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Résumé (Français)

Contexte industriel

Quels seront les moyens de transport aérien de demain ? Quelle technologie de rupture per-
mettra de réaliser l’avion du futur ? L’industrie aérospatiale actuelle est confrontée à l’énorme
défi de rendre ses véhicules plus durables, c’est-à-dire de créer des avions plus propres, plus
écologiques et plus silencieux. Afin de relever ce défi, un important projet de développement
d’Airbus consiste à concevoir des ailes plus intelligentes, dont les formes peuvent être opti-
misées pour les conditions de vol à la manière des oiseaux, ou à utiliser de nouveaux matériaux
qui modifient les propriétés physiques de l’avion. Dans le cadre de la qualification et de la
certification des avions, de nouveaux instruments doivent donc être proposés pour permettre
ces évolutions technologiques. En particulier, de nouveaux moyens de mesure ou d’estimation
des déformations des ailes doivent être proposés, permettant une meilleure compréhension
des capacités des ailes et de leur comportement aérodynamique, grâce à une reconstruction
3D dynamique et dense en vol. En outre, ces recherches doivent être intégrées dans le plan
de développement du centre d’essais en vol, dont les axes sont :

• la réduction du cycle de certification des avions d’essai par l’accélération du développe-
ment et de l’installation des équipements,

• la réduction de l’empreinte des instruments de mesure sur l’avion et de leurs contraintes
opérationnelles,

• la réduction des coûts d’installation des instruments d’essai en vol.

Objectifs et enjeux

Dans ce contexte industriel, l’objectif de cette thèse est de développer une nouvelle méthode
de mesure de déformations des ailes répondant aux spécifications du centre d’essais en vol
d’Airbus et de démontrer la faisabilité d’un système industriel. Dans un premier temps, le
système proposé doit être capable de mesurer la flexion (élévation de l’aile) avec une incerti-
tude inférieure à 10cm au bout de l’aile, pour une aile d’environ 30m de long, 10m de large,
et capable de se déplacer dans un volume de 10m de haut. Deuxièmement, ce système devrait
pouvoir effectuer des mesures pendant toute la durée d’un vol, c’est-à-dire jusqu’à 4 heures
d’enregistrement, permettant l’acquisition de phénomènes dynamiques, soit une fréquence
d’acquisition de l’ordre de 1 à 30Hz. Enfin, pour être intégré dans l’environnement d’essai
en vol et suivre la ligne directrice du domaine, le système doit être rapide et facile à installer
tout en restant aussi peu intrusif que possible, à savoir qu’il ne doit pas perturber ni le fonc-
tionnement de l’avion et des autres essais ni l’équipage. Parallèlement, le monde des essais en
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vol présente ses propres défis. La méthode proposée doit fonctionner dans un environnement
non contrôlé, avec des variations de luminosité, d’éventuelles réflexions et ombres, des vibra-
tions et des déformations de l’ensemble de l’avion. Il est à noter que les capteurs utilisés
pour acquérir les mesures ne peuvent pas être installés n’importe où, et sont contraints d’être
positionnés sur les hublots de l’avion.

Résumé des chapitres

Chapitre 1

Confronté aux spécifications d’Airbus et aux défis de l’environnement de vol, le Chapitre 1 se
concentre sur le choix de la technologie et des algorithmes à adopter. En s’appuyant sur la lit-
térature et les technologies existantes du marché industriel, ce chapitre expose un état de l’art
actuel dans le domaine de la reconstruction 3D sans contact. À notre connaissance, une telle
vue d’ensemble n’est pas disponible dans la littérature et contribue donc au développement
du domaine. En conséquence, ce chapitre argumente sur le choix d’une méthode de pho-
togrammétrie pour le cas d’application actuel. En effet, cette méthode présente l’avantage de
fournir des mesures précises conformes aux attentes d’Airbus, sur le volume complet d’une aile
d’avion, de manière dense et dynamique, tout en garantissant une installation simple, rapide
et non intrusive. Le principe de base de la photogrammétrie est de retrouver des coordonnées
3D à partir de leurs observations 2D, en exprimant et en résolvant les équations géométriques
correspondantes aux projections des points sur une ou plusieurs images. Cette méthode est
ensuite décrite plus en détail, avant d’être confrontée aux défis de l’environnement des essais
en vol dans le Chapitre 2.

Chapitre 2

Dans cette deuxième partie de la thèse, un processus de reconstruction 3D est proposé à
partir des images acquises par un ensemble de caméras installées sur les hublots de l’avion et
sur son stabilisateur arrière. Pour estimer les coordonnées 3D des parties d’ailes, la méthode
de photogrammétrie repose sur la détection et la correspondance en 2D de ces éléments sur
les images. Dans ce travail, une étude des caractéristiques existantes pouvant être utilisées
dans ce contexte est présentée, et une combinaison de certaines méthodes modernes est pro-
posée pour le cas spécifique de la reconstruction d’une aile avec des éléments naturellement
présents dans nos images, tel que des rivets, des inscriptions ou des bandes de joints. En
outre, un aperçu de la typologie des cibles photogrammétriques est fourni afin de déterminer
le meilleur équipement à utiliser en vol, afin de garantir la qualité d’estimation 3D requise
dans des condition environnementales variées. Dans un second temps, les connaissances a

priori sur les limites mécaniques de l’aile sont exploitées pour compenser les erreurs liées aux
variations environnementales, grâce à une nouvelle méthode de reconstruction 3D sous con-
traintes. L’approche algorithmique proposée est une amélioration de la méthode classique de
photogrammétrie, introduisant les limites mécaniques de la structure comme termes de régu-
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larisation dans la routine d’ajustement de faisceaux, ce qui a conduit à plusieurs publications
dans des conférences [Dem+20a; Dem+20b; Dem+20c].

Chapitre 3

L’interprétation et la confiance dans une mesure ou une estimation de paramètres ne sont
possibles que si une indication quantitative de cette qualité de mesure ou d’estimation est
fournie. C’est pourquoi dans le Chapitre 3, la qualité de la méthode proposée, en termes
d’incertitude de mesure, est évaluée selon les normes industrielles les plus pertinentes [Guma;
Gumb; Gumc], et sur la base des travaux de [Eud11]. Tout d’abord, un rapide état de l’art
sur l’estimation de l’incertitude est exposé pour aider à comprendre les différentes approches
permettant d’évaluer la qualité d’une reconstruction 3D basée sur le traitement d’images.
Dans un deuxième temps, ce chapitre fournit des lignes directrices sur la prise en compte des
sources d’incertitude pour la conception d’un système de photogrammétrie. En identifiant les
principales sources d’incertitude, les erreurs sont propagées pour déterminer l’incertitude de
l’estimation 3D sur les estimateurs définis dans le Chapitre 2. Cette étude étend le champ
de la propagation des erreurs pour les applications de traitement d’images, où la plupart
des travaux se concentrent sur l’application d’un bruit gaussien au niveau de l’image, en
prenant en compte les sources d’erreurs du monde réel. En outre, les différentes approches
pour estimer l’incertitude sont comparées dans le cas de notre application, et leurs différents
résultats ont permis de valider la réponse du système proposé au besoin d’Airbus en terme
d’incertitude.

Chapitre 4

Enfin, une validation industrielle est fournie au Chapitre 4. A cet effet, un système com-
plet de photogrammétrie a été développé pour mettre en œuvre le processus conçu dans le
Chapitre 2, et pour répondre au mieux aux problèmes de sources d’incertitude du Chapitre 3.
Ce système a été installé sur un Airbus A350-1000 et a permis l’acquisition des premières
images expérimentales à la fin de la thèse. Par manque de temps, le traitement de ces don-
nées n’a pas pu être réalisé, mais il a néanmoins permis de tirer les premières conclusions
sur la validité du système. En effet, les images et la chaîne d’acquisition en action ont été
confrontées aux spécifications d’Airbus, ce qui a permis de valider le matériel et le concept
d’acquisition. Entre autres perspectives, ce système sera industrialisé, contribuant ainsi aux
systèmes d’essais aéronautiques.
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Introduction

Industrial context

What will be tomorrow’s means of air transportation? What disruptive technology will allow
realizing the aircraft of the future? The current aerospace industry is confronted with the
tremendous challenge of making its vehicles more sustainable, i.e., create cleaner, greener
and quieter aircraft. In order to meet this challenge, one important Airbus development
project is the design of smarter wings, whose shapes can be optimized for flight conditions
in a bird-like manner, or the use of new materials that change the physical properties of the
aircraft. In the context of aircraft qualification and certification, new instrumentation must
therefore be proposed to enable these technological evolutions to take place. In particular,
new means of measuring or estimating wing deformations have to be proposed, enabling
deeper understanding of the wing capabilities and aerodynamic behavior, through dynamic
and dense 3D-reconstruction in flight. In addition, this research should be integrated into the
development plan of the flight-test center, whose axes are:

• the reduction of the certification cycle for test aircraft through faster development and
installation of equipment,

• the reduction of footprint of the measuring instruments on the aircraft and their oper-
ating constraints,

• the cost reduction of installing the flight-test instrumentation.

Goals and challenges

In this industrial context, the aim of this thesis is to develop a new method for measuring wing
deformations meeting the specifications of the Airbus flight test center and demonstrating the
feasibility of an industrial system. First, the proposed system should be capable of measuring
bending (wing elevation) with an uncertainty of less than 10cm at the wing-tip, for a wing
about 30m long, 10m wide, and able to move in a volume of 10m high. Second, this system
should be able to carry out measurements during the whole duration of a flight, i.e., up to
4 hours of recording, allowing the acquisition of dynamic phenomena, i.e., an acquisition
frequency of the order of 1 to 30Hz. Finally, in order to be integrated into the flight test
environment and follow the domain’s guidelines, the system should be fast and easy to install
and remain as non-intrusive as possible, i.e., it should not disrupt the operation of the aircraft
and other tests or the crew. Alongside this, the world of flight testing comes with its own
set of challenges. The proposed method should operate in an uncontrolled environment, with
variations in luminosity, possible reflections and shadows, vibrations and deformations of the
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entire aircraft. Note that the sensors used to acquire the measurements cannot be installed
anywhere in the aircraft and are constrained to be positioned on the aircraft windows.

Manuscript organization and contributions

The contributions of this manuscript are the result of a three-year industrial thesis (CIFRE)
in collaboration with Airbus and the laboratories TéSA and IRIT in Toulouse. These con-
tributions are related to the proposal and development of a complete in-flight aircraft wing
deformation estimation system.

Chapter 1

Confronted with Airbus specifications and the challenges of the flight environment, Chapter 1
focuses on the choice of technology and algorithms to adopt. Based on literature and existing
technology of the industrial market, this chapter exposes an up-to-date state of the art in
the field of non contact 3D reconstruction. To the best of our knowledge, such overview is
not available in the literature and therefore contributes to the development of the field. In
result, this chapter argues the choice of a photogrammetry method for the current application
case, with respect to the challenges and specifications. This method is then described in more
details, before being confronted with the challenges of the fly-test environment in Chapter 2.

Chapter 2

In this second part of the thesis, a 3D reconstruction workflow is proposed based on images
acquired by a set of cameras installed on the aircraft windows and on its rear stabilizer. To
estimate the 3D coordinates of wing parts, the photogrammetry method relies on the 2D
detection and matching of these elements on the images. In this work, a study of existing
features that can be used in this context is presented, and a combination of some state-of-the-
art methods is proposed for the specific case of wing reconstruction with features naturally
present on the wing. In addition, an overview of the typology of photogrammetry targets
is provided to determine the best equipment to use in flight. In a second step, the a priori

knowledge about the mechanical limits of the wing is exploited to compensate errors related to
environmental variations, through a new method of 3D reconstruction under constraints. The
proposed algorithmic approach is an improvement of the classical photogrammetry method,
introducing mechanical limitations of the structure as regularization terms in the bundle
adjustment routine, which led to several publications in conferences [Dem+20a; Dem+20b;
Dem+20c].
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Chapter 3

In Chapter 3, the quality of the proposed method, in terms of its measurement uncertainty,
is qualified according to the closest industrial standards [Guma; Gumb; Gumc], and based on
the work of [Eud11]. First, a state of the art about the uncertainty estimation is exposed to
help understanding the various approaches to assess the quality of a 3D reconstruction based
on image processing. In a second step, this chapter provides guidelines on the consideration
of uncertainty sources for designing a photogrammetry system. Identifying the main sources
of uncertainty, the errors are propagated to determine the 3D estimation uncertainty about
the estimators defined in Chapter 2. This study extends the field of error propagation for
image processing application, where most works focus on the application of a Gaussian noise
at the image level, by taking into account real world sources of errors. Besides, the different
approaches for estimating the uncertainty are compared in the case of the Airbus application.

Chapter 4

Finally, an industrial validation is provided in Chapter 4, where the development, installation
and in-flight application of the proposed system is presented and confronted with the Airbus
specifications, opening the door to various perspectives. The proposed system, together with
the tests performed, provided a proof of concept for the estimation of structure deformation
using image processing in flight. Among other prospects, this system will be industrialized,
thus contributing to aeronautics test systems.

Publications

This work led to the following conference publications:

[Dem+20a] Q. Demoulin, F. Lefebvre-Albaret, A. Basarab, D. Kouamé, and J.-Y. Tourneret.
“A New Flexible Photogrammetry Instrumentation for Estimating Wing Defor-
mation in Airbus.” In: Proc. Eur. Test and Telemetry Conf. Nuremberg, Ger-
many, 2020.

[Dem+20b] Q. Demoulin, F. Lefebvre-Albaret, A. Basarab, D. Kouamé, and J.-Y. Tourneret.
“Constrained Bundle Adjustment Applied To Wing 3D Reconstruction With
Mechanical Limitations.” In: IEEE Int. Conf. on Image Process. Abu Dhabi,
United Arab Emirates, 2020.

[Dem+20c] Q. Demoulin, F. Lefebvre-Albaret, A. Basarab, D. Kouamé, and J.-Y. Tourneret.
“Wing 3D Reconstruction by Constraining the Bundle Adjustment with Me-
chanical Limitations.” In: 28th Eur. Signal Process. Conf. Amsterdam, Nether-
lands, 2020.
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Chapter 1

Non Contact 3D Reconstruction

Contents
1.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1.1 Transmissive Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1.2 Reflective Passive Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1.3 Reflective Active Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.1.4 Conclusions on selected method . . . . . . . . . . . . . . . . . . . . . . . . 28

1.2 Photogrammetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.2.1 Camera model and calibration . . . . . . . . . . . . . . . . . . . . . . . . 29

1.2.2 Two view reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.2.3 N-views and Bundle Adjustment . . . . . . . . . . . . . . . . . . . . . . . 36

1.2.4 Model-based methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Starting from the motivation of measuring or estimating wing deformation in flight de-
scribed in introduction, this chapter summarizes state-of-the-art methods able to estimate
such deformations. First, one could instrument the wing of interest with dedicated sensors to
acquire measurements. However, placing sensors inside the wing requires difficult installation,
and provides only sparse measurement points. Another solution consists in installing sensors
on the wing surface, but this operation should be conducted carefully, avoiding the occurrence
of disturbances regarding the aerodynamic properties of wings. For these reasons, methods
based on non-contact 3D measurement could offer an interesting alternative, as discussed
hereafter. Section 1.1 first presents and evaluates all potential candidates for the application
of 3D reconstruction of an aircraft wing. To this aim, the properties of each method are
evaluated with respect to the needs and constraints of the current application, summarized
in seven key factors:

1. Volume of the scene: about 10 × 30 × 10 meters.

2. Required uncertainty: less than ±10cm on wing elevation.

3. Measurement frequency: from 1 to 30 measurements per second.

4. Test duration: up to 4 hours.
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5. Intrusivity: the system should not impact flight performances, nor disturb other instal-
lations.

6. Installation constraints: the possible positions of the sensors are limited to the windows1.
In addition, the installation should be possible in less than one day.

7. Uncontrolled environment: the system should work with uncontrolled illumination vari-
ations, potential reflections and shadows, vibrations and deformations of the full aircraft.

The conclusion on the choice of photogrammetry for the current application is drawn in
Section 1.1.4, and the principle of multiple view approaches is detailed in Section 1.2.

Finally, one might have access to prior knowledge about the scene and structure, which
can be used to improve the results of 3D reconstruction. This is particularly relevant in
applications such as the one considered here, where the method should work in challenging
conditions. Section 1.2.4 takes a closer look to the use of prior models into 3D estimation
methods.

1.1 State of the art

A wide variety of methods has been proposed over the years to perform the task of 3D
reconstruction without contact. These approaches are based on the sensing and processing of
electromagnetic or mechanic waves reflecting from or passing through the scene to reconstruct,
and can be subdivided as represented in Fig. 1.1. On the one hand, transmissive applications
use the ability of certain waves to go through materials such as human tissues for X-rays. On
the other hand, reflective methods rely on the reflection of waves from the object of interest.
The wave source can be either naturally present in the scene, using passive methods, or
transmitted by the system for active approaches. Waves mainly correspond to visible light,
but some applications also take benefit from other kinds of waves such as infra red light for
laser scanning or time of flight cameras, radio waves for radar reconstruction, or sound and
ultrasound waves with sonar systems. The frequency of waves is already a determinant feature
as it conditions the limitations of the system in terms of spatial resolution and volume of the
scene. This section draws an exhaustive list of non contact reconstruction methods, describes
them and evaluates their capacity to meet the requirements listed in the introduction.

1.1.1 Transmissive Methods

The first group of methods concerns the transmissive use of waves. Mainly applied in the
medical field, such systems are based on the observation of waves transmitted through ma-
terials. Since the application domains of these methods have specificities not adapted to the
application addressed in this work, only a brief description will be given in this manuscript.
For more information, the reader is invited to read [Hai13].

1
An additional camera is available on the rear stabilizer of some aircraft.
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Figure 1.1: Non-contact measuring methods

The first technology developed in this domain is the X-ray scan, discovered in 1895.
Such scanners are composed of an X-ray source and a detector. Objects are placed between
these components to acquire images of both internal and external features by guiding X-
rays through the object. The intensity of the rays received by the detector reflects the
object absorption properties that vary for different materials. In 1972, a new system called
computed tomography (CT) was introduced allowing us to recover cross-sectional images (or
slices) of X-ray absorption. From this point, 3D reconstruction is possible from combination
of multiple images from various orientations around the object, processed with a computer.
This method has been extended to industrial application for metrological inspection, reverse
engineering or flaw detection, as shown in Figure 1.2. In this case the object to inspect is
rotated and translated between the fixed source and the detector. Current CT scanners allow
reconstruction resolutions of about 500nm on small objects (usually less than 1m diameter).

Just after X-rays, ultrasound imaging was introduced resulting from the development of
sonar (sound navigation and ranging) applications for the world war II. Similar to sonar
using the good properties of sound propagation into water, ultrasound imaging takes benefit
from the transmission properties of tissues for the ultrasound waves. Inhomogeneities in
the tissues result in variations of its echogenic properties. When ultrasound pulses are sent
into the tissues by a probe formed by piezoelectric elements, these echogenic variations are
recorded as the pulse echoes, while the object depth is computed from the time of flight of the
reflected waves. Reconstruction in three dimensions may further be computed by processing
series of images taken from various spatial locations (see Fig. 1.3). The main advantages of
ultrasound devices are 1) their small dimensions since one device combines both the sound
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(a) (b)

Figure 1.2: Example of industrial CT scan. (a) X25 industrial 3D X-ray inspection system
from NSI [Nsi], (b) 3D scan of a scanned object.

(a) (b)

Figure 1.3: Example of 3D reconstruction using: (a) - ultrasound (from Siemens Healthineers
[Sie]), (b) - MRI (from Phillips [Phi]).

emitter and the receiver in a same sensor (transducer) allowing one to transfer and receive
the ultrasound waves, and 2) the fact that images can be interpreted in real time, allowing
fast and agile diagnosis. However, ultrasound only works for small objects (less than 1m),
requires operator adjustment to get good contrasts, and does not work well for objects behind
air because of high attenuation.

Finally, magnetic resonance imaging (MRI) was developed in the 1970s. This system ex-
ploits magnetic properties of hydrogen atoms present in the water and fat of the human body.
The spin of these atoms can be oriented when the body is placed in a strong magnetic field.
In the case of MRI, this field is modulated such that hydrogen atoms have different spins
depending on their location. By injecting radio-frequency waves into the body, some frequen-
cies excite the atoms depending on their type (and resonance frequency), and their level of
energy is increased. When the input radio wave stops, the atoms recover their equilibrium
states by releasing the stocked energy, emitting a signal that can be recorded by the MRI
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antennas. The intensity of this signal depends on the type of tissues. Finally, the localization
of the atoms can be computed from the observation of the atom polarization. Once again,
this method is restricted to medical applications and a transfer to the case of structure 3D
reconstruction during flight test is not conceivable.

1.1.2 Reflective Passive Methods

Reflective passive methods are opportunistic and use the reflections of light present in a scene
to image the object to be reconstructed. An estimator of the 3D object of interest can be
constructed using information conveyed by the light intensity such as textures, corners or
shadows. This section explores the variety of applications encompassed by passive reflective
approaches.

1.1.2.1 Light reflection on surfaces

To better understand how an image can be processed, it may be useful to understand how
the light coming from an object to a camera sensor has been reflected on this object. The
light emitted on a surface will be reflected differently depending mainly on the roughness of
the material [Hua10; Mor05]. As illustrated in Fig. 1.4, two phenomena can occur:

• Specular reflection, in the case of homogeneous and perfectly smooth surfaces. In this
case, the emitted light will be reflected symmetrically to the normal surface. When the
material is rougher, the light is reflected around a specular lobe.

• Diffuse reflection in the case of rough or inhomogeneous objects. In this case, micro-
scopic variations of the object structure reflect the light homogeneously in all direction
around the normal surface.

Incident Light

Reflecting surface

Normal
Specular pic

Specular lobe
Diffuse lobe

Figure 1.4: Surface reflection model (from [Mor05])

A surface reflection can be exactly predicted by electromagnetic laws if its structure is per-
fectly known. However, in most cases, only an approximated knowledge about these structures
is available. Therefore, several models have been developed to estimate the light reflection
of surfaces, depending on their properties. The simplest and most common model is the
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Lambertian model, which represents the diffuse reflexions of rough or inhomogeneous sur-
faces. In this model, the reflected intensity I is independent of the view point, and is directly
proportional to the angle of the emitted light to the surface:

I = I0kd cos θ, (1.1)

where I0 is the emitted light intensity and kd is the coefficient of diffuse reflexion of the
material. Other models like the Nayar model [NIK91] take into account the specular lobe,
the specular pic and the diffuse lobe at the same time.

In the case of Airbus aircraft, the paint used for the surfaces induces an orange peel effect,
i.e., the reflexion will be diffuse and specular at the same time. On the one hand, specular
reflections will arise from reflections of sun light, which could complicate the detection of
features in the images. On the other hand, diffuse reflexion will degrade the precision of
reflection-based methods like structured light or deflectometry.

1.1.2.2 Shape from shading

The goal of shape from shading is to recover the 3D coordinates of a scene from one single
2D image. As the reflexion of the light seen by the sensor depends on the material reflection
map and its depth, shape from shading uses the knowledge of the surface reflection and the
pixel intensities in the image to recover the depth of the scene. However, since the reflection
properties are generally unknown, they are approximated by a Lambertian model, yielding
a poor accuracy in the reconstruction [PF06; CTS95; TS94]. Moreover, this method also
assumes that the light source position is known or can be recovered from the picture. Two
main classes of algorithms can be distinguished to perform this task: global methods and
local methods. Within global methods, shape is recovered by minimizing a cost function
conveying the global smoothness and consistency of the 3D reconstruction. They are more
accurate and computationally expensive than local methods, which only preserve consistency
on local portions of the scene.

Figure 1.5: Illustration of shape from shading on a real face image, from [PF06].

Based on the statements above, shape from shading methods are not well adapted to
the environment of flight tests. Specifically, such methods require a perfect knowledge of
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light sources and only work with strongly diffuse surfaces, while for aircrafts an important
proportion of the reflections is specular. For these reasons, these methods were not considered
in this work.

1.1.2.3 Shape from texture

A texture is a surface pattern with given regularity properties. From texture distortions, one
is able to distinguish broadly its shape (as illustrated in Fig. 1.6), hence motivating researchers
to develop methods to recover the shape of an object from its texture. To do so, the texture
elements are detected (in Fig. 1.6, the elements are points) and the shape is estimated from
the distortions between them. Distortions can also be found on the element of the pattern
itself if the true texture is known. Most methods are working using priors on the surface
model or texture shape and distributions ([KC89; LF06]), but recent work [VZ20] seek to
remove prior necessity through the use of multiple neural networks.

Figure 1.6: Shape from textures (from [Gur+06]).

Although these methods are definitely interesting for applications such as object percep-
tion, they are not suitable for metrological applications, as the resulting estimations of 3D
shapes remain more qualitative than quantitative. Besides, in the case of our study natural
textures are very sparse on the wing surface, and using additional external textures would be
too complicated and onerous to comply with Airbus requirements.

1.1.2.4 Shape from focus motion

The shape from focus motion is a monocular method for depth reconstruction from sets of
images. This method relies on the camera depth of field which varies in the scene by changing
the distance between the camera and the object. Focus is determined by calculating pixel
sharpness for each image. The spatial position of the sharpest pixels can then be measured,
allowing us to reconstruct the 3D shape from the set of images (see Fig. 1.8). This method
only requires one mobile camera and is not affected by occlusions. However, the process
of measuring pixel sharpness relies on the high frequencies of the images, and thus requires
textured scenes [Bil+13; MMI17; Mar18; Moe+15].
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(a) (b)

Figure 1.7: Example of a simple depth from focus reconstruction (from [Moe+15]): (a) -
Input images with various focus, (b) - Depth map reconstruction.

The depth of field of a camera is the depth on the scene which appears sharp on the image.
It actually represents the fact that all objects are not exactly projected on the sensor plane
of the camera (see Fig. 1.7), but on another plane translated by a distance δ, thus creating a
blurry point of radius r on the image. The depth of field is the depth of region in the scene
for which this radius is small enough to consider the points as sharp. More details about
these optical principles are given in [Bil+13]. These methods also require to be certain that
blur on the image arises from the defocus at the object, i.e., no motion blur (object or camera
movement during the acquisition) or Gaussian blur (atmospheric perturbations or lens errors)
are tolerated. Moreover, to get high depth resolution, the depth of field for each image must
be thin, which means that pictures must be taken from a close distance to the object.

Figure 1.8: Formation of an unsharp image illustrated from optical design (from [Bil+13]).

It is also worth mentioning shape from defocus methods, for which the measure of blur
amount, or blur radius is used to determine the distances in the scene. In this case, to measure
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the blur, the image is considered as a sharp image convolved with a spatially variant point
spread function as considered in deconvolution methods. More details about this approach
are given in [TF05; FS05].

To be able to reconstruct depth on long range of a wing using this method would require
taking many pictures with various focus. In addition of being too complex to operate, it
would not work in our case since the scene and cameras are not static during flight tests.
Moreover, this method would require the presence of texture that is lacking on the surface of
the wing.

1.1.2.5 Shape from shadow

When a light source moves around a 3D object, moving shadows the 3D shape of the object
to be recovered. To do so, the method requires the knowledge of the light source position
[Sav+07]. In the case of unknown light source, it can be approximated, under some conditions,
as circular motions of the light source. However, these methods are computationally costly.
In the case of a known 3D model of the object to measure, the light source position can be
deduced from simulation of shadow images on the known model [YSS10].

Figure 1.9: Real image experiment from [YSS10]: (a) The face model used in this experiment,
(b) Example of images, (c) Initial recovered shape, (d) Final recovered shape.

Shadow graphs are used to represent shadow information in images, introduced by [YC02].
They are weighted directed graph, whose nodes are sets of points of the surface section, edges
are pairs of points, and edge costs represent the relative point heights. The first graph
represents shadow constraints, which states that the height h(x) of a point x in the shadow
region [xa, xc] delimited by two points xa and xc, is below the line passing through the
points (xa, h(xa)) and (xc, h(xc)), as illustrated in Fig. 1.10. Denoting as φ the light source
orientation, the shadow constraint can be written

h(x) ≤ h(xa) − tan φ(xa − x), ∀x ∈ [xc, xa], (1.2)

where − tan φ(xa − x) is the cost of the graph edges from xa to x. The same type of relation
holds for points without shadows, called the anti-shadow constraint, leading to another graph
with cost tan φ(x − xl):

h(x) ≤ h(xl) + tan φ(x − xl), ∀x ∈ [xl, xe]. (1.3)
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Finally, finding the shortest paths for all the pairs of nodes allows the 3D shape of the surface
to be recovered. However, this process is computationally expensive.

Figure 1.10: Shadow constraints and anti-shadow constraints (from [YSS10]).

Again, the method presented here depends on controlled light, which will not be available
during flight, and thus was not considered hereafter.

1.1.2.6 Shape from silhouettes

Shape from silhouettes is a shape reconstruction method that reconstructs the 3D shape us-
ing the object silhouettes acquired from several surrounding cameras. This requires using
multiple views of the same object without occlusions, hence the use of multiple cameras sur-
rounding the object, with strong calibration constraints, or one camera and a moving object.
Silhouettes are easily and quickly detected on images. However, the method is sensitive to
noise [GM14]. These methods have potential in highly controlled environment. However
in many applications where images are taken in a non-controlled environment, large errors
are generated by occlusions, wrong background subtraction (due to shadows or illumination
changes, similarities between object and background, etc.), noise or even calibration errors.
Finally, shape from silhouettes is not applicable in our case because the test environment is
not controlled, and because of the camera position constraints.

1.1.2.7 Deflectometry

Deflectometry is a method to reconstruct the shape of an object, based on the reflection of
a pattern on its surface. Mathematical bases of such a reconstruction are well detailed in
[KKH04]. To obtain accurate results, the reflection of a known pattern has to be recorded.
The method requires also a surface with perfectly specular reflects.

