7.25) and (7.26) for a given value of PSD and T/T⊥ is
shown in figure 7.12, which reveals that both degeneracy and dimensionality are likely to
play a role in our coldest atomic samples.

7.3 Spin drag

Now that we introduced the context inside which the dynamics occur, we can perform a
more quantitative analysis of the transport properties. In this section we introduce the
spin drag and explain how to extract from our measurements. Finally, we briefly discuss
how a Boltzmann equation formalism can be adapted from the widely studied 3D case to
describe the dynamics in a tight atomic waveguide.

7.3.1 Phenomenological considerations

Two-body collisions between ↑ and ↓ populations induce momentum transfers that ef-
fectively result in a friction for the relative motion between spin components [285]. For
instance, if one of the two spin components is static while the other is set into motion
through it, it will drag the former in the same general direction.

In our setup, the relevant direction for the relative motion is the vertical one. If we assume
that the resulting friction force depends linearly on the two velocity components vz,↑ and
vz,↓ of the centers of mass, the application of Galilean invariance implies [280]

F↑↓ = −F↓↑ = −α(vz,↑ − vz,↓), (7.27)

where F↑↓ is the force applied on the ↑ center of mass by the ↓ population, and vice-versa
for F↓↑. The first equality results from the Newton’s third law. The coefficientα > 0 sets
the damping rate of the relative motion between the two components. Following the
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standard approach from [246, 247, 279, 285], we introduce the spin drag coefficient as

v̇z,↑ − v̇z,↓ = −ΓSD(vz,↑ − vz,↓), (7.28)

which is related to the damping coefficient through ΓSD = α/µ, with µ = m/2 defined as
the usual reduced mass of the two-body problem8.

7.3.2 Center of mass dynamics

In a harmonic trap, the relative motion of the centers of mass in the presence of the spin
drag from Eq. (7.28) is described by [246, 247, 279]

d̈ + ΓSDḋ +ω2
‖d = 0. (7.29)

In the overdamped regime ΓSD � ω‖, the solutions are given by exponential decays

d(t) = d0e−t/τ , (7.30)

from which the spin drag coefficient can be inferred9.

ΓSD = ω2
‖τ + 1/τ . (7.31)

In figure 7.13, we observe an excellent agreement with the exponential decay of the relative
CoM evolution in individual tube traps which justifies a posteriori the use of Eq. (7.29) to fit
the data, despite the longitudinal trap being anharmonic10. Furthermore, we have shown
the visible effects of the asymmetry in section 7.2 and noticed that they are relatively
small. We expect to commit a small systematic error that do not impact significantly the
conclusions of this analysis. The overdamped condition can also be writtenω‖τ � 1. We
measuredω‖τ ∼ 6− 24 in the explored range, which justifies the overdamped regime a
posteriori.

7.3.3 Measurement of the spin drag

We performed a measurement of the spin drag in the vicinity of the Feshbach resonance
by taking sets of ∼ 200 images for several values of the scattering length a3D, and for two
angular transverse trapping frequenciesω⊥ = 2π × 10.0 kHz andω⊥ = 2π × 16.5 kHz,

8The relation still holds in the mass imbalanced case where 1/µ = 1/m1 + 1/m2, m1 and m2 being the
masses of the imbalanced components.

9In the overdamped regime, the second term 1/τ is negligible, which is equivalent to say that the inertia
term d̈ in Eq. (7.29) is negligible.

10The effect of anharmonicity are challenging to model because they do not simply act on the CoM motion
but also on the distribution.
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Figure 7.13: Center of mass damping in individual tube traps. a) Evolution of the normalized
relative distance between the centers of mass as a function of the interaction strength. The blue,
green and orange sets are associated with the lifetimes τ = 37.3 ± 1.7 ms, 30.0 ± 0.9 ms and
16.9± 1.2 ms respectively. a) Selected profiles to highlight the extraction of d(t). In the chosen
example, the time duration after the barrier ramp is 4 ms. The profiles are fitted with Gaussian
distributions whose centers identify the position of the CoM.

which corresponds to trap ratios of ω⊥/ωz ≈ 104 and 172, respectively. As explained
in section 6.6, we use alternated imaging to acquire both spin states. The shots are
randomized over different hold time values but are always taken by pairs of consecutive ↑
and ↓ images. Given that time required to acquire each data set extends over several hours,
we often need to interrupt and realign the various beams, mostly crossed dipole traps,
compression beam and barrier beam. In order not to depend on the absolute position
of the trap which is sensitive to drifts and imperfect realignments, we always use the
position along z of ↓ population to set the origin of positions along z in each pair. With
this convention, we can safely average multiple pairs of images with matching hold time
so that the signal-to-noise ratio is improved and individual tube analysis can be made.
In figure 7.14, we show the spin drag extracted from fitting the relative center of mass
evolution of each individual tube with Eq. (7.30) and then applying Eq. (7.31). For
each individual tube, the temperature T, the total one-dimensional density n1D(z, t) =
n1D,↑(z, t) + n1D,↓(z, t), is extracted from the images, whereas a⊥ and a3D are common
parameters set by the lattice beam’s power and magnetic bias field respectively. We label
each point with three dimensionless numbers:

• a⊥/a3D to quantify the interaction strength, which we vary between −2 and 2,

• λTn1D/2 ∼ 0.3 – 1.3 to quantify the phase-space density11, where n1D is measured
at the middle position between the two clouds, which coincides with the center of
trap.

11The factor 2 is introduced because the phase-space density is often defined using the density per spin state.
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Figure 7.14: Spin drag at the vicinity of the s−wave Feshbach resonance. The squares and circles
represent data points forω⊥ = 2π × 10.0 kHz andω⊥ = 2π × 16.5 kHz, respectively. The inset
includes only the data points close to a⊥/a3D = 0. The data points of constantω⊥ were binned
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• T/T⊥ ∼ 1.3 – 2 to quantify the dimensionality12

where we defined the thermal wavelength λT =
√

2πh̄2/mkBT. We normalized the spin
drag byω⊥ to have a dimensionless quantity. The measured spin drag is maximal around
a⊥/a3D ∼ 0, which is expected due to the enhanced collision rate. We also observe an
expected increase as a function of density. It is not a straightforward task to compare these
results with a simple scaling given that we are in the 1D-3D dimensional crossover. In the
next section, we present a formalism that could allow to semi-classically estimate the spin
drag in this regime.

7.3.4 Semi-classical approach

In previous works in 3D a semi-classical approach relying on the Boltzmann equation
was used to formally derive the Eq. (7.29) [246, 247, 279]. The two spin components
were described by the semi-classical distributions fs(~r,~v, t), s =↑, ↓, which satisfied the

12Even though it depends on the density as well, see for instance sec, 5.3.3.
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Boltzmann equation

∂ fs

∂t
+~v · ∇~r fs +

~F
m
· ∇~v fs = Is,coll

[
f↑, f↓

]
, (7.32)

where the collision term was given by the following integral

I↑,coll = −
∫

d3 p↓
(2πh̄)3

∫
dΩ

dσ
dΩ
|~v↑ −~v↓|[(1− f↑)(1− f↓) f ′↑ f ′↓ − f↑ f↓(1− f ′↑)(1− f ′↓)].

(7.33)
Using the method of averages developed in [286], the joint distribution f (~r↑,~r↓,~v↑,~v↓) =
f↑(~r↑,~v↑) f↓(~r↓,~v↓) was used to define arbitrary averaged quantities

〈χ〉 = 1
N↑N↓

∫
d3r↑d3r↓d3v↑d3v↓(χ f ). (7.34)

By differentiating this equation with respect to time for χ = z↑ − z↓ and χ = v↑ − v↓, then
applying Eq. (7.32) and using integration by part it can be shown that

∂t〈z↑ − z↓〉 = 〈vz↑ − vz↓〉, (7.35)

∂t〈v↑ − v↓〉 = −ΓSD〈vz↑ − vz↓〉 −ω2
‖〈z↑ − z↓〉, (7.36)

where the spin drag is expressed as

ΓSD =
〈(vz↑ − vz↓)Icoll[ f ]
〈vz↑ − vz↓〉

. (7.37)

Combining Eqs. (7.35) and (7.36) result in (7.29), since 〈z↑ − z↓〉 is indeed the relative
distance between the centers of mass measured in the experiment. Furthermore, the Eq.
(7.37), offers an approach to theoretically estimate the spin drag [246, 247, 279].