Deflectometry was tested in the A340 BLADE (Breakthrough Laminar Aircraft Demon-
strator in Europe) project [Bla]. The principle of this approach is to consider the reflection of
a known pattern on a surface, and recover the local surface deformations from the reflected
pattern deformations. To use this approach, strong assumptions on surface properties are
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Figure 1.11: Shape from silhouettes method to generate 3D model data using multiple RGB
cameras (from [Xia+16])

necessary (geometry, reflecting properties), which is only feasible within very specific appli-
cations. In the framework of the BLADE project, a pattern was painted on the wing edge,
reflected on the wing, and reflections were observed by cameras installed at the wing tip (see
Fig. 1.12b). To ensure good reflection of the pattern, a specific paint was used on the wing
surface. Note that deflectometry requires too complex and onerous installation to fulfill the
preconditions of the current application.

1.1.2.8 Photogrammetry

Photogrammetry regroups methods that estimate 3D positions and shape of objects from
the measurement and interpretation of one or several 2D images. Note that projecting 3D
points onto 2D images necessarily induces some information loss. The basic principle of pho-
togrammetry is to recover this information by expressing and solving the geometric equations
corresponding to the projections of points on several views (see Section 1.2). These equations
include 3D point coordinates of the scene, their 2D observations on the images, but also the
intrinsic (focal length, sensor size, etc.) and extrinsic parameters (orientation and position).
While most of the parameters are unknown, depending on the application, some can be fixed
to predefined values to simplify the problem. In particular, finding correspondences of 2D
observations from one image to another is a major challenge of these methods. Specific hard-
wares and algorithms were developed to perform their detection and matching (more details
in Sec. 2.2.2.2).

The wide range of applications covered by photogrammetry can be classified by several
factors such as the number of measurement images (single-view, stereo or multiple view
photogrammetry), the method of recording (plane table, digital photogrammetry, videogram-
metry) or the distance between cameras and objects (satellite, close-range, etc.). This variety

19



(a) (b)

Figure 1.12: Illustration of the deflectometry method. (a) - Deflectometry applied to 3D
reconstruction of a car surface, using robot arm (from [BW10]), (b) - BLADE wing [Bla] with
deflectometry installation.

of approaches makes photogrammetry a flexible and scalable system that can be adapted to
meet the requirements of 3D wing reconstruction. As a matter of fact, a photogrammetry
system is already used by Airbus to estimate wing deformations, but does not comply with
the new key factors listed in introduction. This system is based on retro-reflective targets
stuck orthogonally to the wing surface, and observed by cameras installed on windows. The
estimation approach is similar to the studies presented in [Bar07] and [Liu+12] (see Fig. 1.13
for illustration). To limit distortions, standard windows in front of the cameras are replaced
by metrological ones. During flight, cameras are triggered synchronously with flashes, illumi-
nating the targets to easily and accurately detect targets. Finally, the accurate position of
targets and cameras is initialized through a long calibration phase, and cameras are attached
such that their locations remain fixed with respect to the aircraft.

Though this system provides very satisfying results during tests, it has several drawbacks.
First, the use of protuberant targets on the wing induces aerodynamic disturbances, which
can alter the aerodynamic properties of the wing and reduce the flight domain of the aircraft,
thus enforcing the need for dedicated fights. Secondly, to reduce the camera motions during
flight, the mechanical fixations of the cameras are intrusive and not easy to install. Another
drawback is the time consuming calibration step required for the system, which could be
lightened. Finally, the method provides only sparse measurements associated with target
locations, and the necessary time to recharge the flashes does not allow to record several
images per second to be recorded. Nonetheless, many improvements of this system can be
considered to meet the new requirements of this application. Note that using cameras is
advantageous as this technology is already commonly used and mastered in Airbus.
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Figure 1.13: Example of an aircraft wing imaged using a photogrammetry system (from
[Liu+12])

1.1.2.9 Stereo camera

Stereo camera is a type of camera inspired by human visual depth perception and is a partic-
ular application of photogrammetry using two views, where camera parameters are fixed and
determined by calibration, simplifying the reconstruction problem. To ensure that camera
parameters are unchanged during tests, devices integrate cameras into a rigid shell. Hence,
baseline between cameras is usually small, and accuracy of the systems is better at close
range. More details on a two view reconstruction method are given in Section 1.2.

In the case of this study, the stereoscopy approach using fixed cameras is not applicable
because of the long distance between cameras and object to reconstruct. To adapt this
method, it would be necessary to guaranty that cameras are fixed with a relative distance of
about 10m, which cannot be achieved inside a flying aircraft.

1.1.2.10 3D digital image correlation

3D digital image correlation (3D DIC) is another photogrammetry approach dealing with
the issue of finding correspondences between views. Using pairs of cameras, this technique
combines image correlation and photogrammetry algorithms to recover the 3D shape and
deformations of a surface. Given two images I and J , a n × m subset of I, centered at pixel
(x, y), is searched on J by calculating its cross correlation with all n × m subsets of J . At
pixel (i, j) of J , the cross correlation can be calculated as

ci,j =
n/2
∑

u=−n/2

m/2
∑

v=−m/2

I(x + u, y + v)J(i + u, j + v). (1.4)

Variations of this formula include normalized correlation or least-squares. Finally, correspon-
dences are found by determining the highest values of ci,j . To capture image correlations, the
method relies on the presence of discriminative textures over the entire object. Thus, random
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or pseudo-random patterns (or speckle patterns) are applied on the object of interest, allowing
high definition of the 3D reconstruction. Furthermore, 3D DIC can also take into account
object deformations from one image to another to adapt the shape of the search window in
J ([Apa+15; Hua+17]). This approach is therefore popular for the estimation of material
deformations under stress, in laboratory conditions ([Yan+09; RBD17]).

3D DIC was implemented and tested for A380 and A350 aircrafts [Bod+13] under the
name of IPCT (image pattern correlation technique). Stickers of random patterns were stuck
on the wing surface (see Fig. 1.14), and deflections of the surface were calculated using a sim-
plified deformation model of the wing as a function of a normal load under static conditions.
Similarly to deflectometry, this method gave interesting results, but the required installations
are intrusive and onerous, and hence should be avoided.

Figure 1.14: Example of pattern stripe installed for IPCT tests for an A380 in 2009.

1.1.2.11 Structure from motion

Structure from motion (SFM) uses photogrammetry on continuous series of images taken with
small camera displacements between each acquisition. This is a particular case of photogram-
metry (more than 3 views) in which the matching step between each image is facilitated by
limited differences between consecutive images ([MMM13; SSS06; HTP10]). First, feature
points of the scene are detected and matched among the set of images using adapted methods
such as SIFT [Low04]. Once the points have been detected and matched between all the
images, three main approaches may be used to recover the 3D structure. The first one is an
incremental method. It starts with a reconstruction based on two views, and iteratively adds
the new views and 3D points to the system. The first pair of images is usually defined for a
pair with high feature matching rate and wide distance between cameras. Though this method
may give good results, it is sensitive to initialization and may suffer from error accumulation
along the iteration. An alternative approach that is less sensitive to the drift problem is the
hierarchical method. In this case, the views are hierarchically ordered in a tree, and then
processed from root to leaves. Finally, the third approach, referred to as global, finds all
rotations between pairs of cameras and uses these rotations to solve the 3D reconstruction

22



problem for all views simultaneously.

In the case of wing reconstruction, SFM would require many images of the wing acquired
simultaneously with close positions of the cameras, requiring a complicated installation.

Figure 1.15: Structure from motion example, left: set of images, right: 3D reconstruction
using the reconstruction implementation Multi-View Environment [FLG14].

1.1.2.12 Conclusion

Passive reflection methods take advantage of information naturally present in a scene that
is transmitted to a camera sensor using ambient light. The diversity of the methods in this
category allows us to make the best use of the information contained in one or more images.
In particular, these approaches are very useful in application cases where 3D reconstruction
was not foreseen, and should be performed with the best accuracy with the available informa-
tion. On the other hand, the 3D estimate of the interest object is often imprecise and lacks
robustness, because of uncontrolled variations in ambient light or due to a lack of texture.
To ensure the quality of a 3D estimation, it may be necessary to add targets to the object of
interest.

1.1.3 Reflective Active Methods

As opposed to passive methods that rely on the reflections of ambient light, reflective active
methods have emitters and send the waves that are reflected on the object. These waves can
be used to add information to the scene and improve the passive methods seen above, or
their physical properties can be directly exploited to achieve 3D reconstruction. This section
describes some of these approaches and discusses their relevance for wing reconstruction.
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(a) (b)

Figure 1.16: (a) - Illustration of the structured light method (from [Zha18]), (b) - Example
of 3D scanner using structured light (ATOS Compact Scan, from Gom [Gom]).

1.1.3.1 Structured Light

Finding corresponding features between views is a central challenge in photogrammetry ap-
proaches, which will be one of the main subjects addressed by this manuscript. The method
of structured light aims at resolving this issue by adding or replacing one of the cameras by a
light projector, that projects a coded pattern on the scene of interest. The features reflected
on the objects can efficiently be detected on camera images to create robust correspondences
with other cameras and the projected image (see Fig. 1.16). Light source is typically visible
or infrared light, and the projected patterns have various encoding appearance depending on
the projector, the object and the quality of measurement. As reviewed in [Zha18] and [VD16],
many encoding methods have been developed for the task. Amongst them, one can cite the
use of statistically random patterns, binary coded patterns or sinusoidal phase encoding. The
first one creates unique kernels of pixels that can be easily detected on images, but with a
resolution limited by the size of these kernels, sensitive to noise (technology used for instance
by the Microsoft Kinekt, Intel RealSense or Apple Iphone X). The second one projects a
sequence of black and white stripes on the object to create binary coded patterns, that are
unique and discrete in one direction, and uses object features detected along the other direc-
tion. Going further, the third approach finds correspondences in both directions continuously
by using sequences of structured patterns varying sinusoidally. This method allows a very
good resolution of the reconstruction with very good quality. Industrial products available
nowadays achieve sub-millimetric uncertainty at about one meter.

In the case of 3D wing reconstruction, the absence of information is a problem that could be
mitigated by using structured light technology. However, the dimension of the aircraft implies
that the light projector should be powerful enough to illuminate the wing tip such that it
is clearly seen on cameras placed inside the aircraft cabin. Moreover, with tests occurring
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mostly during the day, the intensity of the projected light should be brighter than the sunlight
above the clouds. Such solution could be imagined using powerful lasers combined with coded
apertures (see [Kaw+12]), but would reduce the resolution and quality of the reconstructions.

1.1.3.2 Interferometry

Interferometry is another method of non-contact reconstruction using active light emission.
Using a beam splitter on the path of a light beam, the interferometer evaluates the interference
of two reflecting wavefronts of the same beam, one reflecting on a reference surface, and the
other reflecting on the inspected surface. The intensity of the resulting interference pattern
conveys the information of surface height, which can therefore be recovered by analyzing
all the points of the interference fringes. Interferometry allows a high quality of surface
inspection, which makes it popular for fine applications such as estimation of microscopic
shapes or bumps inspection in automotive industry. More details on this technology can be
found in [Gro15].

At the moment, interferometry only works on small range (< 1m) and in a controlled
environment. For instance, it is shown in [Gro15] that interferometers do not work well in
the presence of vibrations. For these reasons, interferometry is not a conceivable solution to
the problem of this work, and will not be further investigated.

1.1.3.3 Time-of-flight cameras

Time-of-flight (ToF) cameras are sensors that record not only light intensity, but also depth
information in each image pixel (see an example in Fig. 1.17). To this aim, cameras are
equipped with emitters of infrared light illuminating the scene. Reflection of the infrared
waves is recorded on pixels of the sensor and processed to recover depth information. Two
methods are available, using either pulsed light or continuous waves. For the first approach,
the distance d to the object is determined from the delay between pulse emission and reception
after reflection on the object. This delay is recorded on the pixel using two out-of-phase
windows C1 and C2, of size equal to the pulse duration ∆t, for which the charge accumulated
are Q1 and Q2 (as illustrated in Fig. 1.18a). The distance can be computed as

d =
c∆t

2
Q2

Q1 + Q2
, (1.5)

where c is the speed of light. The second method uses continuous emission of light at frequency
f and estimates the distance from the phase shift ∆φ of the reflected light. In this case, light
intensity is recorded on four windows with a phase shift of 90 degrees each (see Fig. 1.18b),
and the distance d is expressed as

d =
c

4πf
∆φ, (1.6)
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with

∆φ = arctan
(

Q3 − Q4

Q1 − Q2

)

. (1.7)

The choice between the two approaches is essentially guided by the volume of the scene.
Within the first approach, the maximum distance is defined by the duration of the pulse
(dmax = c∆t

2 ), while with continuous emission it is limited to a phase shift of 2π, and hence
by the frequency of the signal (dmax = c

2f , which is the distance of signal aliasing). To
overcome distance limitation, some cameras work with various frequencies. More details
about these methods are available in [Li14; HLK13].

Figure 1.17: Example of ToF camera (from Basler) and depth image that it can capture.

(a) (b)

Figure 1.18: Illustration of the ToF method (from [Li14]): (a) - pulsed, (b) - continuous-wave.

ToF cameras are simple to use, cheap, fast and allow real time computation of depth maps
regardless of the scene texture, making them good candidates for robotic applications such as
navigation or 3D object detection. Nonetheless, they have several drawbacks. First, multiple
reflections of a light beam may generate artifacts on the depth image, intense sunlight can
quickly saturate pixels, mitigating their use for outside applications such as wing reconstruc-
tion in flight. These drawbacks coupled with power limitations of the light emitters, bound
the volume of the reconstructed scene. Common ToF cameras have a centimeter accuracy
but only up to about 10m. This is another limitation of ToF cameras preventing their use in
this study.
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1.1.3.4 Other time of flight methods

Estimating the distance from the time needed by a signal to reflect from an object is a
method that can be applied using various signal types. While the camera presented above
uses infrared light, sonar uses sound [Mou17], radar uses electromagnetic waves [Gei+16;
Car+14], and lidar uses ultraviolet, visible or infrared light [Fil+17; Tac+19].

To be able to localize the position of the reflecting object in a scene, two approaches can
be used. First, emitters can be designed to narrow the angular range of the signal. In the
case of radar and sonar, this is done by using parabolic antennas to generate a narrow lobe
of emission. For light waves, the use of lasers permits to create thin rays of light for an
accurate positioning of the targets. Then the entire scene can be scanned using a mechanical
orientation of the emitter. The time necessary to make a scene scan is a discriminative criteria
to the use cases (3D laser scanners take minutes to scan a scene while embedded lidars for
robotics can be used in real time, achieving only partial scene scan). The second approach is
to send signals in several directions at once. In sonar and radar systems, this can be performed
using beamforming with arrays of sensors, that allows us to orient angularly narrow lobs of a
signal by adjusting its phase. For light, ToF cameras can be used, or similarly flash Lidar can
project divergent light beam to illuminate the entire scene and acquire directly a snapshot.
However, in this case, the intensity of the light is lowered and limits the depth range.

Because they use active technologies, ToF systems can be used robustly in varying en-
vironment, day and night. Moreover, waves are more or less impacted by environmental
variations depending on the technology. Radar for instance can detect object through clouds,
and ultrasound images are not impacted by smokes, where light would be occluded. For these
reasons, ToF technologies are widely used in navigation, obstacle detection and perception
applications such as autonomous car development. As a matter of fact, radar, lidar and even
ultrasound imaging are combined with cameras to provide more reliable vehicles ([Ond+20]).

An important criterion for the application addressed in this work is the quality of 3D
estimation over the volume of a wing. On this aspect, sonar is limited because of the fre-
quency and propagation speed of the sound waves in the air (slower than in water). Common
ultrasound sensors can detect objects in a range of about 10cm to 5m with an uncertainty
of about 5cm, which is not enough to cover an entire wing. Regarding the radar technology,
even though some recent works have proven their ability to reach high accuracy measurements
([Car+14]), embedded systems are currently not as accurate and hardly achieve centimeter
uncertainty (in both sensor plane and depth). Besides, the use of radar on aircraft in flight is
restricted because it can provoke perturbations of other equipments, which is not compliant
with the requirements of the application. Finally, lidar scanners can guarantee very high
definition and millimeter accuracy at about 40m when several minutes are available to per-
form the scan. In the case of our application, given the vibrations of the entire aircraft, scan
should be as fast as possible. Today, faster lidar scanners used for real time applications of
autonomous cars can acquire depth on sections of the scene at the frequency of about 20Hz,
with a centimer accuracy of range. The very good performance of such devices, along with
their small size and ease of use (returning directly point clouds), makes them strong candi-
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dates for 3D wing reconstruction. Flash lidar on the other side cannot be used on aircraft
during the day as sunlight intensity would be too high with respect to the system emitted
light.

(a) (b)

(c)

Figure 1.19: Illustration of 3D reconstruction using Lidar (a), radar (b) and sonar (c) (from
[Vel], [Car+14] and [Fur]).

1.1.4 Conclusions on selected method

This section presented various methods to estimate the 3D information of a scene without
contact. From the existing technologies, two can fulfill the objectives of 3D wing reconstruc-
tion: photogrammetry and lidar. On the one hand, photogrammetry is a flexible solution that
can be easily adapted to reach the desired accuracy by adjusting the number of cameras, the
sensor sizes and the focal lengths, even with restricted camera positions. Using video cameras,
the required frequency of measurements can be reached, and intrusivity can be limited by
using flush stickers on the wing or natural features related to its surface. Besides, cameras are
already in use on test aircraft in Airbus, and the acquisition process has been formalized dur-
ing years of flight tests. Therefore, camera installation on windows is easy and the recording
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tests lasting several hours is achievable without further development. On the other hand, lidar
can also deliver accurate 3D reconstruction, with similar frequency, and its ability to record
directly point clouds simplifies their processing. In addition, these sensors can be designed
with small sizes, and simple installations at aircraft windows may be considered. The quality
of measurements for both of these methods will however be degraded by the disturbances of
the uncontrolled environment. In this study, we decided to focus on photogrammetry, given
that cameras are already available and limit the complexity of integration onto the aircraft.

1.2 Photogrammetry

1.2.1 Camera model and calibration

Before detailing the process of reconstructing 3D objects from 2D images, it is necessary
to understand the process of image acquisition. A common representation of the camera is
the pinhole model, illustrated in Fig.1.20. This model considers the camera as a box with
an opening hole whose diameter is almost zero. Light enters through this hole, called the
projection center, to be capture on the image plane (sensor). The distance between the image
plane and projection center is the focal length f . The image is then inverted, and common
representations of the camera place the projection center behind the inverted image plane.

Image plane
Inverted image 

plane

Camera

x

x

X

f

f

Pinhole 3D point

2D projection

Figure 1.20: Sketch of the pinhole model.

There are three main coordinate systems to represent an object view, the real world, the
camera, and the image systems (Figure 1.21). The real world 3D point X is projected onto
the camera system using the matrix P = [R, −RT t], composed of a 3 × 3 rotation matrix
and a 3 × 1 translation matrix. The camera coordinates are then projected to the image
coordinate using the matrix

K =







fx s cx

0 fy cy

0 0 1






, (1.8)

where fx, fy, cx, cy and s are the intrinsic camera parameters. fx and fy are the focal
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lengths expressed in millimeters per pixel over the x and y axis of the sensor, cx and cy are
the coordinates of the image center in pixel, and s is the skew coefficient, expressing non-
orthogonality between the x and the y axis, usually neglected. The global camera equation
can be written

x =
1
c

Kl, (1.9)

with

l = (a, b, c)T =
[

RT , −RT t
]

(

X

1

)

. (1.10)

In a two-camera system, the first camera can be set as the real world system leading to
P1 = [I, 0] and P2 = [R, −RT t]. With real camera sensors this representation of the

X

Camera

Real world

Image

x

[R, -RTt ]

K

Figure 1.21: The different coordinate systems and mappings. From left to right: real world,
camera and image coordinate systems.

inner parameters is inaccurate, and will deviate from the pinhole model. Indeed lenses induce
image distortions, even when using high quality devices. This distortion is composed mostly
by radial and tangential distortions (see Fig. 1.22), which arise from the default of the optical
system (lens default and alignment imperfections for instance). Radial distortions curve
straight lines, while tangential distortions influence the proportion of the image distances.
Thus, the pinhole model must be adapted, as in [MN12] or [Sag+05]. A simple rule is given
in [Kle14] to recover an undistorted image point pu = (xu, yu) from a lens-distorted image
point pd = (xd, yd), as:

xu = x0 + (xd − x0)(1 + κ1r2
d + κ2r4

d + ex) (1.11)

Figure 1.22: Illustration of the camera distortions (from [Ope]).
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yu = y0 + (yd − y0)(1 + κ1r2
d + κ2r4

d + ey), (1.12)

where rd is the radial distance of pd to the principal point, ex and ey are small negligible errors,
and κ1, κ2 are two radial distortion coefficients. Taking only two coefficients to express the
distortions already corrects more than 90% of the radial distortion ([Kle14]). More complex
models taking more distortion coefficients like tangential distortions can also be used for
better correction. Before a test, lens distortion should be calibrated for each camera. Once
the calibration parameters are known, distortions can be corrected and the pinhole model can
be used. Moreover, calibration allows all the parameters of the cameras to be recovered, such
as focal length, principal point, but also extrinsic parameters of camera positions (note that
if cameras are moved during the test, extrinsic parameters will change from the calibration).
Calibration methods can be declined into three categories, depending on the references used:

• Laboratory calibration: These calibrations are performed by manufacturers, using spe-
cific instrument like goniometers, collimators or other optical alignment techniques
where imaging direction or angles of light rays are measured through the lens of the
camera.

• Test field calibration: This is the usual method for users. Using targets with known
positions or geometry properties, reference objects or calibration charts [Zha00], known
correlations between 3D reference and the image can be injected into the previously
established distortion and pinhole model to recover the camera properties.

• Self-calibration: when using several views of a static object with targets or rich tex-
ture, photogrammetric process allows one recover the camera parameters without prior
calibration.

1.2.2 Two view reconstruction

This subsection introduces the fundamentals of the camera model and epipolar geometry.
Their understanding is necessary for the next sections. The detailed theory can be found in
[HZ04].

1.2.2.1 Epipolar geometry and fundamental matrix

We consider here two cameras, with their projection centers C1 and C2, looking at a 3D
point X. We call epipolar plane π a plane resulting from the three points C1, C2 and X (see
Figure 1.23). The epipolar geometry of our system is the intersection geometry of the plane
π and the two image planes. The epipolar constraint states that the points C1, C2, X, as
well as the image points x and x′ are coplanar.

Moreover, if we only know the projection x of X in the first image plane, the points that
can project to this image point lie on a line in the 3D space. The projection l′ of this line in
the second camera image is called epipolar line. Finally the epipol e is the intersection of all
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Figure 1.23: Epipolar Geometry - Two cameras represented by their centers C1 and C2

observe a 3D point X. The image point x back-projects to a ray defined by C1 and X,
imaged as the epipolar line l′ on the second image. The image point x′ of X has to lie on
this line.

epipolar lines. It is the projection of the second camera center on the image plane. Each point
x in the first image is mapped to a line l′ in the second system. This mapping is represented
by the fundamental matrix F , such that

l′ = F x. (1.13)

Thus, if a point x′ corresponds to a point x in the first view, x′ lies on the epipolar line
l′ = F x yielding 0 = x′T l′ = x′T F x. As a consequence, for any pair of corresponding points
x, x′, the fundamental matrix satisfy an epipolar constraint

x′T F x = 0. (1.14)

Moreover, l′ is passing through x′ and the epipole e′. Thus, it can be written as l′ = e′ ×x′ =
[e′]×x′, where × is the cross product and [e′]× is the skew symmetric matrix

[e′]× =







0 −e′
3 e′

2

e′
3 0 −e′

1

−e′
2 e′

1 0






. (1.15)

Furthermore, it is shown in [HZ04] that x′ can be written as x′ = Hpx, where Hp defines
the transfer mapping from one image to another via any plane p. Thus, we have

l′ = [e′]×Hpx = F x

and finally F = [e′]×Hp. Since [e′]× is of rank 2 and Hp is of rank 3, the rank of F is 2.
Therefore,

det(F ) = 0, (1.16)

where F is a 3×3 matrix with 9 entries, corresponding to the camera projection unknowns (3
for K, 3 for R and 3 for t), among which we have an arbitrary scale, reducing the number of
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degrees of freedom to eight. Since each point correspondence gives an equation using (1.14),
F can be recovered using eight point correspondences (which leads to the 8-points algorithm)
explained briefly in Section 1.2.2.4. One can finally reduce the number of matching point to
7 using the constraint (1.16).

Once the fundamental matrix has been calculated, the projection matrices can be deter-
mined, and the 3D scene can be triangulated. Since in our case we know the inner parameters
of the cameras, we will rather use another form of the fundamental matrix referred to as the
essential matrix, which allows us to eliminate the projection ambiguity, and only requires 5
points to be solved (leading to the 5-points algorithm).

1.2.2.2 The Essential Matrix

The essential matrix is a refinement of the fundamental matrix, which assumes that the cam-
eras are calibrated, i.e., that the matrix K is known. In this case, the normalized coordinates
x̂ of the image point x are used. These coordinates are given by x̂ = K−1x and the nor-
malized camera matrices are K−1P = [R, t]. If we assume P 1 = [I, 0] and P 2 = [R, t],
the fundamental matrix of this normalized camera pair is referred to as the essential matrix
E = [t]×R satisfying the following relation

x̂′T Ex̂ = 0. (1.17)

The essential matrix has only five degrees of freedom - the rotation and the translation have
both three degrees of freedom, minus one for the overall scale factor. As demonstrated in
[May11, p. 39], this reduction in the number of degrees of freedom results in a constraint

2EET E − tr(EET )E = 0. (1.18)

In addition, since E is a fundamental matrix, it must also verify det(E) = 0 as in (1.16).
Thus this matrix can be recovered using only a five-points algorithm, explained briefly in
Section 1.2.2.5. However, the extra constraints are non-linear, which makes the estimation of
E more difficult. Thus the 8-point algorithm can be preferred in some applications.

1.2.2.3 From E to camera matrices

Since E = [t]xR, we can decompose the essential matrix to recover camera matrices. Using
the singular value decomposition (SVD) of E (i.e., E = Udiag(1, 1, 0)V T ) and the matrix

W =







0 −1 0
1 0 0
0 0 1






, (1.19)
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Figure 1.24: The four possible solutions for a calibrated reconstruction of P 2 from E. Between
the left and right sides, one can observe the two possible translations ±u3 of the camera B.
Between the top and bottom rows, the camera B rotates of 180 degrees with respect to the
baseline. Note that the only reconstructed point being in front of both cameras is displayed
in (a) [HZ04]. The other solutions (b), (c) and (d) are not possible.

it can be shown that there are four solutions for P 2 [HZ04, p. 258]

P 2 ∈ {UW V T ± u3, UW T V T ± u3}. (1.20)

where u3 is the third column of U . Since R ∈ {UW V T , UW T V T }, if det(UV ) = −1,
R is not a rotation but a rotation composed with a reflexion, which is not a valid solution.
Therefore, we have to select U and V such that det(UV ) = 1 in the SVD. The four corre-
sponding solutions are shown in Fig. 1.24. Only one of these solutions corresponds to a 3D
point cloud located in front of the two cameras. The correct solution can thus be selected by
checking that the 3D points are in front of both cameras. This is usually done by checking
the z coordinate of the projections P 1X and P 2X, for any triangulated X.

1.2.2.4 The 8-Point Algorithm

As mentioned before, the fundamental matrix has 8 degrees of freedom, and thus can be
calculated using 8 pairs of matching points from the two views. To do so, the 8-point algorithm
starts with the equation

x′T F x = 0. (1.21)

Denoting x = (u, v, 1)T , x′ = (u′, v′, 1) and F = (fij)1,...,3,j=1,...,3, the previous equation can
be rewritten as

u′uf11 + u′vf12 + u′f13 + v′uf21 + v′vf22 + v′f23+

uf31 + vf32 + f33 = 0, (1.22)

34



or
(u′u, u′v, u′, v′u, v′v, v′, u, v, 1)f = 0, (1.23)

where f is the 9 × 1 vector with the entries of F . For N point correspondences, one has






u′
1u1 u′

1v1 u′
1 v′

1u1 · · · v1 1
: : : : · · · : :

u′
N uN u′

N vN u′
N v′

N uN · · · vN 1






f = 0, (1.24)

which can be rewritten in matrix form as

Af = 0. (1.25)

Since the solution of this equation is not necessarily unique due to noisy point coordinates,
(1.25) is usually solved using the least-square estimator. An interesting solution is to use
the SVD of A, i.e., A = UDV T , and take the last column of V as the solution vector f .
This solution is the singular vector corresponding to the smallest singular value of A. Note
that this solution minimizes ||Af || subject to the condition ||f || = 1 (where ||.|| denotes the
Euclidean norm). An important property of the fundamental matrix is its singularity, or
precisely its rank that should equal 2. To enforce this property using the calculated SVD,
one can search the matrix F ′ that minimizes the Frobenius norm ||F − F ′|| (i.e., the square
root of the sum of squares of all entries) with the constraint det(F ′) = 0 [HZ04, p. 280]. For
F = U ′D′V ′T , D′ = diag(a, b, c) with a > b > c, one obtains

F ′ = U ′diag(a, b, 0)V ′T . (1.26)

Finally, a key point to ensure stable results with the 8-point algorithm is to normalize the
input vectors using a transformation matrix T (translation and scaling), hence improving the
conditioning of the problem, and to scale back the fundamental matrix in output using the
inverse transformation T −1.

1.2.2.5 The 5-Point Algorithm

The algorithm described in [Nis04] is designed to estimate the essential matrix using a set of
5 matching pairs of points. It can be summarized as follows.

1. Start by x̂′T Ex̂ = 0 and rewrite the problem as

Qe = 0,

where Q is a 5×9 matrix computed as A in (1.25). The null space base (X, Y , Z, W )
of Q is found using a QR-factorization (that is more efficient than the SVD for this
problem). The essential matrix can then be written

E = xX + yY + zZ + wW (1.27)
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for some scalars x, y, z, w. Since E is calculated up to a scale factor, one can choose
w = 1.

2. A 9×20 matrix is then formed by inserting (1.27) into (1.16) and (1.18), and a Gauss-
Jordan elimination is used to reduce this matrix to an upper triangle form.

3. Some suited procedures are used to extract the determinants of two 4×4 matrices,
followed by a second stage of elimination. Finally, a 10-th degree univariate polynomial
is obtained, whose roots provide 10 possible solutions for z.

4. The other unknowns x and y are then calculated for each real root of these 10 solutions
by back-substituting them into the previous 4 × 4 matrices.

5. The essential matrix is then recovered from (1.27) and can be used to extract the camera
matrix.

1.2.3 N-views and Bundle Adjustment

In a system with more than 2 views, where several cameras observe a set of 3D points,
Bundle Adjustment (BA) is a classic method which consists in simultaneously estimating the
3D coordinates of the points and the parameters of the cameras, from the 2D observations on
all the images. Let αj = (vj , tj)T be the parameter vector of the jth camera, where vj is the
3 × 1 rotation vector and (tj) is the 3 × 1 translation vector. Given a set of M cameras and
the N 3D-points Xi, the algorithm seeks to minimize the distances between the projections
of Xi on the jth camera for j = 1, . . . , M , denoted as x̂(αj , Xi), and the matching 2D points
(xi

j) from camera observations:

arg min
αj ,Xi

∑

i,j

[

xi
j − x̂(αj , Xi)

]2
, (1.28)

where
x̂(αj , Xi) =

1
ci

j

Kjli
j , (1.29)

with Kj a 2 × 3 matrix of the intrinsic camera parameters, considered as known after system
calibration, and

li
j = (ai

j , bi
j , ci

j)T =
[

RT
j , −RT

j tj

]

(

Xi

1

)

, (1.30)

with Rj the rotation matrix formed using the Euler-Rodrigues formula [GY15]

Rj = Id + sin θ[v̄j ]× + (1 − cos θ)[v̄j ]2×. (1.31)
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Note that Rj corresponds to to a rotation of angle θj around the axis represented by the unit
vector v̄j , such that vj = θv̄j , and where [v̄j ]× is the cross product matrix defines by

[v̄j ]× =







0 −v̄j,3 v̄j,2

v̄j,3 0 −v̄j,1

−v̄j,2 v̄j,1 0






. (1.32)

Note that one can also represent the rotations using the three Euler angles. However, the
rotation vector is preferred here since it removes the ambiguity of rotation order.

Figure 1.25: Illustration of the BA for 3 cameras observing a set of 3D points.

The 3D reconstruction problem (1.28) is non-convex and non-linear. To solve it, one can
consider iterative methods such as Gauss-Newton or Levenberg Marquardt (see Appendix B
or [Bri+17] [HZ04, p. 597]). These two methods use iterative steps from the initial guess
to the optimum parameter using the Hessian matrix, approximated as JT J , where J is the
Jacobian matrix. The Jacobian matrix in BA has the interesting characteristic of being
sparse, thus significantly fastening the optimization procedure. Indeed, each projected point
depends only on the corresponding 3D point and on the camera, leading to:

∂(xp
j − x̂(αj , Xp))2

∂Xq = 0, ∀p 6= q, ∀j ∈ {1, ..., M} (1.33)

∂(xi
p − x̂(αp, Xi))2

∂αq
= 0, ∀p 6= q, ∀i ∈ {1, ..., N}. (1.34)

Furthermore, some points may not be seen by some cameras, leading to additional empty
lines in the Jacobian matrix. An example of Jacobian matrix used in BA is presented in
Fig. 1.26, where the only non-zero elements are displayed in white.
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Figure 1.26: Example of sparse BA Jacobian matrix for 3 cameras and 10 points.

1.2.4 Model-based methods

BA is an iterative optimization algorithm that aims at minimizing a non convex and non-
linear cost function. Therefore, one cannot guarantee its convergence to a global minimum,
and the choice of the initial conditions is crucial in practical applications. Consequently,
the application of photogrammetry to 3D wing reconstruction in flight is a very challeng-
ing problem. First, camera positions suffer from strong installation constraints, given that
currently they can only be located on the rear vertical stabilizer of the aircraft and on the
aircraft windows. With this setup, the wing end is observed under very low angles, directly
impacting the accuracy of point detection in images. Besides, the distance between cameras
is also restricted to guaranty covering in views of the wing, i.e., almost 15m separate for a
30m long wing. Second, highly varying environment strongly affects the observations: the
whole aircraft itself is deforming and vibrating, and the 2D images are subject to luminosity
changes, potential reflections and shadows. As a consequence, it will be shown in Section 2.4.5
that observation uncertainties prevent the standard BA method from obtaining accurate 3D
wing reconstructions.

During the last decade, various constrained optimization methods were developed to im-
prove the performance of the classical BA approach, taking benefit of prior knowledge about
the scene or system to reconstruct. In [ZHH12; Bri+17], prior knowledge of point copla-
narity between neighboring points or information about their positions constructed from a
Digital Terrain Model (DTM) are introduced in BA as constraints on the unknown parame-
ters. Similarly, information on camera positions acquired from the Global Positioning System
(GPS) or Inertial Measurement Units (IMUs) is introduced in the BA as constraints for the
camera parameters in [HT09; Lar+13; Lhu12]. In [Lar+12], improvements on SLAM accu-
racy and robustness is achieved using GPS together with DTM as priors. Finally, knowledge
about 3D structure models is introduced in model-assisted BA to impose proximity between
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reconstructed 3D points and a reference model [Fua99], [OJRE17].

In the case of wing deformation estimation, one cannot introduce directly prior knowl-
edge on the wing structure model in the BA reconstruction, since the main objective is to
practically evaluate this model. Instead, we propose in this work to use prior knowledge
resulting from wing mechanical limits, beyond which the wing would break. This will be
the topic of Section 2.4, where the BA reconstruction problem is redefined such that it effi-
ciently constrains the 3D points to respect these mechanical limits, by introducing suitable
regularization terms in the BA cost function.

1.3 Conclusion

This chapter focused on finding a suitable method to reconstruct the 3D shape of an aircraft
wing in flight. To this aim, Section 1.1 covered a large variety of systems using 3D estimation
without contact, and presented their pros and cons with respect to the requirements of the
current application. From this evaluation, the conclusion was to employ the photogrammetry
method, which fits well Airbus problematics and benefit from Airbus experience in the field
of camera acquisition. Then, to be able to implement this technology on aircraft, the the-
ory of cameras and 3D reconstruction from multiple views were reviewed in more details in
Section 1.2. Finally, the reader should keep in mind that even though this study focuses on
camera sensors, other alternatives such as the use of lidar should not be discarded and could
be the object of further work.
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multiple view photogrammetry
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In the previous chapter, a state of the art of non-contact 3D reconstruction methods
highlighted the photogrammetry method as a good solution for estimating wing deformation
in flight. This approach is hence detailed in Section 1.2 and its implantation on an aircraft
application is detailed in this chapter. The method is globally presented in Section 2.1 and
aims at finding the 3D coordinates of points observed using several 2D views, as well as
the position of the cameras observing these points. These estimates are obtained using an
optimization process presented in Section 1.2.3, which requires a set of observations from
several views.

While classical methods of detection and point matching can be easily applied in standard
cases such as architectural 3D reconstruction [SSS07; THP09], the generation of observations
in the case of an aircraft wing becomes a critical point for the success of the approach.
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Thus, the problem of generating observations from features naturally present on the wing is
considered in Section 2.2. Finally, when possible, and in order to guarantee the precision and
robustness of the system with respect to environmental variations, photogrammetric targets
can be used, which is the object of Section 2.3.

Finally, in order to compensate the loss of precision from the system geometry defaults,
we take advantage of a priori knowledge of the mechanical limits of the wing to define a new
3D reconstruction method under constraints, detailed in Section 2.4.

2.1 Brief overview of the algorithmic chain

The objective of the proposed processing chain is to give as output the coordinates of points of
the wing surface in the aircraft coordinate system. Keeping in mind the challenges presented
introduction of this manuscript, the framework of the proposed algorithm is displayed in
Fig.2.1 and summarized as follows:

ii. Image acquisition and 
undistortion

i. Camera and scene 
calibrations

iii. Observation detection 
and Matching

v. Registration

iv. Constrained Bundle 
Adjustment

vi. Parameter 
update

Figure 2.1: Diagram of the proposed algorithmic framework.

i. Camera and scene calibration: This step is performed using pictures of a chessboard
from different angles and distances, and using the OpenCV calibration functions [5],
which estimates the intrinsic parameters of the cameras and distortion coefficients. The
scene is then calibrated to initialize the positions of the 3D points and cameras. This is
conveniently performed using pictures from a drone and the photogrammetry software
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Metashape [6]. Note that a drone can take pictures of a wing from a wide range of angles
in less than 30 minutes.

ii. Image acquisition and undistortion: For each new image acquisition, we use the
OpenCV undistortion function with the distortion parameters estimated in Step (i).

iii. Observation detection: The proposed algorithm offers different ways to detect the 2D
observations of the 3D points. First, one can use the natural features present on the wing
surface (corners, joints, writing, etc.), using the methods presented in Section 2.2. An-
other solution, when possible, is to use markers stuck on the wing surface. Markers allow
an easy, robust and accurate localization of the observations, as described in Section 2.3.

iv. Constrained Bundle Adjustment: The initialization from step (i) and the set of
2D observations from step (iii) are used as input to the constrained bundle adjustment
detailed in Section 2.4.3. The algorithm outputs the optimum 3D points Xi and the
camera matrices P j in the coordinate system of the cameras.

v. Registration: The registration phase is performed using the rear camera. This camera
can observe reference points close to the aircraft fuselage (see Fig. 2.2), for which the
displacement in the aircraft coordinate system are negligible. By detecting these points
on the rear view image, one can recover the transfer matrix from the rear camera to
the aircraft coordinate system. Since the rear camera is also part of bundle adjustment
in Step (iv), one also knows the transfer matrix from this camera to the global camera
coordinate system. Finally these matrices are combined to transfer the 3D points and
cameras to the aircraft coordinate system.

vi. Parameter update: The initial parameters are updated, taking the output of Step (v)
as knew initial positions of the algorithm.

Step (i) is performed before flight and steps (ii) to (v) are repeated for each new camera
acquisition.

Figure 2.2: Rear camera view with some reference points zoomed.
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2.2 Use of points of interest naturally present on the wing

To reconstruct the 3D shape of a structure, the bundle adjustment algorithm presented in
Section 1.2.3 requires an observation set. These observations are the projections on the
cameras of the 3D points to be reconstructed. The first challenge of the method studied to
reconstruct an aircraft’s wing is therefore to generate point observations. Given the need to
reduce the intrusiveness of the flight measurement system, a first idea is to exploit points of
interest naturally present on the wing. To this aim, these points must be detected, described
and matched with their projections on other views. This chapter details the standard methods
that are available for detection and matching, as well as the process proposed in this study.

2.2.1 Detection of points of interest

Points of interest (or keys points) are salient points which can be recognized from one image
to another by analyzing the specific properties of their vicinity. These points can be contours
of the image or corners, for which the intensity gradients are locally high, or textured zones,
rich in information.
The initial step to find corresponding points between several images is first of all to detect
the points of interest present in each image. This detection is carried out by searching for
spatial information of high-frequency. For this, we can cite many methods such as the con-
tour detectors of Canny [Can86] or Sobel, the contour and corner detectors of Harris [HS88],
Shi-Tomasi [ST94], and many others [Low04; TLF10; Rub+11; HTG06].
Once the points of interest have been detected, it is necessary to assign them a signature
which will allow their identification, and then to find their correspondences between images.
A major issue in the description of key points is to be able to recognize them on images with
various properties, such as orientations, changes of scale, points of view or brightness. Many
descriptors have been developed such as SIFT [Low04], ORB [Rub+11], SURF [HTG06],
DAISY [TLF10], BRIEF [Cal+10], BRISK [LCS11], or AKAZE [PA13] distinct with respect
to their properties of invariance [CLFM16], and their complexities of application. In the
system proposed here, it was chosen to study the methods based on the descriptors SIFT,
ORB and DAISY for their complementary properties of invariance, and they are therefore
presented in the paragraphs 2.2.1.1 to 2.2.1.3.

2.2.1.1 SIFT

Probably the most famous method for detecting and describing points of interest, SIFT (Scale
Invariant Feature Transform) offers a fast detector and an invariant descriptor in all domains.
As described in [Low04], this method begins by detecting the key points through a scale space
defined for an initial image I(x, y) and a scale factor σ by

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (2.1)
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(a) (b)

Figure 2.3: Detection of points of interest for SIFT (from [Low04]). (a) - Process for calcu-
lating the DoG through the scale space, (b) - illustration of the search for a key point in the
vicinity of the DoG.

with G a Gaussian filter of standard deviation σ, and ∗ the 2D convolution operator. To
detect the stable points of interest of this scale space, the Difference of Gaussian method
(DoG) is used, which calculates the difference between two near scale spaces, separated by a
factor k:

D(x, y, σ) = L(x, y, k ∗ σ) − L(x, y, σ). (2.2)

The DoG method is summarized in Fig. 2.3a. The key points will then be the points whose
values of DoG are strictly the minimum or maximum in their neighborhood, the neighborhood
being defined by the set of connected points on the scale space of the point of interest, and
all the connected points neighboring scale spaces (see Fig. 2.3b). The choice of this approach
is justified by the efficiency of the DoG calculation and also by the stability of the points it
allows to detect.

Once a key point has been detected, its precise position is obtained by means of an ap-
proximation of the Taylor series of the function D in its neighborhood. During this step, a
thresholding is performed on the value of the DoG at this point, which makes it possible to
eliminate the key points with too low contrast. A thresholding is also carried out regarding
the ratio of the eigenvalues from the Hessian matrix calculated around the point, in order to
reject the key points detected on lines. Indeed, this ratio of eigenvalues represents the curva-
ture of the function D (phenomenon initially exploited to detect the Harris corners [HS88]).
The third step of the method consists in assigning an orientation to the points of interest to
guarantee the invariance in rotation. For this, the amplitude m(x, y, σ̂) and the orientation
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Figure 2.4: Construction of the SIFT point descriptor (from [Low04]). In this example, the
samples are grouped into an array of 2 × 2 orientation histograms.

θ(x, y, σ̂) of the gradients are calculated locally around the point at its scale σ̂:

m(x, y, σ̂) =
√

(L(x + 1, y, σ̂) − L(x − 1, y, σ̂))2 + (L(x, y + 1, σ̂) − L(x, y − 1, σ̂))2 (2.3)

θ(x, y, σ̂) = arctan
[

L(x, y + 1, σ̂) − L(x, y − 1, σ̂)
L(x + 1, y, σ̂) − L(x − 1, y, σ̂)

]

. (2.4)

The values m(x, y, σ̂) and θ(x, y, σ̂) are then collected to form an orientation histogram over 36
intervals, covering 360 degrees. The values of m(x, y, σ̂) are weighted by a circular Gaussian
window whose standard deviation is fixed at 1.5σ̂. The main peak of this histogram represents
the dominant direction of the gradient, which is then assigned to the key point. If several
peaks are obtained, several key points with different orientations are retained.

The point of interest is now defined by its position, scale, and orientation. The final step
in SIFT is to describe this point. This operation is illustrated in Fig. 2.4. The amplitudes
and orientations of the gradient in the vicinity of the point are sampled and weighted by a
circular Gaussian window (shown in blue). These samples are then accumulated to form a
table of orientation histograms. A rotation of angle equal to the orientation of the key point is
then applied to the coordinates and orientations of the gradients to guarantee the invariance
in rotation. The vector of descriptors is finally obtained by concatenating the values of the
obtained histograms. [Low04] shows that the best results are reached by forming an array
of 4 × 4 histograms of 8 orientation intervals, which gives a descriptor of dimension 128.
Finally, the descriptor is normalized to remove the effect of affine variations in illumination.
Concerning non-linear variations, since they generate significant changes in the amplitude of
the gradients, the latter are clipped, which makes it possible to attenuate their importance,
and to promote the orientation information of the descriptor.

2.2.1.2 ORB

The ORB (Oriented FAST and Rotated BRIEF) method is a good alternative to SIFT, whose
results and complexity are comparable, and which has the major advantage of being free to
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Figure 2.5: Illustration of the corner detection in FAST (from [RD06]). The intensity of the
candidate point p is compared to that of the 16 pixels of the circle represented on the right.

use. ORB mainly uses a fusion of the methods of FAST [RD06] and BRIEF [Cal+10], with
some modifications. In order to understand how it works, these underlying methods are
briefly explained here.

FAST (Features from Accelerated Segment Test) is a point of interest detector designed
for real-time applications, which has less complexity than most of its counterparts. To define
if a point p is a key point, FAST compares its intensity Ip to that of the 16 pixels of the circle
C of which it is the center, and of radius 3 pixels (see Fig. 2.5). For a chosen threshold t, this
point is then retained if:

• it exists a set of n connected points whose intensities are greater than Ip + t,

• it exists a set of n connected points whose intensities are less than Ip − t.

In [RD06], n is equal to 12. In order to reject more quickly the points that do not validate one
of these two conditions, a first test is performed on pixels 1, 5, 9 and 13 of the 16 points of C.
Furthermore, a Machine Learning based approach is employed to better select the parameters
and locations of tested pixels, by training the detector on a set of images from the same test
domain. Finally, when several neighboring pixels are detected, a last step called "Non-Max
Suppression" is applied. A score function V is calculated for each key point by summing the
absolute difference between its intensity and those of the 16 pixels of C. If several neighboring
points are detected, only the one with the highest value of V will be retained.

BRIEF (Binary Robust Independent Elementary Features) can be used to describe the
detected points. The primary objective of this method is to reduce the memory consumption
to be applicable in embedded systems. For this, BRIEF takes a smoothed region of the
image around the key point, and selects a set nd(x, y) of point pairs. The point intensities of
these pairs is compared and the result of the comparison is coded as 1 if the first intensity
is greater, or 0 otherwise. The point descriptor is directly created using this binary series of
comparisons, and can therefore be easily compared using the Hamming distance. Regarding
the choice of nd(x, y), [Cal+10] shows that a random distribution is the most suitable (see
Fig. 2.6). The dimension of the descriptor is 128, 256 or 512, which translates directly into
bits because the descriptor is binary (unlike SIFT).

47



Figure 2.6: BRIEF descriptor: example of a random distributions to select the pairs of points
to compare (from [Cal+10]). The ends of each segment are pairs of points.

After introducing FAST and BRIEF, the ORB method can be detailed. First of all, ORB
uses FAST to detect the points of interest present in the image. However, to obtain scale
invariance, the algorithm also uses an image pyramid (similar to the scale space of SIFT). The
points are then evaluated using the Harris measure [HS88] to keep only the N best points.
After that, the centroids of the points are estimated (see (2.7)), and the direction between
each point and its centroid is calculated, then assigned as the orientation of the key point.
Then comes the description phase of the key points. For this, ORB uses BRIEF. However, to
guarantee the rotation invariance, a rotation corresponding to the orientation of each interest
point is applied to the set nd(x, y) of point pairs to be compared. Finally, in order to ensure
the discriminatory nature of the descriptors, a greedy algorithm is applied to all of the possible
binary tests, to select the one that offers the greatest variance.

2.2.1.3 DAISY

DAISY is a key point descriptor designed mainly for dense application cases, offering a lower
complexity and memory requirement than SIFT. This method also reduces the rate of match-
ing error compared to SIFT. For this purpose, DAISY uses gradient histograms like SIFT,
but the region of descriptor calculation is a set of overlapping circles, centered on the point
of interest (see Fig. 2.7). The radius of these circles increases with the distance to the key
point, and the variance of the Gaussian filter smoothing the region of the circle is proportional
to the radius. For each circle, an orientation histogram is calculated and normalized. The
descriptor vector is finally formed by concatenating the histograms.

2.2.1.4 Combination of descriptors

By applying to aircraft wings the conventional methods detailed in the preceding paragraphs,
numerous errors occur. Indeed, a wing is a structure that has very little texture, and whose
key points are similar, and can easily be confused. This can be seen in Fig. 2.10 which shows a
case of a pair of images from two cameras placed on the aircraft windows, a few meters away.
Fig. 2.8 shows points of interest mapping errors using the SIFT detector and descriptor, and
the pairing functions of FLANN (Fast Library for Approximate Nearest Neighbors) [ML09].
One may notice that a lot of bad matches are linked to the similarity of the key points and to
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Figure 2.7: DAISY descriptor.

the invariances of the descriptors. [CLFM16] offers a detailed comparison of these descriptor
invariances (see Table 2.1). Knowing that in the case of an aircraft wing, the camera shots
are close, we can assume that the points of interest will have the same scale and the same
orientation. However, using a descriptor with restricted invariances like DAISY does not
necessarily give better results.

In view of the complementary properties of the diverse methods, a combination of de-
scriptors from SIFT, DAISY and ORB is also proposed. The descriptor thus generated is the
concatenation of descriptor vectors resulting from the three methods (for ORB, the descriptor
is first converted from binary to floating numbers). Points are detected with ORB, and paired
with FLANN functions. This combination of descriptor will improve the matching results.

To compare the performance of the descriptors, a study is proposed on the pairing of two
real images of wing in flight. This study focuses on three criteria, the mapping error, the
rate of outlier points, and the method complexity. Having no ground truth to evaluate the
mapping error, the epipolar constraint (presented in Section 1.2.2) is used to define an error
metric, by checking the validity level of the epipolar constraint. In other words, for a set
of point pairs (xi, x′

i)i=1,...,N , where N is the number of correspondences, the fundamental
matrix F of the system is calculated (see method in Section 1.2.2), and the error of epipolar
constraint for each pair of points is defined as:

ei = xiF x′
i. (2.5)

The total epipolar error is calculated as the sum of the errors ei. Concerning the rate of
outliers, these are defined as points whose error ei is greater than a fixed threshold (the
choice of the threshold can be made by hand as long as the number of matches is low).
Finally, the complexities are compared on the same machine by measuring the time required
for each method to reach the same number of matches. The results of these evaluations are
presented in Fig. 2.9. One can see that the SIFT method provides the worst results in this
experimentation. This is in part due to its invariance properties seen earlier, which create
a higher number of incorrect matches (outliers) and thus increase the total error. Fig. 2.9
shows that the combination of descriptors provides the best results, having less outliers, a
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Table 2.1: Table of descriptor invariances (provided in [CLFM16])

Scale Rotation Viewpoint Lightness
SIFT x x x x

DAISY x x
BRIEF x
ORB x x

(a) (b)

(c) (d)

Figure 2.8: Example of matching error when applying SIFT. The points are represented with
the scale and the orientation of their descriptor. In the cases (a) and (b), one observes errors
related to the invariances of scale and rotation of the descriptor. Case (c) shows an error due
to the similarity of the key points. Finally, some unjustified errors may appear, as in (d).

lower error, and a faster combination of descriptors, thanks to more discriminant descriptors,
which yields to less ambiguous matchings, as expected from the study of descriptor invariances
from [CLFM16], listed in Table 2.1.

2.2.2 Automatic and guided matching

The last step to generate point correspondences is the matching. This phase is achieved by
comparing the descriptors of the detected points in each image, and by matching those having
similar properties. In this study, the algorithm used is the approximate nearest neighbor from
the FLANN library [ML09], introduced in a guided matching scheme presented hereafter.
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Figure 2.9: Performance comparison of the different descriptors for the matching of real
images of an aircraft wing.

2.2.2.1 Feature matching

When key points are detected and described in pairs of images, corresponding features can
be obtain by comparing the descriptors. To this aim, distances between descriptor vectors
are computed using the Euclidean norm (ℓ2) in the case of SIFT and DAISY descriptors, and
Hamming norm for ORB binary descriptors. Then, several algorithms can be applied to find
the closest matches. First, a simple linear search can be computed, comparing each query
point to all possible features of the other images. While simple to implement, this approach
will quickly become computationally expensive with high number of points to compare. A
common alternative to fasten the comparison is to begin by sorting point descriptors using
binary (k-d) trees, and then search the correspondence of a query point on the constructed
tree.

In this study, comparisons have been made for hundreds of point descriptors, with the
combination of SIFT, DAISY and ORB descriptors. A weighted combination of these descrip-
tor was also tested, but is not detailed in this work as the best results where found without
weights. To this end, and to speed up the processing, FLANN [ML09] has been employed.
This library offers a collection of algorithms optimized for fast nearest neighbor search in high
dimension spaces, and selects automatically the most suited method and optimum parameters
to work on the input dataset.
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2.2.2.2 Guided matching

As seen previously, the mapping of points for an aircraft wing is not trivial, mainly because
of the similarity of the key points and their lack of information (texture). This problem
also exists in other applications such as the reconstruction of buildings with very repetitive
geometric structures. So our algorithm borrows from the literature [HZ04, algo. 11.4] [SSN15]
guided mapping methods which rely on the geometry of the system to improve the pairings.
The method can be described into five steps:

i. Detection and description of the key points: This step is achieved using the ORB
point detector, and the combination of the descriptors of SIFT, ORB and DAISY, as
described in Section 2.2.1.4.

ii. Strong feature matching: A first phase of pairing is realized by using FLANN. During
this step, a high threshold tinit is applied on the distance between descriptors to keep only
the matches with high score, which results in pairs of points with the most discriminating
signatures.

iii. Automatic calibration of the cameras: Using the methods presented in Section 1.2.2,
the fundamental matrix F (or essential matrix when the intrinsic parameters are known)
of the system is estimated using the set of strong matches. The RANSAC method used
for this estimation allows at the same time outliers to be rejected.

iv. Optimization: It is then possible to refine the estimate of F by minimizing the epipolar
error (2.5) using an iterative optimization process, such as Gauss-Newton or Levenberg-
Marquardt.

v. Guided matching: this method takes a point x to match from a first image and calcu-
lates its epipolar line l = F x in the second image (see paragraph 1.2.2 and Fig. 1.23). A
first selection of point candidates for matching is then performed, keeping only the points
whose distance to l is less than a threshold d ("Grid based Search" method of [SSN15]).
The descriptors of the retained key points are then evaluated to find the best match with
FLANN. This time, the chosen threshold t is smaller than tinit.

The steps (iii.) to (v.) can be repeated by decreasing iteratively d and t, until a sufficient or
stable number of matches is reached. An example of result obtained with this algorithm on
an aircraft wing is shown in Fig. 2.10.

2.2.3 Line detection

Starting from the observation that black lanes are present on the majority of aircraft wings (see
Fig. 2.10), this paragraph goes deeper in the exploitation of information naturally present on
the images, by proposing a procedure to detect and match these lanes. They are particularly
interesting since they are present over the entire span of the wing, and correspond to the front
and rear spars, which carry the main information of the bending and torsion of the wing.
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(a)

(b)

Figure 2.10: Application on an A320 wing of the matching method described in Section 2.2.2.2.
(a) 14 strong matches chosen at initialization, (b) 220 matches after 3 iterations of steps iii.
to v.
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(a) (b)

Figure 2.11: Example of stereo image rectification (from [LZ99]). (a) - Pair of initial images,
(b) - Rectified images.

To detect these lanes in each image, an approach based on the gradient intensity is pro-
posed. By using the gradient, the method overcomes the problems of variation in the appear-
ance of the lanes as the brightness changes. Indeed, the reflections generated by the material
of these lanes are mainly specular, and will therefore be seen as being more or less dark than
their vicinity depending on the orientation of the sun. An initial detection of the lines can
be realized using Canny or Sobel filters, or by an initial manual selection. Subsequently, this
detection is refined using line location methods at the sub-pixel level. More details on this
line detection is given in Section 3.2.3.3.

The proposed algorithm is thus able to detect the lanes of the wing. However, the points
thus detected are very similar, which raises the question of finding the correspondences be-
tween images. This problem is solved by rectifying the image pairs. The goal of image
rectification is to find the projection transformations H and H ′ of an image pair that will
project the epipole at a point at infinity, generally defined as i = [1, 0, 0]T (in uniform coor-
dinates). This operation makes the epipolar lines parallel to the x axis of the images, i.e., all
the corresponding points from one image to the other are aligned horizontally, and therefore
simpler to compare and associate. The rectification phenomenon is illustrated in Fig. 2.11.
To compute the correction, the method of [Har99] is used. From a set of N initial or target
matches (xi, x′

i)i=1,··· ,N , and the fundamental matrix F of the image pair, the algorithm is
defined in three steps:

1. F is used to calculate the epipolar lines l and l′ of the images,

2. a first projective transformation H ′ is selected that projects l′ at infinity point i,

3. the second projection transformation H is obtained by minimizing

H = arg min
M

∑

i

∥

∥Mxi − H ′x′
i

∥

∥

2
. (2.6)

Then, using the method of [LZ99], a shear transformation is calculated and applied after the
rectification. This transformation makes it possible to reduce the shear distortions introduced
by H and H ′, while trying to preserve the orthogonality and the aspect ratio of the axes of
the image (see example on Fig.2.12).
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(a) (b) (c)

Figure 2.12: Illustration of the shearing effect of image rectification on some synthetic views of
a wing. (a) - Initial image, (b) - Rectified image, (c) - rectified image with shearing reduction.

Once the lanes have been detected and the images have been rectified, since the corre-
sponding points are now aligned horizontally, pairings can be obtained by scanning each line
of the images. In addition, one can think of also using the wing edges. However, the latter
are actually bent and the stops thus observed by the different cameras do not coincide. This
is why the presented method focuses on the detection of the black lanes at the top of the
wing, visible similarly by all the cameras.