In a tight atomic waveguide, we expect this transversely continuous description to break
down when only few transverse modes are populated. In that case, we propose to
adapt this semi-classical approach in the following way. We introduce mode-dependent
one-dimensional distributions fs,n(z, vz), where n = 0, 1, ...,+∞ label corresponding the
transverse mode energies. Each of these distributions satisfy a one-dimensional Boltzmann
equations

fs,n(z, vz) :
∂ fs,n

∂t
+ vz ·

∂ fs,

∂z
+

Fz

m
· ∂ fs,n

∂vz
= Is,coll,n (7.38)
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The collision integral couples all the distributions fs,n(z, vz). It has the generic expression

I↑,coll,n(z, vz) =
∑

n↓ ,n′↑ ,n
′
↓

∫
dv↓dv′↑dv′↓×

(
g(vz, v↓, n, n↑ ← v′↑, v′↓, n′↑, n′↓)(1− f↑,n(vz))(1− f↓,n↓(v↓)) f↑,n′↑(v

′
↑) f↓,n′↓(v

′
↓)

− g(v′↑, v′↓, n′↑, n′↓ ← vz, v↓, n, n↑) f↑,n(vz) f↓,n↓(1− f↑,n′↑(v
′
↑))(1− f↓,n′↓(v

′
↓))
)

where all the distributions are evaluated at z. In contrast to the three-dimensional case,
the collisional integral is more subtle to express. As presented in section 7.1.1, inelastic
collisions occur, coupling the different transverse modes together. The conservations laws
for total energy and momentum are encoded in g(v′1, v′2, n′1, n′2 ← v1, v2, n1, n2) which
vanishes when they are not satisfied13. Otherwise, the functions g can be related to the
scattering amplitudes calculated in [272] and reported in Eq. (7.9).

It is beyond the scope of this work to improve the parametrization of this integral and
attempt to solve it, however this formalism could allow to study the evolution of the
spin drag in the 1D-3D dimensional crossover and benchmark the data presented above.
Boltzmann equation in quantum wires have already been introduced in the context of
electron transport in condensed matter [287, 288].

By slightly adapting the method of averages from [286], we define the joint distribution
average

〈χ〉 = 1
N↑N↓

+∞∑

n,n′=0

∫
dz↑dz↓dv↑dv↓[χ f↑,n(z↑, v↑) f↓,n′(z↓, v↓)], (7.39)

from which we can rederive Eqs (7.35), (7.36) and (7.37). Therefore, we recover the well-
known 3D result, however the spin drag is now defined through a different averaged
collisional integral that correctly captures the quantization in the transverse direction, and
makes use of the scattering amplitudes calculated in a tight atomic waveguide, rather than
a continuous integral with a three-dimensional cross-section like in Eq. (7.33).

Even though this semi-classical approach implements scattering probabilities derived from
a quantum treatment and takes into account Pauli blocking through the (1− fs,n) factors
the collisional integral, it completely neglects correlations that arise on the many-body
level which become relevant at very low temperature. For instance, it cannot include
pairing phenomena. In such conditions, a full quantum many-body treatment of the
system is required to describe the transport process.

13Also, time-reversal symmetry implies g(v′1 , v′2 , n′1 , n′2 ← v1 , v2 , n1 , n2) = g(v1 , v2 , n1 , n2 ← v′1 , v′2 , n′1 , n′2).
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7.4 Measurement of the spin diffusivity

In the beginning of section 7.2, we defined the norm of the magnetization for our system.
It is natural to consider the associated magnetization vector ~M to be oriented along
the vertical direction z, which coincides with the quantization axis. However, since its
direction does not vary with time, only its norm matters.The diffusive evolution of the
later is captured by the longitudinal spin diffusivity (see sec. 6.1). In this section, we will
detail how to define and extract this quantity.

7.4.1 Integrated spin current

In section figure 7.4 b), we have shown that the CoM of each spin distribution decays ex-
ponentially, and Eq. (7.21) was used to obtain the center of mass velocity. This observation
remains true of the individual tube level, and therefore we calculate the CoM velocity
of each spin state inside each individual tube. We will now see how this allows us to
calculate the spin current.

Current of a Gaussian distribution Let us calculate the flux J1D of a one-dimensional
Gaussian density distribution

n1D(z, t) =
N0

σ(t)
√

2π
e
− (d(t)−z)2

2σ2(t) (7.40)

through a fictitious transparent wall located at z0. The parameter N0 is the total atom
number enclosed by the density distribution. If N0 is constant, the flux at time t is easily
calculated by looking at the atom number evolution on one of the sides wall, say the right
side, with atom number NR(t), between t and t + dt. In the instantaneous limit, the flux
at position z0 and time t is given by the derivative

J1D(z0, t) =
dNR(t)

dt
=

+∞∫

z0

ṅ(z, t)dz. (7.41)

The flux is defined such that J > 0 when atoms move from the left side of the wall to the
right side. The integral can be calculated14 and yields

J1D(z0, t) =
(

ḋ(t) +
σ̇(t)
σ(t)

(z0 − d(t))
)

n(z0, t). (7.42)

14Remarkably, this result is robust even when a slight asymmetry is added to the profile. We checked that Eq.
(7.42) holds if the distribution is taken to be a translating and expanding skewed Gaussian distribution
[289], as long the skewness parameter stays constant.
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The first term, independent of z, corresponds to a rigid translation of the profile at velocity
vz = ḋ, whereas the second term originates from the expansion or contraction. As
previously argued, the expansion of the cloud during the diffusion process is fairly small,
and consequently we will neglect the associated term. In the following, we will calculate
particle currents using Eq. (7.42), taking both translation and expansion or contraction.
We observed that the latter contributes to up to 10% of the flux.
Note that if N0 depends on time, it is not longer possible to write the current as product
between the density and the velocity, which originates from the fact that the continuity
equation for the current no longer holds and would need to include a source term which
describes the details of the loss process. However, provided the loss process is slow, Eq.
(7.42) yields a correct estimation of the flux.

Spin current The spin current is obtained from the difference of currents between the
two spin components. Since they have opposite velocities, we can write the norm of the
flux as

|J1D,s(z, t)| = |J1D,↑(z, t)− J1D,↓(z, t)|. (7.43)

From individual tube trap data, we can calculate this quantity for each measured time
values t and positions z where the two clouds overlap significantly. The velocities from Eq.
(7.42) are calculated by differentiating the fitted exponential decay of the center of mass of
each spin component. We also fit the evolution of the cloud size with an exponential fit,
from which we can estimate the contribution to expansion and contraction. Now, in order
to extract the spin diffusivity, we also need to measure the magnetization gradient.

7.4.2 Evolution of the spin diffusivity

Using Eq. 6.1, we estimate the spin diffusivity as

Ds,1D =
|J1D,s|
|∂z M| . (7.44)

We calculate the spin current and the magnetization gradient at a position z = zc for every
individual tube trap and time t. The position zc is chosen around the central region so
that the total density is large and such that M(zc) = 0, meaning that the system is locally
balanced15. Consequently, we assign a value of Ds,1D for each individual tube and for all
times t. At each times, the magnetization gradient is extracted using a linear fit in the
region zc± 15µm, see figure 7.15 a). As shown in figure 7.15 b) for two selected tubes at two
interaction strengths, we observe that the extracted diffusivity does not vary significantly
as a function of time. We can interpret this as a sign that there are no strong temperature

15It can be shown that the spin current can be decomposed into a dissipative part, subject to diffusion, and a
non-dissipative part [247]. The latter vanishes locally when the n↑ = n↓.
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or density variations during the transport that impacts the diffusivity significantly. Thus,
for each individual tube, we assign a final value for Ds,1D by calculating the weighted
average over the different measured times t.
The result of the measurement across all the sets is presented in figure 7.16. The minimal
diffusivity is reached around a⊥/a3D = 0 . Remarkably, we observe no density dependence
despite n1D varying by a factor 3. We also observe no difference between data point taken
at ω⊥ = 16.5 kHz and ω⊥ = 10.0. By averaging the data point shown in the inset,
we obtain Ds,1D = 8.9± 0.6 h̄/m. This satisfies the quantum bound Ds,1D & h̄/m, and
surpasses it slightly less than an order of magnitude. It is slightly larger than the 3D value
measured using the same technique in deeply degenerate Fermi gases [247].

7.4.3 A relation with the relaxation rate

For a true one-dimensional system, a theoretical study calculated a relation between the
relaxation rate Γ1D and the diffusion coefficient in the Boltzmann regime16 [290] which
reads

Γ1D ≈ 2.684
D0

l2
z

, (7.45)

where l2
z = 2kBT/mω2

z and D0 is the bare diffusion coefficient at the center of the trap.
In a 3D anisotropic trap17 where relation occurs along z, the study predicts that the true
relaxation rate Γ = 1/τ is not equal to but proportional to Γ1D, still defined through Eq.
(7.45). The proportionality constant integrates the flow distributions occuring in transverse
direction. Using our data, we can extract following the dimensionless number18

K =
l2
z

τDs,1D
, (7.46)

where τ is the exponential time constant from the relative center of mass motion appearing
in Eq. (7.30) and measured in each individual tubes. The results are reported in figure
7.17. We observe a systematic difference between the two transverse trapping frequencies.
Around a⊥/a3D = 0, we measure K = 1.6± 0.2 and K = 2.8± 0.3 forω⊥ = 2π × 10.0
kHz andω⊥ = 2π × 16.5 kHz respectively. Surprisingly, the former is smaller than 2.684
which should be a lower bound. This could result from the fact that the coefficient Ds,1D

does not reflect the bare diffusivity at the center of the trap D0 due the integration on the
transverse mode, which leads to Ds,1D > D0 and thus contributes to underestimate K.

Also, we notice that K(ω⊥ = 2π × 16.5 kHz) > K(ω⊥ = 2π × 10.0 kHz) which may seem

16Given the crude estimate of the transverse population share shown in figure 7.12, it is likely that the
Boltzmann formalism applies to our measurement.

17For an isotropic 3D trap, a relation similar to Eq. (7.45) holds but the proportionality constant in 12.10 [290].
18The relaxation rate relates to the relative center of mass exponential decay ∼ e−t/τ by Γ1D = 1/τ , and

should not be confused with the spin drag defined in the previous section!
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Figure 7.15: Extracting magnetization gradient and diffusion coefficient. a) Spatial evolution of
the magnetization from which the gradient is extracted. Only the points in blue contribute to the
linear fit (blue line, and shaded area for the error). The value of the extracted slope is used to
calculate the spin diffusivity. The fit is performed around M = 0, represented by the horizontal
dashed line. The represented set lead to the data point marked by an arrow in the right plot. b)
Top: evolution of the extracted gradient for two selected tubes at two different scattering lengths
as a function of time. Bottom: Corresponding spin diffusivity as a function of time. In Eq. (7.44),
both the spin current and the gradient depend on time, however we observe a fairly constant spin
diffusivity. Consequently, we extract the weighted average across all the measured time value
(dashed lines) and their standard error (shaded areas).
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Figure 7.16: Spin diffusivity at the vicinity of the s−wave Feshbach resonance. The squares and
circles represent data points forω⊥ = 2π × 10.0 kHz andω⊥ = 2π × 16.5 kHz, respectively. The
inset includes only the data pata points close to a⊥/a3D = 0. The data points of constantω⊥ were
binned in the (a⊥/a3D , λTn1D/2) plane. The error bars represent the estimated weighted standard
errors in the corresponding bins.
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counter intuitive since the results from [290] seem to suggest that K is expected to become
smaller when the dimensionality of the system is reduced. However, this is consistent with
the observation discussed in section 7.2.4 that T/T⊥(ω⊥ = 2π × 16.5 kHz) > T/T⊥(ω⊥ =

2π × 10.0 kHz).

a⊥/a3D
−2 −1 0 1 2

λ
T n

1D
/2

0.2
0.4
0.6
0.8
1.0
1.2

K

0

1

2

3

4

5

6

7

0.2 0.4 0.6 0.8 1.0

λT n1D /2

1

2

3

K

1.2

1.4

1.6

1.8

2.0

2.2

T/T⊥

Figure 7.17: Evolution of the K constant. The squares and circles represent data points for
ω⊥ = 2π × 10.0 kHz and ω⊥ = 2π × 16.5 kHz respectively. The inset includes only the data
points close to a⊥/a3D = 0. The data point of constantω⊥ were binned in the (a⊥/a3D , λTn1D/2)
plane. The error bars represent the estimated weighted standard errors in the corresponding bins.
In the 3D plane, the plane corresponds to K = 2.684, and in black dashed line in the inset too. The
other dashed lines and shaded areas of the inset represent the weighted averages and standard
errors of the two transverse frequency sets respectively.

The main results of this chapter are the measurement of the spin drag and the spin
diffusivity in figures 7.14 and 7.16, respectively. Despite the presence of discrete transverse
modes breaking the scale invariance, we observe a saturation of the spin-diffusivity to
8.9± 0.6 h̄/m, which satisfies the quantum bound derived for scale-invariant systems.
An interesting follow up would be to explore this system at even lower temperatures
T/T⊥ � 1, where the filling of higher transverse modes at equilibrium could be tuned by
changing the atom number. The crucial point would be to figure out whether the quantum
bound is still satisfied in the 1D regime and for deeply degenerate clouds. Nonetheless,
the presented measurement is an important milestone towards studying spin transport in
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the deeply degenerated 1D regime.

7.5 Open questions and future experiment

7.5.1 Dynamics in the noninteracting limit

In the absence of interactions, we expect the two spin populations to ignore each other. In
a pure harmonic trap, the dynamic consists in undampened oscillations of the separation
between the centers of mass of the two components, as other studies observed using a
Fermi gas in a 3D geometry [246, 247].

The figure 7.18 depicts the dynamic that occurs after switching off the barrier in ∼10 ns,
for various interaction strengths. We represent the evolution of the longitudinal density
integrated on all tubes.

At a3D = 13a0, we can calculate the reflectivity coefficients using Eq. (7.13), and it
typically yields ∼ 1.0× 10−4 for around k = 2π/λth

19. Considering a spin-up particle
going through the spin-down cloud made of ∼ 200 atoms results in a typical probability
of ∼ 2% to be reflected along the way. Consequently, for that regime, we expect to
observe clear center of mass oscillations, despite the anharmonic reconstructed potential.
However, what we observe is different. Shortly after the release, two broad peaks can
be distinguished and take much more time to thermalize into symmetric distributions
compared to the sets with stronger interactions. Remarkably, the position of these peaks is
stable over time. When interactions are strong, the distributions essentially behave like
rigid expanding Gaussian distributions, diffusing into each other.

A hypothetical explanation to the observed evolution at low interaction strength would
be the occurrence of sub-resolution structures in the external potential, already mentioned
in sec. 5.3.2.

On the one hand, if an additional lattice modulation along the z direction would exist
and be deep enough to be significant, then we would expect to observe CoM oscillations
centered on the side of the trap where the cloud is initially released, with a reduced
frequency due to the increased effective mass [291]. This poorly coincides with the
observed dynamics at a3D = 13a0. On the other hand, if a sub-resolution disorder would
exist, we could interpret the robustness of the initial distribution peaks as localization, as
well the damping of the non-localized fraction. It is not clear which mechanism could
produce a disorder with such a sharp frequency cut-off, since the realization of disorder
with short correlation length is usually demanding. Finally, thermalization is also expected
to be affected in low-dimensional systems, and thus this lead must be investigated as well.