2.2.4 Limitations

The main objective of the system presented here is to estimate wing deformation for the
aircraft certifications. Therefore, great care should be given to the reliability, accuracy and
robustness of the 3D shape estimations. While using natural features allows us to obtain
estimations without any disturbance, and offers a system that is simple to install, it comes
with great limitations. First of all, key-point detection lacks in robustness because wing
appearance changes with luminosity variations, i.e., a point could be observed at an instant
and not at another. Moreover, points of interest are detected only on parts of the wing where
rich information is available (texture or corners), which is limited since wings have almost no
texture on their upper surface, and not accurate since corners are not exactly seen similarly
from one view to the other.

Concerning lane detection, inaccuracy of reconstruction is introduced by errors of match-
ing. Indeed while the detection on the x axis (horizontal) of the image benefits from an
accurate algorithm of sub-pixel detectors, the coordinates on the y axis (vertical) rely on a
correct rectification of the images, yielding associations of points with slightly erroneous y

coordinates. The rectification itself relying on a correct first set of matching key points (also
affected by errors) will not be perfect. Besides, for a good rectification on views of the entire
wing span, points of interest should be spread evenly over the wing surface, which cannot
be ensured where no texture is present. As a consequence, errors in y coordinates matching
are observed on the lanes of the wing middle, of about 10 pixels in the worst case. Finally,
the identification of points on the lanes is another issue. With the approach of detecting
points for each line of the image, one cannot guarantee that the detected points will remain
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the same from one instant to the other. This will then induce difficulties to estimate wing
deformations between consecutive frames, and will become a problem for the application of
some mechanical limits introduced in Section 2.4 (that will be applied to points identified
before flight). Nonetheless, this approach could deliver an order of deformation magnitude in
case no additional installation permitted on the wing.

2.3 Initialization using targets

As explained in the previous sections, the detection of natural features of the wing can be an
interesting solution to gather point matches all along the wing to recover its 3D shape, while
remaining totally contact-less. However, their use comes with great limitations of accuracy
and robustness, which could be lightened by installing targets on the wing. Preventing the in-
troduction of aerodynamic disturbances, it is indeed possible to stuck markers on the surface
of a test aircraft. This section presents a range of existing targets employed in photogram-
metry applications, exploring the pros and cons of each one, and finally justify the retained
solution.

2.3.1 Typology of targets used for photogrammetry

In photogrammetry and many other image-processing applications, targets are used to mark
elements of the scene, allowing them to be easily located and identified. They are especially
useful when no other strong features are present on the scene (e.g., wing surfaces). Thanks to
their specific shapes and marks, their detection is accurate and robust. Using an appropriate
algorithm, one can locate them with sub-pixel accuracy. To answer the needs of diverse
applications, targets have been designed with various geometries and materials, resulting in
different properties, as illustrated in Fig. 2.13. Regarding the geometric properties, we provide
below a list of the most common target shapes:

i Circular targets: They are the most commonly used targets for industrial applications,
thanks to their small size and invariance in rotation and scale. To be correctly detected
once projected onto a camera sensor, their diameter must be at least 5px [Luh+13].
Targets are detected using for instance pixel intensity threshold or the generalized Hough
Transform for circle detection. Then, denoting (xi)i=1,...,n the n points lying inside the
circle, one of the method to locate the center of the target with sub-pixel accuracy consists
in calculating its centroid:

c =
1
n

n
∑

1

xi. (2.7)

An alternative is to detect the contours of the image ellipse with sup-pixel accuracy in
order to refine the detected center [ARK01]. Now the main drawback of this circular
shape is that once it is observed with a sensor non parallel to the target, it is projected as
an ellipse onto the image plane, for which the center is not exactly the circle center. This
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(a) (b) (c)

Figure 2.13: Example of targets commonly used in photogrammetry applications. (a) retro-
reflective targets with circular and coded shapes, (b) concentric circles and cross targets, (c)
3D markers.

phenomenon is illustrated in Fig. 2.14. To reduce the eccentricity error, it is recommended
to stay as parallel as possible to the target plane, and to use small targets (diameter
between 5 and 10 pixel on the image projection), so that the eccentricity error is negligible.

ii Concentric circles: To solve the problem of center eccentricity from the circular targets,
target formed by concentric circles were proposed [He+12]. The idea is that from the
eccentricity error of the different circles, it is possible to recover the position of the real
center. Concentric circles can also be used to improve the robustness of the detection
against motion blur or occlusions [Cal+16].

iii Cross targets: Another commonly used shape of target is the cross targets. Here the
targets can be easily detected using a template matching approach, and a sub-pixel refine-
ment is possible by first detecting the lines and then calculating their intersection. These
targets do not suffer from the eccentricity problem as the center is detected directly from
the line intersection.

iv Coded targets: In applications where target identification is mandatory, coded targets
are used, as they directly carry their signature. These targets will usually be composed of
pattern like code bars or shape codes, plus a circular target, allowing precise localization.
A direct drawback of these targets is the bigger size due to the quantity of information
carried.

v 3D targets: while 2D targets cannot (or badly) be seen from too large viewing angles, 3D
targets have the advantage of being visible consistently from much larger viewing angles,
making them particularly suited for multiple-view applications with distant point of views,
or for tracking moving objects (e.g., motion capture for cinema or video games). These
markers can be spherical, detected using similar approach than for circular targets, or some
polyhedron with 2D targets printed on the facets. These targets must be attached to the
marked 3D points, and their protuberant aspect can be a flaw in embedded applications.
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Figure 2.14: Illustration of the center eccentricity appearing when observing a circular target
(from [Luh+13]).

Regarding the physical properties of the targets, the first thing to ensure is that they
are visible. Indeed, detecting targets may become an issue in environment with uncontrolled
light, inducing a low contrast of the targets on the image. On this matter, several material
or devices are used to ensure good visibility. The first one, and most popular, is the retro-
reflective material, usually employed with circular targets but also available for all other
shapes. These targets reflect the light almost entirely back to its original source. Hence,
the light source should be placed as close as possible to the camera optical centre (using
annular light for instance). In such configuration, the target contrast with respect to the
background increases and makes the detection straightforward. Nonetheless, the intensity of
the light reflection from retro-reflective targets is the best when the source is in front of the
targets, and decreases quickly when the angle between the target normal and the light axis
increases. Basically, retro-reflective targets with circular shapes are visible at ±45 degrees
around the target normal. Moreover, it is worth mentioning that some targets are designed
to reflect only infra-red light to ensure correct detection in bright scenes. To go further,
when no light source is available to illuminate the targets, the light source can be directly
embedded into the targets (using LEDs for instance). Self-luminous or active targets offer a
good contrast when their luminosity is higher than the background light, but require a power
supply and a bigger shape factor due to their instrumentation. Finally, when the light source
cannot be controlled, special mate printing can be applied on the targets to prevent reflections
and ensure a good contrast on the image. Such targets will require more processing to be
detected as the background of the scene will still be visible, and the accuracy of the detection
will depend more on the contrast and the camera resolution and sensitivity.
The second physical property to consider will be the fixation. On this point, the main ways
to install targets is to use stickers, magnets, or to directly print or engrave them in the scene.
The selected fixation solution will impact the intrusiveness and ease of installation, as well
as the manufacturing cost and the ability to sustain environmental conditions (temperature,
vibrations, or others like air flow in this study).
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Figure 2.15: Example of view on an A350 wing using a 4K camera, with concentric circular
and cross targets installed.

2.3.2 Target selection

In the case of this study, the numerous constraints of installation, non intrusiveness and
camera positions have guided the target selection. First of all, the photogrammetry system
should be as less intrusive as possible and prevent any disturbance of the aircraft aerodynamic,
otherwise, flight tests would be erroneous. For this reason, markers should be flat and flush
with the surface of the wing. If their thickness is small enough, the impact on the wing
aerodynamic is negligible.

The second aspect to consider is the resistance to flight conditions, such as temperature
shifts, air flow, pressure and humidity. Hence, the choice was made to use a sticker paper
able to withstand flight conditions, that also provide an easy installation on the wing.

Then, to ensure correct detection on all images, targets should appear almost similar on
each view. Yet, camera positions are distant from each others, especially for the rear camera
with respect to the others, which induces rotation and scale variations of the observations. A
similar aspect of the targets could be obtained by employing 3D markers, but it is prohibited
by the aerodynamic constraints mentioned before, hence the necessity to use 2D targets.

Besides, circular targets could be installed to benefit from their rotation and scale invari-
ances. However, since our cameras are mainly installed at the windows of the aircraft, the
obvious drawback of using flat markers on the wing surface is that they will be observed with
grazing angles of view, i.e., the angles between the camera axes and the target normal are
high (about 80 degrees at the end of the wing), introducing eccentricity errors that are non
negligible. Moreover, concentric circles were presented in the previous section, that could be
used to compensate this error. Nevertheless, a correct detection of the circles would neces-
sitate bigger targets that would be complicated to install, or higher camera resolutions. In
Fig. 2.15, the projection size of circular targets at the end the wing on a 4K camera does
not allow a correct detection, while the radius of the circles is 60cm. For all these reasons,
printed stickers of 2D cross markers were selected for the wing reconstruction system. Even
if they have a greater dependency on the rotation angle, they offer almost similar aspects on

59



Figure 2.16: Selected targets installed on an A350 wing, with red graduations stuck on the
black lanes.

images. Indeed, cross targets have an invariance in rotation of right angles, which coincides
roughly with the rotation between cameras at windows and rear of the aircraft. Furthermore,
using cross targets, we can ensure a good visibility and similar projection sizes of the cross
lines, by adjusting the length of the target according to its position on the wing.

Another problem that will be encountered in flight is the variation of the light source
due to the motion of the sun with respect to the aircraft, which will generate variations of
the scene illumination, and potential presence of reflections and shadows on the wing. To
control the luminosity of the light, one might consider using retro-reflective targets. These
targets were used in previous Airbus method for estimating the shape of 3D wings. Markers
were illuminated by flashes installed close to the cameras, resulting in images where only the
targets were visible. In this way, target detection was straight-forward, even if it required good
synchronization between flashes and cameras, source of errors during some tests. Another
requirement for the markers to reflect the light to the cameras was that they were placed
orthogonally to the wing surface, which disturbed the aerodynamic of the wing, and hence
limited the flight domain of the aircraft.

Light source might also be controlled with self-luminous markers, but it would require for
the lights to be brighter than the background luminosity, that is already high in flight, and
thus not feasible on a wing. Moreover, it would need a power supply which is not compliant
with the non intrusiveness constraint. Here the retained solution is to use mate printing of the
cross targets to ensure a good visibility in all possible luminosity, and prevent sun reflections
that would saturate the camera sensor. These targets are less accurate but more robust to
luminosity variations.

One could also think about using coded targets, that would make the identification easier
while providing sub-pixel detection. Nonetheless, as the camera and wing motions are limited
in flight, the targets will always appear at almost the same positions in flight. Thus their
identification is already easy, and coded markers are not required. Besides, they would neces-
sitate to be bigger for a correct identification, which should be avoided. Finally here we use
2D targets of crosses printed on stickers using a mate ink, which are detected using template
matching algorithm plus a sub-pixel cross detection refinement. In addition, graduations were

60



stuck on the black lanes of the wing for better line matching between views, as displayed in
Fig. 2.16.

2.4 Optimization under constraints of a priori deformation
limits

Although challenging because of the specific flight test environment, wing deformation es-
timation can rely on a range of prior information. On the image processing side, views in
flight are always the same, facilitating the detection and tracking of points of interest. The
latter is also facilitated by the presence of two black lines along the wing span, that can be
exploited as exposed in Section 2.2.3, or using graduations allowing one to define a set of
nodes to track. Wing mechanical properties enable the use of even richer prior information,
since wings are build on theoretical models using Finite Element Models (FEM), defined in
Section 2.4.1. In addition to geometry scales, predicted wing deformations are thus available
for any flight configuration. However, these predictions cannot be used in the particular ap-
plication addressed herein. More precisely, theoretical deformation models cannot be used
to robustify 3D wing reconstructions, because these reconstructions are supposed to validate
(or not) these models. Instead, this work aims at exploiting the mechanical limits derived
from the FEM. Specifically, limit conditions corresponding to situations where the structure
materials would break are considered. We assume that these extreme cases, corresponding to
the wing shattering, will not occur during tests. This work defines maximum and minimum
deformations as constraints in the BA algorithm defined in Section 1.2.3.

2.4.1 Mechanical limits

An aircraft is always submitted to mechanical forces called loads, in flight as well as on
ground. These loads can be static forces caused by gravity, dynamic forces from the aircraft
motion (lift, drag and traction) or cyclical forces produced by repeated pressurizations and de-
pressurizations, or temperature variations [ME17]. At the molecular structure level, loads are
called stresses, that generate deformations of the structure (bending, torsion, shear, traction
or compression). To withstand stress through the entire aircraft life cycle, its structure should
be designed so that deformations remain always reversible, i.e., deformations are only elastic
and not plastic. This is ensured by testing the structure on two types of load cases, fatigue
and static cases.
The fatigue case corresponds to testing the deformation response of the structure to realistic
cycles of flight (take off, flights in various conditions, and landing). These tests are necessary
as it is known that structure tolerance to stress decreases gradually with the number of cycles.
To certify an aircraft, there should be no damage of the structure after two aircraft life cycles.
Static cases on the other side are tests to validate the structure stability for maximum loads
that an aircraft can encounter in its life, including maximum cabin pressure and mechanical
loads. By applying limit loads, that only occurs once in an aircraft life, structure should
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not break. Breakage could only occur when exceptional loads are applied, called ultimate
loads, for which the rate of occurrence is almost 0. In facts, ultimate loads correspond to
1.5 times the limit loads in the case of Airbus aircraft. To evaluate static cases, simulations
are conducted with theoretical calculation using the FEM, and further tests are performed
on real aircraft parts to validate simulations (illustrated in Fig. 2.18).

Finally, thanks to the FEM models, we have access to the 3D shapes of the wing under
limit and ultimate loads. Assuming that the wing will not break during tests, this means
that knowledge of its deformation limits can be exploited to improve the 3D reconstruction
from the BA (1.28). To this aim, several relevant limit loads were selected to estimate the
mechanical limits of an A350 wing. Fig. 2.17 displays the shapes of the wing for some limit
loads.

Min bending
Initial shape
Max bending

Figure 2.17: Wing shapes under maximum and minimum bending load cases from FEM
simulations.

2.4.2 Definition of mechanical constraints

Thanks to the knowledge of mechanical limits of the wing, various mechanical constraints can
be defined. Consider N 3D-points used for wing reconstruction denoted as Xi for i = 1, ..., N ,
and denote as Xi = (xi, yi, zi) the ith deformation point, using axes as shown in Fig. 2.19.
This work proposes to use the following set of limits

i. Volume limits: each point has a specific maximum volume (sphere, ellipsoid, or some
volume defined according to the FEM data).

ii. Bending limits: ∀i, ∃(bi
min, bi

max), such that the bending
∂2zi

∂y2
ranges in [bi

min, bi
max].

iii. Torsion limits: ∀i, ∃(ti
min, ti

max), such that the torsion
∂2zi

∂x∂y
ranges in [ti

min, ti
max].
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Figure 2.18: Static test on an A350 aircraft. In this picture, the wing bent under the forces
of an Ultimate Load is overlayed with its position without forces.

iv. Relative elongation limits: ∀i, ∃(ǫi
min, ǫi

max), such that

ǫi
min <

d(Xi, Xi−1) − d0(Xi, Xi−1)
d0(Xi, Xi−1)

< ǫi
max (2.8)

where d(Xi, Xi−1) is the Euclidean distance between points Xi and Xi−1 in the (x, y)
plane, and d0(Xi, Xi−1) is the initial distance before deformation.

To integrate these limits in the wing reconstruction process, we assume that the limits are
locally valid, which allows their definition using finite differences on a set of nodes in the (x, y)
plane. Considering the node Xi and its neighborhood (Xi−2, . . . , Xi+2, X ′i−2, . . . , X ′i+2),
detected on the wing lines as illustrated in Fig. 2.19 (Xi and X ′i are on the same ith wing sec-
tion (i.e., along the same coordinate y axis), one can define a set of C constraints (gk)k=0,...,C .

Figure 2.19: Node illustration on the aircraft wing.
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i. Volume constraint is expressed as 3D points having a limited displacements in the (x, y)
plane, bounded by boxes defined by their center (ri

x, ri
y) width ri

w and height ri
h , leading

to:
g0(αr, Xi) = (ri

x − xi) < 0, g1(αr, Xi) = (xi − ri
x − ri

w) < 0,

g2(αr, Xi) = (ri
y − yi) < 0, g3(αr, Xi) = (yi − ri

y − ri
h) < 0.

(2.9)

ii. Bending constraints: ∀i, ∃(bmin, bmax), such that

g4(Xi) =
zi+1 − 2zi + zi−1

(yi+1 − yi)2
− bi

max < 0, (2.10)

g5(Xi) = bi
min − zi+1 − 2zi + zi−1

(yi+1 − yi)2
< 0. (2.11)

iii. Torsion constraints: a first approach for the torsion calculation is to use finite differences.
However, due to sampling irregularities, this calculation introduces too much noise (see
details in Section 2.4.4). Another approach is thus considered. Assuming that on each
facet of 4 points (Xi, Xi+1, X ′

i, X ′
i+1), a polynomial can be estimated as:

z = ai + bix + ciy + dixy (2.12)

where (ai, bi, ci, di) are the polynomial coefficients, the following system of equations can
be obtained:

M iAi = Zi (2.13)

with

M i =











1 xi yi xiyi

1 xi+1 yi+1 xi+1yi+1

1 x′
i y′

i x′
iy

′
i

1 x′
i+1 y′

i+1 x′
i+1y′

i+1











, Ai =











ai

bi

ci

di











, and Zi =











zi

zi+1

z′
i

z′
i+1











. (2.14)

With this formulation, the polynomial coefficients can be calculated as

Ai = M−1
i Zi (2.15)

where M−1
i = (C1

i , C2
i , C3

i , C4
i )T is the inverse matrix of M i. Therefore, the torsion on

a facet is calculated directly as

∂2zi

∂x∂y
= di = C4

i Zi. (2.16)

Finally, the torsion constraints can be expressed as: ∀i, ∃(ti
min, ti

max) such that

g6(Xi) = di − ti
max < 0, g7(Xi) = ti

min − di < 0. (2.17)

Note that another possible approach would be to calculate di by solving directly the linear
system, using classical methods such as the LU decomposition. However, the inversion of
M i is preferred because it is as fast as using an LU decomposition for M i of size 4 × 4.
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Moreover, since the point coordinates in the (x, y) plane are supposed to remain close to
their initial position, the matrix M i can be calculated only once at initialization, and
then conveniently used to calculate the torsion for every frame.

iv. Relative elongation constraint: ∀i, ∃(ǫi
min, ǫi

max), such that

g8(Xi) =
d(Xi, Xi−1) − d0(Xi, Xi−1)

d0(Xi, Xi−1)
− ǫi

max < 0, (2.18)

g9(Xi) = ǫi
min − d(Xi, Xi−1) − d0(Xi, Xi−1)

d0(Xi, Xi−1)
< 0. (2.19)

One could consider that some of these constraints are redundant and hence that some of them
are not necessary. However, they are in fact complementary. For instance, volume constraints
apply to individual points while elongation constraints are associated with pairs of points,
and bending constraints are defined for triplets of points. In addition, it is worth noting that
the use of inequations creates bounds on the 3D points but do not enforce them to follow any
deformation model.

2.4.3 Constrained bundle adjustment

This section explains how to introduce the previously defined constraints in BA. In this work,
because of camera motions during the flight, 3D coordinates of the points and cameras are
estimated in a moving coordinate system, while the considered constraints are considered
in the aircraft coordinate system. Therefore, an additional registration phase is required to
transfer the points in the aircraft coordinate system. To perform this operation, the aircraft
reference points are detected from the rear camera image, further used to estimate the transfer
matrix P from the aircraft coordinate system to the camera system. Using the estimated
parameters αr from the same camera, the points X̃

i
are then registered as:

X̃
i

= P
[

RT
r , −RT

r tr

]

Xi, (2.20)

where Rr and tr are the parameters of the rth camera, as defined in Section 1.2.3.

After the registration phase, the constraints introduced in Section 2.4.2 are expressed as
regularization terms to penalize the objective function (1.28) [CZ13, p. 564], defining the new
regularized optimization problem (called CBA hereafter):

arg min
αj ,Xi

∑

i,j

[

xi
j − x̂(αj , Xi)

]2
+
∑

k

µk

{

∑

i

[

g+

k (αr, X̃
i
)
]2

}

, (2.21)

where µk are positive hyperparameters and g+
k (αr, X̃

i
) = max(0, gk(αr, X̃

i
)), with gk the

kth constraint.

With this formulation, µk equals zero when the corresponding constraint is respected, and
therefore this penalty does not impact the results. As explained previously, the optimization
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Figure 2.20: Example of sparse bundle adjustment Jacobian matrix for 3 cameras and 10
points. The last rows represent the two first constraints g0 and g4 defined in 2.4.2.

method used by BA is based on the Jacobian matrix, which requires the objective function to
be differentiable. To enforce differentiability of (2.21), we use the Courant-Beltrami penalty
function [CZ13, p. 566], with a quadratic term on g+

k , which also smooths this function.
Finally, since the constraints are applied to specific point neighborhoods, and depend only on
the rear camera parameters, the sparsity of the Jacobian matrix is preserved, as shown by the
example in Fig. 2.20, considering the derivative of each element of the projection error and
constraints with respect to all camera and point parameters. Similarly to the classical BA
problem, the sparsity of the Jacobian matrix significantly reduces the computational cost of
the optimization algorithm. To further improve the computational cost of the optimization,
this work proposes to use an analytical form of the Jacobian matrix (see Appendix A for
details), instead of the usual estimation approach using finite differences.

2.4.4 Extraction of mechanical limits from the FEM

In the previous section, CBA was introduced to take advantage of the prior knowledge about
the aircraft mechanical limits to improve the 3D reconstruction of wings. These limits were
defined in Section 2.4.2 and this section will now expose how to extract them from the FEM.
Shapes of the wing were simulated under a set of ultimate loads, defined by experts to be
representative of the most substantial wing deformations. The set of ultimate loads include
maximum bending with aircraft fuselage bent in various ways, minimum bending and ground
shape. Maximum pressurization loads were also included to evaluate window motions where
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Figure 2.21: Bounding shapes in the (x, y) plane for the volume constraint at the beginning
(a), middle (b) and end (c) of the wing. For the initial node position, displayed as a red cross,
blue crosses represent all the node positions for the various load cases.
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Figure 2.22: Evaluation of the influence of degree for the polynomial fit. The mean error
(top) and standard deviation (bottom) are calculated for all the load cases at once.

cameras are fixed.

Volume constraints: for the volume constraints, limit displacements of the wing nodes
in the (x, y) plane were extracted and bounded. Circular, rectangular and elliptical bounding
shapes were tested, as displayed in Fig. 2.21. Circular shapes allow a very simple implemen-
tation but are not very accurate at the wing end, where displacements along the y axis are
about ten times higher than those along the x axis. On the other side, bounding ellipses are
more complex to implement and may generate errors. Therefore, we selected bounding boxes,
that have low complexity of implementation while closely fitting the displacement limits.
During experimentation, dimensions and positions of the bounding boxes can be interpolated
at specific point coordinates in the (x, y) plane. Note that the displacement limits could also
be evaluated in 3D to obtain a narrower volume limit. However, this study focuses more on
the practical implementation foreseen for real time applications.

Bending constraint: To calculate the derivatives ∂2zi

∂y2 , a polynomial fitting was first
performed on each FEM shape, such that z = P (y), with P a polynomial of degree 5. With
this representation, the bending derivatives are easily calculated as new polynomials, and the
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Figure 2.23: Polynomial fitting for the bending constraints. (Top) View of the wing shapes
for various Load Cases on the (y, z) plan with their fitted polynomials z = P (y). The
approximations by finite differences of the derivatives ∂zi

∂y and ∂2zi

∂y2 are displayed respectively
in (middle) and (bottom), overlayed with the corresponding derivatives of the polynomials.
Noisy estimation of the derivatives can be observed at about 10m of wing span, due to a local
gap in the node sampling.
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Figure 2.24: Torsion along the wing span calculated using finite differences and polynomial
fitting. One can observe that the calculated derivatives using finite differences and polynomial
fitting do not match for this example.
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Figure 2.25: Torsion along the wing span. The upper and lower envelopes are approximated
by polynomials P and Q such that tmin = P (y), and tmax = Q(y). The color legend is
identical to that of Fig. 2.23.

5 10 15 20 25 30
y axis (in meters)

re
la
tiv

e 
el
on

ga
tio

n poly max
poly min

Figure 2.26: Relative elongation along the wing span. The upper and lower envelopes are
approximated by polynomials P and Q such that ǫmin = P (y), and ǫmax = Q(y). The color
legend is identical to that of Fig. 2.23.
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envelope of bending can be extracted using two polynomials corresponding to the upper and
lower limits (displayed in Fig. 2.23). The best degree for the polynomial was determined by
calculating the global error and standard deviations of the fits for all load cases, as displayed
in Fig. 2.22, which shows calculation errors occurring for to high degrees. Fig. 2.23 also
demonstrates that the polynomial derivatives correctly match the estimations from finite
differences, expressed in (2.10). Finally, the use of polynomials has a practical advantage
during tests, where limits can be easily calculated from the y coordinate of the estimated 3D
point.

Torsion constraint: following the approach proposed for the bending limitations, the
torsion ∂2zi

∂x∂y was first calculated by fitting a polynomial Q such that z = Q(x, y). However,
due to sampling irregularities, resulting curves do not match the calculation from finite differ-
ences, as illustrated in Fig. 2.24. Since the same errors could appear during real tests where
graduations are not placed perfectly, the approach of calculating torsion for each facet was se-
lected. Using the formulation defined in (2.16), the torsion is calculated for each facet and for
each load case, and the minimum and maximum envelopes are approximated as polynomials
to be easily implemented during the tests (see Fig. 2.25).

Relative elongation constraint: Here the relative elongation defined in (2.8) was calcu-
lated between nodes of each load cases, and the envelope of maximum and minimum relative
elongation was approximated by two polynomials (see Fig. 2.26).

2.4.5 Results and discussion

Real data from a ground test was acquired on an Airbus A350-900 to evaluate the proposed
method. To reproduce an installation similar to the one foreseen during flights, cross targets
were installed on the wing surface to improve the accuracy of point detection in the images.
Four 4K cameras were installed on the aircraft windows. The rear camera was simulated by
a drone placed on the vertical stabilizer. Examples of images acquired by these cameras are
displayed in Fig. 2.27. To clearly identify the points on which deformation constraints are
applied, graduations were stuck on the two black lines every 30 cm, which will define the
nodes of the proposed wing reconstruction.

After installation, a drone was used along with the software Agisoft Metashape [Met]
to perform a scan of the wing and initialize the camera and point positions. Finally, wing
vibration was generated by manually shaking the wing tip of about 5 cm (the vertical motion
amplitude was estimated using a scale board). As expected, the detection of graduations
observed with low angles was less accurate compared to large angles (see wing tips in cameras
1 and 3 in Fig. 2.27). In addition, graduation detection was not possible in some images
because of reflections on the wing (see camera 3 in Fig. 2.27).

The proposed constrained algorithm (CBA) was implemented in Python and compared to
the classical unconstrained BA algorithm. The constrained optimization was performed using
the least-squares “trust region reflective" method implemented in the Scipy library [Va20],
benefiting from its capability to take as input a function to construct the Jacobian matrix
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(a) Camera 1 (b) Camera 3

Figure 2.27: Examples of recorded views resulting from a the test on ground with an Airbus
A350-900.
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Figure 2.28: Estimated motions (in meters) of the 4 cameras located on the aircraft windows
versus time.

for each step of the optimization, as opposed to estimating it, which would also calculate
elements that are known to be zeros. All the mechanical limits were estimated from the
FEM data as presented in Section 2.4.4. Point and camera positions were extracted from
a representative video of the moving wing, by running 30 frames using our algorithm. For
comparison, we used unconstrained BA, and BA with combinations of all defined constrains,
of volume, bending, torsion, and elongation. A first observation was that using combination
of constraints without the volume constrain yields important errors due to scale loss. Thus
at least the volume constraint should be used. Fig. 2.28 shows that the camera estimation
precision is enhanced using the CBA algorithm, as cameras were supposed to have negligible
motions during the ground test. In particular, it can be observed that camera motions using
CBA are reduced compared to BA.

Furthermore, Fig. 2.29 shows that using constrains also significantly improves the esti-
mation results, resulting into an amplitude of 5cm at wing tip and of less than 1cm in the
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Figure 2.29: Bending results at the middle of the wing (left) and at wing tip (right).