Overall, a better understanding of the data shown in 7.18 and complementary checks

19This is just a crude estimate. The tight-confinement limit holds only if |a3D| � r0 [73], where r0 = 65.02 a0
is the effective range of the true interacting potential between 40K atoms [139].
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must be performed to identify the mechanism at hand. The hypothetical occurrence of
sub-resolution structures would result from a technical issue that could influence the static
and dynamic properties of the system and would thus need to be fixed. A straightforward
check to disentangle the effect of interactions and the one of the external potential would
be to induce density dipole oscillations in the micro trap, like in figure 4.6. If the trap is
smooth, the motion of the CoM in the harmonic region should be completely unaffected
by interactions as a consequence of Kohn’s theorem [193].

7.5.2 Outlook: spin diffusivity in two dimensions

In section 7.4 we reported on a measurement of the diffusivity of a low-dimensional gas
in the 1D-3D crossover. However, we would like to stress that a measurement of the
longitudinal diffusivity in 2D would also be very interesting and is accessible with no
modifications of the experimental setup. Indeed, the spin separation procedure described
in section 6.3 could be reused but without ramping the lattice beam pair in the x direction.
Consequently, instead of obtaining separated atoms loaded in a single layer of tube traps,
one would obtain a single pancake. From there, the spin transport experiment could
be performed once again. One caveat is that the external potential would need to be
calibrated in the 2D plane in order to characterize the temperature and the dimensionality
of the gas.
This measurement would be particularly interesting since it would contribute to clarifying
the controversy about spin diffusivity in 2D, which was triggered by contradicting results
from transverse spin diffusivity measurements [250, 251], one of them violating the quan-
tum bound, see also table 6.1. However, there are no studies which reported measurement
of the longitudinal spin diffusivity extracted from spin dipole mode damping. It would be
interesting to perform such a measurement in our setup and compare it to the quantum
bound.
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Figure 7.18: Spin dynamics for several interaction strengths. a) Evolution of the density profiles
averaged over the 4 central tube traps of both spin components after the optical barrier is abruptly
removed. When the interaction strength is too small, the system takes a very long time to recover a
Gaussian-looking distribution. The solid lines show a Savitzky-Golay filter applied to smoothen the
profiles. Each column corresponds to a different scattering length, the angular transverse trapping
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Chapter 8

Summary and outlook

After briefly reviewing how we prepared a degenerate gas of 40K atoms in a crossed dipole
trap at a temperature T/TF ∼ 0.15 in chapter 2, we presented the original techniques
which allowed us to convert this ultracold gas into an array of individual quantum wires
in chapter 3. The population of only one single row of the underlying optical lattice
was achieved by superimposing a TEM10-like repulsive optical potential in order to
strongly compress the atomic sample prior to loading. We verified the robustness of
this preparation procedure by means of a specialized diagnostic imaging routine applied
from below, which unambiguously detected the number of loaded layers. Using a high
resolution imaging system, we then fully resolved the flat stack of tube-shaped micro
traps, so that their density contributions could be evaluated on an individual basis.

Chapter 4 was dedicated to describing the means to calibrate the external potential’s
longitudinal and tranverse curvatures as well as the extraction of the density from ab-
sorption imaging. In chapter 5, we formulated and characterized the equation of state of
an ideal Fermi gas in one dimension as well as in the presence of transverse modes. Its
direct application to the data enabled in-situ thermometry of the quantum wires, which
confirmed that almost all atoms could occupy the transverse ground state. At the same
time, this technique has been used to calibrate the longitudinal potential of the tube traps
beyond 2nd order, which was essential for the ensuing experiments studying transport
properties.

Making use of all of the methods developed so far, it was possible to accurately study spin
transport properties in the presence of interactions. Chapter 6 detailed how to spatially
separate, isolate and load the two spin components in the tube traps, resulting in large
longitudinal magnetization gradients. We took advantage of the electronic structure of
40K and employed magnetic state-transfers to optimize the difference in magnetic moment
between the two spins constituting the system, which thus facilitated their separation by
magnetic fields. Finally, a thin optical barrier is used to maintain the separation in lieu
of the magnetic gradient. We investigated the dynamics of the system after releasing the
optical barrier in chapter 7. Focusing on the strongly interacting regime, we quantitatively
studied spin diffusion in the vicinity of a Feshbach resonance, and found no violation of
the quantum bounds despite the absence of scale-invariance in the system. At unitarity,
we observed a maximal spin drag, and a minimal spin diffusivity Ds = 8.9± 0.6 h̄/m.
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The latter result did not depend on the atomic density, which varied by a factor 3 in the
measured range.

Over the course of this manuscript, we reported on improvements and extensions as
well as the first experimental studies with the large-spacing lattice setup. Building on
these encouraging results, there are many more interesting studies one can realize on this
novel platform. In this final section, we will present a non-exhaustive list of potential
future experiments, adding to the previous proposals regarding the measurement of
the interacting equation of state and 2D spin diffusivity discussed in 5.3.5 and 7.5.2,
respectively.

Thermalization in the vicinity of the 1D regime

In chapter 7 we focused on studying out-of-equilibrium spin transport with strong interac-
tions. In that case, despite a slow merging due to the small diffusivity, the two components
approach each other with a locally thermalized distribution. However, when interactions
are weak the dynamic is noticeably different. The systems fails to reach a Gaussian-looking
distribution even at moderately long times, as shown in figure 7.18.

The typical relaxation time required to reach a thermal distribution as a could be studied
function of interaction strength to better understand the mechanisms responsible for
thermalization in low dimensional systems. Alternatively, one could apply the optical
barrier to the Fermi gas thermalized in the optical lattice without separating the spin
components, see figure 6.7. By abruptly removing the optical barrier after some time,
one could generate an out-of-equilibrium distribution which features no spin gradients.
Consequently, one would probe density thermalization rather than spin thermalization.

The one-dimensional world contains many integrable systems, for which it was proposed
that relaxation from an out-of-equilibrium situation is described by a generalized Gibbs
ensemble. This description takes into account the kinematic constraints arising from the
many conserved quantities instead of the usual thermodynamic ensemble [292]. The
former stores in memory the initial conditions in contrast to the latter, and consequently
leads to surprising dynamics [217, 219, 293]. It is expected that one-dimensional systems
with contact interactions are integrable, even though it was argued that in quasi-1D the
existence of virtual excitations give rise to thermalization [218]. It has been observed
that the conventional hydrodynamics approach in a weakly interacting integrable one-
dimensional Bose gas fails to describe its evolution, and must be replaced by generalized
hydrodynamics [294]. It would be interesting to investigate this question using Fermi
gases. While the presence of an external potential is expected to compromise integrability
[255], the generalized hydrodynamics might still apply to describe these systems.
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Itinerant ferromagnetism of 40K in a 1D geometry

Itinerant ferromagnetism in metals is the consequence of repulsive interactions between
electrons. The concept was first introduced by Stoner in 1933 in the context of condensed
matter systems [295, 296]. Recently, interest grew in realising the Stoner mechanism
using ultracold atomic gases. The potential occurrence of itinerant ferromagnetism in
two-components Fermi gases has been discussed in great detail [297–302] and Monte
Carlo simulations predict a ferromagnetic instability near the strongly interacting regime
[303, 304]. An experimental attempt was realised in a 3D geometry, but turned out to be
unsuccessful in the end [305, 306]. The complications originated from the fact that, in 3D,
the strong repulsive large repulsive interactions are obtained by working in the metastable
metastable repulsive branch near an s−wave resonance at positive scattering lengths
a3D > 0. This setting is known to provoke enhanced three-body losses and ultimately
prevents equilibrium to occur.