(a) (b)

Figure 2.30: Comparison of the distances between the reconstructed point cloud and the
theoretical model of ground shape. (a) reconstruction using only volume constraint, (b)
reconstruction using both volume and bending constraints.

middle of the wing, which is consistent with our measurements using the scale board. Besides,
the distance between the wing reconstruction and the theoretical ground shape (computed
using Cloud Compare [Clo]) displayed in Fig. 2.30 shows that the distance at the wing start
is reduced using volume and bending constraints "CBA_VB" (of more than 0.2m compared
to using only volume constraint "CBA_V"). As a consequence, the combination of local
volume and bending constraints improves the global estimation, as points at the wing start
should be closer to the model, where it is more rigid, than at the end. Note that the FEM
is only a model, which is not supposed to perfectly fit the data. Thus, a deviation from this
model is possible. Finally, estimation results versus time, illustrated in Fig. 2.31, suggest
that the volume constraint is correctly respected and improves point position tracking, all
points remaining close to their initial location in the (x, y) plan. As soon as volume and
bending constraints are applied, the use of additional constraints only slightly improve the
results of the estimated 3D points. Thus one cannot tell how it improves the reconstruction
on this set of data where no ground trough is available. Regarding the hyperparameters
used for the penalization, we considered equal values of the parameters (µj)j=0,...,6 mainly
by simplicity. Then the value of each parameter was selected by evaluating its impact on

the reprojection error
∑

i,j

[

xi
j − x̂(αj , Xi)

]2
, the constraint error

∑

i

[

g+
k (αr, X̃

i
)
]2

and the

72



35.0 37.5 40.0 42.5 45.0 47.5 50.0

x axis (m)

10

15

20

25

30

y
 a

x
is

 (
m

)

ba

Fram e 0

Fram e 29

Out liers

35.0 37.5 40.0 42.5 45.0 47.5 50.0

x axis (m)

10

15

20

25

30

cba

Fram e 0

Fram e 29

Out liers

Figure 2.31: Point reconstructions in the (x, y) plane for the first and last frames. (left)
without the constraint, (right) with the volume and bending constraints. Some outliers can
be observed in the last ba frame.
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Figure 2.32: Influence of the penalty parameter on the reprojection error, the constraint errors
and the number of iterations required to converge.
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number of iterations required for the CBA optimization to converge. The result of this test
is shown in Fig. 2.32, where one can see that increasing the value of the penalty parameter
lowers the constraint errors, but increases the reprojection error and the convergence time.
Moreover, when the value of the hyperparameter reaches about 107, results become aber-
rant with large errors, which can probably be imputed to the routine used for optimization.
Finally, the penalty parameter was set to 104 in all our experiments. This value makes a
compromise between the different errors depicted in Fig. 2.32. Further studies could concen-
trate on finding automatically the optimum individual hyperparameters associated with the
different constraints.

2.5 Conclusion

This chapter proposed a new approach for estimating wing deformations in flight using a pho-
togrammetry approach, using natural features of the wing or markers. The proposed method
introduced mechanical limits of an aircraft wing deformation into a bundle adjustment algo-
rithm for 3D estimation using multi-view photogrammetry. For this purpose, regularization
terms were considered into the classical bundle adjustment method. The potential of the pro-
posed method was demonstrated through realistic experiments conducted on images acquired
on an aircraft located on the ground. The application of all the proposed constraints in flight
is clearly an interesting prospect. Another area of improvement is to use weighted bundle
adjustment to reduce the influence of wrong observations on the reconstruction. Finally, it
would be interesting to study the hybridization of the proposed method with data from other
sensors such as inertial units.
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Chapter 3

Uncertainty estimation for 3D-wing
reconstruction
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In the previous chapter, a new flexible method for 3D reconstruction of a wing in flight
was presented based on multiple view videogrammetry. In particular, considering mechanical
limitations to improve the estimation of wing deformations provided encouraging results in
the perspective of the targeted application. Yet, to this point, one cannot guaranty that the
estimated 3D deformations are compliant with Airbus requirements in terms of precision.
Consequently, the goal of this chapter is to lift the veil on the reconstruction uncertainty of
the proposed method.

Since the notion of measurement precision may be confusing, Section 3.1 defines the ba-
sics of uncertainty estimation, with focus on the different terms and methodologies. Then,
Section 3.2 focuses on the consideration and the evaluation of uncertainty sources, and the
effect of varying parameters such as light that may impact the reconstruction results. In
Section 3.3, various methods for propagating the uncertainty of the main sources are pre-
sented. Simulation results are exposed and compared in Section 3.3. Finally, conclusions and
perspectives on this assessment of 3D-reconstruction quality are drawn in Section 3.5.
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3.1 State of the art about uncertainty estimation

Interpretation and ability to rely on data measurement or parameter estimates is only pos-
sible if a quantitative indication of that measurement or estimation quality is provided. For
instance, measuring a distance using a laser or a ruler can deliver two different quantities, and
test results cannot be compared without the knowledge of their qualities. This indication is
brought by the evaluation of uncertainty about the parameter estimates. To introduce these
concepts, it is necessary to first present the basics.

A physical quantity has always a true value, which is most of the time unknown. If one
seeks to measure or to estimate this quantity, the result will have an error, representing the
difference between the measurement and the true value. The first component of this error
is a systematic error, that can be corrected when the ground truth is known (during the
calibration for instance). The second component is random, arising from varying parameters
that influence the estimation. In the case of wing reconstruction, a systematic error could
be induced by the distortion of camera optics, while luminosity variations would introduce
random errors in the 3D estimation. The smaller the error, the more accurate the estimation.
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Figure 3.1: Illustration of the concepts of estimation trueness, precision and uncertainty, in
four different scenarios. Blue dots represent estimates of a quantity for which the true value
is known and displayed as a green dot. The uncertainty decreases when precision and/or
trueness increases.

In the case of multiple estimates of the same quantity, the difference between the average
value of these estimates and the true value is called the bias, corresponding to the systematic
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error. The trueness of the measurement increases when the bias decreases. Furthermore, the
random errors induce a dispersion of the results, called the precision. Finally, the uncertainty
of an estimate represents the doubt on the result. More precisely, it gives a range around
the estimate within which the true value is known to lie. These concepts are illustrated in
Fig. 3.1.

To evaluate and express the error and uncertainty so that it is globally understood and
accepted, procedures have been proposed in the principle standard GUM (Guide to the ex-
pression of Uncertainty in Measurement), its supplements [Guma; Gumb; Gumc], and in the
ISO 5725 [Iso]. While these norms do not directly apply to image processing applications,
they give guidelines that will be followed in this chapter. To our knowledge, the standard
VDI/VDE 2634 on optical 3-D measuring systems [Vdi] is the only standard that addresses
the subject of 3D estimation using photogrammetry, where it is recommended that uncer-
tainty evaluation is performed by reconstructing the geometry of a known cuboid mock-up
with spherical targets.

3.1.1 Uncertainty estimation

In general, the uncertainty of an estimation is used to give an appreciation of the confidence
interval of the estimated parameter. For a parameter x, the confidence interval is an interval
[d1, d2] such that the probability

P [d1 < x < d2] = α, (3.1)

where α is the confidence parameter, usually equal to 0.95 or 0.99. To determine this interval,
from a observation set (x1, x2, . . . xn) of Xi ∼ N (x, σ2), one seeks to express these estimators
as a statistics T (x1, . . . , xn) whose law is known and depends on x, and for which one can
calculate (3.1). In the Gaussian context, one can proceed as follows: the estimators x̄ and σ̄

of the parameters are first calculated using

x̄ =
1
n

n
∑

i=1

xi, and σ̄2 =
1

n − 1

n
∑

i=1

(xi − x̄)2 . (3.2)

Then, using the following notations

U =
x̄ − x

σ/
√

n
∼ N (0, 1), and V =

1
σ2

n
∑

i=1

(xi − x̄)2 ∼ χ2
n−1, (3.3)

one has

T (x1, . . . , xn) =
U

√

V
n−1

=

√

n(n − 1) (x̄ − x)
√

∑n
i=1 (xi − x̄)2

∼ tn−1, (3.4)

where tn−1 used for the Student distribution with n − 1 degrees of freedom. Using the
cumulative distribution function of a Student distribution tn, one can determine a scalar tα
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such that the following inequality is satisfied with probability α:

− tα < T (x1, . . . , xn) < tα, (3.5)

yielding
x̄ − tαū < x < x̄ + tαū. (3.6)

Finally, the standard uncertainty for the estimated parameter x̄ is denoted

ū =
σ̄√
n

. (3.7)

In metrology standards, this uncertainty estimated from a statistical approach is referred to
as type A uncertainty. Note that when the number of observations n tends towards infinity,
the Student distribution can be approximated by a standard normal distribution N (0, 1).

In the case where the estimate of a quantity x is given by a unique observation xi, the
uncertainty is evaluated from all available information of x variability, such as past test
measurements, engineer judgment based on knowledge of the system, or specifications from
the manufacturer and reference data from handbooks. This uncertainty is referred to as type

B uncertainty. For instance, for a numerical plot xi of some quantity with a resolution r,
the true value is known to be in the interval [xi − r/2, xi + r/2] and to follow a uniform
distribution. In this case, the uncertainty of the estimation is given by the standard deviation
of the uniform distribution, yielding ū = r

2
√

3
.

In our case, the question is how to evaluate the estimation uncertainty in a complex
framework such as the one presented in Chapter 2. Several approaches are proposed in this
chapter, based on the available knowledge of the system. Fig. 3.2 summarizes this process
of uncertainty evaluation. Once the main step of the estimation system have been analyzed,
the first indicator to orient the method choice is the availability of a mathematical model. If
available, standard uncertainties of all parameters influencing the measurement result should
be determined. An efficient way to list all potential sources of uncertainty is to follow the
Ishikawa diagram [Lil16] (also called cause-and-effect diagram), that suggests to look at the
system under five main aspects: process, equipment, operator, environment and the quantity
intended to be measured (called measurand or parameter). Fig. 3.3 presents the application
of this approach to list the uncertainty sources in the photogrammetry system of this study.
Then, the global uncertainty can be evaluated using either the propagation law or using
distribution propagation, both described in Sec. 3.1.2. On the other side, in the case no
mathematical model is available, one will have to analyze the variations of the estimates in
a controlled experimentation, as developed in Sec. 3.1.3. Note that it is also possible to mix
the various methods.

As depicted in the diagram in Fig. 3.2, once the uncertainty has been estimated, a phase
of validation and update is required. Indeed, the GUM points out that the provided guide
"cannot substitute for critical thinking, intellectual honesty and professional skill" [Guma].
Therefore, it is the engineer’s work to check for results consistency and integrity with respect
to its knowledge and comprehension of the system and measurand, and further update the test
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Figure 3.2: Diagram of the uncertainty evaluation process.

accordingly. Besides, in practical applications, it is often too long and tedious to consider all
possible sources of uncertainties, and therefore a broad to fine approach is recommended. In
this manner, broad uncertainties of the principal sources are first evaluated and propagated, to
bring out the main error sources. Then a finner evaluation of these contributors is performed.

3.1.2 Propagation using a mathematical model

In this context, a mathematical model for a quantity y means that its measurement is known
to be related to an identified set of N random variables (Xi)i=1,...,N , such that

y = f(x1, x2, . . . , xN ), (3.8)

where the function f is not always exactly known. As mentioned previously, it is possible
to make a broad evaluation using an approximate model before refining the real model.
Identifying (xi)i=1,...,N involves that their probability distributions are known, and that their
standard deviations can be estimated. In practice, it is common to use rectangular, triangular
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or Gaussian distribution functions.

3.1.2.1 Uncertainty propagation law

Calculating uncertainties by the means of standard deviations allows considering all param-
eters similarly and using known properties of probability, such as the variance additivity in
the case of independent random variables. Thus, if u(xi) denotes the uncertainty of xi, the
combined uncertainty uc(y) of the output y in (3.8) can be calculated using the propagation
law (PL)

u2
c(y) =

N
∑

i=1

[

∂f

∂xi

]2

u2(xi) + 2
N−1
∑

i=1

N
∑

j=i+1

∂f

∂xi

∂f

∂xj
u(xi, xj), (3.9)

where
u(xi)2 = E

[

(xi − E[xi])
2
]

(3.10)

is the variance of xi, and

u(xi, xj) = E [(xi − E[xi]) (xj − E[xj ])] (3.11)

is the covariance of xi and xj , with E the mean. In practice, we estimated these scalars by

ū(xi)2 =
1

n − 1

n
∑

k=1

(

xk
i − x̄

)2
, (3.12)

ū(xi, xj) =
1

n − 1

n
∑

k=1

(

xk
i − x̄i

) (

xk
j − x̄j

)

, (3.13)

where (xk
i , xk

j )k=1,...,n are n realizations of the random variable pair (xi, xj). Note that the
covariance equals zero when parameters are uncorrelated. Expression (3.9) comes from the
first non zero terms of a Taylor series expansion applied to the mathematical model in (3.8)
(see proof in [Guma, p. 55]). Using the central limit theorem, the distribution of y can
be considered as a Gaussian distribution, as it results from a combination of multiple and
different distributions. According to (3.9), to use the propagation law and evaluate u2

c(y), f

and its derivatives have to be known.

Going further, the GUM supplement 2 [Gumc] generalizes the PL to any number of input
and output quantities. Denoting by y = (y1, ..., ym)T the random variable of the m measured
quantities and x = (x1, ..., xn)T the vector of the n random variables in input, such that
y = f(x), the generalized uncertainty PL states that the covariance matrix Uy of the output
variable y is linked to the input covariance matrix Ux as follows

Uy = Jf
xUxJfT

x , (3.14)

where Jf
x is the Jacobian matrix of f with respect to x. Once again, this expression results

from the computation of the covariance matrix of y using a Taylor series expansion. Finally,
the problem of uncertainty propagating reduces to the problem of calculating the Jacobian
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matrix of the transformation f .

3.1.2.2 Application to Least Square Optimization

In the specific case of a least square optimization, used in the CBA approach described in
Sec. 2.4.3, the mathematical model between the realizations y and x of the random input
and output variables X and Y , can be expressed as

y = f(x) = arg min
z

e(z, x), (3.15)

where e : Rm × R
n → R, and z is the vector of m parameters to optimize. To apply the

propagation law (3.14), the Jacobian matrix of the implicit function f must be calculated
with respect to x. As described in [Eud11, p. 26] [Fau93, p. 155], this can be achieved by
using the implicit function theorem, stating that if the Hessian of e is invertible at a local
minimum, then around this point, the derivative of f may be expressed as

Jf
x =

∂f

∂x
= −H−1 ∂Φ

∂x
(3.16)

where H = ∂Φ

∂z
is the Hessian matrix and Φ = ∂e

∂z

T
.

3.1.2.3 Monte-Carlo Method

When the application of the propagation law cannot be done, an alternative is required. A
solution suggested in GUM supplement 1 [Gumb], is to use simulations following the Monte-
Carlo method (MC), that allows one to calculate approximative numerical value of the mea-
surement uncertainty using Monte Carlo simulations. The number of trials N to perform
depends on the shape of the probability density function in output, and on the desired confi-
dence. However, it is commonly admitted that N > 106 ensures a close approximation of the
95% coverage interval [Gumb]. This approach is convenient and easy-to-implement to prop-
agate uncertainties through algorithmic frameworks, as the detailed mathematical model is
not required. The main drawback remains the computational cost of simulating high numbers
of trials.

3.1.3 Experimental validation

In the case where no mathematical model is provided and uncertainty sources cannot be
identified, the last option is to evaluate the estimation uncertainty through experimental
validations. Experimentations should be conducted on realistic scenarios representative of
the application setup, with real environmental disturbances. The best solution to ensure
this is to evaluate the system directly on the real use case. To be able to obtain errors and
standard deviations of parameter estimates, a countermeasure is needed, and the uncertainty
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estimation will be limited by the countermeasure uncertainty. For the application of wing
3D estimation, the experimental validation consists in acquiring real images in flight and
comparing the result of the proposed system with other measurement systems based on other
sensors. This approach is detailed in Chap. 4.

Besides, it can be difficult or even impossible to obtain countermeasures in real applica-
tions. A first alternative would be then to make use of mock-ups, with similar properties
than the actual system, up to a scale factor, in a fully controlled environment. In the case of
3D estimation for aircraft structures, it involves recreating smaller parts of the aircraft, with
similar materials, painting, deformation properties, but also recreating the flight environment
and mimicking the behavior of the structure during the flight. A final and more accessible
option is to use simulations. In the case of image processing applications, this consists in
creating synthetic images of the system simulating its realistic behavior. To this aim, game
engines can be used to render 3D views of the scene of interest in varying environment. In
this study, the game engine Unity [Uni] is used to perform this task. Created in 2005 for the
development of video games, this platform now allows creating 2D and 3D applications, as
well as augmented and virtual reality, and even simulations. It offers realistic rendering of
illuminations with high dynamic range (HDR), which makes it popular for instance in archi-
tecture or automobile industries. Unity is a good option for the specific case of flight tests,
where illumination variations are a main concern.

The main challenge when using mock-ups and simulations is making the measurand and
measurement system as realistic as possible. If some influencing parameters are not considered
in the tests, the estimated uncertainty can be questioned. For example in Sec. 2.4.5, tests
were performed on a real aircraft on ground, which can be considered as a mock-up of the
real measurand. However, while this test provides information on the uncertainty for 3D
reconstruction of a still wing under varying illumination, it cannot fully represent the real
scenario where the wing is moving in flight.

3.2 Uncertainty sources

The uncertainty principles being exposed in the previous sections, we can now focus on their
application to the wing deformation addressed in this work. When using a mathematical
model or experimental validation to estimate the uncertainty of 3D reconstruction, the first
step is to determine all the sources that can impact the estimates. On the one hand, when us-
ing the mathematical model, standard deviation or probability distributions of these sources
will have to be evaluated before propagation. On the other hand, for the definition of ex-
perimentations, this inventory is also required to ensure that the evaluation is performed on
realistic use cases.
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3.2.1 Inventory of the sources

To consider all potential sources of uncertainty in this study, the Ishikawa method declined in
the guide [Exe] is used, considering the error sources in the photogrammetric reconstruction
over five main aspects: process, equipment, operator, environment and measurand (illustrated
in Fig. 3.3). The goal of this section is to provide the most exhaustive list as possible of
uncertainty sources that should be taken into account when designing a photogrammetry
system and evaluate the quality of its 3D reconstruction.

Measurement 
Uncertainty

Process

Environment Measurand

Equipment Operator

Points of view,
Acquisition frequency,

Acquisition duration,
Number of targets,

Choice of detection algo.,
CBA Convergence criteria,

…

Type of targets,
Camera sensor,

Camera lenses,
Lightning,

Window’s material,
System trigger,

…

Thermal deformations,
Camera vibrations,

Specular reflections,
Electromagnetic perturbations,

Fog appearance on views,
Mist appearance on windows,

…

Camera adjustments,
Lens cleaning,

Target installation,
Drone scan operator,

…

System geometry uncertainty,
Hypothesis of continuous deformation ,

Mechanical limitation uncertainties,
Surface alterations,

…

Figure 3.3: Ishikawa diagram for listing all potential source of uncertainty.

Process: This aspect focuses on the used framework and designed system. Here the sources
of interest are:

• Number of measurements. The number of view points can influence the final 3D
estimation, given that a point is more likely to be well reconstructed when seen by a
high number of views from various positions. This also brings out the next influencing
factor, which is the type of views, i.e., the orientations and positions of the cameras
with respect to the object of interest. It is obvious that a camera with grazing view of
the wing will be less accurate than a camera with an orthogonal view. Furthermore,
the number of measurements also depends on the frequency of acquisition, or more
specifically on the number of frames per second. Frequency will impact the size of the
window for filtering the estimation results over time. Finally, the number of tracked
points on the wing and their distribution can also influence the results.

• Measurement duration. For the 3D reconstruction of a wing during flight tests,
shapes are estimated at stationary points of the flight, meaning that flight conditions
are constant during the time of camera acquisition, and the wing is quasi static. The
duration of this stationary phase is another uncertainty source.
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• Choice of the method. The proposed framework is constructed from algorithmic
bricks presented in Section 2.1. The selection of a specific algorithm is an additional
factor that influences the estimation result. In particular, here, the choice of using CBA
instead of BA will change the uncertainty, but also the choice of mechanical limitations.
Besides, the selected hyperparameters for the algorithm are further influencing factors.
For instance, the choice of stopping conditions for the CBA optimization should be
considered.

• Choice of reference. Using the camera coordinate system, linked to the wing, or the
aircraft coordinate system, is an important source of uncertainty, as the registration
phase to go from one to the other is also introducing errors.

• Calibrations. Camera inner parameters, as well as distortions and geometric aberra-
tions of the system (camera, lens, filter and window) can be estimated by a calibration
phase. The estimation accuracy will depend on the model and method used (described
in Section 1.2.1), the selected reference target, and how well the calibration is performed.
For instance, if pictures of the reference targets are not taken homogeneously over the
entire image space, the residual errors of the calibration will be greater in image regions
that were less covered.

Equipment. Each device of the designed system can influence the global uncertainty based
on its own error, its resolution, calibration uncertainty, but also the corrections applied to
mitigate the error. In the proposed system, the aspects to consider include the choice of
equipment and how they are calibrated:

• Targets. The various types of markers that could be used in this application were
introduced in Section 2.3. The choice of shapes, dimensions, material and color can
be a source of uncertainty as it influences the accuracy of detection in the images, and
induces different behaviors with respect to illumination variations.

• Cameras. Many uncertainty sources result from the choice of camera sensor. The
dimension and resolution of the sensor, coupled with the number of scene views to
reconstruct will influence the number of pixels available to detect interest or marker
points. Moreover, the dynamic range, sensitivity, signal-to-noise ratio or even linearity
of the sensor will influence how well the details of the scene are acquired with respect to
various illumination intensities. Besides, the choice of wavelength range for the sensor
is to be considered as well. For instance, a camera with a wavelength range in both
the visible and near infrared ranges will have a better sensitivity, allowing us to see
clearer in darker scenes. The choice of whether using black and white or color sensors,
and in the second case, the choice of the Bayer filter will also impact the sensitivity
and the resolution of the sensor. Furthermore, uncertainty on the residual distortions
of geometry can occur at the sensor level, such as the skew parameters or the pixel size.
Last but not least, camera shutters can be global or rolling. In the first case, all pixels
of the sensor are captured at the same time, while they are acquired line by line for the
rolling shutter, which engenders deformations on the image of moving object or camera.
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• Optics. The first source of uncertainty concerning the optics is the focal length. This
parameter will change the number of pixels per meter for the scene, by playing on
the viewing angle of the camera, but also the distortions of the images. A fisheye
lens, with a short focal length, introduces stronger distortions than lenses with longer
focal lengths. The choice of optics also impacts the sharpness of the image, and high
resolution sensors require high resolution lenses. Sharpness can also vary with the type
of diaphragm, which impacts the depth of field of the camera by controlling its aperture.
In addition, optical aberrations due to light scattering inside the lens, called lens flare,
can be the source of contrast decrease in the images. The choice of optics further
impacts the light transmission rate, and vignetting occurs when an optic is too small
for a sensor. Finally, this choice will influence the importance of chromatic aberrations,
i.e., the variation of focus plan of the lens with respect to wavelengths, illustrated in
Fig. 3.4.

• Additional filters. They can be installed at the end of optics to block some wavelength
or light reflections on surfaces using a polarizer. Their use will influence the quantity
of light transmitted to the sensor and may produce additional geometric or chromatic
aberrations.

• Lights. The proposed system does not have light complementing natural illumination.
However a future version of the system might include light, allowing one to reconstruct
the wing during the night. Anyway, when using lights, the influence factors to examine
are the directivity or shape of the light lobs, its wavelength, intensity, homogeneity
(for instance dirt on the light source can create local variations of intensity), and the
temporal profile (that can be a flash, a constant source or a fluctuating profile).

• Windows. To view the wing from the cabin of the aircraft, cameras have to look
through windows, that are strong sources of uncertainties. Indeed, just as lenses, win-
dows convey geometric deformations, chromatic aberrations, and local blur can occur
when their are not cleaned. On top of that, the material used can impact the light
transmission to the camera with respect to the wavelength, and even impact the light
reflection from inside the cabin. Moreover, the geometry of the window can create dis-
tortions, but also doubling of the light passing through the windows due to its thickness
and the angle between the camera and its surface.

• Trigger. Trigger is the device that initializes the acquisition of all cameras syn-
chronously. In a 3D reconstruction system based on multiple cameras, the trigger can
be the source of acquisition lag between cameras. If the object of interest moves in
between the acquisition of the different cameras, the corresponding observations of a
point in images will be not exactly related to the same 3D point. Moreover, the absolute
time precision of the acquisitions is a source of uncertainty when reconstruction data are
to be evaluated against time, or when comparing to counter-measurements. The delay
between the time stamp of the acquisition and reference time is a source of uncertainty.

• Acquisition device. While image acquisition can be performed directly using the
cameras, some applications such as the one addressed here use specific computers with
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Figure 3.4: Illustration of the chromatic aberration, creating a rainbow edge in high contrast
areas.

suited grabbers to perform the image acquisition and storage. A first concern about
this device is its reliability, i.e., the probability to loose frames or even to stop recording
during tests. A second aspect is the data compression. It can be used to reduce the data
size when storing a large amount of images, for instance when recording hours of flight.
Using image compression allows us to reduce the redundancy of information with or
without loss of information. Moreover, for lossy compression, the level of compression
will greatly influence the precision of details in the image. To further reduce the data
size, the video compression can be used to reduce the redundancy over time in quasi-
static scenes. However, this compression has the disadvantage of reducing or removing
the details of displacements over time.

Operator: The largest source of uncertainty is often related to how the system is operated for
the measurement. In the current application, it means how the operators have been trained
for:

• Camera set-up. Preparing the camera for a flight first involves correctly framing the
scene to observe, tighten the fixations of the cameras, and setting the lenses by adjusting
and securing the focus and the diaphragm. A badly tuned optic can induce blur in the
scene, and this can variate during the test if optics are not well secured. A second phase
is to properly clean the camera sensors, the optics and the aircraft windows, to ensure
that no dust, junks or fingerprints are left, that would produce local blur or occlusions
in the images. In particular, cleaning camera sensors is a meticulous task that should be
made in laboratory using dry air and specific swabs. Sensors can be quickly polluted if
the operator is not careful during the installation of the optic. Finally, when installing
the cameras, an anti-reflection hood could be installed around the camera to ensure that
the acquired images are not capturing reflections of the aircraft cabin on the windows.
If the operator leaves a gap between the window and the hood, this will alter the images
and hence influence the uncertainty.

• Target installation. Attention should be taken by the operator to correctly stick the
targets on the wing at appropriated positions, with suitable orientations such that they
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can be seen by all the cameras with similar aspects. For instance, targets stuck on dirty
surfaces can unstuck during the flight, causing the permanent loss of a measurement
point.

• Drone scan. As mentioned in Section 2.1, the initial scene reconstruction is obtained
by reconstructing the wing 3D shape from a set of images taken by a drone from various
points of view. Here the sources of uncertainty from the operator taking pictures are
similar to the uncertainties obtained using the operator setting up the cameras inside
the aircraft, to the extent that operators should also know how to pilot the drone, and
where to position the device to obtain correct pictures.

Environment. Although it can be controlled in laboratory, the environment in field appli-
cation such as flight tests is varying regardless of our will. These variations can nonetheless
be anticipated, and convey uncertainties sources around the following parameters:

• Temperature. Temperature fluctuations can be source of variations in the intrinsic
parameters of the cameras by dilating the optics. It can also engender deformations of
the camera fixations, or create shifts of the air refraction indexes, as is the case for a
wing during flight.

• Hygrometry. The first problem that can be encountered in a humid environment
is the formation of mist at the surfaces of lenses and windows, generating blur and a
decrease of the light transmittance to the sensor. In some other conditions, fog may also
form and reduce the intensity of light in the scene. Finally, water droplets could appear
on the windows, for example when flying through a cloud, producing local occlusions
and distortions in images.

• Pressure. Similarly to temperature, pressure variations may generate variations of the
air refraction index. Furthermore, in the case of flight test, these fluctuations coupled
with the pressurization of the cabin are responsible for some of the aircraft deformations,
and more precisely of the windows, changing their properties of geometric deformations
through the flight duration.

• Luminosity. All the variations of light color, intensity and orientation are major
sources of uncertainties in the current application. During a long flight, one can record
a full day of sunlight variations, with additional rotations due to the aircraft rotation
with respect to the light orientation. All the resulting reflections (from outside or inside
the cabin), the shadows and intensity changes are sources of local and global contrast
variations, and make difficult the task of setting the lens aperture and acquisition expo-
sure time. Reflections often produce overexposure on the images while shadows notably
reduce the contrast. Hence luminosity variations influence the aspect of all or parts of
the images, yielding uncertainties in the 2D detection of target points.

• Electromagnetic perturbations. Noise may be added to the images while signal
transmission from the sensor to the acquisition device because of electromagnetic per-
turbations. This is more likely to appear when working with other devices emitting
high electromagnetic radiations and when using long cables that are poorly isolated.
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• Vibrations. When exposed to vibrations for a long time, as during flights, camera
lenses may move slightly, resulting in random variations of the intrinsic parameters,
and prematurely degrading the optics. Besides, the camera support may deform after
suffering from repeated vibrations.

Measurand. For the last component of the Ishikawa method, uncertainties sources are
considered as derived from the uncertainty of the measurand itself. Indeed, the latter can
sometimes behave or differ from expectations. Here, the two main error sources are:

• The measurand knowledge. First, when making assumptions on the measurand
properties, all of them should be verified and could be sources of uncertainty. A known
system geometry raises questions of how accurately it is known, and hence with what
uncertainty. Likewise, uncertainty needs to be considered on expectation of component
rigidity, kinematic, elastic behavior, deformation continuity, dynamic or mechanical lim-
itations. Furthermore, approximations on the knowledge of surface material can induce
errors on the presumed reflection model. This will particularly impact the uncertainty
evaluation when generating synthetic images that require to set the reflection properties
of the surfaces.

• The measurand state. In the case where natural features of the measurand are used
as key points to detect (see Section 2.2), a source of uncertainty is the saliency. The
aspect of the object surface can vary over time, and so goes the ability to discriminate
points of interest. Besides, dirt can accumulate on the object through tests, which can
alter the quality of features or targets to detect. In particular, alterations of the surface
between the reference and the actual tests can also induce errors. Finally, the object
shape may vary between the moment of reference reconstruction and the actual test.
For example, the wing shape on ground varies as a function of the temperature and
quantity of fuel loaded.