In one dimension, proposals were made to make use of adiabatic magnetic field sweeps
around an s−wave resonance [307, 308], taking advantage of the reduced loss rate to
stabilize the ferromagnetic phase1 [283]. Remarkably, 40K in particular is a promising
candidate to realize itinerant ferromagnetism thanks to its specific resonance structure
of the states |1〉 and |2〉 [309]. Indeed, this atomic species coincidentally2 features both
an s− and a p−wave [284] resonance between these two states at ∼202.1 G and ∼198.8
G, respectively. In-between these two fields, the p−wave resonance is attractive whereas
its s−wave neighbour is repulsive. This situation can be further enhanced by using
an confinement induced-resonance which lowers the position of the ordinary Feshbach
resonance in terms of magnetic field. Thanks to the possibility of probing individual tube
traps, our setup would allow to directly identify the presence of itinerant ferromagnetism
by observing the formation of spin domains in-situ. Alternatively, it is possible to artificially
engineer spin domain walls by following the spin-separation procedure of chapter 6. This
approach was used in a previous study in 3D to investigate the ferromagnetic behaviour
of two-components Fermi gases [246]. The authors of [309] argued that the sweet spot to
observe itinerant ferromagnetism in 40K corresponds to T ∼ 10− 20 nK,ω⊥/2π ∼ 8− 24
kHz, n1D ∼ 1− 3 µm−1, and suggested to work a field strength of B ∼ 199 G. While the
conditions regarding angular trapping frequency and density fall in a range accessible
by the experiment, we could not yet satisfy the requirements in terms of temperature
due to technical limitations. Despite the encouraging step forward toward studying
itinerant ferromagnetism in our setup, this highlights the necessity to further improve the
experiment.

1Even though this statement is debated in more recent studies about losses around a p−wave resonance in
1D fermions [87, 282].

2The authors talk about a "present from nature"!
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Many-body localisation in interacting systems

The presence of a disorder in the external potential strongly impacts the dynamical
behaviour of quantum mechanical systems. It was first shown by Anderson in the 50’s that
interference effects in a random potential lead to a complete localisation of noninteracting
particles [310]. In the presence of interactions, the problem is considerably more difficult
to tackle. In this context, Anderson had surmised that the presence of disorder can lead to
localised states or non-ergodic behaviour. It took around half a century before a theoretical
proof finally justified the existence of many-body localisation (MBL) [311–313]. With
the combination of theoretical and experimental efforts, MBL is now a well-established
standard property occurring in disordered Hubbard-type systems with interactions [314–
319] . However, in the case of continuous bulk systems, the existence of MBL is debated
[320–323]. So far, pioneering studies have been focusing on disordered lattice landscapes
[324–330]. Therefore, it would be interesting to generate random disordered potentials
featuring correlation lengths on the order or below the inter-particle spacing of the atoms,
and probe the existence MBL by taking advantage of our tube-resolved low-dimensional
system.
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24 rue Lhomond, 75005 Paris, France

(Received 1 February 2021; accepted 2 August 2021; published 9 September 2021)

We study ensembles of fermionic cold-atom quantum wires with tunable transverse mode population
and single-wire resolution. From in situ density profiles, we determine the temperature of the atomic wires
in the weakly interacting limit and reconstruct the underlying potential landscape. By varying atom number
and temperature, we control the occupation of the transverse modes and study the 1D-3D crossover. In the
1D limit, we observe an increase of the reduced temperature T=TF at nearly constant entropy per particle
S=NkB. The ability to probe individual atomic wires in situ paves the way to quantitatively study
equilibrium and transport properties of strongly interacting 1D Fermi gases.

DOI: 10.1103/PhysRevLett.127.113602

The 1D world represents an exotic realm of many-body
physics. Quantum and thermal fluctuations are enhanced
and the dimensional constraint on the motion of particles
strongly increases the impact of interactions [1]. A para-
digm for the resulting unconventional behavior is the
complete collectivization of elementary excitations in
gapless 1D systems, known as Tomonaga-Luttinger liquids
(TLLs) [2–4]. Signatures for TLLs and other characteristic
1D states have been observed in a variety of solid-state
systems, including organic conductors [5,6], carbon nano-
tubes [7,8], semiconductor wires [9–11], antiferromagnetic
spin chains [12], metallic chains [13], and edge modes of
integer and fractional quantum hall states [14]. However,
these materials are complex and typically feature uncon-
trolled interdimensional couplings, rendering quantitative
studies difficult.
Ultracold atomic gases provide a complementary

approach to low-dimensional many-body systems
[15–17]. Their motional degrees of freedom can be tailored
precisely via optical or magnetic potentials, and confine-
ment-induced resonances provide a means to tune the sign
and strength of interactions [18–21]. This high degree
of controllability makes 1D Fermi gases promising candi-
dates for the observation of elusive phenomena such as
itinerant ferromagnetism [22–24], Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO) pairing [25,26], or Majorana edge
states [27,28]. So far, only a handful of experiments
investigated the properties of 1D bulk Fermi gases
[20,29–33], including pioneering works on the control of
interactions [20,33] and the effect of spin imbalance in such
systems [29,31]. These experiments, however, suffered
from addressing arrays of wires stacked along two spatial
directions with varying atom number, yielding ensemble-
averaged measurements. Although this drawback did not
necessarily bias all previous studies, it certainly prevented

progress towards the quantitative understanding of many-
body problems in 1D. Indeed, as the thermodynamic state
directly depends on the density, these ensemble-averages
cover extended regions of the phase diagram, which
severely complicates their interpretation and potentially
obscures signatures of elusive states. On an even more
fundamental level, ensemble averages pose a problem for
the observation of critical behavior or states that are
characterized by spontaneous pattern formation, e.g., mag-
netic domains.
In this Letter, we report on the preparation, detection,

and thermodynamic characterization of individual fer-
mionic cold-atom quantum wires in the 1D regime and
1D-3D crossover. Our approach relies on the selective
loading of a single plane of a 2D optical lattice and high-
resolution imaging of the resulting single row of atomic
wires. This strategy allows us to circumvent line-of-sight
averaging in the absorption images and to directly access
the density distribution of each wire. The ability to resolve
1D density profiles in situ and perform local thermometry
represents the main result of this work. In addition, we
precisely characterize the trapping potential, which is a
crucial prerequisite for further thermodynamic studies of
strongly interacting 1D Fermi gases [34–40].
Experimentally, reaching the 1D regime with an atomic

gas requires a tight transverse confinement. The occupation
of the energetically lowest transverse mode must be
predominant and excitations have to be strongly sup-
pressed. This implies that the transverse quantum of energy
has to be large compared to the energy scales of the gas, i.e.,
the Fermi energy EF and thermal energy kBT, where kB is
the Boltzmann constant and T the temperature. We employ
a large-spacing 2D optical lattice to create an array of
independent tube-shaped traps with the potential
Vðρ; zÞ ¼ mω⊥2ρ2=2þ VkðzÞ, where ρ2 ¼ x2 þ y2, m is
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the mass of the atoms, and VkðzÞ ¼ mωk2z2=2þOðz3Þ the
axial potential. Given this potential, the 1D limit is
expressed as kBT ≪ ℏω⊥ and EF ≪ ℏω⊥. The transverse
and axial trap frequencies are ω⊥=2π ≈ 17 kHz and
ωk=2π ≈ 96 Hz, which corresponds to a ratio of ω⊥=ωk ¼
177 (Supplemental Material [41]). The 2D optical lattice is
composed of two orthogonally intersecting standing waves
that are each created by interfering a pair of laser beams
under a small angle [see Fig. 1(a)]. This results in a lattice
constant of d ¼ 2.6 μm ¼ 2.4λ, where λ ¼ 1064 nm is the
wavelength of the laser beams. The large lattice spacing
renders tunneling between the tube traps negligible. We
measure the in situ density distribution of the atomic wires
in the tubes through high-resolution absorption imaging
[see Fig. 1(b)] (Supplemental Material [41]). Our imaging
resolution, as defined by the Rayleigh criterion, is 1.3 μm.
This is twice lower than the lattice spacing. Therefore,
individual atomic wires are fully resolved [see Figs. 1(c)
and 1(d)]. Crucially, to avoid line-of-sight integration along
the imaging axis, only a single row of tube traps is
populated with atoms [see Fig. 1(a)].
Our experiments are conducted with a balanced mixture