3.2.2 Summary of the system chain

The previous section highlighted a large number of uncertainty sources. The strategy adopted
in this work consists in sorting these sources to bring out those that have the major impact,
and quantify broadly the uncertainty of these sources to further refine them after validation
(see Fig. 3.2). As a matter of fact, many uncertainty sources are negligible for a given problem
thanks to a fine choice of equipment or specific test conditions. To perform this sorting for
the application of wing reconstruction, the system framework is decomposed in blocks, as
shown in Fig. 3.5.
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Figure 3.5: Reconstruction framework for the uncertainty study.

3.2.2.1 Constrained bundle adjustment

Starting from the bottom of the diagram in Fig. 3.5, CBA returns 3D estimations from
2D observations of the cameras. For this step, the minimization of (2.21) shows that the
estimation result will be influenced by the uncertainty of the camera calibration, as it defines
the intrinsic parameters of the cameras (and windows) in the matrices (Ki)i=1,...,N used for
the projection of the estimated 3D points. Moreover, the quality of this operation will depend
on the quality of the 2D detection, but also on the matching errors. The number of views
along with their positions and orientations with respect to the wing is another influencing
parameter of CBA. In the current application, the number of views and positions is limited,
but it could be interesting to study its influence. Concerning the selected algorithms, the
choice of CBA or BA, and as well as the mechanical limits to use has an influence on the
results. Moreover, the optimization method and its stopping criteria may also be a source of
variation in the estimates. Finally, Eq. (2.21) also shows that the optimization initialization
can also affect the estimation. Uncertainty about the initial reconstruction using drone picture
should thus be propagated.

3.2.2.2 Drone scan

Regarding the drone scan, the accuracy of the initial reconstruction can be provided by the
reconstructing software Metashape [Met] depending on the quality of the images taken by the
drone. This operation is performed on ground, at selected hours with correct illumination,
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and plenty of views taken from all possible angles, with professional photographers and pilots
aware of how to correctly operate the drone. Hence the impact of image quality from drone
will be ignored for this study. The uncertainty of 3D point initial positions is therefore studied
from the reconstruction result of real applications on an A350 aircraft, with raw pictures of
20Mpx resolution coded on 10bits. The second source of uncertainty related to this step is
due to the deformations of the scene between test, drone scan, but also ground shape model.

3.2.2.3 Matching

Before feeding the camera observations to the CBA, a matching phase is required to determine
the correspondence between points seen from the various cameras, and also reference points
that were scanned by the drone. The quality of the 2D detection, the discriminative power
of the feature descriptors, and also the positions of the points in images, will influence the
matching quality, leading to some wrong correspondences, or rejected observations. For those
points, a great uncertainty with respect to the detection precision should be added to their
coordinates before propagation through the CBA.

3.2.2.4 Detection of 2D features

The 2D detection is a major step of the process, and is subject to many uncertainty sources.
First of all, several approaches were suggested to perform this task, and the choice of a method
will strongly impact the results. The use of targets increases the robustness of the method,
while natural features reduce the system complexity but decrease the stability. As a matter
of fact, features may variate with respect to environment change, particularly illumination
variations, but also from alteration of the surfaces. This means that from one instant to
another during tests, the quality of detection and description may completely differ, and the
number of observations can fluctuate. The choice of detectors and descriptors, as exposed
in Section 2.2.1.4, influences the results. In practice, for industrial applications where uncer-
tainty is a concern, natural features are too random to be used, hence addition of markers on
the test structure. Here cross targets are chosen as justified in Section 2.3. According to this
choice, several uncertainty sources arise. First, the dimensions and orientation of the targets
may influence the detection, and those variations should be evaluated. Curvature or material
could also impact the results. Here assumptions are made that the targets are locally planes,
and that the material is fixed (stickers with mate ink printing preventing reflections). On the
other hand, one cannot set the material of the wing panels and black lanes, and the assump-
tion on reflectance properties may be a source of uncertainty. In addition, the method used
to detect markers, graduation and lines with sub-pixel precision is a source of uncertainty
too. The last source impacting the detection accuracy is the image quality.
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3.2.2.5 Camera acquisition

On the side of camera acquisition, the selected equipment (described in Chapter 4) allows one
to considerably reduce the impact of potential uncertainty sources. First, some parameters
are fixed, since the cameras have high resolution sensors of 31Mpx, taking black and white
images in the visible spectrum, with a global shutter, an acquisition frequency of 25.1 images
per second max, pixels coded over 8 bits, and a dynamic range of 71dB. High quality optics are
selected to work with these cameras, ensuring no blur due to resolution flaws and chromatic
aberrations, or vignetting due to lack of light transmissivity. These optics have fixed focal
lengths, which reduces the possibility of unwanted variations during flights. In continuation of
the optical path, specific windows were designed for flight, aiming at reducing all distortions.
These windows introduce image duplication though, and will be qualified in the calibration
phase. Concerning lightning, it was chosen not to use light since it would require to surpass
the sunlight intensity, and would imply other installation difficulties. Beside, the selected
triggering device allows one to synchronize camera acquisitions at the order of nanoseconds,
and the time stamp of the cameras is synchronized with the aircraft time reference using
Precision Time Protocol. Thus these sources of uncertainty can be neglected with respect
to the wing dynamic. Electromagnetic perturbations are also neglected due to the use of
shielded cables inside the aircraft cabin, where equipment emissivity is controlled. For the
settings, diaphragms and focuses of the lenses are arranged so that all the targets lie in the
camera depth-of-field, reducing focus blur. On the acquisition device, the exposition time is
fixed to prevent motion blur, while the impact of image compression and gain noise should
be evaluated. Furthermore, referring to environmental variations, the image quality may be
impacted by all fluctuations of light, temperature, hygrometry and pressure, as discussed in
the previous section. This work however will focus on the influence study of light variations,
introducing contrast changes, non uniform intensity, shadows and reflections.

3.2.2.6 Camera and window calibrations

To correct the distortions produced by the combinations of cameras, lenses, and windows, a
calibration phase is performed. As described in Section 1.2.1, several models can be used to
express image distortions. The model choice can influence the final uncertainty. Moreover,
the calibration phase is basically a bundle adjustment algorithm with fixed object coordinates
and free intrinsic and distortion parameters. Regarding the CBA of the current system, the
main impacting variables are related to the optimization method and the hyperparameters.
This time though, the object scene can be defined by the user, and the target choice is another
uncertainty source for the calibration. Regarding image acquisition, it is considered that since
this step is not urgent, it can be performed at any time with ideal environmental conditions
and will not suffer from uncertainty sources such as illumination changes or vibrations. Fi-
nally, an uncertainty should be added and quantified to represent lens dilatation relative to
temperature variations or deformations of windows during the flight. Variations of intrinsic
parameters due to vibrations in flight on the other side are supposed negligible since the lens
focus and diaphragm rings are secured with screws and tape before flight.
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3.2.2.7 Summary of the error sources

To summarize, after iterating through the 3D-reconstruction pipeline, many influencing pa-
rameters may be discarded thanks to an adapted equipment, or because of their negligible
influence with respect to the current system. Remaining uncertainty sources to be evaluated
are:

• the number of views,

• the use of constraints in the BA,

• the dimensions and orientations of the targets and graduations,

• the detection method for lines and markers,

• the blur, noise, contrast, and non homogeneous intensity of the images,

• the camera calibration,

• the accuracy of initial reconstruction from the drone scan.

To analyze if some sources have real impact or not on the final 3D estimation, their uncer-
tainties will first be broadly evaluated, an further refined if needed.

3.2.3 Quantification of the main error sources

The aim of this section is to quantify the uncertainty of all the sources that were retained
after the analysis presented in the previous subsection. Herein, we evaluate each relevant
part of the reconstruction framework depicted in Fig. 3.5, and the resulting uncertainties are
summarized in Table 3.1.

Table 3.1: Table of the main uncertainty sources

Source Distribution Source Distribution

Initial 3D scan with
drone (mm)

σx̃ ∼ U(0, 3.1) σrx ∼ U(0, 80)
σỹ ∼ U(0, 3.1) Target rotations (deg) σry ∼ U(0, 80)
σz̃ ∼ U(0, 25.9) σrz ∼ U(0, 180)

Image duplication (px) σd ∼ U(0, 10) Image blur (px) σb ∼ U(0, 1)
Image noise σn ∼ U(0, 1) Image compression (%) σjpg ∼ U(75, 101)
Target contrast σc ∼ U(0.1, 1) Light dissimilarity σi ∼ U(0, 1)

Target translations (px)
σtx ∼ U(0, 1) Camera and window

calibration (px)
σk ∼ N (0, 1)

σty ∼ U(0, 1)
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3.2.3.1 Initial 3D reconstruction

The initial 3D reconstruction is performed using the software Metashape [Met] and a set of
images taken with a drone from various view points. To evaluate the accuracy of the 3D
positions, real images were taken on the A350-1000 aircraft selected to validate the proposed
framework in flight (see Chapter 4), with targets already stuck onto the wing. Six refer-
ence markers were placed on ground, such that at least two of them were visible on every
image, and the distances between each pair were measured using a laser range-finder. Note
that distance between the targets of the wing were not measured as it would require more
difficult operations. In the software, distance measurements were given as input to set the
3D-reconstruction scale. An example of 2D image, along with the estimated reconstruction
are shown in Fig. 3.6. To estimate the reconstruction uncertainty on the ground plane, one
reference distance was removed from the reconstruction, and its estimation from the software
was recorded. Repeating this operation for every distance, one is able to estimate the stan-
dard deviation of the estimation with respect to the true measurement. Besides, since the
targets are all placed on the same ground plane, the previous approach cannot be applied
to evaluate the uncertainty on the third axis. Instead, we proposed to evaluate the distance
of the estimated points to the fitting plane obtain by linear regression on all the reference
points. With these methods, standard deviations equal to 3.1mm and 25.9mm were obtained
for the ground plane (x,y) and the elevation axis (z). The uncertainty along the x, y and z

axes are respectively denoted by σx̃, σỹ and σz̃. These results show a higher precision in the
(x,y) plane, which is coherent with the fact that images are taken from above the wing, and
often parallel to the ground plane.

(a) (b)

Figure 3.6: (a) - Example of image taken from a drone for the initial 3D reconstruction of
the wing. Reference markers placed around the wing are highlighted with red circles. (b) -
Corresponding 3D reconstruction, where reference distances are shown with yellow lines.
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3.2.3.2 Camera acquisition

Most of the influencing parameters for camera acquisition were first estimated roughly from
experience of past tests and from engineer judgment, and some others being evaluated with
basic laboratory tests. Before giving the estimation of these parameters, the impact they
have on the images should be detailed.

First, the image duplication induced by the angle between the cameras and the thick
windows is accounted for by creating a new image Id that is the superposition of two translated
and weighted versions of the initial image I, such that the intensity of pixel (u, v) can be
expressed as

Id(u, v) = I(u, v)
(

0.9 +
σd

100

)

+ I(u + σd, v)
(

0.1 − σd

100

)

, (3.17)

with the uncertainty parameter σd corresponding to the translation applied to each pixel.
For the application on the aircraft, the cameras are rotated slightly towards the rear of the
aircraft, which creates a duplication along the x axis of the image. Note that using this
formulation, the intensity of the translated image will be higher for larger translations, which
simply models the real behavior of image duplication observed through prior tests.

Then, the received image Id is blurred because of factors mentioned above, such as vibra-
tion or dirt on the optical path, resulting in a image Ib. Here, this blur is defined as a 2D
Gaussian filter, defined as G convolved with the image, defined as

G(x, y) =
1

2πσ2
b

exp
− x2

+y2

2σ2
b , (3.18)

where σb is the uncertainty parameter to evaluate, characterizing the sharpness of the image.
Finally, a white noise n is added to the received image Ib (duplicated and blurred) during
the acquisition process, such that the recorded image is

In = G ∗ Id + n, (3.19)

with ∗ the convolution operator and n distributed according to a Gaussian distribution
N (0, σ2

n), where the standard deviation σn is the uncertainty source.

The impact of the uncertainty sources being defined, their estimations can be provided.
Existing tests demonstrated that since the light intensity above the clouds is high, clear images
can be recorded with low exposure time, low gain and a small aperture size. This means that
the blur caused either by depth-of-field limitations or motion blur is very limited. Therefore,
the standard deviation of the blur, σb, was chosen to follow a uniform law U(0, 1) in pixel. In
addition, using a low gain coupled with high quality sensors, the noise level in images remains
very low. Thus it was decided that the noise parameter σn should also follow a uniform law
U(0, 1), such that the signal-to-noise ratio of the image remains higher than 15dB. For the
duplication coefficient, preliminary tests in lab with the actual cameras and windows showed
that the translation σd never exceeds 10px. A uniform law U(0, 10) in pixel was thus selected
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to model this uncertainty source. Finally, even though one may prefer recording raw images to
ensure no loss of information, image compression is considered as it may significantly extend
the recording duration (roughly from half duration of a flight to several full flights). Therefore,
images are compressed and decompressed using JPEG [Hud+17] with a compression factor
σjpg ∼ U(75, 101), where the value 101 corresponds to absence of compression. Furthermore,
regarding the quality of the image acquisition for targets installed on the wing, it was shown
in past tests that the marker contrast σc (ratio between black and white colors) is always high
in flight thanks to the design of the targets. However in this study, we assumed σc ∼ U(0.1, 1)
to account for tests at twilight. Finally, illumination inhomogeneities at the target level are
considered by multiplying the marker image by a gradient matrix whose values goes from
σi ∼ U(0, 1) to 1 along the x axis.

3.2.3.3 Detection of 2D features and matching

Within the proposed framework, the first processing step after image acquisition is the detec-
tion of 2D observations of the scene (the wing) to be reconstructed in 3D. In this step, the first
influencing parameters are the type of markers and the detection algorithm. As described in
Section 2.3, the selected markers are mainly quadrant targets, along with graduation placed
on the black lanes of the wing. Using OpenCV functions [Ope], markers are first detected
using template matching, and localization is further refined using sub-pixel corner detection.
Regarding the graduations, a similar step of template matching is used to find the initial
position of the markers between frames. Then, a refined detection is performed following the
next steps:

i. the local gradient of the image is calculated along the normal of the segment formed by
two graduations,

ii. the borders of the black lanes are detected as peaks of the gradient,

iii. the center of the lane is detected with sub-pixel accuracy by averaging the coordinates of
its borders,

iv. a polynomial fit is performed on the detected lane to remove outliers,

v. graduations are detected as gradient peaks along the polynomial curves.

An example of graduation detection following this method is shown in Fig. 3.7. Note that
other algorithms of line detection could be investigated, such as LSD (Line Segment Detector)
or Canny/Devernay [Gio+12; GR17].

Given this detection method, the remaining influencing parameters are the dimensions
and orientations of the targets and the graduations. For the dimension, it is expected that
all targets are seen with a width of at least 20px, by design of the markers and camera views.
For the orientations, since targets can be installed on the wing plane and the wing tip, with
angles of about 70 and 10 degrees between the surface normal and the optical axis of the
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Figure 3.7: Illustration of the method for graduation detection.

camera, it was set that the rotation uncertainties (σrx, σry) for the x and y axes follow a
uniform law U(0, 80). To consider all possible orientations of the targets around the z axis,
we assumed that the corresponding uncertainty is σrz ∼ U(0, 180). Finally, to evaluate the
target detection with sub-pixel accuracy, a translation of a tenth of pixels is introduced with
uniform laws on image axes, σtx ∼ U(0.0, 1.0) and σty ∼ U(0.0, 1.0). To further determine
the uncertainty of target 2D detection, a Monte-Carlo approach is proposed and developed
in Section 3.3.1.1.

3.2.3.4 Camera and window calibration

The calibration step returns the intrinsic parameters of the cameras, i.e., the focal length in
pixel size, the optical center, and the distortion parameters (see Section 1.2.1). The com-
bination of all these uncertainties can be expressed as an uncertainty on the parameters of
the projection matrix K. It has been demonstrated in the literature that calibration can be
achieved with a sub-pixel uncertainty [Wan+05] [Bu+21]. In this work, this will be obtained
by calibrating the cameras with a 3D reference structure with circular targets. However, based
on the experience of previous tests in Airbus, an error σk ∼ N (0, 1) in pixel is introduced to
take into account the potential shifts during test due to vibrations of the optics with respect
to the sensor, or because of temperature related dilatation.

3.3 Error propagation for 3D reconstruction

Several methods were introduced in Section 3.1 to estimate the uncertainty of an estimation.
Each approach has advantages and drawbacks which make them more or less suitable for real
life applications. The main criteria for comparison are the complexity of implementation, the
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time (or computational) complexity, the availability of ground truth, and the data fidelity. For
the various methods applied in this study, Table 3.2 briefly exposes the different performances
with respect to these criteria. In this section, three approaches are evaluated, using Monte-
Carlo, propagation law, and synthetic images. An additional confrontation with real data is
covered in Chapter 4 for the industrial validation.

Table 3.2: Comparison of the methods for uncertainty estimation.

Method
Implementation

Time complexity Ground truth Data fidelity
complexity

Monte-Carlo + +++ +++ ++
Propagation Law + + ++ +

Simulations ++ ++ +++ +++
Real tests +++ ++ + +++

3.3.1 Uncertainty estimation by the Monte Carlo method

Once the uncertainty sources have been determined, the Monte-Carlo (MC) approach is
straightforward. It simply generates random trials of the input variables using their dis-
tribution laws, and inputs them to the system framework. The MC method usually takes the
current algorithm as a black box and its implementation does not require complex develop-
ments. Moreover, as long as uncertainty sources have been correctly identified, MC results
are realistic because they are based on the actual algorithm. In this section, MC simulations
are conducted for 2D detection and BA with or without constraints.

3.3.1.1 2D detection

To estimate the uncertainty of marker detection on 2D images, an MC approach is applied
along with a simulation algorithm for generating images of the targets. The OpenGL library
was used to create views of the targets for all the uncertainty sources related to camera
acquisition and target positioning (that were listed in the previous section). Fig. 3.8 displays
examples of such simulated images. These target views are then used as input of the marker
detection algorithm, and the result was compared to the ground-truth coordinate of the
simulated center.

MC was performed for quadrant marker detection with a set of N = 106 trials. The
Gaussian distributions for the x and y coordinates in pixels were estimated as

x ∼ N (−0.15, 0.76),

y ∼ N (0.02, 0.69),

calculated with the standard sample mean and variance estimators. This uncertainty is
slightly higher than the state of the art, which is not surprising under these unfavorable
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Figure 3.8: Examples of simulated views of quadrant markers for the estimation of 2D detec-
tion uncertainty.

conditions. These results can be better appreciated once the error propagation has been
completed. An interesting result here is that the compression level of the JPEG encoder does
not influence the uncertainty of the detection as long as it is higher than 75%. Regarding
the graduation detection, the uncertainty was set to 1px in both x and y axis to save up
development and calculation time. In fact, this value is quite large when working with sub-
pixel methods of line detection. Nonetheless, this estimation should be confirmed in future
work.

3.3.1.2 Constrained Bundle Adjustment

The uncertainty of 3D reconstruction can be estimated using MC simulations at the CBA
stage with the uncertainty of calibration, 2D detection and initial reconstruction as inputs.
For this step, the test configuration on an A350-900 aircraft, presented in Section 2.4.5, was
used to initialize the cameras, the 3D points and the constraints. Exact observations of
the point cloud were simulated for all views using the camera parameters. Then, following
the distributions summarized in Table 3.1, noise was added to the 2D observations, the inner
parameters of the cameras, and the initial 3D reconstitution for each trial of MC, and injected
into the CBA. To ensure that the final results are compared in the same reference system, with
the same scale, at least seven parameters should be fixed during the optimization process.
To do so, here the registration phase was included into the CBA by fixing the coordinates of
reference points.

For the CBA step, several runs of the MC method were performed with different combina-
tions of influencing parameters to evaluate their impact on the final reconstruction. Although
this MC implementation does not require complex developments, the computational complex-
ity of CBA is high due to the optimization routines employed. Therefore, sets of only N = 104

trials were simulated, that already took about a day each to return results (on an Intel i9-
9980HK CPU). To fully comply with the standard, one million trials should be performed.

3.3.2 Uncertainty from the propagation law

The uncertainty estimation of the CBA reconstruction is studied in this section using analyt-
ical calculations. The proposed approach is inspired by the work of [Eud11], and is based on
the covariance matrix of the reconstruction in (3.14) with the Jacobian of the implicit func-
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tion defined in (3.16). The sources of uncertainty considered for the propagation are those for
2D detection and calibration of the cameras and windows. Since the calculation is performed
around the CBA solution, the uncertainty of the initial reconstruction is not propagated.We
might consider two subsections devoted to the unconstrained and constrained cases (1.28).
In this case, the function to minimize is

e(x, z, K) =
1
2

||x − x̂(z, K)||2 (3.20)

with x the vector of all 2D observations, x̂(z, K) the vector of all reprojected points, and
z = (α, X) for notation simplification. This function can be rewritten as

e(x, z, K) =
1
2

[x − x̂(z, K)]T [x − x̂(z, K)] , (3.21)

leading to

Φ =
∂e(x, z, K)T

∂z
,

=
∂

∂z

(

1
2

[x − x̂(z, K)] [x − x̂(z, K)]T
)

,

= −∂x̂(z)T

∂z
[x − x̂(z, K)] ,

(3.22)

where the derivative of the reprojected points with respect to camera and 3D-point parameters
actually corresponds to the Jacobian J x̂

z calculated for the BA (see Appendix A). Then, the
Gauss-Newton approximation is used to obtain the Hessian matrix H without calculating the
second derivatives (see Appendix B), allowing the computational complexity to be reduced,
which gives

H =
∂Φ
∂z

,

≈ J x̂T

z J x̂
z .

(3.23)

Finally, the derivatives with respect to the uncertainty parameters are

∂Φ
∂x

=
∂

∂x

(

−∂x̂(z, K)T

∂z
[x − x̂(z)]

)

,

= −∂x̂(z, K)T

∂z
,

(3.24)

and

∂Φ
∂K

=
∂

∂K

(

−∂x̂(z, K)T

∂z
[x − x̂(z, K)]

)

,

= −∂2x̂(z, K)T

∂K∂z
[x − x̂(z, K)] +

∂x̂(z, K)T

∂z

∂x̂(z, K)
∂K

,

≈ ∂x̂(z, K)T

∂z

∂x̂(z, K)
∂K

.

(3.25)

99



More details about the determination of J x̂
K = ∂x̂(z,K)

∂K
are given in Appendix A. Finally, using

the theorem of implicit function (3.16) and Jacobian notations, the matrices of derivatives of
the CBA with respect to x and K can be expressed as

Jf
x = (J x̂T

z J x̂
z )−1J x̂T

z (3.26)

J
f
K = −(J x̂T

z J x̂
z )−1J x̂T

z J x̂
K . (3.27)

Note that Jf
x is actually the pseudo-inverse of J x̂

z , which simplifies even more the imple-
mentation. Once these derivatives have been calculated, the covariance matrix Cx,K , whose
diagonal terms are the variances (σ2

x, σ2
y) and σ2

k, is propagated to estimate the covariance
CX of the reconstructed 3D-points, yielding

CX = [Jf
x, J

f
K ]Cx,K [Jf

x, J
f
K ]T . (3.28)

Furthermore, in a same manner as for MC, it is important to set the coordinate system and
the scale of the BA. Otherwise, BA has an infinite number of solutions, and the propagation
cannot be calculated. To enforce the unicity of the solution, constraints on the system should
be applied (commonly called gauge constraints). While for MC this is done by removing
at least seven parameters, in the case of the propagation law this is fulfilled by removing
the columns of the Jacobian matrix for the corresponding parameters. Since these columns
correspond to the derivatives of f with respect to the reference points, deleting them is
equivalent to fixing the reference points in the error propagation. This step is primordial for
the propagation success and to be able to compare the results.

Concerning the case of mechanical constraints (2.21), one may observe that near the
solution of the CBA, constraints are not activated, and are thus not taken into account when
applying the theorem of implicit functions. To tackle this issue and ensure that constraints
are included in the propagation, one may rewrite the problem using a Lagrangian (non-
constrained) formulation

arg min
αj ,Xi

∑

i,j

[

xi
j − x̂(αj , Xi, Kj)

]2
+
∑

k

∑

i

µk,i

[

gk(αr, X̃
i
)
]2

. (3.29)

The optimization problem 3.29 requires to adjust the hyperparameters µk,i in order to obtain
solutions in agreement with CBA. We argue that this could be achieved by adjusting the
weight iteratively so that the resulting reconstruction and uncertainty remains within the
mechanical limitations. So far this has not been demonstrated in this work but it would make
an interesting prolongation of the study.

Overall, the propagation law is easy to implement and has the great advantage of returning
results instantaneously. Even tough it does not take into account all uncertainty sources, it
gives a good understanding of the system limitations and can be used to rapidly answer
application requests in industrial environment.
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Figure 3.9: Examples of synthetic views of the deformed wing generated with Unity.

3.3.3 Simulation scenario using synthetic images

The third method to evaluate the measurement uncertainty is the experimental validation.
At first glance, it may appear to be the easiest approach, by directly applying the system in
actual conditions. However, in this work it is the most complex method, and will be the object
of Chapter 4. A more accessible alternative is to create synthetic images of the wing in flight.
To do so, a numerical 3D mock-up of the A350-1000 on ground (from Airbus) was rendered
with the game engine Unity [Uni]. Targets with similar dimension than the ones designed for
real tests were then added to the 3D mock-up. Using the information of FEM deformations
(see Section. 2.4.4), the point 3D coordinates of the aircraft model were transformed to
match the cruse shape of the wing. In addition, several coefficients of wing deformation
were applied to the transformation, generating close variations of the wing shape around its
flight form, that were further used to recreate motion animations. The materials of 3D parts
were set to faithfully represent the colors and reflection properties of the wing, and cameras
were simulated on windows and on the rear stabilizer of the aircraft. Thanks to Unity’s
functionalities, the orientation of light source was animated to recreate illumination variations.
Finally, image sequences were recorded for different wing deformations and changing light
orientations. Due to limitations of recording resolution using Unity, the camera resolutions
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were down-scaled to 3840 × 2160 for the rear view and 5760 × 4320 for the others. Thus, to
enable the comparison of the results to those of the other approaches, the focal lengths of
each camera were changed to match the millimeter per pixel resolution of objects in the real
test. Note that the implementation is time consuming but the result is very realistic, as can
be seen in Fig. 3.9 or on the videos available at [Dem21b]. This implementation allows one
to apply the algorithm exactly as it would be in real test.

To make images even more realistic, a degradation phase was added in the algorithm.
First, more or less blur was introduced depending on the wing region relative to the focus
position, i.e., the top or bottom half of the image. More σb = 0.5px on focused area and
σb = 1.5px elsewhere (using notations from Section 3.2.3.2). Second, image duplication was
computed with σd equal 0 to 4 px depending on the inclination of the camera with respect to
the window in the real application. Third, white noise was added with σn = 1. With these
final images, the proposed framework was ran and the 3D reconstruction can be compared
with the ground truth calculated while deforming the wing.

3.4 Results and comparison

This chapter presented several ways of evaluating the uncertainty of an estimator, and how
it applies to the case of 3D wing reconstruction. This section evaluates the quality of the
proposed method using the three methods previously introduced for uncertainty estimation.
In this section, the system configuration is similar to the one used during the real test, with
quadrant targets and graduations stuck on the wing, four cameras installed on windows and
one rear view. In the first experiments, the MC approach was applied with various uncertainty
sources, starting with Gaussian observation noises x ∼ N (−0.15, 0.76), y ∼ N (0.02, 0.69) for
the cross targets, and N (0, 1) noises for both x and y coordinates of the graduations. To limit
the number of tests, this work evaluates the BA and CBA algorithms with volume constraint
only. Examples of MC results are displayed in Fig. 3.10 for a target placed at the wing end.
Only 10% of the MC outputs are shown in the graphics to simplify the reading. Covariance
matrices of the 3D points are represented as confidence ellipses in the three projection planes,
allowing one to appreciate how coordinates are correlated. In this case, the estimated points
have a probability of 95% to fall inside the drawn ellipses. Furthermore, the uncertainty of
camera calibration was also included, with σk ∼ N (0, 1). Our experiments showed that for
such quality of camera calibration, the output uncertainty is not influenced by σk. Similarly,
the MC approach showed that estimating the initial shape of the wing, with drone picture
and Methashape software, does not generate additional error on the final reconstruction (see
Fig. 3.10). These results are particularly interesting for Airbus as they confirm that for the
proposed system, drone scans can replace the long and costly laser scans that were required
in past methods.

Finally, the influence of matching errors was investigated by adding a noise σo ∼ N (0, 200)
on some 2D observations considered as outliers, randomly chosen with an occurrence prob-
ability in the observations arbitrarily fixed to 1/8. Such noise showed a strong impact on
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Figure 3.10: Result in meters for a target at wing end of the MC and PL for the uncertainty
propagation with various inputs, starting with observation noise (x), plus calibration noise
(x,k), and with added noise of initial reconstruction (x,k,i).
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Figure 3.11: Result in meters of the MC for the uncertainty propagation with all considered
uncertainties, including outliers. (left) - using BA, (right) - using CBA.

the output reconstruction, as highlighted in Fig. 3.11, which comforts the choice of using
targets that considerably reduces the matching errors (in comparison with natural features
that may be confused). Besides, this result raises questions on the relevance of using a Gaus-
sian distribution to represent the 3D-point cloud. Further work may focus on finding a more
suitable distribution to analyze reconstruction results. Globally, if outliers are avoided, the
MC method allows us to guaranty that the reconstruction is compliant with the requirement
of an uncertainty (3σ) being less than 10cm.