of 40K atoms in the two energetically lowest hyperfine
states, representing a pseudospin-1=2 system. The inter-
state contact interactions are controlled via an s-wave
Feshbach resonance at 202.10(7) G [44]. Initially, the
quantum degenerate gas is strongly compressed in a
crossed optical dipole trap by superimposing a repulsive
TEM10-like optical potential [see Fig. 2(a)] (Supplemental
Material [41]), [45,46]. At full compression beam intensity,
the pancake-shaped potential is characterized by trap
frequency ratios of ωy=ωx ¼ 18 and ωz=ωx ¼ 2.6. The
position of the pancake potential determines which tube
traps are selectively loaded when ramping up the optical
lattice. Once the lattice depth is sufficient to inhibit

tunneling, the compression potential is removed [see
Fig. 2(a)].
To verify the loading of a single row of tubes, we image

the atomic cloud along the vertical direction (z axis). The
large axial spread of the atoms in each tube trap poses a
problem for high-resolution imaging given its shallow
depth of field. We mitigate this issue by using a tomo-
graphic optical pumping scheme that transfers atoms out-
side the central region into undetected hyperfine states
(Supplemental Material [41]), [47,48]. Although it is
impossible to resolve individual atomic wires along this
imaging direction, we can clearly distinguish between the
loading of a single and double row of the lattice [see insets
of Fig. 2(b)]. Translating the compression beam orthogo-
nally with respect to the tube traps, we observe a sharp
steplike structure when tracking the center of mass of the
cloud [see Fig. 2(b)]. The plateaus correspond to the
population of different rows. This indicates the robustness
of the loading procedure against misalignment of the
compression beam and small phase drifts of the optical
lattice. In addition, long-term drifts of the lattice are
actively compensated by readjusting the phase at the
beginning of each sequence (Supplemental Material [41]).
Now, we turn to the thermodynamic analysis of in situ

density profiles. By splitting the absorption images [see
Fig. 1(b)] into sections containing only a single atomic wire
and integrating over the x axis, we obtain the individual 1D
density distributions n1DðzÞ per spin state. To improve the
signal to noise ratio, we average profiles with comparable
atom numbers prepared under the same experimental
conditions [see Fig. 3(a)]. For the thermometry, the 3D
scattering length is reduced to jaj ¼ 40a0, which is still
sufficient to establish thermal equilibrium. Here, a0 is the
Bohr radius. To determine the temperature T and chemical
potential μ, we use the equation of state of the non-
interacting Fermi gas
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n1Dðμ; TÞ ¼ −
1

λT

X∞
s¼0

ðsþ 1ÞLi1
2
½−fsðμ; TÞ�; ð1Þ

where the sum accounts for the transverse modes with
the energy Es ¼ ℏω⊥ðsþ 1Þ and degeneracy sþ 1. Here,
Linð� � �Þ is the nth order polylogarithm; λT ¼ h=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πmkBT

p
,

the thermal de Broglie wavelength; and fsðμ; TÞ ¼
expðμ=kBTÞ expð−sℏω⊥=kBTÞ, the fugacity of the sth
transverse mode. Our assumption of negligible interaction
effects in the thermodynamic analysis is not justified
a priori. In fact, in the quantum degenerate 1D
regime, the ratio of interaction and kinetic energy
(Eint=Ekin ∼ 1=n1D) diverges in the low-density limit.
This leads to a nontrivial competition of kinetic energy
and interaction effects in the wings of the atomic wires,
where the density and degeneracy drop simultaneously. To
estimate the influence of interactions on the density
profiles, we perform an a posteriori consistency check
of our analysis for repulsive and attractive interactions
(a ¼ �40a0).
Applying the local density approximation μðzÞ ¼ μ0 −

VkðzÞ to the weakly confined axial direction allows us to fit

the equation of state [Eq. (1)] to the measured 1D density
distributions. By fitting a set of profiles with varying
temperatures and atom numbers [see Fig. 3(a)], we extract
μ and T as independent parameters for each profile and the
reconstructed axial potential as a shared parameter for the
entire set [49]. More precisely, the anharmonic part of
the potential is modeled by a higher-order polynomial
while the harmonic part is fixed through an independent
measurement (Supplemental Material [41]). The asymme-
try and anharmonicity of the potential [see Fig. 3(b)] stem
from the gravitational force along the z direction as well as
the Gaussian profiles of the laser beams forming the optical
lattice and crossed optical dipole trap. We observe no
significant variation of the axial potential across the 18
central tube traps, which are selected for the data analysis.
Comparing reconstructed potentials from sets with attractive
and repulsive interactions reveals only minor differences
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FIG. 2. Lattice loading procedure. (a) (I) First, the gas (red) is
strongly compressed along the y direction by a repulsive TEM01-
like optical potential (green). (II) Second, the optical lattice is
ramped up, populating only a single row of the array of tube traps.
(III) Finally, the compression potential is removed. (b) Center of
mass (CoM) of the atoms in the lattice as a function of the
compression beam center along the y axis in units of the lattice
constant d. The solid line is a guide to the eye. The top inset
shows the intensity profile of the compression beam. The insets
on the right represent characteristic images for single- and
double-row loading.
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FIG. 3. (a) Averaged 1D density profiles for individual tubes
with a total atom number N per spin state. The solid lines
represent fits of the noninteracting equation of state, with T (from
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(gray dashed line) of the potential has been independently
measured (Supplemental Material [41]). (c) Relative difference
δV�40a0ðzÞ ¼ ðVk;−40a0ðzÞ − Vk;þ40a0ðzÞÞ=Vk;−40a0ðzÞ between
the reconstructed potentials for attractive and repulsive inter-
actions.
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[see Fig. 3(c)] and thus validates the use of the noninteracting
equation of state.
With the thermometry at hand, the 1D-3D crossover,

driven by the gradual occupation of transverse modes, can
be precisely characterized. We obtain local dimensionless
quantities by normalizing the relevant energy scales with
the Fermi energy, which is determined by the implicit
equation

n1D ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
8mEF

h2

r Xb EF
ℏω⊥c

s¼0

ðsþ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − s

ℏω⊥
EF

s
; ð2Þ

where b� � �c denotes the floor function. This equation
simplifies to EF ¼ h2n21D=8m in the 1D regime. The
population of transverse modes can either be caused by
thermal excitations or arise as a consequence of Pauli
blocking. By changing the initial evaporation parameters in
the crossed optical dipole trap ðT=TF ≈ 0.15–0.25Þ prior to
loading the atoms into the lattice, we vary the final atom
number and temperature in the tubes. This way, we control
the transverse mode population and can reach the deep
1D regime with kBT ≲ 0.2ℏω⊥ and EF ≲ 0.2ℏω⊥ [see
Fig. 4(a)] (Supplemental Material [41]). The temperature
spread across different atomic wires is yet another sign that
tunneling between the tube traps is strongly suppressed,
which leads to an early thermal decoupling during the
lattice loading procedure.
Previous 1D Fermi gas experiments inferred estimates of

the degeneracy based on thermometry of the initial 3D
cloud before loading the optical lattice. These estimates
rely on the assumption of an isentropic loading procedure,
which is questionable due to various technical heating
processes, e.g., laser intensity noise, and the suppression of
thermalizing two-body collisions in the 1D regime [50–52].
More fundamentally, the temperature and reduced temper-
ature T=TF are not conserved in the isentropic 1D-3D
crossover (Supplemental Material [41]). The corresponding
isentropic 1D-3D relations depend on interactions and are,
in general, not known. With our approach, we do not
require any knowledge about the loading process of the
tube traps and instead determine in situ the temperature,
local T=TF, and local entropy per particle

S
NkB

¼
P∞

s¼0ðsþ 1Þð3
2
Li3

2
ð−fsÞ − lnðfsÞLi1

2
ð−fsÞÞP∞

s¼0ðsþ 1ÞLi1
2
ð−fsÞ

: ð3Þ

We observe that S=NkB stays nearly constant in the entire
crossover region, whereas T=TF displays a sudden increase
in the low atom number and temperature limit [see
Figs. 4(b) and 4(c)]. This is a clear signature of the 1D
regime, where the equation of state is strongly altered with
respect to the 3D case. Note that, compared to the 3D ideal
Fermi gas, the role of quantum statistics in 1D remains
important at higher values of T=TF. For instance, at