Based on the MC results, a first study on the influence of the uncertainty sources was
conducted, aiming at identifying an axis of improvement. For this purpose, the mean error
of the 3D reconstruction was compared with the mean input errors of 2D detection, 3D ini-
tialization and camera calibration. Mean errors were calculated using the standard sample
mean. In Fig. 3.12, the results of the MC trials are plotted with respect to the three uncer-
tainty sources separately. From these results, it is not possible to identify one source that
has a greater impact than the others on the final results. The correlation matrix of the three
sources of uncertainty was also calculated to see if the combination of two errors could be
connected to the output error. However, the results presented in Table 3.3 show that these
three sources are not correlated pairwise. Note that the results are presented for CBA, but
similar behavior was observed with BA. In conclusion, no major contributor to the recon-
struction error emerges from this brief study, and an in-depth analysis could be the subject
of future work.

Table 3.3: Correlation matrix of the uncertainty sources for the MC simulation with CBA

2D detection noise 3D Initialization noise Calibration noise
2D detection noise 1 0.041 −0.012

3D Initialization noise 0.041 1 0.014
Calibration noise −0.012 0.014 1
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Figure 3.12: Mean 3D error of the MC simulations with CBA displayed as function of the
error sources of 2D detection, 3D initialization and camera calibration
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Figure 3.13: Uncertainty results using PL for various level of camera calibration noise, at
wing tip (in meters).

In a second set of experiments, the calculation of uncertainty using the propagation law
(PL) was evaluated and compared with the MC results without constraints. As displayed in
Fig. 3.10 with the overlapping confidence ellipses, covariances obtained using the analytical
calculation described in 3.3.2 match those obtained using the MC approach. Since the uncer-
tainty of camera calibration has no impact on the result for σk ∼ N (0, 1), the correspondence
between the results of the two methods was also confirmed for σk ∼ N (0, 10). While the MC
method can take days to calculate the uncertainty for a fixed set of input parameters, PL
instantly returns results and allows for a quick interpretation of the impact of the different
sources. For instance, the reconstruction quality can be evaluated very fast for several values
of calibration uncertainties, as shown in Fig. 3.13. PL is therefore an interesting approach for
fast decision making. Subsequently, an in-depth study of the CBA would also enable quick
conclusions to be drawn on the impact of the constraints in different application cases. More
results on both MC and PL are available in Appendix C.

105



Figure 3.14: First view from camera 1 for each sequence of deformations generated with Unity.

Finally, the uncertainty was evaluated on the synthetic images obtained with Unity. Eight
sequences were generated with varying luminosity (see Fig. 3.14). Each sequence is composed
of 39 images recording the wing motions with the tip going down 20cm, then up 40cm and
finally down 20cm back to its original position. These sequences were passed through the
designed framework using BA and CBA. Fig. 3.15 shows the reconstruction results of the
proposed method for the eight sequences, with reset of all parameters at the beginning of
each sequence. As foreseen from the results of Chapter 2, the 3D estimation is improved
using the constrained approach. Particularly, one can observe that the volume constraint
on the x coordinate plays a major role on the results, where bounds are frequently reached.
Over the entire sequence, the standard deviation of the coordinates along z axis is 3cm in
the worst case at the wing tip. These results are also compliant with Airbus requirements.
However, the uncertainties are higher than those estimated with the MC and PL approaches.
This may arise from the fact that there are still errors due to strong reflections on images of
the two last sequences. Besides, here displacements are recorded with a very low acquisition
frame rate, which makes the target tracking more difficult, and convergence of the CBA may
fail when the step between initial and new shapes from one frame to another is large. In real
applications with video acquisition, it would be interesting to add time filtering and tracking
methods such as those based on the Kalman filter.

3.5 Conclusion

This chapter evaluated the quality of 3D estimation resulting from the system proposed in
Chapter 2 for 3D wing reconstruction. Several methods for estimating the uncertainty of an
estimator were introduced and applied to the case of wing reconstruction. A detailed analysis
was provided explaining how to define the many uncertainty sources that result from the
challenging environment of flight tests, and how to narrow the search by broadly evaluating
the impact of the major factors. Uncertainties about these key factors were then propagated
using Monte-Carlo simulations, analytical calculation using the propagation law, and realistic
images synthesized with a game engine Unity.

The comparison of uncertainty propagation using these various methods demonstrated
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Figure 3.15: Reconstruction result on sequences generated with Unity for two targets, one at
the wing tip, and one at its middle.

their potential and limitations with respect to data fidelity, time complexity, implementation
cost and availability of ground truth. Moreover, the concordance between the various results
validated the implementations, but also the compliance of the proposed system with Airbus
requirements. Some very interesting conclusions can be drawn from these experimentations on
the influence of some uncertainty sources. For instance, our results demonstrated that some
uncertainty sources could be neglected due to their reduced impact on wing reconstruction.
It is the case for JPEG compression and drone scans whose impact on the final uncertainty
can be neglected.

In addition to the concepts and results, this chapter also introduced several perspectives.
First, it was shown in Chapter 2 that 2D observations could be detected using natural features
and black lanes located on the wing. It would be interesting to quantify the uncertainty
that these observations would propagate. Furthermore, the propagation law was successfully
applied to the case of bundle adjustment without constraint. Further work could focus on
extending this uncertainty propagation law to the constrained case, and check the consistency
with real tests in flight. Finally, now that the various uncertainties of the system have been
evaluated, one could take them into account to improve 3D reconstruction using a weighted
bundle adjustment.
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Industrial Validation
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This PhD thesis was driven by an important problem for Airbus related to the analysis
of wing deformations. The proposed study was led by keeping in mind that the method
should work on an aircraft in flight, with strong environmental and installation constraints.
In Chapter 2, a new framework was introduced to ensure robust 3D reconstruction in such
environment, using multiple cameras, targets and mechanical limitations. Furthermore, the
accuracy of the proposed approach was evaluated based on assumptions on the real system
behavior in Chapter 3. It is now time to see the system in action in real flight conditions.
Unfortunately, installation of the system on aircraft was delayed because of lack of priority
during the pandemic, and real tests only took place lately in February 2021. Therefore, the
reader should be advised that this chapter will only focus on a qualitative evaluation of the
flight data, and that the quantitative processing of these data will be performed after the
manuscript submission.

First, the experimentation course, in terms of installation, flight and acquired data, is
presented in Section 4.1, along with a qualitative study of the recorded images. Second,
Section 4.2 discusses how this tested system answers to the industrial requirements. Looking
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towards future works, Section 4.3 then introduces perspectives related to the proposed system,
and conclusions are reported in Section 4.4.

4.1 Flight Tests

To validate the system developed during this thesis, a specific installation was designed and
validated through Airbus strict procedures. After months of preparation, the final system was
installed on an aircraft, and the first images were recorded in February 2021. In this section,
the proposed equipment architecture together with the details of the first test are described,
and comments are formulated on the resulting data.

4.1.1 Test preparation

The world of flight testing is a hostile environment where the probability is high that an
unforeseen error will occur between laboratory development, installation, and actual testing.
Therefore, it can be expected that everything will not work out as planned from the very first
attempt. However, one hour of flight test is expensive, and the aircraft schedules are busy,
so it is absolutely crucial to minimize the risk of a test failure. A long preparation phase is
therefore necessary on the ground before flying. Part of the work for this industrial thesis
was therefore to develop a complete measurement chain, adapted to the proposed algorithms,
meeting Airbus specifications, while being able to be integrated into the complex and regulated
system of the test aircraft. All the equipment presented in this manuscript has therefore been
carefully selected in order to best address the various challenges, from the choice of optics to
the camera recording software. All the different parts were configured, tested and qualified
in the laboratory before being installed on the aircraft. In addition, compromises had to be
made to meet Airbus criteria for robustness, safety and specifications.

4.1.2 Aircraft installation

The proposed installation has been designed to meet Airbus requirements in terms of accuracy,
frequency and recording duration in a highly variable environment, while ensuring that this
installation is as simple and as less intrusive as possible. Four industrial cameras of 6464×4860
pixel resolution were installed at window positions, as depicted in Figure 4.2. These cameras
were selected for their very good size factor with respect to their high image quality, making
them suitable candidates for metrological applications while ensuring a simple installation.
Moreover, these cameras are ruggedized and can sustain the vibrations and temperature shifts
during flights. Their positions and orientations were optimized using the simulated views (as
presented in Section 3.3.3), i.e., cameras were placed as far as possible from each others to
get the best depth estimation, while ensuring that the wing targets remain visible during the
flight for all views. Cameras were installed directly on windows using 3D printed fixations to
facilitate the installation, and specific windows were placed instead of classical ones to reduce
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their impact on the image distortions. Fig. 4.1 displays the installation inside the aircraft
cabin.

Figure 4.1: Cabin installation of the cameras. (a) - Camera mounted on a fake window, (b)
- Station of the flight test engineers, used to control the recordings.

Figure 4.2: Approximate positions and orientations of the four cameras installed on the
aircraft. Field of views are highlighted with colored surfaces.

As described in Section 2.3, quadrant targets printed with mat ink were used for robust
detection with respect to varying illuminations and view angles. Similar stickers were used
as graduations placed along the black lanes of the wing. Markers were stuck on the wing
and secured using specific varnish on the borders, so that they do not unstuck during flight.
Figure 4.3 illustrates the installation of the targets on the aircraft wing. Due to the presence
of other test equipment on the wing, the graduations could not be installed exactly on the
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black lines of the wing as planned. However, the graduations will still be found in the images
by adjusting the detection algorithm. This is not the case for the black line at leading edge,
which will be almost impossible to detect in this configuration. Since this system is intended
to be operated in a test environment, this kind of situation is likely to occur frequently, which
supports the choice of using targets.

Figure 4.3: Target installation for flight tests on the wing of an A350-1000.

To evaluate the quality of the 3D reconstruction provided by the proposed framework,
a countermeasure is required during the experimental validation. To estimate wing twist
and bending, recent aircraft used in Airbus flight tests consider inertial motion units (IMU)
installed inside the wing. These systems can deliver real time and accurate measurements
of the wing bending and twist with respect to a reference inertial unit at the center of the
aircraft. As a matter of fact, six of such IMUs were installed inside the wing of the specific
aircraft selected for testing our method. IMU measurements are certified by Airbus and
will allow the proposed system to be validated. Moreover, in the current configuration of
the test aircraft, the rear view, considered in the previous chapters for registration of the
reconstruction with respect to the aircraft coordinate system, cannot be recorded. Hence,
registration should be performed using the data acquired with one IMU.

Finally, a drone scan was performed before flight as detailed in Section 3.2.3.1, to estimate
the initial 3D state of the wing points and cameras on ground. In future work, a fine calibration
of the cameras and windows will be performed to determine the intrinsic parameters of the
device. For this purpose, a calibrated 3D structure, equipped with circular targets, will be
moved in the fields of view of the cameras during a recording. In parallel, a laboratory
calibration will be carried out to precisely qualify the cameras and their optics.

4.1.3 Data acquisition

Images of the wing were acquired during a real flight test in February 2021 using the proposed
system. Because of hardware issues, one of the cameras did not record during this flight, but
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will be operational during the next tests. Before flight, a short record was acquired on ground
to get a reference shape of the wing, which may vary due to the quantity of loaded fuel or
temperature. Then, videos were recorded for approximately four hours of flight, during which
the crew performed several tests, such as turns, roll, touch and go, or ups and downs, resulting
in a wide variety of aircraft configuration and environmental conditions, but also recordings
under strong vibrations that may impact the quality of the images. Besides, the aircraft
changed its course several times during the flight, yielding various orientations with respect
to the sun. Furthermore, some of the tests were performed inside the clouds, producing a
complete occultation of the wing.

For the camera acquisition, a trade-off between frequency and data storage was made to
allow the computers to store the data of several consecutive flights. Indeed, due to the very
high resolution of the cameras, if no compression was performed, only about half an hour
would have been acquired in the current setup. Using image compression, the computing
resources becomes the limiting factor. Hence, it was chosen to record data with a frequency
of 4 images per second. Note that this does not exclude the possibility to record at higher
frequencies. Besides, even though it was proven that a JPEG compression with 75% quality
factor does not alter the final 3D estimation, here it was set to 100% to secure a correct
acquisition with respect to the lack of previous tests. Some examples of images acquired
during this flight are displayed in Fig. 4.4, or on videos available at [Dem21a], demonstrating
the variety of views. Concerning the exposure time, this parameter was changed during flight
to evaluate how it influences the chance of over or under exposition of the sensor.

4.1.4 Remarks and observations

The images presented in Fig. 4.4 seem to show a large proportion of unfavorable cases for
the method proposed here, where strong illuminations completely hide the targets. However,
a large majority of the acquired data (at least 80% at first glance) has a remarkable quality
and may be processed. Although the processing of this data is not possible at the moment
due to a lack of time, a first qualitative study of the images is possible and already allows
several conclusions to be drawn.

First, tests show that ambient light can change more quickly than expected when the
aircraft is performing maneuvers. Indeed, recordings have shown that due to the rapid rota-
tions of the test aircraft, the scene brightness can change completely in less than one minute.
Therefore, further developments should be conducted to make the template matching algo-
rithm more robust to ensure correct target detection from one image to another. Even more
strikingly, the images have shown that the sun can appear directly in the field of view of the
cameras during maneuvers, inducing partial or even total overexposure of all the images. In
such cases, information on the target position is lost, and the 3D reconstruction cannot be
performed.

Now regarding the taxiing phase before and after flight, but also during take off and
landing, the test showed much stronger vibrations than in flight conditions, creating more
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Figure 4.4: Examples of images recorded during the first flight test.
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Figure 4.5: Examples of blur occurring on ground displacements. (a) - Image of the wing tip
during landing, (b) - same view during flight.

blur on the images due to both cameras and wings vibrating, which can make the targets
tracking from reference to flight shape more difficult. Such blurry image is displayed in Fig. 4.5
and would be enhanced with additional post processing of deblurring. In addition, the wing
shape on ground makes targets at its end barely visible. Hence, it would be very useful to
have a rear camera that records and that is oriented such that it can see the entire wing, or
to enhance the images with additional post processing of deblurring.

Besides these specific cases, in nominal conditions, strong reflections of the sun may appear
on the wing. However, recordings show that these reflections are not visible on all the images
at the same time. Thus, the 3D estimation for these data may be less accurate, but remains
possible. In addition, during this test, the lens hoods were not yet installed, letting reflections
from the inside of the plane appear on the windows. Sometimes, it is even possible to see
the sun from behind the camera, passing through the cabin to reflect on the glass in front of
the camera. This phenomenon is particularly visible in the last image of Fig. 4.4, where one
may see the window reflection of sunlight on the top left of the image, and even the reflection
of a serial number from inside the cabin on the top right of the image. It supports the
idea that hoods should be installed between the optics and the windows for the next tests.
In addition, in order to reduce the impact of significant variations in ambient luminosity
induced by changes in the orientation of the aircraft with respect to the sun, or by flying
above or below the clouds, such as during takeoff, an automatic adjustment of the exposure
time should definitely be considered.

One can also observe that camera 3 captures mostly the sky. In fact, the orientation of
the camera was limited for this installation because the optics were very close to the windows.
For future tests, an adjustment of this camera support should be considered.

Furthermore, one may observe that the images simulated in Section 3.3.3 using Unity are
fairly realistic, as displayed in Fig. 4.6. Nonetheless, some improvements could be made based
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on the test observations. For example, targets during flight can turn almost overexposed when
the sun is grazing, even with a matte printing. Similarly, the occultation of certain targets,
as well as the projection of shadows due to the opening of the speed brakes on the wing
during flight had not been anticipated. Consequently, these behaviors had not been taken
into account for the image synthesis with Unity in Section 3.3.3 and should be added.

Finally, the presence of other means of testing on the wing does not have only disad-
vantages. Indeed, if one recalls the use of interest points presented in Section 2.2, these
installations can be seen as additional information that could be exploited to provide more
measurement points.

4.2 Agreement with Airbus specifications

Looking back at Airbus requirements summarized in the introduction of Chapter 1, the first
flight test presented here provides an opportunity to validate the proposed system against
most of the criteria. This section therefore discusses this validation by distinguishing the
main categories of factors, namely installation, measurand, uncontrolled environment, and
measurement uncertainty. A synthesis of these main specifications and proposed solutions is
given in Table 4.1.

4.2.1 Installation

In terms of installation, several major criteria were raised by Airbus. First of all, the pro-
posed system must be able to be installed in a constrained environment, with limited sensor
positions. Since the cameras are installed on the windows of the aircraft, this criterion is
validated. In addition, the proposed system is flexible and can therefore be adapted to other
installation constraints. Note that one of the cameras had to be moved by one window during
the installation because the chosen position was no longer available, which does not prevent
the system from working.

The second constraint to respect in terms of installation is to guarantee the non-intrusiveness
of the system with respect to flight performance or other tests performed in parallel. This
point is satisfied thanks to the use of flush targets on the wing, which do not introduce aero-
dynamic disturbances and therefore do not limit the flight domain. In addition, the compact
size of the acquisition devices installed in the cabin allows them to be installed without dis-
turbing the systems in place. Finally, all the equipment is certified so as not to disturb the
various systems on board the aircraft from an electromagnetic point of view.

The third crucial criterion for the system to be effectively installed in an aircraft is the
speed of installation. While previous systems used in Airbus may require a week to be
installed, the new system presented in this work can be installed in one day. Indeed, the fact
that the camera positions are recalculated during the bundle adjustment allows the system
to operate even if the cameras move slightly during the flight. It is then possible, as realized
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Figure 4.6: Comparison of the real and synthetic images obtained in flight and using Unity.
(left) - simulated, (right) - real images.
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here, to fix the cameras directly on the false windows, which can be done in less than an hour.
Furthermore, since the targets do not need to be positioned at very precise points on the wing,
and since they are installed using stickers and varnish, this installation can be achieved in less
than half a day. In addition, once the installation is complete, the calibration of the cameras
and windows, as well as the wing scan by drone, can be performed without impacting the
aircraft schedule. Even though these operations would be counted in the installation time,
calibration is a matter of about an hour, while the drone scan takes only thirty minutes.

Last but not least, this first test demonstrated that the system works in flight, i.e., that
the targets did not stall during takeoff, that the camera supports, cameras and acquisition
PCs did not suffer from vibrations or variations in temperature and humidity.

4.2.2 Measurand

In this study, the measurand is the wing deformation between its resting and flying positions.
Thus, the first requirement is to realize measurements on a volume of approximately 10 ×
30 × 10 meters with an important sampling. In particular, the need is to be able to estimate
the deformations of the wing between its engine and its tip. Through the tested installation,
it has been demonstrated that the use of cameras allows a very flexible response to this need.
An adaptation of the system to visualize different volumes is easily possible. Depending on
the expected accuracy, it is possible to simply change the focal length so as to modify the
viewing angle. Another solution would be to add more points of view, which can be considered
thanks to the simplicity of installation. Furthermore, following the constant evolution of video
sensors, it is also feasible to use higher resolution cameras to cover larger areas of the wing
without modifying the accuracy of 3D reconstruction.

Another important criterion was related to the temporal dimension. Wing deformations
should be recorded at a frame-rate between 1 and 30 images per second, for a test duration
of about 4 hours, with limited capacity of storage in the aircraft. Here, the proposed system
enables the acquisition frequency and the compression rate of the images to be adjusted
according to the need, which is thus satisfied. In addition, within the proposed framework,
it was chosen to prepare the acquisition to record several flights on the same storage disks,
and thus simplify the procedure of data transfer. Yet the simple fact of changing disks for
each flight would make it possible to increase the acquisition frequency. Another limiting
factor concerning the frame-rate is the JPEG compression. Within the current setup, this
compression is performed on CPU, which limits the writing frequency for high-resolution
images. One way of improvement would be to use the graphics processor unit to perform
this task. Finally, the recording is currently launched before the flight and stopped after the
aircraft returns to its parking area. An automatic triggering of the recordings based on the
flight configuration is currently under development for this system and would allow reducing
the recording time to the relevant phases of the flight.
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Figure 4.7: Example of target views acquired during the flight.

4.2.3 Uncontrolled environment

A major criterion of the aircraft application is that the system should be able to operate in
an uncontrolled environment, with significant luminosity variations, potential shadows and
reflections, but also vibrations and deformations of the entire aircraft. First of all, regarding
illumination variations, the simulations presented in Section 3.3.1.1 have shown that detection
could be performed even at very low contrast between the white and black parts of the target.
The use of a matte ink to print the targets therefore allowed, as expected, to provide sufficient
contrast for detection over a majority of the flight test, as illustrated in Fig. 4.7. It would be
interesting to subsequently quantify the level of contrast during the flight and compare this
information to the uncertainty of the final reconstruction. Finally, the acquired images show
that the contrast between the black lines and the surrounding metal plates may become very
reduced in some configurations. In these cases, the line contours disappear completely and
detection is impossible, which further supports the choice to use targets.

During the flight, shadows of the fuselage or the rear stabilizer can be projected on the
wing according to the orientation of the plane compared to the sun. Concerning this challenge,
this first experiment showed that the impact of the shadows on the contrast of the targets
was minimal during the flight. As mentioned previously, the detection of the targets can be
done at low contrast. Therefore, the presence of shadows will have no impact on the proposed
system.

Concerning the presence of reflection, we can distinguish two types of reflections. First,
there are the wingtip reflections on the wing surface. In some images, one can recognize the
specular property of the wing at the sight of the "A350 XWB" logo reflecting clearly on the
wing surface. In this case, there is no concern for the proposed system because targets on
their side do not reflect these inscriptions. However, the second type of reflections, of the sun,
is more important and may impact the 3D estimation in cases where complete regions of the
wing are overexposed.
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Finally, the last challenging criterion for 3D reconstruction in flight is the fact that the
entire aircraft can deform and vibrate in flight. On this point, the proposed system has been
designed to operate in an onboard environment, which was demonstrated during the test,
and is therefore not disturbed by these elements. In addition, the positions and orientations
of the cameras are validated by the fact that the targets remain well within their field of
view throughout the test, despite all deformations. Moreover, due to the low exposure times
selected, the vibrations of the cameras or the wing do not add considerable blur to the in-
flight images, which validates well the predictions made on the image blur in simulation (see
Section 3.2.3.2).

4.2.4 Final uncertainty

The need for deformation measurement expressed by Airbus results in a request for 3D mea-
surement of the wing points with an uncertainty of less than 10cm in elevation. As the data
has not yet been processed, it is not possible to state that this criterion is satisfied by the pro-
posed system. However, the images acquired during the flight are very promising and allow
one hoping to reach the required accuracy without too much doubt. Moreover, these images
have made it possible to validate to a large extent the sources of uncertainty to which the
approach will be exposed. This validation justifies the error propagation studied in Section
4, which allows one to affirm system success in terms of measurement uncertainty.

In addition, the evaluation of the reconstruction uncertainty is performed using the results
of different reconstruction methods. In this case, this countermeasure is provided by six IMUs
present in the wing. In view of the difference in density of spatial sampling, it will be necessary
to make assumptions about the deformation of the wing between these measurement points,
which may not be accurate. An alternative would be to use the former photogrammetry
system developed by Airbus as a countermeasure, although complex, which would allow one
to have a sampling as dense as the proposed method. However, this method also relies on
approximations of the deformation model of the wing. Finally, the question can be asked
about which method, between simulation or experimental validation, is the most reliable.

4.3 Industrial perspectives

The potential of the proposed method has been demonstrated through the course of this
manuscript. From an industrial point of view, this approach paves the way to some perspec-
tives described in this section.

4.3.1 Extension to other applications

This work focused on the application case of 3D reconstruction of an airplane wing. However,
the proposed system can be extended to other fields of application. Indeed, the key points
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Table 4.1: Synthesis of system responses to Airbus requirements.

Installation
Specification Solution Validation

Limited sensor positions - Flexible installation at windows OK
Non-intrusiveness - Flush markers

OK- Compact devices
- Limited electromagnetic emissions

Fast installation - Simple device installation

1 day
- Camera motions allowed
- Sticker targets
- Fast calibration and drone scan

Measurand
Specification Solution Validation

Scene volume of 10 × 30 ×
10m

- 4 Cameras looking focusing on different parts
of the wing

OK

Frequency between 1 and 30
Hz

- Adjustable frame-rate set to 4Hz
OK

4 hours duration, limited
disk capacity

- Adjustable frame-rate, compression set for
about 10h of recording

OK

Uncontrolled environment
Specification Solution Validation

Illumination variations
and potential shadows

- Algorithm detection 2D targets 2D on low
contrast OK
- Target printed with matte ink

Work with reflections - Multiple views enabling redundancy and lim-
itation of target loss

Partial
- No solution yet when the sun is in the camera
field of views

Final uncertainty
Specification Solution Validation

Bending uncertainty
lesser than 10cm

- Constrained Bundle Adjustment
Partial- Countermeasure from IMUs

- Validation of errors propagated in Chapter 3
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of this system is to operate without contact, in a non-intrusive way, and in an embedded
environment not very favorable to 3D measurements, thanks to the use of mechanical limit
constraints. One may think about applications in similar environment that may be found for
instance in the space, military, or robotics fields.

In the case of aeronautics, the proposed 3D reconstruction method is interesting to es-
timate deformations of areas that are difficult to instrument or areas that should not be
polluted by the installation of additional equipment. For example, the proposed system can
be used to estimate engine deformations, allowing a better understanding of engine perfor-
mance. In addition, as for the wing, the use of mechanical limits would be adapted to improve
the estimation without introducing a deformation model.

4.3.2 Requirement refinement

Other perspectives can be brought with respect to the need expressed by Airbus in terms
of measurement uncertainty. Indeed, the request for an estimate with an uncertainty of less
than 10cm has been established from the measurement results provided by the former pho-
togrammetry system. The proposed method having more degrees of freedom, and offering a
more dynamic and dense measurement, one could imagine refining the need, or even refining
the metric used. Specifically, if the measurement is used to recover the forces applied to the
wing, one can imagine directly providing the bending as a derivative of the elevation as a
function of the wingspan. In the past, this was not possible because of the non-deformability
approximations of the wing part. Subsequently, it would be interesting to present the capa-
bilities of this new approach to experts to discuss how their needs can be better met and how
the system can be improved in this way.

4.3.3 Hybridization

A final area of investigation could be to combine the developed system with other technologies
used by Airbus or under development. One can think here specifically to the IMUs present
in the wing, but also to other systems that are currently being tested by Airbus, such as
the LIDAR, which was presented in the state of the art, or a new technology for measuring
deformation by optical fiber. The latter, based on the principle of "Optical Frequency Domain
Reflectometry", makes it possible to find the deformation of the wing according to the strain
applied to an optical fiber installed on the leading edge of the wing. More details on this
subject can be found in [Ric+12].

Such hybridization would combine the advantages of the different technologies, and thus
make the deformation measurement more robust to environmental variations. For example,
the fiber and IMUs can deliver measurements even when the wing is no longer visible on
the images, such as when passing through clouds or when the sun blinds the cameras. On
the other hand, the proposed method based on target detection easily provides measurement
points at any location on the wing, whereas the installation of other sensors is more limited,
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such as on the flaps for instance.

In addition, a hybrid approach would benefit from the uncertainty study proposed in
Chapter 3. The knowledge of the uncertainty of 3D reconstruction would allow one to weight
the information provided in the combined estimate.

4.4 Conclusion

The objective of this chapter was to validate as many characteristics of the proposed sys-
tem as possible for flight tests, with the limited data available and in a limited time. To do
this, the first flight test was exposed, and the system was confronted with the initial needs
of Airbus with regard to the acquired images. It was thus possible to validate a majority
of the acquisition device in terms of its functioning and behavior in an embedded environ-
ment with significant environmental variations. This proof of concept paves the way for the
industrialization of the acquisition system.

Regarding the perspectives, future work will obviously have to focus on the validation of
the 3D reconstruction algorithms proposed in Chapter 3. In addition, this industrial valida-
tion provides interesting leads for expanding the application field, improving the system by
hybridization, but also refining the measurand specifications. The work in previous chapters
show very interesting prospects, that were refined thanks to the first tests. Yet, we can expect
to see new interesting phenomena occurring during the next flights.

123





Conclusion and perspectives

The work presented in this manuscript is mainly related to the development of a new method
for estimating the deformation of wings in flight, in accordance with specifications established
with Airbus experts, adapted to the constraints of flight tests and to the challenges of a
variable environment in flight.

The proposed method is primarily the result of an in-depth study of the state of the
art in the field of non-contact 3D estimation, presented in Chapter 1. The wide variety of
available methods was confronted with the challenges of the application defined by Airbus,
which allowed to establish the interest of an approach of multi-view photogrammetry for
the 3D reconstruction of aircraft wings. Indeed, this method has the valuable attributes of
delivering precise measurements according to Airbus expectations, on the complete volume of
an aircraft wing, in a dense and dynamic way, while ensuring a simple, fast and non-intrusive
installation. In addition, Airbus expertise in the field of embedded video acquisition is another
key factor that supported this choice. This method has therefore been the subject of a more
detailed study in order to allow its implementation on aircraft.

In Chapter 2, a complete framework for estimating deformations of the wing in flight
has been proposed, based on 2D detection of natural features of the wing or the use of
targets. This photogrammetry method uses cameras installed at locations constrained by the
application that are not necessarily optimal for 3D reconstruction, i.e., on the windows and
the rear stabilizer of the aircraft. In addition, the images are acquired in an uncontrolled
environment, with brightness variations, reflections and shadows, but also vibrations and
deformations of the aircraft. In order to improve the 3D wing estimation, we have proposed
a new reconstruction method exploiting constraints of the mechanical limits of the wing as
regularization terms in the classical bundle adjustment. Finally, the potential of this method
has been demonstrated through realistic experiments conducted on an A350 on ground. In
conclusion, it is clear that the use of key points that are naturally present on the wing is
interesting in cases where the processed videos have not been intended for this purpose. On
the other hand, to ensure the quality of 3D estimation in an industrial context, this approach
should not be considered, and the use of specific targets should be favored. In the case of
aircraft wings, the use of quadrant targets is therefore relevant. However, we could have gone
even further by placing circular targets on the wingtip to improve accuracy. In addition, the
proposed method based on mechanical constraints responds well to the Airbus problem as
it provides a good 3D reconstruction, while ensuring that the deformation models are not
directly used. In fact, the addition of mechanical limitations may be considered as equivalent
to adding a supplementary top view of the wing, providing a more favorable case for standard
photogrammetry.

The proposed method is suited to the flight test environment, but cannot be used by
Airbus design office without a complete analysis of its uncertainty. This was therefore the
subject of Chapter 3, which first introduced the standards and methodologies for estimating
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measurement uncertainty. Next, this part focused on an in-depth analysis of how to define the
various sources of error occurring in an embedded system for processing flight images. The
propagation of the errors considered in the current application was then conducted using the
different methods presented, i.e., using Monte Carlo simulation, analytical computation via
the propagation law, and experimentation on realistic computer-generated images. This work
allowed us to compare the three approaches in the present application and to demonstrate
the strengths and weaknesses of the three approaches with respect to data fidelity, temporal
complexity, implementation and ground-truth availability. Finally, conclusions were drawn
on the influence of some error sources on the final 3D reconstruction.

Finally, a proof of concept showed the validity of the proposed process with respect to
the industrial expectations, which is the subject of Chapter 4. For this purpose, a complete
photogrammetry system was developed to operate the framework designed in Chapter 2, and
to answer as well as possible to the problems of sources of uncertainty of Chapter 3. This
system was installed on an Airbus A350-1000 and enabled the acquisition of the first experi-
mental images at the end of the thesis. Due to lack of time, the processing of these data could
not be achieved, but it nevertheless permitted to draw the first conclusions on the validity of
the system. Indeed, the images and the acquisition chain in action were confronted to Airbus
specifications, leading to the validation of the equipment and the acquisition concept.

Perspectives

Regarding the perspectives of this thesis, several axes are considered, both from an academic
and an industrial point of view. First, since the proposed system has been installed on an
aircraft, a natural perspective is to test the proposed algorithms on the real data. This
would allow one to clearly demonstrate the advantages of a reconstruction method under
mechanical constraints in the real environment, but also to evaluate which type of constraint
is the most interesting in order to reduce the algorithmic complexity. Moreover, the processing
of these experimental data would allow us to compare the uncertainty of the real system to
that estimated in Chapter 3 using simulations and analytical computations. One should
however remain vigilant on the fact that the countermeasure data are sparse or introduce
approximations about the wing deformations.

A second area of investigation is to improve the proposed algorithm by considering a
weighted bundle adjustment approach in addition to the constraints. Indeed, in this study
the 2D observations used as the input of the bundle adjustment may be erroneous and lead
to a local minimum of the reprojection error, thus corrupting the 3D estimation. Given the
uncertainty study provided in Chapter 3, it would be possible to weight these 2D observations
in the cost function according to their detection uncertainty and their position on the wing.
In addition, tracking algorithms could be implemented in order to improve the detection on
successive images.

Another future work could be devoted to deepening the study of system uncertainty. On
the one hand, the uncertainty estimation of the detection of natural features of the wing would
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enable us to predict the performance of the algorithm in the case where no target could be
installed. On the other hand, the analytical propagation method presented in Section 3.3.2
allows one to quickly estimate the reconstruction uncertainty according to the application
case, and thus to shorten the time of decision making in an industrial context. It would
therefore be relevant to study the application of the propagation law to the bundle adjustment
under constraints. In addition, it would be appropriate to evaluate the 3D-reconstruction
uncertainty as a function of the flight parameters to predict the ideal situation, the average
situation, but also the situations to be avoided. One can thus think of imposing a heading to
the aircraft for ensuring optimal 3D-estimates.

Finally, several industrial prospects have emerged from this work and the tests presented in
Chapter 4. Indeed, the proposed system is particularly well suited to constrained installations
requiring limited intrusiveness, making it a good candidate for other applications such as the
deformation measurement of aircraft nacelles. In addition, a fine-tuning of the measurement
needs could be studied on the Airbus side thanks to the extended capabilities of the new
method compared to the previous ones. Finally, a hybridization of the developed method
of photogrammetry with the various methods currently studied at Airbus, such as lidar and
optical fibers, could be investigated in order to guarantee redundancy and improve the final
estimation. This combination of measurement means will most certainly be the key to the
development of Airbus future generation of wings.

127





Appendix A

Derivatives Calculation for the
Constrained Bundle Adjustment

A.1 Constrained Bundle Adjustment - reminder

In this section, we shortly remind the constrained bundle adjustment formulation with a first
constraint function g0. We have a set of M camera and N points. Observation on camera j
of the point i is noted xi

j and camera parameters are represented as vectors αj = (vj , tj)T .
vj and tj are respectively the rotation and translation vectors of the camera j. x̂(αj , Xi)
is the projection of the estimated point Xi on camera j with estimated parameters αj .The
optimization function in our model is written:

arg min
αj ,Xi

∑

i,j

[

xi
j − x̂(αj , Xi)

]2
+ µ0

∑

i

[

g+
0 (αr, Xi)

]2
, (A.1)

where µ0 is the first penalty parameter,

x̂(αj , Xi) =
1
ci

j

Kjli
j , (A.2)

where Kj is the 2 × 3 matrix of the intrinsic camera parameters, considered as known after
system calibration, and

li
j = (ai

j , bi
j , ci

j)T =
[

RT
j , −RT

j tj

]

(

Xi

1

)

(A.3)

with Rj the rotation matrix formed using Euler-Rodrigues formula [GY15]

Rj = Id + sin θ[v̄j ]× + (1 − cos θ)[v̄j ]2×,

where θ is the rotation angle around the unit vector v̄j = (v̄j,1, v̄j,2, v̄j,3), such that vj = θv̄j ,
and [v̄j ]× is the cross product matrix defined as

[v̄j ]× =







0 −v̄j,3 v̄j,2

v̄j,3 0 −v̄j,1

−v̄j,2 v̄j,1 0






(A.4)
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And g+
0 (αr, Xi) = max(0, g0(αr, Xi)), with in the simple example

g0(αr, Xi) = (ri
x − x̃i), (A.5)

Registration:

X̃
i

= P

[

RT
r −RT

r tr

0 1

](

Xi

1

)

. (A.6)

A.2 CBA Derivatives

Now we will calculate the non-zero elements of the Jacobian:

∂(xi
j − x̂(αj , Xi))2

∂(αj , Xi)
= −2 diag(xi

j − x̂(αj , Xi))
∂x̂(αj , Xi)
∂(αj , Xi)

, (A.7)

where
∂x̂(αj , Xi)
∂(αj , Xi)

= Kj(
1
ci

j

∂li
j

∂(αj , Xi)
− 1

(ci
j)2

li
j

∂ci
j

∂(αj , Xi)
), (A.8)

where

∂li
j

∂(αj , Xi)
= (

∂ai
j

∂(αj , Xi)
,

∂bi
j

∂(αj , Xi)
,

∂ci
j

∂(αj , Xi)
)T =

∂T j

∂(αj , Xi)

(

Xi

1

)

+T j
∂(Xi, 1)T

∂(αj , Xi)
(A.9)

where T j =
[

RT
j , −RT

j tj

]

.

First regarding the points parameters, we have ∂T j

∂Xi = 0, thus

∂li
j

∂Xi = RT
j (A.10)

Now, regarding the camera parameters, since Xi does not depend on the camera parameters,
∂(Xi,1)T

∂αj
= 0, and

∂li
j

∂αj
=

∂T j

∂αj

(

Xi

1

)

, (A.11)

where
∂T j

∂αj
=

[

∂Rj

∂αj

T

, −∂Rj

∂αj

T

tj − RT
j

∂tj

∂αj

]

(A.12)

with
∂tj

∂αj
= [03, I3] ,

∂RT
j

∂αj
=

[

∂RT
j

∂vj,1
,
∂RT

j

∂vj,2
,
∂RT

j

∂vj,3
, 03

]

, (A.13)
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and ∀p ∈ (1, 2, 3)

∂Rj

∂vj,p
= cos θv̄j,p[v̄j ]× +sin θv̄j,p[v̄j ]2× +

sin θ

θ
[ep − v̄j,pv̄j ]× +

1 − cos θ

θ
(epv̄T

j +v̄jeT
p −2v̄j,pv̄j v̄T

j )

(A.14)
as demonstrated in [GY15], with (e1, e2, e3) the standard basis in R

3.
Then, for the constraint formulation in (2.21)

∂(g+
0 (αr, Xi))2

∂(αr, Xi)
= 2g+

0 (αr, Xi)
∂g+

0 (αr, Xi)
∂(αr, Xi)

, (A.15)

with

∂g+
0 (αr, Xi)

∂(αr, Xi)
=











0 if g0(αr, Xi) ≤ 0
∂g0(αr, Xi)
∂(αr, Xi)

otherwise
(A.16)

In the particular case of (A.5),

∂g0(αr, Xi)
∂(αr, Xi)

= − ∂x̃i

∂(αr, Xi)
, (A.17)

with X̃
i

= (x̃i, ỹi, z̃i) defined in (A.6), and

∂X̃
i

∂(αr, Xi)
= P





∂T̃
k

∂(αr, Xi)

(

Xi

1

)

+ T̃
k ∂(Xi, 1)T

∂(αr, Xi)



 . (A.18)

where T̃ j =

[

RT
r −RT

r tr

0 1

]

.

Finally,
∂X̃

i

∂Xi = P

[

RT
r

0

]

, (A.19)

and






























∂X̃
i

∂αj
= 0 if j 6= k

∂X̃
i

∂αr
= P







∂T k

∂αr
0







(

Xi

1

) , (A.20)

where
∂T k

∂αr
is calculated in (A.12) to (A.14).
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Appendix B

Gauss-Newton method

The Gauss-Newton method is an iterative algorithm for solving the least-squares of a non
linear function, and is described in this appendix.

We note e : Rn → R the cost function to minimize over all values of a n parameter vector
p, and p0 an initial guess close to a well-defined minimum value of e. Using the Taylor series
expansion of e at p0, one can write

e(p0 + δ) = e(p0) +
∂e

∂p
(p0)δ +

1
2

δT ∂2e

∂p2
(p0)δ + . . . , (B.1)

where derivatives of higher order than two are neglected. To minimize e with respect to δ,
one differentiates Eq. (B.1) with respect to δ and seeks where it equals zero, leading to

∂e

∂p
(p0) +

∂2e

∂p2
(p0)δ = 0 (B.2)

or
∂2e

∂p2
(p0)δ = − ∂e

∂p
(p0). (B.3)

Starting from p0, the Newton method computes the parameter increment δ using Eq. (B.3)
until convergence of the cost function e is reached.

For the specific case of least-squares minimization, we note e = 1
2g(p)T g(p), with g : Rn →

R
m, and g(p) = x − x̂(p) for the reprojection error presented in Section 3.3.2. Calculating

the derivatives of e gives
∂e

∂p
=

∂g

∂p

T

g = −J x̂T

p g, (B.4)

and
∂2e

∂p2
=

∂g

∂p

T ∂g

∂p
+

∂2g

∂p2
g (B.5)

with J x̂
p the Jacobian matrix of x̂ with respect to p. Now making the assumption that the

function x̂ is linear around the solution (called the Gauss-Newton approximation), the second
order derivative of g equals zero, resulting in

∂2e

∂p2
≈ ∂g

∂p

T ∂g

∂p
= J x̂T

p J x̂
p . (B.6)
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Finally, one may iteratively compute the increment δ of the least-squares problem using

J x̂T

p J x̂
pδ = J x̂T

p g. (B.7)

Interested reader may refer to [HZ04, p. 597] for more information on iterative estimation
methods.
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Appendix C

Results of the Uncertainty
Propagation

This appendix displays some additional results of the uncertainty study presented in Sec-
tion 3.4, obtained from Monte-Carlo (MC) simulations and computation using the propaga-
tion law (PL).

(a)

(b)

Figure C.1: BA with only observation noise at tip (a) and middle (b) of the wing, using both
MC and PL (in meters).

135



(a)

(b)

Figure C.2: BA with only observation noise and calibration noise (in meters). Since 1px (a)
of calibration noise does not change the results (see Fig.C.1), 10px (b) is tested to confirm
that PL works to propagate calibration uncertainty.

Figure C.3: BA with observation, calibration and initial reconstruction noise, showing that
the uncertainty of initial reconstruction has no impact on the result in the current application
(in meters).
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Figure C.4: Confidence ellipses of the 3D reconstructions (in meters) for all targets of the
wing displayed in (x, y) plane, with BA (a) and CBA (b).
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Figure C.5: Confidence ellipses of the 3D reconstructions (in meters) for all targets of the
wing displayed in (x, z) plane, with BA (a) and CBA (b).
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(a)

(b)

Figure C.6: Results of the MC simulation propagating observation and calibration noise
with outliers, using BA (a) and CBA (b) (in meters). Boundaries arising from the volume
constraints may be observed in (b).
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Figure C.7: Confidence ellipses of a 3D point at wing tip for various levels of observation
noise, obtained using PL (in meters).
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[Mar18] D. Martĭsek. “Fast Shape-From-Focus method for 3D object reconstruction.” In:

Optik 169 (2018), pp. 16 –26.

[May11] S. Maybank. Theory of Reconstruction from Image Motion. Springer-Verlag

Berlin Heidelberg, 2011.

145



[ME17] Institut Mermoz and in cooperation with AIRBUS ENAC. General knowledge

of aircraft : 021. Volume 1, Airframe and systems. Institut Mermoz and ENAC,

2017.

[Met] Agisoft Metashape User Manual: Professional Edition, Version 1.6. available

at: https://www.agisoft.com/downloads/user-manuals/. Agisoft LLC. St.

Petersburg, Russia, 2020.

[ML09] M. Muja and D. G. Lowe. “"Fast Approximate Nearest Neighbors with Auto-

matic Algorithm Configuration".” In: Int. Conf. on Comput. Vis. Theory and

Appl. Lisboa, Portugal, 2009.

[MMI17] F. Mahmood, M. T. Mahmood, and J. Iqbal. “3-D shape recovery from image

focus using no-reference sharpness metric based on inherent sharpness.” In: 17th

Int. Conf. on Control, Automation and Systems. Jeju, South Korea, 2017.

[MMM13] P. Moulon, P. Monasse, and R. Marlet. “Global Fusion of Relative Motions for

Robust, Accurate and Scalable Structure from Motion.” In: IEEE Int. Conf. on

Comput. Vis. Sydney, NSW, Australia, 2013.

[MN12] A. Miks and J. Novak. “Dependence of camera lens induced radial distortion

and circle of confusion on object position.” In: Optics & Laser Technology 44.4

(2012), pp. 1043 –1049.

[Moe+15] M. Moeller, M. Benning, C. Schönlieb, and D. Cremers. “Variational Depth

From Focus Reconstruction.” In: IEEE Trans. on Image Process. 24.12 (2015),

pp. 5369 –5378.

[Mor05] O. Morel. “Environnement Actif pour la Reconstruction Tridimensionnelle de

Surfaces Métalliques Spéculaires par Imagerie Polarimétrique.” PhD thesis. Uni-

versité de Bourgogne, 2005.

[Mou17] A. Mours. “Localisation de cible en sonar actif.” PhD thesis. Université Grenoble

Alpes, 2017.

[NIK91] S.K. Nayar, K. Ikeuchi, and T. Kanade. “Surface reflection: physical and geo-

metrical perspectives.” In: IEEE Trans. Pattern Anal. Mach. Intell. 13 (1991),

pp. 611–634.

[Nis04] D. Nister. “An efficient solution to the five-point relative pose problem.” In:

IEEE Trans. Pattern Anal. Mach. Intell. 26.6 (2004), pp. 756–770.

[Nsi] NSI Systems and Services Overview Brochure. Tech. rep. available at: https:

//4nsi.com. North Star Imaging (NSI), 2020.

[OJRE17] P. Ozog, M. Johnson-Roberson, and R. M. Eustice. “Mapping underwater ship

hulls using a model-assisted bundle adjustment framework.” In: Robotics and

Autonomous Systems 87 (2017), pp. 329–347.

[Ond+20] J. Ondrus̆, E. Kolla, P. Vertal, and Z. Saric. “How Do Autonomous Cars Work?”

In: Transportation Research Procedia 44 (2020), pp. 226 –233.

[Ope] The OpenCV Reference Manual. 2.4.13.7. Intel. 2019.

146

https://www.agisoft.com/downloads/user-manuals/
https://4nsi.com
https://4nsi.com


[PA13] A. Bartoli P. Alcantarilla J. Nuevo. “Fast Explicit Diffusion for Accelerated

Features in Nonlinear Scale Spaces.” In: British Machine Vis. Conf. Bristol,

UK, 2013.

[PF06] E. Prados and O. Faugeras. “Shape From Shading.” In: Handbook of Mathemat-

ical Models in Comput. Vis. (2006), pp. 375–388.

[Phi] IntelliSpace Portal 10 Brochure. Tech. rep. available at: https://www.philips.

fr/healthcare. Philips, 2017.

[RBD17] K. Rankin, M. Browne, and A. Dickinson. “Chapter 5 - Digital Image Cor-

relation for Strain Analysis of Whole Bones and Implants.” In: Experimental

Methods in Orthopaedic Biomechanics. Ed. by Radovan Zdero. Academic Press,

2017, pp. 65 –83.

[RD06] E. Rosten and T. Drummond. “Machine Learning for High-Speed Corner De-

tection.” In: Eur. Conf. on Comput. Vis. Graz, Austria, 2006.

[Ric+12] W. L. Richards, A. R. Parker, A. Piazza W. L. Ko, and P. Chan. Application

of Fiber Optic Instrumentation. Tech. rep. available at: https://www.sto.

nato.int/. Research and technology organisation, and North atlantic treaty

organisation, 2012.

[Rub+11] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. “ORB: An efficient al-

ternative to SIFT or SURF.” In: Int. Conf. on Comput. Vis. Barcelona, Spain,

2011.

[Sag+05] R. Sagawa, M. Takatsuji, T. Echigo, and Y. Yagi. “Calibration of lens distor-

tion by structured-light scanning.” In: Int. Conf. on Intell. Robots and Systems.

Edmonton, Alta., Canada, 2005.

[Sav+07] S. Savarese, M. Andreetto, H. Rushmeier, F. Bernardini, and P. Perona. “3D

Reconstruction by Shadow Carving: Theory and Practical Evaluation.” In: Int.

J. of Comput. Vis. 71.3 (2007), pp. 305 –336.

[Sie] ACUSON X600 Ultrasound Brochure. Tech. rep. available at: https://www.

siemens-healthineers.com. Siemens, 2015.

[SSN15] R. Shah, V. Srivastava, and P.J. Narayanan. “Geometry-Aware Feature Match-

ing for Structure from Motion Applications.” In: Winter Conf. on Applications

of Comput. Vis. Waikoloa, HI, USA, 2015.

[SSS06] N. Snavely, S. M. Seitz, and R. Szeliski. “Photo Tourism: Exploring Photo

Collections in 3D.” In: ACM Trans. Graph. 25.3 (2006), pp. 835 –846.

[SSS07] N. Snavely, S. M. Seitz, and R. Szeliski. “Modeling the World from Internet

Photo Collections.” In: International J. of Comput. Vis. 80.2 (2007), pp. 189

–210.

[ST94] J. Shi and C. Tomasi. “Good features to track.” In: IEEE Conf. Comput. Vis.

and Pattern Recognit. Seattle, WA, USA, 1994.

147

https://www.philips.fr/healthcare
https://www.philips.fr/healthcare
https://www.sto.nato.int/
https://www.sto.nato.int/
https://www.siemens-healthineers.com
https://www.siemens-healthineers.com


[Tac+19] J. Tachella, Y. Altmann, N. Mellado, A. McCarthy, R. Tobin, G. Buller, J.-Y.

Tourneret, and S. McLaughlin. “Real-time 3D reconstruction from single-photon

lidar data using plug-and-play point cloud denoisers.” In: Nature Communica-

tions 10 (2019), pp. 4984.

[TF05] J. R. A. Torreao and J. L. Fernandes. “Single-Image Shape from Defocus.” In:

XVIII Brazilian Symposium on Comput. Graphics and Image Process. Natal,

Rio Grande do Norte, Brazil, 2005.

[THP09] A. Torii, M. Havlena, and T. Pajdla. “From Google Street View to 3D city

models.” In: Proc. Int. Conf. Comput. Vis. Workshops. Kyoto, Japan, 2009.

[TLF10] E. Tola, V. Lepetit, and P. Fua. “DAISY: An Efficient Dense Descriptor Applied

to Wide-Baseline Stereo.” In: Trans. Pattern Anal. Mach. Intell. 32 (2010),

pp. 815–830.

[TS94] P.-S. Tsai and M. Shah. “Shape from shading using linear approximation.” In:

Image and Vis. Computing 12.8 (1994), pp. 487–498.

[Uni] Unity User Manual 2020.2. Tech. rep. available at: https://docs.unity3d.

com/. Unity, 2020.

[Va20] P. Virtanen and al. “SciPy 1.0: Fundamental Algorithms for Scientific Comput-

ing in Python.” In: Nature Methods (2020).

[VD16] S. Van der Jeught and J. J.J. Dirckx. “Real-time structured light profilometry:

a review.” In: Optics and Lasers in Engineering 87 (2016), pp. 18 –31.

[Vdi] VDI/VDE 2634 Part 3. Optical 3D-measuring systems, Multiple view systems

based on area scanning. Tech. rep. VDI-RICHTLINIEN, 2008.

[Vel] A Guide to Lidar Wavelengths (Blog release). Tech. rep. available at: https:

///velodynelidar.com/. Velodyne Lidar, 2018.

[VZ20] D. Verbin and T. Zickler. “Toward a Universal Model for Shape from Texture.”

In: IEEE Conf. Comput. Vis. and Pattern Recognit. Seattle, WA, USA, 2020.

[Wan+05] G. Wang, H.-T. Tsui, Z. Hu, and F. Wu. “Camera calibration and 3D recon-

struction from a single view based on scene constraints.” In: Image and Vis.

Computing 23.3 (2005), pp. 311–323.

[Xia+16] Y. Xiang, S. Nakamura, H. Tamari, S. Takano, and Y. Okada. “3D Model

Generation of Cattle by Shape-from-Silhouette Method for ICT Agriculture.”

In: 10th Int. Conf. on Complex, Intell., and Softw. Intensive Syst. Fukuoka,

Japan, 2016.

[Yan+09] J.-H. Yan, M. A. Sutton, X. Deng, Z.Wei, and P. Zavattieri. “Mixed-mode crack

growth in ductile thin-sheet materials under combined in-plane and out-of-plane

loading.” In: Int. J. of Fracture 160 (2009), pp. 169–188.

[YC02] Y. Yu and J. Chang. “Shadow Graphs and Surface Reconstruction.” In: Eur.

Conf. on Comput. Vis. (ECCV). Copenhagen, Denmark, 2002.

[YSS10] Y. Yamashita, F. Sakaue, and J. Sato. “Recovering 3D Shape and Light Source

Positions from Non-planar Shadows.” In: 20th Int. Conf. on Pattern Recogn.

Istanbul, Turkey, 2010.

148

https://docs.unity3d.com/
https://docs.unity3d.com/
https:///velodynelidar.com/
https:///velodynelidar.com/


[Zha00] Z. Zhang. “A flexible new technique for camera calibration.” In: IEEE Trans.

Pattern Anal. Mach. Intell. 22.11 (2000), pp. 1330 –1334.

[Zha18] S. Zhang. “High-speed 3D shape measurement with structured light methods:

A review.” In: Optics and Lasers in Engineering 106 (2018), pp. 119 –131.

[ZHH12] Y. Zhang, K. Hu, and R. Huang. “Bundle adjustment with additional constraints

applied to imagery of the Dunhuang wall paintings.” In: J. of Photogrammetry

and Remote Sensing 72 (2012), pp. 113–120.

149





Résumé — Si vous avez déjà été à bord d’un avion et que vous avez regardé par le

hublot, vous avez sans doute remarqué les déformations impressionnantes de ses ailes. Ces

observations sont en fait très instructives sur les efforts aérodynamiques qui sont appliqués à

l’avion. Bien avant le premier vol d’un avion, les constructeurs sont en mesure de prédire son

comportement mécanique dans divers scenarii en fonction par exemple du poids de l’avion,

de sa vitesse ou de son angle d’attaque, sur la base de modèles théoriques précis. Dans le

cadre de la procédure de certification des avions, ces modèles doivent être validés et affinés

par l’estimation en vol des déformations des ailes. Cependant, à mesure que la qualité et

la précision des modèles d’ailes augmentent, les méthodes utilisées pour obtenir les mesures

réelles devraient également évoluer.

Dans le cadre de ce travail, un nouveau système est développé et évalué pour estimer la

forme 3D d’une aile en vol. Pour répondre aux nouveaux besoins de cartographie dense, de

précision ou de fréquence, sans pour autant introduire de perturbation sur le comportement

aérodynamique de l’aile, cette étude se concentre sur les méthodes de reconstruction 3D sans

contact. Après avoir réalisé une analyse détaillée de l’état de l’art dans ce domaine, une

approche photogrammétrique utilisant plusieurs caméras installées aux fenêtres de l’avion a

été retenue, et un système algorithmique et matériel complet a été développé.

Comme la plupart des méthodes de photogrammétrie standard, l’approche proposée est

basée sur l’ajustement des faisceaux (ou en anglais Bundle Adjustment, BA), une méthode

classique qui estime simultanément les positions des caméras et la scène 3D environnante. Le

BA est un algorithme d’optimisation itératif qui vise à minimiser une fonction de coût non

convexe et non linéaire. On ne peut donc pas garantir sa convergence à un minimum global,

et le choix des conditions initiales est crucial dans les applications pratiques. Par conséquent,

l’application de la photogrammétrie à la reconstruction 3D des ailes en vol est un véritable

défi, en raison de fortes contraintes d’installation et d’un environnement très variable avec

des vibrations, des changements de luminosité, des réflexions potentielles et des ombres. Pour

faire face à ces défis, ce travail présente un nouveau BA contraint, qui utilise les connaissances

préalables résultant des limites mécaniques de l’aile au-delà desquelles la voilure se briserait,

et améliore les résultats de la reconstruction comme démontré par des tests réalistes.

Dans un deuxième temps, une étude approfondie des sources d’erreur et de l’incertitude

de la reconstruction est fournie afin de garantir la qualité de l’estimation 3D, ainsi que la

possibilité d’avoir une meilleure interprétation des erreurs de reconstruction. Pour ce faire,

toutes les sources potentielles d’incertitude sont évaluées et propagées dans le cadre proposé en

utilisant trois approches : le calcul analytique, la simulation de Monte-Carlo et la validation

expérimentale sur des images synthétiques. Les différentes mises en œuvre et résultats ont

permis de conclure sur les avantages et les inconvénients de chaque méthode. Ils prouvent

également que le système développé répond aux attentes d’Airbus.



Enfin, le système conçu est validé sur des tests réels avec un A350-1000 du centre d’essais

en vol d’Airbus. Ces expérimentations menées en conditions réelles montrent la pertinence

de la solution proposée par rapport aux sources d’incertitude observées, et fournissent des

résultats prometteurs.

Mots clés : Déformation d’Aile, Essais en Vol, Photogrammétrie, Ajustement de Fais-

ceaux, Optimisation sous Contraintes, Limites Mécaniques, Propagation d’Incertitude.

Abstract — If you have ever been on an aircraft and looked at the window, you may have

noticed the remarkable deformations of its wings. This observation actually conveys a lot

of information about the aerodynamic efforts that are applied to the aircraft. Long before

the first flight of an aircraft, manufacturers are able to predict its mechanical behavior in

various scenarii depending for instance on the aircraft weight, speed or angle of attack, based

on accurate theoretical models. As part of the aircraft certification procedure, these models

have to be validated and refined through in-flight estimation of wing deformations. However,

as the quality and accuracy of the wing models increase, the methods used to obtain the

actual measurements should also evolve.

In this work, a new system is developed and evaluated to estimate the 3D shape of a

wing in flight. To answer the new needs of dense mapping, precision, or frequency, while

introducing no disturbance on the wing aerodynamic behavior, this study is focusing on the

methods of non-contact 3D reconstruction. After performing a detailed study about state-of-

the-art systems in this field, a photogrammetry approach using multiple cameras installed at

the aircraft windows was retained, and a full algorithmic and hardware system was developed.

Similarly to most standard photogrammetry methods, the proposed approach is based on

Bundle Adjustment (BA), a classical method that simultaneously estimates camera positions

and surrounding 3D scene. BA is an iterative optimization algorithm that aims at minimizing

a non-convex and non-linear cost function. Therefore, one cannot guarantee its convergence

to a global minimum, and the choice of the initial conditions is crucial in practical applica-

tions. Consequently, the application of photogrammetry to 3D wing reconstruction in flight

is a very challenging problem, due to strong installation constraints, and highly varying envi-

ronment with vibrations, luminosity changes, potential reflections and shadows. To face these

challenges, this work presents a new constrained BA, which uses prior knowledge resulting

from wing mechanical limits beyond which the wing would break, and improves reconstruction

results as demonstrated through realistic tests. In a second step, an in-depth study of error

sources and reconstruction uncertainty is provided in order to guarantee the quality of the 3D

estimation, as well as the possibility of having a better interpretation of reconstruction errors.

To this aim, all potential sources of uncertainty are evaluated, and propagated through the

proposed framework using three approaches: analytical calculation, Monte-Carlo simulation,

and experimental validation on synthetic images. The different implementations and results

allowed one to conclude on the advantages and disadvantages of each method. They also

prove that the developed system meets the expectations of Airbus.
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Finally, the designed system is validated on real tests with an A350-1000 of the flight test

center in Airbus. These experimentations conducted in real conditions show the pertinence

of the proposed solution with respect to the observed sources of uncertainty, and provide

promising results.

Keywords: Wing Deformation, Flight Tests, Photogrammetry, Bundle adjustment, Op-

timization under Constraints, Mechanical Limits, Propagation of Uncertainty.
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