T=TF ¼ 1.6 [the highest T=TF in Fig. 4(b)], Maxwell-
Boltzmann statistics overestimates the density of the non-
interacting gas by 55% in 1D, vs 12% in 3D.
Interestingly, we observe that the entropy per particle

varies between the tubes, with an increase toward the
center where the density is highest [see Fig. 4(d)]. This may
be evidence for a density-dependent interaction effect.
For example, a realistic scenario in this context could
be the occurrence of three-body losses during the early
loading phase of the lattice, where the scattering
length is still significant (Supplemental Material [41]).
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FIG. 4. Thermodynamics of the 1D-3D crossover. The data
points in (b), (c), and (d) correspond to the center of each tube
trap (z ¼ 0), where the Fermi energy is the highest. Green,
orange, and blue colors represent a selection of three character-
istic tubes whose indices are indicated in (d). Tube trap indices
label the 18 selected central tubes from left to right along the x
axis. (a) The temperature of individual atomic wires normalized
by the transverse frequency kBT=ℏω⊥ and (b) the reduced
temperature T=TF. The gray gradient in (a) depicts the 1D limit.
The solid lines in (b) that emanate from the data points represent
the continuous change in T=TF and EF=ðℏω⊥Þ within each
atomic wire according to the local density approximation. (c) The
entropy per particle S=NkB. (d) Mean value of the entropy per
particle obtained by averaging the data of (c) for the green,
orange, and blue points. The gray points represent the other 15
tubes traps, which were omitted in (a), (b), and (c).
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This inhomogeneous redistribution of entropy further high-
lights the relevance and necessity of our thermometry
technique based on resolving individual atomic wires.
A direct follow-up study to the work presented here is the

measurement of the equation of state of strongly interacting
fermionic wires. Within the framework of the local density
approximation, the precise knowledge of the axial potential
will allow us to locally relate the 1D density and chemical
potential at any interaction strength. The local pressure and
compressibility can then be obtained from the integral and
derivative of the density with respect to the chemical
potential [38,39,53]. From these observables, further
thermodynamic quantities can be determined, such as the
reduced temperature T=TF. Theoretically, the ground state
and low-temperature regime (T ≪ TF) of the interacting
1D Fermi gas can be solved with the Bethe ansatz [54].
However, for the general finite-temperature case, the
situation is significantly more challenging and theoretical
studies are sparse [55,56].
The individual probing of 1D Fermi gases promises

further insight into elusive states of matter and critical
behavior. This includes the observation of the highly sought
FFLO phase [25,26,29] and the study of TLLs featuring
collectivized excitations and spin-charge separation
[32,57–60]. Of particular interest is the interplay of strong
interactions and the suppression of thermalizing
collisions in 1D [50,52,61], which strongly impacts out-of-
equilibrium and transport phenomena.
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LARGE-SPACING OPTICAL LATTICE

The 2D optical lattice consists of two superim-
posed standing waves, which are each created by in-
terfering a pair of laser beams under an angle of
2θ ≈ 24◦. The standing waves along the x- and
y-axis are formed by beam pairs with the wavevec-
tors k1,3 = k (± sin(θ), 0,− cos(θ)) and k2,4 =
k (0,∓ sin(θ),− cos(θ)), respectively. Here, k = 2π/λ is
the wavenumber and λ = 1064 nm. The waists of the lat-
tice beams are approximately 180µm, which results in a
variation of ω⊥ of less than 2% across the 18 central tube
traps that are used for data analysis. We collect all four
lattice beams in a microscope objective after they have
passed the atomic cloud and image them onto a CCD
camera [see Fig. S1]. This gives us an absolute phase ref-
erence of the lattice. Through piezo-driven mirrors in the
beam paths [42], we control the phase and compensate
long-term drifts at the beginning of each experimental
sequence.

The intensity ramps of the compression beam and op-
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FIG. S1. Direct imaging of the optical lattice. (a) The laser
beam pairs (blue and red) forming the lattice are collected by
a microscope objective and (b) refocused onto a CCD camera.
For the sake of completeness, the crossed optical dipole trap
beams (yellow) are also included in (a).
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FIG. S2. Lattice loading ramps. (Green dashed line) Normal-
ized intensity of the compression beam. (Orange solid line)
Normalized intensity of the lattice laser beams. (Blue dashed-
dotted line) s-wave scattering length. The roman numbers
correspond to the schematic depiction in figure 2(a).

tical lattice for the preparation of a single row of tubes
are shown in figure S2. Also depicted is the change of the
s-wave scattering length during the loading procedure,
starting from a = −1334 a0 in the crossed optical dipole
trap for the initial evaporative cooling of the atomic gas.

ABSORPTION IMAGING

We resonantly image the energetically lowest hyper-
fine state |F = 9/2, mF = −9/2〉 at a magnetic bias field
above 200 G on the D2 cycling transition. Prior to imag-
ing, all optical potentials are switched off in order to
avoid spatially dependent AC Stark energy shifts. A
short imaging pulse of timg = 12µs ensures that the
gas expands only marginally in the transverse direction
(ω⊥timg/2π = 0.2) and that the frequency shift due to the
Doppler effect is negligible. We have verified the latter by
measuring the velocity of the atomic cloud after imaging
pulses of different durations [43]. A linear increase of the
velocity with the pulse duration implies a constant force
on the atoms during the imaging process and hence no
significant frequency shift. The pulse duration of 12µs
lies well within this regime.

To determine the column density ñ of the atomic gas
along the probe beam direction, we use the extended
Beer-Lambert law

σ0ñ = ln(Iref/Iabs) + (Iref − Iabs)/Isat, (S1)
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FIG. S3. Individual absorption image of atomic wires in the
1D regime. This image is part of the average of Fig. 1(b).

which accounts for the saturation of the atomic transi-
tion. Here, σ0 is the absorption cross section, Isat the
saturation intensity, Iref and Iabs the imaging intensities
before and after the atoms, respectively. Typically, we op-
erate with a saturation parameter of s = Iref/Isat ≈ 3−4.
For its calibration, we prepare clouds of low atom number
(OD < 0.5) under the same experimental conditions and
vary the probe beam power. Subsequently, we find the
saturation parameter that yields a constant column den-
sity [see eq. (S1)] for varying probe beam powers. The
estimated systematic uncertainty on the saturation pa-
rameter is 10%. Figure S3 shows an individual absorption
image of atomic wires in the 1D regime.

OPTICAL PUMPING TOMOGRAPHY

The large axial extent of the atomic wires poses a prob-
lem for the z-axis imaging system [see Fig. S2(a)], which
features a depth of field of ±5µm. We mitigate this is-
sue by optically pumping atoms located outside of a cen-
tral slice into the upper hyperfine ground state manifold
(mJ = 1/2), rendering them transparent to the probe
beam. The pumping beam illuminates an opaque slit on
an optical window, which is then projected onto the row
of atomic wires [see Fig. S4]. The demagnified size of the
slit at the position of the atoms is 6µm, while the resolu-
tion of the imaging system is 5µm. This is consistent with
the measured 4µm full width at half maximum of the
atomic slice after the tomography [see Fig. S4(c)]. In the
experiment, the pumping pulse illuminates the atomic
cloud for 1µs before the absorption image is taken.

MEASUREMENT OF THE AXIAL FREQUENCY

Due to the anharmonicity of the potential and the
large axial extent of the atomic wires, a reliable mea-
surement of the axial frequency via induced oscillations
is not feasible. Instead, we apply calibrated magnetic
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FIG. S4. Optical pumping tomography. (a) Imaging system
projecting the shadow of an opaque slit onto the row of atomic
wires. (b) and (c) correspond to absorption images of the
atomic wires without and with optical pumping, respectively.
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FIG. S5. Gradient measurement of the axial frequency. (a)
Axial frequency of each tube trap. (b) Corresponding dis-
placement |∆z0| of the maximum of the 1D density distri-
bution. The dashed lines in (a) and (b) indicate the mean
value over all tubes. (c) Relative difference δVharm between
the harmonic approximation and the fully reconstructed ax-
ial potential.

field gradients ±B′z along the axial direction and mea-
sure the differential displacement 2∆z0 of the maximum
of the 1D density distribution. In the small displacement
limit (∆z0 → 0), the axial trapping frequency is given by
ω‖ =

√
µB′z/m∆z0, where µ is the magnetic moment.

We observe no statistically significant shift of the mea-
sured frequency across the 18 central tube traps [see Fig.
S5]. Typically, the displacement from the center of the
trap is ∆z0 ≈ ±4µm. A self-consistency check with the
fully reconstructed potential demonstrates that the rela-
tive deviation from a harmonic potential in this region is
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at most 1% [see Fig. S5(c)].

EQUATION OF STATE FITTING PROCEDURE

Using the local density approximation µ(z) = µ0 −
V‖(z), with µ0 = µ(z = 0), we simultaneously fit a large
number of 1D density profiles using the non-interacting
equation of state n(µ(z), T ) [Eq. (1)]. In order to account
for the anharmonicity of the axial potential, we use a 7th
order polynomial model

V‖(z) =
1

2
mω2
‖z

2 +
7∑

p=3

apz
p, (S2)

where the axial frequency ω‖ is directly measured as de-
scribed in the previous section and the higher-order coef-
ficients ap are left as fit parameters. We have verified that
the reconstructed potential in the region with atoms is
not changed for polynomial models of higher order than
7.

To prepare the 1D density profiles for the fitting proce-
dure, we first sort all absorption images of a given data set
according to their total atom number. Subsequently, this
list is grouped in intervals of 10 images, which are then
averaged. From the resulting images, the 1D density pro-
files for each tube are extracted. For example, the entire
data set for the s-wave scattering length of a = +40 a0
consists of 270 absorption images. After averaging and
selecting the 18 central tubes, we end up with a set of
486 individual 1D density profiles.

To measure T and µ for a given profile and to deter-
mine the polynomial coefficients ap [Eq. (S2)], we simul-
taneously fit an entire set of profiles. For each individual
1D profile, β = 1/kBT and βµ constitute independent fit
parameters, while the coefficients ap serve as shared pa-
rameters for the whole set. Statistical errors of the ther-
modynamic quantities are obtained from the covariance
matrix of the fit.

TRANSVERSE MODE OCCUPATION

The transverse mode population of the tube traps is a
measure of the dimensional character of the atomic wires.
The relative occupation of the lowest mode

η0(µ, T ) =
Li 1

2
(−f0(µ, T ))

∑∞
s=0(s+ 1) Li 1

2
(−fs(µ, T ))

, (S3)

is given by the equation of state [Eq. (1)]. In the low
atom number and temperature limit, η0 saturates to one
[see Fig. S6], which, by definition, corresponds to the 1D
regime.
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FIG. S6. Relative occupation η0 of the lowest transverse mode
at the center of the tube traps (z = 0), where η0 is the small-
est. Different colors represent three characteristic tube traps.
The data points correspond to the ones shown in Fig. 4.

ISENTROPIC 1D-3D RELATION OF THE
REDUCED TEMPERATURE FOR THE

NON-INTERACTING FERMI GAS

In this section we study the isentropic thermodynamic
relation between the non-interacting homogeneous 3D
and 1D Fermi gas. This elementary (toy) model already
demonstrates that the reduced temperature is not con-
served in the adiabatic 1D-3D crossover. For the 3D and
1D Fermi gas, the corresponding reduced temperatures
are given by

(
T

TF

)

3D

= 4π
(
−6π2 Li 3

2
(−f3D)

)−2/3
, (S4)

(
T

TF

)

1D

=
4

π

(
Li 1

2
(−f1D)

)−2
, (S5)

and the entropy per particle reads

(
S

NkB

)

3D

=
5 Li 5

2
(−f3D)

2 Li 3
2
(−f3D)

− ln(f3D) , (S6)

(
S

NkB

)

1D

=
3 Li 3

2
(−f1D)

2 Li 1
2
(−f1D)

− ln(f1D) , (S7)

where f3D and f1D are the fugacities of the 3D and
1D gas, respectively. Since the entropy is conserved, i.e.
(S/NkB)1D = (S/NkB)3D, f3D and f1D are directly con-
nected through Eqs. (S6) and (S7). With the isentropic
relation between the fugacities we then obtain the isen-
tropic relation of the reduced temperatures in 3D and 1D
(see Eqs. (S4), (S5) and Fig. S7).

∗ Corresponding author: julian.struck@lkb.ens.fr
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ABSTRACT 
 

The behaviour of low-dimensional interacting Fermi gases greatly differs from their three-dimensional 
counterparts. In absence of order in 3D, the majority of fermionic states of matter can be explained by the 
Landau-Fermi liquid theory. Within this framework the system is described as a gas of non- or weakly-
interacting fermionic quasiparticles. By contrast, in one dimension, the low-energy excitation spectrum of the 
system is entirely made up of collective excitations obeying bosonic statistics. 
This thesis reports on the experimental study of low-dimensional Fermi gases using ultracold 40K atoms. The 
main results are threefold. First, we describe the conception of novel experimental techniques to load and 
individually image an array of tube-shaped micro traps in a large-spacing optical lattice. Second, using these 
atomic ensembles in a noninteracting setting, we perform a quantitative analysis of their in-situ density 
profiles to extract the degree of quantum degeneracy and effective dimensionality. In this context, we show 
evidence of the preparation of Fermi gases in the one-dimensional regime. Third, we present a technique to 
separate the spin components of the gas and apply it to study spin transport in low dimensions in the presence 
of strong interactions. We quantitatively model the spin dipole relaxation process in the diffusive regime as a 
function of the interaction strength tuned with an s-wave Feshbach resonance. We determine the spin drag 
and the diffusivity. This minimal value of the latter is compatible with the quantum bound despite the absence 
of scale-invariance in the system, and supplements existing experimental studies in two- and three-
dimensional Fermi gases. 
   

MOTS CLÉS 
 

Atomes ultrafroids, gaz de Fermi, systèmes quantiques à N corps fortement corrélés, simulation quantique. 
 
 

RÉSUMÉ 
 

Le comportement des gaz de Fermi en basse dimension se distingue sensiblement de leurs équivalents 
tridimensionnels. En trois dimensions et en l'absence d'ordre, la majorité des états fermioniques de la matière 
sont décrits par la théorie du liquide de Landau-Fermi. Dans son cadre, le système est décrit comme un gaz 
de quasiparticules fermioniques en interaction faible, voire nulle. En revanche, dans le cas unidimensionnel, 
le spectre du système à basses énergies est entièrement déterminé par des excitations collectives de nature 
bosonique. 
Cette thèse décrit l'étude expérimentale des gaz de Fermi en basse dimension en utilisant des atomes de 
40K. Nous présentons ici trois principaux résultats. Tout d'abord, nous mettons en évidence l'implémentation 
de techniques nouvelles pour charger et imager individuellement des échantillons d'atomes dans un réseau 
optique bidimensionnel à espacement large. Ensuite, en utilisant des gaz idéaux, nous conduisons une étude 
quantitative de profiles de densité in-situ obtenus dans un potentiel externe préalablement calibré pour 
quantifier le degré de dégénérescence et la dimensionnalité des échantillons préparés. Nous rapportons 
l'observation de gaz de Fermi dans le régime unidimensionnel. Finalement, nous développons une technique 
pour séparer et isoler les deux populations de spin d'un gaz de Fermi et l'appliquons pour étudier le transport 
de spin en présence d'interactions fortes. Nous analysons quantitativement la relaxation du mode dipolaire 
dans le régime diffusif en fonction de l'intensité des interactions en se plaçant au voisinage d'une résonance 
de Feshbach en onde s. Nous déterminons la force de traînée ainsi que le coefficient de diffusivité. La valeur 
minimale mesurée de ce dernier respecte la limite quantique malgré l'absence d'invariance d'échelle dans le 
système. Ce dernier résultat s'ajoute au corpus de connaissance existante issue de précédentes études 
expérimentales réalisées avec des gaz de Fermi en deux et trois dimensions. 
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